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5.6. One loop diagram for u(k1)ū(k2) → t(p1)t̄(p2) with one loop correction due

to heavy 2HDM states to the top quark vertex function . . . . . . . . . . 63
5.7. Contributions needed to reproduce the 1/M2 correction to the full theory

within the EFT. The black square represents the insertion of a SMEFT
dimension 6 operator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1. Background scalar self-energy diagrams of O(M4) . . . . . . . . . . . . . . 80
6.2. One-loop diagrams for ϕϕ → ϕϕ scattering. Black circles denote vertices

from the LO Lagrangian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.1. Diagrams for gg → ZZ at leading order in the chiral counting. Black
circles and black squares denote vertices from the LO and NLO Lagrangian,
respectively. Additional diagrams with permutations of the external legs
are not explicitly shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.2. Representative diagrams for gg → ZZ at next-to-leading order in the chiral
counting. Black circles, black squares and crossed squares denote vertices
from the LO, NLO and NNLO Lagrangian, respectively. . . . . . . . . . . 118

8.3. Sample diagrams for gg → ZZ with operators from the Lagrangian at
chiral dimension 4, which would only contribute at next-to-next-to-leading
(3-loop) order to this process. Black squares denote vertices from the NLO
Lagrangian, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

xi



List of Figures

8.4. Diagrams for tt̄→ ZZ at leading order in the chiral counting. Black circles
denote vertices from the LO Lagrangian. . . . . . . . . . . . . . . . . . . . 120

8.5. Tree-level and triangle graphs. Black circles and black squares denote ver-
tices from the LO and NLO Lagrangian, respectively. Additional diagrams
with permutations of the external legs are not explicitly shown. . . . . . . 120

8.6. Box graphs, Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.7. Energy dependence of the scattering cross section at cos θ = 0 in units

of fb. Here only the LO anomalous couplings are varied while all other
coefficients are set to their SM values. . . . . . . . . . . . . . . . . . . . . 131

8.8. Energy dependence of the scattering cross section at cos θ = 0 in units of
fb. Here only the HEFT coefficient CψS1 = −ξmt/16π

2v2 is varied while
all other coefficients are set to their SM values. . . . . . . . . . . . . . . . 131

8.9. Energy dependence of the scattering cross section at cos θ = 0 in units of
fb. Here only the NLO anomalous couplings CGU1 = cggH/32π

2M2 varied
while all other coefficients are set to their SM values. . . . . . . . . . . . . 132

8.10. Energy dependence of the scattering cross section at cos θ = 0 in units of fb.
Here we plot the SM scattering cross section for the processes gg → ϕ0ϕ0

and gg → ZLZL. For large
√
s we find good agreement between the two

processes validating our choice to use the Goldstone limit. . . . . . . . . . 132

xii



Zusammenfassung
Effektive Feldtheorien (EFTs) haben sich als unverzichtbare Werkzeuge in der Suche nach
Physik jenseits des Standardmodells (BSM) etabliert. Sie ermöglichen eine modellunab-
hängige Parametrisierung der indirekten Effekte neuer Physik. Um konsistente Vorher-
sagen zu erhalten, ist es jedoch entscheidend, die zugrunde liegenden Annahmen klar zu
formulieren und die EFTs systematisch anzuwenden. Im Bereich der BSM-Physik sind
zwei EFTs besonders weit verbreitet: die Standardmodell-Effektive-Feldtheorie (SMEFT)
und die elektroschwache chirale Lagrangedichte, oft als Higgs-Effektive-Feldtheorie (HEFT)
bezeichnet. Diese basieren auf unterschiedlichen Ordnungsprinzipien. Diese Arbeit wid-
met sich der systematischen Anwendung beider Ansätze.
Für die SMEFT argumentieren wir, dass eine Powercountingvorschrift, die sich aus-
schließlich auf kanonische Dimensionen stützt, unzureichend ist. Sie muss durch eine
Zählung der Schleifenordnung ergänzt werden, die sich durch die Einführung chiraler Di-
mensionen darstellen lässt. Die gleichzeitige Berücksichtigung kanonischer und chiraler
Dimensionen führt zu einer klaren Hierarchie der Operatoren und erlaubt es, dominante
Beiträge in Hochenergieprozessen gezielt zu identifizieren. Als konkretes Beispiel un-
tersuchen wir das Zusammenspiel beider Zählweisen durch das Matching des schwach
gekoppelten Zwei-Higgs-Doublett-Modells (2HDM) auf die SMEFT.
Ein einfaches Modell auf Basis des SO(4) linearen Sigma-Modells dient zur weiteren
Verdeutlichung der beiden Entwicklungsparameter. Durch das Ausintegrieren des schw-
eren Freiheitsgrads leiten wir die entsprechende Niederenergie-EFT her und vergleichen
das Ergebnis für schwache und starke Kopplung.
Danach kehren wir zum 2HDM zurück, diesmal im Nicht-Entkopplungsregime. Durch
das Ausintegrieren der schweren Skalarfelder zeigen wir, wie HEFT als Niederenergie-
Grenzfall entsteht. Mithilfe funktionaler Methoden leiten wir die chirale Lagrangedichte in
führender Ordnung der chiralen Zählweise auf effiziente und transparente Weise her. Dies
umfasst auch lokal generierte Schleifenbeiträge wie h→ γγ und h→ γZ, die in derselben
Ordnung wie ihre Standardmodell-Gegenstücke auftreten. Darüber hinaus präsentieren
wir einen Algorithmus zur Berechnung der charakteristischen Koeffizientenfunktionen bis
zur beliebigen Ordnung im Higgsfeld h.
Abschließend untersuchen wir die Produktion longitudinaler Z-Bosonenpaare in Gluon-
fusion mit anomalen HEFT-Kopplungen. Unter Betonung der Rolle des Organisation-
sprinzips analysieren wir detailliert die führenden und nächstführenden EFT-Beiträge
zur Streuamplitude. In führender Ordnung hängen die Beiträge neuer Physik von drei
EFT-Kopplungen ab, die sich auf zwei unabhängige Parameter reduzieren lassen. Effekte
höherer Ordnung werden innerhalb des Gültigkeitsbereichs der EFT als vernachlässigbar
erwartet.
Die vorliegende Arbeit stellt heraus, dass eine konsistente Powercountingvorschrift notwendig
bei der Anwendung von EFT Methoden ist.
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Abstract
Effective Field Theories (EFTs) have become indispensable tools for physics beyond the
Standard Model (BSM) to parameterize new physics in a model-independent way. To
obtain consistent predictions, the underlying assumptions have to be specified, and the
EFT has to be applied systematically. For BSM physics, two particular EFTs are widely
used: the Standard Model Effective Field Theory (SMEFT) and the electroweak chiral
Lagrangian, often referred to as the Higgs Effective Field Theory (HEFT). These two
approaches are based on distinct organizing principles. This thesis is dedicated to inves-
tigating the systematic application of both frameworks.
For SMEFT, we argue that a power-counting scheme based solely on canonical dimensions
is insufficient. It must be supplemented by a loop-order counting scheme, conveniently
expressed through the assignment of chiral dimensions. By accounting for both canon-
ical and chiral dimensions, a clear hierarchical structure emerges among the operators,
enabling a more meaningful identification of potentially dominant contributions in high-
energy processes. As a concrete example, we explore the interplay between these two
counting schemes by matching the Two-Higgs Doublet Model (2HDM) to SMEFT in the
decoupling limit.
To further illuminate the role of the two expansion parameters, we analyze a toy model
based on the SO(4) linear sigma model. By integrating out the heavy degrees of freedom,
we derive the corresponding low-energy EFT and compare the resulting theories in both
the strongly and weakly coupled regimes.
Subsequently, we revisit the 2HDM, this time focusing on the non-decoupling regime.
We integrate out the heavy scalars and demonstrate how HEFT naturally arises as the
low-energy EFT. Using functional methods, which provide a transparent and efficient
approach, we derive the chiral Lagrangian at leading order in the chiral counting. We
include loop-induced local terms such as h→ γγ and h→ γZ, which appear at the same
order as their SM counterparts. Additionally, we present an algorithm that allows us to
compute the characteristic coefficient functions to all orders in the Higgs field h.
Finally, we investigate the production of longitudinal Z boson pairs via gluon fusion with
anomalous HEFT couplings. Emphasizing the role of power counting, we perform a de-
tailed analysis of the leading and next-to-leading EFT contributions to the amplitude
at leading order in QCD. We demonstrate that the new physics effects at leading order
depend on three EFT couplings, which can be reduced to two independent parameters.
Subleading corrections are expected to remain small within the range of validity of the
EFT.
The thesis shows that a consistent power counting prescription is crucial when using EFT
methods.
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1. Introduction
“Dass ich erkenne, was die Welt / Im
Innersten zusammenhält.”

Johann Wolfgang von Goethe
Faust I

The timeless question posed by Goethe’s Faust has been a driving force for humanity
throughout the centuries, trying to understand “what holds the world together in its in-
most folds.” Since the Presocratic philosophers of the 6th and 5th centuries BCE, the
question of the basic constituents of matter has remained at the forefront of scientific
inquiry.
In essence, modern particle physics continues this quest, now armed with sophisticated
theoretical frameworks and powerful experimental tools. Many of the most significant
experimental advances of the past century have come from high-energy particle colliders,
where subatomic particles such as protons are accelerated and collided to probe the struc-
ture of matter at ever-smaller scales.
The two cornerstones of modern physics, special relativity (SR) and quantum mechanics
(QM), are needed to theoretically describe such processes. They can be combined in a
single mathematical framework known as quantum field theory (QFT). QFT predicts the
existence of antiparticles and the spontaneous pair creation of particles from the vacuum
and explains the connections of spin and statistics. None of these phenomena can be
explained by quantum mechanics alone. For instance, the uncertainty principle tells us
that energies can fluctuate over short time scales. Yet, we need the insight from relativity
that energy can be converted into matter and vice versa to explain the phenomenon of
pair creation. Elementary particles are described as excitations of matter fields by QFT.
Despite its successes, early QFT was plagued by the appearance of infinities in calcu-
lations involving interacting particles, leading to doubts about its consistency. It was
later understood that these divergences arise from the idealization of local interactions
at arbitrarily small distances. The infinities can be tamed by regularizing the divergent
integrals. Then, the divergences can be removed by systematically redefining the physical
observables, a procedure known as renormalization. Used in such a way, QFTs provide
the most accurate predictions of any scientific theory. For instance, the quantum elec-
trodynamics (QED) [4–6] prediction for the anomalous magnetic moment of the electron
agrees with the experimentally measured value to within 10 significant figures [7].
All known elementary particles and their interactions can be described within a QFT
framework, the Standard Model of particle physics (SM). It combines the theory of the
strong interaction, quantum chromodynamics (QCD) [8–11], and the theory of electroweak
interactions [12–14], that unifies the electromagnetic and weak interactions. So far, it has
withstood all experimental tests and is rightfully known as the most successful scientific
theory in history. For the theory to remain consistent at high energies and facilitate the
breaking of the electroweak symmetry, the SM contains the Higgs mechanism [15–19] and
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the corresponding particle, the scalar Higgs boson. With the discovery of the Higgs boson
at the LHC collider [20, 21] in 2012, the last missing puzzle piece of the SM was experi-
mentally discovered.
However, not all open questions were answered with the discovery of the Higgs boson.
It opened a wide range of questions regarding the nature of the discovered boson and
the precise mechanism of electroweak symmetry breaking. While all the experiments so
far are consistent with a SM-like Higgs, deviations from the SM in the Higgs sector of
O(10%) are still possible.
Evidence for new physics can come from direct or indirect sources. Since there have been
no direct discoveries, i.e., new particles, since the Higgs, we depend on the indirect effects
of new physics. From the theory side, we need a calculational framework to constrain
the effects of new physics. This is where effective field theories (EFTs) come into play.
EFTs are not renormalizable as QFTs in the traditional sense, i.e., an infinite amount of
counterterms is required to remove all divergences. For this reason, the pioneers of QFT
discarded EFTs as viable theories, as their goal was to formulate fundamental theories
valid up to arbitrarily high energies. Steven Weinberg, in his seminal article ”Phenomeno-
logical Lagrangians” [22], rehabilitated EFTs. He noted that the most general, analytic,
unitary, Lorentz invariant, and cluster decomposition satisfying Lagrangian will yield
the most general S-matrix elements consistent with these principles. Thus, an EFT La-
grangian contains all possible terms consistent with the aforementioned principles and, as
a result, contains an infinite tower of operators parameterizing the effects of new physics.
However, not all operators are equally important. This is where the power counting pre-
scription enters. It defines an expansion parameter δ � 1 and tells us which operators
are required for consistent calculation up to O(δn). A consistent power counting scheme
is, therefore, vital to obtain meaningful predictions from an EFT. The consistent and
systematic application of EFT methods is the subject of this thesis.
To illustrate our argumentation, we employ two widely used EFT frameworks that are
particularly suited for physics beyond the SM. The Standard Model Effective Field The-
ory (SMEFT) [23–28] is the most general theory with the SM matter content and gauge
symmetry. The Electroweak Chiral Lagrangian (EwChL, also known as HEFT) [28–46],
on the other hand, is the most general EFT to describe electroweak symmetry break-
ing and contains the physical Higgs boson as a gauge singlet. The underlying ordering
principle for the two EFTs is different. We will highlight the differences and discuss the
consistent application of both EFTs by examining several examples.
The structure of this thesis is as follows. The first three chapters serve as an introduction,
where all the necessary foundations on which this thesis rests are covered. In Chapter
2, we give a brief overview of the Standard Model and its Lagrangian. The Higgs sector
of the SM and the description of electroweak symmetry breaking are covered in more
depth, as the Two-Higgs-Doublet Model (2HDM), a model for an extended scalar sector,
is featured prominently in this thesis. We motivate the use of EFT methods for Higgs
physics by discussing the experimental and theoretical indications for new physics beyond
the SM. Chapter 3 serves as an introduction to EFTs in general and the SMEFT and
HEFT in particular. We specifically point out how the Higgs sectors of both EFTs differ.
A convenient and efficient framework for one-loop matching using functional methods, de-
veloped in [47], is presented in Chapter 4, which we frequently employ in the subsequent
chapters. After covering the foundations, we turn to applications. All the applications
serve as examples of a systematic and consistent usage of the SMEFT and the HEFT.
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Introduction

First, we discuss the power-counting prescription for the SMEFT in Chapter 5 and argue
that power counting based solely on canonical dimension is incomplete. It has to be ex-
tended to include loop orders or, equivalently, chiral dimensions. In Chapter 6, we take
the SO(4) linear σ-model and integrate out the massive degree of freedom at one loop
to obtain nondecoupling EFT effects. We also study nondecoupling effects in Chapter 7,
which is dedicated to matching the 2HDM in the strongly coupled, nondecoupling regime
to the HEFT. The study of the process gg → ZLZL with anomalous couplings in Chap-
ter 8 showcases the systematic application of HEFT for a phenomenologically interesting
high-energy process. Finally, in Chapter 9, we conclude.
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2. The Standard Model
Our goal in this section is to provide a brief, yet self-contained, review of the Standard
Model of particle physics (SM). Readers already familiar with the SM are free to skip
this section and jump directly to the next section on EFTs. However, the notation used
throughout the thesis will be largely set in this chapter.

2.1. The SM Lagrangian
Since the advent of modern science, the goal of physics has been to understand what holds
the world together at its core on increasingly smaller scales. Specifically, this meant iden-
tifying the fundamental building blocks of nature and understanding their interactions
with one another. The road to such a unitary framework of elementary particle inter-
actions was not straightforward. It took decades of groundbreaking experimental and
theoretical work, beginning with the pioneers of quantum mechanics, to develop a theory
that describes all known elementary particles and their interactions with astonishing pre-
cision. That framework, finalized in the 1970s, is the Standard Model of particle physics
(SM). Except for gravity, it describes all known fundamental particles and interactions.
Furthermore, all measurements performed at energies accessible to current colliders are
in excellent agreement with its predictions. It is fair to regard the SM as the foundational
achievement of physics in the 20th century.
The SM is formulated as a Quantum Field Theory (QFT) based on 19 input parameters.
Although the SM describes such a wide range of particles and interactions, its mathe-
matical description is relatively simple. Hence, its Lagrangian fits nicely on a coffee mug
(albeit in a highly simplified form). To formulate the SM Lagrangian, all the necessary
theoretical input is the underlying symmetries and the particle content, making it a tri-
umph of theoretical elegance and empirical success. The SM is a gauge theory based on
the gauge group

GSM = SU(3)C × SU(2)L × U(1)Y (2.1)

Here SU(3)C is the gauge group of quantum chromodynamics (QCD) the theory of strong
interactions [8–11] and SU(2)L × U(1)Y the gauge group of the electroweak interactions
[12–14] which is broken by the Higgs mechanism [15–19] to U(1)em. Pedagogical introduc-
tions to the SM can be found e.g. in [48–53]. To finally write down the SM Lagrangian
one has to write down all renormalizable (up to canonical dimension 4), Lorentz and
gauge invariant terms

LSM = −1

2
〈GµνG

µν〉 − 1

2
〈WµνW

µν〉 − 1

4
BµνB

µν +
θ

32π2
〈G̃µνG

µν〉

+ q̄Li /DqL + l̄Li /DlL + ūRi /DuR + d̄Ri /DdR + ēRi /DeR

+ (Dµφ)
† (Dµφ) + µ2φ†φ− λ

2

(
φ†φ
)2
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The SM Lagrangian

−
(
q̄LYuuR φ̃+ q̄LYddR φ+ l̄LYeeR ϕ+ h.c.

)
(2.2)

where we introduce the complex conjugate of the Higgs doublet φ̃ as φ̃j = εjk(φ
k)∗ (ε12 =

1). Here and in the following 〈M〉 denotes the trace of any matrix M . The covariant
derivative acting on a generic field χ is given by

Dµχ = ∂µχ+ igsT
AGA

µχ+ igT aW a
µχ+ ig′Y Bµχ (2.3)

Here TA = λA/2 and T a = σa/2 are the generators of the fundamental representations of
SU(3)C and SU(2)L respectively, where λA are the Gell-Mann matrices an σa the Pauli
matrices. The generators are normalized in the usual way 〈T aT b〉 = δab/2. The gauge
fields for SU(3)C and SU(2)L are Lie algebra valued matrix fields Gµν = GA

µνT
A and

Wµν = W a
µνT

a. The gauge field strength tensors are constructed as follows

GA
µν = ∂µG

A
ν − ∂νG

A
µ − gsf

ABCGB
µG

C
ν

W a
µν = ∂µW

a
ν − ∂νW

a
µ − gεabcW b

µW
c
ν

Bµν = ∂µBν − ∂νBµ (2.4)

For a generic field strength X we define the dual field strength tensor X̃µν = 1
2
εµνρσX

ρσ

(ε0123 = +1).
The first line comprises the kinetic terms of the gauge fields and the theta term. The

interactions, induced by the local SU(3)C×SU(2)L×U(1)Y gauge symmetry are mediated
by spin 1 vector bosons. Here GA

µ denotes the gluon field, the gauge bosons corresponding
to the SU(3)C gauge group, W a

µ denotes the SU(2)L gauge boson. The third gauge boson
Bµ mediates the U(1)Y hypercharge interactions. The last term in the first line is known
as the theta term; it is a total derivative, and thus neither appears in the equations of
motion nor perturbation theory. However, it has non-perturbative implications for the
vacuum structure of QCD [54].
The second line of (2.2) gives the kinetic terms for the chiral spin-1

2
fermions. They can

be divided into quarks and leptons that transform in different representations of GSM .
Only the quarks carry color charge and transform as the fundamental representation of
SU(3). Every quark and lepton comes in three copies, known as generations, only differing
by the strength of their Yukawa couplings. In the broken electroweak phase, they then
acquire different masses. The SM is a chiral theory i.e., it distinguishes particles of
different chirality. For massless particles, chirality is equivalent to helicity and is the
sign of the projection of the spin vector on the momentum vector. The quarks can be
further divided into left-handed and right-handed quarks. Only the former carry SU(2)L
charge and participate in the weak interaction. Once the quarks acquire mass through
the Higgs mechanism, the resulting Dirac mass term mixes the chiralities. It should
be noted that quarks and gluons are only good degrees of freedom at energies above
ΛQCD ∼ 200MeV where perturbation theory is applicable. QCD exhibits asymptotic
freedom [55, 56] meaning that the effective SU(3) coupling constant decreases for large
energy scales. Below ΛQCD the theory becomes strongly coupled, and one must use
nonperturbative EFTs such as Chiral Perturbation Theory (ChPT) [57, 58].
The third line of (2.2) is the Higgs Lagrangian, where the mass parameter µ2 is the
only dimensional input in the SM, hinting at physics beyond the SM (see Section 2.3).
When spontaneous symmetry breaking occurs (SSB), the Higgs doublet acquires a vacuum
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The Standard Model

expectation value, splitting into the physical Higgs boson and the would-be Goldstone
bosons that become the longitudinal W± and Z modes. Fermion masses then arise from
Yukawa couplings to this vev. The phenomenology of electroweak symmetry breaking is
discussed in Section 2.2. The full SM matter content is summarized in Table 2.1.

Quarks Leptons Higgs

field qαjLp =

uαLp
dαLp

 uαRp dαRp ljLp =

νLp
eLp

 eRp φj =

φ+

φ0


SU(3)C rep. 3 3 3 1 1 1

SU(2)L rep. 2 1 1 2 1 2

hypercharge Y 1
6

2
3

−1
3

−1
2

1 1
2

Table 2.1.: The matter content of the SM. Here j = 1, 2 is an isospin index, α = 1, 2, 3 is
a color index and p = 1, 2, 3 is a generational index.

2.2. Higgs Sector in the SM
Although (2.2) exhibits an SU(2)L×U(1)Y gauge symmetry, the same symmetry is broken
in the ground state of the theory. If the symmetry were present in the ground state,
four massless electroweak gauge bosons should be in the spectrum. Phenomenologically,
however, the W±- and Z bosons are observed to be massive, whereas only the photon,
mediating the electromagnetic interaction, remains massless. In other words, at energies
below v = 246GeV the SU(2)L × U(1)Y symmetry of the SM is spontaneously broken to
U(1)em.
As a result of spontaneous symmetry breaking (SSB) the fermions obtain their masses.
However, it should be noted that the Higgs particle is not strictly needed to explain the
fermion masses. It is needed to unitarize the theory, since theories with massive vector
bosons are known to be inconsistent at high energies. In the SM, electroweak symmetry
breaking SU(2)L × U(1)Y → U(1)em is achieved through the Higgs mechanism, where
an SU(2)L doublet φ with hypercharge Y = 1/2, the Higgs doublet, is introduced. In
unitary gauge, φ is given by

φ =

 0

1√
2
(v + h)

 (2.5)

where h is the physical Higgs particle. The Higgs potential in the SM is given by

V (φ) = −µ2φ†φ +
λ

2

(
φ†φ
)2 (2.6)

Note that in the broken electroweak phase the mass term has the ”wrong” sign such that
the minimum of the potential is no longer at zero but rather the Higgs doublet acquires
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a vacuum expectation value.

〈φ〉 = 1√
2

0

v

 , with v =

√
2
µ2

λ
(2.7)

After SSB the Higgs Lagrangian is given by

LHiggs =
1

2
∂µh∂

µh− m2
hv

2

2

[(
h

v

)2

+

(
h

v

)3

+
1

4

(
h

v

)4
]

+g2
(v + h)2

8

[
(W 1

µ)
2 + (W 2

µ)
2 +

(
g′

g
Bµ −W 3

µ

)2
]

(2.8)

where m2
h = λv2. To diagonalize the mass-terms, the gauge fields can only be rotated and

not rescaled since the kinetic terms for Bµ and W a
µ are already canonically normalized.

Only one linear combinations of Bµ and W 3
µ picks up a mass whereas the orthogonal

combination remains massless. These are the massive Z boson and the massless photon
Aµ. They are related by the rotation matrixZµ

Aµ

 =

cos θW − sin θW

sin θW cos θW

W 3
µ

Bµ

 (2.9)

where θW is the Weinberg angle with

tan θW =
g′

g
, sin θW =

g′2√
g2 + g′2

(2.10)

The kinetic terms for the Z-boson Zµ and the photon Aµ are then given by

Lkin = −1

4
FµνF

µν − 1

4
ZµνZ

µν +
1

2
m2
ZZ

µZµ (2.11)

with mZ = gv/2 cos θW , Zµν = ∂µZν − ∂νZµ and Fµν = ∂µAν − ∂νAµ. While the photon
and Z boson do not carry U(1)em charge, the remaining two gauge degrees of freedom
do. The couplings of the gauge bosons among themselves are determined by commutators
and since W 3

µ contains the photon we have

DµWν ⊃ g[W 3
µT

3,Wµ] ⊃ g sin θWAµW
a
ν [T

3, T a] (2.12)

We can read off the electromagnetic charge

e = g sin θW = g′ cos θW (2.13)

Defining the combination of generators T± = 1√
2
(T 1 ± iT 2) that satisfies [T 3, T±] = ±T±

we can deduce that Wboson that couples to T± has electric charge ±1. Writing W aT a =
W+T+ +W−T− +W 3T 3 we observe that the linear combinations

W±
µ =

W 1
µ ∓ iW 2

µ√
2

(2.14)
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have charges ±1. Inserting the mass eigenstates into (2.8) we arrive at

LHiggs =
1

2
∂µh∂

µh− m2
hv

2

2

[(
h

v

)2

+

(
h

v

)3

+
1

4

(
h

v

)4
]

+m2
W

(
1 +

h

v

)2

W+
µ W

−µ +
m2
Z

2

(
1 +

h

v

)2

ZµZ
µ (2.15)

The gauge boson masses are given by

mW =
g v

2
, mZ =

mW

cos θW
(2.16)

The SM predicts therefore that the W± bosons should be lighter than the Z boson which
is also realized in nature [59] (mW = 80.37GeV and mZ = 91.19GeV). It is reasonable
to wonder if the tree-level relation of the gauge bosons masses mW/mZ cos θW = 1 has a
deeper origin. The next section is dedicated to this question.

2.2.1. Custodial Symmetry
In the SM, the Higgs potential in the unbroken electroweak phase is invariant under a
global SO(4) ' SU(2)× SU(2) symmetry. To see this introduce the Higgs bi-doublet

Φ =
1√
2

(
φ̃ φ

)
(2.17)

where φ̃ = iσ2φ
∗ is the conjugated doublet, such that 〈Φ†Φ〉 = φ†φ. Writing the Higgs

potential as

V (Φ) =
λ

2

(
〈Φ†Φ〉 − v2

2

)2

(2.18)

it is easy to see that the potential is invariant under the global symmetry transformation

Φ → gLΦg
†
R = e−iε

a
LT

a

Φeiε
a
RT

a (2.19)

where gL/R ∈ SU(2)L/R. The SM gauge group SU(2)L×U(1)Y is a subgroup of SU(2)L×
SU(2)R and acts on the bi-doublet Φ as

Φ → e−iε
a
LT

a

ΦeiεY T
3 (2.20)

where now εL,Y (x) are functions of spacetime. The U(1)Y gauge coupling g′, thus, also
violates custodial symmetry but the effect is very small. If we had g′ = 0 then W-
and Z-bosons would have equal masses. When the Higgs bi-doublet acquires a vacuum
expectation value

Φ =
1

2

v 0

0 v

 (2.21)
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Higgs Sector in the SM

the global symmetry SU(2)L × SU(2)R is broken to the diagonal subgroup SU(2)V since
the vacuum is only invariant if gL = gR. This residual symmetry is known as custodial
isospin or custodial SU(2) [60]. Custodial symmetry protects the ρ parameter

ρ =
m2
W

cos2 θW m2
Z

(2.22)

from receiving large corrections. Note that the custodial-symmetry violating effect of g′
is already incorporated in the definition of ρ. Plugging in the tree level values of mZ and
mW (2.16) we see that ρ0 = 1 in the SM. At the loop level there are deviations from
this value mainly due to top-quark loops. Custodial symmetry is explicitly broken by
the Yukawa sector, which is a small effect with the exception of the top quark Yukawa
coupling (yt ≈ 1).
Even if there were no Higgs sector altogether, there would be electroweak symmetry
breaking and custodial symmetry through nontrivial nonperturbative effects in QCD.
Taking the limit of massless u and d-quarks, the QCD Lagrangian has a SU(2)L×SU(2)R
symmetry where the left- and right-handed fields transform independently. Due to the
quark condensate 〈q̄q〉, this symmetry is broken to the diagonal subgroup SU(2)L ×
SU(2)R → SU(2)V , where the SU(2)V symmetry is precisely the custodial symmetry
relating the gauge boson masses to the gauge charges. In this case, the pions play the role
of would-be Goldstone bosons, which would end up as the longitudinal degrees of freedom
for the gauge bosons. This suggests that the Higgs and QCD vacuum structure may be
more deeply connected [50, 61].

2.2.2. Experimental Constrains
At present experimental accuracy, the SM solution to electroweak symmetry breaking
is consistent with experiments. However, there is still much room for deviations from
the SM. In contrast to electroweak precision data, the Higgs sector is relatively weakly
constrained, especially the Higgs self-couplings. The Higgs boson trilinear self-coupling
is the most important direct probe of the Higgs potential and can give insight into the
nature of the electroweak phase transitions [59]. The trilinear self-coupling may be probed
by double Higgs production. The signal process involves a virtual single Higgs produced
from a top quark loop, which splits into two Higgs bosons in the final state through the
triple self-coupling. The experimental constraints are usually reported using the ”kappa-
framework” [62] where the SM coupling is multiplied by a coupling modifier κi (κi=1 in
the SM). The ATLAS [63] and CMS [64] results for the triple self-coupling are

κλ ∈ [−0.6, 6.6] (ATLAS), κλ ∈ [−1.2, 6.5] (CMS) (2.23)

where the bounds correspond to the 95% confidence limit. To measure the quartic self-
couplings would require a hhh final state, which is out of reach for the LHC. In addition,
the ATLAS measurements [65] for the hhV V coupling are

κ2V ∈ [0.1, 2.0] (2.24)

where again the bounds correspond to the 95% confidence limit. In contrast, the modifier
for the gauge boson coupling hV V is rather well constrained [66]

κV = 1.035± 0.031 (2.25)
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Given the loose constraints on many couplings in the Higgs sector, there is still ample
room for models of extended Higgs sectors, such as composite Higgs models [67]. We
will, however, pursue a model-independent EFT approach in this thesis. The Electroweak
Chiral Lagrangian (EwChL) is the most general EFT that describes electroweak symmetry
breaking and allows for O(1) deviations from the SM in the Higgs couplings. We introduce
the EwChL in the next chapter.

2.3. Beyond the SM

Even though the SM is an extremely successful theory, there are several theoretical and
experimental indicators for physics beyond the SM (BSM) which we will discuss in the
following.

2.3.1. Experimental hints for BSM physics

While neutrinos in the SM are massless, they are, in fact, massive. Neutrino masses were
first observed indirectly in oscillations of solar neutrinos [68–70]. The observation consti-
tuted the first direct evidence of BSM physics. The number of measured electron neutrinos
was only a third of the expected number, indicating that flavor eigenstate neutrinos os-
cillate as they propagate through spacetime. Only in the mass basis, the propagators are
diagonal. Note that oscillation experiments cannot measure the absolute masses but are
only sensitive to differences in squares of neutrino masses. Therefore, the mass hierarchy
is not fixed.
To give mass to neutrinos via the Higgs mechanism, right-handed or sterile neutrinos can
be added to the SM. Since the electroweak symmetry does not forbid a Majorana mass
term, neutrinos could be Dirac or Majorana fermions. Neutrino oscillation experiments
alone cannot determine whether neutrinos are Dirac or Majorana fermions. A Majorana
mass term would violate lepton number L. A lepton number violating process that could
establish the Majorana nature of neutrinos is neutrinoless double β-decay in which two
neutrons inside a nucleus turn into two protons with the emission of two electrons and
zero neutrinos, violating L by two units [71]. So far, neutrinoless double β-decay has not
been observed.
To generate the observed matter-antimatter asymmetry of the universe, the three Sakharov
conditions must be satisfied [72]. First, baryon number B violation is required. Second,
both charge conjugation symmetry C and the combined symmetry of charge conjugation
and parity CP must be violated. Third, the universe must undergo a period of departure
from thermal equilibrium. At first glance, these conditions seem to hold in the SM. B is
violated in the SM by the chiral anomaly and the weak interaction breaks CP through
the non-zero phase in the CKM phase. Additionally, the universe naturally experiences
periods out of thermal equilibrium during its cooling history. It turns out, however, that
the extent to which these conditions are satisfied is not enough. There needs to be more
baryon number violation, CP violation and the electroweak phase transition needs to be
first order to explain baryogenesis. For these reasons, baryogenesis remains a compelling
motivation for exploring BSM physics [50].
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2.3.2. Theoretical hints for BSM physics

Additionally, from the theoretical perspective, there are several indicators that SM should
not be viewed as a fundamental theory, but rather as the leading term in an effective
description. First of all, the SM does not include gravity, and the formulation of gravity
as an EFT [73] breaks down at the Planck scale MPl ∼ 1019 TeV. Thus, new physics
has to enter at the latest at that scale. The discrepancy between the Planck and the
electroweak scales is also known as the hierarchy problem, which we will discuss in the
following. The hierarchy problem relies on the notion of naturalness, and as an example
for an unnaturally small parameter, we also briefly discuss the θ-angle and the strong CP
problem.

Naturalness and the Hierarchy problem

First of all, one may regard the large number of input parameters of the SM as theo-
retically unappealing as their deeper origin is not explained by the theory. Accepting
this, one may still want to explain the smallness of certain parameters. To do so, t’Hooft
introduced the notion of technical naturalness [74].
A small parameter p in a physical theory is said to be technically natural if radiative
corrections to said parameter are multiplicative, implying that the quantity stays small
under radiative corrections. This is the case if there is custodial symmetry protecting the
parameter in the sense that setting p = 0 would lead to an enhanced symmetry prohibit-
ing radiative corrections from inducing a nonzero value of the parameter [75].
For instance, in two‐flavor QCD, setting the up- and down-quark masses to zero restores
the chiral symmetry SU(2)L × SU(2)R rotating left- and right-handed quarks indepen-
dently. In the massless limit, chiral symmetry forbids the radiative generation of quark
masses. In the massive case, all radiative corrections will be proportional to the bare
mass, which stays small as long as the bare mass was once set small. For the gauge
bosons, the gauge symmetry plays the role of custodial symmetry.
There is, however, no custodial symmetry to explain the value of the Higgs mass pa-
rameter. Recall that there are only two fundamental scales in the SM: the Higgs mass
parameter µ2 ∼ 102GeV and the Planck scale MPl ∼ 1019GeV. The hierarchy problem
refers to the vast discrepancy between the two scales, which has no theoretically satisfying
answer. In principle, a fundamental scalar could enjoy a shift symmetry φ→ φ+f , which
would render its mass technically natural. However, the Higgs sector of the SM explicitly
breaks any such shift symmetry in multiple interaction terms. This absence of a custodial
symmetry for µ2 is the essence of the electroweak hierarchy problem.

Strong CP problem

While the weak interaction violates CP invariance through a non-zero phase in the CKM
matrix, it is a relatively small effect referred to as weak CP violation. The strong inter-
actions, on the other hand, should exhibit strong CP violation, which, however, is not
realized in nature. This discrepancy is known as the strong CP problem. The origin of
this problem can be traced back to the subgroup U(1)A of the chiral symmetry, which
acts on the quark fields as ψ → eiγ5θψ. While this constitutes a symmetry of the classical
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theory, the path integral is not invariant∫
Dψ̄Dψ →

∫
Dψ̄Dψ exp

(
iθ

∫
g2s

32π2
GA
µνG

Aµν

)
(2.26)

The symmetry is said to be anomalous, since the path integral is not invariant under a
chiral rotation. Instead it generates the theta term that we encountered previously and is
also generated non-perturbatively by QCD. The theta terms corresponding to the gauge
groups SU(2)L and U(1)Y can be rotated away. Phenomenologically relevant is the basis
invariant combination

Lθ = θ̄
g2s

32π2
GA
µνG

Aµν , θ̄ = θQCD − θF (2.27)

where θF ≡ arg det(YdYu). Yu,d are the Yukawa matrices for up- and down-type quarks
respectively. The parameter is related to the electric dipole moment of the neutron and
the experimental current limits give |θ̄| ≤ 10−9 [76]. Since there is no symmetry protecting
the theta parameter, it is considered technically unnatural. The Peccei-Quinn solution
[77, 78] solves the CP problem by introducing axions.
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3. Effective Field Theories
We now turn to the subject of effective field theories (EFTs), focusing especially on the
SMEFT and the HEFT. In Sec. 3.1 we elucidate the basic philosophy behind EFTs and
in Sec. 3.2 we discern top-down and bottom-up EFTs. The SMEFT and explicit operator
bases of dimension five and six operators are discussed in Sec. 3.3. Sec. 3.4 is devoted
to a brief review of the Electroweak Chiral Lagrangian also known as the HEFT and the
corresponding power counting based on chiral dimensions. In the last Sec. 3.5 we take
a glance at the difference between HEFT and SMEFT comparing their respective Higgs
sectors. Pedagogical introductions to EFTs may be found in [79, 80].

3.1. The EFT paradigm
Despite the conceptual elegance of the SM, practical calculations involving its degrees
of freedom, particularly in systems with complex bound states, can become increasingly
difficult or even straight up impossible. Fortunately, it is not necessary to fully resolve the
microscopic details of a system in order to accurately describe its macroscopic behavior.
To put it drastically: when designing a bridge, the dynamics of the Higgs boson are
entirely irrelevant. What matters instead is identifying the appropriate energy scales and
degrees of freedom for the problem at hand. This is the essential idea behind effective
field theories (EFTs).
EFTs exploit the existence of a hierarchy of scales by systematically separating the physics
of light and heavy degrees of freedom. The heavy fields associated with a high-energy
scale Λ are integrated out, and their effects are encoded in a tower of higher-dimensional
operators involving only the light fields. The resulting low-energy theory is constructed
to reproduce the same infrared (IR) observables as the full theory, up to a given accuracy
in m/Λ, where m is the characteristic IR scale of the physical process.
Consider an observable A(m,Λ) depending on two scales, with m� Λ. The EFT allows
for an expansion of the form

A(m,Λ) = m[A] a
(m
Λ

)
, (3.1)

where [A] denotes the mass dimension of the observable. The function a(m/Λ) can include
logarithms and is typically not a Taylor series but an asymptotic series. In this way, EFTs
may be understood as a sophisticated form of dimensional analysis, controlled by the small
power-counting parameter δ = m/Λ � 1. Observables can therefore be computed in a
systematic and predictive expansion in δ, with uncertainties quantifiable by the size of
omitted higher-order terms.
EFT methods also appear throughout classical physics. For instance, general relativity
itself can be understood as the leading-order term in an EFT valid below the Planck scale
[73]. Also problems in classical mechanics that exhibit scale separation can be treated in
an EFT framework. For an illustrative example of EFT methods applied to a classical
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mechanical system, see [81].
The well-known multipole expansion of an electrostatic potential serves as a great model
to illustrate important features of EFTs [61, 80]. We consider the electrostatic potential
due to a complicated charge distribution ρ(r), which is given by the well-known expression

Φ(r) =

∫
d3x′ρ(r′)

1

|r − r′|
(3.2)

The integral can be very hard to solve in practice but fortunately it is not necessary to
do so if the observer sits far away from the charge distribution. To first approximation
the charge distribution is simply a point charge

Φ(x) ≈ Q

r
(3.3)

where Q =
∫
V
d3xρ(x) is the total charge. As we get closer we can resolve more details

Φ(r) =
Q

r
+
qiri
r3

+
qijrirj
r5

+ · · · (3.4)

This is of course nothing else than the familiar multipole expression, which can be written
schematically

Φ(r) =
1

r

∑
lm

blm
1

rl
Ylm(Ω) (3.5)

where the Ylm(Ω) denote the spherical harmonics. Assuming that ρ is enclosed by a sphere
with radius a we can write

Φ(r) =
1

r

∑
lm

clm

(a
r

)l
Ylm(Ω) (3.6)

where we introduced the dimensionless coefficients blm ≡ clma
l This example illustrates

several key points about EFTs [80]

• The expression (3.6) contains two scales, the infrared (IR) scale a and the ultraviolet
(UV) scale r where a � r. The multipole expansion is an expansion in the ratio
δ ≡ a/r which is the power counting parameter in this case. In high-energy physics
it is common to work in momentum space. Here the IR scale in momentum space
is p ∼ 1/r and the UV scale Λ ∼ 1/a and δ = p/Λ. In an EFT treatment of BSM
physics the IR scale is v ∼ 246GeV and mass of new resonances Λ serves as the UV
scale

• An observer located far away can determine the dimensionful short-distance coef-
ficients blm = clma

l ∼ clm/Λ
l by Fourier analyzing the measured potential. With

increasing l the coefficients become more and more suppressed. In a high-energy
physics context, the Wilson coefficients (the analog of the clm) of operators at higher
order in the EFT expansion are more strongly suppressed by the new physics scale
Λ.
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• Including more multipole moments will result in more accurate value for the po-
tential. Since the experimental resolution is finite, the UV coefficients can only
be determined up to some finite maximum value lmax. On the theory side the ex-
pression for the potential (3.6) can be consistently expanded up to O(δlmax). The
error is then of O(δlmax+1). Also in the SMEFT it is vital to calculate observables
consistently in the 1/Λ expansion to obtain a meaningful prediction that can be
compared with experiments.

3.2. Top-Down vs. Bottom-Up Approach to EFTs
There are two general approaches to EFTs. If the underlying theory is not known, then
a bottom-up EFT may be used to parametrize the effects of the unknown sector. Such an
EFT is the most general nonrenormalizable QFT with the assumed symmetries and parti-
cle content [82]. If the underlying UV theory is known, it can still be helpful to construct a
top-down EFT. The procedure to obtain a top-down EFT is known as integrating out the
heavy degrees of freedom. The path integral over the heavy fields has to be performed to
derive the Lagrangian of a top-down EFT. Hence the name ”integrating out.” At the tree
level, this is equivalent to solving the classical equations of motion for the heavy fields.
At the one-loop level, a Gaussian integration over the heavy field fluctuation is needed.
We discuss this topic in detail in Chapter 4. Top-down EFTs are used, e.g., if the funda-
mental theory contains too many scales and unsuitable degrees of freedom. Sometimes,
the EFT has an emergent low-energy symmetry, and the EFT can be used to resum large
logarithms. For instance, top-down EFTs are often used for QCD as calculations within
perturbative QCD are limited. Examples include Heavy Quark Effective Theory (HQET)
[83], Soft Collinear Effective Theory (SCET) [84], and Chiral Perturbation Theory for
mesons and baryons (ChPT) [57, 58]. The basic idea behind top-down and bottom-up
EFTs is summarized in Fig. 3.1.

UV Theory is known

Effective Field Theory

UV Theory is not known

"top-down"Integrate out heavy
degrees of freedom
and match to EFT

"bottom-up" Use most general
EFT to
paramterize NP
effects

Figure 3.1.: General concept underlying top-down and bottom-up EFTs

3.3. SMEFT
As discussed, the SM should not be seen as a fundamental theory valid up to arbitrary
high energies but rather as an effective theory valid up to some energy scale Λ where new
physics should enter. The direct detection of new physics resonances might be out of reach
for the current generation of colliders. To parametrize indirect new physics effects in a
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model independent way an EFT framework is necessary. It is, therefore, well-motivated to
construct a bottom-up EFT based on the SM gauge group and the SM particles as degrees
of freedom. This EFT is known as the Standard Model Effective Theory (SMEFT) [23–
28]. The SMEFT contains the renormalizable SM as the leading term and adds higher
dimensional operators, which are suppressed by powers of the new physics scale Λ. The
EFT operators are constructed out of the SM degrees of freedom and are singlets under
the SM gauge group. Schematically we may write

LSMEFT = LSM +
1

Λ

∑
i

C
(5)
i Q

(5)
i +

1

Λ2

∑
i

C
(6)
i Q

(6)
i +O

(
1

Λ3

)
(3.7)

Here C(dc)
i are the dimensionless Wilson coefficients of the dc-dimensional EFT operators

Q
(dc)
i . The effects of new physics are encoded in the Wilson coefficients of the higher-

dimensional operators. Definitively establishing Ci 6= 0 for a single Wilson coefficient
would imply a deviation from the SM and an indirect discovery of new physics. Although
(3.7) is not renormalizable in the traditional sense, it may be renormalized consistently
order by order in 1/Λ. In practice, this implies calculating matrix elements up to a fixed
order in the 1/Λ expansion, e.g. O(Λ−2). The divergences of such diagrams may then be
removed by other dimension-six operators that act as counterterms. The SMEFT is an
example of a decoupling EFT [85]; sending Λ to ∞ recovers the SM.
Integrating out the heavy degrees of freedom of mass M � v from a weakly coupled new
physics model, the resulting effective Lagrangian can always be brought into a SMEFT
form with Λ ∼ M . There can be, of course, several new physics scales Λi. In that case,
the parameter Λ in (3.7) should be identified as the smallest such scale. The leading
deviations from the SM are given by dimension five and six operators, which we discuss
in the following.

