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Zusammenfassung

Graphen-basierte Moiré—Ubergitter, insbesondere im magischen Winkel verdrehtes Doppel-
lagen Graphen (TBG), haben sich als vielversprechende Plattform zur Erforschung unkon-
ventioneller Supraleitung in elektronischen Flachbiandern erwiesen, in denen das Zusam-
menspiel von starken Korrelationen, nichttrivialer Topologie und quantengeometrischen
Effekten eine zentrale Rolle spielt. Der Josephson-Effekt bietet ein vielseitiges Mittel, um
die fundamentalen Eigenschaften supraleitender Zustidnde und deren Wechselwirkungen
mit anderen korrelierten Phasen zu untersuchen. Dennoch blieb dessen Einwirkung auf
Moiré-Systemen bislang weitgehend unerforscht.

In dieser Dissertation schlieflen wir diese Liicke, indem wir Techniken zum Stapeln von
Van-der-Waals-Kristallen mit transparenten supraleitenden Kontakten und Tieftemperatur-
Transportmessungen kombinieren. Unser Ansatz umfasst zwei Nanoarchitekturen: extrin-
sische Josephson-Kontakte mit externen s-Wellen-Supraleitern sowie intrinsische, Gate-
definierte Josephson-Kontakte, die innerhalb eines einzigen, monolithischen TBG-Kristalls
realisiert werden.

Zunachst untersuchen wir ein Graphen/hBN-Moiré-Pontetial im ballistischen Regime,
in dem sich Fabry-Pérot-Oszillationen und Supraleitung bei hohen Magnetfeldern als di-
rekte Signaturen der Minibandstruktur zeigen. Der Schwerpunkt dieser Arbeit liegt auf
TBG im magischen Winkel, dessen flache Béander aufgrund ihrer verschwindenden Fermi-
Geschwindigkeit nur schwache, induzierte Supraleitung erwarten lassen. Entgegen dieser
Erwartung beobachten wir einen starken Josephson-Effekt sowohl in den flachen als auch
in den dispersiven Bandern, sowie eine deutliche Verletzung der konventionellen Skalierung
zwischen kritischem Strom und Normalleitwert — ein Hinweis auf unkonventionelle Mech-
anismen, die durch starke Wechselwirkungen, Quantengeometrie und Mehrband-Paarung
getragen werden. Schlieflich realisieren wir durch Ausnutzung des intrinsischen supraleit-
enden Zustands von TBG Gate-definierte JJs mit symmetriegebrochenem Josephson-Effekt
und einer programmierbaren Nullfeld-Josephson-Diode.

Diese Arbeit ebnet den Weg fiir zukiinftige experimentelle und theoretische Unter-
suchungen des supraleitenden Proximity-Effekts in Moiré-Materialien, insbesondere in Flach-
bandsystemen. In Zukunft konnte die Kopplung externer Supraleiter an den intrinsischen
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Zusammenfassung

supraleitenden Zustand von TBG entscheidende Einblicke in die Symmetrie seines Ord-
nungsparameters ermoglichen. Andere hier noch nicht untersuchte graphen-basierte Moiré-
Ubergitter, wie beispielsweise rhomboedrisches Graphen mit paraleller hBN-Ausrichtung,
werden von der Erforschung ihrer topologischen Phasen mit dem Josephson-Effekt erheblich
profitieren und moglicherweise zur Entwicklung hybrider JJs fiir topologische Quantentech-
nologien fithren.



Summary

Graphene-based moiré superlattices, and in particular magic-angle twisted bilayer graphene
(TBG), have emerged as a promising platform for studying unconventional superconduc-
tivity in electronic flat bands, where the interplay between strong correlations, nontrivial
topology and quantum geometry plays a central role. The Josephson effect provides a
powerful tool to probe the fundamental properties of superconducting states and how they
interact with other correlated phases of matter. And yet, it has remained largely unex-
plored in these moiré systems.

In this dissertation, we demonstrate various experimental efforts to address this gap by
combining van der Waals stacking techniques with transparent superconducting contacts
and low-temperature transport measurements. Our approach spans two device architec-
tures: extrinsic Josephson junctions (JJs) incorporating external s-wave superconducting
leads, and intrinsic gate-defined JJs realized within a single monolithic TBG device.

We first investigate a graphene/hBN moiré superlattice in the ballistic regime, where
Fabry-Pérot oscillations and high-field superconductivity reflect the underlying miniband
structure. The core of this thesis work focuses on magic-angle TBG, whose flat bands are
expected to suppress the proximity-induced superconductivity due to their vanishing Fermi
velocity. Surprisingly, we observe a strong Josephson effect in both its flat and dispersive
bands, along with a clear violation of the conventional scaling between critical current
and normal-state conductance—pointing to unconventional mechanisms involving strong
correlations, quantum geometry, and multiband pairing. Finally, by leveraging the intrinsic
superconducting state of TBG, we realize gate-defined JJs that display a symmetry-broken
Josephson effect and a programmable, zero-field Josephson diode.

This research paves the way for future experimental and theoretical studies of the super-
conducting proximity effect in moiré materials and especially in flat band systems. Looking
forward, coupling external superconductors to the intrinsic superconducting state of TBG
will prove a key experiment in unraveling its pairing symmetry. Other graphene-based
moiré superlattices not studied here, such as rhombohedral graphene aligned with hBN,
will greatly benefit from the exploration of their topological phases with the Josephson ef-
fect, potentially leading to the creation of hybrid JJs for topological quantum technologies.
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Introduction

For many decades during the 20th century, two-dimensional (2D) materials were believed
to be thermodynamically unstable in nature [1]. This notion came from theoretical ar-
guments, such as the demonstration by Mermin on how thermal fluctuations can displace
the atoms in the order of their interatomic distances in lower dimensions, thus destroy-
ing long-range crystalline order [2]. Additionally, Anderson localization suggested that
for non-interacting electrons, even the smallest disorder localizes all states in two dimen-
sions at zero temperature, suppressing metallic transport [3]. The isolation of monolayer
graphene in 2004 challenged these long held assumptions, demonstrating that atomically
thin crystals could indeed exist as stable, free-standing materials [4]. As this 2D material
is exfoliated from a bulkier 3D material, the strong interatomic bonds confers it an ex-
ceptional in-plane stiffness, which along with a gentle corrugation that adds small ripples
in the third dimension, suppress thermal fluctuations and stabilize long-range crystalline
order [1]. Furthermore, as its charge carriers obey a massless Dirac dispersion, even weak
localization is often absent in graphene, allowing for extremely high mobilities and ren-
dering it an excellent conductor [5, [6]. This discovery not only opened a new realm of
material science but also provided a tunable platform to explore quantum transport in two
dimensions.

Following the discovery of graphene, a variety of atomically thin materials with a wide
range of physical properties were exfoliated and studied, including insulators (hBN), semi-
conductors (MoSy, WSey), superconductors (NbSez, MoTey), magnets (Crlz) and topolog-
ical insulators (WTey) [7]. More importantly, these atomically thin crystals can be stacked
on top of each other due to the weak van der Waals forces between layers. This stacking,
which does not rely on chemical bonding, preserves the integrity of each individual layer
while allowing novel interlayer coupling. The resulting vertical assembly thus constitutes a
van der Waals heterostructure in which the quantum phases of each layer can coexist and
interact, engineering a new material altogether.

An even more striking degree of freedom arises when these stacked layers are rotated
with respect to one another. A small relative twist between two periodic lattices gen-
erates a moiré superlattice, a much larger lattice that the two constituent ones, whose
long-wavelength periodic potential can reshape the electronic band structure completely.
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The most notable example is twisted bilayer graphene (TBG), in which if two graphene
sheets are overlaid and twisted by an angle 1.1°, the so-called magic angle, the low-energy
bands become remarkably flat, quenching the kinetic energy and amplifying the effects of
electron-electron interactions . From 2018, experiments showed that these flat bands
host a strongly correlated phase diagram that includes correlated insulators [11], supercon-
ductivity [12] [13], orbital ferromagnetism [14], Chern insulating states [14-16]; and many
others . Beyond TBG, similar strategies have been applied to twisted TMD bilayers,
where correlated and topological phases have also been observed . That such a rich
many body phase diagram can arise simply by rotating one atomic layer with respect to
another is one of the most profound findings in condensed matter physics in recent years,
which has created an entire new field of research, coined Twistronics.

In this rapidly evolving field, the Josephson effect offers a unique and powerful probe
of the underlying quantum phases. A Josephson junction (JJ) comprises two superconduc-
tors separated by a non-superconducting weak link, across which Cooper pairs can travel
via the proximity effect, creating a dissipationless supercurrent. The dependence of this
supercurrent on the carrier density, temperature and magnetic field can encode detailed in-
formation about the proximitized material, such as the symmetries of its ground state and
the electronic and topological structure of its underlying bands. In the last two decades,

vdW & Moiré superlattices Josephson junctions
Moiré JJs
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Fig. 1: Investigating Josephson junctions with moiré superlattice weak links.
On the left, the vertical assembly of vdW heterostructures (partially adapted from ),
along with the relative twist-angle between each atomic layer, enable the formation of moiré
superlattices with exotic quantum phases and flat electronic band structure. On the right,
research with Josephson junctions explores how the superconducting proximity effect in a
weak link, described by the creation of Andreev Bound states, is affected by its electronic
and topological properties. The intersection represents the scope of this thesis, which is to
explore Josephson junctions with graphene-based moiré superlattices as the weak link.
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JJs with monolayer graphene as the weak link have been used to study superconducting
ballistic transport [19], Fabry-Pérot oscillations [20], Andreev bound states [21], and super-
currents through Quantum Hall edge states [22-24]. Yet, the exploration of the Josephson
effect in moiré superlattices remains largely unexplored.

This thesis aims to bridge that gap by investigating the Josephson effect in graphene-
based moiré superlattices, with a particular focus on twisted bilayer graphene near the
magic angle. Through high-precision van der Waals assembly and low-temperature trans-
port measurements, we study how the superconducting proximity effect manifests in sys-
tems with strongly renormalized band structures, and how phenomena such as flat bands,
quantum geometry, and symmetry-broken phases affect the Josephson response. In doing
so, we demonstrate not only how the Josephson effect can deepen our understanding of
how superconductivity behaves in moiré superlattices, but also how they may enable novel
device functionalities such as Josephson diodes.

Outline of the thesis

This doctoral thesis is structured in five Chapters, which provide the necessary background,
experimental context, and detailed analysis of the results obtained in several classes of
graphene-based moiré Josephson junctions. is purely introductory, while
focus on the fabrication and experimental techniques used in this thesis work, and
Chapters 3, 4 and 5 concentrate on the results obtained.

provides a theoretical background on graphene moiré superlattices and
Josephson junctions. We start from the analytical calculation of the band structure of
single-layer graphene , following with the description of its band structure
reconstruction under a moiré potential with an aligned hexagonal boron nitride substrate
(Section 1.2)), or with another graphene with a relative twist-angle (Section 1.3). For the
latter system, we discuss the emergence of flat bands when the two graphene layers are
rotated at the magic angle 1.1° and show quantum transport experimental data of its
strongly correlated phase diagram. In the last we introduce the concept of
Josephson junctions and discuss how the superconducting proximity effect behaves when
proximitizing normal metal weak links such as monolayer graphene.

In [Chapter 2, we extensively describe the experimental methods used to produce our
results. outlines the fabrication protocol developed during this thesis work to
achieve vertical assembling of high-quality two-dimensional materials, in especial twisted
bilayer graphene. We then narrate our efforts and eventual success in producing supercon-
ducting contacts to graphene-based van der Waals heterostructures in order to engineer
Josephson junctions with them (Section 2.2)). In[Section 2.3| we describe the working prin-
ciples of low-temperature cryostats employed to perform our experiments, as well as the
electronic setup used for the low-frequency transport measurements.
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In [Chapter 3| we present our results on the study of the ballistic Josephson effect in
a graphene/hBN moiré superlattice weak link. Through the observation of Fabry-Pérot
oscillations and their dependence on the carrier density, in we can gain infor-
mation about the moiré bands. In[Section 3.2 the ballistic regime also allows us to explore
for the first time the superconducting proximity effect at high magnetic fields in the moiré
minibands once the superlattice density is reached, which we find to differ from the Dirac
cone band due to the presence of saddle-point van Hove singularities.

consists of the main piece of work in this thesis, where for the first time we
explore the superconducting proximity effect in the flat bands of twisted bilayer graphene
with external superconducting leads. In we introduce the concept of quantum
geometry and its importance in describing superconductivity in flat band systems. [Sec-
presents the proximity effect in the flat and dispersive bands of TBG, demonstrat-
ing an unconventional Josephson effect in the former, which is evidenced by the violation
in the scaling of the critical current with the normal state conductance . The
dependence of the critical current with the filling of the flat bands is further explored in
Section 4.4] where we discuss the importance of the contributions from the quantum geom-
etry and multiband pairing to the proximity effect. Finally, gathers our study
of the Josephson diode effect and gives insights into the broken symmetries of the ground
states of TBG.

shows our efforts to exploit the gate-tunability and correlated phase dia-
gram of twisted bilayer graphene to engineer hybrid gate-defined junctions.
shows the nanofabrication methods we developed to engineer these devices, as well as their
quantum transport characterization. By gating the sides of the junctions to the intrinsic
superconducting state of TBG, in we are able to create gate-defined Josephson
junctions. Here we present our findings of a symmetry-broken Josephson effect close to
half-filling of the flat bands, which enables us to create a Josephson diode, and explain
how the results agree with a ground state dominated by orbital magnetism and valley
polarization. Finally, in we show how this versatile platform allows us to en-
gineer gate-defined p-n junctions, and summarize how they enable us to study the cooling
dynamics and thermoelectric transport of TBG through optoelectronic measurements.



Chapter 1

Graphene-based moiré superlattices
and Josephson junctions

1.1 Monolayer Graphene

The electronic structure of carbon is 1s22s?2p?, with 4 valence electrons. Due to the sp?-
hybridization between the first s-, px- and py-orbitals, the carbon atoms in graphene are
bonded through in-plane o-bonds with an average distance of d ~0.142 nm (see [Fig. 1.1h).
In this honeycomb lattice, which is a triangular Bravais lattice with a two-atom basis A
and B, the lattice parameter is a = v/3d ~ 0.246 nm and the primitive unit-cell vectors are

oo L) (1) "

The remaining perpendicular p,-orbitals form two covalent w-bonds with its neighbors,
providing the free electrons that contribute to the electronic transport . By consider-
ing only nearest-neighbor hopping, we can estimate the energy dispersion relation for the
m-electrons of graphene with the tight-binding approximation. Taking the Fourier trans-
form of the creation (annihilation) operators cf, (c,) for the sites o = A, B to work in the
momentum-space basis, the Hamiltonian reads:

3

H=—t> (clcj + h.c.) = —tZ(cTA(k) > ™% cp(k) +h.c.>. (1.2)
(i,5) k j=1

Here t = 2.7 eV is the hopping amplitude and §; are the vectors which connect the A-sites

with its three nearest B-sites (see |[Fig. 1.1a), given by:

51 —d(1,0) | 52:d<—;,‘f) , 53:(1(—;,—?). (1.3)
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In this basis, diagonalizing the matrix Eq. (1.2)) simply gives Fy (k) = +¢| Z§:1 ™% |, where
|z] = Vzz* denotes the complex modulus of z € C. The full-written expression of these
eigenvalues is

Eyi(k) =+t '1 +2¢iV30ka/2 (o (ak:y/Q)‘ (1.4)

and shows the corresponding energy bands. From Eq. we can deduce that
there are two inequivalent points K = (47/v/3a, 47/3a) and K’ = (47/v/3a, —4m/3a) in
the first Brillouin zone where the valence (E_) and conduction (F;) bands touch, i.e.
points where E4 (k) = 0; as also visualized in [Fig. 1.1p-c. Because three of the four valence
electrons in graphene are completely filling the ¢ bands, the remaining one has to be
shared in the perpendicular p,-orbital, which fills the 7 valence band, i.e. the £_ band in
Eq. . Thus, the intrinsic Fermi level of graphene has to be placed at Er = 0 where
the valence and conduction bands meet; the so-called Dirac points K and K'.

Expanding around these high-symmetry points, k = K() + q such that lq| << |K(/)|,
the low-energy dispersion of graphene becomes linear:

Es(q) = +hvpla| + O[(al/[KD))?, (1.5)

where v = v/3at /2 ~ 10% m/s is the Fermi velocity. Similarly, the Hamiltonian reduces to
the Dirac Hamiltonian for massless electrons: H = +hvp o -q, with o = (04, 0,) the Pauli
matrices . This Dirac-like dispersion, accessible in quantum transport experiments,
highlights the vanishing effective mass of electrons in graphene, which has been extensively
studied over the last two decades , .

While K and K’ are inequivalent sites in the Brillouin zone, since they belong to the
two different A and B sublattices, the low-energy states are degenerate at these points (see

Fig. 1.1: Graphene lattice and band structure. a) Honeycomb lattice of graphene,
where the A (resp. B) sites are indicated by red (blue) colors. The vectors a1, ag form the
triangular Bravais lattice of the B-sublattice. Vectors d1, d2 and d3 denote the positions of
the first nearest-neighbors. b) Graphene band structure obtained from the tight-binding
model derived in the text. ¢) Zoom-in of b, where the low-energy dispersion shows Dirac
cones that cross at zero-energy at the inequivalent high-symmetry points K and K'.
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Fig. 1.1c). This degeneracy is the so-called valley quantum number, which along with the
spin symmetry, gives a four-fold degeneracy to the graphene Dirac cones.

The two valleys in graphene are related by the two-fold rotation or inversion symmetry
Cy: (z,y) = (—x,—y) and by the time-reversal symmetry operation 7 : H — HT. When
working with the one-valley representation however, these two symmetries are no longer
individually valid, but the product of them is: Co7. This is a key concept, as the breaking
of the C'5 or 7 symmetries splits the valley and creates a gap in graphene, with the electrons
acquiring some finite effective mass. This is the case of hexagonal Boron Nitride (hBN)
for example, with the same honeycomb lattice as graphene but C5 here is broken because
the two on-site energies of B and N are different. hBN is indeed an insulator with a ~ 6
eV indirect bandgap [26], 27].

In low-temperature transport experiments, the electrical resistance of graphene can be
measured in a 4-terminal Hallbar geometry, where its low carrier density n can be tuned
by applying an electric field with a gate voltage [4]. shows the longitudinal
resistance Ry, measured at the conduction (n > 0) and valence (n < 0) bands, with a peak
at zero density corresponding to the Dirac point or charge-neutrality point (CNP). The
higher resistance at the valence band is explained by the n-doping of graphene from the
Cr metallic contacts in our experiment. As the Fermi level of graphene is lowered to the
valence band (p doping), a n-p-n junction is formed, which raises the resistance due to the
carriers undergoing multiple partial reflections at the two n-p interfaces.

By studying the Quantum Hall effect of graphene, its spin-valley degeneracy g = gsgy
can be observed [28]. Under a perpendicular magnetic field B, the Dirac spectrum quantizes

-30

VLL=4(N+1/2)

n (1072 cm=2) n (10712 cm—2)

Fig. 1.2: Graphene transport and spin/valley degeneracy. a) Measured 4-terminal
longitudinal resistance R, of a graphene sample as a function of carrier density n. It shows
a peak at the CNP of the Dirac cone and higher values at the hole side due to the n-doping
from the electrical contacts. b) Measured 4-terminal transversal conductance Gy =1/ R,y
of the same sample as in a, at a magnetic field of 6 T, in units of the quantum of conductance
e?/h. The LLs clearly follow the quantized sequence of Eq. . All measurements are
done at 35 mK.
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into relativistic Landau levels (LLs) En = sgn(N)vgy/2eh|N|B, where N € Z. Given the

filling factor of a LL v11, = nh/eB is proportional to the number of electron or hole channels,
i.e. the degeneracy g; the expected sequence of LLs for graphene is [29]:

v =g(N+1/2), (1.6)

since N = 0 corresponds to a half-filled LL. [Fig. 1.2b shows the transport experiment, where
the Hall conductance Gy, = vi,e?/h is measured, and the sequence viy, = 2, 6, 10, 14, ... is
found, corresponding to a spin-valley degeneracy of g = gsg, = 4.

1.2 Heterobilayer moiré superlattices: Graphene/hBIN

When vertically assembling two equal two-dimensional lattices on top of one another, a
new material is created. In the case of graphene, this process creates AB Bernal bilayer
graphene, where the only stable, energetically favorable arrangement of the two layers
occurs when the A and B sublattices are aligned in the vertical axis.

In general, if one of the two assembled lattices has a small lattice mismatch §, a new
superlattice—called moiré superlattice—with a much bigger periodicity than the two com-
posing ones is created. If a relative angle 6 is further set between each layer, the resulting

period of the moiré changes. This is shown in [Fig. 1.3a-b.

The size of the superlattice unit cell in real space, called moiré wavelength \,,, can
be deduced from the two composing lattices [30]. First, let g = 27(1,0) be the reciprocal
lattice vector of the first lattice along the k, direction. Then, for a second lattice with
a lattice mismatch ¢ and rotated an angle # with respect to the first, this same vector is
h = uf_ig)a(cos@,sin ). The unit cell vector of the superlattice in the reciprocal space, b,

will then connect the two previous reciprocal lattice vectors g and h, such that:

2T cosf  sinf
—g_—h="[(1— "2 """, 1.
b=g a( 140’ 1+5> (1.7)

The moiré wavelength will be then Ay, = 27/|b|. By having

2
b| = (1+5)a\/(1+5)2+1—2(1+5)C089 (1.8)

and doing a little of algebra, we finally get to

(1+9)a

A = \/2(1—%(5)(1—6089)—1-(52'

(1.9)

We note that in this derivation, we have not assumed the two composing lattices to be of
any kind. Thus, Eq. (1.9) holds in general for any two-dimensional lattice [30].

8
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In our case we are especially interested in graphene, a honeycomb lattice with a lattice
constant @ = 0.246 nm. It turns out that hBN, a vdW insulating crystal that is generally
used as a substrate to encapsulate graphene, also is a honeycomb lattice where the B
and N atoms are intercalated. Because the bonds between these two species of atoms
have a different distance that the C-C bonds in graphene, hBN has a lattice constant
of a =0.250 nm [30]. This results in a § = 0.018 lattice mismatch between hBN and
graphene; sufficiently small to create a moiré potential at low relative twist-angles (see
[Fig. 1.3p-b). Indeed, taking this 6 = 0.018 and 6 = 0 into Eq. gives us \,, = 13.9
nm. This value, about sixty times bigger than the graphene lattice constant, has been
confirmed experimentally by local probe measurements such as STM [30] or AFM [31].

1.2.1 Moiré potential and satellite Dirac points

To describe the effect of the periodic potential from the hBN substrate on the electrons of
graphene, we use a continuum description, first implemented in twisted bilayer graphene
[9] [10], as we will see in The idea lies in that, because the moiré distance
Am is much larger than the atomic lattice a, the in-plane variation of the wavefunctions of
the p, graphene orbitals is smooth. This means that the moiré potential is periodic under
translations of the moiré lattice, and thus can be expanded in a Fourier series by the six
smallest reciprocal lattice vectors b; [32, 33]:

5 .
Vir)=Y VeiT, bj = Rj, 3by, (1.10)
j=0

where by is the same moiré wave-vector as in Eq. (1.7) and Ry is a ¢-angle rotation matrix.
The full continuum Hamiltonian is then

5 .
H(r)=Ho+ > VjePiT, (1.11)
j=0

where Hog = vpo - p is the graphene Dirac Hamiltonian describing the low-energy carriers
near a single valley. Although hBN is formed by a honeycomb lattice, the different on-
site energies of the B and N atoms break the inversion symmetry and introduce a mass
term. Thus, the moiré potential can be phenomenologically modeled as a combination
of a dominant three inversion-symmetric terms (ug,u1,us), with the addition of a small
inversion-asymmetric perturbation (g, u1,u3) [34):

Vi = ug+i(—1)Yu [— sin (gzﬁj)ax—l—cos(gbj)ay] +i(—1)Yuzo,
+i(—1) g + ifiy [~ sin (¢;) 72 + cos (¢7) 0y | + g0, (1.12)

where ¢; =5 /3. Here, ug just describes a potential modulation over the superlattice, u; a
modulation of the A-B sublattice hopping, and u3 the A-B sublattice asymmetry imposed
by the hBN substrate, i.e. the sublattice mass term [32].
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In we show a band structure calculated by numerically diagonalizing the
Hamiltonian in Eq.. Since the superlattice is much bigger than the atomic lattice,
the superlattice Brillouin zone is much smaller than the atomic Brillouin zone, and is called
mini Brillouin zone (mBZ). As such, a band-folding process occurs, where the states at
linear combinations of the reciprocal vectors by, bo, are brought to the same point in the

mBZ , .
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Fig. 1.3: Graphene/hBN moiré superlattice and satellite Dirac points. a) A
graphene (black) and an hBN lattice (blue) on top of one another perfectly aligned (6 = 0)
forms a moiré superlattice with period )\,, thanks to their atomic lattice mismatch 9,
as shown in the inset. b) When they are rotated a finite twist-angle between each other
(0 > 0), the moiré period decreases. c¢) Band structure of graphene/hBN moiré for § = 0.2°,
for two different sets of the phenomenological parameters (ug1,3,%0,1,3) described in the
text. The right panel predicts a finite gap in the hDP and CNP, whereas the left panel
does not. In both cases, the red-dashed lines indicate the Dirac dispersion of monolayer
graphene. d) Transport measurement of resistance R vs filling factor v (bottom) and
carrier density n (top), for a graphene/hBN moiré device with 6 = 0.2°.
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As we can see in any of the two panels in [Fig. 1.3k, the resulting band structure at
very low energies consists of a Dirac cone with practically the same Fermi velocity as
graphene vy ~ 10% m/s. As we approach the end of that first miniband though, due to
the band-folding, another set of satellite Dirac points (sDP) appear; both at the electron
(eDP) and hole (hDP) sides. This occurs at the M, BZ point and at energies ~ +0.17
eV. Importantly, these sDP have a renormalized Fermi velocity in one direction of the BZ
towards K,,,, about half of monolayer graphene (vg ~ 0.5 x 10% m/s) [32].

The difference between the left and right panels are the phenomenological parameters
used. The left panel uses up 1,3 = (—52,0,0) meV and g3 = (0,0,0), which corresponds
to setting a rigid potential modulation from the hBN, and yields a particle-hole symmetric
band structure [32]. The right panel uses ug,1,3 = (—25,14,14) meV and g,1,3 = (—5,3,3)
meV. The nonzero u; and ug values produce an electron-hole asymmetric band structure,
which is always present in STM and transport experiments [30} 35-38]. brings
an example, where we measure the resistance of a graphene/hBN moiré sample with a
twist-angle § = 0.2°, as a function of carrier density n (top) and the filling factor v of the
moiré minibands (bottom). Here v = 44 corresponds to 4 electrons/holes per moiré unit
cell, i.e. to a fully-filled miniband due to the 4-fold spin-valley degeneracy of graphene,
which is still present in the graphene/hBN Hamiltonian of Eq. (1.11]). In [Fig. 1.3d we see
how the CNP is still present at n =0 compared to bare monolayer graphene (Fig. 1.2h),
with the difference that two resistive peaks at exactly v = 44 occur, corresponding to the
sDP. The electron-hole asymmetry is evident from the difference in the height of the peaks.

Furthermore, the inversion-asymmetric tilde terms #; are able to open a minigap at
the Dirac point (CNP) and at the sDP. Indeed, in the right panel of we have a
small gap of ~4 meV (~ 45 K) at the CNP, and a more significant ~ 10 meV (~ 115 K)
for the hDP, while the eDP is obscured by overlapping bands [32]. These gaps are also
seen in spectroscopy experiments [30]. In transport, as in the case for our § = 0.2° sample,
the gaps are detected by thermal activation, where the resistance increases with decreasing
temperature (see[Fig. 1.3d). In the next[Subsection 1.2.2) we will show how this twist-angle
can be extracted with precision from the magnetic field phase diagram.

1.2.2 Hofstadter butterfly in the magnetic field phase diagram

An electron moving in a two-dimensional crystal has two competing length-scales when a
perpendicular magnetic field B is applied: the lattice constant a that builds Bloch bands
and the magnetic length Ip = /h/eB that quantizes Landau levels. In 1955, Harper
studied the Bloch problem for a square lattice with dispersion E(k) = to(coskya+ coskya),
when subjected under a perpendicular magnetic flux ® = B A, where A = a? is the area
of the lattice, and ®g = h/e the magnetic flux quanta in the QHE. He demonstrated that
solving for the wavefunction ¢ (x,y) reduced to solving a one-dimensional discrete equation,
called the Harper equation [39]: ¥p+1+Um—1+2cos (2mm® /Py — §)1om = 2E /Lo, where
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m € Z marks the m-th unit cell and ¢ is a dimensionless parameter depending on the energy
dispersion.

Two decades later, Hofstadter solved this equation for rational flux fractions ®/®y =
p/q, whose E [ty vs ®/®( diagram is now known as the Hofstadter butterfly fractal [40] (see
Fig. 1.4c). Here, each band is determined by two integers (s,t) that satisfy the Diophantine
relation derived by Wannier [41]:

n P
—=t— 1.13
e g T (1.13)

where n is the electron density and ng = 1/A the number of primitive cells per unit area,
so that v =mn/ng is the electron filling factor of the bands. We note that Eq. is valid
for any 2D lattice. The integer numbers defining the physics of the 2DEG gained meaning
when the TKNN theory later showed that the slope t € Z is the Chern number C' of the
band, so each gap carries a quantized Hall conductance o4, = te?/h [42]. In the case of a
Landau level, t = vp,. As for the intercept s € Z, it just shows that at each integer filling
of the band, a set of Chern bands or LLs disperse with the magnetic field.

The experimental confirmation of these predicted fractal minibands was not possible
with available 2D electron gases, as the magnetic field required to get to a single flux quanta
per unit cell, By = &g A, or a significant fraction of it, was far too big to be generated in
lab conditions. As an example, if one takes graphene with a lattice constant a = 0.246
nm, its corresponding unit-cell area is A =5.2 x 1072 nm?, so that By ~ 8 x 10% T. So for
these atomic lattices, even smaller fractions such as /Py =1/10 lie well beyond what can
be achieved with coil magnets. Early attempts to tackle this problem turned to artificial
superlattices whose larger period significantly lowers the required field by a square factor.
This was achieved in high-mobility GaAs 2DEG, on top of a Au film with a hole-array
of 100 nm periodic length, which were fabricated with lithography techniques [43]. This
brought down ®/®¢ to only 0.3 T and provided the first evidence of fractal LLs, but could
only scan at a fixed point in n/ng, since these semiconducting 2DEGs can only be doped
chemically.

Van der Waals heterostructures offered a cleaner and more tunable route. The first
moiré superlattice with these materials was done by aligning monolayer graphene with hBN.
For a perfectly aligned stack, the corresponding moiré period is A\, = 13.8 nm, so that A =
1.6 x 102 nm? and By ~ 25 T, which was under experimental reach in high-magnetic field
facilities [35-37]. Importantly, thanks to graphene’s high mobility and electrostatic gating,
the in-situ tuning of both n and B enable a full mapping of the Diophantine Eq. . This
can be visualized in[Fig. T.4h, where we show a measurement of a Landau fan diagram. The
graphene /hBN sample is shaped into a Hallbar geometry and the measured longitudinal
resistance R, reveals the formation of LLs when it vanishes. Apart from the fan emanating
from the CNP, corresponding to (¢,s = 0), another set of LLs is registered from the sDP
at s = 4 and some less obvious at s =2, 6 (see also [Fig. 1.4p). There we can also see that
the degeneracy of the LLs in the sDP is 4, just like at the CNP. Due to the fractal nature
of the Diophantine equation, the LLs from different s cross each other at every rational p/q
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1.2. Heterobilayer moiré superlattices: Graphene/hBN

a) n (1012 cm=2)

Fig. 1.4: Hofstadter butterfly in the Landau fan of a Gr/hBN moiré superlat-
tice. a) Landau fan diagram of a Gr/hBN sample with § ~ 0.68°, where the longitudinal
resistance Ry, is measured vs filling v = 4n/ns of the moiré bands (top), carrier density n
(bottom), and vs magnetic field B. The right axis converts B into a fraction of the mag-
netic flux quanta ®/®g, where we indicate the values at which some LL crossing occur.
b) Expected Landau fan in gray lines, along with the observed LLs from a in colour lines.
The solid horizontal line at 8 T indicates the limit of our experimental measurement in a.
c) Hofstadter butterfly fractal in the energy vs flux diagram, where the bands are coloured
in black and the white areas indicate gaps.

fraction of ®/®, which we show in the ticks of the right axis in [Fig. 1.4p-b. Finally, by
looking at [Fig. 1.4k, the electron-hole asymmetry of the band structure showed in [Fig. 1.3
for zero field, is also very evident here at high magnetic fields.

During the stacking process of a vdW heterostructure, which will be described in detail
in the aimed twist-angle between the different crystals can differ from the final
one. However, from the study of these Landau fan diagrams, one can extract with high

13



1. Graphene-based moiré superlattices and Josephson junctions

precision the twist-angle of the sample. To estimate 6, we need to know the carrier density
ns corresponding to a fully filled moiré superlattice band, since ng = g/A, where g is the
degeneracy. For graphene g = 4 and the hexagonal moiré superlattice has A = v/3\2, /2.
From Eq we then arrive to:

(1.14)

L(1 2 .2/q 52
9:arccos<1—\/§n< +0)%a”/8 6)

2(1+0)

To estimate ng, we first need to convert the gate voltage V;, we use to dope our material
by accumulation of electrostatic charges, to carrier density n. This is done by knowing the
gate capacitance of the dielectric per unit area Cy:

n=C4V,/e. (1.15)

The calculation of the capacitance can be done geometrically by knowing the dielectric
constant € and its thickness d, since Cy =€/d. A more accurate estimation of Cy can
nevertheless be achieved by fitting the slopes of the LLs in the V,~B diagram, as we
explain next.

A LL is labeled by its filling factor vy, which indicates the number of electron/hole
edge channels in the 2DEG. For monolayer graphene, due to the spin-valley degeneracy,
the sequence of LLs is vy, = 4(N +1/2). In general, these topological states follow the
Streda Formula:

n:VLLB/(I)(), (116)

which states that the LLs evolve linearly in field and density, as seen in [Fig. 1.4h. Com-
bining Egs. (1.15)) and (1.16]), we get an expression to calculate Cl:

C _VLLeE
g (I)O th

(1.17)

Thus, with Eq. and by following the slope of a certain LL, dB/dV}, we can estimate
Cy, but by first knowing the corresponding v1,1,. This can be obtained by measuring the Hall
resistance R, in the Landau fan diagram (as we showed in ), since Ryy = h/e?vpy.
Otherwise, one can guess vy, and verify that the rest of measured LLs can be fitted too.
Once Cy is estimated, the Vj axis is converted into n, and from there we can known n.
This is done by extracting the n value where the resistance peak corresponding to the
fully filled superlattice band lies, i.e. to the sDP. An even more accurate method is to
extrapolate the LLs emerging from that sDP down to zero field.

Following this method and using Eq. ([1.14]), we estimate 6 = 0.68°+0.01° for the sample
presented in|Fig. 1.4l For this twist-angle, we have \,,, = 11.640.2nm, so that A= 1.1 x 10?

nm and By ~ 35 T. In our dilution fridge the maximum magnetic field we can reach with
our superconducting coils is 8 T, which lies in between ®/®g=1/5and 1/4. At &/Py=1/5

we can indeed see some LLs crossings (see [Fig. 1.4p-b).
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1.3. Homobilayer moiré superlattices: Twisted Bilayer Graphene

1.3 Homobilayer moiré superlattices: Twisted Bilayer
Graphene

A moiré superlattice can also be formed by assembling two exactly equal lattices on top
of one another and by rotating them at a relative non-zero twist-angle #, as shown in
Fig. 1.5a. The size of the superlattice in this case can be deduced from Eq. (1.9)) by setting

0 = 0. Doing so we get
a

Ap=———.

"™ 2sin(0/2)

The key difference between this homobilayer moiré in Eq. (1.18) and the heterobilayer
moiré in Eq. (1.9) is that its superlattice grows exponentially as § approaches zero. The
comparison between the two can be seen in [Fig. 1.5c. This exponential behavior (red

curve), in contrast to the rather constant value of the moiré heterobilayers (green curve),
has implications for the study of homobilayer systems at low twist-angles.

(1.18)

For the case that interests us of two graphene layers forming this moiré superlattice,
the resulting material is called twisted bilayer graphene (TBG). Because the superlattice
period )\, exceeds the atomic periodicity a at low twist-angles @, the Brillouin zone of TBG
is much smaller; often referred as the mini-Brillouin zone (mBZ). Its size kg = 2| K |sin (6/2),
where |K| = 47/3a, is determined by the distance between the K points of each layer, as
pictured in [Fig. I.5p. The vertices of the hexagonal mBZ are thus the valleys of the moiré
K., K;n, and its center the gamma point T';,.

Contrary to Gr/hBN;, the electronic band structure of TBG varies strongly compared
to that of monolayer graphene. At large twist-angles (6 = 3°) the two Dirac cones of each
graphene layer are far from each other in k-space, and thus the resulting system can be
treated as individual decoupled graphene layers (see ) However, at low twist-
angles (0 < 3°) the Dirac cones overlap and create new moiré bands (see [Fig. 1.6p-c).

Motivated by the key observation of van-Hove-singularities (vHs) in STM experiments
on TBG samples with 0.8° < 0 < 1.3° in 2009 [§], follow-up theoretical work predicted
the existence of a pair of flat bands to be responsible for these vHs, featuring a vanishing
Fermi velocity at a series of so-called magic angles 6, [9, |10} |44]. In the following we derive
the main aspects of this Bistritzer-MacDonald (BM) single-particle continuum model and
show its predictions of flat bands at the first magic angle 6,,, ~ 1.1°.

1.3.1 Continuum model and flat bands in TBG

At small twist-angles € < 3° the moiré superlattice period )\, exceeds the atomic scale by an
order of magnitude, resulting in a supercell of ~ 10* atoms. The exact tight binding model
of such material cannot be then calculated with classical computation. This separation
between the atomic scale and the moiré scale can nevertheless be exploited: instead of
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1. Graphene-based moiré superlattices and Josephson junctions

tracking every carbon orbital, we can treat each graphene layer as a smooth rotated Dirac
cone centered on their valley points K and K’, and couple the layers through a long-
wavelength tunneling potential that carries only the three shortest moiré wave-vectors ﬂgﬂ
In this continuum model, for each valley & = 41 and each layer ¢ = 1,2, the intralayer
Hamiltonian reads

h) (k) = hop o [R(£0/2) (k- K], (1.19)

where o¢ = (£0,,0y) acts on the sublattice and R is the SO(2) rotation matrix, which acts
on the wave-vectors centered at the K¢ points. Since the crystal momentum is only con-
served up to an integer combination of the moiré reciprocal vectors by = kg (1/2, T3/2)
(see [Fig. 1.5a), any plane wave at momentum k mixes only with momenta k +ib}" +
j b4, whose integers (7,7) lie inside an hexagonal momentum shell. Cutting this shell at
lil,|7],]i44| < 2 yields 19 momenta in layer 1 and 12 in layer 2, which (together with the
two sublattice components) produce a 62-dimensional Hilbert space per spin and valley,
sufficiently small to converge at low energies [9} [45].

a)

= Homobilayer
== Heterobilayer

6(°)

Fig. 1.5: Twisted bilayer graphene moiré superlattice and mini-Brillouin zone.
a) Two graphene lattices (black and red) on top of one another and twisted by a relative
angle 6, resulting in a moiré superlattice with period A,,, known as twisted bilayer graphene.
Zoom-ins show the AA and AB stacking orders of the superlattice. b) Brillouin zone of
the two graphene layers in red and black, and the mini-Brillouin zone corresponding to
TBG in blue. The Dirac points K and K’ corresponding to each system are shown with
the same color code. ¢) Ay, vs 6 for a homobilayer (e.g. TBG) and a heterobilayer (e.g.
Gr/hBN) moiré superlattice. In the case of TBG (red) the period diverges at low angles,
whereas for Gr/hBN (green) it does not.
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1.3. Homobilayer moiré superlattices: Twisted Bilayer Graphene

Because the interlayer separation (~ 3.35 A) is much smaller than \,,, the interlayer
tunneling amplitude varies smoothly in the plane and can be considered a periodic function.
By doing a Fourier expansion and retaining only the three shortest wave-vectors Qg =0,

Q4+ =+b5" and Q_ = —b7?, the interlayer tunneling matrices are:
+2mi/3
WAA WARB wpA€ WAR
Th = T, = ) . 1.2
0 (wAB wAA> ; + (wAB eF2mi/3 40y €i2m/3> ; (1.20)

reflecting the Cj5, symmetry of AA, AB, and BA local stacking orders (see insets of
Fig. 1.5p). In this formulation, we have included lattice relaxation effects, which increase
the AB regions at the expense of AA, yielding waa < wap [45, 46]. This part was not
included in the original BM model [9], but is key to reproduce experimentally observed
features such as a bandgap separating the flat and dispersive bands. Based on STM
experiments and density-functional calculations, wa4/wap =~ 0.75 appears to be a good
estimation at low angles 6 [45-47].

