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Preface

Knowledge fuels economic activity. At the micro-level, knowledge informs individual decisions.

At the macro-level, knowledge creation accelerates technology-driven growth. This dissertation

examines facets of knowing and knowledge in the economy in three independent chapters. All share a

focus on the individuals who create knowledge, from specialized scientists solving problems in teams,

scholars from lower socio-economic backgrounds working at U.S. universities, to partisan citizens

making sense of the state of the economy. I explore questions ranging from how an individual’s

scope of knowledge affects innovation, to who creates knowledge in society, to when knowledge

itself might be subjective.

Chapter 1 examines the trade-off between specialization and coordination costs in innovative

teamwork. The last century has seen a steady rise in scientific specialization (Jones, 2009), coinciding

with an increase in scientific teamwork (Wuchty et al., 2007). Specialization enhances scientific

productivity by allowing scientists to hone their skills and to profit from the division of labor.

However, teams must coordinate. Highly specialized scientists may struggle to do so, for instance

because they cannot adapt to the work of teammates with different skill sets. I formalize this trade-

off in a model of scientific collaboration between generalists and specialists and test the predictions

of the model in the context of online machine learning competitions. Using a novel measure of

specialization based on the semantic diversity of code, I find that generalist teams produce higher

quality innovation than specialist teams when coordination costs are high. This has implications

for the design of scientific processes for both firms staffing research and development teams and

for universities and science funding agencies looking to increase interdisciplinary collaboration.

While previous research suggests that teams from more diverse backgrounds produce higher-impact

innovation (Uzzi et al., 2013), I highlight that more demanding coordination in these teams could

lead to the failure of such endeavors.

Chapter 2, co-authored with Ran Abramitzky, Santiago Pérez, Joseph Price, Carlo Schwarz,

and Fabian Waldinger, focuses on a different aspect of diversity in knowledge creation: the

representation of individuals from lower socio-economic backgrounds in academia. We assemble an

unprecedentedly large dataset of U.S. academics and their backgrounds, spanning seven decades

from 1900 to 1969. Throughout this time, individuals from poorer backgrounds have been severely

and consistently underrepresented, despite a coinciding expansion in U.S. (higher) education. Socio-

economic background is strongly intertwined with where knowledge is created, what knowledge is

created, and whether knowledge gets recognized. Humanities and elite universities are the purview

of academics from richer backgrounds. Academic disciplines often mirror paternal occupations; for



Preface

example, children of physicians become professors of medicine. Despite similar publication records

introducing more novel concepts, academics from poorer backgrounds receive fewer citations and

are less likely to be nominated for a Nobel Prize than their richer counterparts.

Chapter 3, co-authored with Till Stowasser, investigates knowing. While the previous chapters

have taken knowledge creation as the process of discovering truths about empirical facts, we now

examine knowing as a subjective process. We show that supporters of different parties perceive

the economy differently depending on who is in power. We argue that this is driven by motivated

information processing. Partisans prefer to see “their” party in a good light, distorting the processing

of information about economic conditions to fit their beliefs. We develop a novel methodology,

synthetic beliefs, to detect such phenomena from aggregated survey data.

x
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Specialists, and Teams
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1.1 Introduction

Economists have long recognized specialization as fundamental to prosperity. In the first chapter

of The Wealth of Nations, “Of the division of labour”, Adam Smith argued that “The greatest

improvements in the productive powers of labour [...] seem to have been the effects of the division

of labour.” (Smith, 1776). Similar arguments for specialization have been made in science and

innovation. Here, the need to specialize is particularly pressing, since innovation builds on prior

knowledge, and a single person cannot know everything (Jones, 2009). The well-documented rise

in scientific specialization over the last century (Jones, 2009) has coincided with an increase in

scientific teamwork (Wuchty et al., 2007).

Yet, teamwork and specialization are hard to reconcile in practice: Efficient teamwork requires

coordination. Coordination is more demanding when individual team members are very specialized.

For example, it becomes harder to understand and adapt to others’ work, integrate individual

contributions into a cohesive whole, and provide feedback. In this paper, I investigate the trade-off

between specialization and coordination in scientific teamwork. I show theoretically that a team of

generalists – scientists with low levels of specialization – produces the highest quality innovation

when coordination costs are high. I then test the predictions of the model in the context of online

machine learning competitions. Employing various econometric strategies to isolate the team type

effect from the effect of individual team members, I find that generalist teams develop higher quality

innovation than specialist teams. I present a range of evidence which points to coordination costs

as the mechanism that drives generalist-specialist quality differences rather than other factors.

In my theoretical framework, scientists with heterogeneous levels of specialization work alone or

collaborate to solve problems with varying complexity. Similar to Becker and Murphy (1992), on

which my model builds, each problem requires a set of tasks to be executed in order to solve it.

The quality of the problem’s solution depends on the quality of execution of these sub-tasks. In

a blend of Deming (2017) and Garicano (2000), scientists’ specialization is modeled as different

ex-ante task-specific productivities. A generalist, with zero specialization, can execute all tasks

but each with lower productivity. The more specialized a scientist, the fewer tasks they can solve,

but the higher their productivity for these tasks. Here, I depart from Becker and Murphy (1992),

where all team members are equally specialized ex-post as a result of dividing tasks in a team.

When collaborating, scientists can split the tasks necessary to solve a problem, and produce quality

more efficiently. However, they incur coordination costs, which reduce the quality of their solutions.

Importantly, coordination costs increase (1) in each team member’s degree of specialization, and (2)

in the complexity of the problem they are trying to solve. In this aspect, I deviate from other models

of scientific teamwork and specialization, which often assume costless aggregation of knowledge in

teams (e.g., Jones, 2009).

2



Innovative Collaboration

I derive two predictions from this framework: First, if coordination costs are sufficiently high, a

team of generalists solves a problem with the highest quality. Thus, a decrease in coordination costs

will lower or eliminate quality differences between generalists and specialists. Second, complexity

increases quality differences between generalist and specialist teams if coordination costs are

sufficiently high. These predictions allow me to develop empirical tests to pin down coordination

costs as the mechanism behind observed quality differences in teams’ innovative output.

Testing these predictions requires an empirical setting that allows me to observe how well different

types of teams solve problems holding the problem constant, and how well different problems get

solved, holding team types constant. To compare solutions, I need to be able to construct an

objective measure of solution quality. To accurately categorize teams, I need to quantify each

team member’s specialization. Crucially, the setting needs to allow me to isolate the effect of

individual team members’ ability from the effect of team type on quality. Online machine learning

competitions provide an optimal environment for studying specialized scientific teamwork as they

satisfy all these criteria. With a long tradition in computer science, specifically in machine learning

and artificial intelligence (Koch and Peterson, 2024), the objective of these competitions is to

develop an algorithm that solves a given, well-specified problem. The resulting algorithm’s quality

is evaluated according to a pre-specified, objective performance metric. I use data from Kaggle.com

(Kaggle), a large online machine learning platform which provides infrastructure for (research)

institutions and corporations to host machine learning competitions.1 Kaggle users are computer

science professionals like artificial intelligence researchers, machine learning engineers, and data

scientists. Kaggle’s features are particularly suitable for my study: First, problems – competitions

– are well-defined, and have a large number of teams and solo competitors trying to solve them.

Second, the quality of solutions is measured in an objective way for all teams attempting to solve

the problem: The host of the competition specifies a quality metric, and all submitted solutions are

ranked according to this criterion. Third, Kaggle users also publish code on the platform, from

which I construct my measure of specialization. Fourth, users frequently work alone. This enables

me to observe individual performance independently of team performance, forming the foundation

of my three-pronged empirical strategy: Explicitly controlling for observable heterogeneity between

specialists and generalists, employing user-fixed effects to account for time-invariant unobservables,

and conducting an event study based on team formation timing.

I develop a new measure of specialization for the computer sciences based on the breadth of a

computer scientist’s code portfolio. Intuitively, to solve a computer science problem, a computer

scientist needs to write code. Broader coding skills reflect an ability to tackle a broader range of

problems, and hence, less specialization. To quantify the breadth of coding skills, I use CodeT5+
1As of November 2024, Kaggle has more than 21 million global users and hosted 407 competitions awarding a

total of USD 22.3 million in prizes.
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(Wang et al., 2023), an open-source large language model (LLM), trained on a substantial corpus of

code and comments from GitHub. With CodeT5+, I transform code into “embeddings” – vector

representations capturing the semantic meaning of code. Embeddings allow me to quantitatively

compare different code snippets by calculating cosine similarity, a standard metric from natural

language processing used to assess the conceptual similarity of text. My specialization measure

then is the average cosine similarity between all pairs of code instances written by a given scientist.

A high average similarity indicates that the scientist’s code tends to cluster within a narrow area,

suggesting specialization. Conversely, a low average similarity implies the scientist works across a

broader range of coding domains. Scientists with above-median similarity scores (i.e., lower breadth)

are classified as specialists, while those below the median are classified as generalists.

Using my measure of specialization and quality measures from Kaggle, I show that generalist

teams achieve higher quality solutions than specialist or mixed teams. In my preferred specification,

a solution by a team comprised solely of generalists is ranked 4 percentiles higher than a solution

by a specialist team, corresponding to placing on average 50 absolute ranks higher. In addition,

generalist teams are 8 percentage points more likely to win a medal, a prestigious labor market

signal, and 5 percentage points more likely to reach the coveted top three positions in a competition

associated with large monetary prices. Mixed teams place between generalist and specialist teams.

I employ a range of empirical strategies that support the interpretation of these quality differ-

ences as fundamental differences between specialist and generalist teams, over and above differences

between individual generalists and specialists. First, I control for a large set of individual charac-

teristics to capture any observable heterogeneities other than specialization that might influence

solution quality, like experience or ability. Second, to account for time-invariant unobservable

scientist characteristics that might differ between generalists and specialists, I estimate a regression

with user fixed effects. Third, to address concerns that performance in other competitions is not

a good counterfactual for performance at a given task, I make use of a unique feature of Kaggle:

Competitors can submit preliminary solutions during a competition to get a signal of the quality of

their solution. Since some teams only form during the competition, I implement an event study

design similar to Lemus and Marshall (2024) to assess how the quality of preliminary solutions

changes before and after team formation. Generalist teams outperform specialist teams in all

empirical approaches.

After establishing solution quality differences between generalist and specialist teams, I turn

to testing the mechanism that creates these differences in the model, coordination costs. Since I

cannot measure coordination costs directly, I use two shifters of coordination costs to assess their

impact on generalist and specialist teams. First, I split the sample into high and low complexity

competitions. I can only detect quality differences in high complexity competitions, indicating that
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complexity indeed mediates coordination costs as suggested by my theoretical model. Second, I use

the introduction of ChatGPT as an exogenous shock to coordination costs. ChatGPT can smooth

some of the frictions in specialized collaboration, for instance by explaining unfamiliar concepts

and the function of unfamiliar code in particular, translating one coding language into another,

or writing code to integrate disjoined components of an algorithm. Again, I split the sample into

competitions before and after the introduction of ChatGPT, and only find quality differences in the

period prior to the introduction of ChatGPT.

I also examine a range of alternative mechanisms suggested by the previous literature on teamwork

(e.g., Deming, 2017; Weidmann and Deming, 2021; Ahmadpoor and Jones, 2019; Adhvaryu et al.,

2023; Freund, 2024; Minni, 2024; Weidmann et al., 2024): higher effort by generalist teams, better

management in generalist teams, higher social skills in generalist teams, and better collaborator

matching in generalist teams. I do not find any evidence in support of these alternative mechanisms.

Taken together, my findings indicate that coordination costs indeed reduce the productivity of

specialist collaboration in innovation.

This paper contributes to the literature on specialization and teamwork in science and innova-

tion. A large body of research has documented an increasing dominance of teams in innovation

(Wuchty et al., 2007; Jones, 2009; Ahmadpoor and Jones, 2019; Pearce, 2023) as well as increasing

specialization (Jones, 2009; Agrawal et al., 2016). The implications of these two trends for scientific

productivity have often been examined through the lens of “ideas being harder to find” (Bloom

et al., 2020), specifically, that implementing ideas increasingly requires differentiated expertise.

Allocca (2024) suggests that teams with more diverse educational backgrounds are more likely to

successfully complete research projects. Pearce (2023) finds that patents by research teams with

more diverse expertise receive more citations. While these studies consider the diversity of expertise

embodied by the team, I focus on the diversity of expertise embodied by one individual, their

specialization, and how this impacts their productivity in scientific teamwork. This dimension has

been less examined by the literature. Notable exceptions are Teodoridis (2018), who documents

changes in the rate of generalist-specialist collaboration after a technology shock that substituted

for specialist skills, and Teodoridis et al. (2019), who provide evidence for individual generalists

outperforming specialists when the overall rate of innovation is slower. To the best of my knowledge,

there is no paper that empirically examines the effect of generalist-specialist team composition on

innovative productivity.

My paper also contributes to the largely theoretical literature on the trade-off between specializa-

tion and coordination in teamwork in organizational economics. Starting with Becker and Murphy

(1992), multiple studies show how decreases in coordination costs, sometimes modeled as communi-

cation costs (e.g., Bolton and Dewatripont, 1994), allow for higher levels of profitable specialization
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in teams and hierarchies (e.g., Garicano, 2000; Garicano and Rossi-Hansberg, 2006). Conversely,

Dessein and Santos (2006) show how decreases in communication costs can lead to lower levels

of specialization within an organization by allowing the organization to become more adaptive to

new information. However, none of these incorporate heterogeneous levels of specialization. Recent

work by Freund (2024) models specialization as ex-ante differences in the dispersion of task-specific

productivity, similar to my framework, but there are no coordination frictions within the team.

Perhaps closest in spirit to my theoretical framework is Deming (2017), where workers with different

task-specific skills coordinate on “trading” tasks to produce a final good. The efficiency of this

trade is determined by social skills, which are orthogonal to task-specific skills, i.e., specialization.

I endogenize coordination costs to a team member’s specialization to more explicitly capture the

trade-off between specialization and coordination.

I also contribute to the literature on what makes teams succeed. Recent contributions have

highlighted social skills (Deming, 2017; Weidmann and Deming, 2021; Adhvaryu et al., 2023),

collaboration experience and team-specific human capital (Jaravel et al., 2018; Chen, 2021), and

leadership (Minni, 2024). I add generalists to this list. Finally, a small body of research has explored

teamwork and innovation on Kaggle and similar platforms, with a specific focus on tournament

effects (Boudreau et al., 2011, 2016; Lemus and Marshall, 2021, 2024). For example, Lemus and

Marshall (2024) find that teamwork improves performance compared to solo competitors. I take

this finding further: How can we shape teams to generate maximum innovation?

1.2 A Model of Collaboration between Generalists and Spe-

cialists

In this section, I develop a model of scientific collaboration between specialized scientists. Scientists

with heterogeneous levels of specialization solve problems alone or in teams. Specialization affects

scientists’ problem solving in three ways: Which problems a scientist can solve, how well scientists

can solve a problem, and how well scientists collaborate. I derive two testable predictions from this

framework. To keep notation and exposition as simple as possible, the focus of my analysis is on

teams of two scientists.

1.2.1 Set-Up

Problems Scientists solve problems p. To solve a problem, scientists have to execute a continuum

of tasks Θp. Like Becker and Murphy (1992), I assume tasks are perfect complements, where the

problem’s overall solution quality is determined by the quality of the worst-executed task. While

stringent, this assumption keeps the model tractable and is not too far from reality. Consider, for
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instance, conducting empirical research as consisting of two tasks, data cleaning and regression

analysis. If the data are not cleaned properly, no amount of well-specified regressions can lead to

sound conclusions. Conversely, even perfect data will not save a misspecified regression. Problems

differ along two dimensions, (1) the amount Θp ∈ (0, 1] of different tasks that need to be executed

to solve the problem and (2) complexity γp. I formalize complexity as a factor that makes teamwork

more difficult.

Scientists Scientists i have different levels of specialization σi. Specialization has three effects

on a scientist’s problem solving ability. First, it determines how many different tasks a scientist

can execute, where bi ∈ (0, 1] is the range of tasks the scientist can execute. The range of tasks a

scientist can solve is inversely proportional to their specialization, i.e., the higher a scientist’s level

of specialization, the fewer tasks the scientist can execute (σi =
1
bi

). For expositional simplicity, I

consider a scientist who can execute all tasks (σi = bi =1) a generalist. Specialization also affects

how well a scientist can execute a task. Conditional on being able to execute a given task, a scientist

with a higher level of specialization executes the task with higher quality. These first two effects

are similar to the most prominent ways of modeling specialization in the literature – heterogeneous

task-specific productivity (Deming, 2017; Freund, 2024) and whether or not a task can be executed

(Garicano, 2000; Jones, 2009). The third effect is novel and where the main contribution of my

model lies. Specialization also determines how easy it is for a scientist to collaborate. Teamwork

is more difficult if scientists are very specialized. In the empirical research example, imagine two

scientists are collaborating on a study, but one scientist only knows how to clean data, and the

other only how to run regressions. Coordinating on how to conduct the study would be extremely

difficult in this case.

Collaboration Scientists can choose whether to try and solve a problem on their own or whether

to collaborate. For simplicity, I abstract from collaborator search. Instead, I consider a world

in which, for each problem, a scientist is matched at random with another scientist, and their

only choice is whether to collaborate or not. When collaborating, the two scientists have to split

the Θp tasks among themselves. Let wi denote the share of tasks executed by scientist i. When

collaborating, the team of scientists incurs coordination costs C. Coordination costs capture all

the frictions that arise in team production but not when working alone, for example, deciding and

negotiating how to split tasks, which tasks to bundle, or determining how to aggregate the output

from sub-tasks into the final product.
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Problem Solving and Payoffs A problem p is solved by scientist i with quality Qp:

Qp = min
0≤θ≤Θ

q(θ) where q(θ) =

0 if θ /∈ bi

q(wi, σi, ei) if θ ∈ bi

(1.1)

ei is the effort spent by scientist i on the θth task. The quality of execution of each task thus

depends on the amount of tasks that one scientist needs to execute wi, a scientist’s specialization σi,

and the effort spent on each task ei. Intuitively, ∂q(wi, σi, ei)/∂ei∂σi > 0, meaning that conditional

on being able to execute a task, a more specialized scientist has a higher marginal productivity

of effort. The marginal productivity of effort however decreases in the amount of tasks a scientist

has to execute, i.e., ∂q(wi, σi, ei)/∂ei∂wi < 0. Similar to assumptions made by Deming (2017)

and Becker and Murphy (1992), this allows scientists to become more productive as they focus on

fewer tasks, and is the main mechanism through which teamwork can be beneficial. An intuitive

interpretation is that when scientists have to execute many task, they have to split their attention

and get distracted more easily, or cannot learn as much about the individual task.

Scientists maximize payoffs, equal to a problem’s solution quality minus the total cost of effort

wic(ei), where c(ei) is the effort spent on one task θ. Since tasks are symmetric and perfect

complements, the total cost of effort is the cost of effort for each task multiplied by the share of

tasks executed by one scientist, wi. That is, when working alone, scientist’s payoffs Πa
p from solving

problem p are given by:

Πa
p =


0 if Θp > bi

min
0≤θ≤Θp

q(Θp, σi, ei)−Θpc(ei) if Θp ≤ bi

(1.2)

where Θpc(ei) is the cost of effort of executing all Θp tasks required to solve a problem. Scientists

receive utility from solving a problem well, such that the quality of a problem’s solution maps directly

into scientists’ payoffs. When collaborating, scientists’ payoffs are equal to half the problem’s

solution quality. However, scientists can achieve quality more efficiently because they can split

tasks to increase their marginal productivity of effort. They can also potentially collaborate with a

more productive, i.e., more specialized, scientist then themselves. Splitting tasks also means that

scientists have lower total effort costs for the same task-specific effort ei, since they execute fewer

tasks. Yet, teams also incur coordination costs. A scientist i’s payoffs Πt
p from solving problem p in

a team with scientist j with specialization σj are given by:

Πt
p =

1

2
{ min
0≤θ≤Θp

q(wi,Θp−wi, σi, σj , ei, ej)− C(γp, σi, σj)} − wic(ei) (1.3)
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where ej is the effort executed by scientist j. That is, payoffs crucially depend on the other team

member. Coordination costs C(γp, σi, σj) reduce a problem’s solution quality and hence payoffs for

both team members, and are an increasing function of the problem’s complexity γp, and both team

members’ degree of specialization, i.e., ∂C/∂γp > 0 and ∂C/∂σi > 0. Importantly, complexity has

a stronger impact on more specialized scientists, i.e., ∂C/∂γp∂σi > 0. Why is that? Going back to

the previous example, imagine the two scientists now have to implement an econometric strategy

that requires careful data preparation, for example, in matching control observations on a complex

range of characteristics. If the team member who cleans the data has no understanding of the

identification challenges, they might focus on the wrong characteristics and produce a matched

sample that exacerbates bias. The same complexity is less harmful if the team member who cleans

the data also understands identification.

1.2.1.1 Choices

Scientists make three main choices. First, they choose whether to collaborate or not. Second, only

if collaborating, they choose how to allocate tasks. Finally, they choose the optimal level of effort.

Collaboration Choice When choosing to collaborate, scientists trade off the gains from the

division of tasks with collaboration costs. Two scientists form a team when the payoffs to teamwork

are larger than the payoffs to working alone for both scientists in the team.

1

2
{Qt

p − C(γp, σi, σj)}︸ ︷︷ ︸
team solution quality

− wic(e
t
i
*)︸ ︷︷ ︸

total cost of effort

≥ Qa
p︸︷︷︸

individual solution quality

− Θpc(e
a
i
*)︸ ︷︷ ︸

total cost of effort

(1.4)

If scientists choose not to collaborate, they either solve the problem on their own if Θp ≤ bi or do

not participate if Θp > bi.

Task Division and Effort Choice Scientists choose the division of task to maximize solution

quality minus total effort costs. Optimal task division and efforts are given by:

w∗
i =


Θp if n = 1,

argmax
wi

1

2
min q(wi,Θp−wi, σi, σj , e

∗
i , e

∗
j )− wic(e

∗
i ) if n = 2.

(1.5)

and

e∗i = argmax
ei

1

n
min q(ei, σi, wi)− wic(ei) (1.6)
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where n is 1 when working alone and 2 when collaborating. When working alone, wi is Θp by

definition. In a team, the optimal division of tasks will be pinned down by the fact that for both

scientists, marginal productivity has to equal the marginal change to total effort costs for both

scientists, and that each scientist has to produce the exact same quality in each sub-task.

1.2.2 Predictions

In the model, scientists trade off higher productivity in specialized team work and coordination

costs. I derive two predictions from this framework to test whether coordination costs really do

limit the returns from specialization. For more detailed derivations, see Appendix 1.A.

Prediction 1. If coordination costs are sufficiently high, a team of generalists produces the highest

quality solution. Conversely, a decrease in coordination costs will reduce quality differences between

generalist and specialist teams.

Proof: This follows directly from applying the envelope theorem to the function of team solution

quality.

Prediction 2. An increase in complexity will increase the quality differences between generalist

and specialist teams.

Proof: Since ∂C/∂γp∂σ > 0 quality differences between teams will be larger when Prediction 1 holds.

1.3 Machine Learning Competitions and Kaggle

1.3.1 Why machine learning competitions?

In machine learning, competitions are widely used both to accelerate innovation and to evaluate

the quality of innovation. Competitions were first introduced by the Defense Advanced Research

Projects Agency (DARPA) in the 1980s to allocate grants for risky artificial intelligence projects

(Koch and Peterson, 2024) and are still widely used (Pavão, 2023).2 A prominent example is the 2006

Netflix Prize, in which the streaming platform Netflix awarded USD 1 million to the team that would

achieve 10% higher prediction accuracy than Netflix’s proprietary movie recommendation algorithm

(Bennet and Lanning, 2007).3 Competitions are also an integral part of academic computer science.

For example, prestigious computer science conferences like Knowledge Discovery and Data Mining
2Theory and empirical evidence also indicate that competitions are an efficient method to generate innovation

(Lazear and Rosen, 1981; Boudreau et al., 2011, 2016; Kireyev, 2020).
3Note that a competition is distinct from a hackathon. While hackathons are more open-ended ideation challenges

within a thematic complex, competitions are directed innovation focusing on a single computation problem.
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(KDD) and Neural Information Processing Systems (NeurIPS) include a dedicated competition

track (Albrecht et al., 2024; Association for Computing Machinery, 2025). The basic structure of

any machine learning competition has remained the same since their introduction: The host of the

competition describes the problem at hand, provides the dataset as input for the desired algorithm,

and sets timeline, evaluation metric, and prizes. Crucially, only a subset of the dataset (training

data) is made available to competitors to develop their algorithm. Once the competition ends, all

competitors submit an algorithm. The performance of the submitted algorithm is evaluated against

a dataset that was not previously known to competitors (test data). Whosever algorithm achieves

the best performance in the test data wins the competition.

Machine learning competitions are an attractive setting for the study of innovative teamwork

for several reasons. First, problems are well-defined. Second, performance is measured in a unified,

objective way: ranks by performance of the algorithm.4 This enables me to compare the performance

of different team types at the exact same problem. Third, online competition platforms like Kaggle

provide rich data that facilitate econometric analysis. In any team study it is necessary to isolate

the effect of the team type from the characteristics of the team members (Weidmann and Deming,

2021; Bonhomme, 2022). This requires observing performance of team members when they are

working alone. For many science and innovation settings this poses a challenge, since both patents

and papers are increasingly produced in teams (Wuchty et al., 2007). On Kaggle, only 1% of all

users never work alone, such that I can observe individual performance for almost all team members.

Additionally, several features of the platform allow me to construct measures for concepts like effort

and social skills to explore mechanisms. Most importantly, I can measure specialization.

1.3.2 Kaggle

Kaggle is a platform for data science and machine learning. Founded in 2012, its core business is pro-

viding infrastructure for companies and research institutions to host machine learning competitions,

but it also serves as a learning, networking, as well as data, models and code sharing platform for

computer science professionals. As of November 2024, Kaggle has more than 21 million global users

and hosted 407 competitions awarding a total of USD 22.3 million in prizes. Kaggle makes all data

from their users’ public activities available on their website as a downloadable dataset, Meta Kaggle

(Risdal and Bozsolik, 2022). The dataset contains granular information on users, competitions,

teams, discussions, and code meta data. The main focus of this paper are competitions. However, I

utilize users’ activities in the other areas to explore mechanisms and construct main variables.
4This compares to much of the academic literature in computer science: Papers benchmark their proposed

algorithms to the state of the art.
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Competitions My analysis focuses on the two most prominent types of competitions on Kaggle,

Featured and Research competitions. Of all users who ever participated in any competition, 46.8%

participated in a featured competition and 15.2% in a research competition.5 Though mostly

similar, featured and research competitions differ slightly in terms of the type of problems they

cover – featured competitions tend to focus more on commercially applicable problems, whereas

research competitions focus on scholarly and scientific problems.6 The term competitions will

refer to Featured and Research competitions from now on. Kaggle competitions proceed like

typical machine learning competitions. A competition host – a company or a research institute

– sets up a competition. The host describes the goal of the competition (e.g., detecting cancer

from mammograms, recognizing bird voices from audio), provides labeled data, determines the

evaluation metric7, the prizes, and the competition timeline. Competitions run for three months on

average, and there is an entry and team formation deadline. Appendix Table 1.B.1 lists example

competitions.

Once a competition begins, users are invited to work on the problem and submit their solutions.

A feature particular to Kaggle is that users can obtain preliminary feedback on the performance of

their algorithm in real time. Kaggle splits the data provided by the competition host into three

datasets: The training set is available to users to train their algorithms, the public test set is

used to evaluate submissions during the competition, and the private test set is used to evaluate

submissions once the competition ends. This split is meant to ensure that competitors get feedback

on their algorithms during the competition, but that solutions are actually useful by reducing the

incentive to overfit to the available data. Competitors’ ranks in terms of the score of their solution

are displayed publicly on the leaderboard in real time during the competition.8 At the end of the

competition, users can select two submissions to be judged against the private test set. Submission

scores at this state determine the winners of the competition. I observe public and private ranks of

all submissions made to any competition.

Teams Competition participants can choose to work alone or to collaborate with up to four other

competitors. Competitors first enter a competition on their own and can then form or join a team at

any point during the competition up to a predetermined team formation deadline. Teams can only
5All numbers refer to the version of Meta Kaggle used in this paper, downloaded on February 7, 2024 (Risdal

and Bozsolik, 2022).
6I exclude the other types of competitions, Community, Playground, and Getting Started, from the analysis since

the problems posed in these competitions are more akin to classroom problems, and performance is not incentivized.
I also exclude Recruitment competitions, used by companies like AirBnB or Facebook as assessment centers for data
scientists, in which teamwork is prohibited.

7Usually, these are prediction accuracy metrics commonly used in machine learning, like Root Mean Square
Error or Log Loss. Some competitions additionally set infrastructure constraints, like run-time, maximum central
processing unit (CPU) and graphics processing unit (GPU) usage, or internet access.

8For a discussion of the impact of intermediate feedback in tournaments and specifically Kaggle, see Lemus and
Marshall (2021). They find that intermediate feedback generates better performing algorithms.
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be dissolved if the team has not made any submission. If a team wins a competition prize, the prize

is divided equally among all team members. Team formation is voluntary and self-organized. For

example, Kaggle users can use public message boards attached to each competition to announce they

are looking for teammates9, or use Kaggle’s messaging features to contact potential collaborators.

Since Kaggle displays a range of information on each user’s profile, such as in which competitions

a user participated in the past, and how they performed, team members’ abilities are public

knowledge. Anecdotal evidence from interviews I conducted with active Kaggle users suggests that

these observable performance signals determine users’ team formation decisions. I observe each

team member’s past performance, as well as team sizes and when the team was formed.

Incentives Do teams actually try to develop the best algorithm? A common worry in the contest

design literature is that a paucity of monetary prizes decreases incentives of all contestants, since

each contestant has a low chance of winning (e.g., Taylor, 1995). Kaggle counteracts this with

providing additional reputation incentives. Each user receives a platform-wide ranking, which is

a function of competition performance, and belongs to a status group. Akin to chess, the most

prestigious groups are masters and grandmasters. These can be achieved by performing extremely

well, but not necessarily winning a monetary prize, in competitions. Both platform ranks and status

groups are displayed on a user’s Kaggle profile page and are valuable signals in the labor market

for computer scientists. Users frequently include this information in their résumés (Reich, 2023),

and several companies explicitly hire based on Kaggle rankings and status groups. For example,

GPU manufacturer NVIDIA employs a team of Kaggle grandmasters solely to participate in Kaggle

competitions (NVIDIA, 2025). Finally, competitors are also intrinsically motivated to contribute

to open science. Although winners are not required to do so, many share their approaches and

solutions after the competition. Kaggle competitions have resulted in research papers (e.g., Bulten

et al., 2022; He et al., 2024), with competition winners as co-authors. Kaggle users also stress the

innovation aspect of their work on Kaggle: “Normally, Kaggle is always one step ahead of science.

[...] To perform really well in the competitions, one has to go an extra mile. Anyone can read what

already exists. You have to come up with something new to beat 1000 other people.”10

9In August 2022 Kaggle additionally introduced a waving-hand icon that users and teams who are looking for
teammates can display next to their name on the leaderboard.

10Christof Henkel (alias Dieter), current highest-ranking Kaggle user and a member of the Kaggle Grandmasters
of NVIDIA (Kaggle.com, 2024c), in zoom interview with the author, April 2024.
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1.3.3 Measuring Specialization in Kaggle

1.3.3.1 Conceptual Considerations

A scientist’s degree of specialization is equal to their breadth of knowledge. I thus need to find a

representation of the knowledge held by one scientist. In computer science, this is what sort of code

someone is able to write. For example, a computer scientist who writes code for both image data

and text data has broader knowledge than a scientist who only ever writes code for text data. The

first scientist is less specialized than the second. The main challenge is to quantify this distinction.

Recent advances in computational linguistics make this possible through embedding models for

code. These models, which also power large language models like ChatGPT, transform code into

high-dimensional vectors that capture the semantic meaning of code. By learning the context in

which instances of codes occur, embedding models are able to represent the relationship between

two sets of code, as well as between code and plain text in an ordinal way. Two related concepts

will be represented by two closely located vectors. Conversely, the distance between two vectors

measures how different two concepts are. The totality of embeddings thus effectively maps the

“knowledge space” of coding expertise. This feature makes embedding models ideally suited for the

study of specialization.

To illustrate why, it is helpful to contrast this approach with existing measures in the literature.

For example, Jones (2009) measures specialization of inventors as the probability of changing patent

categories between to successive inventions. Teodoridis (2018) and Teodoridis et al. (2019) construct

a diversification index based on the Herfindhal index of a scientist’s paper categories. Discrete

categories however fail to capture both the relationship of knowledge representations between and

within categories. Imagine there are three types of code: areg, xtreg, and hpfilter. A category-

based index would assign the same level of specialization to a user that has written one xtreg and

areg code each, and one that has written one xtreg and one hpfilter code, although xtreg and

areg are more closely related than xtreg and hpfilter. An embedding model resolves this issue

– the distance between areg and xtreg will be smaller than the distance between hpfilter and

areg or xtreg, respectively. An additional advantage of an embedding-based index is that it does

not rely on labeled data, which is often costly or impossible to obtain. It is particularly infeasible

in this context where code files are rarely labeled, although Kaggle enables authors to self-assign

category tags to code files. Tag coverage is sparse, endogenous, and tags are often not meaningful

(e.g., “advanced”).

To quantify the “distance” between two instances of code, I use cosine similarity, a standard

measure of textual similarity in computational linguistics. For each scientist, I then define special-

ization as the average cosine similarity between their individual code files and their core coding
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discipline, represented by the centroid of a scientist’s code files:

Specializationi =
1

Ki

Ki∑
1

cos(vki, ci)

where Ki is the total number of code files ki written by a user i, vki is the embedding of code file ki,

and ci is the centroid (mean) embedding of user i, constructed as the average of all of user i’s code

file embeddings: ci =
1
Ki

∑Ki

1 vki. In less technical terms, this measure is analogous to the variance

of knowledge around an individual’s core discipline, represented by the centroid embedding.11

1.3.3.2 Construction of the Specialization Index in Kaggle

In addition to competitions, Kaggle provides infrastructure for running, publishing, and sharing

code. Similar to competitions, users are incentivized to publish code by receiving medals, titles, and

a platform-wide ranking.12 Kaggle makes the entirety of shared code available as a corpus (Plotts

and Risdal, 2023). In the corpus, code has several formats and languages, either unstructured files

containing the entire code with comments, or a notebook-style format in which code, comments,

and other exhibits are logically separated into cell blocks13, which makes an additional processing

step necessary. Before I transform each instance of code into an embedding, I remove all code from

the data that has multiple authors, that is an edited version of code written by another user, has

less than 10 lines, or is a duplicate. When the original author of a duplicate code file is not credited

by the author of the copy, I manually search for the original author, assign the code file to only

them and drop all duplicates. For each code file, I only keep the most current version. I also drop

all code written by users who have published only one code file on the platform to ensure I have

enough observations per user to reliably classify specialization.

I extract code embeddings from CodeT5+ (Wang et al., 2023). CodeT5+ is an open source large

language model trained for several tasks, such as suggesting code to solve a specific problem, explain

code, or complete code. CodeT5+ is particularly well-suited for my study because it is trained

on both code and natural language comments, as well as entire programs rather than isolated

code snippets. These features make it more effective for capturing broader programming contexts.

Although I can technically separate code and comment data in some notebooks, it is non-trivial to

remove all natural language from code files.14 Including comments in the measure of specialization
11Taking the centroid as a base is necessary for an intuitive reason: Imagine two scientists starting at the same

point in the knowledge space. Each scientist takes ten steps of equal length in this knowledge space. However, one
scientist walks in a circle around the starting point, while the other walks ten steps away from the starting point.
We would probably all consider the first scientist more specialized than the second.

12Although being a competition grandmaster is considered the more prestigious title, code grandmasters also
provide this information on their LinkedIn, and are hired by leading AI companies, see, e.g., h2o.ai (2025).

13See Appendix Figure 1.B.1 for a visualization
14For example, code might be commented out, or a comment might follow a line of code. Additionally, comments

are marked differently in different coding languages.
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is also beneficial because it adds information on the task at hand. While CodeT5+ is able to

process relatively large sequences of code and comments, many Kaggle code files exceed CodeT5+’s

maximum sequence length15. To handle longer files, I split the code file into logical units, equivalent

to paragraphs (see Figure 1.B.1 for an illustration), which I transform into embeddings and then

aggregate.16

Once I have obtained embeddings for each code file, I construct the centroid (mean) embedding

for each user, calculate the pairwise cosine similarity of each individual code embedding to the

centroid, and take the average. This yields a continuous measure of specialization for 65.211

users, see Figure 1.1, Panel (a). A value closer to one indicates that all code written by a user

is very similar, i.e., a higher level of specialization. However, mechanically, the distribution of

the specialization index is shifted to the right when it is constructed from fewer code files, see

Figure 1.1, Panel (b). To not confound the number of code files written with specialization, I adjust

the index by residualizing it to the number of kernels, as shown in Panels (c) and (d). I then define

Generalists as users with below median levels of specialization, and Specialists as users with above

median levels of specialization.

1.3.4 Variable Definitions

1.3.4.1 Key Concepts

Quality I measure solution quality in three different ways, natural to the setting: Rank, Medal

Win, and Top 3. These three metrics roughly target three different objects: average quality, high

quality, and top quality. First, all competitions on Kaggle specify an objective, numerical target to

assess a submission’s quality, for example, minimizing root mean square error. All submissions are

then ranked according to this metric. This allows me to measure quality differences in a continuous,

granular manner. Rank transforms a team’s absolute rank in a competition into their percentile

rank within that competition. Rank is equal to 100 for the best, and 0 for the worst performing

team. This allows me to compare teams’ relative positions across competitions with different

numbers of competitors. Second, a share of high-ranking teams receive virtual gold, silver, or bronze

medals. I generate a binary indicator to measure differences in the probability of attaining a medal,

Medal Win.17 Third, I create an indicator for placing among the top three competitors. The top

three competitors are typically awarded monetary prizes, required to license their solution code,

and publish detailed, often paper-like solutions on Kaggle. We can think of winning a medal as

providing a high-quality solution, and placing among the top three as an excellent solution.
15768 tokens (“words” of code) to be exact.
16If these sub-units are still too large to be processed by Code T5+, I split them further into lines.
17Kaggle users refer to this as placing “in the metal”. The number of medals awarded in a competition is determined

by the number of competitors. For details see Kaggle.com (2025).
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Figure 1.1: Specialization Index
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Notes: The figure illustrates the construction of the specialization index. Panel (a) displays the distribution of the
raw specialization index, which is heavily skewed towards high similarities. Panel (b) illustrates how the number of
code files affects the distribution of the raw specialization index with the examples of users who have written 3, 5, or
10 code files. More code files mechanically lead to lower specialization. Panel (c) shows the distribution of the
number-of-code-files adjusted specialization, removing the impact of the number of code files on the distribution of
specialization (Panel (d)).