3.3.1. Dimension 5
At mass dimension 5 there is only one possible operator structure, the so-called ”Weinberg
operator” [22],

Qνν = (Cνν)pr

(
φ̃†lp

)T
C
(
φ̃†lr

)
(3.8)

where C is the charge conjugation matrix. The Wilson coefficient of Cνν is a 3x3 matrix
in flavor space assuming three lepton generations. This operator violates lepton number
and after SSB generates a Majorana mass term for left-handed leptons

mpr = (Cνν)pr
v2

2Λ
(3.9)

An explicit model where the operator arises in an EFT treatment of right-handed neu-
trinos. Right-handed neutrinos can have a Dirac mass term and a Majorana mass term.
If the latter is large they can be integrated out and the Weinberg operator is generated.
This is known as the Seesaw Mechanism [86]. Experimental constraints inferred from
neutrino masses indicate a very high effective scale Λ ∼ 1014 GeV [59, 87–90].
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3.3.2. Dimension 6
The leading effects of new physics (NP) at energies E � Λ can be parameterized by
dimension-six operators,

LSMEFT ⊃
∑
i

Ci
Λ2

Oi . (3.10)

For most applications, the new-physics scale Λ is taken to be in the range of several TeV.
Note that only the combination Ci/Λ

2 can be constrained and not the Ci or Λ individu-
ally. Global fits [91] of the Wilson coefficients Ci remain compatible with zero, indicating
that present data are not yet sensitive to NP effects.
At a given operator dimension, bases are not unique: integration by parts and field re-
definitions (via the equations of motion) can eliminate redundant structures. We employ
the “Warsaw basis” [24], which, assuming baryon-number conservation, contains 59 inde-
pendent operator classes. With three fermion generations this yields 2499 independent
Wilson coefficients; allowing baryon-number violation adds four more classes. We display
the Warsaw basis in Tabs. 3.1 and 3.2.
To reduce this parameter space, one often imposes additional flavor-symmetry assump-
tions. A standard choice is Minimal Flavor Violation (MFV) [87, 92], which postulates
that the only sources of breaking of the SM’s global flavor symmetry

Gf = U(3)q × U(3)u × U(3)d × U(3)` × U(3)e ∼= SU(3)5 × U(1)5 (3.11)

are the Yukawa matrices Yu, Yd, and Ye, treated as spurions. In the limit Yu,d,e → 0, Gf
is exact; turning them on breaks it to

U(1)e−µ × U(1)τ−µ × U(1)B × U(1)L × U(1)Y . (3.12)

Under MFV, higher-dimensional operators must include Yukawa spurion insertions, sup-
pressing flavor-changing effects. At leading order in this expansion, off-diagonal CKM
entries can be neglected in four-fermion operators.
Often only the expansion in inverse powers of Λ is made explicit when writing the SMEFT
Lagrangian. Accordingly, the Wilson coefficients Ci are treated as O(1) numbers. Such
a power counting prescription is, however, not entierly consistent. As we show in Chap-
ter 5, if the ultraviolet (UV) completion is weakly coupled and renormalizable, operators
involving gauge field strengths are further suppressed by loop factors [1].

Here we defined

φ†
↔
Dµφ = φ†Dµφ− (Dµφ)

†φ (3.13)

and

φ†
↔
DI

µφ = φ†τ IDµφ− (Dµφ)
†τ Iφ (3.14)

In the Higgs sector the operators QH , QH� preserve custodial symmetry whereas QHD

contains a custodial symmetry violating part. Sometimes it is convenient to eliminate
QHD

QHD = −1

4

(
QH� + (φ†

↔
Dµφ)(φ

†
↔
Dµφ)

)
(3.15)
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X3 φ6 ψ2φ3

QG fABCGAν
µ GBρ

ν GCµ
ρ QH

(
φ†φ
)3

QeH (φ†φ)(l̄perφ)

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ QH�

(
φ†φ
)
�
(
φ†φ
)

QuH (φ†φ)(q̄purφ̃)

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ QHD (φ†Dµφ)∗(φ†Dµφ) QdH

(
φ†φ
)
(q̄pdrφ)

QW̃ εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

X2φ2 ψ2Xφ ψ2φ2D

QhG φ†φGA
µνG

Aµν QeW (l̄pσ
µνer)τ

IφW I
µν Q

(1)
Hl (φ†i

↔
Dµφ)(l̄pγ

µlr)

QHG̃ φ†φ G̃A
µνG

Aµν QeB (l̄pσ
µνer)φBµν Q

(3)
Hl (φ†i

↔
Dµφ)(l̄pτ

Iγµlr)

QHW φ†φW I
µνW

Iµν QuG (q̄pσ
µνTAur)φ̃ G

A
µν QHe (φ†i

↔
Dµφ)(ēpγ

µer)

QHW̃ φ†φ W̃ I
µνW

Iµν QuW (q̄pσ
µνur)τ

I φ̃W I
µν Q

(1)
Hq (φ†i

↔
Dµφ)(q̄pγ

µqr)

QHB φ†φBµνB
µν QuB (q̄pσ

µνur)φ̃ Bµν Q
(3)
Hq (φ†i

↔
DI

µφ)(q̄pτ
Iγµqr)

QHB̃ φ†φ B̃µνBµν QdG (q̄pσ
µνTAdr)φG

A
µν Qφu (φ†i

↔
Dµφ)(ūpγ

µur)

QHWB φ†τ IφW I
µνB

µν QdW (q̄pσ
µνdr)τ

IφW I
µν QHd (φ†i

↔
Dµφ)(d̄pγ

µdr)

QHW̃B φ†τ Iφ W̃ I
µνB

µν QdB (q̄pσ
µνur)φBµν QHud i(φ̃†Dµφ)(ūpγ

µdr)

Table 3.1.: Dimension-six operators other than the four-fermion operators taken form [24]

(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)

Qll (l̄pγµlr)(l̄sγ
µlt) Qee (ēpγµer)(ēsγ

µet) Qle (l̄pγµlr)(ēsγ
µet)

Q
(1)
qq (q̄pγµqr)(q̄sγ

µqt) Quu (ūpγµur)(ūsγ
µut) Qlu (l̄pγµlr)(ūsγ

µut)

Q
(3)
qq (q̄pγµτ

Iqr)(q̄sγ
µτ Iqt) Qdd (d̄pγµdr)(d̄sγ

µdt) Qld (l̄pγµlr)(d̄sγ
µdt)

Q
(1)
lq (l̄pγµlr)(q̄sγ

µqt) Qeu (ēpγµer)(ūsγ
µut) Qqe (q̄pγµqr)(ēsγ

µet)

Q
(3)
lq (l̄pγµτ

I lr)(q̄sγ
µτ Iqt) Qed (ēpγµer)(d̄sγ

µdt) Q
(1)
qu (q̄pγµqr)(ūsγ

µut)

Q
(1)
ud (ūpγµur)(d̄sγ

µdt) Q
(8)
qu (q̄pγµT

Aqr)(ūsγ
µTAut)

Q
(8)
ud (ūpγµT

Aur)(d̄sγ
µTAdt) Q

(1)
qd (q̄pγµqr)(d̄sγ

µdt)

Q
(8)
qd (q̄pγµT

Aqr)(d̄sγ
µTAdt)

(L̄R)(R̄L) and (L̄R)(L̄R) B-violating

Qledq (l̄jper)(d̄sq
j) Qduq εαβγεjk

[
(dαp )

TCuβr
] [

(qγjs )TClkt
]

Q
(1)
quqd (q̄jpur)εjk(q̄

k
sdt) Qqqu εαβγεjk

[
(qαjp )TCqβkr

] [
(uγs )

TCet
]

Q
(8)
quqd (q̄jpT

Aur)εjk(q̄
k
sT

Adt) Qqqq εαβγεjnεkm
[
(qαjp )TCqβkr

] [
(qγms )TClnt

]
Q

(1)
lequ (l̄jper)εjk(q̄

k
sut) Qduu εαβγ

[
(dαp )

TCuβr
] [

(uγs )
TCet

]
Q

(3)
lequ (l̄jpσµνer)εjk(q̄

k
sσ

µνut)

Table 3.2.: Four-fermion dimension-six SMEFT operators taken from [24]
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The electroweak T and S parameters are directly related to the Wilson coefficients of two
Warsaw basis operators [93]

αT = −1

2
v2CHD (3.16)

αS = 4v2 sin θW cos θWCHWB (3.17)

The renormalization group equations for dimension 6 operators have been computed [94–
98] and have the general structure

d

d lnµ2
Ci = γij Cj (3.18)

The parametric size of the RGE effects is ∼ 1/16π2 · v2/Λ2, thus they are subleading
compared to the insertion of dimension six operators in tree level diagrams. Feynman
rules for the Warsaw basis have been compiled in [99].

3.3.3. Dimension 7 and above
Operators of canonical dimension seven and above are suppressed with respect to dimen-
sion six operators and can therefore be expected to be phenomenologically negligible in
most cases. There are, however, certain processes where the leading new-physics effects
are given by dimension eight operators. The number of basis elements at every dimension
can be derived using Hilbert series [100]. The construction of operator bases for a given
mass dimension can be automatized [101, 102]. All odd-dimensional operators violate
B−L. Explicit bases have been worked out for dimension 7 [103–105], dimension 8 [106,
107] and dimension 9 [108, 109] SMEFT operators.

3.4. HEFT
As we explained in the first chapter the SM solution to electroweak symmetry breaking
appears for many reasons to be unsatisfactory and therefore one expects new physics to en-
ter the picture. Although, at present, the SM Higgs mechanism appears to be an accurate
description of electroweak symmetry breaking there are several theoretical shortcomings.
The electroweak hierarchy problem motivated the construction of numerous new-physics
models with new dynamics typically around the TeV scale. To study electroweak symme-
try breaking in a model independent way one is inevitably drawn to EFT methods. The
most general EFT for electroweak dynamics with the SM matter content and the Higgs
particle as a gauge singlet under SU(2)L ⊗ U(1)Y is known as the electroweak chiral
Lagrangian (EwChL) or Higgs effective field theory (HEFT) [28–46].

3.4.1. Leading order chiral Lagrangian
The construction principle for this EFT is reminiscent of Chiral Perturbation theory
(ChPT) for mesons and parametrizes the minimal coset SU(2)L×U(1)Y /U(1)em in a non-
linear manner. The Goldstone matrix U then transforms linearly under SU(2)L×SU(2)R

U → gLUg
†
R, h→ h (3.19)
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whereas the physical Higgs boson h is an electroweak singlet, implying that the covariant
derivative reads

DµU = ∂µU + ig WµU − ig′BµUT3, Dµh = ∂µh (3.20)

The leading-order HEFT Lagrangian can be written as

LLO = LSM0 + LUh,2 (3.21)

where

LSM = −1

4
GA
µνG

Aµν − 1

4
W a
µνW

aµν − 1

4
BµνB

µν

+ q̄Li /DqL + l̄Li /DlL + ūRi /DuR + d̄Ri /DdR + ēRi /DeR (3.22)

The Lagrangian in the Higgs sector reads

LUh,2 =
v2

4
〈DµU

†DµU〉 (1 + FU(h)) +
1

2
∂µh∂

µh− V (h)

− v

[
q̄L

(
Ŷu +

∞∑
n=1

Ŷ (n)
u

(
h

v

)n)
UP+qr + q̄L

(
Ŷd +

∞∑
n=1

Ŷ
(n)
d

(
h

v

)n)
UP−qR

+l̄L

(
Ŷe +

∞∑
n=1

Ŷ
(n)
l

(
h

v

)n)
UP−lR + h.c.

]
(3.23)

where

FU(h) =
∞∑
n=1

Fn

(
h

v

)n
, V (h) =

m2
hv

2

2

[(
h

v

)2

+
∞∑
n=3

Vn

(
h

v

)n]
(3.24)

The function FU(h) is sometimes known as the Flare function and encapsulates the
couplings of a pair of (longitudinal) gauge bosons to any number of Higgs fields (and
Goldstone fields) [44]. Here, the right handed quark fields and leptons are collected as
qR = (uR, dR)

T and lR = (νR, eR)
T respectively and the projectors

P± =
1

2
± T3 (3.25)

are used. The SM is recovered in the limit

FU(h) = 2
h

v
+
h2

v2
, V (h) =

m2
hv

2

2

((
h

v

)2

+

(
h

v

)3

+
1

4

(
h

v

)4
)

Ŷf = Ŷ
(1)
f , Ŷ

(n≥2)
f = 0 (3.26)

The relation between the matrix U and the Goldstone fields ϕa is

U = exp

(
2iϕaT a

v

)
, ϕaT a =

1

2

 ϕ0
√
2ϕ+

√
2ϕ− −ϕ0

 (3.27)

where T a = σa/2 are the generators of SU(2) and ϕ± = 1/
√
2(ϕ1 ∓ iϕ2). The anomalous

couplings in (3.23) contain at least one Higgs fields such that all couplings without Higgs
fields like the fermion-gauge couplings are SM like at LO. Pure fermionic operators only
appear in the NLO in the form of four-fermion operators.
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3.4.2. Power Counting and NLO operators
The leading order EwChL is not renormalizable and contains operators of arbitrary mass
dimensions. It is a nondecoupling EFT similar to ChPT for mesons. Thus, in contrast to
the SMEFT, its power counting is not governed by canonical dimensions. It is governed
by a loop expansion, which can be conveniently grasped by chiral dimensions. The power
counting for the EwChL was discussed in [110, 111]. It is similar to the power counting
for ChPT coupled to photons [112]. To see how chiral dimensions arise, consider a generic
L-loop diagram D built from (3.21), with H external Higgs fields, B external Goldstone
bosons, F 1(2)

L(R) external left-/right-handed (anti)fermions, and V external gauge fields,
which can only appear as field-strength tensors Xµν . Such a diagram scales as [37, 40]

D ∼ (yv)ν(gv)m+2r+2x+u+z

vFL+FR−2−2ω

pd

Λ2L
ψ̄
F 1
L

L ψ
F 2
L

L ψ̄
F 1
R

R ψ
F 2
R

R

(
Xµν

v

)V (ϕ
v

)B (h
v

)H
(3.28)

Here m is the total number of gauge-boson-Goldstone vertices, ν the number of Yukawa
vertices with Goldstones and/or Higgs bosons, u(x) the total number of cubic (quar-
tic) gauge-boson vertices, r the number of vertices of type X2

µϕ
s, ω the number of

Higgs self-interaction vertices and zL/R the number of fermion-gauge-boson interactions
ψ̄L/RψL/RXµ. The power of external momenta p or superficial degree of divergence is

d ≡ 2L+ 2− FL + FR
2

− V − ν −m− 2r − 2x− u− z − 2ω (3.29)

Note that the number of external Higgs and Goldstone bosons does not enter d. Therefore,
counterterms with an arbitrary number of Goldstone and Higgs bosons are required.
Rearranging this formula gives

2L+ 2 = dp +X +
FL + FR

2
+ V + ν +m+ 2r + 2x+ u+ z + 2ω ≡ χ (3.30)

The right-hand side of (3.30) for any given operator can be grasped by assigning it a chiral
dimension dχ = 2L+ 2. Chiral dimensions are defined as

[Xµ]χ = [h]χ = [ϕ]χ = 0, [ψ]χ =
1

2
, [∂µ]χ = [g]χ = 1 (3.31)

i.e. fermion bilinears, small couplings and derivatives each carry one unit of chiral di-
mension. Bosonic fields do not carry chiral dimension. It is straightforward to verify that
the leading order EwChL has [LUh,2]χ = 2. The operators in the next-to-leading order
Lagrangian at chiral dimension dχ = 2L+2 = 4 or equivalently at loop order L = 1 have
been compiled in [37, 40] and can be divided into several classes schematically given by

UhD4, X2Uh, XUhD2, ψ2UhD, ψ2UhD2, ψ4Uh (3.32)

3.5. SMEFT vs. HEFT
Assuming the SM symmetry and field content, the SMEFT contains the physical Higgs
as part of an electroweak doublet. HEFT, on the other hand, as the most general EFT
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parameterizing the minimal coset SU(2)L×U(1)Y /U(1)em with the physical Higgs h as an
electroweak singlet, is more general than SMEFT in the sense that the anomalous Higgs
couplings are uncorrelated and O(1) numbers a priori. In the SMEFT these couplings
are correlated. The relation of SMEFT and HEFT has been discussed extensively in
the literature [28, 113]. Geometric methods have been developed to make statements
independent of the chosen field basis [43, 114]. The Geometric Standard Model Effective
Field Theory (GeoSMEFT) [115–117] can be regarded as an interpolating case between
the SMEFT and the HEFT where certain operator structures are summed to all orders
in φ†φ. Positivity constraints [118] on amplitudes can also serve to clarify the distinction
between the two EFTs.
Thus, the relation between SMEFT may be characterized in a schematic way

SMEFT ⊂ HEFT (3.33)

As a result the SMEFT Higgs sector can always be cast in HEFT-like form [44]. However,
the contrary is not true. In the remainder of this section, we illustrate this statement up
to O(1/Λ2). To achieve this we use the exponential parametrization for the doublet

φ =
v + h√

2
U

0

1

 (3.34)

where U is the Goldstone matrix and h the physical Higgs. Working with the exponential
parameterization, we make use of the following identity

(
0 1

)
M

0

1

 =
1

2
〈M(1− 2T3)〉 (3.35)

In the Warsaw basis, there are three operators containing only the Higgs doublet

OH =
(
φ†φ
)3
, OH� =

(
φ†φ
)
�
(
φ†φ
)
, OHD =

(
φ†Dµφ

)∗ (
φ†Dµφ

)
(3.36)

where OH is a contribution to the Higgs potential whereas OH� and OHD modify the
kinetic term. Using the exponential parametrization and (3.35) we obtain

OH =
v6

8

(
1 +

h

v

)6

(3.37)

OH� = −v2
(
1 +

h

v

)2

∂µh∂
µh (3.38)

OHD =
v2

4

(
1 +

h

v

)2

∂µh∂
µh+

v2

4

(
1 +

h

v

)2

〈τLLµ〉2 (3.39)

where we used integration by parts in the case of OH�. We used the notation [40]

Lµ ≡ iUDµU
†, τL = UT3U

† (3.40)

The operators OH�,OHD with derivatives affect the kinetic term

Lh,kin =
1

2

(
1− 2

v2

Λ2
CH,kin

(
1 +

h

v

)2
)
∂µh∂

µh (3.41)
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where we defined the combination

CH,kin ≡ CH� − 1

4
CHD (3.42)

To bring the kinetic term to its canonic form (up to O(Λ−4) terms) the field redefinition

h→ h+
v2

Λ2
CH,kin

(
h+

h2

v
+

h3

3v2

)
(3.43)

is needed. Inserting the field redefinition and including OH in the potential we obtain the
SMEFT predictions (up to O(1/Λ2)) for the Higgs functions in (3.23). The potential

V =
m2
hv

2

2

[(
h

v

)2

+

(
1 + 3C̄H,kin − 2C̄H

v2

m2
h

)(
h

v

)3

+

(
1

4
+

25

6
C̄H,kin − 3C̄H

v2

m2
h

)(
h

v

)4

+

(
2C̄H,kin −

3

2
C̄H

v2

m2
h

)(
h

v

)5

+

(
1

3
C̄H,kin −

1

4
C̄H

v2

m2
h

)(
h

v

)6
]

(3.44)

the flare function

FU(h) = 1 + (2 + 2C̄H,kin)
h

v
+ (1 + 4C̄H,kin)

(
h

v

)2

+
8

3
C̄H,kin

(
h

v

)2

+
2

3
C̄H,kin

(
h

v

)4

(3.45)

and the Yukawa Higgs function

M(h) = M0

[
1 + (1 + C̄H,kin)

h

v
+ C̄H,kin

(
h

v

)2

+
C̄H,kin

3

(
h

v

)3
]

(3.46)

receive correction from OH ,OH�,OHD where use the short-hand notation C̄ ≡ Cv2/Λ2. It
is easy to see that the Higgs self-couplings are correlated as opposed to the EwChL where
the potential coefficients are O(1) parameters. However, these correlations are modified
when including higher dimensional operators The Higgs mass in terms of the potential
parameters is given by

m2
h = λv2(1 + 2C̄H,kin) + 3C̄Hv

2 (3.47)

Our result can be validated using the linear EFT Lagrangian in [119] and setting C̄H,kin =
−1/2α2.
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4. Functional matching techniques
Constructing a top-down EFT from an extension of the SM allows for the parametrization
of indirect effects of new physics as an expansion in inverse powers of the heavy scale.
Tasked with integrating out the heavy degrees of freedom from a particular UV model
to obtain the Wilson coefficients of the low-energy EFT, there are two approaches one
can choose. The diagrammatic matching approach involves calculating Green functions
with light particle external legs in the full theory, where heavy fields can only appear as
internal lines, and then calculating the same Green function in the EFT. By equating the
two (matching condition), the expressions for the Wilson coefficients are obtained. The
functional matching approach, on the other hand, does not reference Green functions or
diagrams. Instead, the functional integral over the heavy fields is directly performed at
the level of the path integral. In this way, the effective action can be calculated directly.
The functional approach has obvious advantages; there is no need to compute specific
diagrams or consider symmetry factors. The matching calculation becomes, therefore,
much more efficient and transparent. Additionally, we do not need to work out an EFT
operator basis in advance to perform the matching; everything follows from the functional
integration. As we repeatedly employ the functional matching approach, we dedicate this
chapter to a brief review of the technique. In addition, we will discuss the Universal
One-Loop Effective Action.

4.1. A simplified approach to One Loop Matching
In [47] an efficient and systematic functional matching procedure has been developed, that
includes the one-loop contributions, where heavy and light quantum fluctuations appear
in the same loop. Since we employ the technique in the following chapters, we summarize
the most important ingredients. We start by considering a general theory with heavy
(ηH) and light (ηL) degrees of freedom, which we denote collectively by η = (ηH , ηL). Our
task is to calculate the one-loop effective Lagrangian resulting from integrating out ηH .
As is well known, the first step is to split each component of η → η + η̃ into classical
background fields η satisfying the classical equations of motion and quantum fluctuations
η̃. To compute the one-loop effective action, the Lagrangian needs to be expanded up to
quadratic order in η̃.

L = Ltree(η) + L(η̃2) +O(η̃3) (4.1)

The zeroth order term is just the classical tree-level Lagrangian and the term linear in
η̃ is proportional to the classical equations of motion and can thus be discarded. The
quadratic term can be written as

L(η̃2) =
1

2
η̃†

∂2L
∂η∗∂η

η̃ ≡ 1

2
η̃†O η̃ (4.2)
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A simplified approach to One Loop Matching

where the fluctuation operator has the generic form

O =

∆H X†
LH

XLH ∆L

 (4.3)

The fluctuation operator depends only on the classical background fields. To obtain the
one-loop effective action the Gaussian integral over the heavy fluctuation fields have to
be computed

eiS = N
∫

Dη̃LDη̃H exp

[
i

∫
d4xL(η̃2)

]
(4.4)

The fluctuation operator is not block diagonal and thus the path integral over the heavy
fields does not include the contributions that correspond to diagrams with heavy and light
particles in the loop. Therefore, we proceed in the following to diagonalize the fluctuation
operator in order to perform the functional integration. The field transformation

P =

 I 0

−∆−1
L XLH I

 (4.5)

transforms the fluctuation operator into block-diagonal form

P †OP =

∆̃H 0

0 ∆L

 (4.6)

with

∆̃H = ∆H −X†
LH∆

−1
L XLH (4.7)

We can now perform the functional integration over the heavy fields ηH yielding

eiS =
(
det ∆̃H

)−c
N
∫
dηL exp

[
i

∫
dx

1

2
η†L∆LηL

]
(4.8)

where c = 1/2, (−1) for bosonic (fermionic) heavy fields and N is an unimportant multi-
plicative constant. The determinant factor in front represents the one-loop effective action
coming from loops involving heavy fields

exp [iSH ] =
(
det ∆̃H

)−c
(4.9)

or equivalently

SH = i c ln det ∆̃H (4.10)

Using the identity detA = expTr lnA we arrive at

SH = i c Tr ln ∆̃H (4.11)
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Functional matching techniques

where Tr denotes the full trace of the operator including the integration over spacetime.
In the next step we insert momentum eigenstates to compute the trace

SH = i c tr
∫

ddp

(2π)d
〈p| ln ∆̃H |p〉

= i c tr
∫
ddx

ddp

(2π)d
e−ipx ln

(
∆̃H(x, ∂x)

)
eipx (4.12)

= i c tr
∫
ddx

ddp

(2π)d
ln
(
∆̃H(x, ∂x + ip)

)
1

As ∆̃H contains the kinetic term of the heavy fields and in the special case of scalar fields
it takes the generic form

∆̃H = −D̂2 −m2
H − U (4.13)

Then performing the shift ∂x → ∂x + ip one arrives at

SH =
i

2
tr
∫
ddx

∫
ddp

(2π)d
ln
(
p2 −m2

H − 2ipD̂ − D̂2 − U(x, ∂x + ip)
)
1 (4.14)

To obtain the final expression, we expand the logarithm and obtain the effective La-
grangian

Leff = ∓ i

2

∞∑
n=1

1

n

∫
ddp

(2π)d
tr

{(
2ipD̂ + D̂2 + U(x, ∂x + ip)

p2 −m2
H

)n

1

}
(4.15)

where the (minus) plus corresponds to a (bosonic) fermionic fluctuation operator For
determinants of fermionic fluctuation operators of the general form

O = i /D −M − Σ (4.16)
further care is needed. The matrix U in this case is given by

Uferm = − i

2
σµν

[
D̂µ, D̂ν

]
− i
[
/̂D,Σe

]
+ i
{
/̂D,Σo

}
+ 2mHΣe + Σ(Σe − Σo) (4.17)

Here Σ ≡ Σe + Σo and Σe,(o) contains an even (odd) number of gamma matrices. To
evaluate (4.15) we need to determine the inverse of ∆L, which can be formally expanded
in a Neumann series expansion

∆−1
L =

∞∑
n=0

(−1)n
(
∆̃−1
L XL

)n
∆̃−1
L (4.18)

Here ∆L = ∆̃L +XL , where ∆̃L corresponds to the fluctuations coming from the kinetic
term, i.e. ∆̃−1

L is the light field propagator.
The methods can be generalized to two loops [120, 121].

4.2. Universal One Loop Effective Action
In case the matrix U does not contain any derivatives, (4.15) can be computed up to the
desired order in the 1/M expansion. The resulting expression is known as the Universal
One Loop Effective Action (UOLEA)[122–126]. The UOLEA is universal in the sense that
it is applicable for any given UV model. Only the quadratic fluctuation operator has to
be computed and the resulting expression for U has to be plugged into the UOLEA. In
the following, we sketch how the UOLEA can be computed efficiently.
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Universal One Loop Effective Action

4.2.1. Covariant diagram method

Figure 4.1.: Covariant diagrams corresponding to dimension six operators

In this section we present an efficient method to compute the integral (4.15). We
slightly adapt the trick explained in the appendix of [127] and evaluate (4.15) in the
special configuration ∂µX̂ν = ∂µÛ = 0, allowing us to drop all derivatives. In this case

DµĜ→
[
X̂µ, Ĝ

]
, X̂µν →

[
X̂µ, X̂ν

]
(4.19)

where Dµ = ∂µ + X̂µ and Ĝ is any matrix-valued function of Û and X̂µ. In the final
result, we can then express everything again in terms of D and X̂µν . Furthermore, we
may choose a gauge condition, where

X̂µX̂
µ = 0 (4.20)

For this specific choice of gauge, (4.15) becomes

L(1) = cs

∞∑
n=1

(−1)n+1

n
tr

i ∫
p

(
2ipµX̂

µ − Û
)n

(p2 −M2)n
1

 (4.21)

Certain operator structures can be summed to all orders in n. Setting X̂µ = 0 we easily
sum the operators of type Ûn

L =
cs

(4π)2

[
M2

(
1 + ln

µ2

M2

)
〈Û〉+ 1

2
ln

µ2

M2
〈Û2〉

+M4

∞∑
n=3

(−1)n

n(n− 1)(n− 2)

〈(
Û

M2

)n〉]
(4.22)

where the divergent operator coefficients were renormalized in the MS scheme. In Chapter
7 we are interested in the terms of the form ÛnX̂µνX̂

µν . Setting [X̂µ, Û ] = 0 automatically
removes all terms containing DµÛ . The terms with 4 derivatives (i.e. 4 factors of Xµ)
in (4.21) and n factors of U then reduce to the terms of interest due to the formal gauge
invariance of the functional integral. Finally, we obtain

L =
cs

(4π)2

∞∑
n=1

(−1)n

12nM2n
〈X̂µνX̂

µνÛn〉 = − cs
192π2

XµνX
µν ln

(
1 +

U

M2

)
(4.23)
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where we assumed X̂µ = Xµ · 1 and Û = U · 1 are scalar valued in the last step. The
pure gauge operators may be computed from (4.21) by setting Û = 0 and we obtain the
expression

L =
cs

(4π)2

∞∑
n=3

1

(M2)n−2

2n(n− 3)!

(2n)!
Sµ1µ2···µ2nn 〈Xµ1 · · ·Xµ2n〉 (4.24)

Here Sn is the completely symmetric tensor with 2n indices constructed purely from the
metric tensor gµν . For instance Sµ1µ21 = gµ1µ2 and Sµ1µ2µ3µ42 = gµ1µ2gµ3µ4 + gµ1µ3gµ2µ4 +
gµ1µ4gµ2µ3 . In contains (2n− 1)!! terms in general. The term with n = 2 has a divergent
coefficient and has to be treated separately. The covariant diagram method [128, 129] is
a convenient way to evaluate (4.24). We illustrate this method by evaluating the n = 3
term in the sum (4.24) i.e. computing the coefficients of dimension six operators. There
are two linearly independent trace structures

L =
cs

(4π)2
1

M2

1

90

(
〈X̂µ1X̂µ2X̂µ3X̂µ1X̂µ2X̂µ3〉+ 3〈X̂µ1X̂µ2X̂µ1X̂µ3X̂µ2X̂µ3〉

)
(4.25)

These two strings of Xs can be visualized by two circle diagrams, known as covariant
diagrams. We have displayed the two diagrams

D1 = 〈Xµ1Xµ2Xµ3Xµ1Xµ2Xµ3〉, D2 = 〈Xµ1Xµ2Xµ1Xµ3Xµ2Xµ3〉 (4.26)

in Fig. 4.1. The diagrams correspond to the two linearly independent pure gauge operator
structures. They read

Q1 = 〈X̂µνX̂
νρX̂ µ

ρ 〉, Q2 = 〈JµJµ〉 (4.27)

where we defined

Jµ = DνX̂
νµ (4.28)

Making use of our special gauge configuration (X̂µX̂
µ = 0)we can write the operators as

our string of Xs

Q1 = 3D2 −D1 (4.29)
Q2 = 4D2 (4.30)

Inverting this relation, we arrive at

D1 =
3

4
Q2 −Q1, D2 =

1

4
Q2 (4.31)

such that the effective Lagrangian up to O(1/M2) reads

Leff =
cs

(4π)2
1

M2

1

6

[
−〈Û3〉 − 1

2
〈(DµÛ)

2〉 − 1

2
〈ÛX̂2

µν〉+
1

15
〈X̂µνX̂

νρX̂µ
ρ 〉 −

1

10
〈JµJµ〉

]
(4.32)

where we include the operators involving Û . This example can be generalized to higher
dimensions. First, one needs to evenly distribute 2n nodes on a circle and connect all
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Universal One Loop Effective Action

nodes pairwise with each other. Connecting two neighboring nodes is forbidden since
this corresponds to trace structures involving X̂µX̂

µ, which vanish for our chosen gauge
configuration. Additionally, diagrams related by point reflection with respect to the center
of the circle are equivalent, reflecting the cyclicity of the trace. All the independent
diagrams are then multiplied by a symmetry factor. For instance, the ”pizza” diagram
D1 gets a factor 1 since there is precisely one such structure for every n. The diagram
D2, on the other hand is less symmetric than D1 and gets a factor 3, i.e. there are three
terms in the sum Sµ1µ2···µ63 〈Xµ1 · · ·Xµ6〉 that correspond to this diagram. After drawing all
independent diagrams, one has to work out all possible independent operator structures,
write them as linear combinations of covariant diagrams, and then invert the relation to
compute the operator coefficients.

4.2.2. Effective Lagrangian
Using the covariant diagram methods allows the computation of the UOLEA up to the
desired order in the 1/M2 expansion. We display here the UOLEA up to O(1/M4) [129]

L =
cs

(4π)2

{
M2

(
1 + ln

µ2

M2

)
〈Û〉+ 1

2
ln

µ2

M2

[
〈Û2〉+ 1

6
〈X̂µνX̂

µν〉
]

+
1

M2

1

6

[
−〈Û3〉 − 1

2
〈ÛX̂µνX̂

µν〉 − 1

10
〈JµJµ〉+

1

15
〈X̂ ν

µ X̂
ρ
ν X̂

µ
ρ 〉
]

+
1

M4

1

24

[
〈Û4〉 − 〈Û2(D2Û) +

4

5
〈Û2X̂µνX̂

µν〉+ 1

5
〈(ÛX̂µν)

2〉

− 2

5
〈Û(DµÛ))J

µ〉+ 2

5
〈ÛJµJµ〉 −

2

15
〈D2ÛX̂2

µν〉+
1

35
〈(DµJν)

2〉

− 4

15
〈ÛX̂ ν

µ X̂
ρ
ν X̂

µ
ρ 〉 − 8

15
〈(DµDνÛ)X̂

µρX̂ν
ρ〉+

16

105
〈X̂µνJ

µJν〉

+
17

210
〈
(
X̂µνX̂µν

)2
〉+ 1

420
〈
(
X̂µνX̂ρσ

)2
〉+ 2

35
〈
(
X̂µνX̂νσ

)2
〉

+
1

105
〈X̂µνX̂

νσX̂σρX̂
ρµ〉+ 16

105
〈(DµJν)X̂

νσX̂ µ
σ 〉
]}

(4.33)

where again the divergent operator coefficients were renormalized in the MS-scheme. For
a real scalar we have cs = 1/2, a complex scalar cs = 1 and a fermion cs = −1.

4.2.3. Example: Euler-Heisenberg Lagrangian
To illustrate our result we integrate out a first scalar and then a Dirac fermion coupled
to electromagnetism using the UOLEA. We then obtain the familiar Euler-Heisenberg
Lagrangian [130] for (scalar) spinor QED up to O(1/M4). We can neglect operator struc-
tures with factors of Jµ since those can be reduced using the equations of motion for
the gauge field. First, we take scalar QED and the Lagrangian for a scalar φ coupled to
electromagnetism is

LUV = −1

4
FµνF

µν + φ∗ (−D2 −M2
)
φ (4.34)
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where Dµ = ∂µ + ieAµ and Fµν = ∂µAν − ∂νAµ. The scalar QED example is particularly
simple since U = 0. Using (4.33) the effective Lagrangian is given by [131]

Leff =
e4

(4π)2
1

M4

[
1

288
(FµνF

µν)2 +
1

360
FµνF

νρFρσF
σµ

]
(4.35)

where we set Jµ = 0. Using the dual field strength tensor F̃µν = 1
2
εµνρσF

ρσ our result
takes the form

Leff =
e4

(4π)2
1

M4

[
7

1440
(FµνF

µν)2 +
1

1440

(
FµνF̃

µν
)2]

(4.36)

Here we used the useful relation

FµνF
νρFρσF

σµ =
1

2
(FµνF

µν)2 +
1

4

(
FµνF̃

µν
)2

(4.37)

Next, we consider a heavy Dirac fermion Ψ coupled to a non-abelian gauge field Aµ, i.e.
we have

LUV = −1

2
〈GµνG

µν〉+ Ψ̄
(
i /D −M

)
Ψ (4.38)

where Dµ = ∂µ − igAµ and [Dµ, Dν ] = −igGµν . The one-loop effective action is then
given by

S1−loop
EFT = −iTr log

(
i /D −M

)
= − i

2
Tr log

(
D2 +M2 − g

2
Gµνσ

µν
)

(4.39)

where σµν = (i/2) [γµ, γν ]. The pure gauge operators without derivatives at mass dimen-
sion eight read

Ldim8 =
1

(4π)2
g4

48

1

M4

[
− 76

105
〈(GµνGµν)

2〉 − 64

105
〈(GµνGρσ)

2〉+ 272

35
〈(GµνGνσ)

2〉

−424

105
〈GµνG

νσGσρG
ρµ〉
]

(4.40)

Note that the trace over the identity matrix in Dirac space gives a factor 4. Specializing
to U(1) as a gauge group, we can compute the Dirac traces using the identities

(σµνF
µν)2 = F1+ iγ5G (4.41)

tr (σµνF
µν)2n = 4

bn
2
c∑

k=0

(
n

2k

)
(−1)kFn−2kG2k (4.42)

with

F = 2FµνF
µν , G = 2F̃µνF

µν (4.43)

and obtain (setting g = e and M = me)

Ldim8 =
e4

(4π)2
1

m4
e

[
− 1

36
(FµνF

µν)2 +
7

90
FµνF

νρFρσF
σµ

]
(4.44)

Using (4.37), we recover the well-known Euler-Heisenberg Lagrangian up to dimension
eight operators

Ldim8 =
e4

(4π)2
1

m4
e

[
1

90
(FµνF

µν)2 +
7

360

(
FµνF̃

µν
)2]

(4.45)
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5. Loop Counting in SMEFT

We have introduced the SMEFT in Chapter 3 as a widely used and well-motivated frame-
work for parameterizing the indirect effects of new physics. In this chapter, we take a
closer look at its organizing principle: the power-counting prescription. A clear and con-
sistent power-counting scheme is essential for systematically expanding and truncating
the EFT. In particular, it should guide whether a given operator should be included or
omitted in a bottom-up EFT calculation at a specified order of approximation.
The power counting relies on general assumptions about the underlying UV theory. While
these assumptions and the resulting power-counting rules are not unique, they must be
explicitly stated to consistently use the EFT. This is especially important for SMEFT.
In most applications, only the expansion in inverse powers of the scale of new physics Λ is
made explicit where each operator of canonical dimension dc is suppressed by a factor of
Λ4−dc . As a result, operators of higher dimension are increasingly suppressed. However,
as previously noted, a power-counting prescription based solely on canonical dimensions
may lead to inconsistencies. To be consistent, it must be supplemented by specifying
whether the SM particles are weakly or strongly coupled to the UV sector.
Effectively, this implies a counting of loop orders. Loop orders can be systematically
accounted for by assigning a chiral dimension dχ to each operator. By ”inconsistent”
we do not mean that a canonical-dimension-based SMEFT with O(1) Wilson coefficients
is nonviable as an EFT under perturbative renormalization. Rather, such an approach
may fail to match a broad class of weakly coupled UV completions and fails to provide a
justification for the expected size of operator coefficients.
In this chapter, we review the fundamental rules of power counting. Although these rules
are not new, they are often left implicit or applied inconsistently in the literature. We
emphasize the importance of loop counting in SMEFT and illustrate its role through con-
crete examples and calculations.
This chapter is structured as follows. In Section 5.1, we introduce a toy model featuring
a fermion, the ”top quark” t, coupled to a heavy scalar S. We construct a top-down EFT
by integrating out the scalar and analyze the process e+e− → tt̄ both in the full theory
and in the EFT.
This example demonstrates how a magnetic-moment-type operator, mtt̄σµνtF

µν , and a
four-fermion operator, t̄t t̄t, contribute at the same order in the EFT expansion (both be-
ing dimension-six operators), even though the former appears at tree level and the latter
at one loop. We show that this distinction is naturally explained by loop counting. A
complementary analysis within a bottom-up EFT confirms these findings.
In Section 5.2, we discuss the general power-counting rules of SMEFT, emphasizing the
importance of loop-order counting. This can be conveniently expressed using the concept
of chiral dimensions dχ. To illustrate the counting scheme in practice, we examine Higgs
boson production via gluon fusion (gg → h), a process that elegantly highlights the in-
terplay between canonical operator dimensions and loop orders in SMEFT. The general
SMEFT power-counting formula can also be derived by distinguishing between couplings
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and scales in the EFT Lagrangian, as discussed in Section 5.3.
In Section 5.4, we consider a more realistic scenario and analyze the process uū→ tt̄ in a
decoupling Two-Higgs Doublet Model (2HDM) as the UV completion of SMEFT, thereby
connecting our discussion to SMEFT in a phenomenologically relevant context. Finally,
we summarize and conclude in Section 5.5.
The discussion in this chapter follows closely Ref. [1], where the author of this thesis is
a co-author. A similar treatment also appeared in the Ph.D. thesis of another co-author
[132].

5.1. Toy Model analysis of e+e− → tt̄

To illustrate how loop counting enters standard EFT calculations we consider a toy UV
model and show that certain effective low-energy EFT operators are loop suppressed.
The toy model consists of two fermions coupled to electromagnetism, an electron ψ with
mass me ≈ 0 and a heavy ”top quark” t with mass m. They which represent ”standard”
physics. In addition, the role of ”non standard” physics is taken by a real scalar field S
with mass M � m which has renormalizable self-interactions and a Yukawa coupling to
the ”top-quark” t. The toy model Lagrangian is given by

L = ψ̄
(
i /D −me

)
ψ + t̄

(
i /D −m

)
t− 1

4
FµνF

µν

+
1

2
∂µS∂

µS − 1

2
M2S2 − b

3!
S3 − λ

4!
S4 − gt̄tS (5.1)

where

Dµ = ∂µ + ieqf Aµ, qe = −1, qt =
2

3
, Fµν = ∂µAν − ∂νAµ (5.2)

The first line of our toy model is simply quantum electrodynamics with two fermions.
The scale of ”new physics” M is assumed to be much larger than m and the typical
energies

√
s accessible in experiments. The dimensionful coupling b can be O(M), while

the dimensionless couplings λ, g are of O(1). Integrating out the heavy scalar produces
new-physics effects modifying the top quark dynamics, suppressed by powers of s/M2. A
similar toy model has been discussed in [133].

5.1.1. Diagrammatic matching
To illustrate our argumentation we examine the process e−(k1)e+(k2) → t(p1)t̄(p2) and
compute the amplitude in the full theory and in the EFT, thus we perform diagram-
matic matching. At tree-level the amplitude for the process arises form s-channel photon
exchange shown in Fig. 5.1 (a). The tree-level amplitude is given by

ALO = −ie
2qt
q2

v̄(k2)γµu(k1)ū(p1)γ
µv(p2) (5.3)

where q = k1 + k2 = p1 + p2 and s = q2. Let us now consider the leading corrections
to this amplitude due to the heavy scalar. Due to the Yukawa coupling S modifies the
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Figure 1: e
+
e
�

! tt̄ in a toy model. (a): Lowest-order amplitude. (b), (c): Leading
corrections from S-scalar exchange (mass M) in the full theory. (d), (e): Contributions
needed to reproduce the 1/M2 corrections of the full theory within the EFT. The black
dots represent local operators of dimension 6. They contribute at tree level (Q2, Q3 in
(d)) and at one loop (Q1 in (e)). See text for further explanation.

where q = p1 + p2 = k1 + k2, s ⌘ q
2. We are interested in the leading corrections to this

amplitude from the heavy sector in the second line of (1). In terms of the t-quark vertex
function

�µ
⌘ �

µ + ��µ (4)

the amplitude can be written as

A ⌘ ALO + �A = �i
e
2
qt

q2
v̄(k2)�µu(k1) ū(p1)�

µ
v(p2) (5)

where ��µ contains the e↵ect of S-boson exchange on the tt̄-photon vertex.