Combining Eqgs. (1.19) and (1.20]), the Bistritzer-McDonald (BM) Hamiltonian for a
single valley takes the form

(1)
%g<k>‘(h§1 K ) T(r)= Y T;¢%T, (1.21)

§=0,+

which couples each Dirac block in layer 1 to the three symmetry-related neighbors in layer
2. We note that H is written in one valley, but as the time-reversal symmetry relates
the two valleys, one may diagonalize the Hamiltonian only for one of them. By doing so
numerically for the parameters 6 = 1.05, w44 = 88 meV and wap = 110 meV, in
we find a pair of flat bands with bandwidth ~ 15 meV and a renormalized Fermi velocity
of vp/v% ~ 6 x 1073, with v% ~ 10% m/s. Separated by band gaps of ~ 12 meV lie the
dispersive bands, whose DOS is much smaller than that of the flat bands.

Furthermore, by calculating the band structure at different 0, as shown in [Fig. 1.6f,
we can find that the bandwidth of the flat bands is minimal at a magic angle 6, ~ 1.12°.
Analytically, one may also derive such a result in terms of a vanishing renormalized Fermi
velocity, as we explain next. The interlayer hopping amplitude is described by the dimen-

sionless parameter
w

T Ko

where 2w is the hybridization energy between the two layers. Before, we have introduced
this value as site-dependent with w44 and w4p. From here one can learn that « is vanishing
small for very large 0, i.e. the two graphene layers are decoupled for large twist-angles (see
Fig. 1.6p). For relatively small twist-angles 6 ~ 3°, the cones start to overlap and create
new hybridized moiré bands, although 2w is still much lower than the kinetic energy:
2w < W K |6 (see , where kg ~ |K10). If however, 6 decreases further such that
« increases, it comes a point when 2w and U%\K |0 are comparable, so that the lowest of

(1.22)
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1. Graphene-based moiré superlattices and Josephson junctions

the hybridized bands is pushed to zero energy, creating a pair of flat bands (Fig. 1.6c). In
Ref.[9] it was shown that for these low a values, the Fermi velocity of the hybridized moiré
bands decreases continuously as:
o 1—3a?
Vp ——5.
1+ 602
Indeed, a solution of Eq. (1.23) with a,, = 1/4/3 corresponds to bands with zero Fermi
velocity. Using Eq. ((1.22)), the twist-angle necessary to achieve this solution is

V3w

™ K|

vp(a) = (1.23)

(1.24)

a) w=0 b) 2w < hv2ke ¢) 2w=hvlke

6<3 6~11°
e) 10
O>LL
205
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Fig. 1.6: Electronic band structure of TBG and flat bands at the first magic
angle. a-c) Hybridization of the Dirac cones K (1) and K@ of the two graphene layers
forming TBG, for different regimes of twist-angle . As it approaches the magic angle
O, a pair of flat bands are created at the Fermi level with vanishing Fermi velocity. d)
Band structure along the high-symmetry points and DOS (in arbitrary units) of TBG
at @ = 1.05°, calculated from the continuum model with U% = 0.87 x 10% m/s, wyq = 88
meV and wap = 110 meV. e) Renormalized Fermi velocity vp/v% of TBG, according to
Eq. , showing a vanishing value at 6,, ~ 1.1°. f) Bandwidth of the flat bands from
¢, which has a minimum at 6#,,, &~ 1.12° and scales linearly around it.
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1.3. Homobilayer moiré superlattices: Twisted Bilayer Graphene

which is called the first magic angle and corresponds to the formation of almost perfect
flat bands. Setting w = 110 meV and v% = 0.87 x 10° m/s, we get 6,, ~ 1.1°. In Ref. [9] a
series of several magic angles was numerically derived too, with lower values that the first
magic angle.

The prediction of flat bands by the single-particle Hamiltonian of the continuum model
of TBG turned out to be successful, as 15 years later it was confirmed experimentally. As
we will see next though, the many body quantum phases that were found inside the flat
bands are not described by this single-particle model, highlighting the need to account for
electron-electron interactions in order to correctly describe the physics of TBG.

1.3.2 Many body correlated phases in TBG

The experimental breakthrough that reveled the many body physics of magic-angle twisted
bilayer graphene came in 2018, with the observation of two hallmark signatures of strong
electronic correlations: Mott-like insulating states at half-filling of the electron and hole
flat bands [11], as well as adjacent domes featuring superconducting phases with critical
temperatures of T, ~ 1 K [12]. The presence of these exotic phases within the flat bands, not
predicted by the single-particle continuum model [9} |10], suggests that in order to describe
the band structure of this system correctly, dominating electron-electron interactions need
to be incorporated into new theoretical models |11, |12, |48].

Furthermore, compared to other correlated systems such as the cuprates, the low car-
rier concentration of the TBG flat bands enables to vary in-situ the electron density and
displacement field through the application of gate voltages. Later discoveries of more cor-
related phases, such as strange metallicity or topological Chern insulators, turned TBG
into an exceptionally high-tunable platform for exploring many body physics in two di-
mensions . Here we dwell into each of these phases and present some of the transport
measurements that help us study them.

The presence of correlated states at every integer filling of the flat bands, not just
half-filling (v = +2), was soon after reported in magneto-transport experiments of TBG
samples closer to the magic angle 6,, ~ 1.1° [13, 14]. Here v is the filling factor of the TBG
bands, which represents the number of electrons per moiré. Since the spin-valley degen-
eracy of the system is 4 and ng is the carrier density corresponding to a fully filled moiré
band, we have v = 4n/ng. |[Fig. 1.7a shows a 4-probe longitudinal resistance measurement
R, of a TBG sample with 6 ~ 1.14° 4 0.02°, where the peaks mark the position of the
integer filling correlated states. Of all these, v = 42, £3 are insulators, often called thus
correlated insulators (CIs), with thermal activation gaps up to A ~ 2 meV (see ).
In transport, these gaps are extracted by the Arrhenius formula G, o< e #87/2  which
generally underestimates their values by an order of magnitude when compared to spec-
troscopy STM measurements [49, 50]. An exception happens at ¥ = 41, where a metallic
behavior in the resistance is found. Of these correlated metal (CM) phases, the resis-
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1. Graphene-based moiré superlattices and Josephson junctions

tance of v =1 saturates at low temperatures, whereas at v = —1 the resistance peak state
does not nucleate and appears to fade (see[Fig. 1.7h). When studied with thermodynamic
probes, such states reveal the 3He Pomeranchuk effect, where the Fermi liquid transits to
a solid upon increasing the temperature. In the case of TBG, this transition occurs from
a disordered isospin liquid into an isospin-polarized ordered metallic state .

For dopings |v| 2 1 it was found that the resistivity p of TBG grows linearly with
temperature, from 30 K down to mK temperatures [53-55]. An example can be found
in [Fig. 1.7k. This so-called strange metal (SM) phase violates the expected Fermi liquid
(FL) behavior, where p oc T2. The FL phase is rather formed near the CNP of the flat
bands and when the twist-angle of TBG is turned away from the magic angle . The
linear-temperature dependence in strange metals is associated with a carrier scattering
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Fig. 1.7: Temperature phase diagram of TBG. a) Resistance R, measured as a
function of filling v (bottom) and carrier density n (top) for different temperatures T'. b)
Colormap of R;, vs v and vs T. In a-b the abbreviations correspond to: CI=Correlated
Insulator, CM=Correlated Metal, SC=Superconductor, SM=Strange Metal, FL=Fermi
Liquid, PM=Pomeranchuk. c¢) Arrhenius plot where from the conductance G, of the
integer fillings, a finite thermal activation gap A is extracted. d) Differential resistance
dVyz/dI vs d.c. current I, where the nonlinearities reveal a superconducting state with
I, ~200 nA and T, ~ 2.2 K, measured at v = —2.2. e) Resistance vs temperature where a
strange metal phase with R oc T or a Fermi liquid phase with R oc T2 are identified.
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1.3. Homobilayer moiré superlattices: Twisted Bilayer Graphene

rate defined by the Planckian limit 7= = kgT'/h, which does not depend on the type
of scattering in the system, indicating that quantum fluctuations dominate the metallic
ground state. The SM phase is very reminiscent of the cuprates, where a crossover to the
FL is also observed at high dopings [56], and forms the parent state of the superconducting
phase, which could have implications for the superconducting state of TBG (see )

Of special interest is the superconducting phase of TBG, whose electron pairing mech-
anism and order parameter, even though many experiments have been conducted, is still
unknown. As TBG is a 2D material, the superconducting condensate is governed by a
Berezinskii—Kosterlitz—Thouless (BKT) transition, which is often experimentally observed
in broad R vs T curves and in the V? decaying power law of the non-linear differential re-
sistance dV/dI curves (see[Fig. 1.7d). The surprising diluted phase diagram of TBG, with
a carrier density of 102 em™2, sets a Fermi velocity Tr ~ 20 K for the superconducting
state (from quantum oscillation measurements). This gives a rather high T,./Tr ratio that
cannot be explained by the weak-coupling BCS theory, but rather sits at an intermedi-
ate regime between the BCS and BEC limits, pointing towards electron-electron Coulomb
correlations driving the pairing mechanism instead of the conventional electron-phonon
[12]. Further unconventional properties have been uncovered, from a nematic order [57], to
evidences of a nodal superconducting gap from thermal transport [58], STM spectroscopy
[50] and kinetic inductance measurements [59).

The superconducting phase seems to be ubiquitous in graphene-based moiré superlat-
tices. Apart from TBG, other mirror-symmetric twisted multilayers were found to have
magic angles that lead to the formation of flat bands. As an example, twisted trilayer
graphene has a magic angle of v/26,, ~ 1.5°. So far, robust superconducting phases have
been observed in 3-, 4-, and 5-layer twisted graphene [60-63|, where the T, slowly increases
with the number of layers and the carrier density range where the condensate nucleates
grows much larger. Other systems with a broken C5,7 symmetry where superconductivity
has been observed include twisted double-bilayer graphene [64], rhombohedral multilayer
graphene aligned with hBN [65] 66|, as well as twisted bilayer WSey [67,, 68]. This suggest
moiré superlattices to be a key ingredient for driving superconducting phases. Neverthe-
less, the striking detection of superconductivity in previously well-studied systems such as
pristine AB bilayer graphene [69] and ABC rhombohedral trilayer graphene 70|, poses the
question whether a moiré superlattice is just a means to create flat bands, which ultimately
set the electronic structure of the system and drive correlations.

When a perpendicular magnetic field is applied, the phase diagram of TBG is not less
complex. As the twist-angle approaches the magic angle, the Landau levels stemming from
the CNP are found to reduce its degeneracy from eight- to four-fold |11}, 71]. Furthermore,
when the filling factor v reaches an integer value, a new set of LLs appear with a decreased
degeneracy: 3-fold for v = +1, 2-fold for » = +2 and 1-fold for ¥ = £3 [13]. This can be
clearly seen in [Fig. 1.8h-b. Importantly, the LLs only evolve towards higher |v|, indicating
that when the Fermi level reaches an integer filling, a new Fermi surface is formed due to
a reconstruction of the flat bands. These sequences of LLs are in principle reminiscent of
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Fig. 1.8: Magnetic field phase diagram of TBG. a) Landau fan diagram of a TBG
samples with 6 ~ 1.14°, where the longitudinal resistance R, is measured as a function of
magnetic field B and filling v. The abbreviations correspond to: CI=Correlated Insulator,
CM=Correlated Metal, SC=Superconductor, LL=Landau Level, CCI=Correlated Chern
Insulator. b) Extracted Landau levels in dashed lines with their filling factor annotated.
The shaded regions correspond to the observed correlated Chern insulators along with
their Chern number. c) Top panel shows the transverse conductance G, of another TBG
sample with 6 ~ 0.98° at high field and in units of quantum of conductance. The bottom
panel shows a line-cut at 8 T, with the quantization of the Chern insulators indicated by
dashed horizontal lines and their sequence (C,v) = (4 — v,v) shown in the top panel.

the SU(4) quantum-Hall ferromagnetism of graphene, where the Zeeman and valley gaps
lift the spin—valley degeneracy, polarizing the flavor of the state .

Inverse compressibility measurements showing a sawtooth pattern in the chemical
potential, with positive jumps at every integer v, have also been interpreted as evidence
of a hierarchy of flavour-polarized, symmetry-broken ground states. This simple picture
of assigning a flavor occupancy with the spin and valley quantum numbers at every inte-
ger v in TBG has proven to be nevertheless too simple. More complicated mixed orders
have since then been proposed as candidate ground states, such as intervalley coherent
(IVC) or incommensurate Kelulé spiral (IKS) states, which have been recently confirmed
by STM experiments . Furthermore, recent thermoelectric measurements have instead
interpreted the resets of the inverse compressibility as a reconstruction of the flat bands
due to two types of carriers driving the physics of TBG: correlated localized ‘heavy’ f-
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electrons and dispersive ‘light’ c-electrons This is done under the framework of the
Topological Heavy Fermion model [75], which providing a unifying theory for explaining
the apparent dichotomy of TBG displaying both heavy-like correlated behavior in its in-
sulating states, and dispersive-like states such as superconductivity and topological states
(see [Subsection 5.3.2| for more details).

Apart from these LLs, another set of states with a quantized transversal resistance that
also follows the Streda formula

Ce? dn B Ce

O'xy:T, E—T, (125)

were uncovered by STM and magneto-transport experiments [15, |16} [76-79]. These topo-
logical states with Chern number C following the sequence C'=4 — v at every integer v (see
Fig. 1.8c), have a larger gap (~ 1 meV) than usual LLs (~ 0.1 meV) [16]. The theoretical
understanding is that they are formed when the Co,7 symmetry of TBG is lifted, and
were thus named symmetry-broken Correlated Chern Insulators (CCls). The symmetry-
breaking can be done by either breaking 7 with an applied external magnetic field, or by
breaking Cy, with a substrate potential or due to interactions, as we explain next.

During the first transport experiments in TBG, two samples allegedly aligned with hBN
were reported to show a (Quantum) Anomalous Hall Effect at the integer filling v = 3 [80,
81]. Because these phases emerge from a purely carbon lattice with negligible intrinsic
spin-orbit coupling, their appearance pointed towards an orbital magnetism origin driven
by interactions [14, 82, |83]. These states were later identified as the same Correlated Chern
Insulators, but nucleating down at zero magnetic field. The alignment of TBG with hBN
is still an open problem in the community, as the reproducibility of the QAHE is yet to
be demonstrated, and especially because other signatures often found in other multilayer
graphene systems aligned with hBN, such as the Hofstadter butterfly and a gap-opening
at the CNP, seem to be lacking in the flat bands of TBG.

From the Landau fan diagram in [Fig. 1.8, and by using Egs. (1.15) and ((1.17)), we can

convert the gate-voltage to carrier density, and estimate the twist-angle of the measured
TBG sample. By taking the moiré period from Eq (|1.18)), and since in this case ns =4/A,

we arrive to:
\/§CL27’LS
g
where we have made the approximation sin () ~ ¢ for low angles. In the case of TBG,
estimating ng can be more difficult, as the band insulators at ¥ = £4 can be very broad in

carrier density due to twist-angle disorder (see [Fig. 1.7a-b and [Fig. 1.8a). The most accu-

rate method is then to fit the LLs emanating from the band insulators and extrapolating
them to zero field.

0% ~

(1.26)
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1.4 Josephson junctions

The phenomenon of superconductivity, first discovered by Onnes in 1911 after cooling
Hg below 4 K, is a phase transition between a metallic state, often well described by a
Fermi liquid, and a collective quantum phase that conducts electricity without dissipation
below a critical temperature T.. Maxwell’s equations, along with London’s postulate that
the dissipationless current is accelerated by an electrical field [84], dictate that such zero-
resistance state must also be a perfect diamagnet, obeying what is known as the Meissner
effect [85]. The most successful microscopic description of superconductivity was developed
in 1957 by Bardeen, Cooper and Schrieffer (BCS) [86,, 87|, where it was proposed that an
attractive phonon-mediated interaction can bind electrons into pairs, known as Cooper
pairs. This process opens up a gap A at the Fermi level, which the BCS theory predicts
to be exactly 1.764kpT,. Such relation has been experimentally corroborated in many
different superconductors, such as Al, Pb, Nb, In, or Ti; which have critical temperatures
of just a few kelvin [88]. Yet, since the discovery of high-temperature superconductors
in 1986 [89], with a T¢ far above liquid-nitrogen temperatures, a considerable amount of
“unconventional” superconductors that the BCS theory fails to describe have been reported.
To understand their exact mechanism has proven to be one of the biggest open problems
of the 21st century in Condensed Matter Physics.

In conventional BCS superconductors with s-wave pairing, Cooper pairs are formed by
two electrons with opposite momenta and opposite spin. These quasi-particles with zero
total spin obey the Bose-Einstein statistics, so that they form a condensate that can be
described by a single macroscopic wavefunction. Such wavefunction is often called the
(complex) order parameter A(k) = Ag(k)e™?® of the superconductor, where Ag(k) is the
superconducting gap and ¢(k) the macroscopic phase. For BCS superconductors, the s-
wave pairing imposes both quantities to be constants: Ag(k) = Ag and (k) = ¢; whereas
for other unconventional superconductors the order parameters can vary in k-space, such
as those with d-wave or p-wave pairing [90].

In 1962, Brian D. Josephson theoretically demonstrated that a supercurrent can flow
between two superconductors separated by a thin insulating barrier, even in the absence of
a voltage bias [91]. This prediction, soon confirmed experimentally [92], became known as
the Josephson effect and has been recognized ever since as a key signature of superconduc-
tivity, given its manifestation of macroscopic phase coherence. While Josephson initially
considered a superconductor-insulator-superconductor (SIS) configuration, the effect is a
more general property of any system consisting of two weakly coupled superconductors,
called Josephson junction. The weak link can be realized using various geometries and
materials, such as normal metals, semiconductors, ferromagnets, topological insulators,
etc. Today, Josephson junctions (JJs) are fundamental components in a broad range of su-
perconducting technologies, including ultra-sensitive detectors, high-frequency electronics,
and building blocks of quantum computing superconducting circuits. More importantly to
us, they serve as an important platform for exploring macroscopic quantum coherence and
its influence in other fundamental condensed matter systems.
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1.4. Josephson junctions

1.4.1 Tunneling junctions and weak links

SIS tunneling junctions

In his derivation, Josephson considered two superconductors Sio with one-dimensional
superconducting wavefunctions Ay 9 = |Aq 2 ’ei@m_ When put in sufficiently close proximity
to one another, he demonstrated that the wavefunctions of the Cooper pairs have a non-
zero probability of tunneling through an insulating barrier. The supercurrent I3 generated
through the junction by these quasiparticles is the first Josephson equation:

Is = I.sin(yp), (1.27)

where ¢ = @1 — 9 is the phase difference between the two superconductors and I, is the
critical current of the JJ, i.e. the maximum supercurrent that it can support. Eq.
describes what is known as the d.c. Josephson effect, where even in the absence of an
applied voltage V' between the two superconductors, a supercurrent can still flow. If
nevertheless such a voltage is applied, the phase difference ¢ evolves with time, which is
described by the second Josephson equation:

dep 2eV
—_ = — 1.28

dt h (1.28)
This can be interpreted as a supercurrent traversing the JJ with a frequency 2eV/h, and
is thus known as the a.c. Josephson effect [93].

Combining Egs. (1.27) and (1.28)), one can derive the free energy stored in the junction
by integrating over the work I3V done on it [93]:

AF = /tdt I,V = /(pdgo Icsin(gp)ﬁ = %[1 —cos(p)] = E[1—cos(p)] (1.29)
0 0 2e  2e

where Ej = hl./2e is the Josephson energy, an important characteristic energy for the
Josephson effect. For instance, a critical current of 10 nA gives Ej ~ 20 peV ~ 0.25 K,
so that if thermal fluctuations kg7 are bigger than E;, the phase-coherent supercurrent
smears out. For this reason, resolving small critical currents remains experimentally chal-
lenging, as it needs to be done under sufficiently low temperatures and low electronic noise
conditions.

SNS weak link junctions

While the original prediction by Josephson was based on the Cooper pairs tunneling be-
tween two superconductors producing a supercurrent, soon it was discovered that this
phenomena also applied to weak links, where the supercurrent would flow across a normal
metal (N) or a weaker superconducting material (S’) [94-97]. Here we focus on the former,
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1. Graphene-based moiré superlattices and Josephson junctions

) —I N s
[—°
AGO) " EA
A : L .
l ] -] 2e
S1 N S2 W/@D—' 2AEF
A1=Aei(p1 A2=Aei(p2 /
T > X <€ >
A~(e_x/EN+ex/fN)ei(p DOS DOS

Fig. 1.9: Superconducting proximity effect in SNS junctions and Andreev re-
flection. a) Sketch of the superconducting proximity effect in an SNS junction of length
L, where the two order parameters decay exponentially according to the coherence length
in the weak link {x, and overlap, giving rise to a supercurrent and the Josephson effect. b)
Sketch of the Andreev reflection mechanism, where the incident electron cannot penetrate
the superconductor alone, so a retro-reflected hole with opposite spin is created in order
to form a Cooper pair, thus conserving the charge, spin and momentum of the process.

also known as SNS junctions. This is the so-called superconducting proximity effect (see
Fig. 1.9n), where the superconducting order parameters of the electrodes Aq o = |A172]ei90172
penetrate into the weak link, exponentially decreasing within the metal over a distance &y .
This decoherence happens because the normal metal does not support attractive interac-
tions anymore as in the superconductors, so the injected Cooper pairs are no longer bound.
If sufficiently close to one another however, A1 and Ay interfere, such that their superpo-
sition creates a finite induced order parameter in the weak link, so the Cooper pairs do not
decohere completely and give rise to a finite supercurrent.

Mesoscopic SNS junctions are generally classified by comparing their junction length,
L, with relevant length scales. The mean free path [;,¢, of the normal metal is the criterion
for defining the ballistic and diffusive junction regimes (see , while the coherence
length in the weak link £y separates the short and long junction regimes (see .
Therefore, there are four different possible junction regimes: short-ballistic, short-diffusive,
long-ballistic, and long-diffusive [98].

Regime | Criteria | Coherence length | Thouless energy

Ballistic | L <lmnfp En =hvp/L Epp =hvp/L
Diffusive | L > I En =+/AD/A Erp, =hD/L?

Table 1.1: Ballistic and diffusive regimes in an SNS junction. Sorting criteria for
the two regimes, along with the different expressions for the coherence length £n and the
Thouless energy E7y, in each of them.
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1.4. Josephson junctions

For a metal with ballistic transport, £y = hvp/A, where A is the superconducting gap
of the electrodes. This expression is an analogy to the coherence length in a superconductor
in the clean limit, where here the Fermi velocity vp is instead that of the normal metal.
In the case where diffusive transport is dominant, {x = /RD/A, with D = vplyg,/2 the
diffusion constant in the normal region (in two dimensions in this case). The ballistic and
diffusive regimes then set the values of the coherence length &y (see [Table 1.1)), which need
to be compared with the length of the junction L so that it can be sorted in the short or

long regimes (see [Table 1.2)).

It is also possible to compare the energy scales of the system instead of considering the
length scales. The relevant energy scale is the Thouless energy, Erj,, which is related to the
dwell time 7 of the induced Cooper pair in the junction, i.e. Epp =h/7. Thus, in a ballistic
system Erj, = hvp/L, whereas Ery, = hD/L? for diffusive systems [98]. Comparing this
quantity with A gives the smallest energy scale, which determines the short (A < Epp)
and long (A > E7py,) regimes. Furthermore, these quantities limit the I.Ry product of the
junction, such that for a short JJ it remains approximately constant, as it is ruled by the
superconducting gap A, whereas for a long JJ it can vary according to the Thouless energy
Erp,, which depends on the Fermi velocity and the density of states on the Fermi surface.

Regime | Length criteria | Energy criteria

Short L < fN A< ETh

Long L>¢&N A > Eryp,

Table 1.2: Short and long regimes in an SNS junction. Sorting criteria for the two
regimes, along with the different expressions for the coherence length & and the Thouless
energy Frpy, in each of them.

The microscopic mechanism underlying the superconducting proximity is described by
a process known as Andreev reflection, named after the physicist who first proposed it
in 1964 [99]. When a low-energy electron (|E| < A) from the normal metal reaches the
N/S interface, its transmission into the gaped superconductor is forbidden, where only
Cooper pairs reside. Instead, the electron is retro-reflected as a hole with opposite spin
and momentum, while a Cooper pair is simultaneously transmitted into the S region.
shows this process, which conserves both charge, spin and momentum. The
resulting coherent superposition of the incident electron and the reflected hole is usually
referred to as an Andreev pair.

If we now extend this to two interfaces forming an SNS junction, the Andreev pair is
created in the N region at the first S/N interface. If the next N/S interface is sufficiently
close, this time-reversal electron-hole pair reaches it, undergoing another Andreev reflection
and thus creating another Cooper pair in the second superconductor. As a result, a Cooper
pair has traversed the junction and a supercurrent can flow, which proximitizes the normal
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1. Graphene-based moiré superlattices and Josephson junctions

metal. This process of successive Andreev reflections, illustrated in [Fig. 1.10h, leads to
the formation of discrete energy levels within the normal region, known as Andreev Bound
States (ABS). These states are confined within the normal metal and have energies less
than the superconducting gap.

In the Blonder-Tinkham-Klapwijk (BTK) model an interface is described by a dimension-
less transparency parameter 7, which quantifies the transmission of a single transverse
mode. For an incoming sub-gap electron (|E| < A), the BTK model gives the probability
amplitude of an Andreev reflection taking place [100]:

A2
B (A2 —E)(2r 1)

A(E) (1.30)

At zero energy, where the ABS lie, this simplifies to A(0) =72 /(2 —7)?, such that a perfectly
transparent interface (7 = 1) retro-reflects every electron (A(0) =1).

The energies of these bound states mainly depend on the phase difference ¢ between
the two superconductors and the transparency 7 of the interfaces. For a short-ballistic
SNS junction, from Eq. it can be derived that each transverse conduction channel
with transmission probability 7,, supports a pair of ABS with energies:

En(p) = +Ay/1 = 75in2 (p/2) (1.31)

At zero temperature the supercurrent carried by each channel is I, = %‘3 a”. Considering

that only the negative brach is occupied at zero temperature (see |Fig. 1.10b), we only use

a) S1 N S2 b)
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Fig. 1.10: Andreev Bound States in SNS junctions. a) Sketch of the microscopic
mechanism of the superconducting proximity effect in an SNS junction, where an ABS
is formed in the N region after two coherent Andreev reflections take place in the S;/N
and N/Ss interfaces. b) In the short-ballistic limit, energy spectra of a gapless ABS for a
perfect transmission (7 =1) and of a gaped ABS for an imperfect one (7 < 1), as a function
of the phase difference .
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1.4. Josephson junctions

the negative solution in Eq. (1.31]), from where we get the total supercurrent of the system:
eA Tpsin ()
\/ 1 —72sin? (¢/2)

Because each transverse mode contributes independently, the total critical current in the
short-ballistic limit will be the sum of each I.(7,). Finding the minima of this expression
gives us the critical current:

Is(p) = (1.32)

eA ™
I[.=—) ————.
‘" h ;14—\/1—7'”

Now, knowing from the Landauer-Biittiker formalism that for a spin-degenerate metal the

(1.33)

Conductance is GN == 7262 g Tn, and expanding Eq 131 fOI' small transparencies n < 1,
h n
we ﬁnd:

= -G, (1.34)

which is the Ambegaokar-Baratoff relation for tunnel junctions [97, 101}, |102]. If we instead
consider a very transparent SNS junction with a single mode (7 ~ 1), i.e. the so-called
quantum-point-contact limit [103], we get:

EGN (1.35)

These results emphasize that for the short-ballistic regime, I. o G. In intermediate
regimes of SNS junctions with finite temperature, this relation is not linear anymore, but
follows much more complicated expressions [97]. One very important note is that, still,
I. remains a monotonically increasing function of G: if one increases so does the other
and vice-versa. This is known as the I. vs Gy scaling. Another conclusion from these
expressions is that, for short-ballistic JJs, I.Ry ~ A. This means that the I.Ry product
is only limited by the superconducting gap, and since no band structure or material-
dependent properties have been considered in this general derivation, this quantity is thus
often used as a measure of how strong the proximity effect compares to the theoretical
limit of Eqgs. and [93]. Finally, it can be experimentally checked if a JJ falls
in this regime by measuring the temperature dependence of the I., which in this case is
set by the superconducting gap:

L(T) = 7;?}(%? tanh ( ;‘;2) (1.36)

where A(T) ~ Ay/1—(T/T,)? 98, 104].

For diffusive or long SNS junctions the Andreev levels broaden into a quasi-continuum
and the Thouless energy Erj, = hD/L? replaces A as the controlling scale. Solving the
Usadel equations [105] with transparent S/N interfaces gives I. = aEp, Gy, where o~ 10.82
at T'= 0 in the long-diffusive theoretical limit (A > Epp or L > &y) [106]. Since Epyp, also
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1. Graphene-based moiré superlattices and Josephson junctions

depends on the conductance through the diffusion coefficient, we can conclude that I. also
scales with Gy in this regime. The temperature dependence for long junctions is governed
by an exponential scaling I, ox e #8T/9F where 0E ~ hvp/2rL [104]. In the case of the
long-diffusive limit, the expression is [106]:

10.82F
1(T) = — 0 (1= Lge 10528 m 32k (1.37)

These derivations demonstrate that the Josephson equations approximately hold for
SNS junctions too. While Eq. , which describes a sinusoidal CPR, holds exactly
at T~ T, and in the long-diffusive limit for any temperature [102], it is known that the
CPR is modified for extremely transparent ballistic SNS JJs |97, 107]. In general, the
study of the CPR in real imperfect SNS junctions shows that it approximately follows a
sinusoidal relation [102, |108|. From a theoretical perspective, an accurate derivation of
a general CPR in these imperfect systems is complicated, as the supercurrent carried by
the Andreev Bound States depends on the length L, coherence length &5 and decoheres
through multiple scattering processes with the normal carriers in the metal.

1.4.2 The washboard potential and IV characteristics

A more complete model of a realistic Josephson junction is the RCSJ (Resistively and
Capacitively Shunted Junction) model, which enables to explain the current-voltage char-
acteristic for example. It consists of incorporating in parallel to the JJ: a capacitor, which
provides the geometric capacitance C' of the normal region between the two superconduct-
ing leads, and a resistor, which provides the dissipative resistance R of the junction in its
normal state (equivalent to Ry) [93]. The total current I in the system will then be divided
through the three different elements (see also [Fig. 1.11h): I = I sin(p)+V/R+ CdV/dt.

By applying Eq. (1.28]) we then get:

h de hC d?
Iz[csin(gp)—i—ii—i- g

— . 1.
2¢R dt = 2e dt? (1.38)

The dynamics of this differential equation can be understood by analogy to the same
differential equation describing the motion z(t) of a classical particle:

d d?
F =U,sin(z) +nd%f —i—mﬁf,

(1.39)
where ' = Rl /2e is the external force, U, = hl./2e = E; is the effective potential energy,
n= 12 /4€%R is the viscosity and m = e /4e? the mass of the particle providing the inertia.
The potential in which this particle moves is U(x) = U,(1 — cos(x)) — Fz. For the RCSJ
model in Eq. (1.38)), this potential is then:

Ulp)=Ey (1 —cos(p) — I]so) , (1.40)

C
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1.4. Josephson junctions

which is called a washboard potential , whose characteristic energy is the Josephson
energy Ej. shows it for different /I, values, where we can see that it tilts
as I/I. increases. Furthermore, as I = I, the potential no longer has stable equilibrium
minima, but rather unstable points, meaning the particle never gets to a stable position
(analogous to a fixed ) and therefore the system has no solution (superconductivity in
the JJ is lost). If, on the other hand, I < I, fluctuations can make the system escape from
the shallow minima, such as thermal fluctuations kg7 or quantum tunneling.

This means that, in general, there is a certain probability that the current needed
to switch from the superconducting to the normal state is smaller than the true critical
current. In experiments, this measured transition in current is thus often called switching

a)
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Fig. 1.11: RCSJ model, washboard potential and IV characteristics. a) Circuit
of the RCSJ model. b) Normalized tilted-washboard potential U(y)/E; according to
Eq. , plotted for several values of 1/1.; the analogous to the driving force. For I < I,
the potential has local minima, whereas for I > I.. it does not. c¢) Hysteresis of a measured
current-voltage (IV) curve. The solid-line data is acquired while sweeping the d.c. current
I away from zero, and the dashed-line while sweeping towards zero. d) Same measured IV
curve as in c, always sweeping away from zero. The repetition of the measurements shows
an evident stochastic switching. Inset shows the distribution of this switching, revealing
I, is not well defined experimentally.
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current. [Fig. 1.11d shows an example of an IV measurement repeated over time, where the
transition is seen to be non-deterministic. One can then take the average of the distribution
as an approximation to the "true” I..

According to the quality factor @ = w;RC, where wy = y/2el./hC, there are two JJ
regimes one can consider: the overdamped regime (C' small such that @ < 1) and the
underdamped regime (C' finite such that ) > 1). The underdamped junctions are especially
interesting, as this model explains the hysteresis found in the IV curves of such JJs.

When the junction transits from the superconducting state (I < I.) to the normal state
(I > I.), the associated voltage V' goes from zero to a finite value V' = I R, yielding a non-
linear IV curve, also called IV characteristic (see[Fig. 1.11k-d). In Eq. (1.40) and [Fig. 1.11p
this corresponds to the phase ¢ increasing at a rate dy/dt = 2eV/h, meaning the system
slides down the tilted washboard. If now, from this situation and in the underdamped
regime, [ is reduced back to I < I., because C' is finite, the particle has big enough inertia
such that the viscosity does not slow it down, so we still have V' # 0. This means that,
although U(p) has well-defined minima, the particle carries up and over the barriers. This
process continues until the so-called retrapping current I, is reached. With a finite damping
(@ >1), I, #0 is fixed by the current at which its work on the system exactly equals the
energy required in advancing ¢ from one minima to the next. From here, one can derive

that I < I, =4e/7Q [93]. An example of such hysteretic IV curve can be seen in |Fig. 1.11k.

It is worth noting that this hysteresis can also be due to overheating effects in the
junction, such that it also occurs in overdamped JJs [109]. As the JJ switches to its
normal state at [ = I, its finite resistance increases the electron temperature due to Joule
heating. By now decreasing I, the transition back to the superconducting state can happen
at a I < I, since I, decreases for increasing temperatures.

1.4.3 Superconducting interference under a magnetic field

For a complex superconducting order parameter with spatial variation A(r) = |A(r)]e™("),
the second Ginzburg-Landau equation reads

Jo= AP (hWe(r) —gA), (1.41)

where ¢ = 2e is the charge of the Cooper pairs and A is the magnetic vector potential.
Deep inside the superconductor, where no external magnetic field penetrates and thus no
screening currents are being generated, Js = 0. From here, by integrating over a contour
C, we get:

2T
p(r) = 900+(I)0/CA-dl. (1.42)

This expression manifests how an external magnetic field adds on the phase ¢. For a
closed contour, i.e. a superconducting ring, it follows from Eq. (1.42)) that the phase is
periodically modulated by units of the superconducting flux quantum ®¢ = h/q [93].
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Interference in a Josephson junction

If we now consider a coplanar Josephson junction over the xy plane and an applied per-
pendicular magnetic field B = Be,, as depicted in [Fig. 1.12h, we can calculate how the
phase difference ¢ between the two superconductors is modulated in the = axis. For this,
we choose the Landau gauge A = Bre,, yielding:

() = pot 25 [ 4 4 + 2T Ba(L427,) (1.43)
PT) = $o 0o ) 1/22, y @Y = L0 o, z L) :

From here and Eq. (1.27) we know the supercurrent density Jg(x) in the junction must

be Js(z) = Jesin[po+ g5 Bx(L+2A1)]. This behavior is shown in [Fig. 1.12b. The total
supercurrent /5 in the Josephson junction will then be:

1.(B) = /W/2 Ju()de = JW sin (¢0>sin [rBW (L+2A1)/®o)

Wy ~BW(L 1 27)/ %o (1.44)

In the experiment, the observable quantity is the critical current I.(B), which is the max-
imum supercurrent flowing in the junction, i.e. where o maximizes Eq. (1.44) at zero
magnetic field. From there it follows:

sin (7P /P)

IC(B) = IC(O) 7T<I>/<I>o

: (1.45)

where ® = BW(L+2\p) is the magnetic flux threading through the junction. The addition
of twice the London penetration length 27, is done because the magnetic field can penetrate
into the superconducting electrodes up to that distance, which is called flux-focusing effect.

Importantly, Eq. manifests the quantum interference of the supercurrents inside
a Josephson junction under a perpendicular magnetic field, which is identical to a single-slit
optical diffraction pattern, also called Fraunhofer pattern. Indeed, in we show
an experiment where the critical current decays according to Eq. . The periodicity of
the oscillations AB ~ 2.1+0.1 mT coincides with the value from the physical area of the
junction AB, ~2.04+0.2 mT when flux-focusing effects are taken into account. Historically,
these type of interference experiments, first done by Little and Parks [110], served to prove
that the charge of the quasiparticles driving the superconducting phase (Cooper pairs) had
a charge g = 2e, since the I. vanishes at every integer &g = h/q [111].

Interference in a SQUID

Let’s consider now two JJs placed in parallel, such that the magnetic flux penetrates
through the enclosing area & between them. One can imagine this as a modification of
the sketch in [Fig. 1.12a with two JJs at the edges and empty space in the middle, such as
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the inset in [Fig. 1.12d. Starting again from Eq. (1.41)) and choosing a contour C along this
structure such that Jg =0, we get:

2
v -dl:—/A-dl. 1.46
Lve 5 ). (1.46)

Letting ¢1,2 be the phase differences in each JJ, and since the phase will be 27 for each
winding loop n € Z, the left integral gives 2mn — (¢1 — ¢2). By now using Stokes theorem,

e b x
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Fig. 1.12: Superconducting interference under a magnetic field. a) Sketch of
a coplanar Josephson junction, where the weak link (blue color) is trespassed by an ex-
ternal perpendicular magnetic field B (black arrows), as opposed to the superconducting
leads (grey color) which screen the field due to the Meissner effect. Such field creates an
interference in the supercurrent density profile Js(z) in the weak link (white color). b)
Example of a sinusoidal Js(z) in a JJ, according to Eq. (1.49)), which corresponds to a
flux & =5®P(/2, i.e. to the maxima of the third lobe in c. ¢) Example of a measured JJ,
where the experimental differential resistance dV//dI is plotted vs d.c. current I and a field
B. The I., obtained as the transition in I from the zero-resistance state (dark blue) to
the finite-resistance state, follows well the theoretical prediction of Eq. (white line).
d) Example of a measured SQUID, where the experimental I.. follows well the theoretical
prediction of Eq. (white line). The insets of ¢ and d include a sketch and the calcu-
lation of the precise critical current profiles J.(x) that generate the theoretical I.(B) fits.
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the right integral results in %ffsv X A-ds =21®/Py. Thus, the relative phase of the
two junctions is related to the flux ® through the ring by [93]:

27 d
1 — P2 = %mod(%). (1.47)
0

The total supercurrent I of the device will be divided in two. Assuming each junction
has the same critical current I, this yields I; = I, sin (1) + I, sin (¢2). Now taking into
account Eq. we rewrite this as Iy = I, sin (o1 —7®/®Pg) cos (1®/Pg). Thus, choosing
1 such that it maximizes [, the total critical current /. of the device will be:

I1.(B) = I(0)|cos (1®/®y)| (1.48)

As opposed to a single junction, where the critical current exponentially decays with
field, Eq. creates constant oscillations, just like a double-slit interference pattern in
optics. An experimental example of this structure, known as a superconducting quantum
interference device (SQUID) [112], is shown in [Fig. 1.12d. These devices are commonly
used as highly sensitive magnetometers, as they can detect a change in their I, down to a

field variation of ~ 150 aT/v/Hz [113].

Interference for any critical current density profile

The analogy with the optics interference phenomena should not be surprising. As the
Cooper pairs in a superconductor follow Bose-Einstein statistics, they are all described by
the same macroscopic wavefunction and thus all have the same phase, exactly as with light
waves. With this in mind, one can derive a more general expression between the critical
current density profile J.(z) and the measured critical current [.(B) through the Fourier
transform, as we show in the following.

