
Weak Gravitational Lensing Cosmology
with Novel Analytical and Machine

Learning Frameworks

Zhengyangguang Gong

München 2025





Weak Gravitational Lensing Cosmology
with Novel Analytical and Machine

Learning Frameworks

Zhengyangguang Gong

Dissertation

an der Fakultät für Physik

der Ludwig–Maximilians–Universität

München

vorgelegt von

Zhengyangguang Gong

aus Hefei, China

München, den 15.05.2025



Erstgutachter: Prof. Dr. Ralf Bender

Zweitgutachter: Prof. Dr. Eiichiro Komatsu

Tag der mündlichen Prüfung: 15.07.2025
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Zusammenfassung

Moderne kosmologische Experimente wie Euclid, Vera Rubin LSST und DESI werden
enorme Datenmengen liefern, deren Analyse eine zentrale Herausforderung darstellt. Masc-
hinelles Lernen (ML) hat sich in Bereichen wie Systemklassifikation, synthetische Daten-
generierung und Parameterinferenz etabliert und hat erheblich zur Datenanalyse beigetra-
gen. Dennoch bestehen Bedenken hinsichtlich Genauigkeit, Robustheit und Interpretier-
barkeit von ML-Ansätzen. Zudem bleibt die Kombination analytischer Methoden mit
ML-Techniken weitgehend unerforscht.

In dieser Arbeit werden statistische Analysemethoden für schwache Gravitationslinsen-
felder sowohl aus analytischer als auch aus maschineller Lernperspektive entwickelt, mit
dem Ziel, unser Verständnis von kosmologischen Modellen, Strukturbildung und Entwick-
lung zu verbessern. Auf der analytischen Seite leite ich explizite Formeln für die Leis-
tungsspektren und Zweipunkt-Korrelationsfunktionen (2PCFs) von 2D-kritischen Punk-
ten ab, einschließlich Peaks (Maxima), Voids (Minima) und Sattelpunkten, in schwachen
Gravitationslinsen-Konvergenzfeldern mit geringer Nicht-Gaussianität. Mithilfe einer stör-
ungstheoretischen Bias-Expansion modelliere ich deren Clustering und leite das Leistungs-
spektrum von kritischen Punkten der schwachen Gravitationslinsen bis zur nächst-nächst-
führenden Ordnung (NNLO) in der gravitativen Störungstheorie her, wobei Trispektrum-
Konfigurationen berücksichtigt werden. Dies dient als Benchmark-Test für N-Body-Simula-
tionen, um sicherzustellen, dass Statistiken wie das Clustering von Linsenpeaks und Voids
nicht durch systematische Simulationseffekte verzerrt werden.

Für die ML-Anwendung auf die Analyse von Survey-Daten arbeitete ich an der Entwicklung
einer Likelihood-Analyse-Pipeline für kosmologische Einschränkungen unter Verwendung
der integrierten Scherungs-Dreipunkt-Korrelationsfunktion ζ±. Insbesondere entwickelte
ich einen hochpräzisen neuronalen Netzwerk-Emulator für schnelle theoretische Vorher-
sagen in der Markov-Chain-Monte-Carlo (MCMC)-Parameterinferenz. Mithilfe simulierter
Daten, die die Dark Energy Survey (DES) Year-3-Footprint, Masken und tomographische
Quellen-Bins nachbilden, zeige ich, dass die Einbeziehung von ζ± zusätzlich zur herkömmlic-
hen Scherungs-Zweipunkt-Korrelationsfunktion ξ± die Einschränkungen für ze-ntrale kos-
mologische Parameter wie As (oder σ8) und w0 um etwa 10− 25% verbessert.

Um die Interpretierbarkeit von ML zu verbessern und es besser mit analytischen Ansätzen
zu verbinden, stelle ich das Cosmological Correlator Convolutional Neural Network (C3NN)
vor, ein hybrides Framework, das Convolutional Neural Networks (CNNs) mit kosmologis-
chen N-Punkt-Korrelationsfunktionen (NPCFs) kombiniert. Ich zeige, dass die Ausgaben
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von C3NN explizit in Form analytisch behandelbarer NPCFs ausgedrückt werden können,
wodurch es möglich wird, die “Black Box” von ML zu öffnen. Zusammen mit zusätzlichen
Algorithmen ermöglicht dieser Ansatz eine quantitative Rangordnung verschiedener NPCF-
Ordnungen basierend auf ihrem Beitrag zu Klassifikationsaufgaben und liefert so tiefere
Einblicke in die gelernten Merkmale.



Abstract

Modern cosmological experiments such as Euclid, Vera Rubin’s LSST, and the Dark En-
ergy Spectroscopic Instrument (DESI) will generate an unprecedented volume of data in
the coming years. Effectively analyzing this vast dataset to deepen our understanding
of the Universe is an urgent challenge. In response, machine learning (ML) techniques
have emerged across various areas of cosmological research, including image classification,
synthetic data generation, and parameter inference, significantly enhanced real data anal-
yses. However, concerns remain about the accuracy, robustness, and interpretability of
ML approaches. Furthermore, the integration of conventional analytical methods with
cutting-edge ML techniques is an underexplored avenue.

This thesis develops statistical analysis methods for weak gravitational lensing fields from
both analytical and machine learning perspectives, aiming to improve our understanding
of cosmological models, structure formation, and evolution. On the analytical side, I derive
explicit formulae for the power spectra and two-point correlation functions (2PCFs) of 2D
critical points, including peaks (maxima), voids (minima), and saddle points, in weak grav-
itational lensing convergence field with mild non-Gaussianity. Using a perturbative bias
expansion, I model their clustering and derive the power spectrum of weak lensing critical
points up to next-to-next-to-leading order (NNLO), incorporating trispectrum configura-
tions. This serves as a benchmark test for N-body simulations, ensuring that statistics
such as lensing peak and void clustering are not biased by simulation systematics.

For the ML application to survey data analysis, I collaborated on the development of a
likelihood analysis pipeline for cosmological constraints using the integrated shear three-
point correlation function ζ±. Specifically, I built a high-precision neural network emulator
for fast theoretical predictions in parameter inference using Markov Chain Monte Carlo
(MCMC). With simulated data that mimics the Dark Energy Survey (DES) Year-3 foot-
print, mask, and source tomographic bins, we demonstrate that incorporating ζ± alongside
the conventional shear 2PCF ξ± improves constraints on key cosmological parameters, such
as As (or σ8) and w0, by approximately 10− 25%.

To address the challenge of ML interpretability and better integrate it with analytical ap-
proaches, I introduce the Cosmological Correlator Convolutional Neural Network (C3NN),
a hybrid framework that merges convolutional neural networks (CNNs) with cosmological
N-point correlation functions (NPCFs). We show that the C3NN output can be explicitly
expressed in terms of analytically tractable NPCFs, allowing us to open the “black box” of
ML. Along with auxiliary algorithms, this approach enables a quantitative ranking of dif-
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ferent orders of NPCF based on their contribution to classification tasks, providing deeper
insights from the learned features into cosmological physics.



Chapter 1

Introduction to cosmology

Currently the most widely accepted theory explaining the evolution of the observed Uni-
verse from its earliest known period is the Big Bang paradigm. Within its framework, our
Universe was generated approximately 13.8 billion years ago with a homogeneously and
isotropically distributed energy density at high temperature and pressure. After a tiny
fraction of the first second since the initial Big Bang, the Universe would expand expo-
nentially to encompass our whole observable Universe. This so called inflation paradigm is
conjectured to be driven by a scalar field and the microscopic quantum fluctuations of this
scalar field will be stretched and amplified to a macroscopic scale during the inflationary
period. These fluctuations will become primordial perturbations which would seed the
Cosmic Microwave Background (CMB) anisotropies and the later structure growth.

At the end of inflation, elementary particles in the Standard Model of particle physics are
produced. These particles interact with each other and reach a thermal equilibrium while
the Universe continues to expand and cool down. The Universe would then enter an era
in which the dominating energy component is radiation (Mukhanov, 2005).

As the expansion and cooling of the Universe persist, those early generated elementary
particles of quarks and gluons would combine to form composite subatomic particles such
as baryons (e.g. protons and neutrons) and mesons. This process is called Hadronization.
Baryons would further combine with each other to form nuclei and they together with
electrons generate light elements such as hydrogen and helium. This process is called Big
Bang Nucleosynthesis (BBN) (Dodelson & Schmidt, 2020).

The energy density of radiation decreases at a faster rate than the non-relativistic matter
along with the expansion of the Universe. The matter domination epoch takes over the
energy evolution during which the initial perturbations seen in CMB anisotropies (Aghanim
et al., 2020) are significantly enhanced by nonlinear gravitational evolution and grow into
Large Scale Structures (LSS) such as galaxies, galaxy clusters, cosmic voids and filaments
(Dodelson & Schmidt, 2020).

Additionally there is one piece of critical information embedded in the evolution of the
Universe summarized above: Cosmic neutrinos, which are generated as elementary par-
ticles and obtain their masses at early Universe, evolve along with the expansion of the
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Universe. They first travel through the Universe as relativistic particles, and then tran-
sit to non-relativistic around redshift z ∼ 100 − 200 with a variation depending on their
exact mass. They interact with other constituents of matter through which they leave an
imprint on LSS. In modern cosmology, a widely used statistical tool that can character-
ize the matter distribution of LSS is the 2-point correlation function (2PCF). Therefore
the imprint cosmic neutrinos impose on LSS can be reflected in the quantification of this
statistic. By properly modelling this statistic, one would obtain constraints on neutrinos’
properties which in this case is the sum of their masses (Lesgourgues et al., 2013).

In this chapter, we first discuss some basic cosmological concepts of an expanding universe
in Sec. 1.1. Then in Sec. 1.2 we introduce different distance measurements in cosmology. In
Sec. 1.3 we present the standard parametrization of Big Bang paradigm−the ΛCDM model
with its associated energy density components. Finally in Sec. 1.4 we briefly introduce some
major cosmological experiments and some unresolved puzzles from their observations.

The content of this chapter can be found in references such as Peacock (1999), Mukhanov
(2005), Lesgourgues et al. (2013) and Dodelson & Schmidt (2020).

1.1 Foundations of the cosmological dynamics

We have concrete evidence to show that our Universe is expanding (Riess et al., 1998).
To describe the increasing distance between two points in the Universe, it is convenient to
introduce the scale factor a(t). The contemporary value of it is set to one and it becomes
smaller until zero when we trace back in time to the beginning of Big Bang (Dodelson &
Schmidt, 2020). To be in accordance with this concept, one also introduces the comoving
distance χ which is the distance between two points in the comoving coordinates. This
coordinate system expands uniformly as the Universe and thus the comoving distance
remains constant with respect to time. The actual physical distance d between two points
is then proportional to the multiplication of the scale factor and the comoving distance
(Dodelson & Schmidt, 2020):

d ∝ a(t)χ . (1.1)

Besides the scale factor, there is another commonly used quantity for the expansion: the
redshift z. It is related to the fact that the physical wavelength of light emitted from a
distant object is stretched proportional to the scale factor as it propagates towards the
observer. It is defined as (Dodelson & Schmidt, 2020):

1 + z ≡ λobs

λemit

=
a(t0)

a(temit)
=

1

a(temit)
, (1.2)

where λobs is the observed wavelength, λemit is the emission wavelength. In conclusion, we
can write:

1 + z =
1

a(t)
. (1.3)
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In order to measure distances in the Universe, we also need to know its geometry. There
are three possibilities which are parametrized by the curvature k (Dodelson & Schmidt,
2020):

• Euclidean (Flat): The Euclidean space with k = 0 and the Universe is of infinite
volume.

• Open: A hyperbolic universe which can be imagined locally as an infinitely extended
saddle shape with k < 0.

• Closed: Analogous to the surface of a sphere with constant positive curvature k > 0.

Before writing the distance between two points in an expanding curved space explicitly, we
first have to declare two properties for the distribution of mass in our Universe as premises
which together are generally called the cosmological principle (Peacock, 1999):

• Homogeneous: At large scales (> 100 Mpc), the matter has a constant density.

• Isotropic: At large scales (> 100 Mpc), the matter distribution looks the same in all
directions.

With the above ingredients, we can write the differential distance in an expanding curved
universe in a spherical coordinate system as (Mukhanov, 2005):

dl23d = a2(t)
( dr2

1− kr2
+ r2(dθ2 + sin2θdϕ2)

)
, (1.4)

where r is the comoving distance along the radial direction, and θ, ϕ are the polar and
azimuth angles respectively. Using Einstein summation convention we can reformulate
Eq. (1.4) as:

dl23d = γijdx
idxj , (1.5)

where we should carry out a summation over indices i and j. Both of them can go from
1 to 3, referring to three spatial components in the spherical coordinate. γ is a diagonal
matrix called metric tensor and it defines the rule to calculate the distance between two
points in the space. In this case, γ reads:

γij =




a2(t)
1−kr2

0 0

0 a2(t)r2 0
0 0 a2(t)r2sin2θ


 . (1.6)

However, the gravitational interaction in cosmology is described by the theory of general
relativity and in relativistic theory the spatial distance is not an invariant quantity with
respect to coordinate transformations (Mukhanov, 2005). In order to compute such an
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invariant in cosmology, we have to upgrade Eq. (1.4) to a four-dimensional spacetime in
which the differential interval is calculated as (Dodelson & Schmidt, 2020):

ds2 = gµνdx
µdxν (1.7)

= −dt2 + a2(t)
( dr2

1− kr2
+ r2(dθ2 + sin2θdϕ2)

)
, (1.8)

where we use natural units assuming the speed of light c = 1, a convention we stick
to in the following discussion unless mentioned otherwise. Indices µ and ν go from 0
to 3 with 0 indicating the time coordinate t and 1 to 3 representing the spatial coordi-
nates. The metric tensor g in the four-dimensional spacetime is the well known Fried-
mann–Lemâıtre–Robertson–Walker (FLRW) metric expressed in spherical coordinates.
Contemporary experiments such as Planck support the claim that our Universe has a flat
spatial geometry (Efstathiou & Gratton, 2020). Therefore for most computation purposes,
we can take k = 0. Similar to Eq. (1.6), the metric tensor g can be written as:

gµν =




−1 0 0 0

0 a2(t)
1−kr2

0 0

0 0 a2(t)r2 0
0 0 0 a2(t)r2sin2θ


 . (1.9)

Another aspect of general relativity is that it relates the metric to the constituents of the
Universe. This relation is contained in the Einstein field equations which can be neatly
written down as a collection of tensor equations (Dodelson & Schmidt, 2020):

Gµν + Λgµν = 8πGTµν . (1.10)

The first term on the left hand side of the equation is the Einstein tensor defined as
(Dodelson & Schmidt, 2020):

Gµν ≡ Rµν −
1

2
gµνR , (1.11)

where Rµν is the Ricci tensor and can be computed from the metric and its derivatives. The
scalar R is the Ricci scalar and is the contraction of the Ricci tensor R = gµνRµν (Dodelson
& Schmidt, 2020). Back to Eq. (1.10), Λ is the cosmological constant and it serves as one
standard form of interpreting the dark energy density in the Universe. G on the right hand
side of the equation is the gravitational constant and T is the energy-momentum tensor
which characterizes the constituents of the Universe such as matter, radiation and so on.
In the case of a universe described by the FLRW metric in Eq. (1.9), the energy-momentum
tensor is diagonal and can be expressed using the density and pressure of the constituents
such that each of them can be treated as a perfect fluid (Dodelson & Schmidt, 2020):

T µ
ν =




−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p


 , (1.12)
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where ρ is the energy density and p is the pressure.

Based on Eq. (1.10), one can derive multiple equations governing the evolution of the
Universe. Detailed derivations can be found in the previously mentioned references and
here we just show some important results for a homogeneous and isotropic expanding
universe. When µ = ν = 0, the metric only considers the time-time component and
Eq. (1.10) becomes

G00 + Λg00 = 8πGT00 . (1.13)

If we substitute the tensor entries on both sides of the equation with their corresponding
expressions, we obtain the first Friedmann equation (Dodelson & Schmidt, 2020):

( ȧ
a

)2
=

8πGρ

3
− k

a2
+

Λ

3
, (1.14)

where ȧ represents the derivative of the scale factor with respect to time and ρ is the
energy density of the constituents of the Universe such as matter and radiation. Next
when considering the spatial part of Eq. (1.10) with µ = ν = i where i = 1, 2, 3, we obtain
the same equation for each index:

Gii + Λgii = 8πGTii , (1.15)

from which the second Friedmann equation can be derived (Dodelson & Schmidt, 2020):

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
, (1.16)

where ä is the acceleration of the scale factor and p is the pressure of those constituents
of the Universe. It is related to the corresponding energy density through the equation of
state:

p = ωρ , (1.17)

where ω is the coefficient and has different values for different constituents in the Universe.
We have ωm = 0 for non-relativistic matter, ωr = 1/3 for radiation and wΛ = −1 for the
cosmological constant (Dodelson & Schmidt, 2020).

If we combine Eq. (1.14) and Eq. (1.16) we can derive the equation describing the energy
density evolution (Mukhanov, 2005):

ρ̇ = −3
ȧ

a
(ρ+ p) , (1.18)

where one can replace the pressure with the equation of state and solve the differential
equation to obtain the energy density of a specific constituent as a function of the scale
factor.
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1.2 Cosmological distance measurement

In modern cosmology, distance between the observer and a distant object is a critical
quantity. In this section, we introduce two types of distance: One is the comoving distance
and the other is the angular diameter distance. For simplicity, we only consider the scenario
when the Universe has a flat geometry (k = 0) which is relevant to our theoretical modelling
later. Readers can find expressions for distances in a universe with non-zero curvature in
the previously mentioned references.

Imagine a light ray is emitted from a distant object at time t and reaches the observer at
the current time t0. It travels along the null-geodesic which means ds in Eq. (1.8) is always
equal to zero. If we assume the light travels along the radial direction and all angular
changes are zero, we have dr = dχ in Eq. (1.8) and the comoving distance between the
observer and the object is given by (Dodelson & Schmidt, 2020):

χ(t) =

∫ t0

t

dt′

a(t′)
. (1.19)

One can rewrite the above equation as an integration of the redshift z. But before that
we need to introduce an important quantity defined to describe the expansion rate of the
Universe called the Hubble parameter (Dodelson & Schmidt, 2020):

H ≡ ȧ

a
, (1.20)

and if we combine this definition with Eq. (1.3), we can rewrite Eq. (1.19) as:

χ(t) =

∫ 1

a(t)

da′

ȧ(t′)a(t′)
=

∫ 1

a(t)

da′

H(a′)a2(t′)
=

∫ z

0

dz′

H(z′)
, (1.21)

where we exploit the relation that the redshift is zero at the current value of the scale
factor a(t0).

In cosmological observations, when we know the physical size of an extended object in the
sky is l and it subtends an angle of θ, we can define another distance measurement called
the angular diameter distance (Dodelson & Schmidt, 2020):

dA ≡ l

θ
. (1.22)

The comoving size of the extended object can be represented as l/a and the comoving
distance from the observer to that object is exactly what we derive in Eq. (1.21). Therefore
we can write the angular size of the object in terms of comoving length scales θ = (l/a)/χ
and once we substitute the angular size in Eq. (1.22) with this expression, the angular
diameter distance becomes (Dodelson & Schmidt, 2020):

dA = aχ =
χ

1 + z
, (1.23)
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where it’s again important to remember that this is the angular diameter distance expressed
in a Euclidean space.

1.3 Standard ΛCDM parametrization

The Big Bang paradigm mentioned at the beginning of this chapter can be parametrized
by the ΛCDM model, also called the standard model of cosmology. It is a model with
six independent free parameters which can well explain the major results of the current
cosmological observations (Dodelson & Schmidt, 2020):

• The origin and anisotropies of Cosmic Microwave Background (CMB).

• The distribution of galaxies at large scales.

• The abundance of light elements such as hydrogen and helium today.

In short, ΛCDM model proposes a Euclidean universe dominated in its energy budget by
the non-baryonic cold dark matter and dark energy, with its current large scale structure
originated from the initial perturbations generated by the inflation. To better understand
this model, we have to know the constituents of cold dark matter (CDM) and dark energy
(Λ) which are both beyond the Standard Model of particle physics. But before that,
we would like to first set up the framework depicting the energy budget for different
constituents of the Universe.

For a flat universe, Eq. (1.14) can be rewritten as:

8πG

3H2

∑

i

ρi = 1 , (1.24)

where we set k = 0 and absorb the cosmological constant term into the energy density.
The original energy density ρ is now expressed as the summation over different constituents
and the Hubble parameter H comes from the left hand side of Eq. (1.14) according to the
definition. The factor 8πG/3H2 is the reciprocal of the critical density ρc when the Hubble
parameter takes its current value (Dodelson & Schmidt, 2020):

ρc ≡
3H2

0

8πG
, (1.25)

and by convention cosmologists usually use concepts of density parameter or physical
density parameter to describe the energy fraction of a specific constituent in the Universe.
The former is defined as:

Ωi =
ρi(t0)

ρc
, (1.26)

where ρi(t0) is the current energy density for species i and the latter is:

ωi = Ωih
2 , (1.27)
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where h is the dimensionless reduced Hubble constant which is equal to the present-day
Hubble parameter value divided by 100 km/s/Mpc. For clarity, it is necessary to distinguish
between the physical density parameter and the equation of state coefficient.

Cold dark matter: First proposed by Fritz Zwicky in 1933 (Zwicky, 1933) to explain
the mismatch between the galaxy velocities within clusters and the estimated mass of
the observed luminous objects, cold dark matter particles interact only through gravity
and thus prominently affect the structure formation in the Universe. There are many
other evidences for its existence such as the location discrepancy between the density
concentration of the total matter and the gas in the Bullet Cluster (Clowe et al., 2006) and
rotation curves of galaxies. Its name “cold” indicates that the particles do not possess high
velocities and are non-relativistic. Since cold dark matter particles cannot be described by
nuclear or atomic physics, there are no direct methods to detect it. We can only study it by
investigating the properties and distribution of the total matter through probes such as the
gravitational lensing. Besides cold dark matter, the total matter also includes baryonic
matter which is made up of protons and neutrons. Advanced galaxy surveys such as
the Dark Energy Survey (DES) points out that the current density parameter for the
total matter is Ωm = 0.339+0.032

−0.031 (Abbott et al., 2022) through the combined constraints
of galaxy clustering and weak lensing. From other independent experiments such as the
X-ray emission from galaxy clusters one can approximate the density parameter ratio
between the baryonic matter and the total matter which according to Mantz et al. (2014)
is Ωb/Ωm = (0.089 ± 0.012)h−3/2. Therefore one can have the idea that the matter takes
up about 30% of the total energy in our Universe and it consists of approximately 20%
baryonic matter.

In conclusion, the cold dark matter and the baryonic matter constitute roughly 25% and
5% of the whole energy budget of the Universe respectively. Both of them can be treated
as pressure less matter which means the equation of state coefficients for them are zero:
ωcdm = ωb = 0.

Dark energy: Two pieces of strong evidence support the existence of dark energy. First
our Universe is shown to have a Euclidean geometry, therefore the summation of the
density parameter of all constituents should be one according to Eq. (1.24). However,
the density parameter of the total matter is only about 0.3 and the energy density for
radiation is negligible today. This implies that an additional ingredient which does cluster
in the same way as does matter is required to fill the energy budget of the Universe.
Moreover, experiments of observing distant supernovae events (Riess et al., 1998) show
that our Universe is undergoing an accelerated expansion. Matter would only slow down
the expansion through gravitational interaction. It supports the claim that there is another
dominating constituent in the Universe which does not participate in the gravitational
collapse and has a negative equation of state (Dodelson & Schmidt, 2020). This can be
seen from Eq. (1.16) where we assume the dominating energy constituent is dark energy,
then for the acceleration on the left hand side to be positive we must have:

ρDE + 3ωDEρDE < 0 , (1.28)
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where we use the equation of state for the pressure of dark energy on the right hand side
of the equation. This leads to ωDE < −1/3.

Scolnic et al. (2018) show the constraints on the equation of state coefficient for the dark
energy ωDE = −1.026± 0.041 from the supernovae observations together with the Planck
CMB measurements. This value is consistent with the theoretical modelling of the cosmo-
logical constant that has ωΛ = −1. Therefore it is justified to assume that the dark energy
is a cosmological constant with ΩDE = ΩΛ ≈ 0.7. However, even if we can successfully
establish the existence of the dark energy and relate it to the cosmological constant, the
source for its energy density is still an open question today.

Two other important constituents in the Universe are radiation and neutrinos. The ma-
jority of the radiation contribute to the total energy budget today through the Cosmic
Microwave Background (CMB) photons and its energy density only makes up a tiny frac-
tion (Dodelson & Schmidt, 2020):

ωγ = Ωγh
2 = 2.47× 10−5 . (1.29)

Therefore radiation is negligible in ΛCDM model today. As for cosmic neutrinos, they
do not contribute significantly to the total energy budget as well. However, they are not
massless particles as photons and by interacting with cold dark matter and baryons in the
late Universe, they influence the structure formation.

1.4 Cosmological experiments

To validate the ΛCDM model and gain deeper insights into the formation and evolution
of cosmic structures within its framework, or to test alternative cosmological models, it is
essential to conduct diverse cosmological experiments or surveys. These should encompass
various observable tracers of the underlying dark matter density field while spanning a
wide range of redshifts and length scales.

Below, we reference a figure from Preston et al. (2023) that provides an overview of the
approximate scale dependence, in terms of wavenumber k, and redshift dependence z of
various cosmological observations. Each observable shown in the figure corresponds to
several dedicated cosmological surveys.

The most up-to-date study based on cosmic microwave background (CMB) observations,
including CMB lensing, comes from Planck 1 (Aghanim et al., 2020). Future CMB experi-
ments such as CMB-S4 2(Abazajian et al., 2022) and LiteBIRD3(Hazumi et al., 2020), will
achieve unprecedented measurement precision on CMB temperature fluctuations. These
missions aim to detect signals such as primordial B-mode polarization and primordial
gravitational waves, which are crucial for understanding inflationary physics.

1https://www.cosmos.esa.int/web/planck
2https://cmb-s4.org/
3https://www.isas.jaxa.jp/en/missions/spacecraft/future/litebird.html
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Figure 1.1: A guide of approximate scale and redshift dependence of different cosmological
observables. On linear to mildly nonlinear scales, we have Cosmic Microwave Background
(CMB), CMB lensing and Redshift Space Distortion (RSD)/galaxy positions from high
to low redshifts (blue, filled). On the other hand, weak gravitational lensing probes the
nonlinear scales but usually on low redshifts (red, filled). Besides, Lyman-α emission and
other line intensity mappings such as Hα and 21cm, can also probe nonlinear scales in our
Universe but to a higher redshift range (z ideally up to ∼ 20) and thus provide information
for the cosmic reionization. Image source: Preston et al. (2023).

In the late Universe, photometric galaxy surveys, including the Kilo-Degree Survey (KiDS)4

(de Jong et al., 2013), the Dark Energy Survey (DES)5(Dark Energy Survey Collabora-
tion et al., 2016) and the Hyper Suprime-Cam SSP Survey (HSC)6(Aihara et al., 2018),
focus on weak gravitational lensing galaxy shear measurements. Collectively known as
Stage-III galaxy surveys, these studies play a crucial role in constraining cosmological pa-
rameters such as the matter density parameter Ωm, density fluctuations σ8, and various
dark matter and dark energy models, while also accounting for astrophysical effects. These
scientific investigations will be further extended by Stage-IV galaxy surveys, including Eu-
clid7(Mellier et al., 2024) and the Rubin Observatory LSST 8(Breivik et al., 2022). On
the other hand, spectroscopic galaxy surveys such as the Baryon Oscillation Spectroscopic

4https://kids.strw.leidenuniv.nl/index.php
5https://www.darkenergysurvey.org/
6https://hsc.mtk.nao.ac.jp/ssp/
7https://www.euclid-ec.org/public/data/surveys/
8https://www.bnl.gov/lsst/
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Survey (BOSS)9, the Extended Baryon Oscillation Spectroscopic Survey (eBOSS)10 and
the Dark Energy Spectroscopic Instrument (DESI)11 provide us with a deep and accurate
spatial distribution of the cosmological structures through the observation of different lu-
minous tracers such as bright galaxies, luminous red galaxies (LRGs), emission line galaxies
(ELGs) and quasars (Dawson et al., 2012, 2016; Dey et al., 2019). With their measurement
of galaxy clustering, we can have a joint constraint on the above cosmological parameters
together with weak lensing measurement. Also we gain better understanding of the expan-
sion of our Universe and structure growth through their measurement of Baryon Acoustic
Oscillation (BAO) and RSD (see e.g. Hou et al. (2020)).

Multi-line intensity mapping, including Hα, Lyman-α, 21cm emission and so on, provide
us with another exciting perspective in studying the history and evolution of our Universe
(Bernal & Kovetz, 2022). They have the potential to enhance our observation to a much
larger scale both time and space-wise compared to low redshift galaxy surveys. Experi-
ments such as Square Kilometre Array (SKA)12 and International Low-Frequency Array
(LOFAR)13 are particularly promising in giving insights into the period of reionization
(Mellema et al., 2013; Wiersma et al., 2013).

These different experiments can return results which are either consistent with or con-
tradictory to each other under the framework of ΛCDM model. In other words, we can
exploit these independent experimental results to test the standard cosmological model on
different fronts. Those occurred discrepancies can be important hints towards alternative
or modified theories of dark matter, dark energy and general relativity.

Here we briefly discuss two representative tension scenarios in the inferred Bayesian pos-
teriors of cosmological parameters from different survey experiments:

• H0 tension: H0 is the current Hubble parameter which characterizes the expansion
rate of our Universe at the moment. Indirect inference of such a parameter from CMB
experiments and the assumed ΛCDM model yields a tension compared to the direct
inference based on late Universe observables such as supernovae and strong lensing
time-delay cosmography (blue points and error bars in the direct measurement section
in Fig. 1.2) up to 5σ. Fig. 1.2 shows quite complete results of H0 measurements from
both early and late Universe experiments (They can also be categorized as indirect
and direct methods). Various new models and corrections with respect to ΛCDM
paradigm have been proposed, including dark radiation, early dark energy and so on,
to solve this tension (Readers who are interested can refer to Schöneberg et al. (2022)
and references therein). This tension remains an open question until the present.

• S8 tension: By definition, S8 = σ8

√
Ωm/0.3, characterizes the amplitude of matter

clustering in the late Universe where σ8 is the root mean square of the amplitude of

9https://www.sdss4.org/surveys/boss
10https://www.sdss4.org/surveys/eboss/
11https://www.desi.lbl.gov/
12https://www.skao.int/en
13https://lofar-surveys.org/index.html
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matter perturbation smoothed over 8 h−1Mpc, h is the Hubble constant H0 in unit of
100 km s−1Mpc−1. The results of S8 from CMB observations assuming the evolution
history of ΛCDM are 2 − 3σ larger than those probed by low redshift observables,
such as gravitational lensing, galaxy clustering and galaxy cluster number counts. We
show in Fig. 1.3 different constraints on S8 where “WL” stands for “Weak Lensing”,
“GC” stands for “Galaxy Clustering” and “CC” represents “Cluster Count”. There is
literature implying that S8 tension is due to our incomplete modeling of the nonlinear
scale physics (Amon & Efstathiou, 2022; Preston et al., 2023). Other analyses show,
however, that a mechanism beyond baryonic feedback alone is required to resolve
the S8 tension, i.e. new physics beyond ΛCDM (Terasawa et al., 2025; Salcido &
McCarthy, 2024). Similar to H0 tension, S8 tension remains debatable until today.
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Figure 1.2: 68% confidence level of H0 values from different cosmological probes. Image
source: Abdalla et al. (2022)
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Figure 1.3: 68% confidence level of S8 values from different cosmological probes. Image
source: Abdalla et al. (2022)



Chapter 2

Statistics and perturbation theory of
cosmic density fields

In order to probe LSS in the Universe, we need unbiased and accurate statistical tools to
extract quantitative information from the observed fields. Due to the nonlinear gravita-
tional evolution of the late Universe, the dark matter density field1 which forms the basics
of the cosmic structure possesses non-Gaussian properties, i.e. it cannot be described com-
pletely by the mean and variance of its density fluctuations. In this case, more complicated
statistics are needed to help us better understand the evolution and formation of the LSS.
One popular and efficient approach to formulate those statistics is the perturbation theory.
This methodology is analytical and to a certain degree is complementary to the machine
learning-based methods we will discuss in the next chapter.

