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Abstract 
With more than 700 million Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) infections 

worldwide, understanding the host immune response upon infection is crucial in informing 

about and preventing a severe disease course, in this case Coronavirus-19 (COVID-19). 

Majority of studies undertaken thus far utilise adult disease cohorts and typically focus on 

antibody responses (natural infection or vaccine-induced), host antiviral mechanisms and viral 

evasion strategies. Questions such as the influence of age on the host immune response and 

identification of novel SARS-CoV-2 specific biomarkers still remain. To that end, we performed 

a comprehensive transcriptomic analysis on whole blood from a cohort comprising probands 

aged 2 weeks to 40 years old followed by functional experiments on elucidating the role of 

Otoferlin (OTOF) in the context of viral infections.  

 

In our transcriptomic analysis, by controlling for the effects of age, 246 genes were found to 

be significantly differentially expressed in the COVID cohort compared to healthy controls, 

including OTOF. When taking into account the effects of age, 4 genes (MMP8, OAS1, OAS2 

and LY6E) were identified that showed strong differences in expression values in our COVID 

cohort compared to healthy controls. As much is unknown about the role of OTOF in the 

context of viral infections, we further conducted isoform analysis, in silico cell type 

deconvolution analysis and built correlation networks to elucidate its role on a transcriptional 

level. Using our transcriptomic results, we set-up functional experimental assays to 

understand the effects of OTOF on viral infections in SARS-CoV-2, Human immunodeficiency 

virus 1 (HIV-1) and Yellow Fever Virus (YFV). Our assays focused on the effects of ectopic 

OTOF expression on viral binding, entry, replication and exit. In addition, we also performed 

interferon stimulation assays in primary cells to recapitulate the OTOF transcriptomic pattern 

observed in whole blood. We observed increased infectivity in cells overexpressing OTOF 

when subjected to either YFV or HIV-1 but not with pseudotyped SARS-CoV-2 spike proteins 

tested. Viral binding or fusion remained unaffected in all our assays. Stimulation of CD4+ T 

cells and macrophages with IFN-α,IFN-β or IFN-γ revealed marked upregulation of OTOF, 

suggesting its role as an interferon-stimulated gene (ISG).  

 

Overall, this thesis provided new insights into the transcriptomic landscape of host immune 

response upon SARS-CoV-2 infections, taking into account the variability observed with 

differing ages. We also uncovered new roles for OTOF as an ISG, potentially identifying new 

antiviral targets in viral infections.  
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1.1 SARS-CoV-2 and its associated disease, 
COVID-19 

1.1.1 Virus background and structure  

Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) was first identified in 2019 and is part 

of the Coronaviridae family of viruses. It is a linear, positive single-stranded ribonucleic acid 

(RNA) virus belonging to the Betacoronavirus genus within the Sarbecovirus subgenus1. The 

rapid and global outbreak of SARS-CoV-2 infection led to the declaration of a pandemic by 

the World Health Organisation (WHO) in early 2020. As of June 2024, more than 700 million 

infections have been reported worldwide with the highest cumulative cases coming from the 

European region2. As a rapidly evolving virus, several variants of concerns (VOCs) and 

variants of interest (VOIs) have been identified and are continuously monitored. According to 

WHO, as of June 2024, there were no VOCs identified that met the classification criteria. Some 

past notable VOCs were Omicron, Delta, Beta and Alpha variants. Two variants of Omicron, 

XBB.1.5-like and BA.2.86, are still listed as VOIs due to its prevalence worldwide3.  

 

The SARS-CoV-2 genome is roughly 30kb, made up of 16 nonstructural proteins (nsp1-

nsp16), 4 structural proteins and 11 accessory proteins. The presence of  a leader sequence, 

5’-cap and 3’-polyA tail allows the genome to be translated into proteins due to recognition by 

the translation machinery as a viral messenger RNA (mRNA) (Figure 1.1A)4. The nonstructural 

proteins are encoded for by two open reading frames (ORFs), ORF1a and ORF1b. 

Subgenomic mRNAs (sg-mRNAs) encode both the structural and accessory proteins. The 4 

structural proteins are the Spike (S), Envelope (E), Membrane (M) and Nucleocapsid (N) 

proteins (Figure 1.1B). The trimeric S proteins are crucial in mediating viral entry into target 

cells while E proteins are required for virion packaging and assembly. M proteins on the other 

hand are the most abundant structural protein and are required in capsid assembly, 

stabilisation of other structural proteins, viral budding and viral entry. N proteins are crucial in 

binding and packaging the viral genome, ensuring that the large viral genome is able to be 

packaged into a relatively small virion that is 100nm in size4. 

1.1.2 Viral entry and replication in target cells 

SARS-CoV-2 virions are able to enter target cells via two mechanisms; either by membrane 

fusion or endocytosis5. For membrane fusion to occur, the presence of an angiotensin-

converting enzyme 2 (ACE2) receptor is required. ACE2 receptors are highly expressed in 
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many tissue types, including the airway epithelium and gastrointestinal epithelium6. In addition 

to ACE2, the presence of a protease, transmembrane protease serine 2 (TMPRSS2) is 

required for successful fusion at the cell surface. TMPRSS2 cleaves the S proteins of SARS-

CoV-2 at the S1/S2 cleavage site, allowing exposure of the membrane fusion machinery on 

the S2 site leading to viral fusion in the target cells (Step 1 in Figure 1.1B)7. Alternatively, if 

TMPRSS2 is absent, the virions are taken up by endocytosis. Following internalisation of the 

virions and formation of endosomes, proteases cathepsin L and cathepsin B cleave the S 

protein allowing fusion to occur in the endosome5.  

 

In addition to ACE2/TMPRSS2, transmembrane protein 106B (TMEM106) has been 

discovered as an alternative viral entry receptor for SARS-CoV-2 in cells that are ACE2-

negative8. The receptor binding domain (RBD) of SARS-CoV-2 spike proteins are able to bind 

to TMEM106 and engage in membrane fusion, allowing entry into target cells.  

 

Once successful SARS-CoV-2 virion entry has occurred, viral genomes are released, and the 

target cell translation machinery is utilised. Replication, transcription and translation of the viral 

genome occur in a multi-step process, eventually assembling into a full virion in the 

endoplasmic reticulum-to-golgi intermediate compartment (ERGIC)5. Following virion 

maturation, virions are transported through the trans-golgi network and eventually undergo 

lysosomal exocytosis to release virions into the cell periphery. Lysosomal membrane fusion 

has been shown to be mediated by soluble N-ethylmaleimide-sensitive factor activating 

protein receptor (SNARE) proteins in a Ca2+-dependent manner (Figure 1.1B)9.   

1.1.3 Host/target cells antiviral strategies 

Innate immunity is the first line of defence against a viral infection, primarily mediated by cells 

that express pattern recognition receptors (PRRs) which are able to detect the presence of 

viruses. As a single-stranded RNA virus, SARS-CoV-2 can be detected by various PRRs 

within host cells such as cytosolic retinoic acid-inducible gene I/Melanoma Differentiation-

Associated protein 5 (RIG-I/MDA-5) and  various endosomal and cytosolic Toll-like receptors 

(TLRs)5. Viral E protein, for example, can be detected by TLR2 while the viral S protein can 

be detected by TLR4; both TLRs present on the host cell surface. Eventually, these host 

receptor-viral protein sensing leads to activation of host interferon (IFN) pathways, a well 

characterised antiviral mechanism5. Figure 1.2 depicts the various antiviral strategies currently 

known to be present in host cells susceptible to SARS-CoV-2 infections5.  
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1.1.4 Viral evasion strategies 

For successful infection and replication of SARS-CoV-2 in host cells, the virus needs to adapt 

and learn how to evade host antiviral mechanisms. Studies have shown that various SARS-

CoV-2 proteins are able to antagonise the host antiviral mechanisms. Nsp15, for example, is 

able to cleave single-stranded and double-stranded RNA substrates utilising its uridine-

endoribonuclease (EndoU) activity, preventing activation of the IFN pathway via MDA-5 

sensing10. To evade the cyclic GMP-AMP synthase- stimulator of interferon genes (cGAS-

STING) pathway, ORF3a and nsp5 are used to prevent viral replication inhibition11. Viral ORF8 

protein has also been shown to dampen major histocompatibility complex class 1 (MHC-1) 

antigen presentation to T cells, evading viral clearance12.  Nsp3 and nsp6 are a few other 

examples of viral proteins that antagonise the type-I IFN pathway, leading to delayed 

activation of IFNs and interferon-stimulated genes (ISGs)13,14. All these strategies enable 

SARS-CoV-2 to increase survival chances within host cells, ultimately leading to increased 

replication, infectivity and transmission within host cells and beyond. 
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Figure 1.1 SARS-CoV-2 structure and viral replication cycle 

(A) Genomic structure of SARS-COV-2, adapted from Wu et al. (2022)15. The 5’ end of the genome 

encodes two nonstructural proteins ORF1a and ORF1b. The rest of the genome encodes the structural 

and the accessory proteins, including spike proteins (S), membrane proteins (M), envelope proteins 

(E), and nucleocapsid proteins (N). At the 3’ end, a poly-A tail is present. (B) Schematic representation 

of SARS-CoV-2 structure and viral replication cycle, adapted from Steiner et al. (2024)5. SARS-CoV-2 

is a single-stranded RNA-enveloped virus. The virus replication cycle begins with binding of the spike 

proteins to ACE2 receptors on target cells and in the presence of TMPRSS2 (a protease), membrane 

fusion is initiated at the cell surface (Step 1). If TMPRSS2 is not present, viral entry occurs via 

endocytosis and fusion is initiated by cathepsins in the endosomes. Next, uncoating of the viral genome 
occurs and translation of the genome begins (Step 2). Following which, (Step 3) polyprotein processing 

occurs resulting in nsps forming the replication and transcription complex (RTC). At the same time, ER 
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membranes are re-configured to facilitate replication (Step 4). When the RTC is within the organelle, 

replication and transcription of genomic RNA and sg-RNA occurs (Step 5). DMVs form a pore that 

allows export of transcribed RNA subsequently enabling translation of structural and accessory proteins 

(Step 6). Assembly of nucleocapsid occurs (Step 7) and both the nucleocapsid and structural/accessory 
proteins are translocated into the ERGIC compartment where virion assembly occurs (Step 8). 

Immature virions are then trafficked via the Golgi apparatus and trans-Golgi network where virion 

maturation occurs. Lastly, exocytosis of mature virions occurs in the lysosome (Step 9). 

M protein = Membrane protein, E protein = Envelope protein, S protein = Spike protein, N protein = 

Nucleocapsid protein, DMV = Double membrane vesicle and ERGIC = Endoplasmic reticulum-to-golgi 

intermediate compartment.  

 
Figure 1.2 Target cell antiviral mechanisms against SARS-CoV-2 
Schematic representation of antiviral strategies in host/target cells that are susceptible to SARS-CoV-

2 infections, adapted from Steiner et al. (2024)5. SARS-CoV-2 can be recognised by several TLRs such 

as TLR2, TLR3, TLR4, TLR7 and TLR8. Following viral sensing, activation of NF-κB or ERK1/2 pathway 

occurs via MyD88, leading to production of proinflammatory cytokines and type I/III IFNs. Sensing of 

viral proteins by MDA5/RIG-I results in activation of the MAVS and TBK1 pathways, respectively, in turn 
resulting in production of type I/III IFNs. Type I/III IFNs are then sensed by IFN receptors leading to the 

activation of downstream JAK1/TYK2/STAT pathway resulting in production of ISGs. Proteins in red 

are SARS-CoV-2 proteins that are able to antagonise specific pathways within the antiviral response in 

target cells. Full definitions of genes/protein labels can be found in Table 1 of Steiner et al. (2024).  

1.1.5 Virus evolution and mutation 

In addition to antagonising host antiviral mechanisms, viruses also evolve and mutate to 
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favour conditions that increase infectivity and transmissibility. SARS-CoV-2 also evolved since 

its discovery to evade various mechanisms, such as viral entry, to become more efficient and 

adept in infecting host cells16. The earliest mutation discovered in SARS-CoV-2 has been 

caused by a single nucleotide polymorphism (SNP) encoded in the S protein, resulting in the 

variant D614G in the original SARS-CoV-2 variant. Within 6 months of the outbreak of SARS-

CoV-2, more than 70% of cases were caused by variant D614G17. Studies looking into D614G 

spike protein mutant found that viral entry into host cells was increased as the mutation led to 

a conformational change in the spike protein, leading to a higher binding affinity to ACE2 and 

TMPRSS2 receptors18.  The D614G mutation led to a more open spike protein structure, 

allowing greater surface area for receptor binding.  Ozono et al. (2021) also showed that the 

mutation, a change from aspartic acid to glycine in the S1 subunit, allowed an easier cleavage 

from the S2 subunit, leading to higher binding affinities18. Similar findings have also been 

reported for other notable variants such as Alpha, Delta and Omicron16; albeit with mutations 

targeting other parts of the viral structure. In addition to viral evolution that favours viral entry 

into host cells, various mutations have been identified that affect SARS-CoV-2 within host 

transmissibility, reproduction potential and stability outside the host cells16.  

1.1.6 COVID-19 statistics and clinical symptoms  

Coronavirus-19 (COVID-19) is a disease that is caused by SARS-CoV-2 infections in humans. 

According to the WHO, more than 750 million cases have been reported worldwide as of 

August 20242, with the majority of cases reported in the United States of America (USA). About 

7 million deaths have been reported to the WHO thus far, with the USA accounting for 17% of 

deaths reported; the highest worldwide2. In Germany, with a population of 85 million,  a total 

of 38 million cases have been reported thus far, with a 0.5% fatality rate2. COVID-19 spreads 

via both airborne and contact transmission leading to high reproductive number (R0) values 

(often used in infectious disease to quantify infectivity of disease) during the pandemic phase 

of COVID-19. Due to the high numbers of cases reported daily, R0 values provide an easier 

method to keep track of the transmissibility of SARS-CoV-2 within the population. R0 values 

are also used to estimate the population percentage that needs to be vaccinated against the 

disease to achieve herd immunity albeit only when a vaccination strategy is available. In the 

case of COVID-19, few major strategies have been taken to curb the disease and reduce 

transmission such as vaccination (when it became available), face masks, self-tests and social 

distancing measures including lockdown and quarantine strategies2.  

 

COVID-19 presents with varying degrees of disease severity and phenotype, ranging from 

asymptomatic disease course to shortness of breath and acute respiratory distress. Common 
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mild symptoms include fever, cough, sore throat, shortness of breath, congestion, loss of taste 

or smell, fatigue, body aches, headache, nausea, vomiting, and diarrhoea19. Mild symptoms 

typically start 1-5 days following contact or exposure to the virus and typically resolve within 

1-2 weeks. Those with a more severe course of disease ended up hospitalised for various 

reasons such as organ failures, respiratory issues, thromboembolism, sepsis, and death20. In 

the early phase of the pandemic, the Robert Koch Institute (RKI) in Germany reported in  May 

2020 that cough and fever have been the most common symptoms reported (49% and 41% 

respectively) with 15% of confirmed cases reporting a loss of smell or taste or both21.   

1.1.7 COVID-19 host genetics  

Host-genetic factors have been extensively studied to understand how genetic heterogeneity 

of individuals contribute towards varying disease presentation and phenotypes, with the 

COVID-19 Host Genetics Initiative alone recording 80 studies registered to their database22. 

In their latest summary (freeze 7) based on a meta analysis involving both European and non-

European ancestries, they have reported upwards of 20 loci associated with three phenotypes, 

with a p-value < 5 x 10-8. The three phenotypes were critical illness (30 loci identified), 

hospitalisation (40 loci identified) and SARS-CoV-2 infection (21 loci identified). One of the 

lead variants reported for critical illness, rs9305744:G>A, is an intronic variant on chr 21q22.3, 

the locus for TMPRSS2 and has been shown to have protective properties against SARS-

CoV-2 infections. In addition, they have also reported candidate genes in six loci that are 

related to the type-I IFN pathway with variants affecting genes such as interferon receptor 2 

(IFNAR2), 2'-5'-Oligoadenylate Synthetase 1 (OAS1) and TLR7.  

 

In 2022, the GenOMICC (Genetics Of Mortality In Critical Care) study, later also part of the 

COVID-19 Host Genetics Initiative, has first published their findings on genetic variations that 

affect host antiviral immune responses. By genotyping  microarray data from over 2000 

probands with severe COVID-19 hospitalised across various hospitals in the United Kingdom 

(UK), the authors have performed a genome-wide association study and have identified 

several significant associations with severe COVID-19, including variants that were either 

close to loci that encode antiviral factors such as OAS (rs10735079, chr 12q24.13) or on a 

locus that encode IFNAR2 (rs2236757, chr 21q22.1).  

 

In a study involving East Asian probands, Namkoong et al. (2022) have reported a variant on 

chromosome 5 that is associated with severe COVID-19 in individuals younger than 65 years 

old. The variant rs60200309-A is close to the dedicator of cytokinesis 2 gene (DOCK2) locus, 

a gene involved in physiological processes of immune cells23. Interestingly, while the risk allele 
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of this variant conferred has increased disease severity in the East Asian population, within 

the European population, the prevalence of this risk allele has been low23.  This finding has 

been further confirmed with functional assays showing decreased expression of DOCK2 being 

significantly associated with severe COVID-1923. 

 

As various significant associations between variants and COVID-19 phenotypes have been 

increasingly identified, Kosmicki et al. (2024) has investigated if the similarity between SARS-

CoV-2 and influenza clinical phenotypes also leads to similar host genetic risk factors. By 

comparing the genetic aetiology of 18,334 probands with influenza and 276,295 healthy 

controls, the authors have shown that none of the significant influenza genetic variants 

identified are shared with the known published COVID-19 risk variants24; exemplifying the 

distinct nature of SARS-CoV-2 viruses compared to influenza viruses that belong to the 

Orthomyxoviridae family25.  

1.1.8 COVID-19 immunophenotyping in patients 

Various studies have been conducted to identify aberrant immunological response upon 

SARS-CoV-2 infection that is associated with the ability to sustain an infection in humans. In 

a key human challenge study conducted by Lindeboom et al. (2024), the authors have 

leveraged multi-omics to better understand the immunological responses upon SARS-CoV-2 

infection in a controlled setting26. By infecting 16 young adults with no prior SARS-CoV-2 

infection (confirmed serologically) with a wild-type strain of SARS-CoV-2, the authors of the 

study have followed the temporal dynamics of the viral infection and immunological response 

in the participants. By obtaining both nasopharyngeal swabs and blood samples, the authors 

have been able to study both local and systemic responses at single-cell levels. The diversity 

in disease severity and infection has been evident in this controlled study as the participants 

have had variable responses towards the infection, with variable periods of infection as 

indicated by polymerase chain reaction (PCR) positive swabs. In participants with a successful 

infection, there has been an increase in immune cells known to mount a response towards 

viral infection, such as plasmacytoid dendritic cells (pDCs), natural killer (NK) cells and 

gamma-delta T cells26. In addition, in participants with a sustained infection, the authors have 

observed an increased expression of IFN genes in both the nasopharyngeal cells and 

peripheral blood mononuclear cells (PBMCs), albeit at different timepoints of measurements. 

When analysing immune cells of the participants with a successful abortive SARS-CoV-2 

infection, the authors have observed a significant decrease in circulating inflammatory 

monocytes as early as day 3 post-infection; with similar phenotypes observed in participants 

with sustained or transient infection. This observation has reinforced the role of monocytes as 
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an early responder in viral infections. Another notable finding that the authors have discovered 

in the course of their study has been the expression of HLA class II histocompatibility antigen, 

DQ alpha chain (HLA-DQA2) in nasopharyngeal cells and PBMCs as a biomarker for 

infectivity. By looking at gene expression levels pre- and post-infection in both nasopharyngeal 

cells and PBMCs, the authors have observed that higher expression of HLA-DQA2 prior to 

infection is associated with participants that have been successful in evading a sustained 

infection. This is in line with other studies that suggest a protective role for HLA-DQA2 with 

higher expression leading to a milder disease outcome27,28.  

 

In 2023, Edahiro et al. 29 have used PBMCs to characterise the immune response in COVID-

19 patients in a Japanese cohort. As expected, significant differences in immune cell 

proportions have been observed between the COVID-19 cohort and healthy controls 

particularly for T cells, NK cells and DCs. The authors have also observed an increase in B 

cells and plasmablasts in the diseased cohort, though none has reached their defined 

significant threshold. Looking at cell type specific gene expression levels, increased levels of 

type-I IFN related genes in NK cells and a subset of monocytes expressing Cluster of 

differentiation 16 (CD16+); with higher levels have been found in patients with a milder disease 

status compared to those with a more severe disease severity29.  Similarly, when looking at 

pDCs and non-classical monocytes, a decreased abundance of these populations have been 

noted in the severe disease cohort.  

 

In addition to deep immunophenotyping studies that have identified major immune responders 

to COVID-19, multiple groups have published papers highlighting the role of auto-antibodies 

against IFN and inborn errors of immunity (IEI) in COVID-19 severity and outcome 30,31. Manry 

et al. (2022) for example have reported that auto-antibodies that are capable of neutralising 

various types of IFN are present in about 20% of patients that have succumbed to death due 

to COVID-19 with the auto-antibodies neutralising high concentrations of IFN-alpha and IFN-

omega32.  

1.1.9 COVID-19 in children  

Over the course of the COVID-19 pandemic, it has been clear that children typically have a 

lower infection rate and have a milder disease outcome. The COVerAGE database have 

reported for the period of 2020-2022 that only about 21% of the COVID-19 cases can be 

accounted for by those under the age of 20 years old33, with the majority being mild or 

asymptomatic disease. This is in contrast to 33% of the reported countries’ population being 

under the age of 20 years old. For comparison, adults above the age of 20 have a reported 



 

 11 

incidence of 79% of all cases despite the age group accounting for only 67% of the population 

in the 105 countries reported. This has led to an increased interest in understanding the unique 

immunological landscape of children, that makes them less susceptible to a severe course of 

disease or infection in general. 

 

One hypothesis that studies have looked at to explain the differences between adults and 

children with COVID-19 is the expression levels of ACE2 in epithelial cells in upper airways. 

However, no consensus has been reached as various studies have reported opposing 

outcomes with some suggesting lower ACE2 levels in children leading to lower viral loads 

while others have reported no observable differences34. Higher expression of PRRs in 

children, leading to a faster and more efficient IFN response has also been proposed35,36 

 

Looking at differences across immune phenotypes and proportions between children and 

adults with COVID-19, a study by Silverstein et al. (2022) has proposed that a type of tissue-

resident lymphocyte, innate lymphoid cells (ILCs), might explain the differences observed. 

ILCs are crucial in mitigating viral infections by modulating secretion of cytokines and 

important in cell-cell interaction/communication, particularly with cells that mount an adaptive 

immune response37. Silverstein et al. (2022) have suggested that ILCs might explain the 

increased risk of infection in adults as its expression is inversely correlated with age38. This is 

in line with Pierce et al. (2020) who have shown that children infected with SARS-CoV-2 have 

increased levels of lymphocytes (T cells, B cells, NK cells and ILCs). In addition, Pierce et al. 

(2020) have also shown that children with COVID-19 have a lower expression of 

proinflammatory cytokines leading to a milder disease course39.  

 

Taken together, various studies have been conducted on various cohorts to better 

characterise and understand COVID-19, particularly deciphering the immune response 

elicited by key players at sites of infection and at a systemic level. One key takeaway is that 

type-I IFNs are crucial in mounting an adequate response to SARS-CoV-2 infections. While 

many studies report similar findings, the major determinants have been studied in the adult 

population, leaving various questions unexplained in children who typically have a milder 

disease course and outcome40,41.  

1.1.10 Post-COVID-19 disease in children 

The occurrence of post-COVID-19 complications makes SARS-CoV-2 infections even more 

interesting to study in order to disentangle biological insights that may help with treatment. 

While COVID-19 is often milder and less prevalent in children, a hyperinflammatory disease, 
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later named multisystem inflammatory syndrome in children (MIS-C), have been first reported 

in the early stages of the pandemic in Europe. Riphagen et al. (2020) and Verdoni et al. (2020) 

separately have reported the findings of children exhibiting symptoms that mimic Kawasaki 

disease with clinical presentations such as fever, gastrointestinal symptoms, rashes and 

elevated inflammatory markers such as C-reactive protein42,43. Interestingly, these children 

have previously had SARS-CoV-2 infections, with mostly asymptomatic disease course; 

proven either with a previous positive PCR test or based on serological antibody tests. Carter 

et al. (2020) has immunophenotyped 25 children with a clinical diagnosis of MIS-C and has 

found elevated levels of pro-inflammatory cytokines such as IL-β, IL-6, IFN-γ and altered B 

and T cell components44. These findings have been similarly reported by Cheung et al. (2020) 

in 17 children in New York, USA, who have presented with elevated inflammatory signature 

and reduction in lymphocytes45. Overall, all reports on MIS-C suggest a hyperinflammatory 

signature, with a cytokine storm evident following a mild or asymptomatic SARS-CoV-2 

infection.  

 

As with COVID-19, no conclusive findings have been reported that explain the molecular basis 

underlying the inflammatory overdrive, observed weeks after an infection albeit a rare 

occurrence in children46. 
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1.2 Otoferlin (OTOF) 
As will be described in the subsequent section 2, OTOF was identified as a gene of interest 
based on analyses of datasets in this thesis.  The following subsections provide background 
on OTOF and its associated diseases, highlighting key aspects relevant to the project scope 
of this thesis. 

1.2.1 Background and structure  

The first mention of OTOF was in 1999 where it has been identified as a novel causative gene 

in a genetic study conducted on Lebanese families presenting with varying degrees of  

prelingual deafness47. OTOF is a large transmembrane protein (1997 aa) encoded by the 

OTOF gene48. It is a member of the Ferrostatin-1 (FER-1) family with multiple C2 domains. 

The protein contains a single C-terminal transmembrane domain and six C2 domains (cytosol 

bound) that constitute putative binding sites for Calcium (Ca2+) ions due to the presence of 

five negatively charged aspartate residues in the top loops of the  β-sheets (Figure 1.3)49. The 

presence of multiple C2 domains suggest that OTOF may play a role in targeting proteins to 

cell membranes in a calcium-dependent manner49.   

  

C2 domains typically consist of two antiparallel β-sheets that are integral in targeting proteins 

to membranes50. In OTOF, early studies have suggested that the C2A domain is missing the 

complete β-sheet structure, resulting in loss of Ca2+-binding abilities, while the remaining 

domains (C2B-F) retain the ability to bind Ca2+. However, more recent studies by Helfmann et 

al. (2011) using x-ray crystallography have shown that the C2A domain has complete β-sheet 

structure (eight β-strands in total), but is functionally different compared to the other C2 

domains due to a shorter top loop49. The shorter top loop results in a positively charged top 

loop due to missing aspartate residues, rendering it unable to bind Ca2+ in contrast to the other 

C2 domains.  

 

In addition to the C2 domains, OTOF also contains a Fer domain between the C2C and C2D 

domains. In OTOF, the Fer domain has been predicted to be composed of FerA and FerB, 

with FerA being formed by α-helices and is positively charged51. In their study, Harsini et al. 

(2018) have hypothesised that Fer domains, specifically FerA, aids in membrane fusion and 

in the case of OTOF, may act independently of Ca2+ presence. 

1.2.2 Subcellular localisation 

Due to the structure of OTOF, with six predicted C2 domains and a transmembrane (TM) 

domain in the C-terminus, OTOF has been predicted to be a cytosolic/intracellular protein. 
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This has been confirmed by Redpath et al. (2016) when looking into subcellular localisations 

of various ferlins including OTOF. They have shown that unlike other ferlins such as myoferlin 

and dysferlin which are plasma membrane-bound, OTOF is an intracellular protein with almost 

negligible levels of plasma membrane-bound protein52. Using a Myc-tag at the C-terminus, 

they have performed live cell surface labelling of HEK293 cells expressing OTOF and have 

shown that OTOF is not expressed at the surface levels; further confirming the intracellular 

localisation using 3D-Structured Illumination Microscopy52. In particular, they have shown that 

OTOF is trafficked via the endocytic pathway to the trans-Golgi network.  

 
Figure 1.3 OTOF structure, isoforms and cell type expression 
(A) OTOF is encoded by multiple C2 domains as indicated in the scheme. Also present is a Ferlin (FER) 

domain between C2C and C2D and a 3’ end transmembrane (TM) domain (B) Seven OTOF isoforms 

are currently recorded on the Ensembl database with the canonical form being OTOF-20153. Out of the 
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seven isoforms, OTOF-206 is the only isoform that does not code for a functional protein due to a 

retained intron structure. Values on the y-axis represent chromosomal location and colours indicate 

trasncript type. (C) Alphafold (version 2) prediction of OTOF. Colours indicate the confidence for the 

predicted structure. (D) Plot indicating cell type specific expression of OTOF obtained from the Monaco 

dataset recorded on Human Protein Atlas database54 with the highest expression recorded for classical 

monocytes and the lowest in plasmacytoid DC. Colours indicate the type of immune cell and data is 
ordered from highest to lowest expression in normalised transcript per million (nTPM).   

1.2.3 OTOF isoforms 

While OTOF has been first described in the late 90s, the isoform-level resolution of OTOF has 

been described in detail more recently. As of date, OTOF is a multi-isoform gene with 7 

transcripts recorded on Ensembl53, with isoform OTOF-207 having a premature stop codon 

leading to no proteins being translated. Depending on which splicing machinery is used on the 

48 known OTOF exons, various short and long forms of OTOF exist. The canonical isoform 

OTOF-201, has a stop codon in exon 47 leading to formation of a 1,997 amino acid protein. 

OTOF-205 on the other hand, another long OTOF isoform, has an alternative splice site that 

results in usage of exon 48 instead of exon 47, also  leading to a similarly sized 1,997 amino 

acid protein albeit utilising different sequences at the C-terminus55. 

 

Yasunaga et al. (2000) have shown that an alternative splice acceptor site exists on exon 31, 

leading to formation of an even smaller form of OTOF, OTOF-202, encoded by 1,230 amino 

acids56. Using long and short-read RNA sequencing, Liu et al. (2023) have identified new 

alternatively spliced forms of OTOF. They have found that a short form of OTOF forms due to 

splicing on an unannotated exon 6b resulting in the loss of the C2A domain57. By performing 

experiments using mice knockout models harbouring the newly found short isoform, they have 

shown that despite the loss of exon 6b, the knockout mice do not exhibit hearing loss but 

rather a change in the exocytosis dynamics, in particular vesicle replenishment. Table 1.1 

summarises all currently known OTOF isoforms53.  

 
Table 1.1 Summary of OTOF isoforms currently described in literature. 