2.1 Full theory

We first determine ��µ in the full theory (1) up to order g
2. The relevant diagram is

displayed in Fig. 1 (b). Fig. 1 (c) is used to fix the necessary counterterm. With on-shell

3

Figure 5.1.: e+e− → tt̄ in a toy model. (a) Lowest-order amplitude. (b), (c): Leading
corrections from S-scalar exchange in the full theory. (d), (e): Contributions
needed to reproduce the 1/M2 corrections of the full theory within the EFT,
where the black dots represent the local dimension 6 EFT operators. Q2 and
Q3 enter at tree-level in (d), whereas Q1 contributes at one loop in (e).

tt̄-photon vertex function. The corresponding one-loop diagram is depicted in Fig. 5.1
(b) and the amplitude is

ALO + δA = −ie
2qt
q2

v̄(k2)γµu(k1)ū(p1)Γ
µv(p2) (5.4)

We write the one-loop vertex function as

Γµ = γµ + δΓµ (5.5)

where δΓµ contains the effect of S-boson exchange. To compute δΓµ we need to compute
the following one-loop integral

ū(p1)δΓ
µv(p2) = ig2

∫
ddk

(2π)d
ū(p1)(/k + /p1 +m)γµ(/k − /p2 +m)v(p2)

(k2 −M2)((k + p1)2 −m2)((k − p2)2 −m2)
(5.6)

Up to O(M−2) the correction to the vertex function due to the heavy scalar is given by

δΓµ = − g2

16π2

1

M2

[(
ln r

3
+

4

9
+ h1(z)

)
q2γµ +

(
ln r +

7

6
+ h2(z)

)
imσµνqν

]
(5.7)

where we defined

r ≡ m2

M2
, z ≡ q2

4m2
(5.8)

and (x̄ = (1− x))

h1(z) =

∫ 1

0

dx 2xx̄ ln(1− 4xx̄z − iη) =

(
1

3
+

1

6z

)
h2(z) +

1

9
(5.9)
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h2(z) =

∫ 1

0

dx ln(1− 4xx̄z − iη) = −2 +
√
1− z−1 ln

√
1− z−1 + 1√
1− z−1 − 1

(5.10)

In the Euclidean region z < 0 the second expression for h2(z) is immediately applicable.
For z > 0 it holds with the prescription z → z + iη. The function h2(z) comes from the
Passarino-Veltman scalar bubble function (E.4)

B0(q
2;m2,m2) =

1

ε
+ ln

µ2

m2
− h2(z) (5.11)

5.1.2. Strategy of regions
In this section, we demonstrate how the expression in (5.7) can be obtained without
computing the exact all-orders result in M first, as discussed in [132]. Specifically, we
evaluate (5.6) in two distinct momentum regions, thereby illustrating key features of EFTs.
In particular, this analysis highlights how the EFT reproduces the nonanalytic terms in
the infrared (IR) scale that appear in the full theory. This approach is equivalent to the
method of regions [84, 134] in this context.
Since the full theory and the EFT share the same IR degrees of freedom, their results
must agree in the soft region, where k2 �M2. In this momentum region, the heavy scalar
can be integrated out, which amounts to expanding its propagator as

1

k2 −M2
= − 1

M2

(
1 +

k2

M2
+

k4

M4
+ · · ·

)
(5.12)

Expanding in the UV scale M using dimensional regularization isolates the momentum
region k2 � M2 in (5.6). Each term in the series corresponds to the IR contribution of
higher-dimensional operators.
Working to O(M−2), we retain only the first term in the expansion, corresponding to
operators of canonical dimension six. In the soft momentum region (k, p1, p2,m � M),
the integral becomes

ū(p1)δΓ
µ
EFTv(p2) =

−ig2

M2

∫
ddk

(2π)d
ū(p1)(/k + /p1 +m)γµ(/k − /p2 +m)v(p2)

((k + p1)2 −m2)((k − p2)2 −m2)
(5.13)

Since we have expanded in the UV scale M , this result does not contain any nonanalytic
dependence on M , such as lnM terms, that appear in the full theory. The order of
expansion and integration matters clearly matters here.
Evaluating the integral in the EFT region yields

δΓµEFT = − g2

16π2M2

[(
− 1

3ε
+

1

3
ln
m2

µ̄2
+ h1(z)

)
q2γµ +

(
−1

ε
+ ln

m2

µ̄2
+ h2(z)

)
imσµνqν

]
,

(5.14)

where µ̄2 = µ24πe−γE . The divergences here are formally IR in origin. Crucially, the
logarithmic IR terms lnm2 in (5.14), which are nonanalytic in m, agree exactly with
those in (5.7), as required since the EFT must reproduce the IR behavior of the full
theory.
To fully reconstruct the amplitude, we must also evaluate (5.6) in the hard momentum
region (k ∼ M � m, p1, p2). This contribution is known as the matching contribution,
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as it determines the Wilson coefficients in the EFT by matching the UV behavior and
nonanalytic terms in M .
The matching contribution δΓµM can be computed by expanding δΓµ in the IR scale m.
We can safely set m = 0 in the propagators:

ū(p1)δΓ
µ
Mv(p2) = ig2

∫
ddk

(2π)d
ū(p1)(/kγ

µ/k + 4mkµ + 4m2γµ)v(p2)

(k2 −M2)k4
(
1 + 2k·p1

k2

) (
1− 2k·p1

k2

) (5.15)

To extract the O(M−2) terms, we expand the integrand up to O(k−6):

/kγµ/k + 4mkµ + 4m2γµ(
1 + 2k·p1

k2

) (
1− 2k·p1

k2

) = /kγµ/k + 4m2γµ − 8mkµk · (p1 − p2)

k2

+
4/kγµ/k [(k · p1)2 + (k · p2)2 − (k · p1)(k · p2)]

k4
+O

(
1

k2

)
(5.16)

Evaluating the integral in d dimensions gives:

δΓµM =

(
2− d

d
M2γµ + 8

d− 1

d(d+ 2)
miσµνqν +

4(d− 4)(d− 1)

d(d+ 2)
m2γµ +

2

d+ 2
q2γµ

)
IB

(5.17)

where the basis integral is

IB =

∫
ddk

(2π)d
1

(k2 −M2)k4
=

i

16π2M2

(
1

ε
+ ln

µ̄2

M2

)
(5.18)

Thus, the matching contribution becomes

δΓµM =
g2

16π2M2

[
M2

2
γµ
(
1

ε
+ ln

µ̄2

M2
+

1

2

)
−miσµνqν

(
1

ε
+ ln

µ̄2

M2
+

7

6

)
+m2γµ − q2

3
γµ
(
1

ε
+ ln

µ̄2

M2
+

4

3

)]
(5.19)

Adding the soft and hard contributions yields:

δΓµEFT + δΓµM = − g2

16π2M2

[(
1

3
ln r +

4

9
+ h1(z)

)
q2γµ +

(
ln r +

7

6
+ h2(z)

)
miσµνqν

−m2γµ − M2

2
γµ
(
1

ε
+ ln

µ̄2

M2
+

1

2

)]
(5.20)

One might worry that the intermediate momentum region m� k �M has been double-
counted by summing δΓµEFT and δΓµM . However, this region corresponds to scaleless
integrals when (5.6) is expanded in both 1/M and m. Scaleless integrals vanish identically
in dimensional regularization so that the intermediate region does not contribute.
This is consistent with the interpretation of dimensional regularization as a generalization
of residue calculus. The integrand of (5.6) has both UV poles at M and IR poles at m.
Expanding in 1/M isolates the IR poles (EFT), while expanding in m captures the UV
structure (matching). Their sum gives the full result [80].
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Toy Model analysis of e+e− → tt̄

To cancel the remaining divergence, we renormalize the vertex function. The contribution
of the heavy scalar to the top-quark self-energy [Fig. 5.1 (c)] is:

Σ(/p) =
1

16π2

∫ 1

0

dx (x/p+m)

(
1

ε
+ ln

µ̄2

M2
− ln

(
x+ x̄

m2

M2
− xx̄

p2

M2

))
(5.21)

Using the Ward identity, the renormalization constant δ2 in the on-shell scheme is:

δ2 = −
dΣ(/p)

d/p

∣∣∣∣
/p=m

(5.22)

which evaluates to

δ2 = − g2

16π2

[
1

2

(
1

ε
+ ln

µ̄2

M2

)
−
∫ 1

0

dx x ln

(
x+ x̄2

m2

M2

)
+
m2

M2

∫ 1

0

dx
2x̄(1 + x)

x+ x̄2 m
2

M2

]
(5.23)

Expanding δ2 to O(M−2) gives:

δ2 = − 1

16π2M2

[
M2

2

(
1

ε
+ ln

µ̄2

M2
+

1

2

)
+m2

]
+O(M−4) (5.24)

Adding this counterterm to (5.20) cancels the remaining divergence and reproduces the
full result:

δΓµ = δΓµEFT + δΓµM + δ2γ
µ (5.25)

5.1.3. Top-down EFT
Knowing the full UV result, we can match onto an EFT operator basis at canonical
dimension six in a top-down approach. This requires calculating the vertex function to
order 1/M2 in both the full theory and the EFT. By comparing the two, the expressions
for the Wilson coefficients can be extracted. To reproduce the full vertex function within
the EFT, we need a complete basis of dimension-six operators:

∆L6 =
1

M2

∑
i

CiQi (5.26)

Typically, one constructs a complete basis of EFT operators, derives the corresponding
Feynman rules, and identifies which operators are required to match the full theory result.
In our case, however, the relevant EFT operators can be essentially inferred directly from
the functional form of the vertex function in (5.7):

Q1 = t̄t t̄t, Q2 = ∂µF
µν t̄γνt, Q3 = m t̄σµνt F

µν (5.27)

The operator Q2 can be eliminated using the equation of motion for Aµ, yielding an
equivalent form involving four-fermion operators:

Q′
2 = −e ψ̄γνψ t̄γνt+ eqt t̄γ

νt t̄γνt (5.28)
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It is straightforward to verify that the local four-fermion operator −e ψ̄γνψ t̄γνt gives
the same contribution to the vertex function as Q2. Using these three operators we
can reproduce δΓµ up to O(M−2). Their coefficients are determined by equating the
amplitudes in the full theory and the EFT:

−ieqtδΓµ = −ieqtδΓµQ1 +
C2

M2
(−iq2γµ) + C3

M2
(−2σµνqνm) (5.29)

Note that Q1 must be inserted into the one-loop diagram shown in Fig. 5.1 (e), yielding
the vertex function:

δΓµQ1 = − 1

16π2

2C1

M2

[(
1

3
ln
m2

µ̄2
+ h1(z)

)
q2γµ +

(
ln
m2

µ̄2
+ h2(z)

)
iσµνqνm

]
(5.30)

This expression matches (5.14) and correctly reproduces all non-analytic terms in the
infrared scale m as seen in (5.7). Since the local operators Q2 and Q3 generate only ana-
lytic terms, the one-loop contribution from Q1 is essential to reproduce the full O(1/M2)
amplitude in the EFT.
The vertex function in (5.30) is renormalized in the MS scheme. The matching condition
in (5.29) then implies:

C1 =
g2

2
, C2 = −eqt

g2

16π2

(
1

3
ln

µ̄2

M2
+

4

9

)
, C3 = eqt

g2

16π2

(
1

2
ln

µ̄2

M2
+

7

12

)
(5.31)

Here we see explicitly how the factorization of IR and UV scales in the EFT works. The
physics from large momentum regions (k ∼ M) is encoded in the Wilson coefficients C2

and C3. Together they form the matching contribution

−ieqtδΓµM =
C2

M2
(−iq2γµ) + C3

M2
(−2σµνqνm) (5.32)

whereas contribution from small scales are reproduced by the matrix element of the local
operator Q1. The two regions are separated by a renormalization scale µ̄ that cancels when
adding the two. Together with (5.4) and (5.5), the relations (5.29)–(5.31) reproduce the
leading 1/M2 corrections to the process e+e− → tt̄ in the EFT.
Under renormalization, the operator Q1 mixes into Q2 and Q3, and the corresponding
renormalization group equations can be extracted from (5.31):

βi ≡ 16π2 dCi
d lnµ

⇒ β2 = −4

3
eqtC1, β3 = 2eqtC1 (5.33)

Additionally, the Wilson coefficients C2 and C3 act as counterterms that absorb the UV
divergences originating in (5.30).
Even in this simple toy model, it becomes clear that relying solely on canonical dimension
is insufficient. Although all three operators have canonical dimension six, they appear at
different loop orders in the calculation: all contribute corrections of order ∼ g2/(16π2M2)
to the amplitude, but Q1 appears at the one-loop level, while Q2 and Q3 contribute at tree
level, as shown in Fig. 5.1 (d) and (e). The loop suppression of Q2 and Q3 distinguishes
them from Q1, despite sharing the same canonical dimension. This demonstrates the
necessity of chiral dimensions dχ (3.31) to account for loop orders. In our example:

dχ[C1Q1] = 4, dχ[C2Q2] = dχ[C3Q3] = 6 (5.34)
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We will examine the assignment of weak couplings to dimension-six operators in detail
in Sec. 5.2. For the present discussion, it suffices to recall that each gauge field strength
contributes at least one weak coupling, a tensor fermion current contributes two, and a
vector current contributes one. Counting chiral dimension correctly captures the relative
suppression of Q2,3 with respect to Q1 by a loop factor 1/(4π)2.

5.1.4. Bottom-Up EFT
Typically one uses the SMEFT as a bottom-up EFT where the Wilson coefficients of the
higher dimensional operators are unknown. Assuming a power counting scheme based on
canonical dimensions alone would result in treating all coefficients Ci as O(1) numbers.
We again point out the inconsistency of such an approach by constructing a bottom-
up EFT in the context of our toy model. We assume the standard physics at energies
∼ m is still given by the first line of (5.1) but we have no knowledge this time of the
heavy sector presumed to reside at M � m. Working again to order 1/M2 the EFT
Lagrangian has the form of (5.26), where the operators remain to be determined. To
perform a consistent bottom-up calculation we need a complete EFT operator basis.
At canonical dimension six there are two operator classes; four-fermion operators and
magnetic-moment type operators. Starting with the four-fermion operators we have to
write down all possible combinations while eliminating redundant operators using Fierz
identities. The independent structures are given by

QS1 = t̄t ψ̄ψ, QS2 = it̄t ψ̄γ5ψ, QS3 = it̄γ5t ψ̄ψ, QS4 = t̄γ5t ψ̄γ5ψ, (5.35)

QV 1 = t̄γµt ψ̄γ
µψ, QV 2 = t̄γµt ψ̄γ

µγ5ψ

QV 3 = t̄γµγ5t ψ̄γ
µψ, QV 4 = t̄γµγ5t ψ̄γ

µγ5ψ (5.36)

QT1 = t̄σµνt ψ̄σµνψ, QT2 = it̄σµνt ψ̄σµνγ5ψ (5.37)

and, with η = t, ψ,

QηS1 = η̄η η̄η, QηS2 = iη̄η η̄γ5η, QηS4 = η̄γ5η η̄γ5η (5.38)

QηV 1 = η̄γµη η̄γµη, QηV 2 = η̄γµη η̄γµγ5η (5.39)

The magnetic moment type operators are given by

QtF = mt̄σµνtF
µν , QψF = meψ̄σµνψF

µν (5.40)

Note that all operators with Fµν and derivatives may be reduced via the equations of mo-
tion to those listed above. Out of those three independent combinations give corrections
to the vertex function: Q1 = QtS1, Q3 = QtF and Q′

2 = −eQV 1 + 2/3eQtV 1. We now
try to parametrize the leading order corrections to the e+e− → tt̄ amplitude using our
bottom-up EFT. We would write (v̄ = v̄(k2) etc.)

δA =
i

M2

∑
i

Ci〈Qi〉 =
i

M2
v̄γµu ūσ

µνv 2ie
mqν
q2

CtF +
i

M2
v̄γµu ūγ

µv CV 1 + ... (5.41)
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where 〈Qi〉 denotes the matrix element of Qi. Here CV 1 serves as a representative for
all four-fermion operators of the type ((ψ̄...ψ)(t̄...t)) contributing at tree level. Four-top
operators, on the other hand, such as QtS1 = t̄t t̄t would contribute to δA at one loop.
Assuming CtS1 = O(1) would imply δAtS1 ∼ 1/16π2M2 which would appear to be sub-
leading with respect to the terms ∼ 1/M2 in (5.41). Several conclusions can be drawn
from our example. While the toy model is a specific realization of a UV sector it clearly
demonstrates that counting canonical dimensions alone is not enough. A bottom-up EFT
constructed as the most general low-energy theory should be able to reproduce any spe-
cific model of new-physics at the scale M at any given order in the EFT approximation.
Furthermore, the distinction between QtS1 and QtF is generic in the sense that any model
with a heavy boson coupled to the top quark will induce four-top interactions such as
QtS1 at tree level and generate QtF at one loop.
While the toy model assumed weak coupling to the heavy sector the ratio of the coeffi-
cients of the magnetic-moment operator and the four-top operator C3/C1 = O(1/16π2)
is independent of the coupling g. For strong coupling g ∼ 4π we could have C3 = O(1)
but only at the price of a four-fermion coefficient C1 = O(16π2).
It is, of course, not necessary to assume a weakly-coupled UV completion for an EFT.
We illustrate this by assuming that the top quark is strongly coupled to the new physics
at scale M . The vertex function in its full generality can written as

Γµ = γµG1(q
2) +

iσµνqν
2m

G2(q
2) (5.42)

where G1,2 are formfactors where G1 = 1 + O(M−2), G2 = O(M−2). The leading
new-physics effects which enter at O(M−2) can be parameterized by a bottom up EFT

∆L6 =
1

M2
[C1t̄t t̄t+ C2 ∂µF

µν t̄γνt+ C3m t̄σµνtF
µν + ...] (5.43)

where the ellipsis denotes the remaining four-fermion operators in the full basis One then
finds

G1(q
2) = 1 +

q2

M2

[
C2

eqt
− C1

8π2

(
1

3
ln
m2

µ̄2
+ h1(z)

)
+ ...

]
(5.44)

G2(q
2) = −m2

M2

[
4
C3

eqt
+

C1

4π2

(
ln
m2

µ̄2
+ h2(z)

)
+ ...

]
(5.45)

Assuming the top-quark is strongly coupled no weak couplings are associated with C1 and
the first term in (5.43) has dχ = 2. The second and third terms in (5.43) will have dχ = 4
since C2,3 will come with at least a factor of e that is necessarily associated with Fµν in
Q2,3. Again C2,3 will have a loop suppression with respect to C1 and all coefficients will
contribute at the same order in (5.44) and (5.45). A similar reasoning may be applied to
the remaining terms in (5.43). For instance, four-top operators (t̄ ...t) (t̄ ...t) contribute
analogously toQ1. The amplitude e+e− → t̄t will also receive contributions from operators
of the type (ψ̄ ...ψ) (t̄ ...t).

5.1.5. Functional matching
For completeness we include the complete one-loop matching results employing the func-
tional approach. Integrating out the heavy scalar S at the tree level amounts to solving
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the equation of motion (
�+M2

)
S = − b

2
S2 − λ

6
S3 − g t̄t (5.46)

iteratively in inverse powers of M . To first order the solution is given by

S = − g

M2
t̄t+O(M−4) (5.47)

Plugging this solution back into the Lagrangian generates the tree-level effective La-
grangian up to canonical dimension 6

LtreeEFT = ψ̄
(
i /D −me

)
ψ + t̄

(
i /D −m

)
t− 1

4
FµνF

µν +
g2

2M2
(t̄t)2 (5.48)

To perform the one-loop matching, the formalism laid out in Chapter 4 can be used. The
formalism has been automatized in the software package Matchete [126]. Implementing
our toy model in Matchete produces the effective Lagrangian

L1loop
EFT =ψ̄

(
i /D −me

)
ψ + t̄

(
i /D −m

)
t− 1

4
FµνF

µν

+ C1(t̄t)
2 + C2F

µν t̄σµνt+ C3(t̄γµt)
2 + C4(t̄σµνt)

2 + C5(t̄γµt)(ψ̄γ
µψ) (5.49)

where the Wilson coefficients up to one loop in the MS-scheme are given by

C1 =
g2

2M2
+

g2

16π2M2

[
λ

4

(
ln

µ̄2

M2
+ 1

)
− g2

(
3

2
ln

µ̄2

M2
+

5

4

)]
C2 = qte

g2

16π2M2

(
1

2
ln

µ̄2

M2
+

7

12

)
, C3 = −q2t e2

g2

16π2M2

(
1

3
ln

µ̄2

M2
+

4

9

)
C4 = −q2t e2

g2

16π2M2

(
1

2
ln

µ̄2

M2
+

3

4

)
, C5 = qte

2 g2

16π2M2

(
1

3
ln

µ̄2

M2
+

4

9

)
(5.50)

where we neglected factors of me in the matching results. These results agree with (5.31),
confirming the equivalence between the functional and diagrammatic approaches.

5.2. SMEFT
While bottom-up EFTs such as SMEFT aim to remain as general as possible, certain
assumptions are unavoidable and must be applied consistently. In particular, the following
key ingredients must be specified to construct and apply a bottom-up EFT coherently:

(a) the low-energy degrees of freedom (particle content),

(b) the relevant local and global symmetries,

(c) the power-counting scheme.

The power-counting prescription plays a central role in establishing a hierarchy among
new-physics effects and enables a systematic expansion and truncation in a well-defined
expansion parameter. Assumptions about the UV completion directly impact the power-
counting rules. Frequently, only the existence of a mass gap between the known particles
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and the new physics scale is assumed, which justifies an expansion in inverse powers of
that scale. However, it is equally important to specify whether SM particles are weakly
or strongly coupled to the UV sector, as we discuss in the following.
In general, any relativistic EFT can be organized as a double expansion in powers of the
heavy scale Λ and loop orders [135]. For SMEFT, the natural expansion parameters are:

E2

Λ2
and 1

16π2
, (5.51)

where E is the typical energy scale of the process, usually of the order of a few times the
electroweak scale v, and 1/(16π2) represents the loop factor in four dimensions.
In most applications, only the expansion in 1/Λ is made explicit when writing the SMEFT
Lagrangian. Up to order 1/Λ2, it takes the form:

LSMEFT = LSM +
∑
i

Ci
Λ2
Qi. (5.52)

Here, we neglect the lepton-number violating dimension-five Weinberg operator. The
operators Qi are of dimension six, constructed from SM fields, and respect the full SM
gauge symmetry. Additional simplifying assumptions, such as baryon and lepton number
conservation or minimal flavor violation (MFV), may also be imposed. Notably, the “tra-
ditional” SMEFT formulation does not account for the loop expansion. This constitutes
a limitation that, as we will show, can lead to inconsistencies. We illustrate this with the
example of SMEFT corrections to Higgs production via gluon fusion.

5.2.1. Example: Higgs Production via Gluon Fusion
To illustrate our reasoning, we examine the O(1/Λ2) corrections to Higgs production via
gluon fusion, which is the dominant Higgs production mechanism at the LHC. This process
is loop-induced in the SM, with the top-quark loop providing the leading contribution
(Fig.5.2(a)). Fig. 5.2 (b)–(g) shows sample SMEFT diagrams with single insertions of
dimension-six operators. The relevant operators (see Tabs. 3.1 and 3.2) are:

(b) : QHG, (c) : QuH , (d) : QuG, (e) : Quu, Q
(1)
qq , Q

(3)
qq , Q

(1)
qu , Q

(8)
qu ,

(f) : QH , QH�, (g) : QG (5.53)

A consistent power-counting scheme should dictate which operators must be included at
a given order in the 1/Λ2 expansion. Importantly, the diagrams shown span tree-level,
one-loop, and two-loop topologies, and therefore differ in the number of explicit loop fac-
tors. This strongly suggests that loop-order counting should be incorporated into SMEFT
power counting; just as it is in the SM, where perturbative expansions are organized in
powers of loop factors or equivalently weak couplings. Fig. 5.2 (1)-(3) illustrates how the
perturbative and the EFT expansion have to be combined to obtain radiative corrections
to the leading diagrams.
One might naively attempt to include all contributions from dimension-six operators (i.e.,
all diagrams in Fig. 5.2 (b)–(g)) regardless of topology. This would imply treating the
Wilson coefficients Ci as arbitrary dimensionless numbers that compensate the loop sup-
pression. However, such an approach is unsatisfactory: it makes any consistent truncation
of the EFT impossible, as dimension-eight or higher operators with large coefficients could
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(1) (2) (3)

(a)
(c)(b)

(d) (e) (f) (g)

Figure 2: Higgs production through gluon fusion. (a): SM amplitude to lowest order
(two diagrams with opposite fermion flow in the loop are understood). (b) – (g): Sample
diagrams with insertions of dimension-6 operators (black dots) in SMEFT. (1) – (3):
Examples of radiative corrections to the diagrams shown before.

• Suppose that, in order to be completely general, we want to take into account all
possible e↵ects from dimension-6 operators, as shown in Fig. 2 (b) – (g). To justify
this despite the di↵erent loop orders, we think of the coe�cients Ci as arbitrary
(dimensionless) numbers. However, such an approach would not be consistent: If
arbitrary coe�cients are allowed, there is no reason why e.g. some dimension-8
operator with a very large coe�cient could not yield equally important e↵ects as
the dimension-6 corrections in Fig. 2. In this case the EFT treatment would break
down. Specific power-counting assumptions about the Ci are thus unavoidable.

• The most obvious choice of power counting would seem to be the one solely based
on the canonical dimensions of the operators Qi in (30). The terms of dimension 6
are suppressed by two powers of the new-physics scale ⇤, with coe�cients taken to
be Ci = O(1). Based on the explicit loop factors, diagram 2 (e) could therefore be

10

Figure 5.2.: Higgs production through gluon fusion. (a) SM amplitude at leading order
(two diagrams with opposite fermion flows are understood). (b)–(g): Repre-
sentative SMEFT diagrams with insertions of dimension-six operators (black
dots). (1)–(3): Examples of radiative corrections.

generate effects of similar or even larger size. Without power-counting assumptions, the
EFT expansion loses predictive power.
The standard SMEFT power-counting approach, based solely on canonical dimensions,
assumes Ci = O(1), and considers only suppression by powers of Λ. In this scheme, di-
agram (e) in Fig. 5.2 would appear to be subleading relative to diagram (d), due solely
to its loop topology. However, as shown in our previous toy model, such a classification
fails to capture the effects of a heavy resonance (weakly or strongly) coupled to the top
quark. For a framework intended to be model-independent, this is a serious shortcoming.
Additionally, the same logic would suggest that diagram (b) provides the leading SMEFT
correction to gg → h, as it is the only tree-level diagram. Yet, this conclusion is at
odds with common new-physics scenarios [136, 137], where corrections arise at loop level.
We thus conclude that assuming Ci = O(1) is inadequate. A meaningful and consistent
power-counting prescription must incorporate loop-order counting alongside the EFT ex-
pansion.
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5.2.2. Power Counting in General EFTs
Before specializing to the SMEFT, we first review general power counting rules for rela-
tivistic EFTs. As noted in our previous discussion, it is essential to keep track of both
the expansion in powers of E2/Λ2 and loop factors of 1/16π2. This can be systematically
achieved by considering both the canonical and chiral dimensions of EFT operators. This
framework, discussed in [111], is equivalent to well-known results in the literature on EFT
power counting [82, 110, 138, 139].
We consider a general relativistic EFT of scalar fields ϕ, gauge fields A, and fermions ψ,
valid at energies well below a cutoff scale Λ. It is convenient to define a reference energy
scale

f ≡ Λ

4π
(5.54)

which is well within the domain of validity of the EFT (f � Λ). This scale allows us to
treat the expansions in E2/Λ2 and 1/16π2 on an equal footing: at energies E = f , the
energy expansion parameter becomes f 2/Λ2 = 1/16π2 equal to a loop factor.
We now estimate the size of the coefficient for a generic EFT operator of the form

∂NpϕNϕANAψNψκNκ (5.55)

involving Np derivatives, Nϕ scalar fields, NA vector fields, Nψ fermions, and Nκ insertions
of weak couplings, denoted generically by κ.
To estimate the coefficient, both the canonical and chiral dimensions of the operator
must be taken into account. Since the Lagrangian must have canonical dimension 4,
dimensional analysis gives a factor f 4−dc . Meanwhile, loop factors 1/16π2 are associated
with loop order L = (dχ − 2)/2, where dχ is the chiral dimension. The general form of
the coefficient is therefore

C(dc, dχ) =
f 4−dc

(4π)dχ−2
(5.56)

For the operator above, the canonical and chiral dimensions are given by

dc = Np +Nϕ +NA +
3

2
Nψ (5.57)

dχ = Np +
1

2
Nψ +Nκ (5.58)

These formulae are valid for general EFTs, regardless of whether the UV completion is
weakly or strongly coupled. However, the interpretation of f differs in each case. In weakly
coupled EFTs, f ≡ Λ/4π serves primarily as a bookkeeping device. In strongly coupled
theories, however, f acquires a physical meaning. For example, in chiral perturbation
theory (ChPT), f = fπ is the pion decay constant, related to the QCD scale via the NDA
relation ΛQCD = 4πfπ [138].
Focusing now on the SMEFT, we may rewrite equation (5.56) in terms of the cutoff scale
Λ as

C(dc, dχ) =
1

Λdc−4

(
1

16π2

)(dχ−dc)/2+1

(5.59)
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As expected, powers of Λ are determined by canonical dimension, while loop factors are
governed by

2 + dχ − dc
2

=
2 +Nκ −NF

2
(5.60)

where we used equations (5.57) and (5.58), and introduced the total number of fields
NF ≡ Nϕ + NA + Nψ. Thus, the number of loop factors is dictated by the difference
between the chiral and canonical dimensions, or equivalently, by the difference between
the number of weak couplings and the number of fields.
For dimension-6 operators, such as those in the Warsaw basis, this formula simplifies to

C(6, dχ) =
1

Λ2

(
1

16π2

)(dχ−4)/2

(5.61)

To determine the expected size of an operator coefficient, knowledge of its chiral dimension
(or equivalently, the number of weak couplings Nκ) is essential. Without this information,
power counting remains incomplete. While the general formula 5.56 applies to both ChPT
and SMEFT, the two differ in how weak couplings are assigned to fields and interactions.
Therefore, any consistent power-counting prescription must specify which fields are weakly
or strongly coupled to the heavy sector. Various assignment schemes can be considered,
but such a classification is unavoidable. The exactly solvable model in [140] nicely illus-
trates this fact. The parametric size of the operator coefficients obtained from a weakly
or strongly coupled heavy sector are consistent with the general power-counting rules. In
the next section, we discuss the assignment of weak couplings to dimension-6 SMEFT
operators.

5.2.3. Loop counting in SMEFT
Let us now consider the standard scenario underlying SMEFT. In this setting, SMEFT
arises as the low-energy EFT valid at the electroweak scale, after integrating out the
heavy degrees of freedom associated with a UV extension of the SM. These heavy fields
are characterized by a scale Λ � v, where v is the electroweak scale. We assume a generic
extension of the SM with new physics at the scale Λ, weakly coupled to the SM fields
and describable by a renormalizable Lagrangian (in the traditional sense). Weak coupling
implies that the characteristic mass scale of the heavy particles aligns with the cutoff scale
Λ.
Of course, a weakly coupled UV sector is not a necessary assumption. As discussed in
Sec. 3.4, if the Higgs sector is strongly coupled, the resulting EFT at the electroweak
scale takes the form of an electroweak chiral Lagrangian (HEFT). A typical example is
provided by composite Higgs models with a characteristic scale f . When expanded in the
parameter v/f , such models yield a SILH-type version of SMEFT [141], as discussed in
[135].
In the following, we focus on SMEFT under the assumption of a weakly coupled UV sector
and aim to determine the minimal number of weak couplings associated with dimension-six
operators. This classification enables us to distinguish operators that may be generated at
tree level from those that necessarily arise at loop level. In part, we rederive the results of
[142], employing the convenient formalism of chiral dimensions. A comprehensive classi-
fication of potentially tree- and loop-level generated operators up to canonical dimension
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eight can be found in [143].
A generic UV theory of this type is a renormalizable QFT involving bosons (scalars and
gauge bosons) and fermions. The field content includes the SM bosons b and fermions
f , as well as new heavy bosons B and fermions F . Weak coupling implies that the SM
fields f and b interact with the heavy fields F and B through coupling constants of order
unity. In a renormalizable theory, only a limited set of interaction vertices is allowed.
Denoting a generic fermion (boson) by Ψ = f, F and β = b, B, the allowed interaction
classes include: Ψ̄Ψβ, β3, β4 and β2∂β.
We summarize the possible vertices involving both heavy and light fields in Table 5.1.
For triple boson vertices the mass scale µ is required by dimensional analysis which may

Ψ̄Ψβ: f̄fB f̄Fb F̄ fb f̄FB F̄fB F̄Fb [κ]

β3: b2B bB2 [κµ]

β4: b3B b2B2 bB3 [κ2]

β2∂β: b∂bB B∂Bb [κ]

Table 5.1.: Possible interaction vertices coupling heavy and light fields in a generic, renor-
malizable UV theory and the associated coupling

be taken as a heavy or light scale. In addition, there are vertices that consist only of
heavy or light fields such as B3. For a given operator we need to determine the number
of weak couplings Nκ. We use the notation A ∼ κn indicating that a building block A is
associated with (at least) n powers of weak couplings. From Tab. 5.1 we can read off

b ∼ κ, b2 ∼ κ, b∂b ∼ κ, b3 ∼ κ2 (5.62)

For fermion bilinears we have to differentiate between scalar, vector and tensor currents.
In a renormalizable theory only scalar and vector fermion currents are allowed. As a
result, only those may come with a single weak coupling, tensor currents carry at least
two factors of weak coupling

f̄ Γf ∼ κ, for Γ = 1, γµ f̄σµνf ∼ κ2 (5.63)

The (minimal) number of weak-couplings for the various operator classes in the Warsaw
basis is given by

κ4(φ†φ)3, κ2(φ†Dφ)2, κ3φ†φ ψ̄ φψ, κ2(φ†Dφ)ψ̄ψ, κ2(ψ̄ψ)2 (5.64)

The assignment of weak couplings can be understood by drawing sample diagrams in a
generic UV theory with the vertices described in Tab. 5.1 that generate the operator
classes after integrating out the heavy particle(s). Consider e.g. diagram (a) in Fig. 5.3
which consists of three vertices of type b2B and one vertex B3. Integrating out the heavy
boson gives, assuming µ ∼ M , the Wilson coefficient of an operator of the class (φ†φ)3

would scale as

C(a) ∼ κ4
µ4

M4

1

M2
∼ κ4

1

M2
(5.65)
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Figure 5.3.: Sample diagrams in a generic UV theory that generate the various operator
classes after integrating out the heavy fields: (a): κ4(φ†φ)3, (b): κ2(φ†Dφ)2,
(c):κ3φ†φψ̄φψ, (d): κ2(φ†Dφ)ψ̄ψ, (e): κ2(ψ̄ψ)2. The dashed double line de-
notes a generic heavy boson

The generalization to the other operator classes is straightforward. While the operators
listed in (5.64) are potentially generated at tree level this is not the case for the operator
classes with field strengths

κ3X ν
µX

λ
ν X

µ
λ , κ4φ†φXµνX

µν , κ4ψ̄σµνψX
µν φ (5.66)

Those operators cannot be generated from tree-level diagrams in a renormalizable UV
theory. Sample one-loop diagrams generating the classes in (5.64) are displayed in Fig.
(5.66) Diagram (c) nicely illustrates that a fermionic tensor current comes with at least

Figure 5.4.: The (dashed) double line denotes a generic heavy (boson) fermion

two factors of weak couplings since there is no vertex of type B2ff̄ in a renormalizable
UV theory.
It is now easy to read off the chiral dimensions of the various operator classes.

dχ[κ
4(φ†φ)3] = dχ[κ

2(φ†Dφ)2] = dχ[κ
3φ†φ ψ̄ φψ] = dχ[κ

2(φ†Dφ)ψ̄ψ] = dχ[κ
2(ψ̄ψ)2] = 4

dχ[κ
3X ν

µX
λ
ν X

µ
λ ] = dχ[κ

4φ†φXµνX
µν ] = dχ[κ

4ψ̄σµνψX
µν φ] = 6 (5.67)

Using the power-counting formula (5.61) this implies coefficients of order 1/Λ2 for the
operators in (5.64) and coefficients of order 1/16π2Λ2. Equivalently, assuming weak cou-
pling to the heavy sector, all Warsaw basis operators with gauge field strength factors are
additionally suppressed by a loop factor [24, 142].
Returning to our example process gg → h from Sec. 5.2.1 we can assign a clear ordering
to the SMEFT contributions

1

16π2
: (a),

1

16π2Λ2
, (b), (c),

1

(16π2)2Λ2
(d), (e), (f),

1

(16π2)3Λ2
(g) (5.68)
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The leading contribution comes from the SM in Fig. 5.2 (a) contains a loop factor but
is unsuppressed in 1/Λ. An additional factor of 1/Λ2 carry the SMEFT corrections in
(b),(c). Diagram (b) is a tree level graph but the operator QHG carries an implicit loop
factor while diagram (c) is a genuine one-loop graph. Similarly, (d) - (f) have the same
power counting size despite their different topology. In accordance with our toy model the
magnetic-moment type vertex in Fig. 5.2 (d) enters at the same order as the 4-fermion
operators in Fig. 5.2 (e).
A power-counting prescription that incorporates both canonical and chiral dimensions
enables a consistent truncation of the SMEFT expansion. For instance, if we aim to
compute only the leading SMEFT corrections to the Standard Model, then only the
diagrams shown in Fig. 5.2 (b) and (c) need to be considered, while the contributions from
diagrams (d)–(f) can be systematically omitted. Radiative corrections to these leading
SMEFT contributions, as illustrated in Fig. 5.2 (1)–(3), can also be consistently included
within the same power-counting framework, up to the desired level of accuracy.
The power-counting scheme discussed here is broadly applicable to a wide range of high-
energy collider processes and observables. It provides a systematic means of identifying
potentially dominant SMEFT effects. Moreover, by enforcing a consistent truncation
of subleading terms, the scheme helps reduce the number of free parameters in practical
SMEFT analyses, thereby enhancing the interpretability and predictive power of the EFT
framework.
Examples for the application of the power-counting scheme can be found in the literature.
Single Higgs production in SMEFT has been studied in [117, 144–147]. Studies of Higgs-
boson pair production at NLO and beyond include [148–156]. In [153] the systematic loop
counting for SMEFT has already been discussed for the process under consideration. A
systematic discussion of top-quark pair production via gluon in SMEFT has appeared in
[157]. The pattern of SMEFT effects in g → hh or h → gg is similar in h → γγ decay
which has been treated in [158–160]. Zh production in pp collisions including SMEFT
corrections was investigated in [161, 162]. A systematic study of h → gg and h → γγ
with anomalous HEFT couplings including NLO QCD effects has appeared in [163].

5.2.4. Amplitude for gg → h with leading dim 6 corrections in
SMEFT

Having identified the leading dimension-six SMEFT corrections in Fig. 5.2 (b) and (c), we
now present the explicit gg → h amplitude including these contributions as an illustrative
example of a consistent application of SMEFT. The relevant operators for the process
gg → h in the Warsaw basis (Table 3.1) are:

OH�, OHD, OuH , OHG (5.69)

After performing the field redefinition to canonically normalize the Higgs kinetic term
(3.43), the anomalous couplings relevant for Higgs boson production via gluon fusion can
be parameterized by the interaction Lagrangian [153]:

∆Lh = −mtct
h

v
t̄t+

αs
8π
cggh

h

v
GA
µνG

Aµν (5.70)

The same interaction Lagrangian is also applicable in the HEFT framework, where the
anomalous couplings ct and cggh are O(1) parameters. In SMEFT, however, deviations
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from the SM are assumed to be small. The relation between the anomalous Higgs cou-
plings and the SMEFT coefficients in the Warsaw basis is given by:

ct = 1 +
v2

Λ2
CH,kin −

v3√
2mtΛ2

CuH ≡ 1 + δct , (5.71)

cggh =
v2

Λ2

8π

αs
CHG (5.72)

Note that the deviations from the SM values are suppressed by powers of the new physics
scale Λ. We observe that three Warsaw basis operators contribute to δct . While ct and
cggh are invariant under QCD renormalization, the SMEFT coefficients CuH and CHG are
not [94, 96, 98]. Additionally, the operators CH,kin, CuH , and CHG carry different chiral
dimensions, dχ = 2, 3, and 4 respectively; that is, they are not homogeneous in dχ. Nev-
ertheless, under the assumption of a weakly coupled SMEFT power counting, both δct
and cggh are effectively of chiral dimension dχ = 2. For a consistent EFT treatment, the
amplitude involving vertices from ∆Lh must be expanded to leading order in v2/Λ2, with
all higher-order terms discarded.
Numerically, the corrections from δct and cggh are expected to be small. For a represen-
tative value of Λ = 3 TeV, we obtain v2/Λ2 ≈ 7 · 10−3, without yet accounting for further
suppression due to weak couplings. Current global fits show that δct and cggh are still com-
patible with zero, indicating that current experimental precision is insufficient to detect
these SMEFT effects rather than pointing to a need to include dimension-8 operators.
The amplitude for the process g(k1, µ) + g(k2, ν) → h(q) can be decomposed as:

MAB = δABεµ(k1)εν(k2)Mµν (5.73)

Mµν =
αs
8πv

F1T
µν (5.74)

where A,B are color indices, εµ, εν are gluon polarization vectors, and

T µν = gµν − kν1k
µ
2

k1 · k2
(5.75)

The form factor F1 is given by [164–167]:

F1 = 2q2
{
(1 + δct)τt

[
1− (1− τt)

f(τt)

4

]
+ cggh

}
(5.76)

where τt = 4m2
t/q

2 and q2 = 2k1 · k2 = m2
h for on-shell Higgs production. The loop

function f(τt) is defined in (E.10).
In addition to the SMEFT corrections above, the amplitude also receives v2/Λ2 contribu-
tions from the operators Q(3)

Hl and Q1221
ll , which modify the muon decay rate and thus the

Fermi constant GF used to determine v. Denoting GF as the Fermi constant measured
from muon decay and defining GF0 = 1/(

√
2v2), the relation is expressed as [160, 168]:

GF0 = GF (1− 2δG) (5.77)
with

2δG =
v2

Λ2

(
C

(3)
Hl,1 + C

(3)
Hl,2 − C ll

1221

)
(5.78)

where the numerical subscripts denote lepton generation indices.
Phenomenologically, the impact of this correction to (5.76) from first- and second-generation
fermion operators is negligible, being constrained to well below the percent level [169].
Consequently, δct and cggh remain the leading SMEFT corrections to the gg → h process.
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5.3. Heuristic approach to chiral dimensions
We rederive the chiral counting formula for SMEFT carefully differentiating between
masses and scales. Here we follow the concept explained in [61]. Essentially, this concept
can be derived when trying to restore the appropriate factors of ~ in calculations. Factors
of ~ not only appear due to loops, they are also present in the propagator; this can be
already seen in the Klein-Gordon equation of a real scalar field φ with explicit factors of
~ and c

1

c2
∂2t φ−∆φ+

m2c2

~2
φ = 0 (5.79)

Unlike in natural units we do not set ~ = 1 but retain it in the following. Upon setting
c = 1 we see that the mass parameters are conveniently written as m̃ = m/~. When
retaining ~ we distinguish between units of energy (E) and length (L). The quantities of
interest for a canonically normalized 4d Lagrangian (L) with scalars (ϕ), gauge bosons
(Aµ) and fermions (ψ) including small couplings, which we collectively denote as κ have
the following energy and length units

[~] = E L, [L] = E L−3, [ϕ] = [Aµ] = E1/2L−1/2, [ψ] = E1/2L−1 (5.80)
[∂] = [m̃] = L−1, [κ] = E−1/2L−1/2 (5.81)

Here gauge and Yukawa couplings are considered small couplings whereas quartic scalar
couplings are of order κ2. The bottom line is that now not only masses are dimensionful
quantities but couplings as well. We introduce the following convenient units of mass
M̃ ≡ L−1 and coupling C ≡ E−1/2L−1/2.