From Eq. (1.43) we can define the normalized magnetic field unit as § = 27 (L +
2A1)B/®g, and from Eq. (1.27) we know the supercurrent density in the junction is

Js(z) = Jo(x)sin (pg + Bz) = J.(z) Im {ei(ﬁfﬂﬁo)} ’ (1.49)

where J.(x) is a function of the lateral dimension z along the width of the junction W. By
setting the cutoff with a vanishing J.(z) beyond W, the integration to calculate the total
current [ in the Josephson junction is then done over the whole real space:

+00 . .
) = [ Ty (0me0) i) gy (1.50)

Defining now the complex function J(8) = [12° J.(z)e!(P*+%0) dz, we get

—0o0

15(B8) = 5 [T (B) =T (B)] = FTIT (B)], (1.51)
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where F7 marks the Fourier transform of a complex function. Finally, the observable
critical current I.(5) is calculated by setting the maximum over the complex modulus of
the previous expression, yielding:

L(8) = ‘ / ¥ Ju(@)ePdz

—00

: (1.52)

From this, we can easily derive that for a rectangular function J.(x), its Fourier trans-
form and thus its I.(B) is the sinc function, i.e. Eq. (1.45). If we now set two rectangular
functions at the edges of the junction, the resulting I.(B) is a non-decaying cosine function,
i.e. Eq (1.48). These J.(z) profiles that generate such I.(B) oscillations are shown for real
samples in the insets of [Fig. 1.12k-d. From these two primary examples, one can construct
other profiles, with the general rule being that a bulk supercurrent will contribute to a de-
caying interference with field, and an edge supercurrent will result in constant oscillations
with field. Finally, a non-symmetric profile Js(z) generates an interference pattern where
the nodes do not reach a vanishing /..

Retrieving the critical current density profile J.(z) from the measured /.(B)

One can now wonder if it’s possible to do reverse engineering and extract information about
how the supercurrent flows in the junctions, i.e. the critical current density profile J.(x),
from the measured critical current I.(B) in the experiment. While one could definitely
take the inverse Fourier transform of Eq. , the phase information ¢ is lost since the
expression holds a complex modulus. This problem not having a general solution roots in
Quantum Mechanics, where one cannot retrieve the global phase of a wavefunction from a
physical measurement; in this case the macroscopic phase of a superconductor or a JJ. The
problem has a solution though by making a few assumptions, such as the CPR of the JJ
being sinusoidal, i.e. Eq. holds. We now demonstrate this method, first introduced

by Dynes and Fulton [114], and also show some examples.

From Eq. (1.52)), by not taking the complex modulus, we can write

(0. 9] . o0 o0
/ Jo(z)ePr dx = / Jp(x)cos(Bx)dx —i—i/ Jo(x)sin(Bx)dx = Ig(B) +ilo(B).
—00 — 00 oo
This integral is a complex function that is divided into a real (Ig) and an imaginary (Ip)
part, which correspond to the even (Jg) and odd (Jp) components of the density distri-

bution, respectively. Both Ir and Ip can be computed approximately from the measured
I, with an ansatz [115], which we explain in the following and show in |[Fig. 1.13]

The first consists of obtaining Ig(8) by multiplying the experimental I.(f) with a
flipping function that switches sign between adjacent lobes (see [Fig. 1.13a-b). With this

calculation, we are assuming that the phase of the supercurrent changes sign after every

®g, (i.e. sinusoidally) just like in |Fig. 1.12b. [.(B) is then mainly described by Ig(3),
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1.4. Josephson junctions

except at its minima points (nodes) that do not reach I.(B) = 0. Thus, we calculate Ip (/)
by linearly interpolating between the minima of I.(8) and flipping sign between adjacent

lobes (see |[Fig. 1.13a-b) [115].

Finally, by computing the inverse Fourier transform of Ig(8)+ilo(53), the supercurrent
density profile Js(z) is obtained:

L () +ito(9)] e Pag| (1.53)

Je(x) = 21 J—p/2

where b is the sampling range of 3, i.e. how far in magnetic field the oscillations were
measured.

In we show an example of applying this method to the measured I. of a JJ,
whose raw data we have also shown in [Fig. 1.12k. Importantly, in we can see
that the extracted I. does not reach exactly zero at the nodes, like Eq. predicts.
This can be due to having an imperfect junction. Indeed, by computing /g and Ip from
I, shows that I mainly describes the experimental I.., except at the nodes,
where [p makes some corrections. As a result, the extracted J.(z) in shows an
asymmetry, although very close to a perfect homogeneous profile (black-dashed line).

a) 1.0 b) 1.0 c)
I --|deal
E 0.6{ = Extracted
—- | —
< z 0.51 © g_
2051 3 i
0.0 N N
0.0 T T : T T T T 0= Analt BRane
-10 -5 0 5 10 -10 -5 0 5 10 -2 -1 0 1 2
B (mT) B (mT) X (um)

Fig. 1.13: Critical current density profile extraction. a) Extracted critical current
I. of a JJ vs magnetic field B. b) Extraction of the even (/) and odd functions (1) from
a by flipping sign between nodes. c¢) Calculated critical current density profile J. from
b in red vs the lateral dimensions of the junction x. The theoretical fit, taken from the
physical width of the JJ, is shown in a black-dashed line.
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Chapter 2

Experimental Methods

The work presented in the first section of this chapter led to the following publication:

[P6] J. Diez-Mérida, I. Das, G. Di Battista, A. Diez-Carlén, M. Lee, L. Zeng, K.
Watanabe, T. Taniguchi, E. Olsson, D.K. Efetov. “High-yield fabrication of
bubble-free magic-angle twisted bilayer graphene devices with high twist-angle
homogeneity”. Newton 1, 1 (2025).

Contributions: Sample fabrication, transport measurements and discussion.

As discussed in [Chapter 1| graphene-based moiré superlattices give rise to rich physical
phenomena not found in monolayer graphene. The formation of these artificial super-
lattices in mesoscopic devices suffers from several external factors, such as the dielectric
environment [116} [117], strain or twist-angle inhomogeneity [17] [119]. This latter
is especially important for homobilayer moiré materials, such as TBG. It is thus of great im-
portance to have a controlled and clean fabrication of these twisted vdW heterostructures
in order to investigate their numerous quantum phases.

This chapter is divided as follows. [Section 2.1|describes an optimized fabrication process
that allows us to achieve highly homogeneous graphene-based moiré devices, and in partic-
ular TBG [[P6]. In[Section 2.2] we discuss the challenges of developing a working recipe for
superconducting contacts to graphene-based heterostructures and how we overcame them.
Lastly, shows the instrumentation and the basics of low-temperature transport
measurements in different cryostats with lock-in techniques.
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2. Experimental Methods

2.1 vdW heterostructures fabrication

vdW materials were first obtained with the discovery of graphene 4] via the exfoliation
method, where a tool as simple as a scotch tape is used to repeatedly peel off layers of
graphite. As the out-of-plane vdW forces are weak compared to the in-plane bonding forces
between the atoms, the 2D layers of graphite remain intact down to the monolayer limit,
allowing for their isolation and study. Since then, a huge number of other 2D materials
have been identified [120} [121]. With the innovation of the dry-transfer method [122, [123],
these different 2D materials were now possible to assemble, creating heterostructures with
combined and emergent physical properties [7]. Possibilities were set to be endless with the
discovery of twistronics, where the relative angle between the layers and the resulting moiré
superlattice can dramatically change the band structure of the former material ,
, , . In this section, we describe in detail the fabrication process used to create
graphene-based moiré heterostructures, from the exfoliation of the 2D materials, through
their assembly, to their nanofabrication and conversion into a measurable electronic device.

2.1.1 Exfoliation

The 2D materials used to create the vdW heterostructures studied in this thesis are ob-
tained through mechanical exfoliation onto a doped Si chip with a 285 nm SiOg capping
layer. This 285 nm SiOg substrate is chosen for its optical contrast, which makes it easier
to identify monolayer graphene flakes under monochromatic illumination |126).

The 285 nm Si/SiOs substrates come in an standard wafer shape as shown in [Fig. 2.Th.
Since our vdW samples are in the order of tens of pm, we cut the wafers with a diamond tip
into small chips of approximately 1 x 1 cm? (Fig. 2.1b). Subsequently, the chips are flushed
with a nitrogen gun at high pressure in order to remove the Si debris accumulated on the
surface after cutting. Finally, the chips are further cleaned under a strong Og plasma (100
W, 90 mTorr) for 5min in a plasma asher or reactive-ion-etching camera ) This
process removes ambient adsorbates from the chip surface, enhancing its adhesiveness to
the 2D materials and increasing the number of resulting flakes .
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Fig. 2.1: Cleaning of Si/SiO2 chips. a) Full and half Si/SiOy wafers. b) The wafer is
cut into smaller chips. Scale bars are 2 cm. ¢) The chips are cleaned under an Oy plasma.
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2.1. vdW heterostructures fabrication

Once we have ready our clean substrates, we proceed to exfoliate on them the 2D
materials. First, we describe in detail all the steps of graphene exfoliation process and
then explain the differences for hBN and thick graphite:

i)

ii)

iii)

iv)

Tape folding: a graphite crystal (from NGS®) is placed on a piece of Magic-Scotch™
tape —b) and then removed, leaving a large piece of graphite on the tape.
This is repeated in several areas at one end of the scotch tape ) The tape
is then folded as few times as necessary (e.g. 8 times) to completely cover it with
graphite (Fig. 2.2d-e), thus minimizing the reduction in the size of the flakes [4].

Mother and daughter tapes: to further reduce the thickness of the flakes from this
"mother” tape, we create two "daughter” tapes, which we then throw away (Fig. 2.2f).

Area selection and applied pressure: the cleaned Si/SiOs chips (see [Fig. 2.1p) are
carefully placed on the "mother” tape covered with graphite (Fig. 2.2g). Choosing a
good area where to put the chip is critical in order to obtain graphene flakes. These
can be identified by having a grey-matte color, in contrast with shiny regions which
would give too thick graphite flakes. The chips are then pressed with our thumb and
the use of a wipe. We press as much as we can for 10 s.

Heating: the chips glued on the tape and on the wipe are placed on a hot plate
at 100°C for 3min. Heating improves the contact area between the flakes and the
SiO2 by removing gas from the interface, thereby increasing the vdW forces [127].
Heating the tape too much time will cause tape residue, i.e. glue, to stick to the SiOq
surface, which is undesirable. We have found that heating for 3-4 minutes keeps a
good balance between high exfoliation yield and low amount of residues.

Peeling off: after heating, the tape is allowed to cool for 1min before being slowly
peeled off the chips ) This slow peeling is crucial to obtain larger flakes,
as a fast peeling can break them. The waiting time before peeling allows for a more
controlled removal, as the glue becomes less soft.

For hBN, we use crystals provided by our collaborators from Japan [26]. Although its
crystallographic structure is very similar to that of graphite, its exfoliation is much harder.
Its differences with respect to graphene are the following:

hBN crystals are much smaller and scarce compared to graphite crystals (Fig. 2.3a).
Because of that, we first put a small amount on one end of the tape (Fig. 2.3b).

After folding to achieve a completely covered tape (Fig. 2.3c), we create a "daughter”
tape ([Fig. 2.3d) and use it to put our chips in areas with rainbow—mnot too shiny—
colors. This ensures a relatively small flake thickness (~ 5 —30 nm).
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2. Experimental Methods

o The applied pressure with our thumbs should be moderate in this case. Afterwards,
the tape is heated only for 1min at 100°C.

o Finally, after waiting 1min for the tape to cool down, we try to peel it off from the
chips at an even slower rate than in the case of graphite.

Fig. 2.2: Exfoliation of graphene. a) Graphite crystal used for exfoliation. b) The
crystal is put into a scotch tape. ¢) Tape after placing the crystal in several spots. d) The
tape is folded several times. e) Tape filled with graphite after folding. f) A ”daughter”
tape is created from the original "mother” tape. g) The Si/SiO9 chips are placed on the
resulting "mother” tape. h) After heating, the tape is slowly peeled off from the chips.

Fig. 2.3: Exfoliation of hBN. a) hBN crystals used for exfoliation. b) Tape after placing
the crystals in several spots. ¢) Tape filled with hBN after folding. d) A "daughter” tape
is created from the original "mother” tape.

Lastly, if one wishes to use graphite as a metallic back gate of the vdW heterostructure,
the chips where graphene was exfoliated can be used for this purpose. The vdW force
between hBN and the graphite back gate is strong enough in order to pick it up from
the substrate. However, if one wishes to use graphite as a top gate, the Si/SiO2 should
not be cleaned with O2 plasma, so that the graphite can be directly picked up with the
polycarbonate (PC) stamp. This last point is key for the fabrication of double-gated
devices, which is explained in detail in [Chapter 5|
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2.1. vdW heterostructures fabrication

2.1.2 Flake identification

During the exfoliation process, flakes of different thicknesses are cleaved on the Si/SiO2
chips. Given that their absorption of incident light varies approximately linearly for the first
few number of layers, the thicknesses of the flakes can be determined under investigation

on an optical microscope [128| [129].

In |[Fig. 2.4 we can see that while monolayer graphene appears similar to the light
purple color of the SiOg, thicker graphite flakes have a darker purple color (~ 1-5 nm)
which can be used for metallic gates. Flakes that are blue (~ 10 nm) or yellow (~ 20
nm) are too thick for our needs. The assignment of these thicknesses to the optical color
under the microscope can be verified with an Atomic Force Microscopy (AFM), although
its use for determining single-layer flakes of 2D materials is very challenging. Alternatively,
Raman spectroscopy can be used to unambiguously identify monolayer graphene
and the exact number of layers in other 2D materials , . In the case of hBN, we
generally use flakes of less than 20 nm thickness, i.e. of a light- or dark-blue color under

optical investigation (see [Fig. 2.4b-c).

Fig. 2.4: Graphene and hBN flakes identification. a) Monolayer graphene in light
pink/purple color, with a visible fold resulting in a bilayer. Multiple layers acquire a darker
purple color. b-c) hBN flakes of different thicknesses, from thinner in dark blue to thicker
in a lighter blue, turning to green and finally yellow. Scale bars are 10 pm.

2.1.3 Stamp preparation

The vertical assembly of vdW heterostructures—the so-called ”dry-transfer” method—
relies on polymer-based substances to pick up the 2D materials and stack them on top of
another [122 123 134}, 135]. A schematic of the process is shown in [Fig. 2.5

The most widespread used polymers for this technique are polydimethylsiloxane (PDMS),
polycarbonate (PC) or polypropylene carbonate (PPC). These are usually assembled on
a glass slide, which we term "stamp”. Our stamps are made by a commercially available
PDMS (Gel-Film 4 from Gel-Pak®) covered with a home-made PC film. The PDMS works
as a soft substrate where the adhesive PC layer sits. The choice of PC over PPC stands
because of its higher working temperature, which we find helps the transfer process and
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Fig. 2.5: Dry-transfer technique. a-b) Pickup of a vdW material with a PC/PDMS
stamp. c-d) When picking up a second material, the vdW force between them is strong
enough to stack them on top of one another, after rotation if desired. e-f) After heating,
the stack can be dropped on a chip and the PC is washed away.

will be explained in detail in [Subsection 2.1.4] A typical finished stamp can be seen in
[Fig. 2.7f. We explain in detail the preparation of these in the following.

In order to make the PC films, we dissolve 6% by weight polycarbonate in chloroform.
The chemical solution is stirred with magnetic pellets overnight at room temperature. The
bottle containing the solution needs to be kept closed carefully, as with time the chloroform
will evaporate, changing the concentration of the solution and becoming unusable. With
the help of a pipette, the PC solution is placed on top of a previously cleaned glass slide

Fig. 2.6: PC film making for stamps. a) The PC solution is dropped onto a clean
glass slide with a pipette. b) Another clean glass slide is placed on top of the one with
the PC solution. ¢) The two glass slides are slowly slid along the long axis, helping to
uniformly distribute the PC on both surfaces. d) Resulting PC film after heating.
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2.1. vdW heterostructures fabrication

with acetone and IPA (see [Fig. 2.6h). The wiggle shape is done in order to maximize the
amount of PC on the glass slide. By placing another clean glass slide on top of the one
with PC (Fig. 2.6p), and sliding both ), we homogeneously create a PC film on
the two surfaces. We heat up both glass slides at 110°C for 5min to evaporate some of the
chloroform and achieve a better surface homogeneity. The resulting film can be seen in
[Fig. 2.6d. In order to use it for making our stamps, we cut it into several areas, as shown
in [Fig. 27

Once the PC film is ready, we proceed to make our stamps. First, we cut a small
PDMS square of 5 x5 mm? and place it on a glass slide ) On another side,
we prepare a scotch tape with a hollow window in it. This window needs to have slightly
larger dimensions than the PDMS square ) The tape with the window is used
for picking up the PC film (Fig. 2.7d), which results into a free-standing layer (Fig. 2.7¢)
after carefully removing the tape. Finally, this tape with the free-standing PC is placed on
the glass slide with the PDMS square, resulting in our finished stamp as seen in (Fig. 2.7f).
The larger PC film compared to the PDMS ensures that the former sticks out enough to
pick up the vdW materials, creating a fine dome-shape. This also helps separating the PC
from the PDMS at higher temperatures, for dropping our stack.

Fig. 2.7: Preparation of PDMS/PC stamps. a) A PDMS square is cut and placed
on a glass slide. b) In parallel, we prepare a piece of tape with a window slightly larger
than the PDMS square. ¢) PC film from after being cut into several areas. d)
The tape with a window in b is placed on one of the PC areas. e) Resulting tape with a
free-standing PC after a slowly release. f) The tape with the PC window in e is placed on
the glass slide with the PDMS in a, finishing our stamp. We use additional tapes on the
edges of the glass slide to ensure that the PC film is well attached to the PDMS.
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2.1.4 Transfer method: stacking

As just explained, our PDMS/PC stamps are used to stack vdW materials one of top of
another. This dry-transfer method , commonly known as "stacking”, takes place on
a transfer stage—a modified microscope where vdW materials are assembled thanks to
micro-manipulators for both the sample and the stamp. [Fig. 2.8 shows a picture of our
transfer stage with the main components annotated. In addition to the typical optical
features of a microscope, such as the lenses, camera, objectives and focus adjustment, the
transfer stage consists mainly of two parts: the sample stage and the stamp stage.

o The sample stage is visible in [Fig. 2.8b. The sample sits on a metallic plate, with a
vacuum line in its center, such that the sample does not move during the stacking
process. The plate is connected to a heater, which is powered with a current source
and controlled with a PID loop. In this way the sample’s temperature is controllable
up to 200°C with a precision of 0.01°C. Below the heater, separated by an insulating
piece, sits a goniometer. This is a critical part of the transfer stage, as it allows to
rotate our sample with a precision of 0.016°. All the sample space is movable in the
x-y plane with a precision of microns thanks to a micro-manipulator (see [Fig. 2.8n).

o A stamp can be put facing downwards thanks to two additional vacuum lines, sitting
at the two ends of a trapezoid-shaped arm seen in [Fig. 2.8b. In this case, the stamp
can be moved in the z direction up and down to approach the sample, as well as in
the x-y plane; all thanks to three manual micro-manipulators pointed in [Fig. 2.8h.
Apart from those, the x-y plane where the stamp stands can also be tilted with two
extra micro-manipulators. This allows us to choose the direction in which the PC

wavefront from the stamp approaches the sample (see [Fig. 2.9a).

~ Stamp tiltt !
Stamp xyz
manipulator
W

\ 7
Sample xy

i
Heavy table manipulator

Fig. 2.8: Transfer stage. a) Picture of the transfer stage, with the main components
pointed out. b) Zoom-in of the dashed rectangle in a, where the sample and stamp stages
are more visible. Other main components are annotated here.

46



2.1. vdW heterostructures fabrication

In we show optical pictures of a stacking process, where we stack a twisted
bilayer graphene encapsulated with hBN and a local graphite back gate. In this process,
the top hBN is first picked up with the PDMS/PC stamp. After having cut the graphene
flake into two parts (see [Subsection 2.1.5 for more details), we pick up the first graphene
with the top hBN covering all of it. Then, we raise our stamp, we rotate the sample
stage 1.116° and we pick up the second graphene part. In this way, the relative angle
between the two graphene layers will be the targeted one, safe for a possible relaxation of
the angle during the stacking process. Finally, we subsequently pick up a bottom hBN and
a graphite narrow flake which acts as a metallic back gate. The whole process is done at a

1st graphene 1st graphene
/ v

bY

2" graphene

wavefront

thicker flake
bottom-hBN ~— is avoided

2" graphene /

graphite gate

S

Fig. 2.9: Stacking twisted bilayer graphene. a) Pickup of the top-hBN. b) Targeted
two halves of a graphene flake after cutting. c) Pickup of first half. d) Pickup of second
half after rotating the stage by 1.116°. e) Approaching bottom-hBN. f) By controlling the
wavefront, a thicker flake on the top left is not picked up. g) Bottom graphite gate pickup.
h) Stack with PC on top of it, after dropping it in a chip with cross markers. i) Finalized
stack after cleaning the PC. Scale bars are 10 pm. The red drawings are made by us in
the camera software to help locate and stack all of the flakes with precision.
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temperature of 110°C. We drop our stack on a chip with prepatterned gold cross markers,
so that it can be shaped and contacted later in the nanofabrication process. To do so, we
go pass the stack with the PC wavefront and heat up to 150°C. Then, by slowly going up
with our stamp, this causes the PC to be separated from the PDMS, as it starts to melt.
Once we reach 180°C, the PC completely melts on the chip and the stamp with the PDMS
can be removed. To clean it, we dip the chip in dichloromethane (DCM) for 5min and rinse
it with IPA. The final result can be seen in [Fig. 2.9}, showing a very clean stack without
appreciable bubbles or inhomogeneities. It is important to note that the resulting vdW
heterostructure has clean interfaces between the various 2D materials since their cleavage
on the Si/SiOg chips during the exfoliation process leaves atomically flat surfaces.

Stacking is a key process in the research of this thesis. Imperfect steps during this
procedure can lead to trapped air bubbles, cracks or folds in the vdW crystals, inducing

a) b)

‘ Si debris Si debris distorts
folds after / wavefront

cutting \\A

1

d)/é',,

thicker part I & thicker part thicker part not
o7 .
B bstructs wavefront | picked up

\

E cracks on bottom hBN
cracks when picked up __

Fig. 2.10: Stacking going wrong. a) Graphene flake after AFM cutting, with folds
due to strain. b) A very thick Si debris next to the top-hBN we want to pick up. ¢) Lack
of full contact between PC and hBN. d) A bottom-hBN we want to pick up, with a much
thicker part. e) The wavefront does not go smoothly over that area. f) The thicker part
cannot be picked up and the bottom-hBN with our stack is destroyed. g) A bottom-hBN
rather thick (~ 30 nm with a green color). h) When the rest of the stack is put on top
of the bottom-hBN to pick it up, the process is abrupt, creating cracks. i) Visible cracks
after finishing the stack and washing away the PC. Scale bars are 10 pm.
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2.1. vdW heterostructures fabrication

twist-angle inhomogeneity and incontrollable strain profiles. shows the main steps
that can go wrong while stacking, mainly due to bad habits. In the following we explain
how to fix them. When graphene is cut, especially with the AFM cutting technique, strain
can be induced in the flake, resulting in folds, as seen in [Fig. 2.10h. These flakes must be
avoided, as often these folds do not occur immediately, but over time, making the strain
profile in TBG unpredictable. Another main issue when stacking is choosing hBN flakes
that have debris around it (Fig. 2.10p-c) or that are attached to thicker parts (Fig. 2.10d-f).
This results in a distortion of the wavefront and very likely to violent pickup processes,
making the hBNs bend, eventually cracking and folding on the graphene flakes constituting
the TBG. The same result can occur if the targeted bottom-hBN is too thick (Fig. 2.10p-i).

These concerns are especially critical when studying TBG at the magic angle 1.1°, which
lies close to the natural AB Bernal stacking configuration (0°). Poor stacking can cause
relaxation to minimally twisted AB bilayer graphene, forming AB/BA domains. Avoiding
such hi-caps during the stacking process is then essential in order to study well-defined
quantum phases in ultra-clean samples. With this purpose and during this thesis, my
colleagues and I worked out a protocol of fabricating TBG samples close to the magic
angle 1.1° with a significant high yield of ~ 38% [[P6]l Such careful stacking process starts
with a demanding flake selection. Targeted flakes should be isolated from other unwanted
or bulky flakes, as the stacking process will be difficult otherwise (see -i). hBN
flakes with terraces of layers on their surfaces should be avoided, as we aim to create a vdW
heterostructure with atomically flat interfaces. Some example of proper and not well-fitted

flakes for our stacking purposes are shown in [Fig. 2.11] and [Fig. 2.12]

In the case of hBN, we generally select flakes of less than 20 nm thickness, i.e. of a light

Fig. 2.11: Graphene flakes selection. a-c) Usable, isolated graphene flakes for assem-
bling a clean vdW heterostructure. d-f) Unusable flakes, with thicker attached parts or
debris around them. Scale bars are 10 pm.
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Fig. 2.12: hBN flakes selection. a-c) Usable, isolated hBN flakes for assembling a
clean vdW heterostructure. d-f) Unusable flakes, with multiple terraces, other thicker
flakes around them, cracks or organic residues. Scale bars are 10 pm.

or dark blue color under optical investigation (see . Flake size is also critical. We
generally use large graphene flakes (~ 10 x 30 1m?), so that a clean area after assembling
the vdW heterostructure can be easily found (see. Also, larger flakes will allow us
to cut the graphene into two parts to produce a twisted bilayer graphene heterostructure.
This is further illustrated in [Subsection 2.1.5 As for hBN, the flakes need to be bigger
than that of graphene in order to fully encapsulate it. If graphite flakes for metallic gates
are needed, they should be narrower (~ 5 x 20 ptm?).

Notably, we also found that the yield of magic angle devices would increase if, during
the stacking, the graphene layers were pinned by the top-hBN with one of its corners,
preventing a potential relaxation of the twist-angle [[P6]

2.1.5 Graphene-cutting techniques

When stacking an encapsulated twisted bilayer graphene device, it is imperative to use the
same graphene flake and pick up two halves of it, so that the twist-angle between them is
set by us when rotating the transfer stage. If two different flakes were used, their relative
orientation would not be known, so that an accurate twist-angle cannot be set between
them. To cut the graphene there exist various method that have evolved over time, so that
less strain and structural movement affects the TBG. These are:

i) Tear & stack: this method relies on the vdW force between the top-hBN flake
and the graphene 136]. During the stacking process, by covering about half
of the graphene, the top-hBN picks it up by tearing it from the rest of the flake (see
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2.1. vdW heterostructures fabrication

—c). Subsequently, the second half can be picked up after rotation. This
method greatly introduces strain in the stack, increasing the twist-angle disorder in
the TBG. Furthermore, the PC can leave residues on top of the second graphene half,
thus trapping dirt in between the graphene layers.

ii) Cut & stack: an alternative cleaner method is to use an AFM tip to cut the graphene
prior to the stacking process . We do this manually in the transfer stage by
setting the tip on a transparent glass slide with a PDMS (|Fig. 2.13d). The resulting
edges can be rough and typically have a width of 2 num @k—f) Often some
cuts can strain the graphene so much that it creates folds (see [Fig. 2.10p).

iii) Laser & stack: another even less invasive method is to cut the graphene flake with a
laser via thermal ablation [138]. The local temperature is rapidly increased under the
spot size and the process is helped by oxidative reactions . In our case we use
an infrared laser of 1064 nm on a WITec alpha300 Microscope, with a power of 150
mW and a spot size of 1 pm (see [Fig. 2.13g-1). By setting a time of 1ms and a single
acquisition when the laser courses over the graphene, we obtain clean edges with a
separation of 0.5 pm. This method is more versatile as it allows to make cuts into
different directions and it does not rely on any mechanical torque on the graphene.

<
* 0.5 pm

Fig. 2.13: Graphene cutting techniques. a-c) Tear & stack method. The tearing of
the graphene occurs by the vdW force between the top-hBN and the graphene. d-f) Cut
& stack method, manually done with an AFM tip on a glass slide at the transfer stage.
g-i) Laser & stack method with an infrared laser. Scale bars are 10 pm.
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2.1.6 Nanofabrication: lithography, etching and evaporation

In this thesis we study the electronic properties of graphene-based superlattices. Thus,
after we have successfully assembled our encapsulated graphene heterostructure, we need
to engineer electrical contacts to it. To achieve this, we use one-dimensional (1D) edge con-
tacts, which have been shown to offer less contact resistance and more versatility compared

to conventional top contacts [140} [141].

In a 1D contact, the exposed graphene edge is directly contacted with a metal, ensuring
that the device remains fully encapsulated with hBN after contact formation, protecting
the graphene from polymers used during lithography and from disorder caused by the
roughness of the SiOy substrate and charge inhomogeneities (electron-hole puddles), which
greatly improves device quality and transport properties .

sketches the standard nanofabrication steps we follow to achieve this goal.
The process begins by spin-coating the chips with an electron beam resist (a), such as
polymethyl-methacrylate (PMMA). Next, we use electron beam lithography to define the
contact regions with nanometer precision (b). The exposed resist areas are then selectively
washed away with a chemical developer, revealing the vdW heterostructure underneath (c).
Reactive ion etching is employed to selectively remove the encapsulating hBN, exposing
the graphene edge while maintaining the steep profile necessary for an effective contact
formation (d) . Finally, metal is deposited via evaporation to form an electrical contact
to the graphene layer (e-f). All these nanofabrication steps are carried out in a cleanroom
environment. We describe more in detail each of them in the following.

a) Spin-coating c) Developing
graphene . :é ' -;
~ PMMA
" hBN ¢
hBN

d) Etching e) Deposition f)
: T .. T 17 ¢ ? 7
AR 1! e
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[ SiiSio..... ] [ Siisio. ] ®

Fig. 2.14: Nanofabrication steps and 1D contact to graphene. a) Spin-coating of a
PMMA resist. b) Exposure of the resist with EBL, breaking the polymer chains. ¢) These
parts are removed with a chemical developer. d) Etching with RIE. e) Metal deposition,
e.g. Cr/Au. f) Liftoff of the unwanted metallic film by dissolving the PMMA in acetone,
leaving graphene with a 1D contact. Scales are exaggerated for explanatory purposes.
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2.1. vdW heterostructures fabrication

Optical and electron beam lithography

Lithography is a fundamental technique in nanofabrication, enabling precise patterning
at micro- and nanoscale resolutions. In this work, we employ both maskless optical
lithography—or maskless aligner (MLA)—and electron beam lithography (EBL) at dif-
ferent stages of device fabrication. MLA is used for rapid large-area patterning, defining
alignment markers and contact pads, while EBL enables high-resolution structuring of
nanoscale devices and electrical contacts to encapsulated graphene. The different outputs
between these techniques can be seen in

MLA employs a laser to expose photoresist without physical masks, using only the
chip’s corner references for alignment . The resist undergoes photochemical changes
when exposed to UV light (typically 375 nm or 405 nm), making selected regions soluble in
a developer. Due to its diffraction-limited resolution of ~ 1 pm, MLA is primarily used for
defining features that serve as references for subsequent high-resolution EBL steps. In our
case, we use a Heidelberg MLA system with a positive resist, AZ5214, which is developed
in MIF726 for 50s and rinsed with deionized water. The optimal parameters found for this
process were 80 mJ/cm? of dose and -6% focus offset, with the results shown in .
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Fig. 2.15: Lithography with MLA and EBL. a) Crosses and wide electrodes exposed

(purple color) in an MLA. The resist is AZ5214 (brown). b) Finer structures exposed
(purple color) in an EBL. The resist is PMMA (green). Scale bars are 10 pm.

For nanoscale patterning of our devices, we use EBL, which writes patterns over an
electron-sensitive resist by scanning with a focused electron beam . Here high-energy
electrons (10-30 keV) break molecular bonds in the resist, making the exposed regions sol-
uble in a developer solution. The sample is then developed in MIBK:TPA (1:3), selectively
dissolving the exposed resist and leaving behind the defined pattern (see -c). One
key challenge in EBL is the proximity effect, where scattered electrons lead to unintended
exposure in adjacent areas, requiring dose adjustments . The precise alignment of the
EBL pattern to the sample is achieved using pre-patterned alignment crosses defined in
the MLA step. These crosses, located at the chip edges and near the device area, serve
as reference points for aligning the loaded design. The electron gun is briefly opened to
visualize the crosses without overexposing them, and alignment is performed using both
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3-point and write-field alignment techniques. The result of this alignment can be seen in

the exposed crosses in [Fig. 2.15b.

In this work we perform EBL using a Raith system with PMMA as the electron-sensitive
resist. We prepare the resist to achieve a calibrated thickness of 270 nm after spin-coating
for 40s at 4000 rpm. Such thickness is calibrated with an ellipsometer and ensures an
optimal liftoff process after metal deposition, preventing unwanted metal residues from
remaining on the sample. For Hall-bar devices, which typically feature structures as small
as 500 nm, we use a dose of 300 1C/cm? and develop in MIBK:IPA (1:3) for 50s. Examples
of exposed and developed samples are shown in and [Fig. 2.18h.

Reactive ion etching

Reactive ion etching (RIE) is a dry etching technique widely used for patterning nanos-
tructures with high precision. It operates by combining chemical reactions and physical
ion bombardment to remove material from the substrate. In an RIE system, a low-pressure
plasma is generated by applying an RF field to a gas mixture, typically containing reactive
species like CF4, Og, CHF3 or SFg. The ions are accelerated toward the sample surface,
breaking bonds in the material and facilitating etching through chemical reactions. The
difference between the plasma potential and the sample electrode creates a DC bias voltage,
which determines the energy of ions bombarding the surface. Higher RF power increases
the voltage bias, enhancing ion energy and promoting more physical etching. By adjusting
the gas composition, pressure, and RF power, one can control etching rates, selectivity,
and profile shape of this anisotropic process.

In our case, we use a mixture of CHF3 and O3 to etch both the hBN and the graphene or
graphite in our heterostructures. As mentioned before, to create a 1D contact to graphene,

Exposed area Etched area

e

>

Fig. 2.16: Reactive ion etching to shape a device. a) Sample after spin-coating with
PMMA, in green. Same sample as in b) After exposing our design in the EBL
and developing, the exposed regions do not have any PMMA. c) After etching in the RIE
with a CHF3:02 mixture and washing out the PMMA, the device has been shaped into a
Hall-bar geometry. The etched areas now lack any vdW materials and the SiO2 turns to a
different color as some of its thickness has also been reduced. Scale bars are 10 pm.
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2.1. vdW heterostructures fabrication

the final structure must have a steep—non-vertical—sidewall that exposes the graphene
layer (see ) This steepness is achieved through a higher etching rate of hBN
compared to graphite. This forces the encapsulated graphene to serve a mask layer for the
bottom hBN, since it is etched more slowly [141]. In|Fig. 2.17| we show the calibration of a
CHF'3:034 recipe to achieve such a 1D contact in encapsulated graphene heterostructures.
The recipe parameters are: CHF3:09 (40:4 sccm), 45 W RF power and 90 mTorr chamber
pressure. A sample going through this process can be visualized in

To calibrate the etching rates of the RIE recipe, we exfoliate hBN and graphite onto
SiO9 chips with markers and spin coat them with PMMA. Trenches 1 pm wide are then
patterned on the identified flakes with the EBL. To maximize the number of etching tests
per exposure, the chips are cut into three parts after development. Each part is etched for
a different duration in the RIE with the CHF3:09 recipe, ranging from 10 to 60 seconds.
To improve statistical reliability, we use two flakes of each type for each test and measure
the etched depth for each time.

After etching and washing away the PMMA in acetone and IPA, we measure the depth
of the etched trenches with an AFM. The step heights are analyzed with Gwyddion [146],
as shown in By performing this analysis for all etching times and doing a linear
fit, we determine the etching rate for hBN and graphite to be 20+ 1 nm/min and 3.0+0.6
nm/min, respectively. This gives an etching selectivity of approximately 7:1—sufficient to
achieve reliable 1D contacts to encapsulated graphene heterostructures . The etched
height is calculated as the mean value across all trenches and flakes for each time, with the
error bars representing the standard deviation of the measured heights.
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Fig. 2.17: CHF3:0;, etching rate of hBN and graphite. a) Left panels show an
optical picture of an hBN flake after etching a few trenches for 50s and an AFM picture
where the thickness is measured. Right panel shows the extracted depth of the etched
trenches for several times, with a linear fit and the concluded etching rate. b) Analogous
for graphite. Scale bars are 5 pm.

Metallic film evaporation

Once the contact regions are defined through lithography and etching, metal deposition is
performed to create reliable electrical connections to the encapsulated graphene. In this
work, we use electron beam (e-beam) evaporation, a high-precision physical vapor depo-

sition technique that ensures uniform and high-purity metal films. Here a high-energy
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electron beam generated by a thermionic emitter is focused onto a crucible (or pocket)
containing the target metal, such as Cr, Ti, Au, Pd or Pt. The intense localized heating
causes the metal to sublimate, creating a vapor flux that travels in a line-of-sight trajec-
tory and condenses onto the sample surface, which sits downwards facing the target. The
deposition rate is precisely controlled (typically 0.1-1 A/s) by adjusting the beam power
and is monitored in real time using a quartz crystal microbalance. To enhance film uni-
formity, the sample stage is often rotated during deposition. The process takes place in
an ultra-high vacuum (UHV) chamber (10~7-10~® mbar) to minimize contamination and
prevent oxidation of deposited materials.

For our devices, we first deposit 5 nm of Cr as an adhesion layer, which also ensures
good contact with graphene thanks to their similar work functions [147). This is followed
by 50 nm of Au, which provides high conductivity and electrodes that do not oxidize.
They’re both evaporated at a rate of 1 A/ s, so that we prevent excessive heating of the
resist, which could degrade the pattern quality or lead to unwanted metal diffusion. After
deposition, the sample undergoes a lift-off process in hot acetone (3h at 70°C) with the
help of a syringe or a pipette, which removes the resist along with the film on top of it
(see ), leaving behind well-defined electrical contacts. A sample going through
this process can be visualized in [Fig. 2.18 Ultrasonic techniques—commonly used in the
nanofabrication industry for a liftoff process—must be avoided here, as the low frequency
vibration can blow our vdW stack or relax the twist-angle of the TBG.

While e-beam evaporation offers superior precision and is particularly effective for high-
melting-point materials like Cr, thermal evaporation provides an alternative deposition
method. Here the metal is heated resistively in a crucible until it evaporates and condenses
on the sample. This technique is more energy-efficient but offers less precise control over
deposition rates and is generally better suited for low-melting-point materials like Au or
Al. During the first years of this thesis at ICFO, we routinely did thermal evaporation of
these two materials.

Fig. 2.18: Metallic deposition to contact a device. a) After shaping our sample
as shown in we once again expose a new design in the EBL and develop. b)
Resulting electrodes contacting the encapsulated graphene (1D contact) after etching with
CHF3:04, depositing 5/50 nm of Cr/Au, and doing liftoff. Scale bars are 10 pm.
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2.2. Josephson junctions fabrication

2.2 Josephson junctions fabrication

In the previous section, we have discussed the fundamental nanofabrication techniques
and their application to graphene-based vdW heterostructures, particularly for creating
Hall-bar structures and investigating quantum transport.

In this section, we shift our focus to the nanofabrication of Josephson junctions with
graphene-based heterostructures as the weak link, which represents a major effort in this
thesis. One of the key differences from the previous processes is the deposition of super-
conducting materials, namely Molybdenum-Rhenium (MoRe), which is carried out in a
sputtering chamber. This process required significant optimization, from adjusting the
sputtering parameters to ensure the film remained superconducting while achieving low
strain profiles and good contact with the graphene. An additional challenge was achieving
a precise electrode separation of 100-300 nm to ensure ensure a superconducting proximity
effect into the graphene weak link. Controlling such fine electrode spacing required opti-
mization of the e-beam lithography dosage, development time, sputtering and liftoff; so
that the contacts are not electrically shorted with one another.

2.2.1 Sputtering of superconducting Molybdenum-Rhenium

Magnetron sputtering is a widely utilized physical vapor deposition technique for deposit-
ing thin films by ejecting atoms from a target material onto a substrate. This process
takes place in a vacuum chamber where energetic ions from a plasma bombard the target,
removing atoms that subsequently condense onto the sample substrate to form a uniform
film. Sputtering sources often use magnetrons that confine the plasma near the target
surface with magnetic fields, increasing ion density and sputtering efficiency. This confine-
ment is achieved by positioning a permanent magnet structure behind the target surface,
creating a closed-loop magnetic field that traps electrons and enhances the ionization of
the sputtering gas within the confinement zone [148].

There are primarily two sputtering modes: direct current (DC) and radio frequency
(RF). DC sputtering employs a constant voltage to generate the plasma, making it partic-
ularly effective for depositing conductive materials. It operates in an Ar plasma environ-
ment, where positively charged Ar ions are accelerated toward the negatively biased target.
The impact ejects the target atoms, which then deposit onto the sample. shows
a sketch of this process. This DC mode is nevertheless unsuitable for insulating targets
due to charge buildup on the surface, which prevents sustained sputtering. RF sputtering,
in contrast, applies an alternating current at radio frequencies (typically MHz), preventing
charge accumulation and enabling deposition of both conductive and insulating materials.