Transcript ID 
(Ensembl) 

Isoform 
Name 

NCBI 
Isoform 

ID 

Transcript 
Size (bp) 

Protein 
Size 
(aa) 

Uniprot ID 

Protein 
Molecular 

Weight 
(Da) 

ENST00000272371.6 OTOF-201 Isoform a 7214 1997 Q9HC10-1 226,753 

ENST00000338581.10 OTOF-202 Isoform b 4954 1230 Q9HC10-4 140,513 

ENST00000402415.7 OTOF-203 Isoform c 5108 1250 A0A2U3TZT7 142,696 
ENST00000339598.7 OTOF-204 Isoform d 4838 1230 Q9HC10-2 140,295 
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ENST00000403946.7 OTOF-205 Isoform e 6937 1997 Q9HC10-5 226,535 

ENST00000426958.1 OTOF-206 na 557 141 H7BZJ5 15,984 

ENST00000464574.1 OTOF-207 na 918 

No 

protein 

formed 

  

 

According to the NCBI database58, OTOF-201 is the longest isoform with a 55% similarity to 

dysferlin and 43% similarity to myoferlin and has been described as the canonical form of 

OTOF.  OTOF-202 differs in the 5’ UTR and coding region compared to OTOF-201, leading 

to a shorter N-terminus. OTOF-203 on the other hand differs in the 5’ UTR and coding region 

compared to OTOF-201, resulting in a shorter C-terminus. OTOF-204 differs in the 5’ UTR, 

coding region and 3’ coding region compared to OTOF-201. The resulting isoform has a 

shorter N-terminus and a distinct C-terminus. Lastly, OTOF-205 lacks an alternate in-frame 

exon in the 3’ coding region resulting in a distinct C-terminus despite resulting in a protein that 

is similar in size to OTOF-201.  

1.2.4 Mutations and associated phenotypes 

Mutations in OTOF on the autosomal recessive deafness-9 (DFNB9) locus results in either 

auditory neuropathy spectrum disorder (ANSD) or temperature-sensitive ANSD59. To date, 

GeneCards lists 1121 variants for OTOF which have clinical significance based on ClinVar 

and UniProt.  In 2009, Choi et al. have screened a large cohort of consanguineous Pakistani 

families to characterise OTOF mutations in a total of 557 families60. 13 families harbouring 

mutations in OTOF have been identified, including 10 potentially pathogenic novel findings. 

Mutations leading to deafness have been identified in other populations and ethnic groups 

including Lebanese families47, Spanish patients61, Brazilian patients62, Ashkenazi Jewish 

population63 and Taiwanese patients64.  

 

Missense mutations of OTOF account for the majority of reported variants on ClinVar65. 

However, a full picture of the OTOF genotype-phenotype correlation between the reported 

variants and phenotypes observed in patients is still unclear66. In 2023, Ford et al. have 

conducted a systematic review on OTOF to consolidate current understanding and functional 

findings on OTOF, to better inform potential clinical outcomes and diagnosis. In their review, 

when segregating reported cases by age, they have found that in all age groups, the majority 

of the phenotype is profound/severe. Several other phenotypes have also been observed, 

such as temperature-sensitive deafness. When looking into genotype-phenotype 

contributions, they have found that the atypical phenotypes such as temperature-sensitive 
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deafness are found in patients with homozygous variants, suggesting that the presence of one 

non-functional OTOF allele is enough to present transient phenotypes66.  

 

Transient deafness has been first identified by Marlin et al. in 2010 in a consanguineous family 

of three siblings under the age of 10 years old. The patients present with a profound hearing 

impairment only when their core body temperatures rise above 38℃, indicating a fever 

episode67. The authors have identified a homozygous deletion p.Glu1804del in all three 

siblings, that affect the C2F domain of OTOF. They have suggested two hypotheses for the 

transient phenotype seen with the first relating to protein degradation at high temperatures but 

a fully functional protein translocation at normal temperatures. The second hypothesis is that 

the C2F domain affected by the deletion binds Syntaxin 1A and Synaptosomal-Associated 

Protein (SNAP-25) proteins in a Ca2+-dependent manner. During a fever, the high 

temperatures are hypothesised to inhibit the SNARE-Ca2+-dependent function of OTOF, 

leading to hearing impairments67.  

1.2.5 Cell type expression and interacting partners 

In early studies characterising OTOF, expression of OTOF  was only observed in sensory hair 

cells, specifically inner hair cells, with functions in Ca2+-dependent synaptic vesicle fusion47. 

Studies also confirmed the expression of OTOF in the eye, cochlea, vestibule, brain, heart, 

skeletal muscle, liver, kidney, lung and testis; albeit at varying levels47. This variability is also 

observed in the Human Protein Atlas datasets reported54. For example, in the ‘Tissue 

consensus dataset’, the highest expression is seen in brain regions followed by the bone 

marrow and lymphoid tissue region. Variability also exists in immune cell types, as exemplified 

by the ‘HPA immune cell dataset’ , ‘Monaco immune cell dataset’ and the ‘Schmiedel immune 

cell dataset’ ; with highest expressions seen in  T cells and monocytes54.  

 

To further elucidate the role of OTOF in inner hair cells, Roux et al. (2006) have investigated 

the localisation of OTOF, Ca2+-binding capabilities and interacting partners. Hypothesising that 

OTOF interacts with SNARE proteins, they have performed co-immunoprecipitation 

experiments and pull-down assays utilising HEK293 cells overexpressing OTOF. They have 

confirmed that syntaxin 1 and SNAP-25, both essential SNARE proteins, are associated with 

OTOF and together are involved in synaptic vesicle neurotransmitter release. SNARE proteins 

on their own are not calcium sensors and thus the presence of OTOF enhances the 

neurotransmitter release and membrane fusion in a Ca2+-dependent manner68. 
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1.2.6 OTOF in other diseases 

Expression of OTOF has also been observed outside of the context of non-syndromic 

deafness. Bukhari et al. (2023), for example, have shown increased expression of OTOF  in 

juvenile dermatomyositis (JDM)69. By analysing bulk RNA sequencing (RNAseq) data from 

PBMCs of JDM patients, they have observed a 34.8 times higher expression of OTOF 

compared to healthy controls. Using flow cytometry, they have shown that OTOF is primarily 

expressed by B cells expressing plasmablast markers, specifically CD1969. In addition, they 

do not find a significant correlation between expression and age.  

 

In a study conducted by Zhong et al. (2023) looking into Sjogren’s Syndrome, biomarker 

screening has identified OTOF as a potential candidate. Validation by real-time quantitative-

polymerase chain reaction (RT-qPCR) has revealed a significantly higher expression of OTOF 

in the patient cohort compared to healthy controls. In silico cell type deconvolution analysis 

using CibersortX have estimated that OTOF is expressed in activated dendritic cells, M1 

macrophages, regulatory T cells, plasma cells, activated NK cells and naive B cells70.  

 

Additionally, several studies involving viral infection such as Human immunodeficiency virus 

1 (HIV-1) and SARS-Cov-2 have also identified OTOF as a potential player in immune 

response in host cells. In a study conducted by Parker et al. (2023) on 29 HIV patients in 

Mozambique, RNA sequencing of PBMCs has revealed an upregulation of OTOF in the 

patients compared to the healthy controls tested. They have suggested that OTOF is an ISG 

with similar activation/pattern as other known ISGs, such as Interferon alpha-inducible protein 

27 (IFI27) and Interferon-stimulated gene 15 (ISG15)71. Similarly, in a seminal study by Ding 

et al. (2022) aimed at elucidating the role of OTOF in a HIV-1 infection context, they have 

reported that OTOF inhibits HIV-1 entry in macrophages and dendritic cells. Upon identifying 

OTOF as a significantly upregulated gene in their patient cohort compared to healthy control, 

they have performed various functional experiments to validate their findings and uncover the 

mode of action of OTOF. By stimulating monocyte derived macrophages and DCs with IFN-α 

for 24 hours, they have observed significant upregulation of OTOF at both the mRNA and 

protein levels. In HIV-1 infection assays, silencing OTOF has resulted in higher HIV-1 infection 

in the presence of IFN-α treatment. They have also shown that OTOF affects the target cell 

infection but has no effect on producer cell infection. Using a BLaM-Vpr virion fusion assay, 

they further show that entry of HIV-1 into HEK293T cells overexpressing OTOF is markedly 

impaired and that virus replication is also hindered in the presence of OTOF72.  
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Based on literature, first hints of the involvement of OTOF in viral infections came in 2011 

when Żak et al. investigated OTOF interactome using yeast-2-hybrid screening. In their 

experiments using mouse cochlea lysates, they have identified FK506-binding protein 8 

(FKBP8) as an interacting partner for OTOF73. FKBP8 has been shown to be involved in viral 

replication with the help of several binding partners such as CaN, NS5A, Hsp90 and Hsc7074.   

 

Overall, these studies suggest that OTOF is a multi-role protein with various functions 

depending on the target cells and disease. In the context of viral infections, OTOF can be 

speculated to be a type-I IFN mediated effector, with exact functions not fully elucidated.  
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1.3 Thesis Aims & Hypotheses 

1.3.1 Thesis aims 

This thesis has two main aims detailed below.  

 

Aim 1: Investigate how COVID-19 affects individual gene expression utilising a set of 

comprehensive transcriptomic analysis tools. 

 

Aim 2: Experimentally validate the function of OTOF, a potential biomarker identified through 

Aim 1. 

 
Figure 1.4 Schematic outline of thesis aims 
(1) Outline of transcriptomic analyses conducted using various R tools. Detailed methods can be seen 

in section 2.2 (2) List of experimental work conducted to functionally validate and investigate the role of 

OTOF, specifically in the context of viral infections. 
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1.3.2 Thesis hypotheses 

Based on our current understanding of COVID-19 and OTOF, these were the hypotheses 

formulated to address our aims. Hypotheses 1-4 were formulated to address Aim 1 while 

Hypothesis 5 was formulated to address Aim 2.  

 

Hypothesis 1: Previously studied COVID-19 biomarkers would be validated in our cohort, 

namely IFI27 and SIGLEC1, and novel COVID-19 biomarkers would be identified while 

accounting for age and sex differences. 

 

Hypothesis 2: Age-interaction analysis of our cohort would identify potential biomarkers that 

underlie immunological differences leading to variable disease severity due to inherent 

differences in immune responses between children and adults upon SARS-CoV-2 infection. 

 

Hypothesis 3: In silico cell type deconvolution analysis would allow investigation of bulk 

RNAseq data at a cell-type resolution, allowing identification of cell-type specific expression 

differences of our cohort data. 

 

Hypothesis 4: Gene network correlation analysis would allow us to identify groups of genes 

that act in synergy upon SARS-CoV-2 infection, providing further hints into disease 

mechanism(s).  

 

Hypothesis 5: OTOF has an effect on SARS-CoV-2 binding and fusion in host cells. 

  

 

Overall, the work done in this thesis will expand our understanding of COVID-19 disease 

mechanisms, providing insights into the importance of utilising a cohort with mixed age ranges 

to shed light on how gene expression variability affects disease severity. Additionally, the 

extensive functional validation experiments done on OTOF will provide a new perspective on 

the role of OTOF in viral infections, specifically SARS-CoV-2. 
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2.1 Materials 

2.1.1 Software & R tools  

All computational work was done either locally on Rstudio version 2023.09.1+494 (R version 

4.3.2 running under macOS Sonoma 14.1) or High-Performance Computing cluster, kindly 

hosted by Helmholtz Munich, Germany.  

 
Table 2.1 R tools and software used in this thesis. 

Software Version 

nf-core/rnaseq 
(version 3.9) 

bedtools 2.30.0 

bioconductor-deseq2 1.28.0 

bioconductor-dupradar 1.18.0 

bioconductor-
summarizedexperiment 1.20.0 

bioconductor-tximeta 1.8.0 

cat 8.3 

custom 1.15.1 

cutadapt 3.4 

fastqc 0.11.9 

gawk 5.1.0 

Nextflow 21.10.6 

python 3.10.6 

python 3.9.5 

qualimap 2.2.2-dev 

r-base 4.0.3 

rsem 1.3.1 

rseqc 3.0.1 

rseqc 3.0.1 

salmon 1.5.2 

samtools 1.15.1 

sortmerna 4.3.4 
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star 2.7.10a 

stringtie 2.2.1 

subread 2.0.1 

trimgalore 0.6.7 

ucsc 377 

yaml 6 

R tools 

AnnotationDbi 1.64.1 

AnnotationHub 3.10.1 

apeglm 1.24.0 

clusterProfiler 1.1.3 

cowplot 1.1.3 

dataPreparation 1.1.1 

data.table 1.15.4 

DESeq2 1.42.1 

devtools 2.4.5 

dplyr 1.1.4 

edgeR 4.0.16 

enrichplot 1.22.0 

ensembldb 2.26.0 

EnvStats 2.8.1 

forcats 1.0.0 

ggcorrplot 0.1.4.1 

gglabeller 0.3.1 

ggplot2 3.5.1 

ggpubr 0.6.0 

ggrepel 0.9.5 

ggsignif 0.6.4 

ggtranscript 0.99.3 

ggupset 0.3.0 
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ggVennDiagram 1.5.2 

GO.db 3.18.0 

gprofiler2 0.2.3 

gridExtra 2.3 

igraph 2.0.3 

Limma 3.58.1 

lubridate 1.9.3 

magick 2.8.3 

matrixStats 1.3.0 

msigdbr 7.5.1 

org.Hs.eg.db 3.18.0 

PCAtools 2.14.0 

purr 1.0.2 

RColorBrewer 1.1-3 

readr 2.1.5 

Reshape2 1.4.4 

rtracklayer 1.62.0 

statmod 1.5.0 

stringr 1.5.1 

sva 3.50.0 

tibble 3.2.1 

tidyr 1.3.1 

Tidyverse 2.0.0 

wesenderson 0.3.7 

WGCNA 1.72-5 

Software 

Affinity Designer 2 2.4.2 

Benchling - 

BioRad CFXMaestro™ 1.1 

BioRender - 
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CibersortX - 

Flowjo 10.10.0 

 

2.1.2 General reagents, chemicals and equipments 

All experimental work with the exception of RT-qPCR was performed in the Baldauf lab at the 

Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for 

Retroviruses, Faculty of Medicine, LMU Munich, Germany.  

 

RT-qPCR was performed at the Kim-Hellmuth lab with the qPCR instrument kindly provided 

by the Klein lab, both at the Department of Pediatrics, Dr. von Hauner Children’s Hospital, 

University Hospital LMU Munich, Germany. 

 
Table 2.2 List of common reagents used. 

Reagent Supplier Catalog Number Working concentration 
(when applicable) 

10x Phosphate-buffered 
saline (PBS) 
powder 

Sigma-Aldrich P38135  

3-morpholinopropane-1-
sulfonic acid 
(MOPS) 

Carl Roth 6979.3  

4x Laemmli sample buffer BioRad 1610747  

50x Tris-acetate-EDTA 
(TAE) buffer Cart Roth CL86.2  

99% Ethanol Fisher Chemical E/0600DF/17  

Agarose Omnilab A2114  

Albumin Fraction V Carl Roth 8076.2  

Ampicillin sodium salt Carl-Roth K029.2 0.1mg/ml 

BD Phosflow Perm Buffer 
III BD 558050  

Biocoll separating solution Biochrom L6115  

Blasticidin Carl-Roth  Dependent on cell line 

Clarity™ Western ECL 
Substrate BioRad 1705061  

cOmplete EDTA-free 
Protease in- 
hibitor cocktail 

Sigma-Aldrich 11873580001  

Dimethylsulfoxide (DMSO) Carl Roth 4720.2  
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Ethylenediaminetetraacetic 
acid 
(EDTA) 

ChemSolute 2216.1  

Fetal calf serium (FCS) Sigma-Aldrich F7524  

GenElute™ Plasmid 
Miniprep kit Sigma-Aldrich PLN350-1KT  

Gibson Assembly® Master 
Mix NEB E2611S  

Glycerol TH.Geyer 2050.1011  

GoTaq® G2 Hot Start Taq Promega M7405  

HEPES sodium salt Carl Roth 7020.2  

Isopropanol/ 2-propanol Sigma-Aldrich 33539-2.5L-M  

Kanamycin sulfate Carl-Roth T832.1 0.05mg/ml 

Linear polyethylenimine (L-
PEI) Polysciences 23966-1  

LiveBLAzer™ FRET-B/G 
Loading 
Kit with CCF2-AM 

Thermo Fischer 
Scientific K1032  

Luciferase Assay System 
 Promega E1500  

MEM Non-Essential Amino 
Acids Solution (100X) Gibco™ 11140050  

Methanol TH.Geyer 1437.2511  

Milk powder Carl Roth T154.3  

Nucleobond® Xtra Midi kit Macherey-Nagel 740410.1  

NucleoSpin™ Gel and PCR 
Clean- 
up kit 

Macherey-Nagel 740609.25  

NucleoZOL Macherey-Nagel 740404.2  

PageRuler™ Plus 
prestained protein 
ladder 

Thermo Fisher 
Scientific 26619  

Paraformaldehyde (PFA) AppliChem A3813.1000  

Penicillin/ Streptomy- 
cin (Pen/Strep) Sigma-Aldrich P0781 100 units/ml penicillin and 

0.1 mg/ml streptomycin 

PowerUp™ SYBR™ Green 
Master Mix for qPCR 

Applied 
Biosystems™ A25742  

Puromycin dihydro- 
gen chloride Carl-Roth 0240.3 0.1µg/ml 

RiboLock RNase inhibitor Thermo Fisher 
Scientific EO0382  

RNase-free water Sigma-Aldrich W4502  

RosetteSep™ Human Stemcell 15062  
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CD4+ T cell 
Enrichment Cocktail 

Technologies 

SensiFAST™ Probe No-
ROX One-Step Kit Meridian Bioscience BIO-76001  

SmartLadder 200-10000bp Eurogentec MW-1700-10  

Sodium azide (NaN3) Carl Roth 4221.3  

Sodium Pyruvate (100 mM) Gibco™ 11360070  

SuperSignal™ West Femto 
Maxi- 
mum Sensitivity Substrate 

Thermo Fischer 
Scientific 34095  

SYBR™ Safe DNA gel 
stain 

Thermo Fisher 
Scientific S33102  

Triton X-100 Carl Roth 3051.2  

Trypan blue Sigma-Aldrich T8154  

TurboFect™ transfection 
reagent 

Thermo Fischer 
Scientific R0531  

Tween-20 Carl Roth Z0152-100G  

T-20 Fuzeon (Enfuvirtide) Roche - 90mg/ml 
 
 
Table 2.3 List of homemade buffers and solutions. 

Buffer/Solution Components Application 

10x Tris-Glycine running 
buffer 

250 mM Tris base 
0.1% SDS 
1.92 M Glycine 

SDS-PAGE running buffer 

FACS buffer PBS 
1% FCS 
0.009% NaN3 

Sterile-filtered 

Flow cytometry staining and 
assay 

CCF2 staining solution 2 µL CCF2 dye from LiveBlazer kit 
10 µL Probenecid 
8 µL Solution B 
1 mL CO2-independent medium 

Fusion assay staining 

2x SG-PERT reaction buffer 1x SG-PERT Dilution buffer 
10 mM MgCl2 
0.2 mg/mL BSA 
0.4 mM each dNTP 
1 µM forward primer 
1 µM reverse primer 
8 ng MS2 RNA 
1x SYBR™ Green I Master Mix 

Reagents for SG-PERT 

2x SG-PERT lysis buffer 50 mM Potassium chloride (KCl) 
100 mM Tris-HCl pH 7.4 
40% Glycerol 
1% Triton X-100 

Reagents for SG-PERT 
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10x SG-PERT dilution buffer 50 mM Ammonium sulfate 
200 mM KCl 
200 mM Tris-HCl pH 8 

Reagents for SG-PERT 

25% (w/v) sucrose 125 g sucrose 
PBS to 500 mL 
Sterile-filtered 

VLP and lentiviral purification 

10x Tris-Glycine transfer 
buffer 

250 mM Tris base 
1.92 M Glycine 

Western blot transfer buffer 

10x Tris-buffered saline (TBS) 500 mM Tris base 
1.5 M NaCl 
pH adjusted to 7.5 with HCl 

Western blot wash buffer 

1x TBS-T 1x TBS 
0.1% Tween-20 

Western blot wash buffer 

 
 
Table 2.4 List of primers and DNA fragments used for Gibson cloning and RT-qPCR. 

Product Type Name Sequence (5’ - 3’) Usage 

Primer 

hACE2_Fwd ACTACCCCAAGCTGGCCTCTGAGGCCACCATGTCAAGCTCTTCC
TGGCTCC Cloning 

hACE2_Rev GATCCCCAAGCTTGGCCTGACAGGCCTTCGAATTAGAGAGTTAT
CACTTATCGTCGTCATCCTTGTAATCCAGGAT Cloning 

OTOF1_Fwd ACTACCCCAAGCTGGCCTCTGAGGCCACCATGGCCTTGCTCATC Cloning 

OTOF1_Rev 
GCGAGCTCTAGAGAATTGATCCCCAAGCTTGGCCTCTAAGCGTA
ATCTGGAACATCGTATGGGTAGCCGCCGCTAGCTGTAGATCCGC
CAGAGGCAGTCGACCCGCCGGCCCCGAGGATTTTCTTGAC 

Cloning 

OTOF4_Fwd ACTACCCCAAGCTGGCCTCTGAGGCCACCATGATCAAAACGGA
GAAG Cloning 

OTOF4_Rev 
GCGAGCTCTAGAGAATTGATCCCCAAGCTTGGCCTCTAAGCGTA
ATCTGGAACATCGTATGGGTAGCCGCCGCTAGCTGTAGATCCGC
CAGAGGCAGTCGACCCGCCTGCCCCAAGGAGCTTTTTGAC 

Cloning 

OTOF_qPCR_Fwd CAAAGACGGCAAAGTGGACG RT-qPCR 

OTOF_qPCR_Rev GGCTTCCTCTGACCGTTCTC RT-qPCR 

18s_Fwd GTAACCCGTTGAACCCCATT RT-qPCR 

18s_Rev CCATCCAATCGGTAGTAGCG RT-qPCR 

GAPDH_Fwd GTCTCCTCTGACTTCAACAGCG RT-qPCR 

GAPDH_Rev ACCACCCTGTTGCTGTAGCCAA RT-qPCR 

OAS1_Fwd CCAAGGTGGTAAAGGGTGGCT RT-qPCR 

OAS1_Rev CTGGACCTCAAACTTCACGGAAA RT-qPCR 

IRF3_Fwd TCTGCCCTCAACCGCAAAGAAG RT-qPCR 

IRF3_Rev TACTGCCTCCACCATTGGTGTC RT-qPCR 
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IRF7_Fwd CCACGCTATACCATCTACCTGG RT-qPCR 

IRF7_Rev GCTGCTATCCAGGGAAGACACA RT-qPCR 

IL6_Fwd AGACAGCCACTCACCTCTTCAG RT-qPCR 

IL6_Rev TTCTGCCAGTGCCTCTTTGCTG RT-qPCR 

DNA fragment OTOF-201 

actaccccaagctggcctctgAGGCCACCATGGCCTTGCTCATCCACCTC
AAGACAGTCTCGGAGCTGCGGGGCAGGGGCGACCGGATCGCC
AAAGTGACTTTCCGAGGGCAATCCTTCTACTCTCGGGTCCTGGA
GAACTGTGAGGATGTGGCTGACTTTGATGAGACATTTCGGTGGC
CGGTGGCCAGCAGCATCGACAGAAATGAGATGCTGGAGATTCA
GGTTTTCAACTACAGCAAAGTCTTCAGCAACAAGCTCATCGGGA
CCTTCCGCATGGTGCTGCAGAAGGTGGTAGAGGAGAGCCATGT
GGAGGTGACTGACACGCTGATTGATGACAACAATGCTATCATCA
AGACCAGCCTGTGCGTGGAGGTCCGGTATCAGGCCACTGACGG
CACAGTGGGCTCCTGGGACGATGGGGACTTCCTGGGAGATGAG
TCTCTTCAAGAGGAAGAGAAGGACAGCCAAGAGACGGATGGAC
TGCTCCCAGGCTCCCGGCCCAGCTCCCGGCCCCCAGGAGAGAA
GAGCTTCCGGAGAGCCGGGAGGAGCGTGTTCTCCGCCATGAAG
CTCGGCAAAAACCGGTCGCACAAGGAGGAGCCCCAAAGACCAG
ATGAACCGGCGGTGCTGGAGATGGAAGACCTTGACCATCTGGC
CATTCGGCTAGGAGATGGACTGGATCCCGACTCGGTGTCTCTAG
CCTCAGTCACAGCTCTCACCACTAATGTCTCCAACAAGCGATCT
AAGCCAGACATTAAGATGGAGCCAAGTGCTGGGCGGCCCATGG
ATTACCAGGTCAGCATCACGGTGATCGAGGCCCGGCAGCTGGT
GGGCTTGAACATGGACCCTGTGGTGTGCGTGGAGGTGGGTGAC
GACAAGAAGTACACATCCATGAAGGAGTCCACTAACTGCCCCTA
TTACAACGAGTACTTCGTCTTCGACTTCCATGTCTCTCCGGATGT
CATGTTTGACAAGATCATCAAGATTTCGGTGATTCACTCCAAGAA
CCTGCTGCGCAGTGGCACCCTGGTGGGCTCCTTCAAAATGGAC
GTGGGAACCGTGTACTCGCAGCCAGAGCACCAGTTCCATCACA
AGTGGGCCATCCTGTCTGACCCCGATGACATCTCCTCGGGGCT
GAAGGGCTACGTGAAGTGTGACGTTGCCGTGGTGGGCAAAGGG
GACAACATCAAGACGCCCCACAAGGCCAATGAGACAGACGAAG
ATGACATTGAGGGGAACTTGCTGCTCCCCGAGGGGGTGCCCCC
CGAACGCCAGTGGGCCCGGTTCTATGTGAAAATTTACCGAGCAG
AGGGGCTGCCCCGTATGAACACAAGCCTCATGGCCAATGTAAA
GAAGGCTTTCATCGGTGAAAACAAGGACCTCGTGGACCCCTACG
TGCAAGTCTTCTTTGCTGGCCAGAAGGGCAAGACTTCAGTGCAG
AAGAGCAGCTATGAGCCCCTGTGGAATGAGCAGGTCGTCTTTAC
AGACCTCTTCCCCCCACTCTGCAAACGCATGAAGGTGCAGATCC
GAGACTCGGACAAGGTCAACGACGTGGCCATCGGCACCCACTT
CATTGACCTGCGCAAGATTTCTAATGACGGAGACAAAGGCTTCC
TGCCCACACTGGGCCCAGCCTGGGTGAACATGTACGGCTCCAC
ACGTAACTACACGCTGCTGGATGAGCATCAGGACCTGAACGAG
GGCCTGGGGGAGGGTGTGTCCTTCCGGGCCCGGCTCCTGCTG
GGCCTGGCTGTGGAGATCGTAGACACCTCCAACCCTGAGCTCA
CCAGCTCCACAGAGGTACAGGTGGAGCAGGCCACGCCCATCTC
GGAGAGCTGTGCAGGTAAAATGGAAGAATTCTTTCTCTTTGGAG
CCTTCCTGGAGGCCTCAATGATCGACCGGAGAAACGGAGACAA
GCCCATCACCTTTGAGGTCACCATAGGCAACTATGGGAACGAAG
TTGATGGCCTGTCCCGGCCCCAGCGGCCTCGGCCCCGGAAGG
AGCCGGGGGATGAGGAAGAAGTAGACCTGATTCAGAACGCAAG
TGATGACGAGGCCGGTGATGCCGGGGACCTGGCCTCAGTCTCC
TCCACTCCACCAATGCGGCCCCAGGTCACCGACAGGAACTACTT
CCATCTGCCCTACCTGGAGCGAAAGCCCTGCATCTACATCAAGA
GCTGGTGGCCGGACCAGCGCCGCCGCCTCTACAATGCCAACAT
CATGGACCACATTGCCGACAAGCTGGAAGAAGGCCTGAACGAC
ATACAGGAGATGATCAAAACGGAGAAGTCCTACCCTGAGCGTCG
CCTGCGGGGCGTCCTGGAGGAGCTGAGCTGTGGCTGCTGCCG
CTTCCTCTCCCTCGCTGACAAGGACCAGGGCCACTCATCCCGCA
CCAGGCTTGACCGGGAGCGCCTCAAGTCCTGCATGAGGGAGCT
GGAAAACATGGGGCAGCAGGCCAGGATGCTGCGGGCCCAGGT
GAAGCGGCACACGGTGCGGGACAAGCTGAGGCTGTGCCAGAA
CTTCCTGCAGAAGCTGCGCTTCCTGGCGGACGAGCCCCAGCAC
AGCATTCCCGACATCTTCATCTGGATGATGAGCAACAACAAGCG
TGTCGCCTATGCCCGTGTGCCCTCCAAGGACCTGCTCTTCTCCA
TCGTGGAGGAGGAGACTGGCAAGGACTGCGCCAAGGTCAAGAC
GCTCTTCCTTAAGCTGCCAGGGAAGCGGGGCTTCGGCTCGGCA
GGCTGGACAGTGCAGGCCAAGGTGGAGCTGTACCTGTGGCTGG