We consider a generic EFT operator

∂Np ϕNϕ ANAµ ψNψ κNκ (5.82)

with a certain number of fields (ϕ,Aµ, ψ), derivatives and weak couplings. The canonical
dimension dc and chiral dimension dχ of this generic operator are given by

dc = Np +Nϕ +NA +
3

2
Nψ (5.83)

dχ = Np +
1

2
Nψ +Nκ (5.84)

Our task is to estimate the size of the coefficient of this operator. From naive dimensional
analysis our generic operator is suppressed by some mass 1/Λdc−4 and following general
considerations by some power of the loop factor in four dimensions 1/16π2. Counting the
loop factors amounts to counting the explicit factors of ~ since every loop is proportional
to ~/16π2. Other factors of ~ are taken care of by our choice of mass unit. We associate
Λ in the SMEFT with the mass of some heavy particle that originates from expanding
its propagator; thus [Λ] = L−1. We may then write the generic operator including its
coefficient as (

~
16π2

)x
1

Λdc−4
∂Np ϕNϕ ANAµ ψNψ κNκ (5.85)
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To find x we just compute the length and energy dimension of the generic operator, which
has to be equal to [L] = E L−3, i.e.[(

~
16π2

)x
1

Λdc−4
∂Np ϕNϕ ANAµ ψNψ κNκ

]
= (EL)x E(dc−dχ)/2 L(dc−dχ)/2−4 !

= E L−3 (5.86)

where we used the relations[
∂Np ϕNϕ ANAµ ψNψ κNκ

]
= E(Nϕ+NA+Nψ−Nκ)/2L−(2Np+2Nψ+Nϕ+NA+Nκ)/2

= E(dc−dχ)/2L−(dχ+dc)/2 (5.87)

[
1

Λdc−4

]
= Ldc−4 (5.88)

It is now easy to see that

x =
dχ − dc

2
+ 1 (5.89)

In conclusion, we have rederived the known power counting formula for the SMEFT,
which estimates the coefficient of an EFT operator C(dc, dχ) with canonical dimension dc
and chiral dimension dχ

C(dc, dχ) =
1

Λdc−4

(
1

16π2

)(dχ−dc)/2+1

(5.90)

5.4. Example for SMEFT in a UV Model: uū→ tt̄ via
gluon exchange in the 2HDM

As discussed in the introductory chapters, it is well motivated to consider the SM Higgs
sector as an effective description only and thus consider extensions of the scalar sector.
See e.g.[170] for a comprehensive review of extended scalar sectors. Therefore, we employ
a Two-Higgs-doublet model (2HDM) [170–172] as the UV completion of SMEFT. In con-
trast to the SM, this model (2HDM) contains not one, but two independent scalar SU(2)
doublets. In this discussion we will not consider a general 2HDM model; for simplicity
we consider a model where the scalar sector is CP-conserving and most importantly the
model contains a CP-even neutral scalar h that is considerably lighter than a new physics
scale v � Λ2HDM characterizing the masses of the additional 2HDM states. In other
words, the model has a well-defined decoupling limit [172] and it is therefore possible to
integrate out the states with masses of O(Λ2HDM). As is characteristic for a decoupling
EFT all new physics effects vanish in the limit Λ → ∞ and the SM Higgs sector is recov-
ered.

5.4.1. 2HDM in the decoupling limit
Integrating out the scalars in this limit we match the 2HDM to SMEFT at the electroweak
scale in terms of dimension six SMEFT operators.
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The 2HDM scalar sector consists of two complex doublets Φ1,Φ2 in the fundamental
representation of the weak gauge group SU(2) with hypercharge Y = 1/2. The Lagrangian
reads

L2HDM = DµΦ
†
nD

µΦn − V2HDM (5.91)

The potential for a generic 2HDM model is the most general potential consitent with the
symmetries

V2HDM = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 −

[
m2

12Φ
†
1Φ2 + h.c.

]
+

1

2
λ1

(
Φ†

1Φ1

)2
+

1

2
λ2

(
Φ†

2Φ2

)2
+ λ3

(
Φ†

1Φ1

)(
Φ†

2Φ2

)
+ λ4

(
Φ†

1Φ2

)(
Φ†

2Φ1

)
+

{
1

2
λ5

(
Φ†

1Φ2

)2
+
[
λ6

(
Φ†

1Φ1

)
+ λ7

(
Φ†

2Φ2

)](
Φ†

1Φ2

)
+ h.c.

}
(5.92)

The coefficients λ5, λ6 and λ7 can be complex in principle. However, we take all coefficients
λi to be real to exclude any explicit CP violating effects in the Higgs sector. In addition,
the λi have to satisfy several conditions for the potential to be bounded from below, see
e.g. [172]. Furthermore, we assume that the mass matrix m2

ij has at least one negative
eigenvalue so that spontaneous symmetry breaking occurs. Hence, the two Higgs doublets
obtain vacuum expectation values

〈Φ1〉 =
1√
2

 0

v1

 , 〈Φ2〉 =
1√
2

 0

v2

 , (5.93)

where we can always choose the phases of the doublets such that v1 and v2 are positive.

Determining the spectrum and masses

Minimizing the potential we arrive at the following conditions

m2
11 = m2

12tβ −
1

2
v2
[
λ1c

2
β + λ345s

2
β + 3λ6sβcβ + λ7s

2
βtβ
]

(5.94)

m2
22 = m2

12t
−1
β − 1

2
v2
[
λ2s

2
β + λ345c

2
β + λ6c

2
βt

−1
β + 3λ7sβcβ

]
, (5.95)

allowing us to eliminate the parameters m2
11 and Here we defined

λ345 = λ3 + λ4 + λ5, v2 = v21 + v22 = (246GeV)2 (5.96)

and the mixing angle β

tβ ≡ tan β ≡ v2
v1
, sβ ≡ sin β ≡ v2√

v21 + v22
, cβ ≡ cos β ≡ v1√

v21 + v22
(5.97)

The mixing angle β is one of the most important realizations of any 2HDM model. Ex-
panding around the expectation values, it becomes clear that a rotation by β diagonalizes
the mass matrices of two neutral pseudoscalar degrees of freedom and the two charged
scalar fields. The two Higgs doublets contain in total eight degrees of freedom. Out of
those eight, three are identified as Goldstone bosons (G± and G0) which are absorbed by
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the W± and Z bosons. The five remaining particles are two neutral scalars h and H0 with
mh ≤MH0 ≡M0. There remains a pseudoscalar A and a charged scalar H±. Expanding
around the vacuum expectation values, a rotation by the mixing angle β diagonalizes the
mass matrix of the pseudoscalar and charged scalar degrees of freedom. Their masses are
given by

M2
A =

m2
12

sβcβ
− v2

2

(
2λ5 + t−1

β λ6 + tβλ7
)

(5.98)

M2
H± ≡M2

H =M2
A +

v2

2
(λ5 − λ4) (5.99)

The remaining two neutral scalar degrees of freedom mix according to the following mass
matrix

M2 ≡M2
A

 s2β −sβcβ
−sβcβ c2β

+ B2 (5.100)

with

B2 ≡ v2

 λ1c
2
β + 2λ6sβcβ + λ5s

2
β (λ3 + λ4)sβcβ + λ6c

2
β + λ7s

2
β

(λ3 + λ4)sβcβ + λ6c
2
β + λ7s

2
β λ2s

2
β + 2λ7sβcβ + λ5c

2
β

 . (5.101)

To diagonalize M2 a second mixing angle is introduced. It is defined via the relationM2
0 0

0 m2
h

 =

 cα sα

−sα cα

M2
11 M2

12

M2
12 M2

22

cα −sα
sα cα

 (5.102)

and demanding M0 ≥ mh. The explicit expression for α and the masses M0,mh are given
in Appendix B.
The two Higgs doublets written in terms of physical states and Goldstone bosons take the
form

Φ1 =

 cβG
+ − sβH

+

1√
2
[v1 + cαH − sαh+ icβG− isβA]

 (5.103)

Φ2 =

 sβG
+ + cβH

+

1√
2
[v2 + sαH + cαh+ isβG+ icβA]

 (5.104)

Higgs basis

For matching calculations to SMEFT, it is more convenient to work with a different basis
of Higgs doublets where only one doublet picks up a vacuum expectation value and all
the heavy fields are contained in one doublet in the alignment limit. This is realized in
the Higgs basis [173], which is just a rotation by the mixing angle βH1

H2

 =

 cβ sβ

−sβ cβ

Φ1

Φ2

 . (5.105)
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H1 and H2 have the explicit form

H1 =

 G+

1√
2
[v + cβ−αH + sβ−αh+ iG0]

 (5.106)

H2 =

 H+

1√
2
[−sβ−αH + cβ−αh+ iA]

 . (5.107)

We see explicitly that only H1 has a non-zero vacuum expectation value. Taking the limit
cβ−α → 0 and sβ−α → 1 H1 is identical to the SM Higgs-doublet whereas all the heavy
degrees of freedom are contained in H2.

Figure 5.5.: Three bases for the neutral scalar degrees of freedom taken form [170]

Scalar quark couplings

The 2HDM Higgs couplings to fermions are model dependent. The most general Yukawa
Lagrangian (this is usually referred to as type III) reads

−LY = q̄LΦ̃1Yu,1uR + q̄LΦ1Yd,1dR + q̄LΦ̃2Yu,2uR + q̄LΦ1Yd,2dR + h.c. (5.108)

with Φ̃i ≡ iσ2Φ
∗
i . Here Yu,1, Yu,2, Yd,1, Yd,2 are the Yukawa couplings in flavor space. We

will not work with the most general type-III model. Rather, we restrict ourselves to a
type II model, where Yu,1 = Yd,2 = 0, i.e.

−LY = q̄LΦ1Yd,1dR + q̄LΦ̃2Yu,2uR + h.c. (5.109)

In a type-II model, the neutral member of one Higgs doublet couples the up-type quarks,
whereas the neutral member of the other Higgs doublet couples to down-type quarks.
This has the advantage that flavor-changing neutral currents (FCNCs) mediated by Higgs
bosons are automatically absent [174, 175]. For instance, a type-II 2HDM model is realized
in the Higgs sector of the MSSM [176]. Rewriting (5.109) in the Higgs basis, we arrive at

−LY = cβ q̄LH1Yd,1dR − sβ q̄LH2Yd,1dR + sβ q̄LH̃1Yu,2uR + cβ q̄LH̃2Yu,2uR + h.c. (5.110)

The terms proportional to H1 and H̃1 are the usual SM Higgs couplings, which include
the fermion mass terms if we replace H1 by the Higgs vacuum expectation value v.

ηUi ≡ V U
L η

U,0
i V U†

R , ηDi ≡ V D
L η

D,0
i V D†

R (5.111)
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MD =
1√
2
v1η

D
1 , MU =

1√
2
v2η

D
2 (5.112)

Integrating out the heavy Higgs doublet H2 at tree-level produces the effective operators

L4ferm =
t−2
β

M2
S

ūRYu,2qLq̄LYu,2uR +
t2β
M2

S

d̄RYd,1qLq̄LYd,1dR (5.113)

Using the Fierz identity

ĀRDLC̄LBR = −1

2
ĀRγ

µBRC̄LγµDL (5.114)

we arrive at

L4ferm = −1

2

t−2
β m2

u

M2
Sv

2
ūRγµuRq̄Lγ

µqL − 1

2

t2βm
2
d

M2
Sv

2
d̄RγµdRq̄Lγ

µqL (5.115)

Alignment and decoupling limit

Since our goal is to write down a low-energy EFT consisting of the Warsaw basis dimen-
sion six operators, we have to investigate the proper limits in which the light Higgs h
has identical couplings to the SM Higgs hSM and the heavy 2HDM degrees of freedom
(H0, A,H±) become infinitely heavy and thus decouple.
The first condition can be achieved by taking the alignment limit, which is defined by
cβ−α → 0 resp. sβ−α → 1. Since the couplings of h to vector boson pairs are identical
to those of hSM times sβ−α, h has the same couplings as hSM . Closely related to the
alignment limit is the decoupling limit.
Taking the decoupling limit amounts to integrating out one of the Higgs doublets so that
the resulting low-energy effective theory is the SM Higgs sector with one weak hypercharge
Y = 1/2 scalar doublet. The limit is formally defined as the limit in which M2

A � |λi|v2.
At the same time the coupling constants λi in (5.92) are held fixed so that |λi| . O(1) and
the λi stay small enough so that the theory remains weakly coupled, i.e. |αi| = |λi|

4π
. 1.

The parameters defined in (B.22) help us to define the relevant mass scales. It is easy to
see that the masses of the H,A and H± are of O(MS). More precisely [172]

mh = O(v) (5.116)

M0,MA,MH =MS +O
(
v2

MS

)
. (5.117)

The hierarchy of energy scales is easily seen as v � MS and we integrate out all the
particles of O(MS). The connection to the alignment limit is given by the relation

cos(β − α) = O
(
v2

M2
S

)
(5.118)

Therefore, the decoupling limit automatically implies the alignment limit. It should be
stressed, however, that the converse is not true in general. If |λi|v2 ≥M2

A, then we speak
of alignment without decoupling.
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5.4.2. Top-Down EFT
Similar to the toy model of Sec. 5.1, we analyze the process u(k1)ū(k2) → t(p1)t̄(p2) via
s-channel gluon exchange. The relevant diagrams are the same as in the toy model in Fig.
5.1 with the internal photon replaced by a gluon. We take only the top quark as massive,
which implies that Yt =

√
2mt csc β/v is the only non-vanishing Yukawa coupling matrix

element and that the heavy states couple exclusively to third-generation quarks. Defining
g ≡ mt cot β/v, the relevant interaction Lagrangian is given by

Lint = gt̄tH + gt̄iγ5t A+
√
2gt̄LbRH

+ + h.c. (5.119)

where t and b are the Dirac fields of the top- and bottom quarks with tR/L = PR/Lt, etc.
and PR/L the right- or left-handed projector, respectively. With the notation of Sec. 5.1,
the correction to the amplitude can be written as

δA = i
g2s
q2
v̄(k2)γµT

Au(k2)ū(p1)δΓ
µTAv(p2) (5.120)

where TA = λA/2 are the generators of SU(3) with λA the Gell-Mann matrices and gs is
the QCD coupling constant. Here and in the following, we strictly work at order g2s and
subsequently drop terms of higher order without further comments.
The relevant diagrams are displayed in Fig. 5.6. Summing up all three contributions, we

u

u

t

t

H/A0

u

u

t

t

b

b

H+

Figure 5.6.: One loop diagram for u(k1)ū(k2) → t(p1)t̄(p2) with one loop correction due
to heavy 2HDM states to the top quark vertex function

end up with

δΓµ =
g2

16π2

1

M2
S

[
mtiσ

µνqν +

(
2

9
− 2

3
ln

q2

M2
S

+ i
2π

3

)
q2γµPR

−
(
2

3
ln
m2
t

M2
S

+
8

9
+ 2h1(z)

)
q2γµ

]
(5.121)

where on-shell renormalization of the t-quark has been employed as in [177] and we ex-
panded to first order in 1/M2

S. Pure gauge terms proportional to qµ have been dropped
as they cannot be represented by gauge invariant local operators and do not contribute
to physical processes.
Expression (5.121) can be reproduced by an effective field theory specified by the La-
grangian

Leff = Ltreeeff + Lloopeff =
4∑
i=1

Ci
M2

S

Qi (5.122)
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where
Ltreeeff =

C1

M2
S

t̄RqLq̄LtR (5.123)

arises when the heavy fields are integrated out at tree level with C1 = 2g2 and

Lloopeff =
C2

M2
S

DµGA
µν t̄T

AγνPRt+
C3

M2
S

DµGA
µν t̄T

Aγνt+
C4

M2
S

mtG
A
µν t̄ T

Aσµνt (5.124)

is generated at one loop, where GA
µν is the gluonic field strength tensor and qL the left-

handed third generation quark doublet. The loop diagram associated with Ltreeeff is dis-
played in Fig. 5.1 (e) and gives

δΓµQ1
=

C1

16π2M2
S

[(
5

9
− 1

3
ln
q2

µ2
+ i

π

3

)
q2γµPR −

(
1

3
ln
m2
t

µ2
+ h1(z)

)
q2γµ

]
(5.125)

and the tree-contributions from Lloopeff in Fig. 5.1 (d) read

δΓµQ2−4
=

1

gs

[
C2

M2
S

q2γµPR +
C3

M2
S

q2γµ − 2C4

M2
S

mtiσ
µνqν

]
(5.126)

Performing the matching procedure reveals that the coefficients are given by

C1 = 2g2, C2 = C3 = − gsg
2

16π2

(
2

3
ln

µ2

M2
S

+
8

9

)
, C4 = − gsg

2

16π2

1

2
(5.127)

As before, the artificial dependence on µ cancels when both contributions are added and
the full result is restored.
Note that the four effective operators we found in (5.122) - (5.124) can be matched to the
Warsaw basis [24] by virtue of Fierz identities and the equations of motion for the gluons.
Dropping terms that do not contribute to the process at hand, the relevant expressions
are given by

Q1 −→ −
(
Q(8)3333
qu +

1

6
Q(1)3333
qu

)
(5.128)

Q2 −→ gs

(
Q(8)1133
qu +

1

2
Q1331
uu − 1

6
Q1133
uu

)
(5.129)

Q3 −→ gs

(
Q(8)3311
qu +Q(8)1133

qu +
1

2
Q1331
uu − 1

6
Q1133
uu +

1

4
Q(3)1331
qq +

1

4
Q(1)1331
qq − 1

6
Q(1)1133
qq

)
(5.130)

Q4 −→
√
2mt

v

(
Q33
uG +Q∗33

uG

)
(5.131)

Note that in the Warsaw basis, the operators Q2 and Q3 introduce an extra factor of gs.
This has to be so, as treating the four-fermion operators introduced in this manner on
the same footing as Q1 would spoil the underlying systematic expansion in gs. This is
analogous to (5.28) in the toy model. It is now straight forward to identify the relevant
Wilson coefficients of the Warsaw basis operators to order g2s for the process at hand. The
explicit expressions are given below.
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5.4.3. Bottom-Up SMEFT calculation
Without referring to the UV model, we could have started with a new-physics scale Λ
and the complete set of Warsaw basis operators that are relevant for the process under
consideration. We have to distinguish between four-fermion contributions entering at tree
or one-loop level, respectively. We display the contributions in Fig. 5.7.

u

u

t

t

q

u

u t

t

q

u

u t

t

Figure 5.7.: Contributions needed to reproduce the 1/M2 correction to the full theory
within the EFT. The black square represents the insertion of a SMEFT di-
mension 6 operator.

The tree contribution is given by the plain four-fermion vertex (here v̄ = v̄(k2), u =
u(k1), ū = ū(p1) and v = v(p2))

δAtree =
i

Λ2

(
2
(
C

(1)1133
(qq) + C

(3)1133
(qq)

)
v̄γµPLuūγ

µPLv

− 2
(
C(1)1331
qq + C(3)1331

qq

)
v̄γµPLvūγ

µPLu

+ 2C1133
uu v̄γµPRuūγ

µPRv − 2C1331
uu v̄γµPRvūγ

µPRu

+ C(1)1133
qu v̄γµPLuūγ

µPRv + C(1)3311
qu v̄γµPRuūγ

µPLv

− C(1)1331
qu v̄γµPLvūγ

µPRu− C(1)3113
qu v̄γµPRvūγ

µPLu

+ C(8)1133
qu v̄TAγµPLuūT

AγµPRv + C(8)3311
qu v̄TAγµPRuūT

AγµPLv

− C(8)1331
qu v̄TAγµPLvūT

AγµPRu− C(8)3113
qu v̄TAγµPRvūT

AγµPLu

)

whereas the one-loop contribution yields

δΓµloop = − 1

16π2Λ2
(q2γµF1 +mtiσ

µνqνF2) (5.132)

with

F1 =

(
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)((
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uu PR
)
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F2 = 2

(
C(1)3333
qu − 1

6
C(8)3333
qu

)
(5.133)

In addition, the chromomagnetic operator enters at tree-level as before. Its contribution
is given by

δΓµuG = −
√
2v

gsΛ2
iσµνqν

(
C∗33
uG PL + C33

uGPR
)

(5.134)

Note that we have implicitly assumed the new physics sector to couple to the third
particle generation only as we neglected generation mixing four-fermion operators in
the one-loop contribution. For a comparison to the previous section, it is advanta-
geous to rewrite the four-fermion tree contribution by virtue of Fierz identities like
v̄(k2)γµPLv(p2)ū(p1)γ

µPLu(k1) = −v̄(k2)γµPLu(k1)ū(p1)γµPLv(p2) and 2TAabT
A
cd = δadδbc−

δabδcd/3.
Comparing (5.132) - (5.134) with the top-down result in Sec. 5.4.2 reveals that when
identifying Λ with MS, the non-vanishing SMEFT Wilson coefficients are given by

C(8)3333
qu = 6C(1)3333

qu = −2g2 (5.135)

C1331
uu = −3C1133

uu = C(8)3311
qu =

1

2
C(8)1133
qu = 4C(3)1331

qq = −6C(1)1133
qq = 4C(1)1331

qq

= − g2sg
2

16π2

(
2

3
ln

µ2

M2
S

+
8

9

)
(5.136)

C33
uG = C∗33

uG = −gsg
2mt

16π2v

1√
2

(5.137)

The µ-dependence matches the known results for the renormalization-group equations in
SMEFT [94–98].

5.5. Discussion
A consistent power-counting scheme is indispensable when working with an EFT to control
the EFT expansion. While EFT methods for physics beyond the SM aim to be as general
as possible, a set of minimal assumptions about the relationship between low- and high-
energy physics needs to be specified. The coupling strength between heavy and light
fields directly influences the power counting. For the SMEFT, assuming a weakly coupled
heavy sector, this implies counting both canonical dimensions and loop orders.
In this chapter, we discussed several examples to illustrate the drawbacks of considering
only canonical dimensions. First, we illustrated this thesis by using a toy model involving
a heavy scalar singlet. Here, we compared by explicit calculation the full theory with a
bottom-up and top-down EFT treatment. We saw there that treating the EFT operator
coefficients as O(1) numbers fails to reproduce the full theory result. As the new physics
effects of the toy model are fairly generic, a bottom-up EFT should be able to reproduce
such a scenario. Furthermore, we have discussed general power-counting rules and showed
how the notion of chiral dimensions can be used to count loop orders. We provide explicit
examples for SMEFT corrections to Higgs production in gluon fusion and a calculation
matching a two-Higgs doublet to the SMEFT as applications of the proposed power-
counting scheme.
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Weakening the assumption of a weakly coupled UV sector, it is, of course, possible to
construct alternative power-counting schemes. However, the underlying presumptions
and counting rules must, in any case, be stated and consistently applied. For example,
in the case of a strongly coupled Higgs sector, SMEFT may be replaced by HEFT, which
follows a different power counting (see Sec 3.4.2). Finally, assumptions about the flavor
structures, such as Minimal Flavor Violation (MFV), are, of course, permissible but should
not be considered power-counting assumptions and should thus be treated as separate
topics.
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6. Linear Sigma Model: Nondecoupling
EFT

Our aim in this chapter is to illustrate features of nonlinear EFTs and, in particular, to
investigate the relation between the EFT expansion in inverse mass powers and the loop
expansion. To that end, we take a simple SO(4) symmetric linear σ-model and integrate
out the massive degree of freedom. The Higgs Lagrangian in the SM is a realization of a
SU(2) × U(1) gauged linear σ-model. This toy model serves as a simple yet instructive
example for illustrating the transition from a linear to a nonlinear EFT description. This
structure is closely mirrored in the relation between SMEFT and HEFT when considering
the decoupling or nondecoupling of heavy degrees of freedom in realistic scenarios such
as extended Higgs sectors.
We integrate out the massive scalar at tree level and compare the resulting EFT with the
nondecoupling terms in the one-loop effective action. For a strongly coupled scalar with
mass M ∼ 4πv, the respective contributions are of comparable size, and both are needed
to get a renormalization-scheme-independent result. The authors of [178] have derived
nondecoupling effects in the SU(2) gauged linear σ-model using functional methods. In
comparison with [178], we make the underlying EFT assumptions more explicit. In this
chapter, we rederive parts of their results using the more modern methods outlined in
Chapter 4, which makes the calculations more efficient and transparent. In addition,
we discuss the renormalization scheme dependence and analyze the resulting low-energy
EFT, the nonlinear σ-model, in the strongly and weakly coupled regions of its parameter
space.
The chapter is organized as follows. In Sec. 6.1 we discuss basic features of the linear
σ-model and introduce the exponential parametrization of the Goldstone fields as the
adequate parametrization to integrate out the heavy scalar. In addition, we show how
the nonlinear σ-model emerges after decoupling the heavy degree of freedom from the
spectrum. This sets the stage to integrate out the massive scalar at tree level in Sec. 6.2,
which takes the form of a chiral Lagrangian. In Sec. 6.3, we then derive the one-loop
effective action. The renormalization of the one-loop effective action and the elimination
of the background scalar to obtain the nondecoupling O(1/16π2) effects is discussed in
Sec. 6.4. We explicitly show that the combination of tree-level and one-loop-level effects
gives a result that does not depend on the scalar mass renormalization scheme. In Sec.
6.5, we consider Goldstone scattering at one loop and verify that the previously obtained
Wilson coefficients provide the necessary counterterms to give a finite result. Finally, in
Sec. 6.6, we discuss the results and conclude the chapter.
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6.1. The model
We consider the Lagrangian of an SO(N)-invariant linear σ-model containing N scalar
fields φi:

L =
1

2
∂µφn∂

µφn −
λ

8

(
φnφn − v2

)2
, n = 1, . . . , N (6.1)

The model is invariant under a global SO(N) symmetry acting on the scalar fields. How-
ever, the minimum of the potential that corresponds to the ground state of the theory
lies at

|φvac|2 = v2 (6.2)

As is well known, the model exhibits spontaneous symmetry breaking SO(N) → SO(N−
1), which gives rise to N − 1 Nambu-Goldstone bosons [179–182], along with one massive
scalar degree of freedom. Using the parametrization

φi = πi(x), (i = 1, . . . , N − 1), φN = v + σ(x) (6.3)

this structure becomes explicit in the Lagrangian:

L =
1

2

(
∂µπi∂

µπi + ∂µσ∂
µσ − λv2σ2

)
− λ

2
vσ
(
σ2 + πiπi

)
− λ

8

(
σ2 + πiπi

)2 (6.4)

Here, the fields πi represent the N − 1 massless Goldstone bosons, while σ is the massive
scalar with mass m2

σ = λv2. In (6.4), the full SO(N) symmetry is no longer mani-
fest, though it remains encoded in the structure of the interaction terms. The unbroken
SO(N − 1) symmetry, acting on the Goldstone fields, remains explicit.
According to Goldstone’s theorem, there is one massless Goldstone boson for each spon-
taneously broken generator. In this case, SO(N) has N(N − 1)/2 generators. Of these,
(N−1)(N−2)/2 generators remain unbroken in the vacuum, leaving N−1 spontaneously
broken generators, corresponding to the N − 1 Goldstone bosons.
For simplicity, we now specialize to the case N = 4, making use of the isomorphism
SO(4) ' SU(2)L × SU(2)R. The symmetry-breaking pattern is

SU(2)L × SU(2)R → SU(2)V (6.5)

To make the SU(2)L×SU(2)R symmetry manifest, we use the exponential parametrization
and write the complex scalar doublet as

φ =
v + S√

2
U

0

1

 (6.6)

where S is the massive scalar and the matrix U encodes the Goldstone fields ϕa through

U = exp

(
2iΦ

v

)
, Φ = ϕaT a. (6.7)

Here, σa denote the Pauli matrices, and T a = σa/2 are the SU(2) generators. With this
parametrization, the Lagrangian in (6.4) becomes

L =
v2

4
〈∂µU †∂µU〉

(
1 +

S

v

)2

+
1

2
∂µS∂

µS − V (S) (6.8)
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where M2 = λv2, and the potential is

V (S) =M2v2

[
1

2

(
S

v

)2

+
1

2

(
S

v

)3

+
1

8

(
S

v

)4
]

(6.9)

Although (6.8) contains interaction vertices of arbitrarily high mass dimension, the theory
remains renormalizable since it is related to (6.4) via a field redefinition. Our toy model is
equivalent to the Higgs sector of the SM in the gaugeless limit, i.e. with gauge couplings
set to zero and no fermions present.

Nonlinear σ-model

After integrating out the heavy scalar S, the resulting EFT takes the form of a nonlinear
σ-model. The nonlinear σ-model can be formally derived from the linear model by taking
the decoupling limit mσ → ∞ while keeping v fixed [183]. In this limit, the dynamics
of the Goldstone bosons are constrained to lie on the SO(N − 1) vacuum manifold. The
corresponding constraint reads:

|φ|2 = v2 ⇔ π2 + 2vσ + σ2 = 0 (6.10)

The Lagrangian of the nonlinear σ-model then becomes [184]

L =
1

2
∂µπi∂

µπi +
1

2

(πi∂
µπi) (πj∂µπj)

v2 − π2
(6.11)

In the following, however, we will use the exponential parametrization, which is more
suitable for our matching calculation. From (6.8), it is clear that taking the limit S → 0
yields

L =
v2

4
〈∂µU †∂µU〉 (6.12)

as the effective theory. The two parameterizations of the Goldstone fields (6.11) and
(6.12) are related by a field redefinition [29, 185, 186].

6.2. EFT
After integrating out the heavy scalar at one loop, the resulting EFT takes the form of
a chiral Lagrangian. The most general chiral Lagrangian up to chiral dimension dχ = 4
(corresponding to loop order L = 1) is given by

LEFT =
v2

4
〈∂µU †∂µU〉+ C1〈∂µU †∂µU〉2 + C2〈∂µU †∂νU〉〈∂µU †∂νU〉 (6.13)

The Lagrangian exhibits a manifest global SU(2)L×SU(2)R symmetry acting linearly on
the Goldstone matrix:

U → gLUg
†
R, gL,R ∈ SU(2)L,R (6.14)

In the following, we compute the coefficients C1 and C2 by performing a matching calcu-
lation using functional methods. Specifically, we focus on the O(1/16π2) nondecoupling
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one-loop effects, neglecting terms of order O(1/M2 16π2). We compare these nondecou-
pling contributions with the tree-level terms of order O(v2/M2). For a strongly coupled
theory with M ∼ 4πv, both contributions are of comparable size. For a consistent EFT
treatment, both O(v2/M2) and O(1/16π2) terms must be included, as only their sum is
renormalization-scheme independent with respect to the mass parameter M . We intro-
duce the following shorthand notation for the NLO operators:

O1 = 〈∂µU †∂µU〉2, O2 = 〈∂µU †∂νU〉〈∂µU †∂νU〉 (6.15)

6.2.1. Tree-Level EFT
We now proceed to integrate out the heavy degree of freedom at tree level. The Lagrangian
can be written in the form:

LS =
1

2
S
(
−∂2 −M2

)
S + J1S + J2S

2 + J3S
3 + J4S

4 (6.16)

with the currents Ji given by

J1 =
v

2
〈∂µU †∂µU〉, J2 =

1

4
〈∂µU †∂µU〉,

J3 = −M
2

2v
, J4 = −M

2

8v2
(6.17)

The equation of motion for S then reads:(
−∂2 −M2 + 2J2

)
S + J1 + 3J3S

2 + 4J4S
3 = 0 (6.18)

We solve this equation iteratively as an expansion in powers of 1/M2:

S = S1 + S2 + S3 + · · · , Sl = O(1/M2l) (6.19)

The first two terms in the expansion are given by:

S1 =
J1
M2

=
v

2M2
〈∂µU †∂µU〉, (6.20)

S2 =
1

M2

[
−∂2S1 + 2J2S1 + 3J3S

2
1

]
= − v

M4

(
∂2〈∂µU †∂µU〉+

1

8
〈∂µU †∂µU〉2

)
(6.21)

The effective Lagrangian can be systematically expanded in terms of chiral dimensions,
which correspond to the number of derivatives acting on the Goldstone fields:

LEFT = L(2) + L(4) + L(6) + · · · (6.22)

The first two terms read:

L(2) =
v2

4
〈∂µU †∂µU〉, (6.23)

L(4) = −M
2

2
S2
1 + J1S1 =

v2

8M2
〈∂µU †∂µU〉2 (6.24)
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Calculating the effective tree-level Lagrangian at chiral dimension 6 requires a bit more
work. The relevant terms are schematically given by:

L(6) =
1

2
S1(−∂2)S1 −M2S1S2 + J1S2 + J2S

2
1 + J3S

3
1 (6.25)

Since J1 =M2S1, the contributions involving S2 cancel, leaving:

L(6) =
v2

8M4

(
∂α〈∂µU †∂µU〉

)2 (6.26)

Note that the terms J2S2
1 + J3S

3
1 vanish identically. Thus, the resulting tree-level EFT

up to chiral dimension four is given by:

L =
v2

4
〈∂µU †∂µU〉+

v2

8M2
〈∂µU †∂µU〉2 (6.27)

6.2.2. SMEFT-like EFT
We now investigate (6.27) for a weakly coupled (λ = O(1)) scenario in which M and v
are of comparable size, i.e. v/M = O(1). Although this example is of a more academic
nature, it nicely illustrates the relation between linear and nonlinear EFTs. The resulting
EFT will be organized in terms of mass dimensions. We take (6.27) and expand up to
terms of mass dimension eight

L =
1

2
∂µϕ

a∂µϕa +
1

6v2
(
ϕa∂µϕ

aϕb∂µϕ
b − ∂µϕa∂µϕ

aϕbϕb
)
+

1

2v2M2
(∂µϕ

a∂µϕa)2

+
1

45v4
(
∂µϕa∂µϕ

aϕbϕbϕcϕc − ϕa∂µϕ
aϕb∂µϕ

bϕcϕc
)
+O

(
1

v6
,

1

v4M2
,

1

v2M4

)
(6.28)

A striking feature of this limit is that all the interaction vertices are power-suppressed.
The first four-Goldstone interaction term is here a dimension six operator suppressed
by a factor 1/v2 and expanding O1 produces a mass dimension eight operator as a first
term. Taking the decoupling limit here (v,M → ∞) would yield a free theory. To further
illustrate the differences between the linear and nonlinear EFT consider the s-channel
amplitude for Goldstone scattering via scalar exchange

M =
i

v2
s

1− s
M2

= i
x

1− x
λ

(6.29)

where we defined x = s/v2. An EFT description is valid for x� λ where the denominator
can be expanded. Depending on the size of λ we can discern two scenarios

• λ ∼ 1: weak coupling, SMEFT-like scenario

• 16π2 � λ� 1: strong coupling, HEFT-like scenario

The size of λ is constrained by perturbative unitarity bounds [187]. Similar to the Lee-
Quigg-Thacker bound [188, 189] for the Higgs mass in the SM, one can derive through a
coupled channel analysis

λ ≤ 8π

3
≈ 8.38 (6.30)
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6.3. Integrating the scalar out at the one-loop level
To integrate the heavy scalar out at the one-loop-level we compute the one-loop effective
action using the method outlined in Chapter 4 based on [47]. First of all, we split the fields
into classical background fields and quantum fluctuations and retain then only terms up
to quadratic order in the fluctuation fields, i.e.

S −→ S + S̃ (6.31)
U −→ UŨ (6.32)

where we defined

Ũ = exp (iϕ̃aσa/v) (6.33)

and the fluctuation fields are η̃ = (S̃, ϕ̃a)T . We expand here the Goldstone kinetic term
to quadratic order in the fluctuation fields ϕ̃a. Under U → UŨ the derivative terms
transform as follows

∂µU → ∂µUŨ + U∂µŨ (6.34)
∂µU

† → ∂µŨ
†U † + Ũ †∂µU

† (6.35)

Then the Goldstone kinetic term becomes

〈∂µU †∂µU〉 → 〈∂µU †∂µU〉+ 〈∂µŨ †∂µŨ〉+ 〈∂µŨ †U †∂µUŨ〉+ 〈Ũ †∂µU
†U∂µŨ〉 (6.36)

Expanding the Goldstone kinetic term to quadratic order in the fluctuation fields yields

〈∂µU †∂µU〉 → 〈∂µU †∂µU〉+ 2∂µϕ̃
a∂µϕ̃a − i∂µϕ̃

a〈σa(U †∂µU − ∂µU †U)〉 (6.37)

Plugging this parameterization into (6.8) we get the following expression

L(ϕa, ϕ̃a, S, S̃) = L(ϕa, S)

+ S̃

[
−∂2S +

v

2

(
1 +

S

v

)
〈∂µU †∂µU〉 −M2v

(
S

v
+

3

2

(
S

v

)2

+
1

2

(
S

v

)3
)]

+ ϕ̃a

[
−v
2

(
1 +

S

v

)2

∂µJ
µ
a −

(
1 +

S

v

)
∂µSJ

µ
a

]

+
1

2
S̃

[
−∂2 −M2

(
1 + 3

S

v
+

3

2

(
S

v

)2
)

+
1

2
〈∂µU †∂µU〉

]
S̃

+ S̃∂µϕ̃
aJµa

(
1 +

S

v

)
+

1

2
ϕ̃a

[
−∂µ

(
1 +

S

v

)2

∂µδ
ab −

(
1 +

S

v

)2

εabcJµc∂µ

]
ϕ̃b

+O
(
ϕ̃3, S̃3, ϕ̃2S̃, ϕ̃S̃2

)
(6.38)

where we defined the current

Jaµ =
i

2
〈σa(∂µU †U − U †∂µU)〉 = −i〈σa(U †∂µU)〉 =

2

v
∂µϕ

a + · · · (6.39)
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Here the terms linear in the fluctuation fields are just the classical equations of motion
for the background fields. Therefore, they vanish, since the (classical) background fields
satisfy the classical equations of motion. In the next step, we identify the corresponding
expressions for the fluctuation operator O

L(η2) =
1

2
η̃†O η̃ (6.40)

with

O =

∆H X†
LH

XLH ∆L

 (6.41)

The entries of O are given by

∆H = −∂2 −M2

(
1 + 3

S

v
+

3

2

(
S

v

)2
)

+
1

2
〈∂µU †∂µU〉 (6.42)

∆L = −∂µ
(
1 +

S

v

)2

∂µδ
ab −

(
1 +

S

v

)2

εabcJµc∂µ (6.43)

X†
LH =

(
1 +

S

v

)
Jµa ∂µ (6.44)

XLH = −∂µ
(
1 +

S

v

)
Jµa (6.45)

In the following, we proceed to diagonalize the fluctuation operator in order to perform
the functional integration. Concretely, we need to compute the inverse of ∆L to obtain
the shifted fluctuation operator in the hard region

∆̃H = ∆H −X†
LH∆

−1
L XLH = −∂2 −M2 − U (6.46)

In our case, the general formula for the one-loop effective action reads

SH = − i

2

∫
ddx

∞∑
n=1

1

n

∫
ddp

(2π)d
tr
{(

2ip∂ + ∂2 + U(x, ∂x + ip)

p2 −M2

)n
1

}
(6.47)

It remains to determine U up to the required order in perturbation theory.

6.3.1. Inverting ∆L

Our ∆L is a 3x3 matrix in isospin space and has the form

(∆L(x, ∂x + ip))ab = αδab + εabcβc (6.48)

with

α =

(
1 +

S

v

)2

p2
(
1− ∂2

p2
− 2i

pµ∂
µ

p2

)
− 2∂µ

(
S

v

)(
1 +

S

v

)
(∂µ + ipµ) (6.49)
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and

βc = −
(
1 +

S

v

)2

Jµc (∂µ + ipµ) (6.50)

The find the inverse of this matrix we first write down the most general form the inverse
can have

(∆−1
L )ab = Aδab +Bεabcβc + Cβaβb (6.51)

The coefficients can be determined from the condition (∆L)
ac(∆−1

L )cb = δab:

A =
1

α + βcβc

α

, B =
−1

α2 + βcβc
, C =

1

α3 + αβcβc
(6.52)

Expanding the coefficients up to O(p−6) we get

A =
1

α
− βcβc

p6
=

1

p2

(
1 +

∂2

p2
+ 2i

pλ∂
λ

p2
− 4

pαpβ∂
α∂β

p4

)
− βcβc

p6
(6.53)

B = − 1

p4
, C =

1

p6
(6.54)

6.3.2. Calculation of LH
In order to compute ∆̃H(x, ∂x + ip) we need to shift XLH as well

XLH(x, ∂x + ip) = −(∂µ + ipµ)

(
1 +

S

v

)
Jµa (6.55)

X†
LH(x, ∂x + ip) =

(
1 +

S

v

)
Jµa (∂µ + ipµ) (6.56)

We employ the counting pµ, v ∼ ζ where ζ is the hard scale. Keep in mind that S/v ∼ ζ−2.
We neglect operators that are suppressed by 1/16π2M2. The effective Lagrangian in our
case is given by

LH = − i

2

∫
ddp

(2π)d
U(x, ∂x + ip)

p2 −M2︸ ︷︷ ︸
L(1)
H

− i

4

∫
ddp

(2π)d
U(x, ∂x + ip)2

(p2 −M2)2︸ ︷︷ ︸
L(2)
H

(6.57)

It remains to determine U(x, ∂x + ip) up to the desired order. First of all, in our case

U(x, ∂x + ip) = W +X†
LH∆

−1
L XLH (6.58)

where

W =M2

(
3
S

v
+

3

2

(
S

v

)2
)

− 1

2
〈∂µU †∂µU〉 (6.59)
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To compute L(1)
H we need to expand U(x, ∂x + ip) up to order ζ−2:

U(x, ∂x + ip) = W − Jµa (∂µ + ipµ)
1

p2

(
1 +

∂2

p2
+ 2i

pλ∂
λ

p2
− 4

pαpβ∂
α∂β

p4

)
(∂ν + ipν)J

ν
a

+ εabcJµa
(
∂λJ

b
ν

)
Jλc

pµpν
p4

(6.60)

= W + Jµa
pµpν
p2

Jνa + Jµa
pµpν
p4

∂2Jνa − 4Jµa
pµpαpβpν

p6
∂α∂βJνa

+ εabcJµa
(
∂λJ

b
ν

)
Jλc

pµpν
p4

(6.61)

= W + JµaJµa
1

d
− (∂µJ

a
ν ) (∂

µJνa)

p2

(
1

d
− 4

d(d+ 2)

)
+ εabcJµa

(
∂νJ

b
µ

)
Jνc

1

d
(6.62)

Here we made use of ∂µJµa = 0. Performing the momentum integral we get for L(1)
H

L(1)
H =

(
W + JµaJµa

1

d

)
M2

32π2
(Nε + 1)− 1

32π2
(∂µJ

a
ν ) (∂

µJνa)

(
1

d
− 4

d(d+ 2)

)
(Nε + 1)

+ εabcJµa
(
∂νJ

b
µ

)
Jνc

1

32π2

1

d
(Nε + 1) (6.63)

= W
M2

32π2
(Nε + 1) + JµaJµa

M2

128π2

(
Nε +

3

2

)
− 1

384π2
(∂µJ

a
ν ) (∂

µJνa)

(
Nε +

5

6

)
+ εabcJµa

(
∂νJ

b
µ

)
Jνc

1

32π2

1

4

(
Nε +

3

2

)
(6.64)

Here we defined

Nε =
1

ε
+ ln

µ̄2

M2
(6.65)

The expression involving the current Jaµ can be reduced to the basis operators O1,2 using
SU(2) identities. All the necessary calculational steps can be found in Appendix D. Here
we just state the final result

L(1)
H = 〈∂µU †∂µU〉

M2

16π2

1

8
+

(
3

2

S

v
+

3

4

(
S

v

)2
)

M4

16π2
(Nε + 1)

+
1

16π2

1

6
(O1 −O2)

(
Nε +

11

6

)
(6.66)

For L(2)
H it is enough to use U up to order ζ0, i.e.