Complexity I assess a competition’s (problem’s) complexity by measuring the ex-post likelihood

of overfitting. To uncover complex relationships, a machine learning model needs to be able to

incorporate this complexity. The higher a model’s capacity to reflect complex relationships, the

higher the complexity of the model itself. However, model complexity comes at the cost of a higher

risk of overfitting (Mohri et al., 2018). The algorithm might pick up spurious correlations in the

17



Innovative Collaboration

test data, but fail to capture true underlying relationships (Mullainathan and Spiess, 2017). A

competition is doubly complex if it is hard to spot this risk of overfitting. I measure a competition’s

complexity as the aggregate realized amount of overfitting. To measure overfitting risk, I use

“Shake-Up”, a concept coined by Kaggle users to assess overfitting in competitions (Trotman, 2019),

which has been validated as a measure of overfitting in machine learning (Roelofs et al., 2019):

Complexity =
1

Number of Competitors

∑ |Private Rank − Public Rank|
Number of Competitors

(1.7)

In other words, the average change in relative performance of the algorithm from public to private

test set. Large changes are mostly driven by many competitors overfitting on the training data and

achieving high scores on the public dataset, but dropping in ranks once the algorithm is evaluated

against the test data. Those that did not overfit will subsequently shoot up in ranks, even if the

score of their algorithm remains stable – as it should when properly designed.

1.3.4.2 Additional Variables

User Characteristics To control for factors that may influence solution quality other than

specialization, I define a range of time-varying user-level covariates. To proxy a user’s current ability,

I generate two measures of performance: Previous Rank and Previous Medal Wins. Previous Rank

is the average percentile rank achieved by a user in prior competitions in which they participated as

a solo competitor. Previous Medal Wins is the share of previous competitions in which a user won

a medal among all competitions in which they participated as a solo competitor. I also measure

Competition Experience, the number of competitions a user competed in, whether alone or in a

team, before entering a given competition. I collect an additional set of user demographics from

users’ profiles, on which users can report their location, occupation, and preferred pronouns, as well

as write short biographical notes (user bio).18 I use pronouns and user names to classify a user’s

gender in a multi-step procedure, for details, see Appendix 1.B.2. I hand-code occupation strings

and occupational information reported in the user’s bio into 17 occupational categories. Appendix

Table 1.B.2 provides details on chosen occupational categories and included occupations.

Code Characteristics Since specialization is measured from code, I include several characteristics

of code files: The number of lines per code file, the number of lines of comment, and the votes

received by a code file as a measure of code quality.19 I aggregate code characteristics at the author

level.
18Many users report CV-like information in their bio, some share their motivation to participate in Kaggle, others

only include pictures or emojis.
19If another user finds a code file useful, well-written, or creative, they can vote for the code file. Since Kaggle

status groups are based on votes, voting behavior is strictly monitored. Self-promotion or vote collusion can result in
bans (see Kaggle.com (2024b)), so votes are a relatively noise-free signal of code quality.
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Team Characteristics Team characteristics are simply all team members’ user-level characteris-

tics aggregated to the team level as well as team size. This mirrors the identification strategy in

Weidmann and Deming (2021), where individual performance at the same task of all team members

is aggregated to isolate the effect of team members’ ability from team effects.

Submission Characteristics During a competition, participants can submit preliminary solu-

tions to the competition, which are then evaluated against the public test set. For all submissions,

I observe which user made the submission, submission dates, algorithm performance, and which

submissions were chosen for the final submission. I use submission data in two ways: First, since I

am able to construct counterfactual ranks for each preliminary submission – information that is not

available to competition participants – I investigate the change in submission quality in response to

teaming up in an event study approach similar to Lemus and Marshall (2024). Second, I use the

amount and timing of submissions as a measure for motivation and effort to rule out alternative

mechanisms.

1.3.5 Sample Construction and Summary Statistics

I start with the 7.19 million team member observations who participate in any competition. Note

that teams are defined at the competition level, i.e., team member refers to a user on a specific team

in a specific competition. I then drop teams who participate in competitions in which performance is

not incentivized, as well as recruitment competitions, in which there naturally is no teamwork. This

leaves me with 4.35 million observations. I then drop teams that sign up for a competition but never

make a submission, which is the majority of teams (3.83 million). A possible explanation for this

strikingly large number is that, to access competition data, Kaggle users have to formally sign up

for a competition, even if they never intended to compete.20 I also drop all benchmark submissions

by competition hosts and the Kaggle team. At the end, 518,240 team member observations remain.

In a final step, I drop all teams for which I cannot measure specialization for one or more team

members, to ensure I accurately measure team types. This leaves me with 76,776 user-competition

observations, or 74,433 teams, from 357 distinct competitions. These are comprised of 13,646

distinct users. Table 1.1 presents summary statistics for competitions.

Table 1.2 presents summary statistics for users, split into generalists and specialists. Kaggle

users are mostly male, have been active on the platform for about 2.5 years, and enter many

competitions, but compete mostly on their own. Observing many solo competitions per user allows

me to measure individual ability independent of team performance. Generalists have been active on

the platform slightly longer than specialists, are more likely to report their location and to be from
20Of these, 49% are teams that sign up for a competition after the competition deadline, which is possible since

Kaggle competitions stay active after they ended to enable other users to access the competition data.
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Table 1.1: Summary Statistics on Competitions

Variable Mean SD Observations

Prizes 53152.26 140325.19 353
Competitors 1450.75 1493.91 357
Competitors with Specialization 215.06 223.78 357
Duration 86.49 48.85 357
Teams 0.02 0.02 357
Research 0.34 357
Post ChatGPT 0.11 357

Notes: The table reports summary statistics for competitions. Data come from Meta Kag-
gle (Risdal and Bozsolik, 2022). Prizes are total competition prize pools in U.S. dollars.
Competitors reflect the total number of competitors submitting to a competition, and
Competitors with Specialization are the subset of competitors for which I can measure
specialization. Duration is the duration of a competition in days. Teams indicates what
share of competitors enters the competition as a team. Research is an indicator whether
the competition is a research competition (as defined by Kaggle). Post ChatGPT is an
indicator whether a competition ended after the introduction of ChatGPT.

Table 1.2: Summary Statistics on Users

Variable All Users Generalists Specialists p-value
Gen = Spec

No. Users 13646 7077 6569
Female 0.068 0.065 0.071 0.18
User Platform Age 940.001 1006.982 868.054 0.00
Reports Location 0.856 0.876 0.835 0.00

India 0.220 0.210 0.231 0.00
USA 0.134 0.161 0.105 0.00

Reports Occupation 0.680 0.692 0.667 0.00
Data Scientist 0.164 0.175 0.151 0.00

Code Files 10.628 10.318 10.962 0.25
Lines 219.740 188.315 253.595 0.00
Votes 6.308 6.572 6.025 0.15

Competitions 5.626 6.143 5.070 0.00
Collaborations 0.048 0.046 0.052 0.05

Mixed Team 0.571 0.547 0.600 0.02
Team Lead 0.423 0.433 0.412 0.31

Notes: The table reports summary statistics for users. Data come from Meta Kaggle (Risdal
and Bozsolik, 2022) and own hand-coding. Female is an indicator whether the user is female,
user platform age is the time (in days) a user has been active on Kaggle. Reports location
is an indicator whether the user reports a location in their profile, with India (dummy) and
USA (dummy) being the two most common locations. Reports Occupation is an indicator
whether the user includes information on their occupation in their profile, with Data Scien-
tist (dummy) being the most frequent occupation. Code Files is the number of code files
solo-written by a user, lines the average length of a code file, and votes the average number
of votes received by a code file. Competitions is the number of competitions a user in the
data enters, whether as a solo competitor or in a team. Collaborations indicates the share
of competitions a user enters as a team. Mixed Team measures the share of a user’s teams
that are mixed teams, and team lead is the share of teams in which a user is the team lead.
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the USA, to report their occupation and to identify as data scientists, write shorter code, are less

likely to collaborate, and to do so in mixed teams. The empirical analysis take these underlying

differences into account.

Table 1.3: Summary Statistics on Stable Teams

Variable All
Teams

Solo
Competitor

Generalist
Team

Mixed
Team

Specialist
Team

No. Team-Competition Observations 74433 72721 482 922 308
No. Stable Collaborations 14568 13326 327 704 211
No. Competitions as Collaboration 5.11 5.46 1.47 1.31 1.46
Rank 46.45 43.75 77.21 76.83 67.86
Medal Win 0.11 0.07 0.49 0.48 0.34
Top 3 0.00 0.00 0.06 0.04 0.02
Team Size 1.12 1.00 2.21 2.63 2.21
Female Share 0.06 0.07 0.05 0.05 0.06
Data Scientist 0.17 0.16 0.28 0.24 0.22
At 1st Competition as Collaboration

User Platform Age 504.88 467.77 995.60 902.37 735.08
Experience 1.23 0.19 13.21 13.19 8.44
Previous Individual Rank 61.20 62.58 61.73 56.69
Previous Medal Wins 0.22 0.24 0.22 0.20

Total Submissions 18.46 12.68 77.73 85.60 67.54
High Complexity Competition 0.29 0.30 0.28 0.28 0.29
Post ChatGPT Competition 0.17 0.18 0.11 0.16 0.17

Notes: The table reports summary statistics for stable teams, i.e., teams with the exact same members across
competitions. One user can be a member of multiple stable teams, and a solo competitor is also considered a stable
team whenever they compete alone. Data come from Meta Kaggle (Risdal and Bozsolik, 2022). No. Competitions
as Stable Team measures how frequently I observe a team composed of the exact same users across competitions.
Rank is the percentile rank achieved by a team in a competition, Medal Win an indicator for whether a team won a
medal, and Top 3 an indicator for whether a team placed among the top 3 in a competition. Team Size measures
the size of a team, female share is the share of team members who are female, and Data Scientist the share of team
members whose occupation is Data Scientist. User Platform Age is the team member’s average time active on the
platform when they first enter a competition (for solo competitors) or first join a team. Experience measures the
team member’s average number of previous competitions. For solo competitors, this is the number of competitions
participated in as a team before the first solo competition, for teams this is the average number of competitions
participated in as a solo competitor or in a team before joining the stable team. By construction, Previous Individual
Rank and Previous Medal Win are not defined for a solo competitor’s first solo competition. For teams, these
reflect the average percentile rank achieved by team members in solo competitions, and the team-member-average of
Previous Medal Wins, i.e., the share of previous solo competitions in which a team member has won a medal. Total
Submissions is the count of submissions made to a competition by a team. High Complexity Competitions is an
indicator that is one whenever a team enters a high complexity competition (for details, see Section 1.3.4.1). Post
ChatGPT is an indicator that is one whenever a team enters a competition that ended place after the introduction
of ChatGPT.

Table 1.3 presents summary statistics for stable teams. I define a team composed of the exact

same users across competitions as a stable team. Note that I also consider a user’s observations from

solo competitions as stemming from a stable “team”. Overall, I observe 327 generalist teams who

compete 1.47 times on average, 704 mixed teams competing 1.31 times on average, and 211 specialist

teams competing on average 1.46 times. Teams on Kaggle are small. While most competition

entrants are solo competitors, teams are mostly comprised of two people. Users who compete in

teams have been active on the platform for a longer time, and users tend to enter many competitions
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on their own before ever competing as a team. Teams also make more submissions than solo

competitors and outperform solo competitors on all dimensions. Among teams, generalist teams

achieve the highest ranks, win most medals, and place among the top 3 most often. Reflecting the

higher experience of generalists, generalist teams also are comprised of the most experienced and

able users. Isolating the effect of the ingredients – team members – and the recipe – team type –

on algorithm quality is the focus of the next section.

1.4 The Impact of Team Type on Solution Quality

1.4.1 Empirical Strategy

The quality of a team’s algorithm naturally depends both on the characteristics of individual team

members as well as any synergies created by the team. Therefore, it is crucial to isolate the effects

of individual team members from the overall team effect. For instance, if generalists tend to be

more experienced, the superior performance of generalist teams might reflect experience rather

than any inherent benefit of the team structure itself. I employ several strategies to disentangle the

effect of individual team members from the composition effect. This is econometrically challenging,

as outcomes are realized at the team level, but potential confounds arise at the individual level

(Constantine and Correia, 2021; Bonhomme, 2022).

A particular concern is the ability of individual team members, for which I first try to account

explicitly by constructing a measure of individual ability from team members’ past solo competition

performance. Adhvaryu et al. (2023) use a similar approach to isolate the effect of individual scientists

on co-authored papers or joint patents. To address unobservable team member heterogeneity, I

include a specification with team member fixed effects. This is similar in spirit to the AKM literature

(Abowd et al., 1999), where worker fixed effects are identified from firm switchers. I identify scientist

fixed effects from team switchers as well as from switches from solo work to teamwork. Finally, I

utilize the fact that I can observe individual contributions to team output in the form of submissions.

For a small subset of teams, I can track individual team member’s submissions over the course of

the competition and assess the impact of joining a team of a specific type on submission quality, a

strategy similar to the one implemented by Lemus and Marshall (2024).

1.4.2 Results Isolating Team Member Ability

I first estimate a regression of solution quality on team type to test Prediction 1:

Ytc = α+ τ1Generalist Teamt + τ2Mixed Teamt + τ3Specialist Teamt +X ′
tcβ + γc + ϵtc (1.8)
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Where Ytc is a team t’s solution quality (Rank, Medal Win, Top 3) in competition c, α is the

intercept, equivalent to the average performance of a solo competitor. Generalist Teamt is an

indicator that equals one if team t is comprised of only generalists, Mixed Teamt is an indicator

that equals one if team t consists of both generalists and specialists, and Specialist Teamt is an

indicator that equals one if team t consists of only specialists. The coefficients τ1, τ2, and τ3

measure the difference in solution quality of each type of team relative to the solution quality

of a solo competitor. Xtc is a vector of time-varying team-level controls including average team

member experience, proxies for average team member abilities, team size, and demographic controls,

including occupation shares for all occupations reported by at least 100 users, country shares for

all countries with at least 100 users, share female, and the average time team members have been

active on the platform. γc are competition fixed effects.

Table 1.4 displays results for Equation (1.8) on the percentile rank achieved by each team’s

solution. Column 1 shows gross quality differences: all teams produce higher quality than individual

competitors, with generalist teams placing 21 percentile ranks higher than solo competitors, mixed

teams placing roughly 18 percentile ranks above solo competitors, and specialist teams placing

about 12.5 percentile ranks above solo competitors. These differences are significant at the 1% level.

In addition, the quality differences between team types are also highly significant, with generalists

achieving higher quality than mixed and specialist teams.

As previously discussed, quality differences might simply be a reflection of pre-existing ability

differences and positive selection into collaborating rather than any effect of teamwork or the

specific type of team. To account for these differences, column 2 adds controls for team members’

previous competition experience and previous percentile ranks achieved by team members when

they were competing on their own. This reduces sample size by circa 14,000 observations, since I

can only observe experience and previous ranks for teams that have at least one competitor that

has competed once before. While the effect of competition experience is significant but small,

the effect of previous rank is large in size: Placing 1 percentile higher in previous competitions

is associated with placing 0.5 percentiles higher in the current competition’s ranking on average.

Again, teams consistently achieve higher quality than solo competitors. The differences between

team types however are smaller, reducing performance gaps to 3 percentile ranks between generalist

and specialist teams, and 2 percentile ranks between generalist and mixed teams. This reflects

the fact that generalist teams seem to be positively selected (c.f. Table 1.2 and Table 1.3). In

column 3, I add the full set of demographic controls with minimal effects on coefficient sizes. Since

specialization is measured from code, my index might also capture subtle differences in code quality,

which could be correlated with team performance. Column 4 thus adds code quality controls, such

as the length of code, amount of comments, the number of code files, and votes received by code
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Table 1.4: Team Type and Solution Quality: Rank

Dependent Variable: Rank

(1) (2) (3) (4) (5)

Generalist Team 21.19*** 18.45*** 18.77*** 18.66*** 20.03***
(1.44) (1.11) (1.08) (1.07) (1.07)

Mixed Team 17.85*** 16.16*** 16.46*** 16.20*** 16.65***
(1.12) (0.94) (0.93) (0.92) (0.90)

Specialist Team 12.50*** 15.73*** 16.26*** 15.92*** 15.80***
(2.09) (1.99) (2.02) (2.04) (1.99)

Competition Experience 0.03*** 0.05*** 0.05*** 0.08***
(0.01) (0.01) (0.01) (0.01)

Previous Rank 0.52*** 0.50*** 0.49*** 0.49***
(0.01) (0.01) (0.01) (0.01)

3-Person Team 8.11*** 6.71*** 6.38*** 6.11*** 6.07***
(2.00) (1.63) (1.62) (1.60) (1.58)

4-Person Team 17.18*** 12.98*** 12.49*** 12.30*** 12.47***
(2.26) (2.34) (2.35) (2.31) (2.19)

5-Person Team 17.15*** 13.74*** 13.58*** 13.48*** 14.69***
(2.13) (1.69) (1.69) (1.67) (1.74)

R2 0.01 0.15 0.16 0.16 0.20
Observations 74433 60897 60204 60090 60090

Demographic Controls Yes Yes Yes
Code Quality Controls Yes Yes
Competition FEs Yes

p-value (Generalist Team = Mixed Team) 0.04 0.09 0.08 0.06 0.01
p-value (Generalist Team = Specialist Team) 0.00 0.22 0.26 0.22 0.06
p-value (Specialist Team = Mixed Team) 0.02 0.84 0.92 0.89 0.68

Notes: The table reports the estimates of equation (1.8). The dependent variable measures the percentile rank of a team’s
solution in competition c. The main explanatory variables are indicators for the team’s type: Generalist Team (a team of
only generalists), Mixed Team (a team of both generalists and specialists), and Specialist Team (a team of only specialists).
Solo competitors are the omitted category. Competition experience measures the average of the number of competitions each
team member participated in before competition c. Previous Rank measures the average of the percentile rank achieved by
each team member when competing alone in a previous competition. Demographic controls include share female, average
user platform age, country shares for all countries with at least 100 users, and occupation shares for all occupations reported
by at least 100 users (c.f. Table 1.B.2). Code quality controls include the average of each team member’s lines of code, lines
of comment, number of code files, and votes received by code files. Standard errors are clustered at the stable team level.
Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.

files as a proxy for code quality. The results are quantitatively similar to columns 2 and 3.

In the model, a crucial determinant of quality gaps between generalist and specialist teams is a

problem’s type. Thus, I add competition fixed effects in column 5. When accounting for problem

type, the quality difference between generalist teams and specialist teams are large and significant:

generalist teams place around 4 percentile ranks higher than specialist teams, this difference is

significant at the 10% level. Generalist teams also place about 3.5 percentile ranks higher than

mixed teams (significant at the 1% level).

Are generalist teams also more likely to provide high quality solutions? Table 1.5 displays

results for the probability of winning a medal. As in Table 1.4, column 1, all team types are

significantly more likely to win a medal than solo competitors. Generalist teams are 31 percentage

points more likely to win a medal, while mixed and specialist teams are 25 and 15 percentage

points more likely. These coefficients are all significantly different from each other (at the 5 or 1 %

level). When controlling for experience and previous medal wins in column 2, the coefficient for
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Table 1.5: Team Type and Solution Quality: Medal Win

Dependent Variable: Medal Win

(1) (2) (3) (4) (5)

Generalist Team 0.31*** 0.29*** 0.30*** 0.30*** 0.30***
(0.03) (0.03) (0.03) (0.03) (0.03)

Mixed Team 0.25*** 0.24*** 0.25*** 0.25*** 0.25***
(0.02) (0.02) (0.02) (0.02) (0.02)

Specialist Team 0.15*** 0.20*** 0.22*** 0.21*** 0.22***
(0.04) (0.03) (0.03) (0.03) (0.03)

Competition Experience -0.00** -0.00*** -0.00*** -0.00***
(0.00) (0.00) (0.00) (0.00)

Previous Medal Wins 0.48*** 0.45*** 0.43*** 0.39***
(0.01) (0.01) (0.01) (0.01)

3-Person Team 0.19*** 0.18*** 0.18*** 0.17*** 0.18***
(0.04) (0.04) (0.04) (0.04) (0.04)

4-Person Team 0.32*** 0.29*** 0.28*** 0.28*** 0.30***
(0.06) (0.06) (0.06) (0.06) (0.06)

5-Person Team 0.29*** 0.28*** 0.27*** 0.27*** 0.29***
(0.06) (0.06) (0.06) (0.06) (0.06)

R2 0.02 0.11 0.12 0.12 0.15
Observations 74433 60897 60204 60090 60090

Demographic Controls Yes Yes Yes
Code Quality Controls Yes Yes
Competition FEs Yes

p-value (Generalist Team = Mixed Team) 0.07 0.10 0.12 0.11 0.08
p-value (Generalist Team = Specialist Team) 0.00 0.03 0.05 0.04 0.04
p-value (Specialist Team = Mixed Team) 0.03 0.28 0.37 0.36 0.37

Notes: The table reports the estimates of equation (1.8). The dependent variable is an indicator whether a team’s solution
has won a medal in competition c. The main explanatory variables are indicators for the team’s type: Generalist Team
(a team of only generalists), Mixed Team (a team of both generalists and specialists), and Specialist Team (a team of
only specialists). Solo competitors are the omitted category. Competition experience measures the average of the number
of competitions each team member participated in before competition c. Previous Medal Wins measures the average of
the share of previous competitions for each team member in which a team member won a medal when competing alone.
Demographic controls include share female, average user platform age, country shares for all countries with at least 100
users, and occupation shares for all occupations reported by at least 100 users (c.f. Table 1.B.2). Code quality controls
include the average of each team member’s lines of code, lines of comment, number of code files, and votes received by
code files. Standard errors are clustered at the stable team level. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.

specialist teams increases to 20 percentage points. However, it remains significantly lower than the

effect for generalist teams at 29 percentage points. Competitors’ medal track records are highly

predictive of winning a medal: If all team members have won a medal before, their probability of

winning a medal as a team is 48 percentage points higher than that of a team in which no member

has ever won a medal. Controlling for demographics (column 3), code quality (column 4), and

including competition fixed effects (column 5) barely affects coefficient sizes. When accounting for

all covariates and fixed effects, generalist teams are 8 percentage points more likely to win a medal

than specialist teams.

Turning now to the probability of providing an excellent solution, Table 1.6 reports results for

Equation (1.8) on the likelihood of a team’s solution being among the top three solutions in a

competition. Column 1 displays gross quality differences. While generalist teams are 5 percentage

points more likely to find a solution that is among the top three, and mixed teams are 1 percentage
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Table 1.6: Team Type and Solution Quality: Top 3

Dependent Variable: Top 3

(1) (2) (3) (4) (5)

Generalist Team 0.05*** 0.06*** 0.06*** 0.06*** 0.06***
(0.01) (0.01) (0.01) (0.01) (0.01)

Mixed Team 0.01*** 0.02** 0.02*** 0.02** 0.02**
(0.01) (0.01) (0.01) (0.01) (0.01)

Specialist Team 0.00 0.01 0.01 0.01 0.01
(0.01) (0.01) (0.01) (0.01) (0.01)

Competition Experience -0.00* -0.00*** -0.00*** -0.00***
(0.00) (0.00) (0.00) (0.00)

Previous Rank 0.00*** 0.00*** 0.00*** 0.00***
(0.00) (0.00) (0.00) (0.00)

3-Person Team 0.04** 0.04** 0.04** 0.04** 0.04**
(0.02) (0.02) (0.02) (0.02) (0.02)

4-Person Team 0.05* 0.05 0.05 0.05 0.05
(0.03) (0.03) (0.03) (0.03) (0.03)

5-Person Team -0.00 -0.01 -0.01 -0.01 -0.01
(0.02) (0.02) (0.02) (0.02) (0.02)

R2 0.01 0.02 0.02 0.03 0.05
Observations 74433 60897 60204 60090 60090

Demographic Controls Yes Yes Yes
Code Quality Controls Yes Yes
Competition FEs Yes

p-value (Generalist Team = Mixed Team) 0.00 0.00 0.00 0.00 0.00
p-value (Generalist Team = Specialist Team) 0.00 0.00 0.00 0.00 0.00
p-value (Specialist Team = Mixed Team) 0.24 0.50 0.54 0.52 0.52

Notes: The table reports the estimates of equation (1.8). The dependent variable is an indicator whether a team’s solution
was among the top three solutions in competition c. The main explanatory variables are indicators for the team’s type:
Generalist Team (a team of only generalists), Mixed Team (a team of both generalists and specialists), and Specialist
Team (a team of only specialists). Solo competitors are the omitted category. Competition experience measures the
average of the number of competitions each team member participated in before competition c. Previous Rank measures
the average of the percentile ranks achieved by each team member when competing alone in a previous competition.
Demographic controls include share female, average user platform age, country shares for all countries with at least 100
users, and occupation shares for all occupations reported by at least 100 users (c.f. Table 1.B.2). Code quality controls
include the average of each team member’s lines of code, lines of comment, number of code files, and votes received by
code files. Standard errors are clustered at the stable team level. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.

point more likely, specialist teams are indistinguishable from solo competitors. Controlling for

experience and previous performance (column 2), demographics (column 3), code quality (column

4), and including competition fixed effects (column 5) has minimal effect on coefficient sizes and

significance. In fact, generalist and mixed teams’ advantage over solo competitors increases by

one percentage point compared to column 1, while specialist teams are not differentially likely to

place among the top three than solo competitors. Generalist teams are significantly more likely to

place among the top three than mixed teams and specialist teams throughout all specifications.

These differences are significant at the 1% level. Taken together, the patterns documented in Tables

1.4-1.6 provide strong support for Prediction 1.
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1.4.3 Results Isolating Team Member Unobservables

A potential concern is that previous solution quality achieved by team members as solo competitors

and code quality do not sufficiently capture individual ability. Rather, there may be time-invariant

unobservable user characteristics that influence team solution quality. To address this concern, I

estimate the following regression:

Ytc = α+ τ1Generalist Teamt + τ2Mixed Teamt + τ3Specialist Teamt + γc +
∑

i∈G(t)

υi + ϵtc (1.9)

Ytc and Generalist Teamt, Mixed Teamt, and Specialist Teamt are defined as above.
∑

i∈G(t) υi is

a function which aggregates all G(t) user fixed effects υi to the team level, γc are competition fixed

effects, and ϵtc are team-competition specific shocks. To efficiently estimate individual fixed effects

with group level outcomes, I use the estimator introduced with the reghdfe package (Constantine

and Correia, 2021), which aggregates individual fixed effects at the group level and provides accurate

inference.

Table 1.7: Team Type and Solution Quality: Team Member Fixed Effects

Dependent Variable: Rank Medal Win Top 3

(1) (2) (3) (4) (5) (6)

Generalist Team 17.98*** 19.25*** 0.28*** 0.28*** 0.05*** 0.05***
(1.00) (1.05) (0.02) (0.02) (0.01) (0.01)

Mixed Team 17.72*** 18.17*** 0.26*** 0.27*** 0.02*** 0.02***
(0.90) (0.88) (0.02) (0.02) (0.01) (0.01)

Specialist Team 16.23*** 15.82*** 0.22*** 0.23*** 0.02 0.02
(1.56) (1.51) (0.03) (0.03) (0.01) (0.01)

3-Person Team 5.05*** 5.14*** 0.16*** 0.16*** 0.04** 0.04**
(1.32) (1.31) (0.03) (0.03) (0.02) (0.02)

4-Person Team 9.43*** 8.99*** 0.26*** 0.27*** 0.04 0.04
(1.89) (1.93) (0.05) (0.05) (0.03) (0.03)

5-Person Team 10.06*** 10.97*** 0.28*** 0.29*** -0.00 -0.00
(1.74) (1.87) (0.06) (0.06) (0.02) (0.02)

R2 0.36 0.40 0.26 0.29 0.14 0.16
Observations 69381 69372 69381 69372 69381 69372

User FEs Yes Yes Yes Yes Yes Yes
Competition FEs Yes Yes Yes

p-value (Generalist Team = Mixed Team) 0.84 0.39 0.56 0.51 0.05 0.04
p-value (Generalist Team = Specialist Team) 0.34 0.06 0.17 0.21 0.04 0.04
p-value (Specialist Team = Mixed Team) 0.40 0.17 0.30 0.40 0.69 0.70

Notes: The table reports the estimates of equation (1.9). The dependent variable is the percentile rank of a team’s solution quality,
an indicator whether a team’s solution has won a medal, or an indicator whether a team’s solution was among the top three solutions
in competition c. The main explanatory variables are indicators for the team’s type: Generalist Team (a team of only generalists),
Mixed Team (a team of both generalists and specialists), and Specialist Team (a team of only specialists). Significance levels: ∗∗∗
p<0.01, ∗∗ p<0.05, and ∗ p<0.1.

Table 1.7 displays results for Equation (1.9). Columns 1 and 2 report coefficients for the team’s

percentile ranks, once with (1) and once without (2) including competition fixed effects. The
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coefficients on the different team types are close to the coefficients reported in Table 1.4. This

pattern is repeated in columns 3 and 4, which report results for the probability of a team’s solution

winning a medal, and columns 5 and 6, which report results for the probability of a team’s solution

placing among the top three solutions in a competition. In all specifications, generalist teams

provide higher quality solutions than specialist teams. The difference between generalist and

specialist teams is significant at the 10% level for Rank, and at the 5% level for Top 3, but not

for Medal Win, despite similar coefficient sizes as in Table 1.5. These results indicate that quality

differences between generalist and specialist teams are not driven by time-invariant unobservable

user characteristics.

1.4.4 Results Isolating the Effect of Joining a Team

In the previous sections, I have shown that generalist teams achieve higher quality solutions

than specialist teams, and that this difference is driven neither by time-varying observables nor

time-constant unobservables. Both empirical approaches relied exclusively on between-competition

variation. Still, one might be concerned that performance in different competitions insufficiently

captures task-specific ability. Using performance in other competitions as a proxy for ability in a

given competition implicitly assumes that computer scientists only choose to enter competitions

that match their skill sets. If, for instance, computer scientists are not fully aware of which skills a

problem requires before entering the competition, generalists would in expectation work on problems

that are within their skill set more often, since their skill set is broader. This is not an unlikely

scenario. Furthermore, generalists’ broader skills might enable them to better recognize which skills

are required by a competition.

To address this concern, I make use of two unique features on Kaggle, preliminary submissions

and in-competition team formation. As described in Section 1.3.4.2, competitors are able to make

preliminary submissions to a competition to receive feedback on how the proposed algorithm

performs on the public test set. While only performance on the public, but not the private (final)

test set is known to competitors during the competition, Kaggle also calculates and records how

an algorithm would have scored on the final test set. Using these scores and information on the

scoring algorithm, I can construct counterfactual percentile ranks for each submission.

Users do not have to enter a competition as a team, but can also first enter a competition

as a solo competitor, work independently, and later form a team. Importantly, once they join a

team, which team member made a submission is still recorded by Kaggle. Similarly to Lemus and

Marshall (2024), I track how submission quality changes before and after team formation. However,

I deviate from their analysis in two core dimensions. First, my analysis is at the team member level

rather than at the team level, allowing me to isolate individual contributions to team performance.
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Second, since the timing of team formation is likely endogenous, I restrict my analysis to teams

forming at the exogenously set team formation deadline.21 The team formation deadline is the

modal date of team formation for all team types, see Figure 1.C.2. Since team members can join a

team in a sequential way, “treatment” timing in larger teams is ambiguous, such that I additionally

drop all teams with more than two members.

I then estimate the following event study:

Submission Rankict =Generalist Teamic

∑
d̸=−1

δGd DT+d + Mixed Teamic

∑
d̸=−1

δMd DT+d

+Specialist Teamic

∑
d̸=−1

δSdDT+d +
∑
d̸=−1

δdDT+d + υic + ϕt + ϵict (1.10)

where d indexes periods of two days relative to team formation, and DT+d denote the event-study

indicators for the periods leading up to and following team formation. Generalist Teamic is an

indicator equal to one if user i joins a generalist team, Mixed Teamic is an indicator equal to one

if user i joins a mixed team, and Specialist Teamic is an indicator equal to one if user i joins a

specialist team team in competition c. Coefficients δd capture the effect of time relative to the team

formation deadline at T for users who never form a team. δGd measure the differential effect of time

relative team formation for generalist teams, δMd for mixed teams, and δSd for specialist teams. υic

are team member fixed effects, i.e., a user × competition fixed effect, and ϕt are competition day

fixed effects.

Figure 1.2 plots results from Equation (1.10), and Table 1.C.3 displays coefficients. Since the

team formation deadline most commonly coincides with the week before the competition ends, I

include three lags of two days, and one lag pooling all submission dates more than five days after

the team formation deadline. As Figure 1.C.3 illustrates, few teams make submissions after day

seven. I also include two-day leads only for up to eight days before the team formation deadline

and one lead capturing all earlier submission dates, since submissions are comparatively sparse

in this time. The small number of daily submissions also informs my choice to bin submission

dates into two-day windows, since estimation of the multitude of fixed effects is demanding. Before

forming a team, submission ranks of eventual team members develop no differently than those of

solo competitors, indicating no anticipation. After forming a team, the quality of submissions made

by the members of generalist teams increases immediately by about 7 percentile ranks relative to

users who do not form a team. This effect is significant at the 5% level, and significantly different

from mixed and specialist teams, for whom I cannot detect any effects of team formation on users

working in mixed or specialist teams. In the week after joining a team, submission quality by team
21This specification choice also allows me to circumvent issues created by staggered treatment as discussed in Sun

and Abraham (2021), as all competitors in my analysis either form a team at exactly the same time or not at all.
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Figure 1.2: Team Type and Solution Quality: Submission Event Study
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Notes: The figure plots the estimated coefficients δGd , δMd , and δSd from Equation (1.10). Each coefficient is
equivalent to a two-day period d before or after team formation at the exogenously set team formation deadline. The
two-day period immediately before team formation is the omitted category. The coefficients indicate the percentile
difference in submission ranks for each team type relative to the team formation deadline and to solo competitors
who do not form a team at d = 0. The corresponding regression results are reported in Table 1.C.3.

members in generalist teams steadily increases relative to solo competitors, with members of mixed

teams catching up slightly. The quality of submissions by members in specialist teams does not

change significantly in response to team formation relative to those by solo competitors. After five

days, submissions by team members of generalist teams place circa 10 percentile ranks higher than

those of members of specialist teams.

1.4.5 Robustness

Robustness to Ability Proxies In Section 1.4.2 I use the average of past performance in

all solo competitions to control for potential ability differences between team types. This could

potentially over- or understate current ability if computer scientists’ skills change dynamically, for

instance because they learn from past competitions. To address this concern, I include only recent

performance as an ability control in Table 1.C.4. Specifically, I average the percentile ranks achieved
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in the last (respectively second to last and third to last) solo competition for all team members. For

medals, I take the share of team members who achieved a medal in their last (second/third to last)

competition. We might also be worried that rather than the absolute past performance, trajectories

matter for team performance. Table 1.C.5 controls for the team-level average change in percentile

ranks between the first and second to last, second and third to last, and the average of first and

second and second and third to last solo competitions. Coefficient sizes remain remarkably stable

across specifications, as does significance. The only exception are results for medal win with three

performance lags (Table 1.C.4, Column 8) where I cannot detect significant differences between

generalist and specialist teams anymore, likely due to substantially reduced sample size.

Robustness to Specialization Measure To ensure results are not driven by how I chose to

classify specialists and generalists, I conduct several robustness checks. First, because I create

generalist and specialist categories by binarizing the continuous specialization index, I conduct a

sensitivity analysis to determine how different binarization cutoff points affect my results. Figure 1.3

presents results of this sensitivity analysis. It plots coefficients from Equation (1.8), including all

controls and competition fixed effects as in Column (5) of Tables 1.4-1.6 with alternative team

type classifications. Each category on the x-axis corresponds to a different cutoff point in the

specialization index, e.g., 10% reflects team type classifications in which only individuals with very

generalist skills, i.e., only those whose specialization is in the lowest decile of the specialization index

were classified as generalists. Results at 50% correspond to the main results presented in this section.

For all cutoff points below 50%, generalist teams achieve significantly higher ranks (Figure 1.3a),

are more likely to win a medal (Figure 1.3b), and to place among the top three (Figure 1.3c) than

specialist teams. In fact, the stricter I classify generalists, the larger the advantage of generalist

teams over specialist and mixed teams, suggesting the results presented in this section might be a

conservative estimate of the differences between generalists and specialists.

As a further robustness check, I re-calculate the specialization index excluding all code files

published after November 30th 2022, when ChatGPT was introduced. This reduces the sample

size by about 4000 teams. I also construct an alternative measure of specialization based on the

python packages included in each code file. To use the functionality of a given python package,

each python code file needs to explicitly import a package at the beginning of the file. Imported

packages correspond to the goal of the code, for instance, package cv2 provides functionality for

computer vision problems such as image processing, whereas package nltk is used for natural

language processing. I construct Python Package Diversity (PPD) as:

PPDi =

∑Pi

p=1 Share of user i’s Code Files using Package p
Number of Distinct Packages used by user i
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Figure 1.3: Robustness of Main Result to Different Classification Cutoffs
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which is equal to one if all code files written by user i include the same combination of packages.

I classify users with below median PPD as generalists. Table 1.C.6 presents results using these

new specialization classifications. When excluding all code files written after the introduction of

ChatGPT, I do not find significant percentile rank differences between generalist and specialist

teams anymore. However, generalist teams are still significantly more likely than specialist teams

to win a medal or place among the top three. When using PPD as a measure of specialization, I

find that generalist teams place about 8.5 percentile ranks higher than specialist teams and are

12 percentage points more likely to win a medal than specialist teams. I cannot detect significant

differences for the probability of placing among the top three.

Overall, the results from Section 1.4.2, Section 1.4.3, and Section 1.4.4 support Prediction 1

as well as an interpretation of these differences as reflecting fundamental differences in the way

generalist teams solve problems, rather than a different ability composition of generalist teams.

The next sections turn towards mechanisms.

1.5 Mechanisms

My theoretical framework attributes quality differences between specialist and generalist teams

to coordination costs. As I cannot measure coordination costs directly, I present several sets of

diagnostic evidence: First, solution quality differences between generalist and specialist teams are

driven by high complexity competitions. Second, the introduction of ChatGPT, a coordination-cost

reducing technology, eliminates quality differences between generalist and specialist teams. Finally, I

rule out four alternative explanations that could plausibly generate quality differences between team

types: Generalists being more motivated and exerting more effort, generalists as better managers,

generalists having higher social skills, and generalists being able to find better team members.