Cloning 
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GCCTCAGCAAACAGCGCAAGGAGTTCCTGTGCGGCCTGCCCTG
TGGCTTCCAGGAGGTCAAGGCAGCCCAGGGCCTGGGCCTGCAT
GCCTTCCCACCCGTCAGCCTGGTCTACACCAAGAAGCAGGCGT
TCCAGCTCCGAGCGCACATGTACCAGGCCCGCAGCCTCTTTGC
CGCCGACAGCAGCGGACTCTCAGACCCCTTTGCCCGCGTCTTC
TTCATCAATCAGAGTCAGTGCACAGAGGTGCTGAATGAGACTCT
GTGTCCCACCTGGGACCAGATGCTGGTGTTCGACAACCTGGAG
CTCTATGGTGAAGCTCATGAGCTGAGGGACGATCCGCCCATCAT
TGTCATTGAAATCTATGACCAGGATTCCATGGGCAAAGCTGACTT
CATGGGCCGGACCTTCGCCAAACCCCTGGTGAAGATGGCAGAC
GAGGCGTACTGCCCACCCCGCTTCCCACCTCAGCTCGAGTACT
ACCAGATCTACCGTGGCAACGCCACAGCTGGAGACTTGCTGGC
GGCCTTCGAGCTGCTGCAGATTGGACCAGCAGGGAAGGCTGAC
CTGCCCCCCATCAATGGCCCGGTGGACGTGGACCGAGGTCCCA
TCATGCCCGTGCCCATGGGCATCCGGCCCGTGCTCAGCAAGTA
CCGAGTGGAGGTGCTGTTCTGGGGCCTACGGGACCTAAAGCGG
GTGAACCTGGCCCAGGTGGACCGGCCACGGGTGGACATCGAGT
GTGCAGGGAAGGGGGTGCAGTCGTCCCTGATCCACAATTATAA
GAAGAACCCCAACTTCAACACCCTCGTCAAGTGGTTTGAAGTGG
ACCTCCCAGAGAACGAGCTGCTGCACCCGCCCTTGAACATCCG
TGTGGTGGACTGCCGGGCCTTCGGTCGCTACACACTGGTGGGC
TCCCATGCCGTCAGCTCCCTGCGACGCTTCATCTACCGGCCCC
CAGACCGCTCGGCCCCCAGCTGGAACACCACGGTCAGGCTTCT
CCGGCGCTGCCGTGTGCTGTGCAATGGGGGCTCCTCCTCTCAC
TCCACAGGGGAGGTTGTGGTGACTATGGAGCCAGAGGTACCCA
TCAAGAAACTGGAGACGATGGTGAAGCTGGACGCGACTTCTGAA
GCTGTTGTCAAGGTGGATGTGGCTGAGGAGGAGAAGGAGAAGA
AGAAGAAGAAGAAGGGCACTGCGGAGGAGCCAGAGGAGGAGG
AGCCAGACGAGAGCATGCTGGACTGGTGGTCCAAGTACTTTGC
CTCCATTGACACCATGAAGGAGCAACTTCGACAACAAGAGCCCT
CTGGAATTGACTTGGAGGAGAAGGAGGAAGTGGACAATACCGA
GGGCCTGAAGGGGTCAATGAAGGGCAAGGAGAAGGCAAGGGC
TGCCAAAGAGGAGAAGAAGAAGAAAACTCAGAGCTCTGGCTCTG
GCCAGGGGTCCGAGGCCCCCGAGAAGAAGAAACCCAAGATTGA
TGAGCTTAAGGTATACCCCAAAGAGCTGGAGTCCGAGTTTGATA
ACTTTGAGGACTGGCTGCACACTTTCAACTTGCTTCGGGGCAAG
ACCGGGGATGATGAGGATGGCTCCACCGAGGAGGAGCGCATTG
TGGGACGCTTCAAGGGCTCCCTCTGCGTGTACAAAGTGCCACTC
CCAGAGGACGTGTCCCGGGAAGCCGGCTACGACTCCACCTACG
GCATGTTCCAGGGCATCCCGAGCAATGACCCCATCAATGTGCTG
GTCCGAGTCTATGTGGTCCGGGCCACGGACCTGCACCCTGCTG
ACATCAACGGCAAAGCTGACCCCTACATCGCCATCCGGCTAGG
CAAGACTGACATCCGCGACAAGGAGAACTACATCTCCAAGCAGC
TCAACCCTGTCTTTGGGAAGTCCTTTGACATCGAGGCCTCCTTC
CCCATGGAATCCATGCTGACGGTGGCTGTGTATGACTGGGACCT
GGTGGGCACTGATGACCTCATTGGGGAAACCAAGATCGACCTG
GAGAACCGCTTCTACAGCAAGCACCGCGCCACTTGCGGCATCG
CCCAGACCTACTCCACACATGGCTACAATATCTGGCGGGACCCC
ATGAAGCCCAGCCAGATCCTGACCCGCCTCTGCAAAGACGGCA
AAGTGGACGGCCCCCACTTTGGGCCCCCTGGGAGAGTGAAGGT
GGCCAACCGCGTCTTCACTGGGCCCTCTGAGATTGAGGACGAG
AACGGTCAGAGGAAGCCCACAGACGAGCATGTGGCGCTGTTGG
CCCTGAGGCACTGGGAGGACATCCCCCGCGCAGGCTGCCGCC
TGGTGCCAGAGCATGTGGAGACGAGGCCGCTGCTCAACCCCGA
CAAGCCGGGCATCGAGCAGGGCCGCCTGGAGCTGTGGGTGGA
CATGTTCCCCATGGACATGCCAGCCCCTGGGACGCCTCTGGAC
ATCTCACCTCGGAAGCCCAAGAAGTACGAGCTGCGGGTCATCAT
CTGGAACACAGATGAGGTGGTCTTGGAGGACGACGACTTCTTCA
CAGGGGAGAAGTCCAGTGACATCTTCGTGAGGGGGTGGCTGAA
GGGCCAGCAGGAGGACAAGCAGGACACAGACGTCCACTACCAC
TCCCTCACTGGCGAGGGCAACTTCAACTGGCGCTACCTGTTCCC
CTTCGACTACCTGGCGGCGGAGGAGAAGATCGTCATCTCCAAG
AAGGAGTCCATGTTCTCCTGGGACGAGACGGAGTACAAGATCC
CCGCGCGGCTCACCCTGCAGATCTGGGATGCGGACCACTTCTC
CGCTGACGACTTCCTGGGGGCCATCGAGCTGGACCTGAACCGG
TTCCCGCGGGGCGCAAAGACAGCCAAGCAGTGCACCATGGAGA
TGGCCACCGGGGAGGTGGACGTGCCCCTCGTGTCCATCTTCAA
GCAAAAGCGCGTCAAAGGCTGGTGGCCCCTCCTGGCCCGCAAT
GAGAACGATGAGTTTGAGCTCACGGGCAAGGTGGAGGCTGAGC
TGCATTTACTGACAGCAGAGGAGGCAGAGAAGAACCCAGTGGG
CCTGGCCCGCAATGAACCTGACCCCCTAGAGAAACCCAACCGG
CCCGACACGAGCTTCATCTGGTTCCTGAACCCTCTCAAGTCGGC
TCGCTACTTCTTGTGGCACACGTATCGCTGGCTGCTCCTCAAAC
TGTTGCTGCTCCTGCTGCTGCTCCTCCTCCTCGCCCTGTTCCTC
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TACTCTGTGCCTGGCTACCTGGTCAAGAAAATCCTCGGGGCCG
GCGGGTCGACTGCCTCTGGCGGATCTACAGCTAGCGGCGGCTA
CCCATACGATGTTCCAGATTACGCTTAGaggccaagcttggggatcaattct
ctagagctcgc 

OTOF-204 

GGATCCACTAGTCCAGTGTGGTGGAATTCTGCAGATATCAACAA
GTTTGTACAAAAAAGCAGGCTCCACCATGATCAAAACGGAGAAG
TCCTACCCTGAGCGTCGCCTGCGGGGCGTCCTGGAGGAGCTGA
GCTGTGGCTGCTGCCGCTTCCTCTCCCTCGCTGACAAGGACCA
GGGCCACTCATCCCGCACCAGGCTTGACCGGGAGCGCCTCAAG
TCCTGCATGAGGGAGCTGGAAAACATGGGGCAGCAGGCCAGGA
TGCTGCGGGCCCAGGTGAAGCGGCACACGGTGCGGGACAAGC
TGAGGCTGTGCCAGAACTTCCTGCAGAAGCTGCGCTTCCTGGC
GGACGAGCCCCAGCACAGCATTCCCGACATCTTCATCTGGATGA
TGAGCAACAACAAGCGTGTCGCCTATGCCCGTGTGCCCTCCAA
GGACCTGCTCTTCTCCATCGTGGAGGAGGAGACTGGCAAGGAC
TGCGCCAAGGTCAAGACGCTCTTCCTTAAGCTGCCAGGGAAGC
GGGGCTTCGGCTCGGCAGGCTGGACAGTGCAGGCCAAGGTGG
AGCTGTACCTGTGGCTGGGCCTCAGCAAACAGCGCAAGGAGTT
CCTGTGCGGCCTGCCCTGTGGCTTCCAGGAGGTCAAGGCAGCC
CAGGGCCTGGGCCTGCATGCCTTCCCACCCGTCAGCCTGGTCT
ACACCAAGAAGCAGGCGTTCCAGCTCCGAGCGCACATGTACCA
GGCCCGCAGCCTCTTTGCCGCCGACAGCAGCGGACTCTCAGAC
CCCTTTGCCCGCGTCTTCTTCATCAATCAGAGTCAGTGCACAGA
GGTGCTGAATGAGACCCTGTGTCCCACCTGGGACCAGATGCTG
GTGTTCGACAACCTGGAGCTCTATGGTGAAGCTCATGAGCTGAG
GGACGATCCGCCCATCATTGTCATTGAAATCTATGACCAGGATT
CCATGGGCAAAGCTGACTTCATGGGCCGGACCTTCGCCAAACC
CCTGGTGAAGATGGCAGACGAGGCGTACTGCCCACCCCGCTTC
CCACCTCAGCTCGAGTACTACCAGATCTACCGTGGCAACGCCAC
AGCTGGAGACCTGCTGGCGGCCTTCGAGCTGCTGCAGATTGGA
CCAGCAGGGAAGGCTGACCTGCCCCCCATCAATGGCCCGGTGG
ACGTGGACCGAGGTCCCATCATGCCCGTGCCCATGGGCATCCG
GCCCGTGCTCAGCAAGTACCGAGTGGAGGTGCTGTTCTGGGGC
CTACGGGACCTAAAGCGGGTGAACCTGGCCCAGGTGGACCGGC
CACGGGTGGACATCGAGTGTGCAGGGAAGGGGGTGCAGTCGT
CCCTGATCCACAATTATAAGAAGAACCCCAACTTCAACACCCTC
GTCAAGTGGTTTGAAGTGGACCTCCCAGAGAACGAGCTGCTGC
ACCCGCCCTTGAACATCCGTGTGGTGGACTGCCGGGCCTTCGG
TCGCTACACACTGGTGGGCTCCCATGCCGTCAGCTCCCTGCGA
CGCTTCATCTACCGGCCCCCAGACCGCTCGGCCCCCAGCTGGA
ACACCACGGGGGAGGTTGTGGTGACTATGGAGCCAGAGGTACC
CATCAAGAAACTGGAGACCATGGTGAAGCTGGACGCGACTTCTG
AAGCTGTTGTCAAGGTGGATGTGGCTGAGGAGGAGAAGGAGAA
GAAGAAGAAGAAGAAGGGCACTGCGGAGGAGCCAGAGGAGGA
GGAGCCAGACGAGAGCATGCTGGACTGGTGGTCCAAGTACTTT
GCCTCCATTGACACCATGAAGGAGCAACTTCGACAACAAGAGCC
CTCTGGAATTGACTTGGAGGAGAAGGAGGAAGTGGACAATACC
GAGGGCCTGAAGGGGTCAATGAAGGGCAAGGAGAAGGCAAGG
GCTGCCAAAGAGGAGAAGAAGAAGAAAACTCAGAGCTCTGGCT
CTGGCCAGGGGTCCGAGGCCCCCGAGAAGAAGAAACCCAAGAT
TGATGAGCTTAAGGTATACCCCAAAGAGCTGGAGTCCGAGTTTG
ATAACTTTGAGGACTGGCTGCACACTTTCAACTTGCTTCGGGGC
AAGACCGGGGATGATGAGGATGGCTCCACCGAGGAGGAGCGC
ATTGTGGGACGCTTCAAGGGCTCCCTCTGCGTGTACAAAGTGCC
ACTCCCAGAGGACGTGTCCCGGGAAGCCGGCTACGACTCCACC
TACGGCATGTTCCAGGGCATCCCGAGCAATGACCCCATCAATGT
GCTGGTCCGAGTCTATGTGGTCCGGGCCACGGACCTGCACCCT
GCTGACATCAACGGCAAAGCTGACCCCTACATCGCCATCCGGCT
AGGCAAGACTGACATCCGCGACAAGGAGAACTACATCTCCAAGC
AGCTCAACCCTGTCTTTGGGAAGTCCTTTGACATCGAGGCCTCC
TTCCCCATGGAATCCATGCTGACGGTGGCTGTGTATGACTGGGA
CCTGGTGGGCACTGATGACCTCATTGGGGAAACCAAGATCGAC
CTGGAGAACCGCTTCTACAGCAAGCACCGCGCCACCTGCGGCA
TCGCCCAGACCTACTCCACACATGGCTACAATATCTGGCGGGAC
CCCATGAAGCCCAGCCAGATCCTGACCCGCCTCTGCAAAGACG
GCAAAGTGGACGGCCCCCACTTTGGGCCCCCTGGGAGAGTGAA
GGTGGCCAACCGCGTCTTCACTGGGCCCTCTGAGATTGAGGAC
GAGAACGGTCAGAGGAAGCCCACAGACGAGCATGTGGCGCTGT
TGGCCCTGAGGCACTGGGAGGACATCCCCCGCGCAGGCTGCC
GCCTGGTGCCAGAGCATGTGGAGACGAGGCCGCTGCTCAACCC
CGACAAGCCGGGCATCGAGCAGGGCCGCCTGGAGCTGTGGGT
GGACATGTTCCCCATGGACATGCCAGCCCCTGGGACGCCTCTG
GACATCTCACCTCGGAAGCCCAAGAAGTACGAGCTGCGGGTCA

Cloning 
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TCATCTGGAACACAGATGAGGTGGTCTTGGAGGACGACGACTTC
TTCACAGGGGAGAAGTCCAGTGACATCTTCGTGAGGGGGTGGC
TGAAGGGCCAGCAGGAGGACAAGCAGGACACAGACGTCCACTA
CCACTCCCTCACTGGCGAGGGCAACTTCAACTGGCGCTACCTGT
TCCCCTTCGACTACCTGGCGGCGGAGGAGAAGATCGTCATCTC
CAAGAAGGAGTCCATGTTCTCCTGGGACGAGACCGAGTACAAG
ATCCCCGCGCGGCTCACCCTGCAGATCTGGGATGCGGACCACT
TCTCCGCTGACGACTTCCTGGGGGCCATCGAGCTGGACCTGAA
CCGGTTCCCGCGGGGCGCAAAGACAGCCAAGCAGTGCACCATG
GAGATGGCCACCGGGGAGGTGGACGTGCCCCTCGTGTCCATCT
TCAAGCAAAAGCGCGTCAAAGGCTGGTGGCCCCTCCTGGCCCG
CAATGAGAACGATGAGTTTGAGCTCACGGGCAAGGTGGAGGCT
GAGCTGCATTTACTGACAGCAGAGGAGGCAGAGAAGAACCCAG
TGGGCCTGGCCCGCAATGAACCTGACCCCCTAGAGAAACCCAA
CCGGCCCGACACGGCCTTCGTCTGGTTCCTCAACCCTCTCAAGT
CCATCAAGTACCTCATCTGCACCCGGTACAAGTGGCTCATCATC
AAGATCGTGCTGGCGCTGTTGGGGCTGCTCATGTTGGGGCTCT
TCCTCTACAGCCTCCCTGGCTACATGGTCAAAAAGCTCCTTGGG
GCATTGGACCCAGCTTTCTTGTACAAAGTGGTTGATATCCAGCA
CAGTGGCGGCCGCTCGAGTCTAGAGGGCCCGCGGTTCGA 

 
Table 2.5 List of antibodies used for western blotting and flow cytometry. 

Antibody type Reagent Supplier Catalog Number 

Primary 

HA Tag Polyclonal 
Antibody (SG77) Invitrogen 71-5500 

Anti-γ-Tubulin antibody, 
Mouse monoclonal Merck T5326-25UL 

Anti-GAPDH, Rabbit 
polyclonal Invitrogen PA1-988 

Anti-VSV-G (P5D4) Santa Cruz 
Biotechnology sc-66180 

Human/Mouse/Rat/Hamster 
ACE-2 Antibody R&D Systems AF933 

Otoferlin Polyclonal 
Antibody Invitrogen PA5-79776 

Recombinant Anti-ACE2 
Neutralising Antibody Sino Biological 10108-MM36 

Secondary 

Peroxidase AffiniPure™ 
Goat Anti-Mouse IgG (H+L) 

Jackson 
Immunoresearch 115-035-062 

Peroxidase AffiniPure™ 
Rabbit Anti-Sheep IgG 
(H+L) 

Jackson 
Immunoresearch 313-035-003 

Peroxidase AffiniPure™ 
Goat Anti-Rabbit IgG (H+L) 

Jackson 
Immunoresearch 111-035-144 
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Table 2.6 List of plasmids used for Gibson cloning and lentivirus/virus-like-particle generation. 

 
 

Internal 
ID Plasmid name Alias Source Resistance 

(bacteria) 

A6 pWPXL - Baldauf lab (originally 
from Didier Trono) ampR 

A35 BLaM-Vpr - Baldauf lab ampR 

I66 pADVANTAGE - 
Baldauf lab (originally 
purchased from  
Warner Greene) 

ampR 

I72 pPAX - Baldauf lab (originally 
from Didier Trono) ampR 

I73 VSV-G - Baldauf lab (originally 
from Didier Trono) ampR 

O22 pSB100X Transposase 
Baldauf lab (originally 
purchased from 
Addgene) 

CMR 

P12 pVpr-GFP Vpr-GFP Baldauf lab kanaR 

P16 pCHIV.delta.env Delta env Baldauf lab (originally 
from Barbara Müller) ampR 

R48 pLenti6.3-OTOF1-V5-DEST HsCD00871312 Purchased from 
DNASU ampR 

R49 psBbi-hACE2-FLAG-BFP ACE2 Generated via gibson 
cloning ampR 

R52 pSBbi-OTOF1-HA-dTomato OTOF1 Generated via gibson 
cloning ampR 

R53 pSBbi-OTOF4-HA-dTomato OTOF4 Generated via gibson 
cloning ampR 

S55 pCG1_2019-nCoV-S-HA 2019-nCOV Baldauf lab (originally 
from Goffinet Lab) ampR 

S62 pCDH_EF1-hACE2-C-FLAG-T2A-
mtagBFP - Baldauf lab ampR 

S67 pGC1_SARS-CoV2-Spike-HA-P1 BRA (Gamma) Baldauf lab (originally 
from Goffinet Lab) ampR 

S68 pGC1_SARS-CoV2-Spike-HA-
B.1.351 SA (Beta) Baldauf lab (originally 

from Goffinet Lab) ampR 

S70 pGC1_SARS-CoV2-Spike-HA-BA1 BA.1 (Omicron) Baldauf lab (originally 
from Goffinet Lab) ampR 

S71 pGC1_SARS-CoV2-Spike-HA-BA2 BA.2 (Omicron) Baldauf lab (originally 
from Goffinet Lab) ampR 
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Table 2.7 List of cell lines used for assays.  
Also included are lists of bacterial cells used for plasmid transformation. 
Cell lines &  
bacterial cells Description & usage Source 

HEK293T 

Adherent human embryonic kidney cell line 
containing SV40 large T antigen used for: 
1. Lentivirus and VLP generation 
2. Generation of ACE2, OTOF1 and OTOF4 
cell lines 

Baldauf lab (originally 
purchased from DSMZ) 

TZMbl 

Adherent cell line from human HeLa derivate 
expressing CD4, CCR5, CXCR4, LTR-driven ß-
Galactosidase and firefly luciferase. Used in 
HIV-1 infection assays 

Baldauf lab (originally 
received via the AIDS 
repository) 

Vero 
Adherent kidney cell line from African green 
monkey used for Yellow Fever virus infection 
assays 

Simon Rothenfußer 

1205Lu 
Adherent human lung metastasis from 
melanoma cell line used for Yellow Fever virus 
infection assays 

Simon Rothenfußer 

Stabl II Chemically competent E. coli cells used for 
plasmid transformation NEB 

Stabl III Chemically competent E. coli cells used for 
plasmid transformation NEB  

 
 
Table 2.8 List of media used for cell culture and cloning. 

Media Supplier Catalog 
Number Notes 

CO2-independent medium Gibco™ 18045054  

Dulbecco’s modified eagle 
medium 
(DMEM) 

Gibco™ 31966047 Unless stated otherwise, media was 
prepared as follows: 
 
Complete DMEM Media 
500ml DMEM 
10% heat-inactivated FCS 
100 units/ml penicilin 
0.1mg/ml streptomycin 
 
DMEM Freezing Media 
70% complete DMEM media 
20% heat-inactivated FCS 
10% DMSO 

LB agar TH-Geyer 8822  

LB medium TH-Geyer 8885.05  

Opti-MEM™ I Reduced 
Serum Medium 

Gibco™ 31985070  

Roswell Park Memorial Gibco™ 61870044 Unless stated otherwise, media was 
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Institute 
(RPMI) 1640 Medium 

prepared as follows: 
 
Complete RPMI Media 
500ml RPMI 
10% heat-inactivated FCS 
100 units/ml penicilin 
0.1mg/ml streptomycin 
 
RPMI Freezing Media 
70% complete RPMI media 
20% heat-inactivated FCS 
10% DMSO 

TB medium TH-Geyer 8049  
 
 
Table 2.9 List of equipment used for all assays. 

Equipment Supplier Catalog 
Number Source 

BD FACSLyric™ Flow 
Cytometry System 

BD Biosciences - Max von Pettenkofer Institute and 
Gene Center, Virology, 
National Reference Center for 
Retroviruses, 
Faculty of Medicine, LMU Munich, 
Germany 

Centrifuge 5427R Eppendorf 5702R Max von Pettenkofer Institute and 
Gene Center, Virology, 
National Reference Center for 
Retroviruses, 
Faculty of Medicine, LMU Munich, 
Germany 

Centrifuge 5920R Eppendorf 5920R Max von Pettenkofer Institute and 
Gene Center, Virology, 
National Reference Center for 
Retroviruses, 
Faculty of Medicine, LMU Munich, 
Germany 

CFX96™ Real-Time 
System 

Bio-Rad - Max von Pettenkofer Institute and 
Gene Center, Virology, 
National Reference Center for 
Retroviruses, 
Faculty of Medicine, LMU Munich, 
Germany 

CLARIOstar Plus BMG Labtech - Max von Pettenkofer Institute and 
Gene Center, Virology, 
National Reference Center for 
Retroviruses, 
Faculty of Medicine, LMU Munich, 
Germany 
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CytoFLEX S Beckman 
Coulter 

B75408 Dr. Andreas Moosmann, 
Deutsches Zentrum für 
Infektionsforschung (DZIF), 
Helmholtz Munich, Germany 

Mastercycler® nexus X2- 
PCR Thermal Cycler 

Eppendorf - Max von Pettenkofer Institute and 
Gene Center, Virology, 
National Reference Center for 
Retroviruses, 
Faculty of Medicine, LMU Munich, 
Germany 

NanoDrop OneC 
Microvolume UV-Vis 
Spectrophotometers 

Thermo Fischer 
Scientific 

- Max von Pettenkofer Institute and 
Gene Center, Virology, 
National Reference Center for 
Retroviruses, 
Faculty of Medicine, LMU Munich, 
Germany 

Sorvall™ WX+ 
Ultracentrifuge 
*Used with a SureSpin 630 
(36 mL) rotor 

Thermo Fischer 
Scientific 

75000100 Max von Pettenkofer Institute and 
Gene Center, Virology, 
National Reference Center for 
Retroviruses, 
Faculty of Medicine, LMU Munich, 
Germany 

StepOnePlus Real-Time 
PCR Systems 

Applied 
Biosystems 

4376600 Prof Christoph Klein, 
Department of Pediatrics, 
Dr. von Hauner Children’s Hospital, 
University Hospital LMU Munich, 
Germany 

ThermoMixer® C Eppendorf 5382000015 Max von Pettenkofer Institute and 
Gene Center, Virology, 
National Reference Center for 
Retroviruses, 
Faculty of Medicine, LMU Munich, 
Germany 

UVP UVsolo touch Analytik Jena - Max von Pettenkofer Institute and 
Gene Center, Virology, 
National Reference Center for 
Retroviruses, 
Faculty of Medicine, LMU Munich, 
Germany 

Vilber Fusion FX Vilber - Max von Pettenkofer Institute and 
Gene Center, Virology, 
National Reference Center for 
Retroviruses, 
Faculty of Medicine, LMU Munich, 
Germany 
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2.2 Transcriptomic Analysis methods 

2.2.1 Ethics statement 

This study was performed in accordance with guidelines set by the Ethics Committee of the 

Faculty of Medicine, LMU Munich, Germany (Project approval number 20-263). Informed 

consent was obtained from all enrolled probands.  

2.2.2 Cohort information 

138 probands were recruited in total from the periods of March 2020 to March 2022 as part of 

a multi-omics project at Dr.von Hauner Children’s Hospital, University Hospital, LMU Munich, 

Germany. Probands were grouped into 5 Status groups based on SARS-CoV-2 positivity 

(PCR test) : Healthy, COVID, Non-COVID, MISC and Post-COVID. For this thesis, only the 

Healthy, COVID, Non-COVID and MISC samples were used, totalling 93 probands. Non-

COVID group represents probands that present with clinical symptoms resembling respiratory 

illnesses but test PCR negative for COVID-19.  

 

In total, whole blood from 32 Healthy, 30 COVID, 25 Non-COVID and 6 MISC probands were 

sent for bulk RNA sequencing at NGS Competence Center Tübingen. Of the 30 COVID 

samples, 1 patient had a WHO classification of 9 (severe) while the remaining 29 were in the 

‘moderate’ category. This proband was a female with Trisomy 21 (Down Syndrome), a pre-

existing comorbidity that has been shown to be an increased risk factor in COVID-19.  

 
Table 2.10 Cohort information for probands/samples used in this thesis.  
Values in brackets represent the median value for that variable unless otherwise stated. 

Variable 

Cohort  (N = 93) 

Healthy 
(N = 32) 

COVID 
(N = 30) 

Non-
COVID 
(N = 25) 

MISC 
(N = 6) 

Probands’ 
characteristics 

Sex 
Female 

Male 

 
13 13 9 1 
19 17 16 5 

Age 0-40 
(9) 

0-38 
(14.5) 

0-33 
(9.0) 

5-10 
(7.0) 

BMI 11.96-
25.96 

(17.44) 

11.24-
33.12(20.46) 

11.96-
29.97 

(19.31) 

12.43-
19.95 

(15.12) 
Clinical 
presentation 

WHO 
Classification NA 

1 -9  
(4) 

2 -7  
(4) 

4 -8  
(6.5) 
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Fever NA 13 14 6 
Cough NA 16 10 0 

Shortness of 
breath NA 10 7 1 

Sore throat NA 8 10 1 
Rhinitis NA 16 10 1 

Diarrhoea NA 6 5 5 
Emesis NA 6 7 5 

Abdominal 
pain NA 4 4 4 

Fatigue NA 17 15 5 
Headache NA 13 9 4 

Loss of 
smell/taste NA 10 1 1 

Lab parameters Haemoglobin 
(g/dl) 

12.4 - 
13.9 

(13.4) 
[N = 5] 

7.7 - 14.9 
(12.5) 

[N = 16] 

6.7 - 
16.4 

(12.9) 
[N = 24] 

8.5 - 
12.2 

(10.8) 
[N =6] 

Thrombocytes 
(G/l) 

188.0 - 
305.0 

(262.0) 
[N = 5] 

81.0 - 679.0 
(296.5) 
[N = 16] 

191.0 - 
543.0 

(285.0) 
[N = 25] 

140.0 - 
313.0 

(242.0) 
[N =6] 

Leukocytes 
(G/l) 4.3 - 7.6 

(6.8) 
[N = 5] 

3.7 - 14.0 
(6.4) 

[N = 16] 

3.8 - 
22.7 
(7.7) 

[N = 25] 

4.6 - 
12.5 
(8.8) 

[N =6] 
Neutrophils  

% 
34.0 - 
65.0 

(48.0) 
[N = 5] 

11.0 - 82.0 
(42.5) 

[N = 16] 

15.0 - 
87.0 

(60.0) 
[N = 25] 

25.0 - 
88.0 

(77.0) 
[N =6] 

Lymphocytes  
% 

27.0 - 
52.0 

(40.0) 
[N = 5] 

10.0 - 76.0 
(39.5) 

[N = 16] 

5.0 - 
77.0 

(31.0) 
[N = 25] 

8.0 - 
63.0 

(17.0) 
[N =6] 

Monocytes  
% 1.0 - 9.0 

(6.0) 
[N = 5] 

4.0 - 27.0 
(9.0) 

[N = 16] 

3.0 - 
27.0 
(8.3) 

[N = 25] 

2.0 - 
13.0 
(4.5) 

[N =6] 
CRP 

(mg/dl) 0.1- 0.3 
(0.1) 

[N = 5] 

0.0- 14.2 
(0.6) 

[N = 17] 

0.0 - 
13.8 
(0.2) 

[N = 23] 

5.0 - 
21.7 

(13.1) 
[N =6] 

Procalcitonin 
(ng/ml) 0.1 

[N = 2] 

0.06- 9.6 
(0.1) 

[N = 10] 

0.03 - 
11.8 
(0.1) 

[N = 13] 

0.6 - 
18.8 

(10.2) 
[N =4] 
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Ferritin 
(mg/dl) 

36.0- 
105.0 
(70.5) 
[N = 2] 

17.0- 727.0 
(80.0) 

[N = 11] 

14.0 - 
472.0 

(296.5) 
[N = 18] 

231.0 - 
405.0 

(366.0) 
[N =3] 

 

2.2.3 RNAseq data quantification and alignment 

RNA sample and library preparation was performed at  NGS Competence Center Tübingen 

prior to sequencing using their established protocol. Briefly, following RNA purification using 

QIAsymphony PAXgene Blood RNA kit, library preparation using polyA capture of mRNA was 

performed using the NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB). Total RNA 

libraries were prepared using the NEB Next Ultra II Directional RNA Library Prep Kit for 

Illumina (NEB) including the NEBNext Globin & rRNA Depletion Kit and according to the 

manufacturer’s instructions using the liquid handler Biomek i7 (Beckman). Library molarity 

was determined by measuring the library size (approximately 400 bp) using the Fragment 

Analyzer with the High NGS Fragment 1-6000bp assay (Agilent) and the library concentration 

(approximately 5 ng/µl) using the Infinite 200Pro (Tecan) and the Quant-iT HS Assay Kit 

(Thermo Fisher Scientific). The libraries were denatured, diluted to 270 pM and sequenced as 

paired-end 100bp reads on an Illumina NovaSeq6000 (Illumina, San Diego, CA, USA) with a 

sequencing depth of approximately 75 million clusters per sample. 

 

Fastq files were processed using the nf-core/rnaseq (version 3.9) pipeline with hg38 reference 

genome used for alignment using STAR (version 2.6.1d) and quantified using Salmon (version 

1.5.2). Quality of reads and quantification were assessed before proceeding with downstream 

analysis; with all samples passing quality control thresholds. Full list of software versions used 

in the analysis is available in Table 2.1.  

2.2.4 DGE analysis 

Limma (version 3.58.1) was used for differential gene analysis. First, 13 hemoglobin gene 

reads were removed (HBQ1, HBP1, HBS1L, HBEGF, HBZ, HBA2, HBG2, HBA1, HBM, HBE1, 

HBG1, HBD, HBB) to reduce bias during differential analysis. Following Principal Component 

Analysis (PCA) to identify any outliers (there were none), designs were defined using the 

model.matrix function : ~ Status + Age + Sex + Batch for the regular differential expression 

analysis and  ~ Status*Age + Sex + Batch for the age interaction analysis. As we had samples 

that were sequenced twice, duplicateCorrelation analysis was done and voom using the 

duplicate correlation coefficients was used. lmFit was then used along with an appropriate 



 

 41 

contrast and eBayes calculation was performed using default parameters. topTable was used 

to extract the results and data was plotted as required. Results were considered significant 

when adjusted p-value < 0.05 and log2 fold change > |1| unless stated otherwise.  