As dark matter field cannot be directly probed via electromagnetic waves, we can only infer
its spatial distribution through luminous objects populated on top of it. This necessarily
requires the modeling of the connection between these luminous objects and the underlying
dark matter field. Due to the small-scale nonlinear gravitational dynamics, various baryonic
effects and the impact from the local environment, the modeling of this connection becomes
exceedingly complex. One standard approach to address such a problem is to use bias
theory where the luminous objects are regarded as biased tracers of the underlying dark
matter field and the connections are parameterized by free parameters, called the bias
parameters. In general, one can combine bias theory with perturbation theory to model
statistics of tracer fields on large scales. In such a framework, an operator of the underlying
matter, with the allowed symmetry of the target tracers (e.g. not only matter density but
also tidal fields and their time derivatives), is associated with a bias parameter whose exact
values can depend on spatial scales, time evolution and the specific population of the target
tracer.

In this chapter, we would like to discuss statistics and physical models that are essential

1Our discussions throughout this work are under the context that dark matter exists. We do not
consider alternative theories such as the Scale-Invariant Vacuum (SIV) Theory (Maeder & Gueorguiev,
2020) where dark matter hypothesis is not necessary.
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to the papers presented in this dissertation. In Sec. 2.1, we will introduce the concept of a
random field and some of its statistical characteristics. Next in Sec. 2.2, we will first discuss
a conventional statistical measure of density fields, i.e. the correlation function, followed
by a short overview of standard perturbation theory which provides the mathematical tool
to calculate correlation functions. We will then explore their applications in weak gravi-
tational lensing, a phenomenon that directly traces the total matter density distribution,
in Sec. 2.3, and examine the modeling of cosmic shear 2PCF and integrated 3-point cor-
relation function (3PCF). We then briefly discuss general biased tracers in Sec. 2.4 within
the framework of perturbative bias expansion. Additionally, we demonstrate how galaxies
2PCFs and weak lensing critical points can be derived using this approach. Finally in
Sec. 2.5, we briefly touch on 3 × 2-point analyses and multi-probe cosmology in modern
survey experiments which are powerful techniques for advancing our understanding of the
Universe.

2.1 Random fields

A spatial random field ρ is a mathematical model that describes a stochastic process that
varies across the space. In either a discrete or continuous spatial domain with a given
volume V and dimensionality D, ρ assigns a random variable to each location. Suppose
for a position xi ∈ V , the field value ρi = ρ(x1) is a random variable. A collection of such
random variables would be a spatial random field

ρ = (ρ1, ρ2, . . . , ρN) , (2.1)

where the subscript N above represents N distinct positions within the volume V (Xavier
et al., 2016). Each realization of the field ρ represents a possible configuration of values
across the space.

2.1.1 Homogeneity, isotropy and ergodicity

The currently accepted explanation for the origin of the LSS observed today is attributed to
the quantum fluctuation of the inflation field in the very early Universe (Mukhanov, 2005).
This fluctuation is a statistically homogeneous, isotropic and ergodic random process. In
other words, the density field produced by this process, although went through various
modifications in the subsequent evolution, can be described as a random field and reserves
these fundamental properties.

From a statistical perspective, we are not interested in the values of ρ(x) for a particular
realization within a survey volume V , but rather its expectation values. If we assume that
the same fluctuation and evolution mechanisms generate a multitude of universes and ours
is only one of them which is referred to as one realization, the corresponding ensemble
average of the density field is defined as:

〈
ρ(x)

〉
≡
∫

dρP (ρ)ρ(x) , (2.2)
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where P (ρ) is the probability density function (PDF) of the density field at one particular
position x and this probability density function is inferred from the ensemble of universes.
The integration goes over all realizations at position x. In this sense, the ensemble average
value of the density field at one point in the sky can be different from another point.

Statistical homogeneity implies further modification on the above quantity and would
cancel its dependency on position. It means that the ensemble average value

〈
ρ(x)

〉
is

independent of positions x, and therefore can be simplified as
〈
ρ
〉
.

However, in real observations, we can only observe one universe and thus our density field
ρ(x) is only one realization. In this case, the natural choice of average value is the volume
average:

ρ̄ ≡ 1

V

∫

V

dxρ(x) , (2.3)

and the difference between this observational volume average and the ensemble average
provided by simulations and theories is called cosmic variance and would limit our accuracy
in comparing theory against observation (Driver & Robotham, 2010). When the volume
V is large enough, the averaged density field of many unconnected sub-volumes can be
combined and their average approaches the true ensemble average value. This indicates
that the set of those sub-volumes provide a fair sample of the density field. We call this
limiting case of equivalence between ensemble and volume average ergodicity (Peacock,
1999). In the following sections, we no longer differentiate between the symbols of these
two averages unless specifically mentioned.

2.1.2 PDF, moments and cumulants

The discussion above highlights the significance of the density field PDF, P (ρ), at a given
location. Knowing this distribution allows us to determine the probability of the density
field adopting a specific amplitude. Furthermore, the time evolution of the density field
PDF provides valuable insights into cosmic evolution.

According to the prediction of inflation theory such as the standard single-field slow-roll
inflation, the density field distribution immediately after the inflationary period should be
Gaussian (Dodelson & Schmidt, 2020). This implies that the density field PDF at that
time can be fully described by a Gaussian distribution function, at least on sufficiently
large scales, with its two parameters mean ⟨ρ⟩ and variance σ2

ρ, where

σ2
ρ = ⟨ρ2⟩ − ⟨ρ⟩2 , (2.4)

and

P (ρ) =
1

σρ

√
2π

e
− (ρ−⟨ρ⟩)2

2σ2
ρ . (2.5)

However, as we have already pointed out in Chapter. 1, nonlinear gravitational evolution in
late time Universe introduces non-Gaussianities into the density field, especially on small
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Figure 2.1: A schematic illustration depicts the time evolution of the density field PDF,
starting from an initial Gaussian distribution at 2.2 Gyr after the Big Bang (dark red)
and gradually transitioning to a positively skewed distribution by z ≈ 0 (dark blue). This
evolution is shown for a density field smoothed on a 10 Mpc scale. Image credit: Sandrine
Codis.

scales due to the structure formation. We schematically illustrate this process in Fig. 2.1
where we show the time evolution of the density field PDF with a smoothing scale of 10
Mpc. It is clear from the figure that as redshift z approaches 0 (13.8 Gyr), the PDF becomes
highly non-Gaussian with a prominent tail distribution towards high density values. This
is consistent with the picture that matter is constantly attracted to the overdense regions
during the evolution of our Universe.

In order to describe the density field PDF at late time, Eq. (2.5) is apparently insufficient.
We need other statistical features such as moments or cumulants. By definition, an nth
order moment of the density field is

µn =

∫
dρρnP (ρ) , (2.6)

where variance σ2
ρ can be related to as

σ2
ρ = µ2 − µ2

1 , (2.7)

and is also called the second central moment. And a general definition for the nth order
central moment is

µc,n =

∫
dρ(ρ− µ1)

nP (ρ) . (2.8)

For a Gaussian distribution, all odd-order central moments are zero and all even-order
central moments can be expressed in terms of the variance σ2

ρ. This no longer holds for
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a non-Gaussian PDF; thus, higher-order moments become essential for characterizing the
density field PDF in the late Universe.

Another way to compute the moments of the PDF is through the so called Moment Gen-
erating Function (MGF) which is defined as the Laplace transform of the PDF

Mρ(λ) = E
(
eλρ
)
=

∫
dρeλρP (ρ) , (2.9)

and we can see the MGF from the series expansion of the expectation of eλρ

Mρ(λ) = E(1 + λρ+
(λρ)2

2!
+ . . .+

(λρ)n

n!
+ . . .) =

+∞∑

n=0

λnE(ρn)

n!
=

+∞∑

n=0

λnµn

n!
, (2.10)

from which the nth order derivative of the MGF at λ = 0 is the nth order moment µn.

We can define the Cumulant Generating Function (CGF) by taking the logarithm of
Eq. (2.10)

ϕρ(λ) = log (Mρ(λ)) = log
(
E
(
eλρ
))

=
+∞∑

n=1

λnKn

n!
, (2.11)

where Kn is the nth order cumulant of the density field PDF. It is important in the context
of perturbation theory as it represents the connected moments of the density field (e.g. 2nd
order cumulantK2 is the variance of the density field). Cumulants and moments are related
to each other and below we list the first few relations

µ1 = K1 ,

µ2 = K2 +K2
1 ,

µ3 = K3 + 3K1K2 +K3
1 ,

µ4 = K4 + 4K1K3 + 3K2
2 + 6K2

1K2 +K4
1 ,

...

(2.12)

If the CGF is obtained, the PDF can be reconstructed through an inverse Laplace transform

P (ρ) =

∫ +i∞

−i∞

dλ

2πi
e−λρ+ϕρ(λ) , (2.13)

one way to construct the CGF for cosmological density fields is through the large deviation
theory (LDT). Readers who are interested in details of the method can refer to Chapter. 8
and references therein for applications to both smoothed 3D matter density field and the
projected 2D fields of weak lensing convergence and aperture mass fields.

2.2 Density perturbation and its correlation functions

From Chapter. 1 and Sec. 2.1.1, it is clear that the cosmological principle describing our
Universe as a homogeneous one can only be held true at its largest length scale. Surveys
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like Sloan Digital Sky Survey (SDSS) have revealed that our Universe has structures on
relatively large scales (Dodelson & Schmidt, 2020). In other words, there are prominent
inhomogeneities in the density field developed upon the smooth background as the result
of the evolution of the Universe. As a fact, fluctuations were already there after inflation
as reflected in the tiny anisotropies in the CMB temperature (Aghanim et al., 2020).

The values of density field ρ themselves cannot effectively display the perturbed feature in
the late Universe. Therefore we define another density perturbation field which confronts
better with our statistical measures (Peacock, 1999)

δ(x) ≡ ρ(x)− ⟨ρ⟩
⟨ρ⟩ , (2.14)

where we exploit the homogeneous property of the statistics that leads to ⟨ρ(x)⟩ = ⟨ρ⟩
and from Eq. (2.14) we have ⟨δ(x)⟩ = ⟨δ⟩ = (⟨ρ⟩ − ⟨ρ⟩)/⟨ρ⟩ = 0 follow immediately. Thus
it would be more reasonable to describe inhomogeneities with the variance of the density
perturbation field, ⟨(δ − ⟨δ⟩)2⟩ = ⟨δ2⟩, rather than its average.

However, the variance ⟨δ2⟩ just indicates the strength of the inhomogeneity at a single
location like what we showed in Eq. (2.4) for the density field itself. It does not take
into account the spatial correlations of density perturbations among different locations.
Hence we need to introduce another statistical concept named correlation function. Here
we use the 2-point correlation function (2PCF) ξ as an example to provide further details
(Peacock, 1999)

ξ(r) ≡ ⟨δ(x)δ(x+ r)⟩ , (2.15)

where r is the displacement vector between two locations in space. It is positive when
the density perturbations at two positions always have the same sign and negative if their
signs are opposite. Essentially it investigates how the perturbations of separate locations
correlate to each other. We can observe that when r = 0, the correlation function becomes
the variance of the density perturbation field: ξ(0) = ⟨δ(x)δ(x)⟩ = ⟨δ2⟩. From homo-
geneity, statistics like 2PCF would not depend on the positions of the two points but only
on the separation between them. Moreover, statistical isotropy implies that its values are
independent of the direction of the displacement vector between points but only dependent
on the modulus of that vector. Therefore the 2PCF is a spherically symmetric quantity in
3D space and can be simplified as ξ(r) = ξ(r).

Besides the 3D correlation function ξ(r), though a less direct probe, the angular correlation
function w(θ) can be a powerful tool itself owing to large area of sky surveys.

In the case of angular correlation function, only angular positions of density perturbation
fields are known but not the distances to them. Therefore when correlating perturbations
of two field points in the sky we have

w(r̂1, r̂2) = ⟨δ(r̂1)δ(r̂2)⟩ , (2.16)

where r̂1 and r̂1 are unit vectors indicating directions. If the angular separation between
two points in the sky is θ, in analogy to the definition of correlation function with statistical
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homogeneity and isotropy discussed in the previous section, it can be written as

w(r̂1, r̂2) = ⟨δ(r̂1)δ(r̂1 + θ)⟩ = w(θ) = w(θ) , (2.17)

which depends only on the angle between two directions r̂1 and r̂2. Usually when the
value of angular separation θ is within the limit required by the flat-sky approximation,
the angular separation vector θ can be expressed as a 2D vector in a flat sky plane instead
of a spherical sky with respect to a chosen reference coordinate.

Following the discussion of the 2PCF, it is straightforward to extend the definition to
higher-order correlation functions. The N-point correlation function (NPCF) and the
angular NPCF would be in the form of ⟨δ(x)δ(x + r1)δ(x + r2) · · · δ(x + rN−1)⟩ and
⟨δ(r̂)δ(r̂ + θ1)δ(r̂ + θ2) · · · δ(r̂ + θN−1)⟩, respectively.

2.2.1 Power spectrum

It is important to introduce the counterpart of 2PCF in Fourier space which is the power
spectrum. To find the formula for power spectrum, we first need to reformulate the corre-
lation function defined in Eq. (2.15).

The two correlated density perturbation field points can be represented by their corre-
sponding Fourier transform and we would have:

ξ(r) = ⟨δ(x)δ(x+ r)⟩

=
V 2

(2π)6

〈∫

k

δ(k)eik·xdk

∫

k′
δ(k′)eik

′·(x+r)dk′

〉

=
V 2

(2π)6

∫

k′

∫

k

δ(k)δ(k′)eik
′·r 1

V

∫

V

ei(k+k′)·xdxdkdk′

=
V

(2π)6

∫

k′

∫

k

δ(k)δ(k′)eik
′·r(2π)3δD(k+ k′)dkdk′

=
V

(2π)3

∫

k′
δ(−k′)δ(k′)eik

′·rdk′

=
V

(2π)3

∫

k

δ∗(k)δ(k)eik·rdk

=
V

(2π)3

∫

k

|δ(k)|2eik·rdk .

(2.18)

During the above derivation we use the volume average definition for the angular bracket,
then we apply the orthogonality relation between different Fourier modes k. The above
equations show in the end that 2PCF is the Fourier transform of the power spectrum.
If we now take ensemble averages on both sides of Eq. (2.18), which are indeed aims of
cosmological studies, we can define the power spectrum as (Peacock, 1999):

P (k) ≡ ⟨|δ(k)|2⟩ , (2.19)
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and because power spectrum cannot contain a preferred direction in an isotropic universe,
the definition can be simplified as P (k) = ⟨|δ(k)|2⟩. Alternatively, another definition of
power spectrum is (Dodelson & Schmidt, 2020):

⟨δ∗(k)δ(k′)⟩ ≡ (2π)3δD(k
′ − k)P (k) , (2.20)

of which Eq. (2.19) is a special case where k = k′ and the prefactor 1
(2π)3

in Eq. (2.18) is
included in this definition as well.

The isotropy of power spectrum can lead to further simplification regarding the integration
of angular components with spherical symmetry. If we take the angle between r and k as
the polar angle θ in the spherical coordinate, we would have:

ξ(r) =
V

(2π)3

∫ 2π

0

∫ π

0

∫

k

P (k)cos(krcosθ)k2sinθdkdθdϕ

=
V

(2π)3

∫ π

0

∫

k

P (k)cos(krcosθ)sinθ2πk2dkdθ

=
V

(2π)3

∫

k

(∫ π

0

cos(krcosθ)sinθdθ

)
P (k)2πk2dk

=
V

(2π)3

∫

k

2j0(kr)P (k)2πk2dk

=
V

(2π)3

∫

k

P (k)
sin(kr)

kr
4πk2dk ,

(2.21)

where the exponential factor eik·r only has its real part, cos(krcosθ), in the integration
with θ going from 0 to π since correlation function in this case is a real value quantity. We
also use the integral representation of the 0th order spherical Bessel function in the above
integration:

j0(x) =
sinx

x
=

1

2

∫ π

0

cos(xcosθ)sinθdθ . (2.22)

The analogous formula to Eq. (2.21) in 2-dimensional space is:

ξ2D(r) =
A

(2π)2

∫

k

P 2D(k)J0(kr)2πkdk , (2.23)

where A is the survey area, J0 is the 0th order Bessel function of the first kind and r, k
are modulus of separation and wave vectors in 2-dimensional space.

From a theoretical perspective, it is more convenient to work in Fourier space and specify
models such as power-law spectra. The Fourier or relevant transformations to real space
enable prediction of correlation functions based on the theoretical models and compare
those predictions with the actual correlation functions calculated from observational data.
Higher-order correlation functions also have their corresponding counterpart in Fourier
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space, e.g. bispectrum can be transformed to 3PCF and trispectrum can be transformed
to 4PCF, following the definition analogous to Eq. (2.20)

⟨δ(k1)δ(k2)δ(k3)⟩c = (2π)3δD(k1 + k2 + k3)B(k1,k2,k3) , (2.24)

⟨δ(k1) · · · δ(k4)⟩c = (2π)3δD(k1 + · · ·+ k4)T (k1, . . . ,k3) , (2.25)

where B and T denote bispectrum and trispectrum respectively and ⟨· · · ⟩c represents the
connected part. Note that conjugating δ(k) on the left-hand side of the above equations
changes the plus sign within the Dirac delta function on the right-hand side to a minus
sign.

2.2.2 Gravitational dynamics of the density perturbation field

This section only serves as a brief introduction to the gravitational dynamics of the density
perturbation field and a better preparation for the discussion in the next section. For a more
detailed understanding, readers are referred to Dodelson & Schmidt (2020); Bernardeau
et al. (2002) and references therein.

One key equation governing the time evolution of the matter density field in our Universe
is the general collisionless Boltzmann equation

df

dt
=

∂f

∂t
+

dx

dt
· ∇f +

dp

dt
· ∇pf = 0 , (2.26)

where f is the distribution function of the matter density field in phase space {x,p},
where x is the comoving position and p is the physical momentum. Assuming matter is
non-relativistic, from the geodesic equation, one can modify the above equation as

df

dt
=

∂f

∂t
+

p

ma
· ∇f −

[
m

a
∇Φ +Hp

]
· ∇pf = 0 , (2.27)

where m is the mass of the matter particle, Φ is the gravitational potential, and H is the
Hubble parameter. The gravitational potential Φ is related to the density perturbation
field δ through the Poisson equation

∇2Φ =
3

2
Ωm(η)H2δ , (2.28)

where Ωm(η) is the matter density parameter at cosmic conformal time η and H = da
adη

is

the conformal Hubble parameter where dη = dt/a. Eq. (2.27) is called the Vlasov equation
and the coupled set of Eqs. (2.27) and (2.28) is known as the Vlasov-Poisson system. It
describes the nonlinear evolution of the matter density field. Though it is very difficult to
solve, one can still tackle it by using numerical simulations or analytical methods such as
perturbation theory.

To simplify the Vlasov-Poisson system, we can take the 0th moment of the Vlasov equa-
tion w.r.t the momentum, i.e. taking the integral of

∫
d3p/(2π)3 and then subtract the



24 2. Statistics and perturbation theory of cosmic density fields

background density ρ̄ terms to obtain the continuity equation of the density perturbation
field

dδ

dη
+∇ · (1 + δ)u = 0 , (2.29)

where u is the matter peculiar velocity field. Furthermore, by taking the 1st moment of
the Vlasov equation w.r.t the momentum and subtract the continuity equation of the full
density field multiplied by the velocity field gives the Euler equation

du

dη
+Hu+ (u · ∇)u+∇Φ = 0 , (2.30)

where we adpt the standard assumption that the stress tensor is 0.

For convenient computation, we define the divergence of the velocity field to be θ = ∇ · u
and take the divergence of Eq. (2.30). Eqs. (2.29) and (2.30) are then

dδ

dη
+ θ = −δθ − (u · ∇)δ , (2.31)

and
dθ

dη
+Hθ +∇2Φ = −∇ · (u · ∇)u , (2.32)

respectively. If we set the right-hand side of Eqs. (2.31) and (2.32) to 0, we obtain the
linearized continuity and Euler equations. One can then solve the above two equations
iteratively to obtain higher-order density perturbative terms.

2.2.3 Standard perturbation theory

As discussed in Sec. 2.2.1, the power spectrum and higher-order spectrum are crucial
statistical measures of the density perturbation field. We can apply standard perturbation
theory (SPT) which is a powerful analytical tool to compute them in early Universe and
down to mildly nonlinear regime in late Universe. SPT is based on the assumption that
the density fluctuations of the target fields are small (δ(x) ≪ 1), allowing us to expand the
equations governing the dynamics of these fluctuations in a series of perturbative terms.

At a given time during the evolution. The density perturbation field can be expressed as:

δ(x) = δ(1)(x) + δ(2)(x) + δ(3)(x) + · · · , (2.33)

where δ(1) is the linear term following a Gaussian distribution, δ(2) is the second-order
term, and so on. Each higher-order term approximates part of the nonlinear effects in
the density perturbation field and its corresponding amplitude is much smaller than the
previous order, δ(1)(x) ≫ δ(2)(x) ≫ δ(3)(x) ≫ · · · .
The linear term δ(1) evolves according to the linearized continuity and Euler equations as
discussed below Eqs. (2.31) and (2.32), leading to the well-known solution:

δ(1)(x, η) = D+(η)δ
(1)(x, η0), (2.34)
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where δ(1)(x, η0) is the initial density perturbation field. The scale-independent growth
factor D+(η) characterizes the linear growth of density perturbations. It is determined by
the energy density parameter in our cosmological background and the equation of state
parameter of dark energy (Dodelson & Schmidt, 2020).

Higher-order terms, such as δ(2) and δ(3), are proportional to the same order multiplication
of the linear term, e.g. δ(2) ∝ (δ(1))2 and δ(3) ∝ (δ(1))3. These terms are derived by solving
the perturbative expansions of the continuity and Euler equations to higher orders. To be
more precise, with the linear solutions to δ(1) and θ(1), we can insert them into the right-
hand side of Eqs. (2.31) and (2.32) and solve for δ(2) and θ(2) which are now on the left-hand
side of the equations. This strategy can then be exploited iteratively. The second-order
term δ(2)(k) in Fourier space can be expressed as

δ(2)(k, η) = D2
+(η)

∫
d3k1
(2π)3

∫
d3k1
(2π)3

(2π)3δD(k− k1 − k2)F2(k1,k2)δ
(1)(k1, η0)δ

(1)(k2, η0),

(2.35)
where F2(k1,k2) is the second-order kernel that describes the mode coupling

F2(k1,k2) =
5

7
+

2

7

(k1 · k2)
2

k2
1k

2
2

+
1

2
k1 · k2

(
k1
k2

+
k2
k1

)
, (2.36)

where we choose the symmetric form of the kernel w.r.t k1 and k2 as the integrand in
Eq. (2.35) would become symmetric. Note that the above Eq. (2.36) is exact in an Einstein-
de Sitter (EdS) Universe, however, it is reasonably accurate for many ΛCDM applications
(Dodelson & Schmidt, 2020). Analogous to Eqs. (2.35) and (2.36), the higher-order density
δ(n) can be written as

δ(n)(k, η) = Dn
+(η)

∫
d3k1
(2π)3

· · ·
∫

d3kn
(2π)3

(2π)3δD(k− k1 − · · · − kn)

× Fn(k1, · · · ,kn)δ
(1)(k1, η0) · · · δ(1)(kn, η0) ,

(2.37)

where the kernel Fn has a fully symmetric form of polynomials w.r.t its arguments and can
be computed order by order iteratively (Bernardeau et al., 2002).

As an illustration of the above discussion, we derive the linear power spectrum and tree-level
bispectrum using SPT. Following the definition in Eq. (2.20), the linear power spectrum
PL(k, η) is given by

PL(k, η) = ⟨δ(1)(k, η)δ(1)∗(k, η)⟩ , (2.38)

and by solving the Possion equation (Eq. (2.28)) linearly at the reference time η(a), we
have

δ(1)(k, a) =
2

3

k2a

H2
0Ωm

Φ(k, a) , (2.39)

where Φ(k, a) is the gravitational potential in Fourier space. It can be related to the initial
condition, i.e. the primordial curvature perturbation R generated during inflation, as

Φ(k, a) =
3

5

D+(a)

a
R(k)T (k) , (2.40)
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where T (k) is the transfer function that describes the evolution from the initial pertubation
to the late-time matter fluctuation when the relevant constituents of the Universe were only
radiation and matter. Combining Eqs. (2.39) and (2.40), we can derive the linear power
spectrum as

PL(k, η) =
4

25

(
k

H0

)4 D2
+(η)

Ω2
m

T 2(k)PR(k) , (2.41)

where PR(k) = (2π2/k3)As(k/kp)
ns−1 (Dodelson & Schmidt, 2020) is the power spectrum

of the primordial curvature perturbation. We have parameters As, ns, and kp as the ampli-
tude, scalar spectral index, and pivot scale of the primordial power spectrum, respectively.

We can further express the linear matter power spectrum as PL(k, η) =
D2

+(η)

Ω2
mH4

0
Pinit(k) where

the initial power spectrum Pinit(k) is

Pinit(k) =
8π2

25
T (k)2As

kns

kns−1
p

. (2.42)

The lowest order bispectrum in SPT is the tree-level bispectrum, which describes the
leading-order contribution to the three-point correlation function. Following the definition
in Eq. (2.24), we have the expression (here we drop the time dependence for simplicity)

(2π)3δD(k1 + k2 + k3)Btree(k1,k2,k3) = ⟨δ(2)(k1)δ
(1)(k2)δ

(1)(k3)⟩c + cyc. , (2.43)

where ”cyc.” denotes the cyclic permutations of k1, k2, and k3. The second-order pertur-
bative term has to be present as ⟨δ(1)(k1)δ

(1)(k2)δ
(1)(k3)⟩c would vanish according to the

Wick’s theorem for the Gaussian random fields. We can substitute δ(2) term in Eq. (2.43)
with Eq. (2.35) and compute the tree-level bispectrum using the Wick’s theorem as (Scoc-
cimarro et al., 1998)

Btree(k1,k2,k3) = 2F2(k1,k2)PL(k1)PL(k2) + cyc. . (2.44)

SPT provides a framework for calculating various statistical measures of the density field,
such as the power spectrum and higher-order correlation functions. These calculations
are essential for understanding the large-scale structure of the Universe and comparing
theoretical predictions with observational data. Here we skip the discussion on the velocity
field and its perturbation as they are not the main focus of this thesis. Readers interested
in the details of this aspect can refer to Dodelson & Schmidt (2020) and references therein.

As a side remark, the power spectrum and bispectrum on the nonlinear scales are beyond
the reach of the perturbation theory. One popular approach to compute them in this case
is to build fitting functions of these statistics and calibrated them with N-body simula-
tions. One representative example is the Halofit model based on the halo model (Smith
et al., 2003; Takahashi et al., 2012) for the power spectrum which is widely used in the
cosmological community. For bispectrum, there is also BiHalofit (Takahashi et al., 2020).



2.3 Weak lensing cosmology 27

2.3 Weak lensing cosmology

As predicted by the theory of General Relativity, light coming to us from distant sources
would be deflected by intermediate matter. This so called gravitational lensing phenomena
provides us a unique tool to map the distribution of matter in our universe and constrain
parameters in our cosmological models. In this section, we will introduce the basic concepts
of weak gravitational lensing and its applications in cosmology which are relevant to later
Chapters. 5 to 8. Readers interested in more details can refer to Bartelmann & Schneider
(2001); Schneider et al. (2006); Kilbinger (2015) and references therein.

2.3.1 Weak lensing basics

In all lensing scenarios, emitted light from the source object will be deflected by the inter-
vening matter. The deformation of a lensed image with respect to its unlensed image can
be represented by a distortion matrix A:

A =
∂ (δβ)

∂ (δθ)
=

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)

= (1− κ)

(
1 0
0 1

)
− γ

(
cos(2ϕ) sin(2ϕ)
sin(2ϕ) −cos(2ϕ)

)
,

(2.45)

where δβ and δθ are differential angular position vectors of source and images respectively
as denoted in Fig. 2.2 Here we have also introduced several new quantities: κ is the
convergence and γ is the modulus of the shear γ =

√
γ2
1 + γ2

2 . Shear itself is a spin-2
field and usually is written in a complex vector format γ = γ1 + iγ2. Due to the spin-2
transformation property, if we assume ϕ as the rotation angle counterclockwise in the plane
of the sky within a Cartesian coordinate, the shear component γ1 and γ2 would transform
as

γ′
1 = γ1cos(2ϕ)− γ2sin(2ϕ) ,

γ′
2 = γ1sin(2ϕ) + γ2cos(2ϕ) ,

(2.46)

instead of the usual vector rotation transformation.

The effects of distortion represented by Eq. (2.45) can be understood schematically from
Fig. 2.3 in which we show how the gravitational lensing distorts the image of a source
galaxy whose projected shape in the sky is assumed to be intrinsically circular. From the
equation we see that convergence is only attached to an identity matrix, indicating that it
is only responsible for magnifying the source image isotropically. Moreover, we have κ ≪ 1
for the weak gravitational lensing. On the other hand, shear is expressed with a rotation-
like matrix, implying that it would rotate and stretch the source image, i.e. introducing
anisotropy into the shape of a galaxy image. Unlike strong gravitational lensing, weak
lensing cannot produce multiple images but only exert the above distortion effects on a
single image.
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Figure 2.2: Illustration of a lensing system. Point “S”, “I” and “O” denote for source,
deflected image and observer respectively. At the bottom are distances between source,
lens and the observer. Light emitted by a source which has a distance η from the central
optical axis and propagates parallel to it is deflected by an angle α̂ and then reaches the
observer. The resulting image would have an angular separation θ from the optical axis
in the sky which is different from the actual separation of the source β. Image source:
Narayan & Bartelmann (1996).

Figure 2.3: Effects of lensing distortion. For an intrinsically circular source galaxy, con-
vergence will magnify its size isotropically and shear will turn it into an ellipse and thus
introduce anisotropy in its shape. Image source: Narayan & Bartelmann (1996).
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2.3.2 Weak lensing measurement

In weak lensing regime, a source object is usually a distant galaxy whose image is distorted
by the foreground matter. What we can observe directly through photometric surveys such
as the DES is the shape of each galaxy, characterised by its ellipticity. It is the shear field
that induces ellipticities (i.e. results of the image distortion) as mentioned in Sec. 2.3.1
and there are many approaches to infer the shear field from those measured ellipticities
assuming that the intrinsic galaxy shapes are on average circular.

The first question we need to address is what is the origin of the shear field. Since it is
gravity that deflects the light and distorts the images, the shear field must be induced by
the mass concentration between the source and the observer.

Just as the gravitational field can be expressed as the derivative of the gravitational po-
tential, the shear field can also be written as the derivative of a corresponding lensing
potential from large scale structures (Kilbinger, 2015):

Ψ(θ, χ) =
2

c2

∫ χ

0

dχ′ fk(χ− χ′)

fk(χ)fk(χ′)
Φ(fk(χ

′)θ, χ′) , (2.47)

where χ is the radial comoving distance and fk(χ) is the comoving angular diameter dis-
tance in a space with curvature k which would be equal to χ if the Universe is flat. Φ is
the Newtonian gravitational potential and here the lensing potential at a point in space is
a weighted sum of the Newtonian potential between the observer and that point. c is the
speed of light and θ is the 2D angular position in the sky.

The shear field comes from the second order derivative of the lensing potential with respect
to the angular coordinates:

γ1 =
1

2
(Ψ,11 −Ψ,22) ,

γ2 = Ψ,12 ,
(2.48)

where Ψ,ij = ∂Ψ/(∂θi∂θj). Here the two components of the shear γ1 and γ2 are specified
w.r.t a chosen Cartesian coordinate at a given location θ in a 2D flat sky as discussed in
Sec. 2.3.1. However, we can also decompose the shear field into two components defined
based on the angular position2 θ w.r.t a fixed reference point in the sky: the tangential
shear γt and cross shear γ×. Their relations to the γ1 and γ2 are:

γt = −γ1cos2ϑ− γ2sin2ϑ ,

γ× = −γ1sin2ϑ+ γ2cos2ϑ .
(2.49)

A clear explanation can be seen in Fig. 2.4. If the matter distribution between the source
and the observer has the overdensity and spherical symmetry, the weak lensing distortion
should perfectly align the lensed galaxy images along the tangential direction with respect

2In 2D polar coordinates, the angular posotion θ can be decomposed into a radial length θ and a polar
angle ϑ with respect to a reference point.
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Figure 2.4: C is the central reference point. Tangential shear γt is defined perpendicular to
or along the line connecting the field and the reference point. Cross shear γ× is defined with
the directions of tangential shear rotating 45◦. In this figure, the direction perpendicular
to the radial direction is defined as the positive axis for the tangential shear and after
rotating it 45◦ clockwise the positive axis for cross shear is defined. Therefore at three
different angular positions, the tangential and cross shear which are represented by the
black and red bars are of constants. However, the values of corresponding γ1 and γ2 are
different following the transformations shown in Eq. (2.46). Image source: Gruen (2015).

to the center of mass concentration and the cross shear will be zero. Analogously, an
underdense and spherically symmetric distribution would align the lensed galaxy images
along the radial direction with respect to the center of mass concentration and the cross
shear will still be zero.Another issue to notice is that the same value of tangential and
cross shear correspond to different values of γ1 and γ2 for field points at different angular
positions in the sky.