1.5.1 Investigating Complexity

A more complex problem requires more coordination, for example, because parts of the algorithm

may interact in an unforeseen way, or because it may be less clear how to split the problem in

sub-tasks. Prediction 2 echoes this intuition. As complexity increases coordination costs, quality

differences between generalists and specialists should be larger for higher complexity problems. I

use Prediction 2 as a first diagnostic to test whether solution quality differences between generalists

and specialist arise because of higher coordination costs for generalist teams. To do so, I split the

sample into high and low complexity competitions, and estimate Equation 1.8 separately for both

types of competitions. I define a high-complexity competition as a competition with an overfitting

risk in the top quartile of the overfitting distribution (c.f. Section 1.3.4.1). Figure 1.4 displays the
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main coefficients and Table 1.D.7 full regression results. Generalist and specialist teams achieve

similar ranks (Figure 1.4a), and are similarly likely to win a medal (Figure 1.4b) in low-complexity

competitions. In high-complexity competitions however, generalist teams achieve higher quality

than both mixed and specialist teams. For instance, in low-complexity competitions, generalist

teams place only 2 percentile ranks higher than specialist teams on average, a difference that is not

statistically significant, in high-complexity competitions however, the gap between generalist and

specialist teams is equivalent to almost 10 percentile ranks and highly significant. In fact, all teams

perform worse in high complexity competitions, but specialist teams are most affected by problem

complexity. With the exception of Top 3, where generalist teams are best throughout, generalist

teams only outperform specialist teams in high-complexity competitions.

Robustness To ensure my conclusions are not driven by how I classify complexity, I conduct

several robustness checks. First, I change the complexity cut-off for a “high-complexity” competitions

to the 50th (Table 1.D.8) and to the 90th percentile of competition complexity (Table 1.D.9). In

both exercises, I only detect significant rank and medal differences between generalist and specialist

teams in high-complexity competitions. Second, I use another measure of overfitting risk in a

competition, competition difficulty, which is defined as 1− the share of teams whose best performing

submission on the training dataset was also their best performing submission on the test dataset

(Trotman, 2019). Again, I can only detect significant differences between generalist and specialist

teams’ solution quality in high-difficulty competitions. Finally, I assess problem complexity from

two different angles, the length of instruction and whether the competition additionally specifies

compute constraints. I extract competition descriptions from each competition’s overview site

on Kaggle. I consider a competition with above average instruction length a high complexity

competition. Many competitions with the goal of detecting diseases from biomedical images fall

under this category, like segmenting and grading biopsy images (c.f. Bulten et al., 2022), whereas

competitions using tabular data with the goal to, for example, predict financial transactions, often

have shorter instructions. Table 1.D.11 reports results. Here again, quality differences between

generalist and specialist teams only emerge in high-complexity competitions. Last, a subset of

Kaggle competitions specify additional compute constraints. To be eligible to win, competitors’

algorithms have to run in a given time on given hardware. Competitors thus have to optimize

along two dimensions, maximizing prediction accuracy while minimizing runtime, a more complex

task. Table 1.D.12 displays results when splitting the sample into unconstrained and constrained

competitions. As before, I only detect significant quality differences between generalist and specialist

teams for more complex competitions, that is, in competitions with compute constraints.
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1.5.2 ChatGPT as a Shock to Coordination Costs

In the last section, I tested for coordination costs as a mechanism through an indirect shifter of

coordination costs, problem complexity. Here, I will examine a direct shock to coordination costs:

The introduction of ChatGPT. Technologies like ChatGPT could reduce coordination costs in

teams in multiple ways, for example, by writing quick code to integrate components, by explaining

code written by another team member, or by narrowing down the search space. At Google, large

language model coding assistants were found to significantly speed up the code review process, one

of the key elements of teamwork, by translating verbal code improvement suggestions made by

other team members to code suggestions (Frömmgen et al., 2024). OpenAI introduced ChatGPT

on November 30, 2022 as a way for users to interact with their large language model GPT-3. The

introduction of ChatGPT was unexpected, both to the broader public (Figure 1.D.4a) and the

Kaggle community, but attracted more attention on Kaggle than other large language models,

like ChatGPT’s predecessor GPT-2 or Google’s BERT (Devlin et al., 2019) (Figure 1.D.4b and

Figure 1.D.4c).

Similarly to the complexity analysis in the last section, I split the sample into competitions

completed before November 30, 2022, and after. I assign competitions active during the introduction

of ChatGPT to the post period, since all active competitions remained active for at least three

weeks after the introduction of ChatGPT, enough time for competitors to use ChatGPT. I also

truncate the pre-period to the exact same length as the post-period – my sample ends in February

2024 – to ensure that I am not attributing disappearing quality gaps a to lack of power.

Figure 1.5 displays main coefficients and Table 1.D.13 full split-sample regression results. Before

the introduction of ChatGPT, generalist teams place on average 11 percentile ranks higher than

specialist teams, but after ChatGPT, specialist teams’ ranks are indistinguishable from generalist

teams’, even suggesting they might outperform generalist teams. In the period before ChatGPT,

specialist teams are not more likely to win a medal than solo competitors, and about 29 percentage

points less likely than generalist teams to win a medal. This difference shrinks drastically in the post-

ChatGPT period, and is not statistically significant anymore. I fail to detect significant differences

in the probability of placing among the top three in both periods, likely due to substantially reduced

sample sizes compared to Table 1.6.
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Figure 1.4: Team Type, Complexity, and Solution Quality
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Notes: The figure plots the estimated coefficients τ1, τ2, and τ3 from Equation (1.8). Regressions are estimated
separately for the subset of low- and high-complexity competitions. A competition is classified as a high-complexity
competition if its overfitting risk lies in the top quartile of the overfitting risk distribution. Panel (a) displays
estimates for Rank, panel (b) for Medal Win, and panel (c) for Top 3. I report coefficients from regressions using all
covariates and competition fixed effects as in column (5) in Tables 1.4-1.6. The corresponding regression results are
reported in Table 1.D.7.

36



Innovative Collaboration

Figure 1.5: Team Type, ChatGPT, and Solution Quality
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Notes: The figure plots the estimated coefficients τ1, τ2, and τ3 from Equation (1.8). Regressions are estimated
separately for competitions ending before and after the introduction of ChatGPT on November 30, 2022. Panel (a)
displays estimates for Rank, panel (b) for Medal Win, and panel (c) for Top 3. I report coefficients from regressions
using all covariates and competition fixed effects as in column (5) in Tables 1.4-1.6. The corresponding regression
results are reported in Table 1.D.13.
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1.5.3 Effort and Motivation

An alternative explanation for the documented quality differences between generalist and specialist

teams is that, rather than these teams having different levels of coordination costs, generalist teams

are more motivated and exert more effort. For instance, Weidmann and Deming (2021) find that

individuals who increase team performance do so by raising the effort levels of their team peers.

Generalists might take that role in their teams, for example, because they are able to keep the big

picture in view and inspire their team with that vision. In Table 1.8, I investigate whether teams

differ in terms of effort provision and motivation.

Column (1) presents results for Equation (1.8) with Total Submissions as a measure of effort. The

number of submissions is highly correlated with performance in a competition. More submissions

mean more feedback and more opportunities for fine-tuning the algorithm. Importantly, more

submissions mean more work.22 When controlling for ability proxies, team demographics, team

size, code characteristics, and competition fixed effects, I do not detect significant differences in the

number of total submissions across team types. Columns (2) and (3) report estimates for a finer

dimension of motivation, the care taken to select the final submission. I define Best Public Chosen

and Best Private Chosen as indicators whether a team chose the best performing submission on the

public (known during the competition) or private (not known to teams during the competition) test

set as a final submission. Note that Kaggle selects the best public submission as the final submission

unless the team makes a different choice. Coefficients can thus be interpreted as making a conscious

choice which requires more effort. I do not find any significant differences in the propensity to

choose the best public or private submission between generalist teams, specialist teams and mixed

teams.

Since rushing has been found to both be negatively correlated with effort and to reduce the

quality of innovation (Weidmann and Deming, 2021; Hill and Stein, 2025), I examine two measures

of rushing: Time to Best, the time it took a team to reach their highest ranked submission and

Time to Final the time to reach the submission they chose as their final submission. On average,

teams take longer than individual competitors to develop their best and final submissions. The

interpretation of this difference is ambiguous. In part, this may explain team’s better performance,

since rushing a submission could be associated with lower quality (c.f. Hill and Stein, 2025). However,

a longer time to submit might also reflect teams’ higher coordination costs. While I do not detect

any significant differences between team types in the time that it takes a team to develop their best

performing submission, generalist teams take slightly longer than mixed teams to develop their final
22Kaggle enforces a daily submission limit, implicitly censoring effort measures. Kaggle’s rationale behind this is

to ensure a level playing field – larger teams might have more capacities to submit more and receive more feedback
than smaller teams. However, the overwhelming majority of teams submit less than the limit specified, see Figure
1.D.5.
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Table 1.8: Team Type and Submission Behavior

Dependent Variable: Total
Submissions

Chose
Best Public

Chose
Best Private

Time
to Best

Time
to Final

(1) (2) (3) (4) (5)

Generalist Team 43.85*** -0.12*** -0.17*** 0.13*** 0.15***
(4.32) (0.02) (0.02) (0.01) (0.01)

Mixed Team 40.18*** -0.15*** -0.20*** 0.11*** 0.12***
(3.03) (0.02) (0.02) (0.01) (0.01)

Specialist Team 47.80*** -0.13*** -0.19*** 0.12*** 0.13***
(5.34) (0.03) (0.03) (0.02) (0.02)

Competition Experience -0.08*** -0.00 0.00 0.00*** 0.00***
(0.02) (0.00) (0.00) (0.00) (0.00)

Previous Rank 0.29*** -0.00*** -0.00*** 0.00*** 0.00***
(0.02) (0.00) (0.00) (0.00) (0.00)

3-Person Team 41.16*** 0.01 -0.01 0.04*** 0.04***
(6.22) (0.03) (0.03) (0.01) (0.01)

4-Person Team 80.34*** 0.01 -0.12** 0.08*** 0.10***
(13.25) (0.06) (0.05) (0.02) (0.02)

5-Person Team 116.20*** -0.10* -0.16*** 0.10*** 0.12***
(13.83) (0.06) (0.06) (0.02) (0.02)

R2 0.18 0.11 0.16 0.22 0.22
Observations 60090 60090 60090 60090 60090

Demographic Controls Yes Yes Yes Yes Yes
Code Quality Controls Yes Yes Yes Yes Yes
Competition FEs Yes Yes Yes Yes Yes

p-value (Generalist Team = Mixed Team) 0.48 0.38 0.20 0.13 0.06
p-value (Generalist Team = Specialist Team) 0.56 0.93 0.55 0.58 0.37
p-value (Specialist Team = Mixed Team) 0.20 0.54 0.69 0.63 0.75

Notes: The table reports the estimates of equation (1.8). The dependent variable is a team’s total number of submissions (1), an
indicator whether a team chose the submission that performed best in the public test sample as their final competition submission (2),
an indicator whether a team chose the submission that performed best in the private test sample as their final competition submission
(3), the time the team took to develop their best submission (4), the time the team took to develop their final competition submission
(5). I measure time in the fraction of days relative to total competition duration, since the value of a day is different if the competition
lasts two weeks or two months. The main explanatory variables are indicators for the team’s type: Generalist Team (a team of only
generalists), Mixed Team (a team of both generalists and specialists), and Specialist Team (a team of only specialists). Solo competitors
are the omitted category. Competition experience measures the average of the number of competitions each team member participated
in before competition c. Ability controls include Previous Rank (the average percentile rank achieved by each team member when
competing alone in previous competitions) and Experience (the average number of competitions that each team participated in on
their own in previous competitions). Demographic controls include share female, average user platform age, country shares for all
countries with at least 100 users, and occupation shares for all occupations reported by at least 100 users (c.f. Table 1.B.2). Code
quality controls include the average of each team member’s lines of code, lines of comment, number of code files, and votes received by
code files. Standard errors are clustered at the stable team level. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.

submission. For example, in a 100-day competition, generalist teams develop the submission that

they select as their final competition submission three days later than mixed teams. Overall, I find

little support for differential effort as a mechanism behind generalists-specialist quality differences.

1.5.4 Management Skills

Recent empirical work has highlighted the importance of managers for allocating workers to special-

ized tasks and thereby increasing productivity (Minni, 2024; Weidmann et al., 2024). Consistent

with theoretical arguments made by Crémer et al. (2007), the role of generalists in teamwork

could also be that of a manager. In Crémer et al. (2007), different units of an organization engage
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in solving parts of a problem. However, they do not “speak” the same language, i.e., they are

specialized on different parts of the problem. A manager, who “speaks” both languages, assigns

the parts of the problem to the person who can solve them. An interpretation of their theoretical

model is that individuals with broader knowledge make for better managers.

Although there are no explicit managers in Kaggle teams, each team is required to select a team

leader. The team leader has de facto authority: They are the primary point of contact between the

platform and the team, have the sole authority over accepting new team members and merging

teams, and make the final submission selections.23 These powers and responsibilities align closely

with a management role. To investigate whether generalists are better managers, I estimate the

following regression in the sample of mixed teams24:

Ytc = α+ β1Generalist Team Leadertc +X ′
tcβ + ϵtc (1.11)

where Generalist Team Leadertc is an indicator that is equal to one if team t’s team leader is a

generalist, and Ytc and Xtc are defined as in Equation (1.8).

Table 1.9 presents results. I do not find any evidence that teams with a generalist team leader

perform any different than teams with a specialist leader. In columns 4-6, I additionally split ability

controls into the ability of the team leader and that of the other members, and control for both

separately. The effects of team lead and team member ability are indistinguishable (F-Tests: 0.31

(Column 4), 0.34 (Column 5), 0.32 (Column 6)).

1.5.5 Social Skills

Social skills are crucial for teamwork (Deming, 2017; Weidmann and Deming, 2021; Adhvaryu

et al., 2023). For example, Deming (2017) explicitly models social skills as a factor that reduces

coordination frictions between specialized workers. Social skills could be correlated with the degree

of specialization, for example, if a broader set of interests is correlated with an open mind towards

people. Any quality difference between generalist and specialist teams would then be a result of

social skills rather than coordination costs differing by the degree of specialization. Do generalist

teams have higher levels of social skills? Since I do not have access to explicit measures of social

skills, I analyze users’ public communication behavior on the platform to capture social skills.

Kaggle users can engage in forum discussions. Aside from some platform-wide forums for questions

or product feedback, each competition has an attached discussion forum in which users can and

very frequently do interact. From these messages, I construct several metrics of social skills, and

investigate whether team types differ in their levels of social skills. Note that I do not have access

to private, within team communication data. A necessary assumption is thus that interactions with
23See Kaggle.com (2024a) and Reade (2024).
24As only generalists can be team leaders in generalist teams and analogously for specialists.
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Table 1.9: Generalist Team Leaders in Mixed Teams

Dependent Variable: Rank Medal Win Top 3 Rank Medal Win Top 3

(1) (2) (3) (4) (5) (6)

Generalist Team Leader -0.26 -0.03 -0.01 0.14 -0.06 -0.01
(1.69) (0.04) (0.01) (1.71) (0.05) (0.02)

Competition Experience 0.15** 0.00** -0.00
(0.07) (0.00) (0.00)

Previous Rank 0.29*** 0.00
(0.08) (0.00)

Previous Medal Wins 0.51***
(0.17)

Team Lead’s Experience 0.02 0.00 -0.00
(0.04) (0.00) (0.00)

Team Members’ Experience 0.08* 0.00 -0.00
(0.04) (0.00) (0.00)

Team Lead’s Rank 0.18*** 0.00**
(0.06) (0.00)

Team Members’ Rank 0.09 0.00
(0.07) (0.00)

Team Lead’s Medal Wins 0.49***
(0.12)

Team Members’ Medal Wins 0.31**
(0.12)

3-Person Team 5.06** 0.15*** 0.03 7.35*** 0.20*** 0.05*
(2.38) (0.05) (0.02) (2.10) (0.06) (0.03)

4-Person Team 12.48*** 0.26*** 0.04 10.83*** 0.25*** 0.04
(2.32) (0.06) (0.03) (2.33) (0.06) (0.04)

5-Person Team 13.19*** 0.27*** -0.02 12.02*** 0.32*** -0.03
(2.59) (0.07) (0.03) (2.56) (0.07) (0.04)

R2 0.56 0.52 0.40 0.62 0.57 0.45
Observations 830 830 830 655 655 655

Demographic Controls Yes Yes Yes Yes Yes Yes
Code Quality Controls Yes Yes Yes Yes Yes Yes
Competition FEs Yes Yes Yes Yes Yes Yes

Notes: The table reports the estimates of equation (1.11). The dependent variable is a team’s percentile rank, (1) and
(4), an indicator whether a team won a medal, (2) and (5), and an indicator whether a team placed among the Top 3, (3)
and (6). The main explanatory variable is an indicator whether the team leader is a generalist. Competition experience
measures the average of the number of competitions each team member participated in before competition c. Ability
controls include Previous Rank (the average percentile rank achieved by each team member when competing alone in
previous competitions) and Experience (the average number of competitions that each team participated in on their
own in previous competitions). Team Lead and Team Members’ variables are defined in the same way, but included
disaggregated by team leader and non-team leader team members. Demographic controls include share female, average
user platform age, country shares for all countries with at least 100 users, and occupation shares for all occupations
reported by at least 100 users (c.f. Table 1.B.2). Code quality controls include the average of each team member’s lines
of code, lines of comment, number of code files, and votes received by code files. Significance levels: ∗∗∗ p<0.01, ∗∗
p<0.05, and ∗ p<0.1.

a larger group of peers generalize to behavior within a smaller group of peers. This is plausible in

this context, since public communication is not anonymous. I estimate the following regression on

the sample of stable teams:

Yt = α+ τ1Generalist Teamt + τ2Mixed Teamt + τ3Specialist Teamt +X ′
tβ + ϵi (1.12)

where Yt is a measure of the team’s average social skills, Generalist Teamt, Mixed Teamt, and

Specialist Teamt are defined as before, and Xt is a vector of team-level demographics and team

size indicators. I first evaluate whether the total volume of messages differs between team types.

Engaging more with public message boards is an indicator for a desire and willingness to communicate

with others, a prerequisite of social skills. I do not find any significant differences between team
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Table 1.10: Team Type and Social Skills

Dependent Variable: Number
Messages

Share
with Thanks

Thanks
per Message

Share with
User Mentions

User mentions
per Message

Smileys
per Message

(1) (2) (3) (4) (5) (6)

Generalist Team 139.58*** -0.07*** -0.07*** 0.03*** 0.04*** 0.02***
(16.12) (0.01) (0.01) (0.01) (0.01) (0.01)

Mixed Team 119.59*** -0.05*** -0.05*** 0.04*** 0.05*** 0.01***
(11.85) (0.01) (0.01) (0.01) (0.01) (0.00)

Specialist Team 140.73*** -0.03** -0.03** 0.05*** 0.05*** 0.03***
(30.84) (0.01) (0.01) (0.01) (0.01) (0.01)

3-Person Team 105.48*** -0.02* -0.02 0.02** 0.04*** 0.00
(25.07) (0.01) (0.01) (0.01) (0.01) (0.01)

4-Person Team 283.99*** -0.04*** -0.03** 0.04** 0.06*** -0.00
(81.83) (0.01) (0.01) (0.02) (0.02) (0.01)

5-Person Team 203.89*** -0.03** -0.03** 0.04*** 0.06*** -0.00
(35.67) (0.01) (0.01) (0.01) (0.02) (0.01)

R2 0.05 0.03 0.03 0.05 0.03 0.03
Observations 13030 13030 13030 13030 13030 13030

Demographic Controls Yes Yes Yes Yes Yes Yes

p-value (Generalist Team = Mixed Team) 0.30 0.03 0.02 0.22 0.30 0.62
p-value (Generalist Team = Specialist Team) 0.97 0.01 0.01 0.13 0.41 0.09
p-value (Specialist Team = Mixed Team) 0.51 0.21 0.20 0.46 0.93 0.04

Notes: The table reports the estimates of equation (1.12). The dependent variables are the average number of forum messages posted by a team’s members (1), the
average share of their messages that contain expressions of gratitude (2), as well as the share of these per message (3), the average share of messages mentioning other
users (4), as well as the share of user mentions per message (5), and the average share of smileys per message (6). The main explanatory variables are indicators for the
team’s type: Generalist Team (a team of only generalists), Mixed Team (a team of both generalists and specialists), and Specialist Team (a team of only specialists).
Solo competitors are the omitted category. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.

types (Table 1.10, Column 1). I next turn to the content of the messages: Experimental research

from psychology indicates that explicit expressions of gratitude help initiate social relationships

(Williams and Bartlett, 2015). I thus investigate what portion of a user’s forum posts include

“thank you’s” and how many “thank you’s” an average message contains (Table 1.10, Columns 2

and 3). Specialist Teams are comprised of users who thank others more often. I also examine how

often other users are mentioned in messages and how often (Table 1.10, Columns 4 and 5)25 as a

more direct measure of social ties. I do not find any significant differences. Finally, I construct a

simple measure of friendliness: whether a message includes graphical representations of emotion, i.e.,

smileys.26 Table 1.10, Column 6 presents results. Among all teams, specialist teams include most

smileys in their messages. Taken together, I do not find striking differences in various measures of

social skills between team types. Since specialist teams appear at least as, if not more, sociable as

generalist teams, social skill differences are unlikely to explain the latter’s superior performance.

1.5.6 Team Member Matching

For the main part of this paper, my focus has been on differing costs of teamwork between generalists

and specialists. However, the productivity gains from collaboration might also differ. Both the

literature on peer effects (e.g., Hamilton et al., 2003; Mas and Moretti, 2009) and macroeconomic
25References to other users are clearly identifiable through HTML tags in the unprocessed message data which I

have access to.
26Specifically, I check for the presence of the following character sequences: :) =) ;) ;-) :-) (: (= (; (-; (-: and

the unicode strings for several graphical emoticons.
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Figure 1.6: Assortative Matching in Different Team Types
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Notes: The figure shows the correlations between team member’s previous percentile ranks in two-person teams.
Team member 1 is the team leader. Panel (a) displays generalist teams, panel (b) mixed teams, and panel (c)
specialist teams. m1, m2, and m3 are coefficients from a regression of team member 2 previous rank on team
member 1 previous rank. Panel (d) compares the correlations across team types.

models of labor market inequality (Cornelissen et al., 2017; Jarosch et al., 2021; Herkenhoff et al.,

2024; Freund, 2024) stress coworker complementarities in teams, finding that workers’ productivity

disproportionately increases when matched with higher-ability coworkers. Although it is unclear

whether and to which extend these complementarities exist in science – Azoulay et al. (2010) find

positive, Waldinger (2011) no, and Ahmadpoor and Jones (2019) negative productivity spillovers

– we might still be worried that specialists and generalists sort into teams with different spreads

in ability. For instance, generalist teams might systematically be more heterogeneous in ability,
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because generalists’ broader knowledge might allow them to assess others’ abilities better and find

higher ability team members given their own ability. If one high ability team member lifts the

others up disproportionately, a generalist team with a larger heterogeneity in ability would produce

a higher quality solution than a specialist team with the same average ability.

To explore whether different ability matching patterns could explain generalist-specialist quality

differences, I examine the correlation between team members’ previous performance in Figure 1.6.

I focus on a two-person team’s first collaboration, and designate the team leader as team member

1. The first three panels in Figure 1.6 show scatter plots of teams’ ability combinations and the

association between team members’ ability as a linear fit, separately for each team type. I find similar

correlations between the two team members’ previous performance for all team types: When one

team member has previously placed 10 percentile ranks higher, the other team member’s previous

performance increases between 2.5 to 3.3 percentile ranks. These associations are statistically

indistinguishable. The p-value of the Chi2-Test comparing the differences in slopes between the

sample of generalist teams and mixed teams is 0.42, 0.57 comparing generalist and specialist teams,

and 0.88 for specialist and mixed teams. Given their own ability, generalists do not seem to be able

to find better team members than specialists, making it unlikely that differing heterogeneity of

team ability drives quality differences of specialists and generalists.

1.6 Conclusion

Making teamwork succeed is crucial for maintaining high rates of innovation in a time in which

ideas are getting harder to find (Bloom et al., 2020) and innovation is increasingly produced in

teams (Wuchty et al., 2007). In this paper I show that there is a tension between specialization

and teamwork, as generalist teams produce higher quality innovation than specialist teams. I

argue that this is a result of coordination costs, which are higher in specialist teams. Using data

from online machine learning competitions, I employ several empirical strategies to disentangle the

effect of team type from the contributions of individual team members. I consistently find that

generalist teams produce higher quality than specialist teams. I provide several pieces of evidence

that point towards coordination costs as a channel. When working on a low-complexity problem,

specialist teams perform at par with generalist teams. Innovation quality differences only arise in

high-complexity problems, for which coordination costs are particularly high. A shift in coordination

costs due to the introduction of ChatGPT also removes quality differences between generalists

and specialists. I find no evidence for alternative mechanisms, such as motivation, management

skills, social skills, or collaborator matching, which might favor generalist teams. Overall, my

findings highlight that we need to take skill breadth into account if we want to build innovative
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teams. Universities and research agencies invest considerable funds into programs designed to

foster interdisciplinary research. While previous research suggests that teams from more diverse

disciplinary backgrounds produce higher-impact innovation (Uzzi et al., 2013; Allocca, 2024), I find

that coordination costs hamper the productivity of such teams and might lead these endeavors to

fail.
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Appendix to Chapter 1

• Appendix 1.A provides further details and derivations for the theoretical framework in

Section 1.2.

• Appendix 1.B provides further details on the construction of the data.

• Appendix 1.C reports robustness checks and additional findings related to Section 1.4.

• Appendix 1.D reports robustness checks and additional findings related to Section 1.5.
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1.A Model: Derivations

To derive the predictions in Section 1.2.2, I solve the model outlined in Section 1.2 via backward

induction, first deriving optimal effort, then optimal task division, and finally the conditions for

collaborating.

Effort Choices and the Division of Tasks within Teams When working alone, a scientist

has to execute all tasks by themselves, meaning that Qa
p and eai

* are zero when the problem falls

outside of the range of tasks a scientist can solve, i.e., Θp > bi.

Else, optimal efforts are given by:

∂q(Θp, σi, e
a∗
i )

∂ea∗i
= Θp

∂c(eai
*)

∂ea∗i
(1.A.1)

As ∂q(wi, σi, ei)/∂ei∂σi > 0 and ∂c(ei)/∂σi = 0:

Corollary 1: Of two scientists working alone on the same problem Θp, the more specialized scientist

(higher σi) will exert higher effort. Conversely, more specialized scientists will work on fewer

problems alone.

Looking at team production, let us first consider the case where both scientists have bi ≥ Θp.

Optimal efforts are given by:

1

2

∂q(wi, σi, e
t∗
i , )

∂et∗i
= wi

∂c(et∗i )

∂et∗i
(1.A.2)

Since Equation (1.A.2) has to hold for both team members, the optimal division of labor within a

team is given by:

∂q(wi, σi, e
t∗
i , )

∂et∗i

/∂q(wj , σj , e
t∗
j , )

∂et∗j
=

wi

wj

∂c(et∗i )

∂et∗i

/∂c(et∗j )

∂et∗j
(1.A.3)

meaning, two equally specialized scientists will execute exactly half of the necessary tasks.

In an homogeneous team (σi = σj), optimal efforts are then given by:

∂q(Θp/2, σi, e
t∗
i )

∂et∗i
= Θp

∂c(et∗i )

∂et∗i
(1.A.4)

Due to ∂q(wi, σi, ei)/∂ei∂wi < 0, for homogeneous teams, individual efforts per task in a team

are larger than when working alone. In an mixed team (σi ̸= σj), the more specialized scientist

executes a larger share of tasks to equalize production across the team. Denote as α the share of

tasks taken over by the more specialized scientist. Since α > 1/2, the change in effort for the more

specialized scientist is ambiguous. Efforts only increase if ∂q(wi, σi, ei)/∂ei∂wi < 0 is sufficiently
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small. However, efforts of the less specialized scientist always increase.

Corollary 2: In a team of two equally specialized scientists, both scientists will exert more effort per

tasks than when working alone. In a team of two scientists with different levels of specialization, the

less specialized scientist will exert more effort, whereas the change in effort for the more specialized

scientist is ambiguous. Homogeneous teams exert more effort than individuals for the same problem,

mixed teams the same or more. Now, what happens when two scientists collaborate, and one of

them has bj < Θp? Clearly, the less specialized scientist now has to execute tasks Θp − bj , and

potentially an additional share (1− φ) of the tasks θ < bj . Equation (1.A.2) becomes:

∂q(Θp − φbj , σi, e
t∗
i )

∂et∗i

/∂φbj , σj , q(e
t∗
j , )

∂et∗j
=

Θp − φbj
φbj

∂c(et∗i )

∂et∗i

/∂c(et∗j )

∂et∗j
(1.A.5)

Since we know that in an efficient team, the more specialized scientist executes a larger share of

tasks, a team with Θp/2 ≥ bj will never be efficient. In this case, scientist j executes bj tasks, and

scientist i the rest.

Collaboration Choices Recall that, for a given problem Θp, a scientist σi collaborates if:

1

2
{Qt

p − C(γp, σi, σj)}︸ ︷︷ ︸
team solution quality

− wic(e
t
i
*)︸ ︷︷ ︸

total cost of effort

≥ Qa
p︸︷︷︸

individual solution quality

− Θpc(e
a
i
*)︸ ︷︷ ︸

total cost of effort

(1.A.6)

where eai
* and eti

* are optimal efforts when working alone or working as a team. For a homogeneous

team, (σi = σj) Equation (1.A.6) becomes:

1

2
Qt

p −
Θp

2
c(eti

*)−Qa
p +Θpc(e

a
i
*)︸ ︷︷ ︸

return to collaboration

≥ 1

2
C(γp, σi, σi)︸ ︷︷ ︸

collaboration costs

(1.A.7)

That is, the return to collaboration has to be at least as large as the collaboration costs borne by

one team member.

A mixed team collaborates if:

1

2
Qt

p − αΘpc(e
t
i
*)−Qa

p +Θpc(e
a
i
*)︸ ︷︷ ︸

return to collaboration for more specialized scientist

≥ 1

2
C(γp, σi, σj)︸ ︷︷ ︸

collaboration costs

(1.A.8)

for the more specialized scientist. If Equation (1.A.8) holds for the more specialized scientist, it

also holds for the less specialized scientist, because working alone is even less profitable for the less

specialized scientist. Let’s look at the case where one scientist has bi ≥ Θp. Clearly, they will never

collaborate with a scientist who has the same level of specialization, since they will not be able to

execute all tasks necessary to solve the problem. In this scenario, when will it be profitable for a
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less specialized scientist to collaborate with that more specialized scientist?

1

2
Qt

p − (Θp − φbj)c(e
t
i
*)−Qa

p +Θpc(e
a
i
*)︸ ︷︷ ︸

return to collaborating for less specialized scientist

≥ 1

2
C(γp, σi, σj)︸ ︷︷ ︸

collaboration costs

(1.A.9)

Here, the relevant constraint is on the less specialized scientist: The more specialized scientist’s

return from working alone is zero.

Are all teams equally likely to occur? Due to lower coordination costs, collaboration between two

scientists with low levels of specialization is easier to sustain than between to more specialized

scientists if ∂q(wi, σi, ei)/∂wi∂σi = 0, i.e., the gains from the division of labor are the same across

all levels of specialization. If ∂q(wi, σi, ei)/∂wi∂σi > 0, which team is easier to sustain for a given

problem depends on the relative strength of the increase in coordination costs versus the increase

in quality. Assuming that scientists and problems are distributed i.i.d. over the unit interval, a

mixed team will be most frequent, since there is a mass of problems that some specialists can only

solve in collaboration, and these specialists will only collaborate with less specialized scientists.

Corollary 3: Not all types of collaborations are equally frequent: Specialist Teams are least likely,

followed by generalist teams, and mixed teams. Specialists are less likely than generalists to work

on a problem on their own.

Solution Quality Consider a case in which constraints 1.A.7-1.A.9 are fulfilled for a range of

σi, σj pairs. Which team will produce the highest quality solution? Recall that solution quality for

teams is:

Q = min
0≤Θp

q(θ)− C(γp, σi, σj) (1.A.10)

Since efforts are chosen to produce the exact same quality across all sub-tasks, we can re-write

team solution quality as:

Qt = q(w∗
i , σi, e

t∗
i )− C(γp, σi, σj) (1.A.11)

Applying the envelope theorem to this expression:

∂Qt

∂σi
=

∂q

∂σi
− ∂C

∂σi
(1.A.12)

yields Prediction 1: A generalist team is best when coordination costs are more elastic to special-

ization than task quality. Conversely, a reduction in the slope of coordination costs will shrink
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performance gaps. For Prediction 2, we can differentiate Equation (1.A.12) with respect to γp:

∂2Q

∂σi ∂γp
= − ∂2C

∂σi ∂γp
(1.A.13)

Since coordination costs increase in complexity, i.e., ∂C/∂γp∂σ > 0 the difference in solution quality

between more and less specialized teams also increases in complexity.
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1.B Further Details on Data Construction

1.B.1 Competitions
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1.B.2 User Demographics

Coding User Gender I code user gender into two categories: female and male.27 To do so, I

proceed in four steps.

1. If a user reports pronouns, I use pronouns to assign gender (she=female, he=male). Only

1.11% of users report pronouns.

I next use user display names, i.e., the name that is shown on a user’s profile, to assign gender.

After cleaning names from numbers, transcribing non-roman alphabets (mostly Chinese, Japanese,

Korean, and Russian) as well as removing symbols and emojis, and splitting names into first and

last names, I assign gender by:

2. I retrieve information on the most likely gender for each name and country from gender-

api.com. I only code a name as male or female if the probability of a name being associated

with one gender is higher than 85%. If no country is reported, I assign a gender only if the

gender most associated with a name does not change across countries. I can assign gender for

45.73% of users in this step.

3. If a name is not present in gender-api.com and reported at least twice, my research assistant

and I try to determine the name’s gender by a google search.

4. For the remaining names, which are often nicknames like “computervisionjedi” or “aimuaddib”28,

my research assistant hand-checked the user’s profile for additional information such as profile

pictures to code user gender.

Overall, I can assign a gender for 79.51% of users in my sample.

Coding User Occupation I use information provided by Kaggle users on their profile page to

code occupation. I extract occupations from two fields: Occupation and Bio. I consider both these

fields for three reasons: One, occupation is not always filled, two, contextual clues are necessary to

disambiguate occupations like “architect”, which could both refer to the traditional use of the term –

someone who designs and builds houses – as well as the role of a data science professional, and

three, some users report occupation aspirations as their occupation, but details in their bio reveal

that they are not currently active in that occupation. For example, some users report “machine

learning engineer” as their occupation, but write in their bio that they are a college junior. Some

users also do not report occupation but their position in a firm’s hierarchy, e.g., CEO at startup,
27Since users are able to report their preferred pronouns, I originally included a non-binary category. However, no

user in my sample reports they/them as preferred pronouns.
28For data protection, these are not real Kaggle user names by Kaggle users, but composites from popular

references.
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but provide more detail in their bios. Table 1.B.2 displays chosen occupational categories, as well as

the size of a given category and examples for reported occupations within that category. Category

“Other” includes both users who do not report occupation information or who report an occupation

that is not classifiable within these categories, for example, “teacher”, “farmer”, or “photographer”.

Table 1.B.2: Occupation Categories and Examples

Occupation Category Observations % Modal Occupation Examples

Academic 125 0.92 Academic at - Postdoc at University College London
Professor in Urban Water Infrastructure
at TU Delft

Analyst 243 1.78 Analyst at Deloitte Analyst at OECD
Business Research Analyst-I at Amazon

Artificial Intelligence Professional 160 1.17 AI Engineer AI Engineer at IBM
AI Vision Engineer at Samsung Electronics

Business Professional 202 1.48 Manager at Accenture Manager at American Express
Marketing Manager at Honda Motor Co.
Project Manager at JP Morgan

Computer Science Professional 153 1.12 Research Engineer Computer Systems Engineer
at Lawrence Berkeley National Labs
Engineering Manager at Adobe

Consultant 183 1.34 Consultant at EY Analytics Consultant at Deloitte
Partner at Mckinsey & Company

Data Analyst 270 1.98 Data Analyst at Home Aircraft Data Analyst at Airbus
Data and Analytics at H&M

Data Engineer 152 1.11 Data Engineer at Accenture Dat Engineer at Paypal Inc
Data Engineer at Google

Data Scientist 2233 16.36 Data Scientist at Freelance Data Scientist at Uber
Datascience at Telecom
DS at H2O.Ai

Developer 100 0.73 Developer at Kaggle Deleloper at Intel
Python Developer at Infosys

Engineer 351 2.57 Engineer at JTC Civil Engineer
Engineer at BMW Group

Machine Learning Engineer 713 5.22 ML Engineer Applied ML at Nvidia
Cloud Solution Architect Data and
AI at Microsoft
Machine Learning Engineer at Apple

Master Student 206 1.51 Master M.S. Canditate at ETH ZüRich
MSBA at Ut Austin

Phd Student 338 2.48 Graduate Student at
Carnegie Mellon University

Ph.D. Candidate in Economics at
University Of Chicago
CS Phd Student at UC Irvine
Phd Student at Columbia University

Researcher 380 2.78 Research Scientist Applied Scientist at Microsoft
Computational Scientist at IBM Quantum
Data Scientist & Researcher at Nvidia

Software Developer 696 5.10 Software Engineer Algorithm Engineer at Alibaba
SDE at Amazon
Software Engineer at Bank Of America

Undergraduate Student 2369 17.36 Student B.Sc Data Science Student
Computer Science Undergraduate

Other 4772 34.97
Notes: The table displays all occupation categories used as covariates in Equation (1.8). Spelling of modal occupation and examples correspond to original data.
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1.B.3 Example Notebook

Figure 1.B.1: Kaggle Code Notebook Example
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1.C Additional Results for Section 1.4

1.C.1 Additional Results for Section 1.4.4

Figure 1.C.2: Team Formations per Day
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Figure 1.C.3: Total Daily Submissions
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Table 1.C.3: Event Study Coefficients and F-Tests for Figure 1.2

Days relative to
Team Formation before after

more
than 8 7-8 5-6 3-4 0-1 2-3 4-5 more

than 5

(1) (2) (3) (4) (5) (6) (7) (8)

Generalist Team 1.02 3.17 -0.16 3.48 6.98** 8.52* 12.28*** 13.08***
(4.58) (5.07) (3.75) (4.01) (3.08) (4.92) (4.22) (4.59)

Specialist Team -2.61 -3.98 -4.68 -5.41 -1.09 -0.59 0.85 2.79
(5.45) (6.12) (5.66) (4.95) (3.26) (3.20) (3.72) (3.00)

Mixed Team -1.93 0.20 0.10 2.43 4.69 5.58* 9.53*** 7.36**
(3.72) (3.63) (3.74) (2.70) (2.93) (3.02) (2.92) (3.16)

p-value (Generalist Team = Mixed Team) 0.62 0.63 0.96 0.83 0.59 0.61 0.59 0.30
p-value (Generalist Team = Specialist Team) 0.61 0.37 0.50 0.16 0.07 0.12 0.04 0.06
p-value (Specialist Team = Mixed Team) 0.92 0.56 0.48 0.16 0.19 0.16 0.07 0.29

R2 0.53
Observations 1,285,813

Notes: The table reports the estimates of equation (1.10). The dependent variable is the percentile rank of a user’s submission among all submis-
sions to a competition c. Each column presents the percentile change in submission rank percentile relative to those of solo competitors for a
time period relative to the period immediately before team formation for each team group. All regressions include user × team fixed effects and
competition day fixed effects. Standard errors are clustered at the team level. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.
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1.C.2 Additional Results for Section 1.4.5

Table 1.C.4: Robustness to Alternative Ability Proxies: Performance Lags

Ability Control: Lag-1 Solo Performance Lag-1&2 Solo Performance Lag-1, 2& 3 Solo Performance

Dependent Variable: Rank Medal Win Top 3 Rank Medal Win Top 3 Rank Medal Win Top 3

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Generalist Team 20.77*** 0.32*** 0.06*** 21.22*** 0.32*** 0.06*** 20.32*** 0.32*** 0.06***
(1.15) (0.03) (0.01) (1.13) (0.03) (0.01) (1.15) (0.03) (0.01)

Mixed Team 17.11*** 0.26*** 0.02** 16.91*** 0.26*** 0.02*** 17.03*** 0.27*** 0.02***
(0.93) (0.02) (0.01) (0.93) (0.02) (0.01) (0.94) (0.02) (0.01)

Specialist Team 15.63*** 0.23*** 0.01 15.65*** 0.23*** 0.01 16.39*** 0.26*** 0.01
(1.79) (0.03) (0.01) (1.99) (0.04) (0.01) (2.18) (0.04) (0.01)

3-Person Team 6.73*** 0.18*** 0.04** 6.69*** 0.19*** 0.04** 6.55*** 0.19*** 0.04**
(1.60) (0.04) (0.02) (1.43) (0.04) (0.02) (1.45) (0.04) (0.02)

4-Person Team 12.87*** 0.30*** 0.05 11.14*** 0.28*** 0.05 10.27*** 0.26*** 0.05
(2.13) (0.06) (0.03) (2.17) (0.06) (0.03) (2.19) (0.06) (0.03)

5-Person Team 16.82*** 0.30*** -0.00 14.88*** 0.28*** -0.01 13.28*** 0.28*** -0.01
(1.80) (0.06) (0.02) (1.80) (0.06) (0.02) (1.85) (0.06) (0.02)

R2 0.17 0.12 0.05 0.19 0.14 0.05 0.21 0.16 0.06
Observations 60090 60090 60090 51732 51732 51732 45557 45557 45557

Demographic Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Code Quality Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Competition FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes

p-value (Generalist Team = Mixed Team) 0.01 0.09 0.00 0.00 0.10 0.01 0.02 0.18 0.01
p-value (Generalist Team = Specialist Team) 0.01 0.04 0.00 0.01 0.06 0.00 0.10 0.23 0.01
p-value (Specialist Team = Mixed Team) 0.44 0.39 0.51 0.55 0.45 0.57 0.78 0.78 0.72

Notes: The table reports the estimates of equation (1.8) with alternative ability proxies. The dependent variables are the percentile ranks of a team’s solution, an indicator whether a
team’s solution has won a medal, and an indicator whether a team’s solution was among the top three solutions in competition c. The main explanatory variables are indicators for the
team’s type: Generalist Team (a team of only generalists), Mixed Team (a team of both generalists and specialists), and Specialist Team (a team of only specialists). Solo competitors
are the omitted category. All regressions include competition experience, measuring the average of the number of competitions each team member participated in before competition c.
Ability controls are the average percentile rank achieved by each team member in their last, second to last, and third to last solo competition (lag 1, 2 and 3 solo rank) for dependent
variables Rank and Top 3, or the share of team members who won a medal in their last, second to last, and third to last solo competition (lag 1, 2 and 3 solo rank). Demographic
controls include share female, average user platform age, country shares for all countries with at least 100 users, and occupation shares for all occupations reported by at least 100 users
(c.f. Table 1.B.2). Code quality controls include the average of each team member’s lines of code, lines of comment, number of code files, and votes received by code files. Standard
errors are clustered at the stable team level. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.