U(x, ∂x + ip) = W + Jµa
pµpν
p2

Jνa. (6.67)

Squaring this expression gives

U2 = W 2 + 2WJµa
pµpν
p2

Jνa + Jµa
pµpν
p2

JνaJαb
pαpβ
p2

Jβb

= W 2 +
2

d
WJµaJµa +

(JµaJµa)
2

d (d+ 2)
+ 2

(JµaJνa)
(
JµbJνb

)
d (d+ 2)

(6.68)
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After performing the momentum integrals we have

L(2)
H = W 2 1

64π2
Nε +WJµaJµa

1

128π2

(
Nε +

1

2

)
+

1

16π2

1

96
(JµaJµa)

2

(
Nε +

5

6

)
+

1

16π2

1

48
(JµaJνa)

(
JµbJνb

)(
Nε +

5

6

)
(6.69)

Again using the identities in Appendix D this can be reduced to basis operators

L(2)
H =

1

16π2

9

4

S2

v2
Nε +

1

16π2

3

8
M2S

v
〈∂µU †∂µU〉

− 1

16π2

1

48
O1

(
Nε +

4

3

)
+

1

16π2

1

12
O2

(
Nε +

5

6

)
(6.70)

The full effective Lagrangian is then given by

Leff = 〈∂µU †∂µU〉
M2

16π2

1

8
+

1

16π2

3

8
M2S

v
〈∂µU †∂µU〉

+
3

2

S

v

M4

16π2
(Nε + 1) + 3

S2

v2
M4

16π2

(
Nε +

1

4

)
+

1

16π2
O1

(
7

48
Nε +

5

18

)
− 1

16π2

1

12
O2

(
Nε +

17

6

)
(6.71)

Our result agrees with [178]. The result still contains the background scalar S. Be-
fore S can eliminated via the equation of motion, the effective Lagrangian needs to be
renormalized. That is the subject of the next section.

6.4. Renormalization
To understand the renormalization of the linear σ-model, we start with the bare La-
grangian

L = ∂µφ†
b∂µφb +m2

bφ
†
bφb −

λb
2

(
φ†
bφb

)2
(6.72)

where we use the subscript b to denote the bare fields and couplings. Introducing the
renormalized parameters

φb =
√
Zφφ, m2

b = Zm2m2, λb = µ2εZλλ (6.73)

we write the renormalized Lagrangian

L = ∂µφ†∂µφ+m2φ†φ− λ

2

(
φ†φ
)2 (6.74)

+ (Zφ − 1) ∂µφ†∂µφ+ (ZφZm2 − 1)m2φ†φ−
(
Z2
φZλ − 1

) λ
2

(
φ†φ
)2 (6.75)

Using the parametrization (6.6) we observe

Zφ = Zv = ZS (6.76)
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Since the scalar S is integrated out we can set ZS = 1 and instead perform a finite field shift
after renormalizing the other quantities. Plugging in the exponential parameterization

L =
v2

4
〈∂µU †∂µU〉

(
1 +

S

v

)2

+
1

2
∂µS∂

µS +
m2

2
(v + S)2 − λ

8
(v + S)4

+ δm2

m2

2
(v + S)2 − δλ

λ

8
(v + S)4 (6.77)

where

δλ = Zλ − 1, δm2 = Zm2 − 1 (6.78)

From here, we can read off the counterterm Lagrangian, keeping in mind that we only
need terms up to S2

Lc.t. = (δm2 − δλ)
M2v

2
S − 1

2

M2

2
(3δλ − δm2)S2 (6.79)

The divergent part of the renormalization constant can be found in the literature e.g., in
[98] and are given by

δλ =
3

8π2
λ
1

ε
, δm2 =

3

16π2
λ
1

ε
(6.80)

so that the counterterm Lagrangian is given by

Lc.t. = − 3

32π2

M4

v

1

ε
S +

5

32π2

M2

v2
1

ε

M2

2
S2 + finite (6.81)

We chose a renormalization condition such that the terms linear in S (tadpole) vanish,
i.e.

Lc.t. = − 3

32π2

M4

v

(
1

ε
+ 1

)
S +

5

32π2

M2

v2
1

ε

M2

2
S2 (6.82)

6.4.1. Background scalar self-energy
Before we can eliminate the background scalar S we first need to compute its mass renor-
malization. Following [178] we calculate the background scalar self-energy. Since in the
on-shell scheme, the renormalized mass is identified with the pole mass at p2 = M2

R, the
renormalization constant has to be calculated diagrammatically. As we substitute the
background scalar S in the end by the leading term in its equation of motion suppressed
by M2, we consider only contributions to the self-energy of O(M4). The diagrams con-
tributing to the scalar self-energy O(M4) are displayed in Fig. 6.1. The background
scalar self-energy is given in terms of Passarino-Veltman scalar functions by

ΣS(p
2) =

3

32π2

M4

v2
[
A0(M

2) + 3B0(p
2;M2,M2)

]
+

3

32π2

p4

v2
B0(p

2; 0, 0) (6.83)

The scalar tadpole function A0 and bubble function B0 are defined in (E.1) and (E.4) re-
spectively. Within the EFT’s domain of validity for 0 < z = p2/4M2 < 1, the background
scalar self-energy takes the explicit form

ΣS(p
2) =

3

32π2

M4

v2

[
4Nε + 7− 6

√
z−1 − 1 arcsin

√
z
]
+

3

32π2

p4

v2
[Nε + 2− ln 4z − iπ]

(6.84)
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S̃

S S

ϕ̃

ϕ̃

S S

S̃

S

Figure 6.1.: Background scalar self-energy diagrams of O(M4)

In the on-shell scheme, the renormalization condition is

δM2 = Re
(
ΣS(M

2)
)

(6.85)

Evaluating the self-energy at p2 =M2, we end up with

ΣS(M
2) =

3

32π2

M4

v2

[
5Nε + 9−

√
3π − iπ

]
(6.86)

and thus, the mass counterterm is given by

δM2
OS =

3

32π2

M4

v2

[
5Nε + 9−

√
3π
]

(6.87)

This result agrees with [178]. The divergent part of δM2 is the same in every renormal-
ization scheme, but in each scheme, the finite part is different a priori. In general, we
may write

δM2 =
3

32π2

M4

v2
[5Nε + Ω] (6.88)

with the constant Ω depending on the renormalization scheme. The renormalized mass is
thus given by

M2
ren =M2

(
1− 3

32π2

M2

v2
Ω

)
=M2

(
1− 3λ

32π2
Ω

)
(6.89)

Note that in the MS scheme Ω = 0 and in the on-shell scheme Ω = 9−
√
3π.

6.4.2. Elimination of the background scalar S
Adding the counterterm Lagrangian (6.81) to the the effective Lagrangian (6.71) we obtain
the ”renormalized” Lagrangian

Lren
eff = Leff + Lc.t. =

1

16π2

M2

4

S

v
〈∂µU †∂µU〉

+
1

16π2

M4

v2

(
3Nε +

3

4
− 8π2 v

2

M2

δM2

M2

)
S2

+
1

16π2
O1

(
7

48
Nε +

5

18

)
− 1

16π2

1

12
O2

(
Nε +

17

6

)
(6.90)
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This Lagrangian still contains the background scalar S. As we aim to calculate the
O(1/16π2) terms in the effective action, we can integrate out S at tree level. To integrate
out S we just substitute the first term in the expansion in 1/M2 (6.20):

S =
v

2M2
〈∂µU †∂µU〉 (6.91)

We end up with

Lren
eff = − 1

16π2

1

24
O1

(
Nε −

85

6
+

9

2
Ω

)
− 1

16π2

1

12
O2

(
Nε +

17

6

)
(6.92)

Plugging in Ω = 9−
√
3π for the on-shell scheme we reproduce the result of [178]

Lren,OS
eff = − 1

16π2

1

24
O1

(
Nε +

79

3
− 27π

2
√
3

)
− 1

16π2

1

12
O2

(
Nε +

17

6

)
(6.93)

However, the scheme-dependent parameter drops out of physical predictions since O1 is
generated at tree level with a coefficient that depends on M . Explicitly, we have

C1 =
v2

8M2
− 1

16π2

3

16
Ω− 1

16π2

1

24

(
Nε −

85

6

)
(6.94)

Plugging in the renormalized mass (6.89), we see that the scheme-dependent constant
drops out

C1 ⊃
v2

8M2
ren

− 1

16π2

3

16
Ω =

v2

8M2
+

1

16π2

3

16
Ω− 1

16π2

3

16
Ω =

v2

8M2
(6.95)

i.e. the coefficient C1 is indeed scheme-independent. Finally, the results for the Wilson
coefficients are

C1 =
v2

8M2
− 1

16π2

1

24

(
Nε −

85

6

)
, C2 = − 1

16π2

1

12

(
Nε +

17

6

)
(6.96)

6.5. Goldstone scattering at NLO
We have seen in the previous sections that integrating out the heavy scalar from the linear
σ-model generates a nonlinear σ-model which takes the form of a chiral Lagrangian

Leff =
v2

4
〈∂µU †∂µU〉+ C1O1 + C2O2 (6.97)

where the coefficients C1,2 are given in (6.96). These coefficients act as counterterms for
one-loop amplitudes computed from the first dχ = 2 term in (6.97). To illustrate this,
we examine the 4-Goldstone amplitude M

(
ϕa(pa)ϕ

b(pb) → ϕc(pc)ϕ
d(pd)

)
in this section.

We employ the standard Mandelstam variables

s = (pa + pb)
2 , t = (pa − pc)

2 , u = (pa − pd)
2 (6.98)

Bose and crossing symmetry imply that the amplitude may be decomposed as [190]

M
(
ϕaϕb → ϕcϕd

)
= δabδcdA(s, t, u) + δacδbdA(t, s, u) + δadδbcA(u, t, s) (6.99)
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where the function A is symmetric in the last two arguments A(s, t, u) = A(s, u, t).
First of all, we have to extract the four-Goldstone vertex from

L2 =
v2

4
〈∂µU †∂µU〉 (6.100)

Expanding (6.100) to fourth order in ϕ we obtain

L(p2) =
1

2
∂µϕ

a∂µϕa +
1

6v2
(
ϕa∂µϕ

aϕb∂µϕ
b − ∂µϕa∂µϕ

aϕbϕb
)
+ · · · (6.101)

It is straightforward to derive the Feynman rule for the four-point vertex (see (F.6)),
giving rise to the tree-level amplitude

M = δabδcd
s

v2
+ δacδbd

t

v2
+ δadδbc

u

v2
(6.102)

Thus, the function A at leading order is given by

ALO(s, t, u) =
s

v2
(6.103)

Working up to O(p4) requires the calculation of the Goldstone amplitude at one loop

Figure 6.2.: One-loop diagrams for ϕϕ → ϕϕ scattering. Black circles denote vertices
from the LO Lagrangian.

using (6.100). The three one-loop diagrams are depicted in Fig. 6.2, and evaluating them
gives

A1loop
(p2) (s, t, u) =

1

32π2

1

v4

[
2

3

(
s2 + t2 + u2

)(1

ε
+

4

3

)
+ t2 + u2 − s2 ln

−s
µ2

−1

6

(
3t2 − s2 + u2

)
ln

−t
µ2

− 1

6

(
3u2 − s2 + t2

)
ln

−u
µ2

]
(6.104)

and therefore, the full one-loop amplitude reads [53]

Mabcd =
1

32π2

1

v4
δabδcd

[
2

3

(
s2 + t2 + u2

)(1

ε
+

4

3

)
+ t2 + u2 − s2 ln

−s
µ2

−1

6

(
3t2 − s2 + u2

)
ln

−t
µ2

− 1

6

(
3u2 − s2 + t2

)
ln

−u
µ2

]
+

1

32π2

1

v4
δacδbd

[
2

3

(
s2 + t2 + u2

)(1

ε
+

4

3

)
+ s2 + u2 − t2 ln

−t
µ2
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−1

6

(
3s2 − t2 + u2

)
ln

−s
µ2

− 1

6

(
3u2 − t2 + s2

)
ln

−u
µ2

]
+

1

32π2

1

v4
δadδbc

[
2

3

(
s2 + t2 + u2

)(1

ε
+

4

3

)
+ t2 + s2 − u2 ln

−u
µ2

−1

6

(
3s2 − u2 + t2

)
ln

−s
µ2

− 1

6

(
3t2 − u2 + s2

)
ln

−t
µ2

]
(6.105)

The amplitude is divergent and contains 1/ε poles, which need to be removed by coun-
terterms. The coefficients of the dχ = 4 operators

L(p4) = C1〈∂µU †∂µU〉2 + C2〈∂µU †∂νU〉〈∂µU †∂νU〉 (6.106)

that we calculated in a top-down matching calculation are precisely those counterterms.
They absorb the divergences coming from one-loop graphs with vertices L(p2). The opera-
tors O1,2 give rise to a four-point contact vertex, and their contribution to the A function
is

Atree(p4)(s, t, u) =

[
8C1

s2

v4
+ 4C2

t2 + u2

v4

]
(6.107)

The full amplitude is

MNLO = δabδcd

[
8C1

s2

v4
+ 4C2

t2 + u2

v4

]
+ δacδbd

[
8C1

t2

v4
+ 4C2

s2 + u2

v4

]
+ δadδbc

[
8C1

u2

v4
+ 4C2

t2 + s2

v4

]
(6.108)

Plugging in our explicit results (6.96) yields

Atree(p4)(s, t, u) =
s2

v2M2
− 1

16π2

1

3

[
s2 + t2 + u2

v4

(
1

ε
+ ln

µ̄2

M2

)
− 85

5

s2

v4
+

17

6

t2 + u2

v4

]
(6.109)

and adding this result to (6.104)

A1loop
(p4) (s, t, u) =

s2

v2M2
+

1

16π2

1

v4

[
s2
31

6
− s2

2
ln

−s
M2

− 1

12

(
3t2 − s2 + u2

)
ln

−t
M2

− 1

12

(
3u2 − s2 + t2

)
ln

−u
M2

]
(6.110)

cancel all 1/ε poles, and the result is finite as required. The matrix elements for Goldstone
scattering can be decomposed according to their isospin (I = 0, 1, 2)

〈I ′, I ′3|M|I, I3〉 = MIδII′δI3I′3 (6.111)

The isospin amplitudes [57, 190] are given by

MI=0 = 3A(s, t, u) + A(t, u, s) + A(u, s, t)

MI=1 = A(t, u, s)− A(u, s, t) (6.112)
MI=2 = A(t, u, s) + A(u, s, t)

For example ϕ+ϕ− → ϕ+ϕ− scattering corresponds to the MI=0 amplitude.
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6.6. Discussion
In this chapter, we used the SO(4) linear σ-model as a prototype to showcase the emer-
gence of a nondecoupling EFT. We integrated out the massive degree of freedom and
performed the matching to the resulting low-energy EFT, the nonlinear σ-model or chi-
ral Lagrangian. At the one-loop order, we calculated the one-loop nondecoupling effects
of O(1/16π2) (i.e., those that survive in the limit M → ∞) using functional methods.
Here, we found that both the tree-level and one-loop contributions are necessary for a
renormalization-scheme independent result (6.95). That fact can also be understood by
considering that in a strongly coupled theory with M ∼ 4πv, the tree-level Wilson coef-
ficients of O(v2/M2) and the nondecoupling contributions at one loop of O(1/16π2) are
parametrically of the same size. From this example, a general lesson can be drawn. When
constructing a top-down EFT framework, it is vital to take the underlying assumptions
seriously, particularly the parameter space of the UV theory, which will have direct im-
plications for the organizing principle of the EFT. The conclusions from Chapter 5 also
hold in this case.
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7. 2HDM: Nonlinear EFT
After discussing the Two-Higgs Doublet Model (2HDM) [171] in Chapter 7 as a well-known
extension of the SM, we return to it in this chapter. Recently, there has been renewed
interest in the 2HDM, particularly in the context of EFT approaches around the elec-
troweak scale [191–194]. The motivation for this section is twofold. First, we investigate
the 2HDM in a particularly interesting region of its parameter space, the nondecoupling
limit, which corresponds to a strongly coupled scenario. In addition, we demonstrate
how the Higgs-Electroweak Chiral Lagrangian (Higgs-EwChL) naturally emerges as the
low-energy effective description after integrating out the heavy scalar degrees of freedom
in this regime.
We employ functional matching techniques, which streamline the calculation and enhance
transparency. The functional approach allows us to go beyond existing results in the lit-
erature [194] by computing higher-order terms in the Higgs function and deriving certain
all-order expressions in powers of the Higgs field h. The technique we use was originally
developed in [119] in the context of matching the Standard Model singlet extension to the
Higgs Effective Field Theory (HEFT).
We include a brief analysis of the decoupling limit, where the heavy scalar fields are in-
tegrated out in a weakly coupled regime. We compare the resulting linear EFT with the
previously obtained nonlinear EFT and point out the key differences. This chapter is orga-
nized as follows. In Section 7.1, we introduce a convenient parametrization of the 2HDM
scalar sector that is tailored for matching onto the Higgs–Electroweak Chiral Lagrangian
(HEFT). In Section 7.2, we perform the tree-level functional matching of the nondecou-
pling 2HDM to the leading-order electroweak chiral Lagrangian. Section 7.3 extends this
analysis to the one-loop–induced local EFT operators for h → γγ and h → γZ. We
rederive parts of the results diagrammatically to highlight the efficiency of the functional
approach. In Sec. 7.4, we compute the one-loop coefficient of the custodial-symmetry–vi-
olating operator Qβ1 . Sec. 7.5 discusses the viable 2HDM parameter space for TeV-scale
heavy scalars, covering the decoupling, nondecoupling, and alignment regimes. Sec. 7.6
then briefly explores the phenomenological implications of our EFT results. In Sec. 7.7,
we take a look at the decoupling limit and perform the matching to SMEFT at canonical
dimension six, where we briefly comment on the differences to the nonlinear EFT. In Sec.
7.8, we conclude. Finally, the Appendix 7.9 to this chapter presents the all-orders solution
H0(h) to the leading-order equation of motion for the heavy scalar field.
This chapter draws in part on the results of [2], to which the author of this thesis con-
tributed as a co-author.

7.1. Nondecoupling Regime - Higgs-EWChL
We have already introduced the 2HDM in Section 5.4 and discussed the potential (5.92)
and the mass eigenstates. In this chapter, we shall work with the same model but perform
a convenient field redefinition in the scalar sector. Instead of working with the doublets
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Φn, it is useful to employ a non-linear parametrization for the matching to HEFT. To this
end, we define the conjugate doublets Φ̃n ≡ iσ2Φ

∗
n, with n = 1, 2 and the matrix fields

Sn ≡ (Φ̃n,Φn) (7.1)

Using these matrix fields we may write the Lagrangian of the scalar sector as

LS =
1

2
〈DµS

†
nD

µSn〉 − V (7.2)

where 〈 · · · 〉 denotes the trace, a sum over n is understood, and V is the 2HDM potential
(5.92) (with λ6 = λ7 = 0) expressed in terms of the matrix fields Sn. Following the
discussion in [195] we write the Sn in polar coordinates as

Sn ≡ URn, Rn =
1√
2
[(vn + hn)1+ iCnσaρa] (7.3)

Here σa = 2Ta, a = 1, 2, 3 are the Pauli matrices and U = exp (2iϕaTa/v) is the matrix of
the electroweak Goldstone bosons. The vn are, as before, the respective vevs of the two
Higgs doublet fields (5.93) and

C1 = − sin β, C2 = cos β (7.4)

where the mixing angle β was defined in (5.97). As before in the doublet representation
the non-linear parametrization (7.3) comprises eight real degrees of freedom expressed
through the real fields ϕa, ρa and hn. From the electroweak quantum numbers of Sn and
U we can deduce that the covariant derivatives are given by

DµΦ = ∂µΦ + igWµΦ− ig′BµΦT3 for Φ = Sn, U (7.5)

where W µ = W µ
a Ta and Bµ are the gauge fields of SU(2)L and U(1)Y . From these

expressions, we can derive the covariant derivatives for the physical fields. Using (7.3) it
follows

DµRn = ∂µRn + ig′Bµ [T3, Rn] (7.6)

As a result, h1,2 and ρ3 are electroweak singlets, whereas ρ1,2 are SU(2)L singlets yet
charged under U(1)Y . Therefore,

Dµhn = ∂µhn and Dµρa = ∂µρa + g′Bµ εab3 ρb (7.7)

It is convenient to trade ρ1,2 for the eigenstates ρ± of charge and hypercharge (with
Q = Y = ±1)

Dµρ
± = ∂µρ

± ± ig′Bµρ
±, ρ± =

1√
2
(ρ1 ∓ iρ2) (7.8)

Inserting (7.3) into (7.2), the kinetic term takes the form

LS,kin =
1

2
〈DµS

†
nD

µS〉 =

=
1

4
〈DµU

†DµU〉
[
(vn + hn)

2 + ρaρa
]
+

1

2
DµρaD

µρa
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+ 〈iU †DµUTa〉 [εabcρbDµρc + Cn(ρa∂
µhn −Dµρahn)] (7.9)

Expressed in terms of the matrix fields Sn the potential reads [195]

V =
m2

11

2
〈S†

1S1〉+
m2

22

2
〈S†

2S2〉 −m2
12〈S

†
1S2〉

+
λ1
8
〈S†

1S1〉2 +
λ2
8
〈S†

2S2〉2 +
λ3
4
〈S†

1S1〉〈S†
2S2〉

+ λ4〈S†
1S2P+〉〈S†

1S2P+〉+
λ5
2

(
〈S†

1S2P+〉2 + 〈S†
1S2P−〉2

)
(7.10)

Here P± = (1± σ3) /2 are projection operators. Note that we have set λ6 = λ7 = 0 with
respect to the most general potential (5.92) thereby assuming invariance under the discrete
symmetry S1 → −S1, S2 → S2 only softly broken by the dimension 2 operator m2

12.
This choice prevents flavor-changing neutral currents (FCNCs) at tree-level. Choosing
λ6 = λ7 = 0 and m2

12 6= 0 generates finite Higgs-mediated FCNCs at one loop [172].
As before, we assume CP invariance, such that all parameters are real. It is now obvious
that the polar coordinate parametrization (7.3) has the advantage that the Goldstone
matrix U disappears from the potential, which is entirely a function of the hn and ρa.
The Goldstone fields only enter the kinetic term. The terms in the potential linear in the
fields vanish due to the definition of v1,2. The mass terms quadratic in the fields ρa are
already diagonalized by ρ±, ρ3, for the hn mass terms a further rotation in fieldspace is
necessary H0

h

 =

 cα sα

−sα cα

h1
h2

 (7.11)

Thus, the mass eigenstates in the scalar sector are given by h, which we identify as the
observed Higgs boson at mh = 125GeV, and the additional scalars H ≡ H0, H

± ≡
±iρ± and the pseudoscalar A0 ≡ −ρ3. We trade in the eight potential parameters
m2

11,m
2
22,m

2
12, λ1, ..., λ5 for the vevs, particle masses and soft breaking term

v1, v2, mh, M0 ≡MH0 , MH ≡MH± , MA ≡MA0 , sα, m2
12 (7.12)

or equivalently

v, tβ, mh, M0, MH , MA, cβ−α, m2 ≡ m2
12

sβcβ
(7.13)

It is instructive to display the 2HDM scalar Lagrangian in terms of the physical fields
h,H,A0, H

±

L =
1

2
∂µh∂

µh+
1

2
∂µH∂

µH +
1

2
∂µA0∂

µA0 +DµH−DµH
+ − V (h,H,A0, H

±) + LY

+
v2

4

(
1 + 2sβ−α

h

v
+ 2cβ−α

H

v
+
h2

v2
+
H2

v2

)
〈DµU †DµU〉

+ Jµ3
[
iH−∂µH

+ − iH+∂µH
− + cβ−α (h∂µA0 − A0∂µh) + sβ−α (A0∂µH −H∂µA0)

]
+ Jµ+

[
A0∂µH

+ −H+∂µA0 − icβ−α
(
H+∂µh− h∂µH

+
)
+ isβ−α

(
H+∂µH −H∂µH

+
)]
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+ Jµ−
[
A0∂µH

− −H−∂µA0 + icβ−α
(
H−∂µh− h∂µH

−)− isβ−α
(
H−∂µH −H∂µH

−)]
(7.14)

where LY denotes the Yukawa Lagrangian, which we discuss below. Here we introduced
the currents

Jµ3 = 〈iU †DµUT3〉, Jµ± = 〈iU †DµUT±〉 (7.15)

where T± = 1/
√
2 (T1 ± iT2). The full scalar potential in terms of the physical fields reads

V =
1

2
m2
hh

2 +
1

2
M2

0H
2 +M2

HH
+H− +

1

2
M2

AA
2
0

− d1h
3 − d2h

2H − d3hH
2 − d4H

3 − d5hH
+H− − d6hA

2
0 − d7H

+H−H − d8HA
2
0

− z1h
4 − z2h

3H − z3h
2H2 − z4hH

3 − z5H
4 (7.16)

− z6h
2H+H− − z7hHH

+H− − z8H
2H+H− − z9

(
H+H−)2 − z10A

2
0h

2

− z11A
2
0hH − z12H

2A2
0 − z13A

2
0H

+H− − z14A
4
0

The explicit expression for the di, zi in terms of the input parameters (7.13) can be found
in appendix A.

Yukawa couplings

The scalar sector couples to the fermions through Yukawa terms. There exist several
possible Yukawa sectors. Here we choose for definiteness a type II Yukawa sector which
is given by the Lagrangian [171]

LY = −q̄LΦ1YdP−qR − q̄LΦ̃2YuP+qR − l̄LΦ1YeP−lR + h.c. (7.17)

In terms of the matrix fields Sn it can be written as

LY = −q̄LYdS1P−qR − q̄LYuS2P+qR − l̄LYLS1P−lR + h.c. (7.18)

It is useful to express the Yukawa Lagrangian in terms of the physical fields

LY =−
(
1 +

cα
cβ

H

v
− sα
cβ

h

v
− itβ

A0

v

)
Jf1 −

(
1 +

sα
sβ

H

v
+
cα
sβ

h

v
− it−1

β

A0

v

)
Jf2

+
√
2 tβ

H+

v
Jc1 +

√
2 t−1

β

H−

v
Jc2 + h.c. (7.19)

Here we defined the fermion currents

Jf1 = q̄LMdUP−qR + l̄LMeUP−lR, Jf2 = q̄LMuUP+qR (7.20)
Jc1 = q̄LMdUP12qR + l̄LMeUP12lR, Jc2 = q̄LMuUP21qR (7.21)

where we employed the projectors

P12 ≡ T1 + iT2, P21 ≡ T1 − iT2 (7.22)

The fermion mass matrices Mq can be expressed through the Yukawa matrices

Mu =
v√
2
Yusβ, Md =

v√
2
Ydcβ, Me =

v√
2
Yecβ (7.23)

The generalization to other types of Yukawa sectors follows easily and will be discussed
below.
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7.2. Tree-level matching in the nondecoupling regime
We write the full Lagrangian of the 2HDM as

L2HDM = L0 + LS,kin − V + LY (7.24)

where L0 denotes the unbroken SM

L0 =− 1

2
〈GµνG

µν〉 − 1

2
〈WµνW

µν〉 − 1

4
BµνB

µν

+ q̄Li /DqL + l̄Li /DlL + ūRi /DuR + d̄Ri /DdR + ēRi /DeR (7.25)

We now proceed to integrate out the heavy scalars at tree level and compute the O(1)
effective Lagrangian. The procedure of integrating out a heavy scalar in the nondecou-
pling has been described in detail in [40, 119]. We shall follow this procedure and adapt
it accordingly.

7.2.1. Algorithm for tree-level matching
First of all, we notice that the potential (7.16) contains the heavy fields A0 and H± only
at the quadratic order and higher, as they can appear exclusively as the uncharged and
CP-even combinations H+H− and A2

0, respectively. As a result, there can be no tree
diagrams with only internal lines from those fields. Integrating out these fields at tree
level and to LO (O(M0

S)) therefore implies A0 = H± = 0. This constitutes an important
simplification. Even though the 2HDM contains more scalar degrees of freedom than
the singlet extension, in both cases just one real scalar needs to be considered to obtain
the leading order effective Lagrangian in the nondecoupling regime. The part of the
Lagrangian that depends on H is given by

LH0 =
1

2
H
(
−∂2 −M2

0

)
H + J1H + J2H

2 + J3H
3 + J4H

4 (7.26)

where the Ji are given by

J1 = d2h
2 + z2h

3 +
v

2
cβ−α〈DµU †DµU〉 −

cα
cβ

Jf1 + J∗
f1

v
− sα
sβ

Jf2 + J∗
f2

v

J2 = d3h+ z3h
2 +

1

4
〈DµU †DµU〉

J3 = d4 + z4h, J4 = z5 (7.27)

Making the dependence of the Ji and the potential parameters di, zi on the heavy mass
M0 explicit to consistently perform the EFT expansion we write

Ji ≡M2
0J

0
i + J̄i, di ≡M2

0 di0 + d̄i, zi ≡M2
0 zi0 + z̄i (7.28)

Note that z1, ..., z5 and d2, ..., d4 do not depend on MA,MH . Integrating out the field H
at tree level amounts to solving its equation of motion

(−∂2 −M2
0 + 2J2)H + J1 + 3J3H

2 + 4J4H
3 = 0 (7.29)
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and inserting the solution H0(h) back into the Lagrangian. The equation of motion (7.29)
can be solved iteratively in inverse powers of M0

H = H0 +H1 +H2 + · · · , Hl = O(1/M2l
0 ) (7.30)

We insert the ansatz (7.30) into (7.29) to obtain algebraic equations for the Hi. Retaining
only terms of O(M2

0 ) gives an equation for H0

J0
1 + (−1 + 2J0

2 )H0 + 3J0
3H

2
0 + 4J4H

3
0 = 0 (7.31)

Keeping only the terms of O(1) gives an equation for H1 in terms of H0

H1 =
(−∂2 + 2J̄2)H0 + J̄1 + 3J̄3H

2
0 + 4J̄4H

3
0

M2
0 (1− J0

2 − 6J0
3H0 − 12J0

4H
2
0 )

(7.32)

Similarly, equations for the Hl≥2 may be derived.
The coefficients J0

i in (7.31) are functions of h only and therefore we compute the solution
H0(h). Although (7.31) can be solved analytically it is convenient to expand H0(h) in an
infinite power series in h

H0(h) =
∞∑
k=2

rkh
k (7.33)

where all the coefficients are of O(1). For our matching calculation we only need the first
few coefficients

r2 = d20

r3 = d20d30

r4 = d20d
2
30 + d220d40

r5 = d20d
3
30 + 3d220d30d40 (7.34)

For the reader’s convenience we display the relevant potential parameters

vd20 = −cβ−α
2

s2α
s2β

(7.35)

vd30 = sβ−α
s2α
s2β

(7.36)

vd40 = −cβ−α
2

− s2β−α
sα+β
s2β

(7.37)

Inserting H = H0 +H1 into (7.14) and retaining only the O(M2
0 ) and O(1) terms we get

the leading order effective Lagrangian. The terms with H1 vanish due to the equation of
motion for H0. In addition, we will show in the appendix to this chapter that all O(M2

0 )
cancel up to an irrelevant constant

LhH0,LO =
1

2
(∂µh)

2 − m2

2
h2 + d1h

3 + z̄1h
4 +

1

2
(∂µH0)

2 + J̄1H0 + J̄2H
2
0 + J̄3H

3
0 + J̄4H

4
0

+
v2

4
〈DµU †DµU〉

(
1 + 2sβ−α

h

v
+
h2

v2

)
− v(Jf1 + J∗

f1)

(
1− sα

cβ

h

v

)
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− v(Jf2 + J∗
f2)

(
1 +

cα
sβ

h

v

)
(7.38)

where H0 = H0(h). The kinetic term for h takes the form

Lh,kin =
1

2
(∂µh)

2 +
1

2
(∂µH0)

2 =
1

2
(∂µh)

2 (1 + Fh(h)) (7.39)

where

Fh(h) =

(
dH0(h)

dh

)2

(7.40)

To bring the kinetic term to its canonical form (∂h̃)2/2 the field redefinition

h̃ =

∫ h

0

√
1 + Fh(s)ds = h

(
1 +

2

3
r22h

2 +
3

2
r2r3h

3 +O(h4)

)
(7.41)

is required. Inverting this we arrive at

h(h̃) = h̃

(
1− 2

3
r22h̃

2 − 3

2
r2r3h̃

3 +O(h̃4)

)
(7.42)

After eliminating h in favor of h̃ and dropping the tilde in the end, the result takes the
form of an electroweak chiral Lagrangian with a light Higgs (3.23) and we can calculate
the general functions in (3.23) up to the desired order in h.
The parameters of the Higgs potential (3.24) are given by

V3 = −2d1v

m2
h

(7.43)

V4 = −16

3
(vd20)

2 − 8
v2

m2
h

z̄1 − 8

(
vd̄2
)
(vd20)

m2
h

(7.44)

V5 =
2v3

m2
h

(
2d220d1 − d̄3d

2
20 − z̄2d20 − d̄2d20d30

)
− 3d220d30v

3 (7.45)

The cubic coefficient is not affected by the field redefinition (7.42). Moreover, the coeffi-
cients of the Flare function FU(h) (3.24) can be written as

F1 = 2sβ−α, F2 = 1 + 2cβ−αvd20, F3 = 2cβ−αv
2d20d30 −

4

3
sβ−αv

2d220 (7.46)

F4 = −(vd20)
3

3
+ 2cβ−αv

3

(
d20d

2
30 + d220d40 −

4

3
d320

)
− 3v3d320d30sβ−α (7.47)

Here, the field redefinition (7.42) plays no role for the coefficients fU,1 and fU,2. Making
use of (7.35) - (7.37) and trigonometric identities the potential and the Flare function
take the form

FU(h) =2sβ−α
h

v
+

(
1− s2α

s2β
c2β−α

)(
h

v

)2

− 4

3

s22α
s22β

sβ−αc
2
β−α

(
h

v

)3

−
c2β−α
12

s22α
s32β

(10s2α − 3s2β − 7s4α−2β)

(
h

v

)4

+O(h5) (7.48)
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V (h) =
m2
hv

2

2

{(
h

v

)2

+

[
sβ−α +

2c2β−αcβ+α

s2β

(
1− m2

m2
h

)](
h

v

)3

+

[
1

4
−
c2β−α
4s22β

(
1

6
(7− 12c2(β+α) − 19c4α)− (1− 2c2αc2β − 3c4α)

m2

m2
h

)](
h

v

)4

−
c2β−αs

2
2α

2s32β

[
cβ+α + 3cβ−3α − (2cβ+α + 3c3β−α + 11cβ−3α)

m2

4m2
h

](
h

v

)5

+O(h6)

}
(7.49)

It is easy to see that the SM is recovered in the alignment limit cβ−α → 0. It remains to
calculate the Yukawa Higgs function

FYi(h) = Mi +
∞∑
n=1

M(n)
i

(
h

v

)n
= Mi

(
1 +

∞∑
n=1

µ
(n)
i

(
h

v

)n)
(7.50)

µ
(1)
d = −sα

cβ
, µ

(2)
d =

cα
cβ

(vd20), µ
(3)
d =

2

3

sα
cβ

(vd20)
2 +

cα
cβ

(vd20)(vd30) (7.51)

and

µ(1)
u =

cα
sβ
, µ(2)

u =
sα
sβ

(vd20), µ(3)
u = −2

3

cα
sβ

(vd20)
2 +

sα
sβ

(vd20)(vd30) (7.52)

The Higgs-fermion couplings for a type II Yukawa sector are given by the following ex-
pressions

Mu +
∞∑
n=1

M(n)
u

(
h

v

)n
=

Mu

[
1 +

cα
sβ

h

v
− cβ−α

2

s2αcα
s2βcβ

(
h

v

)2

− cβ−α
6

s22α
s22β

(2s2α − (1− 2c2α)t
−1
β )

(
h

v

)3

+ · · ·

]
(7.53)

Md +
∞∑
n=1

M(n)
d

(
h

v

)n
=

Md

[
1− sα

cβ

h

v
− cβ−α

2

sαc
2
α

sβc2β

(
h

v

)2

+
cβ−α
6

s22α
s22β

(2s2α − (1 + 2c2α)tβ)

(
h

v

)3

+ · · ·

]
(7.54)

Using functional methods we have reproduced the results of [194] and obtained several new
expressions, the cubic and quartic coefficients of FU(h), the coefficient of h5 in V (h) and
the fermionic couplings. Higher orders may be easily calculated following the procedure
in this section and making use of the all-orders expression H0(h) derived in Section 7.9.
This defines an algorithm to extend the tree-level matching to all orders in h.
Our discussion may be extended to include the NLO terms of O(1/M2

S) in the effective
Lagrangian

Leff = LLO +∆LNLO +O
(
M−4

S

)
, LLO = L0 + LUh,LO (7.55)
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At this order also the pseudoscalar A0 and charged scalar H± generate four-fermion
operators (see Section (7.2.3) for further details)

∆LNLO =
[(−∂2 + 2J̄2)H0 + J̄1 + 3J̄3H

2
0 + 4J̄4H

3
0 ]

2

2M2
0 (1− J0

2 − 6J0
3H0 − 12J0

4H
2
0 )

− 1

2M2
Av

2

[
t2β(J

2
f1 + J∗2

f1 − 2Jf1J
∗
f1) + t−2

β (J2
f2 + J∗2

f2 − 2Jf2J
∗
f2)

+ 2(Jf1 − J∗
f1)(Jf2 − J∗

f2)
]
+

2

M2
Hv

2
(t2βJc1J

∗
c1 + t−2

β Jc2J
∗
c2 + Jc1Jc2 + J∗

c1J
∗
c2)

(7.56)

We end the discussion in this section with some general remarks:

• We have shown that upon integrating out the heavy scalars in the nondecoupling
limit the resulting EFT takes the form of a nonlinear EFT. Characteristic for a
nonlinear EFT are all-order Higgs function F (h) which arise here due to the con-
tributions of the function H0(h).

• Although the LO Lagrangian is of O(1) in the 1/MS expansion, it contains terms
of arbitrary canonical dimensions because the nonlinear EFT is organized by chiral
dimensions. It is easy to check that every term in the LO Lagrangian has chiral
dimension 2 where mh comes with one unit of chiral dimension.

• The NLO terms in (7.56) all have chiral dimension four and are suppressed by
v2/M2

S. To cover all NLO terms, the contributions from one-loop diagrams in the
full model would need to be included. They are suppressed by a loop factor 1/16π2

that is of similar size as v2/M2
S in the nondecoupling limit (MS ∼ 4πv).

7.2.2. Other Yukawa interactions
Apart from the type II Yukawa sector there are three other possibilities without FCNCs
at the tree level. We have

(a) Type I

LY = −q̄LYdS2P−qR − q̄LYuS2P+qR − l̄LYlS2P−lR + h.c. (7.57)

(b) Type-X (lepton specific)

LY = −q̄LYdS2P−qR − q̄LYuS2P+qR − l̄LYlS1P−lR + h.c. (7.58)

(c) Type-Y (flipped)

LY = −q̄LYdS1P−qR − q̄LYuS2P+qR − l̄LYlS2P−lR + h.c. (7.59)

The matching for the other Yukawa structures can be easily inferred from our matching
results. For example, in a type I 2HDM all fermions couple exclusively to S2 such that
the matching will have the same form as the up-type terms

Mu,d,e +
∞∑
n=1

M(n)
u,d,e

(
h

v

)n
=
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Mu,d,e

[
1 +

cα
sβ

h

v
− cβ−α

2

s2αcα
s2βcβ

(
h

v

)2

− cβ−α
6

s22α
s22β

(2s2α − (1− 2c2α)t
−1
β )

(
h

v

)3

+ · · ·

]
(7.60)

7.2.3. Four-fermion operators in the alignment limit
We have already seen that the NLO Lagrangian at O(M−2

S ) contains four-fermion opera-
tors. From the explicit solution to the leading-order equation of motion (see Section 7.9)
we know that H0(h) vanishes in the alignment limit (cβ−α = 0). In that case the leading
EFT effects are four-fermions operators of canonical dimension 6 and chiral dimension 4
that arise from integrating out the heavy scalars at tree level. We can use (7.32) and set
H0(h) = 0 and get

H1 =
J̄1

M2
0 (1− 2J0

2 )
⊃ 1

v2M2
0

(
−tβ (Jf1 + J∗

f1) + t−1
β (Jf2 + J∗

f2)
)

(7.61)

where we retain only the fermion currents in the following. Since we are working at
O(M−2

S ) the pseudoscalar A0 and the charged scalar H± also contribute. Their equations
of motions can be solved iteratively as well and we find

A0 =
i

v2M2
A

(
tβ (Jf1 − J∗

f1) + t−1
β (Jf2 − J∗

f2)
)
+O(M−4

A ) (7.62)

and

H− =

√
2

vM2
H

(
tβJc1 + t−1

β J∗
c2

)
+O(M−4

H ) (7.63)

The fermion currents were defined in (7.20).
Plugging these solutions back into the Lagrangian and keeping only four-fermion operators
we get

L4fermion =
1

2M2
0 v

2

[
t2β(J

2
f1 + J∗2

f1 + 2Jf1J
∗
f1) + t−2

β (J2
f2 + J∗2

f2 + 2Jf2J
∗
f2)

− 2(Jf1 + J∗
f1)(Jf2 + J∗

f2)
]
− 1

2M2
Av

2

[
t2β(J

2
f1 + J∗2

f1 − 2Jf1J
∗
f1)

+t−2
β (J2

f2 + J∗2
f2 − 2Jf2J

∗
f2) + 2(Jf1 − J∗

f1)(Jf2 − J∗
f2)
]

+
2

M2
Hv

2
(t2βJc1J

∗
c1 + t−2

β Jc2J
∗
c2 + Jc1Jc2 + J∗

c1J
∗
c2) (7.64)

To see which independent four-fermion operators appear we evaluate the various terms
and reduce them to the basis operators in [37].

J2
f1 = Md ⊗MdOFY 3 +Me ⊗MeOFY 10 + 2Md ⊗MeOFY 9 (7.65)
J2
f2 = Mu ⊗MuOFY 1 (7.66)

Jf1J
∗
f1 = −Md⊗̃Md

[
1

12
OLR3 +

1

2
OLR4 −

1

6
OLR12 −OLR13

]
−Me⊗̃Me

[
1

4
OLR8 −

1

2
OLR17

]
−Md⊗̃Me

[
1

4
OLR9 −

1

2
OLR18 + h.c.

]
(7.67)
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Jf2J
∗
f2 = −Mu⊗̃Mu

[
1

12
OLR1 +

1

2
OLR2 +

1

6
OLR10 +OLR11

]
(7.68)

Jf1J
∗
f2 = Md ⊗MuOFY 5 +Me ⊗MuOFY 7 (7.69)

Jf1Jf2 = Md ⊗MuOST5 +Me ⊗MuOST9 (7.70)

|Jc1|2 = −Md⊗̃Md

[
1

12
OLR3 +

1

2
OLR4 +

1

6
OLR12 +OLR13

]
−Me⊗̃Me

[
1

4
OLR8 +

1

2
OLR17

]
−Md⊗̃Me

[
1

4
OLR9 +

1

2
OLR18 + h.c.

]
(7.71)

|Jc2|2 = −Mu⊗̃Mu

[
1

12
OLR1 +

1

2
OLR2 −

1

6
OLR10 −OLR11

]
(7.72)

Jc1Jc2 = Md ⊗MuOST6 +Me ⊗MuOST10 (7.73)

where we employ the notation of Ref. [196]

F (1) ⊗F (2)O = F (1)
ij F (2)

kl ψ̄i ...ψjψ̄k ...ψl

F (1)⊗̃F (2)O = F (1)
il F (2)

kj ψ̄i ...ψjψ̄k ...ψl (7.74)

for a four-fermion operator O ≡ ψ̄i ...ψjψ̄k ...ψl and i, j, k, l are generation indices. In
addition, we took the fermion mass matrices as hermitean. Summarizing we can conclude
that the following operators (and their hermitean conjugates) are generated at tree level

OLR1,OLR2,OLR3,OLR4,OLR8,OLR9,OLR10,OLR11,OLR12,OLR13,OLR17,OLR18,

OST5,OST6,OST9,OST10,OFY 1,OFY 3,OFY 5,OFY 7,OFY 9,OFY 10 (7.75)

In addition to the operators generated in the heavy Higgs model [40] and the singlet
extension [119], there are two additional operators with explicit factors of P12 and P21

due to charged scalar exchange

OST6 = q̄LUP21qRq̄LUP12qR, OST10 = q̄LUP21qR l̄LUP12lR (7.76)

Moreover, the result will serve as a cross check for our matching result from Section 5.4.2.
In the decoupling limit we can treat the heavy scalar masses as degenerate when working
up to the canonical dimension 6 as M0,MA,MH = m + O(v). As a result several terms
cancel between the three contributions and we obtain the compact expression

L4fermion =
2

m2v2
(
t2β(|Jf1|2 + |Jc1|2) + t−2

β (|Jf2|2 + |Jc2|2) + Jf1Jf2 + Jc1Jc2 + h.c.
)

(7.77)

Plugging in our results from (7.65) to (7.73) we end up with

L4fermion =−
t2β

m2v2

{
Md⊗̃Md

[
1

3
OLR3 + 2OLR4

]
+Me⊗̃MeOLR8

+Md⊗̃Me [OLR9 + h.c.]