Aside from the induced ellipticity by the shear field, the unlensed galaxy image would
have an intrinsic ellipticity from its original shape projected in the sky. Assuming there
are no additional distortion from observational systematic errors, the relation between the
observed ellipticity eobs and the intrinsic ellipticity eint of a galaxy is:

eobs =
eint + γ

1 + γ∗eint
, (2.50)

where γ∗ represents the complex conjugate of the shear field. The ellipticity itself depends
on the light distribution of a galaxy and there can be various definitions (Schneider et al.,
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2006). It is infeasible in weak lensing regime to probe the shear field at a point by measuring
the ellipticity of just one neighboring galaxy since both observed and intrinsic ellipticities
have high-level noises and the results would be highly inaccurate. However, based on one
critical assumption that unlensed galaxies are oriented randomly, if we measure sufficiently
large number of galaxies around that field point and take the ensemble average of the
observed ellipticities, the ensemble average of intrinsic ellipticities would vanish due to
their random orientations and we are left with ⟨eobs⟩ ≈ γ. This is only an approximation
and what scientists actually measure from ellipticities is a quantity called reduced shear g

g =
γ

1− κ
, (2.51)

which in the limit of weak lensing regime would become g ≈ γ since κ ≪ 1.

Like the shear field, the convergence field can be derived from the second order derivative
of the lensing potential as well:

κ =
1

2
(Ψ,11 +Ψ,22) . (2.52)

We can substitute the lensing potential in Eq. (2.47) with the expression in Eq. (2.52).
By introducing the Poisson equation in comoving coordinates, we are able to write the
convergence at a given point in space as:

κ(θ, χ) =
3H2

0Ωm

2c2

∫ χ

0

dχ′fk(χ− χ′)fk(χ
′)

fk(χ)

δm(fk(χ
′)θ, χ′)

a(χ′)
, (2.53)

where δm(fk(χ)θ, χ) is the matter density perturbation field in 3D space. One nice inter-
pretation of the equation above is: If a single light source is located at comoving distance
χ with angular position θ, then the lensing convergence that a light ray bundle from the
source experiences on its way towards the observer is given by a weighted sum of the con-
tributions from all the matter density distribution between the observer and the source.

We can further assume that multiple source objects follow a (normalized) redshift distribu-
tion ps(z) along the line-of-sight with the corresponding distribution in comoving distance
being ns(χ), i.e. ns(χ)dχ = p(z)dz. In this case, the effective convergence towards direction
θ becomes:

κeff(θ) =

∫ χmax

0

dχ ns(χ)κ(θ, χ) (2.54)

=
3H2

0Ωm

2c2

∫ χmax

0

dχ g(χ)fk(χ)
δm(fk(χ)θ, χ)

a(χ)
, (2.55)

where χmax is the maximal radial comoving distance (e.g. the horizon of the observable
Universe) and g(χ) reads:

g(χ) =

∫ χmax

χ

dχ′ns(χ
′)
fk(χ

′ − χ)

fk(χ′)
. (2.56)
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From the above discussion, we know that both shear and convergence are derived from
the second order derivative of the lensing potential. Therefore, it is clear that shear and
convergence are not independent from each other. It is easier to write down their relation
in Fourier space where the 2D angular position θ transforms to the multipole ℓ (Kaiser &
Squires, 1993):

γ(ℓ) =
(ℓx + iℓy)

2

ℓ2
κ(ℓ) = e2iϕℓκ(ℓ) , ℓ ̸= 0 (2.57)

where ℓ =
√
ℓ2x + ℓ2y and ϕℓ = arctan

( ℓy
ℓx

)
is the polar angle of ℓ.

2.3.3 Weak lensing shear 2PCF and integrated 3PCF

By definition (Schneider & Lombardi, 2003), the 2PCF of shear has two branches: one is
the plus shear 2PCF, ξ+ and the other is the minus shear 2PCF, ξ−.

Suppose we have two points in the sky with their respective 2D angular positions θ1 and
θ2 and these two points are separated by a separation vector α. We can write down the
tangential and cross shear at each of these two positions as γt,1, γt,2 and γ×,1, γ×,2. Then
the shear 2PCFs are defined as:

ξ+(α) ≡ ⟨γt,1γt,2⟩+ ⟨γ×,1γ×,2⟩ = ⟨γ(θ1)γ
∗(θ2)⟩ (2.58)

ξ−(α) ≡ ⟨γt,1γt,2⟩ − ⟨γ×,1γ×,2⟩ = ⟨γ(θ1)γ
∗(θ2)e

−4iϕα⟩ , (2.59)

where ϕα is the polar coordinate of the separation vector α. If we apply the relation
between Fourier space 2D shear and convergence in Eq. (2.57) to the definition of power
spectrum in Eq. (2.20), we can obtain the relation between 2D power spectrum of shear
and convergence

P 2D
γ (ℓ) = ⟨γ∗(ℓ)γ(ℓ)⟩ = ⟨e−2iϕℓκ∗(ℓ)e2iϕℓκ(ℓ)⟩ = P 2D

κ (ℓ) . (2.60)

Based on Eq. (2.60), we can express the shear 2PCFs in terms of convergence power
spectrum. Note here that in ξ− we have this extra phase factor and its counterpart in
Fourier space would be e−4iϕℓ . In conclusion, the shear 2PCFs can be written down as

ξ+(α) = F−1
[
P 2D
κ (ℓ)

]
=

∫
dℓℓ

2π
P 2D
κ (ℓ)J0(ℓα) (2.61)

ξ−(α) = F−1
[
P 2D
κ (ℓ)e−4iϕℓ

]
=

∫
dℓℓ

2π
P 2D
κ (ℓ)J4(ℓα) , (2.62)

where J0 and J4 are the zeroth and fourth-order Bessel functions of the first kind respec-
tively.

In practice, one actually estimates the shear 2PCFs in Eqs. (2.58) and (2.59) from the
observed ellipticities of galaxies and they are measured as follows (Troxel et al., 2018)

ξ̂±(α) =

∑
i,j wiwj(γ

i
tγ

j
t ± γi

×γ
j
×)∑

i,j wiwj

(2.63)
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where i, j are the indices of a pair of observed galaxies which are separated by an angular
separation α. The wi are the weights associated to each observed galaxy.

From Eq. (2.55), we see that convergence is a weighted line-of-sight projection of matter
density perturbation. If we combine it with the projection of 3D power spectrum

P 2D(ℓ) =

∫
dχ

q2(χ)

χ2
P 3D

(
|k| = |ℓ|

χ
, χ

)
, (2.64)

where q(χ) is the weighting kernel, and we applied the Limber approximation (Limber,
1954; Kaiser, 1992) to the integral, it is straightforward to observe that the 2D convergence
power spectrum P 2D

κ is a weighted line-of-sight projection of the 3D matter power spectrum
P 3D
δ . It is equivalent to state that weak lensing convergence and shear directly traces the

matter density perturbation in the Universe.

The weighting kernel qκ in Eq. (2.64) for lensing is (usually referred to as the lensing kernel)

qκ(χ) =
3H2

0Ωm

2c2
g(χ)

fk(χ)

a(χ)
, (2.65)

where g(χ) and fk(χ) are the same as in Eqs. (2.55) and (2.56). Then for general case
where we have qiκ(χ) and qjκ(χ) associated with different source redshift distributions, we
have the following expression

P 2D,ij
κ (ℓ) =

∫
dχ

qiκ(χ)q
j
κ(χ)

χ2
P 3D
δ

(
|k| = |ℓ|

χ(z)
, z

)
, (2.66)

where i, j denote tomographic bins of the background source galaxies.

As discussed in Sec. 2.1.2, 2PCFs alone are not sufficient to fully describe the statistical
properties of the lensing field in the late-time Universe and on the scales that we are inter-
ested in. The 3PCF is the next higher-order statistic that can provide more information
about the non-Gaussianity of the lensing field (Schneider & Lombardi, 2003; Takada &
Jain, 2004). In a series of papers (see Halder et al. (2021); Halder & Barreira (2022);
Halder et al. (2023), including Gong et al. (2023) as Chapter. 6), we have developed a new
specific higher-order statistic called the integrated 3PCF (i3PCF) of the projected density
fields including weak lensing and galaxy number density. For the purpose of simplicity,
here we only discuss its application to weak lensing.

The i3PCF of the weak lensing field can be interpreted as the correlation between (i) a
position dependent 1-point aperture mass statistic with (ii) the position-dependent shear
2PCF measured within the same aperture size (for a schematic illustration, readers can
refer to Fig. 1 in Halder et al. (2023)). The aperture mass is defined as the convolution
of the tangential shear component w.r.t the center of a circular aperture with a specific
filter function called the compensated filter function (Eq. (2.3) in Chapter. 6). We skip
the derivation of the shear i3PCF here and directly quote the result

ζ ijk± (α) = ⟨M i
ap(θC)ξ

jk
± (α;θC)⟩ =

1

A2pt(α)

∫
dℓℓ

2π
B2D
±,ijk(ℓ)J0/4(ℓα) , (2.67)
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where A2pt is the area normalization factor and θC is the central position of the aperture.
Indices i, j, k denote the tomographic bins of the background source galaxies like those in
Eq. (2.66). The 2D integrated bispectrum B2D

±,ijk is

B2D
±,ijk(ℓ) =

∫
dχ

qiκ(χ)q
j
κ(χ)q

k
κ(χ)

χ4

∫

ℓ1

∫

ℓ2

B3D
δ

(
ℓ1
χ
,
ℓ2
χ
,
−ℓ12
χ

;χ

)
e2i(ϕℓ2

∓ϕ−ℓ12
)

× U(ℓ1)W (ℓ2 + ℓ)W (−ℓ12 − ℓ) ,

(2.68)

where
∫
ℓ
represents the integration form of

∫
d2ℓ
(2π)2

and −ℓ12 is an abbreviation of −ℓ1−ℓ2.
U and W are compensated and top-hat filters respectively.

Compared to the complete shear 3PCF, the i3PCF is more computationally efficient and
easier to measure from the data. As it does not require a new 3-point estimator, but only
the existing 1-point and 2-point estimators for the aperture mass and position-dependent
shear 2PCF separately. From the modeling perspective, shear i3PCF is more sensitive to
the squeezed limit bispectrum (k1 ≪ k2 ≈ k3 in B(k1,k2,k3)), especially the ζ− compo-
nent. This enables us to model the small scale shear i3PCF with the response approach
to perturbation theory (Barreira & Schmidt, 2017; Halder & Barreira, 2022) which is a
rigorous approach for computing higher-order correlation functions in squeezed limit con-
figurations. This method brings in another advantage that we can incorporate baryonic
feedback effects into the model of the shear i3PCF via power spectrum, which is better
studied and calibrated compare to the full bispectrum fitting functions on small scales.

2.4 Bias theory in large-scale structure

As we have pointed out multiple times in Sec. 2.3, the weak lensing field is a direct tracer of
the matter density perturbation in the Universe. However, another important observable,
the galaxy and its distribution are not a perfect tracer of the underlying total matter
density field. The galaxy distribution is biased w.r.t the matter distribution. Moreover,
geometric features such as extrema in the weak lensing field including peaks (maxima),
voids (minima) and saddle points are also biased tracers of the matter density field.

The concept of bias is a crucial aspect in the study of large-scale structure and cosmology.
It describes the statistical relation between the distribution of biased tracers (e.g. galaxy,
weak lensing extrema) and matter. In this section, we will introduce the concept of bias
and its applications to prepare for discussions in Chapter. 5. Readers interested in the
topic are highly recommended to refer to Desjacques et al. (2018) and references therein.

2.4.1 Galaxy bias

As a complex problem, the essence of the galaxy bias can be summarized as describing the
observed statistics of galaxies such as the galaxy 2PCF ξg(r), on a certain range of scales,
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in terms of a finite number of expressions together with their associated bias parameters.
The most general form of the galaxy number density perturbation is3

δg(x, η) =
∑

O

bO(η)O(x, η) + ϵ(x, η) +
∑

O

ϵO(x, η)O(x, η) , (2.69)

where O denote different operators composed of the matter density perturbation δ(x, η) and
tidal field; bO, as coefficients in the expansion, are the corresponding bias parameters, and
ϵ and ϵO are the stochastic terms. From the above equation, we can already interpret the
bias parameters to be the response of the tracers to the large-scale perturbations described
by the operators O. We need the stochastic terms to account for the indeterministic
process in the galaxy formation and the fields ϵ and ϵO are uncorrelated with O and among
themselves.

From an abstract perspective, the galaxy bias expansion in Eq. (2.69) aims to include
all operators that are consistent with the symmetries of the galaxy number density per-
turbation. Each new operator corresponds to an additional degree of freedom, typically
associated with a specific physical process influencing galaxy formation and clustering.
As a simple introduction, we only consider local operators of matter density perturbation
δ(x, η) and tidal field Kij

Kij =
2

3ΩmH2
∂i∂jΦ− 1

3
δijδ , (2.70)

where Φ is the Newtonian gravitational potential and δij is the Kronecker delta. We do
not show other types of operators such as the convective time derivative of the tidal field
Kij

DKij

Dη
which encodes the impact of the tidal forces on galaxies evolution as they move

through the large-scale structure ( D
Dη

= ∂
∂η

+ u · ∇ is the convective time derivative); or

the higher-order spatial derivatives of δ(x, η) and Kij such as ∇2δ and ∇2KijK
ij which

are related to the non-local effects of the large-scale structure on galaxy formation and
clustering as well as all non-gravitational physics influencing the galaxy formation process.
Note that we assume the Einstein summation convention in the above expressions.

Due to the symmetry argument discussed above, Kij alone, which is a rank-2 tensor, cannot
be an operator in the leading-order of the bias expansion of a scalar quantity galaxy number
density perturbation. Therefore we can write down the incomplete galaxy bias expansion
in Eulerian space up to the next-to-leading order as

δg(x, η) =b1(η)δ(x, η) +
b2(η)

2
δ2(x, η) + bK(η)Kij(x, η)K

ij(x, η)

+ ϵ(x, η) + ϵ1(x, η)δ(x, η) + ϵK(x, η)Kij(x, η)K
ij(x, η) ,

(2.71)

where b1 and b2 are the linear and quadratic bias parameters respectively, and bK is the
tidal bias parameter. The stochastic terms ϵ, ϵ1 and ϵK are those indicated in Eq. (2.69).
The full expansion can be more complicated and readers are referred to Desjacques et al.
(2018) for a more detailed discussion.

3Here for simplicity we will not discuss the galaxy velocity bias
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Furthermore, each operator in the bias expansion can be approximated using perturbation
theory as discussed in Sec. 2.2.3. With this fact, there is now a more complete picture
of the galaxy bias expansion mathematically: On top layer we have the bias expansion
such as the example in Eq. (2.71) where each operator is ordered based on its perturbative
scaling or derivative counting relative to leading terms; Below that we have the perturbative
expansion of each operator and thus a single bias parameter can be associated with different
perturbative orders of the same operator.

To give a concrete example, for Eq. 2.71, only b1(η)δ
(1)(x, η) and ϵ(x, η) are in the linear

perturbative order. Operator δ2 can only start from the second order of perturbation
theory (δ(1))2 and the same for the tidal field. Therefore at linear level, we have

δ(1)g (x, η) = b1(η)δ
(1)(x, η) + ϵ(x, η) . (2.72)

With the above equation, in Fourier space we can write the linear galaxy power spectrum
as

PL
g (k, η) = b21(η)P

L
δ (k, η) + Pϵ(k, η) , (2.73)

where PL
δ is the linear matter power spectrum discussed in Sec. 2.2.3 and Pϵ is the power

spectrum of the stochastic term ϵ and should be scale-indepedent. It is often approximated
as a Poisson noise though it can be more complicated in reality (e.g. super-Poissonian or
sub-Poissonian depending on the tracer under investigation) (Britt et al., 2024; Pezzotta
et al., 2024).

2.4.2 Extrema bias in weak lensing field

Extrema in the weak lensing field such as peaks, voids and saddle points are constrained
fields compared to the convergence κ alone which traces the matter density distribution
directly. This is because to identify extrema, we need to consider not only the amplitude
α of the convergence field but also the gradient ηi and curvature ζij. The latter two have
imposed additional constraints on the convergence field and thus make extrema biased
tracers of the convergence as well as matter density field. Note that here η and ζ are
not the conformal time and i3PCF we discussed in the previous sections. We adopt the
same notations to be consistent with the expression in Chapter. 5. They are defined in a
normalized way

α =
f

σ0

, ηi =
∂if

σ1

, ζij =
∂i∂jf

σ2

, (2.74)

where f is a random 2D density field (e.g. weak lensing convergence κ) and σn acts as a
normalization constant and is defined as the spectral moment of the field

σ2
n =

∫
d2k

(2π)2
k2nP (k) , (2.75)

in which P (k) is the power spectrum of the 2D random field.
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For an extremum to exist in a 2D weak lensing field, the local gradient must vanish and the
local Hessian matrix must be negative definite for a peak, positive definite for a void and
indefinite for a saddle point. Using peak as an example, its number density is a functional
of the convergence field (Kac, 1943; Rice, 1945; Longuet-Higgins, 1957; Bardeen et al.,
1986)

np(ν) =

(
σ2

σ1

)2

Θ(α− ν)δD(η)Θ(λ2)|det ζ| , (2.76)

where we consider all peaks with an amplitude above the threshold ν. The constraint
on the gradient is imposed by the Dirac delta function δD(η) and the constraint on the
curvature is imposed by the Heaviside step function Θ whose argument λ2 is the smallest
eigenvalue of the negative Hessian matrix −ζij. It is straightforward to change the above
expression to voids and saddle points by changing the sign of the curvature constraint.

Like the galaxy bias expansion in Eq. (2.71), the extremum number density such as the
one in Eq. (2.76) can also be expanded in terms of the operators (or basis as we call them
in Chapter. 5) and the associated bias parameters. However, unlike the galaxy number
density, the extremum number density has a clearly defined analytical expression. The
reason why we still need the bias expansion is that the probability density functional of
the weak lensing field in Eulerian space at late-time Universe is not known and we cannot
directly calculate the power spectrum as

⟨ñi(k)ñj(k
′)⟩c

⟨ni⟩⟨nj⟩
= (2π)2δD(k+ k′)P ij

ext(k) , (2.77)

where i, j denote different types of extrema and ñi is the Fourier transform of the extremum
number density ni. In order to systematically calculate the power spectrum we use the
Gram-Charlier A (GCA) series expansion (Blinnikov & Moessner, 1998) to perturbatively
expand the probability density functional w.r.t Gaussian distribution (readers can refer to
Appendix. A in Chapter. 5 for a detailed derivation). This is analogous to the approach
in SPT where we build the clustering of the higher-order perturbative terms of the density
perturbation field on linear matter power spectrum which is analytically explicit w.r.t the
initial Gaussian distribution. Consistently we expand the extremum number density in
terms of the same basis operator, the generalized Wiener-Hermite polynomials, used in the
GCA series expansion4.

To give a conclusion, under this mathematical framework, the bias expansion of the ex-
tremum number density in Fourier space is

ñi(k) =
∞∑

m=0

1

m!

∫
d2k1
(2π)2

. . .
d2km
(2π)2

(2π)2δ2D(k1 + · · ·+ km − k)

× Gi
m(k1, . . . ,km)H⋆

m(k1, . . . ,km) ,

(2.78)

where H⋆
m is the basis operator of the dual generalized Wiener-Hermite polynomial and

Gm is the scale-dependent bias parameter associated with the operator H⋆
m which can be

4To be precise, we used the dual basis of those in the GCA series expansion
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expressed as

Gi
m(k1, . . . ,km) = (2π)2m⟨ ∂mni(x)

∂f̃(k1) · · · ∂f̃(km)
⟩G , (2.79)

where f̃ is the Fourier transform of the weak lensing field f in Eq. (2.74) and ⟨. . .⟩G
denotes the average over the Gaussian field. Based on Eq. (2.79), the bias parameters
Gm are the response of the extrema to the large-scale perturbations which share the same
interpretation as the galaxy bias parameters discussed in Sec. 2.4.1. Readers can refer to
Appendix. B in Matsubara (2020) for the calculation of Eq. (2.79) and the results for the
first few orders.

Below we skip the derivation which is presented in Chapter. 5 and directly quote the
result of the extrema power spectrum up to the next-to-next-to-leading order using the
perturbative bias expansion approach discussed above

P ij
ext(k) = gi1(k)g

j
1(k)P (k)

+
1

2

∫
d2k1
(2π)2

gi2(k1,k− k1)g
j
2(k1,k− k1)P (k1)P (|k− k1|)

+
1

2

[
gi1(k)

∫
d2k1
(2π)2

gj2(k1,k− k1)B(−k,k1,k− k1) + (i ↔ j)

]

+
1

6

∫
d2k1
(2π)2

∫
d2k2
(2π)2

gi3(k1,k2,k− k1 − k2)g
j
3(k1,k2,k− k1 − k2)P (k1)P (k2)P (|k− k1 − k2|)

+
1

6

[
gi1(k)P (k)

∫
d2k1
(2π)2

∫
d2k2
(2π)2

gj4(k,−k1,−k2,k1 + k2)B(−k1,−k2,k1 + k2) + (i ↔ j)

]

+
1

2

[∫
d2k1
(2π)2

∫
d2k2
(2π)2

gi2(k1,k− k1)g
j
3(k− k1,−k2,k1 + k2)P (|k− k1|)B(k1,k2,−k1 − k2) + (i ↔ j)

]

+
1

6

[
gi1(k)

∫
d2k1
(2π)2

∫
d2k2
(2π)2

gj3(−k1,−k2,k+ k1 + k2)T (−k,−k1,−k2,k+ k1 + k2) + (i ↔ j)

]

+
1

4

[∫
d2k1
(2π)2

∫
d2k2
(2π)2

gi2(k− k1,k1)g
j
2(k− k2,k2)T (k− k1,k1,k2,−k− k2) + (i ↔ j)

]

− 1

6

[
gi1(k)g

j
1(k)P (k)

∫
d2k1
(2π)2

∫
d2k2
(2π)2

gj3(k1,k2,−k1 − k2)B(k1,k2,−k1 − k2) + (i ↔ j)

]
,

(2.80)

where

gm(k1, . . . ,km) ≡
Gm(k1, . . . ,km)

G0

, (2.81)

and the symbol (i ↔ j) denotes the addition of a term possessing the same form but
exchanging the correspondence of the expansion coefficient function Gm to the other ex-
tremum type. P , B and T on the right-hand side of the Eq. (2.80) are the weak lensing
convergence power spectrum, bispectrum and trispectrum respectively, which can be calcu-
lated either through perturbation theory or existing fitting functions down to small scales.



2.5 Statistical analysis with multiprobe cosmology 39

2.5 Statistical analysis with multiprobe cosmology

The overlap among different cosmological probes is a powerful tool to break the degen-
eracies in the cosmological parameter space. The joint analysis of weak lensing, galaxy
clustering, CMB lensing, thermal Sunyaev-Zeldovich (tSZ), galaxy clusters and so on can
provide a more stringent constraint on the cosmological parameters compared to the anal-
ysis of each probe individually.

Here we would like to briefly discuss the approach of 3× 2-point analysis of weak lensing
and galaxy clustering. It is built on the observation of weak lensing shear and projected
galaxy number density, and it has become a standard routine analysis in the current Stage-
III galaxy surveys (see (Heymans et al., 2021; Abbott et al., 2022; Sugiyama et al., 2023) to
name a few). This approach exploits both the perturbation theory we discussed in Sec. 2.2
and the bias theory in Sec. 2.4. The 3 × 2-point consists of weak lensing shear 2PCF
(Sec. 2.3.3), cross 2PCF between source galaxy shear and lens galaxy position (galaxy-
galaxy lensing), and projected galaxy clustering 2PCF.

Like Eqs. (2.61), (2.62) and (2.66), the cross 2PCF between source galaxy shear and lens
galaxy position can be expressed as

ξijt (α) = ⟨δ2D,i
g (θ)γj

t (θ +α)⟩ =
∫

dℓℓ

2π
P ij
t (ℓ)J2(ℓα) , (2.82)

where

P ij
t (ℓ) =

∫
dχ

qig(χ)q
j
κ(χ)

χ2
P 3D
gδ

(
|k| = |ℓ|

χ
, χ

)
. (2.83)

In the above two equations, i, j are indices that run over tomographic bins of source or
lens galaxies. γt represents the tangential shear (check Sec. 2.3.2 for details) w.r.t the lens
galaxy located at θ. J2 is the second order Bessel function of the first kind. P 3D

gδ is the
galaxy-matter cross power spectrum and qg is the galaxy kernel which is similar to the
lensing kernel qκ in Eq. (2.65)

qg(χ) =
ng(z(χ))

n̄g

dz

dχ
, (2.84)

where ng is the galaxy number density distribution of a given tomographic bin and n̄g is
the corresponding mean galaxy number density.

Following Eqs. (2.82) and (2.83), we can write down the galaxy clustering 2PCF as

ξijg (α) = ⟨δ2D,i
g (θ)δ2D,j

g (θ +α)⟩ =
∫

dℓℓ

2π
P ij
g (ℓ)J0(ℓα) , (2.85)

and

P ij
g (ℓ) =

∫
dχ

qig(χ)q
j
g(χ)

χ2
P 3D
gg

(
|k| = |ℓ|

χ
, χ

)
, (2.86)



40 2. Statistics and perturbation theory of cosmic density fields

where P 3D
gg is the galaxy auto power spectrum. In the above equations, we can use the

perturbative bias expansion discussed in Sec. 2.4.1 to model the galaxy power spectrum
P 3D
gg and the galaxy-matter cross power spectrum P 3D

gδ .

Besides the 3× 2-point correlation functions, multiprobe cosmology can include statistics
(typically 2PCF) of other observables to jointly constrain important cosmological param-
eters such as Ωm and S8. One such example is CMB lensing and its cross correlation with
weak lensing shear and galaxy number density perturbation, to construct the so called
10 × 2-point or even 12 × 2-point analysis (Eifler et al., 2021; Fang et al., 2024; Reeves
et al., 2024). One can further add galaxy cluster statistics such as the cluster abundance
to the multiprobe analysis (Bocquet et al., 2024).



Chapter 3

Basic machine learning concepts and
their applications to cosmology

Machine learning (ML) is a branch of artificial intelligence (AI) that focuses on developing
algorithms capable of learning patterns from data and making predictions or decisions
without being explicitly programmed. It has gained widespread application across various
fields due to its ability to process large datasets and uncover complex relationships that
traditional statistical methods may struggle to identify.

Recent advancements in deep learning, a subset of ML that leverages neural networks
with multiple layers including the multilayer perceptron (MLP) and convolutional neural
network (CNN), have significantly improved performance in tasks such as image recogni-
tion, model classification, and scientific data analysis. In cosmology and astrophysics, ML
techniques are increasingly applied to problems like weak gravitational lensing, large-scale
structure (LSS) inference, and Line Intensity Mapping (LIM) studies, providing a powerful
framework for extracting insights from vast observational datasets.

As ML continues to evolve, its integration with simulation-based inference (SBI), which ex-
ploits simulations to estimate complicated probability distribution functions and perform
parameter inference by skipping explicit likelihood functions, is opening new frontiers in
data-driven discovery. By efficiently learning from simulations, SBI enables robust param-
eter estimation and model comparison, even in high-dimensional and nonlinear settings,
making it a powerful tool for modern cosmological analyses.

In this chapter, we will introduce the basic concepts of ML and its applications to cosmol-
ogy, focusing on MLP (Sec. 3.1), CNNs (Sec. 3.2), and SBI (Sec. 3.3). We will discuss the
principles behind these techniques and how they are applied to our works in the following
chapters. To be more precise, we used the MLP architecture to build emulators for the
integrated shear 3PCF (Sec. 2.3.3) which is numerically expensive to compute across the
cosmological parameter space in Chapter. 6; We adopted and modified the conventional
architecture of CNN to develop a new interpretable ML model named cosmological cor-
relator convolutional neural network (C3NN) in Chapter. 7 and we would like to further
explore the power of this model by combining it with SBI framework. After understanding
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the capabilities of ML and its potential impact on cosmology, we can better utilize these
data-driven methods in improving our understanding of the Universe. For more details
in deep learning, we recommend the readers to refer to Chollet (2017) while for SBI, we
recommend the review of Cranmer et al. (2020).

3.1 Multilayer perceptron (MLP)

A multilayer perceptron is a fundamental type of deep learning neural network. It is usually
composed of the following components

• Neuron: A neuron is the basic computational unit that processes and transmits
information within the neural network. Each neuron receives inputs from the previous
layer, applies a weighted sum to them, adds a bias term, and then passes the result
through a nonlinear activation function. The mathematical operation can be written
down as

y = f

(
n∑

i=1

wixi + b

)
, (3.1)

where xi are the inputs from the previous layer containing n neurons, wi are the
weights, b is the bias, and f is the activation function.

• Layer: A layer is composed of connected neurons that take in the same input. The
input layer receives the raw data, the hidden layers perform the computation, and
the output layer generates the final prediction.

• Activation function: An activation function f in Eq. (3.1) introduces nonlinearity
into the MLP, allowing it to learn complex patterns in the data. Common nonlinear
activation functions include ReLU (Rectified Linear Unit), sigmoid, and tanh. Below
we give the expression of ReLU as an example

f(x) = max(0, x) , (3.2)

where x is the input to the activation function. The activation function is absolutely
necessary for MLPs as otherwise consecutive layers can just collapse to one layer.

With the above components, we show in Fig. 3.1 a schematic illustration of a MLP archi-
tecture. Here the figure contains a specific application which is for the MLP to take in
the cosmological parameter vectors as input and predict the corresponding matter power
spectrum on a sequence of k wavenumbers as output.

3.1.1 Training, validation, optimization and testing

To achieve the desired performance shown in Fig. 3.1, we need more than just the ar-
chitecture. To be explicit, the MLP needs to be trained on a labeled dataset, validated,
optimized, and tested.
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Figure 3.1: Schematic illustration of a MLP architecture. Each neuron is represented by
a colored circle. The input layer (red neurons on the left) receives the raw data, here
are the cosmological parameter vectors; the hidden layers (blue neurons in the middle)
perform the computation showed in Eq. (3.1), and the output layer (red neurons on the
right) generates the final prediction which is the matter power spectrum on different k
wavenumbers. Image source: Spurio Mancini et al. (2022).

• Training data: Training data usually consists of two parts: the feature and the
label. Both of them are pre-computed and can be numerical (e.g. from simulations)
or categorical (e.g. indicators for different types and groups). The former is a property
or characteristic of the data that serves as input to a ML model while the latter is the
target variable or ground truth that the ML model is trying to predict1. In the case
of Fig. 3.1, the cosmological parameter vectors are the features and the matter power
spectrum on different k wavenumbers are the labels. The amount of training data
needed to obtain the desired performance depends on the complexity of the problem
and the size of the model.

• Validation: Validation in the ML training process refers to the step where the
model’s performance is evaluated on a separate dataset, same structure as the train-
ing dataset but is not used for optimizing network weights. The validation dataset
helps to tune the hyperparameters, prevent overfitting, and ensure that the model
generalizes well to unseen data. Here “hyperparameters” refer to the parameters
that are initially set to control the learning process, such as the number of layers,
the number of neurons in each layer, the learning rate, and the activation function;
“Overfitting” occurs when the model performs well on the training data but poorly

1In this thesis we only consider supervised learning and therefore labels are necessary. For unsupervised
learning, one can refer to Fotopoulou (2024).



44 3. Basic machine learning concepts and their applications to cosmology

on the validation data, indicating that the model has learned the noise in the training
data rather than the underlying patterns.

• Optimization: The optimization process aims to find the optimal set of weights
and biases (Eq. (3.1)) that minimize the loss function. It happens both when the ML
model is fed with training and validation dataset. The error between the label and
the prediction characterized by the loss function is propagated backward (backprop-
agation (Chollet, 2017)) through the neural network, updating weights and biases.
Common optimization algorithms include stochastic gradient descent (SGD) (Rob-
bins & Monro, 1951), Adam (Kingma & Ba, 2014), and RMSprop (Ruder, 2016).
Below we give the expression of the parameter update rule for SGD as an example

θ = θ − η∇θL(θ;x
i, yi) , (3.3)

where θ is the parameter to be updated (like a weight or a bias), η is the learning
rate that controls the update step size, L is the loss from a given loss function. The
stochasticity of SGD comes from the fact that the gradient is computed on a random
subset {xi, yi} of the training data at each iteration where x is the feature and y the
label.

• Testing: The testing set is used to evaluate the model’s performance on unseen data
during training and validation procedures. It provides a final unbiased estimate of
the model’s accuracy and generalization ability once the whole training process is
completed.