 

Gene Ontology over-representation analysis was done using ClusterProfiler with the enrichGO 

function. All genes quantified in our samples were used as background genes and the 

‘Biological Processes’ ontology was used. FDR correction was performed using the 

“Benjamini, Hochberg” method and  adjusted p-value < 0.05 was considered significant. Only 

gene sets with a minimum of 10 genes were used in the analysis.  

2.2.5 Isoform analysis 
Transcript count data from our samples were obtained as part of the nf-core/rnaseq pipeline 

output; using Salmon for pseudoalignment  and quantification. Log transcript per million (TPM) 

counts were used for plotting purposes while un-normalised transcript counts were used in the 

IsoformSwitchAnalyzerR tool (using default parameters as recommended in the vignette) to 

identify isoform switches between Status groups. The difference in isoform usages per Status 

group pairs are quantified as isoform fraction (dIF) where the differences in Isoform Fractions 

between the two groups of comparison are quantified, similar to log fold changes. 

 

After filtering for lowly expressing transcripts and genes that only have 1 isoform, DEXSeq 

function was used to test for differential isoform usage. Using an adjusted p-value < 0.05, no 

isoform switches were considered significant in our COVID vs Healthy comparison (data not 

shown). 

2.2.6 In silico cell type deconvolution  

For this analysis, a batch corrected count matrix was generated using removeBatchEffect from 

limma which was then used for the in silico cell type deconvolution analysis using CibersortX. 

First, we imputed the abundance of cell proportions in each sample using the ‘Impute Cell 

Fractions’ module along with the LM22 signature reference matrix.  Quantile normalization 

was disabled as recommended and the following parameters were used: 1000 permutations, 

B-mode batch correction  and absolute mode.  

 

To impute gene expression data per sample per cell type, the ‘Impute Cell Expression High-

Resolution’ mode was chosen. As with the fractions mode, LM22 was used as the reference 

matrix and the recommended LM10 merged classes reference was used to group cell types 
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into broader categories. To reduce run time, a gene subset consisting of only the 246 

significant genes found in COVID vs Healthy differential gene expression analysis was used. 

The following parameters were used: quantile normalisation was disabled and B-mode batch 

correction enabled.  

2.2.7 Weighted Gene Co-expression Network Analysis 
(WGCNA) 

Similar to the in silico cell type deconvolution analysis, a batch corrected count matrix was 

used. First, samples were clustered using hierarchical clustering and 1 Healthy sample was 

identified as outlier; subsequently removed from analysis. The TOMsimilarityFromExpr 

function was used to calculate the topological overlap matrix (TOM) using bidwieght 

midcorrelation. A signed hybrid network type was constructed using a soft-threshold power of 

12 and a maximum outlier percentile of 0.05 was used. A dissimilarity matrix (dissTOM) was 

constructed by subtracting 1-TOM to transform the data. Hierarchical clustering of the 

dissTOM was done using a minimum module size of 30. Modules whose expression profiles 

were very similar were merged to reduce the total number of modules 23.  

 

Modules were then correlated to phenotypes of interest (Status groups, WHO progression 

scale, Age and Sex) using the Student’s t-test. Module eigengenes, the gene that most 

represents each module, were identified using the moduleEigengenes function. Further, for 

each gene in a module, a gene module membership score was calculated by calculating the 

correlation of each gene with the module eigengene of the particular module using Pearson 

correlation. geneTraitSignificance was used to quantify the correlation between each gene 

and the phenotype of interest. To identify hub genes within a module, we ranked the genes 

within each module based on their geneTraitSignificance score and their module membership 

score and selected the top 10% of genes as the hub genes for that particular phenotype and 

module. Further, intramodular connectivity (kIM) for all genes within a module was computed 

using the intramodularConnectivity function. All functions used default parameters unless 

stated otherwise.  

 

Gene Ontology over-representation analysis was done using ClusterProfiler with the enrichGO 

function. All genes quantified in our samples were used as background genes and the 

‘Biological Processes’ ontology was used. FDR correction was performed using the 

“Benjamini, Hochberg” method and  adjusted p-value < 0.05 was considered significant. Only 

gene sets with a minimum of 10 genes were used in the analysis.  
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To construct weighted networks,  kIM scores were used as input and igraph was used for 

plotting. Graph objects containing nodes and edges were first constructed using the 

graph_from_data_frame function and ggraph was used for network plots, setting a seed to 

ensure reproducibility.  
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2.3 Experimental methods 

2.3.1 Primary human CD4+ T cells and monocyte-derived 
macrophages 

CD4+ T cells and monocytes were isolated from enriched blood in leukocyte reduction system 

chambers obtained from healthy blood donors, kindly received from the Hospital of the 

University of Munich (Department of Transfusion Medicine, Cell Therapeutics and 

Hemostaseology) (Project approval number 17-202-UE). Blood samples were first diluted with 

sterile PBS and were either subjected to CD4+ T cell isolation using the RosetteSep™ Human 

CD4+ T Cell Enrichment Cocktail or PBMC isolation. To obtain activated CD4+ T cells, IL-2 

and Phaseolus vulgaris agglutinin (PHA 5mg/ml) were added at a ratio of 1:34000 and 1:500, 

respectively, and the activated phenotype was observed approximately 24 hours later. All cells 

were incubated at 37ºC and 5% CO2. 

 

Following PBMC isolation using density gradient with Biocoll separating solution (1.077g/ml), 

monocytes were isolated using CD14 microbeads as per manufacturer's protocol for positive 

selection using LS MACS columns placed on a QuadroMACS™ Separator. Monocytes were 

further differentiated into monocyte-derived macrophages (MDMs) by cultivating cells in cell-

culture plates in RPMI 1640 GlutaMAX media supplemented with 10% heat-inactivated Fetal 

Bovine Serum (FBS), 100U/mL penicillin, 100mg/ml streptomycin and 100ng/ml recombinant 

h-MCSF at 37ºC and 5% CO2 for 7-10 days. At days 6-7, MDMs were polarised by replacing 

culture medium and supplementing with 50ng/ml h-MCSF. Polarisation was observed under 

the microscope approximately 24 hours later. 

2.3.2 Primary cells stimulation assays 

Briefly, 0.5 x 106 CD4+ T cells or MDMs were plated in 24-well plates in the appropriate culture 

medium. Cells were stimulated at 1000U/ml with IFNα, IFNβ or IFNγ for 24 hours. Following 

which, samples were pooled then collected for either RNA isolation (using Nucleozol) or 

lysates were collected for western blot analysis and lysed using 1X RIPA buffer supplemented 

with 1X protease inhibitors.  
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2.3.3 RNA isolation and cDNA generation 

Total RNA isolation was performed using Nucleozol following which contaminating DNA and 

DNAse were removed using TURBO DNA-free™ Kit. 500ng DNAse-free RNA was then used 

for cDNA generation using the High-Capacity RNA-to-cDNA™ kit. All steps were performed 

as per manufacturer’s protocol unless stated otherwise. Purified RNA were stored in -80ºC  

for long term storage if not used immediately and cDNA generated were stored in -20ºC  for 

long term storage if not used immediately.  

2.3.4 mRNA quantification and analysis 

All primers used to perform RT-qPCR are listed in Table 2.4. RT-qPCR was performed using 

PowerUp™ SYBR™ Green Master Mix as per manufacturer’s protocol and quantified using 

the StepOnePlus™ Real-Time PCR System with the thermocycler conditions specified in 

Table 2.12. The StepOne™ software was used to obtain raw CT values and the corresponding  

2-∆∆ CT values were calculated on R (4.3.2)  as required per experimental conditions. 

Statistical significance was calculated using Wilcoxon test, with p-values <0.05 being used as 

significant thresholds. 

 
Table 2.11 Volume of reagents used in RT-qPCR assays. 

Reagent Amount (µl) 
PowerUp™ SYBR™ Green Master Mix 5.0 
Primer F (10µM) 0.5 
Primer R (10µM) 0.5 
cDNA 4.0 
Nuclease-free water (NFW) 0.0 
Total volume 10.0 

 
Table 2.12 Thermocycler conditions used for RT-qPCR assays. 

Step Temperature (℃) Time 
Incubation 50 2 mins 
Polymerase activation 95 2 mins 
Denaturation 95 15 secs 40 cycles 
Annealing and extension 60 1 min 
Denaturation 95 15 secs Final melt 

curve Annealing and extension 60 1 min 
Denaturation 95 15 secs 
Hold 10 ∞ 
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2.3.5 Western blot 

Cell lysates were collected for western blot analysis and lysed using 1X RIPA buffer 

supplemented with protease inhibitors. Samples were stored on ice for 30 minutes, with 

regular vortexing before centrifuging at 20,000 rcf for 30 minutes to remove DNA contaminants 

and other debris. Supernatant was then transferred to a fresh tube. Pre-cast NuPAGE™ 4 to 

12% gels and MOPS SDS-Running buffer were used to perform an SDS-PAGE to separate 

the proteins by size. PageRuler™ Plus Prestained Protein Ladder was used to distinguish the 

sizes of protein and a homemade laemmli buffer was used to stain the samples. Following gel 

electrophoresis, transfer to nitrocellulose membrane was performed for 1 hour at 10V using a 

homemade 1X transfer buffer containing 20% methanol. After a successful transfer, the 

membrane was first blocked with 5% milk made with homemade 1X TBS-T for 1 hour at room 

temperature followed by washing with homemade 1X TBS-T before primary antibody 

incubation overnight at 4ºC. After which, the membrane was washed thoroughly before 

secondary antibody incubation for 1 hour at room temperature. A full list of antibodies used is 

provided in Table 2.5. 

 

Imaging of the membrane was performed either using the Clarity ECL kit for high abundant 

proteins or SuperSignal West Femto kit on a Vilber Fusion FX machine with an exposure time 

appropriate for the protein quantified. 

2.3.6 Generation of lentiviruses (LVs) and virus-like-
particles (VLPs) 

HEK293T cells were first seeded in 12 x 15cm2 plates at roughly 70-80% density in 15ml 

Dulbecco’s Modified Eagle Medium GlutaMAX media (DMEM) supplemented with 10% heat-

inactivated FBS, 100U/mL penicillin and 100mg/ml streptomycin. For lentivirus generation, 

transient transfection was done using 1.32mll L-PEI transfection agent with 160µg packaging 

vector (pCHIV.delta.env), 80µg SARS-CoV-2 spike protein or 80µg VSV-G and 160µg 

pVpr.GFP in 29.52ml DMEM unsupplemented media; equally distributed between the 12 

plates. For VLP generation, 48.75µg HIV-based packaging vector (pPAX), 24.75µg SARS-

CoV-2 spike protein or 24.75µg VSV-G, 75.0µg pADVANTAGE, 50.0µg pWPXL and 15µg 

BlaM-Vpr in 14.76ml DMEM unsupplemented media was used along with 660µl L-PEI 

transfection agent; equally distributed between the 12 plates. The various SARS-CoV-2 

spike proteins used are listed in Table 2.6. 
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Following a 70 hour transfection, supernatant was harvested, briefly centrifuged at 1,000 rcf 

to remove dead cells and passed through a 0.45µm filter. 28ml filtered supernatant was 

carefully layered on 6ml 25% filter sterile sucrose solution in an ultracentrifugation tube. 

Samples were centrifuged at 28,000 rpm , 4°C for 2 hours on Sorvall™ WX+ Ultracentrifuge 

with a SureSpin 630 (36 mL) rotor. Following centrifugation, supernatant was discarded and 

pellet was reconstituted with 50µl sterile PBS and stored in -80°C until ready to use. 

 

To assess the quantity of LV or VLPs produced, relative transcriptase (RT) activity was 

quantified using SYBR Green I-based PERT assay (SG-PERT)75. The amount of viral cDNA 

present is proportional to the RT activity quantified. Briefly, 5µl of the supernatant was lysed 

with 5µl of 2x Lysis buffer containing 2U RNAse Inhibitor for 10 minutes. Lysis was stopped 

by addition of 90µl of homemade dilution buffer. SG-PERT assay was performed in a v-bottom 

96-well plate. To each well, 10µl of reaction buffer (already containing SYBR green, RNA and 

primers) and 10µl of lysed samples were added. Standards and negative controls were also 

used for relative quantification. Each sample was quantified in duplicate with thermocycler 

conditions outlined in Table 2.13. Results were statistically assessed by normalising to 

controls across different rounds of assays.  

 
Table 2.13 Thermocycler conditions used in SG-PERT. 

Step Temperature (℃) Time 
RT Reaction 42 20 min 
Taq Activation  95 2 min 
Denaturation 95 5 secs 

40 cycles 
Annealing 60 5 secs 
Elongation 72 15 secs 
Acquisition 80 7 secs 

Melting curve 

65 31 secs 

65 5 secs 

with additional 
5℃ per 

second ramp 
per cycle for 

60 cycles 
 

2.3.7 Generation of hACE2 overexpressing HEK293T cells  

To perform the binding and fusion assays, HEK293T cells expressing hACE2 were 

generated, labelled as ACE2 throughout the thesis. First, hACE2 containing a C-terminal 

FLAG tag was PCR amplified from an existing plasmid (pCDH_EF1-hACE2-C-FLAG-T2A-
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mtagBFP) using primers hACE2_Fwd and hACE2_Rev. Gibson cloning was then performed 

using a SfiI - digested pSBbi-BP vector backbone  (Addgene, #60512) and hACE2 insert at 

a ratio of 1:2 respectively; following which products were transformed into E.coli Stabl II cells 

before being plated onto ampicillin resistant LB agar plates and left overnight at  37°C. 

Colonies were then selected, inoculated in TB media with ampicillin for plasmid isolation 

using GenElute plasmid miniprep kit. Samples were then Sanger sequence verified (Eurofins 

sequencing). Full details on primer and plasmid sequences are in Table 2.4 and Table 2.6, 

respectively.  

 

To generate HEK293T cells overexpressing hACE2, WT HEK293T cells were transfected with 

the sequence verified hACE2 plasmid using L-PEI transfection agent. Briefly, 6 x 106 WT 

HEK293T cells were plated in 10cm2 plates in DMEM supplemented with 10% heat-inactivated 

FBS, 100U/mL penicillin and  100mg/ml streptomycin and left to grow overnight at 37°C. 

Following day, transfection was done using 20µl L-PEI transfection agent with 4.5µg hACE2 

plasmid and 0.5µg transposase in 475µl DMEM unsupplemented media and left at 37°C. The 

next day, Puromycin selection was performed by addition of 10µg/ml Puromycin and cells 

were maintained in culture until ready to use. hACE2 expression was confirmed via flow 

cytometry (BFP positive cells) and by western blot utilising an anti-ACE2 antibody. All cell lines 

were routinely tested for mycoplasma and were always found to be mycoplasma-free. 

 
Table 2.14 Volume of reagents used in Phusion© PCR for hACE2. 

Reagent Concentration Volume (µl) 
5x HF Buffer - 8.0 
dNTPs 10mM 1.0 
Primer 1 10µM 2.0 
Primer 2 10µM 2.0 
Plasmid 1.0 ng/µl 1.0 
NFW - 25.6 
Phusion DNA polymerase - 0.4 
Total volume  40.0 

 
Table 2.15 Thermocycler conditions used in Phusion© PCR for hACE2. 

Step Temperature (℃) Time 
Initial denaturation 98 1 min 
Denaturation 98 10 secs  

38 cycles Annealing 68 30 secs 
Elongation 72 1 min 
Final extension 72 6 min 
Hold 10 ∞ 
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Table 2.16 Volume of reagents used in Gibson Assembly for ACE2. 

Reagent Concentration (ng/µl) Volume (µl) 
psBbi-BP backbone 66.0 2.0 
hACE2 104.0 1.0 
Gibson mastermix - 3.0 
Total volume  6.0 

 
Table 2.17 Thermocycler conditions used for Gibson Assembly PCR. 

Step Temperature (℃) Time 
Incubation 50 30 mins 
Hold 10 ∞ 

 

2.3.8 Generation of OTOF1 and  OTOF4 overexpressing 
HEK293T cells 

Plasmids containing either OTOF isoform 1 or isoform 4 were generated by Gibson cloning 

using sleeping beauty plasmids psBbi-RB (Addgene, #60522) as the vector backbone. OTOF 

isoform 1 insert was obtained by PCR amplification of HsCD00871312 (DNASU Plasmid 

repository) using primers OTOF1_Fwd and OTOF1_Rev. OTOF isoform 4 was obtained by 

linear gene fragment synthesis using BaseGene (Netherlands) and Gibson cloning was 

performed using OTOF4_Fwd and OTOF4_Rev. Briefly, psBbi-RB was digested using SfiI 

prior to Gibson cloning with OTOF isoforms. Gibson products were transformed into E.coli 

Stabl III cells before being plated onto ampicillin resistant LB agar plates and left overnight at 

37°C. Colonies were then selected, inoculated in TB media with ampicillin for plasmid isolation 

using GenElute plasmid miniprep kit. Samples were then Sanger sequence verified (Eurofins 

sequencing). Full details on primer, fragments and plasmid sequences are in Table 2.4 and 

Table 2.6, respectively.  

 

To generate ACE2 cells overexpressing OTOF isoform 1 (OTOF-201) and OTOF isoform 4 

(OTOF-204), hACE2 expressing cells (see 2.3.7) were transfected with sequence verified 

OTOF isoform 1 and OTOF isoform 4 plasmids using L-PEI transfection agent; labelled as 

OTOF1 and OTOF4 cells throughout the thesis. Briefly, 0.2 x 106 ACE2 cells per well were 

plated in 12-well plates in DMEM supplemented with 10% heat-inactivated FBS, 100U/mL 

penicillin, 100mg/ml streptomycin and 10µg/ml Puromycin and left to grow overnight at 37°C. 

Following day, transfection was done using 20µl L-PEI transfection agent with 930ng OTOF 

plasmids along with 70ng transposase in 475µl DMEM unsupplemented media and left at 

37°C. The next day, Blasticidin selection was performed by addition of 10µg/ml Blasticidin and 
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cells were maintained in culture until ready to use. OTOF-201 or OTOF-204 expressions were 

confirmed via flow cytometry (dTomato expression using PE channel) and by qRT-PCR 

utilising primers OTOF_qPCR_Fwd and OTOF_qPCR_Rev (see Table 2.4). All cell lines were 

routinely tested for mycoplasma and were always found to be mycoplasma-free. 

 
Table 2.18 Volume of reagents used in Phusion© PCR for OTOF1. 

Reagent Concentration Volume (µl) 
5x HF Buffer - 8.0 
dNTPs 10mM 1.0 
Primer 1 10µM 2.0 
Primer 2 10µM 2.0 
Plasmid 1.0 ng/µl 1.0 
NFW - 25.6 
Phusion DNA polymerase - 0.4 
Total volume  40.0 

 
Table 2.19 Thermocycler conditions used in Phusion© PCR for OTOF1. 

Step Temperature (℃) Time 
Initial denaturation 98 1 min 
Denaturation 98 10 secs  

38 cycles Annealing 68 30 secs 
Elongation 72 1 min 
Final extension 72 6 min 
Hold 10 ∞ 

 
Table 2.20 Volume of reagents used in Gibson Assembly for OTOF1. 

Reagent Concentration (ng/µl) Volume (µl) 
psBbi-RB backbone 10.2 1.5 
OTOF-isoform 1 50.5 0.3 
Gibson mastermix - 2.0 
NFW  0.2 
Total volume  4.0 

 
Table 2.21 Volume of reagents used in Gibson Assembly for OTOF4. 

Reagent Concentration (ng/µl) Volume (µl) 
psBbi-RB backbone 10.2 1.5 
OTOF-isoform 2 59.6 0.5 
Gibson mastermix - 2.0 
Total volume  4.0 
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2.3.9 Vpr-GFP binding assay 

To assess the effects of OTOF-201 or OTOF-204 overexpression on binding of various LVs 

pseudotyped with SARS-CoV-2 spike proteins in ACE2, OTOF1 and OTOF4 cells, binding 

assays were performed as follows76. Briefly, 0.2 x 106 cells (ACE2, OTOF1 and OTOF4) per 

well were plated in 96-well plates in 50µl CO2-independent medium. 50µl of blocking media 

containing anti-ACE2 antibody (4 µg/ml in CO2-independent medium) was added to each well 

as required. 50µl CO2-independent medium without anti-ACE2 was added to control wells. 

Cells were incubated at 16°C for 2 hours on a thermoblock in a 4°C cold room. 100µl LVs 

solution containing 15µl LVs along with 85µl CO2-independent medium were added to each 

well. To control wells, only 100µl CO2-independent medium were added. Cells were further 

incubated at 16°C for 1 hour on a thermoblock in a 4°C cold room following which 

centrifugation was performed at 600rcf for 5 minutes. Supernatant was removed and 50µl 

Trypsin was added to detach the cells. 150µl homemade FACS buffer was added to each well 

and cells resuspended well and transferred to a v-bottom 96-well plate. Cells were centrifuged 

at 600rcf for 5 minutes and supernatant removed. Cells were fixed by adding 100µl pre-

warmed 4% PFA in PBS to each well and incubated for 10 minutes at rtp. Cells were then 

centrifuged at 1000rcf for 5 minutes and supernatant removed. 200µl homemade FACS buffer 

was added to each well to resuspend the cells and flow cytometry was performed.  

 

Flow cytometric analysis was performed on the CytoFLEX S machine*. Gating strategy was 

done as follows: live cells were first gated using WT HEK293T as control based on FSC-A 

and SSC-A. Singlets were then chosen based on FSC-A and FSC-H. Next, PE (representing 

dTomato expression) and Pacific Blue (representing BFP expression) were used to select for 

either BFP+/dTomato- for ACE2 cells expression or BFP+/dTomato+ for OTOF1 or OTOF4 

cells expression. Binding was then quantified based on the percentage of cells expressing 

GFP (quantified using FITC) and statistical significance was calculated using Welch’s t-test by 

using ACE2 only cells as control;  with p-values <0.05 considered significant. Full binding 

assay gating strategy can be seen in Figure 2.1. 

2.3.10 BLaM-Vpr fusion assay 

To assess the effects of OTOF-201 or OTOF-204 overexpression on fusion of various VLPs 

pseudotyped with SARS-CoV-2 spike proteins in ACE2 expressing cells, fusion assays were 

performed following the strategy of Cavrois et al. (2002)77. Briefly, 0.2 x 106 cells (ACE2, 

 
* Access to CytoFLEX S was kindly provided by Dr. Andreas Moosmann from DZIF, Helmholtz 
Munich, Germany 



 

 52 

OTOF1 and OTOF4) per well were plated in 96-well plates in 100µl CO2-independent medium. 

100µl of blocking media containing anti-ACE2 antibody (4 µg/ml in CO2-independent medium) 

was added to each well as required. 100µl CO2-independent medium without anti-ACE2 was 

added to control wells. Cells were incubated at 37°C for 2 hours. Cells were then centrifuged 

at 500rcf for 5 minutes, supernatant was removed and cells were resuspended in 190µl CO2-

independent medium. 10µl VLPs (corresponding to 1 x 1011pRTU/µl) were added to each well. 

To control wells, only 10µl CO2-independent medium were added. Cells were incubated at 

37°C for 4 hours following which centrifugation was performed at 500rcf for 5 minutes. 

Supernatant was removed and 50µl Trypsin was added to detach the cells. 150µl homemade 

FACS buffer was added to each well and cells resuspended well and transferred to a v-bottom 

96-well plate and centrifuged at 500rcf for 5 minutes. Supernatant was removed and 100µl 

CCF2-AM staining solution containing CO2-independent medium, Solution B and Probenecid 

was added to each well as required. To control wells, only CO2-independent medium was 

added. Cells were incubated overnight at rtp with humidity maintained by addition of wet 

tissues.  

 

Next day, cells were centrifuged at 500rcf for 5 minutes and supernatant removed. To fix the 

cells, 100µl homemade FACS buffer and 100µl pre-warmed 4% PFA in PBS was added to 

each well and incubated for 20 minutes at rtp. Cells were then centrifuged at 1000rcf for 5 

minutes and supernatant removed. 200µl homemade FACS buffer was added to each well to 

resuspend the cells and flow cytometry was performed.  

 

Flow cytometric analysis was performed on the CytoFLEX S machine†. Gating strategy was 

done as follows: live cells were first gated using WT HEK293T as control based on FSC-A 

and SSC-A. Singlets were then chosen based on FSC-A and FSC-H. Next, PE (representing 

dTomato expression) and Pacific Blue (representing BFP expression) were used to select for 

BFP+/dTomato+, indicating OTOF-201 or OTOF-204 expression in hACE2 expressing cells. 

For HEK293T and ACE2 cells, fusion levels were directly quantified based on V500. Fusion 

was then quantified based on the percentage of cells expressing V500 and statistical 

significance was calculated using the Welch’s t-test by using ACE2 cells as control; with p-

values <0.05 considered significant. Full fusion assay gating strategy can be seen in Figure 

2.2. 

 
† Access to CytoFLEX S was kindly provided by Dr. Andreas Moosmann from DZIF, Helmholtz 
Munich, Germany 
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Figure 2.1 Vpr-GFP binding assay gating strategy 
(A) Schematic of the Vpr-GFP binding assay. Figure created on BioRender.com (B) Flow cytometric 
gating strategy used in the assay. Shown are exemplary dot plots taken from experiments with 
pseudotyped VSV-G LVs. 
HEK293T = WT cell line; ACE2 = HEK293T cells overexpressing hACE2; OTOF1 = HEK293T cells 
overexpressing hACE2 and OTOF-201; OTOF4 = HEK293T cells overexpressing hACE2 and OTOF-
204.  
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Figure 2.2 BLaM-Vpr fusion assay gating strategy 
(A) Schematic of the BLaM-Vpr fusion assay. Upon fusion of the BLaM-Vpr fusion protein into target 
cells, cleavage of the β-lactam ring on CCF2 occurs resulting in a change of fluorescence emission 
from 520nm (BFP) to 447nm (V500).  Figure created on BioRender.com (B) Flow cytometric gating 
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strategy used in the assay. Shown are exemplary plots taken from experiments with psuedotyped VSV-
G VLPs. For ACE2 and HEK293T cells, after selecting single cells, fusion gates were drawn based on 
unstained controls. For OTOF1 and OTOF4 cells, after selecting single cells, cells were further selected 
based on dTomato+/BFP+ expression; following which fusion gates were drawn based on unstained 
controls. 
HEK293T = WT cell line; ACE2 = HEK293T cells overexpressing hACE2; OTOF1 = HEK293T cells 
overexpressing hACE2 and OTOF-201; OTOF4 = HEK293T cells overexpressing hACE2 and OTOF-
204.  
 

2.3.11 YFV 17-D and HIV-1 infection assays 

2.3.11.1 YFV 17-D infection assay 
This part of the project was done in collaboration with Simon Rothenfußer‡. Both cells used 

for this experiment, Vero and 1205Lu, were kindly provided by Simon Rothenfußer.  

 

To generate cells overexpressing OTOF-201 or OTOF-204, both Vero and 1205Lu cells were 

transfected with either the sequence verified OTOF-201 or OTOF-204 plasmid described in 

section 2.3.7. Transfection was performed using Turbofect transfection agent. Briefly, 0.2 x 

106 of either Vero of 1205Lu cells per well were plated in 12-well plates in DMEM 

supplemented with 10% heat-inactivated FBS, 100U/mL penicillin, 100mg/ml streptomycin 

and 10µg/ml Puromycin and left to grow overnight at 37°C. Following day, transfection was 

done using 4µl Turbofect transfection agent with 930ng OTOF plasmids along with 70ng 

transposase in 100µl DMEM unsupplemented media and left at 37°C. The next day, Blasticidin 

selection was performed by addition of 10µg/ml Blasticidin and cells were maintained in culture 

until ready to use. OTOF-201 or OTOF-204 expressions were confirmed via flow cytometry 

(dTomato expression measured using PE) and by qRT-PCR utilising primers 

OTOF_qPCR_Fwd and OTOF_qPCR_Rev (see Table 2.4). All cell lines were routinely tested 

for mycoplasma and were always found to be mycoplasma-free. 

  

For infection assays, both Vero and 1205Lu (WT and transfected cells) were infected with a 

live attenuated yellow fever vaccine strain YFV-17D containing a GFP tag, kindly provided by  

Simon Rothenfußer. Briefly, 25, 000 cells were seeded in 96-well flat bottom plates. The next 

day, cells were infected with the virus (MOI 1 or 3 for Vero and MOI 5 for 1205Lu cells) for 1 

hour at 37°C. MOIs were calculated by taking the virus concentration divided by the initial 

number of cells seeded, in this case 25,000 cells. After 1 hour of incubation with the virus, 

media containing virus was removed and replaced with fresh complete DMEM media and 

 
‡ The Rothenfußer lab kindly contributed the cell lines, reagents, equipment and guidance required for 
the assay (Division of Clinical Pharmacology, University Hospital LMU Munich, Germany). 
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incubated at 37°C for either 24, 48 or 72 hours. At each timepoint, the supernatant was 

harvested and stored for other downstream analysis and the cells were lysed with trypsin for 

flow cytometric analysis to quantify the number of cells infected based on GFP expression 

(measured using FITC). Full gating strategy can be seen in Figure 2.3B. 

 

2.3.11.2 HIV-1 infection assay 
This part of the project was done at the Baldauf lab, under both BSL-2 and BSL-3 conditions§. 

All BSL-3 work was performed by Hanna-Mari Baldauf. TZMbl cells used for this project were 

kindly provided by the Baldauf lab.  

 

To generate cells overexpressing OTOF-201 or OTOF-204, TZMbl cells were transfected with 

either the sequence verified OTOF-201 or OTOF-204 plasmid described in section 2.3.7. 

Transfection was performed using Turbofect transfection agent, as described in section 

2.3.11.1. Selection was performed by addition of 50µg/ml Blasticidin. All cells were maintained 

in culture and routinely tested for mycoplasma.  

 

For the HIV-1 fusion assay, a previously generated HIV-149.5 strain containing BlaM-Vpr** was 

used. HIV-149.5 is a lab-adapted strain derived from NL4-3 that carries a mutation in the V3 

loop making it R5-tropic.The experimental procedure for the fusion assay is similar to that 

outlined in section 2.3.9 with the exception of performing the infection under BSL-3 conditions. 

As a negative control, T-20 Fuzeon (Enfuvirtide) was used to inhibit fusion pore formation with 

HIV-149.5. Cells were incubated at 37°C for 4 hours after infection following which centrifugation 

was performed at 500rcf for 5 minutes. Supernatant was removed and cells lysed with trypsin 

and resuspended in homemade FACS buffer before being transferred to a fresh 96-well plate. 