}
−

t−2
β

m2v2
Mu⊗̃Mu

[
1

3
OLR1 + 2OLR2

]
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+Md ⊗Mu [OST5 +OST6 + h.c.] +Me ⊗Mu [OST9 +OST10 + h.c.]
(7.78)

Picking out the term ∝ t−2
β and focusing only on third generation quark reproduces our

result from (5.127)

L4fermion ⊃ −
t−2
β

v2
m2
t

m2

(
1

3
q̄Lγ

µqLt̄Rγ
µtR + 2q̄Lγ

µTAqLt̄Rγ
µTAtR

)
(7.79)

7.3. Nondecoupling effects at one loop
While the calculation of the complete one-loop effective Lagrangian resulting from inte-
grating out the heavy scalars is beyond the scope of this work, we calculate in the following
a particularly important class of one-loop effects. Integrating out the heavy charged scalar
H± at one-loop generates local operators inducing h→ γγ and h→ γZ transitions. Since
these processes are loop-suppressed in the SM, the EFT corrections appear at the same
chiral order as the leading contributions.

7.3.1. Functional matching
To perform the functional integration over the H̃± fluctuations we use the methods dis-
cussed in chapter 4. Expanding the Lagrangian up to quadratic order in H̃± gives us

L(2)

H̃± = H̃+∆H̃−, ∆ = −D2 −M2
H − U (7.80)

where Dµ = ∂µ +Xµ and

Xµ = ieAµ + i
g

2cW
(1− 2s2W )Zµ (7.81)

−U = d5h+ d7H + z6h
2 + z7hH + z8H

2 (7.82)

Here e is the electromagnetic coupling, sW = sin θW , cW = cos θW with the Weinberg
angle θW , A the photon and Z the Z-boson field. We have seen in Chapter (4) that the
Gaussian integration results in the following expression

Leff = −ics
∞∑
n=1

1

n

∫
d4p

(2π4)

〈(
2ip ·D +D2 + U

p2 −M2
H

)n〉
(7.83)

It is important to realize that for a strongly-coupled scenario the series in (7.83) does not
converge in the sense that only a finite number of terms will contribute at any given order
in the 1/MH expansion. Since U ∼ M2

H in our case, which is of the same order as the
denominator p2 −M2

H , an infinite number of terms in the sum over n contributes at a
given order in the 1/MH expansion. However, there are only finitely many terms at any
given order in the Higgs field h, since Un = O(hn). As a result, every EFT operator Q
is accompanied by a Higgs-function FQ(h) as is characteristic for the Higgs-electroweak
chiral Lagrangian. At any given order in hn the operator coefficient is well-defined and
calculable.
In a weakly-coupled model of the heavy sector, on the contrary, a generic matrix U scales
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2HDM: Nonlinear EFT

as O(MS) such that only a finite number of terms contribute at a given order in the 1/MH

expansion.
The relevant terms of the UOLEA contain two field strengths and, a priori, arbitrary
powers of h. Here we neglect, however, contributions with four or more powers of h and
thus need to retain only terms of order Û and Û2. The corresponding terms of the UOLEA
are [129]

Leff =
cs

(4π)2

[
− 1

12M2
H

〈ÛX̂µνX̂
µν〉+ 1

24M4
H

(
4

5
〈Û2X̂µνX̂

µν〉+ 1

5
〈(ÛX̂µν)

2〉
)

− 1

60M6
H

(
2

3
〈Û2X̂µνÛX̂

µν〉+ 〈Û3(X̂µν)
2〉
)]

(7.84)

We can specialize to our case with cs = 1 for a complex scalar and Û , X̂µν ∝ 1

Leff = −XµνX
µν

192π2

[
U

M2
H

− U2

2M4
H

+
U3

3M6
H

+O(h4)

]
(7.85)

To capture the nondecoupling effects we only need the part of U ∼ M2
H and express H0

through h via the LO equation of motion

U

M2
H

= −d5Hh− d7HH0(h)− z6Hh
2 − z7HhH0(h)− z8HH0(h)

2 (7.86)

Here we introduced the notation

di =M2
HdiH +M2

0di0 + d̄i, zi =M2
HziH +M2

0 zi0 + z̄i (7.87)

where

d5H =− 2sβ−α, d7H = −2cβ−α, z6H = −s2β−α,
z7H = −2sβ−αcβ−α, z8H = −c2β−α (7.88)

Note that the dependence of d5, d7 and z6, z7, z8 on M0 cancels at every order of h in U .
In addition, h needs to be expressed in terms of the canonically normalized Higgs field h̃
using h(h̃) (7.42). However, for the first two terms of FX(h) through order h2 the field
redefinition plays no role. Inserting H0(h) and retaining terms up to O(h3) we get

U(h)

M2
H

= −vd5H
h

v
− v2(z6H + d7Hd20)

h2

v2

+ v3
(
2

3
d220d5H − d20d30d7H − d20z7H

)
h3

v3
+O(h4) (7.89)

which gives the effective Lagrangian

Leff = −XµνX
µν

192π2

[
−vd50

h

v
− v2

(
d25H
2

+ z6H + d7Hd20

)
h2

v2
(7.90)

+v3
(
2

3
d220d5H − d20d30d7H − d20z7H

)
h3

v3
+O(h4)

]
(7.91)
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Finally, plugging in the explicit expressions and using trigonometric identities

LX,4 =
e2

16π2

(
AµνA

µν +
1− 2s2W
sW cW

AµνZ
µν

)
FX(h) (7.92)

FX(h) =
sβ−α
6

h

v
− 1

12

(
s2β−α +

s2α
c2β

c2β−α

)(
h

v

)2

− 1

36

[
2s2β−α + c2β−αsβ−α

s2α
s2β

(
−3 + 4

s2α
s2β

)](
h

v

)3

+O(h4) (7.93)

where Aµν = ∂µAν − ∂νAµ, Zµν = ∂µZν − ∂νZµ We have shown in (4.23) that the terms
of the form X2Un can be calculated for arbitrary n in the case Û ∝ 1 and the sum can
be performed

Leff =
1

16π2

∞∑
n=1

(−1)n

12nM2n
H

〈UnXµνX
µν〉 = −XµνX

µν

192π2
ln

(
1 +

U(h)

M2
H

)
(7.94)

In the alignment limit, this permits us to give a closed form expression of (7.94) to all
orders in h. We show in the appendix to this chapter (Sec. 7.9) that H0(h) vanishes in
the alignment limit and U , therefore, reduces to U/M2

H = 2h/v+(h/v)2 since vd5H = −2
and v2z6H = −1. Then (7.94) takes the form of (7.92) with the function FX(h) given by

FX(h) =
1

6
ln

(
1 +

h

v

)
(7.95)

which corresponds to the well-known low-energy theorems [197]. In contrast to the tree-
level nondecoupling effects, the loop induced h → γγ and h → γZ terms survive in this
limit, which makes them phenomenologically interesting [194, 198] (see Sec. 7.6).

7.3.2. Diagrammatic matching
We now briefly reflect on the preceding calculation. We employed the functional approach
to integrate out the charged scalar H± at one loop and presented an algorithm to cal-
culate the coefficients of FX(h) to arbitrary order in h. All the necessary information
came from performing the path integral. Diagrammatic matching on the other hand is
much more cumbersome, especially for couplings of the form hnAµA

µν for large n, since
many diagrams and combinatoric factors need to be taken into account. To illustrate this
fact, we calculate the coefficient cγγh using the diagrammatic approach. This will serve
as a cross check for our result and showcase the elegance and relative simplicity of the
functional approach in comparison. A similar matching calculation can be found in [194].

h→ γγ

Let us therefore compute the amplitude for the decay h(q) → γ(µ, p1) + γ(ν, p2) in the
full 2HDM and in the EFT. At the one-loop order in the 2HDM we have to consider two
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types of diagrams1

H±h

γ

γ

H±

H±

h

γ

γ

where second triangle graph with reversed momentum flow is understood. The expression
for the triangle graph is

kh

γ

γ

= iM(1)
hγγ = − i

4π2
e2d5 I

µν
1 (7.96)

where the loop integral is given by

Iµν1 =

∫
ddk

iπd/2
kµkν

[k2 −M2
H ] [(k + p1)2 −M2

H ] [(k − p2)2 −M2
H ]

(7.97)

The tensor integral can be reduced to Passarino-Veltman scalar integrals, e.g. using
Package-X [200, 201]

Iµν =

(
M2

H

2
C0(0, 0, q

2;M2
H ,M

2
H ,M

2
H) +

1

4

)(
gµν − pν1p

µ
2

p1 · p2

)
+B0(q

2;M2
H ,M

2
H)
gµν

4
(7.98)

where we made use of the Ward identities (ε∗µ(p1)p
µ
1 = ε∗µ(p2)p

µ
2 = 0). The scalar functions

are defined in appendix E. The diagram with reversed momentum flow gives the same
result due to charge conjugation invariance. The divergent part of M(1)

hγγ is canceled by
the bubble diagram so that the final amplitude is finite as required

H±

H±

h

γ

γ

= iM(3)
hγγ =

i

8π2
e2d5g

µνB0(q
2;M2

H ,M
2
H) (7.99)

In total, we have

Mµν = 2M(1)µν
hγγ +M(3)µν

hγγ = − α

2π
d5FH±(τ)

(
gµν − pµ2p

ν
1

p1 · p2

)
(7.100)

where the form factor is given by

FH±(τ) = 1 +
1

4

f(τ)

τ
= 1− arcsin2√τ

τ
(7.101)

1The diagrams in this section of been drawn with TikZ-Feynman [199].
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The loop function f(τ) is defined in (E.10) and τ = m2
h/4M

2
H . For τ � 1 we expand

FH±(s) = −τ
3
− 8

45
τ 2 +O(τ 3) (7.102)

which yields

Mµν =
α

2π
d5

m2
h

12M2
H

(
gµν − pµ2p

ν
1

p1 · p2

)
(7.103)

To capture the nondecoupling effects we need to take the limit MH → ∞

lim
MH→∞

d5
M2

H

= d5H = −2
sβ−α
v

(7.104)

such that the 2HDM h→ γγ amplitude in the nondecoupling limit reads

Mµν = − α

2π

sβ−α
6

m2
h

v

(
gµν − pµ2p

ν
1

p1 · p2

)
(7.105)

This result has to be equated with the corresponding EwChL amplitude. There the
process is given by the local operator at dχ = 4

Lhγγ =
α

4π
cγγh

h

v
AµνA

µν (7.106)

giving rise to the amplitude

Mµν = − α

2π
cγγh

m2
h

v

(
gµν − pµ2p

ν
1

p1 · p2

)
(7.107)

Comparing (7.105) and (7.107), we can read off

cγγh =
sβ−α
6

(7.108)

which gives the same result as before (7.92).

h→ γZ

For the process h → γZ we can proceed in a similar way but now one of the bosons in
the final state is massive. We have to consider the diagrams

H±h

γ

Z

H±

H±

h

γ

Z

Again a triangle graph with reversed momentum flow is understood. The expression for
the triangle graph is

kh

γ

Z

= iM(1)
h→γZ = − i

16π2
e2
1− 2s2W
sW cW

d5 I
µν
2 (7.109)
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where now the triangle diagram gives rise to the tensor integral

Iµν2 =

∫
ddk

iπd/2
4kµkν − 2kµpν2

[k2 −M2
H ] [(k + p1)2 −M2

H ] [(k − p2)2 −M2
H ]

(7.110)

Reducing the tensor integral to Passarino-Veltman scalar integral using Package-X we get

Iµν2 =

(
1− m2

Z

m2
h −m2

Z

(B0(m
2
h,M

2
H ,M

2
H)−B0(m

2
Z ,M

2
H ,M

2
H))

+ 2M2
HC0(0,m

2
Z ,m

2
H ,M

2
H ,M

2
H ,M

2
H)
)(

gµν − 2
pν1p

µ
2

m2
h −m2

Z

)
+ gµνB0(m

2
h,M

2
H ,M

2
H) (7.111)

As before the bubble diagram cancels the divergent part of the amplitude such that the
final result is finite as required

H±

H±

h

γ

γ

= iM(3)
h→γZ =

i

8π2
e2
1− 2s2W
sW cW

d5g
µνB0(m

2
h;M

2
H ,M

2
H)

(7.112)
The amplitude for the decay process h(q) → γ(µ, p1)+Z(ν, p2) for on-shell Higgs is given
by

M2HDM
h→γZ = ε∗µ(p1)ε

∗
ν(p2)Mµν (7.113)

Mµν = FH±

hγZ(τ, σ)T µν (7.114)

Here εµ, εν are the photon and Z polarization vectors respectively, τ = m2
h/4M

2
H , σ =

m2
Z/4M

2
H and we define the tensor

T µν = gµν − 2pν1p
µ
2

m2
h −m2

Z

(7.115)

The form factor FH±

hγZ(τ, σ) is given by

FH±

hγZ(τ, σ) = −α d5
2π

1− 2s2W
sW cW

[
1− m2

Z

m2
h −m2

Z

(h(τ)− h(σ))

+
M2

H

m2
h −m2

Z

(f(τ)− f(σ))

]
(7.116)

where the loop-functions f(τ) and h(τ) are defined in the appendix in eqs. (E.10) and
(E.6). Expanding the formfactor up to O(M−2

H ) we get

FH±

hγZ =
α d5
2π

1− 2s2W
sW cW

1

12

m2
h −m2

Z

M2
H

(7.117)

Taking the nondecoupling limit (7.104) we end up with

FH±

hγZ =− α

2π

1− 2s2W
sW cW

sβ−α
6

m2
h −m2

Z

v
(7.118)
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To perform the matching in the EwCHL we have the dχ = 4 operator

LhγZ =
α

4π

1− 2s2W
sW cW

cγZh
h

v
AµνZ

µν (7.119)

giving rise to the amplitude

Mµν = − α

2π

1− 2s2W
sW cW

cγZh
m2
h −m2

Z

v

(
gµν − 2

pµ2p
ν
1

m2
h −m2

Z

)
(7.120)

Comparing we get

cγZh =
sβ−α
6

(7.121)

Let us recap what we just did; we rederived our matching result for the linear coefficient of
FX(h) (7.92) this time using the diagrammatic approach which turned out be much more
cumbersome since we had to calculate the full amplitude in each case and then expand
in inverse powers of the heavy mass. In the functional approach no such complications
are necessary and moreover it provides an algorithm to compute FX(h) up to arbitrary
orders in h

7.4. Custodial symmetry breaking
The scalar potential (7.10) violates custodial symmetry since it contains the term

∆VCSB = (λ5 − λ4)〈S†
1S2T3〉2 (7.122)

Recall that the custodial symmetry group acts on the matrix fields as

S1,2 −→ LS1,2L
†, L ∈ SU(2) (7.123)

When the heavy scalars are integrated out, the two-derivative operator

Lβ1 = β1v
2〈U †DµUT3〉2 (7.124)

is generated.
The parameter β1 is related to the parameter T of oblique electroweak corrections [202,
203], β1 = αT/2 where α is the Sommerfeld fine structure constant. This can be most
easily seen in unitary gauge (U = 1) where it takes the form

Lβ1 = −β1
g2v2

4c2W
ZµZ

µ (7.125)

which is effectively a correction to the Z-mass of δm2
Z = −2β1m

2
Z . Thus, the ρ-parameter

gets a correction

ρ =
m2
W

c2W (m2
Z + δm2

Z)
= 1 + 2β1 (7.126)

The parameter T of oblique electroweak corrections is defined as

T =
ρ− 1

α
(7.127)
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which gives the desired result.
Naively it would seem that Lβ1 is a LO effect since it has chiral dimension 2. However, it
would produce O(1) corrections to the electroweak T -parameter. Therefore, it cannot be
a leading order effect, since empirically such corrections do not exist. Accordingly Lβ1 is
counted as a NLO operator with chiral dimension 4 [40].
In the following, we compute β1 explicitly and show that it is generated at the one-loop
level. To compute β1 we employ the functional matching procedure [47] that was discussed
in Chapter 4. The relevant part of the 2HDM Lagrangian for our matching calculation is
given by

L =
1

2
∂µh∂

µh+
1

2
∂µH∂

µH +
1

2
∂µA0∂

µA0 + ∂µH
+∂µH−

+ Jµ3
[
iH−∂µH

+ − iH+∂µH
− + cβ−α (h∂µA0 − A0∂µh) + sβ−α (A0∂µH −H∂µA0)

]
+ Jµ+

[
A0∂µH

+ −H+∂µA0 − icβ−α
(
H+∂µh− h∂µH

+
)
+ isβ−α

(
H+∂µH −H∂µH

+
)]

+ Jµ−
[
A0∂µH

− −H−∂µA0 + icβ−α
(
H−∂µh− h∂µH

−)− isβ−α
(
H−∂µH −H∂µH

−)]
(7.128)

Now we expand the scalar fields into classical background fields and quantum fluctuations

φ→ φ+ φ̃ (7.129)

Expanding (7.128) up to quadratic order in the fluctuations we arrive at

L(2) =
1

2

(
h̃ H̃ Ã0 H̃+ H̃−

)


∆hh 0 −XAh −X†
+h −X†

−h

0 ∆HH −XAH −X†
+H −X†

−H

XAh XAH ∆AA XA− XA+

X+h X+H −XA− ∆+− 0

X−h X−H −XA+ 0 ∆†
+−





h̃

H̃

Ã0

H̃−

H̃+


(7.130)

The entries of the fluctuation operator are given by

∆hh = −∂2 −m2
h (7.131)

∆HH = −∂2 −M2
0 (7.132)

∆AA = −∂2 −M2
A (7.133)

∆+− = −∂2 −M2
h + 2iJµ3 ∂µ (7.134)

XAh = −2cβ−αJ
µ
3 ∂µ (7.135)

XAH = 2sβ−αJ
µ
3 ∂µ (7.136)

X±h = ∓i2cβ−αJµ±∂µ (7.137)
X±H = ±i2sβ−αJµ±∂µ (7.138)
X±A = −2Jµ±∂µ (7.139)

The fluctuation operator has the schematic form

O =

 ∆L −X†
LH

XLH ∆H

 (7.140)
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Following [47] the fluctuation operator can be brought into block-digaonal form

Õ =

∆L 0

0 ∆̃H

 (7.141)

with ∆̃H = ∆H − (−X†
LH)∆

−1
L XLH. In our case the modified fluctuation operator for the

heavy fields reads

∆̃H =


∆HH −XAH −X†

+H −X†
−H

XAH ∆̃AA XA− XA+

X+H −XA− ∆̃+− 0

X−H −XA+ 0 ∆̃†
+−

 (7.142)

with

∆̃AA = ∆AA +XAh∆
−1
hhXAh (7.143)

∆̃+− = ∆+− +X†
+h∆

−1
hhX+h (7.144)

Here ∆−1
hh is given by

∆−1
hh =

1

p2 −m2
h

(7.145)

It is easy to see that ∆̃H has the generic form

∆̃H = −∂21−M2 − U (7.146)

with

M2 =


M2

0 0 0 0

0 M2
A 0 0

0 0 M2
H 0

0 0 0 M2
H

 (7.147)

It remains to perform the shift ∂x → ∂x+ip. We will drop henceforth all partial derivatives
in U after the shift, since we only need terms of the form J2

3 . Since the heavy masses are
not degenerate the master formula for the EFT Lagrangian in [47] needs to be modified
slightly

L1loop = − i

2

∞∑
n+1

1

n

∫
ddp

(2π)d
tr
{((

p2 −M2
)−1

U(x, ∂x + ip)
)n

1

}
(7.148)

where

(
p2 −M2

)−1
=



1
p2−M2

0
0 0 0

0 1
p2−M2

A
0 0

0 0 1
p2−M2

H
0

0 0 0 1
p2−M2

H

 (7.149)

104



2HDM: Nonlinear EFT

To perform the calculation we need the relations

Jµ3 J3µ = −〈U †DµUT3〉2, Jµ+J−µ =
1

2
〈U †DµUT3〉2 (7.150)

For the contributions arising from heavy-heavy loops we need the integral [204]

Iµν(A,B) =

∫
ddp

(2π)d
4pµpν

(p2 − A) (p2 −B)

=
igµν

16π2

[
A

(
1

ε
+ log

µ̄2

A
+ 1

)
+B

(
1

ε
+ log

µ̄2

B
+ 1

)
+ F (A,B)

]
(7.151)

where the function F is given by

F (x, y) =
x+ y

2
− xy

x− y
log

x

y
(7.152)

On the contrary for the heavy-light loop contribution we need∫
ddp

(2π)d
pµpν

p2 (p2 −M2)
=M2

∫
ddp

(2π)d
pµpν

p4 (p2 −M2)
=

iM2

(4π)2
gµν

4

(
1

ε
+ log

µ̄2

M2
+

3

2

)
(7.153)

We will get contributions to Oβ1 from the n = 1 and n = 2 terms in the sum. The first
term is

L(n=1)
1loop =

i

2

∫
ddp

(2π)d
XAh∆

−1
hhXAh

p2 −M2
A

+ 2
X†

+h∆
−1
hhX+h

p2 −M2
H

=
c2β−α
32π2

〈U †DµUT3〉2[(
M2

H −M2
A

)(1

ε
+ 1

)
+M2

H log
µ̄2

M2
H

−M2
A log

µ̄2

M2
A

+ F (m2
h,M

2
H)− F (m2

h,M
2
A)

]
(7.154)

The n = 2 contribution is given by

L(n=2) =
−i
4

[
2s2β−αJ

µ
3 J

ν
3 Iµν(M

2
A,M

2
0 ) + 4Jµ+J

ν
−Iµν(M

2
H ,M

2
A)

+4s2β−αJ
µ
+J

ν
−Iµν(M

2
H ,M

2
0 ) + 2Jµ3 J

ν
3 Iµν(M

2
H ,M

2
H)
]

(7.155)

Inserting the integrals we end up with

L(n=2) =
1

32π2
〈U †DµUT3〉2

[
s2β−α

{
F (M2

0 ,M
2
H)− F (M2

A,M
2
0 )
}
+ F (M2

A,M
2
H)

−c2β−α
{(
M2

H −M2
A

)(1

ε
+ 1

)
+M2

H log
µ̄2

M2
H

−M2
A log

µ̄2

M2
A

}]
(7.156)

We see that the divergent parts cancel precisely between the n = 1 and n = 2 terms so
that the final result reads

Lβ1 =
1

32π2
〈U †DµUT3〉2

[
c2β−α

{
F (m2

h,M
2
H)− F (m2

h,M
2
A)

}
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+s2β−α

{
F (M2

0 ,M
2
H)− F (M2

A,M
2
0 )
}
+ F (M2

A,M
2
H)
]

(7.157)

Our result agrees with the previously obtained expressions in the literature [204, 205]. The
phenomenological requirement of approximate custodial symmetry indicates the treat-
ment of the mass difference M2

H −M2
A = (v2/2)(λ5 − λ4) as a small coupling with chiral

dimension 2. Expand the coefficient of Oβ1 to first order in M2
H −M2

A we end up with

Lβ1 = v2
λ5 − λ4
64π2

〈U †DµUT3〉2
[
c2β−α
2

+ s2β−α

{1
2
− M4

0

(M2
0 −M2

H)
2
log

M2
0

M2
H

− M2
0M

2
H

(M2
0 −M2

H)
2

}]
(7.158)

7.5. Parameter Range - Decoupling vs. Nondecoupling
Limit

After making use of the decoupling limit various times in this chapter we now offer a
detailed discussion of the 2HDM parameter range carfully distinguishing the decoupling
and nondecoupling limits.
For the construction of a low-energy EFT, we consider the phenomenologically viable
scenario where the masses of the BSM scalar degrees of freedom in the 2HDM are taken
to be much larger than the electroweak scale, i.e.

MS ∼M0,MH ,MA � mh ∼ v (7.159)

Depending on the numerical values of the parameters, we can discern two basic scenarios,
corresponding to weak and strong coupling, respectively. They are given by

(I) Nondecoupling regime2 (strong coupling, nonlinear EFT)

1 � |λi| . 16π2, mh ∼ v ∼ m�MS =⇒ cβ−α = O(1) (7.160)

While cβ−α is a priori unconstrained in this regime, we will also consider the case
cβ−α � 1, referred to as the nondecoupling regime with (quasi-)alignment. We note
that calculating the leading EFT effects in this limit is equivalent to setting m = 0,
recovering the Z2 symmetric 2HDM without soft breaking. It is well known that
this model has no decoupling limit [206, 207].

(II) Decoupling regime3 (weak coupling, linear EFT)

λi = O(1), mh ∼ v � m ∼MS =⇒ cβ−α � 1 (7.161)

In the strong-coupling case, we require the λi to be somewhat below the nominal strong-
coupling limit MS ≈ 4πv corresponding to |λi| ≈ 16π2. Otherwise a description of the
heavy scalar dynamics in terms of resonances would no longer be valid. To be more
precise, the magnitude of the couplings is constrained by perturbative unitarity [209–
215]. For loop corrections to the constraints, see [216, 217]. Generally speaking, these

2Although not stated explicitly, this limit was used to derive nondecoupling effects in [194].
3This limit has been studied extensively in [208]. The model we consider in this work is simpler because

of the additional, softly broken, Z2 symmetry S1 → −S1 we imposed.

106



2HDM: Nonlinear EFT

give much stronger bounds, namely |λi| . 4π. Furthermore, the couplings are constrained
such that the potential is bounded from below and that the symmetry breaking vacuum
is the global minimum of the potential. For the 2HDM with (softly broken) Z2 symmetry,
the necessary and sufficient conditions on the couplings read [218–222]

λ1 ≥ 0 , λ2 ≥ 0 , λ3 ≥ −
√
λ1λ2 , λ3 + λ4 − |λ5| ≥ −

√
λ1λ2 (7.162)

To satisfy these bounds, the absolute values of the couplings have to be taken large
uniformly, which limits the possible mass splitting between the heavy scalars. Especially
the perturbative unitarity constraints severely restrict the possible parameter space of the
nondecoupling regime. Nevertheless, masses of MS . 1 TeV are still possible for m ∼ v,
which clearly fulfills the power counting of the nondecoupling regime.

In the decoupling regime, all new physics effects are suppressed by powers of the heavy
mass scale MS as formalized by the Appelquist-Carazzone decoupling theorem [85]. A
decoupling regime automatically implies the alignment limit cβ−α = 0. In this limit, the
h-couplings approach their SM values [208]. An explicit calculation then gives

c2β−α =
v4

16m4 s
2
2β

[
λ1 − λ2 + c2β(λ1 + λ2 − 2λ345)

]2
+O(v6/m6) (7.163)

with λ345 ≡ λ3+λ4+λ5. When m� v, this indeed approaches zero. As mentioned above,
there is no similar relation in the nondecoupling regime, and thus, cβ−α is unconstrained
a priori.

There exist various matching calculations in the decoupling limit, see e.g. [193, 223,
224]. In [193], the authors performed matching calculations in the 2HDM to SMEFT and
HEFT and reported that they found agreement in the predictions of both EFTs. This
is, however, unsurprising since they assumed a decoupling scenario for both the SMEFT
and HEFT calculation. In such a weakly coupled scenario, SMEFT and the HEFT are
guaranteed to give identical predictions as they differ only by a field redefinition. In
particular, SMEFT and HEFT can not be distinguished by whether the heavy degrees of
freedom are integrated out before or after spontaneous symmetry breaking.

To illustrate the the two regimes discussed above, we take the hH2
0 -coupling d3 as an

example. It reads

d3 = −sβ−α
2v

[
(m2

h + 2M2
0 − 3m2)(1− 2c2β−α + 2sβ−αcβ−α cot 2β) +m2

]
(7.164)

In the nondecoupling regime M0 ∼ MS � mh,m, so d3 = O(M2
S), whereas in the decou-

pling regime, the masses and parameters of the model scale as

M2
0 , M

2
H , M

2
A = m2 +O(v2) , m2

h = O(v2) , cβ−α = O(v2/m2) (7.165)

so d3 reduces to

d3 = −m
2
h

2v
− vs2βc

2
β(λ1 + λ2 − 2λ345) +O(v3/m2) (7.166)

Evidently, all heavy mass dependence has canceled. Similar calculations show that this
cancellation works for all di and zi. It is now straightforward to see that all nondecoupling
effects vanish in the decoupling-regime. Obviously, all tree-level nondecoupling effects
vanish in the decoupling limit, since they are all proportional to cβ−α. Also the anomalous
hγγ− and hZZ−couplings disappear as the ratio di as zi/M2

S goes to zero in the limit
MS → ∞.
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Tree Level Loop Level

cV sβ−α cγ
sβ−α
6

cu sβ−α+cβ−αt
−1
β cγZ

1−2s2W
sW cW

sβ−α
6

cd sβ−α − cβ−αtβ cg 0

Table 7.1.: LO matching results for the type II 2HDM.

7.6. Phenomenological considerations
To gain insight into the experimental validity of the nondecoupling limit, it is convenient
to compare our matching results with a global HEFT fit. Using LHC run I and II data the
authors of [225] performed such a fit to constrain the following effective HEFT couplings

Lfit = 2cV

(
mWW

+
µ W

−
µ +

1

2
m2
ZZµZ

µ

)
h

v
−
∑
f

cf mf ψ̄ψ

+
α

4π
cγAµνA

µν h

v
+

α

4π
cγZAµνZ

µν h

v
+
αs
4π
cg〈GµνG

µν〉h
v

(7.167)

with ψ ∈ {t, b, c, τ, µ}. We summarize our matching results in table 7.1. From [225]
several conclusions can be drawn. First of all, the (quasi-) alignment limit appears to
be valid, since the fit result for the Higgs-vector boson coupling cV gives a constraint for
sβ−α

cV = 1.01± 0.06 =⇒ sβ−α & 0.95 (7.168)

where the error is given in the 68% probability interval. Thus, we can infer cβ−α � 1 and
see that the (quasi-)alignment limit is phenomenologically realized. Using our matching
result for the anomalous Higgs-photon coupling and the constraint for sβ−α, we find

cγ ∈ [0.16, 0.17] (7.169)

This coupling is bounded from below in the alignment limit (cγ = 1/6) and as such
particularly important. The global HEFT fit cites the following bound for cγ

cγ = 0.05 ± 0.20 (7.170)

We see that our matching result lies within the error bounds and, thus, consistent. If
the constraints on cγ could be further narrowed, e.g. with more data from the LHC, the
nondecoupling regime could be excluded experimentally. In principle, a photon collider
could probe local couplings of the form h2AµνA

µν through processes such as γγ → hh.
Much stronger bounds for sβ−α can be obtained by using global fits for the 2HDM [226,
227] instead of using an EFT approach. However, a detailed analysis lies beyond the
scope of this work.

7.7. Linear EFT
After tackling the nondecoupling limit, let us now consider the decoupling limit. Here
it is convenient to work in the Higgs basis (5.105), since to leading order in the EFT
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expansion the heavy states are all contained in the doublet H2 while the doublet H1 can
be identified with the SM Higgs doublet. Thus, to obtain the low-energy EFT we can
easily integrate out H2 at tree level, i.e. solve its (classical) equation of motion and plug it
back into the Lagrangian. The resulting linear EFT is SMEFT and we can thus compute
the matching to the Warsaw basis [24]. The dominant EFT effects arise from canonical
dimension 6 terms. This has already been discussed in [193, 224, 228].
In the Higgs basis the potential takes the following form

V = Y1H
†
1H1 + Y2H

†
2H2 + Y3

(
H†

1H2 +H†
2H1

)
+
Z1

2
(H†

1H1)
2 +

Z2

2
(H†

2H2)
2 + Z3(H

†
1H1)(H

†
2H2) + Z4(H

†
1H2)(H

†
2H1)

+

[
Z5

2
(H†

1H2)
2 +

(
Z6(H

†
1H1) + Z7(H

†
2H2)

)
(H†

1H2) + h.c.
]

(7.171)

where the coefficients are given by

Y1 = −m
2
h

2
+
c2β−α
2

(m2
h −M2

0 ) (7.172)

Y2 = m2 − m2
h

2
− 1

2
(M2

0 −m2
h)cβ−α(cβ−α − 2sβ−α cot(2β)) (7.173)

Y3 =
1

2
sβ−αcβ−α(M

2
0 −m2

h) (7.174)

Z1 =
s2β−αm

2
h + c2β−αM

2
0

v2
(7.175)

Z3 =
2

v2
(
M2

H − Y2
)

(7.176)

Z4 =
M2

0 s
2
β−α +m2

hc
2
β−α +M2

A − 2M2
H

v2
(7.177)

Z5 =
M2

0 s
2
β−α +m2

hc
2
β−α −M2

A

v2
(7.178)

Z6 =
(m2

h −M2
0 )sβ−αcβ−α
v2

(7.179)

The potential stability conditions imply

Y1 = −1

2
v2Z1, Y3 = −1

2
v2Z6 (7.180)

which can be verified by the explicit expressions. Working in the decoupling limit implies
cβ−α � 1 and from (7.163) we know

cβ−α = O
(
v2

m2

)
(7.181)

Identifying Λ = m as the heavy scale we can trade Y2 for m2 since Y2 = m2 + O(v2).
Now we can integrate out H2 at tree level following the usual steps. The solution to the
tree-level equation of motion is given by

H2 = −Z6

m2H1

(
H†

1H1 −
v2

2

)
+O

(
1

m4

)
(7.182)
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Plugging this back into the Lagrangian (assuming as before a type II Yukawa sector)

L =DµH
†
1D

µH1 −
(
Y1 − v4

Z2
6

4Y2

)
(H†

1H1)−
1

2

(
Z1 + 2v2

Z2
6

Y2

)
(H†

1H1)
2 +

Z2
6

Y2
(H†

1H1)
3

− (q̄LcβH1YdP−qR + l̄LcβH1YeP−lR + h.c.)
[
1 + tβ

Z6

m2

(
H†

1H1 −
v2

2

)]
− (q̄LsβH̃1YuP−qR + h.c.)

[
1− t−1

β

Z6

m2

(
H†

1H1 −
v2

2

)]
(7.183)

At the order we are working we can identify H1 with the SM Higgs doublet φ. Comparing
with the Warsaw basis it is easy to see that the following dimension six operators are
generated

L =
CH
Λ2

(
φ†φ
)3

+

[
CHu
Λ2

(
φ†φ
) (
q̄LuRφ̃

)
+
CHd
Λ2

(
φ†φ
)
(q̄LdRφ)

+
CHe
Λ2

(
φ†φ
) (
l̄LeRφ

)
+ h.c.

]
(7.184)

Note that the operators QH� and QHD are absent. Therefore, it is not necessary to
perform a field redefinition to canonically renormalize the kinetic term. The Wilson
coefficients for the SMEFT operators are

CH
Λ2

=
Z2

6

Y2
= c2β−α

m2

v4
+O

(
1

Λ4

)
(7.185)

CHd
Λ2

= −
√
2
Md

v
tβ
Z6

Y2
=

√
2
Md

v
tβ
cβ−α
v2

+O
(

1

Λ4

)
(7.186)

CHe
Λ2

= −
√
2
Me

v
tβ
Z6

Y2
=

√
2
Me

v
tβ
cβ−α
v2

+O
(

1

Λ4

)
(7.187)

CHu
Λ2

=
√
2
Mu

v
t−1
β

Z6

Y2
= −

√
2
Mu

v
t−1
β

cβ−α
v2

+O
(

1

Λ4

)
(7.188)

To bring the Lagrangian to a HEFT-like form we use the exponential parameterization

H1 =
v + h√

2
U

0

1

 (7.189)

The complete EFT Lagrangian up to terms of order 1/M2
S is given by

L =L0 +
1

2
∂µh∂

µh− m2
h

2
h2 +

v2

4
〈DµU

†DµU〉
(
1 + 2

h

v
+
h2

v2

)
− m2

hv
2

2

[
(1− 2ξ2)

(
h

v

)3

+

(
1

4
− 3ξ2

)(
h

v

)4

− 3

2
ξ2
(
h

v

)5

− 1

4
ξ2
(
h

v

)6
]

− (Jf1 + J∗
f1)

[
1 + (1− tβcβ−α)

(
h

v

)
− 3

2
tβcβ−α

(
h

v

)2

− 1

2
tβcβ−α

(
h

v

)3
]

− (Jf2 + J∗
f2)

[
1 + (1 + t−1

β cβ−α)

(
h

v

)
+

3

2
t−1
β cβ−α

(
h

v

)2

+
1

2
t−1
β cβ−α

(
h

v

)3
]

(7.190)
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where we defined

ξ = cβ−α
m

mh

(7.191)

Tree level corrections to this Lagrangian are of O(M−4
S ). We observe that the Higgs cou-

pling in are reduced with respect to their SM values. In contrast to SM singlet extension
the coefficients of the Flare function does not receive corrections since no field redefinition
is necessary (CH,kin = 0). Also now the Higgs self-couplings are correlated which was not
the case before in the nonlinear EFT. In addition, the linear EFT only contains terms up
to h6 in the potential, since it is organized by canonical dimensions and we work up to
dimension six. We can further illustrate the difference between linear and nonlinear EFT
by looking at the hh→ hh amplitude [119] at tree level. In the full 2HDM the amplitude
is M = M1 +M2, where

M1 = 24z1 − 4d22

[
1

s−M2
0

+
1

t−M2
0

+
1

u−M2
0

]
(7.192)

consists of the local, quartic h self-coupling and H0 boson exchange. Here s, t, u denote
the usual Mandelstam variables. The nonlocal contribution from h-exchange is given by

M2 = −36d21

[
1

s−m2
h

+
1

t−m2
h

+
1

u−m2
h

]
(7.193)

M2 is the same in the full theory and in the EFT, which is why we concentrate on M1

in the following. Integrating out a heavy resonance in the diagrammatic picture implies
expanding the propagator

1

s−M2
0

= − 1

M2
0

∞∑
n=0

sn

Mn
0

(7.194)

Making use of the property s+t+u = 4m2
h and keeping in mind that in the nondecoupling

limit vd2 ∼M2
0 we find

M1 = 24z1 + 12
d22
M2

0

+ 16
d22m

2
h

M4
0

(7.195)

Inserting the parametrization d2 =M2
0d20 + d̄2, z1 =M2

0 z10 + z̄1

M1 = 12
M2

0

v2
(2z10 + v2d220) + 24

(
z̄1 + d20d̄2 +

2

3
d220m

2
h

)
+O

(
1

M2
0

)
(7.196)

The term ∝M2
0 vanishes and taking the limit M0 → ∞ gives

M1 = −12
m2
h

v2

[
1

4
−
c2β−α
4s22β

(
1

6
(7− 12c2(β+α) − 19c4α)− (1− 2c2αc2β − 3c4α)

m2

m2
h

)]
(7.197)

which reproduces the amplitude from the local h4-amplitude coming from (7.44). In the
linear EFT on the other hand the couplings scale as

d2 = −3

2
cβ−α

m2

v
, z1 = −1

8

m2
h

v2

(
1− 3ξ2 +O

(
1

Λ4

))
(7.198)
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Here v d2 is of O(1) and z1 includes dimension six corrections such that the expression for
the amplitude becomes

M1 = 24z1 + 12
d22
M2

0

= −12
m2
h

v2

(
1

4
− 3ξ2

)
(7.199)

which reproduces the amplitude from the local, quartic h-vertex in the nonlinear theory
(7.190).

7.8. Discussion
In this chapter, we have derived the low-energy EFT at the electroweak scale for the
2HDM in the nondecoupling regime. In this strongly coupled region of parameter space,
the resulting EFT takes the form of an electroweak chiral Lagrangian, also known as
HEFT or nonlinear EFT. Employing functional methods throughout the matching pro-
cedure, we present an algorithm to compute the Higgs-dependent functions characteristic
of a nonlinear EFT to arbitrary orders in the Higgs field h. In addition to the results of
[2], we include a discussion of tree-level generated four-fermion operators and explicitly
compute the coefficient of the custodial symmetry-violating operator Qβ1 . To highlight
the advantages of the functional approach, we contrast it with the diagrammatic match-
ing procedure by deriving the loop-induced local operators contributing to h → γγ and
h → γZ using both methods. These anomalous Higgs–gauge boson couplings exhibit
nondecoupling behavior that persists even in the alignment limit, making them promising
targets for future experimental tests.