Table 1.C.5: Robustness to Alternative Ability Proxies: Performance Change

Ability Control: L1-L2 Solo Rank Change L2-L3 Solo Rank Change Average Solo Rank Change

Dependent Variable: Rank Top 3 Rank Top 3 Rank Top 3

(1) (2) (3) (4) (5) (6)

Generalist Team 22.78*** 0.06*** 22.89*** 0.06*** 22.88*** 0.06***
(1.21) (0.01) (1.25) (0.01) (1.25) (0.01)

Mixed Team 18.52*** 0.02*** 18.73*** 0.02*** 18.72*** 0.02***
(0.99) (0.01) (1.02) (0.01) (1.02) (0.01)

Specialist Team 16.09*** 0.01 16.84*** 0.01 16.82*** 0.01
(1.95) (0.01) (2.03) (0.01) (2.03) (0.01)

3-Person Team 6.97*** 0.04** 6.75*** 0.04** 6.77*** 0.04**
(1.49) (0.02) (1.53) (0.02) (1.53) (0.02)

4-Person Team 12.30*** 0.05 11.36*** 0.05 11.37*** 0.05
(2.08) (0.03) (2.12) (0.03) (2.12) (0.03)

5-Person Team 15.69*** -0.01 14.80*** -0.01 14.83*** -0.01
(1.79) (0.02) (1.86) (0.02) (1.86) (0.02)

R2 0.11 0.05 0.11 0.06 0.11 0.06
Observations 51732 51732 45557 45557 45557 45557

Demographic Controls Yes Yes Yes Yes Yes Yes
Code Quality Controls Yes Yes Yes Yes Yes Yes
Competition FEs Yes Yes Yes Yes Yes Yes

p-value (Generalist Team = Mixed Team) 0.00 0.01 0.00 0.01 0.00 0.01
p-value (Generalist Team = Specialist Team) 0.00 0.00 0.01 0.01 0.01 0.01
p-value (Specialist Team = Mixed Team) 0.24 0.56 0.38 0.70 0.38 0.70

Notes: The table reports the estimates of equation (1.8) with alternative ability proxies. The dependent variables are the percentile rank of a team’s solution
and an indicator whether a team’s solution was among the top three solutions in competition c. The main explanatory variables are indicators for the team’s
type: Generalist Team (a team of only generalists), Mixed Team (a team of both generalists and specialists), and Specialist Team (a team of only specialists).
Solo competitors are the omitted category. All regressions include competition experience, measuring the average of the number of competitions each team
member participated in before competition c. Ability controls is the team-level average of the change in solo ranks between the last and second to last, between
second to last and third to last, or their average. Demographic controls include share female, average user platform age, country shares for all countries with at
least 100 users, and occupation shares for all occupations reported by at least 100 users (c.f. Table 1.B.2). Code quality controls include the average of each
team member’s lines of code, lines of comment, number of code files, and votes received by code files. Standard errors are clustered at the stable team level.
Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.
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Table 1.C.6: Robustness to Different Specialization Indices

Specialization Index: Excluding Post-ChatGPT Code Python Package Diversity
Dependent Variable: Rank Medal Win Top 3 Rank Medal Win Top 3

(1) (2) (3) (4) (5) (6)

Generalist Team 19.50*** 0.32*** 0.05*** 18.12*** 0.27*** 0.03***
(1.25) (0.03) (0.01) (0.82) (0.02) (0.01)

Mixed Team 16.72*** 0.26*** 0.02*** 17.03*** 0.27*** 0.03***
(0.91) (0.02) (0.01) (1.18) (0.02) (0.01)

Specialist Team 18.95*** 0.24*** 0.01 9.47** 0.15** 0.02
(1.72) (0.03) (0.01) (4.07) (0.07) (0.02)

Competition Experience 0.08*** -0.00*** -0.00*** 0.08*** -0.00*** -0.00***
(0.01) (0.00) (0.00) (0.01) (0.00) (0.00)

Previous Rank 0.50*** 0.00*** 0.49*** 0.00***
(0.01) (0.00) (0.01) (0.00)

Previous Medal Wins 0.39*** 0.39***
(0.01) (0.01)

3-Person Team 6.07*** 0.18*** 0.04** 5.91*** 0.17*** 0.04**
(1.64) (0.04) (0.02) (1.62) (0.04) (0.02)

4-Person Team 12.36*** 0.29*** 0.05 11.51*** 0.28*** 0.04
(2.21) (0.06) (0.03) (2.17) (0.06) (0.03)

5-Person Team 14.55*** 0.29*** -0.01 13.64*** 0.27*** -0.02
(1.80) (0.06) (0.02) (1.75) (0.06) (0.02)

R2 0.21 0.16 0.05 0.20 0.15 0.05
Observations 56183 56183 56183 59047 59047 59047

Demographic Controls Yes Yes Yes Yes Yes Yes
Code Quality Controls Yes Yes Yes Yes Yes Yes
Competition FEs Yes Yes Yes Yes Yes Yes

p-value (Generalist Team = Mixed Team) 0.05 0.06 0.07 0.39 1.00 0.94
p-value (Generalist Team = Specialist Team) 0.79 0.06 0.03 0.04 0.09 0.57
p-value (Specialist Team = Mixed Team) 0.23 0.63 0.44 0.07 0.10 0.56

Notes: The table reports the estimates of equation (1.8) with alternative ways of classifying specialists and generalists. Columns 1-3 use the
specialization index as described in Section 1.3.3, excluding all code files published after the introduction of ChatGPT in November 2022 from
the code base. Columns 4-6 use a measure of code diversity based on used python packages (c.f. section 1.4.5). The dependent variable is the
percentile rank of a team’s solution quality, an indicator whether a team’s solution has won a medal, or an indicator whether a team’s solution
was among the top three solutions in competition c. Standard errors are clustered at the stable team level. Significance levels: ∗∗∗ p<0.01, ∗∗
p<0.05, and ∗ p<0.1.
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1.D Additional Results for Section 1.5

1.D.1 Additional Results for Section 1.5.1

Table 1.D.7: Team Type, Complexity, and Solution Quality

Dependent Variable: Rank Medal Win Top 3
Complexity: Low High Low High Low High

(1) (2) (3) (4) (5) (6)

Generalist Team 20.49*** 18.34*** 0.33*** 0.25*** 0.06*** 0.05**
(1.20) (2.16) (0.03) (0.05) (0.02) (0.02)

Mixed Team 17.19*** 14.52*** 0.27*** 0.20*** 0.01* 0.02*
(1.03) (1.96) (0.02) (0.03) (0.01) (0.01)

Specialist Team 18.59*** 8.52** 0.27*** 0.09* 0.02 -0.00
(2.13) (3.76) (0.04) (0.05) (0.01) (0.00)

Competition Experience 0.10*** 0.03** -0.00*** -0.00*** -0.00*** -0.00***
(0.01) (0.01) (0.00) (0.00) (0.00) (0.00)

Previous Rank 0.55*** 0.34*** 0.00*** 0.00***
(0.01) (0.01) (0.00) (0.00)

Previous Medal Wins 0.42*** 0.29***
(0.01) (0.02)

3-Person Team 5.81*** 6.99** 0.20*** 0.11* 0.06** 0.01
(1.67) (3.08) (0.04) (0.06) (0.02) (0.03)

4-Person Team 13.04*** 7.82 0.32*** 0.13 0.06* -0.02**
(1.62) (9.75) (0.06) (0.15) (0.04) (0.01)

5-Person Team 14.30*** 16.71*** 0.34*** 0.23** -0.02*** 0.02
(2.04) (3.39) (0.06) (0.11) (0.01) (0.04)

R2 0.25 0.11 0.16 0.13 0.06 0.04
Observations 43684 16406 43684 16406 43684 16406

Demographic Controls Yes Yes Yes Yes Yes Yes
Code Quality Controls Yes Yes Yes Yes Yes Yes
Competition FEs Yes Yes Yes Yes Yes Yes

p-value (Generalist Team = Mixed Team) 0.02 0.16 0.08 0.38 0.01 0.20
p-value (Generalist Team = Specialist Team) 0.42 0.02 0.18 0.02 0.02 0.01
p-value (Specialist Team = Mixed Team) 0.54 0.15 0.97 0.06 0.86 0.02

Notes: The table reports the estimates of equation (1.8), separately for the sample of low and high complexity competitions. The
dependent variable is the percentile rank of a team’s solution quality, an indicator whether a team’s solution has won a medal, or an
indicator whether a team’s solution was among the top three solutions in competition c. The main explanatory variables are indicators
for the team’s type: Generalist Team (a team of only generalists), Mixed Team (a team of both generalists and specialists), and Specialist
Team (a team of only specialists). Solo competitors are the omitted category. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.
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Table 1.D.8: Robustness to Complexity Measure: Cutoff at 50th percentile

Dependent Variable: Rank Medal Win Top 3
Complexity
(Cutoff at 50th percentile): Low High Low High Low High

(1) (2) (3) (4) (5) (6)

Generalist Team 21.24*** 19.14*** 0.36*** 0.27*** 0.08*** 0.04***
(1.50) (1.42) (0.04) (0.03) (0.02) (0.01)

Mixed Team 17.80*** 15.75*** 0.29*** 0.23*** 0.01 0.02***
(1.34) (1.22) (0.03) (0.02) (0.01) (0.01)

Specialist Team 20.17*** 13.58*** 0.29*** 0.18*** 0.00 0.01
(2.59) (2.44) (0.05) (0.04) (0.01) (0.01)

Competition Experience 0.08*** 0.07*** -0.00*** -0.00** -0.00*** -0.00***
(0.01) (0.01) (0.00) (0.00) (0.00) (0.00)

Previous Rank 0.56*** 0.45*** 0.00*** 0.00***
(0.01) (0.01) (0.00) (0.00)

Previous Medal Wins 0.45*** 0.33***
(0.02) (0.01)

3-Person Team 5.84*** 6.04*** 0.19*** 0.16*** 0.07** 0.02
(1.83) (2.32) (0.05) (0.05) (0.03) (0.02)

4-Person Team 11.52*** 13.45*** 0.28*** 0.31*** 0.02 0.07
(2.31) (3.32) (0.08) (0.08) (0.04) (0.05)

5-Person Team 16.37*** 13.75*** 0.45*** 0.19** -0.02* 0.00
(1.95) (2.53) (0.06) (0.08) (0.01) (0.03)

R2 0.25 0.17 0.19 0.13 0.06 0.04
Observations 25942 34148 25942 34148 25942 34148

Demographic Controls Yes Yes Yes Yes Yes Yes
Code Quality Controls Yes Yes Yes Yes Yes Yes
Competition FEs Yes Yes Yes Yes Yes Yes

p-value (Generalist Team = Mixed Team) 0.06 0.05 0.09 0.28 0.01 0.13
p-value (Generalist Team = Specialist Team) 0.72 0.04 0.27 0.07 0.00 0.10
p-value (Specialist Team = Mixed Team) 0.40 0.41 0.97 0.30 0.62 0.65

Notes: The table reports the estimates of equation (1.8), separately for the sample of low and high complexity competitions. The
dependent variable is the percentile rank of a team’s solution quality, an indicator whether a team’s solution has won a medal, or an
indicator whether a team’s solution was among the top three solutions in competition c. The main explanatory variables are indicators
for the team’s type: Generalist Team (a team of only generalists), Mixed Team (a team of both generalists and specialists), and Specialist
Team (a team of only specialists). Solo competitors are the omitted category. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.
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Table 1.D.9: Robustness to Complexity Measure: Cutoff at 90th percentile

Dependent Variable: Rank Medal Win Top 3
Complexity
(Cutoff at 90th percentile): Low High Low High Low High

(1) (2) (3) (4) (5) (6)

Generalist Team 19.74*** 21.01*** 0.30*** 0.30*** 0.06*** 0.04
(1.12) (3.42) (0.03) (0.07) (0.01) (0.03)

Mixed Team 17.27*** 10.73*** 0.27*** 0.11** 0.01** 0.03
(0.93) (3.52) (0.02) (0.05) (0.01) (0.02)

Specialist Team 17.31*** 5.21 0.25*** -0.05 0.01 0.00
(2.11) (5.47) (0.03) (0.05) (0.01) (0.00)

Competition Experience 0.09*** -0.02 -0.00*** -0.00** -0.00*** -0.00***
(0.01) (0.02) (0.00) (0.00) (0.00) (0.00)

Previous Rank 0.53*** 0.25*** 0.00*** 0.00***
(0.01) (0.02) (0.00) (0.00)

Previous Medal Wins 0.40*** 0.30***
(0.01) (0.03)

3-Person Team 6.69*** 1.88 0.19*** 0.05 0.05** -0.04**
(1.50) (5.55) (0.04) (0.09) (0.02) (0.02)

4-Person Team 12.47*** 9.36 0.30*** 0.22 0.05 -0.03
(1.90) (15.12) (0.06) (0.20) (0.03) (0.02)

5-Person Team 13.86*** 20.54** 0.28*** 0.32 -0.00 -0.04*
(1.74) (8.90) (0.06) (0.21) (0.02) (0.02)

R2 0.23 0.08 0.16 0.13 0.05 0.03
Observations 52540 7550 52540 7550 52540 7550

Demographic Controls Yes Yes Yes Yes Yes Yes
Code Quality Controls Yes Yes Yes Yes Yes Yes
Competition FEs Yes Yes Yes Yes Yes Yes

p-value (Generalist Team = Mixed Team) 0.06 0.03 0.27 0.03 0.00 0.71
p-value (Generalist Team = Specialist Team) 0.30 0.01 0.23 0.00 0.00 0.16
p-value (Specialist Team = Mixed Team) 0.99 0.38 0.68 0.02 0.76 0.13

Notes: The table reports the estimates of equation (1.8), separately for the sample of low and high complexity competitions. The
dependent variable is the percentile rank of a team’s solution quality, an indicator whether a team’s solution has won a medal, or an
indicator whether a team’s solution was among the top three solutions in competition c. The main explanatory variables are indicators
for the team’s type: Generalist Team (a team of only generalists), Mixed Team (a team of both generalists and specialists), and Specialist
Team (a team of only specialists). Solo competitors are the omitted category. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.
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Table 1.D.10: Robustness to Alternative Complexity Measure: Competition Difficulty

Dependent Variable: Rank Medal Win Top 3
Difficulty: Low High Low High Low High

(1) (2) (3) (4) (5) (6)

Generalist Team 19.51*** 21.24*** 0.32*** 0.27*** 0.07*** 0.04*
(1.26) (2.09) (0.03) (0.05) (0.02) (0.02)

Mixed Team 17.62*** 13.49*** 0.27*** 0.19*** 0.01* 0.03**
(1.03) (2.00) (0.02) (0.04) (0.01) (0.01)

Specialist Team 17.67*** 10.41*** 0.25*** 0.12** 0.01 -0.01
(2.19) (3.59) (0.04) (0.05) (0.01) (0.00)

Competition Experience 0.09*** 0.04*** -0.00*** -0.00*** -0.00*** -0.00***
(0.01) (0.01) (0.00) (0.00) (0.00) (0.00)

Previous Rank 0.53*** 0.39*** 0.00*** 0.00***
(0.01) (0.01) (0.00) (0.00)

Previous Medal Wins 0.42*** 0.31***
(0.01) (0.02)

3-Person Team 5.68*** 6.58** 0.18*** 0.15** 0.05** 0.02
(1.62) (3.30) (0.04) (0.07) (0.02) (0.03)

4-Person Team 11.58*** 14.29** 0.28*** 0.34*** 0.05 0.06
(2.24) (6.38) (0.06) (0.12) (0.03) (0.08)

5-Person Team 16.22*** 12.57*** 0.35*** 0.19 0.00 -0.03**
(1.49) (4.18) (0.06) (0.12) (0.02) (0.01)

R2 0.23 0.14 0.16 0.12 0.05 0.04
Observations 44944 15146 44944 15146 44944 15146

Demographic Controls Yes Yes Yes Yes Yes Yes
Code Quality Controls Yes Yes Yes Yes Yes Yes
Competition FEs Yes Yes Yes Yes Yes Yes

p-value (Generalist Team = Mixed Team) 0.21 0.00 0.15 0.18 0.00 0.60
p-value (Generalist Team = Specialist Team) 0.46 0.01 0.14 0.04 0.01 0.03
p-value (Specialist Team = Mixed Team) 0.98 0.45 0.63 0.27 0.87 0.01

Notes: The table reports the estimates of equation (1.8), separately for the sample of low and high complexity competitions. The
dependent variable is the percentile rank of a team’s solution quality, an indicator whether a team’s solution has won a medal, or an
indicator whether a team’s solution was among the top three solutions in competition c. The main explanatory variables are indicators
for the team’s type: Generalist Team (a team of only generalists), Mixed Team (a team of both generalists and specialists), and Specialist
Team (a team of only specialists). Solo competitors are the omitted category. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.
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Table 1.D.11: Robustness to Alternative Complexity Measure: Instruction Length

Dependent Variable: Rank Medal Win Top 3
Instruction Length: Short Long Short Long Short Long

(1) (2) (3) (4) (5) (6)

Generalist Team 20.92*** 19.53*** 0.33*** 0.29*** 0.06*** 0.06***
(1.78) (1.37) (0.04) (0.03) (0.02) (0.02)

Mixed Team 17.84*** 16.17*** 0.29*** 0.23*** 0.01 0.02**
(1.49) (1.13) (0.03) (0.02) (0.01) (0.01)

Specialist Team 21.90*** 13.41*** 0.33*** 0.17*** -0.00 0.01
(2.61) (2.27) (0.06) (0.04) (0.00) (0.01)

Competition Experience 0.10*** 0.07*** -0.00 -0.00*** -0.00*** -0.00***
(0.01) (0.01) (0.00) (0.00) (0.00) (0.00)

Previous Rank 0.50*** 0.49*** 0.00*** 0.00***
(0.01) (0.01) (0.00) (0.00)

Previous Medal Wins 0.39*** 0.38***
(0.02) (0.01)

3-Person Team 2.54 7.54*** 0.14** 0.20*** 0.04 0.04*
(3.00) (1.70) (0.06) (0.04) (0.03) (0.02)

4-Person Team 9.48*** 13.52*** 0.24** 0.32*** 0.06 0.05
(2.58) (2.61) (0.12) (0.06) (0.07) (0.03)

5-Person Team 13.85*** 15.53*** 0.41*** 0.29*** -0.02 -0.00
(3.49) (1.97) (0.14) (0.06) (0.01) (0.02)

R2 0.23 0.18 0.16 0.14 0.06 0.04
Observations 24558 35532 24558 35532 24558 35532

Demographic Controls Yes Yes Yes Yes Yes Yes
Code Quality Controls Yes Yes Yes Yes Yes Yes
Competition FEs Yes Yes Yes Yes Yes Yes

p-value (Generalist Team = Mixed Team) 0.16 0.04 0.47 0.11 0.05 0.03
p-value (Generalist Team = Specialist Team) 0.75 0.02 0.94 0.01 0.00 0.03
p-value (Specialist Team = Mixed Team) 0.17 0.25 0.54 0.14 0.16 0.83

Notes: The table reports the estimates of equation (1.8), separately for the sample of competitions with short (below median) and long
instructions (above median instruction length). Competition instructions are extracted from the overview page of each competition on
Kaggle (competition description). The dependent variable is the percentile rank of a team’s solution quality, an indicator whether a
team’s solution has won a medal, or an indicator whether a team’s solution was among the top three solutions in competition c. The
main explanatory variables are indicators for the team’s type: Generalist Team (a team of only generalists), Mixed Team (a team of both
generalists and specialists), and Specialist Team (a team of only specialists). Solo competitors are the omitted category. Significance
levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.
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Table 1.D.12: Robustness to Alternative Complexity Measure: Compute Constraints

Dependent Variable: Rank Medal Win Top 3
Compute Constraints: No Yes No Yes No Yes

(1) (2) (3) (4) (5) (6)

Generalist Team 20.15*** 19.93*** 0.32*** 0.29*** 0.05*** 0.07***
(1.39) (1.58) (0.03) (0.03) (0.02) (0.02)

Mixed Team 14.27*** 18.41*** 0.24*** 0.26*** 0.01 0.02***
(1.31) (1.18) (0.03) (0.03) (0.01) (0.01)

Specialist Team 19.84*** 12.68*** 0.29*** 0.16*** 0.02 0.00
(2.10) (2.80) (0.05) (0.04) (0.02) (0.01)

Competition Experience 0.07*** 0.09*** -0.00** -0.00*** -0.00*** -0.00***
(0.01) (0.01) (0.00) (0.00) (0.00) (0.00)

Previous Rank 0.51*** 0.47*** 0.00*** 0.00***
(0.01) (0.01) (0.00) (0.00)

Previous Medal Wins 0.40*** 0.37***
(0.01) (0.02)

3-Person Team 3.68* 7.56*** 0.15*** 0.20*** 0.07** 0.03
(2.19) (1.94) (0.05) (0.04) (0.03) (0.02)

4-Person Team 9.06** 13.73*** 0.26*** 0.31*** 0.03 0.06
(4.16) (2.35) (0.10) (0.07) (0.04) (0.04)

5-Person Team 12.07*** 15.21*** 0.27** 0.30*** -0.02** -0.00
(3.82) (1.85) (0.10) (0.07) (0.01) (0.02)

R2 0.23 0.17 0.17 0.13 0.06 0.04
Observations 31588 28502 31588 28502 31588 28502

Demographic Controls Yes Yes Yes Yes Yes Yes
Code Quality Controls Yes Yes Yes Yes Yes Yes
Competition FEs Yes Yes Yes Yes Yes Yes

p-value (Generalist Team = Mixed Team) 0.00 0.40 0.07 0.39 0.09 0.01
p-value (Generalist Team = Specialist Team) 0.90 0.02 0.68 0.01 0.29 0.00
p-value (Specialist Team = Mixed Team) 0.02 0.05 0.35 0.03 0.57 0.06

Notes: The table reports the estimates of equation (1.8), separately for the sample of low and high complexity competitions, where high
complexity competitions are those with compute constraints. The dependent variable is the percentile rank of a team’s solution quality,
an indicator whether a team’s solution has won a medal, or an indicator whether a team’s solution was among the top three solutions in
competition c. The main explanatory variables are indicators for the team’s type: Generalist Team (a team of only generalists), Mixed
Team (a team of both generalists and specialists), and Specialist Team (a team of only specialists). Solo competitors are the omitted
category. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.
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1.D.2 Additional Results for Section 1.5.2

Figure 1.D.4: Google Searches and Kaggle Forum Mentions of ChatGPT

(a) Google Searches of ChatGPT
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(b) Forum Mentions of ChatGPT, GPT-2, and
GPT-3
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(c) Forum Mentions of ChatGPT and BERT
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Notes: Panel (a) plots google searches of the term “ChatGPT” for the time period between September 2021 and July
2024. Data come from Google Trends, converted to search counts using Glimpse-Google Trends Supercharged Plugin.
Panel (b) plots mentions of the term “ChatGPT” compared to “GPT-2” and “GPT-3”, and Panel (c) compared to
“BERT” in public Kaggle forums for the time period between September 2021 and July 2024.
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Table 1.D.13: Team Type, ChatGPT, and Solution Quality

Dependent Variable: Rank Medal Win Top 3
ChatGPT: Pre Post Pre Post Pre Post

(1) (2) (3) (4) (5) (6)

Generalist Team 21.60*** 15.26*** 0.34*** 0.34*** 0.04* 0.05
(2.45) (3.13) (0.06) (0.06) (0.02) (0.04)

Mixed Team 18.11*** 14.72*** 0.28*** 0.22*** 0.03* 0.01
(2.50) (2.38) (0.05) (0.05) (0.02) (0.02)

Specialist Team 10.09*** 17.26*** 0.05 0.24*** 0.02 -0.01***
(3.91) (3.99) (0.07) (0.06) (0.03) (0.00)

Competition Experience 0.09*** 0.05*** -0.00 -0.00*** -0.00*** -0.00***
(0.01) (0.02) (0.00) (0.00) (0.00) (0.00)

Previous Rank 0.51*** 0.48*** 0.00* 0.00
(0.02) (0.02) (0.00) (0.00)

Previous Medal Wins 0.38*** 0.37***
(0.03) (0.03)

3-Person Team 2.50 12.86*** 0.10 0.29*** 0.06 0.04
(3.35) (3.65) (0.07) (0.08) (0.04) (0.04)

4-Person Team 17.23*** 15.78*** 0.40*** 0.25* 0.07 0.08
(2.98) (4.95) (0.10) (0.14) (0.11) (0.11)

5-Person Team 17.25*** 15.56*** 0.31*** 0.42*** -0.03** -0.02*
(3.54) (5.98) (0.10) (0.15) (0.02) (0.01)

R2 0.20 0.16 0.15 0.11 0.05 0.04
Observations 8093 9946 8093 9946 8093 9946

Demographic Controls Yes Yes Yes Yes Yes Yes
Code Quality Controls Yes Yes Yes Yes Yes Yes
Competition FEs Yes Yes Yes Yes Yes Yes

p-value (Generalist Team = Mixed Team) 0.29 0.88 0.42 0.11 0.76 0.35
p-value (Generalist Team = Specialist Team) 0.01 0.69 0.00 0.29 0.51 0.10
p-value (Specialist Team = Mixed Team) 0.06 0.57 0.01 0.76 0.64 0.14

Notes: The table reports the estimates of equation (1.8), separately for the sample of competitions before and after the introduction
of ChatGPT. The dependent variable is the percentile rank of a team’s solution quality, an indicator whether a team’s solution has
won a medal, or an indicator whether a team’s solution was among the top three solutions in competition c. The main explanatory
variables are indicators for the team’s type: Generalist Team (a team of only generalists), Mixed Team (a team of both generalists and
specialists), and Specialist Team (a team of only specialists). Solo competitors are the omitted category. Standard errors are clustered
at the level of the stable team. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.
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1.D.3 Additional Results for Section 1.5.3

Figure 1.D.5: Percentage of Daily Submission Caps
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Notes: The figure plots how frequently submission caps are exhausted to which extent. Each category on the x-axis
corresponds to a share of allowed submissions, i.e., 0 indicates that no submissions were made on a given day, and
100 that all possible submissions were made on a given day. The y-axis shows the share of team-competition days a
submission share was reached. Only on circa 10% of days, teams reach the submission cap. Note that this includes
competitions in which the daily submission cap is one submission.
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2.1 Introduction

The underrepresentation of individuals from lower socio-economic backgrounds in leadership posi-

tions in government, business, and academia has become a growing concern among policymakers and

the general public. Efforts to increase representation are driven by two primary economic rationales.

First, disparities in the representation of societal groups raise concerns regarding fairness and equal-

ity of opportunity. Second, unequal representation can undermine efficiency, as the misallocation of

talent deprives society of valuable contributions from individuals in underrepresented groups (Hsieh

et al., 2019). In knowledge creation sectors, such as academia, this underrepresentation introduces

an additional inefficiency: the unique lived experiences of underrepresented groups offer valuable

perspectives that could diversify and enrich the scope of ideas that are explored (e.g., Thorp, 2023).

In essence, the absence of these individuals – missing people – can lead to missing ideas, which

is particularly problematic in a world where ideas may be “getting harder to find” (Bloom et al.,

2020).

In this paper, we explore how socio-economic background shapes academia – from who becomes

an academic through the research fields professors specialize in, to their productivity and peer

recognition. For our analysis, we assemble the most comprehensive data on the socio-economic

backgrounds and research output of U.S. academics. The long-run nature and granularity of our

data enable us to study how these patterns changed over time and how they differ by discipline

and across universities.

We rely on three primary data sources to assemble our data. First, we utilize comprehensive

faculty rosters from the World of Academia Database (Iaria et al., 2024), which provides detailed

information on the name, discipline, and academic rank of nearly all academics at U.S. universities

from 1900 to 1969. A key advantage of these data is that they list academics regardless of

whether they publish or whether they are members of academic societies. This helps to mitigate

selection biases common in studies that rely exclusively on publication databases, surveys, or lists

of distinguished scholars. Second, we measure the socio-economic background of academics by

linking these faculty rosters to full-count U.S. censuses. We then link academics to their family

backgrounds using data from the Census Linking Project (CLP) (Abramitzky et al., 2021a) and

the Census Tree Project (Buckles et al., 2023). Our measure of socio-economic background is the

percentile rank of their father’s predicted income when the future academics were growing up.1

Third, we link academics in six scientific disciplines – medicine, biology, biochemistry, chemistry,

physics, and mathematics – to their publication and citation records using data from the Clarivate

Web of Science. Overall, our data enable us to measure the socio-economic backgrounds of 46,139

academics (for 15,521 of whom we also have publication and citation data) across 1,026 universities
1The findings are robust to alternative measures of socio-economic background.
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over nearly seven decades.

Our paper is organized into four parts, examining key stages of academic careers and how they

are shaped by socioeconomic background. In the first part of the paper, we examine differential

barriers to entry into academia. We find a stark underrepresentation of individuals from lower

socio-economic backgrounds: those born to parents in the bottom quintile of the parental income

distribution account for less than 5% of all academics. In contrast, around half of U.S. academics

come from the top quintile of the income rank distribution. Children born to the highest-earning

fathers are particularly overrepresented, with those born to fathers in the 100th percentile having a

56% higher chance of becoming an academic than those born to fathers in the 99th percentile. The

underrepresentation of low socio-economic status individuals in academia is greater than in other

occupations that require specialized training, such as medicine and law.

We find that the socio-economic composition of academics has remained remarkably stable over

seven decades, despite significant changes in American higher education and society – including

a sharp increase in college attendance rates. This persistence stands in stark contrast with the

significant increase in the representation of women in U.S. academia over the same period (e.g.,

Rossiter, 1982, 1998; Iaria et al., 2024).

While academics from low socio-economic backgrounds are underrepresented in all universities,

the underrepresentation of academics from low socio-economic backgrounds varies sharply by

university. In selective private universities such as Princeton, Harvard, and Yale, at least 60% of

academics come from families in the top quintile of the parental income distribution. In contrast

“only” 30-40% of academics in state universities such as Iowa State, University of Missouri, or the

University of Nebraska come from families in this quintile.

Representation also varies sharply by discipline. While around 60% of academics in the

humanities come from the top quintile of the parental income distribution, around 40% of academics

in mathematics and economics come from the top quintile. This heterogeneity appears to be

systematically related to the types of skills required to enter a discipline. Specifically, we find

that representation from lower socio-economic backgrounds is higher in disciplines with a stronger

emphasis on quantitative relative to verbal skills.

In the second part of the paper, we study the extent to which the influence of parental

occupation can explain differences in representation by discipline. We develop a novel measure of

overrepresentation to assess whether children of fathers in specific occupations are overrepresented

in particular academic disciplines. Our findings indicate that academics tend to pursue disciplines

aligned with their fathers’ occupations. For example, the children of architects are more likely to

become professors in architecture, children of artists are more likely to become professors of arts and

design, children of bank tellers are more likely to become professors in business and management,
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and children of lawyers are more likely to become professors in law. Additionally, using a text

embeddings model, we determine the semantic proximity of a father’s occupation (e.g., “farmer”) to

an academic discipline (e.g., “agriculture”). This allows us to identify the discipline that is closest

in semantic space to the father’s occupation. We then show that academics are more likely to enter

disciplines that are systematically similar to their fathers’ occupations. Overall, these findings

indicate that socio-economic background affects not only the probability of becoming an academic

but also the specific discipline that academics pursue.

In the third part of the paper, we study how socio-economic background relates to scholars’

productivity. We find no systematic relationship between parental income ranks and the average

number of publications of academics. However, individuals from lower socio-economic backgrounds

are both significantly more likely to never publish and more likely to have a publication count in

the top 1%.

Importantly, academics from lower socio-economic backgrounds differ in the content of their

research. To examine potential differences in a key dimension of publication content, we develop

a metric that captures the number of novel words that a scientist introduced to the scientific

community (Iaria et al., 2018). The measure proxies for the introduction of new scientific concepts

that required novel scientific terms. We find that scientists with a low-income father (father at

the 25th percentile) publish around 0.05 additional papers (or 17% more papers) with at least one

novel word compared to scientists whose fathers were at the 75th percentile. These findings suggest

that academics from lower socio-economic backgrounds are more likely to pursue research agendas

off the beaten path, which may result in scientific breakthroughs but also in a higher failure rate,

making them riskier hires.

In the fourth part of the paper, we examine the relationship between socio-economic background

and recognition by other academics. We start by studying citations to academic papers, a widely

used metric for measuring recognition within the academic community. We find that papers

published by authors from lower socio-economic backgrounds receive fewer citations. To further

explore how socio-economic background affects recognition, we investigate Nobel Prize nominations

and awards – an acknowledgment for exceptional scientific contributions. We find that scientists

whose fathers were at the 75th percentile of the income rank are around 0.6 percentage points

(or 50%) more likely to be nominated for a Nobel Prize than scientists with fathers at the 25th

percentile. They are also 50% more likely to be awarded a Nobel Prize. These differences persist

even if we control for scientists’ publication and citation records.

Our paper contributes to a fast-growing literature on the backgrounds of high-skilled, “elite”

professionals such as politicians (Dal Bó et al., 2017) or civil servants (Moreira and Pérez, 2022). It

is particularly close to research documenting the socio-economic background of inventors (Bell et al.,
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2019; Aghion et al., 2018, 2023; Akcigit et al., 2017) and concurrent research on academics (Morgan

et al., 2022; Airoldi and Moser, 2024; Stansbury and Schultz, 2023; Stansbury and Rodriguez, 2024;

Novosad et al., 2024).2 We contribute to this literature with the most comprehensive analysis of

the socio-economic background of U.S. academics covering all disciplines and the near universe of

universities. The time dimension of our data allows us to trace the evolution of the socio-economic

background over a key period in the history of U.S. higher education from the “formative” prewar

years, to the consolidation of American leadership in higher education after World War II. The

granular nature of our data enables us to advance the literature by studying how hiring, discipline

choice, productivity, and recognition are shaped by the socio-economic background of academics.

Other related research has documented the importance of socio-economic background for the

selection of students into elite universities (Chetty et al., 2020; Michelman et al., 2022; Chetty

et al., 2023; Abramitzky et al., 2024b).

Our paper is also related to the literature on gender discrimination in academia (e.g., Card

et al., 2020, 2022; Iaria et al., 2024; Ross et al., 2022; Moser and Kim, 2022; Koffi, 2024; Hengel,

2022; Babcock et al., 2017; Bagues et al., 2017). While this substantial body of research has studied

the underrepresentation of women in research, the underrepresentation of individuals from lower

socio-economic backgrounds has been a “forgotten dimension of diversity” (Ingram, 2021), which we

examine in this paper.

Finally, we contribute to the literature on how scientists’ or inventors’ background shapes their

research focus and, thereby, the direction of innovation. Existing work by Koning et al. (2021);

Einio et al. (2022); Kozlowski et al. (2022); Truffa and Wong (2022); Kozlowski et al. (2022);

Dossi (2024); Croix and Goñi (2024) investigates how gender and race impact the research focus of

scientists. One of the few papers that studies how socio-economic background affects the direction of

research is a recent contribution by Einio et al. (2022). They document that inventors from poorer

backgrounds are more likely to patent “necessity” interventions. To the best of our knowledge, we

provide the first systematic evidence of how the socio-economic background shapes the research of

university academics. Since most basic research, as well as the training of future innovators, occurs

in universities, the selection of academics likely has important knock-on effects for downstream

innovation.
2Similarly, geography also shapes participation in science. Participants of the international mathematical

olympiads from lower-income countries are less likely to enroll in PhD programs and produce fewer publications and
citations despite similar talents (Agarwal and Gaule, 2020).
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2.2 Data

For our analysis, we construct the largest individual-level dataset of U.S. university academics

ever assembled, which we combine with information on their socio-economic background and their

research output. The dataset is based on three data sources. First, we use complete faculty

rosters for the near universe of U.S. universities from the World of Academia Database (Iaria et al.