Cells were centrifuged at 500rcf for 5 minutes. Supernatant was removed and 100µl CCF2-

AM staining solution containing CO2-independent medium, Solution B and Probenecid was 

added to each well as required. To control wells, only CO2-independent medium was added. 

To wells that previously contained T-20 drug, T-20 was added to prevent any further fusion. 

Cells were incubated overnight at rtp with humidity maintained by addition of wet tissues.  

 

Next day, cells were centrifuged at 500rcf for 5 minutes and supernatant removed. To fix and 

inactivate the cells, 100µl pre-warmed 4% PFA in PBS was added  to each well and incubated 

for 90 minutes at rtp. Following fixation, subsequent steps were performed under BSL-2 

 
§ Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for 
Retroviruses, Faculty of Medicine, LMU Munich, Germany.  
** HIV-149.5-BLaM-Vpr was generated by João Vasco Côrte-Real, a PhD student at the Baldauf lab.  
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conditions.  Cells were centrifuged at 1000rcf for 5 minutes and supernatant removed. 200µl 

homemade FACS buffer was added to each well to resuspend the cells and flow cytometric 

analysis was performed on Cytoflex S with gating strategy outlined in Figure 2.3A. 

 

For the HIV-1 virion production and exit assay, experiments were conducted either using the 

HIV-149.5  strain or the transmitter founder (T/F) HIV-1CH058 strain. As a transfection control, 

Vpr-GFP was used. Briefly, 5,000 cells (TZMbl WT, TZMbl OTOF1 and TZMbl OTOF4) were 

seeded in 96-well flat bottom plates. The next day, cells were brought into BSL-3 conditions 

for transfection of either HIV-149.5, HIV-1CH058 or Vpr-GFP plasmids using the Turbofect 

transfection reagent similar to that in section 2.3.11.1. After 48 hours, supernatant was 

collected, filtered using 0.45µm filters and 25µl of the supernatant was added onto new TZMbl 

WT cells (seeded previous day at a similar density).  After 48 hours, media was removed, and 

a quick PBS wash was performed. Following which, 20µl of luciferase lysis buffer was added 

to each well to lyse and inactivate the cells before returning them to BSL-2 conditions. Next, 

10µl of the cell/lysis mix was transferred to a white 96-well flat bottom plate suitable for 

luminescence measurement. 50µl luciferase assay reagent was added to each well and 

luminescence was measured using the CLARIOstar microplate reader (BMGLabtech) at a 

range of 80nm to 580nm. 

 

An additional aliquot of supernatant containing virions was taken to quantify the amount of 

released viral particles using SYBR Green I-based PERT assay (SG-PERT)75. The amount of 

viral cDNA present is proportional to the RT activity quantified. Briefly, 5µl of the supernatant 

was lysed in BSL-3 with 5µl of 2x Lysis buffer containing 2U RNAse Inhibitor for 10 minutes. 

Lysis was stopped by addition of 90µl of homemade dilution buffer and brought to BSL-2 area 

for further steps. SG-PERT assay was performed in a v-bottom 96-well plate. To each well, 

10µl of reaction buffer (already contained SYBR green, RNA and primers) and 10µl of lysed 

samples were added. Standards and negative controls were also used for relative 

quantification. Each sample was quantified in duplicate with thermocycler conditions outlined 

in Table 2.13. Results were statistically assessed by normalising to controls across different 

rounds of assays.  

 



 

 58 

 

 
Figure 2.3 HIV-1 and YFV-17D infection assay flow cytometry gating strategy 
(A) Flow cytometric gating strategy used in HIV-1 infection assays. Shown are exemplary dot plots 
taken from one experiment with TZMbl (WT), TZMbl OTOF1 or TZMbl OTOF4 cell lines. (B) Flow 
cytometric gating strategy used in YFV-17D infection assays. Shown are exemplary plots taken from 
one experiment with WT and OTOF-201 or OTOF-204 transfected cell lines. The same strategy was 
used for both Vero and 1205Lu cell lines.  
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3.1 Bulk RNAseq Analysis 

3.1.1 Differential gene expression analysis 

The first part of the analysis focused on identifying genes that were differentially expressed 

between Status groups. Our samples were sequenced in two batches, with 21 bridging 

samples that were sequenced in both batches. There was a strong correlation between the 

bridging samples based on Spearman correlation of the log counts per million (CPM) values 

(Min ⍴ = 0.8600763 and Max ⍴ =0.9632264). When doing a principal component analysis 

(PCA), there was a clear separation of samples based on the sequencing batch as seen in 

PC1 (31.36% variance) and PC2 (14.51% variance) (Figure 3.1A). This suggested that while 

there was no observable difference at the sample level when comparing read count (logCPM) 

data, PCA analysis was capturing sequencing batch as the main source of variation in our 

samples which highlighted the importance of accounting for batch in all our analyses moving 

forward. Thus, we utilised Limma-voom to account for the batch effect issue and to leverage 

data obtained from the bridging samples. By using the duplicateCorrelation function, we were 

able to keep both the bridging samples in our analysis by assigning a correlation score for the 

bridging samples and accounting for it in our analysis model, akin to having technical 

replicates in our analysis.  

 

We first performed differential gene expression (DGE) analysis to compare the various Status 

groups; correcting for age, sex and batch in our statistical model: ~Status + Age + Sex + Batch. 

As Status is a categorical variable, a means-reference model was used to determine 

differentially expressed genes across groups. Overall, 246 genes were significantly 

differentially expressed (148 upregulated and 98 downregulated) between COVID and Healthy 

using a threshold of adjusted p-value ≤ 0.05 and log2 fold change ≥ |1| (Figure 3.1B). To 

understand if the 246 significant genes found had particular roles within defined pathways or 

processes, we conducted a gene ontology over representation analysis which identified terms 

such as ‘Response to virus’ and ‘Response to type I interferon’ with an adjusted p-value < 

0.05 (Figure 3.1D).  Among the 148 upregulated genes, top hits included IFI27, LY6E, OTOF 

and SIGLEC1. Looking into four of these genes closely, when plotting the normalised count 

data for these genes across all samples and Status (Figure 3.1C), it could be seen that IFI27 

was significantly upregulated across all three disease groups (COVID, Non-COVID and MISC) 

when compared to Healthy. This was in contrast to LY6E, OTOF and SIGLEC1 which were 

significantly upregulated only in the COVID group compared to Healthy or the Non-COVID 
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group, suggesting that LY6E, OTOF and SIGLEC1 may play a more COVID-specific role in 

our cohort. 

 

Next, we performed DGE analysis for Non-COVID vs Healthy and MISC vs Healthy which 

identified 579 and 3990 differentially expressed genes, respectively, using an adjusted p-value 

≤ 0.05 and log2 fold change ≥ |1| (Figure 3.1B). Top genes based on log2 fold changes for the 

Non-COVID group included CD177, OLAH and IFI27 while top genes based on log2 fold 

changes for the MISC group included ADAMTS2, OLAH and IFI27. Over representation 

analysis for the Non-COVID significant genes identified terms such as ‘Response to 

bacterium’ and ‘Regulation of inflammatory response’ while significant genes for MISC had 

terms such as ‘Adaptive immune response’ and ‘Humoral immune response’ (Figure 3.1D), 

suggesting the association of MISC with a hyper-inflammatory response.  

 

In order to identify COVID specific responses, we performed DGE analysis on COVID 

compared to Non-COVID (Figure 3.2A). A contrast matrix used to extract results that 

compared COVID with Non-COVID relative to the Healthy group to account for infection 

specific differences was used. We identified 150 significant genes differentially expressed 

between the two groups using an adjusted p-value ≤ 0.05 and log2 fold change ≥ |1|, including 

OTOF, IFI27 and SIGLEC1. Over representation analysis of these significant genes identified 

terms such as ‘Response to bacterium’ and ‘Regulation of cytokine production involved in 

immune response’ (Figure 3.2B) which reflected the heterogeneity of disease presentation in 

the Non-COVID group. 

  

Going one step further, we wanted to leverage the wide age range of our cohort (2 weeks to 

40 years old) to identify specific differences that may explain variability in immune responses 

between children and adults upon SARS-CoV-2 infection. To that end, we performed an age-

interaction analysis using the model:  ~Status * Age + Sex + Batch, accounting for sex and 

batch effects. As age is a continuous variable and status is a categorical variable, a regression 

line was fitted for each status-age group separately, with the slopes indicating the rate of 

change of gene expression per unit age per status group as exemplified in Figure 3.2C. 

Overall, four genes (MMP8, LY6E, OAS1 and OAS2) had a significant difference (adjusted p-

value ≤ 0.05) when comparing the COVID and Healthy group (Figure 3.2D). When looking at 

the expression patterns for MMP8 across age for COVID and Healthy, in younger individuals, 

the difference in expression for COVID compared to Healthy was more pronounced and this 

decreased with age. This was in contrast to LY6E, OAS1 and OAS2, whereby although the 

expression of these genes were consistently higher in COVID samples across all ages, with 

increasing age, the differences in expression compared to Healthy increased. These results 
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highlight the importance of performing an age-interaction analysis as age-specific effects are 

diluted (averaged-out) when looking at mean differential gene expression across all samples.  

 

Taken together, our data suggested that SARS-CoV-2 infection results in specific 

transcriptional differences in the COVID group that were not observed in both the infection 

control Non-COVID group and the Healthy control group. These transcriptional differences 

were mainly driven by innate immunity, specifically type-I IFN response, that is the key defence 

mechanism in viral infections, including COVID-19. In addition, OTOF can be suggested as a 

potential COVID specific biomarker especially when comparing gene expression data 

between COVID and Non-COVID groups. We also identified four genes that may play an 

important age-specific role in COVID, providing first hints into the differences in immune 

responses between children and adults upon SARS-CoV-2 infection.  

 

Based on these results, all analyses and experimental work following this section primarily 

focused on OTOF, our gene of interest for this project. 
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Figure 3.1 Differential gene expression analysis across all Status groups 

(A) PCA plot of all samples in the analysis to assess similarities with x-axis representing PC1 (capturing 
31.36% variation) and y-axis representing PC2 (capturing 14.51% variation). Each point is a sample 
with shapes used to indicate sequencing batch and colours denoting Status. (B) Volcano plot of 
significant genes differentially expressed in the different group comparisons as indicated on the plot: 
COVID vs Healthy, Non-COVID vs Healthy and MISC vs Healthy. Genes are highlighted based on an 
adjusted p-value of 0.05 and log2 fold change of |1|. Analysis was done using Limma with the model: ~ 
Status and correcting for age, sex and batch effects. (C) Boxplots of ADAMTS2, CD177, IFI27, LY6E, 
OLAH, OTOF and SIGLEC1 normalised expression values grouped by Status. Each dot represents a 
proband and data were analysed using Wilcoxon test; **  = p ≤ 0.01 and   *** = p ≤  0.001. For all plots, 
horizontal lines indicate median values with boxes spanning the interquartile range (IQR) from the 25th 
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to the 75th percentile. (D) Dot plot results of the top 20 significantly enriched GO terms based on over-
representation analysis done on significant genes found in (B) using the ‘Biological Process’ ontology. 
p.adjusted values represent p-values relative to the other terms in analysis (adjusted using Benjamini-
Hochberg method), Count represents the number of genes within the term and Gene ratio represents 
the ratio of genes in the term with the overall gene set used.  
 
 

 
Figure 3.2 COVID-specific analysis and age-interaction analysis 
(A) Volcano plot of 150 significant genes differentially expressed in COVID compared to Non-COVID. 
Genes are highlighted based on an adjusted p-value of 0.05 and log2 fold change of |1|. Analysis was 
done using Limma with the model: ~ Status and correcting for age, sex and batch effects. (B) Dot plot 
results of the top 15 significantly enriched GO terms based on over-representation analysis done on 
significant genes found in (A) using the ‘Biological Process’ ontology . p.adjusted values represent p-
values relative to the other terms in analysis (adjusted using Benjamini-Hochberg method), Count 
represents the number of genes within the term and Gene ratio represents the ratio of genes in the term 
with the overall gene set used. (C) Age-interaction example plot highlighting the different slopes 
indicating different gene expression count per unit age per Status group. (D) Scatterplot of four genes 
with a significant difference in expression trends with age when comparing COVID and Healthy. An age 
interaction analysis was done on Limma using the model: ~ Status*Age and correcting for sex and 
batch effects. adjusted p-value < 0.05 was considered significant. 
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3.1.2 Isoform level analysis 

Many genes have more than one isoform, as a result of alternative splicing, alternative 

transcription sites and intron retention78. These various isoforms can result in alternate 

proteins being formed, with variable function and tissue specificity. As we had transcript level 

data quantified as part of our alignment and quantification pipeline, we leveraged these 

isoform level data to investigate isoform specific expressions across our cohort.  

 

First, we performed a differential isoform usage analysis using IsoformSwitchAnalyzer to 

identify isoforms that were differentially used depending on Status groups. We primarily 

focused on comparing the isoform usage between COVID and Healthy. To do so, an isoform 

fraction (IF) value was calculated across all identified isoforms, and thus genes, in the dataset. 

IF value was calculated as the ratio of the specific isoform expression to the overall gene 

expression; accounting for the fact that the sum of all individual isoform expressions for a 

particular gene amounted to the overall gene expression. Once the IF value was obtained per 

sample, the difference in IF (dIF) between COVID and Healthy was calculated by taking the 

difference between average IF value across COVID and average IF value across Healthy; 

akin to measuring log fold changes. No isoforms were found to have a significant isoform 

switch usage in COVID compared to Healthy with top hits with the highest dIF values being 

TIMM10, TAP2 and RNASEH2C; none reaching the significance threshold of adjusted p-value 

≤ 0.05 (Figure 3.3A) 

 

Based on our DGE analysis, we were primarily interested to know if any of our top hits had 

specific isoform switches that were not being captured by our global isoform switch analysis. 

When looking at functional OTOF isoforms across all samples in our cohort, OTOF-204 

(ENST00000339598.7) had the highest overall expression while the canonical form, OTOF-

201 was not expressed in our samples. As both these isoforms lead to formation of distinct 

proteins (described in detail in Section 1.3.3), we integrated this important aspect of isoform 

differences into our functional part of the project by conducting experimental validation utilising 

both forms of OTOF; the canonical OTOF-201 and the form most abundant in our cohort, 

OTOF-204.  
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Figure 3.3 COVID vs Healthy isoform analysis 
(A) Scatterplot of all the genes used in the differential isoform usage analysis of COVID compared to 
Healthy. x-axis represents adjusted p-value (padj) and y-axis represents differential isoform fraction 
(dIF) values.  adjusted p-value < 0.05 was considered significant. (B) Boxplot of expression data for all 
the seven OTOF isoforms. Each dot represents a sample in our cohort.  x-axis represents each isoform 
while y-axis represents log Transcript per million values (log TPM). Horizontal lines indicate median 
values with boxes spanning the interquartile range (IQR) from the 25th to the 75th percentile. 

3.1.3 In silico cell type deconvolution  

For our cohort, we performed bulk RNA sequencing which involved extracting RNA from whole 

blood samples. As whole blood comprises multiple cell types such as red blood cells and 

leukocytes, data obtained from bulk RNAseq provides a snapshot of the average gene 

expression across all cell types in whole blood, leading to a more coarse-grained granularity 

on gene expression variation across samples in our cohort. Thus, to get a more in-depth 

insight into the cellular diversity of gene expression across the main immune cells in whole 

blood, we utilised gold-standard tools used to perform in silico cell type deconvolution analysis. 

Using CibersortX, we were able to estimate gene expression levels at various granularity for 

all sequenced samples in our cohort.  

 

First, we utilised the Fractions mode to estimate cell type proportions across all samples in 

our cohort, grouping them into nine major cell types: B cells, T cells, NK cells, monocytes, 

macrophages, DCs, mast cells, eosinophils and neutrophils. When we compared the 

estimated cell type proportions across Status groups, we observed that monocytes and DCs 

were significantly higher while B cells were significantly lower in COVID compared to Healthy 

(Figure 3.4A). When comparing Non-COVID and Healthy, monocytes, neutrophils and DCs 

were significantly higher while B cells, T cells and NK cells were lower. Similarly, when 

comparing MISC and Healthy, significant differences in estimated cell type proportions were 
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observed for plasma cells, neutrophils, T cells and macrophages. Comparing COVID and Non-

COVID, we also found that significant differences were estimated for neutrophils, T cells and 

NK cells (Figure 3.4A).  

 

As we had extensively looked into genes that were differentially expressed between COVID 

and Healthy using Limma (see section 3.1.1 for more details), to get a more fine-grained data 

on sample-level gene expression estimates, we utilised the High Resolution (HiRes) mode to 

perform sample-level gene expression estimates. We imputed sample-level gene expression 

data for the 246 significant genes (see section 3.1.1 for more details) in a total of 22 immune 

cell types using the LM22 signature matrix as a reference. The 22 immune cell types present 

within the LM22 signature matrix were naïve B cells, memory B cells, plasma cells, CD8 T 

cells, naïve CD4 T cells, resting memory CD4 T cells, activated memory CD4 T cells, follicular 

T helper cells, regulatory Tregs, gamma delta T cells, resting NK cells, activated NK cells, 

monocytes, M0 macrophages, M1 macrophages, M2 macrophages, resting dendritic cells, 

activated dendritic cells, resting mast cells, activated mast cells, eosinophils and neutrophils. 

Out of the 246 genes, only 226 genes were able to be estimated using the reference matrix. 

In monocytes, top genes with variable expression across Status groups included SIGLEC1, 

C3AR1 and HERC6. In DCs, top genes were IFITM3, LY6E and MX1. Other notable genes 

estimated included MKI67 and RRM2 in plasma cells, ADGRE3 in neutrophils, CPA3 in CD4 

T cells, CD1C in CD8 T cells and GATA2 in NK cells.  

 

As we were primarily interested in identifying cell type specific expression of OTOF, our gene 

of interest based on DGE analysis (see section 3.1.1 for more details), we looked into the 

sample-level gene expression estimates to identify which cell type was predicted to express 

OTOF. Our imputed data showed that OTOF was expressed in DCs, with COVID having the 

highest expression compared to the rest of the groups; reaching significance when compared 

to Healthy and Non-COVID based on Wilcoxon test (Figure 3.4B) with a significant threshold 

of  p-value  ≤ 0.05.  

 

Taken together, our work on using in silico tools to predict cell type specific expression of our 

bulk RNAseq data provided us with more fine-grained hints into the major cell types driving 

COVID-specific immune responses. The results also provided insights into cell type-specific 

expression of genes, further aiding our downstream functional experiments in the absence of 

single-cell RNAseq data. 
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Figure 3.4 In silico cell type deconvolution analysis 
(A) Boxplot of the 14 cell types estimated by CIBERSORTx with significant differences across Status 
groups. Data were analysed using Wilcoxon test; *  = p ≤ 0.05, **  = p ≤ 0.01 and   *** = p ≤  0.001 (B) 
Boxplots of LY6E, OTOF and SIGLEC1 CIBERSORTx HiRes estimated values  grouped by Status. 
Each dot represents a proband and data were analysed using Wilcoxon test; **  = p ≤ 0.01 and   *** = 
p ≤  0.001. For all plots, horizontal lines indicate median values with boxes spanning the interquartile 
range (IQR) from the 25th to the 75th percentile. Error bars (if indicated) extend to values within 1.5 
times the IQR. 
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3.1.4 Weighted gene correlation network analysis 
(WGCNA)  

Our transcriptome analyses thus far focused on identifying key genes that acted as molecular 

determinants to viral infections, in our case COVID-19, and the approaches used thus far 

assumed genes acted as a singular entity. However, it is well known that genes often do not 

act as singular players but rather interact with other genes either in synergy or as antagonistic 

partners. To investigate this, we utilised WGCNA to build gene networks to identify 

correlations between genes. As previously mentioned in section 3.1.1, we had 21 bridging 

samples. For this part of the analysis, in contrast to keeping both sequences of the bridging 

samples, duplicate samples were collapsed by taking the median read counts for each gene.  

 

Before network construction, all samples were clustered using hierarchical clustering to 

identify outliers. First, pairwise distances between samples were calculated using Euclidean 

distances. Next , the hclust function was used to iteratively build clusters using the average 

linkage method followed by dendrogram plotting to identify outlier clusters or samples. As seen 

in Figure 3.5A, using a height threshold of 200, a Healthy sample COV040 was a clear outlier 

compared to the rest of the samples; subsequently removed from WGCNA-related analyses. 

A cluster of 11 samples (highlighted with a muted pink-gray box), although not meeting the 

outlier threshold of 200, clustered separately from the other samples. This cluster included 2 

COVID, 3 Non-COVID and 6 MISC samples; their IDs colour coded based on Status (pink for 

COVID, mustard for Non-COVID and blue for MISC). These 11 samples were a mix of both 

male and females, with ages ranging from 3 -12 years old. With the exception of 4 of the MISC 

samples that tended to cluster together, no other patterns could be identified to explain the 

clustering of these samples together. Due to a lack of clear reasons to exclude this cluster, 

we kept these 11 samples in our downstream analyses.  

 

Following sample clustering and outlier removal, the function pickSoftThreshold was used to 

determine the optimal power to use in network building based on the scale-free topology model 

fit. This method allowed us to determine the optimum number of nodes to edges combination 

that reflected underlying biology, whereby most genes would have weak correlations with 

other genes and only a handful would have high connectivity with other genes reflecting their 

nature as hub genes. Based on data in Figure 3.5B, to construct a ‘signed hybrid’ network 

using a ‘bicor’ correlation function, the power of 12 was chosen as it represented the power 

that met the R2    > 0.8 cutoff before a plateau was reached.  
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Next, a topological overlap matrix (TOM) was computed using the TOMsimilarityFromExpr 

function. TOM represented the topological similarity between any set of genes, with a high 

value indicating that the gene-pairs were highly connected and belonged to the same module. 

The TOM values were then used to cluster the genes based on similar principles used for the 

sample hierarchical clustering. These clusters were then assigned to modules with a minimum 

size of at least 30 genes per module. In total, 23 modules were formed from 17,374 genes 

(Figure 3.5C) with the smallest module ‘darkviolet’ containing 37 genes and the largest being 

‘darkred’ with 5133 modules (Figure 3.5D). We next correlated the gene modules with traits 

such as age, sex, status and WHO progression scale. Module ‘lightcyan’ was highly correlated 

with COVID, while ‘indianred4’, ‘brown4’ and ‘brown2’ highly correlated with Non-COVID, 

MISC and Healthy respectively (Figure 3.5E). 

  

The 233 genes in the ‘lightcyan’ module were then ranked based on their gene significance in 

relation to COVID and module membership to identify hub genes. After ranking, 24 genes 

were selected as the top 10% of genes within the module, which included genes such as 

OTOF, IFI27, LY6E and SIGLEC1 (Figure 3.6A). These genes were previously identified as 

significantly upregulated in COVID compared to Healthy in our DGE analysis (see section 

3.1.1). Gene ontology over representation analysis of the 233 genes in this module identified 

terms such as ‘Response to virus’ and ‘Viral processes’ and ‘Response to type I Interferon’ 

with an adjusted p-value < 0.05  (Figure 3.6B). Of the 233 genes, only 43 genes were 

previously identified as significantly differentially expressed in our COVID vs Healthy analysis 

using our defined significance thresholds (Figure 3.6C). The 43 genes include OTOF, IFI27, 

SIGLEC1 and LY6E. This suggested that while DGE analysis was able to capture differences 

in gene expression levels across groups on a per-gene basis, WGCNA results suggested that 

43 of these genes were not acting alone, potentially sharing a common biological pathway in 

response to SARS-CoV-2 infection; in addition to validating our DGE results.  

 

In addition to identifying hub genes for modules highly correlated to traits of interest, we were 

also interested in identifying key interacting partners for OTOF; providing hints into the 

functional role(s) of OTOF in the context of viral infections. To do so, we first plotted a network 

centred around OTOF by utilising the intramodular connectivity values previously computed. 

These values were an indication of the strength of interaction between OTOF and other genes 

found within the ‘lightcyan’ module; the cluster/module in which OTOF was found. The closest 

interactors appeared to include USP18, OAS1, OAS2, ISG15 and SIGLEC1.  Further 

classifying the genes based on their annotation within the GO term ‘Response to type I IFN’, 

12 genes were present in the GO term including USP18, OAS1, OAS2 and ISG15  (Figure 

3.6D).  
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Taken together, our results hinted towards OTOF having a specific role within the type-I IFN 

pathway and had a high correlation with COVID even in the absence of a priori functional gene 

annotation.  
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Figure 3.5 WGCNA gene clustering and module-trait correlations 
(A) Dendrogram plot used for sample clustering to detect outliers. Red line represents the outlier 
threshold. Highlighted with muted pink-gray box are samples that form their own cluster, ID colour coded 
by their Status. (B) Soft threshold power plot used to identify power to be used in model fitting. X-axis 
represents the soft threshold power and y-axis represents the model fit. (C) Dendrogram of gene 
clustering used to sort the genes into its respective modules.  (D) Bar plot of the number of genes in 



 

73 

each of the 23 modules identified with x-axis representing the module and y-axis representing the 
number of genes.  (E) Heatmap of module-trait correlation colour-coded by the Pearson correlation 
value. P-values were computed using Wilcoxon test; *  = p ≤ 0.05, **  = p ≤ 0.01 and   *** = p ≤  0.001  
 

 
Figure 3.6 WGCNA ‘lightcyan’ module hub gene for COVID trait 
(A) Scatterplot of the top 10% of hub genes identified for the ‘lightcyan’ module highly correlated with 
COVID trait. X-axis represents the module membership score for each gene while y-axis represents 
gene significance for the COVID trait. (B) Dot plot results of the top 15 significantly enriched GO terms 
based on over-representation analysis done on hub genes from (A) using the ‘Biological Process’ 
ontology . p.adjusted values represent p-values relative to the other terms in analysis (adjusted using 
Benjamini-Hochberg method), Count represents the number of genes within the term and Gene ratio 
represents the ratio of genes in the term with the overall gene set used. (C) Scatterplot of all 233 genes 
from ‘lightcyan’ module with x-axis representing the corresponding log2 fold change values from DGE 
analysis (see section 3.1.1) and y-axis representing gene significance values for the COVID trait. (D) 
Network plot for OTOF found within the ‘lightcyan’ module constructed using intramodular connectivity 
values previously computed. Genes are coloured based on their GO term annotation for ‘Response to 
type I IFN’. Thickness of lines connecting the edges and nodes indicate strength of interaction. 
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3.2 Comparing bulk RNAseq data with flow 
cytometry and proteomic data 

3.2.1 Correlation of estimated cell type fractions with flow 
cytometry data 

In addition to bulk RNA sequencing, samples from our study cohort were also subjected to 

immunophenotyping using flow cytometry††. Utilising three antibody panels, various immune 

cell populations were investigated and quantified to gain a better understanding of the effects 

of COVID-19 on immune cell populations from whole blood. As we previously investigated the 

use of in silico tools to predict cell type specific expression of our data, we wanted to see how 

well these predictions correlated with ground truth flow cytometry data.  

 

We utilised the cell type estimates output from the Fractions mode (see section 3.1.3 for more 

details) and compared it with the flow cytometric data obtained. Spearman correlation analysis 

revealed that for the major cell types, the estimated values had a high correlation with the flow 

cytometric data, as seen in Figure 3.7A. In terms of B cells, there was a high correlation 

between CD19 values and estimated naïve B cells with a Spearman correlation value of 0.48 

(Figure 3.7B). While there was a high correlation observed between memory B cells and 

activated Tregs, this was mainly driven by a few outlier samples as seen in Figure 3.7C. With 

the exception of COV071, a sample from a 1 year old boy who presented with second degree 

burns on 20% of the body in addition to testing positive for COVID-19, the rest of the outliers 

had no observable explanations. 

 

CD3 is a T cell marker, which was reflected by the high correlation observed with the various 

T cell estimates by CIBERSORTx such as CD8 T cells, naïve CD4 T cells and regulatory T 

cells (Figure 3.7A). Similarly, CD4, being a CD4+ T cell marker, highly correlated with naïve 

CD4 T cell estimates with a Spearman correlation value of 0.56 (Figure 3.7B).  

 

Taken together, our correlation analysis between the ground truth flow cytometric data and in 

silico estimated cell type data suggested that CIBERSORTx was able to estimate cell type 

specific values from bulk RNAseq data well, specifically for the major immune cell types. A 

 
†† Flow cytometric analysis was conducted by Benedict Wendel as part of his MD thesis at the Kim-
Hellmuth lab 
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higher correlation for the rarer cell types would have required a better signature reference 

matrix than the LM22 used. 
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Figure 3.7 Flow cytometric analysis and RNAseq correlation 
(A) Heatmap of all correlations between CIBERSORTx estimated cell fractions and flow cytometric 
values, colour coded by the correlation values. Columns represent CIBERSORTx estimated values and 
rows represent flow cytometric values. (B & C) Scatterplot of values obtained from CIBERSORTx 
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estimated values (x-axis) and flow cytometric values (y-axis) with R-correlation values and rho-values 
reported.  FACS is used as an abbreviation in this figure to denote flow cytometric analysis. 



 

 

3.2.2 Correlation of RNA expression data with proteomics 
data 

In addition to whole blood bulk RNAseq and flow cytometric analysis, plasma samples from 

our study cohort were subjected to three different types of proteomics sequencing: mass 

spectrometry (MS), Olink and Nulisa‡‡. By comparing data from our RNAseq analysis with 

proteomic data, we wanted to see how the variation in gene expression seen in our cohort 

translated to protein variability bearing in mind that RNA sequencing was performed on whole 

blood while proteomics was done on circulating proteins in the plasma.  

 

For each type of Status group comparisons, we compared the respective RNAseq DGE 

significant results (log2 fold change value > |1| and adjusted P-value < 0.05) with the 

corresponding proteomics differentially expressed protein analysis hits. Only genes with 

corresponding protein values were investigated, as seen in Table 3.1.  

 

Within the MS data comparison, it was evident that most of the proteins did not have a 

corresponding RNA data, which was expected as MS only captures proteins that are 

expressed beyond a certain instrument limit of detection. Nevertheless, of the data available, 

when comparing COVID vs Healthy, only 2 genes/proteins were identified, HP (encoding 

Haptoglobin) and C2 (encoding Complement C2) with a proteomic LFC of 0.51 and 0.14, 

respectively. Correspondingly, the Non-COVID vs Healthy comparison yielded 3 interesting 

genes/proteins (S100A9, HP and C2) and 6 genes/proteins for the MISC vs Healthy 

comparison (HP, LRG1, S100A9, CLU, F5 and IGLL5).  