With the above discussion on different phases of the MLP or the general ML training
process, we can use a simple graph to summarize the workflow as shown in Fig. 3.2.

3.1.2 Emulators for the shear integrated 3PCF

In cases where the computation of numerical simulations or the summary statistics is ex-
pensive and cannot be afforded for the Bayesian inference procedures, we can use emulators
to approximate these quantities. Emulators are a type of model that leverages ML or other
statistical techniques to efficiently predict outputs based on a limited set of precomputed
training data. In the context of cosmology, emulators are widely used to approximate
the matter power spectrum (as the example shown in Fig. 3.1), the cosmic microwave
background (CMB) power spectrum, and the weak lensing statistics, among others, across
certain cosmological parameter space.

There are multiple different approaches that one can train an emulator (e.g. Gaussian
process (Rasmussen & Williams, 2005), random forest regression (Louppe, 2014), principle
component analysis plus interpolation (Gewers et al., 2018) and so on). Here we focus
on the use of MLP as discussed in Sec. 3.1.1 and briefly describe how we apply it to the
emulation of the shear i3PCF. Readers interested in more details can refer to Sec. 4 in
Chapter. 6.
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Figure 3.2: A simple graph to summarize the workflow of the ML training process. The
training data {Xtrain, Ytrain} is used to train the model, the validation data is used to tune
the hyperparameters, the optimization process updates the free parameters (e.g. weights
and biases), and the testing data {Xtest, Ytest} is used to evaluate the model’s performance.
Image source: Bonzanini et al. (2023).

We use the MLP architecture provided by the package Cosmopower (Spurio Mancini et al.,
2022) to emulate the four-dimensional multipole integration part in Eq. (2.68)

∫

ℓ1

∫

ℓ2

B3D
δ

(
ℓ1
χ
,
ℓ2
χ
,
−ℓ12
χ

;χ

)
e2i(ϕℓ2

∓ϕ−ℓ12
)U(ℓ1)W (ℓ2 + ℓ)W (−ℓ12 − ℓ) , (3.4)

across the cosmological and astrophysical parameter space {Ωm, ln (10
10As) , w0, cmin} and

redshift z where cmin is the baryonic feedback parameter used in a matter power spectrum
fitting function HMcode (Mead et al., 2021). The ranges of these parameters within which
we emulate Eq. (3.4) are given in Tab. 1 of Chapter. 6. The emulator architecture is very
similar to what was shown in Fig. 3.1 where we have the above parameters as input and
the quantity from Eq. (3.4) on a sequence of ℓ as output. The training data is generated by
numerical integration of Eq. (3.4) with its corresponding parameters sampled using Latin
hypercube sampling (LHS) which can efficiently populate the parameter space uniformly
with a small amount of samples (Devon Lin & Tang, 2022).

This emulation strategy leaves out the part involving the line-of-sight (LOS) integration
in Eq. (2.68), but has the advantage of allowing for more flexibility to adjust the source
redshift distributions, including bypassing the need to emulate any of the systematic pa-
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rameters such as the photometric redshift uncertainty and galaxy intrinsic alignment. For
the testing phase, we use our own designed accuracy metric, the fractional difference of
log-likelihood surface as in Eq. (4.2) in Chapter. 6, to evaluate the performance of the
emulators. The test results are shown in Figs. 5 and 6 of Chapter. 6.

Using emulators to predict various kinds of summary statistics at unseen cosmologies have
become a popular approach in cosmology. It can significantly reduce the computational
cost of the Bayesian inference procedures and provide a more efficient way to explore the
cosmological parameter space. Moreover, there are informative summary statistics that
do not have closed analytical forms such as the scattering transform coefficients (Cheng
et al., 2020) and weak lensing peak correlation function (Davies et al., 2022). In this case,
emulating them with ML techniques across a grid of simulation measurement is a robust
approach to make predictions on new cosmological parameters.

3.2 Convolutional neural network (CNN)

Like MLP, CNN is also a specialized type of deep learning model designed for processing
structured grid-like data such as images (pixelized maps). It is particularly effective in
tasks that require pattern recognition, feature extraction, and spatial hierarchies. Unlike
MLP, CNNs use convolutional layers to automatically learn spatial features through small,
localized filters, reducing the number of trainable parameters and improving computational
efficiency. Meanwhile, CNNs intrinsically possess translational invariance property which
significantly help process image-like data.

CNNs’ applications to cosmology so far can be approximately categorized into the above
mentioned three functions. On the observational side, CNNs are frequently used to identify
specific astrophysical systems such as galaxies (Zhu et al., 2019; Cavanagh et al., 2021),
supernovae (Brunel et al., 2019; Qu et al., 2021) and strong gravitational lensing systems
(Lanusse et al., 2018; Schaefer et al., 2018), just to give an incomplete list of examples. In
the cosmological inference tasks, CNNs or CNN-related models are popular ML tools to
extract statistical information from cosmological fields such as weak lensing convergence
and galaxy number density (Fluri et al., 2022; Lemos et al., 2023b; Lu et al., 2023; Jeffrey
et al., 2024). Furthermore, the ability of CNNs to learn spatial hierarchies has been
exploited to study the so called interpretability of ML models in cosmology, such as the
constructed saliency maps (Simonyan et al., 2013) to interpret information source in weak
lensing data (Matilla et al., 2020). Our work presented in Chapter. 7 falls into the joint
section of the second and last category where we adapt the conventional CNN model
architecture to explicitly extract the spatially hierarchical correlation functions, thus the
outputs become interpretable.

3.2.1 Fundamental principles of CNNs

The core building block of a CNN is the convolutional layer, which applies a set of learnable
filters (kernels) to input data. Each filter slides across the input, computing dot products
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between its weights and the corresponding input data covered by the filter. This operation
helps extract features. Mathematically, a convolution operation can be represented as:

Y (i, j) = (W ∗X)(i, j) =
∑

m

∑

n

W (m,n)X(i−m, j − n) , (3.5)

where Y is the output feature map, W is the filter, X is the input, and ∗ denotes the
convolution operation. The filter W is applied to each local position of the input X to
produce the output Y . m, n are the positional indices within the 2D filter and i, j are the
positional indices within the 2D input.

After each convolution operation, usually a nonlinear activation function is applied to
introduce nonlinearity into the model. This process is similar to what we described in
the beginning of Sec. 3.1. Besides linear convolution and nonlinear activation functions,
generally CNNs also include pooling layers which reduce the size of feature maps while
preserving the most important information. Two common pooling strategies are (i) max
pooling, which takes the maximum value within a pooling region, and (ii) average pooling,
which computes the average value within a pooling region. The pooling operation helps
to reduce the computational cost and the number of parameters in the network, and also
makes the model more robust to spatial translations (Gholamalinezhad & Khosravi, 2020).

Unlike the simplified X input in Eq. (3.5) which is a 2D image, CNNs are designed to be
able to process data that has multi-dimensional array structure. For example, in cosmology,
the input data can be a 4D tensor with shape (N,C,W,H) of weak lensing convergence
maps where N is the number of samples, C is the number of tomographic bins (channels),
W is the width, and H is the height of each 2D map in unit of pixels. The corresponding
output of the CNN is also a 4D tensor with shape (N,C ′,W ′, H ′) where C ′ is the number
of output channels, W ′ is the width, and H ′ is the height of the output after pooling in
unit of pixels2. The CNN architecture is usually composed of multiple convolutional layers,
activation functions and pooling layers, which are stacked together to form a deep neural
network. The output of the CNN is then fed into a fully connected layer to make the final
prediction.

Like in Fig. 3.1, here we also show in Fig. 3.3 a schematic illustration of a typical CNN
model architecture. where we can easily observe that the output feature maps tensor from
the convolutional layer conv1 has a dimension of (64, 224, 224) where 224 is the width
and height of the feature maps and 64 is the number of output channels. The output
then goes through an intermediate pooling layer and both width and height reduce to 112.
The second convolutional layer conv2 takes the output of the pooling layer as input and
produces a new feature maps tensor with higher values for the dimension of output channel
(128, 112, 112). This process then repeats itself until the final fully connected layers which
make the final prediction.

2Readers can refer to the python API of Pytorch
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
for better numerical understanding in practice.
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Figure 3.3: Schematic illustration of a typical CNN model architecture. The model is
composed of stacked convolutional layers (blue) that contain both linear convolution and
nonlinear activation functions. The in-between pooling layers (red) can change the spatial
dimensions of the output feature maps from the previous convolutional layer. The output
of the CNN is then fed into a fully connected layers (green) to make the final prediction.
Image source: Kumar (2023).

3.2.2 Interpretable C3NN

Though MLPs, CNNs and other deep learning models have shown great success in various
cosmological applications, they are often criticized as “black boxes” for their lack of inter-
pretability, as the number of free parameters in the models are exceedingly large and we
cannot give them clear physical explanation. The black-box nature of these models makes
it difficult to understand how they arrive at their predictions, limiting their utility in sci-
entific research. To address this issue, we propose a new interpretable ML model called
cosmological correlator convolutional neural network (C3NN) in Chapter. 7. It borrows
the convolution operation from a conventional CNN as discussed in Sec. 3.2.1 and fuses
it with a designed nonlinear forward calculation such that the output becomes explicitly
expressible in terms of the correlation functions at different orders of the input data.

The architecture of C3NN model is shown in Fig. 1 of Chapter. 7 where the outputs c
(N)
α

are exploited in the context of classification. We skip the derivation here but essentially
each c

(N)
α can be expressed as

c(i)α =
1

i!

(r1,k1 )̸=···̸=(ri,ki)∑

r1,...,ri,k1,...,ki

Wα,k1(r1) · · ·Wα,ki(ri)ξ̂
(i)
k1,...,ki

(r1, . . . , ri) , (3.6)

where Wα,k(r) are the weights of the convolutional layer with α as the filter index and k

the channel index. ξ̂
(i)
k1,...,ki

(r1, . . . , ri) is the estimator of ith order correlation function of
the input data within the convolutional filter size at positions r1, . . . , ri.
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With the above expression, we developed the interpretability of the C3NN model in the
context of classification in three aspects:

• The output c
(N)
α of a specific order N can be mathematically expressed in terms of

the correlation function at the same order. This is unlike the often hard-to-interpret
summary statistics extracted by conventional CNN models.

• Through a regularization path analysis (Efron et al., 2004), which is integrated into
the classifier part of our model, we can have a quantitative understanding of the rela-
tive importance of the different order c

(N)
α in contributing to the model’s classification

power (see Sec. 2 in Chapter. 7 for more details).

• We can investigate the trained filter weights by connecting individual pixels to form
the configuration of any given NPCF. The filter weights for a given NPCF configu-
ration directly allow us to rank different correlation function configurations within a
given c

(N)
α (Fig. 2 in Chapter. 7).

Besides classification, the C3NN model can be adapted to inference tasks and in the next
section we will show some preliminary ideas on how to combine C3NN with simulation-
based inference (SBI) framework to perform parameter estimation and information content
investigation on the hierarchy of correlation functions.

3.3 Simulation-based inference (SBI)

Traditional methods of parameter inference in cosmology often rely on likelihood-based
approaches, which require accurate likelihood functions and well-defined statistical models.
However, many modern cosmological observations involve complex, nonlinear, and high-
dimensional data that make constructing explicit likelihoods intractable or the Gaussian
likelihood assumption insufficient.

Regarding this, SBI, also known as likelihood-free/implicit inference, offers a powerful al-
ternative. Instead of requiring an explicit likelihood function, SBI uses forward simulations
of the universe to learn the mapping between cosmological parameters and observational
data. This approach is particularly useful in scenarios where the likelihood is unknown or
computationally prohibitive to evaluate, such as in Line Intensity Mapping (LIM), weak
gravitational lensing, and large-scale structure surveys. Besides the references given in the
beginning of Sec. 3.2 about CNN-based inference models, readers can also refer to (Hahn
et al., 2024; Tucci & Schmidt, 2024; Lehman et al., 2024; Gatti et al., 2025) for more SBI
applications with different statistical models.

By utilizing ML techniques, SBI can construct models such as neural density estimators
(Alsing et al., 2019; Kobyzev et al., 2019; Papamakarios, 2019) to approximate the poste-
rior distribution of cosmological parameters given the observed data. This enables efficient
inference, even in the presence of non-Gaussian and highly correlated data structures. To
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be more precise, different techniques in SBI can be used to approximate different compo-
nents in the context of Bayesian inference: Neural Posterior Estimation (NPE) (Greenberg
et al., 2019; Ward et al., 2022) directly for the posterior; Neural Likelihood Estimation
(NLE) (Papamakarios et al., 2018) for the likelihood; and Neural Ratio Estimation (NRE)
(Miller et al., 2022) for the likelihood-to-evidence ratio. These different techniques provide
great flexibility in solving SBI problems under different scenarios of accuracy requirement,
computational efficiency, and applicability to high-dimensions.

Another key element in the SBI framework is to be able to generate synthetic data mim-
icking the real observations. This component is called the simulator and the process of this
mechanism is called the forward modeling. The simulator can be a numerical simulation
code, a generative model, or a physical model that can generate synthetic data given a set
of cosmological parameters.

During the forward modeling process, one does not only need to generate accurate pre-
dictions for the targeted data, but also incorporate every prominent observational and
instrumental systematic effects which can to the maximum extent approximate the real
observational data. Only then the SBI framework provides them as training data for the
ML model as discussed above to learn the mapping between the observational data and
cosmological parameter posteriors (likelihoods). In Fig. 3.4 we show flowcharts of different

Figure 3.4: An overview of different SBI approaches. Image source: (Cranmer et al., 2020).
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SBI approaches, out of which E, F and G apply the NLE, NPE and NRE techniques dis-
cussed above respectively. Here “Amortized” means that the inference process in the given
SBI approach is precomputed and learned once, so that future inferences can be performed
efficiently without running costly forward modeling again.

3.3.1 SBI with C3NN

As already discussed in Sec. 3.2.2, we can replace the classifier part in the C3NN model
(Fig. 1 in Chapter. 7) with a neural density estimator to perform SBI. The aim is that we
would like to exploit the interpretability of the C3NN model to investigate the cosmological
information content within the hierarchy of correlation functions in the context of Bayesian
inference. This work so far cannot be done with conventional analysis methods due to the
lack of both modeling and estimators for the correlation functions beyond the fourth order.

While the output of the C3NN model shown in Eq, (3.6) is not exactly equivalent to the
full-shape correlation functions, it nevertheless provides an efficient estimator up to a user-
defined order. It therefore can provide helpful quantitative hints on the constraining power
from higher-order correlation functions. In this context, our simulator is the CosmogridV1
simulation suite3 (Fluri et al., 2022; Kacprzak et al., 2023) which provides us particle shells,
we then created full-sky weak lensing convergence maps on 1250 cosmological parameter
sets across a 8-dimensional space {Ωm,Ωb, σ8, w0, H0, ns} plus two baryonification parame-
ters by performing line-of-sight projection using UFalcon (Sgier et al., 2019, 2021; Reeves
et al., 2024). We adopt the amortized posterior approach as shown by F in Fig. 3.4 and
the neural posterior estimation algorithm we use is based on masked auto-regressive flows
(Papamakarios et al., 2017) as implemented in sbi4 package (Tejero-Cantero et al., 2020).

By increasing the order of c
(N)
α in the data x part (F in Fig. 3.4), we can quantify the

information contribution from each order based on the credible interval changes in the
inferred posterior P (θ|x).
This is an ongoing work, and just for the purpose of illustration, we show in Fig. 3.5
a preliminary result of the cosmological parameter inference using the C3NN-SBI model.
Here we fix the C3NN model to have 1 filter and the training data c(N) comes from noiseless
CosmogridV1 weak lensing convergence maps that have 4 channels which correspond to
the 4 source tomographic redshift bins in DESY3 analysis. From the first observation, we
notice that by adding higher-order output from the C3NN model, the parameter constraints
become tighter. This is a proof-of-concept that indeed the C3NN outputs can be used as
representations of NPCFs to perform SBI and investigate the information content in each
order, or even beyond the ladder of correlation functions.

However, the current work is still in its early stage and there are many aspects that need
to be further completed, we list a few below:

3www.cosmogrid.ai
4https://github.com/sbi-dev/sbi
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Figure 3.5: A preliminary result of the cosmological parameter inference using the C3NN-
SBI model. The corner plot shows the 2D marginalized posterior distributions of the
cosmological parameters {Ωm, σ8}. The green contour is the inference result by using only
{c1, c2} from the C3NN output. The red contour adds c3 on top of that. The blue contour
includes all the moments from the C3NN output until the fourth order. The true test
cosmology is marked by the cross of the dashed lines.

• Each of the three C3NN-SBI models in Fig. 3.5 is not optimized w.r.t its hyperpa-
rameters such as learning rate, number of transformations in the NPE and so on.
Therefore the quantitative cosmological information from each inference cannot be
claimed to be robust. We will use Optuna5 (Akiba et al., 2019) to perform hyperpa-
rameter optimization in the future.

• The current work only uses noiseless maps from the CosmogridV1 simulation suite in
the forward model. This is not realistic as we have not incorporated the observational
and instrumental systematic effects such as shape noise, galaxy intrinsic alignment,
point-spread function (PSF) and so on. We will need to include these effects in the
simulated data to make the SBI results more reliable.

• No coverage tests have been performed on the C3NN-SBI models. We will need to
perform the covarage tests such as the ones in Talts et al. (2018) or Lemos et al.
(2023a) to ensure that the credible intervals from the trained amortized posterior

5https://optuna.readthedocs.io/en/stable/
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estimator are not biased as well as robust, i.e. not under- or overconfident.
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Chapter 4

Intermezzo: integrating analytical
methods and machine learning in
cosmology

The integration of analytical methods with ML is transforming the field of cosmology, en-
abling more efficient data analyses, enhanced theoretical modeling, and deeper insights into
the universe’s fundamental properties. Traditional analytical approaches, based on physics
(e.g. general relativity and statistical mechanics) and statistics , provide well-defined theo-
retical frameworks, while ML offers powerful data-driven techniques that can model com-
plex relationships and extract hidden patterns. The synergy between these methodologies
is unlocking new frontiers in cosmological research, from large-scale structure formation to
precision cosmology.

As we have briefly shown in Chapters. 1 and 2, cosmology has traditionally replied on
analytical and numerical approaches to describe the formation and evolution of various
kinds of structures in the Universe. These methods, usually based on perturbation the-
ory (Sec. 2.2.3), bias theory (Secs. 2.4.1 and 2.4.2) and statistical inference (Secs. 2.1.2,
2.3.3 and 2.5), are highly interpretable and grounded in solid fundamental physics. How-
ever, while applying these methods to cosmological problems, there are often assumptions,
approximations and computationally expensive simulations involved such that they are
limited in the regime of nonlinearity and high-dimension. We discussed how general per-
turbative bias expansion would fail on small, nonlinear scales and demonstrate it in Fig. 4
of Chapter. 5 where we utilize this method to compute the clustering of biased critical
points in the weak lensing convergence field. In the process of statistical inference, an
explicit Gaussian likelihood assumption is usually adopted even for high-dimensional data
vectors, to which extent this assumption would impact the final parameter covariance in
the context of upcoming large galaxy surveys is still underexplored. On another aspect,
certain efficient summary statistics are numerically expensive to calculate (e.g. the i3PCF
in Sec. 2.3.3) or can only be extracted via estimators on simulations but cannot be modeled
analytically (e.g. scattering transform coefficients (Cheng et al., 2020)). In such a case, the
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direct evaluation of these summary statistics is not affordable in a cosmological inference
task.

ML, on the other hand, can provide complementary or even alternative solutions to the
above problems. As we have discussed in Chapter. 3, we mainly probe the ML applications
to cosmology in the following directions:

• Efficient parameter inference: ML is extremely helpful in improving the efficiency of
cosmological inference. One major application is the emulation of summary statis-
tics as discussed in Sec. 3.1.2 where the evaluation of summary statistics on observed
cosmological fields can be significantly sped up by using ML models such as MLPs
through the parameter space, regardless of wether the statistic can be modeled an-
alytically or not. In Chapter. 6 we demonstrate how this approach contributes,
together with other components in the pipeline, to the inference of interested cosmo-
logical parameters such as As and w0 via summary statistics on cosmic shear beyond
2PCFs. In general, this has become a paradigm in the state-of-the-art statistical
analyses of cosmology (Gatti et al., 2022; Harnois-Deraps et al., 2024; Lehman et al.,
2025).

• Physics-informed ML: As a developing field, ML models are criticized in many cases
as “black boxes” which means it is difficult to understand their internal decision-
making mechanism and therefore weaken the robustness of the predictions (Hassija
et al., 2024). One way to address this problem is to inject explicit physical laws
or properties into the ML model architectures. Through which those models can
learn from huge datasets based on physical laws already verified (readers can refer to
Karniadakis et al. (2021) and Wetzel et al. (2025) for reviews). Our C3NN model in
Chapter. 7 obeys the cosmological principles of homogeneity and isotropy by using
the translational invariant convolutional neural network and the rotationally invariant
filter in two-dimensional space (Weiler & Cesa, 2019; Cesa et al., 2022) (Sec. 2 in
Chapter. 7). Together with the statistically interpretable outputs (Sec. 3.2.2), we
have access to verify the model’s decision-making process and in turn exploit it to gain
new understanding of our cosmological fields’ statistical properties. There are other
types of ML models that integrate physical laws, constraints, or domain knowledge
such as the physics-informed neural networks (PINNs) (Raissi et al., 2019) which
respect physics described by general nonlinear partial differential equations while
trained to solve supervised learning tasks; and the Hamiltonian Neural Networks
(HNNs) (Greydanus et al., 2019) which can learn and respect exact conservative
laws in an unsupervised manner.

• Information extraction in high-dimensional data: Traditional statistical analyses of
cosmology usually compress the high-dimensional observed field data into certain
summary statistics, e.g. correlation functions. Information carried by the original
fields would be lost during the compression process. ML models provide an alternative
solution to it where models like CNNs can be applied to directly extract features
from the data. Those features, though usually not analytical or interpretable, can
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act like summary statistics and infer better constraints on cosmological parameters
compared to the conventional summary statistics (Lemos et al., 2023b; Lu et al.,
2023). The framework that performs such information extraction is SBI as discussed
in Sec. 3.3. Down to the bottom, there is the field-level inference formalism which
does not even apply ML models like MLPs or CNNs to compress the input data,
but rather perform SBI directly on the input pixel maps or catalogues relying on the
power of ML techniques dealing with large datasets (Porqueres et al., 2023; Nguyen
et al., 2024). Note that this type of inference method still has controversial details
and needs to be further investigated before its robustness is generally acknowledged.
There are also examples of particular types of ML models that can automatically
optimize the amount of information extraction, such as the information maximizing
NN (Charnock et al., 2018). The C3NN-SBI framework discussed in Sec. 3.3.1 falls
into this category where we integrate C3NN model with the SBI framework to extract
cosmological information from weak lensing convergence maps. By doing this, we
combine the physics-informed ML models with the information extraction in high-
dimensional data.

Besides the above mentioned aspects, there are other useful applications of ML to cosmol-
ogy which are complementary to the traditional analysis methods. One major example
is the pattern recognition or system classification for astrophysical objects. We briefly
mentioned and listed relevant references in the beginning of Sec. 3.2. As hundreds of thou-
sands of specific target like supernova, strong lensing system and so on are to be observed
in upcoming surveys, ML techniques are necessary to replace human individual selection.
Another example is that by combining detailed numerical simulations on small scales with
the robust theoretical predictions on large scales, one can construct the so called hybrid
SBI model (Modi & Philcox, 2023) through which we can hopefully achieve the reduction
of computational cost and improvement on parameter constraining simultaneously. One
additional advantage we should mention here is that it is more straightforward to include
detailed survey realism to account for observational systematics through forward modeling
in SBI frameworks than traditional analytical modeling (Hahn et al., 2022).

So far we have tried to demonstrate how ML techniques can be complementary or even
alternative to traditional analysis methods. However, it is essential to notice that the
accuracy and robustness of these ML models depend critically on the quality of the training
datasets. The reason is the source of the additional information ML models can provide in
most cases is on the small scales or field level of numerical simulations, which are commonly
used training datasets. However, the behaviour of simulations on those scales is governed by
complex physical processes that we do not yet have unanimously agreed numerical recipes
to implement, such as baryonic feedback (Schneider & Teyssier, 2015; Giri & Schneider,
2023; Gebhardt et al., 2024; Bigwood et al., 2024), galaxy-halo connection (Berlind &
Weinberg, 2002; Nishimichi et al., 2019; Stiskalek et al., 2021) and so on. If the ML model
is trained on a suite of simulations that do not properly represent real nature, it is highly
likely that the final inference results on cosmology (e.g. from SBI framework) would be
biased and inaccurate. This is the effect of model misspecification and there are researches
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focusing on testing for it and learning robust statistics under this context (Huang et al.,
2023; Anau Montel et al., 2024). For a more abstract discussion on the influence of ML on
natural science, one can refer to the interesting paper by Hogg & Villar (2024).

As one suite of simulations may be generated by a different numerical recipe of the above
effects from another, it is important to ensure the generalizability of a given ML model.
From this perspective, analytical modeling can in turn offer well-defined calibration for the
ML model predictions, at least on the scales where analytical modeling is available. This
is one of the aims of our work in Chapter. 5.

The fusion of analytical methods with machine learning is redefining how cosmologists
analyze data, test theories, and make discoveries. By combining physical principles with
data-driven techniques, researchers can potentially tackle previously intractable problems
while ensuring robustness and interpretability. As computational methods continue to
advance, this integration will play a crucial role in future cosmological experiments, driving
deeper insights into the nature of the Universe.
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Our study here presents a theoretical framework for describing the power spectra of weak
lensing critical points, focusing on their clustering properties in the mildly nonlinear regime.
By leveraging perturbation theory and the theory of bias, we provide new insights into the
statistical properties of weak lensing extrema and their connection to large-scale structure.
One key success in the paper is that our theoretical framework goes beyond the previous
analytical peak clustering works generally assuming Gaussian distributed underlying den-
sity field, and includes both voids (minima) and saddle points in the description up to
the bispectrum correction accounting for non-Gaussian effects. This can serve as a bench-
mark test for N-body simulations that are used to measure weak lensing peaks or minima
clustering, to prevent those statistics from being biased by simulation systematic effects.
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We have also observed features like Baryon Acoustic Oscillations (BAOs) and inflection
points on large scales for weak lensing peak 2PCFs. These features could serve as indepen-
dent standard rulers, independent of galaxy bias, to study the evolution of the large-scale
structure and test different cosmological models. As the first author, I was responsible
for the following key tasks: (i) deriving the perturbative bias expansion approximation for
the power spectrum of critical points up to the next-to-next-to-leading order (NNLO), (ii)
developing the code for the numerical computation of the power spectrum of critical points
up to the next-to-leading order (NLO) using Mathematica, (iii) investigating the BAO
features for weak lensing peak 2PCFs and (iv) performing the numerical validation of the
theoretical predictions with Monte Carlo (MC) integrations. I also wrote majority of the
manuscript. The co-authors contributed to the formulation of critical point bias model,
providing valuable scientific discussions, drafting specific sections of the manuscript, and
reviewing the final draft.
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In cosmic web analysis, complementary to traditional cosmological probes, the extrema (e.g.
peaks and voids) two-point correlation functions (2PCFs) are of particular interest for the study of
both astrophysical phenomena and cosmological structure formation. However most previous studies
constructed those statistics via N-body simulations without a robust theoretical derivation from first
principles. A strong motivation exists for analytically describing the 2PCFs of these local extrema,
taking into account the nonlinear gravitational evolution in the late Universe. In this paper, we
derive analytical formulae for the power spectra and 2PCFs of 2D critical points, including peaks
(maxima), voids (minima) and saddle points, in mildly non-Gaussian weak gravitational lensing
fields. We apply a perturbative bias expansion to model the clustering of 2D critical points. A
generalized Gram-Charlier A series expansion is used to describe the probability density functional
of the cosmic density field. We successfully derive the power spectrum of weak lensing critical
points up to the next-to-next-to-leading order (NNLO) in gravitational perturbation theory, where
trispectrum configurations of the weak lensing field have to be included. We numerically evaluate
those power spectra up to the next-to-leading order (NLO), which correspond to the inclusion
of bispectrum configurations, and transform them to the corresponding 2PCFs. An exact Monte
Carlo (MC) integration is performed assuming a Gaussian distributed density field to validate our
theoretical predictions. Overall, we find similar properties in 2D compared to the clustering of 3D
critical points previously measured from N-body simulations. Contrary to standard lensing power
spectra analysis, we find distinct BAO features in the lensing peak 2PCFs due to the gradient
and curvature constraints, and we quantify that non-Gaussianity makes for ∼ 10% of the signal at
quasi-linear scales which could be important for current stage-IV surveys.

Keywords: cosmology: theory – large-scale structure of the Universe – methods: analytical, numerical –
weak gravitational lensing

I. INTRODUCTION

The statistics of critical points, both in 3D and 2D,
have attracted significant interests due to their applica-
tions to cosmology. In 3D, peaks in the initial Lagrangian
density field are key sites for the nonlinear formation of
dark matter halos (Ref. [1] and references therein) and
their statistics, such as abundance and correlation func-
tions, in Gaussian random fields have been extensively
investigated in the past literature [2–10]. Voids, which
evolve in the quasi-linear regime, can be effectively mod-

∗ lgong@usm.lmu.de

eled using relatively simple linear theory. As such, void
statistics can serve as an effective cosmic laboratory for
testing modified gravity and exploring dark energy phe-
nomena [11–15]. Additionally, they provide independent
and complementary probes for constraining cosmological
parameters [16, 17]. Cosmic filaments and walls, while
being relatively less studied, provide valuable insights
into phenomena such as matter transportation, cosmic
web formation and galaxy evolution. Furthermore, their
cross-correlations with peaks and voids offer a geometric
characterization of the large-scale structure of the Uni-
verse [18–23].

In 2D, the statistics of both peaks (maxima) and voids
(minima) in weak gravitational lensing have been widely
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studied and applied to infer cosmological parameters
using data from Stage-III surveys, including the Dark
Energy Survey (DES), the Kilo-Degree Survey (KiDS),
and the Hyper Suprime-Cam SSP Survey (HSC) [24–33].
These studies demonstrate that peaks and voids capture
non-Gaussian information in the cosmological field, like
other weak lensing higher-order statistics [34–39]. When
combined with the weak lensing angular power spectrum,
they significantly enhance parameter constraints com-
pared to using the angular power spectrum alone. In
particular for the parameter S8 = σ8

√
Ωm/0.3, several

studies reported improvements in constraints of approx-
imately 35% ∼ 40% [30, 32].

However, all these studies in weak lensing relied on a
simulation-based inference approach, where the peak and
void statistics were emulated using a grid of N-body simu-
lations spanning various cosmologies, often with machine
learning tools such as deep neural networks or Gaussian
processes. This approach carries the risk of propagating
numerical systematics inherent in the simulations into
the emulated statistics, potentially biasing the resulting
cosmological inferences [40, 41]. Furthermore, from an
analytical modeling perspective, this method lacks a ro-
bust theoretical foundation derived from first principles.
On the other hand, most previous analytical modeling
of peak and void statistics generally assumes a Gaus-
sian cosmological density field. However, the weak lens-
ing fields on our scales of interest are not Gaussian dis-
tributed as a consequence of the nonlinear gravitational
evolution of the density field in the late Universe.

There is thus a strong motivation to study the statistics
of peaks and voids in non-Gaussian weak lensing fields in
cosmology (as done for their number densities e.g. in
Ref. [42]). Along with saddle points, these features are
collectively referred to as critical points. In this work, we
focus on the analytical modeling of the power spectrum
which leads to the 2-point correlation functions (2PCFs)
of critical points in non-Gaussian weak lensing fields,
aiming to bridge the gap between current numerical ap-
proaches and a theoretical understanding of these statis-
tics. Our analytical method builds on the general formal-
ism proposed in Ref. [43], applied here to 2D weak lens-
ing fields. The approach involves a direct perturbative
bias expansion in the Eulerian density field. We derive
analytical formulae with perturbative approximations up
to the next-to-next-to-leading order (NNLO), which in-
corporates the trispectrum of the density field. For nu-
merical computation, however, we limit our analysis to
the next-to-leading order (NLO), which includes the bis-
pectrum of the density field and represents the lowest-
order non-Gaussian correction. All bias coefficients in the
derived formulae can be computed analytically with an
order-by-order correspondence to operators in the pertur-
bative expansion. These coefficients can be interpreted
as response functions of the critical point number den-
sities to variations in the long-wavelength modes of the
underlying density field.