7.9. Appendix: Exact solution for H0(h)

In this appendix, we integrate out the heavy scalar field H by solving its equation of
motion. We present an exact analytic solution for the leading-order term H0(h) of O(1),
that arises from solving the equation of motion at O(M2

S). This implies that we can set
A = H± = 0 in this approximation. The calculation is analogous to the one presented in
the Appendix of [119]. To calculate H0 only terms of O(M2

S) need to be retained in the
Lagrangian. In this limit (7.2) reads

LM = −m2
11φ

2
1 −m2

22φ
2
2 −

λ1
2
φ4
1 −

λ2
2
φ4
2 − λ345φ

2
1φ

2
2 (7.200)

while φ2
n ≡ (vn + hn)

2/2 and

λ1 =
M2

0

v2
c2α
c2β
, λ2 =

M2
0

v2
s2α
s2β
, λ345 ≡ λ3 + λ4 + λ5 =

M2
0

v2
sαcα
sβcβ

m2
11 = −M

2
0

2

(
c2α +

sαcαcβ
sβ

)
, m2

22 = −M
2
0

2

(
s2α +

sαcαcβ
sβ

)
(7.201)

Expressing the φn through h and H we obtain

φ1 =
1√
2
(cβv + cαH − sαh)
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φ2 =
1√
2
(sβv + sαH + cαh) (7.202)

For convenience we define the combination

R2 =
cα
cβ
φ2
1 +

sα
sβ
φ2
2 (7.203)

The Lagrangian (7.200) then takes the form

LM =
M2

0

2
(sαsβ + cαcβ)R

2 − M2
0

2v2
R4 (7.204)

The equation of motion for H reads

∂L
∂H

=
∂L
∂R2

∂R2

∂H
= 0 (7.205)

The question is now to determine which factor of the product ∂L
∂R2

∂R2

∂H
contains the relevant

solution H0(h). Here we are integrating out H at tree level using functional methods, i.e.
we solve the equation of motion and reinsert the solution H0(h) back into the Lagrangian
to obtain an effective Lagrangian. This is equivalent to matching all possible tree level
diagrams with internal H lines to an effective, low-energy Lagrangian for h. Let us
therefore consider a general diagram with H lines only. Recalling the form of the H
Lagrangian (7.26), such a general diagram contains a number Vn of vertices JnHn(n =
1, ..., 4), P H-field propagators, and L Loops. From the standard topological identities

2P = V1 + 2V2 + 3V3 + 4V4

L = P − (V1 + V2 + V3 + V4) + 1 (7.206)

we can deduce

L = V4 +
V3 − V1

2
+ 1 (7.207)

As we are working at tree level we may set L = 0 and obtain

V1 = V3 + 2V4 + 2 (7.208)

This relation tells us that V1 ≥ 2 since V3, V4 ≥ 0. As a result, the tree-level effective
Lagrangian has to start at O(J2

1 ) and H0 accordingly at O(J1). Since J1 = O(h2) we
know that H0(h) = O(h2).
Following these considerations we can discard the solution for H0(h) of the form

0 =
∂R2

∂H
= v +

(
s2αcα
sβ

− sαc
2
α

cβ

)
h+

(
s3α
sβ

+
c3α
cβ

)
H (7.209)

since it is linear in h.
The relevant solution to the equation of motion, therefore, follows from ∂L/∂R2 = 0,
which is quadratic in H. It can be written as

R2 =
v2

2
(sαsβ + cαcβ) =

v2

2
cβ−α (7.210)
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This result confirms that the absence of any non-trivial terms of O(M2
S) in the effective

Lagrangian. From (7.210) it follows that the H0(h) satisfies R2(h,H0(h)) = const., which,
reinserted into (7.204), gives a field-independent, irrelevant constant. From (7.210) we
can finally deduce

H0(h) =
v +

(
s2αcα
sβ

− sαc2α
cβ

)
h

s3α
sβ

+ c3α
cβ


√√√√√√1−

(
s3α
sβ

+ c3α
cβ

)(
sαc2α
sβ

+ s2αcα
cβ

)
h2(

v +
(
s2αcα
sβ

− sαc2α
cβ

)
h
)2 − 1

 (7.211)

Furthermore, we note that the combination

sαc
2
α

sβ
+
s2αcα
cβ

= −cβ−α
[
1− 2c2β−α + 2cβ−αsβ−α cot(2β)

]
(7.212)

vanishes in the alignment limit. The square root in (7.211) then reduces to 1 and as
a result H0(h) = 0. In conclusion, all tree-level nondecoupling effects vanish in the
alignment limit.
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8. Anomalous HEFT couplings for
Off-shell Higgs in gg → ZLZL

In the last chapter, we performed a top-down matching calculation and matched the
2HDM in the nondecoupling limit to the Electroweak Chiral Lagrangian. Now, we turn
to an example where the HEFT is used as a bottom-up EFT in a high-energy process to
parametrize the effects of an unknown UV sector. In this chapter, we analyze (longitu-
dinal) Z-boson production via gluon fusion gg → ZLZL with anomalous couplings from
the EwChL. Using this process, we illustrate how the EwChL is systematically applied,
emphasizing the role of loop orders and chiral dimensions in the selection of operators. In
our analysis, we focus especially on the kinematic region where the virtual Higgs boson in
the s-channel is highly off-shell. This kinematic region is of particular interest since the
effects of some new physics operators grow sharply with increasing center-of-mass energy.
We will demonstrate, however, that this behavior should not be taken at face value since
EFT corrections should remain small for the effective description to be valid.
Vector boson production via gluon fusion has been widely discussed in the literature. It
was suggested to use off-shell Higgs events in pp → ZZ to constrain the Higgs decay
width [229]. The process pp → ZZ has also been studied in a SMEFT context [230].
Recently, there has been renewed interest in HEFT treatments for gg → ZZ where the
Higgs boson is off-shell [231]. To our knowledge, however, there are no studies in the lit-
erature where the HEFT is applied systematically with a non-redundant operator basis.
Therefore, our motivation in this chapter is to showcase the consistent application of the
Higgs-EwChL rather than providing a detailed phenomenological study. While we do not
provide a complete next-to-leading order (NLO) calculation in the EFT, we explain which
contributions would be required for such an undertaking.
We calculate the corresponding Goldstone process gg → ϕ0ϕ0 in this chapter and find
that at leading order in the EFT, only three anomalous couplings are needed.
The chapter is organized as follows. In Sec. 8.1, we introduce the anomalous couplings
from the electroweak chiral Lagrangian relevant for the process gg → ZZ and classify
them by their order in the EFT expansion, distinguishing leading from subleading con-
tributions. In Sec. 8.2, we present a warm-up analysis of the tt̄ → ZZ amplitude, which
gives insight into the full gg → ZZ amplitude and exposes potential unitarity-violating
effects in the EFT. Sec. 8.3 is devoted to the computation of the gg → ZLZL amplitude:
we include the anomalous couplings, study its asymptotic behavior at large s, and provide
a quantitative estimate of the next-to-leading order effects. We discuss phenomenological
implications in Sec. 8.4, and Sec. 8.6 collects additional technical details of the calcula-
tion as an appendix. This chapter is based on the publication [3], where the author of
this thesis is a co-author.
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8.1. Effective field theory framework for gg → ZZ

8.1.1. Electroweak chiral Lagrangian
We employ the Electroweak chiral Lagrangian (HEFT) in this chapter. The HEFT La-
grangian at leading order is defined in (3.21) and (3.23). At next-to-leading order in the
chiral counting several new operators enter the process. A basis of NLO operators with
chiral dimension four has been compiled in [40], where the operators are divided into seven
classes: UhD2, UhD4, X2h,XUhD2, ψ2UhD,ψ2UhD2, and ψ4Uh. Out of these we list all
the operators than can contribute to the process gg → ZZ at leading and next-to-leading
order in the chiral counting

UhD2 : Qβ1 = 〈T3U †DµU〉2η (8.1)

UhD2 : QD1 = 〈DµU †DµU〉2, QD2 = 〈DµU
†DνU〉〈DµU †DνU〉

QD7 = 〈DµU †DµU〉∂νη∂νη, QD8 = 〈DµU
†DνU〉∂µη∂νη

QD11 = (∂µη∂
µη)2 (8.2)

X2h : QXh1 = g′2BµνB
µνη, QXh2 = g2〈WµνW

µν〉η
QXh3 = g2s〈GµνG

µν〉η (8.3)

XUhD2 : QXU1 = g′gBµν〈W µνUT3U
†〉η, QXU7 = 2ig′Bµν〈T3DµU †DνU〉η

QXU7 = 2ig〈WµνD
µUDνU †〉η (8.4)

ψ2UhD : QψV 1 = q̄Lγ
µqL i〈T3U †DµU〉, QψV 2 = q̄Lγ

µUT3U
†qL i〈T3U †DµU〉

QψV 4 = ūRγ
µuR i〈T3U †DµU〉, QψV 5 = d̄Rγ

µdR i〈T3U †DµU〉 (8.5)

ψ2UhD : QψS1 = q̄LUP+qR 〈DµU
†DµU〉, QψS2 = q̄LUP−qR 〈DµU

†DµU〉 (8.6)

where we used the notation η ≡ h/v.
We have omitted to write down the four-fermion operators of class ψ4Uh, since they
contribute only at NNLO. Our operator selection is based on the premise of CP conser-
vation and we have selected the terms with powers of the Higgs field hn relevant for the
process under consideration. In addition, we need to include two NNLO operators at
chiral dimension 6 in our analysis

QGU1 = g2s〈GµνG
µν〉〈DλU

†DλU〉, QGU2 = g2s〈Gλ
µGλν〉〈DµU †DνU〉 (8.7)

which give rise to local ggZZ interactions.
The authors of Ref. [231] use a different set of (redundant) HEFT operators to parametrize
new-physics effects in ZZ production. We have explicitly checked that their set can be
reduced to our selection of operators using integration by parts and the equation of motion.
In addition, they have included dχ = 4 operators with the explicit custodial-symmetry
breaking factor τL. Since those factors are accompanied with additional weak coupling
factors, we take them as subleading and do not consider them in our analysis.
In the following, we discuss at which order in the EFT the operators listed above enter
the amplitude for gg → ZZ.
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8.1.2. EFT applied to gg → ZZ - overview
To define the leading order in the EFT expansion it is important to keep in mind that the
process is induced at the one-loop order, which therefore constitutes the LO in the EFT.
At LO we have to consider all one-loop topologies with any number of LO vertices and all
tree diagrams with a single insertion of a NLO vertex. The corresponding diagrams for
gg → ZZ at LO in the EFT are shown in Figure 8.1. There are the one-loop topologies
(a),(b) whereas diagram (c) is a tree graph with a single insertion of a NLO vertex. In

Figure 8.1.: Diagrams for gg → ZZ at leading order in the chiral counting. Black circles
and black squares denote vertices from the LO and NLO Lagrangian, respec-
tively. Additional diagrams with permutations of the external legs are not
explicitly shown.

all diagrams any number of vertices from the LO dχ = 2 Lagrangian is allowed, but note
that diagram (b) does not contain any anomalous couplings, since the gluon-quark and
Z-boson-quark interactions are SM-like at LO. It obvious to see from Fig. 8.1 that new
physics in gg → ZZ is described by three parameters.
Although we will not attempt to provide a complete calculation of EFT corrections at
next-to-leading order for gg → ZZ we still would like to present an overview over all
contributions that would be required in such an analysis. Here next-to-leading order is
equivalent to two-loop order in the chiral counting. Representative contributions can be
found in Fig. 8.2. The NLO contributions can be divided into three classes: (I) two-loop
topologies with an arbitrary number of LO vertices (diagrams (f) and (g)), (II) one-loop
topologies with one insertion of a NLO vertex and any number of LO vertices (diagram
(a),(b),(c)) and (III) tree graphs with either two insertions of NLO vertices (diagram (d))
or one NNLO vertex (diagram (e)). The operators listed in (8.1)-(8.6) and (8.7) enter the
various graphs in Fig. 8.2 as follows

(a) : QXh1, QXh2, QXU1 (d) : QXh3, QXh1, QXh2, QXU1

(b) : QψS1, QψS2 (e) : QGU1, QGU2 (8.8)
(c) : QψV 1, QψV 2, QψV 4, QψV 5

We have omitted the NLO effect coming from Qβ1 since the corresponding vertex has the
same form a the hZZ coupling cZ at leading order and can, therefore, the coefficient Cβ1
can be absorbed into cZ as a NLO correction.
Some dχ = 4 operators contribute to the gg → ZZ amplitude only beyond next-to-
leading (2-loop) order and, as a result, should be dropped at our level of approximation.
Representative example of such cases have been compiled in Fig. 8.3. They come from
operators in the class UhD4 (a), from QXU7 and QXU8 of class XUhD2 (b), and from the
4-fermion interactions of class ψ4Uh (c). In the chiral counting, these graphs are all of
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Figure 8.2.: Representative diagrams for gg → ZZ at next-to-leading order in the chiral
counting. Black circles, black squares and crossed squares denote vertices
from the LO, NLO and NNLO Lagrangian, respectively.

Figure 8.3.: Sample diagrams for gg → ZZ with operators from the Lagrangian at chiral
dimension 4, which would only contribute at next-to-next-to-leading (3-loop)
order to this process. Black squares denote vertices from the NLO Lagrangian,
respectively.

three-loop order since a NLO operator is inserted in a two-loop topology diagram.
In principle, higher-order QCD corrections [232, 233] could be included. QCD corrections
are based on an expansion in the strong coupling gs and can be discussed independently
of the EFT loop expansion. However, this is beyond the scope of this work, which is
based on the systematics of the EFT expansion.

The relevant terms form L2 and L4 entering the gg → ZZ amplitude at leading order
are

LLO,int = cV
h

v
m2
ZZµZ

µ −
∑
f

cfmf f̄f
h

v
+
αs
8π
cggh

h

v
GA
µνG

Aµν (8.9)

And next-to-leading order terms from L4 + L6,

Lint,NLO = Cβ1Qβ1 + CXh1QXh1 + CXh2QXh2 + CXU1QXU1

+ CψV 1QψV 1 + CψV 2QψV 2 + CψV 4QψV 4 + CψV 5QψV 5

+ CψS1(QψS1 + h.c.) + CψS2(QψS2 + h.c.) + CGU1QGU1 + CGU2QGU2 (8.10)

⊃ −Cβ1m2
Z

h

v
ZµZ

µ +
α

8π
CZZh

h

v
ZµνZ

µν

− g

2cW
Zµ(CψV L t̄Lγ

µtL + CψV R t̄Rγ
µtR) +

g2

2c2W
CψS1ZµZ

µ t̄t
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+
g2s
4

g2

c2W
CGU1G

A
µνG

AµνZλZ
λ +

g2s
4

g2

c2W
CGU2G

Aλ
µ GA

λνZ
µZν (8.11)

where the terms with CGU1,2 have dχ = 6, the others dχ = 4, and

α

8π
CZZh ≡ g′2s2WCXh1 +

g2

2
c2WCXh2 −

gg′

2
sW cWCXU1 (8.12)

CψV L ≡ CψV 1 +
1

2
CψV 2, CψV R ≡ CψV 4 (8.13)

In (8.11) we have only retained the top-quark contributions from the operators with
fermions since those dominate for longitudinal Z-bosons at high energy. The anomalous Z-
fermion gauge couplings, parameterized by CψV i are constrained by electroweak precision
LEP measurements [234].

8.2. Anomalous Higgs couplings in tt̄→ ZZ

It is instructive to first investigate the subprocess tt̄→ ZZ to study perturbative unitarity
violation in the full process. The relevant diagrams are displayed in Fig. 8.4. The matrix
element for the process t(k1)t(k2) → Z(p1, µ)Z(p2, ν) is given by

M = g2Z ε
∗
µε

∗
νMµν (8.14)

Here εµ, εν are the Z-polarization vectors and

Mµν =−
v̄(k2) (vt + atγ5) γ

ν
(
/k1 − /p1 +mt

)
(vt + atγ5) γ

µu(k1)

t−m2
t

−
v̄(k2) (vt + atγ5) γ

µ
(
/k1 − /p2 +mt

)
(vt + atγ5) γ

νu(k1)

u−m2
t

+
mt

2
cV ct

gµν

s−m2
h

v̄(k2)u(k1) (8.15)

Here we defined [235]

gZ =
g

cW
= 2

mZ

v
, vt =

1

4
− 2

3
s2W , at =

1

4
(8.16)

In the limit mt → 0 the amplitude satisfies the Ward identities p1µMµν = p2νMµν = 0
The leading contribution to the squared spin-averaged matrix element that is propor-

tional to s is given by

1

4

∑
spins

|M|2 = 1

2

m2
t

v2
s

v2
(1− ctcV )

2 +O(s0) (8.17)

It is obvious that this perturbative unitarity violating contribution vanishes in the SM
(ct = cV = 1). In the SM the leading term is the O(s0) contribution

1

4

∑
spins

|MSM |2 = 1

162

m4
t

v4
1

ut

[
16x4Z

(
t2 + u2

) (
64s8W − 96s6W + 108s4W − 54s2W

)
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+144x2Zs
2
W

(
4s2W − 3

)
s2 + 162

(
x4Z + x2Z + 1

) (
t2 + u2

)
− 81s2

]
+O

(
s−1
)

(8.18)

where we used the notation xi = mi/mt. We may use Goldstone equivalence to study the
behavior of the amplitude for large values of s. In the Goldstone limit the amplitude is
given by

M =
mt

v2
v̄(k2)u(k1)

(
1− ctcV

s

s−m2
h

)
+
m2
t

v2

(
v̄(k2)γ5(/k1 − /p1 +mt)γ5u(k1)

t−m2
t

+
v̄(k2)γ5(/k1 − /p2 +mt)γ5u(k1)

u−m2
t

)
(8.19)

Here the the unitarity violating part of the amplitude is directly visible.

Figure 8.4.: Diagrams for tt̄ → ZZ at leading order in the chiral counting. Black circles
denote vertices from the LO Lagrangian.

8.3. Anomalous Higgs couplings in gg → ZLZL

In this section, we investigate the process gg → ϕ0ϕ0, which is by the Goldstone equiva-
lence theorem [188, 236] equivalent to the original process in the high energy limit. We
show the diagrams for gg → ϕ0ϕ0 at leading order in Figs. 8.5 and 8.6. Note the addi-
tional topology in diagram (b) of Fig. 8.5 that is not present in the process gg → ZZ. It
reproduces the large s behavior of the box diagrams (b) of Fig. 8.1 and is vital to cancel
the unitarity violating part ∝ ln2 s of the amplitude in the SM.

Figure 8.5.: Tree-level and triangle graphs. Black circles and black squares denote vertices
from the LO and NLO Lagrangian, respectively. Additional diagrams with
permutations of the external legs are not explicitly shown.
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Figure 8.6.: Box graphs, Background

We have collected the relevant couplings entering the leading order Goldstone amplitude
in the form of an interaction Lagrangian.

Lint,LO = i
mt

v
t̄γ5tϕ

0 +
mt

2v2
t̄t(ϕ0)2 + cV ∂µϕ

0∂µϕ0h

v
− ctmt

h

v
tt+

αs
8π

cggh
h

v
GA
µνG

Aµν

(8.20)

8.3.1. General Structure
The amplitude for the process g(k1, ε1) g(k2, ε2) → ϕ0(p1)ϕ

0(p2) can be decomposed as

MAB = δAB Mµν ε1µε2ν (8.21)

Mµν =
αs
π

m2
t

v2
(A1(s, t, u)T

µν
1 + A2(s, t, u)T

µν
2 ) (8.22)

Here k1, k2 are the gluon momenta and p1, p2 the Goldstone momenta, where

k21 = k22 = p21 = p22 = 0 (8.23)

and we introduced the usual Mandelstam variables

s = (k1 + k2)
2, t = (k1 − p1)

2, u = (k2 − p1)
2 (8.24)

The amplitudes with longitudinal polarization εL(p) of the Z boson at high energy are
related to the Goldstone limit through the replacement εµL(p) → ipµ/mZ . A,B are the
color indices and ε1µ, ε2ν are the polarization vectors of the gluons. We define the two
linearly independent tensor structures

T µν1 = gµν − kν1k
µ
2

k1 · k2
(8.25)

T µν2 = gµν +
k1 · k2

(k1 · p1) (k2 · p1)
pµ1p

ν
1 −

kµ2p
ν
1

k2 · p1
− pµ1k

ν
1

k1 · p1
(8.26)

They satisfy

T1 · T2 = 0, T1 · T1 = T2 · T2 = 2, kµ1T
1,2
µν = kν2T

1,2
µν = 0 (8.27)

The two factors correspond to two independent helicity configurations. The part propor-
tional A1 corresponds to the case where the gluon helicities have the same sign, that is,
++ or −−, and A2 encodes the opposite helicitiy amplitude, i.e. +− and −+. This can
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be seen by considering an explicit representation of the momenta in the center-of-mass
frame

kµ1 =

√
s

2
(1, 0, 0, 1)T , kµ2 =

√
s

2
(1, 0, 0,−1)T , pµ1 =

√
s

2
(1, 0, sin θ, cos θ)T (8.28)

Here θ is the scattering angle. The gluon polarization vectors with positive and negative
helicity

εµ+(k1) = εµ−(k2) =
1√
2
(0, 1, i, 0)T , εµ−(k1) = εµ+(k2) =

1√
2
(0, 1,−i, 0)T (8.29)

Thus,
εµ±(k1)ε

ν
±(k2)T1µν = −1, εµ±(k1)ε

ν
±(k2)T2µν = 0 (8.30)

and
εµ±(k1)ε

ν
∓(k2)T2µν = −1, εµ±(k1)ε

ν
∓(k2)T1µν = 0 (8.31)

The helicity amplitudes do not interfere and the spin- and color averaged matrix element
squared reads

|M|2 = α2
s

16π2

m4
t

v4
(
|A1|2 + |A2|2

)
(8.32)

The differential cross section is then given by

dσ

d cos θ
=

1

32πs
|M|2 (8.33)

8.3.2. Form factors at leading order
The two form factors at LO in the EFT are given by

A1(s, t, u) =
1

s−m2
h

([
1− 1

2
C(s)s

(
1− 4m2

t

s

)] [
s (1− ctcV )−m2

h

]
− cgghcV

4m2
t

s2
)

− 1

2

[
2 + 4m2

tC(s) + sm2
t (D(s, t) +D(s, u) +D(t, u))

]
(8.34)

A2(s, t, u) =− 1

4

1

tu

[
2s
(
t2 + u2

)
C(s) + 2t3C(t) + 2u3C(u)− st3D(s, t)− su3D(s, u)

+2stum2
t (D(s, t) +D(s, u) +D(t, u))

]
(8.35)

Our results are consistent with [235] in the limit mZ → 0. For parts of the calculation
and cross-checks FeynCalc [237–240] and Package-X [200, 201] proved useful. The precise
definitions of the loop functions C,D are given in the Appendix (E.9),(E.16). The first
line of (8.34) comes from the diagrams in Fig. 8.5 while the second line stems from the
box diagrams of Fig. 8.6. Only the box diagrams of Fig. 8.6 contribute to A2. Details
of the calculation are given at the end of this chapter in Sec. 8.6. The impact of the
anomalous couplings is most clearly seen in the asymptotic behavior of the form factors
for large s. Keeping the scattering angle θ fixed, the variables t and u scale with s for
s→ ∞. In this limit one finds

A1(s) = −1 +

[
−1

4
log2

−s
m2
t

+ 1

]
(1− ctcV )− cgghcV

s+m2
h

4m2
t

+O
(
1

s

)
(8.36)
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Note that the first term leading to a log2 s growth of the amplitude is absent in the SM
(ct = cV = 1), since it will lead to unitarity violation. In the SM the leading term decays
like log2 s

s
. The asymptotic expression of A2 is given by

A2(s, t, u) = −1

4

t

u
log2

s

−t
+ iπ

(
t

2u
log

s

−t

)
+ {t⇔ u}+O

(
1

s

)
(8.37)

This expression is of order unity and takes the special values

A2(s→ ∞)|t→0 = i
π

2

A2(s→ ∞)|u=t=−s/2 = −1

2
ln2 2 + iπ ln 2 = −0.240 + 2.18i (8.38)

8.3.3. Subleading EFT corrections
Having discussed the various local operators entering gg → ZLZL at next-to-leading order,
we analyze how they enter the amplitude. We reiterate that we do not attempt a full
NLO calculation, but rather take the corrections from these operators as representative
for the other terms. To remain within the range of validity of the EFT these effects need
to be subdominant. Typical next-to-leading order terms carry a parametric suppression
of

v2

M2
=

v2

16π2f 2
=

ξ

16π2
(8.39)

where f is the scale of the (strongly-coupled) Higgs sector, M = 4πf a typical resonance
mass acting as the EFT cut-off, and the vacuum tilting parameter ξ = v2/f 2. For nu-
merical estimates we will assume f ≈ 0.7TeV and M ≈ 8TeV as representative values.
We emphasize that these values should be understood as rough order-of-magnitude es-
timates. The nonlinear EFT is valid for energies sufficiently below the cut-off scale, i.e.
s ∼ f 2 �M2.

In the following we discuss how the different operators enter the amplitude.

dχ = 4 operator g2ytZµZµt̄t : CψS1

In the Goldstone limit, this operator gives a contribution to the Lagrangian of the form

LψS1 = CψS1
2

v2
∂µϕ

0∂µϕ0 t̄t (8.40)

The insertion of this operator in diagram (b) of Fig. 8.5 gives rise to a correction of the
form factor A1 (8.34) by

∆AψS11 =

[
1− 1

2
sC(s)

(
1− 4m2

t

s

)]
(−2s)

CψS1
mt

=

[
1

4
ln2 −s

m2
t

+ 1

]
(−2s)

CψS1
mt

+O(s0) (8.41)

where the second line is the leading term in the asymptotic expansion for large s. The
typical size of the coefficient CψS1 can be estimated by considering a toy model with a
heavy scalar H with Higgs-like couplings of the form

LH = −1

2
M2H2 +

v

2
〈∂µU †∂µU〉H − mt

v
H t̄t (8.42)
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Integrating out H at tree level, generates the operator QψS1 + h.c. with a coefficient

CψS1
mt

= − 1

2M2
∼ ξ

16π2

1

v2
(8.43)

where ξ = v2/f 2 and M = 4πf , in agreement with the power counting expectation. In
the 2HDM (see Chapter 7) the corresponding Wilson coefficient is given by

CψS1
mt

= −cβ−α
2M2

0

(cβ−α − sβ−α cot β) ∼ − 1

2M2
0

(8.44)

which follows the same power counting.

dχ = 4 operators g3Zµt̄γµtL/R : CψV L,R

The operators in this class modify the coupling of the Z boson to top-quarks and enter
the box diagrams as shown in Fig. 8.2 (c). In the Goldstone limit these operators lead to
an interaction Lagrangian of the form

LψV L/R = −CψV L t̄LγµtL ∂µϕ0 − CψV R t̄Rγ
µtR ∂µϕ

0 (8.45)

Using integration by parts to shift the partial derivative and using the equation of motion

i/∂tL = mt(1 + iϕ0)tR, i/∂tR = mt(1− iϕ0)tL (8.46)

leads to

LψV L/R = −imt

v

δV
2
ϕ0 t̄γ5t+

mt

2v2
δV (ϕ0)2 t̄t (8.47)

where

δV = 2(CψV L − CψV R) (8.48)

In the Goldstone limit these couplings enter the box diagrams (d)-(f) in Fig. 8.6 and the
triangle diagram (b) in Fig. 8.5, which reproduces the high-energy behavior of the box
diagram (b) for the full Z case in Fig. 8.1 and give a correction factor of

1 + δV (8.49)

for the entire box contribution (the contributions to A1/2 in (8.34) and (8.35)). The
correction from δV has an impact on the terms that grow with s in A1, entering the
asymptotic amplitude as

A1(s, t, u) = −1

4
ln2 −s

m2
t

[1 + δV − ctcV ]− ctcV − cgghcV
s+m2

h

4m2
t

+O
(
1

s

)
(8.50)

δV thus contributes to the logarithmic growth of A1 in addition to 1 − ctcV . Parametri-
cally, δV ∼ ξ/(16π2), which is subleading to 1− ctcV ∼ ξ and numerically negligible.
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Z prime

The operators in this class are generated within a model featuring a heavy Z ′ boson.
We consider a general framework in which the Standard Model (SM) is extended by a
U(1)′ symmetry, and the associated Z ′ boson is a singlet under the SM gauge group.
Different classes of Z ′ models are distinguished by the U(1)′ charges assigned to the SM
fields. The mass of the Z ′ boson can arise either via spontaneous breaking of the U(1)′
symmetry or through the Stückelberg mechanism [241–243]. A summary of the various
model realizations is provided in [244]. To account for the coupling of the Z ′ to the
Goldstone matrix U , we extend its covariant derivative as follows:

DµU → DµU − 2igDQU Z
′
µUT3 (8.51)

where gD denotes the U(1)′ gauge coupling, and Qi = O(1) represent the U(1)′ charges
of the SM fields. Following [244], we consider the general Lagrangian:

L = −1

4
Z ′
µνZ

′µν +
M2

Z′

2
Z ′
µZ

′µ − Z ′
µJ

µ (8.52)

and integrate out the Z ′ boson at tree level. For simplicity, we neglect kinetic mixing
effects. The current Jµ is defined as:

Jµ = −igDv2〈U †DµUT3〉+ gD (QtL t̄LγµtL +QtR t̄RγµtR) (8.53)

where we retain only the Z ′ couplings to the Goldstone bosons and the top quark. Inte-
grating out the Z ′ yields the effective Lagrangian:

Leff = −JµJ
µ

2M2
Z′

(8.54)

which generates the operators QψV 1/4 with coefficients:

CψV 1/4 =
v2

M2
Z′
g2DQUQtL/R ∼ ξ

16π2
(8.55)

in agreement with our power counting expectations. Here, gD = O(1) reflects the as-
sumption that SM fermions couple weakly to the heavy sector.

dχ = 6 operator g2g2(GA)2Z2 : CGU1/2

The dχ = 6 operators lead to a NLO contribution in the form of a purely local interaction
as illustrated in Fig. 8.1 (e). To compute the relevant matrix elements we expand

QGU1 ⊃
2g2s
v2
(
∂µA

A
ν ∂

µAAν − ∂µA
A
ν ∂

νAAµ
)
∂λϕ

0∂λϕ0 (8.56)

QGU2 ⊃
g2s
v2
(
2∂µA

Aλ∂λA
A
ν − ∂λA

A
µ∂

λAAν − ∂µA
Aλ∂νA

A
λ

)
∂µϕ0∂νϕ0 (8.57)

The matrix elements can then be computed

〈ϕ0ϕ0|QGU1|gg〉 =
g2s
2
δAB

4s2

v2
T µν1 ε1µε2ν (8.58)
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〈ϕ0ϕ0|QGU2|gg〉 =
g2s
2
δAB

1

v2
[
−s2T µν1 + 2utT µ2

]
ε1µε2ν (8.59)

The formfactors including our specific NLO and NNLO effects reads

ANLO1 (s) = −2mtCψS1
s

m2
t

[
1− 1

2
sC(s)

(
1− 4m2

t

s

)]
(8.60)

Their coefficients can be estimated following the above considerations yielding

CGU1/2 ∼
1

v2
1

(16π2)2
ξ (8.61)

This leads to a form factor correction of

∆AGU1 (s) = 8π2 s
2

m2
t

[
CGU1 −

1

4
CGU2

]
, ∆AGU2 (s) = 4π2 tu

m2
t

CGU2 (8.62)

Again we estimate the typical size of the coefficients from a toy model with a heavy scalar
H

LH = −1

2
M2H2 +

v

2
〈∂µU †∂µU〉H +

αs
8π
cggH

H

v
GA
µνG

Aµν (8.63)

which gives

CGU1 =
cggH

32π2M2
∼ 1

16π2M2
, CGU2 = 0 (8.64)

This shifts A1 by

∆AGU,H1 =
s

4m2
t

s

M2
cggH (8.65)

which can be interpreted as a correction to the cgghcV term in A1

cgghcV → cgghcV − cggH
s

M2
(8.66)

The relative correction is of order s/M2 ∼ f 2/M2 and again small. Naively, the contact
interactions in Fig. 8.2 (e) leading to a quadratic s-dependence (8.62) would seem to
dominate over the leading-order results. However, our discussion of the toy model reveals
that these contributions remain subleading for large s, as long as we stay within the range
of validity of the EFT, i.e.

√
s � M . For smaller values of s, on the other hand, the

quadratic s dependence implies a particularly strong suppression.

8.3.4. Toy models for cggh
To get an idea of the typical size of the coefficient cggh we investigate two toy models
where cggh is generated from the exchange of heavy resonances.
First of all, we consider a heavy, vector-like Dirac fermion Q that can couple directly to
the Higgs singlet

LQ = Q̄(i/∂ −MQ)Q− y h Q̄Q (8.67)
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where MQ ≈ 4πf is the resonance mass, and y ≈ 4π is the (strong) coupling of the Higgs
boson to the vector-quark. Similarly to the top quark, a vector-like quark gives rise to
triangle diagrams at one loop, generating the local coupling cggh as a first approximation.
Integrating out Q at one loop gives a contribution to A1 that we implement by replacing

cggh → cggh(s) =
y v

MQ

FQ(s) (8.68)

where the function FQ is given by

FQ(s) =
1

τ

[
1 + (1− τ−1) arcsin2

√
τ
]
=

2

3
+

7

45
τ +

4

63
τ 2 + · · · (8.69)

and τ = s/4M2
Q. The matching result for cggh is therefore

cggh =
2

3

yQv

MQ

∼
√
ξ (8.70)

in accordance with our power counting expectation. For values of s well below the pro-
duction threshold

√
s = 2MQ the local approximation of cggh(s), corresponding to the

τ = 0 limit, is rather reliable even for sizable values of τ [230]. This is analogous to the
well-known fact in the SM that the Higgs-gluon coupling mediated by a top-quark-loop is
well approximated by a local coupling for energies below 2mt [245]. For instance, even for
a large energy

√
s =MQ already outside the range of validity of the EFT, FQ(0) = 0.6667

is changed only to FQ(1/4) = 0.7101. For lower energies where the EFT is valid the
difference between the local approximation and the full s-dependence become almost neg-
ligible. Specifically for

√
s = 1TeV and MQ = 8TeV, we have FQ(τ) = 0.6673 which is

basically unchanged compared to the s = 0 limit. Treating the Higgs-gluon coupling from
new physics as a local operator with coefficient cggh should, therefore, be an excellent
approximation throughout the range of validity of the EFT. As a second example, we
consider a model with a heavy, colored scalar S in a representation R of SU(3) coupled
to the Higgs singlet h

LS = DµS
†DµS −M2

SS
†S − κhS†S (8.71)

where the color indices have been suppressed. We allow κ ∼ 4πMS in the strong-coupling
case. The covariant derivative here is given by

DµS = (∂µ + igsT
A
RG

A
µ )S (8.72)

where TAR are the SU(3) generators in the representation R. The effects of integrating
out S at the one-loop level on the leading order form factor A1 are taken into account by
replacing

cggh →
κ v

M2
S

T (R)FS(s) (8.73)

Here T (R) is the index of the representation R and the loop function

FS(s) =
1

2τ

(
arcsin2√τ

τ
− 1

)
=

1

6
+

4τ

45
+

2τ 2

35
+O(τ 3) (8.74)
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where τ = s/4M2
S. To obtain the matching result for the local operator cggh, only the

leading term in the expansion in τ is relevant. For a scalar octet (T (8) = 3) we get

cggh =
κ v

M2
S

1

2
∼
√
ξ (8.75)

which agrees with our power counting expectation. Again for
√
s = 1TeV and MS =

8TeV, we have FS(τ) = 0.1670, which is very close to FS(0) = 0.1667.

8.3.5. RGE effects
Another class of NLO contributions arises from the renormalization‐group (RG) running of
the leading‐order anomalous couplings. The one‐loop renormalization of the Higgs–Elec-
troweak Chiral Lagrangian was computed in [196, 246] (see also [247]). At this order, the
beta function for cggh vanishes, so we only need to consider the RG evolution of cV and
ct. The beta-function of the coefficient ci is defined by

βci = 16π2 dci
d lnµ

(8.76)

At one loop βcV and βct read (retaining only the top-quark contribution from the Yukawa
sector)

βcV =
3

8

v2

m2
h

cV (c
2
V − c2V )(3g

4 + 2g2g′2 + g′4) +
g2

12
cV
[
37(c2V − c2V ) + 17(1− c2V )

]
+

3

4
g′2cV (1− c2V ) +

m2
h

2v2
[
cV
(
10(c2V − c2V ) + 4(c2V − 1)

)
+ 6c3V

]
+ 24

m4
t

m2
hv

2
ct(c2V − c2V ) + 6

m2
t

v2
[(cV − 1)(c2t + 1) + (ct − 1)2] (8.77)

and

βct =
3

8

v2

m2
h

cV [ct(ct − cV )− 2c2t](3g
4 + 2g2g′2 + g′4) +

17g2 + 9g′2

12
ct(1− c2V )

+
m2
h

v2
[
ct
(
3κ3(ct − cV ) + 2c2V + c2V − 2c2t

)
− 3cV + 6c3t

]
+ 24

m4
t

m2
hv

2
ct [2c2t + ct(cV − ct)] + 6

m2
t

v2
ct(c

2
t − 1 + 2c2t) (8.78)

Note that all three couplings, cV , ct and cggh, are scale invariant under QCD. This sim-
plifies their interpretations in the presence of QCD radiative corrections. We employ the
definitions

F1 = 2cV , F2 = c2V , F3 = c3V V3 = κ3 (8.79)
Mt = mt, M(1)

t = mtct, M(2)
t = mtc2t, M(3)

t = mtc3t (8.80)

which relate the parameters of the Lagrangian in (3.24) to the phenomenological couplings.
Both βcV and βct vanish in the SM-limit

cV = c2V = ct = κ3 = 1, c3V = c2t = c3t = 0 (8.81)
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With numerical values for the parameters, the beta functions in (8.77) and (8.78) become

βcV =22.69 ct(c2V − c2V )− 5.92 ct + 3.14 cV + 2.96 c2t cV

− 1.03 c2V cV + 0.849 c3V + 0.773 c3V (8.82)

and

βct =50.78 ctc2t + 23.65 c2t cV − 19.73 c3t − 2.27 ct + 0.258 ctc2V − 1.93 cV c2t

− 1.15 ctc
2
V + 1.55 c3t + 0.773 (ct(ct − cV )κ3 − cV ) (8.83)

The large numerical coefficients are dominated by the terms carrying a m4
t dependence in

(8.77) and (8.78), which are formally leading in the limit of large top-quark masses.
Solving the RG equation (8.76) to linear order in the beta functions, we have

ci(µ1) ≈ ci(µ2) +
βci
16π2

ln
µ1

µ2

(8.84)

We imagine a scenario where the new physics resides at a scale of µ1 = 8TeV (the
EFT cut-off), whereas the coefficients cV and ct are determined in experiments at a scale
µ2 = 1TeV.
Numerically, retaining only the m4

t terms in the beta functions (8.77), (8.78), we find for
the evolution in (8.84)

cV (µ1) ≈ cV (µ2) + 0.30 ct(c2V − c2V ) (8.85)
ct(µ1) ≈ ct(µ2) + 0.30 ct [ct(cV − ct) + 2c2t] (8.86)

These results indicate that RGE running effects could have a sizable impact on the anoma-
lous couplings, when comparing their values at the scale of LHC measurements with those
at the EFT cut-off. Experimentally ct and cV are close to 1 (within 10%) [225] but c2t
and c2V could still deviate from their SM values (c2V = 1, c2t = 0).

8.4. Phenomenological considerations

mt mZ mh αs(mZ) GF = 1/
√
2v2

173GeV 91.19GeV 125GeV 0.1179 1.166 · 10−5 GeV−2

Table 8.1.: Input parameter used in the analysis taken from [59]

This section contains an exploratory analysis of the corrections to the SM cross section
due to anomalous couplings. Our input parameters are collected in Table 8.1. Although
our primary goal is to elucidate the EFT systematics rather than perform a detailed
phenomenological study, we nonetheless provide rough numerical estimates of new-physics
effects. Concretely, we plot the partonic differential cross section

dσ

d cos θ

∣∣∣∣∣
θ=π/2

(8.87)
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as a function of the partonic center-of-mass energy
√
s, varying one anomalous coupling

at a time and setting all others to their SM values. While a complete phenomenological
analysis would require convolution with the gluon parton-distribution functions, the par-
tonic cross section alone already captures the leading dependence on

√
s and thus offers

a useful first estimate of the size of new-physics corrections. The numerical evaluation of
the loop functions in our analysis was performed using the LoopTools package [248].
While the NLO operators remain largely unconstrained we can be more specific about
the LO anomalous couplings, which have been constrained in a global fit [225]

cV = 1.01± 0.06, ct = 1.01+0.09
−0.10, cggh = −0.01+0.08

−0.07 (8.88)

where the error bars correspond to the 68 % probability interval. Therefore, the combi-
nation ctV = ctcV can still deviate from unity by roughly 10 %. For the NLO operators
we use our power counting expectations for the analysis

CψS1 ∼ − ξ

16π2

mt

v2
, CGU1 ∼

cggH
32π2M2

(8.89)

The results are given in Figs. 8.7-8.10. We make several comments:

• In Fig. 8.7a we analyze the effect of the LO coupling ctV = ctcV . These couplings
impact the cross-section most strongly for small

√
s ∼ 500GeV. The relative ln2 s

growth with respect to the SM amplitude only becomes noticeable for center-of-mass
energies far outside the range of validity of the EFT.

• The leading new-physics effect at larger
√
s is due to cggh as can be seen in Fig.

8.7b. For values of cggh close to central values of the global fit, we remain within
the range of validity of the EFT and the deviations from the SM increase for large√
s.

• The corrections to the cross-section coming from QψS1 are rather small as is char-
acteristic for a NLO effect. Although the QψS1 corrections exhibit the same large-s
behavior as those from cggh, they are numerically much smaller due to the additional
loop factor.

• The corrections from CGU1 (Fig. 8.9) are enhanced by a factor s2 with respect to the
SM amplitude. As we discussed this behavior should not be taken at face value if
the EFT is to remain applicable. For energies below the EFT cutoff M ∼ 8TeV and
typical values of the coefficient cggH ∼ 0.1 the correction due to CGU1 to the cross-
section is characteristic for a NLO correction. The behavior of CGU2 is expected to
be similar.

• In Fig. 8.10 we compare the SM amplitudes for gg → ϕ0ϕ0 and gg → ZLZL using
the formulae in [235]. We find excellent agreement between the two; the deviation
for

√
s = 500GeV is already below 1%. This is not surprising since the deviations

from the Goldstone limit scale as ∼ m2
Z/s and thus become negligible for large

√
s.
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Figure 8.7.: Energy dependence of the scattering cross section at cos θ = 0 in units of fb.
Here only the LO anomalous couplings are varied while all other coefficients
are set to their SM values.
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Figure 8.8.: Energy dependence of the scattering cross section at cos θ = 0 in units of fb.
Here only the HEFT coefficient CψS1 = −ξmt/16π

2v2 is varied while all other
coefficients are set to their SM values.

8.5. Discussion
We presented a systematic discussion of EFT corrections to longitudinal Z-boson pair
production via gluon fusion. We focus the kinematic region in which the Higgs boson
is highly off-shell. The most appropriate EFT for this process is the electroweak chi-
ral Lagrangian (nonlinear EFT), whose power counting is organized as a loop expansion
captured by counting chiral dimensions. We show that the leading EFT effects arise at
one loop and depend on three anomalous couplings, which reduce to two independent
parameters. We then identify the NLO operators contributing at two-loop order in the
chiral counting and outline the additional terms that a complete NLO calculation would
require. In the Goldstone limit, the LO amplitude can be compactly written in terms
of two form factors. We present explicit expressions for these form factors and derive
subleading corrections induced by local NLO operators. To validate our power‐counting
assumptions, we study several illustrative new‐physics scenarios that generate specific
anomalous couplings. Although some NLO contributions exhibit a pronounced growth
with the partonic center‐of‐mass energy s, we demonstrate that they remain subdomi-
nant throughout the domain of validity of the EFT. Furthermore, we find that the local
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Figure 8.9.: Energy dependence of the scattering cross section at cos θ = 0 in units of fb.
Here only the NLO anomalous couplings CGU1 = cggH/32π

2M2 varied while
all other coefficients are set to their SM values.
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Figure 8.10.: Energy dependence of the scattering cross section at cos θ = 0 in units of fb.
Here we plot the SM scattering cross section for the processes gg → ϕ0ϕ0

and gg → ZLZL. For large
√
s we find good agreement between the two

processes validating our choice to use the Goldstone limit.

anomalous Higgs–gluon coupling cggh, which enters at leading order in the chiral count-
ing, provides an excellent approximation for heavy‐resonance–mediated new physics. A
brief phenomenological study confirms that cggh dominates the new‐physics effects at large
center-of-mass energies.