 

Nulisa is an antibody-based proteomic technique that utilises pre-designed panels based on 

biomarkers and phenotypes of interest79. Compared to MS, it could be seen that there were 

more corresponding Nulisa data for the significant RNAseq DEG hits. Within the COVID vs 

Healthy comparison, 3 genes/proteins of interest were MMP8, LCN2 and MPO. The Non-

COVID vs Healthy comparison yielded 5 genes/proteins (S100A12, MMP9, CD274, MMP8 

and IL27) and MISC vs Healthy comparison yielded 24 genes/proteins (Table 3.1). 

 

Similar to Nulisa, Olink is also an antibody based proteomic technique that utilises pre-

designed panels based on biomarkers and phenotypes of interest80. Compared to Nulisa, 

 
‡‡ Proteomics analysis conducted by Alina Czwienzek as part of her MD thesis at the Kim-Hellmuth 
lab 
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there were more corresponding Olink data for the significant RNAseq DEGs although no 

corresponding data were available for the Non-COVID vs Healthy comparison. Within the 

COVID vs Healthy comparison, 4 genes/proteins were found while  MISC vs Healthy 

comparison yielded 71 genes/proteins (Table 3.1). It was interesting that SIGLEC1, a known 

COVID-19 RNA biomarker also had a high protein abundance detected via Olink in the COVID 

vs Healthy comparison with a proteomic logFC of 1.06 and RNAseq log2 fold change of 2.69. 

 

Overall, it could be seen that for some genes, corresponding high significant protein 

abundance were also captured in either MS, Nulisa and/or Olink.  

 
Table 3.1 Comparison of RNAseq data with corresponding proteomics data 
RNAseq DGE results for each comparison (COVID vs Healthy, Non-COVID vs Healthy and MISC vs 
Healthy) were compared to the corresponding proteomic comparison using MS, Nulisa and Olink. 
Shown here are the significant RNAseq DGE hits with the corresponding significant differentially 
expressed protein hits. Highlighted in light red are proteins identified in more than one proteomic 
method.  
 

Ensembl ID Gene  RNA 
L2FC 

RNA  
adj. P-

val 
Protein 

LFC 
Protein 

adj. P-val 
Proteomic 

Method 

COVID vs Healthy 

ENSG00000257017.8 HP 1.88 5.39E-03 0.51 2.44E-04 MS 
ENSG00000166278.14 C2 1.67 5.41E-03 0.14 4.10E-05 MS 
ENSG00000118113.11 MMP8 2.70 5.83E-04 0.93 5.53E-02 Nulisa 
ENSG00000005381.7 MPO 1.33 3.69E-03 0.71 8.94E-03 Nulisa 
ENSG00000148346.11 LCN2 1.57 5.41E-03 0.52 7.38E-02 Nulisa 
ENSG00000088827.12 SIGLEC1 2.69 1.30E-04 1.06 6.36E-03 Olink 
ENSG00000188157.13 AGRN 1.08 1.08E-03 0.61 8.98E-02 Olink 
ENSG00000171848.13 RRM2 1.39 3.07E-03 0.88 7.78E-02 Olink 
ENSG00000166278.14 C2 1.67 5.41E-03 0.47 5.21E-02 Olink 

Non-COVID vs Healthy 

ENSG00000163220.10 S100A9 1.48 2.39E-06 0.44 2.33E-02 MS 
ENSG00000257017.8 HP 1.98 5.36E-04 0.35 1.40E-02 MS 
ENSG00000166278.14 C2 1.47 3.18E-03 0.07 7.66E-02 MS 
ENSG00000163221.8 S100A12 2.06 3.72E-06 1.52 1.37E-02 Nulisa 
ENSG00000100985.7 MMP9 1.18 8.27E-04 1.44 8.17E-04 Nulisa 
ENSG00000120217.13 CD274 1.17 1.17E-03 0.63 2.62E-03 Nulisa 
ENSG00000118113.11 MMP8 1.67 1.60E-02 1.82 2.53E-04 Nulisa 
ENSG00000197272.2 IL27 1.13 3.03E-02 0.84 9.14E-02 Nulisa 

MISC vs Healthy 
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ENSG00000257017.8 HP 3.76 2.18E-06 0.89 1.20E-05 MS 
ENSG00000171236.9 LRG1 1.89 4.46E-06 0.57 1.48E-06 MS 
ENSG00000163220.10 S100A9 2.22 5.17E-06 1.03 1.61E-04 MS 
ENSG00000120885.19 CLU 1.64 1.12E-04 -0.18 1.59E-05 MS 
ENSG00000198734.10 F5 1.09 1.68E-03 0.15 6.56E-02 MS 
ENSG00000254709.6 IGLL5 1.17 4.75E-02 0.13 7.51E-02 MS 
ENSG00000115590.13 IL1R2 3.54 5.51E-08 1.77 2.54E-07 Nulisa 
ENSG00000019991.15 HGF 2.13 2.74E-07 3.52 8.75E-10 Nulisa 
ENSG00000118113.11 MMP8 4.27 1.68E-06 4.10 6.04E-08 Nulisa 
ENSG00000100985.7 MMP9 3.01 3.45E-06 2.24 3.19E-04 Nulisa 
ENSG00000115594.11 IL1R1 2.15 3.74E-06 -0.55 1.03E-02 Nulisa 
ENSG00000115604.10 IL18R1 2.57 4.85E-06 0.81 3.34E-03 Nulisa 
ENSG00000163221.8 S100A12 3.07 8.17E-06 2.28 1.21E-02 Nulisa 
ENSG00000173372.16 C1QA 2.73 2.41E-05 2.10 1.90E-05 Nulisa 
ENSG00000077984.5 CST7 1.80 2.67E-05 3.22 1.37E-07 Nulisa 
ENSG00000138798.11 EGF 1.66 6.52E-05 1.23 8.64E-02 Nulisa 
ENSG00000197272.2 IL27 2.75 8.17E-05 1.27 8.13E-02 Nulisa 
ENSG00000161921.14 CXCL16 1.29 9.02E-05 0.39 8.13E-02 Nulisa 
ENSG00000120217.13 CD274 2.05 1.22E-04 1.70 1.70E-07 Nulisa 
ENSG00000198053.11 SIRPA 1.12 2.16E-04 0.81 6.59E-03 Nulisa 
ENSG00000102265.11 TIMP1 1.08 2.70E-04 1.56 5.53E-04 Nulisa 
ENSG00000099985.3 OSM 1.35 6.86E-04 3.10 7.92E-06 Nulisa 
ENSG00000136634.5 IL10 2.17 7.96E-04 2.30 1.14E-03 Nulisa 
ENSG00000119535.17 CSF3R 1.03 9.39E-04 1.76 8.92E-09 Nulisa 
ENSG00000115884.10 SDC1 2.89 1.66E-03 2.17 8.92E-09 Nulisa 
ENSG00000109321.10 AREG 2.14 3.72E-03 1.48 2.03E-04 Nulisa 
ENSG00000089692.8 LAG3 1.02 4.69E-03 0.89 7.87E-03 Nulisa 
ENSG00000148346.11 LCN2 1.73 9.67E-03 1.77 3.61E-05 Nulisa 
ENSG00000005381.7 MPO 1.29 2.25E-02 2.06 3.49E-07 Nulisa 
ENSG00000163734.4 CXCL3 1.21 4.79E-02 1.31 8.12E-02 Nulisa 
ENSG00000169174.10 PCSK9 5.80 3.12E-11 1.22 5.28E-03 Olink 

ENSG00000118520.13 ARG1 4.09 6.34E-09 -0.67 4.58E-02 Olink 

ENSG00000115590.13 IL1R2 3.54 5.51E-08 0.41 1.28E-02 Olink 

ENSG00000004660.14 CAMKK1 1.41 1.30E-07 0.29 8.66E-02 Olink 

ENSG00000134243.11 SORT1 2.02 1.82E-07 1.08 9.50E-07 Olink 

ENSG00000019991.15 HGF 2.13 2.74E-07 2.72 1.34E-08 Olink 

ENSG00000118113.11 MMP8 4.27 1.68E-06 4.64 2.58E-07 Olink 

ENSG00000100985.7 MMP9 3.01 3.45E-06 1.12 4.84E-03 Olink 

ENSG00000096060.14 FKBP5 2.07 3.66E-06 2.55 4.63E-10 Olink 

ENSG00000000938.12 FGR 1.19 3.68E-06 2.03 6.30E-08 Olink 

ENSG00000115594.11 IL1R1 2.15 3.74E-06 -0.50 2.38E-02 Olink 

ENSG00000123836.14 PFKFB2 2.13 4.46E-06 0.98 1.56E-02 Olink 

ENSG00000115604.10 IL18R1 2.57 4.85E-06 1.19 6.90E-05 Olink 
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ENSG00000138772.12 ANXA3 2.70 9.06E-06 1.25 1.36E-02 Olink 

ENSG00000155659.14 VSIG4 2.52 9.44E-06 3.16 4.63E-10 Olink 

ENSG00000186431.18 FCAR 1.89 1.40E-05 1.59 2.17E-06 Olink 

ENSG00000111261.13 MANSC1 1.67 1.60E-05 0.59 1.98E-03 Olink 

ENSG00000173372.16 C1QA 2.73 2.41E-05 0.62 2.19E-03 Olink 

ENSG00000077984.5 CST7 1.80 2.67E-05 2.65 6.16E-06 Olink 

ENSG00000187116.13 LILRA5 1.97 2.67E-05 1.07 9.61E-05 Olink 

ENSG00000135404.11 CD63 1.22 3.82E-05 1.13 1.04E-04 Olink 

ENSG00000138798.11 EGF 1.66 6.52E-05 1.66 2.03E-03 Olink 

ENSG00000105355.8 PLIN3 1.01 7.23E-05 0.30 4.38E-02 Olink 

ENSG00000171848.13 RRM2 2.23 7.35E-05 1.43 5.91E-03 Olink 

ENSG00000170909.13 OSCAR 1.29 7.40E-05 0.81 4.07E-05 Olink 

ENSG00000166527.7 CLEC4D 1.92 1.07E-04 1.12 4.02E-03 Olink 

ENSG00000120217.13 CD274 2.05 1.22E-04 1.76 1.42E-07 Olink 

ENSG00000117115.12 PADI2 1.79 1.46E-04 0.76 7.25E-03 Olink 

ENSG00000126861.4 OMG 1.89 1.73E-04 -1.29 8.91E-03 Olink 

ENSG00000185339.8 TCN2 2.23 2.29E-04 0.88 6.47E-03 Olink 

ENSG00000109906.13 ZBTB16 1.60 2.68E-04 1.37 6.43E-06 Olink 

ENSG00000165682.14 CLEC1B 1.61 3.37E-04 2.43 2.14E-08 Olink 

ENSG00000008438.4 PGLYRP1 1.82 4.01E-04 1.25 1.30E-03 Olink 

ENSG00000074416.13 MGLL 1.16 4.15E-04 0.91 3.14E-03 Olink 

ENSG00000172216.5 CEBPB 1.09 4.58E-04 1.26 2.32E-04 Olink 

ENSG00000163191.5 S100A11 1.15 4.85E-04 0.65 4.49E-02 Olink 

ENSG00000106366.8 SERPINE1 1.30 6.17E-04 0.92 3.94E-02 Olink 

ENSG00000099985.3 OSM 1.35 6.86E-04 2.66 4.84E-05 Olink 

ENSG00000196415.9 PRTN3 2.79 9.25E-04 2.10 4.54E-06 Olink 

ENSG00000130513.6 GDF15 2.54 9.51E-04 1.50 1.10E-05 Olink 

ENSG00000258227.6 CLEC5A 1.47 9.51E-04 1.39 1.31E-07 Olink 

ENSG00000145431.10 PDGFC 1.22 1.03E-03 0.80 4.28E-04 Olink 

ENSG00000082781.11 ITGB5 1.27 1.08E-03 -0.55 1.96E-02 Olink 

ENSG00000105501.11 SIGLEC5 1.33 1.28E-03 1.88 4.07E-02 Olink 

ENSG00000172382.9 PRSS27 1.04 1.42E-03 -0.68 2.65E-02 Olink 

ENSG00000175928.5 LRRN1 1.42 1.57E-03 -1.58 1.30E-06 Olink 

ENSG00000197646.7 PDCD1LG
2 2.05 1.59E-03 0.68 2.43E-02 Olink 

ENSG00000115884.10 SDC1 2.89 1.66E-03 2.58 1.40E-08 Olink 

ENSG00000105835.11 NAMPT 1.25 1.94E-03 0.76 1.90E-02 Olink 

ENSG00000137563.11 GGH 1.44 2.12E-03 -1.17 1.27E-02 Olink 

ENSG00000166825.13 ANPEP 1.11 3.34E-03 -1.42 8.49E-03 Olink 

ENSG00000154589.6 LY96 1.18 3.40E-03 0.85 1.92E-04 Olink 

ENSG00000109321.10 AREG 2.14 3.72E-03 1.26 5.02E-03 Olink 

ENSG00000088053.11 GP6 1.17 3.77E-03 0.90 1.93E-02 Olink 

ENSG00000099998.17 GGT5 1.75 3.78E-03 -0.37 2.14E-02 Olink 

ENSG00000185245.7 GP1BA 1.16 3.84E-03 -0.95 3.17E-02 Olink 
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ENSG00000089692.8 LAG3 1.02 4.69E-03 1.35 3.17E-04 Olink 

ENSG00000079385.21 CEACAM1 1.34 6.03E-03 0.37 2.34E-02 Olink 

ENSG00000105609.16 LILRB5 1.37 6.99E-03 -1.11 2.25E-02 Olink 

ENSG00000114378.16 HYAL1 1.15 1.12E-02 -1.10 4.31E-02 Olink 

ENSG00000019169.10 MARCO 1.39 1.51E-02 0.56 2.57E-02 Olink 

ENSG00000108821.13 COL1A1 1.65 1.89E-02 -1.07 4.03E-04 Olink 

ENSG00000104918.7 RETN 1.34 2.20E-02 1.54 7.22E-05 Olink 

ENSG00000146700.8 SSC4D 1.20 2.23E-02 -3.81 1.31E-05 Olink 

ENSG00000124469.10 CEACAM8 1.75 2.37E-02 1.56 6.81E-06 Olink 

ENSG00000078098.13 FAP 1.86 3.00E-02 -1.83 2.13E-05 Olink 

ENSG00000170476.15 MZB1 1.21 3.04E-02 2.14 1.66E-05 Olink 

ENSG00000076706.14 MCAM 1.28 3.29E-02 -2.51 5.53E-04 Olink 

ENSG00000107821.14 KAZALD1 1.73 3.33E-02 -1.14 5.64E-04 Olink 

ENSG00000239264.8 TXNDC5 1.11 4.79E-02 1.09 1.30E-05 Olink 

ENSG00000163734.4 CXCL3 1.21 4.79E-02 1.56 2.75E-02 Olink 
LFC = log fold change; L2FC = log2 fold change; adj.P-val = adjusted P-value; MS = Mass Spectrometry 
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4.1 In vitro stimulation experiments 
To corroborate our OTOF findings in the transcriptome analyses and to recapitulate the 

findings of Ding et al. (2022), we aimed to functionally assess the effects of stimulating primary 

cells with various stimuli on OTOF expression. 

 
We stimulated CD4+ T cells (resting and activated) and monocyte-derived macrophages 

(MDMs) with IFNα, IFNβ or IFNγ (all at 1,000 U/ml) for 24 hours and performed RT-qPCR to 

quantify OTOF mRNA levels. For resting and activated CD4+ T cells, as seen in Figure 4.1, 

there was a significant upregulation of OTOF upon stimulation across all conditions with p-

values <0.01. For MDMs, significant upregulation of OTOF was seen only upon IFNα or IFNβ 

stimulation with p-values < 0.01 when compared to the unstimulated controls (Figure 4.1).  

 

Overall, our stimulation experiments in both CD4+ T cells and MDMs suggested that OTOF 

was upregulated upon stimulation with IFNα, IFNβ or IFNγ and showed cell type specificity.  

 
Figure 4.1 OTOF expression upregulated upon IFN stimulation in CD4+ T cells and MDMs 

Expression of OTOF in Resting CD4+ T cells , Activated CD4+ T cells and monocyte-derived 
macrophages upon stimulation with IFNα, IFNβ or IFNγ for 24 hours (all at 1,000 U/ml). All data plotted 
as 2-∆∆ CT values (log2 fold change) of OTOF compared to the unstimulated controls with data from 2 
independent experiments for Resting and Activated CD4+ T cells  (n = 5 donors in total) and 3 
independent experiments (n = 7 donors in total) for MDMs. In all experiments, 18s was used as a 
housekeeping control for normalisation. Data were analysed using Wilcoxon test; **  = p ≤ 0.01 and   *** 
= p ≤  0.001. For all plots, horizontal lines indicate median values with boxes spanning the interquartile 
range (IQR) from the 25th to the 75th percentile.  
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4.2 Effects of OTOF on SARS-CoV-2 binding 
and fusion 
Ding et al. (2022) previously have shown that increased OTOF expression resulted in 

impairment of HIV-1 entry into host cells, acting as an anti-HIV factor. Using BLaM-Vpr-based 

virion assays, they have demonstrated that OTOF significantly affects HIV-1 entry into target 

cells by disrupting viral fusion but not binding of virions.  

 

To understand if OTOF has a similar effect on SARS-CoV-2, we investigated the effects of 

OTOF overexpression on LVs pseudotyped with SARS-CoV-2 spike proteins for binding and 

fusion using HEK293T cells overexpressing hACE2, the receptor required for SARS-CoV-2 

spike protein binding and fusion. 

4.2.1 Generation of ACE2 and OTOF plasmids 

Prior to conducting the binding and fusion assays, necessary plasmids were first generated to 

obtain cell lines that overexpress hACE2 and OTOF. To generate the ACE2 plasmid required 

for transfection, hACE2 containing a C-terminal FLAG tag was PCR amplified from an existing 

plasmid (pCDH_EF1-hACE2-C-FLAG-T2A-mtagBFP) using primers hACE2_Fwd and 

hACE2_Rev. Gibson cloning was then performed using the pSBbi-BP vector backbone  

(Addgene, #60512) and hACE2 insert at a ratio of 1:2 respectively. The resulting plasmid used 

for further experiments was named pSBbi-BP-hACE2-FLAG, with the plasmid map illustrated 

in Figure 4.2A. 

 

Plasmids containing either OTOF isoform 1 or isoform 4 were similarly generated by Gibson 

cloning using sleeping beauty plasmids psBbi-RB (Addgene, #60522) as the vector backbone. 

OTOF isoform 1 insert was obtained by PCR amplification of HsCD00871312 (DNASU 

Plasmid repository) using primers OTOF1_Fwd and OTOF1_Rev. OTOF isoform 4 was 

obtained by linear gene fragment synthesis using BaseGene (Netherlands) and Gibson 

cloning was performed using OTOF4_Fwd and OTOF4_Rev. The resulting plasmids used for 

further experiments were named pSBbi-RB-OTOF1-HA and pSBbi-RB-OTOF4-HA, 

respectively, with the plasmid maps illustrated in Figure 4.2B and Figure 4.2C, respectively.  

 

Full details on plasmid generation and transfection protocols can be seen in section 2.3.  
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Figure 4.2 ACE2 and OTOF plasmid maps 

(A) Plasmid map of pSBbi-BP-hACE2-FLAG with a size of 8906bp. This plasmid contains an Ampicillin 
bacterial resistance and a Puromycin selection marker in mammalian cells, along with a constitutive 
blue fluorescent protein (BFP) expression. (B) Plasmid map of pSBbi-RB-OTOF1-HA with a size of 
12286bp. This plasmid contains an Ampicillin bacterial resistance and a Blasticidin selection marker in 
mammalian cells, along with a constitutive dTomato expression. (C) Plasmid map of pSBbi-RB-OTOF4-
HA with a size of 9985bp. This plasmid contains an Ampicillin bacterial resistance and a Blasticidin 
selection marker in mammalian cells, along with a constitutive dTomato expression. 

4.2.2 HEK293T cells overexpressing ACE2 and OTOF  

Following successful generation of the ACE2, OTOF1 and OTOF4 plasmids, the next goal 

was to transfect HEK293T cells to overexpress these plasmids to generate three different cell 
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lines: ACE2 cell lines (HEK293T cells overexpressing hACE2), OTOF1 cell lines (HEK293T 

cells overexpressing hACE2 and OTOF-201) and OTOF4 cell lines (HEK293T cells 

overexpressing hACE2 and OTOF-204). HEK293T cell lines were used as the parental strain 

as it is a gold standard for recombinant protein expression81, in addition to being the primary 

cell line used in the Baldauf lab where the experiments were conducted.  

 
Figure 4.3 Successful overexpression of ACE2 and OTOF in HEK293T cells 
(A) Boxplot of OTOF mRNA quantification, measured via RT-qPCR in all cell lines used for the 
experiments (n = 4 for all samples except HEK293T where n = 2). All data plotted as 2-∆∆ CT values 
(log2 fold change) of OTOF compared to the controls as indicated. Data were analysed using Wilcoxon 
test;*  = p ≤ 0.05 and **  = p ≤ 0.01. For all plots, horizontal lines indicate median values with boxes 
spanning the interquartile range (IQR) from the 25th to the 75th percentile.  (B) Western blot of OTOF 
1, OTOF 4, hACE2 and Tubulin proteins in all cell lines. SuperSignal West Femto or ECL 
chemiluminescence was used to develop the blot depending on approximate protein abundance. 
Shown is a representative Western blot from one experiment. (C) Dot plot of flow cytometric analysis 
of all cell lines with x-axis representing PE (representing dTomato expression) and y-axis representing 
Pacific Blue (representing BFP expression). Shown are representative plots from one experiment.  
HEK293T = WT cell line; ACE2 = HEK293T cells overexpressing hACE2; OTOF1 = HEK293T cells 
overexpressing hACE2 and OTOF-201; OTOF4 = HEK293T cells overexpressing hACE2 and OTOF-
204 
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To confirm the presence of hACE2 and OTOF-201 or OTOF-204 in each cell line, RT-qPCR, 

Western blot and flow cytometric analysis were used. As seen in Figure 4.3A, OTOF mRNA 

expression quantification confirmed the absence of OTOF in the control cell lines HEK293T 

and ACE2 while there was a significant expression of OTOF in the OTOF1 and OTOF4 cell 

lines with a p-value ≤ 0.05. When looking at hACE2 and OTOF protein abundance in the cell 

lysates, Western blot revealed presence of ACE2 in all three ACE2, OTOF1 and OTOF4 cell 

lines (Figure 4.3B). Similarly, OTOF was only present in both the OTOF1 and OTOF4 cell 

lines (Figure 4.3B). While we were not able to distinguish between the two OTOF isoforms 

when quantified via qRT-PCR (due to consensus primers flanking both isoforms being used), 

Western blot was able to highlight the differences based on the size of the corresponding 

protein formed as OTOF-201 had an approximate 240kDa band and OTOF-204 had an 

approximate 140kDa band (Figure 4.3B). 

 

As the plasmids encode for either BFP (ACE2 plasmid) or BFP and dTomato (OTOF1 plasmid 

and OTOF4 plasmid), flow cytometry was used to confirm the presence of constitutive 

expression of these fluorescent proteins. As seen in Figure 4.3C, WT HEK293T cell line had 

no BFP or dTomato expression. 99.9% of ACE2 cells expressed BFP while 98.8% and 97.9% 

of OTOF1 and OTOF4 cells, respectively, expressed both BFP and dTomato. The presence 

of BFP and dTomato was crucial for assays downstream to enable accurate quantification of 

the effects of OTOF on both binding and fusion of SARS-CoV-2 in these cells.  

 

Taken together, we showed that three new cell lines were successfully generated (ACE2, 

OTOF1 and OTOF4) to overexpress OTOF and/or hACE2 which allowed us to proceed with 

the next steps in the experimental plan.  

 

Full details on transfection protocols and confirmation assays can be seen in section 2.3. 

4.2.3 Vpr-GFP binding assay 

After successful generation of ACE2, OTOF1 and OTOF4 cells lines, we next sought to assess 

binding efficiency utilising Vpr-GFP incorporated in LVs pseudotyped with SARS-CoV-2 spike 

proteins for five variants: 2019-nCOV, BA.1 (Omicron), BA.2 (Omicron), SA (South Africa) and 

BRA (Brazil). ACE2-receptor antibody blocking was used as a control to identify ACE2-

receptor-specific binding effects (antibody blocking results shown in Figure 4.6) and a VSV-G 

pseudotyped LV was used as a positive control for the assays (VSV-G results shown in Figure 

4.7As seen in Figure 4.4,  we observed variability with binding between the different spike 

variants, with SA exhibiting the highest binding in all three cell lines with BRA and BA.1 
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exhibiting the lowest binding overall. Within the ACE2 cell lines, the median binding levels with 

SA were 85.6%, 2-fold higher than 2019-nCOV which had a median binding of 41.5%. Median 

binding for BA.1 was 22.9% (1.8-fold lower than 2019-nCOV), BA.2 was 66.4% (1.6 times 

higher than 2019-nCOV) and BRA was 2.4% (17-fold lower than 2019-nCOV), respectively. 

Similar patterns were observed in the OTOF1 and OTOF4 cell lines. 

 

When comparing binding between HEK293T and ACE2, significant differences were observed 

in all variants except for BA.1 (Figure 4.4B). Median binding in ACE2 for 2019-nCOV was 88-

fold higher compared to HEK293T, 6.9-fold higher in BA.1, 4-fold higher in BA.1, 26-fold higher 

in SA and 8-fold higher in BRA, respectively. In the presence of overexpressed OTOF1 or 

OTOF4, binding was not affected across all variants when compared to ACE2. P-values were 

computed using Welch’s t-test across each cell line per variant and none were significant (p-

value > 0.05 across all comparisons).  

 

In the presence of ACE2-antibody blocking, as expected, binding levels were unaffected in 

HEK293T cells regardless of variant. In the ACE2, OTOF1 and OTOF4 cell lines, binding was 

significantly inhibited only in variants 2019-nCOV, BA.1 and SA. Within the ACE2 cell lines, 

when compared to the condition where no ACE2-antibody blocking was used, binding was 

inhibited by 26-fold with 2019-nCOV, 5.1-fold with BA.1 and 4.4-fold with SA, respectively 

(Figure 4.6A). Similar trends were observed in the OTOF1 and OTOF4 cell lines. 

 

Full protocol and flow cytometry gating strategy can be seen in section 2.3.8. 

4.2.4 BLaM-Vpr fusion assay 

Next, we wanted to investigate if fusion was impaired in the presence of OTOF since binding 

remained intact. We utilised a BLaM-Vpr (β-lactamase-Vpr) construct incorporated into VLPs 

pseudotyped with SARS-CoV-2 spike proteins in line with Cavrois et al. (2002)77. Fusion assay 

quantification was based upon enzymatic cleavage of the β-lactamase ring on CCF2, a 

fluorescent substrate of BLaM, resulting in a change in fluorescence emission from 520nm to 

447nm. Full protocol and flow cytometry gating strategy can be seen in section 2.3.9.  

 

Using the ACE2, OTOF1 and OTOF4 cell lines previously generated, we tested the effects of 

fusion using five different SARS-CoV-2 spike protein variants similar to the binding assay: 

2019-nCOV, BA.1, BA.2, SA and BRA. As with the binding assay, ACE2-receptor antibody 

blocking was used as a control to identify ACE2-receptor-specific fusion effects (antibody 
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blocking results shown in Figure 4.6) and a VLPs pseudotyped with VSV-G was used as a 

positive control for the assays (VSV-G results shown in Figure 4.7).  

 

As seen in Figure 4.5, similar to the binding assay results, there was variability in fusion levels 

between variants and fusion levels were especially low for BA.1, BA.2 and BRA while 2019-

nCOV exhibited highest levels of fusion across all cell lines. Within the ACE2 cell lines, the 

median binding levels with 2019-nCOV were 27.1%, 0.53% for BA.1 (51-fold lower than 2019-

nCOV), 0.42% for BA.2 (65-fold lower than 2019-nCOV), 9.66% for SA (2.8-fold lower than 

2019-nCOV),  and 1.36% for BRA (20-fold lower than 2019-nCOV), respectively. Similar 

patterns were observed in the OTOF1 and OTOF4 cell lines. 

 

When comparing fusion levels between HEK293T and ACE2, significant differences were 

observed only in variants 2019-nCOV (17-fold higher in ACE2 compared to HEK293T) and 

SA (4-fold higher in ACE2 compared to HEK293T) (Figure 4.5B). In the presence of 

overexpressed OTOF1 or OTOF4, fusion was not affected across all variants when compared 

to ACE2. P-values were computed using Welch’s t-test across each cell line per variant and 

none were significant (p-value > 0.05 across all comparisons). There was a slight tendency 

for OTOF1 to have higher fusion levels in 2019-nCOV (31.1% median binding in OTOF1 

compared to 27.1% in ACE2)  and SA (26.9% median binding in OTOF1 compared to 9.66% 

in ACE2) but it did not reach the significance threshold of p < 0.05. In the presence of ACE2 

antibody blocking, as expected, fusion levels were unaffected in HEK293T cells regardless of 

variant. In the ACE2, OTOF1 and OTOF4 cell lines, fusion was significantly inhibited only in 

the 2019-nCOV variant with a 12-fold lower binding in ACE2, 11-fold lower binding in OTOF1 

and 11-fold lower binding in OTOF4, respectively. (Figure 4.6B). Full protocol and flow 

cytometric analysis gating strategy can be seen in section 2.3.8. 

 

Considering both the binding and fusion assays together, our results suggested that 

overexpression of both OTOF1 or OTOF4 did not affect binding or fusion of LVs/VLPs 

pseudotyped with SARS-CoV-2 spike proteins into target cells expressing ACE2. 