Our paper is organized as follows: In Sec. II, we

first summarize our results and describe qualitatively the
physical behaviour of the extrema 2PCFs before diving
into the rigorous derivation of the plots and formulae
we schematically present in this section. The following
Sec. III provides the formal definitions of general 2D crit-
ical points and their number density functions. It also
presents the probability density function of critical points
under the assumption of a Gaussian distributed density
field. In Sec. IV, we derive the 2PCFs of 2D critical
points, including both auto- and cross-correlations, up
to the NNLO, and discuss the derivation of the bias co-
efficients. Next in Sec. V, we incorporate weak lensing
formalism into our analytical predictions and present nu-
merical results for the 2PCFs of 2D weak lensing critical
points up to the NLO. We then validate our perturba-
tive bias expansion predictions by comparing them with
results from computationally intensive high-dimensional
numerical integrations in Sec. VI. Finally, conclusions
are given in Sec. VII.

II. SUMMARY AND INTUITIVE DISCUSSION
OF OUR RESULTS

Here we briefly discuss our main results, providing
some qualitative arguments for readers to better under-
stand the detailed analytical derivations in subsequent
sections.

A. 2PCF of all critical points in mildly
non-Gaussian weak-lensing fields

Our major result is a from-first-principles analytical
expression for the power spectrum of all pairs of criti-
cal points in 2D mildly non-Gaussian fields, which we
apply to the projected weak-lensing convergence. The
full expression will be rigorously derived in Eq. (35) but
we display straight away the resulting 2PCFs among all
pairs of critical points in weak lensing convergence field in
Fig. 1. The ν variable in the figure, and the remainder of
the text, is a parameter that allows us to characterize the
“rarity” of the considered extrema by only focusing on
extrema of amplitude above the chosen ν ≡ δ/σ0 where
σ0 can be expressed using Eq. (7). As such, fixing for
instance ν = 0.3 can be read as “extrema whose ampli-
tudes are larger than 0.3σ0 above the mean density of
the considered field”, here the weak lensing convergence.
This choice is arbitrary, and is usually more suited to the
study of peaks of the field. Our derivations are generic
enough so that another choice, e.g. looking at extrema
below a threshold, at a specific amplitude or within an
interval, could straightforwardly be derived. We discuss
below some symmetries in the formalism that enable to
straightforwardly write down some of these cases with-
out any additional derivations. On a side note, ν = 0.3
corresponds to roughly 80% of the total peaks and 6% of
voids in a Gaussian random field with standard cosmol-
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FIG. 1. A summary of 2PCFs of all pairs of critical points in
weak lensing convergence fields above a threshold of ν = 0.3.
The convergence is smoothed with a Gaussian kernel at scale
R = 15′. Blue curves represent auto 2PCFs while orange
curves display cross 2PCFs (between different types of criti-
cal points). Within each color, different curve configurations
represent different types of critical points in a 2PCF. Note
that the chosen convergence field is for sources located at
zs = 1.5.

ogy and lensing parameters. Though subject to change,
these order of magnitudes will be preserved for the mildly
non-Gaussian fields that we will consider in this paper.

Schematically, our result in Eq. (35) is the combination
of two side-by-side perturbative expansions: One is in the
development of the gravitational instability where orders
are, in the underlying matter density field, expanded in
powers of the traditional matter power spectrum (hence
amplitude of fluctuations). The second expansion is a
bias expansion for critical points that allows us to ex-
plicitly bypass the null gradient constraints of extrema
by equating it to a series of responses of the extrema
one-point distribution to changes in the underlying field
at different (coupled) Fourier modes. At leading order
(LO), the power spectrum between two critical points i
and j is

P ij
extr(k) = gi1(k)g

j
1(k)P (k) (1)

where the bias function gi1 formally depends on the type
of critical points, the chosen threshold ν, and characteris-
tics of the field. P (k) is the usual power spectrum of the
amplitude of the considered field, here the weak-lensing
convergence.

B. Interpretation of LO bias terms

One specificity of our approach is that, without any
loss of generality, our bias functions are that of a
pure Gaussian field so that the non-Gaussian corrections

needed in our formalism appear outside of the bias terms.
This allows for a better interpretability of the behaviour
of those bias terms. For example, the abundances of
peaks and voids in Gaussian fields are symmetric with
respect to the mean density, so that the computed bi-
ases for peaks above a threshold ν, are exactly those of
voids below a threshold −ν. In higher dimensions than
2D, similar statements could be made for different saddle
points with symmetric curvature signatures.
Following Eq. (38), the LO bias term is decomposed

into

gi1(k) = αi(ν) + βi(ν)k
2, (2)

where αi and βi will b explicitly given in Eqs (47) to (54).
Let us note several properties of this LO bias and their
consequences for the extrema power spectra:

• Both αi and βi are integrals on the specific extrema
constraints of the joint distribution of the field am-
plitude, gradient and second derivatives. Our ex-
pression seems to hide this fact through a change of
variable that simplifies our calculations, but is ef-
fectively a combination of the responses (linear bi-
ases) of the amplitude, gradient and second deriva-
tives to a mode fluctuation.

• Following Eq. (1), the small fluctuations in the
usual convergence power spectrum are enhanced by
k2 and k4 terms in the extrema power spectra. Per-
forming the steps described in the above point, it
formally allows to determine from which aspects of
the field – its amplitude, gradient, second deriva-
tives, or a combination of those – the amplifications
come from. In particular, Ref. [6] demonstrated in
their Eq. (41) how the response to each successive
spatial derivatives of a 3D field impacts the am-
plification of the power spectrum amplitude in the
peak power spectrum calculation. It is apparent
that similar expressions hold in our case, though
considering all extrema above our quoted threshold
instead of at its value like in Ref. [6] add extra inte-
grals that prevent us from having similar analytical
expressions.

• The schematic behaviour of the bias terms can nev-
ertheless be shown through qualitative arguments
that we illustrate in Fig. 2. Indeed, at first or-
der, an extrema of amplitude νext can be thought
as tracing the overall matter density fluctuation of
amplitude νext plus the curvature of the extrema.
As such, the critical point bias will roughly behave
as the overall bias of the field amplitude itself at the
corresponding value of ν, that is its response to a
mode fluctuation of the density. Following Kaiser’s
formula [44], we thus expect that for extrema of
high amplitudes, which we control by a large cho-
sen value of the threshold νth, the extrema bias
will tend towards νext + curvatureext. The curva-
ture of peaks being negative, and that of voids pos-
itive, this qualitatively explains why voids tend to
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FIG. 2. Illustration of the behaviour of the LO bias functions
for extrema. We schematically decompose the field into its
large and small-scales fluctuations. The critical point bias
can at large ν be approximated by the value of the critical
point amplitude plus its curvature.

be more biased than peaks for large values of the
threshold. This is indeed what we observe in the
rigorous result we will plot in Fig. 8 below, in its
top left panel for large values of ν.

C. BAO features in weak-lensing critical points
2PCF

Combining Eqs (1) and (2), the LO critical point auto-
spectrum can be written as

P ii
extr(k) = α2

i (ν)

(
1 + 2

βi(ν)

αi(ν)
k2 +

(
βi(ν)

αi(ν)

)2

k4

)
P (k).

(3)
We now decompose the field power spectrum into a dark-
matter component, schematically a power law with the
index matched to the scales of interest, and a baryonic
component, schematically a localized oscillation pattern
coming from the Baryonic Acoustic Oscillations (BAO).
For the sake of a qualitative argument, we will roughly
consider this oscillation to be modeled by a Sinc func-
tion but the important ingredient in our argument is the
damping of the oscillations at large k. We thus have

P (k) ≈ kn
(
1 +

sin(ks)

ks

)
, (4)

where s is the typical scale of the BAO feature in the
field. Remember that our application is the weak-lensing
convergence field so that s depends on the projection
and more precisely on the redshift of the sources and the

cosmology. This leads to

P ii
extr(k) = αi(ν)

2kn

[
1 + 2

βi(ν)

αi(ν)
k2 +

(
βi(ν)

αi(ν)

)2

k4

+ 2

∣∣∣∣
βi(ν)

αi(ν)

∣∣∣∣
k

s
sin(ks)

(
|αi(ν)|

2|βi(ν)|k2

+ sign

(
βi(ν)

αi(ν)

)
+

∣∣∣∣
βi(ν)

αi(ν)

∣∣∣∣
k2

2

)]
, (5)

where “sign” in the above equation is the Sign func-
tion. Eq. (5) shows how the oscillatory behaviour in the
field power spectrum can be enhanced in critical point
power spectra. This in particular leads to the wiggles
in the peak 2PCF that we observe in Fig. 5. How-
ever, those wiggles are not observed in the void 2PCF
shown in Fig. 4 in our particular setting of a Gaus-
sian smoothing of the field at 15′ and ν = 0.3. This
can also be explained in our simplified model. Indeed,
the oscillations would be dampened to the same level
as in the field power spectrum if the terms in the last
line of Eq. (5) tend to be 0. This would happen if
both βvoid(ν = 0.3)/αvoid(ν = 0.3) were negative and
|βvoid(ν = 0.3)/αvoid(ν = 0.3)| × k2/2 at the k of in-
terest were to be of order unity. For the weak-lensing
convergence field in the hereby considered case, we in-
deed have βvoid(ν = 0.3)/αvoid(ν = 0.3) ∼ −3 × 10−5

and k ∼ 102 − 103 for the wiggles, which qualitatively
explains the absence of BAO features in our plots of the
void 2PCF, while highlighting the fact that this is spe-
cific to the chosen configuration, threshold and smooth-
ing, and does not hold in general in our formalism.

D. Amplitude of the non-Gaussian corrections,
impact of our results

One of the other main results of this work is the inclu-
sion of mild (gravitational) non-Gaussianities in the stud-
ied fields. In order to illustrate the relative importance
of this effect, we plot in Fig. 6 the ratio of our computed
non-Gaussian peak 2PCF and its Gaussian counterpart
computed at the same order in the critical point bias ex-
pansion, as a function of the applied Gaussian smoothing
to the convergence field. We perform this comparison at
a fixed separation where our formalism typically applies,
θ = 150′ given the range of smoothing, the threshold and
the redshift of the sources. As expected, the importance
of the non-Gaussian terms diminishes as the smoothing
increases, but it is worth noting that a smoothing of∼ 10′

still shows a difference of 10% at a separation which could
be considered important, and thus close to the Gaussian
regime, in the cosmological context. A careful analysis
including the expected error bars of the critical point
2PCFs in a current stage-IV survey is beyond the scope
of this paper and left to future studies.
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III. 2D CRITICAL POINTS

To define a critical point in a 2D random field f , one
must consider the field amplitude f itself, its derivatives
∂if and ∂i∂jf up to the second order, as all local ex-
trema require the gradient to vanish and the curvatures
to comply to certain conditions. To be more explicit,
the Hessian matrix at a peak location should be negative
definite, it is positive definite at a void location and has
both positive and negative eigenvalues at a saddle point.
Based on the above discussion, we adopt the following
three corresponding random variables

α =
f

σ0
, ηi =

∂if

σ1
, ζij =

∂i∂jf

σ2
, (6)

where σn acts as a normalization constant and is defined
as the spectral moment of the field

σ2
n =

∫
d2k

(2π)2
k2nP (k) , (7)

in which P (k) is the power spectrum of the 2D random
field and is only a function of the magnitude of the wave
vector k = |k| due to the supposedly statistical isotropy
of the Universe. These normalization factors are chosen
because we have ⟨f2⟩ = σ2

0 , ⟨(∇f)2⟩ = σ2
1 and ⟨(∆f)2⟩ =

σ2
2 where ∆ represents a Laplacian operator. The power

spectrum P (k) is expressed as

⟨f̃(k)f̃(k′)⟩ = (2π)2δD(k+ k′)P (k) , (8)

where we use f̃ to represent the Fourier counterpart of
the random field and the Dirac delta function is a result
of the statistical homogeneity.

With the above random variables defined, the number
density function of critical points above a given threshold
ν (meaning f ≥ νσ0), for example peaks np(ν), can be
explicitly expressed as [2, 45–47]:

np(ν) =

(
σ2

σ1

)2

Θ(α− ν)δD(η)Θ(λ2)|det ζ| , (9)

where Θ is the Heaviside step function and λ2 is the
smallest eigenvalue of the 2 × 2 matrix (−ζ) (without
loss of generality, we assume λ1 > λ2 in the discussion
below). For the other two types of critical points, voids
and saddle points, their respective number density func-
tions can be derived by modifying the constraint on the
eigenvalues of the Hessian matrix ζ as specified in the
above equation. For voids, λ1 must be negative, whereas
for saddle points, λ1 must be positive and λ2 negative.
Eventually, these different constraints will enter the cal-
culation of bias coefficients as will be shown in Sec. IV.

Let us denote the full set of random variables
which describes the critical points in 2D as X =
(α, η1, η2, ζ11, ζ12, ζ22). The statistics of this multi-variate
random vector assuming a Gaussian distributed density

field are solely determined by their covariances and reads

⟨α2⟩ = 1 , ⟨αηi⟩ = 0 , ⟨αζij⟩ = −γ

2
δij ,

⟨ηiηj⟩ =
δij
2

, ⟨ηiζjk⟩ = 0 ,

⟨ζijζkl⟩ =
1

8
(δijδkl + δikδjl + δilδjk) , (10)

where

γ =
σ2
1

σ0σ2
, (11)

and δij is the Kronecker delta. The multivariate Gaus-
sian distribution function for the random vector variable
X is therefore:

PG(X) =
1

(2π)3
√
detM

exp

(
1

2
XTM−1X

)
, (12)

where the covariance matrix M of the data vector X
reads

M =




1 0 0 −γ
2 0 −γ

2
0 1

2 0 0 0 0
0 0 1

2 0 0 0
−γ

2 0 0 3
8 0 1

8
0 0 0 0 1

8 0
−γ

2 0 0 1
8 0 3

8




. (13)

It is very helpful to transform the above probability den-
sity function into another representation in terms of ro-
tationally invariant random variables [42, 48]:

PG(X) ∝ N (α, J1)exp
(
−η2 − J2

)
, (14)

up to a normalization constant, where N (α, J1) is a
Gaussian joint distribution of α and J1

N (α, J1) =
1

2π
√

1− γ2
exp

[
−α2 + J2

1 − 2γαJ1
2(1− γ2)

]
.

(15)
In the above Eqs. (14) and (15), the new random vari-

ables η, J1, J2 are defined as:

η≡ η · η = η21 + η22 , J1 ≡ −ζii = λ1 + λ2 ,

J2≡ 2ζ̃ij ζ̃ji = λ2
1 + λ2

2 − 2λ1λ2 , (16)

where the repeated indices follow the Einstein summa-
tion convention. The random variable ζ̃ij represents the

traceless part of the Hessian matrix ζ, ζ̃ij = ζij+δijJ1/2,
and J1 is the negative trace of the Hessian matrix.

IV. 2PCFS OF 2D CRITICAL POINTS IN
MILDLY NON-GAUSSIAN FIELDS

In this paper, our aim is to predict correlation func-
tions of critical points. To do so, let us introduce a
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generic functional F of the density field f . Its power
spectrum can be written down as [49]:

⟨F̃(k)F̃(k′)⟩c
⟨F⟩2 = (2π)2δD(k+ k′)PF (k) , (17)

where F̃ is the Fourier transform of the real space func-
tional F and ⟨. . .⟩c denotes the connected part of the
corresponding computed moment. The squared mean
of the real space functional ⟨F⟩2 is a normalization fac-
tor to maintain the consistency between the definition
of 2PCF and the inverse Fourier transform of the power
spectrum. The connected part in Eq. (17) in Fourier

space is ⟨F̃(k)F̃(k′)⟩c = ⟨F̃(k)F̃(k′)⟩ − ⟨F̃⟩2 where

⟨F̃(k)F̃(k′)⟩ =
∫

Df̃F̃(k)F̃(k′)P (18)

is the 2nd-order moment of the functional F in Fourier
space. In the above Eq. (18), Df̃ represents the volume

element of the functional integral over f̃ with appropriate
measures and P is the probability density functional of f̃ .
We apply the general formalism presented in Ref. [43] to

expand both P and F̃ in Eq. (18) with a basis composed
of the Wiener-Hermite functionals defined as:

Hn(k1, . . . ,kn) ≡
(−1)n

PG

∂nPG

∂f̃(k1) · · · ∂f̃(kn)
, (19)

where PG here is the Gaussian probability density func-
tional of f̃ , different from those in Eq. (12) and (14). The
Wiener-Hermite polynomials Hn contains the n-point re-
sponse of the Gaussian probability density functional to
the density field and H0 = 1 when n = 0. With this
mathematical tool, we can write the expansion of P and
F̃ as:

P(f̃)= H0PG +
1

6

∫
d2k1d

2k2d
2k3⟨f̃(k1)f̃(k2)f̃(k3)⟩cH3(k1,k2,k3)PG

+
1

24

∫
d2k1 . . . d

2k4⟨f̃(k1) · · · f̃(k4)⟩cH4(k1,k2,k3,k4)PG +
1

120

∫
d2k1 . . . d

2k5⟨f̃(k1) · · · f̃(k5)⟩cH5(k1, . . . ,k5)PG

+
1

720

∫
d2k1 . . . d

2k6⟨f̃(k1) · · · f̃(k6)⟩cH6(k1, . . . ,k6)PG + · · ·

+
1

72

∫
d2k1 . . . d

2k6⟨f̃(k1)f̃(k2)f̃(k3)⟩c⟨f̃(k4)f̃(k5)f̃(k6)⟩cH6(k1, . . . ,k6)PG + · · · , (20)

and

F̃(k)

=
∞∑

n=0

1

n!

∫
d2k1
(2π)2

. . .
d2kn
(2π)2

(2π)2δD(k1 + · · ·+ kn − k)

×Gn(k1, . . . ,kn)H⋆
n(k1, . . . ,kn) . (21)

The detailed derivation of Eq. (20) can be found in Ap-
pendix. A of this paper or in Appendix. A of Ref. [43].
The expansion in Eq. (20) is a generalization of the
Gram-Charlier A (GCA) series [50]. The coefficients

⟨f̃(k1) . . . f̃(kn)⟩c in the expansion are the corresponding
n-th order cumulants of the Fourier density field. They
are related to the definition of the higher-order spectrum
of the density field, for example:

⟨f̃(k1)f̃(k2)f̃(k3)⟩c = (2π)2δD(k1 + k2 + k3)

×B(k1,k2,k3) , (22)

where B(k1,k2,k3) is the bispectrum of the density field
and

⟨f̃(k1) · · · f̃(k4)⟩c = (2π)2δD(k1 + · · ·+ k4)

×T (k1, . . . ,k3) , (23)

where T (k1, . . . ,k4) is the trispectrum. In Eq. (21) we
use the dual Wiener-Hermite functionals H⋆

n whose defi-
nition is:

H⋆
n(k1, . . . ,kn) = (2π)2nP (k1) · · ·P (kn)

×Hn(−k1, . . . ,−kn) , (24)

and it has a convenient property of being orthogonal to
the Wiener-Hermite functionals with respect to the Gaus-
sian probability density functional PG [51]

⟨H⋆
n(k1, . . . ,kn)Hm(k′

1, . . . ,k
′
m)⟩G

= δnm

[
δD(k1 − k′

1) · · · δD(kn − k′
m)

+perm(k1, . . . ,kn)

]
(25)

where perm(k1, . . . ,kn) stands for the (n! − 1) terms to
symmetrize the previous term δD(k1 − k′

1) · · · δD(kn −
k′
m) with respect to the permutations of its arguments

k1, . . . ,kn. The Dirac delta function that appears in
Eq. (21) is due to the (statistical) translational in-
variance of space. The expansion coefficient functions
Gn(k1, . . . ,kn) can be derived based on the orthogonality
relation in Eq. (25). If we multiply Hm(k1, . . . ,km) on
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both sides of Eq. (21) and take their expectation value
with respect to the Gaussian probability density func-
tional, we would have

(2π)2δD(k1 + · · ·+ kn − k)Gn(k1, . . . ,kn)

= (2π)2n⟨F̃(k)Hn(k1, . . . ,kn)⟩G

= (2π)2n

〈
∂nF̃(k)

∂f̃(k1) · · · ∂f̃(kn)

〉

G

, (26)

where the first equation is based on the orthogonal rela-
tion in Eq. (25) and the second equation makes use of the
definition of the Wiener-Hermite functional in Eq. (19)
followed by an integration by parts. To derive the fi-
nal expression for Gn(k1, . . . ,kn), we apply Fourier trans-
form to the above equation with respect to k:

Gn(k1, . . . ,kn)

= (2π)2nei(k1+···+kn)·x⟨F(x)Hn(k1, . . . ,kn)⟩G

= (2π)2nei(k1+···+kn)·x
〈

∂nF(x)

∂f̃(k1) · · · ∂f̃(kn)

〉

G

, (27)

where we can further set x = 0 due to the translational

invariance of Gn(k1, . . . ,kn) and conveniently evaluate it
to be

Gn(k1, . . . ,kn) = (2π)2n
〈

∂nF(x)

∂f̃(k1) · · · ∂f̃(kn)

〉

G

. (28)

Following the above equation, the expansion coefficient
functions can be interpreted as the Gaussian n-point re-
sponse of the 2D functional F to the underlying density
field. Conceptually this is analogous to the large-scale
galaxy bias and therefore can be thought of in the same
way for 2D critical points in this work. Note that similar
expansion coefficients have been used in the context of
galaxy clustering [52, 53].

With a proper understanding of Eq. (20) and
(21), we can substitute them with the correspond-
ing terms in Eq. (18) and expand the whole equa-
tion. During the process, one recurrent term is
⟨H⋆

n(k1, . . . ,kn)H⋆
m(k′

1, . . . ,k
′
m)Hl(k

′′
1 , . . . ,k

′′
l )⟩G. One

can compute these terms by solving both Hn and H⋆
n

at each order explicitly using Eq. (19 )and (24). Here we
give examples of the first few H⋆

n expressions:

H⋆
0= 1 ,

H⋆
1(k)= f̃(k) ,

H⋆
2(k1,k2)= f̃(k1)f̃(k2)− (2π)2δD(k1 + k2)P (k1) ,

H⋆
3(k1,k2,k3)= f̃(k1)f̃(k2)f̃(k3)−

[
(2π)2δD(k1 + k2)P (k1)f̃(k3) + sym

]
,

H⋆
4(k1, . . . ,k4)= f̃(k1)f̃(k2)f̃(k3)f̃(k4) +

[
(2π)4δD(k1 + k2)δD(k3 + k4)P (k1)P (k3) + sym

]

−
[
(2π)2δD(k1 + k2)P (k1)f̃(k3)f̃(k4) + sym

]
, (29)

where “sym” stands for all non-repeating symmetric
expressions of the previous term with respect to the
k1, . . . ,kn arguments. Such terms can be inserted into
⟨H⋆

n(k1, . . . ,kn)H⋆
m(k′

1, . . . ,k
′
m)Hl(k

′′
1 , . . . ,k

′′
l )⟩G and

the whole expression can be evaluated by applying
Wick’s theorem for Gaussian statistics. As a result,
⟨H⋆

nH⋆
mHl⟩G has nonzero value only when n+m+ l is an

even number. Though straightforward, this computation
becomes tedious very quickly. For example, in the

case of NNLO where n + m + l = 8, Wick’s theorem
predicts 105 terms from the contraction of eight density
field f̃ alone. It is more convenient to evaluate such
expressions using the diagrammatic method. We show
the formalism in Appendix. B where we also derive all
existing ⟨H⋆

nH⋆
mHl⟩G factors up to NNLO. Readers can

also refer to Appendix. A in Ref. [51] where the same
formalism is presented but in real space.
With the above discussion, we can now show the re-

sulting equation of ⟨F̃(k)F̃(k′)⟩ in Eq. (18) up to NNLO
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⟨F̃ i(k)F̃ j(k′)⟩ = (2π)4Gi
0Gj

0 + (2π)2δD(k+ k′)Gi
1(k)Gj

1(k)P (k)

+
(2π)2

2
δD(k+ k′)

∫
d2k1
(2π)2

Gi
2(k1,k− k1)Gj

2(k1,k− k1)P (k1)P (|k− k1|)

+
1

6

[
(2π)2Gi

0

∫
d2k1
(2π)2

· · ·
∫

d2k3
(2π)2

(2π)2δD(k1 + k2 + k3 − k)Gj
3(k1,k2,k3)⟨f̃(k1)f̃(k2)f̃(k3)⟩c + (i ↔ j)

]

+
(2π)2

2
δD(k+ k′)

[
Gi
1(k)

∫
d2k1
(2π)2

Gj
2(k1,k− k1)B(−k,k1,k− k1) + (i ↔ j)

]

+
(2π)2

6
δD(k+ k′)

∫
d2k1
(2π)2

∫
d2k2
(2π)2

Gi
3(k1,k2,k− k1 − k2)Gj

3(k1,k2,k− k1 − k2)P (k1)P (k2)P (|k− k1 − k2|)

+
(2π)2

6
δD(k+ k′)

[
Gi
1(k)P (k)

∫
d2k1
(2π)2

∫
d2k2
(2π)2

Gj
4(k,−k1,−k2,k1 + k2)B(−k1,−k2,k1 + k2) + (i ↔ j)

]

+
(2π)2

2
δD(k+ k′)

[∫
d2k1
(2π)2

∫
d2k2
(2π)2

Gi
2(k1,k− k1)Gj

3(k− k1,−k2,k1 + k2)P (|k− k1|)B(k1,k2,−k1 − k2) + (i ↔ j)

]

+
(2π)4

24

[
Gi
0

∫
d2k1
(2π)2

· · ·
∫

d2k4
(2π)2

δD(k1 + k2 + k3 + k4 − k)Gj
4(k1,k2,k3,k4)⟨f̃(k1)f̃(k2)f̃(k3)f̃(k4)⟩c + (i ↔ j)

]

+
(2π)2

6
δD(k+ k′)

[
Gi
1(k)

∫
d2k1
(2π)2

∫
d2k2
(2π)2

Gj
3(−k1,−k2,k+ k1 + k2)T (−k,−k1,−k2,k+ k1 + k2) + (i ↔ j)

]

+
(2π)2

4
δD(k+ k′)

[∫
d2k1
(2π)2

∫
d2k2
(2π)2

Gi
2(k− k1,k1)Gj

2(k− k2,k2)T (k− k1,k1,k2,−k− k2) + (i ↔ j)

]
, (30)

where we exploited the following parity symmetries:

Gn(−k1, . . . ,−kn) = Gn(k1, . . . ,kn)

B(−k1,−k2,−k3) = B(k1,k2,k3)

T (−k1, . . . ,−k4) = T (k1, . . . ,k4) . (31)

There are two terms in the above equation which con-
tain ⟨f̃(k1)f̃(k2)f̃(k3)⟩c and ⟨f̃(k1)f̃(k2)f̃(k3)f̃(k4)⟩c
respectively. We use such notations to distinguish them
from the rest as these two terms represent the uncon-
nected parts in the 2nd-order moment of F̃ and will be
subtracted off as we will show below. Additionally, in
Eq. (30) we characterize the functional F̃ with indices i,
j which denote different types of critical points (i.e., i,j =
peaks, voids, saddle points) through which we can con-

struct both auto- and cross-2PCFs. The symbol (i ↔ j)
denotes the addition of a term possessing the same form
but exchanging the correspondence of the expansion co-
efficient function Gn to the other functional type. From
Eq. (30) we observe that the leading-order (LO) result is
composed of the power spectrum P (k) of the underlying
density field. The NLO result is proportional to P (k)2 in-
cluding the bispectrum contribution (at tree-level) which
is also the lowest-order non-Gaussian correction. Finally
the NNLO result is proportional to P (k)3 which includes
contribution from P ×B and T terms where both bispec-
trum and trispectrum are at tree-level.

To compute the connected part of the 2nd-order mo-
ment, we need ⟨F̃⟩ which can be calculated based on
Eqs. (20), (21) and (25)

⟨F̃⟩ = (2π)2G0 +
1

6

∫
d2k1
(2π)2

d2k2
(2π)2

d2k3
(2π)2

(2π)2δD(k1 + k2 + k3 − k)⟨f̃(k1)f̃(k2)f̃(k3)⟩cG3(k1,k2,k3)

+
1

24

∫
d2k1
(2π)2

· · · d
2k4

(2π)2
(2π)2δD(k1 + · · ·+ k4 − k)⟨f̃(k1) · · · f̃(k4)⟩cG4(k1,k2,k3,k4)

+
1

72

∫
d2k1
(2π)2

· · · d
2k6

(2π)2
(2π)2δD(k1 + · · ·+ k6 − k)⟨f̃(k1)f̃(k2)f̃(k3)⟩c⟨f̃(k4)f̃(k5)f̃(k6)⟩cG6(k1, . . . ,k6)

+ · · · , (32)

where we can easily observe that the first three lowest-
order terms in the expansion of ⟨F̃ i⟩⟨F̃j⟩ are the con-

stant (2π)4Gi
0Gj

0 and the two terms we mentioned above
in Eq. (30). By subtracting them from Eq. (30), we can
summarize the connected 2nd-order moment of the func-
tional F̃ to be
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⟨F̃ i(k)F̃ j(k′)⟩c = (2π)2δD(k+ k′)Gi
1(k)Gj

1(k)P (k)

+
(2π)2

2
δD(k+ k′)

∫
d2k1
(2π)2

Gi
2(k1,k− k1)Gj

2(k1,k− k1)P (k1)P (|k− k1|)

+
(2π)2

2
δD(k+ k′)

[
Gi
1(k)

∫
d2k1
(2π)2

Gj
2(k1,k− k1)B(−k,k1,k− k1) + (i ↔ j)

]

+
(2π)2

6
δD(k+ k′)

∫
d2k1
(2π)2

∫
d2k2
(2π)2

Gi
3(k1,k2,k− k1 − k2)Gj

3(k1,k2,k− k1 − k2)P (k1)P (k2)P (|k− k1 − k2|)

+
(2π)2

6
δD(k+ k′)

[
Gi
1(k)P (k)

∫
d2k1
(2π)2

∫
d2k2
(2π)2

Gj
4(k,−k1,−k2,k1 + k2)B(−k1,−k2,k1 + k2) + (i ↔ j)

]

+
(2π)2

2
δD(k+ k′)

[∫
d2k1
(2π)2

∫
d2k2
(2π)2

Gi
2(k1,k− k1)Gj

3(k− k1,−k2,k1 + k2)P (|k− k1|)B(k1,k2,−k1 − k2) + (i ↔ j)

]

+
(2π)2

6
δD(k+ k′)

[
Gi
1(k)

∫
d2k1
(2π)2

∫
d2k2
(2π)2

Gj
3(−k1,−k2,k+ k1 + k2)T (−k,−k1,−k2,k+ k1 + k2) + (i ↔ j)

]

+
(2π)2

4
δD(k+ k′)

[∫
d2k1
(2π)2

∫
d2k2
(2π)2

Gi
2(k− k1,k1)Gj

2(k− k2,k2)T (k− k1,k1,k2,−k− k2) + (i ↔ j)

]
. (33)

The last piece needed to complete the derivation of PF (k) is ⟨F⟩ which can be calculated based on Eqs. (20) and
(27)

⟨F⟩ =G0 +
1

6

∫
d2k1
(2π)2

d2k2
(2π)2

d2k3
(2π)2

⟨f̃(k1)f̃(k2)f̃(k3)⟩cG3(k1,k2,k3)

+
1

24

∫
d2k1
(2π)2

. . .
d2k4
(2π)2

⟨f̃(k1) . . . f̃(k4)⟩cG4(k1,k2,k3,k4)

+
1

72

∫
d2k1
(2π)2

. . .
d2k6
(2π)2

⟨f̃(k1)f̃(k2)f̃(k3)⟩c⟨f̃(k4)f̃(k5)f̃(k6)⟩cG6(k1, . . . ,k6) + . . . . (34)

By combining Eqs. (33) and (34), we can compute PF (k)
in Eq. (17). Note that the non-Gaussian corrections of
Eq. (34) in the denominator of Eq. (17) would not con-

tribute to the NLO but they contribute to higher-order
results in general. With this in mind, we can derive the
expression for the power spectrum up to NNLO as
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P ij
F (k)= gi1(k)g

j
1(k)P (k)

+
1

2

∫
d2k1
(2π)2

gi2(k1,k− k1)g
j
2(k1,k− k1)P (k1)P (|k− k1|)

+
1

2

[
gi1(k)

∫
d2k1
(2π)2

gj2(k1,k− k1)B(−k,k1,k− k1) + (i ↔ j)

]

+
1

6

∫
d2k1
(2π)2

∫
d2k2
(2π)2

gi3(k1,k2,k− k1 − k2)g
j
3(k1,k2,k− k1 − k2)P (k1)P (k2)P (|k− k1 − k2|)

+
1

6

[
gi1(k)P (k)

∫
d2k1
(2π)2

∫
d2k2
(2π)2

gj4(k,−k1,−k2,k1 + k2)B(−k1,−k2,k1 + k2) + (i ↔ j)

]

+
1

2

[∫
d2k1
(2π)2

∫
d2k2
(2π)2

gi2(k1,k− k1)g
j
3(k− k1,−k2,k1 + k2)P (|k− k1|)B(k1,k2,−k1 − k2) + (i ↔ j)

]

+
1

6

[
gi1(k)

∫
d2k1
(2π)2

∫
d2k2
(2π)2

gj3(−k1,−k2,k+ k1 + k2)T (−k,−k1,−k2,k+ k1 + k2) + (i ↔ j)

]

+
1

4

[∫
d2k1
(2π)2

∫
d2k2
(2π)2

gi2(k− k1,k1)g
j
2(k− k2,k2)T (k− k1,k1,k2,−k− k2) + (i ↔ j)

]

−1

6

[
gi1(k)g

j
1(k)P (k)

∫
d2k1
(2π)2

∫
d2k2
(2π)2

gj3(k1,k2,−k1 − k2)B(k1,k2,−k1 − k2) + (i ↔ j)

]
, (35)

where

gn(k1, . . . ,kn) ≡
Gn(k1, . . . ,kn)

G0
, (36)

and the last line is the contribution from non-Gaussian
corrections in the denominator of Eq. (17). One can then
apply a Hankel transformation to Eq. (35) to evaluate the
correlation function

ξijF (r) =

∫
kdk

2π
J0(kr)P

ij
F (k) , (37)

where Jn(x) is the Bessel function. Note that in the
above Eq. (35), if the underlying density field is Gaussian
distributed, all terms containing bispectrum or trispec-
trum would vanish and we will recover the perturbative
bias expansion in the context of Gaussian approximation.