8.6. Appendix: Details of the calculation
In this section we provide the detailed expressions for the diagrams in Figs. 8.5 and 8.6.
For diagrams (a) and (b) in Fig. 8.5 we need the following loop integral

Iµν =

∫
d4k

(2π)4
Tr [γµ (/k +m) γν (/k − /k2 +m) (/k + /k1 −m)]

[k2 −m2] [(k + k1)2 −m2] [(k − k2)2 −m2]

=
i

4π2
m

(
gµν − kν1k

µ
2

k1 · k2

)[
1− 1

2

(
1− 4m2

t

s

)
C(s)s

]
(8.90)
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where we dropped terms proportional to kµ1 and kν2 that vanish due to the Ward identities
and the loop function C(s) is defined in (E.9). The explicit expressions for the different
diagrams in Fig. 8.5

iMµν
a = −g2s

mt

v2
ctcV

s

s−m2
h

Iµν

= −iαs
π

m2
t

v2
ctcV

s

s−m2
h

[
1− 1

2

(
1− 4m2

t

s

)
C(s)s

]
(8.91)

iMµν
b = g2s

mt

v2
Iµν = i

αs
π

m2
t

v2

[
1− 1

2

(
1− 4m2

t

s

)
C(s)s

]
(8.92)

iMµν
c = i

αs
4π
cV cggh

s

s−m2
h

s

v2
(8.93)

Next we provide expressions for the box diagrams in Fig. 8.6. The diagrams with reversed
momentum flow give the same result due to charge conjugation invariance. We start with
the s-channel box diagram (omitting the prefactors)

Md =

∫
ddq

(2π)d
tr[γµ(/q +mt)γ

ν(/q − /k2 +mt)γ5(/q + /k1 − /p1 +mt)γ5(/q + /k1 +mt)]

(q2 −m2
t )((q + k1)2 −m2

t )((q − k2)2 −m2
t )((q + k1 − p1)2 −m2

t )
(8.94)

The t-channel graph is given by

Me =

∫
ddq

(2π)d
tr[γµ(/q +mt)γ

ν(/q − /k2 +mt)γ5(/q + /k1 − /p2 +mt)γ5(/q + /k1 +mt)]

(q2 −m2
t )((q + k1)2 −m2

t )((q − k2)2 −m2
t )((q + k1 − p2)2 −m2

t )
(8.95)

The u-channel graph is given by

Mf =

∫
ddq

(2π)d
tr[γ5(/q +mt)γ

ν(/q − /k2 +mt)γ5(/q + /k1 − /p1 +mt)γ
µ(/q − /p1 +mt)]

(q2 −m2
t )((q − p1)2 −m2

t )((q − k2)2 −m2
t )((q + k1 − p1)2 −m2

t )
(8.96)
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9. Conclusion and Outlook

In this work, we investigated the systematic application of effective field theories at the
electroweak scale. Given the lack of new resonances after the Higgs discovery in 2012, i.e.,
direct observations of new physics, one must settle for the indirect effects of new physics.
Therefore, EFT frameworks are vital since they permit the description of those indirect
effects of new physics in a model-independent way. Two such frameworks are widely used
for that purpose. The Standard Model Effective Field Theory (SMEFT) comprises the
Standard Model (SM) degrees of freedom as building blocks for higher-dimensional opera-
tors suppressed by powers of the new physics scale Λ, according to their mass dimensions.
As a result, the SMEFT has the physical Higgs boson h as part of an SU(2) doublet as
in the SM. The h self-couplings are, thus, correlated and close to their SM values.
The Electroweak Chiral Lagrangian (EwChL, also known as HEFT), on the other hand,
is the most general EFT that parametrizes electroweak symmetry breaking SU(2)L ×
U(1)Y → U(1)em and contains the physical Higgs as a gauge singlet. As a nondecoupling
EFT based on an expansion in loop orders, its organizing principle differs from SMEFT.
It also allows for O(1) deviations from the SM in the couplings in the Higgs sector. This
thesis presents illustrative examples demonstrating the systematic and consistent use of
both EFT frameworks, alongside general insights applicable to all EFTs.
First, we took a closer look at the power-counting prescription for SMEFT. Commonly,
only the expansion in inverse powers of Λ is made explicit, and, as a result, in many
applications, all Wilson coefficients Ci are assumed to be O(1) numbers. We showed,
however, that such an approach may lead to inconsistencies and is incomplete. What is
missing is information about the other EFT expansion parameter 1/16π2, the loop factor.
The number of implicit loop factors, the loop order L, associated with a SMEFT opera-
tor can be conveniently grasped using the notion of chiral dimensions dχ = 2L + 2. To
assign chiral dimensions to operators, it is necessary to determine the minimum number
of weak couplings that are associated with this operator. We determine the assignment of
weak couplings to dimension-six operators and rederive the familiar result that operators
with field strength tensors are suppressed by a loop factor. Naturally, variations of the
proposed power counting scheme are permissible. However, the underlying assumptions
must be clearly specified, and the resulting consequences for the power counting must be
consistently applied. This statement holds for general ETFs.
As a second application, we moved away from the realm of decoupling EFTs and turned to
the SO(4) linear σ-model. We integrated out the massive degree of freedom at one loop
and derived the nondecoupling contributions (O(1/16π2)) to the effective Lagrangian,
which takes the form of a nonlinear σ-model. However, the tree-level contributions of
O(1/M2) are also needed to obtain a renormalization-scheme independent result, a direct
consequence of the strongly coupled region of parameter space.
In Chapter 7, we illustrate how the EwChL emerges as the natural low-energy EFT after
integrating out the heavy scalars in the nondecoupling regime of a Two-Higgs-Doublet
Model (2HDM). Using functional methods throughout enables us to derive the matching
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to the leading order EwChL in a transparent manner. We also derived the loop induced
h → γγ and h → γZ local terms. Our algorithm allows for the computation of the
coefficient functions up to arbitrary orders in h, which are, however, of less phenomeno-
logical relevance. Furthermore, our calculation could be extended to a full NLO matching
calculation with tree-level effects of O(1/M2

S) and loop-level effects of O(1/16π2). The
dominant new physics effects are nevertheless expected to be found in the leading-order
(LO) couplings. We found that the predictions for an anomalous hγγ coupling in the
nondecoupling regime are still compatible with experiments and could be confirmed or
ruled out experimentally.
As a final exercise, we considered the production of (longitudinal) Z-bosons via gluon
fusion gg → ZLZL with anomalous HEFT couplings to showcase the systematic appli-
cation of the EwChL. We pointed out that at LO, the new-physics effects are given by
three anomalous couplings, which reduce to two independent parameters. Subsequently,
we discussed in detail which dχ = 4 operators would be required for a complete NLO
calculation, emphasizing the interplay of loop topologies and implicit loop factors. These
general considerations are also helpful for the HEFT treatment of other processes. Our
study lays the groundwork for a future comprehensive phenomenological analysis, includ-
ing a full NLO calculation. To achieve collider-level predictions for pp → ZLZL, other
partonic channels and convolution with parton distribution functions will be required.
With current computational tools, such a project is a promising direction for future re-
search.
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A. Parameters of the 2HDM potential
The appendix of [2] presents expressions of the coefficients of the scalar potential (7.16)
in terms of the input parameters

v, mh, M0, MA, MH , m, tβ, cβ−α (A.1)

where m2 = m2
12/sβcβ. The cubic couplings read

v d1 = c2β−α
(
m2 −m2

h

)
(sβ−α + cβ−α cot(2β))−

m2
h

2
sβ−α (A.2)

v d2 =
cβ−α
2

[(
2m2

h +M2
0 − 3m2

) (
1− 2c2β−α + 2sβ−αcβ−α cot(2β)

)
−m2

]
(A.3)

v d3 = −sβ−α
2

[(
2M2

0 +m2
h − 3m2

) (
1− 2c2β−α + 2sβ−αcβ−α cot(2β)

)
+m2

]
(A.4)

v d4 = s2β−α
(
m2 −M2

0

)
(cβ−α − sβ−α cot(2β))−

M2
0

2
cβ−α (A.5)

v d5 = 2sβ−α

(
m2 −M2

H − m2
h

2

)
+ 2cβ−α cot(2β)

(
m2 −m2

h

)
(A.6)

v d6 = sβ−α

(
m2 −M2

A − m2
h

2

)
+ cβ−α cot(2β)

(
m2 −m2

h

)
(A.7)

v d7 = 2cβ−α

(
m2 −M2

H − M2
0

2

)
+ 2sβ−α cot(2β)

(
M2

0 −m2
)

(A.8)

v d8 = cβ−α

(
m2 −M2

A − M2
0

2

)
+ sβ−α cot(2β)

(
M2

0 −m2
)

(A.9)

The expression cot(2β) can be expressed in terms of tβ via the trigonometric identity

cot 2β =
1− t2β
2tβ

(A.10)

The quartic couplings are given by

v2z1 =− m2
h

8
+
c2β−α
8

[
4s2β−αm

2 + (−3 + 4c4β−α)m
2
h −

(
1− 2c2β−α

)2
M2

0

+ 4cβ−αsβ−α cot(2β)
(
2m2 −

(
1 + 2c2β−α

)
m2
h −

(
1− 2c2β−α

)
M2

0

)
+4c2β−α cot

2(2β)
(
m2 − c2β−αm

2
h − s2β−αM

2
0

)]
(A.11)

v2z2 =
sβ−αcβ−α

2

(
1− 2c2β−α

) [
m2
h +M2

0 − 2c2β−α
(
M2

0 −m2
h

)
− 2m2

]
+ c2β−α cot(2β)

[
m2
h

(
1 + 2c2β−α − 4c4β−α

)
+2M2

0

(
1− 3c2β−α + 2c4β−α

)
+m2

(
−3 + 4c2β−α

)]
+ 2c3β−αsβ−α cot

2(2β)
[
M2

0 −m2 − c2β−α
(
M2

0 −m2
h

)]
(A.12)
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v2z3 =
1

4

[(
2− 12c2β−α + 12c4β−α

)
m2

+
(
1− 2c2β−α

) ((
−1− 3c2β−α + 6c4β−α

)
m2
h +

(
−2 + 9c2β−α − 6c4β−α

)
M2

0

)
+ 2cβ−αsβ−α cot(2β)

((
6− 12c2β−α

)
m2 +

(
−1− 6c2β−α + 12c4β−α

)
m2
h

+
(
−5 + 18c2β−α − 12c4β−α

)
M2

0

)
+12c2β−αs

2
β−α cot

2(2β)
(
m2 − s2β−αM

2
0 − c2β−αm

2
h

)]
(A.13)

v2z4 =
sβ−αcβ−α

2

(
1− 2c2β−α

) [
m2
h − 3M2

0 + 2c2β−α
(
M2

0 −m2
h

)
+ 2m2

]
+ s2β−α cot(2β)

[
m2
h

(
2c2β−α − 4c4β−α

)
+M2

0

(
1− 6c2β−α + 4c4β−α

)
+m2

(
−1 + 4c2β−α

)]
+ 2cβ−αs

3
β−α cot

2(2β)
[
M2

0 −m2 − c2β−α
(
M2

0 −m2
h

)]
(A.14)

v2z5 =
1

8

[
4s2β−αc

2
β−αm

2 − s2β−α
(
1− 2c2β−α

)2
m2
h − c2β−α

(
3− 2c2β−α

)2
M2

0

+ 4cβ−αs
3
β−α cot(2β)

(
−2m2 +

(
−1 + 2c2β−α

)
m2
h +

(
3− 2c2β−α

)
M2

0

)
+4s4β−α cot

2(2β)
(
m2 −M2

0 + c2β−α
(
M2

0 −m2
h

))]
(A.15)

v2z6 =
1

2

[
2s2β−α

(
m2 −M2

H

)
−m2

h + c2β−α
(
1− 2c2β−α

) (
M2

0 −m2
h

)
+ 2cβ−αsβ−α cot(2β)

(
2m2 −m2

h −M2
0 + 3c2β−α

(
M2

0 −m2
h

))
+4c2β−α cot

2(2β)
(
m2 − s2β−αM

2
0 − c2β−αm

2
h

)]
(A.16)

v2z7 =cβ−αsβ−α
(
2m2 − 2M2

H −
(
1− 2c2β−α

) (
M2

0 −m2
h

))
+ 2 cot(2β)

(
M2

0 −m2 + 2c2β−αm
2 + c2β−αM

2
0

(
−4 + 3c2β−α

)
+c2β−αm

2
h

(
2− 3c2β−α

))
+ 4cβ−αsβ−α cot

2(2β)
(
M2

0 −m2 − c2β−α
(
M2

0 −m2
h

))
(A.17)

v2z8 =
1

2

[
−m2

h + c2β−α
(
2
(
m2 −M2

H

)
+
(
M2

0 −m2
h

) (
−3 + 2c2β−α

))
+ 2cβ−αsβ−α cot(2β)

(
−2m2 − 2m2

h + 4M2
0 − 3c2β−α

(
M2

0 −m2
h

))
+4s2β−α cot

2(2β)
(
m2 − s2β−αM

2
0 − c2β−αm

2
h

)]
(A.18)

v2z9 =
1

2

[
−s2β−αm2

h − c2β−αM
2
0 + 4 cot(2β)cβ−αsβ−α

(
M2

0 −m2
h

)
+4 cot2(2β)

(
m2 −M2

0 + c2β−α
(
M2

0 −m2
h

))]
(A.19)

v2z10 =
1

4

[
2s2β−α

(
m2 −M2

A

)
−m2

h

(
1 + c2β−α − 2c4β−α

)
+ c2β−αM

2
0

(
1− 2c2β−α

)
+ 2cβ−αsβ−α cot(2β)

(
2m2 −m2

h −M2
0 + 3c2β−α

(
M2

0 −m2
h

))
+4c2β−α cot

2(2β)
(
m2 − s2β−αM

2
0 − c2β−αm

2
h

)]
(A.20)

v2z11 =
1

2

[
cβ−αsβ−α

(
2m2 − 2M2

A +
(
2c2β−α − 1

) (
M2

0 −m2
h

))
+ 2 cot(2β)

(
M2

0 −m2 + 2c2β−αm
2 + c2β−αM

2
0

(
−4 + 3c2β−α

)
+c2β−αm

2
h

(
2− 3c2β−α

))
+4cβ−αsβ−α cot

2(2β)
(
M2

0 −m2 − c2β−α
(
M2

0 −m2
h

))]
(A.21)

v2z12 =
1

4

[
−m2

h + c2β−α
(
2m2 + 3m2

h − 2M2
A − 3M2

0

)
+ 2c4β−α

(
M2

0 −m2
h

)
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Parameters of the 2HDM potential

+ 2cβ−αsβ−α cot(2β)
(
4M2

0 − 2m2
h − 2m2 − 3c2β−α

(
M2

0 −m2
h

))
+4s2β−α cot

2(2β)
(
m2 −M2

0 + c2β−α
(
M2

0 −m2
h

))]
(A.22)

v2z13 =4v2z14 =
1

2

[
−s2β−αm2

h − c2β−αM
2
0 + 4 cot(2β)cβ−αsβ−α

(
M2

0 −m2
h

)
+4 cot2(2β)

(
m2 −M2

0 + c2β−α
(
M2

0 −m2
h

))]
(A.23)

In the alignment limit (cβ−α → 0) the coupling constants simplify to

vd1 = −m
2
h

2
, vd2 = 0, vd3 = m2 −M2

0 − m2
h

2

vd5 = 2m2 − 2M2
H −m2

h, vd6 = m2 −M2
A − m2

h

2
,

d4 =
1

2
d7 = d8 = cot(2β)

(M2
0 −m2)

v
(A.24)

v2z1 = −m
2
h

8
, v2z2 = 0, v2z3 =

1

2

(
m2 −M2

0 − m2
h

2

)
, v2z6 = m2 −M2

H − m2
h

2

z4 =
z7
2

= z11 = cot(2β)
(M2

0 −m2)

v2
, v2z10 = −1

2

(
M2

A −m2
)
− m2

h

4

4z5 = z8 = z9 = 2z12 = z13 = 4z14 = −m2
h

2v2
− 2 cot2(2β)

(M2
0 −m2)

v2
(A.25)

It is convenient to express the original potential parameters in (7.10) in terms of the scalar
masses and the mixing angles. The relations read

m2
11 = s2βm

2 − 1

2

(
c2αM

2
0 + s2αm

2
h

)
−
s2β
2

s2α
s2β

(
M2

0 −m2
h

)
(A.26)

m2
22 = c2βm

2 − 1

2

(
s2αM

2
0 + c2αm

2
h

)
−
c2β
2

s2α
s2β

(
M2

0 −m2
h

)
(A.27)

λ1 =
1

c2βv
2

(
c2αM

2
0 + s2αm

2
h − s2βm

2
)

(A.28)

λ2 =
1

s2βv
2

(
s2αM

2
0 + c2αm

2
h − c2βm

2
)

(A.29)

λ3 =
1

v2

(
2M2

H −m2 +
s2α
s2β

(
M2

0 −m2
h

))
(A.30)

λ4 =
1

v2
(
M2

A − 2M2
H +m2

)
(A.31)

The absence of a decoupling limit for m = 0 follows immediately from these equations.
In that case the λi cannot be of O(1) which corresponds to the weak coupling regime.
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B. Explicit computation of the scalar
masses in the 2HDM

Here we give an explicit computation of the scalar masses in the 2HDM following [172].
To that end we parametrize the Higgs doublets Φi as follows

Φi =

 φ+
i

1√
2
[vi + ρi + iηi]

 (B.1)

Plugging in the parametrization in the potential and collecting the quadratic terms we
derive the mass matrices for the various fluctuations. The mass term for the pseudoscalars
reads

Vη =
1

2
v2
(
m2

12

v2
−
λ6c

2
β

2
− λ5sβcβ −

λ7s
2
β

2

)(
η1 η2

) tβ −1

−1 t−1
β

η1
η2

 (B.2)

The mass matrix is easily diagonalized. A rotation by the angle β does the job.η1
η2

 =

cβ −sβ
sβ cβ

G0

A

 (B.3)

The eigenvalues, i.e. masses, are

m2
G0 = 0, M2

A = m2 − 1

2
v2
(
2λ5 + λ6t

−1
β + λ7tβ

)
(B.4)

so that the mass term reads in terms of the physical state A and the Goldstone G0

Vη =
1

2
M2

A

(
G0 A

)0 0

0 1

G0

A

 (B.5)

The mass term for the charged scalars reads

Vφ± = v2
(
m2

12

v2
− sβcβ(λ4 + λ5)−

λ6c
2
β

2
−
λ7s

2
β

2

)(
φ−
1 φ−

2

) tβ −1

−1 t−1
β

φ+
1

φ+
2

 (B.6)

The mass matrix is diagonalized as before.φ+
1

φ+
2

 =

cβ −sβ
sβ cβ

G+

H+

 (B.7)
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The eigenvalues, i.e. masses, are

m2
G+ = 0, M2

H = m2 − 1

2
v2
(
(λ4 + λ5) + λ6t

−1
β + λ7tβ

)
=M2

A +
v2

2
(λ5 − λ4). (B.8)

Again there is a massless eigenstate G+ which is just the Goldstone corresponding to the
W+ boson. The other massive state is heavy scalar H+. Thus, the quadratic term in the
potential in terms of mass eigenstates reads

Vφ± =M2
H

(
G− H−

)0 0

0 1

G+

H+

 (B.9)

The mass term for the neutral scalars reads

Vη =
1

2

(
ρ1 ρ2

)M2
11 M2

12

M2
12 M2

22

ρ1
ρ2

 (B.10)

M2
11 = m2

12tβ + v2
(
c2βλ1 +

3

2
sβcβλ6 −

1

2
tβs

2
βλ7

)
(B.11)

M2
22 = m2

12t
−1
β + v2

(
s2βλ2 +

3

2
sβcβλ7 −

1

2
t−1
β c2βλ7

)
(B.12)

M2
12 = −m2

12 + v2
(
sβcβλ345 +

3

2
c2βλ6 +

3

2
s2βλ7

)
(B.13)

The mass matrix for the neutral scalar degrees of freedom is more complicated. It can be
written in the form

M2 ≡M2
A

 s2β −sβcβ
−sβcβ c2β

+ B2 (B.14)

with

B2 ≡ v2

 λ1c
2
β + 2λ6sβcβ + λ5s

2
β (λ3 + λ4)sβcβ + λ6c

2
β + λ7s

2
β

(λ3 + λ4)sβcβ + λ6c
2
β + λ7s

2
β λ2s

2
β + 2λ7sβcβ + λ5c

2
β

 . (B.15)

Similarly as before we introduce a mixing angle α to diagonalize the mass matrix M2M2
0 0

0 m2
h

 =

 cα sα

−sα cα

M2
11 M2

12

M2
12 M2

22

cα −sα
sα cα


=

 M2
11c

2
α + 2sαcαM2

12 +M2
22s

2
α M2

12(c
2
α − s2α) + (M2

22 −M2
11)sαcα

M2
12(c

2
α − s2α) + (M2

22 −M2
11)sαcα M2

11s
2
α + 2sαcαM2

12 −M2
22c

2
α

 . (B.16)
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Explicit computation of the scalar masses in the 2HDM

The angle α is determined by demanding that the off-diagonal matrix elements in (B.16)
vanish and that M0 ≥ mh. This lifts the sign ambiguity for α and we arrive at the
expressions

c2α =
M2

11 −M2
22√

(M2
11 −M2

22)
2 + 4(M2

12)
2
, s2α =

2M2
12√

(M2
11 −M2

22)
2 + 4(M2

12)
2
. (B.17)

Plugging α back in (B.16) results in an expression for the neutral CP-even scalar masses

m2
h =

1

2

[
M2

11 +M2
22 −

√
(M2

11 −M2
22)

2 + 4(M2
12)

2

]
(B.18)

M2
0 =

1

2

[
M2

11 +M2
22 +

√
(M2

11 −M2
22)

2 + 4(M2
12)

2

]
(B.19)

From these result we can express the original Higgs doublets Φi in terms of the physical
Higgs states and the Goldstones

φ±
1 = cβG

± − sβH
± (B.20)

φ±
2 = sβG

± + cβH
± (B.21)

It is convenient to define the following combinations of parameters

m4
D = B2

11B2
22 − (B2

12)
2,

m2
L = B2

11c
2
β + B2

22s
2
β + B2

12s2β,

m2
T = B2

11 + B2
22,

M2
S =M2

A +m2
T = M2

11 +M2
22. (B.22)

The square root term in (B.18) can thus be written as√
(M2

11 −M2
22)

2 + 4(M2
12)

2 =
√
m4
S − 4M2

Am
2
L − 4m4

D (B.23)

Hence, a more useful expression for the scalar masses reads

m2
h =

1

2

[
M2

S −
√
M4

S − 4M2
Am

2
L − 4m4

D

]
(B.24)

M2
0 =

1

2

[
M2

S +
√
M4

S − 4M2
Am

2
L − 4m4

D

]
(B.25)

Additionally, we have

c2β−α =
m2
L −m2

h

M2
0 −m2

h

=
m2
L −m2

h

M2
0

+O
(

1

M4
0

)
(B.26)

where we used the trigonometric identity c2β−α = 1
2
(1 + c2αc2β + s2αs2β).
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C. Useful relations for one-loop
integrals

Loop Integrals
At various points in this thesis we have to compute one-loop integrals using dimensional
regularization. Here we list a compendium of useful formulae for that purpose. Similar
collections can be found in every standard QFT book [48–51]. To evaluate one-loop
integrals we make use of the master formula∫

ddk

(2π)d
k2a

(k2 −∆)b
= i

(−1)a−b

(4π)
d
2

1

∆b−a− d
2

Γ(a+ d
2
)Γ
(
b− a− d

2

)
Γ(b)Γ

(
d
2

) (C.1)

Here the gamma function is defined as

Γ(z) =

∫ ∞

0

dt e−t tz−1 (C.2)

Useful gamma function identities are

Γ(n) = (n− 1)!, Γ

(
n+

1

2

)
=

(2n)!

4nn!

√
π (n ∈ N), Γ(z + 1) = zΓ(z) (z ∈ C) (C.3)

The gamma function has poles at negative integers. Expanding the gamma function
around negative integers −n(n > 0) gives

Γ(−n+ ε) =
(−1)n

n!

(
1

ε
+ ψ(0)(n+ 1) +O(ε)

)
(C.4)

Expanding around positive integers gives

Γ(n+ ε) = (n− 1)!
(
1 + ψ(0)(n)ε+O(ε2)

)
(C.5)

Here

ψ(0)(z) =
Γ

′
(z)

Γ(z)
(C.6)

is the Digamma function with the special values

ψ(0)(1) = −γE, ψ(0)(2) = 1− γE (C.7)

and γE is the Euler-Mascheroni constant

γE = lim
n→∞

(
n∑
k=1

1

k
− lnn

)
≈ 0.5772 (C.8)
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Frequently used special cases of these formulae are

Γ(ε) =
1

ε
− γE +O(ε), Γ(−1 + ε) = −1

ε
+ γE − 1 +O(ε), Γ(1 + ε) = 1− γEε+O(ε2)

(C.9)

The Euler beta function can be expressed in terms of gamma functions

B(z1, z2) =

∫ 1

0

dt tz1−1(1− t)z2−1 =
Γ(z1)Γ(z2)

Γ(z1 + z2)
(C.10)

The gamma function also appears in the expression for the d-dimensional solid angle Ωd

Ωd =
2πd/2

Γ
(
d
2

) , dΩd = dΩd−1 sin
d−2 θ dθ (C.11)

For tensor integrals we may replace tensor structures due to Lorentz invariance as follows

kµ1kµ2 · · · kµ2n =
2−nΓ

(
d
2

)
Γ
(
d
2
+ n
) (k2)n Sµ1···µ2nn (C.12)

where Sµ1···µ2nn is the totally symmetric tensor with 2n indices. For n = 1, 2 we have

kµkν −→ k2

d
gµν (C.13)

kµkνkρkσ −→ (k2)2

d(d+ 2)
(gµνgρσ + gµρgνσ + gµσgνρ) (C.14)

Various frequently used special cases of the master formula are∫
ddk

(2π)d
1

(k2 −∆)n
=
i(−1)n

(4π)d/2
Γ
(
n− d

2

)
Γ(n)

(
1

∆

)n− d
2

(C.15)∫
ddk

(2π)d
k2

(k2 −∆)n
=
i(−1)n−1

(4π)d/2
d

2

Γ
(
n− d

2
− 1
)

Γ(n)

(
1

∆

)n− d
2
−1

(C.16)∫
ddk

(2π)d
k4

(k2 −∆)n
=
i(−1)n

(4π)d/2
d(d+ 2)

4

Γ
(
n− d

2
− 2
)

Γ(n)

(
1

∆

)n− d
2
−2

(C.17)∫
ddk

(2π)d
kµkν

(k2 −∆)n
=
i(−1)n−1

(4π)d/2
gµν

2

Γ
(
n− d

2
− 1
)

Γ(n)

(
1

∆

)n− d
2
−1

(C.18)∫
ddk

(2π)d
kµkνkρkσ

(k2 −∆)n
=
i(−1)n

(4π)d/2
Γ
(
n− d

2
− 2
)

Γ(n)

(
1

∆

)n− d
2
−2
gµνgσρ + gµρgνρ + gµσgνρ

4
(C.19)

and specializing to d = 4− 2ε dimensions we have (up to O(ε) terms):∫
ddk

(2π)d
1

(k2 −∆+ iε)
=

i

16π2
∆

(
1

ε
+ ln

µ̄2

∆
+ 1

)(
µ̄2 = µ24πe−γE

)
(C.20)∫

ddk

(2π)d
1

(k2 −∆+ iε)2
=

i

16π2

(
1

ε
+ ln

µ̄2

∆

)
(C.21)
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Useful relations for one-loop integrals

∫
ddk

(2π)d
k2

(k2 −∆+ iε)2
=

i

16π2
∆

(
2

ε
+ 1 + 2 ln

µ̄2

∆

)
(C.22)∫

ddk

(2π)d
k4

(k2 −∆+ iε)2
=

3i

16π2
∆2

(
1

ε
+ ln

µ̄2

∆
+

2

3

)
(C.23)∫

ddk

(2π)d
1

(k2 −∆+ iε)3
=

−i
32π2

1

∆
(C.24)∫

ddk

(2π)d
k2

(k2 −∆+ iε)3
=

i

16π2

(
1

ε
− 1

2
+ ln

µ̄2

∆

)
(C.25)

Note that scaleless integrals vanish in dimensional regualization∫
ddk

(2π)d
1

(k2)a
= 0 (C.26)

Feynman parameters
Denominators in loop integrals may be combined using Feynman parameters

1

Aα1
1 · · ·Aαnn

=
Γ (α1 + · · ·+ αn)

Γ(α1) · · ·Γ(αn)

∫ 1

0

du1 · · ·
∫ 1

0

dun
δ (1−

∑n
k=1 uk)u

α1−1
1 · · ·uαn−1

n

(
∑n

k=1 ukAk)
∑n
k=1 αk

(C.27)

Combining two propagators gives

1

AB
=

∫ 1

0

dx
1

[A+ x (B − A)]2
(C.28)

For three and more propagators it is particularly convenient to decouple the parameter
integrals. Such expressions are given by

1

ABC
=

∫ 1

0

dx

∫ 1

0

dy
2x

[A+ x (C − A) + xy (B − C)]3
(C.29)

for three propagators and

1

ABCD
=

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
6x2y

[A+ x (C − A) + xy (B − C) + xyz(D −B)]4
(C.30)

for four propagators.
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D. SU(2) identities and operator
reduction

In this section we show how various expressions involving

Jaµ =
i

2
〈σa(∂µU †U − U †∂µU)〉 (D.1)

in Chapter 6 can be simplified. The Pauli matrices σa have the following properties.
Traces identities:

〈σaσb〉 = 2δab (D.2)
〈σaσbσc〉 = 2iεabc (D.3)

〈σaσbσcσd〉 = 2 (δabδcd − δacδbd + δadδbc) (D.4)

(Anti-)commutators:

[σa, σb] = 2iεabcσc (D.5)
{σa, σb} = 2δab 12x2 (D.6)

In addition, we have for arbitrary 2x2 matrices A,B the following useful identity

〈TaA〉〈TaB〉 = 1

2
〈AB〉 − 1

4
〈A〉〈B〉 (D.7)

Here the Ta = σa/2 are the SU(2) generators and we used the SU(N) completeness
relation to derive this identity[

TA
]α
β

[
TA
]λ
σ
=

1

2
δασδ

λ
β −

1

2N
δαβ δ

λ
σ (D.8)

Using the identity we obtain

JaµJ
a
ν = 2〈∂µU †∂νU〉 (D.9)(

Jaµ
)2

= 2〈∂µU †∂µU〉 (D.10)(
JaµJ

a
ν

) (
J bµJ bν

)
= 4〈∂µU †∂νU〉〈∂µU †∂νU〉 (D.11)

In addition, we have for traceless 2x2 matrices A,B,C

εabc〈σaA〉〈σbB〉〈σcC〉 = −4i〈ABC〉 (D.12)

From (D.4) we deduce for traceless 2x2 matrices A,B,C,D

〈ABCD〉 = 1

2
(〈AB〉〈CD〉 − 〈AC〉〈BD〉+ 〈AD〉〈BC〉) (D.13)
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In addition, we have for traceless 2x2 matrices A,B,C,D,E, F

〈ABC〉〈DEF 〉 = 1

2
(〈AE〉〈BD〉〈CF 〉+ 〈AD〉〈BF 〉〈CE〉+ 〈AF 〉〈BE〉〈CD〉)

− 1

2
(〈AE〉〈BF 〉〈CD〉+ 〈AD〉〈BE〉〈CF 〉+ 〈AF 〉〈BD〉〈CE〉) (D.14)

Our aim is to reduce the structure ∂µJaν ∂µJaν and write it in terms of the basis operators

O1 = 〈∂µU †∂µU〉2, O2 = 〈∂µU †∂νU〉〈∂µU †∂νU〉 (D.15)

We calculate

∂µJ
a
ν ∂

µJaν = −4〈Ta(∂µ(U †∂νU))〉〈Ta(∂µ(U †∂νU))〉 = −2〈∂µ(U †∂νU)∂
µ(U †∂νU)〉

= −2〈∂µU †∂νU∂
µU †∂νU〉 − 2〈U †∂µ∂νUU

†∂µ∂νU〉 − 4〈∂µU †∂νUU
†∂µ∂νU〉

(D.16)

The first term is easily reduced by inserting UU † = 1 twice into the trace and using (D.4)

〈∂µU †∂νU∂
µU †∂νU〉 = 〈

(
∂µU

†U
) (
U †∂νU

) (
∂µU †U

) (
U †∂νU

)
〉 = O2 −

1

2
O1 (D.17)

For the second term we integrate by parts and obtain

〈U †∂µ∂νUU
†∂µ∂νU〉 = −2〈∂µU †∂νUU

†∂µ∂νU〉 − 〈∂µU †∂µU∂νU
†∂νU〉 (D.18)

where the second term can be identified as

〈∂µU †∂µU∂νU
†∂νU〉 = 1

2
O1 (D.19)

Thus,

∂µJ
a
ν ∂

µJaν = 2 (O1 −O2) (D.20)

Additionally, we need to reduce the structure

εabcJµa
(
∂νJ

b
µ

)
Jνc = −4〈∂µU †∂νU∂

µU †∂νU〉 − 4〈∂µU †∂νUU
†∂µ∂νU〉 = 2 (O1 −O2)

(D.21)
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E. Scalar Integrals
In this appendix we collect relevant Passarino-Veltman scalar integrals [249] where we
used the notation of [250]. Parts of this appendix appeared in [3]. The scalar tadpole
integral is given by the integral

A(m2) =
µ4−d

iπ
d
2 rΓ

∫
ddk

1

[k2 −m2 + iη]
(E.1)

The factor rΓ was included to remove the overall constant that appears in d-dimensional
integrals

rΓ ≡ Γ2(1− ε)Γ(1 + ε)

Γ(1− 2ε)
= 1− εγE + ε2

[
γ2E
2

− π2

12

]
+O(ε3) (E.2)

In d = 4− 2ε dimensions it is given by

A(m2) = m2

(
µ2

m2 − iη

)ε(
1

ε
+ 1

)
(E.3)

The general scalar bubble integral is given by

B(q2;m2
1,m

2
2) =

µ4−d

iπ
d
2 rΓ

∫
ddk

1

[k2 −m2
1] [(k + q)2 −m2

2]
(E.4)

For equal masses we get the expression (τ = q2/4m2)

B(q2;m2,m2) =

[
1

ε
+ ln

µ2

m2
+ 2− h(τ)

]
(E.5)

where h is defined as

h(τ) =


√
1− τ−1 log

√
1−τ−1+1√
1−τ−1−1

for τ < 0

2
√
τ−1 − 1 arcsin

√
τ for 0 ≤ τ ≤ 1

√
1− τ−1

[
log 1+

√
1−τ−1

1−
√
1−τ−1 − iπ

]
for τ > 1

(E.6)

For vanishing internal masses we have

B(q2; 0, 0) =

[
1

ε
+ ln

µ2

−q2
+ 2

]
(E.7)

The general scalar triangle integral is given by

C(l21, l
2
2, (l1 + l2)

2;m2
1,m

2
2,m

2
3) =

∫
d4k

iπ2

1

[k2 −m2
1] [(k + l1)2 −m2

2] [(k + l1 + l2)2 −m2
3]

(E.8)
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We need several special cases in this thesis. First of all, we need the case with equal
internal masses and two massless external lines

C(q2) = C(0, 0, q2;m2,m2,m2) =
1

2q2
f (τ) (E.9)

where we defined τ = q2/4m2 and

f(τ) =


log2

√
1−τ−1+1√
1−τ−1−1

for τ < 0

−4 arcsin2√τ for 0 ≤ τ ≤ 1[
log 1+

√
1−τ−1

1−
√
1−τ−1 − iπ

]2
for τ > 1

(E.10)

For q2 = 0 we obtain

C(0) = − 1

2m2
(E.11)

For 0 < τ � 1 we have

C(s) = − 1

2m2
− s

24m4
+O(s2) (E.12)

For |τ | � 1 we can expand

C(q2) =
1

2q2
log2

−q2

m2
+O(q−3) (E.13)

The other case we need is

C(r2, q2) = C(0, r2, q2;m2,m2,m2) =
1

2(q2 − r2)
(f (τ)− f(σ)) (E.14)

where we introduce σ = r2/4m2. The general scalar four-point function is given by

D(l21, l
2
2, l

2
3, l

2
4, (l1 + l2)

2, (l2 + l3)
2;m2

1,m
2
2,m

2
3,m

2
4) =

=

∫
d4q

iπ2

1

[q2 −m2
1] [(q + l1)2 −m2

2] [(q + l1 + l2)2 −m2
3] [(q + l1 + l2 + l3)2 −m2

4]
(E.15)

Again we need a special case where all external lines are massless and the internal masses
are equal

D(q2, r2) = D(0, 0, 0, 0, q2, r2;m2,m2,m2,m2) =
2

q2r2
1

β2(τ, σ)
g(τ, σ) (E.16)

where we defined

β1(z) =
√
1− z−1, β2(y, z) =

√
1− y−1 − z−1 (E.17)

and

g(τ, σ) = I1(τ, σ) + I1(σ, τ) + I2(τ, σ)−
π2

2
(E.18)
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Scalar Integrals

with

I1(τ, σ) = 2Li2 (τ [β1(σ)− 1] [β1(σ)− β2(τ, σ)])− 2Li2 (−τ [β1(τ)− 1] [β1(τ)− β2(τ, σ)])

− log2 (τ [β1(σ) + 1] [β1(σ)− β2(τ, σ)]) (E.19)

and

I2(τ, σ) = I2(σ, τ) = log
(
−σ [β1(τ)− β2(τ, σ)]

2) log (−τ [β1(σ)− β2(τ, σ)]
2)

+ 2 log2 (τ [β1(τ) + β2(τ, σ)] [β1(σ)− β2(τ, σ)]) (E.20)

The expression for g(τ, σ) is immediately applicable in the region τ, σ < 0. For τ, σ > 0
it holds with the prescription τ → τ + iη and σ → σ + iη respectively. Setting one of the
arguments to zero the box function takes the form

D(q2, 0) =
1

m2q2

(
2 +

√
1− τ−1 log

√
1− τ−1 − 1√
1− τ−1 + 1

)
(E.21)

Setting both arguments to zero one has

D(0, 0) =
1

6m4
(E.22)

Expanding the box function asymptotically for large |τ |, |σ| � 1 we have

D(q2, r2) =
2

q2r2

[
log

(
−q2

m2

)
log

(
−r2

m2

)
− π2

2

]
(E.23)

Explicit calculation
Let’s start by calculating C(τ) for τ < 0, the result for τ > 0 can be inferred by proper
analytical continuation τ → τ + iη. Employing the appropriate Feynman parameter
identity

1

ABC
=

∫ 1

0

dx

∫ 1

0

dy
2x2

[A+ x(C − A) + xy(B − C)]3
(E.24)

one has to deal with the double integral

C(τ) =
−1

m2

∫ 1

0

dx x

∫ 1

0

dy
1

1− 4xx y τ
=

1

q2

∫ 1

0

dx
ln 1− 4xx τ

x
(E.25)

= − 1

q2

(
Li2
(
2τ
(
1−

√
1− τ−1

))
+ Li2

(
2τ
(
1 +

√
1− τ−1

)))
(E.26)

At this stage one has to use the dilogarithm identity

Li2(1− z) + Li2
(
1− 1

z

)
= −1

2
ln2 z (E.27)

with z = 1− 2τ(1 +
√
1− τ−1), which yields

C(τ) =
1

2q2
ln2
(
1− 2τ(1 +

√
1− τ−1)

)
(E.28)
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or equivalently

C(τ) =
1

2q2
ln2

√
1− τ−1 + 1√
1− τ−1 − 1

(E.29)

We want to calculate the special case of the scalar box integral with massless legs and all
identical internal masses, i.e.

D(0, 0, 0, 0, (l1 + l2)
2, (l2 + l3)

2;m2,m2,m2,m2) =

=

∫
d4q

iπ2

1

[q2 −m2] [(q + l1)2 −m2] [(q + l1 + l2)2 −m2] [(q + l1 + l2 + l3)2 −m2]
(E.30)

We need to discern two cases: (i) D(s, t) or D(s, u) respectively and (ii) D(u, t). For case
(i) we have one invariant strictly positive and the other negative whereas in case (ii) there
are two negative invariants. To calculate the integral we need the Feynman parameter
identity

1

ABCD
=

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
6x2y

[A+ x (C − A) + xy (B − C) + xyz(D −B)]4
(E.31)

and ∫
d4q

iπ2

1

(k2 −∆+ iε)4
=

1

6

1

∆2
(E.32)

For τ, σ < 0 we get

D(τ, σ) =
1

m4

∫ 1

0

dx x2
∫ 1

0

dy
y

[1− 4x(1− x)y τ ] [1− 4y(1− y)x2 σ]
(E.33)
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F. Feynman Rules
In this appendix we collect the relevant Feynman rules for the models covered in the
thesis.

Sigma Model
First of all, we derive the Feynman rule for the quartic Goldstone vertex in SU(2) linear
sigma model. To get the Feynman rule we need to expand the U matrices

U = 1 + i2
ϕ

v
− 2

ϕ2

v2
− i

4

3

ϕ3

v3
+ · · · (F.1)

U † = 1− i2
ϕ

v
− 2

ϕ2

v2
+ i

4

3

ϕ3

v3
+ · · · (F.2)

∂µU = 2i
∂µϕ

v
− 2

∂µϕϕ+ ϕ∂µϕ

v2
− i

4

3

∂µϕϕ
2 + ϕ∂µϕϕ+ ϕ2∂µϕ

v3
+ · · · (F.3)

∂µU
† = −i2∂µϕ

v
− 2

∂µϕϕ+ ϕ∂µϕ

v2
+ i

4

3

∂µϕϕ
2 + ϕ∂µϕϕ+ ϕ2∂µϕ

v3
+ · · · (F.4)

where ϕ = ϕaT a = ϕaσa/2. Using these expansion one can derive the quartic part of the
Lagrangian. The contribution quartic in ϕ can be compactly written as

L4ϕ
2 =

1

3v2
〈[ϕ, ∂µϕ] [ϕ, ∂µϕ]〉 =

1

6v2
(
ϕa∂µϕ

aϕb∂µϕ
b − ∂µϕa∂µϕ

aϕbϕb
)

(F.5)

The Feynman rule for the quartic vertex

pa, a

pb, b

pc, c

pd, d

is given by [190]

iM =
i

v2
[
δabδcd (pa + pb)

2 + δacδbd (pa + pc)
2 + δadδbc (pa + pd)

2]
− i

3v2
(δabδcd + δacδbd + δadδbc)

(
p2a + p2b + p2c + p2d

)
(F.6)
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2HDM

The relevent Feynman rules for the h → γγ and h → γZ amplitudes in the 2HDM are
[194]

H−

H+

γ, µ

γ, ν

= 2ie2gµν (F.7)

H−

H+

γ, µ

Z, ν

= 2ie2
1− 2s2W
sW cW

gµν (F.8)

p1

p2

H−

H+

γ, µ = ie (pµ1 + pµ2) (F.9)

p1

p2

H−

H+

Z, µ = ie
1− 2s2W
sW cW

(pµ1 + pµ2) (F.10)

gg → ZZ

We make use of the following Feynman rules coming form the interaction Lagrangian
(8.9,8.10)
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Feynman Rules

Qggh

k2, ν, B

k1, µ, A
= −i αs

4π
δAB

2k1 · k2
v

(
gµν − kν1k

µ
2

k1 · k2

)
cggh (F.11)

QZZh

p2, ν

p1, µ
= −i α

4π

2p1 · p2
v

(
gµν − pν1p

µ
2

p1 · p2

)
cZZh (F.12)

QψS1

p1, κ

p2, λ

= 4i
m2
z

v2
CψS1 gκλ (F.13)

p1

p2

= −2i CψS1
2p1 · p2
v2

(F.14)

QGU1

k1, µ, A

k2, ν, B

p1, κ

p2, λ
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= −4ig2sδ
ABm

2
z

v2
CGU1(2k1 · k2)

(
gµν − kν1k

µ
2

k1 · k2

)
gκλ (F.15)

k1, µ, A

k2, ν, B

p1

p2

=2ig2sδ
AB 1

v2
CGU1(2k1 · k2)(2p1 · p2)

(
gµν − kν1k

µ
2

k1 · k2

)
(F.16)

QGU2

k1, µ, A

k2, ν, B

p1, κ

p2, λ

=− 2ig2sδ
ABm

2
z

v2
CGU2

[
gµλkν1k

κ
2 + gµκkν1k

λ
2 + gνλkκ1k

µ
2 + gνκkλ1k

µ
2 − gµν

(
kκ1k

λ
2 + kλ1k

κ
2

)
−(k1 · k2)

(
gµκgνλ + gµλgνκ

)]
(F.17)

k1, µ, A

k2, ν, B

p1

p2

=2ig2sδ
AB 1

v2
CGU2 [(k1 · p1)pν2k

µ
2 + (k1 · p2)pν1k

µ
2 + (k2 · p2)kν1p

µ
1 + (k2 · p1)kν1p

µ
2

−(k1 · k2) (pµ1pν2 + pν1p
µ
2)− gµν ((k1 · p1)(k2 · p2) + (k1 · p2)(k2 · p1))] (F.18)
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