 

91 

 
Figure 4.4 OTOF does not affect binding of LVs pseudotyped with SARS-CoV-2 spike proteins 
to HEK293T cells 
(A) Dot plots of flow cytometric analysis showing binding across all three cell lines and the 5 
pseudotyped SARS-CoV-2 spike protein variants tested. x-axis represents GFP expression (measured 
using FITC) and y-axis represents BFP expression (measured using Pacific Blue). Shown are 
representative plots from one experiment. (B) Boxplot of binding percentage across all four cell lines 
(HEK293T, ACE2, OTOF1 and OTOF4) based on frequency of parent. Data is shown from 3 
independent experiments. P-values were determined using Welch’s t-test; *  = p ≤ 0.05,**  = p ≤ 0.01 
and ***  = p ≤ 0.05. For all plots, horizontal lines indicate median values with boxes spanning the 
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interquartile range (IQR) from the 25th to the 75th percentile. Error bars extend to values within 1.5 
times the IQR. 
HEK293T = WT cell line; ACE2 = HEK293T cells overexpressing hACE2; OTOF1 = HEK293T cells 
overexpressing hACE2 and OTOF-201; OTOF4 = HEK293T cells overexpressing hACE2 and OTOF-
204  
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Figure 4.5 OTOF does not affect fusion of VLPs pseudotyped with SARS-CoV-2 spike proteins 
to HEK293T cells 
(A) Dot plots from flow cytometric analysis showing fusion across all four cell lines and the 5 
pseudotyped SARS-CoV-2 spike protein variants tested. x-axis represents BFP and y-axis represents 
V500. Shown are representative plots from one experiment. (B) Boxplot of fusion percentage across 
all four cell lines (HEK293T, ACE2, OTOF1 and OTOF4) based on frequency of parent. Data is shown 
from 4 independent experiments. P-values were determined using Welch’s t-test; *  = p ≤ 0.05,**  = p ≤ 
0.01 and ***  = p ≤ 0.001. For all plots, horizontal lines indicate median values with boxes spanning the 
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interquartile range (IQR) from the 25th to the 75th percentile. Error bars extend to values within 1.5 
times the IQR. 
HEK293T = WT cell line; ACE2 = HEK293T cells overexpressing hACE2; OTOF1 = HEK293T cells 
overexpressing hACE2 and OTOF-201; OTOF4 = HEK293T cells overexpressing hACE2 and OTOF-
204 
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Figure 4.6 ACE2-receptor blocking affects binding and fusion of LVs/VLPs pseuodypted with 
SARS-CoV-2 spike proteins in HEK293T cells 
(A) Boxplot of binding percentage across all four cell lines (HEK293T, ACE2, OTOF1 and OTOF4) 
based on frequency of parent. Data is shown from 3 independent experiments. (B) Boxplot of fusion 
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percentage across all three cell lines (ACE2, OTOF1 and OTOF4) based on frequency of parent. Data 
is shown from 4 independent experiments. For both plots (A and B) Colours indicates cell lines and 
transparency indicates presence or absence of antibody blocking with anti-ACE2. P-values were 
determined only for comparisons across similar cell lines (eg. HEK293T vs HEK293T + Blocking) using 
Welch’s t-test; *  = p ≤ 0.05,**  = p ≤ 0.01 and ***  = p ≤ 0.001. For all plots, horizontal lines indicate 
median values with boxes spanning the interquartile range (IQR) from the 25th to the 75th percentile. 
Error bars extend to values within 1.5 times the IQR. 
HEK293T = WT cell line; ACE2 = HEK293T cells overexpressing hACE2; OTOF1 = HEK293T cells 
overexpressing hACE2 and OTOF-201; OTOF4 = HEK293T cells overexpressing hACE2 and OTOF-
204   
 

4.2.5 Effects of OTOF1 and OTOF4 on VSV-G binding and 
entry 

As described in sections 4.2.3 and 4.2.4, VSV-G was used as a positive control for both the 

LVs/VLPs pseudotyped with SARS-COV-2 spike protein binding and fusion assays. We were 

also interested to see if overexpression of OTOF1 or OTOF4 had an impact on binding and/or 

fusion of VSV-G in the cell lines. Interestingly, when looking at the data, overexpression of 

OTOF1 or OTOF4 had no effect on VSV-G binding with comparable binding frequency across 

all cell lines while overexpression of OTOF4 significantly increased VSV-G fusion when 

compared to ACE2 with a median binding of 89.3% in ACE2 and 97.8% in OTOF4 (Figure 

4.7A).  
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Figure 4.7 Fusion of VLPs pseudotyped with VSV-G is affected in the presence of OTOF-204 in 
HEK293T cells 
Boxplot of (A) binding and fusion percentage of LVs/VLPs pseudotyped with VSV-G across all four cell 
lines (HEK293T, ACE2, OTOF1 and OTOF4) and (B) in the presence of ACE2 antibody blocking. 
Binding and fusion were assessed based on frequency of parent. Data is shown from 3 and 4 
independent experiments, for binding and fusion, respectively. P-values were determined using Welch’s 
t-test; *  = p ≤ 0.05. Colours indicate cell lines and transparency indicates presence of antibody blocking 
with anti-ACE2. For all plots, horizontal lines indicate median values with boxes spanning the 
interquartile range (IQR) from the 25th to the 75th percentile. Error bars extend to values within 1.5 
times the IQR.  
(B) For experiments with antibody blocking, p-values were determined only for comparisons across 
similar cell lines (eg. HEK293T vs HEK293T + Blocking) using Welch’s t-test; *  = p ≤ 0.05.  
HEK293T = WT cell line; ACE2 = HEK293T cells overexpressing hACE2; OTOF1 = HEK293T cells 
overexpressing hACE2 and OTOF-201; OTOF4 = HEK293T cells overexpressing hACE2 and OTOF-
204  
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4.3 Effects of OTOF on YFV and HIV-1 infection  
As we did not observe any significant effects of overexpressed OTOF on fusion or binding 

based on LVs/VLPs pseudotyped with SARS-CoV-2 spike proteins, we wanted to investigate 

if OTOF impairs virion exit from host cells and if the effects of OTOF are virus-dependent. 

Thus, we set up infection assays to assess the effects of overexpressed OTOF on two different 

RNA viruses: Yellow Fever Virus (YFV) and HIV-1.   

4.3.1 YFV infection assay 

This part of the project was done in collaboration with Simon Rothenfußer§§. In another 

ongoing project within the Kim-Hellmuth lab, OTOF was identified as one of the top 

upregulated genes based on bulk long-read sequencing of a longitudinal cohort of individuals 

vaccinated with YFV-17D vaccine (data not shown). Thus, we aimed to elucidate the effects 

of overexpressed OTOF on YFV-17D infection.  

YFV genome, target cell entry & virion replication 
YFV is a positive, single-stranded RNA virus belonging to the Flaviviridae family. As an 

enveloped virus, the YFV genome encodes capsid, envelope and membrane proteins; similar 

to the composition of SARS-CoV-2. In contrast to SARS-CoV-2, YFV lacks a 3’ end poly-A tail 

and the structural proteins are encoded in the 5’ end of the genome while the non-structural 

proteins are encoded by the 3’ end82.   

 

Similarly, YFV binds to target cells via recognition of cell surface receptors followed by 

endocytic internalisation. Following entry into target cells, fusion of the viral envelope occurs 

with the endosomal cell membrane resulting in the release of viral genome into the target cell 

cytoplasm, allowing viral translation machinery to be initiated with subsequent steps such as 

replication, translation and processing leading to production of mature virions. Viral genome 

replication has been known to occur rapidly, with viral RNA being detected within 6 hours of 

initial infection82. For the purpose of this thesis, the YFV-17D strain expressing GFP was used 

for experimental purposes. 

 

 
§§ The Rothenfußer lab kindly contributed the cell lines, reagents, equipment and guidance required 
for the assay (Division of Clinical Pharmacology, University Hospital LMU Munich, Germany) 
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YFV-17D infection assay results 
To assess if the presence of overexpressed OTOF resulted in changes in YFV-17D infectivity, 

two cell lines were used for the infection assays: Vero (derived from African green monkey 

kidney cells) and 1205Lu (cells derived from human lung metastasis originating from 

melanoma). As with the previous OTOF1 and OTOF4 cells generated for the LVs/VLPs 

pseudotyped with SARS-CoV-2 spike protein fusion and binding assays (sections 2.3.7 and 

4.2.1), similar strategies were used to generate Vero and 1205Lu overexpressing OTOF1 or 

OTOF4 (see section 2.3.10.2 for detailed information). For both cell lines, different multiplicity 

of infection (MOI) were used based on initial tests in these cell lines (data not shown). Vero 

cells do not have an intact IFN machinery unlike 1205Lu83.  

 

As seen in Figure 4.8A, Vero WT had a median GFP frequency of 0.54% (MOI 1) and 2.33% 

(MOI 3) at the 24 hour time point which increased to 19.3% (MOI 1)  and 60.75% (MOI 3) after 

48 hours before reaching 83.75% (MOI 1) and 95.70% (MOI 3) at 72 hours. Vero OTOF1 had 

a median GFP frequency of 0.55% (MOI 1) and 1.87% (MOI 3) at the 24 hour time point which 

increased to 19.5% (MOI 1) and 52.50% (MOI 3) after 48 hours before reaching 80.85% (MOI 

1) and 97.30% (MOI 3) at 72 hours. Similarly, Vero OTOF4 had a median GFP frequency of 

0.59% (MOI 1) and 2.68% (MOI 3) at the 24 hour time point which increased to 18.2% (MOI 

1) and 50.45% (MOI 3) after 48 hours before reaching 88.25% (MOI 1) and 98.80% (MOI 3) 

at 72 hours. When data across Vero cell lines per time point per MOI were compared, no 

significant differences were observed in YFV-17D infectivity except for Vero OTOF4 at MOI 3 

after 72 hours with a 1-fold increase compared to Vero WT.  

 

Interestingly, YFV-17D infection in 1025Lu cell lines showed several significant differences in 

the presence of overexpressed OTOF1 or OTOF4 across time points. As seen in Figure 4.8B, 

1025Lu WT had a median GFP frequency of 2.51% (MOI 5) at the 24 hour time point which 

increased to 4.70% (MOI 5) after 48 hours before reducing to 3.75% (MOI 5) at 72 hours. 

1205Lu OTOF1 on the other hand had a median GFP frequency of 5.66% (MOI 5) at the 24 

hour time point which increased to 7.85% (MOI 5) after 48 hours before reaching 7.99% (MOI 

5) at 72 hours. Similarly, 1205Lu OTOF4 had a median GFP frequency of 2.39% (MOI 5) at 

the 24 hour time point which increased to 3.45% (MOI 5) after 48 hours before reaching 3.73% 

(MOI 5) at 72 hours. 

 

1205Lu OTOF1 cells had consistently significantly higher infection rates across all time points 

when compared to 1205Lu WT with an approximate 2-fold increase across all time points. 
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With 1205Lu OTOF4, a significant decrease (1.4-fold lower compared to 1205Lu WT) in 

infection was observed only at the 48 hour time point. 

 

 
Figure 4.8 OTOF significantly affects YFV-17D infection in 1205Lu cells but not Vero 
(A) Boxplot of YFV infection percentage across all three Vero cell lines (Vero WT, Vero OTOF1 and 
Vero OTOF4) based on frequency of parent. Data is shown from 4 independent experiments. (B). 
Boxplot of YFV infection percentage across all three 1205Lu cell lines (1205Lu WT, 1205Lu OTOF1 
and 1205Lu OTOF4) based on frequency of parent. Data is shown from 4 independent experiments. 
For both plots (A and B) p-values were determined for each infected condition per time point using 
Wilcoxon test as compared to WT cells;*  = p ≤ 0.05,**  = p ≤ 0.01 and ***  = p ≤ 0.001. For all plots, 
horizontal lines indicate median values with boxes spanning the interquartile range (IQR) from the 25th 
to the 75th percentile. Error bars extend to values within 1.5 times the IQR.  
 
Vero WT = WT Vero cell line; Vero OTOF1 = Vero cells overexpressing OTOF-201; Vero OTOF4 = 
Vero cells overexpressing OTOF-204 
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1205Lu WT = WT 1205Lu cell line; 1205Lu OTOF1 = 1205Lu cells overexpressing OTOF-201; 1205Lu 
OTOF4 = 1205Lu cells overexpressing OTOF-204 

4.3.2 HIV-1 infection assay 

This part of the project was done at the Baldauf lab, under BSL-3 conditions***. As our initial 

hypotheses were based on HIV-1 experiments conducted to assess effects of OTOF on viral 

entry and exit, we aimed to recapitulate these findings as our results on fusion and binding 

based on LVs/VLPs pseudotyped with SARS-CoV-2 spike proteins were not affected in the 

presence of OTOF1 or OTOF4 (see section 4.2.3 and 4.2.4 for full results). Thus, utilising 

infectious HIV-1 particles with incorporated BLam-Vpr (strain 49.5), we aimed to elucidate the 

effects of overexpressed OTOF-201 or OTOF-204 on viral fusion. Subsequently, we were also 

interested in the effects of HIV-1 infection on HIV-1 assembly and release in the 

overexpressed OTOF cell lines, using 49.5 and CH058 proviral DNA constructs. 

HIV-1 genome, target cell entry & virion replication 
HIV-1 is a single-stranded positive RNA lentivirus (ie. enveloped retrovirus). HIV-1 genome 

encodes both structural and non-structural proteins including the regulatory elements tat and 

rev. The three main structural proteins important for HIV-1 assembly are the gag (encoding 

the gag polyprotein), pol (encoding enzymes such as reverse transcriptase and integrase) and 

env (encoding envelope proteins) proteins. Both the 5’ and 3’ ends of the genome are flanked 

by long terminal repeats (LTRs) encoding regulatory elements required for transcription84.  

 

HIV-1 binds to target cells via CD4 receptors and either chemokine receptor type 5 (CCR5) or 

C-X-C motif chemokine receptor type 4 (CXCR4) co-receptors. Following binding to the target 

cells, conformational changes in the envelope protein structure results in fusion with the cell 

membrane allowing viral translation machinery to be initiated with subsequent steps such as 

reverse transcription, integration, transcription, translation and assembly leading to production 

of mature virions84,85. For the purpose of this thesis, the HIV-149.5 strain and/or HIV-1CH058 strain 

were used for experimental purposes. 

HIV-149.5-BLaM-Vpr fusion assay results 
As seen in Figure 4.9, median fusion levels for TZMbl WT, TZMbl OTOF1 and TZMbl OTOF4 

were 6.67%, 5.67% and 6.92%, respectively. In the presence of T20, fusion levels were 0.04% 

(166-fold reduction), 0.06% (95-fold reduction), and 0.08% (87-fold reduction), respectively. 

 
*** Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for 
Retroviruses, Faculty of Medicine, LMU Munich, Germany 
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In contrast to results reported by Ding et al. (2022), as seen in Figure 4.9, when comparing 

fusion levels between TZMbl WT and TZMbl OTOF1 or TZMbl OTOF4, no differences in fusion 

levels were observed. P-values were computed using Wilcoxon test and none were significant 

(p-value > 0.05 across all comparisons).  

 
Figure 4.9 OTOF does not affect HIV-149.5-BLaM-Vpr fusion in TZMbl cell lines 
(A) Flow cytometric analysis plots showing fusion across all three cell lines (TZMbl WT, TZMbl OTOF1 
and TZMbl OTOF4) infected with HIV-149.5-BLaM-Vpr (denoted by 49.5 BLaM in plots). T20 inhibitor was 
used as a negative control to inhibit fusion pore formation, denoted by 49.5 BLaM + T20 in plots. x-axis 
represents BFP expression (Pacific Blue) and y-axis represents V500. Shown are representative plots 
from one experiment. (B) Boxplot of HIV-1 fusion percentage across all three TZMbl cell lines (TZMbl 
WT, TZMbl OTOF1 and TZMbl OTOF4) based on frequency of parent. Horizontal lines indicate median 
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values with boxes spanning the interquartile range (IQR) from the 25th to the 75th percentile. Error bars 
extend to values within 1.5 times the IQR. Data is shown from 3 independent experiments. P-values 
were determined for each condition using Wilcoxon test as compared to WT TZMbl cells;*  = p ≤ 0.05,**  
= p ≤ 0.01 and ***  = p ≤ 0.001.  
TZMbl WT = WT TZMbl cell line; TZMbl OTOF1 = TZMbl cells overexpressing OTOF-201; TZMbl 
OTOF4 = TZMbl cells overexpressing OTOF-204 
 
 

 
 
Figure 4.10 OTOF has no significant effects on relative infectivity of HIV-149.5 or HIV-1CHO58 in 
TZMbl cells 
(A) Boxplot of virus particles produced in supernatant across all three TZMbl cell lines (TZMbl WT, 
TZMbl OTOF1 and TZMbl OTOF4) for the different conditions tested: HIV-149.5 and HIV-1CH058. Data is 
coloured by the cell types producing the virus particles and quantified using SG-PERT based on reverse 
transcriptase activity. (B) Boxplot of relative infectivity measured on TZMbl WT cells using harvested 
supernatant containing virus particles added from either TZMbl WT, TZMbl OTOF1 or TZMbl OTOF4 
for the different conditions tested: HIV-149.5 and HIV-1CH058. Data is coloured by the cell types producing 
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the virus particles and relative infectivity was quantified by first normalising the luciferase count for the 
amount of virus particles released into the supernatant. Values plotted are relative to WT cells per 
condition, with the WT cells having a relative infectivity of 100%. For both plots, data is shown from 3 
independent experiments and P-values were determined for each condition using Wilcoxon test as 
compared to WT TZMbl cells; NS.  = Not significant. For all plots, horizontal lines indicate median 
values with boxes spanning the interquartile range (IQR) from the 25th to the 75th percentile. Error bars 
extend to values within 1.5 times the IQR.  
TZMbl WT = WT TZMbl cell line; TZMbl OTOF1 = TZMbl cells overexpressing OTOF-201; TZMbl 
OTOF4 = TZMbl cells overexpressing OTOF-204 
 

HIV-149.5 and HIV-1CH058 replication results 
As we did not observe any significant differences across fusion levels upon HIV-1 infection, 

we wanted to test if OTOF1 or OTOF4 had an impact on virus replication. To do so, we utilised 

two different HIV-1 strains, 49.5 and CH058. Briefly, we transfected either TZMbl WT, TZMbl 

OTOF1 or TZMbl OTOF4 with the different virus plasmids including control conditions. After 

48 hours, supernatant was harvested and added onto TZMbl WT to test infectivity (see section 

2.3.10.2 for full details). In parallel, SG-PERT was used to quantify the amounts of released 

virions. 

 

As seen in Figure 4.10A, the median amount of HIV-149.5 virus particles released for TZMbl 

WT, TZMbl OTOF1 and TZMbl OTOF4 were 2.6e+06, 3.7e+06 and 2.9+06 units, respectively. 

For HIV-1CH058, the median amount of virus particles released for TZMbl WT, TZMbl OTOF1 

and TZMbl OTOF4 were 2.0e+06, 1.1e+06 and 2.3e+06 units, respectively. As seen in Figure 

4.10B, relative infectivity of the harvested supernatant containing released virions on TZMbl 

WT cells were as follows. For HIV-149.5 the median relative infectivity utilising harvested 

supernatant from TZMbl OTOF1 was 1.2-fold higher compared to TZMbl WT while median 

relative infectivity for supernatant from TZMbl OTOF4 was 0.9-fold lower compared to TZMbl 

WT. For HIV-1CH058, the median relative infectivity utilising harvested supernatant from TZMbl 

OTOF1 was 1.5-fold higher compared to TZMbl WT while median relative infectivity for 

supernatant from TZMbl OTOF4 was 1.1-fold higher compared to TZMbl WT. However, as 

indicated in Figure 4.10B, for both HIV-149.5 and HIV-1CH058, no significant differences in relative 

infectivity were observed across the conditions.  

 

Overall, there were no significant differences in the amount of virus particles produced or 

relative infectivity on TZMbl WT cells across the three different cell lines tested. Interestingly, 

as seen in Figure 4.10B, there was a tendency for a higher relative infection in TZMbl WT cells 

when virions produced in TZMbl OTOF1 cells were used for both HIV-149.5 and HIV-1CH058 but 

it did not reach the defined significant threshold. P-values were computed using Wilcoxon test.



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 5 : Discussion & Summary 
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5.1 OTOF as a potential antiviral biomarker in 
viral infections 

5.1.1 IFI27, LY6E, SIGLEC1 and OTOF significantly 
upregulated in the COVID cohort 

IFI27, LY6E and SIGLEC1 are known COVID-19 biomarkers that have been previously 

identified, especially in transcriptomic analysis of blood samples from SARS-CoV-2 infected 

patients86,87. In our dataset, we were able to recapitulate these findings as shown in Figure 

3.1B. All three genes, IFI27, LY6E and SIGLEC1 are ISGs, which are induced by type-I IFN 

and in this context, antiviral factors upregulated in response to SARS-CoV-2. IFI27 is known 

to function as a regulator of immune response against multiple viruses and pathogens86, 

including SARS-CoV-2. This potentially explains the finding in Figure 3.1B and Figure 3.1C 

whereby IFI27 was found to be upregulated also in the Non-COVID and MISC cohorts. Our 

Non-COVID group comprised 14 probands (out of 25 in total) that presented with fever, a 

classical symptom of the body’s immune response towards an illness or infection. While 

information on the pathogenic origin of infections in the Non-COVID probands were 

incomplete, lab parameters (see section 2.2.2) were also highly suggestive of a heightened 

immune and inflammatory response with elevated monocyte, leukocyte and neutrophil levels 

(2.3%, 13% and 12% higher, respectively, compared to Healthy probands based on median 

values). When comparing COVID and Non-COVID, we found that there was a significant 

upregulation of IFI27 in the COVID cohort compared to Non-COVID, suggesting that while 

IFI27 expression was higher in both disease cohorts compared to Healthy, the expression 

differences between the two cohorts were significant, with COVID probands having a higher 

IFI27 expression. Within the MISC group, all probands also presented with fever at the time 

of recruitment and a confirmed diagnosis of MISC. MISC is known to be a hyperinflammatory 

condition, briefly described in section 1.1.10, which was also reflected in the lab parameters 

seen in section 2.2.2. Compared to Healthy, MISC probands on average had 2.5% lower 

monocytes, 23% lower lymphocytes and 29% increased neutrophils. Interestingly, our 

findings, in part, corroborated that of Loy et al. (2023) who has longitudinally investigated 

whole blood samples from a cohort of both MISC and COVID-19 patients. In figure S3A of the 

paper, the authors have shown that IFI27 is significantly upregulated (8-fold higher) in their 

COVID-19 cohort compared to the MISC cohort with an adjusted p-value < 0.01. IFI27 has 

also been significantly upregulated in their COVID-19 vs Healthy and MISC vs Healthy cohort, 

with a 64-fold and 6-fold upregulation, respectively. When comparing COVID-19 vs MISC 

using Wilcoxon test, we did observe similar trends with a significant upregulation of IFI27 in 
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the COVID group compared to MISC.  Overall, the COVID-specificity of IFI27 upregulation in 

our disease groups made it a likely COVID-19 biomarker in our cohort, as previously 

suggested in other studies86,87.  

 

LY6E is a glycosylphosphatidyl-inositol (GPI)-anchored protein, part of the lymphocyte 

antigen-6/urokinase-type plasminogen activator receptor (Ly6/uPAR) family of proteins, that 

localises to cell surfaces. LY6E has first been identified and described in the context of mouse 

thymus before researchers have delved into its function in humans, specifically as an ISG. 

Schoggins et al. (2011, 2012 & 2014)88–90 has extensively looked into the role of LY6E as a 

downstream effector within the type-I IFN pathway, acting as a proviral factor in multiple RNA 

viruses. In their papers, by performing screening assays for hundreds of ISGs within various 

types of viruses, the authors have found that LY6E promotes viral infectivity of enveloped RNA 

viruses such as  HIV-1, Zika virus, yellow fever virus (YFV) and dengue virus to name a few91.  

Recent studies following the emergence of SARS-CoV-2, also an enveloped RNA virus, have 

shown that the role of LY6E in coronaviruses is opposite to that previously described. In 2020, 

Pfaender et al. have described the role of LY6E as a pan-coronavirus entry inhibitor, effecting 

fusion of virus spike proteins into host cell membrane. These coronaviruses include SARS-

CoV and MERS-CoV92. It is clear that based on the studies thus far, the role of LY6E differs 

depending on the virus family with LY6E inhibiting viral infectivity only of coronaviruses but 

promoting viral infectivity of flaviviruses, influenza A viruses and retroviruses. In our cohort, 

LY6E was found to be upregulated only in our COVID group, suggesting SARS-CoV-2 

specificity. As LY6E inhibits viral infectivity of other coronaviruses, the observed upregulation 

of LY6E in our COVID cohort was in line with other studies, specifically Pfaender et al. (2020). 

One explanation might be that initial infection of SARS-CoV-2 in COVID probands resulted in 

type-I IFN induced LY6E expression. High levels of LY6E prevented further SARS-CoV-2 

fusion into host cells, acting as an antiviral factor preventing a severe disease course. This 

suggests a negative feedback loop for LY6E which might lead to a mild disease course in our 

COVID cohort.  

 

Similarly, both OTOF and SIGLEC1 were COVID specific in our analysis but as with LY6E, 

they have been described to be upregulated in other viral infection contexts not limited to 

SARS-CoV-2. SIGLEC1, for example, is a cell surface lectin molecule that is typically 

expressed on antigen presenting cells (APCs) such as monocytes and macrophages. The 

presence of SIGLEC1 aids in promoting presentation of pathogens, such as HIV-1 and SARS-

CoV-2, to cells mediating the adaptive immune system93. In our COVID cohort, the 

upregulation of SIGLEC1 was expected as SARS-CoV-2 infections lead to the activation of 

type-I IFN pathways, in turn upregulating expression of SIGLEC1 on cell surfaces of APCs. 
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As our COVID cohort comprised probands with a mild disease course, the upregulation of 

SIGLEC1 corroborated findings by Doehn et al. (2021) who found that expression of SIGLEC1 

was linked to COVID-19 disease severity, specifically showing that SIGLEC1 was expressed 

in their mild disease cohort and not in the severe disease cohort 94. OTOF, on the other hand, 

has been found to be upregulated in several blood transcriptomic analyses, including HIV-172 

and a recent SARS-CoV-2 human challenge study26. However, its role in the context of viral 

infections has not been extensively studied as described in detail in section 1.3. This made 

OTOF an interesting candidate for us to functionally validate using various experimental 

techniques as outlined in sections 2 and 4.  

5.1.2 OTOF expression predictions in our cohort 

5.1.2a OTOF-204 and not OTOF-201 is highly expressed in our dataset 
Based on isoform-level data from our cohort, it was predicted that OTOF-204 was most 

abundantly expressed as opposed to the reported canonical form in literature, OTOF-201. 

This was interesting, as according to OTOF isoform expression data available on GTEx 

(Analysis Release V8)95, no transcript expression of any of the isoforms was quantified in 

whole blood, in contrast to high expression levels observed in the brain (Figure 5.1). While the 

Human Protein Atlas immune cell dataset (see section 1.2.5 and Figure 1.3 for more details) 

highlights expression of OTOF in immune cells, specific isoform expression levels have yet to 

be quantified in immune cells in other studies. Thus, our study is the first to predict high OTOF-

204 expression levels in whole blood within a cohort of probands with mixed age ranges.  

 



 

109 

 
Figure 5.1 OTOF isoform expression based on GTEx V8 data 
Snapshot of isoform expression data for OTOF adapted from https://gtexportal.org/home/gene/OTOF. 
Figure outlines transcript per million (TPM) isoform expression values for various tissues as indicated.  
 

5.1.2b OTOF is predicted to be expressed in dendritic cells 
In addition, our in silico cell type deconvolution analysis estimated that OTOF was expressed 

in dendritic cells (Figure 3.4). This was unsurprising as dendritic cells are primary actors within 

the type-I IFN pathway, especially in response to viral infections. If OTOF expression was 

indeed mediated by type-I IFN, as shown in our stimulation assays (see section 4.1), the 

predicted high expression of OTOF in dendritic cells is highly probable. This was in line with 

findings of several studies outlined in section 1.2.5 whereby expression of OTOF has been 

seen in various type-I IFN mediated immune contexts. Further confidence of our OTOF 

expression prediction in dendritic cells stemmed from estimates of high expression of LY6E 

and SIGLEC1 within dendritic cells, both of which have been shown to be highly expressed in 

dendritic cells based on HPA datasets96,97. 

5.1.3 OTOF interacting partners 

WGCNA analysis identified OTOF along with IFI27, LY6E and SIGLEC1 as hub genes highly 

correlated with the trait ‘COVID’ (Figure 3.6A). When focusing on potential OTOF interacting 

partners, by plotting a network centred around OTOF, several key type-I IFN pathway genes 

were identified such as USP18, OAS1, OAS2, ISG15 and SIGLEC1 (Figure 3.6D). By looking 

into these interacting partners more closely, the function of OTOF during viral infections, 

specifically in the case of SARS-CoV-2, can be speculated.  
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USP18 is an antiviral factor that is upregulated either by type-I or type-III IFN via the JAK-

STAT pathway. Upon upregulation, USP18 acts via a negative feedback loop to prevent 

further interaction of the JAK subunit with the IFN receptors IFNAR198.  Similarly, OAS1 and 

OAS2 are part of the 2’-5’-oligoadenylate synthetase (OAS) family of genes that are regulated 

by IFN ie. they are ISGs. OAS are a family of enzymes that are capable of recognising 

cytosolic viral RNA leading to activation of latent ribonuclease (RNase L) resulting in 

degradation of viral RNA, and attenuation of the viral replication machinery99. ISG15, as the 

name suggests, is also an ISG belonging to the family of ubiquitins upregulated by type-I IFN. 

ISG15 has been shown to exhibit antiviral properties against various viruses including ,SARS-

CoV-2 and Zika virus. ISG15 can take one of two forms, either conjugated or unconjugated, 

and its function as an antiviral or proviral protein depends on which form of ISG15 is present. 

In a conjugated form, with a series of interactions with other proteins and enzymes such as 

USP18, ISG15 acts as an antiviral protein that is able to inhibit viral replication by interfering 

with various steps within the replication cycle such as entry, fusion and viral exit.  In an 

unconjugated form, ISG15 acts as a cytokine involved in NK cell proliferation and maturation 

of DCs, as well as an inducer of IFNγ100.  

 

As most of OTOF’s interacting partners are ISGs, regulated by type-I IFN, it could be that 

OTOF is also an ISG - either exhibiting pro- or anti- viral effects. Based on the transcriptomic 

data results and existing knowledge on OTOF, we proposed that OTOF is an antiviral ISG 

interfering with the viral replication machinery. This hypothesis was further explored in our 

functional experimental section of the thesis (see section 4 for the results). 
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5.2 Four upregulated genes are age-specific in 
our COVID cohort 
 
Age-related immune differences, particularly in the context of absolute immune cell counts 

and innate immune responses have been extensively studied101. As discussed in section 1.1, 

specific age-related effects on the immune response upon SARS-CoV-2 infections remains 

elusive. Thus, by utilising a cohort of mixed-age ranges, we aimed to shed light on the 

response of the developing immune system upon SARS-CoV-2 infection.  