2024). Second, we match these data to historical U.S. censuses (Ruggles et al., 2024). Using links

from the Census Linking Project (CLP) (Abramitzky et al. 2012, 2021a), the Census Tree Project

(Buckles et al. 2023) and the IPUMS Multigenerational Longitudinal Panel (MLP) (Ruggles et al.,

2019) we are able to trace academics to their childhood homes, which enables us to measure the

socio-economic background of academics. Third, we enhance the data with publication and citation

data from the Web of Science to observe the academics’ research output and its content.

2.2.1 Historic Faculty Rosters from the World of Academia Database

The World of Academia Database contains faculty rosters for nearly all Ph.D.-granting universities

in the United States. We use six cross-sections covering U.S. academics in 1900, 1914, 1925, 1938,

1956, and 1969.3 For example, the data contain 3,441 U.S. academics who entered the database

in 1900 and 65,340 U.S. academics who entered the database in 1969, reflecting the spectacular

growth of the U.S. university sector during the 20th century (Table 2.2.1).

For the period of our analysis, the database provides the most comprehensive data on academics

in the United States (see Iaria et al. 2024 for details and comparisons to other data sources). In

addition to academics’ names, universities, and academic rank (i.e., assistant, associate, or full

professor), we observe their specialization, which we code into 36 disciplines.4 For example, the

1938 faculty roster lists George Wells Beadle as a Biology professor at Stanford University (Figure

2.2.1, panel a). He received the 1958 Nobel Prize in Physiology/Medicine for the “discovery of the

role of genes in biochemical events within cells.”

The World of Academia Database offers several key features that are integral to our analysis.

First, it contains entire faculty rosters for the vast majority of PhD granting universities in the

United States, which allows us to study academics even if they never published or never became

distinguished scientists. This comprehensive coverage enables us to overcome important selection

biases that affect studies that rely exclusively on publication or citation databases, surveys, or
3The data include all academics who were affiliated with a U.S. university in at least one of the six cross-sections.

We thus also include the U.S. spells of academics who start their career abroad and move to the United States or
who start their career in the United States and then move abroad. About 10 percent of the academics are only listed
with initials in the faculty rosters. As the match to the census data described below uses full first names, we exclude
these academics from the data. For the statistics reported in Table 2.2.1, we report their first U.S. cohort in the
World of Academia Database.

4For the vast majority of universities, the data report all academics who are assistant professors and above.
Lecturers and similar academic staff are usually not reported.
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Figure 2.2.1: Example Data Construction

(a) Sample Page: Faculty Rosters (b) Adult Census

(c) Childhood Census

Notes: Panel (a) shows a sample page from the faculty roster of Stanford University from the 1938 edition of
Minerva including the entry of the biology professor “George Wells Beadle.” Panel (b) shows George W. Beadle’s
entry in the 1940 adult census. Panel (c) shows George Beadle’s entry in his childhood census (1910) which we use
to measure the race, age, state of residence, and occupation of his father (“farmer”).

lists of distinguished academics. For instance, lists of distinguished academics might underestimate

the number of academics from lower SES-backgrounds if such academics are less likely to be

recognized by their peers (as we document below). Second, our dataset encompasses all academic

disciplines, including the social sciences and humanities. This broad scope enables us to conduct a

comprehensive analysis of representation in academia, examining variations across universities and

disciplines.

2.2.2 Measuring Parental Socio-Economic Background

To measure academics’ parental socio-economic background, we link the faculty rosters to historical

full-count U.S. censuses (Ruggles et al., 2024) using a two-step procedure. In the first step, we link

the cross-sections of academics to a contemporaneous U.S. census (“adult census”). In the second

step, we use census crosswalks from the Census Linking Project, the Census Tree Project, and

IPUMS Multigenerational Longitudinal Panel (MLP) to construct back-links to each academic’s

childhood census records to measure parental background.
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Linking Faculty Rosters to Contemporaneous U.S. Censuses: “Adult Census”

In the first step, we link all academics who appear in the faculty rosters to the two closest

contemporaneous censuses. For example, we link the 1925 faculty roster to both the 1920 and 1930

censuses. The only exceptions are the 1956 and 1969 faculty rosters, which can be linked to only

one census (the 1950 census) since neither the 1960 nor the 1970 full-count censuses have been

released to the public.

We link academics in the faculty rosters to their contemporaneous censuses based on the full

name of the academic, their census occupation, and their location in the census.5 We define a

potential match as someone:

1. who has the exact same first and last name in the census and in the faculty rosters

2. whose implied age is between 20 and 100 (based on their age in the census) at the time we

observe them in the corresponding faculty rosters

3. who indicates an occupation in the census that aligns with a professorship in a specific

discipline (e.g., biology professors may be listed with the occupations “professor”, “biologist”,

or “biology teacher”)6

We consider all matches that satisfy criteria 1-3 above. If criteria 1-3 only return one potential

match between the census and the faculty rosters, we consider the observation pair as matched,

and the procedure continues with step 7 (described below). For example, we can link the faculty

roster entry of George Wells Beadle to the 1940 census. The unique match in the census reports

that he was 36 years old in 1940, lived in Palo Alto City, and worked as a “Biology Teacher” at a

“University” (Figure 2.2.1, panel b).

If there are multiple potential matches, we disambiguate them using the following additional

criteria:

4. the potential match in the census lives in a county within 150 kilometers of the university

reported in the faculty rosters7

5. the potential match has the same middle name initial(s) in the census and the faculty rosters
5It is important to note, that a relatively small share of professors are listed under the occupation “professor” in

the census. Biology professors, for example, are listed as “professor”, “biologist”, or “biology teacher.” This highlights
the importance of using faculty rosters to capture university professors instead of using the “professor” occupational
category from the census records.

6Here, we both use the IPUMS occupation coding (occ1950, see IPUMS (2024a)) as well as the original string
responses recorded by the census (occstr). This enables us to also match individuals whose occupation or industry
was coded as “not yet classified”. Typically, occupations are unclassified due to transcription or spelling errors.

7For academics that are affiliated with multiple universities, we calculate the distance between each of their
universities and the county and use the minimum distance for disambiguation.
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6. the potential match reports an occupation in the census which aligns more closely with their

discipline (i.e., if there are two potential matches for a biology professor, one listed in the

census as “professor” and the other one as “biology professor,” we select the latter observation)

We then keep all matches that are unique after disambiguating them using at least one of the

criteria 4-6.

After applying criteria 1–6, approximately 70% of potential matches indicate an industry in

the census that aligns with their academic position. For instance, individuals may be listed in

industry 888 - Educational Services. Similarly, medical professors are often listed in industry 869 -

Hospitals. In contrast, the remaining 30% are listed in industries that do not closely correspond to

their academic roles (e.g. 246 - Construction) or fall into an unclassified category. To enhance the

reliability of these matches, we introduce a seventh criterion that leverages the specific industry

and occupation strings reported in the census:

7. the potential matches must report industry and occupation strings in the census that are

consistent with becoming a professor

For the seventh criterion, all potential matches with a misaligned industry are independently

reviewed by two research assistants, who classify each link as either correct or incorrect. For

instance, the Stanford physics professor Frederick John Rogers was linked to a census record listing

the industry as 0 - none reported. The research assistants examined the associated occupation

(“Assoct Projessor [sic]”) and industry (“physico at Stanford [sic]”) strings from the record and

determined the match to be correct.8 In contrast, Vanderbilt University biology professor George

W. Martin was linked to a census record listing the industry as 636 - Food stores, except dairy

products. The research assistants examined the associated occupation (“druggist”) and industry

(“own store”) strings and classified the link as incorrect. For the analysis, we only retain matches

that both research assistants classified as correct.9

Throughout the paper, we show results for two different samples:

1. Main Sample: 1900-1956 faculty rosters

2. Extended Sample: 1900-1969 faculty rosters

We use two different samples because the full-count censuses for 1960 and 1970 are not yet available.

It is, therefore, challenging to link individuals who entered the World of Academia database in 1969
8The misspellings in the occupation and industry fields result from the transcription of handwritten census

records.
9In cases where we match an academic to multiple census years, we additionally check whether these matches

are internally consistent (i.e., that the main demographic information used for backlinking is the same across all
matches). For example, an academic matched to a person aged 45 in the 1910 census should match to a person aged
55 in the 1920 census. Our research assistants hand-check all observations for which this is not the case and remove
incorrect matches.
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Table 2.2.1: Linking Rates

Matched to Adult Census Matched to Childhood Census

Cohort
Academics entering

faculty rosters Total
% Faculty

roster Total
% Adult
census

% Faculty
roster

Main sample: 1900-1956 cohorts

1900 3,441 2,485 72.2 1,726 69.5 50.2
1914 5,899 4,487 76.1 3,073 68.5 52.1
1925 6,401 4,731 73.9 3,188 67.4 49.8
1938 23,458 17,792 75.8 12,338 69.3 52.6
1956 53,243 28,814 54.1 17,052 59.2 32.0

Total 92,442 58,309 63.1 37,377 64.1 40.4

Extended sample: 1900-1969 cohorts

...

1969 65,340 17,306 26.5 8,762 50.6 13.4

Total 157,782 75,615 47.9 46,139 61.0 29.2

to an adult census. With this in mind, the main sample in our analysis is restricted to academics

who we first observe in 1956 or earlier cohorts. However, we also consider an extended sample in

which we attempt to match all academics in our data (including those who enter the data in 1969).

Of the 92,442 academics in the main sample, we link 58,309 (63%) to a contemporaneous census

(Table 2.2.1).10 Manual inspections suggest that transcription mistakes of the historical handwritten

census records account for many missed links. Furthermore, as we require unique matches based on

our linking criteria, we also miss links if matches between the faculty rosters and the census record

are not unique. In the extended sample we link 75,615 (48%) to a contemporaneous census (Table

2.2.1). Linking rates are lower for the 1956 and 1969 cohorts for two main reasons. First, these

cohorts can only be matched to the 1950 census. Linking to just one adult census lowers the linking

rate, as linking to two censuses enables us to deal with idiosyncratic transcription errors occurring

in one census but not the other. Second, these cohorts likely include individuals who were not yet

academics in 1950 and, hence, cannot be matched on the basis of their census occupation to an

adult census.

For each academic that we successfully link to a contemporaneous census, we extract the birth

year and the birth state from the adult census. These variables are crucial to link academics to their

childhood censuses (see below for more details). For example, we extract George Beadle’s birthyear

(1903 or 1904, based on the 36 years of age that he reports) and his birth state (“Nebraska”) from

his 1940 census record (Figure 2.2.1, panel b).
10Below, we provide evidence that linked academics are similar to academics who we are unable to link, thereby

alleviating selection concerns.
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Linking to the Childhood Census to Measure Socio-Economic Background

To construct measures of the socio-economic background of academics, we use census-to-census

crosswalks to link the adult census record to the corresponding childhood censuses. First, we use

the links available from the Census Linking Project (CLP, Abramitzky et al. 2012, 2021a).11 We

then combine these links with links from the Census Tree Project (CT, Buckles et al. 2023) for

the 1900-1940 adult censuses and IPUMS Multigenerational Longitudinal Project (MLP) (Ruggles

et al., 2019) for the 1950 adult census.12 In addition to enabling us to increase the sample size, the

additional links allow us to link to the childhood records of some female academics, which are less

frequently captured by traditional linking methods.13

To maximize the likelihood of capturing an academic’s parental background, we link adult

census records to all potential childhood censuses. Childhood censuses are defined as those in which

future academics are observed as children under the age of 22 and residing with their parents. In

cases where an academic is linked to multiple childhood censuses, we prioritize the census in which

the academic is youngest.14

Our exemplary academic, George Wells Beadle, can be linked to his childhood census of 1910. At

the time, he was six years old and listed in the census as the son of Chauncey E. Beadle, who was 43

years old and worked as a farmer (Figure 2.2.1, panel c). The information on the father’s occupation

will be the key information to reconstruct George Wells Beadle’s socio-economic background.

For the main sample, we are able to link 37,377 (or 64% of the adult census) records to a

childhood census (Table 2.2.1). For the extended sample, we can link 46,139 (or 61%) of the adult

census records to a childhood census.15 These linking rates are high compared to linking rates

in existing research, because we rely on a combination of linking algorithms and since we link to

multiple potential childhood censuses.
11Specifically, we use the “ABE-exact” links. As of November 2024, the Census Linking Project has not released

links between the 1950 census and earlier censuses. Therefore, we create our own crosswalks for the 1950 census
using the ABE algorithm in its “exact standard” version.

12In the rare cases in which these links point to different individuals, we privilege links made by the ABE exact
algorithm. There are few such cases because there is a very high rate of conditional agreement between ABE links
and those made by machine learning algorithms, i.e., when both methods identify a link the links are identical in
close to 100% of cases (Abramitzky et al., 2021a).

13The share of female academics in the faculty rosters is only 13% in the main sample and 14% in the extended
sample (see also Iaria et al. 2024). Overall, linking rates for female academics are 28% for the main sample and 21%
for the extended sample, compared to 42% and 31% for male academics. All results remain unchanged in a sample
of male academics.

14As we link some academics to multiple adult censuses that can be linked to different childhood censuses, a small
fraction of them have backlinks to different individuals in a childhood census. For example, an individual listed in
the 1914 faculty roster could theoretically be matched to both the 1910 and 1920 adult censuses, and the 1920–1880
backlinks might identify a different individual than the 1910–1880 backlinks. In such cases, we retain the backlink
associated with the adult census that is closest to the childhood census. In the given example, we would prioritize
the link based on the 1910–1880 crosswalk.

15For academics who moved to the United States to study or when they were already academics, we cannot link
them to a childhood census by construction. Of the 75,615 academics who we link to an adult census, 6,769 or 7.9%
are foreign-born. Foreign-born academics are part of the dataset if they migrated as children and can be observed in
at least one childhood census after moving to United States.
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Overall, we successfully link 37,377 (or 40%) individuals from the main sample to their childhood

census. These linked academics form the basis for our analysis. To assess potential selection

introduced by our linking procedure, we correlate the department rank (measured as the average

number of citations of all academics in a department, see Hager et al. 2024) with the linking rate

at the department level. We find no systematic relationship between department quality and the

linking rate (Figure 2.2.2, Panels (a) and (b), p-value=0.69).16 As a further check, we investigate the

correlation between the linking rates and the average income associated with a last name.17 We find

no systematic association between these variables (Figure 2.2.2, Panels (c) and (d), p-value=0.36).

Together, these results indicate that our linking procedure does not introduce systematic selection.

Constructing Parental SES ranks

For our baseline results, we rely on father’s occupational income scores as a proxy for socio-economic

background, because other measures of parental socio-economic status such as parental income or

parental education are not available in pre-1940 U.S. censuses. We construct parental “income scores”

for each academic, following the approach outlined by Abramitzky et al. (2021b). Specifically, we

use data on wage income from the 1940 census (the first U.S. census to include individual-level

income) and estimate the following regression for all working-age (20-70 years old) men in the 1940

census:

ln(Incomej) = β0 + β1Occupationj × State FE + β2Agej + β3Age2j + β4Racej + ϵj (2.2.1)

where ln(Incomej) measures the income of individual j in 1940. Occupationj × State FE is a

separate fixed effect for each census occupation code interacted with the state of residence of

individual j. In addition, we also include a second-order polynomial in age as well as race fixed

effects. Because the 1940 census includes information on income from wages but not on other

sources of income, we adjust the income of self-employed farmers using the method developed by

Collins and Wanamaker (2022).18

We then use the estimated coefficients from equation (2.2.1) to predict income for fathers in all

census years. We use these predicted incomes to rank fathers relative to all fathers, including the

fathers of non-academics, with children born in the same year. In robustness tests, we construct

alternative parental SES ranks based on income predictions that do not differ by state, and also
16We report equivalent figures for the extended sample in Figure 2.A.1, Panels (a) and (b). There is a small and

marginally significant positive correlation between department quality and matching rates in the extended sample.
17We measure the average income of a last name in the census using an analogous procedure to the one described

in the next subsection.
18In cases where the number of individuals within certain occupation-by-state cells is low, or where census

occupation codes change across years (see IPUMS 2024a), we apply coarser fixed effects to predict income ranks. See
Appendix 2.A.1 for details.
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Figure 2.2.2: Correlation of Linking Rates With Department Quality and Lastname
Parental SES Rank
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(b) Department Quality
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(c) Lastname Parental SES Rank
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(d) Lastname Parental SES Rank
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Notes: Panel (a) shows the correlation between a department’s citation rank and the probability of linking a
scientist to a childhood census for the main sample. Panel (b) shows a binned scatter plot of the same relationship.
Panel (c) shows the correlation between a last name’s parental SES Rank based on the entire U.S. census and the
probability of linking an academic to a childhood census. Panel (d) shows a binned scatter plot of the same
relationship. Bins are chosen according to Cattaneo et al. (2024). Appendix Figure 2.A.1 shows the equivalent
figures for the extended sample.

use alternative measures of socioeconomic status, such as Hisclass (van Leeuwen and Maas, 2011)

and Duncan’s Socioeconomic Index (SEI).

2.2.3 Linking Scientists with Publications and Citations

To investigate how socio-economic background influences scientific output and the direction of

research, we link academics from six scientific disciplines – medicine, biology, biochemistry, chemistry,

physics, and mathematics – with publication and citation data from the Clarivate Web of Science.

We focus on these disciplines for two main reasons. First, they have particularly good coverage in

the Web of Science. Second, by the early 20th century, these disciplines had already established
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a culture of publishing in scientific journals, with publishing processes resembling contemporary

practices. In contrast, disciplines such as the humanities and social sciences predominantly relied

on book publishing during this period.

We use the procedure developed by Iaria et al. (2024) to link publications and citations to the

faculty rosters. The procedure uses the academic’s last name, first name, or initials (depending on

whether first names are available), country, city, and discipline.19 To improve match quality, we

harmonize affiliations across the faculty rosters and the Web of Science with the Google Maps API.

2.2.4 Linking Scientists with Nobel Prize Data

To measure recognition by the scientific community, we hand-link data on nominations for the

physics, chemistry, and physiology or medicine Nobel Prizes from the Nobel Nomination archive

(Nobelprize.org, 2024). This database contains all nominations for the Nobel Prize in physics and

chemistry from 1901 to 1970, and all nominations for the Nobel Prize in physiology or medicine

from 1901 to 1953. We also hand-link all Nobel Prize winners to our faculty rosters. Table 2.2.2

provides summary statistics for the most important variables in our data.

Table 2.2.2: Summary Statistics

Panel A: 1900 – 1956

Variable Mean SD Observations

Parental SES Rank 72.83 24.84 37,377
Age at Entry into Faculty Rosters 45.34 10.11 37,377
Female 0.09 37,377
Publications 4.66 9.51 12,767
Papers with Novel Words 0.30 1.12 11,964
Nominated for Nobel Prize 0.01 12,767
Awarded Nobel Prize 0.00 12,767

Panel B: 1900 – 1969

Parental SES Rank 72.18 25.06 46,139
Age at Entry into Faculty Rosters 47.28 10.92 46,139
Female 0.10 46,139
Publications 4.91 10.63 15,521
Papers with Novel Words 0.29 1.12 14,718
Nominated for Nobel Prize 0.01 15,521
Awarded Nobel Prize 0.00 15,521

Notes: The table reports summary statistics. Panel A reports information for the main sample,
which includes academics who enter the faculty rosters by the 1956 cohort. Panel B reports infor-
mation for the extended sample, which includes academics who enter the faculty rosters by the 1969
cohort. Data on academics come from the World of Academia Database. Parental SES ranks are
constructed based on U.S. census microdata. Data on publications come from the Web of Science.
Publications are measured in a ± 5-year window around the year of entering the faculty rosters.
Papers with novel words measures the number of papers published in a ± 5-year window around
the year of entering the faculty rosters that introduce at least one novel word. Nominated for Nobel
Prize is an indicator whether a scientist was ever nominated for a Nobel Prize, and Awarded Nobel
Prize is an indicator for winning the Nobel Prize.

19To reduce false positives, matches are restricted to the academic’s primary discipline (e.g., physics).
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2.3 Socio-Economic Background and the Probability of Be-

coming an Academic

In the first part of the paper, we investigate the relationship between socio-economic background and

the probability of becoming an academic. Many anecdotes suggest that even exceptionally talented

individuals from lower socio-economic backgrounds often face challenges in pursuing academic

careers. For example, in his Recollections, Nobel Prize winner George Beadle stated that: “It was

tacitly assumed I would eventually take over the family farm. [...] Father was not keen on the

college idea, being convinced that a farmer did not need all that education. But determination

won, and I enrolled at the University of Nebraska College of Agriculture, fully intending to return

to the farm” (Beadle, 1974).

In the following, we explore whether individuals like George Beadle represent rare exceptions

or if talented individuals were able to pursue academic careers regardless of their socio-economic

background.

2.3.1 Representation of Academics by Socio-Economic Background

We visualize the share of U.S. academics that come from each percentile of the parental SES rank

distribution (Figure 2.3.3). It is important to note that the parental SES rank should be interpreted

as an omnibus measure of socio-economic background capturing a combination of different factors

such as parental income but also education and other traits of the socio-economic background that

are correlated with income. We do not argue that any single factor, such as a lack of parental

income, is the sole or even dominant driver of our findings.

An equal distribution based on parental SES ranks would imply that 1% of academics stem

from each percentile. We illustrate this benchmark with a horizontal line in Figure 2.3.3. In stark

contrast to this equal representation benchmark, we show that people from higher socio-economic

backgrounds are markedly overrepresented in academia, with the degree of overrepresentation

increasing particularly sharply for higher parental SES ranks (Figure 2.3.3, panel a). Overall,

approximately half of all academics come from the top 20% of the parental SES rank distribution.

The degree of overrepresentation is particularly large for very high percentiles of the parental SES

rank distribution. For example, individuals born to parents in the 95th percentile are more than

three times as likely to become academics than one would expect under the equal representation

benchmark.

The disparity is even more striking at the highest percentile. Individuals from the 100th

percentile of the socio-economic background distribution are more than five times as likely to

become academics than one would expect under the equal representation benchmark. Strikingly,
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Figure 2.3.3: Representation by Socio-Economic Background
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(b) Parental Income Prediction Without Regional Variation
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Notes: The figure shows the representation of academics based on their socio-economic background for the main
sample. We proxy socio-economic background with the father’s income rank based on predicted income as described
in section 2.2.2. Each bar represents the percentage of all academics whose fathers are from a specific income
percentile rank. For example, the right-most bar shows that around 5 percent of academics have fathers who were in
the 100th percentile of the predicted income distribution. The horizontal line represents a hypothetical equal
representation benchmark. Appendix Figure B.2 shows equivalent figures for the extended sample.
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even when compared to individuals from the 99th percentile, those from the 100th percentile have

a 1.6 times higher chance of becoming an academic.20

The results are similar if we predict parental SES ranks solely based on the father’s individual

characteristics and his occupation, excluding state of residence fixed effects in the income prediction

(Figure 2.3.3, panel b). In additional robustness checks, we report the share of academics by

other measures of socio-economic background (Hisclass and Duncan Socioeconomic Index (SEI),

Appendix Figures B.3 and B.4) and confirm that academics are disproportionately drawn from

high socio-economic backgrounds.

2.3.2 Representation Over Time

The large differences in the probability of becoming an academic translate into a highly skewed

socio-economic composition of academia. As a next step, we analyze whether these representation

patterns changed over time (Figure 2.3.4). The share of academics from the top quintile of the

parental SES rank distribution for the birth cohorts born after 1920 is 52.6%, almost identical to

the share of 52.3% in the pre-1870 birth cohorts. Similarly, the share of academics from the bottom

quintile of the parental SES rank distribution is around 4-5% and hardly changes over time. This

persistence is striking, given the substantial expansion in educational attainment in the United

States during this period.21

Together, these results suggest that there are significant and persistent barriers that prevent

individuals from low socio-economic backgrounds from pursuing careers in academia. Such barriers

could take many different forms (e.g., differences in ability, education, income, network ties, or

institutional knowledge).

2.3.3 Representation in Academia versus Other Professions

A question arising from the previous findings is whether academia is an outlier compared to other

professions. The small share of individuals from low socio-economic backgrounds in academia

might simply reflect the fact that entering a profession requires credentials (e.g., a college degree),

which might be expensive to obtain. To explore this, we compare the socio-economic backgrounds

of academics to those of other professionals – lawyers and judges, physicians and surgeons, and

teachers – using comparable data from the census (see Appendix 2.A.2 for details). While lawyers

and doctors also disproportionately come from high socio-economic backgrounds, the degree of
20This extreme overrepresentation at the 100th percentile may partially reflect that, in certain census years and

states, professors themselves are classified in the highest parental income percentile. However, even after excluding
individuals whose fathers report “professor” as their occupation in the census, the overall pattern remains similar
(Appendix Figure B.1).

21For example, U.S. Americans born in 1920, on average, completed three additional years of schooling compared
to those born in 1870 (Goldin and Katz, 2009).
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Figure 2.3.4: Representation by Socio-Economic Background Over Time
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Notes: The figure shows the representation of academics based on their socio-economic background over time for the
main sample. Each line represents the percentage of all academics whose fathers are from a specific income quintile.
For example, the top line indicates the percentage of academics whose fathers were in the top quintile of the
predicted income distribution. Appendix Figure B.5 shows the equivalent figure for the extended sample.

selection in academia is even more pronounced (Figure 2.3.5). For example, 52% of academics come

from the top quintile of the parental SES rank distribution, while “only” 50% of laywers and judges,

and 44% of medical doctors come from the top quintile of the parental SES rank distribution. At

the other end of the spectrum, representation from the bottom quintile of the parental SES rank

distribution is especially low in academia: only 5% of academics come from the bottom quintile,

while 7% of laywers, and 9% of doctors come from the bottom quintile. Teachers, in contrast,

exhibit a much weaker degree of selection based on socio-economic background.

2.3.4 Representation by University

In the next set of results, we investigate whether individuals from lower socio-economic backgrounds

are similarly underrepresented in all universities or if certain universities exhibit a higher degree of

representation of individuals from these backgrounds. As the faculty rosters contain more than 1,000

U.S. universities, we show examples for a small subset of these universities. We choose examples of

universities for which we measure the socio-economic background of academics in each of the five

cohorts plus all universities in the Ivy Plus group, as defined by Chetty et al. (2020).22

We find striking differences in representation by university (Figure 2.3.6, which is sorted in

descending order based on the proportion of faculty with fathers from the top 20%). The most

“socio-economically selective” universities are elite private universities such as those in the Ivy
22The Ivy Plus group contains the following universities: Brown, Columbia, Cornell, Dartmouth, Harvard, UPenn,

Princeton, Yale, Stanford, MIT, Chicago, and Duke.
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Figure 2.3.5: Comparison to other Professions
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Notes: The figure compares the representation of academics based on their socio-economic background to the
representation in other professions for the main sample. We proxy socio-economic background with the father’s
income rank based on predicted income as described in section 2.2.2. Each color shows the percentage of individuals
in an occupation whose fathers were in a specific quintile of the predicted income distribution. E.g., the white bar
shows the percentage of individuals whose father was in the top quintile of the predicted income distribution. The
representation in other professions is based on U.S. census samples of lawyers & judges, physicians & surgeons, and
teachers that match the sample of academics (see Appendix 2.A.2 for details). Appendix Figure B.6 shows the
equivalent figure for the extended sample.

League – Harvard, Princeton, UPenn, and Yale. In contrast, universities with lower levels of

“social selectivity” within this subset are predominantly public institutions, such as the University

of Nebraska, the University of Missouri, and Iowa State University. These differences highlight

significant variation in socio-economic representation across universities.

To more systematically investigate which university characteristics are correlated with socioeconomic

selectivity, we estimate the following regression on the full sample of universities:

Faculty Top SES Shareu = β0 + β1Ivy Plusu + β2Elite Privateu + β3Elite Publicu (2.3.2)

+ β4Discipline Sharesu + State FE + ϵi

The dependent variable Faculty Top SES Shareu measures the share of academics of university

u who come from the top 20, top 10, top 5, or top 1 % of the parental SES rank distribution.
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Figure 2.3.6: Selection by University
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Notes: The figure shows the representation of academics based on their socio-economic background by university for
the main sample. We proxy socio-economic background with the father’s income rank based on predicted income as
described in section 2.2.2. Each color shows the percentage of academics whose fathers were in a specific quintile of
the predicted income distribution. E.g., the white bar shows the percentage of academics whose father was in the
top quintile of the predicted income distribution. Appendix Figure B.7 shows the equivalent figure for the extended
sample.
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Ivy Plusu is an indicator that equals one if university u is an Ivy Plus university as defined by

Chetty et al. (2020). Elite Privateu is an indicator that equals one if university u is an elite private

institution which is not in the Ivy Plus category (e.g., New York University) and Elite Publicu is

an indicator that equals one if the university is an elite public institution (e.g., Berkeley).23

The regression results indicate that Ivy Plus universities recruit faculty from significantly higher

socio-economic backgrounds compared to other elite private institutions. These findings hold for

the share of faculty from the top 20, top 10, top 5, and even top 1 %. While the average university

in our sample recruits 3.4 % of their academics from the top 1 %, the share is about 5.2 percentage

points higher in Ivy Plus universities (Table 2.3.3, column 12). In contrast, public elite institutions

recruit their faculty from lower socio-economic backgrounds than Ivy Plus universities (Table 2.3.3).

The selectivity of universities may, in part, reflect their discipline composition. For example,

Harvard does not have an agriculture department, which could influence the selectivity of its faculty.

As demonstrated in the next section, representation varies substantially across disciplines. To

address these differences, we add controls for the share of academics in each discipline. The results

remain very similar (columns 2, 5, 8, and 11). The differences across university types are similar

even though somewhat smaller if we control for state fixed effects (columns 3, 6, 9, and 12). This

suggests that the observed patterns are not solely driven by geographical factors.

2.3.5 Representation by Discipline

While individuals from higher socio-economic backgrounds are overrepresented in all disciplines,

there are large differences across disciplines (Figure 2.3.7). Agriculture, veterinary medicine,

pedagogy, sociology, and pharmaceutics are the disciplines with the highest representation of

individuals from lower socio-economic backgrounds. In contrast, the humanities, archaeology,

architecture, cultural studies, medicine, anthropology, and law have the lowest representation.24

Contrary to the common perception of economists, economics is more representative than the

median discipline.

Figure 2.3.7 suggests that disciplines that require more sophisticated language skills have less

representation from individuals of lower socio-economic backgrounds. In comparison, disciplines

that require more mathematics skills exhibit higher representation. To investigate this hypothesis,

we correlate discipline-level representation with the language versus mathematics skills requirement

in each discipline. We proxy the language versus mathematics requirement with the ratio of

quantitative to verbal Graduate Record Examination (GRE) scores for students intending to
23Elite Private includes all private universities in Chetty et al. (2020)’s “elite universities”. Elite Public includes

all public universities in Chetty et al. (2020)’s “elite universities” as well as all universities in their “Highly-Selective
Public” category.

24Academics who list humanities, social sciences, and natural science as their discipline in the faculty rosters are
less specialized and often teach at liberal arts colleges.
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Figure 2.3.7: Representation by Discipline
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Notes: The figure shows the representation of academics based on their socio-economic background by discipline for
the main sample. We proxy socio-economic background with the father’s income rank based on predicted income as
described in section 2.2.2. Each color shows the percentage of academics whose fathers were in a specific quintile of
the predicted income distribution. E.g., the white bar shows the percentage of academics whose father was in the
top quintile of predicted income. Appendix Figure B.8 shows the equivalent figure for the extended sample.

pursue graduate studies in each discipline.25 The findings suggest that representation from lower

socio-economic backgrounds is indeed higher in disciplines that require more quantitative relative
25The Educational Testing Service (ETS), which administers the GRE, publishes three-year average test scores of

seniors and nonenrolled college graduates in three categories (verbal reasoning, quantitative reasoning and analytical
writing) for 290 intended graduate majors in their GRE Guide to the Use of Scores. We aggregate these majors into
the corresponding disciplines from the faculty rosters and calculate the average quantitative versus verbal GRE score
in each discipline. The data used in this analysis is based on the 2005–2008 cohorts of test-takers, obtained from the
oldest available edition of the guide available via the Internet Archive Wayback Machine (ETS, 2009).
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to verbal skills (Figure 2.3.8). The estimates imply that an increase in relative quantitative versus

verbal skills by 0.5 (approximately the difference between history and mathematics) is associated

with a 7.8 percentage point decrease in the share of academics from the top quintile of the parental

SES rank distribution.

However, Figure 2.3.7 also highlights striking differences in representation even when comparing

disciplines that arguably require similar skills. For instance, there are large differences in the

socio-economic composition of medicine relative to veterinary medicine and of sociology relative

to law. This suggests that factors beyond skill requirements also impact representation across

disciplines.

Figure 2.3.8: Discipline Mathematics vs. Language Requirements and Representation

Notes: The figure shows the share of academics from the top quintile of the distribution of socio-economic
background by academic discipline in relation to the importance of quantitative relative to verbal skills in the
discipline for the main sample. We proxy socio-economic background with the father’s income rank based on
predicted income as described in section 2.2.2. We proxy the importance of mathematics relative to language skills
with the ratio of the average GRE quantitative score to the average GRE verbal reasoning score of test takers
intending to pursue a graduate degree in the respective discipline. GRE score data come from ETS (2009), Extended
Table 4. The size of the circles indicates the number of academics in the respective discipline in our data. We also
report the coefficient and p-value from a discipline-size weighted regression of this relationship. Appendix Figure B.9
shows the equivalent figure for the extended sample.
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2.4 Socio-Economic Background and Discipline Choice

In the second part of the analysis, we examine whether fathers’ occupation affects academics’ choice

of discipline. This enables us to study a different facet of socio-economic background that goes

beyond fathers’ positions in the SES rank distribution.

2.4.1 Measuring Discipline-Level Overrepresentation by Father’s Occu-

pation

For this analysis, we construct an overrepresentation index that measures whether individuals with

fathers in certain occupations are overrepresented in specific academic disciplines:

Overrepresentationdo =
P (Disciplinei = d,Father’s Occupationi = o)

P (Disciplinei = d) · P (Father’s Occupationi = o)
, (2.4.3)

where P (Disciplinei = d) is the probability of academic i working in discipline d, P (Father’s

Occupationi = o) is the probability of academic i having a father with occupation o, and

P (Disciplinei = d,Father’s Occupationi = o) is the joint probability.26

The measure isolates the relationship between a father’s occupation and an academic discipline

by accounting for baseline differences in the probabilities of choosing specific disciplines and having

fathers in certain occupations. If there was no systematic relationship between father’s occupation

and the choice of discipline (i.e., the probabilities are independent), Overrepresentationod = 1, since

P (Disciplinei = d,Father’s Occupationi = o) = P (Disciplinei = d) · P (Father’s Occupationi = o).

If a certain father’s occupation is overrepresented in a specific discipline, the measure is greater

than one. Inversely, in case of underrepresentation, the measure is smaller than one.

For example, we can calculate the overrepresentation of farmers’ children among professors of

agricultural science. The numerator measures the probability that an academic whose father was

a farmer works as a professor of agricultural science (in our data this probability is 0.024). The

denominator is the product of two probabilities: the probability of being a professor of agriculture

among all academics (in our data: 0.043), and the probability that any academic’s father was a

farmer (in our data: 0.232). Thus the overrepresentation index for professors of agriculture who

are farmer’s children is 0.024/(0.043 · 0.232) = 2.4. In other words, 56% (0.024/0.043× 100) of all

agricultural scientists are the children of farmers, while only 23% of all academics are children of

farmers, making agricultural scientists 2.4 times more likely to be the child of a farmer, compared

to academics overall. Thus, the measure quantifies the extent to which children of farmers are

disproportionately represented in agricultural sciences.
26The measure is related to pointwise mutual information, a common measure in information theory.
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We calculate this measure for all pairs of father’s occupations (130 different occupations in the

data) and academic disciplines (34 disciplines), i.e., we calculate 130×34 = 4, 420 overrepresentation

indices.27 We visualize examples of such pairs in Figure 2.4.9. The figure plots the father’s occupation

on the vertical axis and the academic discipline on the horizontal axis. The blue shading indicates

quartiles of the overrepresentation index, with darker blues indicating stronger overrepresentation.

Figure 2.4.9: Father’s Occupation and Discipline Choice
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Notes: The figure shows the relationship between father’s occupation (rows) and their children’s academic discipline
choice (columns) for selected father’s occupation - discipline pairs for the main sample. Darker shades indicate
higher levels of overrepresentation, as measured by equation (2.4.3). Appendix Figure C.1 shows the equivalent
figure for the extended sample.

The figure suggests a strong connection between the father’s occupation and their children’s choice

of discipline. For example, children of architects are disproportionately represented in architecture

and arts, while children of artists and art teachers gravitate toward arts-related disciplines. Children

of lawyers, medical doctors, or pharmacists predominantly pursue law, medicine, and pharmaceutics,

respectively. Children of editors and reporters are overrepresented in communication studies, which

encompasses journalism as a sub-discipline. Interestingly, this pattern extends to children of fathers

in non-professional occupations. For example, children of bank tellers are overrepresented in business

disciplines. Meanwhile, children of teachers, who often teach various school subjects, exhibit a more

evenly distributed representation across academic fields.
27As the overrepresentation index is sensitive to outliers in small disciplines and occupations, we restrict the

sample to disciplines for which we can observe the occupation of the father for at least 15 academics and to fathers’
occupations in which at least 15 children become academics in any discipline.
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2.4.2 Predicting Semantically Close Academic Disciplines

Figure 2.4.9 presents a selected subset of father’s occupation-discipline pairs, that we hand-picked

from the data chosen to illustrate notable patterns in the data. To systematically investigate

the relationship between a father’s occupation and their child’s academic discipline choice, we

construct an external measure of similarity between each father’s occupation and each academic

discipline. Specifically, we use text embeddings to measure the semantic similarity between the

text string of the father’s occupation and the text string of the discipline. This method provides a

systematic way to explore the relationship between father’s occupation and the discipline for all

father’s occupation-discipline pairs.

Embeddings transform a text into a fixed-length vector representation that capture both syntactic

and semantic relationships present in the training data. The resulting vectors can then be used

for text similarity calculations, as similar sentences are located close to each other in the vector

space. Intuitively, if the word “farmer” is used in similar contexts to the word “agriculture”, the

model will identify these words as being semantically similar. Embedding models are trained by

applying advanced machine learning techniques, such as deep learning transformer models, to

vast corpora of text such that the model learns intricate relationships between words. We use

the “all-MiniLM-L6-v2” model, which has been trained on data from scientific papers, Wikipedia,

Reddit, and many other sources.28 The model represents each father’s occupation string as well as

each discipline string as a vector of length n = 384. As is standard in natural language processing,

we then measure the similarity of the text string of the father’s occupation and the text string of

the discipline using the cosine similarity of the two vector representations:

Cosine Similarity(x,y) =
∑n

i=1 xi · yi√∑n
i=1 x

2
i ·

√∑n
i=1 y

2
i

, (2.4.4)

where x represents the vector of father’s occupation and y represents the vector of the discipline,

derived from the sentence embedding model.