So far, all the above results are general for any 2D
functionals F of a density field f . We still need to an-
swer one question before we can actually compute the
2PCFs for 2D critical points in a mildly non-Gaussian
regime using Eqs. (35) and (37), that is what are the ex-
pressions for gn(k1, . . . ,kn) for 2D critical points. From
the previous Eq. (28), we know that they can be derived
directly by substituting F in the equation with the cor-
responding number density function of a critical point
type, such as the one for peaks in Eq. (9). The required
functional derivatives contain very technical calculation
and for our purpose of numerically evaluating Eq. (35) to
the NLO, we directly present the results below. Readers
who are interested in the derivation details can refer to
the method presented in Appendix. B of Ref. [43].

g1(k) = g10000 + g01000k
2 , (38)

g2(k1,k2) =g20000 + g11000(k
2
1 + k22) + g02000k

2
1k

2
2

− 2g00100k1 · k2

+ 4g00010

[
(k1 · k2)

2 − 1

2
k21k

2
2

]
, (39)

where the coefficients gijklm include the constraints im-
posed on the density field by the critical point functional
and can be expressed as

gijklm =
Gijklm

σi
0σ

2k
1 σj+2l+3m

2 G00000

, (40)

and the numerator factor Gijklm is

Gijklm(ν) =
1

2π

(
σ2√
2σ1

)2

Xk

∫
dxHi−1,j(ν, x)

×N (ν, x)flm(x) , (41)

which is a function of the threshold ν as discussed in
Eq. (9). In the integration above, x is exactly the trace
of the negative Hessian matrix (−ζ) and equivalent to J1
defined in Eq. (16). Xk is a constant and from Eqs. (38)
and (39) we only need X0 and X1 which are 1 and −1
respectively. The function Hij(α, J1) is the multivariate
Hermite polynomials defined as

Hij(α, J1) =
1

N (α, J1)

(
− ∂

∂α

)i(
− ∂

∂J1

)j

N (α, J1) ,

(42)
where the N (α, J1) function is defined previously in
Eq. (15). In the case of g0jklm, we need to calculate
H−1,j which is

H−1,j(α, J1) =
1

N (α, J1)

∫ ∞

α

dβH0j(β, J1)N (β, J1) .

(43)
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Again from Eqs. (38) and (39) we observe that we only
need functions fl0(x) which are (for the general definition
equation of flm, please refer to Ref. [43])

fl0 = 8

∫
dyye−4y2

(x2 − 4y2)(−1)lLl(4y
2) , (44)

where y is defined as y ≡ (λ1 − λ2)/2 and Ll is the

generalized Laguerre polynomial L
(n)
l with the index n =

1

Ll(x) =
ex

xl!

dl

dxl
(xl+1e−x) . (45)

By replacing Gijklm factors in Eq. (40) with Eq. (41), we
can have the expression

gijklm(ν) =
Xk

∫
dxHi−1,j(ν, x)N (ν, x)flm(x)

σi
0σ

2k
1 σj+2l+3m

2

∫
dxH−1,0(ν, x)N (ν, x)f00(x)

,

(46)
which can be evaluated by Eq. (15) and Eqs. (42) to (45).

As discussed in Sec. III, different critical points are
characterized by their eigenvalues of the Hessian matrix.
This characterization is reflected in the integration lim-
its of Eq. (46) through which we can then compute the
gijklm factors for peaks, voids and saddle points sepa-
rately [42]. As discussed above, the integration vari-
able x = J1 = λ1 + λ2, which ranges from 0 to ∞
for peaks, −∞ to 0 for voids and −∞ to ∞ for sad-
dle points. Another integration limit needs consider-
ing is in Eq. (44), where y is strictly positive as we
have already assumed λ1 > λ2. Furthermore we have
y2 =

[
(λ1 + λ2)

2 − 4λ1λ2

]
/4 = (x2 − 4λ1λ2)/4 where

both peaks and voids have λ1λ2 > 0, therefore we have
y < x/2 (x > 0) for peaks and y < −x/2 (x < 0) for
voids. On the other hand, saddle points always have
λ1λ2 < 0, thus the integration limit in Eq. (44) would
become y > |x|/2. To summarize, we have the following
equations for gijklm factors for different types of critical
points

gpeakijklm =
Xk

∫∞
0

dxHi−1,j(ν, x)N (ν, x)fpeak
lm (x)

σi
0σ

2k
1 σj+2l+3m

2

∫∞
0

dxH−1,j(ν, x)N (ν, x)fpeak
00 (x)

,

(47)

fpeak
lm = fpeak

l0 = 8

∫ x
2

0

dyye−4y2

(x2 − 4y2)(−1)lLl(4y
2) ,

(48)

gvoidijklm =
Xk

∫ 0

−∞ dxHi−1,j(ν, x)N (ν, x)fvoid
lm (x)

σi
0σ

2k
1 σj+2l+3m

2

∫ 0

−∞ dxH−1,j(ν, x)N (ν, x)fvoid
00 (x)

,

(49)

fvoid
lm = fvoid

l0 = 8

∫ − x
2

0

dyye−4y2

(x2−4y2)(−1)lLl(4y
2) ,

(50)
and the analytical integration results of the flm function
are the same for both peaks and voids

f
peak/void
00 (x) = e−x2

+ x2 − 1

f
peak/void
10 (x) = (1 + x2)e−x2 − 1 , (51)

whereas

gsaddleijklm =
Xk

∫∞
−∞ dxHi−1,j(ν, x)N (ν, x)fsaddle

lm (x)

σi
0σ

2k
1 σj+2l+3m

2

∫∞
−∞ dxH−1,j(ν, x)N (ν, x)fsaddle

00 (x)
,

(52)

fsaddle
lm = fsaddle

l0 = 8

∫ ∞

|x|
2

dyye−4y2

(x2−4y2)(−1)lLl(4y
2) ,

(53)
and

fsaddle
00 = −e−x2

fsaddle
10 = −e−x2

(1 + x2) . (54)

In Appendix C, we display plots of the seven gijklm fac-
tors in Eqs. (38) and (39) as functions of the threshold ν
for different types of critical points.

V. RESULTS FOR THE 2PCFS OF 2D WEAK
LENSING CRITICAL POINTS

Building on the formalism for calculating the 2PCFs
of 2D critical points in a mildly non-Gaussian regime in-
troduced in the previous section, we apply it to the weak
lensing convergence field κ. This particular 2D field can
be understood as the weighted line-of-sight projection of
the 3D cosmic matter density contrast field [54, 55]

κ =

∫
dχq(χ)δ(χ) , (55)

where δ(χ) is the 3D matter density contrast at a comov-
ing radial distance χ and q(χ) is the weight function of
the convergence field along the line-of-sight [56]

q(χ) ≡ 3H2
0Ωm,0

2a(χ)c2
χ(χs − χ)

χs
, (56)

where H0, Ωm,0 and c are the Hubble constant, mat-
ter density parameter at the present and the speed of
light respectively. The a(χ) function is the scale factor
of the Universe and χs is the comoving distance to the
source galaxies. Here we only consider the case where all
source galaxies are located at a Dirac delta like source
redshift distribution, but it is straightforward to extend
the description of q(χ) to a general distribution of source
galaxies [55].
Adopting the flat-sky and Limber approximations [57],

one can derive the power spectrum and bispectrum of the
convergence field [58]

Pκ(k) =

∫
dχ

q2(χ)

χ2
Pm

(
k

χ
, χ

)
, (57)

Bκ(k1, k2, k3) =

∫
dχ

q3(χ)

χ4
Bm

(
k1
χ
,
k2
χ
,
k3
χ
, χ

)
, (58)
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where Pm and Bm are the 3D matter power spectrum
and bispectrum.

We smooth the convergence field with a smoothing
kernel W (kR), where R is the smoothing angle, before
we apply Eqs. (57) and (58) to Eq. (35). The resulting
smoothed convergence power spectrum and bispectrum

then read P (k) = W (kR)2Pκ(k) and B(k1, k2, k3) =
W (k1R)W (k2R)W (k3R)Bκ(k1, k2, k3). In practice, we

use a Gaussian smoothing kernel, W (kR) = e−k2R2/2.
From there, the power spectrum of weak lensing critical
points up to NLO reads

P ij(k)= gi1(k)g
j
1(k)W (kR)2Pκ(k)

+
1

2

∫
d2k1
(2π)2

gi2(k1,k− k1)g
j
2(k1,k− k1)W (k1R)2W (|k− k1|R)2Pκ(k1)Pκ(|k− k1|)

+
1

2

[
gi1(k)

∫
d2k1
(2π)2

gj2(k1,k− k1)W (kR)W (k1R)W (|k− k1|R)Bκ(−k,k1,k− k1) + (i ↔ j)

]
. (59)

In the above equation, the spectral moments from Eq. (7)
exploited in gn functions has the following form

σ2
n =

∫
dχ

q2(χ)

χ2

∫
kdk

2π
k2nW (kR)2Pm

(
k

χ
, χ

)
, (60)

and we are going to use the tree-level 3D matter bispec-
trum in Eq. (58) [59]

Bm(k1, k2, k3) = 2F2(k1,k2)Pm(k1)Pm(k2) + perm ,
(61)

where F2(k1,k2) is the symmetric coupling kernel

F2(k1,k2) =
5

7
+

2

7

(k1 · k2)
2

k21k
2
2

+
1

2
k1 · k2

(
k1
k2

+
k2
k1

)
,

(62)
and “perm” in Eq. (61) represents the same term but
with cyclic permutations on arguments k1, k2 and k3

(such that the bispectrum ends up being a sum of three
such terms). Note that we use the nonlinear 3D matter
power spectrum in Eqs. (57) and (61). For this purpose
we apply the fitting function HaloFit [60, 61] adopted
in the Boltzmann solver package Class [62].

In the following computation, we adopt the flat ΛCDM
model with Planck 2018 cosmological parameters [63]:
Ωcdmh

2 = 0.1201, Ωbh
2 = 0.02238, h = 0.6732, ns =

0.9660 and σ8 = 0.8120. We assume that all source
galaxies are located at z = 1.5. The smoothing scale is
R = 15′ for the Gaussian kernel which corresponds to ap-
proximately 20 Mpc at the source redshift with the above
background cosmology. We applied a fast and accurate
numerical evaluation of Eq. (59) using the method of sep-
aration of integration variables. After the separation we
perform angular integrations first and the resulting ex-
pression can be computed by multiple one-dimensional
Fourier transform. Readers can refer to Appendix. D or
Sec. IIIB in Ref. [43] for more technical details.

We show in Fig. 3 the predicted auto power spectrum
of peak-peak, void-void, and saddle-saddle, as well as
the cross power spectrum of peak-void, peak-saddle and
void-saddle, at a threshold ν = 0.3 where the value is
taken with respect to the smoothed σ0 shown in Eq. (60).

Above this given threshold, together with the above cos-
mology and lensing parameters, we compute the abun-
dances of peaks and voids to be approximately 80% and
6% of the total number using a Monte Carlo (MC) inte-
gration method, assuming an underlying Gaussian ran-
dom field. We first notice that there is a discrepancy on
k → 0 scale between the LO and 2nd-order Gaussian ap-
proximation for peaks and voids. It has been suggested
in previous works that the exclusion zone in 2PCFs for
peaks and halos would non-trivially impact the power
spectrum on large scales [9, 64–66]. It has also been
shown in Ref. [43] for 3D peaks that this nonzero value
in the limit of k → 0, corresponding to unphysical com-
ponent in the perturbative expansion, only exists in the
2nd-order Gaussian approximation term in the NLO, but
not in other components. In Fig. 3, we observe this ef-
fect not only in 2D weak lensing peak power spectrum
Ppp(k), but also in voids Pvv(k) which is caused by the
exclusion zone between two voids. Meanwhile, such ef-
fect exists but not significant for the saddle point power
spectrum Pss(k) and its cross power spectrum with peaks
and voids Pps(k), Pvs(k). This suggests that there is no
strong exclusion effect between saddle points and other
types of critical points (at the same threshold) since the
matter flows through filaments (a type of saddle point)
that are closely connected to either peaks or voids. This
is because when the thresholds are the same, curvature
and gradient constraints can be smoothly mapped from
one to the other, contrary to peak-void for instance where
the gradient constraint and the sign of the curvature im-
pose two configurations that are incompatible in the zero
separation limit. When transformed to real space for
2PCFs calculation, the above mentioned zero-lag value
would turn into a Dirac delta-like function on small an-
gular separations and thus not impact the convergence
among different orders of perturbative bias expansion on
large angular scales. This is confirmed in Fig. 4 where
we show the corresponding 2PCFs.

For all 2PCFs, results from different orders of pertur-
bative bias expansion converge with respect to each other
on large angular separations. There are amplitude incre-
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FIG. 3. Auto and cross power spectrum of different critical points in 2D weak lensing fields above a given threshold ν = 0.3 and
a smoothing scale R = 15′. The subscript “p” represents peaks while “v” and “s” stand for voids and saddle points respectively.
Blue curve represents the LO in the power spectrum, corresponding to the first line on the right hand side of Eq. (59). Orange
curve is the sum of the LO and the 2nd-order Gaussian approximation (∝ P (k)2 term) in the NLO, which is the second line
term in Eq. (59). Green curve is the full NLO prediction including the bispectrum correction expressed by the third line term
in Eq. (59). The color curves in all the other sub-panels have the same representation as that denoted in the top left subplot.
The fluctuations on large k scales are the residuals of the unphysical components from the perturbative bias expansion after
smoothing. They will not impact the 2PCFs on intermediate and large angular separations after the Hankel transform as we
will show in Sec. VI with the peak 2PCF as an example.

ments for ξpp, ξvv, ξss and ξpv towards small angular scales starting between 30′ and 70′, those are caused by
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FIG. 4. Auto and cross 2PCF of different critical points in 2D weak lensing fields above a given threshold ν = 0.3 and a
smoothing scale R = 15′. The subscript “p” represents peaks while “v” and “s” stand for voids and saddle points respectively.
Blue curve represents the LO in the 2PCF, which is Hankel transformed from the first line on the right hand side of Eq. (59).
The orange curve is the sum of the LO and the 2nd-order Gaussian approximation (whose Fourier counterpart is the ∝ P (k)2

term) in the NLO, which is the sum of the Hankel transform of the first two line terms in Eq. (59). The green curve is the
full NLO prediction including the bispectrum correction, i.e. the Hankel transform of the complete expression of Eq. (59). The
color curves in all the other sub-panels have the same representation as that denoted in the top left subplot.

the unphysical component in the perturbative expansion prediction which cannot correctly capture the non per-
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turbative exclusion zones. Compared to the 2nd-order
Gaussian approximation, the shape of the non-Gaussian
correction is almost proportional to the Gaussian contri-
bution on most of the scales. Thereby, the total shape
of the extreme 2PCF does not change much by the ef-
fect of non-Gaussianity, but the amplitude does change,
especially around their maxima beyond the unphysical
angular scales. Among the auto 2PCFs, ξpp reaches its
maximum around 70′ which is larger than that of ξvv at
60′ and in turn larger than 45′ for ξss. This relationship
is consistent with what was found in 3D [21] where peak
2PCF has the largest maximum separation, followed by
that of voids and then saddle points. This might be due
to the different rarity of critical points above the same
threshold, thus causes different characteristic separations
in their clustering.

If we examine ξps and ξvs instead, we would find that
their 2PCF maxima are on much smaller angular sepa-
rations compared to the other four 2PCFs. This again
indicates that saddle points have a weak exclusion effect
with respect to peaks and voids above the same thresh-
old, reflecting a shell-like structure in the distribution of
saddle points around a given extremum, reminiscent of
a cubic crystal lattice as pointed out by Refs. [21, 66].
It implies that cross 2PCFs between saddle points and
other extreme may better explore small-scale physics.

Another interesting feature to observe is the existence
of oscillations in ξpp on scales beyond θ = 100′ once we
multiply the signal by θ2. The corresponding 2PCF is
plotted in Fig. 5. At least two additional oscillation peaks
at θ ≈ 150′ and 300′ can be observed. This wiggly feature
is related to the effect of BAOs in the underlying mat-
ter power spectrum. If we remove the baryon component
from the underlying matter power spectrum and recalcu-
late the peak 2PCF, we would obtain the result shown in
the right panel of Fig. 5. The peaks at 150′ and 300′ both
vanish and overall amplitude of the correlation function
is reduced. It is well-known that baryonic features are
highly suppressed in weak lensing power spectrum due to
the line-of-sight projection shown in Eq. (57). However,
these features can be enhanced in 3D peak correlation
functions for both Gaussian and mildly non-Gaussian
density field as pointed out in Refs. [6, 43, 67]. In this pa-
per we confirm this property in 2D mildly non-Gaussian
weak lensing fields. We do not observe such significant
BAO related features in other types of correlation func-
tions. We believe this is because peaks have larger curva-
tures in very overdense regions compared to other critical
points, e.g. voids, and therefore can better amplify the
strongly suppressed BAO features in the weak lensing
convergence power spectrum. Since our gn(k1, . . . ,kn)
functions are computed with respect to the Gaussian ran-
dom field (Eqs. (28) and (36)), based on the symmetry
argument, the 2PCF of voids as a critical point should be
able to exhibit BAO features if we modify our modeling
and probe voids below an underdense threshold. How-
ever, we leave this aspect to future investigations.

We explore the influence of the Gaussian smoothing

kernel scale, R, on the computed 2PCFs, focusing on the
non-Gaussian effects arising from the inclusion of the bis-
pectrum correction compared to the second-order Gaus-
sian approximation. In Fig. 6, we vary R in the compu-
tation of the peak power spectrum (Eq. (59)) from 10′

to 25′. Using an angular separation of 150′, which is
significantly larger than the range of smoothing scales,
we calculate the difference between the full NLO compu-
tation of the peak 2PCF and its second-order Gaussian
approximation. The results show that the fractional dif-
ference decreases as the smoothing scale increases, indi-
cating that stronger smoothing of the underlying cosmic
density field reduces the non-Gaussian effects introduced
by the bispectrum correction.

With the above discussion, we establish the analyt-
ical 2PCFs, including the mildly non-Gaussian correc-
tion, among all pairs of critical points in 2D weak lensing
convergence field on large angular separations. Previous
literature such as those cited in Sec. I showed that peak
2PCF is sensitive to cosmological parameters such as Ωm

and σ8, and it can add constraining power to the infer-
ence of these parameters complementary to peak num-
ber count. However, those simulation-based models for
the peak 2PCF do not extend to large angular separa-
tions where our model is valid and fast in its predictions.
Therefore our model can contribute effectively to the cos-
mological inference. Additionally, the BAO features on
large scales for peak 2PCFs can serve as an independent
standard ruler [67] without galaxy bias by just looking at
the amplitude of the fields in weak lensing maps, to study
the evolution of LSS and test different cosmological mod-
els, an area that is currently not sufficiently explored.

VI. NUMERICAL PREDICTIONS COMPARED
TO MONTE CARLO INTEGRATIONS

In this section, we aim to validate our perturbative
bias expansion approach. In order to do this, we com-
pare one of our predictions for 2PCFs of critical points in
the previous section, the peak 2PCF ξpp(θ), to a full nu-
merical integration of the peak 2PCF obtained by a MC
integration method in Mathematica (for comparison of
other critical point 2PCFs, please refer to Appendix. E).
In the MC integration, we assume a Gaussian probabil-
ity density distribution for the underlying density field.
This assumption guarantees that our full numerical in-
tegration result is exact and can be used to validate our
theoretical prediction from perturbative bias expansion
approach on large angular separations.

In practice, we use the same MC integration method as
that presented in Sec. IV of Ref. [9] but in 2D. We draw
random numbers of dimension 8 from the joint Gaus-
sian conditional probability of (α, ζij) at position x1 and
(α, ζij) at position x2 which satisfy ηi = 0. We only keep
the drawn sample if α is above the amplitude threshold

ν and eigenvalues of ζ are negative. With det|ζ(k)ij (x1)|
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FIG. 5. Left : The same peak 2PCF as in Fig. 4 but multiplied by θ2. Right : Same as the left panel, but the underlying matter
power spectrum is calculated without baryons while kept at the same total matter density parameter.
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and det|ζ(k)ij (x2)| computed, we have

⟨np(ν,x1)np(ν,x2)⟩

≈ PG [η(x1) = η(x2) = 0]

N

∑

k∈S
det|ζ(k)ij (x1)|det|ζ(k)ij (x2)| ,

(63)

where N is the total number of drawn sample, S is the
subset of the drawn indices that correspond to the sam-
ple satisfying the conditions on the eigenvalues and am-
plitude. We can use the same procedure to evaluate the

expectation value of the peak number density ⟨np(ν,x)⟩.
The peak 2PCF ξpp(θ) would therefore be

ξpp(θ) =
⟨np(ν,x1)np(ν,x2)⟩

⟨np(ν,x)⟩2
− 1 , (64)

where the angular θ dependence is from the covari-
ance matrix of the joint Gaussian conditional probabil-
ity in ⟨np(ν,x1)np(ν,x2)⟩. The high dimensionality of
the above integration makes the computation expensive,
however, we parallelized the algorithm on a local cluster
such that the calculation is completed within a reason-
able period of time. Another subtlety in our MC in-
tegration method is that on small angular separations,
θ ≲ 40′, the covariance matrix between two points at x1

and x2 would become non-invertible due to the numeri-
cal instability in the integrand of some entries. In order
to qualitatively show the exclusion effect of the critical
point clustering, which our perturbative bias expansion
is incapable of fully capturing, we approximate the weak
lensing power spectrum by a power law Pκ(k) ∝ kn when
performing MC integration on these scales. The power
index n is determined by solving γ =

√
(n+ 2)/(n+ 4),

where γ is from Eq. (11) computed with the weak lens-
ing power spectrum from Boltzmann solver, and the right
side comes from expressing γ in terms of Pκ(k) ∝ kn.
In Fig. 7, for each angular separation, we perform 60

estimations of the 2PCF to obtain the mean value and the
associated estimated standard deviation. For each MC
integration, we draw 20 million times 8 random numbers
for which evaluation is parallelized on 16 cores. On the
local cluster, one such estimation for all angular separa-
tions took averagely half an hour (with some variability).
We observe from Fig. 7 that on angular scales θ ≥ 100′,

the theoretical predictions are almost identical to the
MC integration result. This proves that the convergence
behavior of our theoretical prediction among different
orders of approximation is correct. On angular scales
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FIG. 7. 2PCF for peaks above the threshold ν = 0.3 with a
flat ΛCDM model under Planck 2018 cosmological parame-
ters. The underlying density field is smoothed by a Gaussian
kernel with a smoothing scale R = 15′. The color curves ex-
ploit the same convention to those in Fig. 4. Red dots and
the corresponding error bars in the top panel are the mean
and standard deviation from 60 estimations of the MC in-
tegration. Purple dots and the corresponding error bars in
the bottom panel are the mean and standard deviation from
60 estimations of the MC integration but with a power law
approximation for the weak lensing convergence power spec-
trum. The full 2PCF is divided into two panels, each covering
a different range of linear scales, allowing for a clearer exam-
ination of the small amplitude at larger separations.

θ ≈ 55′, the 2nd-order Gaussian approximation already
reproduces quite accurately the 2D weak lensing peak ex-
clusion effect [65, 66] as demonstrated by the MC result
on the same scale. The non-Gaussian correction from bis-
pectrum does not add significant changes to the predicted
exclusion scale if one compares the orange to the green
curve on θ ≈ 55′. On further smaller scales, there is an
increase of the predicted peak 2PCF and the convergence
of predictions from different orders of approximation is
very poor. This is a well-known feature that the pertur-
bative bias expansion on small scales cannot capture the
non-perturbative exclusion zone, as demonstrated by the
power law approximation MC result in the bottom panel
of Fig. 7.

On angular scales between 50′ and 100′, the theoret-
ical prediction from 2nd-order Gaussian approximation
is much closer to the MC integration result compared to
the LO prediction as expected. Note that in principle
one could extend the perturbative expansion to higher
orders in the context of Gaussian approximation (e.g,

the 3rd-order Gaussian approximation would include the
P (k)3 term in NNLO in Eq. (35)) but the convergence
of such high-order bias expansion is known to be slow
because of the non-perturbative nature of the small-scale
exclusion zone (as also shown in Ref. [9] for 3D peaks
in Gaussian distributed density field). Adding a bispec-
trum correction on top of it leads to an excess of 2PCF
amplitude which gradually deviates from the exact Gaus-
sian MC result on θ ≈ 100′ and reaches its maximum
around 70′, within the context of our chosen smooth-
ing scale and threshold. Around θ = 70′, the amplitude
of the 2PCF including the bispectrum (non-Gaussian)
correction is about 17% larger than that from the 2nd-
order Gaussian approxiamtion. This discrepancy reduces
to about 8% on θ ≈ 100′. When comparing the theo-
retical NLO prediction to the exact MC integration re-
sult under Gaussian assumption, the discrepancy due to
non-Gaussianity at tree-level bispectrum is within the
MC sample standard deviation. However, note that with
higher-order non-Gaussian corrections or more accurate
numerical and survey experiments, we will be able to
statistically distinguish them. A further investigation of
how well the bispectrum correction characterizes the non-
Gaussian part in the 2PCFs of critical points requires a
detailed comparison to the N-body simulations. This is
beyond the scope of this paper and we leave it to future
works.

VII. CONCLUSION

In this paper, we extended the general formalism pre-
sented in Ref. [43] for peak statistics in mildly non-
Gaussian density field to 2PCFs of 2D critical points,
including peaks, voids and saddle points. We applied this
formalism to the case of mildly non-Gaussian weak lens-
ing convergence field. Analytically we derived the pertur-
bative bias expansion up to the NNLO, taking the linear
terms of trispectrum induced by nonlinear evolution of
gravitational instability into account, in Eq. (35). For
the numerical calculation, we only consider the lowest-
order non-Gaussian correction as in Eq. (59), which is
composed of linear terms of the bispectrum. In order to
evaluate correlation functions for different types of criti-
cal points in 2D weak lensing fields, one needs to compute
the gijklm terms in Eq. (46) and adjust the integration
limits within there to a specific critical point type accord-
ingly (Eqs. (47), (49) and (52)), where in Appendix. C
we show plots of them as functions of the density field
threshold ν.
As a demonstration, we calculated six power spectra

and their corresponding 2PCFs from all possible combi-
nations of the three types of critical points in 2D weak
lensing field, above a given threshold chosen here to be
ν = 0.3 and with a specific Gaussian smoothing scale
R = 15′. We observed similar properties (shown by
Figs. 3 and 4) as for the clustering of 3D critical points
measured from N-body simulations in previous works
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such as Ref. [21]. The angular separation where the cor-
relation function reaches its maximum beyond the exclu-
sion zone is largest for peaks, followed by that of voids
and then saddle points. Saddle points are implied to
have a weak exclusion effect with respect to peaks and
voids, reflecting a shell-like structure in the distribution
of saddle points around a given extremum. Meanwhile
we also notice that our theoretical prediction is incapable
of fully capturing the nonperturbative exclusion zone on
small angular scales, as expected due to its very nonlin-
ear nature. Another interesting feature is that the effect
of BAOs is enhanced in 2D peak 2PCF (Fig. 5), com-
pared to the underlying weak lensing convergence power
spectrum where the effect is suppressed due to the line-
of-sight projection. We believe this enhancement is due
to the derivative constraint (curvature) on the weak lens-
ing convergence peak field as discussed in Sec. V and can
be used as a BAO probe for weak lensing data.

In order to validate the theoretical prediction, we chose
the peak 2PCF as an example and compared it to the
exact and yet computationally intensive MC integration
result, which assumes a Gaussian distributed underly-
ing density field. The two are almost identical on large
angular separations down to approximately 100′ (Fig. 7).
Interestingly, part of the exclusion zone on the outer edge
can be described by the perturbative bias expansion. The
non-Gaussian correction from the bispectrum contribu-
tion modifies the correlation function most significantly
around the maximum region.

Eventually, the main purpose of this paper has been
to provide the analytical framework for the clustering of
critical points in 2D weak lensing field, which is definitely
non-Gaussian on scales of interests. There are certain
directions to further extend and apply this work. One

is to serve as a benchmark test for N-body simulations
that are used to measure weak lensing peaks or minima
clustering, to prevent those statistics from being biased
by simulation systematic effects. One can also combine
fast and accurate analytical predictions on large angu-
lar scales with detailed measurement from simulations
on small scales, which saves significant time and compu-
tational resources, and could allow us to achieve a hybrid
summary statistic of critical points clustering. This hy-
brid summary statistic could then be exploited in infer-
ence tasks in the ongoing and next-generation weak lens-
ing surveys to extract more information from the large-
scale structure of the Universe. Additionally, we have
observed features like BAOs and inflection points (ob-
served in Ref. [21] from simulations) on large scales for
weak lensing peak 2PCFs. These features could serve as
independent standard rulers, independent of galaxy bias,
to study the evolution of the large-scale structure and test
different cosmological models, an area that is currently
under-explored. We hope to address the possibility of the
above applications in the near future.
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[28] J. Harnois-Déraps, N. Martinet, T. Castro, K. Dolag,
B. Giblin, C. Heymans, H. Hildebrandt, and Q. Xia,
Cosmic shear cosmology beyond two-point statistics: a
combined peak count and correlation function analysis
of DES-Y1, MNRAS 506, 1623 (2021), arXiv:2012.02777
[astro-ph.CO].

[29] C. T. Davies, M. Cautun, B. Giblin, B. Li, J. Harnois-
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L. Secco, L. Whiteway, N. Jeffrey, C. Doux, T. Kacprzak,
D. Bacon, P. Fosalba, A. Alarcon, A. Amon, K. Bech-
tol, M. Becker, G. Bernstein, J. Blazek, A. Campos,
A. Choi, C. Davis, J. Derose, S. Dodelson, F. Elsner,
J. Elvin-Poole, S. Everett, A. Ferte, D. Gruen, I. Har-
rison, D. Huterer, M. Jarvis, E. Krause, P. F. Leget,
P. Lemos, N. Maccrann, J. Mccullough, J. Muir, J. Myles,
A. Navarro, S. Pandey, J. Prat, R. P. Rollins, A. Rood-



20

man, C. Sanchez, E. Sheldon, T. Shin, M. Troxel, I. Tu-
tusaus, B. Yin, M. Aguena, S. Allam, F. Andrade-
Oliveira, J. Annis, E. Bertin, D. Brooks, D. L. Burke,
A. Carnero Rosell, M. Carrasco Kind, J. Carretero,
R. Cawthon, M. Costanzi, L. N. da Costa, M. E. S.
Pereira, J. De Vicente, S. Desai, H. T. Diehl, J. P. Diet-
rich, P. Doel, A. Drlica-Wagner, K. Eckert, A. E. Evrard,
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Appendix A: Generalization of the Gram-Charlier A
series expansion with the Wiener-Hermite

functionals

In this paper, we adopt the following Fourier transform
convention

f̃(k) =

∫
d2xe−ik·xf(x) , f(x) =

∫
d2k

(2π)2
eik·xf̃(k) .

(A1)

To derive the probability density functional P(f̃), we
start with the partition function, or the moment gen-
erating functional of the density field

Z(J) =

∫
Df̃exp

[
i

∫
d2k

(2π)2
J(k)f̃(k)

]
P(f̃) , (A2)

where Df̃ is the same to that mentioned in Eq. (18).
On the other hand, the partition function can also be ex-
pressed in terms of a series expansion using the cumulant
expansion theorem [68]

lnZ(J) =
∞∑

n=1

in

n!