A key distinction between sputtering and evaporation techniques (e-beam and thermal
evaporation) is that in the latter, the material is heated until it vaporizes and travels in a
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line-of-sight trajectory toward the substrate, leading to highly directional deposition. This
can result in non-uniform films, particularly on complex surface geometries. In contrast,
sputtering occurs at higher pressures, where sputtered atoms undergo multiple collisions,
leading to an isotropic deposition in all directions. This results in films with better step
coverage, making sputtering especially advantageous for ensuring uniformity over large
areas.

For our fabrication of superconducting MoRe contacts on graphene heterostructures,
DC sputtering was chosen over evaporation due to its ability to deposit high-melting-
point materials. This is because, in sputtering, material removal is achieved through ion
bombardment rather than thermal heating. While thermal and e-beam evaporation are
well-suited for metals like Au and Al, they become inefficient for refractory materials like
MoRe, as the required temperatures for vaporization are extremely high. Despite these
advantages, sputtering requires more complex system configurations, as the high-energy
plasma environment can induce film stress or cause unwanted damage to sensitive materials.
In the case of superconductors, these affect their T, and H., so a careful optimization of
the sputtering parameters, such as substrate biasing, temperature and deposition pressure
is necessary to achieve high quality superconducting MoRe (50:50 weight).

During this thesis work, we have used a "Von Ardenne LS 320 S” sputtering machine,
shown in [Fig. 2.19b. Tts vacuum chamber reaches pressures as low as ~ 5 x 1077 mbar.
Inside lies one DC generator for two different targets and an RF source for another two
targets. The plasma can be generated in an Oxygen or Argon atmosphere, although in our
case we only use the latter, as it is an inert gas that does not oxidize our materials. The
flow of Ar is measured with a manometer and can be controlled with a PID loop. Between
the sample and the targets lies a rotating shutter.

a) “DC generator

.,l!'i,
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controller

Fig. 2.19: Sputtering process. a) Illustration of how a sputtering process works. b)
Picture of the "Von Ardenne LS 320 S” sputtering system that we use.
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The MoRe sputtering process in this instrument is as follows:

i) Setup and vacuum overnight: immediately after etching, the graphene sample is
placed in the center of the holder with a small drop of diphenyl oil under it, to
ensure the chip does not move during the sputtering process. The chamber is pumped
overnight (~ 14 h), reaching a pressure of ~ 8 x 10~7 mbar.

ii) Pre-sputter: the valve that connects the pump to the chamber is closed, and the
chamber is then filled with Ar. The flow we select is typically 3 x 102 mbar. With
our sample protected by a closed shutter, we turn on the DC power source at 30
W and start a pre-sputtering process, where the goal is to clean the MoRe target
from impurities that may have been deposited in its surface while kept at air before
pumping down the chamber. We do this for 3min.

iii) Sputtering: after the pre-sputtering session, the DC power source is increased until
the targeted amount where the actual sputtering will take place, i.e. 55 W. The Ar
pressure is also reduced to ~ 3 x 1073 mbar. The shutter is opened and the MoRe
is sputtered on the sample. After the desired deposition time is over, i.e. 3min, the
shutter is closed again. The DC source is turned off and the Ar valve is closed. The
chamber is finally slowly vented and the process is over.

The resulting MoRe film, with a thickness of 100 nm, is superconducting with a critical
temperature T, ~ 9 K, as shown in [Fig. 2.20p. MoRe is a type-II superconductor and
thus, its upper critical magnetic field Hqo can be estimated to be H.o ~ 9 T by measuring
its value at several higher temperatures (see [Fig. 2.20p) and extrapolating them with the
expression

Heo(T) = Hep(0) (1-T%/T2). (2.1)

Such values are in agreement with other works in the literature [20, 23, 104]. The method
used to extract both T, and H.o is to find the value of temperature or field at which the
resistance R of the film reaches 50% of its normal-state resistance.
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Fig. 2.20: Superconducting sputtered MoRe. a) Resistance vs temperature for a
100 nm thick MoRe film sputtered at 55 W. b) Upper critical magnetic field extracted for
different temperatures. The fit corresponds to that of Eq. (2.1)).
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The thickness of the film is known by measuring it with an AFM. From there, the
deposition rate of the sputtering process is inferred, which in our case results in 33 nm/min.
This is important, as we need to sputter a thickness greater than our vdW stacks in order
to contact the graphene layer. With the bottom-hBN being generally lower than 20 nm, we
usually aim to sputter between 70 nm and 100 nm of MoRe. It is also crucial to sputter a
thick enough film so that its superconducting properties remain intact. In our experience,
sputtering 50 nm of MoRe at 55 W already lowers its T, to 7 K, and 20 nm down to 4 K.

2.2.2 Superconducting contact engineering to graphene

The choice of MoRe as the superconducting material to create Josephson junctions based on
graphene weak links is for two reasons. First, its H.o allows for the observation of quantum
Hall states and high magnetic field phenomena in the 2DEG weak link while MoRe is still
superconducting [23,149-151]. Second, it has been shown to make a good electrical contact
to graphene and carbon-based materials due to its work-function matching |20} 104} [152].
Such is also the case of other materials like Nb |22, (153} |154], NbN [155], NbTiN [156H158]
[P2]| Ta [159], MoGe [24] or ReW [154].

In order to make Josephson junctions with our superconducting MoRe films and a
graphene vdW heterostructure as the weak link, we first need to place the MoRe elec-
trodes very close to one another, so the superconducting proximity effect holds across the
whole junction. For that, the junction length L needs to be in the order of the coher-
ence length £y in the weak link. By taking the ballistic regime and A ~ 1.4 meV the
BCS superconducting gap of MoRe, we estimate { = hvp /A ~ 480 nm for graphene, with
vp ~ 10% m/s. Therefore, a junction length of 300 nm or less should be sufficient to achieve
a short-ballistic graphene JJ.

Such narrow gaps between the sputtered electrodes need to be first resolved in the
e-beam lithography process. For that, we design a dose test where the same structures are
exposed for different doses, by keeping the same developing time. The developer we use
here is IPA:DIW (7:3), which has been shown to avoid cracks in the PMMA above the
hBN due to thermal stress compared to using MIBK:IPA [37, 160, [161]. An example of
such dose test is shown in [Fig. 2.2Th-d. When the dose is too high (Fig. 2.21f), the e-beam
proximity effect makes the features wider and it is not possible to resolve the gaps between
the electrodes [145]. This would result in shorted electrodes after sputtering. Although
these gaps are well defined in the underdosed case (Fig. 2.21h), the inner area of the
electrodes shows unexposed areas with some cuts, which will result in an amorphous and
discontinuous film after sputtering. When the dose is ideal ), all these problems
are avoided, leaving well-defined structures with the desired separation between them.

Fig. 2.21| constitutes a summary of a successful dose test. However, there is much more
work behind that we do not show here, such as figuring out the optimal temperature and
time of the developer, dose and steps-size values in the e-beam, etc. As an example, one
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Fig. 2.21: Electron beam optimization of a JJ design. a-c) SEM pictures of
the same JJ design for three different doses. d) Dose test visualized, where for several
orientations the same design is exposed with different doses. e) Optical picture of an hBN-
encapsulated graphene sample, after developing the JJ design.

important detail that we found is that the optimized electron beam dose and developing
time would not concur in the same results if the process was done on an encapsulated
graphene sample instead of on a SiOy substrate. |Fig. 2.21a-d then serves rather as a
guide of the process one should follow to find an initial good dose. By doing further
optimization on real hBN-encapsulated samples, we have found that the recipe that works
consistently for us is: a dose of 100 pC/cm? and 80s of developing in IPA:DIW (7:3) at
room temperature. The result can be visualized in [Fig. 2.21, where we clearly resolve the
gap between the developed features for various lengths (100-600 nm).

With this working lithographic recipe, we proceed to etch our samples after developing
to make a 1D contact with the sputtered MoRe. To make JJs with graphene-based moiré
heterostructures as the weak link, we first need to make sure that the contact between
MoRe and bare monolayer graphene is good, and that the Josephson effect behaves as
expected with this well known material.

The results of an hBN-encapsulated graphene device with MoRe contacts in a JJ ge-
ometry can be seen in One step prior to this was done to etch away all the
vdW stack except a strip with constant width, so that all the JJs have the same width but
different length (see [Fig. 2.22p). This can give us important information about the regime
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of the superconducting proximity effect and allows us to extract the contact resistance be-
tween MoRe and graphene, as we will see at the end of the next subsection. The sputtering
recipe used here is the same that gave us a superconducting MoRe film (see : b}
W of DC power and an Ar pressure of 3 x 1072 mbar. In [Fig. 2.22h-b it can be observed
that, although some gaps between the MoRe electrodes are saved, most of them present
shorts and in general the leads look rough with not-well-defined edges.

Most importantly, although MoRe is superconducting, the Josephson junctions with
graphene as the weak link do not present superconductivity, as its resistance does not
drop to zero even at very low temperatures (see ) Furthermore, the resistance
R vs temperature T' curve shows some insulating behavior, as R increases with lowering
temperature between 4 K and 9 K. Such behavior is typical of contacts with a Schottky
barrier in between the two metals, i.e. a tunneling barrier formed by oxide or too big of a
separation between the two metals; in this case MoRe and graphene. This is also confirmed
by measuring a decreasing resistance with increasing DC current, which is not shown here.

We found these results repetitively for several devices. One possibility is that the
CHF3:09 RIE recipe does not create the appropriate slope at the edges to make a 1D
contact, but we rule this out as that recipe works for evaporation of Cr/Au contacts. The
issue has to be then with the sputtering recipe. We dwell into what can be changed in
order to make a better contact to graphene in the following.

In any DC sputtering process, there are mainly two parameters that can be controlled:
the power of the DC source onto the MoRe target and the Ar pressure of the chamber.
Increasing the DC power elevates the energy supplied to the plasma, leading to a higher
density of Ar ions bombarding the target material, increasing the sputtering yield and
thus the deposition rate onto the sample (see ) However, excessive power can
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Fig. 2.22: MoRe-graphene JJs sputtered at high power. a) AFM picture of a series
of MoRe electrodes after liftoff, sputtered at 55 W and 3 x 1072 mbar. Several "dog ears”
appear, collapsing and shorting some electrodes. In others, the narrow gap between the
leads can be resolved. b) Optical picture of a series of MoRe leads making a 1D contact
to hBN-encapsulated graphene in a JJ architecture, with the same sputtering parameters
as in a. ¢) Resistance vs temperature in one of the junctions in b, where the JJ does not
become superconducting, due to an insulating Schottky barrier at the contact.
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introduce high-energy particles that may cause defects or stress within the film.

The DC power applied to the target material increases the number of sputtered atoms,
as well as increasing their kinetic energy. At low powers, the atoms can reach the substrate
with minimal collisions, favoring a more uniform film growth. In contrast, higher powers
can cause more frequent collisions, leading to a more porous film structure with higher
number of defects. The dependence of the deposition rate with the Ar pressure is not as
straightforward as with the DC power. Fewer collisions due to low pressures allow the
sputtered atoms to travel more directly to the substrate, potentially increasing the depo-
sition rate. Nevertheless, if the pressure is too low, plasma density may decrease, reducing
ionization efficiency and thus lowering the deposition rate. Similarly, if the pressure is too
high, too many collisions among the sputtered atoms can cause them to lose their energy
and be deposited onto the chamber walls instead of reaching the sample.

The results of varying the power and pressure during the MoRe sputtering process on
our JJ design are shown in |[Fig. 2.23| In these SEM pictures we can see that a lower power
(10 W) dramatically improves the sharpness of the electrodes at their edges. This is likely

Lower DC Power

10W , 2e-2mbar 50W , 2e-2mbar

10W , 2e-3mbar 50W , 2e-3mbar
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Fig. 2.23: Sputtering with varying DC power and Ar pressure in a JJ design.
a-d) SEM pictures of MoRe electrodes in a JJ configuration after liftoff, sputtered on a
SiO9 substrate, for different powers and pressures. The uniformity of the leads and the
sharpness of the gaps between them improves as the power and pressure are lowered.

63



2. Experimental Methods

caused by a lower deposition rate resulting in a more uniform deposition process. Reducing
the pressure helps getting rid of the "dog ears” that cause shorts between the leads. These
are formed because the sputtered atoms are also deposited on the side walls of the PMMA,
which are often not lifted off. The "dog ears” term comes from the fact that these thin and
tall walls of MoRe are located at the edges, which can easily collapse after flushing during
the nanofabrication process, and thus bridge the gap between the electrodes. This is very
important for us, since in our JJ configuration, the MoRe electrodes need to be very close
one to another, saving a gap of just 100-300 nm.

With these much better-looking structures at 10 W we could indeed create clean junc-
tions with encapsulated-graphene, as shown in However, the resulting MoRe
film at such low powers resulted to be not superconducting. shows a systematic
study that we performed, where it can be observed that the T, of MoRe decreases with de-
creasing DC power, eventually becoming not superconducting; at least down to 1.5 K. The
disappearance of cracks in the film with decreasing power can also be seen in |Fig. 2.25b-d.
When the sputtering process ends, the heated sample due to Ar-ions bombardment needs
to cool off, which turns into a thermal-release stress of the film, crumpling and finally
causing these cracks. Such thermal stress is the reason why the structures after liftoff are
so rough at high powers (see [Fig. 2.22| and |[Fig. 2.23)).

The disappearance of the cracks with decreasing power is likely due to a lower deposition
rate of sputtered MoRe onto the sample, as verified in By reducing the applied
DC voltage, the amount of MoRe particles pulled out of the target and their kinetic energy
are both decreased, leading to a slower sputtering rate. If less amount of sputtered atoms
per second arrive to the sample, the film will not get so heated, so that the thermal stress-
release in the film when the sputtering process is over will then be less violent. This
scenario would potentially lead to less amount of visible cracks, which is consistent with

the results of [Fig. 2.23| and [Fig. 2.25|
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Fig. 2.24: MoRe leads in a JJ design sputtered at low power. a) AFM picture of
a series of MoRe electrodes after liftoff, sputtered at 10 W and 2 x 102 mbar. No “dog
ears” appear and the narrow gap between the leads can be resolved. b) Optical picture
of a series of MoRe leads making a 1D contact to hBN-encapsulated graphene in a JJ
architecture, with the same sputtering parameters as in a.
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Fig. 2.25: MoRe superconducting transition dependent on sputtering power.
a) Resistance vs temperature for different DC powers (and thus deposition rate) measured
in a MoRe Hall-bar, as indicated in the inset of b. b-d) Optical picture of a chip after
sputtering for different DC powers, along with a Hall-bar after liftoff in the inset. White
and black scale bars are 100 pm and 5 pm, respectively.

Surprisingly, the reduced deposition rate led to a deterioration of the MoRe supercon-
ducting properties. We conjecture that this is due to a lower purity of the MoRe film,
such as the formation of a more porous structure. Yet, given that opposite results were

obtained for an study on YBCO films [162], more work should be done to fully grasp how
the sputtering parameters affect the superconducting properties of MoRe.

To solve this issue of thermal stress leading to cracks, one possibility would have been
to sputter a thinner MoRe film. Taking into account that our hBN-encapsulated graphene
heterostructures are about 40 nm thick, the MoRe films needs to be thicker that that in
order to guarantee a 1D contact to the graphene. Nevertheless, as mentioned earlier, we
found that sputtering less material also resulted in a decreased T.. Although we could have
opted for that route, or to sputter 100 nm of MoRe at an intermediate power, such as 30
W, to have a strain-free film at the cost of reducing the T, of MoRe, we decided it was a
better idea to reproduce the superconducting properties of MoRe reported in other works

20} 23, and avoid other potential unforeseen problems.

DC power (W) | 10 | 20 | 30 | 40 | 55 |
Rate (nm/min) | 521 | 1042 | 1742 | 22+1 | 33£2 |

Table 2.1: MoRe sputtering rate vs DC power. The deposition rate is slower as the
power is set smaller. We have estimated the rate by measuring the height of a sputtered
MoRe film with AFM. For each case, the sputtering process lasted 3 min.

The goal was then to keep the superconducting properties of MoRe observed when
sputtering at 55 W ([Fig. 2.20), while reducing the stress in the film and being able to make
a reliable 1D superconducting contact to encapsulated-graphene without shorts, unlike in
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2.2.3 Minimizing stress with a Peltier device

Here we show how we managed to maintain a high sputtering power and deposition rate
while reducing the stress of the film. The solution to this problem was to implement a
temperature controller for the sample, so that the thermal stress on the film would not
produce cracks, strain and malformations.

For this, we built a sample stage with a heavy thermal load so it could absorb most
of the heat, with a heater and a thermometer attached to it. The heater consists of two
wires soldered at the two ends of a Peltier device, sitting below and in contact with the
sample space while sandwiched between two Teflon spacers. This is shown in [Fig. 2.26h-b.
By applying a negative (positive) DC voltage to this Peltier device, we create a thermal
gradient that cools (heats) the sample. The thermometer consists of a thermocouple con-
nected to the sample plate, whose temperature is readout by a calibrated measurement
of its voltage difference. The temperature of the sample can then be controlled actively
during the sputtering process with a PID loop programmed in Labview, where the input
is the applied DC voltage V' and the feedback is the temperature reading 7. [Fig. 2.26fc-d
shows how the sample stage inside the vacuum chamber is connected to an outer digital
temperature controller via a feedthrough.

With this Peltier device, we first checked that indeed the sample was heating up during
the sputtering by ~ 30°C and suddenly cooling down after the process was over, releasing

the film stress (see|Fig. 2.26g). This was done by reading out the temperature and without
applying any voltage.

The idea is then to perform the MoRe sputtering on the sample while it already is at a
high enough temperature, so that the temperature gradient between the sputtered MoRe
atoms and the sample is not very high. For this, we decided to use a temperature of 70°C.

Fig. 2.26f shows the procedure we follow, which we explain in detail here:

i) First, we heat up the sample from room temperature to the targeted 70°C at a rate of
6°C/min. Then, thanks to the PID loop, the voltage is stabilized after a few minutes.
We generally use this time to perform the pre-sputtering on the MoRe target at a
DC power of 30 W and an Ar pressure of 2—3 x 10~2 mbar.

ii) To start the sputtering process on the sample, we increase the power to 55 W and
reduce the Ar pressure to 2—3 x 1073 mbar. Once the shutter is opened, the sputtered
MoRe immediately heats up the sample, but is countered by the Peltier device by
decreasing the applied voltage and thus maintaining its temperature at 70°C.

iii) Once the sputtering process is over (3 min), the voltage increases rapidly to avoid
a sudden cooling of the sample by keeping it at 70°C. After a few minutes, we
controllably bring back the sample to room temperature at a rather slow rate of
2°C/min. The chamber is finally carefully vented and the process is over.
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The results of this temperature-controlled MoRe sputtering can be seen in
Cracks on the film are not observed on the chip right after sputtering, and the liftoff process

Peltier device

s

Target — B Frontdoor Feedthrdulcjh
Feedthrough j
s

i

i

T(°C)

3
time (min) time (min)

Fig. 2.26: Peltier device for sputtering and active cooling. a-b) Sample stage
with heater and thermometer wires attached to a Peltier device in contact with the sample
space. c-d) Interior of the sputtering chamber, where the stage is placed. The wires are
connected to a temperature controller via feedthroughs. e) Temperature of the sample,
where a sharp increase and drop takes place at the begging and end of the sputtering
process, respectively. f) The temperature T of the sample (blue in left axis) is controlled
thanks to the applied DC voltage V' to the thermocouple (orange in right axis), which is
controlled with a PID loop. We first heat up the sample from room temperature until 70°C
and let it stabilize. When the sputtering starts, V' drops to cool down, and when it is over,
V' rises to heat up; always maintaining 7" at 70°C. Finally, we controllably cooldown the
sample back to room temperature. Gray areas in e and f indicate the 3 min of sputtering.
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Fig. 2.27: MoRe-graphene JJs sputtered at high power with active cooling. a)
AFM picture of a series of MoRe electrodes after liftoff, sputtered at 55 W and 2 x 1073
mbar. Some "dog ears” appear, but they do not collapse and the narrow gap between the
leads can be resolved. b) Optical picture of a series of MoRe leads making a 1D contact
to hBN-encapsulated graphene in a JJ architecture, with the same sputtering parameters
as in a. ¢) Resistance vs temperature in one of the junctions in b, where the JJ becomes
superconducting at 6 K.

leaves well-defined electrodes. We also tried with different temperatures: 40°C, 50°C and
60°C; but we decided the best results were coming out of using a temperature of 70°C.
With this recipe, we have consistently made superconducting graphene JJs with high 7,

of around 6 K (see |[Fig. 2.27c), depending on their lengths.

As of now, the recipe had to be changed slightly due to a replacement of the MoRe
target. Targets can have different dimensions, and so the applied power to them will not
result on the same amount of energy per volume. To achieve the same deposition rate, we
changed the recipe accordingly, with the only difference being that the DC power during
the sputtering process is now 35 W.

To characterize the quality of our MoRe-graphene contacts, we perform the so-called
transfer-length method (TLM). The TLM consists in measuring the resistance of a series
of MoRe-graphene junctions with varying length L and constant width W, as shown in the
inset of [Fig. 2.28a. The resistance R measured across the junctions at 10 K when MoRe
is not superconducting (see ) is not only that of graphene, but also contains
twice the contact resistance R.. Because we are varying L, we can make a linear fit (see
Fig. 2.28b) for a fixed carrier density value according to R = (pL +2R.)/W, where p is
the resistivity of graphene. From this fit we extract the contact resistance of the junctions
for every point in density ), where we achieve a minimum contact resistance of
R.=70£6 Q-pm for the electron doped side. These excellent values are comparable or
lower to other works with 1D contacts , . Furthermore, when graphene becomes
superconducting due to the proximity effect, the contact also gets proximitized and its
resistance drops down to a few or zero Ohms. An important detail to perform correctly the
TLM is that the fabricated electrodes must be designed in the cross-beam configuration
shown in the inset of [Fig. 2.28h, so that the semi-4probe measurement minimizes the
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Fig. 2.28: Transfer-length method and contact resistance of MoRe-graphene.
a) Resistance vs carrier density at 10 K for multiple graphene JJs with varying length.
Inset shows a picture of these JJs. b) For a fixed n, we can make a linear fit to the data
and extract the contact resistance R.. c¢) Extracted R, for all carrier densities.

resistance in series of the MoRe wires.

In we show an example of a fabricated MoRe-graphene JJ in the ballistic
regime, to highlight the high quality of our devices. First, in we show the
differential resistance dV//dI map, where the critical current I, is visibly lower in the hole
doped side. This typically observed behavior is due to the MoRe n-doping the graphene,
creating an n-p-n profile that increases its normal resistance Ry in the hole side, just as
in any graphene transport device . Since I. and 1/Ry scale with each other in the
Josephson effect , , I. decreases in the hole side.

The formation of these n-p-n profiles can form a cavity if the electrons propagate
ballistically in the graphene, giving rise to Fabry-Pérot oscillations in both I, and Ry (see
Fig. 2.29b) [20,[104]. This signature of ballistic transport offers information about the band
structure of the weak link, since the Fermi wavelength A\g of the electron waves causing
constructive and destructive interference will be an integer number N of the cavity length
L., that is:

2L,

Here N is the number of modes in the cavity, and L. is in general less than the real
junction length L; marked by the size of the p-doped region. For graphene, the Dirac
linear dispersion yields kp = /7n, from where it follows that N ~ /n. Indeed, we find
this relation by counting the number of maxima registered in Ry and representing them
in [Fig. 2.29p. From this example, and as we will see in it is clear that the
investigation of these Fabry-Pérot oscillations in other systems such as the graphene/hBN
moiré superlattice can give insights into their underlying band structure.

- N (2.2)

Finally, shows a measured interference pattern at the electron doped side
of the JJ when we apply a perpendicular magnetic field to the graphene layer. There we
observe that the I, follows the typical Fraunhofer relation of a single-slit uniform junction
(see Eq. ) This proves that in our graphene JJs the supercurrent flows uniformly
across the junction, as explained previously in [Subsection 1.4.3|
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Fig. 2.29: Example of a uniform ballistic graphene Josephson junction. a)
Differential resistance dV/d[ vs d.c. current I and carrier density n. b) The normal state
resistance Ry presents oscillations in n (top panel). By counting their local maxima, we
find they follow a square root dependence (red line), proper of a linear Dirac dispersion.
c) dV/dI vs I and magnetic field at n =1 x 10" cm™2. The critical current oscillates
according to a single-slit Fraunhofer interference pattern, shown in a white-dashed line.

2.2.4 Thermal evaporation of Aluminum

Having a variety of superconducting materials to create graphene JJs is very beneficial to
explore different regimes of the superconducting proximity effect. Aluminum has a much
smaller critical temperature (7, ~ 1.2 K) and critical field (Hz ~ 10 mT) than MoRe. This

gives both a larger Ginzburg-Landau coherence length &g = /®o/2mHeo ~ 180 nm, and
a larger coherence length in the weak link £ = hvp/A, since the superconducting gap
A = 1.764kpT, is smaller. Using Al for graphene JJs thus makes the short regime more
accessible than with MoRe [19]. This is at the expense however of not being able to explore
high-field phenomena with superconducting leads, since H. is small.

Using a Leybold system in my second year of the PhD, in ICFO, we were able to
thermally evaporate superconducting Al. The graphene JJs were successfully created by
first evaporating a wetting layer of Ti, which serves to create an ohmic contact to the
graphene layer , . In this case, the contact was two-dimensional, by just etching
the top hBN with an SFg recipe . This exposes the graphene and subsequently the
Ti/Al (7 nm/70 nm) film is evaporated with a 1 A rate. In we show an example
of such JJs, along with a dV//dI map featuring Fabry-Pérot oscillations, highlighting the
quality of these devices.

When at LMU, we tried in the HV chamber to create such Ti/Al graphene JJs, but
results where unsuccessful. Although Al was superconducting, the contact resistance to
graphene was too high (~ 1 MQ). As opposed to sputtering, the evaporation process is
directional. One possible explanation for our bad contacts is then that the lack of a rotating
stage for the sample, as we had in the Leybold system, does not allow to create a good
contact in the two sides of the junction.
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Fig. 2.30: Example of Ti/Al graphene JJs. a) Picture of several junctions fabricated
on an encapsulated graphene device and contacted with Ti/Al. b) Differential resistance
map of a ballistic Al-graphene JJ.

2.3 Low-temperature transport measurements

The experimental probe for measuring the Josephson effect that we use in this thesis is
electronic transport at low temperatures. This is achieved by cooling down the samples
in cryostats, such as a dilution fridge, as we will explain in the following. To measure
the electronic properties of our devices, we use standard low frequency lock-in techniques,
which we will cover later.

2.3.1 Cryogenics and electronic filtering

Low-temperature measurements play a crucial role in condensed matter physics, enabling
the study of quantum phenomena such as superconductivity, quantum Hall effects, and
electron transport in mesoscopic systems . Lowering the temperature limits the ther-
mal excitation energy kT (~ 25 meV for 300 K and ~ 8 peV for 0.1 K), enabling us to
study small energy scales down to the peV range. This is of course also necessary to achieve
the superconducting phase in our JJs below their 7,, as we showed in the previous section.
Achieving cryogenic temperatures requires specialized refrigeration techniques, all of which
rely on helium-based cooling mechanisms. Furthermore, to cool down the electrons it is
not in generally sufficient to apply a low temperature bath, but electronic filtering is also
required. This prevents any coupling to the environment such as radiation from higher
temperatures, cosmic rays, high frequency signals, etc.

In this subsection, we describe the principles behind three cryogenic systems used in
our experiments: a Variable Temperature Insert (VTI), an Adiabatic Demagnetization
Refrigerator (ADR), and a Dilution Refrigerator (DR). We place particular emphasis on
the dilution refrigerator, as it enables measurements at the lowest temperatures and was
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the primary system used for the measurements presented in this thesis. We note that all
these setups are also equipped with superconducting magnets capable of generating fields
up to 8 T. These are oriented perpendicularly to the sample plane and enable us to have
an extra tuning knob to explore the quantum phase diagram of our studied 2D materials.

All cryostats discussed here are dry cryostats, meaning they do not use liquid helium
baths but instead rely on closed-cycle helium-4 (*He) capable of cooling down to 4.2 K,
which is the boiling temperature of this gas at atmospheric pressure. These setups consist
of a so-called pulse tube compressor, which follows a thermodynamic cycle similar to a

standard refrigerator, as shown in |Fig. 2.31h.

First, a compressor moves its piston to compress the 4He to pressures of ~ 10 mbar
in a smaller space, thus increasing its temperature. This is connected to a regenerator,
consisting of a porous material with low thermal conductivity, such as metal foam or cotton
fiber. This component slowly cools down the gas across it, reaching ambient temperature
when it reaches the pulse tube, but still at high pressure. This first side of the pulse tube
is called the cold end. As the ambient temperature, high pressure gas travels to the other
side of the pulse tube, it will compress the gas that is already there, causing it to heat
up. Hence this side is called the hot end. Since the tube gas is under pressure, it will be
forced to move into the restriction valve and the inertance tube. At some point, before
the gas gets to the end of the tube and completely fills it, the piston from the compressor
will be reversed. This causes an expansion of the gas inside the pulse tube, thus dropping
its temperature in the cold end. The cold heat exchanger from where we can have cooling
power is called the cold head, which is in thermal contact with the parts of the cryostat
that we want to cool down. This process is a modification of the Stirling cycle, where
thanks to the out-of-phase movement of the piston and the gas through the intertance
tube, the cycle is not closed, so that by repeating the process we can then successively
decrease the temperature in the cold end at the completion of every cycle |166].

a) b)
Compressor

102 _
| ITl | Inertance_zo

YV ¥ tube 10k .

-

~ 10°h .

Pulse

tube 4440
\ LI |

—

=

-

S

Vapour pressure, P (mbar)

=)
T
I

<{>4.2K,10%> mbar

/ JUYUUL— 109
Regenerator | | I | ~ @ 15K, 5mbar
= = C0|d end 104 1 I SR | 1 L
0.2 0.5 1.0 2.0 5.0

Temperature, T (K)

Fig. 2.31: Pulse tube cooling and superfluid *He. a) Working principles of a pulse
tube cooling thermodynamic cycle. b) Vapor pressures of “He and 3He. We indicate the
typically achieved temperatures by pumping on the helium gas. Adapted from [166].
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With this method we can achieve a base temperature of 4.2 K, where *He enters the su-
perfluid phase and it can flow without dissipation. This phase is crucial for low-temperature
physics, as it enables highly efficient thermal transport and can be further used in heat-
exchange mechanisms within dilution refrigerators. To get down to lower temperatures,
we can use different techniques, as explained next.

Variable Temperature Insert

The VTI allows to further cool down to 1.5 K by continuously pumping on the “He gas.
The technique it uses is evaporative cooling, which is achieved by a controlled pumping
of helium vapor to lower its pressure above the liquid helium bath. The VTI operation is
based on the thermodynamic relationship between the vapor pressure and the temperature
of liquid helium, as shown in [Fig. 2.31p. At 4.2 K, *He is at its boiling point under
atmospheric pressure; however, by pumping on the helium vapor down to ~ 5 mbar, the
boiling temperature is reduced to ~ 1.5 K [166]. This phenomena is explained by the
Clausius-Clapeyron relation:

dpP L

Al T-AV’
where dP/dT describes the change in pressure with temperature, L is the latent heat of
vaporization, and AV is the volume change [166].

(2.3)

In the case of this thesis, we have used an ICE Oxford VTT system. In order to isolate
the coldest part (1.5 K) from the outside room temperature ambient, the VTT has two stages
at different temperature (50 K and 4 K), which are further separated from each other by
radiation shields. An advantage of this setup is that the sample is quickly introduced with
a loading stick inside a chamber filled with He gas. This chamber is enclosed by a second
one, through which helium is continuously circulated by pumping it with a needle valve.
When the cold chamber reaches 4.2 K thanks to the cold head, we use the needle valve
to regulate the pressure with which we further pump the *He, allowing us to reach 1.5 K
(see [Fig. 2.31b). Another advantage of this setup is that the temperature control can be
rapidly changed by adjusting the helium flow rate and using heaters in the sample space.

Adiabatic Demagnetization Refrigerator

Another cryogenic principle is adiabatic demagnetization, based on the property that ordi-
nary magnetic materials, such as paramagnetic salts, experience an entropy decrease when
a magnetic field is applied due to the alignment of their atomic dipoles. This cooling is
a powerful technique used to achieve sub-Kelvin temperatures by exploiting the magne-
tocaloric effect in paramagnetic materials [167].

In this process, a paramagnetic salt is first cooled to an initial temperature 7} using
conventional cryogenic methods, such as a pulse tube *He crycooler, which allows to reach
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4.2 K as explained before. Then the salt is placed in a strong external magnetic field H;
on the order of several tesla, which forces the magnetic atomic dipoles of the material to
align. This alignment reduces the magnetic entropy of the salt as the degrees of freedom
associated with the random orientation of the dipoles are diminished. Once the material
is fully magnetized and the system has equilibrated at T;, the external magnetic field is
gradually reduced adiabatically to a lower value Hy. This causes the magnetic dipoles to
randomize, increasing their entropy. Since the process is adiabatic, the total entropy of
the system is conserved; therefore, the increase in magnetic entropy is counterbalanced by
a reduction in the lattice entropy, which results in a lowering of the overall temperature to
a final value Ty [168].

The thermodynamic behavior of this process can be expressed through the relation:

(3’1;)5 - _CT? <a&)]\1{>H’ (2.4)

where C' is the heat capacity of the system, M is the magnetization and the subscript
S indicates that the derivative is taken at constant entropy. This equation indeed shows
how a reduction in the magnetic field H under adiabatic conditions leads to a decrease in
temperature 7'. From there we can also understand that materials which exhibit a large
change in magnetization with temperature (i.e., a large 9M/OT) are especially effective for
adiabatic demagnetization because they provide a more pronounced cooling effect [168].

An ADR system is particularly interesting as it avoids the use of the expensive 3He/4He
mixture. In our lab, we have worked with a Kiutra system, which achieves continuous cool-
ing at 150-300 mK. The setup consists of a series of heat switches and two interconnected
ADR units that work together to extract heat from the sample stage and pump it into the
4.2 K thermal bath.

Dilution fridge

The DR or dilution fridge is a powerful cryogenic system, capable of continuous cooling
to mK temperatures. Its exceptionally high cooling power is achieved by using a mixture
of 3He and *He and exploiting its phase separation at sub-Kelvin temperatures. *He is a
very expensive isotope of helium given that it is generally found as a byproduct of nuclear
reactions [166] 16§].

shows the phase diagram of the 3He/*He mixture, where it can become a
normal fluid, a superfluid, or a liquid with the two phases (isotopes) separated. The latter
happens below the tricritical point at 0.87 K, where the phase rich in *He is called the
concentrated phase (~100%) and the one dissolved in *He is called diluted phase (up to
~ 6%). This separation happens in space too, with the rich phase sitting on top of the
dilute phase due to its lower density.

Because the specific heat of the two phases are different, the dilution process occurs

74



2.3. Low-temperature transport measurements

when 2He atoms are transferred from the concentrated phase into the dilute phase, absorb-
ing heat. The enthalpy difference AH between the two phases then results into a cooling
process according to:

Q = AH -rig ~ 84T2 - i, (2.5)

where @ is the heat extracted and 7 is the 3He flow rate [166]. This provides continuous
refrigeration as long as 3He is circulated (see |Fig. 2.32|b). The dilution fridge in our lab is
a Bluefors SD system with a circulation rate of ri3 ~ 0.5 mmol/s and a base temperature

of T'~35 mK, with a resulting cooling power of () ~ 50 nW. [Fig. 2.32c shows a picture of

our setup where we point out its main parts.

We now explain how a dilution fridge is able to make the phase separation and take
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Fig. 2.32: *He/*He mixture cooling and dilution refrigerator. a) Phase diagram
of the 3He/*He mixture depending on the 3He concentration and temperature. b) Cooling
power of the mixture and 3He alone, with a 3He flow rate of 5 L /s. Adapted from [166]. c)

Working principles of the mixture cooling in a dilution refrigerator, along with a picture
of our Bluefors SD system.
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advantage of its cooling power to achieve mK temperatures. As a guide, we use the sketch

shown in .

Once a temperature of 4.2 K is reached with a *He pulse tube cryocooler, the 3He/"‘He
mixture is introduced into the system through what is called the condensing line. Before
reaching there, with a small compressor, the pressure of the mixture is raised to ~2 bar.
Then, the heat exchangers in the incoming condensing line pre-cool the pressurized mixture
to low enough temperature for it to partially condense.

After all the mixture is condensed, it will be enough to fill the mixing chamber, the
heat exchangers and part of the still. By now pumping on the still, evaporative cooling
occurs, eventually dropping the temperature of the mixture below 0.87 K and incurring in
a phase separation ) Because of gravity, the heavier dilute phase will get to the
bottom of the mixing chamber, eventually settling as shown in [Fig. 2.32.

Finally, the 3He pumped away from the still is returned into the system through the
condensing line. This happens thanks to 3He having a lower vapor pressure than *He (see
Fig. 2.31p). As the 3He travels through the condensing line, it gets precool thanks to
the heat exchanger with the still (see ) Once it reaches the mixing chamber, it
is forced to pass through the phase boundary, resulting in the cooling process explained
before. The cooling power will then depend on the amount of 3He traversing the phase
boundary, i.e. the flow rate, as captured by Eq. .

Electron temperature and electronic filtering

One final important aspect in measuring electronic transport properties at ultra-low tem-
peratures is ensuring that the electrons in the sample are also cooled to the base tem-
perature of the refrigerator. Since unwanted high-frequency noise in electrical circuits
heats up electrons, without proper care, the temperature recorded during measurements
would reflect the elevated temperature of the hot electrons rather than the actual fridge
temperature.

To achieve proper electron cooling, first, the signal lines are thermally anchored at
various stages of the cryostat (e.g. at 50 K, 4 K and 1 K) to progressively reduce their
temperature and second, high-frequency filtering. Since the measurement signals we typ-
ically use are at very low frequencies (tens of Hz), applying filters that attenuate signals
at higher frequencies effectively cools down the electrons without compromising the de-
sired low-frequency information. In these systems, the electronic temperature is related to
frequency v via the relation hv = kgT.

The required attenuation A(v) to shield the cold electron temperature T, from a hotter
reservoir T}, can be estimated by the expression:

ehl//kBTh _ 1

A(V) = th/kBTe _ 1 :

(2.6)
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Thus, if we want to achieve an electron temperature of 35 mK (mixing chamber) and shield
it from a radiation at Tp = 1 K (still plate), we need an attenuation of A(v) ~ —30 dB at
above a cutoff frequency v ~ 5 GHz [169).

In our dilution fridge, instead of setting up one single filter, we include a combination
of low-pass RC (65 MHz) and LC (225 MHz) filters, commercially available from QDevil,
at the 1 K still plate and at the 35 mK mixing chamber, respectively. On top of that, the
sample is electromagnetically shielded by conductive enclosures, preventing environmental
noise from coupling into the measurement circuit (see [Fig. 2.32¢). Nevertheless, achieving
an electron temperature equal to the bath temperature is very challenging, as other sources
of electronic noise such as instruments, ground loop currents and mechanical vibrations
can heat up the electrons. Care has to be taken into the setup buildup and regular checks
on the instruments for achieving good experimental conditions.

2.3.2 Low-frequency transport measurements

Lock-in technique

Lock-in amplifiers are electronic instruments widely used in experimental physics due to
their ability to extract weak AC signals buried in noise. This is particularly essential when
measuring electrical transport properties of low-dimensional materials at low temperatures,
where signals are often on the nanovolt or picoampere scale. The key idea is to modulate
the signal of interest at a known reference frequency and then selectively detect only that
frequency component, greatly enhancing the signal-to-noise ratio.

The process, called demodulation or phase-sensitive detection, works as follows. First,
an AC signal at a specific frequency f (generally low, e.g. 10 Hz) is applied to our device
(this modulation can be generated by the lock-in amplifier itself). The response signal mea-
sured by the lock-in contains both the desired response and a background of broadband
noise, including thermal, environmental, and electronic noise. The instrument simultane-
ously generates a reference signal at the same frequency f as the excitation, and then it
multiplies it by the measured signal. As a result, only the components of the measured
signal that share the same frequency and phase as the reference will yield a nonzero average
when integrated over time [170].

The lock-in provides mainly two outputs: the in-phase (X) and quadrature (Y') com-
ponents, corresponding to the cosine and sine projections of the measured signal relative
to the reference. It also provides the signal’s amplitude R and phase 6, given by:

R=4/X?2+Y?2 | O=arctan(Y/X). (2.7)

The ability to measure phase shifts # with respect to the reference signal also enables
lock-in amplifiers to distinguish between different conduction mechanisms, such as purely
resistive ohmic transport versus capacitive displacement currents.
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2. Experimental Methods

Since most forms of noise are random and spread over a broad frequency range, a key
advantage of lock-in detection is its ability to reject broadband noise and isolate the signal
of interest, thereby achieving a very high signal-to-noise ratio. The electrical noise in a
system can come from thermal Johnson-Nyquist noise, 1/f noise, from power lines (50/60
Hz), RF sources, mechanical vibrations, etc. Since broadband noise extends over a wide
frequency range, lock-in amplifiers improve signal detection by filtering out all frequency
components except for the reference frequency. Given a noise power spectral density Sy (f),
the noise detected within a narrow bandwidth Af is:

Vioise = /Sv (f)Af. (2.8)

Thus, by setting a small detection bandwidth, the lock-in amplifier significantly reduces
the contribution of random noise, enhancing the signal-to-noise ratio [170].