Using this measure of semantic similarity, we predict the closest discipline in semantic space for

each father’s occupation. Importantly, this measure is derived solely from the textual representation

of occupation and discipline strings and does not incorporate any information about the actual

academic discipline choices of professors. For example, as expected the closest discipline in semantic

space for the occupation “architect” is “architecture” (cosine similarity 0.77). Similarly, the closest

discipline in semantic space for the occupation “buyers and shippers, farm products” is “agriculture”

(cosine similarity 0.53).29

28The “all-MiniLM-L6-v” model is one of the most commonly used sentence embedding models. For example, it
was the third most downloaded model on huggingface.com as of July 2024. The findings do not depend on the choice
of a specific model.

29To ensure that we predict close disciplines that are genuinely close in semantic space, we classify an occupation-
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2.4.3 Overrepresentation in Semantically Close Disciplines

After identifying the semantically closest academic discipline for each occupation, we compute the

average overrepresentation index (equation 2.4.3) for the discipline-occupation pair that is closest

in semantic space. Additionally, we calculate the corresponding average for all other discipline-

occupation pairs. This enables us to measure whether academics are systematically overrepresented

in disciplines that are “close” to their father’s occupation.

Figure 2.4.10: Overrepresentation in Semantically Closest Discipline
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Notes: The figure shows overrepresentation as measured by equation (2.4.3) in the father’s occupation-discipline pair
that is semantically closest, e.g., “farmer” and “agriculture” and all other father’s occupation-discipline pairs for the
main sample. For more details, see appendix 2.4.2 and appendix 2.4.3. Appendix Figure C.2 shows the equivalent
figure for the extended sample.

The average overrepresentation index is 3.28 in the semantically closest discipline (Figure 2.4.10).

In contrast, the overrepresentation index is 1.03 for all other disciplines, indicating that for disciplines

that are not semantically close to fathers’ occupations, academics are represented as good as random.

Overall, these results provide further evidence that socio-economic background not only affects

the likelihood of entering academia but also the choice of discipline. Potential explanations for

this phenomenon include increased interest stemming from the transmission of family values, early

exposure to a particular field, or differential access to resources and opportunities, such as privileged

discipline pair as semantically close if their cosine similarity is at least two standard deviations above the mean of
all cosine similarities. For instance, while the discipline most similar to the occupation “private household worker”
is law, the similarity falls below the mean cosine similarity threshold. As a result, children of “private household
workers” have no semantically closest discipline and are excluded from our main analysis. Importantly, our findings
remain robust when we redefine semantically close disciplines using a threshold of one standard deviation above the
mean or when we eliminate the minimum cosine similarity requirement altogether (see Appendix Figure C.3).
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information on how to succeed in a given discipline.

Combined with the findings in the previous part of the paper, these results suggest that the

unequal selection of academics based on socio-economic background could have repercussions for

the composition of academic disciplines. Overrepresentation of individuals from certain parental

occupations in academia could skew the composition of academic disciplines, leading to imbalances

in the supply of talent. This misalignment may advantage some disciplines over others, not due to

societal demand for knowledge, but rather due to the unequal distribution of opportunities.

2.5 Socio-Economic Background, Scientific Publications, and

Novel Scientific Concepts

In the third part of the analysis, we investigate whether and how socio-economic background influ-

ences productivity after entering academia. In particular, we study whether scientific productivity

and novelty differ by socio-economic background.

2.5.1 Scientific Publications

We first explore differences in the number of publications by socio-economic background. As

described in the data section, this analysis focuses on six scientific disciplines: medicine, biology, bio-

chemistry, chemistry, physics, and mathematics, which are well-represented in academic publication

databases. We estimate the following regression:

Publicationsi = θ · Parental SES Ranki +X′
iβ + ϵi (2.5.5)

where Publicationsi captures different measures of scientific publications that scientist i published in

a ± 5-year interval centered on the year that the scientist entered the faculty rosters, i.e., for scientists

entering the faculty rosters in 1956, we measure publications from 1951 to 1961. We estimate

results for publication counts and standardized publications. We standardize publication counts

to have a mean of zero and a standard deviation of one by discipline and cohort.30 Standardized

publications ease interpretation and account for differences in publications across disciplines and

over time. Parental SES Ranki ranges from 0 to 100, capturing the percentile of the income rank of

scientist i’s father. The coefficient θ captures the relationship between socio-economic background

and scientific output. We also include a set of controls, Xi, to account for differences in scientific

output by age, gender, cohort, discipline, or state. Since the parental SES rank is based on father’s
30To capture the whole distribution of publications for the standardization, we use all publications linked to U.S.

scientists in the faculty rosters and not only the publications of U.S. scientists which we can link to a childhood
census.
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occupation, childhood state, and birth year of the scientist, we cluster standard errors at the level

of father’s occupation, childhood state, and birth year to account for potential correlations of

regression residuals.

Number of Publications

We find no systematic relationship between the socio-economic background and the average number

of publications, regardless of the set of fixed effects that we include as regression controls (Table 2.5.4,

columns 1-3). This result holds in the main sample (Panel A) and in the extended sample (Panel

B). As described before, to account for differences in publication practices across disciplines and

over time, we also estimate models using standardized publications. These results further confirm

that there is no systematic relationship between the socio-economic background of scientists and

the average number of publications (Table 2.5.4, columns 4-6).

Table 2.5.4: Socio-Economic Background and Publications

Dependent Variable: Publications Standardized Publications No Publications

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: 1900 – 1956

Parental SES Rank 0.00783* 0.00441 -0.00299 0.00040 0.00012 0.00006 -0.00113*** -0.00094*** -0.00052***
(0.00425) (0.00424) (0.00423) (0.00041) (0.00041) (0.00042) (0.00019) (0.00019) (0.00018)

R2 0.04 0.06 0.09 0.04 0.06 0.06 0.05 0.07 0.12
Observations 12,767 12,767 12,767 12,767 12,767 12,767 12,767 12,767 12,767
Dependent Variable Mean 4.666 4.666 4.666 0.011 0.011 0.011 0.418 0.418 0.418

Panel B: 1900 – 1969

Parental SES Rank 0.00419 0.00158 -0.00628 0.00016 -0.00005 -0.00014 -0.00102*** -0.00085*** -0.00043**
(0.00408) (0.00408) (0.00407) (0.00036) (0.00036) (0.00036) (0.00017) (0.00017) (0.00017)

R2 0.03 0.05 0.08 0.03 0.06 0.06 0.04 0.06 0.12
Observations 15,521 15,521 15,521 15,521 15,521 15,521 15,521 15,521 15,521
Dependent Variable Mean 4.912 4.912 4.912 -0.013 -0.013 -0.013 0.421 0.421 0.421

Demographic Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Childhood State FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes
Cohort FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes
Uni State FEs Yes Yes Yes Yes Yes Yes
Discipline FEs Yes Yes Yes

Notes: The table reports the estimates of equation (2.5.5). The dependent variable measures publications in a ± 5-year window around the cohort when scientist i enters
the faculty rosters. We standardize publications to have a mean of 0 and a standard deviation of 1 within disciplines and cohorts. The main explanatory variable is the SES
rank of the father, as measured by the percentile in the predicted income distribution of scientist i’s father. Demographic controls include age, age squared, and an indicator
for whether the scientist is female. Standard errors are clustered at the level of father’s occupation, childhood state, and birth year of the scientist. Significance levels: ∗∗∗
p<0.01, ∗∗ p<0.05, and ∗ p<0.1.

We also visualize the relationship between parental income ranks (x-axis) and standardized

publications (y-axis) in a binned scatterplot (Figure 2.5.11). The figure provides additional evidence

that there is no systematic relationship between the average number of publications and the parental

income rank.

Probability of Zero Publications

A considerable share of scientists never publish in journals indexed by the Web of Science, which

predominantly includes high-quality journals (Hager et al., 2024). To examine the likelihood of
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Figure 2.5.11: Socio-Economic Background and Average Number of Publications
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Notes: The figure shows a binned scatterplot of the relationship between scientists’ socio-economic background and
publications. We proxy socio-economic background with the father’s income rank based on predicted income as
described in section 2.2.2. Publications are standardized within cohort and discipline. We show 100 quantiles and
use the covariate adjustment (equivalent to column (4) in Table 2.5.4) as proposed in Cattaneo et al. (2024).

never publishing in a Web of Science-indexed journal, we estimate variants of equation (2.5.5) with

an alternative dependent variable that equals one if scientist i does not publish any papers in the

±5 year window surrounding their entry into the faculty rosters, and zero otherwise. We find that

individuals from higher socio-economic backgrounds are significantly less likely to never publish

(Table 2.5.4, column 7). For example, the probability of not publishing at all is approximately

4 percentage points (or around 10 percent) lower for scientists whose fathers were at the 75th

percentile of the income distribution, compared to those with fathers at the 25th percentile. While

the magnitude of this effect is halved when including the full set of fixed effects, it remains highly

significant. The result is also robust in the extended sample (Table 2.5.4, columns 8-9 and Panel B).

The Distribution of Publications

The preceding results suggest that while scientists from lower socio-economic backgrounds, on

average, produce a comparable total number of publications, they are significantly more likely to

have no publications at all. This suggests that scientists from lower socio-economic backgrounds

must publish relatively more in higher percentiles of the publication distribution. To test this
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hypothesis, we estimate equation (2.5.5) with alternative dependent variables:

1(Publication Percentile Rangei = q) = θ · Parental SES Ranki +X′
iβ + ϵi (2.5.6)

where the dependent variable 1(Publication Percentile Rangei = q) is an indicator that equals

one if scientist i’s publication record falls within a specified percentile range q. Since scientific

productivity is well-known to be highly skewed (see e.g., Lotka 1926), we define the following

percentile ranges of the publication distribution: 0 − 50th (which coincides with not publishing

at all for many disciplines and cohorts), > 50 − 70th, > 70 − 90th, > 90 − 95th, > 95 − 97th,

> 97 − 99th, and > 99th percentile of the publication distribution. To account for variations

in publication patterns across disciplines (e.g., chemists and medical researchers publish more

than mathematicians) and cohorts (e.g., later cohorts tend to publish more), these percentiles are

calculated at the discipline-cohort level. Appendix Table D.1 shows the number of publications

required to achieve each percentile across disciplines and cohorts.

The regression results are reported in Appendix Table D.2, and the estimated coefficients

are visualized in Figure 2.5.12. The first coefficient from the left indicates that scientists from

higher parental income ranks are less likely to have a publication count in the bottom 50% of the

publication distribution. In contrast, the second coefficient (> 50− 70) indicates that scientists

from higher parental income ranks are as likely as scientists from lower parental income ranks to

have a publication count between the 50th and the 70th percentile of the publication distribution.

The third coefficient (> 70− 90) indicates that scientists from higher parental income ranks are

more likely to have a publication count between the 70th and the 90th percentile of the publication

distribution than scientists from lower parental income ranks. For the next percentile ranges, the

coefficients are not significantly different from zero. In contrast, the last coefficient (> 99− 100),

indicates that scientists from higher parental income ranks are less likely to have a publication

count in the top 1% of the publication distribution (p-value=0.089). This suggests that individuals

from lower socio-economic backgrounds are disproportionately more likely to have publication

records in the top 1%. Specifically, the probability of having a publication record in the top 1%

is approximately 0.35 percentage points (or around 44 percent) lower for scientists whose fathers

were at the 75th percentile of the income distribution compared to scientists with fathers at the

25th percentile. This large effect, in percentage terms, is particularly relevant as a long-standing

literature in the sociology of science has highlighted that the most productive scientists have a

disproportionate impact on the advancement of science (e.g., Lotka 1926, Merton 1957).

Overall, the findings on the distribution of publications suggest that scientists from lower

socio-economic backgrounds may represent relatively “riskier” hires. They are more likely to have
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Figure 2.5.12: Socio-Economic Background and the Distribution of Publications
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Notes: The figure plots the estimated coefficients for θ for seven regressions of Equation 2.5.6. In each of the seven
regressions, the dependent variable is an indicator of whether a scientist’s number of publications falls within the
relevant percentiles of the publication distribution, measured at the cohort and discipline-level. We report
coefficients from regressions using the covariates and fixed effects equivalent to column (3) in Table 2.5.4. The
corresponding regression results are reported in Appendix Table D.2.

no publications at all but are also disproportionately represented in the top 1% of the publication

distribution.

2.5.2 Novel Scientific Concepts

In the next subsection, we explore whether and how the content of publications differs by socio-

economic background and explore additional evidence whether scientists from lower socio-economic

backgrounds may pursue riskier research agendas.

To explore these hypotheses, we adopt the methodology developed by Iaria et al. (2018) to

measure the number of novel words introduced by a scientist to the scientific community. The

measure proxies for the introduction of new scientific concepts that required novel scientific terms.

Specifically, we define novel words as words that were first used in the title of a paper and had not

been used in the title of any prior paper included in the entire Web of Science database (not just

the papers published by the scientists in our sample).

As the coverage of the Web of Science begins in 1900, we compute the novel words measure for

paper titles published from 1910 onwards. This approach allows for a 10-year window to identify
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words appearing in scientific papers before designating a term as novel. Consequently, we cannot

measure the introduction of novel words for scientists who enter the faculty rosters in 1900. To

ensure that we do not consider words that were already in use in other domains, we exclude

frequently used words, as well as numbers, from the data.31

One example of a novel scientific term is “microbeam,” which was used and developed by

Raymond E. Zirkle to study the effects of ionizing radiation on living cells. Zirkle, who is widely

regarded as the pioneer in the field of radiation biology, grew up on a farm in northern Oklahoma.

“As a young boy, his only source of education were one-room country schoolhouses in Oklahoma

and southern Missouri. He gained exposure to the outside world and science through reading

books.” (Atomic Heritage Foundation, 2022). During WW2, Zirkle became a principal investigator

in the Manhattan Project biological research program, where he worked on assessing the risk of

radiation. From 1944 onwards, he worked at the University of Chicago, where he served as director

of the Institute of Radiobiology and Biophysics. In 1952, he also became the first president of the

Radiation Research Society.

To examine how socio-economic background is associated with the introduction of novel scientific

terms, we estimate the following regression:

Novel Wordsi = ω · Parental SES Ranki +X′
iβ + ϵi (2.5.7)

where Novel Wordsi measures the number of papers with at least one novel word that scientist i

published in the ± 5-year interval around entering the faculty rosters. For example, for scientists

entering the faculty rosters in 1956, we measure the number of papers published between 1951

and 1961 that introduced at least one novel word. To facilitate interpretation, and to account

for differences in the number of novel words introduced in different disciplines and over time, we

standardize novel word counts by discipline and cohort to have a mean of zero and a standard

deviation of one. As before, Parental SES Ranki ranges from 0 to 100 and measures the percentile

of the income rank of scientist i’s father. Xi are controls that account for differences in introducing

novel words by age, cohort, and discipline.

The baseline specification controls for age, gender, childhood state fixed effects, and cohort fixed

effects. We find that scientists from higher socio-economic backgrounds introduce fewer novel words
31We exclude the 20,000 most frequently used words in English-language books contained in the Project Gutenberg

database as of April, 16 2006 (available at https://en.wiktionary.org/wiki/Wiktionary:Frequency_lists#English).
Project Gutenberg currently contains the full text of over 70,000 books. Because the database contains books whose
copyright has expired, the typical book in the database was published before 1923. This ensures that we exclude
frequently used words that reflect historical language use relevant to the period of analysis. The results are robust to
excluding only 10,000 or all 36,663 frequently used words reported in Project Gutenberg (Table D.3 and Table D.4).
For the main results, we do not remove all frequently used words because words such as quantum (on position 17,132)
may have existed earlier but gained new significance in scientific contexts following their use in research publications.
For further details on the novel scientific words measure, see Iaria et al. (2018).
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Table 2.5.5: Socio-Economic Background and Novelty

Dependent Variable: Papers with Novel Words Std. Papers with Novel Words

(1) (2) (3) (4) (5) (6)

Panel A: 1914 – 1956

Parental SES Rank -0.00089* -0.00101** -0.00100** -0.00073* -0.00090** -0.00090**
(0.00048) (0.00047) (0.00048) (0.00043) (0.00044) (0.00044)

R2 0.01 0.02 0.05 0.01 0.02 0.02
Observations 11,972 11,972 11,972 11,972 11,972 11,972
Dependent Variable Mean 0.301 0.301 0.301 -0.002 -0.002 -0.002

Panel B: 1914 – 1969

Parental SES Rank -0.00076* -0.00084** -0.00085** -0.00074** -0.00085** -0.00087**
(0.00042) (0.00041) (0.00042) (0.00037) (0.00038) (0.00038)

R2 0.01 0.02 0.04 0.01 0.02 0.02
Observations 14,726 14,726 14,726 14,726 14,726 14,726
Dependent Variable Mean 0.292 0.292 0.292 -0.011 -0.011 -0.011

Demographic Controls Yes Yes Yes Yes Yes Yes
Childhood State FEs Yes Yes Yes Yes Yes Yes
Cohort FEs Yes Yes Yes Yes Yes Yes
Uni State FEs Yes Yes Yes Yes
Discipline FEs Yes Yes

Notes: The table reports the estimates of Equation (2.5.7). The dependent variable measures the number of publications which
introduce at least one novel word and were published in a ± 5-year window around the cohort when scientist i enters the faculty
rosters. We exclude the 20211 most common words. We standardize the novel word measure to have a mean of 0 and a standard
deviation of 1 within disciplines and cohorts. The main explanatory variable is the SES rank of the father, as measured by
the percentile in the predicted income distribution of scientist i’s father. Standard errors are clustered at the level of father’s
occupation, childhood state, and birth year. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.

(Table 2.5.5, column 1, significant a the 10% level). The result is similar and becomes significant at

the 5% level if we control for university state and discipline fixed effects (Table 2.5.5, columns 2-3).

Specifically, scientists whose fathers were at the 75th percentile of the income rank publish around

0.05 fewer papers (around 17% less) with at least one novel word compared to those whose fathers

were at the 25th percentile.

The result is robust to standardizing the novel words measure at the level of disciplines and

cohorts (Table 2.5.5, columns 4-6) and in the extended sample (Table 2.5.5, panel B).

2.6 Socio-Economic Background and Recognition

In the last part of the paper, we examine the relationship between socio-economic background and

recognition by other academics. First, we analyze citations to a scientist’s research papers, a widely-

used metric for measuring recognition within the scientific community. Next, we investigate Nobel

Prize nominations and awards as indicators of recognition for exceptional scientific contributions.
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2.6.1 Citations

To estimate the relationship between socio-economic background and citations, we switch to an

analysis at the paper level. This approach allows us to abstract from differences in the number of

publications by socio-economic background that we have documented in the previous section. The

data include all papers linked to at least one author for whom we can measure parental SES ranks.

We estimate the following regression:

Citationsp = γ · Avg. Parental SES Rankp +X′
pβ + ϵp (2.6.8)

where Citationsp measures the number of citations that paper p received until 2010. To account

for differences in citations across disciplines and over time, we standardize citations at the level

of disciplines and the year of publication.32 Since the distribution of citations is highly skewed

and contains outliers,33 we also estimate results where we winsorize citation counts at the 99th

percentile of the discipline and year of publication-specific distribution (Columns 6-10 of Table

2.6.6). Avg. Parental SES Rankp measures the average SES rank of the fathers (ranging from 0

to 100) of all authors of paper p that we can link to a childhood census. Xi are controls for the

characteristics of the paper. Whenever we measure characteristics at the author level, we aggregate

them for all authors of paper p that we can link to a childhood census.34 As the parental SES rank

is based on the father’s occupation, childhood state, and birth year, we cluster standard errors at

the level of the author team’s fathers’ occupations, childhood states, and birth years to account for

potential correlations of regression residuals.

We find that papers authored by teams from higher socio-economic backgrounds receive more

citations (Table 2.6.6, panel A, column 1, significant at the 5% level). Specifically, papers authored

by individuals whose fathers, on average, are ranked at the 25th percentile of the income rank

distribution receive approximately 0.05 standard deviations fewer citations compared to papers

authored by individuals with fathers ranked at the 75th percentile. For example, in medicine, this

translates to a paper receiving 2 to 3.5 (13% of the mean) more citations per paper.

The results remain robust, albeit slightly smaller in magnitude when we include fixed effects

for the author team’s university state and discipline combination, as well as journal fixed effects.

In columns 5 and 10, we add fixed effects for both the total number of authors and the number
32To capture the whole distribution of citations for the standardization, we use citations to all papers linked to

U.S. scientists in the faculty rosters and not only the citations to papers of U.S. scientists, which we can link to a
childhood census.

33For example, a 1955 medical paper received as much as 61 standard deviations more citations than the average
medical paper in that year.

34Specifically, we average continuous variables, i.e. we control for the mean age and the share female of the author
team, and create a separate fixed effect for each combination of childhood states as well as university states of the
author teams.
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of authors for which we observe a parental SES rank. When we account for extreme outliers in

citations by winsorizing at the 99th percentile (columns 6-10), we estimate coefficients of similar

magnitude which are highly significant.

Table 2.6.6: Socio-Economic Background and Paper-Level Citations

Dependent Variable: Standardized Citations Winsorized Std. Citations

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: 1900 – 1956

Average Parental SES Rank 0.00080** 0.00060* 0.00058* 0.00061* 0.00061* 0.00085*** 0.00068*** 0.00067*** 0.00067*** 0.00067***
(0.00033) (0.00033) (0.00033) (0.00032) (0.00032) (0.00026) (0.00026) (0.00026) (0.00024) (0.00023)

R2 0.03 0.04 0.04 0.10 0.10 0.03 0.04 0.04 0.13 0.14
Observations 58,549 58,549 58,549 58,549 58,549 58,549 58,549 58,549 58,549 58,549
Dependent Variable Mean 0.012 0.012 0.012 0.012 0.012 -0.021 -0.021 -0.021 -0.021 -0.021

Panel B: 1900 – 1969

Average Parental SES Rank 0.00081*** 0.00068** 0.00067** 0.00068** 0.00067** 0.00076*** 0.00066*** 0.00065*** 0.00063*** 0.00063***
(0.00029) (0.00029) (0.00029) (0.00027) (0.00027) (0.00022) (0.00022) (0.00022) (0.00020) (0.00020)

R2 0.02 0.03 0.03 0.10 0.10 0.02 0.04 0.04 0.14 0.14
Observations 76,014 76,014 76,014 76,014 76,014 76,014 76,014 76,014 76,014 76,014
Dependent Variable Mean 0.011 0.011 0.011 0.011 0.011 -0.021 -0.021 -0.021 -0.021 -0.021

Demographic Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Childhood State FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Publication Year FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Uni State FEs Yes Yes Yes Yes Yes Yes Yes Yes
Discipline FEs Yes Yes Yes Yes Yes Yes
Journal FEs Yes Yes Yes Yes
Author Count FEs Yes Yes

Notes: The table reports the estimates of Equation (2.6.8). The dependent variable measures the number of citations received by paper p until 2010. We standardize citations at the level of
displines and years, to account for differences in citations patterns (columns 1-5), and winsorize standardized citations at the 99th percentile to account for extreme outliers (columns 6-10). The
main explanatory variable is the average SES rank of the fathers of all authors of paper p that can be linked to a childhood cenus. We proxy the SES rank of fathers with the percentile in the
predicted income distribution the father. Demographic controls include age, age squared and the share of female authors. Standard errors are clustered at the level of the author teams’ fathers’
occupation, childhood states, and birth years. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.

2.6.2 Nobel Prize: Nominations and Awards

Nobel Prize Nominations

Next, we study an alternative measure of scientific recognition that captures whether fellow scientists

regard a scientist’s body of research deserving for a Nobel Prize nomination (Iaria et al., 2018).

During this period, Nobel Prize nominations were made by a select group of elite scientists, making

the nominations a marker of peer recognition by the scientific elite. We study this question using

the following regression:

1{Nobel Nominationi} = θ · Parental SES Ranki +X′
iβ + ϵi (2.6.9)

where 1{Nobel Nominationi} is an indicator for whether scientist i was ever nominated for a Nobel

Prize. As before, Parental SES Rank ranges from 0 to 100 and measures the percentile of the

income rank of scientist i’s father. Xi are controls as defined above.

We find that individuals from higher parental SES ranks are more likely to be nominated

for a Nobel Prize. Specifically, scientists with fathers at the 75th percentile of the income rank

distribution have a 0.06 percentage point (or 50%) higher probability of being nominated compared

to scientists with fathers at the 25th percentile (Table 2.6.7, column 1).
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The results are robust to controlling for the state of the scientist’s university and the discipline

(Table 2.6.7, columns 2-3). The results are also robust to controlling for both publications and

citations (Table 2.6.7, columns 4-6), indicating that scientists from poorer backgrounds are less

likely to be nominated for a Nobel Prize even if they have the same number of publications and

citations.

Table 2.6.7: Socio-Economic Background and Nobel Prize Nominations

Dependent Variable: Nobel Nomination

(1) (2) (3) (4) (5) (6)

Panel A: 1900 – 1956

Parental SES Rank 0.00011*** 0.00010** 0.00012*** 0.00010** 0.00009** 0.00012***
(0.00004) (0.00004) (0.00004) (0.00004) (0.00004) (0.00004)

R2 0.01 0.02 0.03 0.08 0.08 0.10
Observations 12,767 12,767 12,767 12,767 12,767 12,767
Dependent Variable Mean 0.012 0.012 0.012 0.012 0.012 0.012

Panel B: 1900 – 1969

Parental SES Rank 0.00010*** 0.00009** 0.00010*** 0.00009*** 0.00009** 0.00010***
(0.00003) (0.00003) (0.00004) (0.00003) (0.00003) (0.00003)

R2 0.01 0.02 0.03 0.07 0.07 0.08
Observations 15,521 15,521 15,521 15,521 15,521 15,521
Dependent Variable Mean 0.011 0.011 0.011 0.011 0.011 0.011

Demographic Controls Yes Yes Yes Yes Yes Yes
Publication & Citation Controls Yes Yes Yes
Childhood State FEs Yes Yes Yes Yes Yes Yes
Cohort FEs Yes Yes Yes Yes Yes Yes
Uni State FEs Yes Yes Yes Yes
Discipline FEs Yes Yes

Notes: The table reports the estimates of equation (2.6.9). The dependent variable is an indicator whether a scientist was ever nominated
for a Nobel prize. The main explanatory variable is the SES rank of the father, as measured by the percentile in the predicted income
distribution of scientist i’s father. Demographic controls include age, age squared, and an indicator for whether the scientist is female.
Publication and citation controls are a scientist’s standardized total publication and citation counts. We standardize publication and
citation counts to have a mean of 0 and a standard deviation of 1 within disciplines and cohorts. Standard errors are clustered at the
level of father’s occupation, childhood state, and birth year of the scientist. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.

Nobel Prize Awards

We also investigate the relationship between the parental income rank and the probability of winning

a Nobel Prize. We estimate a variant of Equation (2.6.9) with an indicator for winning the Nobel

Prize as the dependent variable. We find that scientists from higher parental SES ranks are more

likely to win a Nobel Prize (Table 2.6.8). Although some coefficients are not statistically significant,

the point estimates remain largely consistent across specifications, regardless of the fixed effects

and controls included in the regression. Specifically, scientists with fathers at the 75th percentile of

the income rank distribution have a 0.015 percentage point (or 50%) higher probability of winning

a Nobel Prize compared to scientists with fathers at the 25th percentile (Table 2.6.7). This finding

is robust to controlling for the scientist’s publication and citation record.

Overall, these results suggest that socio-economic background plays a significant role in shaping
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Table 2.6.8: Socio-Economic Background and Nobel Prize Awards

Dependent Variable: Nobel Award

(1) (2) (3) (4) (5) (6)

Panel A: 1900 – 1956

Parental SES Rank 0.00003 0.00002 0.00003* 0.00002 0.00002 0.00003*
(0.00002) (0.00002) (0.00002) (0.00002) (0.00002) (0.00002)

R2 0.01 0.01 0.02 0.03 0.03 0.04
Observations 12,767 12,767 12,767 12,767 12,767 12,767
Dependent Variable Mean 0.003 0.003 0.003 0.003 0.003 0.003

Panel B: 1900 – 1969

Parental SES Rank 0.00003* 0.00003* 0.00004** 0.00003* 0.00003* 0.00003**
(0.00002) (0.00002) (0.00002) (0.00002) (0.00002) (0.00002)

R2 0.01 0.01 0.02 0.02 0.02 0.03
Observations 15,521 15,521 15,521 15,521 15,521 15,521
Dependent Variable Mean 0.002 0.002 0.002 0.002 0.002 0.002

Demographic Controls Yes Yes Yes Yes Yes Yes
Publication & Citation Controls Yes Yes Yes
Childhood State FEs Yes Yes Yes Yes Yes Yes
Cohort FEs Yes Yes Yes Yes Yes Yes
Uni State FEs Yes Yes Yes Yes
Discipline FEs Yes Yes

Notes: The table reports estimates of a variant of equation (2.6.9). The dependent variable is an indicator whether a scientist
was awarded the Nobel prize. The main explanatory variable is the SES rank of the father, as measured by the percentile in the
predicted income distribution of scientist i’s father. Demographic controls include age, age squared, and an indicator for whether
the scientist is female. Publication and citation controls are a scientist’s standardized total publication and citation counts. We
standardize publication and citation counts to have a mean of 0 and a standard deviation of 1 within disciplines and cohorts.
Standard errors are clustered at the level of father’s occupation, childhood state, and birth year of the scientist. Significance
levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.

peer recognition, as measured by Nobel Prize nominations and awards, with scientists from less

privileged backgrounds receiving disproportionately less recognition from the scientific elite.

2.7 Conclusion

This paper examines the role of socio-economic background in shaping the careers of academics

and their research output. We show that people from higher socio-economic backgrounds are more

likely to become academics and that there is large heterogeneity in representation at the level of

universities and disciplines. Further, we find that father’s occupation is systematically related to

the choice of discipline. Once in academia, socio-economic background is not related to the number

of publications, on average, but scientists from lower socio-economic backgrounds are more likely to

not publish at all as well as are more likely to have outstanding publication records, making them

somewhat riskier hires. The results on novel words suggest that they are somewhat more likely to

pursue research agendas off the beaten path which may result in scientific breakthroughs but also in

a higher failure rate. We also find evidence that scientists from lower socio-economic backgrounds
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receive less recognition by the scientific community, as measured by citations and Nobel Prize

nominations and awards. Overall, the paper highlights the importance of understanding the role of

socio-economic background in shaping the academic workforce and the creation of new knowledge.
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Appendix to Chapter 2

• Appendix 2.A provides further details on the construction of the data.

• Appendix 2.B reports robustness checks and additional findings related to Section 2.3.

• Appendix 2.C reports robustness checks and additional findings related to Section 2.4.

• Appendix 2.D reports robustness checks and additional findings related to Section 2.5.
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2.A Appendix: Additional Details on Data

2.A.1 Constructing Parental SES Ranks – Details

As described in the main paper, we use the 1940 census to predict income. We use interactions

of fathers’ occupation and home state to predict fathers’ income for all childhood censuses (see

Equation 2.2.1). For some census years and occupations, this approach faces two issues:

1. Rare occupations

2. Changing occupation coding

To overcome these issues, we adjust the income prediction for fathers in affected occupations.

Rare Occupations For a few occupations and states, the number of individuals in certain

occupation by state cells in 1940 is low, potentially leading to inaccurate predictions for affected

Occupation × State FEs. For example, only four working age male actors reported their income in

the 1940s census in Montana, and only one in Wyoming. We thus adjust the income prediction for

occupation × state cells with less than 10 observations, by estimating the following regression to

predict income:

ln(Incomei) = β0 + β1Occupationi × Region FE + β2State FE

+ β3Agei + β4Age2i + β5Racei + ϵi (2.A.1)

I.e., instead of interacting occupations with states, we interact them with census regions, and

estimate a separate state fixed effect.

For even rarer occupations, i.e., those with less than 10 observations in a certain occupation by

census region cell, we adjust our prediction further:

ln(Incomei) = β0 + β1Occupationi + β2State FE

+ β3Agei + β4Age2i + β5Racei + ϵi (2.A.2)

Rather than estimating region-specific occupational wage profiles, we now base our prediction on

national averages. Only two occupation by region cells are subject to this adjustment: Milliners

and Loom Fixers, both in the Mountain Division.

Changing Occupation Coding The Census Bureau has sometimes changed the codes corre-

sponding to specific occupations. For example, the code for actors (and actresses) was 13 from 1850

to 1900, 828 in 1910 and 1920, 192 in 1930, 020 in 1940 and 001 in 1950. To ease comparability
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across census years, all earlier census occupation codings were also coded into the 1950s classification

scheme by IPUMS (IPUMS, 2024b). We exclusively use the integrated 1950 occupation classification

in this paper.

The Census Bureau harmonization process implies that some 1950 occupation codes are present in

earlier census years, but not in 1940. For example, the 1950 occupation classification includes codes

for “mining engineers” and for “metallurgical engineers”, whereas the 1940 occupation classification

pools the two engineering fields. In contrast the 1930 and 1920 censuses contain a separate

occupation code for “mining engineers.”

To address the issue of occupation codes that are aggregated for the 1940 census but disaggregated

for earlier censuses, we predict fathers’ income via the following regression:

ln(Incomei) = β0 + β1Occupation Groupi × State FE

+ β2Agei + β3Age2i + β4Racei + ϵi, (2.A.3)

where an Occupation Group is the broad one-digit occupational category of an occupation.35

Note, that this issue only affects 1.9 % of academics in our data.

2.A.2 Constructing Comparison Group Samples for Other Professions

To compare representation among academics to other professions, we construct samples for lawyers

and judges, physicians and surgeons, and teachers, from U.S. Censuses. We proceed in three steps:

1. From each available full-count census corresponding to the coverage period of the World of

Academia Database (1900-1950), we extract all observations with occupation code 55 (Lawyers

& Judges), 75 (Physicians & Surgeons) and 93 (Teachers).36

2. We use the Census Linking Project to de-duplicate individuals who appear in multiple censuses

and keep only one observation per individual.

3. We then link these observations to their childhood census and construct parental SES ranks

as described in Appendix 2.2.2.

35Professional, Technical; Farmers; Managers, Officials, and Proprietors; Clerical and Kindred workers; Sales
workers; Craftsmen; Operatives; Service workers (private household); Service workers (not household); Farm Laborers;
Laborers (non-farm). See IPUMS (2024a).

36As discussed in the main text, some academics are not listed as professors but, e.g., as lawyers or surgeons in
the U.S. census, we therefore remove all matched academics from this sample.
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Figure 2.A.1: Extended Sample 1900-1969: Correlation of Linking Rates With Depart-
ment Quality and Lastname Parental SES Rank

(a) Department Quality
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(b) Department Quality
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(c) Lastname Parental SES Rank

β=0.000
 p-value=0.318
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(d) Lastname Parental SES Rank
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Notes: Panel (a) shows the correlation between a department’s citation rank and the probability of linking a
scientist to a childhood census for the extended sample (1900-1969). Panel (b) shows a binned scatter plot of the
same relationship. Panel (c) shows the correlation between a last name’s SES Rank based on the entire U.S. census
and the probability of linking an academic to a childhood census for the extended sample (1900-1969). Panel (d)
shows a binned scatter plot of the same relationship. Bins are chosen according to Cattaneo et al. (2024).
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2.B Socio-Economic Background and the Probability of Be-

coming an Academic: Additional Results

Representation of Academics by Socio-Economic Background

Figure B.1: Representation by Socio-Economic Background, Excluding Children of
Professors

(a) With Regional Variation
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(b) Without Regional Variation
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Notes: The figure shows the representation of academics based on their socio-economic background, excluding
academics who are children of professors. We proxy socio-economic background with the father’s income rank based
on predicted income as described in section 2.2.2. The horizontal line represents a hypothetical equal representation
from all income ranks.
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Figure B.2: Extended Sample 1900-1969: Representation by Socio-Economic Back-
ground

(a) With Regional Variation
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(b) Without Regional Variation
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Notes: The figure shows the representation of academics based on their socio-economic background for the extended
sample (1900-1969). We proxy socio-economic background with the father’s income rank based on predicted income
as described in section 2.2.2. The horizontal line represents a hypothetical equal representation from all income
ranks.
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Figure B.3: Representation by Socio-Economic Background, Alternative Measures of
SES: HISCLASS
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(b) Main Sample 1900-1956
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(c) Extended Sample 1900-1969
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(d) Extended Sample 1900-1969
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Notes: The figure shows the representation of academics based on their socio-economic background. We proxy
socio-economic background with HISCLASS, a measure of the social standing of a father’s occupation (van Leeuwen
and Maas, 2011). In panels a) and c), the orange bars indicate the share of individuals from a particular HISCLASS
in the census. Compared to the census, academics are disproportionately children of fathers in higher status
occupations (higher professionals). Panels b) and d) show the share of academics from a HISCLASS relative to the
share of the population from the same HISCLASS. The horizontal line represents a hypothetical equal representation
of these HISCLASS in the population of academics.
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Figure B.4: Representation by Socio-Economic Background, Alternative Measures of
SES: Duncan Socioeconomic Index

(a) Main Sample 1900-1956
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(b) Extended Sample 1900-1969
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Notes: The figure shows the representation of academics based on their socio-economic background. We proxy
socio-economic background with the Duncan Socioeconomic Index (SEI), a measure of the social standing of a
father’s occupation. SEI reflects the income level and educational attainment of an occupation in 1950. For details,
see IPUMS (2024b). SEI is an ordinal measure of occupational social status with gaps, which we group into 9
categories. For example, the top category, 81+, contains SEI 81-87 (no gaps), 90, 92, 93 and 96. SEI 89 does not
exist in the census data of the relevant period. The horizontal line represents a hypothetical equal representation of
these SEI categories in the population of academics.
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Representation Over Time

Figure B.5: Extended Sample 1900-1969: Representation by Socio-Economic Back-
ground Over Time
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Notes: The figure shows the representation of academics based on their socio-economic background over time. Each
line represents the percentage of all academics whose fathers are from specific income percentile ranks. For example,
the top line indicates the percentage of academics whose fathers are in the top 20 income percentile ranks.