∫
d2k1
(2π)2

· · ·
∫

d2kn
(2π)2

× ⟨f̃(k1) · · · f̃(kn)⟩cJ(k1) · · ·J(kn) , (A3)

and if we take the exponential on both sides of the above
equation, we would have

Z(J) = exp

[
−1

2

∫
d2k

(2π)2
P (k)J(k)J(−k)

]

× exp

[ ∞∑

n=3

in

n!

∫
d2k1
(2π)2

· · ·
∫

d2kn
(2π)2

× ⟨f̃(k1) · · · f̃(kn)⟩cJ(k1) · · ·J(kn)

]
. (A4)

where we used the definition of the density field power
spectrum similar to Eqs. (22) and (23)

⟨f̃(k1)f̃(k2)⟩c = (2π)2δD(k1 + k2)P (k) . (A5)

We invert the transformation in Eq. (A2) and replace
Z(J) with the expression in Eq. (A4)
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P(f̃)=

∫
D̂JZ(J)exp

[
−i

∫
d2k

(2π)2
J(k)f̃(k)

]

=

∫
D̂Jexp

[ ∞∑

n=3

in

n!

∫
d2k1
(2π)2

· · ·
∫

d2kn
(2π)2

⟨f̃(k1) · · · f̃(kn)⟩cJ(k1) · · ·J(kn)

]
exp

[
−1

2

∫
d2k

(2π)2
P (k)J(k)J(−k)

]

×exp

[
−i

∫
d2k

(2π)2
J(k)f̃(k)

]

= exp

[ ∞∑

n=3

(−1)n

n!

∫
d2k1 · · ·

∫
d2kn⟨f̃(k1) · · · f̃(kn)⟩c

δn

δf̃(k1) · · · δf̃(kn)

]
PG(f̃) , (A6)

where PG(f̃) is the Gaussian probability density func-
tional

PG(f̃)

=

∫
D̂Jexp

[
− 1

2

∫
d2k

(2π)2
P (k)J(k)J(−k)

−i

∫
d2k

(2π)2
J(k)f̃(k)

]

∝ exp

[
−1

2

∫
d2k

(2π)2
f̃(k)f̃(−k)

P (k)

]
, (A7)

up to a normalization constant and in the last line of
Eq. (A6), we used the following identity

∫
D̂JinJ(k1) · · ·J(kn)PG(J)

×exp

[
−i

∫
d2k

(2π)2
J(k)f̃(k)

]

= (−1)n × (2π)2n
δn

δf̃(k1) · · · δf̃(kn)
PG(f̃) . (A8)

With Eq. (A6), we can apply the power series expan-
sion to the exponential term. This will give the func-
tional derivatives of the Gaussian probability density
functional which can be expressed using Eq. (19) as

Hn(k1, . . . ,kn)PG(f̃)/(−1)n. Substituting this into the

power series expansion, we can obtain the generalized
Gram-Charlier A series expansion in Eq. (20).

Appendix B: Diagrammatic method to evaluate
⟨H⋆

nH⋆
mHl⟩G factors

Based on Appendix. A of Ref. [51], here we present the
diagrammatic rules in Fourier space for the products of
generalized Wiener-Hermite functionals ⟨H⋆

nH⋆
mHl⟩G.

1. Corresponding to each H⋆
ni

or Hni
, draw ni points

labeled by k
(1)
i , . . . ,k

(ni)
i , representing each mode.

2. Create
∑

i ni/2 pairs out of all the points such that
two points in the sameH⋆

ni
orHni

are not paired. If∑
i ni/2 is an odd number, then ⟨H⋆

nH⋆
mHl⟩G = 0.

3. Associate factors (2π)2δD(k
(p)
i + k

(q)
j )P (k

(p)
i ) (p ∈

{1, . . . , ni}, q ∈ {1, . . . , nj}) for each pair if the two
points are from H⋆

ni
and H⋆

nj
respectively. If the

two points are from H⋆
ni

and Hnj
separately, the

associated factors change to δD(k
(p)
i − k

(q)
j ) (p ∈

{1, . . . , ni}, q ∈ {1, . . . , nj}) for each pair. We then
make products of these factors.

4. Sum up these products from all possible pair con-
figurations.

With the above diagrammatic rules, it is very conve-
nient to compute any ⟨H⋆

nH⋆
mHl⟩G factors with n+m+ l

equal to an even number. Below we show all non-zero
results needed in deriving Eq. (30).
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⟨H⋆
0H⋆

0H0⟩G = 1 , (B1)

⟨H⋆
1(k1)H⋆

1(k
′
1)H0⟩G = (2π)2P (k1)δD(k1 + k′

1) , (B2)

⟨H⋆
2(k1,k2)H⋆

2(k
′
1,k

′
2)H0⟩G = (2π)4P (k1)P (k2)δD(k1 + k′

1)δD(k2 + k′
2) + sym , (B3)

⟨H⋆
0H⋆

3(k1,k2,k3)H3(k
′
1,k

′
2,k

′
3)⟩G = δD(k1 − k′

1)δD(k2 − k′
2)δD(k3 − k′

3) + sym , (B4)

⟨H⋆
1(k1)H⋆

2(k
′
1,k

′
2)H3(k

′′
1 ,k

′′
2 ,k

′′
3)⟩G = δD(k1 − k′′

1)δD(k
′
2 − k′′

2)δD(k
′
3 − k′′

3) + sym , (B5)

⟨H⋆
3(k1,k2,k3)H⋆

3(k
′
1,k

′
2,k

′
3)H0⟩G = (2π)6P (k1)P (k2)P (k3)δD(k1 + k′

1)δD(k2 + k′
2)δD(k3 + k′

3) + sym , (B6)

⟨H⋆
1(k1)H⋆

4(k
′
1, . . . ,k

′
4)H3(k

′′
1 ,k

′′
2 ,k

′′
3 )⟩G

= (2π)2δD(k1 + k′
1)δD(k

′
2 − k

′′
1 )δD(k

′
3 − k

′′
2 )δD(k

′
4 − k

′′
3 )P (k1) + sym , (B7)

⟨H⋆
2(k1,k2)H⋆

3(k
′
1,k

′
2,k

′
3)H3(k

′′
1 ,k

′′
2 ,k

′′
3 )⟩G

= (2π)2δD(k1 + k′
1)δD(k2 − k

′′
1 )δD(k

′
2 − k

′′
2 )δD(k

′
3 − k

′′
3 )P (k1) + sym , (B8)

⟨H⋆
0H⋆

4(k1, . . . ,k4)H4(k
′
1, . . . ,k

′
4)⟩G = δD(k1 − k′

1)δD(k2 − k′
2)δD(k3 − k′

3)δD(k4 − k′
3) + sym , (B9)

⟨H⋆
1(k1)H⋆

3(k
′
1,k

′
2,k

′
3)H4(k

′′
1 , . . . ,k

′′
4 )⟩G = δD(k1 − k

′′
1 )δD(k

′
1 − k

′′
2 )δD(k

′
2 − k

′′
3 )δD(k

′
3 − k

′′
4 ) + sym , (B10)

⟨H⋆
2(k1,k2)H⋆

2(k
′
1,k

′
2)H4(k

′′
1 , . . . ,k

′′
4 )⟩G = δD(k1 − k

′′
1 )δD(k2 − k

′′
2 )δD(k

′
1 − k

′′
3 )δD(k

′
2 − k

′′
4 ) + sym , (B11)

where all “sym” expressions in the above equations de-
note all following additional terms that have the same
form as the previous one but are composed of other pair
configurations in the diagrammatic scheme.

Appendix C: Plots of gijklm factors and g1 function

Here we show the seven gijklm(ν) functions in Eqs. (38)
and (39) in Fig. 8 where we adopt the same cosmological
parameters as those in Sec. V and a smoothing scale of
15′.

By combing Fig. 8 and Eqs. (35), (38) and (39), we can
observe that g10000 and g20000 are the two dominant fac-
tors that determine the amplitude of the power spectrum
for different critical points. In both subplots, the corre-
sponding factor for voids is greater than that for saddle
points, which in turn is greater than that for peaks within
the range 0 < ν < 6. This numerically explains the
amplitude relation among the power spectrum of peaks,
voids and saddle points we computed in Sec. V.

As a schematic illustration, we show in the left panel
of Fig. 9 the g1 functions of all three types of critical
points above the threshold ν = 0.3. And we do observe
that on small to intermediate k scales, voids have a larger
function value than that of saddle points which in turn
larger than that of peaks. Furthermore, in the right panel
of Fig. 9, we show how g1 function of peaks, which has
a quadratic form, varies along with different threshold
ν. For higher threshold, larger the value of leading order
Gaussian response function g1 would become, which leads
to a higher clustering amplitude in the 2PCF. This holds

true for voids and saddle points as well.

Appendix D: Angular integration of the peak power
spectrum

We demonstrate here how to simplify the type of in-
tegrals that appear in Eq. (59) to obtain the extrema
power spectra of 2D fields. This appendix borrows from
the derivation presented in Ref. [43] and is only shown
here for completeness.
We are interested in constrained integrals of the form

A =

∫

k1+k2=k

(
k̂1 · k̂2

)l
X (k1)Y (k2) , (D1)

where k̂1 · k̂2 is the cosine of the angle θ between k1 and
k2. In 2D, this constraint can be explicitly written as

A =

∫
d2re−ik·r

∫
d2k1

(2π)2
d2k2

(2π)2
ei(k1+k2)·r

×
(
k̂1 · k̂2

)l
X (k1)Y (k2) . (D2)

Rotational invariance of the system makes the result of
the ki integrals only dependent on the amplitude r of
r so that we can directly perform the angular integra-
tion replacing the exponentials by their angular averages
given by Bessel functions of the first kind:

A =2π

∫
drJ0(kr)

∫
d2k1

(2π)2
d2k2

(2π)2
J0(|k1 + k2|r)

×
(
k̂1 · k̂2

)l
X (k1)Y (k2) . (D3)
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FIG. 8. Plots of gijklm factors as functions of the threshold ν. The range of ν here is from −3 to 6. The color curves in all the
other sub-panels have the same representation as that denoted in the top left subplot. For g00100(ν) specifically, peaks, voids
and saddle points have the same constant function.
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A theorem of Bessel function enables us to write

J0 (|k1 + k2| r) =
∞∑

n=−∞
(−1)nJn (k1r) Jn (k2r) e

inθ ,

(D4)

and the final trick consists in expressing k̂1 · k̂2 = cos(θ)
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as a sum of exponentials thanks to Euler’s formula, and
expand its lth power thanks to the Binomial theorem.
We get

(k̂1 · k̂2)
l =

1

2l
e−ilθ

l∑

m=0

(
l

m

)
e2imθ . (D5)

Finally, combining Eqs. (D4) and (D5) into Eq. (D3),
and noticing that every integral in which n ̸= l − 2m is
0 since it gives the integral of eiθ over the full circle, we
get

A =2π

∫
drJ0(kr)

1

2l

l∑

m=0

(
l

m

)

×(−1)l−2m

∫
kdk

2π
Jl−2m(kr)X(k)

×
∫

kdk

2π
Jl−2m(kr)Y (k) . (D6)

We have thus reduced the computation of A to a prod-
uct of two 1D integrals which are Fourier transforms (or
more specifically Hankel) of X and Y , and can thus be
very easily implemented using traditional methods such
as FFTs, and a final radial integration. This enables the
efficient numerical evaluation of the extrema power spec-
tra presented in this paper.

Appendix E: Comparison of other critical point
2PCFs to MC integration

In the main text, we showed a comparison between our
analytical predictions and the exact MC integration re-
sults with Gaussian assumption only for peak 2PCF. In
this appendix, we show the same comparison but for all
pairs of critical points. These include the auto 2PCFs of

both voids and saddle points, as well as the cross 2PCFs
among all three types of critical points. In Fig. 10, we
show the two auto 2PCFs. In both panels, the MC in-
tegration with the power law approximation of the weak
lensing convergence power spectrum (purple dots) qual-
itatively exhibits the exclusion zone on small angular
scales where our analytic theory is limited in its predic-
tion as discussed in Sect VI. On large angular separations
(θ > 100′), our analytic predictions from different orders
of perturbative bias expansion converge and agree with
the exact MC integration results under the Gaussian as-
sumption. It is worth noticing that on the high amplitude
part of both 2PCFs (θ ≈ 60′ for voids and 45′ for saddle
points), the 2nd-order Gaussian approximation has quite
a discrepancy with respect to the MC integration result,
this indicates that the 3rd-order Gaussian approximation
term in NNLO would have a more significant role for clus-
tering of voids and saddle points compared to what was
shown for peaks. Similar to the peak clustering case, the
bispectrum correction here changes the amplitude of the
2PCF but not the overall shape.
In Fig. 11 we show the comparison between all three

cross 2PCFs among different types of critical points and
their respective MC integration results. In the top panel,
we observe that there is not only an exclusion zone on
small angular scales between peaks and voids, but also
a turnover feature with negative amplitude on θ ≈ 70′,
which is captured fairly accurately by our analytic pre-
dictions. This implies that there are two angular scales
on which the clustering between a peak and a void above
the same threshold is negatively correlated, different from
what we have shown above. On the other hand, MC re-
sults in the bottom two plots confirm that there are no
exclusion zones between saddle points and the other two
types of critical points, although the amplitude of the
cross 2PCFs on small angular scales is not well described
by the analytic predictions.
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FIG. 10. Left : The auto 2PCFs of weak lensing voids (minima) above a threshold ν = 0.3 with a Gaussian smoothing scale of
15′. All colored curves and scattered dots with error bars have the same representation to those in Fig. 7. Right : The same
auto 2PCFs as those in the left panel but for weak lensing saddle points.
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Outline

This paper is part of a broader series, including Halder et al. (2021), Halder & Barreira
(2022) and Halder and Gong et al. (in prep). The overarching scientific aim of this series
is to apply the integrated shear 3PCF ζ± to the statistical analysis of the Dark Energy
Year 3 (DESY3) (Gatti et al., 2021) weak lensing shear data, extracting non-Gaussian
information beyond the standard cosmic shear 2PCF ξ±. A key focus is on improving
parameter constraints, particularly for S8 = σ8

√
Ωm/0.3 and the dark energy equation

of state parameter w0, through the joint inference of ζ± and ξ±. This paper serves as a
crucial step in preparing for the final data analysis by constructing a complete statistical
inference pipeline and validating it on simulated, realistic datasets. As the first author, I
was responsible for the following key tasks: (i) developing a machine-learning emulator for
ζ± to accelerate its calculation using the cosmopower framework (Spurio Mancini et al.,
2022), (ii) implementing the code to estimate the data covariance of ξ± and ζ± from
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the simulated T17 weak lensing shear maps (Takahashi et al., 2017), (iii) programming a
GPU-based Markov Chain Monte Carlo (MCMC) algorithm for efficient Bayesian posterior
sampling of cosmological parameters1 and (iv) conducting validation and optimization tests
discussed in the paper. I also wrote majority of the manuscript. The co-authors contributed
to modeling the survey and astrophysical systematic effects, refining the machine-learning
model, preparing simulation data, providing valuable scientific discussions, drafting specific
sections of the manuscript, and reviewing the final draft.

1The sampling program is based on the package https://github.com/justinalsing/affine
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Abstract. The integrated shear 3-point correlation function ζ± measures the correlation
between the local shear 2-point function ξ± and the 1-point shear aperture mass in patches
of the sky. Unlike other higher-order statistics, ζ± can be efficiently measured from cosmic
shear data, and it admits accurate theory predictions on a wide range of scales as a function
of cosmological and baryonic feedback parameters. Here, we develop and test a likelihood
analysis pipeline for cosmological constraints using ζ±. We incorporate treatment of systematic
effects from photometric redshift uncertainties, shear calibration bias and galaxy intrinsic
alignments. We also develop an accurate neural-network emulator for fast theory predictions
in MCMC parameter inference analyses. We test our pipeline using realistic cosmic shear maps
based on N -body simulations with a DES Y3-like footprint, mask and source tomographic
bins, finding unbiased parameter constraints. Relative to ξ±-only, adding ζ± can lead to
≈ 10− 25% improvements on the constraints of parameters like As (or σ8) and w0. We find
no evidence in ξ± + ζ± constraints of a significant mitigation of the impact of systematics.
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We also investigate the impact of the size of the apertures where ζ± is measured, and of the
strategy to estimate the covariance matrix (N -body vs. lognormal). Our analysis solidifies
the strong potential of the ζ± statistic and puts forward a pipeline that can be readily used
to improve cosmological constraints using real cosmic shear data.
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1 Introduction

The weak gravitational lensing effect is the bending of the light of background source galaxies
by foreground gravitational potentials [1, 2]. This induces a coherent distortion pattern in
the observed shape of the background galaxies that is called the cosmic shear field. The
statistics of this field depend on the three-dimensional large-scale structure, hence cosmic
shear studies offer a powerful way to address key questions in cosmology such as the structure
formation history, the nature of dark energy and dark matter, and the laws of gravity on large
scales. Indeed, cosmic shear is one of the most active research areas in large-scale structure
today: the DES [3], KiDS [4] and HSC-SSP [5] surveys have recently presented cosmological
constraints from their cosmic shear data, and more accurate and bigger data sets will be
available soon with missions like Euclid [6], Vera Rubin’s LSST [7] and Nancy Roman [8].

The majority of cosmic shear analyses are based on the shear 2-point correlation function
(2PCF), or its Fourier counterpart the lensing power spectrum. These statistics completely
characterize the information content of Gaussian random fields, which our Universe was close
to at the earliest stages of its evolution, as well as today on sufficiently large-scales. At late
times, however, the evolution of matter density fluctuations becomes nonlinear on small scales,
inducing non-Gaussian features in the cosmic shear field that cannot be described by 2PCF
alone. Higher-order statistics are thus needed to access the non-Gaussian information.

The shear 3-point correlation function (3PCF; or its Fourier counterpart the lensing
bispectrum) is the natural first step beyond the 2PCF [9–14]. However, being a more
complicated statistic, it is more challenging to measure observationally, as well as to predict
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theoretically. Concretely, compared to the 2PCF which depends only on the distance between
two points in the survey footprint, the 3PCF is a function of the size and shape of triangles
connecting three points, which requires more demanding estimators. Additionally, theoretical
predictions require accurate prescriptions for the nonlinear matter bispectrum, which despite
recent progress [15, 16], are still not as developed as the matter power spectrum that enters the
shear 2PCF. Further complications arise by the need to account for baryonic feedback effects,
as well as systematics effects such as photometric redshift uncertainties, shear multiplicative
bias and galaxy intrinsic alignments (IA). This helps explain why existing real-data constraints
using higher-order shear information are based not on the full 3-point correlation function, but
on other statistics including aperture moments [17–21], lensing peaks [22–24], density-split
statistics [25–29] and persistent homology of cosmic shear [30, 31]. The shear 3PCF was
recently measured using DES Year 3 (Y3) data [20], although only in patches over the survey
and not over the whole footprint as that would be too computationally demanding.

In this paper, we focus on a particular kind of shear 3PCF called the integrated shear 3-
point correlation function [32]. This statistic corresponds to the correlation between the shear
2PCF measured in patches of the sky with the 1-point shear aperture mass in those patches.1
Physically, this statistic describes the modulation of the local shear 2PCF by long-wavelength
features in the cosmic shear field. The integrated shear 3PCF enjoys two key advantages
relative to other higher-order shear statistics. The first is that it is straightforward to measure
from the data as it requires only conventional and well-tested shear 2PCF estimators. The
second is that, as shown in ref. [38], this statistic is sensitive to the squeezed matter bispectrum
that can be evaluated accurately in the nonlinear regime using the response approach to
perturbation theory [39]. Importantly, the response approach allows to account for the impact
of baryonic feedback on small scales, which is crucial to design scale cuts and/or marginalize
over these uncertainties in real data analyses.

Our goal here is to develop and test a likelihood analysis pipeline to reliably extract
cosmology from real cosmic shear data using the integrated shear 3PCF. Concretely, we
incorporate the impact of baryonic feedback (as in ref. [38]), as well as of photometric redshift
uncertainties, shear multiplicative bias and galaxy IA. We also develop a neural-network (NN)
emulator for the theory model to enable fast theory predictions in Monte-Carlo Markov
Chain (MCMC) parameter inference analyses. We test our analysis pipeline on simulated
cosmic shear maps with DES Y3-like survey footprints and source galaxy redshift distributions.
We study in particular (i) the ability of the theory model to return unbiased parameter
constraints,2 (ii) the impact of the size of the aperture where the integrated shear 3PCF is
measured, (iii) the ability of combined 2PCF and 3PCF analyses to mitigate the impact of
systematic uncertainties, and (iv) the impact of different data vector covariance estimates.

In terms of constraining power, we find that the integrated shear 3PCF leads to im-
provements of ≈ 10− 25% on the constraints of parameters like the amplitude of primordial
density fluctuations As (or equivalently σ8) or the dark energy equation of state parameter w0.
This is consistent with the previous findings of refs. [32, 38] based on idealized Fisher matrix
forecasts, but now in the context of realistically simulated MCMC likelihood analyses. Our
results thus strongly motivate as next steps exploring the power of this statistic to improve
cosmological constraints using real cosmic shear data.

1See also refs. [33, 34] for earlier applications of the same idea in the context of the three-dimensional galaxy
distribution, and refs. [35–37] for studies of the Fourier counterpart of the integrated shear 3PCF.

2Throughout the paper we loosely use the term “unbiased constraints” to mean that the 68% posterior
credible intervals encompass the true model parameter values.
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This paper is structured as follows: In section 2 we review the theoretical formalism
behind the integrated shear 3PCF and describe how we incorporate lensing systematic effects.
In section 3 we describe the construction of our DES Y3-like cosmic shear maps, as well as
the measurements of the shear 2PCF, integrated 3PCF and their (cross) covariance matrices.
We describe and discuss the performance of our NN emulator of the theory predictions
for fast MCMC likelihood analyses in section 4. Our main numerical results are shown in
section 5. We summarize and conclude in section 6. Appendix A describes our modelling of
the galaxy IA.

2 Theoretical formalism

In this section we describe the theory behind the integrated shear 3PCF. We begin with a
recap of the model of refs. [32, 38], and then discuss how we incorporate lensing systematics.

2.1 Integrated shear 3-point correlation function

The integrated shear 3PCF, ζ±,ijk(α), is defined as

ζ±,ijk(α) ≡ 〈Map,i(θC)ξ̂±,jk(α;θC)
〉
, (2.1)

where Map,i(θC) is the 1-point aperture mass statistic measured on a patch of the survey
centered at angular position θC , and ξ̂±,jk(α;θC) is the shear 2PCF measured on the same
patch of the sky; α describes angular separations. The angle brackets denote ensemble average
(or in practice, averaging over all positions θC) and the subscripts i, j, k denote tomographic
source bins, i.e. ξ̂±,jk is the 2PCF of the shear fields from galaxy shape measurements at the
redshift bins j and k. This equation makes apparent the interpretation of the shear 3PCF as
describing the spatial modulation of the local 2PCF by the local shear mass aperture, which
describes larger-scale features in the shear field.

The aperture mass Map(θC) is defined as [2, 40]

Map(θC) =
∫

d2θ κ(θ)U(θC − θ) , (2.2)

where κ(θ) is the lensing convergence field, and U is an azimuthally symmetric filter function
with angular size θap. The convergence field is not directly observable, but if U is a compensated
filter satisfying

∫
d2θ U(θC − θ) = 0, then Map(θC) can be expressed as

Map(θC) =
∫

d2θ γt(θ, φθC−θ)Q(θC − θ) , (2.3)

where γt is the tangential component of the shear field (which is directly observable), φθC−θ is
the polar angle of the angular separation between θC and θ, and Q is a filter function related
to U . As in previous works, we adopt the following form for U and Q [41]

U(θ) = 1
2πθ2

ap

(
1− θ2

2θ2
ap

)
exp

(
− θ2

2θ2
ap

)
, (2.4)

Q(θ) = θ2

4πθ2
ap
exp

(
− θ2

2θ2
ap

)
; (2.5)
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note the filters depend only on the magnitude of the arguments because of the azimuthal
symmetry. The Fourier transform of U , which appears in equations below, is given by

U(`) =
∫

d2θ U(θ)e−i`·θ =
`2θ2

ap
2 exp

(
−`

2θ2
ap

2

)
, (2.6)

where ` is a two-dimensional wavevector on the sky (we assume the flat-sky approximation).
The other term in eq. (2.1), ξ̂±(α;θC), is the 2PCF of the windowed shear field γ(θ;θC) ≡

γ(θ)W (θC − θ), where the window function W is a top-hat of size θT at position θC . The
two 2PCFs are defined as

ξ̂+(α;θC) ≡ 1
A2pt(α)

∫
d2θ γ(θ;θC)γ∗(θ +α;θC)

ξ̂−(α;θC) ≡ 1
A2pt(α)

∫
d2θ γ(θ;θC)γ(θ +α;θC)e−4iφα ,

(2.7)

where ∗ denotes complex conjugation, φα is the polar angle of α, and A2pt(α) ≡ ∫ d2θ W (θC−
θ)W (θC − θ −α). The Fourier transform of W appears in equations below, and is given by

W (l) = W (l) = 2πθ2
T
J1(lθT)
lθT

, (2.8)

where Jn is the nth-order Bessel function of the first kind.
Skipping the details of the derivation [32], the two 3PCF in eq. (2.1) can be written as

ζ+,ijk(α) = 1
A2pt(α)

∫ d``
2π B

2D
+,ijk(`)J0(`α) , (2.9)

ζ−,ijk(α) = 1
A2pt(α)

∫ d``
2π B

2D
−,ijk(`)J4(`α) , (2.10)

where B2D
± is called the integrated lensing bispectrum, and it is given by (in the Limber

approximation)

B2D
±,ijk(`) =

∫
dχq

i(χ)qj(χ)qk(χ)
χ4

∫ d2`1
(2π)2

∫ d2`2
(2π)2B

3D
δ

(
`1
χ
,
`2
χ
,
−`1 − `2

χ
, χ

)

× e2i(φ2∓φ−1−2)U(`1)W (`2 + `)W (−`1 − `2 − `) .
(2.11)

In this equation, B3D
δ is the 3-dimensional matter bispectrum (discussed below), φ2 is the

polar angle of `2, φ−1−2 is the polar angle of −`1 − `2, and q(χ) is the lensing kernel

qi(χ) = 3H2
0 Ωm

2c2
χ

a(χ)

∫

χ
dχ′nis(χ′)

χ′ − χ
χ′

, (2.12)

where nis(χ) is the galaxy source number density distribution for the redshift tomographic bin
i, χ denotes comoving distances, H0 is the Hubble parameter, Ωm is the cosmic matter density
parameter today, c is the speed of light and a(χ) is the scale factor; note that throughout the
paper we always assume spatially flat cosmologies.

In our results, we will consider also the global shear 2PCF, which can be evaluated as

ξ+,ij(α) =
∫ d``

2π Pκ,ij(`)J0(`α) , (2.13)

ξ−,ij(α) =
∫ d``

2π Pκ,ij(`)J4(`α) , (2.14)
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where Pκ,ij is the convergence power spectrum given by (in the Limber approximation)

Pκ,ij(`) =
∫

dχq
i(χ)qj(χ)
χ2 P 3D

δ

(
k = `

χ
, χ

)
, (2.15)

with P 3D
δ the three-dimensional matter power spectrum.

2.2 The three-dimensional matter bispectrum model
A key ingredient to evaluate ζ± is the three-dimensional matter bispectrum B3D

δ in eq. (2.11),
which we evaluate following ref. [38] as

B3D
δ (k1,k2,k3, χ) =

{
B3D
δ,RF , fsq ≥ f thr

sq =⇒ squeezed
B3D
δ,GM , otherwise

, (2.16)

where B3D
δ,RF is the bispectrum expression of the response function approach valid for squeezed

configurations, and B3D
δ,GM is the bispectrum fitting formula of ref. [42]. The parameter fsq

is defined as fsq = km/ks, with ks (km) the smallest (intermediate) of the amplitudes of the
three modes ki. As explained in ref. [38], this equation guarantees that the response function
branch correctly evaluates the squeezed matter bispectrum configurations in the nonlinear
regime, which determine the value of ζ± on small angular scales. The value of f thr

sq is the
threshold that defines whether a given bispectrum configuration is dubbed as squeezed or
not. Ref. [38] found that a range of values around f thr

sq ≈ 7 yield good fits to simulation
measurements; in this paper we adopt f thr

sq = 7.
The response function branch in eq. (2.16) is given by

B3D
δ,RF(k1,k2,k3, z) =

[
R1(kh, z) +

(
µ2
kh,ks

− 1
3

)
RK(kh, z)

]
P 3D
δ (kh, z)P 3D

δ,L (ks, z) , (2.17)

where kh denotes the mode ki with the highest magnitude, µki,kj is the cosine of the angle
between ki and kj , P 3D

δ,L is the three-dimensional linear matter power spectrum and R1(k, z)
and RK(k, z) are the first-order response functions of the matter power spectrum to large-scale
density and tidal fields:

R1(k, z) = 1− 1
3

d lnP 3D
δ (k, z)

d lnk +G1(k, z), (2.18)

RK(k, z) = GK(k, z)− d lnP 3D
δ (k, z)

d lnk . (2.19)

In these expressions, G1 and GK are the so-called growth-only response functions, which
can be measured in the nonlinear regime of structure formation using separate universe
simulations. Just as in ref. [38], we use the results of ref. [43] for G1 and ref. [44] for GK .

The GM branch is in turn given by

B3D
δ,GM(k1,k2,k3, z) = 2F eff

2 (k1,k2, z)P 3D
δ (k1, z)P 3D

δ (k2, z) + cyclic permutations , (2.20)

where F eff
2 (k1,k2, z) is a modified version of the 2-point mode coupling kernel with free

functions calibrated against N -body simulations [42].
In this paper, we evaluate the nonlinear matter power spectrum using the HMcode [45]

implementation inside the publicly available Boltzmann code CLASS [46]; to model the impact
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of baryonic feedback effects, we adopt the single parameter cmin parametrization, where cmin
roughly describes the strength of feedback by active galactic nuclei (AGN). As discussed
in refs. [47, 48], mode-coupling terms like F eff

2 , G1 and GK are expected to be very weakly
dependent on baryonic physics. This way, the impact of baryonic effects on the bispectrum is
trivially propagated by that on the power spectrum; note that in practice the baryonic effects
impact only the response function branch in eq. (2.16), since the GM branch contributes only
on large scales [38] where baryonic effects have a negligible role.

2.3 Systematic error effects

Reference [38] has shown how to include the impact of baryonic feedback effects on ζ±, which
are one of the main non-cosmological contaminants in cosmic shear analyses. In this subsection
we describe how we take into account a series of other important systematic effects, namely
photometric redshift uncertainties, multiplicative shear bias and galaxy IA.

Photometric redshift (photo-z) uncertainties have a direct impact on the galaxy source
redshift distribution. Here, we follow a strategy commonly adopted in real-data analyses and
parametrize their effect through a single shift parameter ∆z defined as

nis(z) = n̂is(z + ∆zi) , (2.21)

where n̂is is the default estimate for the galaxy source redshift bin i. This simple way to
account for photo-z uncertainties was found sufficient at the statistical power of DES-Y3
analyses (see figure 10 in ref. [49]).

Again, as common in the literature, we model biases from the shear measurement pipeline
with multiplicative factors 1 +mi for each tomographic bin i. In practice, this implies the
following transformations of ξ± and ζ±,

ξ±,ij(α) −→ (1 +mi)(1 +mj)ξ±,ij(α) , (2.22)
ζ±,ijk(α) −→ (1 +mi)(1 +mj)(1 +mk)ζ±,ijk(α) . (2.23)

We assume that any additive bias component is well calibrated by lensing image simulations
and removed from the measurement pipeline [50].

Finally, we consider the effect of galaxy IA that describe intrinsic correlations between
the shapes of source galaxies and their local tidal fields, i.e. correlations that are not induced by
the gravitational lensing effect. We adopt the nonlinear linear alignment (NLA) model [51, 52]
for both ξ± and ζ±. In practice, the incorporation of IA in our theory predictions is equivalent
to transforming the lensing kernels as (see appendix A for more details)

qi(χ) −→ qi(χ) + fIA(z(χ))n
i
s(χ)
n̄is

dz
dχ , (2.24)

with n̄is the mean source galaxy density in tomographic bin i and [53, 54]

fIA(z) = −AIA,0

( 1 + z

1 + z0

)αIA c1ρcritΩm,0
D(z) , (2.25)

where AIA,0 is the IA amplitude, αIA is a power index and D(z) is the linear growth factor.
We adopt z0 = 0.62, c1ρcrit = 0.0134 [52, 55]. In our results below we keep the power index
fixed to αIA = 0 for simplicity; note that simultaneously varying AIA,0 and αIA in MCMC
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constraints can lead to posterior projection effects that could artificially bias the marginalized
constraints of AIA,0 towards zero.