Circuit schemes for transport in Josephson junctions

As explained above, to measure the electronic transport of our samples under AC excita-
tions, we use a lock-in to both generate a current bias I at a certain frequency and measure
the resulting voltage drop V. Another lock-in is generally used for measuring the draining
AC current [ after it passes through the device, so that the resistance can be estimated by
Ohm'’s law R = V/I. This scheme can be used then to measure the resistance across the
sample as a function of temperature, magnetic field and gate voltage; in a Hall-bar device
or a JJ.

To focus more on the measurements of Josephson junctions, in we show two
circuits used for measuring current-voltage characteristics and differential resistance curves.
In order to do these measurements in a JJ, we use four contacts, where two ends of the
superconducting leads are used for biasing (source) and collecting (drain) the current. The
other two ends are used for measuring the voltage drop across the junction. This is called
a semi-4-probe scheme, because the contact resistance is still included in the measured
voltage. In both circuits, several DC sourcemeters (Keysight Keithley) are needed, to bias
a DC current and to apply gate voltage Vj to the Si substrate or to a local graphite gate.

For the IV circuit ), we do a pure DC measurement. For this, we use a
DC source (Keithley) to generate a DC voltage Vpc, which is transformed into the source
current Ipc = Vpc/R1 by simply connecting a known resistance R; in series. The draining
current is set to ground and the voltage drop across the sample is collected with a voltage
amplifier. Apart from multiplying the signal, this instrument allows us to filter different
ranges of frequencies. Since this is a DC measurement, we filter all frequencies above 1 Hz
at 12 dB. The output is finally connected to a multimeter where we read the DC voltage
V. An example of the obtained data with this scheme is also shown in the figure, where
the superconducting transition of the JJ is clearly visible.

For measuring the dV/dI of a device, we need to make a derivative of the previous
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2.3. Low-temperature transport measurements

measurement. This is naturally achieved in electronic circuits by adding a small AC exci-
tation Iac to the DC bias Ipc and measuring the AC voltage. Indeed, if we take Ipc = I
and Ixc = dIsin(wt), with dI < I, the total resulting voltage will be:

dIsin(wt)+ 0O ((d1)?). (2.9)
Iy

Here V(1) is the DC voltage across the device, while the term

dVv
dV = —

= d/sin(wt) (2.10)

Iy

represents the small AC voltage component that results from the applied AC current.
Consequently, by measuring this AC voltage amplitude using a lock-in amplifier, which
selectively detects signals at the modulation frequency w, we can determine the differential
resistance at the bias point I as:

dV

dr

av

=T (2.11)
0

In we show how this combination of DC (Ipc = Vpc/R1) and AC (Ipc =
Vac/Ra2) source signals is done. The collected draining current dI is first converted to
voltage and then measured in a lock-in. The voltage drop dV is first passed through an
amplifier and finally measured in a lock-in. Both this amplifier and the current-voltage
converter allow us to multiply our signal and filter it. We typically send an AC signal of
17.777 Hz, so that by choosing to use a band-pass filter below 10 Hz and above 30 Hz at
12 dB, we can take out the DC signal from the collected draining current. The settings

a) b)
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Fig. 2.33: Current-voltage and differential resistance characteristics measure-
ments. a) Circuit of an IV characteristic measurement. b) Circuit of a differential resis-
tance measurement. In both sketches, the shield of the BNC ports are all connected to the
ground, although we only show it in the DC Source for the gate for illustrative purposes.
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we generally use in the lock-in (Standford SR830) are a time constant of 300 ms with a
12 dB filter over a time window of 0.9 s. With this, the differential resistance is obtained
by simply dividing both quantities dV and dI. An example of the obtained data with this
scheme is also shown in the figure, where the superconducting transition of the JJ is clearly
visible

We note that in between the sample at cryogenic temperatures and the sketched lines
that go to the instruments, a series of RC and LC filters are placed inside the DC lines of
the dilution fridge.

The advantage of measuring the IV curve is that, because it is a DC measurement, we
do not need to put any filters over a time window as in AC, so that the acquirement of data
is very fast (typically 0.1 s per point). The advantage of the dV//dI measurement on the
other hand is that we avoid the 1/f noise that is inherently picked up in DC measurements.
Furthermore, when compared to the IV curve measured in the JJ, its precise derivative can
give us more information about extra resonances due to Andreev reflections, as shown at
negative current values in [Fig. 2.33p. If we take the numerical derivative from [Fig. 2.33h,
we barely see this extra peak and the data overall comes out more noisy. The asymmetry of
the data in current is due to a hysteresis in the JJ, because of overheating or underdamped
dynamics. The sweeping goes from negative to positive values, so that the first transition
corresponds to the retrapping current I, and the second transition to the switching or
critical current 1.
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Chapter 3

High-field superconductivity in a
ballistic moiré superlattice
Josephson junction

The work presented in this chapter led to the following publication:

[P1] A. Diez-Carlén, et al. “High-field superconductivity in a ballistic moiré
superlattice Josephson junction”. In preparation (2025).
Contributions: Sample fabrication, measurements, data analysis, discussion
and paper writing.

In this chapter, we show for the first time a ballistic Josephson effect in a graphene-
based moiré superlattice Josephson junction, namely the heteromoiré formed by aligning
graphene and hBN, coupled with MoRe superconducting leads. The so-far unexplored
ballistic regime in this system allows us to study the Fabry-Pérot oscillations at hole doping
in which depend on the Fermi surface of the moiré bands. For electron doping
and once the superlattice density is reached, in[Section 3.2 we find that the superconducting
proximity effect holds up to fields of as much as 7 T; much greater than those previously
reported in graphene. We attribute this result to a cyclotron orbit breakdown and open
orbits at the van Hove singularities found at these fillings of the moiré bands.

The work of this chapter, still in progress, represents the conclusion of a year-long
collaboration with my colleague Daniil Ivanov [171], who helped with the device fabrication.
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3. High-field superconductivity in a ballistic moiré superlattice JJ

3.1 Ballistic moiré-graphene Josephson junctions

The study of the Josephson effect in the ballistic regime offers a sensitive probe of many
physical phenomena in a 2DEG weak link, from the interference of Fabry-Pérot oscillations
[20, 22, 104], the switching dynamics of the critical current I. and its dependence on
temperature |[104], as well as the study of the proximity effect at high magnetic fields [22,
172 and in the Quantum Hall regime [23] 24]. Despite an extensive study of these effects,
all prior work has focused on monolayer graphene.

A natural question is how the ballistic Josephson effect evolves when the weak-link
band structure is modified by a moiré potential. Experimental studies of the supercon-
ducting proximity effect in a moiré weak link remain scarce to this date [173,|174] , and
none have yet accessed the ballistic regime. Here we address this challenge by engineer-
ing, for the first time, a ballistic Josephson junction whose weak link is a graphene/hBN
moiré superlattice coupled to MoRe superconducting leads. While the main Dirac cone
of graphene/hBN and its Fermi velocity remain barely unchanged [30} 36-38], thus giving
potential access to ballistic transport in a Josephson junction architecture |20} [22, 104], the
formation of moiré minibands at higher densities reachable by electrostatic gating make of
this moiré material a very suitable platform where to test the ballistic Josephson effect in
other band structures than that of monolayer graphene.

Our samples consist of a van der Waals heterostructure in which a monolayer graphene
is encapsulated between two hBN dielectrics; with one of them closely aligned to the
crystallographic edges of the graphene (see [Fig. 3.1h). The stacks are patterned into a
rectangular mesa of width W ~ 1.5 nm and then coupled with sputtered MoRe supercon-
ducting leads, forming one-dimensional edge contacts. The resulting device is a Josephson
junction of length L, where the carrier density n of the graphene/hBN superlattice is tuned
by applying a gate voltage to the doped Si substrate. Our transport measurements follow
a two-probe scheme, where the voltage V' across the junction is recorded as a current bias
I is applied through the superconducting electrodes.

We focus on device GH1 with length L ~ 200 nm (see . The alignment
of graphene with hBN is evidenced in by the observation in the normal state
resistance Ry of two satellite Dirac points (sDP) at carrier densities corresponding to
a fully filled electron/hole moiré band +ns (see black arrows in the corresponding band
structure of [Fig. 3.1p). This measurement is done at 10 K to avoid any superconducting
proximity effects from the MoRe, which has a critical temperature 7T, ~ 9 K. The effect of
the moiré superlattice is further confirmed by the observation of the Hofstadter butterfly
in the Quantum Hall regime (see inset of [Fig. 3.1¢) [36, 137], from where we extract a
twist-angle # = 0.21° £0.01°.

By now measuring the differential resistance dV/d/ as a function of a d.c. current
bias I below the MoRe critical temperature, we confirm the formation of a JJ. [Fig. 3.1
shows this, where the nonlinear dV//dI curves evidence superconducting states (dark-blue
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3.1. Ballistic moiré-graphene Josephson junctions

regions in the colormap) below a critical current I. that changes with density. Importantly,
demonstrates the presence of the Josephson effect in the graphene/hBN junction
throughout its whole band structure, with the exception of vanishing critical currents at
the CNP (n/ng=0) and in the hole satellite Dirac point (hDP, n/ng = —1). This is due
to the presence of small gaps in the bands of graphene/hBN at those fillings, as shown in
[Fig. 3.1p. The electron satellite Dirac point (eDP) at n/ns =1 has a finite /. instead, since
two sets of bands cross at that point. Overall, the smaller I. for hole doping compared to
the electron side is due to the formation of a n-p-n junction, as the MoRe contacts n-dope
the graphene in their vicinity and thus raise the Ry at n/ns <0 (see ). The
dV/dI map measurements are done at 2 K to prevent premature switching of the I. at
base temperature, which is proper of underdamped junctions or due to overheating effects

93] [109], and can complicate the analysis of the I, with density [104].

N
o

(O) IP/AP

0.0

n/ns

Fig. 3.1: Josephson junction with a graphene/hBN moiré superlattice weak
link. a) Device schematic, where an encapsulated hBN-aligned-graphene is coupled to
MoRe superconducting leads by one-dimensional edge contacts. b) Calculated band struc-
ture of graphene/hBN for # = 0.2°. ¢) Normal state resistance Ry measured at 10 K,
as a function of the carrier density n normalized by the superlattice density ns. Inset
shows a Landau Fan measurement at 35 mK, where another set of Landau levels emerge
at n/ns = £1 and their crossings form a Hofstadter butterfly fractal behavior. d) Map of
differential resistance dV//d[l vs d.c. current bias I and n/ng, measured at 2 K and within
the same range as c. The dark blue regions indicate superconducting proximitized states,
where the transition at positive I corresponds to the critical current I..
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3. High-field superconductivity in a ballistic moiré superlattice JJ

3.1.1 Fabry-Pérot oscillations

In high-quality graphene devices, ballistic transport is essential for observing quantum
interference effects such as Fabry-Pérot (FP) oscillations. Analogous to the interference of
light in optical Fabry-Pérot interferometers, these oscillations arise when electrons reflect
between two partially reflecting barriers, such as n-p—n junctions, forming an electronic
cavity [175], [176]. Within this cavity of length L., standing wave patterns develop due to
the constructive and destructive interference of all outgoing electron wavefunctions, leading
to oscillations in the device’s resistance as a function of carrier density or gate voltage [176,
177]. The resonant condition for these standing waves is thus:

(3.1)

where N € Z is the number of modes in the cavity and Ap = 27 /kp the Fermi wavelength.
These resonances have also been measured in graphene Josephson junctions, where the
cavity occurs because a n-p-n junction is formed due to the n-doping of graphene from the
superconducting contact such as MoRe [20].

In the case of graphene/hBN moiré superlattices, FP oscillations have been studied pre-
viously in gate-defined p-n-p junctions [178] and in a Hall-bar geometry with the transverse
electron focusing effect caused by the skipping orbits at low magnetic fields [179]. Here
though, we provide evidence for phase-coherent Fabry-Pérot interference in the supercur-
rent, which has not been observed before in this system. [Fig. 3.2h-b shows two zoom-in
scans of , close to the hole superlattice density n/ns = —1 and to the CNP, re-
spectively. The oscillations in the I. can be clearly seen in the contour of the dark-blue
regions with zero resistance, and also in the Ry with the change of colors at I > I..

We are interested into evaluating the dependence of the FP oscillations with carrier
density n, which we can tune in our experiment. Since n = fOE FdE DOS(FE) by definition,
with DOS(EF) the density of states per unit area and energy at the Fermi level, we need
to first relate \p or kp with Er and the DOS. For a 2DEG, DOS(F) = %g—g, where
g is the total degeneracy of the 2DEG states. In the case of graphene, considering its
valley and spi;jlE degeneracies g = g,9s = 4, as well as its linear dispersion F = hvpkp, yields

DOS(FE) = O and a carrier density n = k% /7, from where we find:

kp = /. (3.2)

We note that in the derivation of Eq. (3.2), the size of the Fermi velocity v is unimportant.
Thus, any linear dispersion will yield the same result as in Eq. (3.2). Combining this with

Eq. (3.1) finally yields:
N = Loy/n/n (3.3)

By now extracting consecutive minima or maxima on the I, or Ry, N; and N;;1, as

shown in [Fig. 3.2h-b, we can test the prediction of Eq. (3.3)) for a linear Dirac dispersion.
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Fig. 3.2: Fabry-Pérot oscillations over several moiré bands. a-b) Map of differ-
ential resistance dV/dI vs d.c. current bias I for two different ranges of the normalized
carrier density n/ng, measured at 2 K. Some local maxima in the I, are indicated with
white arrows. c-d) Extracted consecutive maxima in the I, or minima in the Ry from a-b.
While for the Dirac cone band at —1 <n/ng <0 in d we find N ~ y/n (red solid line), that
is not the case for the bands at n/ns < —1 in c. The errorbars in the y-axis account for a
potential missable extrema in the oscillating I. or Ry. e-f) Density of states vs energy F
and n/ng, respectively. The linear dependence of the DOS with E (equivalent to a square
root dependence with n) is marked by red-dashed lines. In the case of the Dirac cone band,
this is well followed, while the vHs, indicated by colored arrows near n/ns ~ +1 and £2,
leave nonlinear terms that could explain the deviation of the data in ¢ from /n.

For the Dirac cone band at —1 < n/ng <0, as we can see in , the expression
with the square root dependence fits extremely well, which in the least-squares method
gives a coefficient R? = 0.997. However, for densities n/ns < —1 in , we observe
that the square root dependence of Eq. no longer predicts the positions of all the
oscillations in n/ng, with R? = 0.975. The fit rather overestimates them at n/ng < —1.5
and underestimates them very close to n/ng ~ —1. This result indicates that the energy
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3. High-field superconductivity in a ballistic moiré superlattice JJ

dispersion at these fillings of the moiré minibands cannot be fully linear, which is consistent
with certain band structure models |32, 33, [179].

An example is the band structure shown in [Fig. 3.1p, from where we calculate the
density of states and show it in —f. This is done for a graphene/hBN moiré
superlattice with 8 = 0.2° by following the phenomenological model of Ref. [32], Which was
explained in detail in [Subsection 1.2.1] The ranges where the DOS is linear in are
marked by red dashed lines, which are mainly in the Dirac cone band. At ﬁlhngs below the
hDP, the band structure consists of two nonisotropic bands, with the presence of three vHs
marked by three vertical arrows. All this makes the DOS rather non-linear in energy. Since
these features are very model-dependent [32, 33|, here we have chosen the parameters that
best match to our experimental data, in terms of the gaps at +ng, and the presence of the
vHs giving a potential explanation of why the FPs on do not fit the square root
dependence for a linear band structure, as it was reported in Ref. [178]. We also note that
such model has been used to reproduce other transport experiments [38, [173] |179-183].
We will come back to these vHs later in our inspection of high-field superconductivity.

From the slope of the fits in[Fig. 3.2c-d, one could in principle also estimate L.. However,
finding the exact number of modes N is a difficult task, and requires to study the extra
phase that these resonances acquire when applying low-magnetic fields [20]. To estimate
L., we can nevertheless measure the distance between each FP oscillations, which in the

case of Eq. (3.3) gives:

™

Le= Ny (3.4)

For the Dirac cone band at —1 <n/ns <0, in we find values of L. = 250+45nm,
consistent with the length of our device L ~ 200+ 10nm. We also observe that the length
of the cavity decreases down to L. ~ 150nm as the density decreases towards the CNP.
This has been observed previously in these n-p-n junctions [22], and has been attributed
to the reflectiveness and sharpness of the p-n interface, which decreases as the density gets
closer to the n-type doping of the MoRe contacts, thereby decreasing L.. In the case of the
other moiré minibands at n/ng < —1 in[Fig. 3.2, the use of Eq. is less justified, since
the band structure is not linear as we discussed before. Doing so gives L. = 180 £ 54nm,
decreasing down to L. ~ 100nm at the hDP. When n/ng < —1.7, that is, when the vHs is
reached, L. ~ 300nm, which indeed gives unphysical results [178].

The oscillations in having their origin in a Fabry-Pérot interference can be un-
equivocally proven when measuring the differential resistance in the normal state as a func-
tion of a d.c. voltage bias V}. As the FP resonances modify the transmission of carriers, the
mesoscopic conductance Gy is altered according to G(Er) = Go+ dGsin (2nE/Ey). This
modulation of the electronic transport is a periodic function of Fr/Ey, where Ey = hvp /2L,
is the energy scale of the resonant standing waves, since Erp = hvp /A for graphene [22]

176, [177]. The total current flowing through the cavity is then I = [ Er +:‘Z”//22 dE G(F) =

GoVp+0G~ Lo sm(QgEF )sm(mvf’) By calculating the differential conductance dI/dV;, we
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3.1. Ballistic moiré-graphene Josephson junctions

finally arrive at a general expression for the differential resistance R =dV/dI:

2nE Vi
R(EF,Vb):Ro—i—éRsin( T F>cos <7re b). (3.5)
Eq Eo

In [Fig. 3.3h-b we show the measurements of the numerical derivative dR/dn of the
differential resistance R in Eq. with density n, and as a function of V}, since Ep is
related to n. These are the same two different ranges of density indicated by the white
arrows in [Fig. 3.2h-b. In the colormaps, as well as in the linecuts in [Fig. 3.3k-d, the
periodicity both in n and V}, is very clear, demonstrating that the oscillations observed in
Fig. 3.2 are indeed FP resonances.

To analyze these results, we rewrite the expression Eq. (3.5]) in terms of n for graphene,
where Fp = hvpkp = hvpy/mn, giving:

2mwel,.
R(n,V}) = Rg+ dRsin <2Lc\/7m) cos ( 26 V},) (3.6)

which is a function of two independent periodic n and V}, terms. The condition in the first
periodic function is the same as (3.4)). For the second, another condition is given for the
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Fig. 3.3: Fabry-Pérot oscillations in the normal state. a-b) Map of change in the
differential resistance with carrier density, dR/dn, vs d.c. voltage bias V4 and normalized
carrier density n/ng. Panel a shows the measured FP oscillations at the moiré minibands
for n/ns < —1, while their behavior at the Dirac cone band around the CNP can be seen
in b. The measurements are performed at 10 K. c-d) Linecut of dR/dn at two different
values of V}, where the oscillations have opposite phases.
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3. High-field superconductivity in a ballistic moiré superlattice JJ

length of the cavity:
hvgp

© 2e(Viy, — Vi)

This expression allows us to estimate the Fermi velocity of the bands, provided the disper-
sion is linear and if we know the length of the cavity, which we have estimated previously
from Eq. (3.4). We note that the decreasing value of L. as we approach the CNP and hDP
can be visualized by the elongtaion of the checkerboard pattern in [Fig. 3.3k-d along the
Vp axis. For the Dirac cone band at —1 < n/ns, the corresponding Fermi velocity gives
vp =0.7£0.1m/s, whereas for the moiré bands at n/ns < —1, vp =0.5+0.1m/s. These
values are consistent with the renormalized Fermi velocity of the satellite Dirac points
along one direction of the mBZ, although we note that the nonlinearities in the moiré
bands can become important, as we have shown in —f, so that the use of Eq.
is less justified in this analysis. Nevertheless, by measuring the dependence of the critical
current with temperature, we show an alternative method to estimate the vp of the bands,
as we explain next.

I (3.7)

3.1.2 Length dependence of the long-ballistic regime

The temperature dependence of 1. is also consistent with a ballistic, long regime, as we show
next. For long Josephson junctions, I, is governed by an exponential scaling I, oc e #8T/0E
where 0 E' = hvp /27 L (22,98, 104]. This decaying rate 0 E is directly related to the Thouless
energy Frpp = hvp/L, which is the characteristic energy of a JJ in the long-ballistic regime
(see and [Table 1.2). We then measure the I.(T) dependence for four different
graphene/hBN aligned JJs with increasing length L (see GH1-4 in [Table 3.1). [Fig. 3.4a-b
shows these measurements for the two shortest devices, where we can see that the I, follows
an exponential decay with temperature 7. Most importantly, it does so for multiples values
of density n/ns, spanning over different bands; from the Dirac cone at the CNP to the
moiré minibands.

Device | L (pm) | W (pm) | 6 (°)
GH1 0.20 1.50 0.21
GH?2 0.30 1.50 0.38
GH3 0.50 1.50 0.27
GH4 0.60 1.50 0.22

Table 3.1: Summary of all graphene/hBN moiré Josephson junction devices.
Shown parameters include length L (£0.01 um), width W (£0.01 pm) and twist-angle 6
(£0.01°).

By extracting the rate of the exponential decay 0F, we find that it scales linearly
with 1/L, as shown in |[Fig. 3.4c. Along with the observation of FP oscillations, this
result provides another evidence that our graphene/hBN JJs are ballistic in their entire
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3.1. Ballistic moiré-graphene Josephson junctions

accessible band structure, and moreover in the long regime. From this fit we can also
extract the Fermi velocity at the density n/ns ~ 1.3 where the J F values where extracted,
giving v ~ (0.34 £0.05) x 105 m/s. This value is in good agreement with values vp ~
(0.5+£0.1) x 105 m/s reported in previous experiments , , and with the model
of the band structure shown previously in and [Fig. 3.2e-f.

Another evidence of our devices belonging to the long-ballistic regime follows from
the 1/L dependence of the I.Ry product, as shown in . At zero temperature,
I. = Epp /Ry in the long junction regime [22 98 [106]. At the same time, for a ballistic
sample, the normal state resistance Ry does not depend on its length (as it is determined
only by its cross-sectional width and the Fermi wavelength). Therefore, I. Ry =~ Epj, o< 1/L
is expected for long-ballistic junctions, in agreement with our measurements in [Fig. 3.44.
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Fig. 3.4: Long-ballistic regime evidence in the length dependence of I.(T") and
I.Ry. a-b) Critical current I, vs temperature T for different points in carrier density, and
for devices GH1 and GH2, respectively. At high temperatures, I. follows an exponential
trend. The solid lines represent a fit to the function oc e ¥8T/9F  ¢) Extracted 6E from
the exponential fits in a-b at a fixed n/ns ~ 1.3 and for several devices with varying length
L (see devices GH1-4 in[Table 3.1]). The dashed line represents a linear 1/L fit to the data.
d) I.Ry product at a fixed n/ng ~ 1.2, for devices GH1-4 with varying length L, where
a 1/L dependence is evident. The errorbars come from the average value of I., which is
measured at base temperature 35 mK and is random due to premature switching.
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3. High-field superconductivity in a ballistic moiré superlattice JJ

3.2 High-field superconductivity and cyclotron break-
down

In this section we show that the evidence of a finite supercurrent at high magnetic fields,
and its dependence with the carrier density, can also give us information about the moiré
miniband structure of graphene/hBN.

3.2.1 The superconducting proximity effect for increasing mag-
netic fields

In a Josephson junction, the supercurrent is carried by Andreev bound states (ABS),
which consist of electron-hole pairs that are created by two coherent Andreev reflections
at the interfaces of the two superconducting leads with the normal metal weak link. These
electron-hole pairs have exact opposite momenta and thus retrace the trajectories of each
other, as shown in[Fig. 3.5¢. In the presence of a perpendicular magnetic field however, the
ABS acquire an extra phase shift that depends on their trajectories along the cross section
of the junction, leading to an interference of the mesoscopic supercurrent (see )
In a JJ with an homogeneous supercurrent density profile, the critical current I.(B) follows
the typical Fraunhofer pattern of Eq. . This is the case in our device, as shown in

Fig. 3.5k

However, at relatively small magnetic fields > 10 mT, in|[Fig. 3.5b we observe a deviation
from the expected exponential decay. Although some lobes merge with each other and some
others are missing, the periodicity of the oscillations AB ~ 2.5 mT in general still matches
one unit of flux quanta ®( threading through the junction (flux-focusing effects considered),
which is a signature of edge transport. Most importantly, their amplitude does not follow
a clear trend but rather chaotic. This same phenomena has been studied previously in
graphene JJs in Refs. [22,23]. In a semiclassical picture, as the magnetic field is increased,
the electron and holes forming the ABS acquire a finite cyclotron motion with opposite
directions. If the field is strong enough, the electrons and holes cannot retrace each other,
so that no ABS is formed, as shown in [Fig. 3.5p. Following a geometrical analysis on the
cyclotron trajectories, one finds that the ABS will much more likely be formed at the edges
of the junction, where the Andreev reflections do not occur as there is no superconducting
region [22]. The value of field where the ABS disappear from the bulk was found to be
B* ~ A/eLvp. In our case, for L ~ 200 nm and vp ~ 0.5 X 10% m/s, we find B* ~ 13
m'T, which indeed coincides with the values at which the deviation from the Fraunhofer
interference occurs in [Fig. 3.5p.

This combination of scattering at the edges of the weak link, along with the cyclotron
orbits of the electron-hole pairs, provides a chaotic billboard motion of the ABS, which
leads to the observed random superconducting pockets with dominating edge transport
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Fig. 3.5: Interference patterns at increasing magnetic fields. a) Interference
pattern measured at n/ng = 1.7, where the differential resistance dV//dI is measured as a
function of the d.c. current bias I and perpendicular magnetic field B. The exponential
decay of the critical current I.(B) agrees well with a uniform single-slit junction (magenta
solid line) with the same area as our the device, considering flux focusing effects. b)
Continuation of the measurement in a for higher fields, where the Fraunhofer exponential
decay no longer fits the observed oscillations at = 12 mT, but show a rather random
behavior. All data is taken at 35 mK. c-e) Sketch of the electron-hole trajectories forming
the ABS, for different regimes of magnetic field. Once B > B*, the pairs cannot easily
retrace each other, unless they scatter with the edges of the sample.

[22]. These pockets can have a maximum critical current Ig ~ eA/h ~ 50 nA, which is
the maximum supercurrent that can be carried by a single ABS , . This random
trajectories of ABS that can still carry a finite supercurrent from one superconducting lead
to another can survive up to the magnetic field that is necessary for a cyclotron orbit to
have a diameter greater than the length of the junction , . This translates to the
condition 2r. = L, where

hkp
eB

is the cyclotron radius. We name this specific field By, = hkp/2eL. The condition 2r, = L
is also the semiclassical condition for Landau levels to form in a 2DEG. As the cyclotron
orbits shrink in size and the electrons or holes cannot travel directly from one lead to an-
other through the middle of the junction, the bulk becomes insulating, and the conduction
electron or holes can only travel through skipping orbits through the edge of the sample.

(3.8)

/rc:

Crucially, this high-field superconductivity can only be observed in ballistic JJs, where
the critical currents can achieve the ballistic limit Iy, and the decoherence of the ABS is
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3. High-field superconductivity in a ballistic moiré superlattice JJ

minimal so that they can retrace each other even in the presence of high magnetic fields
that shape the trajectories of the electron-hole pairs [22]. Thus, our observation of this
phenomena in [Fig. 3.5b is well justified, as our JJs lie in the long-ballistic regime.

While it was originally thought that the LLs in graphene could not carry ABS, this
was proved otherwise in other experimental works 23] [24], where they observed a super-
conducting proximity effect in the Quantum Hall regime. Unlike at low fields or at the
semiclassical regime, where the Andreev reflection process consists of an incident electron
retro-reflecting as a hole, the mechanism at the superconductor-Quantum Hall interface is
different. Since in the QHE both electrons and holes have the same chirality, the electron-
hole pairs forming the ABS also need to be chiral [23] 24]. These chiral Andreev edge states
thus co-propagate forward along the interface by continuously converting from electrons to
holes and viceversa, upon successive reflections. Importantly, in a JJ, the chiral ABS will
form a chiral loop that connects both electrodes, yielding an Aharonov-Bohm quantum
interference with a double 2®¢ = h/e flux periodicity. This double periodicity of the I.
is the hallmark of the chiral nature of these ABS, although this was not experimentally
observed until recently [24].

The critical currents of these fragile superconducting states are nevertheless too small,
in the order of I. <1 nA. This requires an electronic temperature not much bigger than
T =Ej/kp = hl./2ekp ~ 30 mK, so that thermal fluctuations do not wash out the su-
perconducting phase. Unfortunately, and although it would be extremely interesting to
expand this proximitized Quantum Hall regime into the Hofstadter fractal spectra of our
graphene/hBN JJs, we have not been able to detect such small critical currents in our exper-
imental setup. Instead, in the following we focus in the semiclassical regime B* < B < By
(or 2r. > L), where the critical currents can approach the single-mode ballistic limit ¢,
which we can well resolve.

3.2.2 Proximity effect at high magnetic fields in the moiré bands

In we present our measurements of the superconducting proximity effect at high
fields for electron doping in our graphene/hBN JJ. The zero resistance pockets marked by
dark-blue regions, and indicative of superconducting states, lie exactly below the 2r. =L
yellow curve at n/ng < 1, where r. = hi\/mn/eB is the expression for a linear Dirac dispersion
as is the case for the C1 band (see[Fig. 3.60) [22, [23]. However, for densities slightly lower
than n/ns =1, marked by a red arrow in , we start to observe small random pockets
of superconductivity above the 2r. = L curve. This point in density at n/ns~ 0.9 coincides
with the position of the saddle point between the C1 and C2 bands in the graphene/hBN
moiré minibands, as shown in |Fig. 3.6d.

As we continue to increase the density, the LLs stemming from the CNP cross with
another set of LLs from the eDP at n =ng, as expected for the Hofstadter butterfly [35-37].
At the crossing of these LLs we also observe small random pockets of superconductivity
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3.2. High-field superconductivity and cyclotron breakdown

between 2 T and 4 T. Most surprisingly, the LLs from the CNP get interrupted at densities
n/ns > 1.3 (see orange arrow in [Fig. 3.6h), where the superconducting proximity effect
takes a huge phase space, spanning to as much as ~ 7T, and clearly surpassing the 2r. = L
condition from the linear dispersion of C1, which we now mark with a dashed curve.

We note that the superconducting nature of these zero-resistance states is further

a) 0 5 b) 750

8 ooy M o

50 —
0.0 0.5 1.0 1.5 2.0 4.300  4.305
B (T)

Fig. 3.6: High-field superconductivity in the moiré bands. a) Map of resistance R
vs magnetic field B and normalized carrier density n/ng, measured at 35 mK. The dark-blue
regions indicate zero-resistance states that span up to ~ 7 T. The coloured arrows follow the
same color-code as in d. b) Differential resistance dV/dI curves vs current bias I measured
at several magnetic fields at a fixed n/ngs = 1.7. c) Interference pattern measured around
4.3 T at n/ng = 1.7. d) Miniband structure of the graphene/hBN superlattice, with the
first three conduction bands C1, C2 and C3 indicated. Equipotential contours are shown
with the dashed contours and the energy levels of the saddle-point vHs are indicated with
a red, orange and green arrows. These are also shown in the density of sates in [Fig. 3.2p-f
for the same band structure. e) From left to right, the Fermi surface colorplots of the
three conduction bands C1, C2 and C3 shown in d, respectively. The surfaces enclosed by
dashed lines correspond to energies of 0.10 ¢V, 0.25 eV and 0.29 eV, respectively.
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3. High-field superconductivity in a ballistic moiré superlattice JJ

demonstrated by the observation of nonlinear dV//dI curves (Fig. 3.6p) and interference
patterns ) Our statement that these superconducting states at high fields belong
to the semiclassical regime,and not to the Quantum Hall regime, lies in that the amplitude
of the oscillations in I, appear to be random (see ), and we often observe very high
supercurrents up to the /g ~ 50 nA limit. The observed telegraphic signal of the supercon-
ducting states in is due to the fact that in the measurement, the magnetic field is
the slow variable and has relatively big steps of ~ 20 mT. It can then be considered that
there is a random probability of measuring either a finite or zero resistance, depending on
whether the field hits a node or a superconducting lobe, as one can see in the interference

patterns of [Fig. 3.5b and .

We emphasize here that the observation of superconductivity up to such high fields
has not been done in bare graphene, where the semiclassical regime is well delimited by
the 2r. = L condition (see for a comparison). Since the shape of the cyclotron
orbit in a 2DEG is a full rotation around the Fermi surface (see dashed lines in
for example), to understand why this is observed in graphene/hBN at the second and
third moiré minibands only, we turn to the band structure in [Fig. 3.6d. There we find
the presence of saddle-point van Hove singularities close to the three crossings between
the C1, C2, C3 bands; indicated by colored arrows (see also —f following the same
color-code). As it turns out, the position of these vHs in filling correspond to the points
in [Fig. 3.6 where we observe deviations from the 2r. = L condition.

These vHs mark the transition from electron to hole character, where the cyclotron
orbit vanishes because its trajectory changes signs and becomes ill defined. In the vicinity
of these points, neighboring electron-like and hole-like pockets approach each other in k-
space; so that quantum tunneling between those trajectories occurs, producing the so-called
magnetic breakdown which generates open orbits that skip across the vHs region instead of
forming closed cyclotron loops [179} |182, [185]. This could then explain the observation of
superconductivity at higher fields than expected for these fillings: as the electron-hole pairs
no longer have closed cyclotron orbits, they can travel more freely in open orbit motions
from one superconducting lead to the other, retracing each other and creating an ABS.
This retracing is still more probable to happen at the edges, as discussed previously, so that
the superconducting pockets are still random and fluctuations in the I, are still observed,
with a SQUID-like behavior such as in due to edge-dominated transport. We
note that the three vHs do not appear for all band structure models of graphene/hBN,
which have been explained in detail in [Subsection 1.2.1 Thus, our study can serve as an
experimental test for these models.

The range in between the two vHs in n/ng ~ 1.3 and ~ 1.9, where the superconducting
pockets with the highest fields are observed, corresponds to small and anisotropic Fermi
surface pockets (see the C2 and C3 panels in ), which could cause smeared cyclotron
orbits as well [179]. If one were to approximate kp as the average radius of the irregular

Fermi surfaces of C2 and C3 (see|Fig. 3.6¢) [179], we find that it would not be significantly
greater than the one from C1. The resulting 2r. = L curve emanating from n/ng = 1 would
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3.2. High-field superconductivity and cyclotron breakdown

not be greater than the yellow one either, unable thus to capture the superconducting
phase boundary that we observe at high fields.

The open orbits also delocalize Landau levels, such that they cannot form near the vHs
[182], which is what ultimately enables the presence of superconductivity at these high
fields. This phenomena could have been overlooked in the past due to the use of a Hall-bar
geometry, where the motion of electrons and their cyclotron orbits are not so constrained
as in our junction architecture |35, 36, 179]. While in Ref. [179] this cyclotron breakdown
was studied at zero or low magnetic fields (< 0.3 T) by measuring the transverse-electron-
focusing effect in skipping orbits, here we provide evidence of a similar effect at high fields
where the Hofstadter energy spectra could also play a role. It would then be important to
study how the Hofstadter solution can change the cyclotron orbits and thus the proximity
effect and the formation of LLs at these moiré bands. This analysis is beyond this Thesis
work, and will be implemented in the final manuscript for its future publication.

Another important point we want to stress is the reproducibility of our results. Al-
though it is not shown here, we have found the same dependence of the superconducting
phase in the n-B phase diagram of for sample GH2, which is a slightly longer
junction than GH1 and has a different twist-angle 6 ~ 0.38° £0.01° (see [Table 3.1).

We also would like to note that in we do observe some superconducting
pockets where LLs are formed at around n/ng ~ 1, between 2 T and 4 T, as well as some
others at n/ns ~ 1.5 between 4 T and 5 T. These superconducting states should belong to
the Quantum Hall regime, where the interplay between the ABS and the LLs create the
Andreev chiral edge states [24], as discussed before. Since the I, that we register at those
points are very small, we are not able to resolve the dV/dI curves and make any conclusions
about how the I. oscillates with field in this special regime. It would nevertheless be very
interesting to extend this study in the future to the investigation of Andreev chiral edge
states when the proximitized LL is rather a crossing of LLs due to the Hofstadter fractal
spectra; a feature unique to moiré superlattices.

3.2.3 Comparison with a ballistic monolayer graphene JJ

Here we briefly show the study of a monolayer graphene JJ not aligned with hBN, which also
falls in the long-ballistic regime, so that we can compare the results of our graphene/hBN
moiré JJs. This device has a length L ~ 300 nm and width W ~ 1.5 pm.

shows a differential resistance map, where close to the CNP both the I, and
Ry clearly oscillates with a FP interference. Not only for hole doping(n-p-n junction), but
as well in the electron side (n-n’-n junction), although for a lower density range. This is
expected since the lower normal state resistance for electron doping reduces the number
of reflections and the FP interferometry becomes weaker. As we derived in Eq. , the

linear band structure of graphene (Fig. 3.7c) gives N o< \/n, just as its DOS (Fig. 3.7d).
This is corroborated in |[Fig. 3.7b, where the square root dependence fits perfectly the
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3. High-field superconductivity in a ballistic moiré superlattice JJ

observed oscillations.

As for the proximity effect at high magnetic fields, the superconducting region in
falls well below the 2r, = L yellow curve delimiting the semiclassical regime,
where 7. = h\/7n/eB. We note that the densities that we reach here (<5 x 102 cm™2) are
the same that we reach in our graphene/hBN aligned JJs, so that a one-to-one comparison

can be made with [Fig. 3.6h.
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Fig. 3.7: Fabry-Pérots and high-field superconductivity in a ballistic graphene
JJ. a) Map of differential resistance dV/dI vs d.c. current bias I and carrier density n,
for a non-aligned monolayer graphene JJ, measured at 2 K. The dark blue regions indicate
superconducting proximitized states, where the transition at positive I corresponds to the
critical current I.. b) By extracting the consecutive maxima in the /. or the minima in
the Ry from a, we find that N ~ y/n. Some of them at high carrier density are pointed
in a with white arrows. The errorbars account for a potential missable extrema in the
oscillating I. or Ry. c¢) Low energy band structure of graphene at the K point, where the
circular Fermi surfaces are shown in the gray contours. d) Density of states vs n, showing a
v/n dependence when the band structure at low energies and densities is linear, as in c. e)
Landau Fan diagram of the JJ measured at 35 mK, where the superconducting states are
visible below the 2r. = L curve (yellow). Here r. < y/n, due to the linear Dirac dispersion
proper of graphene.
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Chapter 4

Probing the flat band limit of the
superconducting proximity effect
in TBG Josephson junctions

The work presented in this chapter led to the following publication:

[P2] A. Diez-Carlén, J. Diez-Mérida, P. Rout, D. Sedov, P. Virtanen, S. Baner-
jee, R. Penttila, P. Altpeter, K. Watanabe, T. Taniguchi, S.Y. Yang, T.T.
Heikkild, P. Torméa, M.S. Scheurer, D.K. Efetov. “Probing the flat-band limit
of the superconducting proximity effect in twisted bilayer graphene Joseph-
son junctions”. arXiw:2502.04785 (2025). Under review in Physical Review X.
http://arxiv.org/abs/2502.04785
Contributions: Sample fabrication, measurements, data analysis, discussion
and paper writing.

In this chapter, we study the superconducting proximity effect in a Josephson junc-
tion formed by a twisted bilayer graphene weak link and s-wave superconducting leads.
According to the theory of SNS junctions, this proximity effect should be suppressed in
the flat bands of TBG due to their small Fermi velocity and bandwidth , and
yet we observe it to be as strong as in its dispersive bands . Furthermore,
only in this flat band limit we detect an unconventional scaling between the critical cur-
rent and the normal state conductance , potentially indicative of attractive
interactions between electrons boosting the supercurrents in this regime. In
by studying multiple devices with different twist-angles—thus tuning the bandwidth of the
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4. Flat band limit of the SC proximity effect in TBG Josephson junctions

flat bands—and examining the dependence of the critical current on filling, calculations
find good agreement with the experiment but only if contributions from quantum geome-
try and multiband pairing to the proximity effect are considered, revealing the importance
of these mechanisms into the formation of superconducting phases in flat band systems.
Lastly in [Section 4.5 we observe unconventional interference patterns with broken inver-
sion at half-filling of the bands, enabling us to engineer a reversible Josephson diode, and
providing insights on the symmetries of the ground states at these fillings.