Representation in Academia versus Other Professions

Figure B.6: Extended Sample 1900-1969: Comparison to other Professions
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Notes: The figure compares the representation of academics based on their socio-economic background to
representation in other professions. The representation in other professions is based on U.S. census samples of lawyers
& judges, physicians & surgeons, and teachers that match the sample of academics (see Appendix 2.A.2 for details).
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Representation by University: Additional Results

Figure B.7: Extended Sample 1900 - 1969: Selection by University
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Notes: The figure shows the representation of academics based on their socio-economic background by university.
We proxy socio-economic background with the father’s income rank based on predicted income as described in
section 2.2.2. Each color shows the percentage of academics whose fathers were in a specific quintile of the predicted
income distribution. E.g., the white bar shows the percentage of academics whose father was in the top 20
percentiles of predicted income.
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Representation by Discipline: Additional Results

Figure B.8: Extended Sample 1900 - 1969: Representation by Discipline
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Notes: The figure shows the representation of academics based on their socio-economic background by academic
discipline. We proxy socio-economic background with the father’s income rank based on predicted income as
described in section 2.2.2. Each color shows the percentage of academics whose fathers were in a specific quintile of
the predicted income distribution. E.g., the white bar shows the percentage of academics whose father was in the
top 20 percentiles of predicted income.
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Figure B.9: Extended Sample 1900 - 1969: Discipline Mathematics vs. Language
Requirements and Representation

Notes: The figure shows the share of academics from the top quintile of the distribution of socio-economic
background by academic discipline in relation to the importance of quantitative relative to verbal skills in the
discipline for the extended sample (1900-1969). We proxy socio-economic background with the father’s income rank
based on predicted income as described in section 2.2.2. We proxy the importance of mathematics relative to
language skills with the ratio of the average GRE quantitative score to the average GRE verbal reasoning score of
test takers intending to pursue a graduate degree in the respective discipline. GRE score data come from ETS (2009),
Extended Table 4. The size of the circles indicates the number of academics in the respective discipline in our data.
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2.C Socio-Economic Background and Discipline Choice: Ad-

ditional Results

Figure C.1: Extended Sample 1900-1969: Father’s Occupation and Discipline Choice
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Notes: The figure shows the relationship between father’s occupation (rows) and the children’s academic discipline
choice (columns) for selected father’s occupation-discipline pairs. Darker shades indicate more extreme levels of
overrepresentation as measured by Equation (2.4.3).
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Figure C.2: Extended Sample 1900-1969: Overrepresentation in Semantically Closest
Discipline
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Notes: The figure shows overrepresentation as measured by equation (2.4.3) in the father’s occupation-discipline pair
that is semantically closest, e.g., “farmer” and “agriculture” and all other father’s occupation-discipline pairs for the
main sample. For more details, see appendix 2.4.2 and appendix 2.4.3.

Figure C.3: Robustness – Overrepresentation in Semantically Closest Discipline

(a) One SD Cosine Similarity Cutoff
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(b) No Cosine Similarity Cutoff
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Notes: The figure shows overrepresentation as measured by equation 2.4.3 in the father’s occupation-discipline pair
whose name (e.g., “agriculture”) is semantically closest to the text string of the father’s occupation (e.g., “farmer”) as
well as all other father’s occupation-discipline pairs. Panel a defines the closest discipline as the discipline that is
semantically closest, and the cosine similarity is at least one standard deviation above the mean of all cosine
similarities of all father’s occupation-discipline pairs. Panel b defines the closest discipline as the discipline that is
semantically closest without enforcing a further cutoff on the cosine similarity.
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2.D Socio-Economic Background, Scientific Publications, and

Novel Scientific Concepts: Additional Results

Table D.1: Publication Percentiles by Discipline and Cohort

Publication Percentiles
Discipline Cohort 50th 70th 90th 95th 97th 99th

Biochemistry
1900 1 6 6 6 6 6
1914 8 13 44 54 58 58
1925 3.8 9 18 28 30 40
1938 3 5.5 15.5 22.5 25 57
1956 4 10 21.5 30 36 50
1969 5 11 30 41 52 70

Biology
1900 0 1 4 7 10 26
1914 1 2.5 9 13 18 25
1925 0 2 7 11 13 19
1938 0 2 6 10 13 20
1956 1 2 8 11 15 21
1969 1 4 12 18 22.5 33

Chemistry
1900 0 1 6 11 15 58
1914 1 3 13 19.3 24.5 50.5
1925 1 3 13 23 27 54
1938 1 4 16 24 31 63
1956 1.5 6 21 33 42 64
1969 2 6 24 39 51 76

Mathematics
1900 0 0 3 6 6 13
1914 0 0 5 8 11 17
1925 0 0 2 6.5 9 19
1938 0 0 4 8 12 18.5
1956 0 0 5 8 11 17
1969 0 2 9 13 16 24

Medicine
1900 0 1 6 9 12 18
1914 1 3 11 16 21 32
1925 1 4 13 21 25 42.5
1938 1 5 15 22 28 44
1956 2.5 7 20 31 40 59
1969 3 9 26 40 52 86.9

Physics
1900 0 1 7 15 19 37
1914 1 3 10 12 19 32
1925 0 2 8 17 24 40
1938 1 3 10 16 19 30
1956 1 5 14 21 26 38
1969 3 9 21 31 39 58

Notes: The table displays the number of publications that place academics in each
of these percentiles by discipline and cohort.
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Table D.2: Socio-Economic Background and the Distribution of Publications

Dependent Variable: Publication Count in Percentile
0 − 50 > 50 − 70 > 70 − 90 > 90 − 95 > 95 − 97 > 97 − 99 > 99 − 100

(1) (2) (3) (4) (5) (6) (7)

Panel A: 1914 – 1956

Parental SES Rank -0.00042** 0.00009 0.00036** 0.00000 0.00006 -0.00002 -0.00007*
(0.00019) (0.00014) (0.00015) (0.00008) (0.00005) (0.00006) (0.00004)

R2 0.09 0.03 0.03 0.02 0.02 0.02 0.01
Observations 12,767 12,767 12,767 12,767 12,767 12,767 12,767
Dependent Variable Mean 0.586 0.141 0.180 0.044 0.020 0.019 0.010

Panel B: 1914 – 1969

Parental SES Rank -0.00029* 0.00006 0.00028** 0.00010 -0.00007 -0.00002 -0.00006
(0.00017) (0.00013) (0.00014) (0.00007) (0.00005) (0.00005) (0.00004)

R2 0.08 0.03 0.03 0.02 0.01 0.01 0.02
Observations 15,521 15,521 15,521 15,521 15,521 15,521 15,521
Dependent Variable Mean 0.557 0.168 0.185 0.045 0.017 0.019 0.008

Demographic Controls Yes Yes Yes Yes Yes Yes Yes
Childhood State FEs Yes Yes Yes Yes Yes Yes Yes
Cohort FEs Yes Yes Yes Yes Yes Yes Yes
Uni State FEs Yes Yes Yes Yes Yes Yes Yes
Discipline FEs Yes Yes Yes Yes Yes Yes Yes

Notes: The table reports the estimates of eq. (2.5.6). The dependent variable is an indicator whether an academics publication count falls into a
certain range of publication percentiles. Publication counts are an academic’s total number of publications that were published in a ± 5-year
window around the cohort when academic i enters the faculty rosters. The main explanatory variable is the SES rank of the father, as measured
by the percentile in the predicted income distribution of academic i’s father. Standard errors are clustered at the level of father’s occupation,
childhood state, and birth year. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.

Table D.3: Socio-Economic Background and Novelty: Excluding the 10,000 Most
Common Words

Dependent Variable: Papers with Novel Words Std. Papers with Novel Words

(1) (2) (3) (4) (5) (6)

Panel A: 1914 – 1956

Parental SES Rank -0.00084* -0.00097** -0.00096** -0.00068 -0.00085* -0.00084*
(0.00048) (0.00048) (0.00048) (0.00043) (0.00043) (0.00044)

R2 0.01 0.02 0.05 0.01 0.02 0.02
Observations 11,972 11,972 11,972 11,972 11,972 11,972
Dependent Variable Mean 0.305 0.305 0.305 -0.003 -0.003 -0.003

Panel B: 1914 – 1969

Parental SES Rank -0.00073* -0.00082** -0.00082** -0.00070* -0.00081** -0.00082**
(0.00042) (0.00042) (0.00042) (0.00037) (0.00038) (0.00038)

R2 0.01 0.02 0.04 0.01 0.02 0.02
Observations 14,726 14,726 14,726 14,726 14,726 14,726
Dependent Variable Mean 0.295 0.295 0.295 -0.011 -0.011 -0.011

Demographic Controls Yes Yes Yes Yes Yes Yes
Childhood State FEs Yes Yes Yes Yes Yes Yes
Cohort FEs Yes Yes Yes Yes Yes Yes
Uni State FEs Yes Yes Yes Yes
Discipline FEs Yes Yes

Notes: The table reports the estimates of Equation (2.5.7). The dependent variable measures the number of publications which
introduce at least one novel word and were published in a ± 5-year window around the cohort when academic i enters the
faculty rosters. We exclude the 10,000 most common words. We standardize the novel word measure to have a mean of 0
and a standard deviation of 1 within disciplines and cohorts. The main explanatory variable is the SES rank of the father, as
measured by the percentile in the predicted income distribution of academic i’s father. Standard errors are clustered at the
level of father’s occupation, childhood state, and birth year. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.
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Table D.4: Socio-Economic Background and Novelty: Excluding the 36,663 Most
Common Words

Dependent Variable: Papers with Novel Words Std. Papers with Novel Words

(1) (2) (3) (4) (5) (6)

Panel A: 1914 – 1956

Parental SES Rank -0.00094** -0.00107** -0.00106** -0.00081* -0.00098** -0.00099**
(0.00048) (0.00047) (0.00047) (0.00043) (0.00044) (0.00044)

R2 0.01 0.02 0.05 0.01 0.02 0.02
Observations 11,972 11,972 11,972 11,972 11,972 11,972
Dependent Variable Mean 0.296 0.296 0.296 -0.003 -0.003 -0.003

Panel B: 1914 – 1969

Parental SES Rank -0.00080* -0.00088** -0.00088** -0.00079** -0.00090** -0.00092**
(0.00042) (0.00041) (0.00041) (0.00038) (0.00038) (0.00038)

R2 0.01 0.02 0.04 0.01 0.02 0.02
Observations 14,726 14,726 14,726 14,726 14,726 14,726
Dependent Variable Mean 0.287 0.287 0.287 -0.011 -0.011 -0.011

Demographic Controls Yes Yes Yes Yes Yes Yes
Childhood State FEs Yes Yes Yes Yes Yes Yes
Cohort FEs Yes Yes Yes Yes Yes Yes
Uni State FEs Yes Yes Yes Yes
Discipline FEs Yes Yes

Notes: The table reports the estimates of Equation (2.5.7). The dependent variable measures the number of publications which
introduce at least one novel word and were published in a ± 5-year window around the cohort when academic i enters the faculty
rosters. We exclude the 36,663 most common words. We standardize the novel word measure to have a mean of 0 and a standard
deviation of 1 within disciplines and cohorts. The main explanatory variable is the SES rank of the father, as measured by
the percentile in the predicted income distribution of academic i’s father. Standard errors are clustered at the level of father’s
occupation, childhood state, and birth year. Significance levels: ∗∗∗ p<0.01, ∗∗ p<0.05, and ∗ p<0.1.
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Chapter 3

Opinions About Facts: Partisan

Asymmetries in Economic

Assessments

with Till Stowasser

This chapter is based on research conducted as part of my master thesis of the same name (submitted in 2019).
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3.1 Introduction

Individuals disagree. Yet, in standard economic theory, when signals are public and informative,

posterior beliefs converge even if prior beliefs differ. However, systematic partisan differences in

beliefs about easily verifiable facts such as – to name a few prominent examples – anthropogenic

climate change, effectiveness of gun control, or economic conditions, have consistently been docu-

mented. These observations call the assumption that beliefs and preferences can be neatly separated

into question. Motivated-cognition theory explains disagreement in terms of preferences over beliefs:

Individuals want to “consume” different beliefs.

Motivated cognition has been studied theoretically and documented experimentally. Yet, its

relevance for polarization in the field has not been thoroughly investigated. We provide first

evidence from observational data that motivated cognition can account for partisan disagreement

on facts. Building on a theoretical model of motivated cognition, and using high-frequency survey

data around the 2016 U.S. presidential election, we show that Republican perceptions of economic

conditions in particular, respond too strongly to be in line with the expected reaction to the actual

economic upturn after the unforeseen Republican win. True changes in economic conditions alone

cannot explain this reaction. For Democrats, the evidence is less conclusive, but still suggestive of

motivated beliefs. Regarding channels, we find tentative evidence in favor of selective interpretation

of economic information.

We adapt the theory of motivated cognition to our setting, assuming that partisans derive

utility from the belief that their – and only their – party is a competent manager of the economy.

Partisans can either ignore or correctly encode information, whichever is conducive to their desired

belief. This leads to three predictions: First, partisans disagree. Second, disagreement is sustained

by selectively interpreting congenial information. Third, since incentives to distort beliefs change

whenever there are changes in political power, there is excess belief movement around power shifts.

In our specific context of an election during an economic upturn, the model predicts a switch to

excessively positive perceptions for now-incumbent partisans, who over-weight positive signals, and

that perceptions stay at pre-election levels for now-opposition partisans, who disregard positive

signals.

Our predictions are supported by the data. We use high-frequency survey data from the United

States about the current condition of the economy as our measure for economic perceptions.

The Republican win in 2016 constitutes an unexpected1 shift in power that allows us to identify

structural breaks in perception formation. Correlational evidence from a split-sample ordinary

least squares specification already indicates that Republicans judge the economy more favorably
1The election was not only close, but a Clinton win was predicted throughout. For a discussion, see Wright and

Wright (2018).
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during the Republican Presidency than during the Democratic Presidency, even when controlling

for economic conditions. The reverse is true for Democrats. Furthermore, increases in the Dow

Jones – as a proxy for the general economic climate – are only positively correlated with Republican

perceptions of current economic conditions after the 2016 election. This suggests that partisans

sustain motivated beliefs by selectively leaning on congenial facts.

Since the time period under consideration coincided with a secular economic boom, ordinary

least squares cannot disentangle how much of the increase, respectively decrease, in Republican and

Democratic perceptions is due to true changes in economic conditions or to motivated cognitive

processing of this information. Also, partisans might differ in what indicators they consider relevant

for the economy. Our empirical approach needs to be able to account for different partisan mental

models of the economy, without us pre-specifying these mental models. Hence, we propose a novel,

machine-learning based approach to determine counter-factual economic perceptions: The synthetic

belief. We assume that partisan mental models of the economy are constant in the short term,

and that perceptions are some function of observable information on the economy. We use LASSO

to estimate this function from pre-election data. With post-election economic conditions as an

input, this function gives us an estimate of perceptions how they should have been, if only economic

conditions had changed, but not political power.

We find that on the day immediately following the election, Republican perceptions already are

markedly more positive than their synthetic counterparts. This difference also increases considerably

over time, indicating that partisans distort their perceptions of economic conditions into a more

desirable direction, suggesting motivated beliefs. There is less pronounced downward divergence

for Democratic perceptions. Recall that our model predicts no belief movement for opposition

partisans during an economic boom. Still, we would have expected synthetic beliefs to increase.

Since Democrats’ perceptions were remarkably inelastic before the election, we can however not

exclude that Democrats’ react only to medium- to long-term indicators. By construction, our

method cannot incorporate these indicators directly after the election, generating the late increase

of synthetic beliefs. At the end of this paper, we briefly discuss alternative explanations for partisan

disagreement about economic conditions, such as differential information supply through the media

(Hetherington, 1996; Lowry, 2008) or party elites (Bisgaard and Slothuus, 2018), differences in

expectations about the future of the economy, and the role of other behavioral biases, such as affect.

To our knowledge, this is the first empirical study in the field of economics explicitly showing

the relevance of motivated cognition for partisan disagreement on facts with observational data

from the field. Our paper makes three contributions: First, we bring the previously theoretical

and experimental literature on motivated cognition to observational data. Second, we provide

evidence for the microfoundations of polarization by making the connections between identity and
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preferences over beliefs explicit. Third, we make a methodological contribution by providing a novel

method, the synthetic belief, for studying cognitive biases in unstructured observational data.

Our research ties into the long tradition of studying partisan gaps in economic perceptions in

the political sciences (e.g. Bartels, 2002; Campbell et al., 1960; Schaffner and Roche, 2017). In this

literature, partisan disagreement in economic assessments has mostly been attributed to motivated

cognition and selective learning. However, there is as yet little empirical evidence to substantiate this

hypothesis. An exception is Schaffner and Roche (2017). They show that Republicans over-estimate

unemployment whereas Democrats estimate it accurately using the October 2012 Job Reports

Announcement as a natural experiment. Since our empirical strategy makes use of both changing

political and economic conditions – that is, changing information as well as changing incentives – we

can additionally decompose the difference in perceptions into a political and an information-driven

effect. Also, we provide tentative evidence for one mechanism how partisans form motivated beliefs,

that is, selective interpretation of information.

Within economics, we touch on several literatures. We chiefly contribute to the literature on

motivated beliefs, motivated cognition, ideology, and polarization by documenting that empirical

patterns of partisan disagreement are consistent with an account of motivated information process-

ing.2 Akerlof (1989), for example, suggests that motivated beliefs are especially likely to arise in

politics, since the negligible probability of affecting the election outcome with one’s vote creates little

incentive to replace a motivated with an accurate belief. Most closely related to our setting is the

theoretical model by Le Yaouanq (2023). He models political polarization on facts as a consequence

of different voting preferences. Voters will selectively encode information that is congenial to the

belief that their preferred policy option will be enacted. In line with experimental evidence (Eil

and Rao, 2011; Zimmermann, 2020), we find suggestive evidence that partisans selectively interpret

information.

We also add to the understanding of the determinants of economic beliefs. Using survey and

experimental data, Stantcheva (2020) and Alesina et al. (2020) provide evidence for partisan

differences in perceptions of facts about economic policy. These differences are reflected in the

support for different policies. Our results indicate that partisanship enters at an even more

fundamental level. It affects perceptions of economic conditions without reference to any specific

policy recommendation. This has, for example, repercussions on economic voting models, for which

perceived economic conditions are a key ingredient (Duch and Stevenson, 2011; Fiorina, 1981; Healy

and Malhotra, 2013). Finally, we contribute to the study of polarization in economics (e.g., Boxell

et al. (2017, 2024); Gentzkow et al. (2019); Draca and Schwarz (2024)) by studying the demand

side of polarization: preferences over beliefs.
2For a survey of the literature on preferences over beliefs and their consequences, see Bénabou and Tirole (2016).
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3.2 Main Hypothesis and Testable Predictions

Partisan disagreement in economic assessments is a long-documented feature of the American

political landscape.3 When information is freely available, Bayesian updating would however predict

that – even if individuals hold partisan priors – these asymmetries disappear over time. We thus

hypothesize that they are a result of motivated cognition: We propose that partisans derive utility

from the belief that their party is a competent manager of the economy. Consequently, their

preferences over beliefs about economic conditions are state-dependent: Good economic conditions

are preferable over bad economic conditions whenever their party is incumbent, and vice versa

when it is in opposition. In order to maintain this belief, they exercise selective interpretation of

information. Thus, congenial facts – that is, information which indicates that the preferred party

is doing well or the non-preferred party is doing badly – enter perceptions at a higher rate than

contrary facts.

Theoretical Framework To fix ideas, we illustrate our predictions with a stylized model of

motivated reasoning. The purpose of this model is not to provide a full model of motivated cognition,

but to provide a simple, tractable and intuitive framework for our main predictions.4 To this end,

our assumptions on the utility function and the information structure are, without loss of generality,

unnecessarily stark, quite simply to reduce the complexity of the model. The predictions of the

model also hold for less stringent assumptions.

The economy is populated by partisans who are identical in all respects except for their status

as supporters of either the incumbent party (ρ = I) or an opposition party (ρ = O). A partisan5

has state-dependent preferences Uρ(e) about their economic perceptions e. The economy has two

(unobservable) states S ∈ {G;B}, good G and bad B. The economy is in the good state with

probability p = P (S = G). A perception is the belief that the economy is in the good state, i.e.

e = P (S = G) = p. The key assumption in this model is that a partisan prefers good economic

conditions during incumbency rather than opposition, and bad conditions during opposition rather

than incumbency. Although this assumption is sufficient to generate the predictions of our model,

we further simplify the preference structure in our model to the case where partisans are sore losers:

U ′I(p) > 0 and U ′O(p) < 0, meaning that incumbent partisans’ utility increases in the belief that

the economy is in the good state (increasing p), whereas opposition partisans’ utility decreases. p

is unknown to partisans. We denote their prior belief about p by p0, where p0 ∈ (0, 1). Partisans

receive a signal s about the state of the economy, where s ∈ {G;B}. s is informative about the
3See, for example, Campbell et al. (1960); Bartels (2002); Schaffner and Roche (2017).
4For more thorough models of motivated cognition and political behavior, see e.g. Bénabou and Tirole (2011,

2006) or Le Yaouanq (2023).
5For readability, we do not include individual indices in the following.
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true state of the economy with probability q, where q > 0.5. We denote the realization of signal

s by ŝ. For the formation of motivated beliefs, a crucial requirement is that partisans are able

to distort their information processing. We assume that upon receiving signal ŝ, partisans can

choose to either encode signal ŝ correctly or disregard the signal and instead encode ŝ = ∅ at no

cost. This assumption is similar to the selective recall technology employed by, among others,

Bénabou and Tirole (2002, 2011) and Le Yaouanq (2023). If s is encoded correctly, posterior beliefs

pŝ1 = P (S = G|s = ŝ) will be determined by Bayes’ Rule.6 Otherwise, beliefs remain unchanged

at priors: p1 = p0. After encoding signals, partisans receive utility Uρ(e = p1). Belief-utility

maximizing partisans will thus encode signals correctly if and only if the utility from correct

posteriors is larger than the utility from priors, that is Uρ
(
pŝ1 = P (S = G|s = ŝ)

)
> Uρ(p0). Since

Uρ(·) is strictly increasing in p for incumbent partisans – and strictly decreasing for opposition

partisans – this condition boils down to: Encode s = ŝ if p1 > p0 and ρ = I, or p1 < p0 and ρ = O,

else, encode ŝ = ∅. This gives rise to four different cases:

Table 3.2.1: Updating Strategies for Incumbent (I) and Opposition Partisans (O)

ŝ = B ŝ = G

r = I pB1 < p0
encode ŝ = ∅

pG1 > p0
encode ŝ = G

r = O pB1 < p0
encode ŝ = B

pG1 > p0
encode ŝ = ∅

Accordingly, incumbent partisans will only update in response to good signals, while opposition

partisans update exclusively in response to bad signals, and partisans – even if prior beliefs p0 are

identical – will hold different posterior beliefs p1. We derive three testable predictions that we view

as litmus tests for partisan motivated reasoning:

Prediction 1: Partisan disagreement Incumbent partisans perceive the economy more

favorably than opposition partisans. In the model, incumbent partisans’ perceptions of the economy

are either pG1 or p0 and opposition partisans’ are either pB1 or p0, where pG1 > p0 > pB1 .

Prediction 2: Selective relevance of economic information Partisans will only update in

response to economic information that is congenial to their desired beliefs. Incumbent partisans’

utility increases in P (S = G) while opposition partisans’ utility decreases in P (S = G) – and hence

increases in P (S = B). As seen in Table 3.2.1, incumbent partisans only update if ŝ = G and

opposition partisans if ŝ = B.

6pG1 = qp0
qp0+(1−q)(1−p0)

and pB1 =
(1−q)p0

(1−q)p0+(1−p0)q
.
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Prediction 3: Disproportionate perception changes at power shifts When power changes,

incumbents become the opposition and vice versa. This changes partisans’ objective functions,

and hence the signals they respond to. Since partisans only update in one direction, changing

that direction and thus incorporating an opposite signal will move their beliefs more strongly than

warranted by the informative content of the signal. We expect to detect these patterns in the data:

Incumbent partisans assess the economy more favorably than opposition partisans, with belief

movement only in response to congenial signals, and sharp changes in perceptions when power

shifts from the incumbent to the opposition.

Let us situate our predictions within the experimental and theoretical literature about motivated

cognition: Previous research has shown that individuals desire to believe themselves to be moral,

intelligent, and attractive (Bénabou and Tirole, 2011; Eil and Rao, 2011; Gino et al., 2016;

Zimmermann, 2020). We posit that this extends to social identity, such as partisanship. Westwood

et al. (2018) provide evidence that, in the United States, party affiliation is more central to individual

identity than class or race – both of which have been shown to have considerable impact on economic

choice (Akerlof and Kranton, 2010). Politicians are often evaluated in terms of the performance of

the economy (Fiorina, 1981; Wolfers, 2007). In this line of reasoning, the beliefs about a social group,

such as a party, that one is affiliated with, can enter an individual’s utility function. Similar to the

incentive to see oneself as moral and intelligent, partisans might wish to see their party as more

competent, also as regards the management of the economy. In this case, there is a clear individual

incentive to distort signals to gain a more rosy view of one’s own party – whether that is by inflating

performance of the party in question, or devaluing an opposing party’s performance. The literature

suggests several possible channels for belief manipulation, such as information avoidance (Golman

et al., 2017; Oster et al., 2013), or selective recall (Bénabou and Tirole, 2002, 2011; Eil and Rao,

2011; Zimmermann, 2020). Both lead to congenial information being favored over uncongenial

information, either at the stage of information acquisition or information processing. Because we

cannot differentiate between them in our setting, we stay agnostic towards which exact factor creates

motivated beliefs in the empirical section. However, both arise only if partisans have preferences

over beliefs, that is, if motivated cognition is present.7 The next section describes the data which

we use to test our predictions.

3.3 Data

For our analysis, we combine high-frequency online opinion-polling data with a range of economic

time-series data.
7In the course of this paper, we will use the terms “selective interpretation” and “selective relevance” interchangeably

to refer to both.
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3.3.1 Survey Data

Survey data comes from Civiqs.com, a provider of online opinion polling and survey services. We use

both a repeated cross section of individual-level responses and a time series of aggregate data from

Civiqs’ tracking polls. These polls are conducted on a daily basis and include a range of political

and economic questions, of which we use National Economy, Current Condition as a measure of

economic perceptions. The exact wording of the question is “How would you rate the condition

of the national economy right now?”. Possible answers are “very good”, “fairly good”, “fairly bad”,

“very bad”, and “unsure”. We re-code these answers to numerical values to facilitate analysis. “Very

good”, “fairly good”, “fairly bad”, “very bad” are coded to be equal to 3, 2, 1, and 0 respectively.

Answers “unsure” are coded as missing.8

Our analysis makes use of the entire time series of survey responses sampled and aggregated

by partisanship by Civiqs since January 2015. Additionally, we have access to a random sample

of 1100 individual person-day observations from May 1st, 2016 to April 29th, 2017. Since we

originally planned to conduct a regression-discontinuity in time analysis – which turned out to be

underpowered - we sampled more observations closer to the 2016 presidential election.9 The sample

contains roughly 50% of Republicans and Democrats each. It does not contain any Independents.

On the individual-respondent level we observe perceptions, which are at the center of our analysis,

as well as a range of self-reported characteristics such as gender, race, age, income bracket, education

level, home state, home city, and whether the individual characterizes their home area as rural,

urban, or suburban.

Table 3.B.2 provides summary statistics. On average, Democrats view the the condition of

the economy more favorably than Republicans during the sampling period. Democrats are also

significantly more female, racially diverse, younger, they tend to live in more urban areas, and are

slightly better educated than Republicans in our sample.

Survey Design and Sample Selection Civiqs uses list-based sampling to select survey re-

spondents from a representative pool of panelists. They then aggregate responses via a dynamic

Bayesian multiple regression model with post-stratification weights.10 Both methods aim to correct

for underrepresented groups in the panel. Appendix Figures 3.B.2a and 3.B.2b assess representa-

tiveness of our sub-sample with respect to party demographics and them overall U.S. population,

respectively.
8We exclude “unsure” answers because we have no predictions on cognitive uncertainty. In the augmented

pre-analysis plan we provide an analysis of “unsure” responses and cannot detect any partisan pattern.
9For an illustration, see Appendix Figure 3.B.1. To be exact, we observe the 500 respondents closest to the

election threshold on both sides and a random sample of 50 observations for each month between May 2016 and
April 2017. For details, we refer the reader to our pre-analysis plan.

10For more details on Civiqs’ sampling methodology, see https://civiqs.com/methodology/.
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A concern is whether different individuals select into answering the survey pre- and post-election.

Although we can control for these effects in the individual data, we need to determine if there are

selection effects that might bias results derived from the aggregate time-series. For this reason,

we check for selection in the individual data. Figure 3.3.1 documents that there are no significant

differences between pre- and post-election respondents for each party. Appendix Figure 3.B.3

repeats this exercise with respondents’ home states and shows similar results. Taken together, there

is no evidence for selection based on observable characteristics.

Figure 3.3.1: Pre-and Post Election Characteristics of Survey Sample

Female
Age

Income

White
Black
Asian

Hispanic
Mixed
Other

Less than High School
High School

Some College
College

Post-Graduate Degree

Urban
Suburban

Rural

 Gender, Age & Income

 Race

 Education

 Living Environment

-4 -2 0 2 4 -4 -2 0 2 4

Democrats Republicans

Notes: Difference in pre- and post-election characteristics of partisans. Female is an indicator that is equal to one if
the respondent self-identifies as female (1) or male (0). Third gender/non-binary gender is coded as missing due to
few observations. Age is a respondent’s age, measured in years. Income is reported in units of $25,000.
White/Black/Asian/Hispanic/Other are indicator variables that are equal to one if the respondent identifies with a
given ethnicity. Ethnicities with fewer than 20 observations are included in “Other”. Education variables are
indicators that are equal to one if the respondent falls into a given educational category. Urban is an indicator that
is equal to one if the respondent lives in an urban area, suburban is an indicator that is equal to one if the
respondent lives in a suburban area, and rural is an indicator that is equal to one if the respondent lives in a rural
area. Lines indicate 95% confidence intervals.

3.3.2 Economic Data

We use a large set of over 90 economic indicators in the analysis of our aggregate data. These cover

macro indices, interest rates, prices and inflation, households income, as well as housing-market,
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labor-market, firm, government, trade, and stock-market indicators. When available, we use

non-seasonally adjusted data since the survey question explicitly refers to economic conditions

at the very moment. For details, see Appendix Table 3.A.1. Since data is reported at different

frequencies, and our survey data is daily, we need to interpolate monthly, quarterly, and annual

data. Our main empirical specification uses time series that simply keep the value of the indicator

constant over the reporting period. We also include lags and growth rates of all variables. In

all OLS specifications, we only use the Dow Jones Composite Average as a proxy for economic

conditions to reduce multicollinearity and interpolation-induced measurement error, since the Dow

is reported daily.

3.4 Descriptive and Regression Evidence

We use the November 8th, 2016 presidential election to test for motivated cognition in partisan

perceptions of economic conditions. This particular election has the advantage that the victory of

Republican candidate Donald Trump was largely unanticipated (Wright and Wright, 2018). Thus,

perceptions should not have adjusted prematurely to a Republican win, which creates a sharp

cut-off between the two presidencies. Testing our predictions in U.S. data also limits concerns of

endogeneity – that individuals change partisan affiliation according to their momentary beliefs

about economic conditions – because U.S. party identification is particularly strong and stable over

the life cycle (Green and Palmquist, 1994; Bartels et al., 2011). We start by presenting descriptive

and correlational evidence that is indicative of the presence of motivated cognition.

According to Prediction 1, Republican perceptions of the economy should be more positive

during a Republican presidency than during a Democratic presidency, while the opposite should

be true for Democrats. To get a first picture of the dynamics of partisan perceptions, we plot the

entire time series of aggregate perceptions in Figure 3.4.2. Prediction 1 is borne out in the data –

Republicans perceive the economy more favorably than Democrats during a Republican presidency,

and vice versa during a Democratic presidency. Republican perceptions also change discontinuously

at the election threshold, which is in line with Prediction 3. We observe no discontinuities for

Democrats. However, recall that our model does not predict any change in beliefs for opposing

partisans, if economic conditions improve. In conclusion, while the descriptive evidence is highly

indicative of the presence of motivated cognition, it is inconclusive as long as we do not incorporate

economic conditions into the analysis.

To test whether there still is a partisan response to the changing political environment once we
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Figure 3.4.2: Aggregate Trends in Perceptions
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Notes: Partisan aggregate time series from Civiqs of survey responses to National Economy: Current Condition:
“How would you rate the condition of the national economy right now?” The responses are re-coded as: “very good”
(3), “fairly good” (2), “fairly bad” (1), “very bad” (0), “unsure” (missing), and weighted by percentage giving each
answer. Data covers 01/15/2015 to 03/31/2019.

control for economic conditions, we estimate the following regression using ordinary least squares:

Eit = β0 + β1RPresidt ×Republicani + β2RPresidt + β3Republicani + β4DJCAt +X′
itγ + ϵit.

(3.4.1)

Eit is individual i’s perception of the economy, RPresidt is a dummy that indicates a Republican

presidency, and Republicani indicates whether individual i affiliates with the Republican party.

DJCAt is the Dow Jones Composite Average at date t, and X′
it a vector of socio–economic controls.

We opted for the DJCA as a proxy for economic conditions since it is a single indicator that is very

responsive to changes in economic fundamentals and is reported daily.11 Controlling for economic

conditions with the DJCA allows us to address our first two predictions. Prediction 1 posits that

partisans perceive the economy differently, and that this depends on who is in power. For this,

perceptions of Republicans and Democrats need to respond to changes in political conditions, and

not just to changes in economic conditions. If only the latter were the case, we would not expect to

see a significant coefficient for the presidency dummy, and there would not be a case for motivated
11Originally, we were also concerned that partisans report their expectations instead of their perceptions. The

DJCA would also mitigate this issue if present, since it incorporates expectations of future economic conditions as
well. We further discuss the distinction of expectations and perceptions, and why we are not concerned that our
survey respondents report the wrong object, in Section 3.6.
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cognition. Second, we can develop a first test for Prediction 2: Do economic conditions affect

perceptions differentially depending on which party holds power? If Prediction 2 holds, we would

expect to see significant coefficients for the interactions of the DJCA and presidency.12

Table 3.4.2 shows results for the first exercise. We can exclude that perceptions only reflect

economic conditions, since the coefficient on the Republican presidency is significant, even when

taking the positive association between the DJCA and perceptions into account. Taking another

look at Prediction 1, Table 3.4.2 clearly demonstrates that Democrats perceive the economy as

better than Republicans during the Democratic presidency (the coefficient for “Republican” is

negative), that the Republican presidency has a small negative effect on Democratic perceptions,

and a stronger positive effect on Republican perceptions. This all is in line with Prediction 1. The

Dow Jones has a strong positive association with perceptions. Column (2) contains a full set of

state fixed effects. Appendix Table 3.B.3 displays all coefficients for sociodemographic controls.

Apart from income and one ethnicity dummy – Asian – (both positive) no demographic factor has

significant impact on perceptions.

Table 3.4.2: Prediction 1: Partisan Disagreement

Dependent Variable Perceptions

(1) (2)

Republican Presidency × Republican 0.3419*** 0.3628***
(0.0934) (0.0952)

Republican Presidency -0.1558* -0.1801**
(0.0864) (0.0905)

Republican -1.2148*** -1.2401***
(0.0694) (0.0739)

Dow Jones CA 0.0004*** 0.0005***
(0.0001) (0.0001)

Constant -0.7832 -0.7858
(0.8007) (0.8649)

Demographic Controls Yes Yes
State FEs Yes

Adjusted R2 0.42 0.42
Observations 874 874

Notes: The table reports results for Equation (3.4.1) testing Prediction 1: Partisan Disagreement irrespective of
economic conditions. The dependent variable are perceptions measured as survey responses to National Economy:
Current Condition: “How would you rate the condition of the national economy right now?”, responses re-coded as:
“very good” (3), “fairly good” (2), “fairly bad” (1), “very bad” (0), “unsure” (missing). Demographic controls contain
gender, race, age, income bracket, education level, living environment (rural/urban/suburban). Standard errors in
parentheses. *** p<0.01, ** p<0.05, * p<0.1

To assess Prediction 2, we test whether economic conditions enter perceptions differently depending

on partisanship and presidency. Recall that our model predicts that partisans update in response

to positive signals during incumbency, and in response to negative signals during opposition.
12Note that we cannot provide parametric evidence for Prediction 3, since a regression-discontinuity-in-time

specification, which would allow us to separate short- and long-term effects of the election, and thereby test for
disproportionate perception changes at power shifts, is underpowered for our sample.
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Because the triple interaction between partisanship, presidency, and economic conditions is difficult

to interpret, we estimate the following empirical specification separately for Republicans and

Democrats:

Eit = β0 + β1RPresidt ×DJCAt + β2RPresidt + β3DJCAt +X′
itγ + ϵit. (3.4.2)

All variables are defined as above. Looking at the results for Republicans in Table 3.4.3, Panel (a),

the Dow Jones is positively correlated with perceptions only during the Republican presidency,

although it was on an upward trend throughout the entire sample period. As by Prediction 2,

positive signals (increases in the DJCA) only enter during incumbency (for Republicans during a

Republican presidency). Surprisingly, perceptions are neither associated with economic nor political

variables for Democrats (Table 3.4.3, Panel (b)). According to our theoretical model, there should

have been a positive association between the Dow Jones and perceptions during the Democratic

presidency. A possible explanation for this finding is that, as suggested by Bartels (2002) and others,

Republicans and Democrats differ in terms of what economic indicators they consider sufficient

statistics for the general economy. Partisan perceptual differences would then arise because of

differences in sufficient statistics.13 This brings us to the limitations of an OLS strategy when

testing for motivated cognition in unstructured opinion data. We cannot control for a larger set of

potentially relevant economic determinants because of collinearity between economic indicators.

Choosing a different set of indicators for Republicans than for Democrats would be highly arbitrary,

and vulnerable to specification search. A further limitation of OLS is that it cannot account for

feedback effects between our two right-hand side variables. If the election influenced the economy,

or the economy the election – both highly plausible – OLS cannot disentangle the two effects.

Finally, OLS further highlights our missing counterfactual problem. To determine whether partisans

exhibit motivated cognition, we need to know how perceptions would have developed in absence

of motivated cognition. However, we lack a clear control group – Republicans are not a good

control for Democrats and vice versa, since they are both affected by the election and our theory

predicts heterogeneous effects of the election on the two partisan groups. We also cannot simply

use any economic indicator as a counterfactual, since we would have to make strong assumptions

on how a specific indicator translates into economic perceptions for partisans. This motivates our

development of a novel, data-driven empirical strategy: the Synthetic Belief.