 

Based on our analysis, MMP8, LY6E, OAS1 and OAS2 were found to have an age effect in 

our age-interaction analysis, specifically in the COVID cohort (Figure 3.2D). MMP8 is an 

intracellular protein belonging to the matrix metalloproteinases family, encoded by the MMP8 

gene. To exert its functions as a protease, the inactive version of MMP8 first needs to be 

activated by disrupting the interaction of zinc with the cysteine residue present at the N-

terminus. In general, MMPs have multiple roles including modulation of extracellular matrices 

and regulation of chemokine/cytokine release in a variety of cells102. MMP8 in particular has 

been shown to be significantly upregulated in lungs of hACE2-expressing mice at both 2- and 

5- days post-infection with SARS-CoV-2.103 This upregulation has also been observed at the 

protein level. Similarly, in our dataset, we observed an upregulation of MMP8 in all disease 

cohorts (COVID, Non-COVID and MISC)  compared to Healthy (Figure 3.1) which had a 

corresponding serum protein level upregulation as observed in our proteomics analysis, using 

Nulisa and Olink (Table 3.1). Kumar et al. (2022)104 have also shown that MMP8 levels are 

significantly upregulated in their MISC and COVID cohorts. Interestingly, in our dataset, we 

observed that MMP8 expression patterns in the COVID and Healthy cohort differed with age; 

with increasing levels observed with age in Healthy but opposite effects in COVID. Studies 

that have been conducted in the context of sepsis in children have identified MMP8 as the 

most highly expressed gene contributing towards an exacerbated inflammatory phenotype105–

107. As MMP8 is primarily secreted by neutrophils, it is possible that the opposite trends 

observed both in our healthy control and infected cohort are the result of ageing effects. It 

might be that in the COVID cohort, the responses to mount an adequate antiviral immune 

response decreases with age108 resulting in dampened neutrophil production and hence 

MMP8 secretion.  

  

The roles of LY6E, OAS1 and OAS2 were discussed in previous sections. What is interesting 

is the expression pattern observed in our cohort, with decreasing expression with age in 

Healthy in contrast to increased expression with age in COVID. These three genes are ISGs 
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upregulated in response to IFN and the lower expression levels of these genes in Healthy may 

be a direct result of lower baseline IFN expressions in the older individuals in our cohort. It is 

interesting that we observed these trends despite the oldest individuals being 40 years old. 

As there is a lower baseline IFN expression in the healthy controls, upon infection (in this case 

with SARS-CoV-2), a greater IFN response is required to compensate for the lower baseline 

IFN levels, that might be there to avoid autoimmune responses in these ‘older’ individuals. 

This in turn results in greater production of IFN, leading to higher ISG levels, in this case LY6E, 

OAS1 and OAS2. In addition, dendritic cell levels, in particular pDCs, have been shown to be 

negatively correlated with age109. As pDCs are the main source of type-I IFN producers, lower 

pDC levels with increasing age under baseline conditions may contribute towards the results 

observed.  

 

Overall, our age-interaction analysis provides first hints into the importance of accounting for 

age when identifying potential biomarkers of infections, in particular SARS-CoV-2. By utilising 

a cohort comprising individuals with a varied age range, the effects of age on the developing 

immune system in the context of viral infections can be disentangled. 
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5.3 Other notable transcriptomic findings 

5.3.1 Top upregulated genes in Non-COVID and MISC: 
CD177, OLAH, IFI27 and ADAMTS2 

579 genes were significantly upregulated in Non-COVID compared to Healthy as seen in 

Figure 3.1B, with top genes such as CD177, OLAH and IFI27. As previously discussed, 

(section 5.1.1), while upregulation of IFI27 was higher in Non-COVID compared to Healthy, 

the expression levels in COVID were more pronounced, highlighting the nature of IFI27 as an 

ISG, but with differing expression levels dependent on the disease cause. It has been shown 

by Villamayor et al. (2023)86 that depending on the type of virus, IFI27 acts either as a viral 

replication inhibitor or as a regulator of host immune responses. Utilising human A549 cells, 

Villamayor et al. (2023)86 either stimulated cells with poly(I:C) or IFN-α, or infected cells with 

either Influenza A virus (IAV) or SARS-CoV-2. In all instances, they have observed significant 

upregulation of IFI27 levels at both the mRNA and protein level with up to 4.5-, 3.7- 60- and 

3-fold increase in poly(I:C), IFN-α, IAV and SARS-CoV-2 conditions 24 hours post 

stimulation/infection, respectively. Interestingly, by using a series of IFI27 KO or 

overexpressed A549 cells, they further have demonstrated that IFI27 negatively regulates IFN 

responses as evidenced by higher levels of ISGs in the KO cell lines and lower levels of similar 

genes in the overexpressed cell lines. In addition, the authors have also shown using co-

immunoprecipitation experiments that IFI27 and RIG-I interact strongly, and that this 

interaction is RNA-mediated. Overall, the authors have experimentally validated their 

hypothesis that IFI27 acts as a negative regulator of innate immune response with increased 

expression correlating to higher virus titres, but in turn dampening the otherwise exacerbated 

and detrimental host immune response. Based on expression levels in our cohorts, we could 

postulate that the role of IFI27 is similar to that discussed - higher expression was induced 

upon infection leading to a dampening of deleterious host immune response.  

 

CD177, on the other hand, encodes a cell surface protein containing 

glycosylphosphatidylinositol and is predominantly expressed by neutrophils110. Interestingly, 

in our cohort, when looking at CD177 expression across all probands (Figure 3.1C) the 

expression was highest in MISC, followed by Non-COVID and COVID, respectively. This 

pattern was also in line with neutrophil percentages based on lab parameters (section 2.2.2), 

all of which were highly suggestive of immune cell infiltration within the COVID, Non-COVID 

and MISC groups. In addition, our in silico cell type deconvolution analysis (section 3.1.3) also 

estimated that neutrophil proportions were higher in Non-COVID and MISC compared to 



 

114 

Healthy. Studies have shown that expression levels of CD177 are linked to disease severity, 

especially in the case of COVID-1987. As our COVID cohort comprised mainly mild cases, the 

lower expression of CD177  in COVID compared to Non-COVID and MISC could be linked to 

disease severity. As MISC is a hyper inflammatory condition, it was unsurprising that there 

was a marked increase in neutrophil counts and a corresponding higher CD177 expression 

compared to the mild COVID cohort.   

 

OLAH was significantly upregulated in both Non-COVID and MISC compared to Healthy, 

respectively. OLAH encodes an enzyme that is required for fatty acid synthesis, namely oleic 

acid111. In our cohort (Figure 3.1C) the expression of OLAH was highest in the MISC cohort. 

This was in line with findings by Jia et al. (2024)111 who have shown that expression of OLAH 

is increased in MISC, RSV, influenza and severe COVID-19 patients but not in mild disease 

cohorts, similar to our COVID cohort. The authors have also shown that OLAH is 

predominantly expressed in monocytes and macrophages in both adults and children affected 

by severe disease. As such, OLAH can be used as a biomarker for disease severity, including 

prediction of MISC susceptibility in children.   

 

ADAMTS2 encodes an enzyme, Abnormal A Disintegrin and Metalloproteinase with 

Thrombospondin Motifs 2 (ADAMTS2), which is required for cleavage of amino acids from 

procollagens, allowing them to function as normal collagens in the extracellular matrix (ECM). 

ECMs comprise many components that primarily provide structural integrity to cells. ECMs 

also contain proteinases such as MMP8 and ADAMTS2 that have been shown to have 

immune-specific roles, enabling migration of key immune cells to sites of infection or 

inflammation112. In our cohort (Figure 3.1C), the expression of ADAMTS2 was highly 

upregulated in MISC which was in line with known functions of ADAM proteins in general that 

disrupt key regulated inflammatory responses. In particular, ADAM-17 significantly 

upregulates TNF-alpha and IL-6 production, resulting in hyper-inflammatory conditions such 

as MISC113,114.  
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5.4 Elucidating the role of OTOF as an ISG 

5.4.1 OTOF upregulated upon IFN stimulation in primary 
cells 

Pan-IFN stimulation experiments in CD4+ T cells (resting and activated) revealed an 

upregulation of OTOF under IFNα, IFNβ and IFNγ stimulatory conditions while in MDMs, 

significant upregulation was only seen for IFNα and IFNβ stimulation (Figure 4.1). IFNα and 

IFNβ are type-I IFNs that bind to type-I IFN receptor (IFNAR) composed of two subunits, 

IFNAR1 and IFNAR2, resulting in activation of the Janus kinase 1 (JAK1) - tyrosine kinase 2 

(TYK2) - signal transducer and activator of transcription (STAT) pathway. Eventually, ISGs 

are produced and may positively or negatively regulate the immune response, depending on 

the pathogen. IFNγ is the only member of the type II IFN pathway, binding to its receptor 

interferon gamma receptor 1 (IFNGR1) and  interferon gamma receptor 2 (IFNGR2)115.  

 

The upregulation of OTOF upon IFNα, IFNβ and IFNγ in CD4+ T cells hints towards OTOF 

being an ISG. As this experiment bypassed the initial triggers upstream of IFN production, we 

were not able to disentangle if this effect might differ depending on the PRR and pathogen 

encountered, ie. if the effects are specific to only viral pathogens or are also activated upon 

bacterial and other ligands encountering PRRs within the type-I IFN pathway, eventually 

leading to IFN expression.   

 

5.4.2 Overexpression of OTOF has no effect on binding or 
fusion of LVs/VLPs pseudotyped with SARS-CoV-2 spike 
proteins in HEK293T cells 

In our experiments utilising HEK293T cells overexpressing hACE2, we observed no 

differences in binding or fusion of pseudotyped SARS-CoV-2 spike proteins in the presence 

of OTOF (sections 4.2.3 and 4.2.4).  

 

In the absence of TMPRSS2, SARS-CoV-2 undergoes viral entry by first binding to ACE2 

receptors followed by endocytosis to allow fusion of the viral and host cell membranes, 

enabling the release of viral genome into host cells (Figure 1.1). Our binding experiments, 

conducted at 16°C, allowed binding of SARS-CoV-2 spike proteins to ACE2 receptors but 

prevented further attachment of the spike proteins to the receptors, thus preventing 
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endocytosis. This allowed us to specifically assess the effects of overexpressed OTOF on 

SARS-CoV-2 spike protein binding capabilities to ACE2 receptors in target cells. As seen in 

Figure 4.4, we observed variability in binding capabilities between the different SARS-CoV-2 

spike protein variants. Based on studies thus far, it has been established that the spike protein 

is made up of two subunits, with S1 being responsible for protein-receptor binding and S2 

involved in viral membrane fusion. Within the S1 subunit, the receptor binding domain (RBD) 

and N-terminal domain (NTD) are primarily responsible for ACE2 receptor binding. Mutations 

within the S1 subunit, specifically those that occur in the RBD and/or NTD region could alter 

ACE2 receptor binding capabilities. Variants BA.1 and BA.2 are sublineages of the Omicron 

variant B.1.1.529 having acquired 39 and 31 mutations compared to the initial SARS-CoV-2 

genome, respectively116. Kumar et al. (2022)116 have performed a series of computational 

predictions to assess the differences between several Omicron sublineages and have found 

that when comparing BA.1 and BA.2, BA.2 had a higher binding affinity for ACE2 compared 

to BA.1; corroborating the differences in binding seen between BA.1 and BA.2 in our 

experimental results (Figure 4.4B). Several other studies have identified various mutations 

within the SA and BRA spike proteins that may contribute to differences in binding affinity such 

as N501Y and E484K (found in both SA and BRA) that promote binding. Mutations that reduce 

binding affinity have also been described, such as K417T, that has been found in BRA 

variants117,118, leading to conformational changes that result in spike protein-receptor binding 

alteration. In our binding experiments (Figure 4.4B), SA variant had the highest binding 

followed by BA.2 and 2019-nCOV. Based on experiments blocking the ACE2 receptor (Figure 

4.6A), we showed that the binding efficiency was indeed specific to ACE2. Based on these 

data, it was imperative that we tested the effects of binding efficiency in the presence of 

overexpressed OTOF1 or OTOF4 with various variants of SARS-CoV-2 spike proteins to 

capture the diverse nature of variants present in circulation and to confirm if the effects of 

OTOF1 or OTOF4 were variant dependent.   

 

As binding of LVs pseudotyped with SARS-CoV-2 spike proteins to ACE2 receptors remained 

unaffected in the presence of OTOF1 or OTOF4, the next step was to evaluate if attachment 

or fusion following binding was affected. Thus, utilising a BLaM-Vpr fusion assay setup, we 

were able to test if membrane fusion following endocytosis was impaired in the presence of 

OTOF1 or OTOF4. As seen in Figure 4.5B, no significant differences in fusion levels were 

observed in the presence of OTOF1 or OTOF4. Similar to the binding assay, variability in 

fusion levels between the different variants were also observed. What was interesting, 

however, was that unlike the binding assay, 2019-nCoV variant had the highest fusion levels 

followed by SA, BA.1, BA.2 and BRA exhibited almost no fusion across all cell lines.  For 

membrane fusion to occur in the endosome following binding and endocytosis, cleavage of 
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the S2’ site by cathepsins needs to occur to allow the exposure of a fusion peptide and 

dissociation of S1; both of which are required for fusion pore formation allowing release of 

viral genome into target cells for replication119 (Figure 1.1).  It is possible that in the case of 

BA.1, BA.2 and BRA, entry into host cells and subsequent fusion is mediated by plasma 

membrane fusion utilising proteases such as TMPRSS2 instead of endocytosis which is the 

mode of entry in our experimental setup120. In addition, cleavage of S1 and S2 subunits of the 

spike protein results in instability of the protein119, which could explain why we observed 

binding with variants BA.2 (Figure 4.4B) but subsequently little to no fusion (Figure 4.5B). Shi 

et al. (2024)120 have observed in human nasal epithelial cells that fusion of BA.1 variants are 

not mediated by endocytic pathways and require TMPRSS2 and/or metalloproteinases at the 

plasma membrane; further supporting the theory of non-endosomal mediated fusion especially 

for BA.1.  

 

Interestingly, when looking at binding and fusion results for the control condition using VSV-

G, we observed significantly higher fusion capabilities in OTOF4 compared to ACE2 only. 

While binding and fusion of VSV-G is not dependent on the presence of ACE2 receptors, our 

data provided first hints that the role of OTOF4 was virus-dependent. Typically, entry and 

fusion of VSV-G is mediated by endocytosis121, with endosomal pH playing an important role 

in enabling conformational changes of VSV-G, allowing endosomal membrane fusion121.   

 

The canonical form of OTOF, OTOF-201, has been shown to mediate synaptic vesicle plasma 

membrane fusion in inner hair cells via a Ca2+-dependent pathway (see section 1.2.1).  Based 

on the structure of OTOF-201, it has been shown that the Ca2+-dependent action of OTOF-

201 is enhanced with the binding of Ca2+  to the FerA domain, located between C2C and C2D 

domains. All C2 domains with the exception of C2A in OTOF-201 have been shown to bind 

Ca2+ (see section 1.2.1). With OTOF-204, the use of alternative splicing results in a protein 

containing a  shorter N-terminus and  a distinct C-terminus (see section 1.2.3). It is possible 

that this change in OTOF structure results in the loss of Ca2+-binding domains, leading to 

functions that are not Ca2+-dependent. The significantly higher fusion of VSV-G levels seen in 

OTOF-204 cells may be a result of Ca2+ independent effects on membrane fusion contrasting 

that of OTOF-201. As VSV-G fusion is dependent on endosomal pH, the lack of  Ca2+-binding 

in the presence of OTOF-204 could lead to low pH favouring fusion122. Additionally, low fusion 

levels of OTOF-201 with VSV-G could be attributed to the nature of OTOF-201 that binds 

Ca2+. Viruses have been shown to utilise increased levels of  Ca2+  to facilitate viral entry and 

replication123, which has been studied in experiments using IAV124 and Rubella virus125. If 

OTOF-204 indeed does not bind Ca2+ to a similar extent as OTOF-201, the varied 

concentration of Ca2+ might explain the increased fusion seen with OTOF-204 when tested 
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with VSV-G. As our assays did not specifically test for effects of addition of Ca2+ and no pH 

measurements were done, we were unable to confirm this theory.  

 

Based on our binding and fusion assays, we concluded that OTOF-201 and OTOF-204 have 

no effect on SARS-CoV-2 entry or in the early steps of viral membrane fusion, at least in an 

in vitro pseudotyped VLP/LV setting. We could speculate that as binding remained unaffected 

in both LVs pseudotyped with SARS-CoV-2 and VSV-G, OTOF-201 and/or OTOF-204 might 

play a role in mediating steps beyond viral binding. We did see an increase in VSV-G fusion 

levels in OTOF4 cells but not OTOF1, suggesting that OTOF-201 and OTOF-204 may act 

differently and are virus-dependent. As our assays primarily focused on endocytosis-mediated 

entry, the effects of OTOF-201 and OTOF-204 on cell surface membrane fusion in the context 

of SARS-CoV-2 remains to be investigated. 

5.4.3 Overexpression of OTOF1 increased YFV 17-D 
infectivity in 1205Lu cells but has no effect in Vero cells  

As described in section 4.3.1, OTOF was also significantly upregulated in a separate project 

investigating YFV-17D vaccine response. To evaluate if the mode of action of OTOF-201 and 

OTOF-204 was virus-dependent, we utilised a YFV-17D strain to assess the effects of OTOF-

201 or OTOF-204 overexpression in two different cell lines, Vero and 1205Lu. As seen in 

Figure 4.8B, 1205Lu OTOF1 cells had consistently significantly higher infection rates across 

all time points when compared to 1205Lu WT. With 1205Lu OTOF4, a significant decrease in 

infection was observed only at the 48 hour time point. 

 

YFV-17D entry into Vero cells occurs via receptor mediated endocytosis with evidence of 

mature virions seen within 24 hours of infection126. Vero cells contain a deletion in the genome 

resulting in impaired IFN production, rendering it susceptible to various viral infections127. This 

has led to Vero being utilised in the production of viral vaccines and as a model for virus 

infections. The results observed in Vero cells were unsurprising, as Vero cells are inherently 

insensitive to IFN and by extension were not expected to behave differently in the presence 

of overexpressed OTOF-201 or OTOF-204. These results (Figure 4.8A) potentially suggest 

that the presence of OTOF-201 or OTOF-204 alone, in the absence of an intact IFN 

machinery, did not negatively affect the infectivity of YFV-17D in the mammalian monkey cell 

line tested. 
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On the other hand, the significantly higher infectivity seen in 1205Lu OTOF1 was interesting 

to look into further. 1205Lu cells have an intact IFN machinery, a model more representative 

of natural YFV infections in humans. As with Vero cells, YFV-17D entry into 1205Lu cells is 

via endocytosis, similar to that in our pseudotyped LV experimental setups. Interestingly, while 

we observed increased fusion in OTOF4 cells using VSV-G, in this YFV infection assay, 

increased infectivity was seen in 1205Lu OTOF1 cells within 24 hours, suggesting a proviral 

role for OTOF-201. While this observation supports our previously proposed theory that the 

mode of action of OTOF isoforms greatly depends on cell type and virus, it contradicts our 

previous hypothesis that OTOF-201, by binding Ca2+, results in either higher pH and not 

favouring endocytosis or depletion of Ca2+ resulting in antiviral mechanisms. The key 

difference that has to be taken into account when comparing the results of the LV pseudotyped 

with VSV-G and the YFV infection results is that during YFV infection in 1205Lu cells, there 

are also other key antiviral players activated in response to infection. Furthermore, VLPs 

pseudotyped with VSV-G were used to investigate fusion levels and hence we did not monitor 

any viral replication and IFN-machinery mechanisms.  

 

Despite that, studies have shown that there are ISGs that act as proviral factors in YFV, such 

as LY6E. As previously discussed in 5.1.1, LY6E can facilitate YFV entry by modulating 

endocytic uptake, potentially via endosomal pH-related changes128. It could be possible that 

the role of OTOF, regardless of the isoform, is similar to that of LY6E which has both antiviral 

or proviral roles depending on the virus it encountered. As we are unable to compare the 

results of psudeotyped VSV-G fusion directly with our YFV infection results, to gain a better 

understanding into the isoform-specific roles of OTOF, we would have to perform similar 

experiments with other infectious or attenuated viruses belonging to other virus families.  

5.4.4 Overexpression of OTOF has no effect on HIV-149.5 
fusion in TZMbl cells 

In our experimental setup, full length HIV-149.5 construct harbouring BLaM was utilised. This 

allowed us to investigate the effects of overexpressed OTOF-201 or OTOF-204 affecting 

receptor-mediated plasma membrane fusion in the context of HIV-1 infection. As seen in 

Figure 4.9, no differences in fusion levels were observed in the presence of both OTOF 

isoforms.  

 

Ding et al. (2022) previously showed that in the presence of OTOF1, HIV-1 fusion was 

inhibited; contrasting our results (see section 4.3.2). These differences observed can be due 
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to two key reasons. Firstly, Ding et al. (2022) has performed transient expression of OTOF1 

with no indication of OTOF expression in this context. Further, in their fusion assays (see 

Figure 5 in their paper), fusion levels were calculated as percentage of bulk cells expressing 

cleaved CCF2 within the transfected OTOF cell lines without taking into account the possibility 

that transfection efficiency is not 100%. Secondly, the experimental set up utilised a VSV-G 

pseudotyped HIV-1 which results in non-specific binding of virions to target cells. As discussed 

in previous sections, the presence of VSV-G results in endocytosis in contrast to receptor-

mediated membrane fusion typical of HIV-1 (see section 4.3.2).  

 

HIV-1 entry into target cells occurs via binding to CD4 and a co-receptor, CCR5 or CXCR4. 

The binding to the co-receptor results in conformational changes and subsequent exposure 

of gp41, a subunit containing key domains with heptad repeats required for membrane fusion. 

Heptad repeats within the key domains are able to bind Ca2+, enhancing fusion as shown by 

several studies129,130. As we did not observe any significant results in our HIV-1 fusion assay, 

we were not able to confirm the hypothesis that Ca2+-binding capabilities of both OTOF 

isoforms might play a role during viral entry, at least not for HIV-1 that utilises receptor-

mediated membrane fusion; an entry mechanism also used by SARS-CoV-2 but only in the 

presence of TMPRSS2.   

5.4.5 Overexpression of OTOF has no effect on  HIV-149.5 
and HIV-1CH058 infectivity 

To investigate the effects of HIV-1 viral replication in TZMbl cells overexpressing OTOF1 or 

OTOF4, we monitored the impact of OTOF1 and OTOF4 on virus release and virion infectivity. 

As seen in Figure 4.10B, HIV-149.5 virus particles produced in TZMbl OTOF1 cells had a trend 

towards higher infectivity when compared to WT but did not reach the defined significant 

threshold.  

 

Interestingly, Figure 4.10A suggests that virus production was similar in all three cell lines 

despite ectopic expression of OTOF1 or OTOF4. RT activity measurement is equivalent to 

virus release as previously described75. It was also observed that the inter-replicate variability 

in virus production was larger in OTOF cells compared to WT. Our data suggests that at least 

in the context of HIV-1, OTOF, regardless of the isoform, had no effect on the late phase of 

viral replication. If virus production remained similar across cell lines, the slightly higher 

infectivity observed in Figure 4.10B is suggestive of mechanisms affecting the functionality of 

the virus particles produced in TZMbl OTOF1 cells. Our data hints towards OTOF1 affecting 
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steps after viral production to an extent that makes it more infectious than virus particles 

produced by TZMbl WT cells but not in terms of absolute quantities of virus particles produced.  

 

As seen in Figure 4.10A, the median amount of HIV-1CH058 virus particles released for TZMbl 

WT, TZMbl OTOF1 and TZMbl OTOF4 were consistently lower compared to HIV-149.5. 

Interestingly however, the relative infectivity in Figure 4.10B between the two HIV-1 strains 

remained comparable but with greater variability seen between replicates in HIV-1CH058. HIV-

149.5 is a lab-adapted strain where else HIV-1CH058 is a transmitter/founder strain. Differences 

in the genetic make-up of the two HIV-1 strains, particularly within the env, gag and pol 

regions, may result in differences in viral binding/entry and replication efficiency; as we have 

observed in Figure 4.10. 

 

HIV-1 replication cycle begins upon binding and fusion of HIV-1 with target cells. Once fusion 

occurs, uncoating of the viral RNA that allows reverse transcription to double-stranded DNA 

is initiated in the cytoplasm followed by export to the nucleus where it is completed. Newly 

synthesised proviral DNA then integrates with the host genome. Transcription is initiated 

followed by export of mature mRNAs to the cytoplasm for protein translation. Following which, 

migration to the plasma membrane occurs enabling viral assembly and formation of new 

immature virions. HIV-1 proteases are crucial in the next step of virion maturation that 

incorporates host cell membrane and along with it host cell proteins that may affect infectivity 

of the newly formed virus particles131.  

 

Interestingly, SNARE proteins have been implicated in HIV-1 replication, particularly in 

promoting viral assembly. Joshi et al. (2011)132,133 have shown that HIV-1 Gag polyproteins, 

which are crucial for virus assembly at the plasma membrane, are affected by SNARE protein 

disruption. Through various experiment, they have hypothesised that SNARE proteins interact 

with Gag either at the late endosome or plasma membrane and typically enable trafficking and 

localisation of Gag to the plasma membrane. It is also known that SNARE proteins are key 

interactors of OTOF in inner hair cells, promoting vesicle trafficking9. It is possible that in the 

context of HIV-1, OTOF1 interacts with SNARE proteins in the late endosomes and thus gets 

incorporated during the viral assembly and maturation process but has no impact on viral 

release or infectivity. As we observed significant increase in infectivity of YFV17-D in 1205Lu 

cells but not in the context of HIV-1, we can hypothesise that the role of OTOF is dependent 

on viral exit mechanisms; whether it is mediated by membrane fusion or exocytosis. If the 

effects of OTOF in enhancing infection are only apparent in the case of exocytosis in YFV-

17D, similar effects might explain the increase in OTOF expression seen in our SARS-CoV-2 

infected cohort whereby viral particle release is mediated by exocytosis (Figure 1.1). In order 
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to verify this hypothesis, experiments utilising SARS-CoV-2 infectious particles should be 

conducted in the presence of overexpressed OTOF.  

 

Overall, our data suggests that OTOF has no effect on HIV-1 replication or infectivity due to 

the viral release mechanism but the detailed mechanisms would need to be investigated 

further.  
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5.5 Summary and Outlook 
Collectively, this thesis delved into two main aims. Firstly, we aimed to investigate how SARS-

CoV-2 infections led to changes in gene expression levels in whole blood from a cohort of 

variable age ranges. Second, based on an interesting gene candidate (OTOF) from the first 

aim, we were interested in elucidating the role of OTOF in the context of viral infections. Based 

on our results, our findings can be summarised as follows.  

 

By utilising a set of comprehensive transcriptome analysis tools, we were able to recapitulate 

gene expression changes that were age- and sex- independent that have been previously 

reported by other studies (see section 5.1 through 5.3 for detailed explanations).  We also 

identified OTOF, a candidate biomarker to functionally assess and validate through a series 

of experiments as outlined in section 5.4.  

 

Specifically looking into the role of OTOF, we could hypothesise that OTOF is an ISG, with 

defined roles yet to be confirmed. Through experiments with LVs/VLPs pseudotyped with 

SARS-CoV-2 spike proteins, YFV, VSV-G pseduotyped VLPs and HIV-1, we could postulate 

that the roles of OTOF differ based on the context. We proposed that the function of OTOF 

depends on its Ca2+-binding capabilities, with different isoforms potentially exhibiting varying 

Ca2+-binding dependencies to exert its functions. This in turn, might affect the pH of 

endosomes and/or lysosomes, affecting either early- or late- stages during viral replication 

cycle. Our findings are summarised in Table 5.1 below. In the context of YFV, OTOF1 seems 

to have a proviral effect with increased infectivity observed in our experiments.  

 

To further expand on our findings and the hypothesised role for OTOF as an ISG, several 

further experiments can be conducted. Firstly, in our primary cell stimulation experiments, we 

only performed pan-IFN stimulation in CD4+ T cells and MDMs, which are not the main 

producers of IFN within immune cells. To better assess the capabilities of OTOF as an ISG, 

stimulation experiments in other cell types, such as pDCs, should be conducted. This will also 

confirm our estimated OTOF expression in DCs (Figure 3.4). Further, stimulation experiments 

should be performed with various ligands/stimuli that target various pathways upstream of 

IFN. This will allow identification of specific pathways that are involved in IFN-induced OTOF 

upregulation, including hints on whether other types of viruses or pathogens, other than RNA 

viruses that were exclusively studied in this thesis, are affected by OTOF.  
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Table 5.1 Summary of our experimental findings in elucidating the role of OTOF during virus 
replication. 

Colours highlight experiments that were conducted with light red indicating no effect 
observed while green indicating the significant effects seen. 

 
LVs/VLPs 

pseudotyped 
with SARS-
CoV-2 spike 

YFV-17D HIV-149.5 HIV-1CH058 
VSV-G 

pseudotyped 
LVs/VLPs 

Binding X Not tested Not tested Not tested X 
Entry 

(Endocytic/ 
Membrane 

fusion) 
X Not tested X X 

OTOF-204 
increased 

fusion 

Replication Not possible 
to test Not tested X X Not possible 

to test 

Assembly Not possible 
to test Not tested Not tested Not tested Not possible 

to test 

Maturation Not possible 
to test Not tested Not tested Not tested Not possible 

to test 
Exit 

(Budding/ 
Exocytosis) 

Not possible 
to test Not tested Not tested Not tested Not possible 

to test 

Infectivity Not possible 
to test 

OTOF-
201 

increased 
infection 

X X Not possible 
to test 

 

Next, experiments utilising SARS-CoV-2 infectious particles should be exploited especially 

focusing on TMPRSS2-mediated fusion pathways. Unfortunately, due to the pathogenicity of 

SARS-CoV-2 and the lack of an appropriate BSL-3 facility within our institute, we were not 

able to conduct these experiments during the course of this thesis. Within the scope of the 

experiments we performed, a key aspect that we did not assess was the involvement of Ca2+. 

Thus, in future experiments, it is imperative that experimental design assessing the impact of 

Ca2+ on OTOF should be performed. For example, using similar binding and fusion assay set 

ups presented in this thesis, effects of addition of Ca2+ at varying concentrations could be 

assessed.   Utilising both OTOF-201 and OTOF-204, the Ca2+-binding capabilities between 

isoforms could also be investigated; further confirming the utilisation of Ca2+ in the various C2 

domains in functioning as an anti- or pro-viral factor.  

 

In addition, the localisation of OTOF was not investigated within the scope of this thesis, which 

would provide key evidence into the role of OTOF in affecting vesicle trafficking within the late 

endosomes.  

 

Additionally, in order to investigate key protein partners interacting with OTOF, co-

immunoprecipitation (co-IPs) assays could be performed. As we speculate that OTOF is an 
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ISG and that it interacts with SNARE proteins in the late endosomes, co-IPs would allow us 

to confirm this theory not only in conditions where immune cells are stimulated but also in in 

vitro viral infection models.  

 

Lastly, a systematic approach to assess the effect of OTOF in each step within the viral 

replication cycle would be highly desirable. Taking for example, HIV-1, by systematically 

manipulating each step from viral binding to budding, we could pinpoint at exactly which step 

OTOF has an impact in. In addition, measuring of antiviral response, via qRT-PCR for 

example, in subsequent cells utilising newly formed virions would be highly desirable.  

 

In conclusion, despite extensive experiments looking into the function of OTOF, the exact 

mechanism of action in viral infections remains elusive. Further studies are required to bridge 

this gap and thus enabling OTOF to be used as a target for potential antiviral therapeutics. 
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