4.1 Quantum Geometry and superconductivity in the
flat band limit

When a superconductor is placed in proximity to an adjacent normal conductor, super-
conducting correlations extend into the latter over a characteristic coherence length &y .
In a Josephson junction, where the normal metal forms a weak link between two super-
conductors, the induced correlations are manifested by the generation of a dissipationless
supercurrent mediated by phase-coherent Andreev pairs |97, (102, 186, |187]. The maximum
value of this supercurrent; the critical current I., is in general correlated with £y, which
in turn directly depends on the Fermi velocity vp of the weak link [93, (97, |102] [188].

An interesting regime appears then when a perfectly flat band system serves as the weak
link in a JJ [189191] where the zero vp prohibits the existence of a &y and thus
of a supercurrent. Additionally, a normal state conductance G, which in conventional
JJs scales with I, [93, 97, (102, 188], cannot be well defined in such system due to the
absence of a Fermi surface. Nevertheless, recent theoretical works [191] have proposed
that, thanks to the quantum geometric contributions to superfluidity in flat bands [192-
197]—which scale with attractive interactions—a supercurrent can still flow in this case.
In this section we will explain the concept of this quantum geometry and how it plays a
role in driving superconducting phases in flat band systems.

4.1.1 The quantum metric

In a given band, the distance between nearby Bloch states uy gk and ug in the Brillouin
zone is given by:
d€2 = (uk+dk — uk\uk+dk — uk> ~ Z(akiuk|8kjuk>dkidkj (4.1)
0]
Therefore, from here we can define the quantum metric g;;(k) = (O, uk|Ok, ux) as the real

two-rank tensor that measures these distances. In a more general way, we can define the
quantum geometric tensor B;;(k) as the projector of the overlap of Bloch states derivatives:

Bij(k) = (Okux| (1 — |uk) (uk|) [O; uie) = (O, uic|Oc; uie) — (O une|une) (ue| Oy uc) . (4.2)
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4.1. Quantum Geometry and superconductivity in the flat band limit

This two-rank tensor can be decomposed in its real symmetric and imaginary antisymmetric
part, which have direct physical implications [198]. From Eq. (4.1]), we can deduce that
the quantum metric is the real part:

9ij(k) = Re(B;;(k)), (4.3)

and the imaginary part turns out to be related to the Berry curvature:

05 (1) = 5 Tm( By (K)). (1.4)

This last property is very important, as the integral of the Berry curvature over the Bril-
louin zone gives the band’s Chern number C"
1

- = k2 Q(k). 4.
¢ 2 B.Z.d ( ) ( 5)

We will see how the quantum metric naturally emerges when calculating the superfluid
weight Dy of a superconductor, and how this contribution becomes dominant in flat bands
compared to the conventional term from the BCS theory. To this end, let us first introduce
this quantity in the framework of a BCS superconductor.

4.1.2 Superfluidity in the BCS theory

The simplest phenomenological description of the electromagnetic response of supercon-
ductive materials is based on the London equations [84} 93], which follow from the relation

Js = —D,A, (4.6)

with Js the supercurrent density and A the vector potential. Eq. describes a purely
non-dissipative response, fundamentally different from the usual normal-state behavior of
a material to the application of an external electromagnetic field, which is dissipative and
characterized by Ohm’s law j = o E, with E = —0A /0t the electric field. The counterpart
of the conductivity o for a superconductor is the so-called superfluid weight Dy [199], which
is an intrinsic property of the material.

Hence a nonzero superfluid weight Dg # 0 is the very criterion of superconductivity.
In tandem with Maxwell’s equations, Eq. provides a quantitative description of the
two essential phenomena that define the superconductive state: perfect conductivity and
perfect diamagnetism. As an example, the London penetration depth Ay, is essentially the
same observable as the superfluid weight since the two are related by Ap = 1/v/uoDs, a
simple consequence of Eq. together with Ampeére’s law.

Under the framework of the BCS theory [86, 87|, the superfluid weight essentially
tells about the kinetic energy of the Cooper pairs when driven by a supercurrent. More
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formally, in a superconductor with order parameter A(r) = |A(7)|e’?(™) the superfluid
weight measures the energy required to create a modulation of the order parameter phase
@(r), which is expressed by a term in the free energy of the form [192]:

2
AP =T [ @ YD Jyorer)de(r) (47)
ij

In general the superfluid weight is a two-rank tensor [Dy];; in anisotropic systems, and is
also known as the superfluid stiffness. The BCS theory [86, 87| gives the following result
for the superfluid weight of a single spinful electron band at zero temperature:

€ dVk 0%¢(k)
T R? /B.Z. (2m)N felk) Ok, 0k

[Dslij (4.8)

where N is the spatial dimension, (k) the single-particle dispersion of the partially filled
band and f(e€) is the electron occupation probability in the superconducting BCS ground
state. Crucially, the curvature of the single-particle band dispersion d; 8kje(k) is the most
important microscopic property affecting the superfluid weight according to Eq. .

For a band where the dispersion can be approximated by e(k) = h°k?/2meg, Eq. (4.8))
simply gives:

Dy=" (4.9)

where ng is the density of Cooper pairs. Instead, for a perfect flat band with zero curvature,
we would expect Dy = 0 according to Eq. (4.8).

4.1.3 Quantum geometric contribution to the superfluidity

It has been shown in recent years that the superfluid weight in a multiband system consists
of two terms, referred as conventional and geometric contributions [192, 194}, 200]:

Dy = D& 4 pgeom. (4.10)

DE™ ig essentially similar to the superfluid weight of Eq. (4.8)) as discussed above, and is
zero in a flat band. As we will see now, in contrast, D&°°™ can be non-zero in a flat band.
If the band is quasi-flat, both of these contributions are present.

The general formula for Dy in a multiband system is quite complex, but is simplified
in the limit when the (quasi-)flat band of interest is separated from other bands by a gap
Egap, that is larger than the superconducting gap: Egap > A. In a system with the above
conditions and within the flat band limit, where D{®™ oc 9,0k €(k) — 0 and D = D§*™,
the superfluid weight can be analytically solved [192]:

4e?

pgeemy— " [y(l— dVk g;:(k 4.11
[ s ]l] (QW)NBQNorb V( V) B gzy( )> ( )
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4.2. A Josephson junction with a TBG weak link

where v is the filling fraction of the isolated flat band, N, is the number of orbitals where
the flat band states have a nonzero amplitude, g;;(k) is the quantum metric, and U is the
energy scale of the effective attractive interaction between the electrons (either caused by
phonons; spin fluctuations, etc.).

Eq. essentially indicates that a nonzero superfluid weight (and thus a super-
current) arises from a finite quantum metric and attractive interactions. Note that no
dispersive term appears, in contrast to Eq. . Thus, this quantum geometric contribu-
tion becomes crucial in flat band systems where the usual kinetic energy-based mechanism
fails to predict a superconducting phase. To test these predictions, by rewriting each ex-
pression Eq. and Eq. in terms of the superconducting gap A and expanding
to T'< T, one can find that the two results give two different dependencies on A [192],
which could be directly probed in experiments [59, |197, 201-203].

Finally, we note that recent works [194-196] have shown that the geometric term can
dominate in moiré systems and multiband lattice models, which is of especial interest for
us. In the rest of this chapter, we present our experimental results on a twisted bilayer
graphene Josephson junction, where we analyze how the quantum geometry and other
contributions can affect the supercurrent when flowing through the TBG flat bands.

4.2 A Josephson junction with a TBG weak link

The above results on how the quantum geometry can dominate the supercurrent in a flat
band superconductor can give an idea that, if a conventional superconductor proximitizes
a flat band system, forming a JJ, the /. would not necessarily be zero even though v
vanishes. The theoretical models describing this are very recent and more complicated
than the one presented above, as the supercurrent now flows according to the Josephson
effect. However, experimental studies of the proximity effect at this regime are still lacking.

The interacting flat bands of magic angle TBG [8-10] make one very suitable candidate
where to test these predictions, shown to host a rich phase diagram with strongly correlated
electron physics. While its bands may not be perfectly flat [11], they are separated by a
band gap from a set of highly dispersive bands, to which the Fermi level can be shifted
by simply applying a gate voltage. Moreover, the bandwidth of the flat bands can be
tuned by varying the twist-angle across different devices. Together, these features make
TBG Josephson junctions a uniquely tunable system for studying the flat band limit of the
superconducting proximity effect, enabling direct comparisons between flat and dispersive
regimes and systematic exploration of the role of bandwidth and interactions.

Here we show how we were able to create such JJ with a TBG weak link and proximitize
both its flat and dispersion bands. Our samples consist of a van der Waals heterostructure
of twisted bilayer graphene encapsulated with hBN and patterned into a rectangular mesa
of width W ~ 1.5 pm. The devices are capacitively coupled to a SiO2/Si back gate that
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4. Flat band limit of the SC proximity effect in TBG Josephson junctions

allows to control the carrier concentration in the TBG, and are contacted with sputtered
s-wave superconducting NbTiN leads that form one-dimensional edge contacts, resulting
in junctions of length L ~ 200 nm. Depicted in [Fig. 4.1 is a schematic of a typical device
along with our measurement setup. All data were obtained at a temperature of 35 mK.

It is worth noting that previous experiments on gate-defined JJs, which exploited the
electric tunability of TBG, were able to use its intrinsic superconducting state and induce
a proximity effect in other fillings of the bands [204} [205] [P3]} While these devices benefit
from perfectly transparent interfaces, they face limitations such as carrier density variation
across the junction, which creates multiple phases in series rather than a single state, and
the inability to isolate and study the weak link from the adjacent superconducting regions
[205,, |206] . Additionally, the unknown pairing mechanism of superconductivity in TBG
adds further complexity to the interpretation of the proximity effect [207]. Compared to
these previous efforts, our approach facilitates the exploration of the Josephson effect across
different twist-angles and to study both the flat and dispersive bands of TBG.

First, we focus on device D2 with a twist-angle 6 ~ 1.00°+0.01°. When the gate
voltage Vj is tuned across the band structure of TBG (Fig. 4.1c), the measured two-
terminal resistance (red line in ) shows peaks at integer fillings of the moiré unit
cell v =0, +2, £+4, characteristic of samples near the first magic angle 6,, ~ 1.1° [11, |13,
14 117] Additionally, low-resistance states are recorded near the charge-neutrality
point (CNP, v =0), as well as in the dispersive bands at |v| > 4. These superconducting
pockets are found at fillings where TBG has not been previously shown to exhibit intrinsic

superconductivity, indicating they arise from an induced superconducting proximity effect
from the NbTiN.

The formation of a JJ is confirmed by the observation of non-linear current-voltage char-
acteristics in the above-mentioned low resistive regions, indicative of the d.c. Josephson
effect (Fig. 4.1d). The switching from the zero-resistance to the normal state is detected
as a sharp transition in voltage and presents a hysteretic behavior between the retrapping
(I;) and critical (I.) currents, as is common for underdamped junctions or due to self-
heating effects [93, [L09]. The phase coherence of the JJ is further demonstrated by the
observation of oscillations in I. when a perpendicular magnetic field B is applied to the
junction. shows such an interference pattern at the dispersive bands, where the
critical current decays following a typical Fraunhofer diffraction pattern, evidencing the
uniformity of the supercurrent across the junction at these high carrier densities. Further-
more, the period of the measured oscillations AB ~ 2.5+0.2 mT matches well the expected
periodicity from the physical area of our junction AB, ~2.34+0.1 mT, where flux-focusing

effects have already been accounted for (see [Table 4.1)).

The presence of the Josephson effect in the TBG junction throughout its whole phase
diagram is illustrated in [Fig. 4.1f, where the differential resistance dV/dI is recorded as a
function of d.c. current I while tuning V. The registered /. across all fillings is shown
in blue in [Fig. 4.Ib. We note that we also observe superconducting states at the hole
(electron) side of filling v = —2 (v = 2), as regularly reported in intrinsic superconducting
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4.2. A Josephson junction with a TBG weak link

TBG transport devices , . However, the observed I. in the superconducting dome
at v < —2 reaches its maximum at v ~ —2.9 and spans down to v ~ —3.5, exceeding the
range of filling where TBG typically shows an intrinsic SC state [12} [14, [17]. Additionally,
we do not observe any transition in the /. or in the measured interference patterns at these
fillings (as we will discuss later in [Section 4.5). We then conclude that the observed I, in
our JJs is mainly caused by the proximity effect.
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Fig. 4.1: Superconducting proximity effect in a TBG Josephson junction. a)
Device schematic of a TBG sheet acting as the weak link of a JJ. The voltage V across the
junction is recorded as a current bias [ is applied through the superconducting electrodes
in a two-probe measurement. The carrier density is tuned by a gate voltage V; to the doped
Si. b) Resistance R in red (right axis) at zero current bias, as a function of V, (bottom)
and of the corresponding moiré filling factor v (top). Shaded vertical lines indicate the
presence of the charge-neutrality point (gray), the correlated insulators at half-filling of the
flat bands (red), and the band insulators between the flat and dispersive bands (yellow).
Regions with low resistance have a finite critical current I. (blue, left axis), extracted
from the non-linear characteristics measured in f. c¢) IV curve measured at V; =50 V.
The solid and dashed lines have opposite sweep directions as indicated by the arrows. d)
Interference pattern recorded at the dispersive bands, for V; =60 V, which agrees well with
a uniform single-slit junction (white dashed line). e) Band structure of TBG for 6 = 1.00°.
f) Differential resistance dV/dI map, where dark blue regions indicate superconducting
states. Their contour along positive values of I was used for extracting I. in b. All data

was obtained in device D2. Adapted from .
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4. Flat band limit of the SC proximity effect in TBG Josephson junctions

4.3 Unconventional scaling between I. and Gxn

In [Fig. 4.1p, the maximal critical currents that we observe in the flat bands are of I. ~ 65
nA; only a factor of five lower compared to the dispersive bands with I. ~ 350 nA. This
is surprising, as we would have expected a much stronger suppression of the SC proximity
effect in the flat bands as compared to the dispersive bands, given the large reduction in the
bandwidth and Fermi velocity [191], Since I, values itself do not allow for a direct
estimate of the strength of the SC proximity effect, it is instead typically approximated
with the I.Ry product . Here Ry is the normal state resistance of the JJ,
which we extract through resistance measurements at a current I > I..

shows I.Ry vs v, where we find especially large values in the dome shaped
proximity-induced regions between fillings v = +2 and v = 44, which are comparable to the
ones in the dispersive bands. This further confirms that unlike the initial expectations, the
SC proximity effect is surprisingly large in the flat bands of TBG [97, 102, [106]. In [Fig. 4.2)
we also show other devices that do not have flat bands in their band structure, so that we
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Fig. 4.2: Strength of the proximity effect and I. vs G scaling. a-c) Band
structure for the indicated devices, from bigger to lower Fermi velocity vp and bandwidth
w. d-f) I.Ry product which estimates the strength of the proximity effect. g-i) Critical
current I in blue (left axis) and normal state conductance Gy in red (right axis), both as a
function of moiré filling factor  and carrier density n in the case of the monolayer graphene
device. For G1, E3 and the dispersive bands of D2, these two quantities scale with each
other, whereas in the flat bands of D2 clear violations of this scaling occur. In i, following
the same color code, the dashed vertical arrows indicate whether the corresponding quantity
has reached a maximum or a minimum.
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4.3. Unconventional scaling between [, and Gy

can compare our results with the proximity effect in the flat band limit, as explained next.
These are a monolayer graphene JJ (G1) and a TBG JJ with a twist-angle away from 6,,
(E3, 6 ~0.72° +0.01°), whose main physical parameters are shown in along with
other samples. Their IRy product dependence with filling (Fig. 4.2d-¢), as well as a more
quantitative justification of why the flat bands of TBG in D2 would be expected to have
lower I.Ry compared to the dispersive bands, will be explained later in [Subsection 4.3.1|

In typical JJs, Andreev pairs undergo dephasing processes, the strength of which scales
with the normal state resistance Ry. It is therefore often found that that I. correlates
with Gy = RX,l, the normal state conductance [93],97, [102]. In —h we demonstrate
this is the case in JJs with single layer graphene or small twist-angle TBG as the weak
links. There, we plot the critical current I. and overlay it with the filling dependence of
the normal state conductance G, and find that these two quantities follow each other
closely. Many previous experiments had already shown this conventional scaling [19, 20,
98, 159, |20§].

The same trend is also found when looking at the dispersive bands of our device D2,
as seen in [Fig. 4.2j. However and in strong contrast to this, the flat bands show the exact
opposite trend, as pointed out by vertical dashed arrows. Here both I. and Gy increase
when doping away from the CNP, but while I. peaks at |v| ~ 0.3 and decreases beyond
these points, finally vanishing at |v| ~ 1, Gy continues to increase until |v| ~ 1. At higher
doping, where the I. domes at |v| > 2 are, the same conduct appears: because G shows
smaller values than near the CNP, we expect a vanishing I. and yet we observe similar
(v > 2) or even bigger values (v < —2). This can be seen in more detail in too.

Device | L (pm) | W (um) |0 (°) | AB (mT) | AB, (mT) | I. RN (meV) |l (nm) | £n (nm)
D1 0.20 1.00 0.94 3.6 3.4 0.16 36 o1
D2 0.15 1.50 1.00 2.8 2.5 0.11 35 45
D3 0.15 1.50 1.24 2.8 2.5 0.12 23 33
El 0.15 1.50 0.45 2.5 2.5 0.10 20 98
E2 0.25 1.50 0.51 2.1 21 0.05 36 101
E3 0.25 1.50 0.72 2.1 2.1 0.05 31 89
G1 0.45 4.50 - 0.5 0.5 0.10 196 155
G2 0.35 4.50 - 0.6 0.6 0.14 190 148
G3 0.45 3.30 - 0.7 0.7 0.11 253 178

Table 4.1: Summary of all TBG and graphene Josephson junctions devices. D1-
3 are the TBG JJs close to the magic-angle, E1-3 are the ones further from it, and G1-3 are
monolayer graphene JJs. Shown parameters include length L (£0.01 pm), width W (£0.01
nm), twist-angle 6 (£0.01°), measured field-periodicity of the critical current oscillations
AB (£0.2 mT) and the expected periodicity from the physical device area by including
flux focusing effects AB,. Transport properties include the maximum values found of the
product of the critical current with the normal resistance I.Ry, the mean-free-path I,
and the superconducting coherence length in the weak link &y .
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4. Flat band limit of the SC proximity effect in TBG Josephson junctions

To verify that this unconventional scaling appears only in the flat bands of TBG, we
have studied two more devices close to the magic angle: D1 (6 ~ 0.9440.01°) and D3
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Fig. 4.3: Proximitized flat bands with varying twist-angle. a-c) Colormaps of
measured differential resistance dV/dl as a function of d.c. current I (left axis) and filling
v of the flat band, for devices D3, D1 and D2, respectively. The solid red line corresponds
to the normal state conductance Gy (right axis). The critical current I, of each device is
extracted by following the contour of the dark-blue regions in the colormaps, marked by
white-dashed lines. The dashed vertical arrows indicate the regions where I. and G5 do
not scale with each other. In D1 and D3, the observed Josephson effect holds throughout
the entirety of the flat bands, given the absence of correlated states at integer fillings. In
the case of D2 (the closest to 6,,), the superconducting phases get interrupted by insulating
states at half-filling. Adapted from
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4.3. Unconventional scaling between [, and Gy

(0 ~1.2440.01°). Their geometrical and transport parameters are gathered in
Their differential resistance colormaps are shown in alongside the I, in dashed
white lines (left axis) and Gy in red solid lines (right axis). We have also placed vertical
arrows (following the same color code) pointing at ranges in filling where the 1. does not
scale with G .

For instance, in sample D1 ), Gn ~ 0.5 mS and I is nearly zero at the CNP,
both following the same increasing trend up to v ~ 1.3 and down to v ~ —1.5. However,
with further doping, Gy decreases and I. increases in turn, forming dome-shaped peaks.
Compared to the CNP, at v ~ £+2 a higher I. of ~ 50 nA is observed despite having the
same Gy value. A similar trend is observed in sample D3 ([Fig. 4.3a). For device D2, the
same violation of the I. vs G scaling discussed before in can be further seen in

ig. 4.3c.

4.3.1 Estimation of the expected decrease of I.Rpn in the flat
bands

In this subsection, we justify of our comments above about the flat bands being expected
to lead to a weak induced superconductivity by the conventional theory of Josephson
junctions, given the large reduction in their Fermi velocity. We do this by performing
an analysis based on the theory of long-diffusive junctions, where we can give an initial
estimation of how much the induced-superconductivity should be quenched in the flat
bands, as compared to the dispersive bands and other devices far from the flat band limit.

By extracting the electron mean-free-path, lyg = AL+/m/ e?W Ry+/n, where n is the
electron carrier density, and comparing it (I, < 35 nm) to the length of our junctions
L ~200 nm (see [Table 4.1)), we can conclude that all of them are in the diffusive regime
since I, < L [98]. This includes both TBG and monolayer graphene JJs, and is also
consistent with their I.Ry values being much smaller than the superconducting gap of

NbTiN, A ~ 2.1 meV (see [Fig. 4.2d-f and [Table 4.1)) [209] 210].

The superconducting coherence length inside the weak link in this diffusive regime is
expressed as &y = \/hD/A = \/hvplmfp/2A , where D = vplyg,/2 is the diffusion coeffi-
cient in two dimensions. Since in general, a band structure does not have a constant vp,
alternative we can use the Einstein relation of diffusive transport

on = De’DOS, (4.12)

where oy = L/W Ry is the conductivity and DOS the density of states at the Fermi level.

Thus, from there we get &y = \/ﬁL/WezARNDOS, and by using the DOS of the band
structures in [Fig. 4.2h-c, we find the values of {; shown in [Table 4.1 where for all samples
¢n < L, implying that they are in the long regime [97] 98, |106].

According to the theory of long-diffusive SNS junctions [106], the maximum I.Ry
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4. Flat band limit of the SC proximity effect in TBG Josephson junctions

product is limited by the Thouless energy E7j, = hD/L? < A. To evaluate the extent to
which F7p, limits the I. Ry in our devices, we can estimate it by using again the Einstein
relation in Eq. . The results are shown in —c in green. There we can see that
for G1, E3 and the dispersive bands of D2, Epy, reaches values of ~ 0.1 meV, each following
a very similar trend to the measured I.Ry products in [Fig. 4.2d-f. For the flat bands of
D2 however, this value drops to extremely low values ~ 1078 meV, due to the very small
vp (or diverging DOS).

In the theoretical limit of long junctions, where Epp/A — 0, the ratio I.Ry/E7p
reaches a maximum value of ~ 10.8 at zero temperature [106]. In [Fig. 4.4d-f we show
these [.Ry/FEpy ratios alongside this theoretical limit, represented with a black-dashed
line. In the case of G1 it stays quite constant at ~ 1 and for E3 it ranges from ~ 0.1 to
~ 1. In , the dispersive bands of D2 also give I.Ry/E7, ~ 0.1 —1 when taking the
DOS of the continuum model (brown datapoints at |v| > 4). These values are consistent
with previous studies of graphene JJs in this regime [211}, 212], where the low I.Ry/Erp
ratio compared to the theoretical limit was attributed to an increment of the electron dwell
time in the junction due to imperfect interfaces. The conclusion here is that, for devices
far from the flat band limit, there is no excess of supercurrent than what is expected from
their DOS and the conventional theory of SNS junctions. This is also consistent with the
observed conventional scaling between I. and G in [Fig. 4.2g-i.

In contrast, for the flat bands, the diverging DOS results in I.Ry/E7r;, ~ 10° (brown
datapoints in[Fig. 4.4f at |v| <4), far too big compared to the theoretical limit. This already
hints at our observed proximity-induced superconductivity to be higher in the flat bands of
TBG than what is expected from the conventional Josephson effect, especially comparing
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Fig. 4.4: Scaling of the proximity effect according to the theory of long-diffusive
JJs. a-c) Thouless energy Epp, estimated from the density of states of the band structures
shown in [Fig. 4.2] d-f) Ratio I.Ry/E7y, vs moiré filling factor v and carrier density in
the case of G1. The horizontal black-dashed line represents the theoretical limit ~ 10.8 of
long-diffusive SNS junctions. In ¢ and f, the violet datapoints in the flat bands correspond
to Epy, estimated by taking D = vplyg/2 and a constant vp ~ 4 x 104 m/s.
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4.3. Unconventional scaling between [, and Gy

this result with the previous discussion about the dispersive bands and other devices away
from the magic-angle with higher dispersion, where the limit ~ 10.8 is not surpassed. Even
by taking much greater values of vp than those predicted by the continuum model (and
D = vplygy/2), for example vp ~ 4 x 10* m/s [11], we find that the proximity effect still
surpasses the theoretical limit by almost one order of magnitude in I.Ry/E7;, (purple
datapoints at || < 4 in [Fig. 4.4k.f). This suggests the presence of additional mechanisms
responsible for such strong values in the flat band limit, as we will address in the following.
We note that this estimation represents a lower bound, since vy in TBG was generally
found to be even lower at these fillings of the bands [197, 213]—which would result in
larger I.Ry/FEpp—and non-ideal interfaces with the superconducting contacts can cause
a further reduction of the limit ~ 10.8 [106} 211}, 212].

We note that this analysis relies on several simplifying assumptions, such as the carriers
in the weak link being ruled by diffusive transport and modeled by the Usadel equations,
perfect transparency in the SN boundaries by neglecting any suppression of the supercon-
ducting gap A, and a sinusoidal current-phase relation [106]. Therefore, it mainly serves
only as a justification that the proximity-induced superconductivity in the flat bands is
expected to be much weaker than what we observe, from the theory of conventional SNS
junctions.

4.3.2 Interaction-driven critical current

In the flat bands of TBG we have observed an exceeding I. compared to the values that one
would expect from the measured G (Fig. 4.3)), as well as an unexpected large I.Ry that
is comparable to the dispersive bands (Fig. 4.2f), although their Fermi velocities differ by
orders of magnitude. These experimental observations hint at a new mechanism to drive
the supercurrent in flat bands.

One reasonable possibility is that the exceeding I. values could come from an extra
contribution that is independent of G5 and thus of band dispersion. Such often-neglected
term, 1 ént, indeed exists and scales with attractive interactions U, contributing to the
total critical current because it boosts the Cooper pair transport through SNS junctions
. It is then an important contribution in (quasi-)flat bands, where the range of pair
correlations without interactions can become short due to localization in non-interacting
transport. Similarly, as in the superfluid weight, part of this increase is related to the
quantum geometry and is independent of band dispersion. In the following, we summarize
the main ingredients and assumptions behind this model worked out by our collaborators,
and refer to and the Supplementary of for a more detailed derivation.

To illustrate how the interaction-induced part of the critical current emerges, we con-
sider a simple Ginzburg-Landau theory description of a perfect flat band in a normal state
with effective attractive interactions of strength U > 0 between the electrons. Here the free
energy of the system can be written as an expansion of the mean field A describing the
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4. Flat band limit of the SC proximity effect in TBG Josephson junctions

attractive interactions:
A2
FzZ#—TZlogdet [iwn, 4+ —H(A)] (4.13)
7 Wn

Here 7 is an index of the unit cell, w, = 27T (n+ 1/2) are the Matsubara frequencies. The
Hamiltonian H is a Bloch Hamiltonian that incorporates the attractive coupling to the
flat band. To this free energy, a Ginzburg-Landau expansion can be done to emulate the
physics of TBG by inputting some of its microscopic parameters, such as the moiré unit
cell area A, and the averaged Brillouin zone minimal quantum metric &, [214, 215).
This expansion gives

2
R

T-T. AP 1
ATA,,

VAP + ——— S AP+ —————
VATt A, 9673 A,

NG (4.14)
where T, = U/4kp. This means that for 7' < T, the attractive interactions U are strong
enough to create an intrinsic superconducting state in TBG. However, we do not work in
this regime, but rather choose to work out the solution for 7' > T,, where the interactions
are still there but TBG remains in the normal state.

This SNS problem consists on minimizing ' at T > T, while keeping the order pa-
rameters in the superconducting banks to be Ag ~ 2.1 meV, i.e. the gap of NbTiN in
our case. This condition A(z < 0,y) = Age™ /2, A(z > L,y) = Age’?/? makes the prob-
lem analytically solvable if the quartic |A[* term is neglected. For a junction length L
large compared to Ly = §g\/U/(4k:BT— U), the result is the typical free energy of a JJ,

F = hIM cos () /2e, where in this case the critical current stems only from the attractive
interactions. Its expression is then |[P4]f

. 8¢ WL, A2 U
Ilnt _ g 78 (1 _ > —L/Lg‘ 41
© Th A, U 4kpT) € (4.15)

Note that I does not dependent on the normal state conductance Gy and is only
the contribution to the total I. that originates from the attractive interactions. Indeed,
from Eq. one can see that I'"* becomes zero when U vanishes. The total I, would
also contain a component due to transport of electron pairs traversing the SNS junction
without interactions; this is the component dependent on G that is typically considered
and is proportional to the Fermi velocity. However, in a quasi-flat band it becomes small
and therefore it is of interest to consider also I'*. In the simplest approximation, the two
components simply sum together.

Quantitatively, I'** approaches the experimental I. ~ 50 nA by inputting the twist-
angles and geometrical factors of our JJs, and by setting U ~ 10 peV, T~ 100 mK, and
£y ~ 40 nm; as consistent with [214, 215]. As we show in , by setting a dome shape
dependence with filling in U, we can reproduce the domes seen at |v| > 2 in devices D1
and D2, where the I. vs G scaling violation is the strongest. These results serve as an
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4.4. Quantum geometric and multiband contributions to the proximity effect

order of magnitude check that the typical energy, temperature and length scales of the
experimental system can provide critical currents of the order of magnitude observed in
the experiments, within the simple Ginzburg-Landau theory. A thorough analysis of the
possibility of interaction-induced critical current would require a more complete micro-
scopic theory of TBG interactions. The most important message of our Ginzburg-Landau
theory approach is to show a possible scenario where the I. that does not depend on G .
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Fig. 4.5: Interaction-induced critical current in the TBG flat bands. a-b) Ef-
fective strength of the attractive interaction U, with a filling dependence taken to have a
dome shaped behavior; for devices D1 and D2, respectively. The temperature is taken to be
100 mK. c-d) Experimentally measured I. (blue) and Gy (red), along with the predicted
critical current from interactions I™™ vs filling v; for devices D1 and D2, respectively. The
dome dependence of I'** comes from a-b. Notably, since in Eq. , I'™ does not depend
on Gy, it could explain our observed violation of the I. vs G scaling at certain fillings of
the flat bands. Especially at |v| > 2, where I.. is higher or similar to near the CNP, despite
Gy being smaller.

4.4 Quantum geometric and multiband contributions
to the proximity effect

We now turn our attention to how I, evolves with the filling of the flat bands .
This trend is highlighted by the appearance of superconducting pockets in the shape of
domes close to the band insulators between fillings ¥ = +2 and v = £4. In order to get a
better understanding of the driving forces behind these domes, we use the powerful tuning
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4. Flat band limit of the SC proximity effect in TBG Josephson junctions

knob of TBG, the bandwidth w, which can be controlled directly by the twist-angle 6. As
we will see next, by tuning w, we can effectively tune the band dispersion and interactions.

In [Fig. 4.6e-g we also show the I, vs v for the three devices, along with their band
structure according to the continuum model in [Fig. 4.6b-d. It appears that as the w of
the flat bands is lowered, the dome-shaped SC regions move closer to the band-edges at
v = 44. Also, while I, is suppressed in D1 and D3 close to the CNP, in D2, which has the
lowest bandwidth, the region around the CNP shows enhanced I. values.

Seeking the qualitative understanding of this observed critical current variation with
filling and twist-angle, we use the continuum model of TBG [9, 44] and perturbation theory
to compute the linear response function of its electronic bands to an external supercon-
ducting field induced by tunneling from an s-wave superconductor. Here we summarize the
main ideas and results behind the model worked out by our collaborators Denis Sedov and
Mathias Scheurer, and refer to the Supplementary of for a more detailed derivation.

Considering a general electron system without interactions and, thus, without intrinsic
superconductivity, its pairing term is induced by the Cooper pair tunneling from an s-wave
superconductor placed in its proximity. The Hamiltonian of such system can be written as

H= /drc — ] e (r) + / dr[A@)l, (r)-cf () e, (4.16)

where cq (1) (c:fw(r)) is the fermionic operator which annihilates (creates) an electron with
spin o =1,/ and valley n =+, — at a point r; h,, is the single-particle Hamiltonian of the
material that is being proximitized (TBG in our case); u = EF is the chemical potential
or Fermi level; and A(r) is the contact-induced pairing amplitude.

For this system, we want to compute the superconducting pairing correlation function
(c,—(r)-cp 4 (r)) which we treat as a response function of the TBG bands to the external
superconducting field A(r) using perturbation theory. First, we assume that the induced
pairing amplitude varies continuously within the unit cell (u.c.) of TBG, i.e. A(R+a)~
A(R), where R is the lattice vector of a certain u.c. and a a vector within it. Thus, we
study the SC correlator averaged over the u.c., such that at a distance R from the extrinsic
superconductor into the TBG it takes the form

o= [ da (e, (R+a)-cps(R+a)). (4.17)

Here, besides the dominant induced Cooper pair components with opposite spin (1,]) and
valleys (+,—) [19, 216], a possible small admixed intravalley component in TBG is expected
to be quickly suppressed with R.

By treating the pairing term A(R) as a perturbation and taking the linear approxima-
tion, the main form of the studied SC correlator is derived:

=S Y R ROAR) Y AT, o (115)
q,k R/ n,n’
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4.4. Quantum geometric and multiband contributions to the proximity effect

This quantity can thus be expressed as the Fourier transform of the product of two con-
tributions. The first term

qbdisp . tanh (5—q/2,n’/2) + tanh (£+q/2,n/2>
k.q,n,n’ —

4.19
5k—q/2,n’ +€k+q/2,n ( )

represents the kinetic contribution to the induced superconductivity, which is determined
by the dispersion & ,, = Ex , — p of the n-th electronic band with respect to the Fermi level,
and resembles the structure of the finite-momentum Cooper susceptibility. Importantly,
the induced Andreev pairs do not need to reside only in one single band at the Fermi
level Fr, but can also have weight across multiple bands, as the sum over n in Eq.
indicates. The contribution from this multiband pairing to ¢r, however, diminishes the
further these bands are from Ep and the larger their dispersion is (see Eq. ), and
thus is expected to be significant only in the flattest bands. Andreev pairs formed by two
electrons belonging to two different bands can also contribute to Eq. if n#n’, known
as an interband process.

The second term in Eq. (4.18)),

2

= | [ da e ul (@) teiqpan(@)) (4.20)

, =
k,q,n,n

u.c.

involves the overlap between Bloch states at different momenta and is, thus, determined
by the quantum geometry of the bands. To prove this, we can take the flat band limit by
approximating the bands to a flat dispersion &y ,, F 0. Further expanding over small

values of q, we end up with

PR Z eiq(R_R,)A(R’/) Z [571,71’ - guy,nn’(k)quqy — A (k)g"q” + O(’q‘él)} , (4.21)
" q,R/ n,n’ k

where g, nn (k) is the quantum metric of a multiband system:

guu,nn’(k) = Re (5n,n’ <auuk7n|al/uk,n> - <8Muk,n’ |uk,n> <uk,n’ |8Vuk,n>> . (4'22)

Thus proving the connection between the quantum metric (compare Eq. and Eq. )
and the formation of the contact-induced superconductivity. It is worth noting that, in
the flat band limit, the filling factor of the now completely flat bands loses its meaning.
Therefore, to study the contribution from the quantum geometry in Eq. to the
induced-superconductivity in TBG, we do not do it under this flat band limit but rather

analyze how it changes ¢r in Eq. (4.18), comparing to the dispersion term in Eq. (4.19)
alone, as we will see below.

We note that ¢ is a quantity that decays the further it travels into the TBG from the
s-wave superconductor. Therefore, it can be thought as the coherence length, which is a
proxy of the critical current. If one is bigger, so is the other, and vice-versa. To compare
¢r with our experimental I., we take its value at a distance in unit cells coinciding with
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4. Flat band limit of the SC proximity effect in TBG Josephson junctions

the center of our junctions. With this monotonic relation between the two quantities, the
main features in the twist-angle and filling dependence of I, are expected to be captured by
¢r. The strength of this formalism lies in that we can explicitly account for the different

a) Single-Band
¢E B.

b) D3 (6=124') )  W-66meV(D3) - 2% --pOS —I,
401 w~66meV ’

E (meV)
N N
e e e e
Normalized ¢p
o
bt

ing Fermi velocity - and bandwidth w

Fig. 4.6: Proximity effect with decreasing bandwidth in the flat bands. a)
Sketch illustrating the contribution to the induced superconductivity accounted for. Here,
we take the atomic limit and thus only consider the contribution from the dispersion of the
same single band where the Fermi level Er lies, ¢%B'. b-d) Band structure of the TBG
continuum model along high-symmetry points for the three different 6 corresponding to
samples D3, D1 and D2, respectively. The bandwidth w of the flat bands is also shown.
e-g) Computed superconducting correlator ¢g vs filling factor v for the single-band process
illustrated in a (gray-dashed line), along with the density of states from the band structures
in b-d (black-dotted line). The experimental I, is shown in dark blue.
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4.4. Quantum geometric and multiband contributions to the proximity effect

contributions to the proximity effect, which include the band dispersion (single band and
multiband) and the quantum geometric terms.

We thus begin by studying only dispersion-driven effects by taking the atomic limit,
where the Bloch states are completely momentum independent, exactly like an atomic

insulator. In this limit, we get iegrfl e Op.n» 50 that not only the quantum geometric

contribution of the states is suppressed, but also removes the interband contributions to

the SC correlator completely, leaving ¢r ~ >k >-5, gbﬁi?n -

At first, we constrict the Cooper pairs contributing to the proximity effect to only
be formed from the same band where the Fermi level lies, e.g. the electron flat band
(Fig. 4.6a). We can do this in Eq. (4.18]) by not taking into account the sum over other

bands n. This single-band contribution is thus

dis
R~ Y e - (4.23)
k,q

In this case, as v is varied, we find that the calculated QSSR'B' approximately follows the
density of states for all w —g). It shows peaks close to half-filling v = £2, which
rapidly decrease close to the band edges v = £4 and the CNP. Although this scenario very
well matches the broadest bandwidth w ~ 66 meV (Fig. 4.6¢) with our I. measurements,
it dramatically fails to describe the observed features of devices D1 and D2 with lower w
(see —g). For the flattest bands, w ~ 4 meV, the peaks in gb%‘B' strongly broaden
and show an almost constant value across the entire range of v, failing to produce dome
shaped regions.

By now departing from the atomic limit, we incorporate the overlap between Bloch
states at different momenta, which is determined by the quantum metric of the bands;
known to play a dominant role in the superfluidity of flat band systems [192-197]. The
result,

.G. di
D D (4.24)
k,q

is shown in the orange traces of [Fig. 4.7f-h. In the case of the highest w, with considerable
dispersion, ¢}-Q{'G' (Fig. 4.7|f) does not change much from (bSR'B' (Fig. 4.6e). However, consis-
e

tently with the importance of this contribution in flat bands, ¢~ is strongly altered from
QS%'B' and the DOS as the bandwidth is lowered in -h, giving rise to dome shaped
features that move closer to the band-edges, as experimentally observed in the I. of devices
D1 with w ~ 18 meV and D2 with w ~ 4 meV. We find that overall, the Qﬁg'G' term better
matches the findings of the w ~ 4 meV case, as it predicts a finite induced-superconducting
phase in the center of the band and close to the CNP, which is observed in device D2.

Similar trends are found when multiband processes are considered, shown in the bright
blue traces of [Fig. 4.7f-h. Here, in the atomic limit, so that only dispersion-driven effects
weigh in, we sum over other bands where Ep lies:

.B. di
¢11\1/[ B Zz(ﬁkiﬁn,n' (4'25)

kg 7
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4. Flat band limit of the SC proximity effect in TBG Josephson junctions
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Fig. 4.7: Quantum geometric and multiband contributions to the induced su-
perconductivity in the flat bands. a-b) Sketches illustrating the different contributions
to the induced superconductivity. The color of the spin of the electrons forming the An-
dreev pair indicates which band they are coming from. In a, we depart from the atomic
limit and consider the quantum geometry contribution, alongside the dispersion from the
same band where the Fermi level Er is. In b, we take the atomic limit and consider not
only the dispersion from the same band where the Er lies, but also the interference with
more bands, i.e. multiband pairing. c-e) Band structure of the TBG continuum model
along high-symmetry points for the three different 6 corresponding to samples D3, D1
and D2, respectively. The bandwidth w of the flat bands is also shown. f-h) Computed
superconducting correlator ¢gr vs filling factor v for the two processes illustrated in a-b,
following the same color-code as the sketches of the Andreev pairs. The experimental I is
shown in dark blue.
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4.4. Quantum geometric and multiband contributions to the proximity effect

As in the case of the quantum geometry, ¢1}\{/I'B' departs from the single-band case and the
DOS as w decreases. The quantitative match with the experimental data, especially with
D1, confirms the importance of this mechanism in driving superconducting phases in the
flat band limit, as previously pointed out. The moderate mismatch in D2 compared to
D1 and D3 could come from the fact that only the former shows correlated states due to
interactions, which are not considered in our model.