13Hibbs et al. (1982), for example, provide evidence that Democrats emphasize unemployment and Republicans
inflation. Disagreement in perceptions arises as a result of pure macroeconomic connection.
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Table 3.4.3: Prediction 2: Selective Relevance of Economic Information, by Partisanship

(a) Republicans

Dependent Variable Perceptions

(1) (2)

Republican Presidency × Dow Jones CA 0.0012** 0.0013**
(0.0006) (0.0006)

Republican Presidency -7.7885** -8.2444**
(3.6148) (3.8514)

Dow Jones CA -0.0000 -0.0001
(0.0005) (0.0006)

Constant 0.5985 0.9881
(3.4715) (3.6426)

Demographic Controls Yes Yes
State FEs Yes

Adjusted R2 0.16 0.14
Observations 432 432

(b) Democrats

Dependent Variable Condition

(1) (2)

Republican Presidency × Dow Jones CA 0.0004 0.0004
(0.0005) (0.0005)

Republican Presidency -2.3151 -2.5718
(3.1590) (3.3171)

Dow Jones CA -0.0004 -0.0005
(0.0005) (0.0005)

Constant 5.2801* 5.5570*
(2.9796) (3.2206)

Demographic Controls Yes Yes
State FEs Yes

Adjusted R2 0.03 0.04
Observations 442 442

Notes: The table reports results for Equation (3.4.2), testing Prediction 2: Partisan Disagreement sustained by
selective relevance of economic information. The dependent variable are perceptions are measured as survey
responses to National Economy: Current Condition: “How would you rate the condition of the national economy
right now?”, responses re-coded as: “very good” (3), “fairly good” (2), “fairly bad” (1), “very bad” (0), “unsure”
(missing). Panel (a) displays results for Republicans, and Panel (b) displays results for Democrats. Demographic
controls contain gender, race, age, income bracket, education level, living environment (rural/urban/suburban).
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

3.5 Synthetic Beliefs

As a solution to the missing counterfactual problem, we propose a novel method: Synthetic beliefs.

Synthetic beliefs predict post-election perceptions of the economy as if the election had only affected

perceptions through its indirect impact via economic conditions but not directly via preferences

over beliefs. Using this paradigm, we find that Republican perceptions are considerably higher

than warranted by previous perception formation, and the perceptions of Democrats are lower.

This is in line with what our theoretical model of motivated cognition, specifically Prediction 2

and 3, predicts: Now-incumbent partisans change their perceptions abruptly after the election

(Prediction 3), thereby reacting too strongly to positive economic developments (Prediction 2),
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whereas now-opposition partisans react too little or not at all (Prediction 2 and 3).

3.5.1 Synthetic Beliefs as Counterfactual Perceptions

The largest challenge for identifying motivated cognition in observational data is to find a benchmark

for non-motivated beliefs. Our identifying assumption is that without motivated cognition, there

is a stable association between economic perceptions and observable economic information. This

association is unaffected by the political environment. Imagine we could write perceptions as a

simple function of economic conditions. Without motivated cognition, the political environment

only changes the argument of the function, that is, economic conditions, but not the functional form.

However, according to our theoretical model, under motivated cognition the political environment

changes how economic conditions translate into perceptions, that is, it changes the functional form

of the perceptions-economic conditions function.

We adapt this exact logic to our estimation strategy: We estimate perceptions as a function of

only economic conditions. These are our synthetic beliefs, which are by construction independent

of the political environment. They provide benchmarks of how perceptions should have developed

in the absence of any changes aside of economic change. For a more theoretical exposition, see

Appendix 3.C.

In a nutshell, synthetic-belief analysis proceeds in three steps: In step 1, we use LASSO to

determine the set of best predictors for perceptions in the pre-election period. Second, we predict

synthetic beliefs for the post-election period using the model selected in step 1. Third, we compare

synthetic beliefs to observed perceptions. If the election has no impact on perceptions except

through its direct impact on the economy, we expect synthetic beliefs to closely track observed

perceptions. However, if there is a political effect over and above the economic effect, synthetic

beliefs and perceptions will diverge at the election. We execute steps one to three separately for

both parties. This allows us to account for different partisan mental models of the economy.

Inference Standard statistical inference is not feasible for synthetic beliefs. Since the synthetic

belief is inspired by Abadie et al. (2015)’s synthetic-control method, we adapt some of their

falsification exercises. We run in-time placebo studies to show both that the synthetic belief is a

good predictor for perceptions in the absence of political change, and that structural breaks in

perception formation can indeed be attributed to the 2016 presidential election. We also conduct

“leave-one-out” exercises to assess the sensitivity of our results to the specific set of indicators

selected by LASSO in the first step.
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3.5.2 Results

Figure 3.5.3 compares stated economic perceptions to their synthetic counterparts. Republican

perceptions (Panel (a)) increase discontinuously at the election threshold, and deviate markedly from

the synthetic belief from then on. This is in line with our third prediction for motivated cognition.

Compared to pre-election behavior, now-incumbent partisans react excessively to positive signals.

Synthetic beliefs for Republicans do increase during the Republican presidency, suggesting some

positive updating is indeed warranted given economic conditions. However, perceived improvements

are by orders of magnitude larger than actual improvements. For Democrats (Panel (b)), the

evidence is less conclusive. Synthetic beliefs and perceptions do not diverge in the immediate

post-election period, although there is some downward divergence from Spring 2017 onwards. Recall

that in our model, opposition partisans maximize their utility by holding as bad beliefs about the

economy as possible given the signal structure. Since they cannot delude themselves completely, i.e.,

encode negative signals when signals are positive, their best option is to ignore positive information.

In our case, the immediate post-election development of the economy was positive. The flat

trajectory of Democrats’ perceptions is in line with this prediction. The less volatile pre-election

perceptions for Democrats suggest that different, longer-term indicators determine Democrats’

perceptions compared to Republicans. We attribute the fact that the synthetic belief for Democrats

only increases after a few months post-election to these indicators also only improving with a

lag. We conclude that the results based on synthetic beliefs strongly support our hypothesis that

partisan asymmetries in economic perceptions are due to motivated cognition.

Discussion and Robustness Since standard statistical inference is not feasible for synthetic

beliefs, we adapt the recommended sensitivity checks by Abadie et al. (2015) to our setting. We

conduct several in–time placebo studies and compare synthetic beliefs of varying sparsity.

Placebo studies assess whether the divergence of synthetic beliefs and stated perceptions can

indeed be attributed to the election, by re-estimating synthetic beliefs using an earlier cut-off date.

This placebo election should not impact perceptions, such that synthetic beliefs closely mirror

stated perceptions until the true election date.

Figure 3.5.4 shows results for a placebo election on May 3rd, 2016, when Donald J. Trump

became presumptive nominee of the Republican party. For Republicans (Panel (a)), synthetic beliefs

and perceptions begin to diverge at the November election, whereas for Democrats – comparable

to Figure 3.5.3, Panel (b)) – synthetic beliefs only start to deviate from perceptions in spring

2017. Appendix Figures 3.B.4–3.B.6 show results for three further placebo elections. None lead to

evidence against our findings.

As a further robustness analysis, we replicate the analysis with “leave-one-out” synthetic beliefs.
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Figure 3.5.3: Prediction 3: Excess Belief Movement at Power Shifts
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Notes: The figure shows stated perceptions and synthetic beliefs for Republicans (Panel (a)) and Democrats (Panel
(b)) to test Prediction 3: Excess belief movement at power shifts. Perceptions are measured as survey responses to
National Economy: Current Condition: “How would you rate the condition of the national economy right now?”
partisan aggregate time series from Civiqs.com, responses re-coded as: “very good” (3), “fairly good” (2), “fairly bad”
(1), “very bad” (0), “unsure” (missing), and weighted by percentage giving each answer. Synthetic beliefs are
calculated as described in Appendix 3.5. Dotted lines indicate the 95% confidence interval of auxiliary forecasting
error. Since standard errors are not available for LASSO, forecasting error is error of post-LASSO OLS (c.f. Belloni
and Chernozhukov (2013)).

Figure 3.5.4: Placebo Election: Trump Primary Frontrunner

(a) Republicans
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(b) Democrats
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Notes: The figure shows stated perceptions and synthetic beliefs for Republicans (Panel (a)) and Democrats (Panel
(b)) for a placebo election on 05/03/2016 to test Prediction 3: Excess belief movement at power shifts. Perceptions
are measured as survey responses to National Economy: Current Condition: “How would you rate the condition of
the national economy right now?” partisan aggregate time series from Civiqs.com, responses re-coded as: “very good”
(3), “fairly good” (2), “fairly bad” (1), “very bad” (0), “unsure” (missing), and weighted by percentage giving each
answer. Synthetic beliefs are calculated as described in Appendix 3.5. Dotted lines indicate the 95% confidence
interval of auxiliary forecasting error. Since standard errors are not available for LASSO, forecasting error is error of
post-LASSO OLS (c.f. Belloni and Chernozhukov (2013)).
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These check whether results are driven by one particular indicator within the set of economic

variables selected by LASSO. We consecutively drop one indicator from the set of best predictors,

and then predict synthetic beliefs with the remaining n − 1 indicators. The resulting synthetic

beliefs serve as lower and upper bounds for the effects of the main synthetic beliefs.

Figure 3.5.5: Leave-One-Out Synthetic Beliefs

(a) Republicans
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Notes: The figure shows stated perceptions, synthetic beliefs, and leave-one-out synthetic beliefs for Republicans
(Panel (a)) and Democrats (Panel (b)) to test Prediction 3: Excess belief movement at power shifts. Perceptions are
measured as survey responses to National Economy: Current Condition: “How would you rate the condition of the
national economy right now?” partisan aggregate time series from Civiqs.com, responses re-coded as: “very good”
(3), “fairly good” (2), “fairly bad” (1), “very bad” (0), “unsure” (missing), and weighted by percentage giving each
answer. Synthetic beliefs are calculated as described in Appendix 3.5. Grey lines reflect Synthetic Beliefs predicted
with n− 1 indicators of the main synthetic belief (dashed line).

As shown in Figure 3.5.5, results from the main synthetic belief lie closely within the mass of

leave-one-out synthetic beliefs. If at all, they suggest that our results are lower bounds for the

extent of motivated cognition.

3.6 Discussion

In this section, we briefly discuss some alternative channels that could create the patterns we

observe in the data.

Affect Prior et al. (2015) and Bullock et al. (2015) find that partisan disagreement about

unemployment and inflation rates is reduced when survey participants are incentivized for correct

responses. They conclude that partisan responses reflect affect – the emotion associated with

the respective party or president – as well as genuinely held beliefs. However, the partisan gaps

we observe remain significant, even if we adjust them to 40% of the initial partisan difference,
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corresponding to the largest reduction in Prior et al. (2015) and Bullock et al. (2015). Thus, we are

confident that our results are not entirely explained by affect.

Expectations Partisans might confound contemporaneous perceptions of the economy with their

expectations for the future economy. Naturally, partisans have different beliefs over what policies

will create economic prosperity. We do not directly control for expectations since they are a function

of perceptions themselves. However, Civiqs elicits expectations in a separate question.14 Appendix

Figure 3.B.7 shows topline trends for partisans’ expectations. The patterns are as expected, with

Democrats being more optimistic about the future economy during a Democratic presidency, and

Republicans more so during a Republican presidency. When we compare this to the patterns

of perceptions in Figure 3.4.2, we are reassured that partisan differences in perceptions do not

merely reflect differences in expectations, and that partisans are able to distinguish between the

two questions. In particular, if expectations carried over to perceptions, we would expect to see a

similar downward trend of Democrats’ perceptions after the 2016 election as we see it for Democrats’

expectations.

Biased Information Supply Larcinese et al. (2011) document agenda setting in U.S. newspapers:

Partisan newspapers report economic news more favorably during incumbency than during opposi-

tion. Similarly, Bisgaard and Slothuus (2018) find that party-elite communication on economic

issues has a strong impact on the beliefs of partisans. Partisan-biased information supply would

generate similar patterns as partisan-biased information processing, that is, motivated cognition.

Unfortunately, we cannot address this concern in our setting, as we do not observe media consump-

tion of survey respondents. However, Gentzkow and Shapiro (2010) provide evidence that readers’

demand for like-minded news drives media bias. In this vein, media bias and motivated beliefs go

hand in hand: Both arise through preferences over beliefs, and reinforce each other.

3.7 Conclusion

In this paper, we investigate whether motivated cognition can explain partisan disagreement over

facts. In a theoretical model, we derive three predictions as litmus tests for motivated cognition.

These are all borne out in the dynamics of partisan perceptions around the 2016 U.S. presidential

election: Republicans perceive economic conditions as better than Democrats during the Republican

presidency, and the same holds true for Democrats during the Democratic presidency. Additionally,

Republicans react excessively to increasing economic conditions after the Republican win in 2016.
14National Economy: Direction. The exact wording of the question is “Do you think the nation’s economy is

getting better or worse?” Possible answers are “getting better”, “staying about the same”, “getting worse”, and
“unsure”.
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Our study makes four contributions: First, we transfer the theoretical and experimental literature

on motivated cognition to the field. Second, we make a methodological contribution by providing a

novel method, the synthetic belief, for studying cognitive biases and inconsistencies in unstructured

observational data. Third, we investigate the determinants of beliefs about the economy. Economic

perceptions enter in a multitude of political economy models, most prominently in Fiorina (1981)’s

theory of economic voting, in which perceived economic conditions determine an incumbent’s

reelection probability. Our results suggest that the opposite is also true: How we perceive the

economy is influenced by who gets elected.

Finally, we add to the study of polarization by showing that observed patterns of polarized

beliefs about facts are consistent with motivated cognition. In the future, it will be paramount

to understand how motivated cognition, information provision, and politics in particular interact.

To the extent that polarization reflects a fundamental human preference for congenial beliefs, it is

unlikely that it can be mitigated by increased information provision or education.
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Appendix to Chapter 3

• Appendix 3.A provides a list of economic time series used in Section 3.5.

• Appendix 3.B reports additional findings related to Sections 3.4 and 3.5.

• Appendix 3.C provides theoretical background and derivations for Synthetic Beliefs (Section

3.5).
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3.A List of Used Economic Time Series and Sources

Table 3.A.1: List of Economic Data Series

Indicator Source Series Name in Source Details Frequency

General Economic Conditions

Leading Index for the
United States

Philadelphia FED, from
FRED

USSLIND SA, percent Monthly

ISM Manufacturing
Index (PMI)

Quandl PMI SA, % Monthly

ISM
Nonmanufacturing
Index (NMI)

Quandl NMI SA, % Monthly

Industrial Production BOG, from FRED IPMAN SA, index base 2012,
NAICS manufacturing

Monthly

GDP BEA, Table 8.1.5 - Not SA Quarterly

Gross Domestic
Income

BEA, Table 8.2 - Not SA Quarterly

Savings Rate BEA, Table 5.1 - SA, % of GNI Quartely

Net Saving BEA, Table 5.1 - SA Quartely

Gross Saving BEA, Table 5.1 - SA Quartely

Consumption BEA, Table 8.1.5 - SA Quarterly

Domestic Investment BEA Table 8.2 - Not SA, gross Quarterly

Households and Housing

Personal Income BEA, Table 2.6 - SA Monthly

Personal Saving BEA, Table 2.6 - SA, % of disposable
income

Monthly

Housing Starts Census Bureau & HUD,
from FRED

HOUST SA Monthly

New One-Family
Homes

Census Bureau & HUD,
from FRED

HSN1F SA, sold units Monthly

Auto Sales BEA, from FRED ALTSALES SA, incl. light trucks Monthly

Labor Market

Coincident Economic
Activity Index

Philadelphia FED, from
FRED

USPHCI SA, base 2012 Monthly

Population BEA, from FRED POPTHM - Monthly

Working Age
Population

OECD, from FRED LFWA64TTUSM647S SA, Ages 15-64 Monthly

Labor Force BLS LNS11000000 SA, Civilian, Ages 16+ Monthly

Employment Rate OECD, from FRED LREM64TTUSM156S SA, Ages 15-64 Monthly

Employment Level BLS LNS12000000 SA, Ages 16+ Monthly

Private Employees BLS CES0500000001 SA Monthly

Non-Farm Employees BLS CES0000000001 SA Monthly

Unemployment Rate BLS LNS1400000 SA, Ages 16+ Monthly

Unemployment Level BLS LNS1300000 SA, Ages 16+ Monthly

Unemployment Level BLS LNU04000000 Not SA, Ages 16+ Monthly

Hourly Earnings,
Production

BLS CES0500000008 SA, all nonsupervisory Monthly

Hourly Earnings BLS CES0500000003 SA, private employees Monthly
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Compensation BLS PRS85006112 Change in real hourly rate Quarterly

Weekly Hours,
Production

BLS CES0500000007 SA, all nonsupervisory Monthly

Weekly Hours BLS CES0500000002 SA, private employees Monthly

Firms

Profits BEA, Table 6.16 D - SA Quarterly

Domestic Profits BEA Table 6.16 D - SA Quarterly

Industrial Production
Index

BOG, from FRED INDPRO SA, base 2012 Monthly

Manufacturing Profits BEA, Table 6.16 D - SA Quarterly

Labor Productivity BLS PRS85006092 Non-Farm, % Change Quarterly

Labor Productivity BLS PRS30006092 Manufacturing, % Change Quarterly

Multifactor
Productivity

BLS MPU4910012 Index, base 2012 Annual

Labor Cost BLS PRS85006112 Non-Farm, % Change Quarterly

Employment Cost
Index (ECI)

BLS CIU1010000000000A Not SA, 12 month change Quarterly

Domestic Business
Investment

BEA Table 8.2 - Not SA, gross Quarterly

Business Investment,
Structures

BEA, Table 8.1.5 - Not SA Quarterly

Business Investment,
Equipment

BEA, Table 8.1.5 - Not SA Quarterly

Business Investment,
Intellectual Property

BEA, Table 8.1.5 - Not SA Quarterly

Business Investment,
Residential

BEA, Table 8.1.5 - Not SA Quarterly

Retail Sales Census Bureau, from
FRED

MRTSMPCSM44X72USS SA, % Change, total incl.
food

Quarterly

Retail Sales excl.
Autos

Census Bureau, from
FRED

MRTSMPCSM44Y72USS SA, % Change, total excl.
vehicles

Quarterly

New Orders,
Manufacturing

Census Bureau, from
FRED

NEWORDER SA, excl. aircraft &
defense goods

Monthly

New Orders of
Durables

Census Bureau, from
FRED

DGORDER SA Monthly

Inventories to Sales
Ratio, Retail

Census Bureau, from
FRED

RETAILIRNSA Not SA, ratio Monthly

Inventories to Sales
Ratio, Manufacturing

Census Bureau, from
FRED

MNFCTRIRNSA Not SA, ratio Monthly

Inventories to Sales
Ratio, Wholesalers

Census Bureau, from
FRED

WHLSLRIRNSA Not SA, ratio Monthly

Inventories to Sales
Ratio, Total

Census Bureau, from
FRED

TOTBUSIRNSA Not SA, ratio Monthly

Total Business
Inventory

Census Bureau, from
FRED

TOTBUSMPCIMSA SA, % Change Monthly

Capacity Utilization,
Manufacturing

BOG, from FRED MCUMFN SA, NAICS
Manufacturing

Monthly

Capacity Utilization BOG, from FRED TCU SA, all industry, percent Monthly

Stock Market

10-Y HQM Corporate
Bond Rate

USDT, from FRED HQMCB10YR Not SA, calculated by
USDT

Monthly

S&P 500 S&P, from FRED SP500 Not SA Daily

Dow Jones Composite
Average

S&P, from FRED DJCA Not SA Daily

Dow Jones Industrial
Average

S&P, from FRED DJIA Not SA Daily
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Trade

Trade Balance, Goods
and Services

BEA and Census Bureau,
from FRED

BOPGSTB SA Monthly

Exports BEA, Table 8.1.5 - Not SA Quarterly

Imports BEA, Table 8.1.5 - Not SA Quarterly

Trade Balance, Goods BEA & Census Bureau,
from FRED

BOPGTB SA Monthly

Import Price Index BLS EIUIR Not SA, base 2000 Monthly

Export Price Index BLS EIUIQ Not SA, base 2000 Monthly

Trade-Weighted US
Dollar Index

BOG, from FRED DTWEXM Not SA, goods, base 1973 Daily

Exchange Rate: China BOG, from FRED DEXCHUS Not SA, CNY/$ Daily

Government

Federal Government
Expenditure

BEA, Table 8.1.5 - Not SA Quarterly

Total Federal Debt USDT, from FRED GFDEBTN Not SA Quarterly

New Government Debt BEA, Table 3.1 - SA, net lending borrowing Quarterly

Government Debt
Quota

FRED GFDEGDQ188S SA, federal, % of GDP Quarterly

State & Local
Government
Expenditure

BEA, Table 8.1.5 - Not SA Quarterly

Government Revenue BEA, Table 3.1 - SA Quarterly

Government
Consumption

BEA, Table 3.9.5 - SA Quarterly

Government Investment BEA, Table 3.9.5 - SA Quarterly

Interest Rates

Effective Federal Funds
Rate

BOG, from FRED FEDFUNDS Not SA Monthly

3-M Treasury Bill BOG, from FRED DTB3 Not SA, secondary market
rate

Daily

10-Y Treasury Bill BOG, from FRED DGS10 Not SA, constant maturity
rate

Daily

LIBOR Rate IBA, from FRED USD3MTD156N Not SA, rate Daily

TED Spread FRED TEDRATE Not SA, % Daily

Prices

Inflation as ∆ CPI BLS CUUR0000SA0 base 1982-1984, urban
consumers, own calculation

Monthly

CPI excl. food &
energy

BLS CUUR0000SA0L1E Not SA, base 1982-1984 Monthly

PPI commodity BLS WPSFD4 SA, base 11/2009 Monthly

PPI finished goods BLS WPUFD49207 Not SA, base 1982 Monthly

Inflation Expectation FRED T5YIFR Not SA, 5 years forward Daily

PCE BEA, Table 2.8.7 - SA Monthly

PCE excl. food &
energy

BEA, Table 2.3.7 - SA Monthly

GDP Deflator BEA, Table 8.1.4 - Not SA, base 2012 Quarterly

Spot Oil Price FRED WTISPLC Not SA, WTI Crude,
$/barrel

Monthly

Notes: Abbreviations: BEA (U.S. Bureau of Economic Analysis), BLS (U.S. Bureau of Labor Statistics), BOG
(Board of Governors of the Federal Reserve System), HUD (U.S. Department of Housing and Urban Development),
IBA (ICE Benchmark Administration Limited), USDT (U.S. Department of the Treasury), S&P (S&P Dow Jones
Indices LLC), SA (Seasonally adjusted), all variables levels of real unit counts unless otherwise specified.
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3.B Additional Figures and Tables

Figure 3.B.1: Distribution of Observations in Survey Sample
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Notes: The figure displays the distribution of respondents in the individual-level survey sample by day, data covers
05/01/2016–04/29/2017.
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Figure 3.B.2: Representativeness of Survey Sample

(a) Relative to Partisan Population

Female
Age

Income

White
Black
Asian

Hispanic

Less than High School
High School

Some College
College

Post-Graduate Degree

Urban
Suburban

Rural

 Gender, Age & Income

 Race

 Education

 Living Environment

-.5 0 .5 -.5 0 .5

Democrats Republicans

(b) Relative to U.S. Population

Female
Age

Income

White
Black
Asian

Hispanic
Mixed
Other

Less than High School
High School

Some College
College

Post-Graduate Degree

Urban
Suburban

Rural

 Gender, Age & Income

 Race

 Education

 Living Environment

-.2 0 .2 .4 .6 .8

Democrats
Republicans

Notes: The figure displays differences between sample and U.S. population characteristics. Female is an indicator
that is equal to one if the respondent self-identifies as female (1) or male (0). Third gender/non-binary gender is
coded as missing due to few observations. Age is a respondent’s age, measured in years. Income is reported in units
of $25,000. White/Black/Asian/Hispanic/Other are indicator variables that are equal to one if the respondent
identifies with a given ethnicity. Ethnicities with fewer than 20 observations are included in “Other”. Education
variables are indicators that are equal to one if the respondent falls into a given educational category. Urban is an
indicator that is equal to one if the respondent lives in an urban area, suburban is an indicator that is equal to one if
the respondent lives in a suburban area, and rural is an indicator that is equal to one if the respondent lives in a
rural area. Lines indicate 95% confidence intervals. Population and party baseline taken from Pew Research Center
(2016, 2018); U.S. Census Bureau (2018) and own calculations.

150



Opinions About Facts

Figure 3.B.3: Pre-and Post Election Characteristics of Survey Sample: States

Alabama
Alaska

Arizona
Arkansas

California
Colorado

Connecticut
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District of Columbia
Florida
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Illinois
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Iowa
Kansas
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Maryland
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Michigan

Minnesota
Mississippi

Missouri
Montana
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Nevada
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New Mexico

New York
North Carolina
North Dakota
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Rhode Island

South Carolina
South Dakota

Tennessee
Texas
Utah

Virginia
Washington

West Viriginia
Wisconsin
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Home State

-.1 0 .1 -.1 0 .1
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Notes: Difference in pre- and post-election home state of partisans. Lines indicate 95% confidence intervals.
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Table 3.B.2: Summary Statistics for Individual-Sample Survey Data

Democrats Republicans Total

National Economy: Condition 1.91 0.84 1.39
(0.71) (0.75) (0.91)
551 521 1072

Female 0.62 0.45 0.54
(0.49) (0.50) (0.50)

Observations 561 526 1087

Age 59.14 63.63 61.31
(13.39) (12.92) (13.35)

Observations 555 519 1074

Income 3.21 3.25 3.23
(1.58) (1.50) (1.54)

Observations 470 450 920

Race
White 0.66 0.91 0.78

(0.47) (0.28) (0.41)
Black 0.18 0.01 0.10

(0.39) (0.11) (0.30)
Asian 0.02 0.01 0.02

(0.14) (0.10) (0.12)
Hispanic 0.08 0.03 0.06

(0.28) (0.18) (0.24)
Mixed 0.04 0.01 0.02

(0.19) (0.11) (0.15)
Other 0.02 0.02 0.02

(0.12) (0.15) (0.14)
Observations 569 530 1099

Education
< High School 0.01 0.01 0.01

(0.11) (0.09) (0.10)
High-School Graduate 0.09 0.13 0.11

(0.29) (0.34) (0.31)
< College 0.27 0.35 0.31

(0.44) (0.48) (0.46)
College Graduate 0.39 0.38 0.39

(0.49) (0.48) (0.49)
College + 0.23 0.14 0.18

(0.42) (0.34) (0.39)
Observations 535 514 1049

Living Environment
Urban 0.37 0.23 0.30

(0.48) (0.42) (0.46)
Suburban 0.44 0.48 0.46

(0.50) (0.50) (0.50)
Rural 0.20 0.29 0.24

(0.40) (0.45) (0.43)
Observations 570 530 1100

Notes: The table reports summary statistics for the survey sample. Female is an indicator that is equal to one if the
respondent self-identifies as female (1) or male (0). Third gender/non-binary gender is coded as missing due to few
observations. Age is a respondent’s age, measured in years. Income is reported in units of $25,000.
White/Black/Asian/Hispanic/Other are indicator variables that are equal to one if the respondent identifies with a
given ethnicity. Ethnicities with fewer than 20 observations are included in “Other”. Education variables are
indicators that are equal to one if the respondent falls into a given educational category. Urban is an indicator that
is equal to one if the respondent lives in an urban area, suburban is an indicator that is equal to one if the
respondent lives in a suburban area, and rural is an indicator that is equal to one if the respondent lives in a rural
area. Standard deviations in parentheses.
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Table 3.B.3: Prediction 1: Partisan Disagreement, All Controls

Dependent Variable Perceptions

(1) (2)

Republican Presidency × Republican 0.3419*** 0.3628***
(0.0934) (0.0952)

Republican Presidency -0.1558* -0.1801**
(0.0864) (0.0905)

Republican -1.2148*** -1.2401***
(0.0694) (0.0739)

Dow Jones CA 0.0004*** 0.0005***
(0.0001) (0.0001)

Female -0.0475 -0.0542
(0.0469) (0.0488)

Age -0.0007 -0.0018
(0.0019) (0.0019)

Income 0.0352** 0.0412**
(0.0164) (0.0171)

Asian 0.6658*** 0.8446***
(0.2338) (0.2454)

Black 0.0760 0.0707
(0.1889) (0.2028)

Hispanic 0.0495 0.0225
(0.1994) (0.2107)

Mixed -0.1321 -0.0929
(0.2178) (0.2320)

White -0.0802 -0.0828
(0.1732) (0.1844)

Post-Graduate Degree -0.0737 -0.0541
(0.2986) (0.3375)

College -0.0390 -0.0003
(0.2961) (0.3324)

Some College -0.0938 -0.0261
(0.2968) (0.3331)

High School -0.1913 -0.1264
(0.3016) (0.3381)

Urban -0.0432 -0.0461
(0.0571) (0.0613)

Rural -0.0908 -0.0990
(0.0581) (0.0609)

Constant -0.7832 -0.7858
(0.8007) (0.8649)

State FEs Yes

Adjusted R2 0.42 0.42
Observations 874 874

Notes: The table reports results for Equation (3.4.1) testing Prediction 1: Partisan Disagreement irrespective of
economic conditions. The dependent variable are perceptions measured as survey responses to National Economy:
Current Condition: “How would you rate the condition of the national economy right now?”, responses re-coded as:
“very good” (3), “fairly good” (2), “fairly bad” (1), “very bad” (0), “unsure” (missing). Female contains whether the
respondent self-identifies as female (1) or male (0). Third gender/non-binary gender coded as missing due to few
observations. Ethnicities with fewer than 20 observations are included in “Other”. Income is reported in units of
$25,000. Age is measured in years. Suburban, “Other” ethnicity, and less than high school education are omitted
categories. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 3.B.4: Prediction 2: Selective Relevance of Economic Information, by Partisan-
ship, All Controls

(a) Republicans

Dependent Variable Perceptions

(1) (2)

Republican Presidency × Dow Jones CA 0.0012** 0.0013**
(0.0006) (0.0006)

Republican Presidency -7.7885** -8.2444**
(3.6148) (3.8514)

Dow Jones CA -0.0000 -0.0001
(0.0005) (0.0006)

Female -0.0777 -0.0717
(0.0685) (0.0721)

Age -0.0049 -0.0058*
(0.0030) (0.0031)

Income 0.0133 0.0127
(0.0250) (0.0265)

Asian 1.0355*** 1.1079***
(0.2864) (0.2878)

Black 0.3509 0.3136
(0.4409) (0.5047)

Hispanic 0.5024* 0.4729
(0.2751) (0.3257)

Mixed 0.2546 0.2207
(0.3232) (0.3254)

White 0.3124* 0.2608
(0.1803) (0.1991)

Post-Graduate Degree 0.2915 0.3728
(0.4563) (0.4918)

College 0.2166 0.3124
(0.4485) (0.4804)

Some College 0.1187 0.1955
(0.4474) (0.4801)

High School 0.0236 0.1623
(0.4516) (0.4843)

Urban -0.0784 -0.1001
(0.0915) (0.0991)

Rural -0.0452 -0.0716
(0.0743) (0.0856)

Constant 0.5985 0.9881
(3.4715) (3.6426)

State FEs Yes

Adjusted R2 0.16 0.14
Observations 432 432

154



Opinions About Facts

(b) Democrats

Dependent Variable Condition

(1) (2)

Republican Presidency × Dow Jones CA 0.0004 0.0004
(0.0005) (0.0005)

Republican Presidency -2.3151 -2.5718
(3.1590) (3.3171)

Dow Jones CA -0.0004 -0.0005
(0.0005) (0.0005)

Female -0.0496 -0.0705
(0.0628) (0.0673)

Age 0.0024 0.0021
(0.0024) (0.0025)

Income 0.0484** 0.0714***
(0.0218) (0.0238)

Asian 0.1823 0.3516
(0.2833) (0.3200)

Black -0.4073* -0.3848
(0.2327) (0.2674)

Hispanic -0.4660* -0.3810
(0.2442) (0.2739)

Mixed -0.6027** -0.4260
(0.2717) (0.2965)

White -0.5748** -0.5398**
(0.2227) (0.2544)

Post-Graduate Degree -0.3279 -0.2116
(0.3103) (0.3617)

College -0.2311 -0.0866
(0.3073) (0.3557)

Some College -0.2246 -0.0321
(0.3094) (0.3592)

High School -0.3120 -0.1416
(0.3257) (0.3734)

Urban -0.0074 0.0355
(0.0707) (0.0841)

Rural -0.1128 -0.0839
(0.0901) (0.0976)

Constant 5.2801* 5.5570*
(2.9796) (3.2206)

State FEs Yes

Adjusted R2 0.03 0.04
Observations 442 442

Notes: The table reports results for Equation (3.4.2), testing Prediction 2: Partisan Disagreement sustained by
selective relevance of economic information. The dependent variable are perceptions are measured as survey
responses to National Economy: Current Condition: “How would you rate the condition of the national economy
right now?”, responses re-coded as: “very good” (3), “fairly good” (2), “fairly bad” (1), “very bad” (0), “unsure”
(missing). Panel (a) displays results for Republicans, and Panel (b) displays results for Democrats. Female contains
whether the respondent self-identifies as female (1) or male (0). Third gender/non-binary gender coded as missing
due to few observations. Ethnicities with fewer than 20 observations are included in “Other”. Income is reported in
units of $25,000. Age is measured in years. Suburban, “Other” ethnicity, and less than high school education are
omitted categories. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

155



Opinions About Facts

Figure 3.B.4: Placebo Election: February 2016
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Notes: The figure shows stated perceptions and synthetic beliefs for Republicans (Panel (a)) and Democrats (Panel
(b)) for a placebo election on 02/08/2016 to test Prediction 3: Excess belief movement at power shifts. Comparison
of synthetic beliefs and stated perceptions. Perceptions are measured as survey responses to National Economy:
Current Condition: “How would you rate the condition of the national economy right now?” partisan aggregate time
series from Civiqs.com, responses re-coded as: “very good” (3), “fairly good” (2), “fairly bad” (1), “very bad” (0),
“unsure” (missing), and weighted by percentage giving each answer. Dotted lines indicate the 95% confidence interval
of auxiliary forecasting error. Since standard errors are not available for LASSO, forecasting error is error of
post-LASSO OLS (c.f. Belloni and Chernozhukov (2013)).

Figure 3.B.5: Placebo Election: Clinton Primary Frontrunner
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(b) Democrats

ver
y b

ad

fai
rly

 ba
d

fai
rly

 go
od

ver
y g

oo
d

Pe
rc

ei
ve

d 
E

co
no

m
ic

 C
on

di
tio

ns

02
/0

8/
15

05
/0

8/
15

08
/0

8/
15

11
/0

8/
15

02
/0

8/
20

16

 Plac
eb

o E
lec

tio
n

08
/0

8/
20

16

02
/0

8/
17

05
/0

8/
17

08
/0

8/
17

11
/0

8/
17

02
/0

8/
18

05
/0

8/
18

08
/0

8/
18

11
/0

8/
18

02
/0

8/
19

Elec
tio

n D
ay

 Date

Perceptions Synthetic Belief 

Notes: The figure shows stated perceptions and synthetic beliefs for Republicans (Panel (a)) and Democrats (Panel
(b)) for a placebo election on 06/06/2016 to test Prediction 3: Excess belief movement at power shifts. Comparison
of synthetic beliefs and stated perceptions. Perceptions are measured as survey responses to National Economy:
Current Condition: “How would you rate the condition of the national economy right now?” partisan aggregate time
series from Civiqs.com, responses re-coded as: “very good” (3), “fairly good” (2), “fairly bad” (1), “very bad” (0),
“unsure” (missing), and weighted by percentage giving each answer. Dotted lines indicate the 95% confidence interval
of auxiliary forecasting error. Since standard errors are not available for LASSO, forecasting error is error of
post-LASSO OLS (c.f. Belloni and Chernozhukov (2013)).
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Figure 3.B.6: Placebo Election: RNC/DNC
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Notes: The figure shows stated perceptions and synthetic beliefs for Republicans (Panel (a)) and Democrats (Panel
(b)) for a placebo election on 07/19/2016 to test Prediction 3: Excess belief movement at power shifts. Comparison
of synthetic beliefs and stated perceptions. Perceptions are measured as survey responses to National Economy:
Current Condition: “How would you rate the condition of the national economy right now?” partisan aggregate time
series from Civiqs.com, responses re-coded as: “very good” (3), “fairly good” (2), “fairly bad” (1), “very bad” (0),
“unsure” (missing), and weighted by percentage giving each answer. Dotted lines indicate the 95% confidence interval
of auxiliary forecasting error. Since standard errors are not available for LASSO, forecasting error is error of
post-LASSO OLS (c.f. Belloni and Chernozhukov (2013)).

Figure 3.B.7: Aggregate Trends in Economic Expectations
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(missing), partisan aggregate time series from Civiqs.com, responses re-coded and weighted by percentage giving
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3.C Theoretical Model for Synthetic Belief

There are N = N I +NO agents, i, belonging to party ρ ∈ (I,O), where I is the incumbent party

and O the opposition, who each form perception, eρit, at time t. eρit is a function of priors pρ0it, a

vector of k signals, sit, about K economic indicators, kt, at time t, and a k + 1 vector of value

weights, vρ, that determine how much weight an individual puts on any indicator – including their

prior – when assessing the condition of the economy. We do not allow for individual differences in

value weights. Instead, we assume that value weights are how partisanship enters non-motivated

perceptions: There is partisan disagreement about what constitutes good economic conditions, but

the same values are shared by all members of a party (Shared-Values Assumption).

eρit = f(vρ, pρ0it, sit)

If function f(vρ, pρ0it, sit), value weights, priors and individual signals were known, we could predict

non-motivated perceptions from signals. Our goal is therefore to calibrate f(vρ, pρ0it, sit). For

simplicity, we assume that f can be approximated by a linear function:

eρit = f(vρ, pρ0it, sit) = vρp0p
ρ
0it + vρ1s1it + vρ2s2it + ...+ vρkskit.

Additionally, we assume that individual priors, pρ0it, are distributed iid. around a partisan mean ρ̄r.

skit is the realization of signal s about economic indicator k at time t for individual i. We assume

that signals, skit, are subject to random noise and thus iid. distributed with kt as the distribution

mean, such that aggregate assessments will reflect the true value of kt (Collective Intelligence

Assumption). This is an assumption commonly made by political scientists and on research on

public opinion and is derived from the Condorcet jury theorem. For a discussion, see Duch et al.

(2000).

Since, we do not observe individual information sets, we cannot estimate f from individual data.

However, we can aggregate over all Nr supporters of a party:

Eρ
t =

1

Nρ

Nρ∑
i=1

eρit

=
1

Nρ

Nρ∑
i=1

vρp0p
ρ
0it +

1

Nρ

Nρ∑
i=1

vρ1s1it +
1

Nρ

Nρ∑
i=1

vρ2s2it + ...+
1

Nρ

Nρ∑
i=1

vρkskit

= vρp0
1

Nρ

Nρ∑
i=1

pρ0it + vρ1
1

Nρ

Nρ∑
i=1

s1it + vρ2
1

Nρ

Nρ∑
i=1

s2it + ...+ vρk
1

Nρ

Nρ∑
i=1

skit.
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According to the Weak Law of Large Numbers, for sufficiently large Nρ: 1
Nρ

∑Nρ

i=1 skit = kt and
1

Nρ

∑Nρ

i=1 p
ρ
0it = pρ0:

Eρ
t = vρp0p

ρ
0 + vρ1k1t + vρ2k2t + ...+ vρkkkt.

We can now calibrate value weights using stated perceptions and economic indicators. In the absence

of changes in f , predicted perceptions Êρ
t will converge to observed perceptions for sufficiently large

N . We thus interpret differences between predicted perceptions – synthetic beliefs – and observed

perceptions, as structural changes in the way perceptions are formed.
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