We also note that if both quantum geometry and multiband effects are considered,
an interband effect also weighs in, where n # n’ and the Andreev pairs are formed by two

electrons coming from two different bands. This results in ¢r ~ >k ¢ > n gbilsqpn n iezn,ll n's

giving broader single domes around |v| 2 2, similar to ¢§.G. and ¢N-B- (this can be found
in the Supplementary material of |[P2])).

Finally, we have shown the importance of the unconventional quantum geometric and
multiband effects when describing the SC proximity effect in the flat bands. In the case
of the dispersive bands, the primary contributions do not include unconventional terms.
Since the dispersive bands have large characteristic group velocities, the contact-induced
superconductivity is mainly determined by the electrons in the small (relative to the band-
width) vicinity of the Fermi surface. We should clarify here that the multiband effect is
also present in the dispersive bands when and only when the Fermi surface crosses multiple
bands. However, in stark contrast to the flat bands, here, the proximity effect is expected
to be well described by the energetically local quantity at the Fermi surface. Motivated
by the fact that the overlap between the Bloch functions from different bands is generally
small ( ffgilo,n,n/ ~ 0p ) We can also neglect the interband pairing. To demonstrate the
conventional nature of the dispersive bands’ proximity effect, we show in that the
DOS of the continuum model captures well the qualitative behavior of the measured I..

L (6=094") —Jc —-DOS b)  D2(6=100") —I ——DOS c) D3(6=1.24°) —|. ——DOS
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Fig. 4.8: Proximity effect in the dispersive bands. a-c) Measured critical current
in the dispersive bands (solid blue lines, left axis), along with the calculated density of
states from the continuum model (black dashed lines, right axis), as a function of filling v;
respectively for devices D1, D2, D3.

Overall and despite the simplicity of the continuum model in describing the flat bands
of TBG, the qualitative agreement with the data highlights that when the bandwidth
reaches the flat band limit, quantum geometric and multiband processes could become
important in the understanding of the susceptibility of TBG to develop superconducting
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4. Flat band limit of the SC proximity effect in TBG Josephson junctions

phases [217]. It may explain the formation of dome shaped SC regions between half-filling
and the band edges, which roughly coincide with the regions that typically also show
intrinsic superconductivity in TBG devices at the magic angle. It is therefore interesting
to consider whether similar effects, as the ones that were worked out here, can also explain
the position of the SC domes in TBG.

Nevertheless, we want to stress that to fully capture and explain the proximity effect in
this correlated system, future theoretical models should further account for interactions,
as our current approach does not explain the vanishing . due to the correlated states at
integer fillings. The presence of interactions at half-fillings of the bands in our TBG JJs
is further suggested by a consistent observation of a symmetry-broken Josephson effect,
which will be the focus of the remainder of this chapter.

4.5 The Josephson diode effect

In a conventional JJ, the current—phase relation is approximately Is(p) = I.sin(y). Since
changing the direction of the supercurrent across the junction must cause a change of sign
in the phase difference ¢ between the two superconductors, this yields

I(¢) = =L (—). (4.26)

From here, we can conclude that the critical current I, is the same in magnitude for a for-
ward (IF) and reverse (I) current bias. This relation stems from the assumed inversion
symmetry in the junction, and the inherent time-reversal symmetry of conventional super-
conductors, where the Cooper pairs are formed by time-reversal pairs of electrons [102].
Thus, achieving a Josephson junction with a preferred direction, that is, where I} # I,
would require to deliberate break one of those symmetries. From a practical standpoint,
this device would create a dissipationless supercurrent in one direction while resistive in
the opposite; i.e. a superconducting analog of a semiconducting diode. As such, this ef-
fect has been coined as the Josephson diode effect (JDE) if engineered in a JJ [218], or
superconducting diode effect if found in a bare superconducting material [219).

Since the 1990s, researchers have explored methods to obtain a non-reciprocal supercur-
rent in a more trivial way, by means of creating asymmetric or nonuniform JJs thanks to
self-induced field effects from the supercurrent [220-222]. Such early approaches included
asymmetric SQUIDs [223] or a rectifying motion of Josephson [224, 225] or Abrikosov
vortices 226} 227]. These devices relied on engineering the inversion symmetry-breaking,
while the time-reversal symmetry (TRS) was broken by applying an external magnetic field
B. Thus, the JDE was observable at a finite field only.

More recent works in the late 2010s showed that this non-reciprocity could be induced
by Rashba spin-orbit coupling (SOC) in a non-centrosymmetric superconductor [228-230].
In these Rashba-type superconductors, where the spatial inversion is uniaxially broken

118



4.5. The Josephson diode effect

along, let’s say the z axis, the spin-orbit interaction causes spin-dependent band splitting,
so that the Cooper pairs are formed by electrons with opposite spin and momenta (both in
the z-y plane), i.e. o(k)=—o(—k). By then applying and in-plane time-reversal symmetry
breaking magnetic field, say By, this creates an imbalance in the energy of the electrons
in the orthogonal direction of the plane depending on whether their spin is parallel or
antiparallel, thus creating a nonlinear response current I, which can be detected in a
transport experiment if the strength of the Rashba spin-orbit coupling is strong enough.
In a more general framework, it was shown that broken symmetries can lead to non-linear
electrical and optical responses, known as Magneto-Chiral Anisotropy [231, 232]. The
expression for the resistance within this theory is

R=Ry(1+~B-I). (4.27)

For the case we are discussing here, v is related to the strength of the Rashba SOC, and
the field B and current I vectors need to be coplanar and perpendicular to the broken
spatial symmetry. In these experiments, the non-linear term in the resistance was observed
within the second-order:

1
R* — 5V RopoBI, (4.28)

which can be measured with typical lock-in techniques by detecting the second harmonic
of the reference frequency signal.

In 2020, another superconducting diode was intrinsically found in a stacked Nb/V/Ta
superlattice, which is superconducting and non-centrosymmetric [233]. The difference with
other works being that they directly observed the relation I # I at finite magnetic field.
These discoveries sprouted more active research over the past five years on finding quantum
materials with these broken symmetries.

One straightforward approach is to proximitize a non-centrosymmetric weak link. De-
pending on whether the SOC mechanism is driven by Rashba-type interactions or valley-
Zeeman splitting, the Josephson diode is enabled by an in-plane [234} 235] or out-of-plane
[236-238] magnetic field, respectively. Either of these produce a non-sinusoidal current-
phase relation, so that Eq. does not hold anymore and I} # I . Indeed, the most
basic model of a Josephson diode includes an anomalous phase shift ¢ in the CPR, and/or
second harmonic terms sin (2¢) [219} 239-242|. This is straightforward to see, as this mod-
ified CPR simply is

Is(p) = aysin (@) + agsin (2¢ + ¢p) (4.29)

where ag < v are real prefactors. The maxima of Eq. (4.29) is then achieved at ¢ ~ /2,
so that the critical current in the two directions is:

IF = I,(£7/2) = a1 Fagsin (), (4.30)
evidencing a JDE only if as, @y # 0.
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4. Flat band limit of the SC proximity effect in TBG Josephson junctions

Another way of engineering a Josephson diode is to leverage the inversion symmetry
breaking of the unconventional FFLO superconductors [243|, where the Cooper pairs ac-
quire a finite momentum shift ¢ that spatially modulates their pairing by Ae?9%. The
modulation occurs in a certain direction z along which a perpendicular in-plane field B, is
applied, such that ¢ =~ 71W LB, /2® [244} 245]. While the Cooper pairs in a BCS supercon-
ductor would normally have a bound energy of A at +kp, here they gain an energy shift
A=+ hqup now that they acquire momentum [246]. In a JJ, this acquired momentum yields
extra terms in the CPR, such as a phase-shift ¢y = 2arccos(hqup/A), thus producing a
JDE [246/-248).

One final very interesting case is to achieve a JDE when no magnetic field is applied,
which can only be done if there exists a spontaneous breaking of TRS in the material
as a result of finite magnetization. Some experiments have proven this by proximitizing
a magnetic tunnel barrier [249| [250] or weak link with the overall structure lacking
inversion symmetry, or by having a bare superconductor that couples and magnetizes
under an external magnetic field [251} 252]. Nevertheless, it is also worth noting that this
zero-field JDE can also be engineered by trapping flux in the junctions [253].

In this section, we report the observation of the JDE in our TBG JJs, which is found
to change upon gate voltage, twist-angle and magnetic field, making these devices a highly
tunable platform where to study this effect. Later in we will also show the
observation of the JDE in gate-defined TBG JJs.

4.5.1 Interference patterns with broken inversion symmetry

We start by studying an interference pattern of the v < —2 superconducting dome in device
D2 by setting v = —2.5. When recording the critical current as a function of magnetic field
in opposite directions of the d.c. current, I7(B) and I (B), we find that IF (B) # |1 (B)],
as clearly seen in the mid panel of [Fig. 4.9h. Such observation indicates inversion symmetry
is broken in our JJs and is unlike the conventional symmetric patterns observed near the

CNP or in the dispersive bands (see [Fig. 4.1 and Supplementary of [P2]).

As explained before, this non-reciprocity is a hallmark of the Josephson diode effect,
which requires both inversion, Cs,, and time-reversal symmetry breaking. Importantly,
in our devices TRS is broken by applying an external magnetic field perpendicular to
the graphene layers. This rules out Rashba spin-orbit coupling as a possible mechanism,
where an in-plane magnetic field perpendicular to the direction of the current is needed
to produce the non-reciprocity [219, 234, 235]. Furthermore, the TBG weak link itself
does not intrinsically break TRS, as no asymmetry is recorded at zero field, i.e. we find
I7(0) = |I7(0)|. This is further confirmed by reversing both current and field directions,
yielding I (B) = |17 (—B)| (see bottom panel of [Fig. 4.9h); an expression that conserves

this said symmetry.

While the inversion symmetry breaking enables the realization of a Josephson diode
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4.5. The Josephson diode effect

at finite magnetic fields, the time-reversal invariance ensures that the direction of the
supercurrent can be reversed, making the diode programmable by applying exact opposite
fields. Such programmability is illustrated in , where the asymmetry of the dV/d[
curves with respect to I reveal the non-reciprocal transport that breaks inversion symmetry
and enables a JDE at finite field. Here the shaded regions mark the I values at which the
Josephson diode is operational. Both curves are also antisymmetric between each other,
confirming the underlying TRS of the system.

The rectification measurements in demonstrate the operation of the diode,
where exact opposite values of current bias are applied over time, showing that the dissi-
pationless flow of the electric current happens in one direction only. The reversibility of
the direction of the diode is achieved when an exact opposite magnetic field is applied,
following the same color code as in [Fig. 4.9p. More recitification measurements at other
fields and fillings can be found in the Supplementary material of
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Fig. 4.9: Asymmetric critical current oscillations and reversible Josephson
diode effect. a) Top panel shows measured differential resistance dV/dI as a func-
tion of d.c. bias current I and magnetic field B, at v = —2.5. The critical current of the
dark-colored oscillations is extracted for positive (IF) and negative (1) directions of I.
These are represented for the same and opposite values of magnetic field in the middle
and bottom panels, respectively. b) dV/dI traces measured at opposite magnetic fields.
Shaded regions mark the current bias values at which the Josephson diode is operational.
The measurements are performed at v = —2.9. ¢) Demonstration of the reversible JDE in
b, performed by switching between the superconducting and normal states when opposite
currents are applied, in this case +34 nA and —34 nA. All data belongs to sample D2.

Adapted from
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4. Flat band limit of the SC proximity effect in TBG Josephson junctions

Previous works on gate-defined TBG JJs |[P3]| and twisted trilayer superconducting
devices [251] had demonstrated zero-field superconducting diodes, although only after a
magnetization field was applied to them. That is, upon cooling down of the samples and
without previously applying any moderate magnetic field (> 50 mT), the asymmetry at zero
field was not observed. This suggests that the ground states of these systems do preserve
TRS in principle, but can couple to a sufficient strong coercive field. Alternatively, in this
work we avoid magnetizing our junctions to prevent trapped flux in the superconducting
leads [253-255], opting instead to record the interference patterns while sweeping carefully
the field from top to bottom. This also eliminates remanent fields in the coil of our magnet,
so that the zero field point coincides with a zero magnetic flux in the devices.

4.5.2 Symmetry-breaking across a large range of filling

Another difference with the previous observation of the Josephson diode in TBG is
that, in this work, we find that the key features reported in extend across the entire
filling of the SC dome, spanning from v ~ —2 to v ~ —3.5. This is depicted in [Fig. 4.10h,
where I and I are shown for identical (left panel) and opposite (right panel) magnetic
field values. The asymmetry

AL =T (B) ~ |I-(B) (431)

is found most pronounced at the center of the dome at v = —2.9, but is no longer detectable
at the edges of it at v = —2.3 and v = —3.4. This is also the case for the diode efficiency
parameter

n(B) = AL/(IS(B)+ 1. (B))), (4.32)

which measures the percentage of rectification in the diode. We represent it at a magnetic
flux ® = ®(/2 in[Fig. 4.10b, where it is found to correlate with the I, of the dome. Here ®
is the superconducting magnetic flux quantum. Furthermore, our observation of inversion
symmetry breaking consistently appears in the domes at the hole side of v ~ —2 for all
our TBG JJs close to 6,, (D1-3) and, in some cases (D1-2), on the electron side of v ~ 2;
confirming the reproducibility of our findings. This is shown in [Fig. 4.10k, where for all
three devices 7 correlates with the I. values of their respective domes. In this case, to
compare the JDE between different devices we have calculated the maximum value of n
between —2®( and 2@ (see Supplementary in for more extraction examples). Such
extent of the asymmetry with filling suggests a distinct phase to be responsible for the
JDE.

According to the Bistritzer MacDonald continuum model, the flat bands of TBG have
(', and spinless time-reversal 7 symmetries [9]. Yet, our observations at fillings |v| > 2
of the flat band do not align with this single-particle framework, suggesting the need to
account for interactions capable of spontaneously breaking Cs,. Several interacting ground
states that spontaneously break either of these symmetries in TBG have been proposed.
Valley polarization was suggested to explain the abundance of orbital magnetism and
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4.5. The Josephson diode effect

broken inversion found at these bands [P3] [251], [256| 257], although original nematicity
measurements , showed Cf, symmetry-breaking instead. In addition, recent exper-
iments in scanning tunneling microscopy have pointed towards the most likely candidates
at such fillings having intervalley coherent or incommensurate Kekulé spiral orders ,
which do not break C5,. Therefore, none of the above candidates are consistent with our
findings, suggesting a different origin. Indeed, a sublattice-polarized phase emerges as the
only candidate that fulfills our observed symmetry relations , , , where each
valley carries opposite Chern numbers C'=1 and C' = —1.

The inversion symmetry breaking resulting from a geometrical asymmetry in the sam-
ple, such as a non-uniform junction with different width of contacts, can be ruled out in

a) —12(B) —II7B) —12(B) —IIZ(-B)  b) Av/d (kQ) BETE)
L AN~ v==34) oA~ SN~

B ATLT S I YA —>
200+ E

- ; 1 151 FD1(6=094°) 5
! D2 (6=1.00°)
1 ] $D3(6=1.24°)
SO-NWVW\;\/VVWN I )
! _
1 \
WWMAMW I '

o LIV AV W v=-23 L TR A AV Wi 0 /
-20 -10 10 20 -20 -10 0 10 20 -4 -2 0 2 4
B (mT) v

Ic (NA)
<

=)

o
>

o
e

0
B (mT)

Fig. 4.10: Inversion symmetry breaking and TRS conservation across the whole
dome. a) Critical current I, as a function of magnetic field B for increasing filling factor
v, from bottom to top. The curves are each vertically shifted for clarity. Left panel
shows the mismatch between both directions of the current I and I, while the right
panel demonstrates the critical currents are equal upon reversing both current and field
directions. All traces correspond to D2. b) Differential resistance dV/dI colormap as
a function of d.c. current I (left axis) and v. Represented along with error bars is the
extracted diode efficiency 1 (right axis) from a as a function of v and computed at a
magnetic flux ® = ®(/2. All data corresponds to D2. ¢) Maximum value of 7(B) between
—2®( and 2®(, represented with error bars and as a function of v for all junctions near
the magic angle D1-3. The line plots correspond to the critical current at zero field (in
arbitrary units) as a function of v. The shaded regions correspond to fillings of the flat
band where a finite asymmetry was recorded. In every case, these domes correlate to the

diode efficiency. Adapted from
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4. Flat band limit of the SC proximity effect in TBG Josephson junctions

our case, given that this effect would be independent of the electron density and yet, the
JDE is only observed for specific densities; only in the flat bands and in devices close to
the 6,, (see Supplementary in for all data). Nevertheless, since we cannot quantify
the amount of strain in our samples, unlike in STM |74} [261], we cannot rule out that this
tuning parameter is favoring a sublattice polarized ground state with broken Cy, symmetry
at these fillings. We note that this is different from a strain-induced structural breaking of
(5., which would lead to a JDE at all carrier densities.

Self-field effects caused by inhomogeneous current bias and screening currents [97, 253]
cannot be the cause of the JDE either, since our small I, results in a bigger Josephson
penetration length \j = ®gtW/ 47W0]c>\% ~ 7 nm compared to the dimensions of the junc-
tion W ~ 1.5 ym, L ~ 0.2 num [97, |188} 262]. Here ¢t ~ 0.6 nm is the thickness of TBG, pug
is the magnetic vacuum permeability and Aj ~ 400 nm is the London penetration length
of NbTiN [263].

In the next section we discuss the possibility of the JDE being formed by a symmetry
broken state or topological edge states leading to a non-sinusoidal current-phase relation,
evidenced by the dominant edge supercurrents at these fillings.

4.5.3 Supercurrent dominated by edge states

Analogous observations to ours have been previously reported in JJs with topological
insulators as the weak link, where the TRS conservation was forced by the topological
protection of these materials when tuned into their quantum spin Hall insulating phase
[264-267). These works showed that these topological edge states, along with higher-order
terms that bring the current-phase relation into a non-sinusoidal form, could give a JDE
[219, 222]. Testing these possible mechanisms would require phase sensitive measurements,
which we leave for future works. Nevertheless, we can perform the analysis described in
[Subsection 1.4.3| by taking the inverse Fourier transform of the measured I.(B) in the
interference patterns, and calculate their critical current density profile J.(z), which could
at the very least reveal some importance of edge transport in our devices.

Starting with the interference patterns of our samples where the JDE takes places
(Fig. 4.11h-b), we observe that the I.(B) oscillations of the interference pattern do not
follow an exponential decay proper of a homogeneous supercurrent profile, but rather stay
constant at fields > 10 mT. Furthermore, the absence of the first pair of nodes in I.(B),
and the node-lifting in general, is a signature of an asymmetry in the supercurrent density
profile [114,|115]. Indeed, by calculating J.(x) we find a supercurrent density profile skewed
and concentrated on the edges of the sample, in line with previous works on gate-defined

TBG JJs [P3],

In contrast, the I. of the interference patterns from the dispersive bands decay ex-
ponentially following the typical Fraunhofer pattern (Fig. 4.11c-d), although occasionally
they can feature some node-lifting (Fig. 4.11f-f). This results into a slight asymmetry in
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4.5. The Josephson diode effect
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Fig. 4.11: Supercurrent density profile and node-lifting. a) Critical current in one
direction of the current, I7 vs magnetic field B, extracted from the interference pattern
at Vy = —30 V (v = —2.5) in D2 from [Fig. 4.9 b) Corresponding critical current density
profile J. as a function of the lateral dimensions = of the JJ. Dashed black lines indicate
the physical limit of the device. The same profile is found for /. c-d) Analogous for
Vy =50V (vr=28.8) in D1. e-f) Analogous for V; =50 V (v ="7.1) in D2. Adapted from

[P2]

the critical current density profile, where the bulk of the junction, J.(z = 0), nevertheless
carries much more supercurrent than in the case of the interference patterns where the JDE
is observed ) The fact that no JDE is observed in the dispersive bands proves
that the asymmetry in the supercurrent profile resulting in node-lifting is not enough no
produce a diode effect, and an anomalous or extra term in the current-phase relation is
needed. Testing these possible mechanisms would require phase sensitive measurements
[202, 267, which we leave for future works. Such higher harmonics or anomalous phases
could be a result of a symmetry-broken state as discussed in the previous section [268,
269], or by topological edge states [264} 266, 267]. We expand on the latter case, since
the abundance of edge transport at these fillings compared to others is already hinted in

Fig. 4.11}and was also observed in the gate-defined TBG JJs | P3|

By performing a more quantitative analysis, in we show the extracted critical
current density profile J.(z) for all the fillings of the v < —2 dome in device D2, following the
same order as in [Fig. 4.10h. To quantify the amount of supercurrent that is carried through
the edges and the bulk, we integrate the obtained J.(z) over the regions shown in[Fig. 4.12p.
The results are plotted in [Fig. 4.12f, following the same colour code as in [Fig. 4.12b. The
error bars are set by integrating over a 5% bigger/smaller width x. Compared to the I,
of the dome measured at zero field (black datapoints), the supercurrents carried by the
bulk and the edges follow the same trend, peaking at v = —2.9. Furthermore, the left edge
of the sample carries significantly more supercurrent than the bulk, while the right edge
supports about the same amount. To better visualize this, we plot in [Fig. 4.12d the ratio
of the edge and bulk critical currents. Indeed, the right edge I, (orange) is about one time
the bulk, except from the right side of the dome, between v = —2.3 and —2.5, where it
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4. Flat band limit of the SC proximity effect in TBG Josephson junctions

doubles the bulk supercurrent. The left edge 1. (violet) is twice the bulk, reaching three
times on the right side of the dome. In conclusion, while it is true that edge transport
dominates over the bulk, its magnitude does not scale with the I. of the SC dome as the
diode efficiency n does (see —d), but rather stays constant across the dome.

Finally, given the range of twist-angles and fillings of the flat bands where the JDE is
found, a natural question is whether the presence of the intrinsic superconducting phase of
TBG (S’ in the following) could play a significant role. However, and as noted before, the
observed [, in the superconducting dome of D2 at v < —2 reaches its maximum at v ~ —2.9
and spans down to v ~ —3.5, exceeding the range of filling where TBG typically shows an
intrinsic SC state [12, |14, 17]. Furthermore, we do not observe any discontinuity in the /.
vs v, T or B, nor an additional resonance in the dV//dI, nor a change in the interference
patterns as the filling is tuned from v = —2 to v = —3.5 (see [Fig. 4.10h). Such features
would be expected if the TBG was intrinsically superconducting in the typical filling range
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Fig. 4.12: Supercurrent density profile in the Josephson diode: Bulk vs Edge.
a) Waterfall plot of the critical current density profile J. as a function of the lateral
dimensions of the junction x, for different values of filling of the band v. Each trace of
Je has been normalized and spaced by one unit. Dashed black lines indicate the physical
limit of the junction. b) Normalized J. vs x at ¥ = —3.3 from a. The red, blue and green
areas correspond to the critical current in the bulk, left edge and right edge of the sample,
respectively. ¢) Critical current I. vs v. Black data is the extracted I, at zero field (same
as in [Fig. 4.10p). The I. of the bulk and the edges are extracted from the supercurrent
density profiles in a, following the example in b. d) Ratio of the I. of the edges and the
bulk as a function of v. Black data is the extracted I. at zero field, in normalized units.

All data corresponds to device D2. Adapted from .
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4.5. The Josephson diode effect

28 <v< =2 205, 270]. Additionally, we observe oscillations in I. whose period
matches the total area of the junction, as expected for an SNS junction. If the TBG was
superconducting, there would be no oscillations and the /. would monotonously decay with
field [202, 205]. The independence in temperature of the inductance associated with the

junction is also consistent with this, as we explain next.

The temperature dependence of the interference patterns, measured at fixed v = —2.9
for device D2, are presented in[Fig. 4.13h-c. There it can be seen that the asymmetric oscil-
lations persist up to 7'~ 0.8 K, beyond which the supercurrent gets washed out as thermal
fluctuations kT become comparable to the Josephson energy FEj = hl./2e . We have
demonstrated that the supercurrent where the JDE is observed is dominated by a skewed
edge transport. Such SQUID-like inhomogeneous supercurrent density profile, along with
the high kinetic inductance of the superconducting TBG , , has been proved
to give rise to an asymmetry in the interference patterns of TBG gate-defined structures
[201], [206]. If this was the case in our experiment, the inductance associated with the tilt
of the interference pattern should increase with temperature and diverge once it reaches
the critical temperature . Instead, we find it independent of the temperature, as seen

in [Fig. 4.13e.
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Fig. 4.13: Temperature dependence of the asymmetric oscillations. a-c) Inter-
ference patterns measured at fixed v = —2.9 for device D2, at different temperatures. d)
Corresponding extracted critical current. e) Extracted inductance L = ®/I from the slope
of the maxima of the center lobes in the I. vs B curves in d, showing independence with

temperature. Adapted from .
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Chapter 5

Gate-defined junctions of monolithic
twisted bilayer graphene

The work presented in this chapter led to the following publications:

[P3] J. Diez-Mérida, A. Diez-Carlén, S.Y. Yang, Y.-M. Xie, X.-J. Gao, J. Se-
nior, K. Watanabe, T. Taniguchi, X. Lu, A.P. Higginbotham, K.T. Law, D.K.
Efetov. “Symmetry-broken Josephson junctions and superconducting diodes
in magic-angle twisted bilayer graphene”. Nature Communications 14, 2396
(2023). https://doi.org/10.1038/s41467-023-38005-7.

Contributions: Sample fabrication, measurements, data analysis, discussion
and paper writing.

[P5] R. Luque-Merino, D. Calugaru, H. Hu, J. Diez-Mérida, A. Diez-Carldn,
T. Taniguchi, K. Watanabe, P. Seifert, B.A. Bernevig and D.K. Efetov.
“Interplay between light and heavy electron bands in magic-angle twisted
bilayer graphene”, Nature Physics (2025). https://doi.org/10.1038/
s41567-025-02912-x
Contributions: Sample fabrication, transport measurements and discussion.

[P8] J.D. Mehew, R. Luque-Merino, H. Ishizuka, A. Block, J. Diez-Mérida, A.
Diez-Carlén, K. Watanabe, T. Taniguchi, L.S. Levitov, D.K. Efetov, K.-
J. Tielrooij. “Ultrafast Umklapp-assisted electron-phonon cooling in magic-
angle twisted bilayer graphene”, Science Advances 10, adj136 (2024). https:
//doi.org/10.1126/sciadv.adj1361
Contributions: Sample fabrication and transport measurements.
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5. Gate-defined junctions of monolithic twisted bilayer graphene

During the first and a half years of this thesis work, the main goal was to develop gate-
defined junctions in TBG in close collaboration with my colleague Jaime Diez Mérida [271].
Thanks to TBG’s gate-tunability and by creating double-gated structures with graphite,
we were able to create Josephson junctions as well as p-n junctions withing a single TBG
sheet. In this chapter we show the optimization we worked out for the nanofabrication of
these devices and their characterization, as well as the JJ experiments that we carried out
. Lastly we will also show the optoelectronic experiments that were carried
out with these devices in collaboration with my colleague Rafael Luque Merino [272].

The idea of this project consisted in trying to exploit the gate-tunability of the phase
diagram of TBG in order to make a Josephson junction entirely of the same material. That
is, by engineering multiple gates above and below the TBG, one could have its supercon-
ducting state on two sides while at the middle any other state of its phase diagram: a
metal, correlated insulator, etc. When this project started, this was an important mile-
stone for the research field, as a last definitive proof of superconductivity in TBG was
still lacking: controlled phase-coherence. At that point, interference patterns were already
observed in standard transport devices when measuring the I. of the SC state as a function
of perpendicular magnetic field |11}, 13, [14]. These oscillations were thus accidental; the
interpretation being that twist-angle inhomogeneity across the device could cause one or
several Josephson junctions in series. Controlled phase-coherence of the SC state of TBG
was then first achieved in Refs. [204, 205] by creating gate-defined JJs, confirming that
the zero-resistance state with phase transitions in temperature, current and magnetic field
was indeed a superconducting condensate with a global wavefunction.

The interest of creating these devices also lies in that, since the phase diagram of
TBG has exotic quantum states such as correlated insulators, strange metals, topological
and magnetic states, a tunable gate-defined JJ would allow to create all kinds of hybrid
junctions within a single device. To this date, many other nanostructures with local elec-
trostatic gates have been exploited in TBG, such as SQUIDs [201], interferometers [206],
and superconducting constrictions [273].

5.1 Fabrication and characterization of gate-defined
devices

To realize such multiple gating structures, we stack encapsulated TBG with two local
graphite gates: one at the bottom and another at the top of the stack. The goal is to first
fabricate the device into a Hall-bar, measure all contact pairs, and then selectively cut the
top graphite between the pair of contacts that exhibits a superconducting state or has the
closest twist-angle to the magic angle 1.1°. |[Fig. 5.1p shows a schematic of the targeted
device geometry.

When stacking these samples, it is important to avoid etching the SiO9 substrates where
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5.1. Fabrication and characterization of gate-defined devices

we exfoliate the top graphite flakes, as otherwise the adhesiveness of the PDMS/PC stamp
will not be strong enough to pick up the flakes. Another important point is that the top
hBN in the stack must be larger than the two graphene flakes forming the TBG, extending
beyond them on at least one edge. This is because the top graphite has to be contacted
with Cr/Au electrodes (without any prior etching), as shown in [Fig. 5.1p. If the TBG
extends beyond all edges of the top hBN, the electrodes will inevitably create an electrical
short between the top graphite and the TBG, making the top gate ineffective.

The idea of contacting the top graphite in several places, as shown in [Fig. 5.1p, is that
multiple cuts can be made so that each of those electrodes acts as an independent top
gate. In this way, one device could have more than one gate-defined junction. However,
rather than predefining the junctions, our approach is to first pattern the device into a
Hall-bar geometry and contact the TBG (see [Subsection 2.1.6). Then, after measuring at
low temperatures and identifying the suitable pair of contacts, we cut the top graphite
between such pair to form a gate-defined junction. This is visualized in [Fig. 5.14d.

For precise etching of the top graphite without damaging the top hBN, we use an
oxygen RIE process with 50 W of RF power, 100 sccm of Oy and 90 mTorr of chamber
pressure, resulting in a high etching rate of ~ 1 nm/s. These high powers gave us the

Fig. 5.1: Fabrication of gate-defined TBG devices. a) Sketch of the device geometry
from the side, with a graphite bottom gate (BG) and a split graphite top gate (TG1-2) in
purple. b) Real example of a double-gated stack after contacting the top graphite (white)
in several places with Cr/Au electrodes. ¢) AFM of a cut on the top graphite to split it
into two top gates. d) The same device as in b, after etching the top graphite with a cut,
indicated with an arrow. The sample is shown under PMMA for better visualization.
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5. Gate-defined junctions of monolithic twisted bilayer graphene

best results, with a well defined profile along the perpendicular direction of the Hall-bar
channel. The etched regions were aimed to be as short as possible, such as the one shown
in [Fig. 5.1c with a gap of ~ 150 nm, so that a Josephson junction could be made. Here
some residues after nanofabrication from PMMA appear to be bridging the gap of the two
sides, but these polymers are highly insulating, so that no electrical short can happen once
the graphite is completely etched. We found that the top hBN was mildly etched with this
process; about 1 nm. This will be taken into account when optimizing the recipe, as we
will explain later in this section.

After the cut is done, the device is ready to be measured with multiple gates, as shown
in [Fig. 5.2h. We do so with a 4-probe scheme, where the voltage drop Vi, is measured
across the junction in the longitudinal direction of the a.c. current /. With this three-gates
structure (one back gate BG and two top gates TG1 and TG2), there are two types of
configurations one can create: a p-n or a p-n-p junction. To first characterize the device
globally, we tune the back gate while keeping Vg1 = Vpgs = 0, thus changing the carrier
density across the entire space between the two V., probes. The resulting Ry, = Vi /1
trace, shown in (bottom axis), is typical of a TBG device near the magic angle.
This specific device has a twist-angle of § = 1.14°£0.02°. The two top gates can also be
used together (Vpgs) to globally tune the carrier density while keeping Vg = 0, as shown

in the top axis of [Fig. 5.2pb.

After the global characterization, we independently tune the gates to demonstrate con-
trol of the gate-defined junction. We start with the p-n junction configuration, where Vg
and Vpgo are tuned separately while keeping Vpa = 0, creating a carrier density profile
such as the one in [Fig. 5.2c. The dashed vertical lines indicate the ~ 150 nm physical cut
of the split gate. The corresponding resistance map, shown in [Fig. 5.2k, displays perpen-
dicular features corresponding to the resistance peaks in at integer fillings of the
flat bands v. Their perpendicular orientation between each other demonstrates that we
have completely independent control of the carrier density on either side of the junction.
The features being more resistive in one direction than the other are due to a difference in
the length of the two channels: the one under TG1 being 3 nm long while the other under

TG2 being 0.6 pm (see [Fig. 5.2h).
By now independently tuning Vg and both top gates together, Vrqs, we can engineer a
p-n-p junction as shown in [Fig. 5.2d. When measuring the resistance map in [Fig. 5.2f, this

results in the vertical features corresponding to a measured resistance that depends only
on Vg, meaning they are coming from the middle area where we have split the top gates
(pink shade in ) The diagonal features instead correspond to the two sides areas,
which are gated by both the top gates and the back gate (blue shade in ) The
slope of these diagonals depends on the relative capacitance of the BG (Cpg) and the TGs
(Cas), so that the carrier density is changed according to n = Cpg Vg + CrasVras. From
the map in [Fig. 5.2f, one can see that taking an horizontal (vertical) cut while maintaining

Vras =0 (Vag = 0) corresponds to the traces in |Fig. 5.2b as a function of Vg (Vrgs)-

Compared to the diagonal features, the measured R, of the cut area (vertical features)
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5.1. Fabrication and characterization of gate-defined devices

is much weaker since it corresponds to a much shorter length 0.15 pm compared to the
total length of the 4-probe measurement 4 pm. Another detail is that the vertical lines in
the resistance map are not perfectly vertical like the ones in [Fig. 5.2e. This is because the
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Fig. 5.2: Gate-defined TBG junctions. a) Optical picture of a gate-defined TBG
device, along with a 4-probe transport measurement scheme across the junction. The cut
that splits the top graphite gate is indicated by a dashed line. b) 4-probe longitudinal
resistance R, of the device in a for different temperatures and as a function of back gate
voltage (bottom) and both top gates together (top). c¢) Carrier density in a p-n junction
from the electrostatic potential of the two top gates. d) Carrier density in a p-n-p junction
from the electrostatic potential of the back gate and the two top gates. The dashed vertical
lines indicate the physical cut of the split gate. e) Dual gate map of R, vs TG1 and vs
TG2 at 1.5 K. This configuration corresponds to a p-n junction. f) Dual gate map of Ry,

vs back gate and vs both top gates together at 1.5 K. This p-n-p configuration can be used
for a JJ.
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5. Gate-defined junctions of monolithic twisted bilayer graphene

middle area can also be affected by the electrostatic potential of the top gates, as demon-
strated in [Fig. 5.2d. There, we can see that the carrier density continuously changes and is
only flat in the center of the junction along a smaller length d; than the one corresponding
to the physical cut of the top graphite (vertical dashed lines). This observation is very
important since our goal is to create a gate-defined JJ with this p-n-p configuration, where
the sides would be tuned into the superconducting state of TBG.

In order to understand the optimal length of the cut in the graphite and the respective
thicknesses of the hBN dielectrics, we did simulations of the electrostatic profiles by solving
the Poisson differential equation in two dimensions with a finite element method:

Ve(z,y)VV (2,y)] = p(,y)/e0. (5.1)

Here V is the electrostatic potential, p the charge density, € the dielectric constant (e = 4
for hBN) and €y the vacuum electrical permittivity. The problem can be simplified as
we are mainly interested in the solution along the TBG sheet, which can be considered
one-dimensional.

By varying the thicknesses of the bottom and top hBN, we found that the device could
have a sharper electrostatic profile with a more homogeneous carrier density in the junction
area, the thicker the top hBN was than the bottom hBN (see SI in and [271] for more
details). This is also rather intuitive: if the back gate is closer to the TBG than the top
gate, its electrostatic field will be stronger in the junction. This observation proved to be
key for us in order to increase the success yield of engineering gate-defined JJs.

Finally, it is important to note that our multi-gated geometry allows for further config-
urations. One could also independently tune the top gates TG1 and TG2, as in [Fig. 5.2k,
while also changing the BG, giving rise to a p-n-p’ junction, where three parts of the device
would have different carrier densities. As an example, this was exploited in Ref. [205] to
do tunneling spectroscopy experiments.

Overall, details such as the size and thicknesses of the hBN dielectrics when stacking
and a good control over the graphite etching proved to be essential in order to successfully
optimize the nanofabrication of these gate-defined junctions. We nevertheless sometimes
found that after splitting the top gate, the device would not show the exact same features
as prior to the etching process. This could be caused by a small etching of the TBG at its
edges, as the heterostructure has a steep profile when shaped with the CHF3:04 recipe.
Other gate-defined junction experiments instead used gates of Au [204, 205|, so that no
post-process etching had to be done. The main reason to choose graphite over Au lies in
that the device is entirely composed of vdW materials, which has been shown to give an
atomic flat surface with better electrostatic profiles and screening from long-range potential
fluctuations than evaporating a metallic film [37, [274].

Future improvements of these devices could bring the best of both approaches by using
the nanopatterning anodic oxidation technique to etch away the top graphite prior to
stacking without the need of a mask [275].
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5.2. Gate-defined Josephson junctions in TBG

5.2 Gate-defined Josephson junctions in TBG

In this section we present the results of our work on gate-defined TBG Josephson junctions
[P3]] where we use the p-n-p configuration shown in [Fig. 5.2{d,f and the SC state of TBG
itself to probe the d.c. Josephson effect. We mainly explore the proximity effect when the
junction is tuned close to v = —2, where we observe a broken inversion symmetry interfer-
ence pattern, along with magnetic hysteresis. By studying the effect of magnetization on
the asymmetry of the I. oscillations, we conclude that our findings are consistent with the
ground state of the weak link being a valley polarized phase with orbital magnetization.
Finally, we demonstrate how the combination of magnetization and its current-induced
switching enables the realization of a programmable zero-field Josephson diode.

Along with other recent works on WTes [276], these junctions are unique in that all
components are made of the same 2D material, ensuring an ultra-clean interface between
the superconductors and the weak link—an aspect that has posed a major challenge when
engineering heterojunctions [277-280]. This approach has nevertheless certain limitations.
Because the measurement contacts are always placed on the adjacent regions that are
tuned to the superconducting state (see [Fig. 5.3p-b), the weak link cannot be studied in
isolation when using the global back gate. As a result, determining the phase diagram of
the weak link relies on the assumption of twist-angle homogeneity throughout the whole
area between the contacts, whereas the geometry discussed in solves this issue.
Additionally, since the carrier density across the junction must vary continuously (see
Fig. 5.2d), the effective junction length d; changes as the carrier density n is varied. This
prevents the weak link from exhibiting one single state, resulting instead in several phases
in series that traverse the complex phase diagram of TBG [205], 206] .

In our case, a 150 nm gap between the split top gates results in an effective junction
length of dj ~ 100 nm, which is short enough to enable the proximity effect. This is
consistent with our estimate of the Ginzburg-Landau coherence length of superconducting
TBG, &1, ~ 100 nm. We obtain this value by measuring its critical temperature 7, and
its critical field B, at different temperatures: B. = ®¢/2r&2, (1—T/T,).

5.2.1 Symmetry-breaking and edge states

The device we use for this study is a TBG with a twist-angle of § =1.11°+0.02°, featuring
all correlated states at integer fillings and a superconducting state at v < —2, as shown in

the 4-terminal R,, measurement of .

The dual gate structure and the cut in the top graphite allows us to independently
tune the doping level in three different regions, as depicted in [Fig. 5.3p. The carrier
density in the junction or weak link, ny, is controlled by changing Vpg. In order to
create a JJ in the device, the carrier density on the side regions is set to the optimal
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5. Gate-defined junctions of monolithic twisted bilayer graphene

doping of the superconducting state, ngc = —1.72 x 102 cm™2 (see and top
panel of [Fig. 5.3(). The carrier density in the junction n; can be continuously changed
according to njy = CgaVBq, while the sides can be kept at nge if the top gates are changed
accordingly with the relation Virgs = (ngo — CaVBa)/Cras. This essentially means that

we must follow the direction of the diagonal features of the dual-gate map such as the one
in [Fig. 5.2f.

Such configuration results in a gate-tunable JJ, where the proximity effect varies as n
is changed. This is visualized in the dV/dI map of and is evidenced by a varying
I, (contour of the dark-blue region in the I axis) when n varies. Here we show that we can
tune the junction from the SC state (SC/SC/SC) into the normal metal region (SC/N/SC)
and close to the correlated insulator (SC/CI/SC). The range of ny is only limited around
—3 < v < —2 because, as explained before and visualized in [Fig. 5.2, the effective length
of the junction d; decreases as |nj —ng¢| is increased.
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Fig. 5.3: Gate-defined TBG Josephson junction. a) Sketch of the device and mea-
surement configuration. b) Zoom-in of the junction area, where the two sides are gated
into TBG’s superconducting state, while the junction is tuned to a different state. c) 4-
probe resistance R, vs filling v for different values of applied magnetic field. This shows
that there is a superconducting state at the hole side of v = —2. d) Top panel shows R,
vs v (top). Bottom panel shows the differential resistance map of the JJ in the same range
vs carrier density of the junction n; (bottom). e) Interference patterns measured at three

different densities, indicated with colored circles in d. Adapted from .
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5.2. Gate-defined Josephson junctions in TBG

By now measuring the interference patterns as a perpendicular field B is applied to the
device ), we see that the SC/SC/SC configuration for nj ~ —1.7 x 1012 ecm~=2 gives
a decreasing I, without any oscillations and disappearing at B, ~ 100 mT, evidencing that
the device is uniformly doped into the superconducting state. In the SC/N/SC we do see
oscillations in I., following what seems the typical decay of a Fraunhofer interference pat-
tern. This proves that a JJ is formed. It is important to note that although this interference
pattern follows the typical exponential decay of the Fraunhofer pattern, the observed peri-
odicity AB ~ 4.5 mT is much smaller that the expected value AB~ ®q/WL~20+1mT
from the geometrical factors of our junction L ~ 100 nm and W ~ 1.0 pm. The explanation
for this is that, in this JJ, the superconductors are two-dimensional. The TBG therefore
does not screen the external magnetic field as other thick superconductors would, i.e. the
London penetration length A\; is too large compared to its thickness ¢ ~ 0.7 nm. In this
2D limit, another characteristic length, the Perl length A = 2)? /¢, is the one responsible
for screening currents that flow in the device in order to create a varying phase difference
with B that gives rise to the observed interference patterns [205]. Different works have
derived the periodicity of the magnetic field in this limit [262} 281} 282], which gives

(5.2)

for a junction of width W. This is very different from the 3D case, AB3p ~ ®¢/W L, and
strikingly, Bop does not depend on the length L of the junction. With this consideration,
we get a value that reasonably approximates to our observations Bop ~ 3.7+£0.5 mT.

While the SC/N/SC configuration in [Fig. 5.3p has all the expected symmetries along the
I and B directions, we observe that when n is tuned towards the SC/CI/SC configuration,
at ny ~ —1.56 x 1012 cm™2, the interference pattern shows an asymmetry with respect to
the current I7(B) # I (B), which is a signature of inversion symmetry breaking. On
top of that, due to a magnetic hysteresis and previous magnetization of the sample, there
is an asymmetry with respect to the B-field I} (B) # I, (—B), indicating time-reversal
symmetry breaking. These two inequalities are a signature of a Josephson diode, which
was extensively discussed in[Section 4.5l As we will see later, this JDE is a bit different than
from in that here it happens also at zero field after the sample is magnetized.

For now, we go on to analyze in detail the I, oscillations with field (see ) At
low field, we see that the I. does not vanish to zero, which is a signature of an asymmetry
in the supercurrent density profile Jg. As we learned in [Subsection 1.4.3| and [Section 4.5]
this asymmetry is not enough to produce a diode effect though. In addition, the I. does
not exponentially decay like in the SC/N/SC JJ, suggesting that edge transport dominates
in this SC/CI/SC configuration. Finally, the I, oscillations disappear at ~ +20 mT just to
revive at +£40 mT. This double beating suggests that there is a fast and a slow periodicity,
which could correspond to transport from the bulk and the edges. Indeed, by using the
reversed Dynes-Fulton method, we find that the supercurrent density profile Jg(x) in
-c gives rise to an interference pattern in [Fig. 5.4b that resembles very well our data
in |[Fig. 5.4a. Here the bulk supercurrent helps to reproduce the big envelope oscillations
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Fig. 5.4: Supercurrent carried by edge states in the symmetry-broken phase. a)
Same interference pattern as in the right panel of , measured at n; ~ —1.56 x 1012
cm™2, but up to higher fields. b) Calculated interference pattern from the supercurrent
density in c. ¢) Supercurrent density Jg vs real-space coordinates = along the width of the
junction, where the physical limit of the device is at 0.5 pm. The inset shows the model
we have used with the two edge supercurrents carrying a different phase ¢,qg4e1,2. Adapted

from .

of periodicity ~ 20 mT, while the two edge channels give the fast oscillations of ~ 4.5 mT
periodicity. The difference in absolute value between the supercurrent in the two edges
gives the non-zero I, nodes. Now, in order to reproduce the asymmetry between I and
I, we have also added different phases to the two edge currents, so that the CPR is no
longer sinusoidal and a JDE can be reproduced.

This extra phase ¢ effectively adds up to the external magnetic field B = Byt + ¢.
Adding a global phase will not change the I, (see Eq. ), but if one assigns different
phases to the two edges, Yeqge1 and @eqge2 While keeping ¢y, = 0, an imbalance will be
made in the I.(B) function, creating an asymmetry with respect to the current: I (B) #
I7(B). These different phases and amplitudes can be regarded as the two edge channels
having different Fermi velocities [266]. Finally, to recreate the tilt of the Fraunhofer, where
an approximated time-reversal symmetry I (B) = I (B) holds, we assign opposite signs
to the phase of the two edges: Yedger = +7/4 and Yeqge2 = —7/4. As we will see in the

following, this time-reversal symmetry is broken if we pre-magnetize the sample.

Overall we conclude that the edge supercurrent in the SC/CI/SC configuration plays an
important role in the symmetry breaking. This also hints at a non-sinusoidal current-phase
relation, which would need further experiments to be explored.

5.2.2 Orbital magnetism and valley polarization

By measuring the interference pattern shown in now at 800 mK in [Fig. 5.5p,
we observe that the abrupt jumps in the I. at low fields disappear, but the asymmetry
remains. This is shown in [Fig. 5.5¢, where we can see that I (B) # |I;(B)|. There is an
offset in magnetic field in the central peak too, which enables to have an asymmetry at
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5.2. Gate-defined Josephson junctions in TBG

zero field, i.e. i.e. I7(0) # |I7(0)|, which we will exploit later to prove the existence of the
Josephson diode with the rectification measurements. [Fig. 5.5 shows that this offset and
the asymmetry at zero field only appears if the sample is pre-magnetized by large external
magnetic fields, such as the purple (By; = 500 mT) and orange (Bjs = —300 mT) traces.

Since none of these features are observed in the SC/SC/SC nor the SC/N/SC configu-
rations (see ), we suggest that the CI state at v = —2 in the weak link of the JJ is
an unconventional insulating state. Specifically, such state should account for the inversion
symmetry breaking and be prone to magnetization, breaking time-reversal symmetry too
and generating a spontaneous net magnetic flux that moves the position of the central
peak away from zero-field. Below, we propose that our observations are consistent with an
interaction-induced valley polarized (VP) state with net orbital magnetization.

As explained before in [Subsection 1.3.2) the flat bands of TBG at the Fermi level
(v =0) are 4-fold degenerate because of the spin and valley conservation. In the one-valley
Hamiltonian, these degeneracies are protected by the Co,7 symmetry, while in the full-
valley Hamiltonian both C5, and 7 are individually preserved. Several quantum transport
and STM studies have reported signatures of these symmetries being broken at integer
fillings of the flat bands. These involve Chern insulators at high magnetic fields [15, [16]
and quantum anomalous Hall effect (AHE) at zero-field [80] 81]; the latter thought to be the
same Chern insulators nucleating at zero-field and competing with insulating phases [283].
In these cases, the 7 symmetry is broken with an external magnetic field or spontaneously
broken by the system, showing an spontaneous magnetization in the AHE. As for the C,
symmetry, it can be broken by aligning the TBG with hBN, as reported by Refs. [80,
81|, or by electron-electron interactions [14} 283]. One interpretation is that these broken
symmetries and the degeneracy lifting both lead to the appearance of two sets of four
bands, one for the electron flat band and another for the hole flat band. These four bands,

each carrying a different flavor, carry a Chern number of C'=1 or C'= —1 [16]. Depending
on how the bands get filled, the different integer fillings can have a finite or zero total
Chern number. One possible candidate that can arise in the case of the v = —2 Cl is a

valley polarized state with Chern number C'= —2 [256|, 257}, |259| [284], which could explain
our findings since in our case these symmetries are both broken in our JJ when we tune
the weak link close to v = —2 (slightly on its hole side).

To further support this hypothesis, we construct a model of a JJ made with two s-wave
superconductors and a TBG weak link in such ground state at half-filling. The result
is shown in and the full derivation of this model can be examined in the SI
of and in Ref. [284]. By comparing with the experiment in , we can see
that the theory reproduces very well the shift of I. from zero field. Importantly, in order
to explain the asymmetry of the I. curves, this model needs an extra assumption: that
the small currents I ~ 10 nA can switch the polarization of the orbital magnet, as it has
been observed at other fillings in TBG [82, |83] 285]. With this assumption, the theory
can reproduce both I and I values and their respective asymmetry. Finally, we find
that if the C9,7 breaking terms are removed from the model, the TBG bands become
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Fig. 5.5: JJ with orbital magnetism. a) Differential resistance vs current measured
at zero field and base temperature for different pre-magnetization B field values. If no
field is applied after cooldown of the sample (black trace), there is no recorded asymmetry
at zero field. If however, the sample is pre-magnetized to large fields, such as the purple
(Bas =500 mT) and orange (Bj; = —300 mT) traces, the dV'/dI is no longer symmetric.
The inset indicates that this is consistent with a hysteresis cycle of magnetization vs applied
external field. b) Interference pattern measured at 800 mK. c) Extracted critical current
in both directions of the d.c. current, I and |I |, from b. d) Theoretical calculation
of the critical current with a VP state in v = —2, showing a good agreement with the
experimental observation in c¢. Adapted from .

topologically trivial with a zero orbital magnetic moment, and the resulting interference
pattern is totally symmetric in both current and field . This suggests that the observed
features are a direct consequence of the electronic ground state near v = —2 carrying orbital
magnetization.

Since our observation of the symmetry-broken interference pattern occurs at v ~ —2.2
and not exactly at v = —2 , one possibility is that the state in the junction is a Chern
insulator with a coercive field matching the pre-magnetization fields that we are applying.
Such a state has been previously identified at slightly elevated magnetic fields B > 300
mT , which is in good agreement with the observed coercive field of the JJ. In such
scenario, this valley polarized state with orbital magnetization and C' = —2 would be
characterized by the presence of edge states, consistent with our findings in One
important point though is that we do not see any magnetic state when we measure the
4-probe resistance across the entire device with only the back gate, that is, across the total
area where both the weak link and the superconducting regions lie. An explanation for
this could be twist-angle inhomogeneity, i.e. the magnetic state only lies in the trench
area, or that this state showcases domains of different magnetic behavior, as observed in
SQUID-on-tip experiments . In this case, there could be domains of different Chern
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5.2. Gate-defined Josephson junctions in TBG

number, so that the small area of the weak link could have domains that sum up to a
non-zero total Chern number, and thus show magnetization, while the whole device area
could sum to a zero total Chern number.

To pinpoint the exact ground state of TBG at half-filling is of great importance, as it
could shed light into the mechanisms driving the interactions in this material, and because
it could act as the parent state of the TBG superconducting state. After this work,
others have pointed at the valley polarization of the half-filled bands [256]. Nevertheless,
the general theoretical understanding [260, 287, [288|, backed up by more recent STM
experiments [74], [289] [290] are consistent with inter-valley coherent or incommensurate
Kelulé spiral ground states. These are many-body ground states with more complicated
mechanisms than fully polarizing the spin or valley quantum numbers, and rather have an
admixture or imbalance between them.

The concept of the Josephson diode effect has been already introduced and discussed
extensively in [Section 4.5 In the case of this study, we find non-reciprocal transport at
finite fields, such as the one we observe in , and also at zero-field when the sample
was pre-magnetized. This latter makes the diode even more programmable, as we show
in [Fig. 5.6l There, the direction of the diode can be reversed at zero field by previously
applying opposite magnetization fields.

Such effect was also reported later without any junction in superconducting twisted
trilayer graphene [251], where the proposed explanation also involved an imbalance in the
valley polarization of the bands [252]. Furthermore, in this case the intrinsic supercon-
ducting state seems to gain this imbalance from its parent state in the valley polarized
phase of the normal metal. Future works on these systems should involve a deeper study
of the mechanism behind this pre-magnetization, both experimentally and theoretically.
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Fig. 5.6: Zero-field programmable Josephson diode. a) Differential resistance
dV/dI vs d.c. current I measured at zero field and base temperature, for two different
pre-magnetization fields Bj;. The shaded vertical lines indicate the direction and values of
I where the Josephson diode is operational. b) Rectification measurements from a, where
dV/dI is measured in the middle and bottom panels for two opposite values of I shown in

the top panel, i.e. 25 nA. Adapted from .
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For the former, a big improvement would be to have a SQUID on-chip so that the real
magnetic flux traversing the sample could be double-checked to be zero after applying the
pre-magnetization fields.

5.3 Gate-defined p-n junctions in TBG

In this section we further exploit the capabilities of our multiple-gated TBG devices to
form p-n junctions, as we showed in [Fig. 5.2c,e. These structures enable to study both
thermal [58,291-294] and light-matter coupling [295-299] properties, which can offer valu-
able information into deciphering the ground states of TBG at different fillings of the flat
bands [300-302].

The p-n junction architecture, apart from allowing us to probe these properties locally
by controlling the chemical potential, it enhances the photo-response upon light illumina-
tion. This allows us to first study the light-matter interaction of TBG by measuring the
cooling dynamics of the electrons , and finally dwell into its thermoelectric response

[P5]}

5.3.1 Cooling dynamics and Umklapp scattering

This study investigates the cooling dynamics of electrons in TBG upon light illumination,
providing insight into its electron-phonon interactions. The time-resolved photocurrent
measurements were performed in the group of Prof. Klaas Jan Tielrooij, using the gate-
defined TBG p-n junction samples A schematic of the experimental setup is shown
in [Fig. 5.7h, where the photovoltage generated at the junction serves as a probe of the
electronic temperature 7.

By comparing the cooling behavior of TBG (6 = 1.24°) with another non-twisted Bernal
bilayer graphene (BLG) sample, we find that the cooling rate in TBG remains significantly
faster than in BLG, even at cryogenic temperatures. As shown in[Fig. 5.7p, the decay of the
photovoltage in TBG (blue data points) occurs on a much shorter timescale than in BLG
(red data points). In BLG, cooling times extend into the nanosecond range at low temper-
atures due to reduced acoustic phonon interactions, while in TBG, cooling times remain
in the picosecond range down to 5 K (Fig. 5.7¢). This suggests that an additional cooling
mechanism is at play in TBG, which we identify as Umklapp electron-phonon scattering.
This process is enabled by the mini-Brillouin zone of the moiré superlattice, allowing effi-
cient momentum transfer that would otherwise be forbidden in untwisted graphene systems

(Fig5.1).

The cooling dynamics of electrons can be studied using excited-state relaxation mea-
surements, where a laser is used to thermally excite the electron system. Upon exci-
tation, electrons are initially promoted to high-energy states, after which they rapidly
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undergo electron-electron scattering, leading to thermalization into a hot carrier distribu-
tion—characterized by a Fermi-Dirac distribution at an elevated electronic temperature
Te. This hot-carrier population then cools down via electron-phonon interactions, involv-
ing acoustic, optical, or substrate phonons. Cooling occurs on the order of picoseconds at
room temperature, but as the lattice temperature is reduced, phonon occupation decreases,
leading to less efficient cooling and longer relaxation times [303].

These processes are directly accessible through time-resolved photovoltage (TrPV) mi-
croscopy and continuous-wave photomixing (CW-PM), which allow precise measurement
of the electron cooling time by tracking the evolution of T, after optical excitation. Both
techniques rely on optical excitation of the TBG p-n junction, generating a photovoltage
via the photothermoelectric effect, which is proportional to the electronic temperature 7.
In TrPV measurements, the delay time between two ultrashort laser pulses is varied, and
the photovoltage signal is recorded. Due to the sublinear dependence of photovoltage on
carrier temperature, a dip in the signal is observed when the pulses overlap (dt =0), and
the subsequent recovery is used to extract the cooling time. In CW-PM, a beat frequency
is created by two continuous-wave lasers, and the resulting photovoltage oscillations allow
cooling times to be determined from the frequency-dependent damping [304, [305]. The
combination of these methods provides a precise measurement of the cooling dynamics
across different time regimes.

As shown in [Fig. 5.7b-c, in BLG, cooling slows from 300 K to 5 K, consistent with the
expected suppression of phonon occupation at low temperatures [306, 1307]. However, in
TBG, cooling times remain nearly constant at approximately 3 ps across a wide temper-
ature range, indicating that an additional, highly efficient cooling mechanism is present.
This mechanism is not due to diffusive cooling, as we find a lack of dependence on laser
spot size, which contrasts with BLG, where cooling becomes slower for larger spot sizes
due to spatial heat diffusion.

By now changing the laser power and spot size, we can check whether the cooling
rate depends on the initial electron temperature. In BLG, increasing laser power leads to
longer cooling times due to phonon bottlenecks, as acoustic and optical phonons become
limiting factors in the cooling process [308]. However, in TBG, the cooling time remains
largely independent of laser power, further suggesting that a different mechanism dominates
cooling in this system. Additionally, by measuring the cooling time as a function of band
filling, we observe a nearly constant response across the entire flat band, with a significant
increase at full band filling (v = £4), as shown in [Fig. 5.7d. This behavior suggests that

moiré phonons play a key role in the cooling process.

To understand the microscopic origin of this ultrafast cooling, we consider the two flat
bands and the two higher dispersive bands. Theoretical calculations reveal that electron-
phonon Umklapp scattering dominates the cooling process at low temperatures (7' < 10
K). In contrast to normal electron-phonon interactions, which are limited by momentum
conservation constraints, Umklapp processes allow efficient energy transfer by leveraging
the small superlattice Brillouin zone of TBG (see ) The spatially compressed
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Wannier orbitals and low-energy moiré phonons facilitate these interactions, leading to a
cooling mechanism that remains highly effective even at cryogenic temperatures.

The dominance of Umklapp scattering in electron cooling has important implications
for understanding transport properties in TBG. Since electron-phonon interactions play a
crucial role in resistivity, superconductivity, and the strange metal phase observed in TBG,
these results suggest that Umklapp scattering could be a key factor in these emergent
properties. Understanding how electrons lose energy in TBG may thus provide insight into
broader questions regarding the role of phonons in correlated electronic phases.
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Fig. 5.7: Ultrafast Umklapp-assisted cooling in TBG p-n junctions. a) Schematic
of the experiment, where the two top gates of the TBG p-n junction are set to opposite
voltages. The illumination then generates a photovoltage that is proportional to the elec-
tronic temperature T,. b) Photovoltage vs delay time at a lattice temperature of 25K,
where the cooling dynamics of TBG (blue), represented by the decay, are much faster than
for BLG (red). c¢) Cooling time vs lattice temperature shows a constant TBG cooling
(blue) from 5K to 300K, while the cooling of BLG (red) becomes slower at lower temper-
atures. The filled (open) symbols correspond to TrPV (CW-PM) measurements. Error
bars represent the statistical spread across different gate voltages. d) Filling dependence
of the cooling time (top) and resistance (bottom). e€) Schematic of the Umklapp scattering
processes (solid blue arrows) in the TBG bandstructure (left) and in the higher Brillouin
zones (right), allowing for electron relaxation via coupling to moiré phonons (wiggly lines).
The dashed arrows represent the equivalent final state in the first BZ. Adapted from
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5.3.2 Thermoelectric transport and heavy-fermion physics

Both transport and STM experiments have put into evidence that, surprisingly, the flat
bands of TBG exhibit an interplay between itinerant and localized carrier behavior. While
superconductivity [12-14], metallicity [53-55] and topologically non-trivial states [15, |16]
account for the existence of itinerant carriers, the presence of correlated insulators at integer
fillings [11] on the other hand suggest the presence of localized electrons. Thermoelectricity
can be another powerful probe to reveal more aspects about the nature of the carriers in
the flat bands of TBG and shed more light into this dichotomy [291}1293]. In this work [P5]]
we further exploit the p-n junction architecture to study the photo-thermoelectric effect
in TBG by measuring the Seebeck coefficient, which reveals an anomalous response at
integer fillings that can be understood withing the theoretical framework of the topological
heavy-fermion model, as we will explain in the following.

The thermoelectric effect describes the generation of an electric field in a material
subjected to a temperature gradient. This is caused by the diffusion of charge carriers
at the Fermi level from the hot side to the cold side, thus creating a voltage difference
V' between the two ends [309]. The strength of this thermoelectric effect is quantified
by the Seebeck coefficient S, which depends on the charge of the carriers and their band
dispersion:

V =SAT, (5.3)

where AT represents the temperature difference between the two ends. This expression
only holds under the linear regime, where AT < T.

The Seebeck coefficient S is linked to the electronic properties of the material via
its general conductivity o(u, E), as described by the Mott relations [310]. Often, these
expressions are taken in the simpler semiclassical limit, where electron correlations are
neglected and the DOS varies slowly. The Seebeck coefficient for a degenerate Fermi gas
in this limit is given by the so-called semiclassical Mott formula [310]:

k3T 1 dR dV,
3¢ RdVy dE|

S = (5.4)

—LF

where R is the sample’s resistance and Vj is the applied gate voltage. This simplified
formula, which relies on experimentally measurable resistance R and the DOS, successfully
describes the Seebeck coefficient of many materials, such as monolayer graphene [311-314],
where S changes sign at charge neutrality due to the bipolar transport of electrons and
holes in the Dirac cone (see[Fig. 5.8¢). Extrema in resistance (i.e. in the CNP) corresponds
to a zero Seebeck coeflicient since S oc dR/dV, [311, 1312].

In our experiment, we use the p-n junction configuration (see [Fig. 5.2¢) to establish a
chemical potential difference A across the junction, resulting in a difference in Seebeck co-
efficients too, S1 — .52, according to Eq. . Now by shining a continuous-wave excitation
of A =1550 nm on the sample, we induce an increase in the electronic temperature AT, at
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the center of the junction and a temperature gradient pointing away from the center (see
[Fig. 5.8p-b). The sample temperature here is 7= 10K, with an estimated temperature
difference AT, < 1K, which ensures we are in the linear heating regime. In such con-
figuration, we then measure a photo-thermoelectric (PTE) voltage Vprg = (S1 — S2)ATe.
[Fig. 5.8d) shows the measured Vprg around the CNP of a TBG sample (6 = 1.14°), where
it exhibits sign changes in a six-fold pattern as the polarity of the carriers is reversed. This
has been previously observed in monolayer graphene devices around the Dirac point [313,
314], confirming our measured response to have a photo-thermoelectric origin.

By now setting v9 = 0 and continuously tuning v with the split gates, the response
Vprr = S1AT is simply proportional to the Seebeck coefficient of TBG throughout its
flat bands. shows this for two samples (0 = 1.14°, § = 1.06°), where we mainly
focus on the electron side. The transport data R,, of the # = 1.14° sample can be seen in
[Fig. 5.2b. Unlike the response around the CNP, Vprg does not change sign at every integer
filling where correlated states appear in transport, but rather shows a negative value in
the whole electron flat band. The bottom panel of contrasts our data with the
expected response from the semiclassical Mott formula, which we estimate by dR,;/dv
from the transport data and according to Eq. . While capturing well the behavior
around the CNP, it fails to reproduce the response at integer v, as it predicts a vanishing
S due to a peak in resistance. Thus, the strong correlated physics of the TBG flat bands
cannot be described by this non-interacting limit.

As previously discussed in [Subsection 1.3.2) the Dirac-revival picture [73] has been of-
ten used to visualize the Fermi surface reconstructions appearing at integer fillings of the
TBG flat bands. [Fig. 5.8e sketches this, where the flat band is split into four sets by
flavors, each modeled as a Dirac cone. When TBG is doped away from v = 0, all these are
continuously filled. At every other integer v though, one of the Dirac cones (of a certain
flavor) becomes fully filled, falling below the Fermi level, while all the other Dirac cones are
reset to their CNP. This picture explains the sawtooth and square root dependence of the
chemical potential observed in local single-electron-transistor [52, 73] and thermodynamic
measurements [69, |138], as well as other experiments showing a positive thermoelectricity
response [292]. However, this scenario can not account for our full negative PTE measure-
ments, as it would predict a sign-changing Seebeck at a slight higher v than the integer
value, given the bigger DOS for filled holes than electrons (see )

In order to explain our findings, we first use a simple parabolic two-band model, mim-
icking the low-energy band structure of a correlated insulator at integer v = Z. If the
electron (red) and hole (blue) bands are symmetric in k-space, with equal effective masses
my, mjy and lifetimes 7., 75,; S will be antisymmetric like in [Fig. 5.8c. If however, the
bands have different masses, the resulting S becomes skewed, since the DOS now is not
symmetric. We find that only when m; < m} and 73, < 7, S becomes fully negative, as
depicted in [Fig. 5.8f. Such mass and lifetime asymmetry potentially responsible for the ob-
served anomalous, fully negative PTE, hints at an interplay between light and heavy band
structures, which can be naturally accounted by the Topological Heavy Fermion model;
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an interacting theory of the TBG flat bands. In this formalism, developed in the group
of Prof. Andrei Bernevig , the flat bands arise from the hybridization between corre-
lated localized ‘heavy’ f-electrons and dispersive ‘light’ c-electrons. Importantly, in this
framework, due to interactions and the lack of the so-called ’rigid’ approximation, the flat
bands strongly reconstruct upon doping nearly integer v, resembling a two-band model at
these fillings. Furthermore, exact calculations of the Seebeck coefficient within this theory
demonstrate the good agreement with the experiment This model can also account
for the low-power and temperature dependence of the Vprg. For a more detailed discussion
on these measurements and the theoretical modeling we refer to Refs. , .

d ) -250 0 250
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Fig. 5.8: Photo-thermoelectric effect in TBG with gate-defined p-n junctions.
a) Measurement scheme, where a continuous wave laser generates a thermal gradient at the
center of the gate-defined p-n junction, generating a finite PTE voltage thanks to the step
in the chemical potential set by the two top gates. b) This results in different Seebecks
S1 and Sy for the two sides. ¢) A symmetric band structure such as graphene (left) leads
to a S that changes sign (right). d) Vprg vs v of the two top gates around CNP, showing
a graphene-like response. e) Expected S from the Dirac-revival picture. f) Negative S
from different masses and lifetimes. g) Vpg vs v1 in the flat bands (top), along with the
expected result from the semiclassical Mott formula (bottom). Adapted from .
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Conclusions

This dissertation set out to uncover how the Josephson effect manifests in graphene-based
moiré superlattices, especially in twisted bilayer graphene, and how it can reveal the roles of
flat band physics, quantum geometry, and symmetry-broken correlated electronic phases.

In we have detailed a stacking protocol for producing homogeneous twisted
vdW heterostructures, particularly relevant for obtaining TBG samples near the magic an-
gle with a high yield . Additionally, we have presented our efforts to develop a reliable
nanofabrication recipe for high-quality superconducting contacts to graphene heterostruc-
tures with low contact resistance. These experimental challenges have been central to this
thesis, as overcoming them has enabled us to study the Josephson effect in several types
of graphene-based moiré superlattices.

In we have demonstrated ballistic Josephson transport in a graphene/hBN
superlattice, characterized by Fabry-Pérot oscillations and supercurrents that persist up to
high magnetic fields. By studying their dependence on the filling of the moiré minibands,
we can extract information about the underlying band structure, including a renormalized
Fermi velocity and the presence of van Hove singularities .

focuses on magic-angle twisted bilayer graphene Josephson junctions, where,
despite expectations of a suppressed proximity-induced superconductivity in the flat bands
due to their much smaller Fermi velocity, we observe equally robust /. Ry products in both
the flat and dispersive bands. This surprising result is accompanied by a clear violation of
the I.—Gy scaling, which is otherwise ubiquitous in conventional Josephson junctions. To
test recent theoretical predictions regarding the role of quantum geometry in the proximity
effect, we have studied several TBG JJs with varying twist-angles, thereby tuning the
bandwidth of the flat bands. For relatively broad bandwidths, conventional mechanisms
based on band dispersion qualitatively reproduce the experimental dependence of I. on
filling. However, as the bandwidth narrows, such models fail to capture the dome-like
features observed in our experiment. These can only be explained instead by incorporating
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the unconventional contributions from the quantum geometry of the bands or multiband
pairing mechanisms. Our results demonstrate that the proximity effect in the flat bands
of TBG is a sizable phenomenon larger than expected from conventional theory, and point
toward unconventional mechanisms driving the Josephson effect in flat band systems

Finally, in we have leveraged the intrinsic superconducting state of TBG to
engineer gate-defined Josephson junctions. There, we have reported a symmetry-broken
Josephson effect at half-filling of the moiré flat bands and achieved a programmable zero-
field Josephson diode, enabled by a ground state exhibiting finite orbital magnetization
[P3] We have further investigated this effect in [Chapter 4] where although no magne-
tization was present, the inversion symmetry breaking could be observed over a broader
range of fillings in both the electron and hole flat bands, as well as at other twist-angles,
thanks to the extrinsic JJ architecture . Altogether, we have demonstrated the first
realization of a Josephson diode in TBG, both in extrinsic and intrinsic Josephson junc-

tions, establishing a platform for exploring symmetry-breaking phenomena in the ground
states of TBG.

Perspectives

While this thesis has explored the Josephson effect in selected graphene-based moiré su-
perlattices, much remains to be understood about the broader landscape of the supercon-
ducting proximity effect in these systems. Further investigations using alternative device
architectures, new experiments, and diverse twisted heterostructures are essential. In par-
ticular, extending the study of the Josephson effect to other correlated quantum phases,
beyond those addressed here, may offer deeper insights into the fundamental mechanisms
at play and pave the way toward new quantum functionalities.

Further investigations of the interplay between superconductivity and flat bands

Quantum geometry predicts that the superfluidity in a perfectly flat band system is not
necessarily zero [192], which has led to similar predictions when these perfect flat bands
are proximitized in a JJ [191] [P4] An important question is then whether the Josephson
effect can be realized in a truly flat band system. Materials with such idealized band
structures, like the Lieb lattice, have yet to be discovered or synthesized. The imperfectly
flat bands of TBG remain the best candidate to date, although their phase diagram suffers
from device-to-device variation arising from twist-angle disorder [119], strain [261] and the
dielectric environment [116, 117]. Alternatively, simulations of the Bogoliubov—de Gennes
Hamiltonian in artificial lattices, such as those realizable in ultracold atom platforms,
may offer new interesting insights and a powerful platform where to test the most basic
predictions of quantum geometry [196].
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Nonetheless, much remains to be explored regarding the interplay between supercon-
ductivity and flat bands in TBG JJs and other twisted multilayer systems. For instance,
the AC Josephson effect has been predicted to exhibit sizable quantum geometric effects
[315]. Specular interband Andreev reflections could also be studied in TBG JJs, where the
typical FWHM of the CNP lies below the meV range, which has posed a significant chal-
lenge in monolayer and bilayer graphene for their observation [316]. By adding a tunneling
probe in the middle of a TBG JJ, one could also probe the energy levels of the Andreev
Bound states when proximitizing the flat bands [21].

Finally, mirror-symmetric twisted trilayer graphene provides another particularly in-
teresting system, as its flat bands are crossed by a Dirac cone belonging to one of the
graphene layers. This Dirac cone remains decoupled at zero electrical displacement field,
but hybridizes with the flat bands under finite values |60, 61]. As a result, the flat band
bandwidth can be tuned continuously within a single device by varying the displacement
field, offering an excellent platform to probe the role of flat bands in the superconducting
proximity effect.

Phase-sensitive measurements in TBG and the order parameter symmetry

Our investigations of the Josephson effect have focused on recording the critical current as
a function of filling, magnetic field and temperature. Future studies with TBG JJs should
aim to implement phase-sensitive experiments, where the current-phase relation can be
directly accessed, providing deeper insights into the superconducting proximity effect in
the flat band limit.

Regarding the intrinsic superconducting state of TBG, although it has been exten-
sively studied and there have been some evidences pointing towards a nodal gap [12, 50,
57-59], no experiment to date has revealed any information about the symmetry of its
order parameter. This would require tunneling experiments capable of resolving in-plane
momenta, rather than the out-of-plane component as in STM measurements [50] or tunnel-
ing spectroscopy in transport devices [21]. While ARPES can resolve the band structure
of materials in momentum space, it cannot go to such low temperatures (< 1 K) and its
energy resolution of ~ 20 meV is bigger than the bandwidth of the flat bands. As such, it
is not a suitable technique to probe the superconducting state of TBG.

One potential platform for such investigations are Josephson junctions, which histori-
cally played a key role in identifying the d-wave symmetry of the superconducting order
parameter in cuprates [317]. These experiments are incredibly challenging though, as the
contact between the superconducting TBG (S’) and the s-wave superconducting lead (S)
must include a tunneling barrier, such that two SIS’ JJs are placed within a SQUID ar-
chitecture. This also requires precise knowledge of the crystallographic orientation of the
moiré superlattice, since the two JJs need to be formed in the two directions of momen-
tum space that one wants to probe the order parameter in. In order to gain a complete
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knowledge of the symmetry, multiple junction directions must thus be engineered. Given
that mesoscopic devices are prone to twist-angle disorder, which can convolute the tunnel-
ing currents by picking up contributions from different directions in k-space, a local-probe
technique may be more suitable for this task. The recently developed Quantum Twisting
Microscope, which enables in-situ twisting and momentum-resolved spectroscopy of the
band structure of a 2D material, has the potential to open up this avenue [318].

Superconductivity in the Quantum Hall regime and the Hofstadter butterfly

Magnetism and superconductivity have long been considered to be two incompatible phases
of matter. The observation of the superconducting proximity effect at high magnetic fields
in the Quantum Hall regime [23, |24] has challenged this notion, opening a promising avenue
for the study of topological superconductivity. These experiments have remained limited
to monolayer graphene, which currently stands as the only 2DEG for which engineering
transparent superconducting contacts is possible, and have so far focused exclusively on the
v =2 LL [24]. A natural extension would be to study the spin-polarized vy, = 1 state,
as well as the fractional LLs. The latter are especially interesting, as the quasiparticles at
play, the so-called parafermions, can host Majorana zero modes when proximitized by a
superconductor [319].

Extending these studies to other material systems could also offer important new in-
sights. In the context of this thesis, our observation of high field superconductivity in
graphene/hBN moiré superlattice JJs in opens an avenue for exploring the
Josephson effect when proximitizing the Landau levels’ crossings within the Hofstadter
fractal spectrum. Studying the magnetic phase diagram of TBG with the proximity effect
would also be very intriguing, as it features not only LLs, but symmetry-broken Chern
insulators as well [15, 16]. Investigating the Josephson effect across these different topolog-
ical phases could reveal the microscopic mechanisms underlying the formation of crossed
Andreev bound states. Realizing such experiments, however, would require engineering
short-ballistic TBG JJs, a significant experimental challenge given the low Fermi velocity

of the flat bands.

On a broader scope, engineering transparent superconducting contacts to other high-
mobility semiconducting 2DEGs, such as GaAs or InAs, could also significantly advance our
understanding of the superconducting proximity effect in both the integer and fractional
Quantum Hall regimes [320].

Exploring the Josephson effect in other moiré materials

The field of moiré quantum materials is rapidly evolving. Since the beginning of this
thesis, several strongly correlated phenomena have been observed in moiré materials based
on transition metal dichalcogenides (TMDs), such as WSeg, WSa, MoTez, WTey, or TaSs.
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These include superconductivity [67, [68], antiferromagnetism [321], Chern insulators [322],
Quantum Spin Hall phases [323], and charge density wave order [324]. Exploring these
quantum phases with the Josephson effect makes a compelling avenue of research, although
it has proven to be extremely challenging to engineer superconducting contacts to TMDs
[325]. Nevertheless, very recent advancements to overcome this limitation hold a lot of
promise [326/-328].

Only very recently as well, a Fractional Anomalous Quantum Hall Effect (FAQHE) was
discovered in both twisted bilayer MoTes [329-331] and five-layer rhombohedral graphene
aligned with hBN [332]. This novel phase of matter, thus far observed exclusively in moiré
superlattices, consists of a fractional Chern insulator at zero magnetic field and holds great
promise for advancing our understanding of topological phases as well as enabling future
applications. If such a state could be coupled to superconducting leads in a Josephson
junction architecture, theoretical predictions suggest that such a device would host topo-
logical superconductivity and Majorana zero modes at zero magnetic field [319, 333]. This
prospect directly relates to the achievements of this thesis, where we have studied the su-
perconducting proximity effect in other graphene-based moiré superlattices in
and [Chapter 4 Furthermore, integer and fractional AQHE phases have now been reported
in four-, five- and six-layer rhombohedral graphene aligned with hBN, along with super-
conducting phases |65, |66, [334, [335]. Thus, these findings also open the door to explore
the Josephson effect in such exotic phases by engineering gate-defined JJs in these sys-
tems, an approach that we have studied ourselves in the case of twisted bilayer graphene

in [Chapter 5

All in all, the exploration of the Josephson effect in 2D materials and especially in
moiré superlattices holds great promise, from uncovering the fundamental mechanisms
that govern the proximity effect in exotic quantum phases, to enabling new quantum
technologies inspired by these discoveries.
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AFM Atomic force microscope
CNP Charge neutrality point
CPR Current-phase relation
DIW De-ionized water
DOS Density of states
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hBN Hexagonal boron nitride
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JDE Josephson diode effect
JJ Josephson junction
LL Landau level
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St S
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Superconducting

Superconductor / Normal metal / Superconductor
Superconducting quantum interference device
Twisted bilayer graphene

Time-reversal symmetry
Proportional-integral-derivative

van der Waals

van Hove singularity

Planck constant

Reduced Planck constant

Electron charge

Magnetic field

London penetration depth

Magnetic flux quantum
Superconducting coherence length in the weak link
Superconducting gap

Critical current of a Josephson junction
Normal state resistance
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Fermi velocity

Filling factor of the electronic bands
Landau level filling factor

Carrier density

Gate voltage



	Zusammenfassung
	Summary
	Acknowledgements
	Author's publications
	Introduction
	Graphene-based moiré superlattices and Josephson junctions
	Monolayer Graphene
	Heterobilayer moiré superlattices: Graphene/hBN
	Moiré potential and satellite Dirac points
	Hofstadter butterfly in the magnetic field phase diagram

	Homobilayer moiré superlattices: Twisted Bilayer Graphene
	Continuum model and flat bands in TBG
	Many body correlated phases in TBG

	Josephson junctions
	Tunneling junctions and weak links
	The washboard potential and IV characteristics
	Superconducting interference under a magnetic field


	Experimental Methods
	vdW heterostructures fabrication
	Exfoliation
	Flake identification
	Stamp preparation
	Transfer method: stacking
	Graphene-cutting techniques
	Nanofabrication: lithography, etching and evaporation

	Josephson junctions fabrication
	Sputtering of superconducting Molybdenum-Rhenium
	Superconducting contact engineering to graphene
	Minimizing stress with a Peltier device
	Thermal evaporation of Aluminum

	Low-temperature transport measurements
	Cryogenics and electronic filtering
	Low-frequency transport measurements


	High-field superconductivity in a ballistic moiré superlattice JJ
	Ballistic moiré-graphene Josephson junctions
	Fabry-Pérot oscillations
	Length dependence of the long-ballistic regime

	High-field superconductivity and cyclotron breakdown
	The superconducting proximity effect for increasing magnetic fields
	Proximity effect at high magnetic fields in the moiré bands
	Comparison with a ballistic monolayer graphene JJ


	Flat band limit of the SC proximity effect in TBG Josephson junctions
	Quantum Geometry and superconductivity in the flat band limit
	The quantum metric
	Superfluidity in the BCS theory
	Quantum geometric contribution to the superfluidity

	A Josephson junction with a TBG weak link
	Unconventional scaling between  and 
	Estimation of the expected decrease of  in the flat bands
	Interaction-driven critical current

	Quantum geometric and multiband contributions to the proximity effect
	The Josephson diode effect
	Interference patterns with broken inversion symmetry
	Symmetry-breaking across a large range of filling
	Supercurrent dominated by edge states


	Gate-defined junctions of monolithic twisted bilayer graphene
	Fabrication and characterization of gate-defined devices
	Gate-defined Josephson junctions in TBG
	Symmetry-breaking and edge states
	Orbital magnetism and valley polarization

	Gate-defined p-n junctions in TBG
	Cooling dynamics and Umklapp scattering
	Thermoelectric transport and heavy-fermion physics


	Conclusions and Outlook
	Bibliography
	List of Abbreviations and Symbols