In our modelling of IA, ξ± acquires terms ∝ fIA, f2
IA, and ζ± terms ∝ fIA, f2

IA, f
3
IA. These

are different from the terms displayed in ref. [56]; further notice that our eq. (2.25) differs
from the corresponding eq. (27) in ref. [56] by a multiplicative factor 1/(1 + z). We shall
return to the impact of different IA treatments when we discuss our numerical results.

3 Data vector and covariance from simulations

In this section we describe the DES Y3-like simulated cosmic shear maps that we use to
measure the ξ± and ζ± data vectors and to estimate their covariance matrices.

3.1 Shear maps from N-body simulations

Our main cosmic shear maps are obtained using the publicly available N-body simulation data
developed by Takahashi et al. [57] (hereafter referred to as T17). In particular, we make use
of the 108 independent full-sky cosmic shear maps for several Dirac-delta source distributions
at redshifts between z = 0.05 and z = 5.3. The cosmology of the simulations is flat ΛCDM
with parameters: Ωm = 0.279, Ωb = 0.046, h = 0.7, σ8 = 0.82, ns = 0.97.

We consider DES Y3-like galaxy source redshift distributions to construct our cosmic
shear maps. For simplicity, rather than considering the four source bins utilized in the DES
Y3 analysis, we merge them into two as follows. Let N1 and N2 be the total number of
galaxies in the first two DES source distributions ns,DES1(z) and ns,DES2(z), respectively
(see figure 6 and 11 in ref. [58]). Then, our first source redshift bin is obtained as n̂1

s =
(N1ns,DES1 +N2ns,DES2)/(N1 +N2); and similarly for our second source redshift, using the
third and fourth DES Y3 source distributions. The source redshift distributions that we
consider in this paper are shown on the left of figure 1. For each of the 108 T17 realizations,
we build two full-sky shear maps by summing the T17 shear maps weighted by each of the
two source redshift distributions. The vertical lines on the left of figure 1 mark the source
redshift of the T17 maps we use.

We then apply the DES Y3 footprint to each of the full-sky shear maps. In order to
maximize the utility of each full-sky map, we place 5 footprints in each with minimal overlap,
as illustrated on the right of figure 1. For each of our two source bins, this provides us with
108× 5 = 540 DES Y3-like shear maps on which we can measure ξ±, ζ± and their covariance.

Finally, we add DES Y3 levels of shape noise to our maps as follows. Using the angular
positions of the source galaxies in the DES Y3 shape catalogue [59], we assign to each of
our pixels the galaxy ellipticities and measurement weights that are also present in those
catalogues. We then randomly rotate the ellipticities of the galaxies assigned to each pixel.
The shape noise γnoise is the average of these randomly rotated ellipticities weighted by the
corresponding measurement weights. This is added to the shear values of the T17 maps γsim
to generate the shear measurement in each pixel γpix. Concretely,

γpix = γnoise + γsim =
∑N
j=1 ωjγj,DESexp(iφj)

∑N
j=1 ωj

+ γsim , (3.1)

where N is the number of galaxies in a given pixel, γj,DES and ωj are the measured ellipticity
and weight of the jth galaxy and each angle φj is drawn uniformly from [0, 2π]; note that the
average value of γnoise across all pixels is zero, but each pixel has in general nonzero values.
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Figure 1. Left panel: The two galaxy source redshift distributions that we consider in this paper.
Each is a combination of two of the four DES Y3 source distributions. The vertical dashed lines mark
the source redshifts of the T17 shear maps, which are weighted by the galaxy source distributions to
produce our shear maps. Right panel: The Mollweide projection map with the placement of 5 DES Y3
survey footprints after the selection with Q filters of 90 arcmin in a full-sky map; dark blue pixels
indicate masked/unobserved regions. This allows us to measure 5 DES Y3-like realizations of ξ± and
ζ± from each full-sky map.

3.2 Shear maps from lognormal realizations

In addition to the T17-based shear maps, we also consider DES Y3-like maps from lognormal
lensing realizations generated with the Full-sky Lognormal Astro-fields Simulation Kit [60]
(hereafter referred to as FLASK). FLASK takes as input the lensing convergence power
spectrum, which we compute theoretically for the T17 cosmology and our two galaxy source
redshift distributions. FLASK requires also the value of a logshift parameter, which we obtain
by fitting a lognormal probability distribution function (PDF) to the PDF of the T17 maps
(see section 4.2 of [32] for more details about the generation of our FLASK shear maps). For
each of our two source bins, we generate a total of 300 independent FLASK full-sky cosmic
shear maps, on which we place 5 DES Y3-like footprints analogously to the T17 full-sky maps
(cf. right panel of figure 1). We add shape noise following the strategy described above for the
T17 maps. For each of the two source bins then, we have a total of 5× 300 = 1500 lognormal
realizations of a DES Y3-like footprint on which we can measure ξ± and ζ±.

3.3 Data vector and covariance measurements

We use the Treecorr code [61] to measure ξ±,ij(α) on 15 log-spaced angular bins between 5
and 250 arcmin; these are scales comparable to those adopted in the DES Y3 analysis [62].
We measure the auto- and cross-correlation of the two source redshift bins, yielding a total
of 6 shear 2PCFs. The measurements from the T17 maps are shown by the black dots in
figure 2.

In order to measure ζ±,ijk(α), we use the Treecorr code to compute the position-
dependent shear 2PCF and 1-point aperture masses within patches of the footprint; we
assume the same size θap and θT for the aperture mass and position-dependent 2PCF. The
2PCF in each patch is measured in 15 log-spaced angular bins between 5 and 2θT− 10 arcmin,
and the 1-point aperture mass is evaluated using eq. (2.3) with the integral up to 5θap. The
ζ± is obtained by averaging the product of the shear 2PCF and 1-point aperture mass across
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Figure 2. The shear 2PCF ξ±(α) measured from our DES Y3-like footprints for two galaxy source
redshift bins. The black dots with the error bars show the mean and the standard deviation of the
measurements from the 540 T17 shear maps. For comparison, the grey shaded bands show the standard
deviation computed using the 1500 FLASK shear maps. The blue curves show the theoretical result
obtained using eqs. (2.13) and (2.14).

all patches selected in the footprint. For our two source redshift bins, we have 8 integrated
auto- and cross-3PCF ζ±,ijk(α). The measurements from the T17 maps are shown by the
black dots in figure 3 for an aperture size of θap = θT = 90 arcmin.3

We estimate the covariance matrix of our data vectors as

Ĉ = 1
Ns − 1

Ns∑

i=1
(d̂i − d̂)(d̂i − d̂)T , (3.2)

where Ns is the number of footprint realizations (540 for T17 and 1500 for FLASK), d̂i is the
data vector of the i-th realization and d̂ is the mean data vector across all realizations. When
evaluating the inverse covariance matrix, we correct it as

Ĉ−1 =
[
Ns −Nd − 2
Ns − 1

]
[1 +A+B(Np + 1)]C−1 , (3.3)

where

A = 2
(Ns −Nd − 1)(Ns −Nd − 4) , (3.4)

B = Ns −Nd − 2
(Ns −Nd − 1)(Ns −Nd − 4) , (3.5)

3As a technical point, in our measurements of ζ± we consider only survey patches where the fraction of
unmasked pixels is larger than 80% for the top-hat filter W and larger than 70% for the Q filter up to 5θap of
aperture radius. Holes and masked pixels inside the footprint contribute to the counting of these fractions, in
addition to pixels outside the survey footprint. This ensures our measurements are not affected by too many
unmasked pixels in the patches, as confirmed by their excellent agreement with the theory predictions for both
ξ± and ζ± in figures 2 and 3, respectively.
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Figure 3. The integrated shear 3PCF ζ±(α) measured from our DES Y3-like footprints for two galaxy
source redshift bins. The black dots with the error bars show the mean and the standard deviation of
the measurements from the 540 T17 shear maps for a filter size of 90 arcmin. The grey shaded bands
show the standard deviation computed using the 1500 FLASK shear maps. The red curves show the
theoretical result from eqs. (2.9) and (2.10).

and Nd is the size of the data vector (Nd = 90 for ξ±, Nd = 120 for ζ±, and Nd = 210 for
their combination), Np is the number of inference parameters and C−1 is the directly inverted
covariance. The first term in brackets is the bias correction on the inverse covariance from
ref. [63], while the second term is a correction factor from ref. [64].

The FLASK covariance matrix has the advantage of having less numerical noise because
of the larger Ns, but the disadvantage of corresponding to lognormal realizations of cosmic
shear maps, which are not as realistic as the T17 ones from N -body simulations. The left
panel of figure 4 compares the correlation matrix rmn = Ĉmn/

√
ĈmmĈnn from the FLASK

(upper triangle) and T17 (lower triangle) maps; the indices m,n run over the data vector
entries. Reassuringly, the two covariance matrices display broadly the same correlations.
There are however some differences that are better seen in the right panel of figure 4 which
shows the relative difference between the two covariances. We investigate the impact of these
differences in the parameter constraints when we discuss our results below.

We note that both our covariance matrices do not appropriately account for super-
sample covariance (SSC) [65, 66], i.e. the variance induced by the gravitational coupling
between observed modes inside the survey and unobserved modes with wavelengths larger
than the survey size. The SSC is the dominant off-diagonal contribution in 2-point function
analyses [67], and it is expected to be a smaller contribution to the squeezed bispectrum
configurations that dominate the small-scale ζ± [68]. Our quoted error bars for ξ±-only
analyses are thus expected to be underestimated, and consequently, our quoted improve-
ments from ζ± are conservative; i.e. the relative improvement from ζ± is expected to be
larger in analyses that appropriately account for SSC. We defer the inclusion of SSC to
future work.
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Figure 4. Comparison between the T17 and FLASK covariance matrices. The left panel shows the
correlation coefficient from FLASK in the upper triangle and T17 in the lower triangle part of the
matrix. The right panel shows the relative difference between the two covariance estimates (the color
coding is limited to ±10 to exclude a few extreme values for visibility). The ordering of the matrix
entries is according to: {ξ+,11, ξ+,12, ξ+,22, ξ−,11, ξ−,12, ξ−,22, ζ+,111, ζ+,112, ζ+,122, ζ+,222, ζ−,111,
ζ−,112, ζ−,122, ζ−,222}. The result shown for ζ± is estimated using 90 arcmin apertures.

4 Emulators for ξ± and ζ±

The evaluation of the integrated lensing bispectrum B2D
±,ijk(`) is the key computational

bottleneck when evaluating ζ± using eqs. (2.9) and (2.10), and thus the quantity that we wish
to emulate. However, rather than emulating B2D

±,ijk(`) directly, we emulate only the part of
the integrand in eq. (2.11) given by
∫ d2`1

(2π)2

∫ d2`2
(2π)2B

3D
δ

(
`1
χ
,
`2
χ
,
−`1−`2

χ
,χ

)
×e2i(φ2∓φ−1−2)U(`1)W (`2 +`)W (−`1−`2−`).

(4.1)

This leaves out the part involving the line-of-sight integration in eq. (2.11), but has the
advantage of allowing for more flexibility to adjust the source redshift distributions, including
bypassing the need to emulate any of the systematic parameters mentioned in section 2.3. The
training of the emulator still needs to be redone for different sizes of the U and W filters. The
direct evaluation of ξ± in an MCMC exploration of the parameter space would not impose a
serious computational burden, but we emulate its calculation anyway for extra speed. In this
case we emulate simply the three-dimensional matter power spectrum P 3D

δ in eq. (2.15).
We build our emulator by training a neural network (NN) on a Latin hypercube with 105

training nodes. The emulated parameters comprise the cosmological parameters {Ωm, As, w0},
the baryonic feedback parameter cmin, as well as the redshift z which we need to emulate to
perform the line-of-sight integrations in eqs. (2.11) and (2.15). The ranges of the cosmological
and baryonic parameters are listed in table 1 (note we rescale As to ln(1010As)), and for
redshift we consider z ∈ [0, 2.1]. The NN architecture is that of the Cosmopower code [69],4

4https://alessiospuriomancini.github.io/cosmopower/.
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Prior range
Cosmological parameters (emulated)

Ωm U [0.16, 0.45]
ln(1010As) U [1.61, 4.20]

w0 U [−3.33,−0.33]
Baryonic feedback parameter (emulated)

cmin U [1.0, 5.5]
Systematic parameters (not emulated)

∆z1 N (0.0, 0.023)
∆z2 N (0.0, 0.020)
m1 N (0.0261, 0.012)
m2 N (−0.061, 0.011)
AIA,0 U [−5.0, 5.0]
αIA 0 (fixed)

Table 1. Model parameters considered in this paper. The parameters that enter our NN emulator
are the cosmological parameters Ωm, ln(1010As), w0, and the baryonic feedback parameter cmin. The
photo-z, shear calibration and IA systematic parameters do not need to be emulated because the
predictions for different values are fast to obtain. In our MCMC analyses we vary these parameters
within the listed uniform prior ranges (U) or assuming Gaussian priors N (µ, σ) with mean µ and
standard deviation σ. The listed priors for the systematic parameters are inspired by those assumed
in the DES Y3 analyses [54, 62].

which was originally developed to emulate 2-point statistics, but which can be straightforwardly
applied to emulate eq. (4.1). The input layers of the NN are the cosmological, baryonic and
redshift parameters. For ζ±, the output of the NN is the quantity in eq. (4.1) in 100 log-spaced
` bins between ` = 2 and ` = 15000. In the training set, the supervised learning labels are
the same quantity obtained by directly evaluating eq. (4.1) using Monte-Carlo integration.
For ξ± the output is the three-dimensional matter power spectrum in 100 log-spaced ` bins
as in the right-hand side of eq. (2.15) between ` = 2 and ` = 15000.

We test the emulators using another Latin hypercube with 103 test nodes with the
same prior ranges of the training set. We quantify the performance of the emulator with the
expression

ε ≡
∣∣∣∣∣
χ2

emu,i
χ2

test,i
− 1

∣∣∣∣∣ , (4.2)

where χ2
emu,i is the χ2 value associated with the ith test node, defined w.r.t. the data

vector d̂T17 generated by the theory model at T17 cosmological parameters. Concretely,
χ2

emu,i =
(
d̂emu,i − d̂T17

)t
Ĉ−1

(
d̂emu,i − d̂T17

)
, with d̂emu,i the emulator prediction and Ĉ−1

the T17 inverse covariance matrix. The quantity χ2
test,i is defined analogously, but replacing

the emulator result at each test node with the test label prediction. The ε metric describes
how similar the emulator would behave to the theory model in likelihood analyses. The
smaller the value of ε, the better the accuracy of the emulator.

Figures 5 and 6 show the outcome of this test for ξ± and ζ±, respectively. We show ε
projected only on the Ωm — w0 plane, but the takeaways are common to other projections.
For ξ±, effectively all of the test nodes have χ2 relative differences ε < 0.05. The performance
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Figure 5. Performance of the ξ± emulator on 103 test nodes projected on the Ωm — w0 plane. The
colors show the absolute value of the χ2 relative difference ε defined in eq. (4.2); if ε < 0.05, this means
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Figure 6. Same as figure 5, but for the performance of the ζ± emulator, instead of ξ±. The result is
for 90 arcmin apertures. The color coding is the same as in figure 5.

gets reduced slightly for ζ± with 92% (95%) of the test nodes having ε < 0.05 (ε < 0.1); the
result in figure 6 is for apertures with 90 arcmin, but we have checked the performance is
equivalent for other apertures as well. If the true χ2 value of some point in parameter space
is χ2

test = 1, then ε < 0.1 implies χ2
emu ∈ [0.9, 1.1]. Effectively all of the test nodes for both ξ±

and ζ± satisfy this satisfactory criterion.
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5 Results: simulated likelihood analyses with MCMC

In this section we present our main numerical results from simulated likelihood analyses with
MCMC. Unless otherwise specified, we consider the parameter priors listed in table 1, and
sample the parameter space assuming a Gaussian likelihood function,

L(θ) ∝ exp
[
−1

2
(
µ(θ)− d̂

)t
C−1

(
µ(θ)− d̂

)]
, (5.1)

where d̂ is the assumed data vector, C the covariance matrix and µ(θ) the theory prediction
for model parameters θ. We utilize the sampler code affine5 based on tensorflow. With
the available NVIDIA A100 GPU (Graphics Processing Unit) hardware, emulator and sampler,
we are able to sample an order of 106 points in an hour’s timescale.

Next, we validate our model using the T17 ξ± and ζ± data vectors in section 5.1,
investigate the impact of the aperture size in ζ± constraints in section 5.2, discuss the impact
of the systematic parameters in section 5.3, and check the impact from using the T17 or
FLASK covariance matrices in section 5.4. All of the marginalized two-dimensional constraints
shown throughout display contours with the 1σ and 2σ confidence regions.

5.1 Validation on the T17 cosmic shear maps
Figure 7 shows the constraints on the cosmological and baryonic feedback parameters for the
data vector from the T17 shear maps (cf. black points in figures 2 and 3) and the FLASK
covariance matrix. The result is for ζ± measured using 90 arcmin apertures. We keep the
systematic parameters fixed to zero in these constraints, which is the case for our T17 maps.
In addition to the correction factors in eq. (3.3), in this section we consider also the factor
[1 +B(Nd −Np)]−1 from ref. [70] due to statistical noise in our covariance matrix estimate.

The key takeaway from figure 7 is that our theory model and emulator recover unbiased
constraints: the T17 parameters (dashed black lines) are contained well within the 1σ
confidence levels for both the ξ±-only (green) and ξ± + ζ± constraints (red). The ability
of our theory model to recover unbiased cosmological constraints could have already been
anticipated from the good agreement between theory and simulations in figures 2 and 3.

As a test, we have repeated the analysis in figure 7 but adopting the t-distribution
likelihood function from ref. [71], instead of a Gaussian likelihood. The result (not shown) is
practically indistinguishable from that in figure 7 for both ξ± and ξ± + ζ±,{90′}, suggesting
the exact choice of the likelihood function does not critically affect our results.

5.2 The impact of the aperture size
When measuring ζ± one of the decisions concerns the choice of the apertures on which to
measure the 1-point shear aperture mass and local ξ±. To investigate the impact of this, we
perform likelihood analyses with a noiseless data vector generated with the theory model
using the T17 parameters. In these tests, we use the FLASK covariance, and vary also the
systematic parameters with the priors listed in table 1. The main result is shown in table 2,
which lists the relative improvement of the combined ξ± + ζ± constraints relative to ξ±-only,
for different aperture sizes and combinations. Figure 8 shows the actual parameter constraints
for two aperture choices: a single aperture with 90 arcmin (blue) and the combination of five
apertures with sizes {50, 70, 90, 110, 130} arcmin (red).

5https://github.com/justinalsing/affine.
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Figure 7. Parameter constraints obtained with the T17 data vector and FLASK covariance matrix.
The constraints in green and red are for the ξ±-only and ξ± + ζ± data vectors, respectively. The black
dashed lines mark the T17 parameters.

Aperture sizes (arcmin) Ωm ln
(
1010As

)
w0 cmin

50 1.2% 9.0% 18.1% 4.8%
70 1.2% 16.9% 31.9% 11.6%
90 3.7% 20.2% 38.4% 15.1%
110 1.2% 19.1% 34.1% 11.0%
130 1.2% 16.9% 32.6% 12.3%

{50, 70, 90} 2.5% 24.7% 39.1% 15.8%
{50, 90, 130} 3.7% 23.6% 41.3% 16.4%
{70, 90, 110} 6.2% 25.8% 39.1% 15.1%
{90, 110, 130} 8.6% 25.9% 42.8% 15.8%

{50, 70, 90, 110, 130} 12.4% 28.1% 44.9% 19.9%

Table 2. Relative improvement of combined ξ± +ζ± constraints relative to ξ±-only for different values
and combinations of the aperture sizes. The best single- and combined-filter cases are highlighted in
bold. The result is for a noiseless data vector from the theory model, the FLASK covariance, and
marginalizing over the systematic parameters.
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Figure 8. Impact of the aperture size in ξ± + ζ± constraints. The contours in green are for ξ±-only
constraints. The contours in blue are for ξ± +ζ± constraints using a single aperture with size 90 arcmin,
and in red for the combination of five filter sizes {50, 70, 90, 110, 130} arcmin. The result is for a
noiseless data vector from the theory model with the T17 parameters (dashed lines), the FLASK
covariance, and marginalizing over the systematic parameters.

Regarding the single aperture cases, table 2 shows that the constraints improve first from
50 to 90 arcmin, but then degrade from 90 to 130 arcmin. This follows from the combination
of the following effects. Smaller apertures have the advantage of providing ζ± with higher
signal-to-noise ratio since there are more apertures over which the average of eq. (2.1) can
be taken. They have, however, the disadvantage that the local ξ± is measured over a more
reduced range of angular scales inside each patch. Conversely, bigger apertures allow to probe
the local ξ± on larger scales, but at the price of less signal-to-noise as one averages over a
smaller number of patches on the sky.6 In general, different aperture sizes are sensitive to
different configurations of the small-scale squeezed-limit bispectrum [38], which can contain
varying cosmological information and impact the final parameter constraints.

For the aperture sizes shown, the balance between these effects is optimal for apertures
with 90 arcmin, which gives the best constraints. Concretely, the addition of ζ± to the
constraints leads to improvements of 4% for Ωm, 20% for ln

(
1010As

)
, 38% for w0 and 15% for

cmin. These figures are in line with the previous findings of refs. [32, 38] based on idealized
Fisher-matrix forecasts, but extended here to more realistic MCMC-based analyses.

The ζ± measured over slightly different aperture sizes are expected to be substantially
correlated due to the large overlap of the regions where the local ξ± is measured. However, the

6In particular, in the limit of very large apertures, the ξ± measured in the patches become almost perfectly
correlated with the ξ± of the whole survey, effectively contributing with no independent information.
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Figure 9. Parameter constraints for different priors on the systematic parameters. The green and
red contours are for ξ± and ξ± + ζ± assuming wide uniform priors on the systematic parameters. The
blue contours are for ξ± + ζ± with DES Y3-like Gaussian priors on the systematic parameters. The
left panel shows the systematic parameter constraints, and the right panel shows the constraints on
the cosmological and baryonic feedback parameters. The left panels do not show the contours with
DES Y3-like priors as they are too small to be clearly seen. The result is for a noiseless data vector
drawn from the theory model with the T17 parameters (except we set AIA,0 = 2; cf. dashed lines),
and using the FLASK covariance.

lower part of table 2 shows that there is still enough independent information to improve the
constraints further by combining different apertures. For the cases shown, the best constraints
are obtained when combining all apertures {50, 70, 90, 110, 130} arcmin: the improvements
become 12% for Ωm, 28% for ln

(
1010As

)
, 45% for w0 and 20% for cmin. These improvements

need however to be contrasted with the complications that they add to the analyses. For
example, this comes with the price of a much larger data vector, which puts pressure on the
numerical requirements for reliable covariance estimates from simulations. In this paper, this
pressure was still manageable for a DES Y3-like survey with two tomographic bins, but future
survey analysis settings will have larger areas and more source redshift bins as well. The
decision of how many filters to combine should thus be made case by case.

5.3 The impact of systematics and their modelling
We turn our attention now to the impact of systematics (photo-z, shear calibration and IA)
in ζ± constraints. This is interesting as ξ± and ζ± depend differently on systematics, and so
combined analyses can potentially mitigate the degradation caused by these additional free
parameters, leading to better cosmological constraints [73–75]. Indeed, this has been studied
recently in ref. [56], where it was shown that combining lensing 2- and 3-point correlation
function information in a survey like Euclid could lead even to the self-calibration of the
systematic parameters to levels that reduce the need for external calibration data sets.

The green and red contours in figure 9 show the constraints for ξ± and ξ±+ζ±, but instead
of the tight DES Y3-like priors that we have assumed so far for the systematic parameters
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Figure 10. Parameter constraints obtained with our default NLA IA modelling, but on a data vector
generated with the NLA IA model used in refs. [54, 56, 72]. The result is for the T17 parameters (except
we set AIA,0 = 2; cf. dashed lines) and the FLASK covariance. The green, blue and red contours are for
ξ±, ζ± and ξ± + ζ± constraints. We use DES Y3-like Gaussian priors for the systematic parameters.

(cf. table 1), we assume now wide priors for them. The result is for a noiseless realization of the
data vector for the T17 parameters, with the exception that we set AIA,0 = 2 in this subsection.
The improvements on the cosmological and baryonic parameters from adding ζ± are 15.4%
for Ωm, 8.8% for ln

(
1010As

)
, 4.9% for w0 and 8.8% for cmin. Compared to the case where

we marginalize over tight DES Y3-like Gaussian priors, varying the systematic parameters
over wide priors degrades the improvement by factors of 2.3, 7.8 and 1.7 for ln

(
1010As

)
, w0

and cmin respectively. Furthermore, contrary to the case in ref. [56], the improvements that
still exist do not appear to be associated with a significant self-calibration of the systematic
parameters. This can be seen also on the left of figure 9, where the constraints on the
systematic parameters in the combined ξ± + ζ± case (red) show improvements of 21% for
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∆z1, 8% for ∆z2, 24% for m1, 17% for m2 and 18% for AIA,0. There is indeed a visible level
of systematics self-calibration from combining ξ± with ζ±, but which still yields constraints
that are substantially larger than using the externally calibrated DES Y3-like priors (blue).

The quantitative differences to the analysis of ref. [56] could be at least partly due to
some of the following reasons. First, ref. [56] considers 3-point correlation function information
by taking the equilateral lensing bispectrum as the data, whereas we consider ζ± that probes
predominantly the squeezed lensing bispectrum [32, 38]. Second, ref. [56] considers a treatment
of the NLA IA model that is not the same as ours (cf. appendix A). Further, the results of
ref. [56] are based on Fisher matrix analyses, whereas ours are for simulated likelihood analyses
with MCMC sampling. This can be especially important given how strongly non-Gaussian
the marginalized posteriors of the systematic parameters are on the left of figure 9. Finally,
our analysis is for a DES Y3-like survey assuming two tomographic bins, whereas ref. [56]
considers a larger Euclid-like survey with five tomographic bins, and thus a higher-dimensional
subspace of systematic parameters. A deep investigation of the origin of the differences
between the results of the two works would be interesting to pursue, but that is beyond the
scope of the present paper.

We investigate also potential biases in the constraints of the AIA,0 parameter from
assuming different IA models in shear 3-point correlation function analyses. In particular, we
wish to contrast the NLA model used in this paper (cf. section 2.3 and appendix A) with
that in ref. [54] which comes from refs. [56, 72]. To do so we generate a noiseless data vector
with the T17 parameters and AIA,0 = 2 assuming the IA parametrization of ref. [54], which
we subsequently analyse by running MCMC constraints assuming our IA modelling strategy.
At the ξ± level, the two IA treatments are equivalent, but there are differences at the level
of the 3-point correlation functions (cf. appendix A).7 Figure 10 shows the corresponding
constraints for ξ± (green), ζ± (blue) and ξ± + ζ± (red), with all yielding unbiased constraints,
including AIA,0. That is, at the level of the constraining power of our DES Y3-like setup, the
differences between the two NLA IA models do not have any significant impact. We note,
however, that whether the same conclusion holds for other survey setups should be checked
on a case-by-case basis.

5.4 The impact of different covariance estimates
We compare in figure 11 the parameter constraints obtained with the T17 covariance matrix
(left) with those obtained using FLASK (right). In order to make a fair comparison, in
this subsection we constructed a new FLASK covariance with the same number of footprint
realizations as T17 (Ns = 540), and with a source redshift distribution matching the discretized
one of the T17 simulations described in section 3.1. The result in figure 11 is for a noiseless
realization of the data vector from the theory model at the T17 parameters, and with the
systematic parameters marginalized with the DES Y3-like Gaussian priors. Table 3 lists the
corresponding improvements from adding ζ± information to the constraints.

The two covariance matrices yield effectively the same parameter posteriors for ξ±-only
constraints; cf. similarity between the green contours on the left and right of figure 11. There
are however some differences in the combined ξ± + ζ± constraints shown in red, with the
FLASK covariance yielding smaller parameter error bars for most parameters. In particular,
the improvements from ζ± can be factors of ≈ 1.2− 1.9 larger with the FLASK covariance
compared to T17.

7Among other, the model of ref. [54] includes terms ∝ A4
IA,0, whereas ours stops at third order ∝ A3

IA,0, as
expected for a three-point correlation function.
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Figure 11. Impact of the covariance matrix estimate on the parameter constraints. The left and right
panels show the result for the covariance estimated from the T17 and FLASK shear maps, respectively.
In both panels, the result is for a noiseless realization of the data vector from the theory model at the
T17 parameters (dashed lines); the green and red contours are for ξ±-only and ξ± + ζ±, respectively.
The result is for apertures with sizes 90 arcmin and systematics marginalized with the DES Y3-like
Gaussian priors.

Covariance type Ωm ln
(
1010As

)
w0 cmin

FLASK (lognormal) 1.1% 16.7% 32.1% 12.4%

T17 (N -body simulations) 3.5% 8.8% 26.1% 8.7%

Table 3. Impact of the covariance matrix estimate on the improvement of ξ± +ζ± constraints, relative
to ξ±-only. The result is for the aperture with size 90 arcmin.

The T17 and FLASK covariances in this subsection are estimated from ensembles of
540 shear maps and so have the same noise level. These differences may indicate they are
intrinsic to the different ability of N -body simulations and lognormal realizations to capture
the covariance of ζ±,8 or due to residual statistical fluctuations for Ns = 540. We leave a more
detailed investigation of the impact of the covariance matrix, including covariances calculated
analytically [13, 68], to future work.

6 Summary & conclusion

The integrated shear 3PCF ζ± [32, 38] is a higher-order cosmic shear statistic that measures
the correlation between the shear 2PCF measured in patches of the sky and the shear aperture
mass in the same patches (cf. eq. (2.1)). On small scales, ζ± probes primarily the cosmological

8The covariance of a 3-point function contains terms up to the 6-point function, which are not as faithfully
captured in lognormal realizations, compared to N -body simulations.
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information encoded in the squeezed-limit lensing bispectrum. Two of the key advantages of ζ±
compared to other higher-order cosmic shear statistics are that (i) it can be straightforwardly
evaluated from the data using efficient and well-tested 2-point correlation function estimators
(i.e. it does not explicitly require dedicated and more expensive 3-point estimators) and (ii) it
admits a theoretical model based on the response approach to perturbation theory [38] that
is accurate in the nonlinear regime of structure formation, allowing to reliably account for the
impact of baryonic physics.

In this paper, we developed an analysis pipeline that can be directly applied to real
cosmic shear data to obtain cosmological constraints from ζ± and its combination with ξ±.
Compared to previous works on ζ±, the main significant advances in this paper are (i) the
incorporation of lensing systematics associated with photo-z uncertainties, shear calibration
biases and galaxy IA (cf. section 2.3), and (ii) the development of a NN-based emulator for
fast theory predictions to enable MCMC parameter inference. We tested our pipeline on a
set of realistic cosmic shear maps based on N -body simulations, with DES Y3-like survey
footprint, mask and source redshift distributions (cf. section 3).

In our tests of the analysis pipeline we have investigated in particular (i) the accuracy
of the theory model (cf. section 5.1), (ii) the impact of the size of the apertures used to
measure ζ± (cf. section 5.2), (iii) the impact of lensing systematics (cf. section 5.3) and (iv)
the impact of N -body simulation vs. lognormal estimates of the data vector covariance matrix
(cf. section 5.4). Our main findings can be summarized as follows:

• Our analysis pipeline is accurate (cf. figures 2 and 3) and able to yield unbiased parameter
constraints from our N -body simulation DES Y3-like data vectors (cf. figure 7).

• For the range of aperture sizes {50, 70, 90, 110, 130} arcmin, 90 arcmin is what results
in the largest information gain from ζ±. The combination of several filter sizes can
improve the constraints further (cf. table 2), but at the cost of dealing with a larger
data vector and covariance matrix.

• Although ξ± and ζ± depend differently on the systematic parameters, we do not find
significant improvements in their constraints in combined ξ± + ζ± analyses; i.e. the
mitigation of systematic effects still requires prior calibration from external data (cf. fig-
ure 9). This is in contrast with the findings in ref. [56], although this may be due to
differences in the 3-point correlation function studied, survey setup and other analysis
details. At the level of the DES Y3 constraining power, different modelling strategies
for IA lead also to no significant biases in parameter constraints (cf. figure 10).

• Relative to ξ±-only constraints with the N -body covariance matrix, adding ζ± leads to
improvements of 4% for Ωm, 9% for ln

(
1010As

)
, 26% for w0 and 9% for cmin. Except for

Ωm, these are factors of ≈ 1.2− 1.9 smaller compared to the FLASK covariance. This
may be due to residual statistical fluctuations at the level of our number of simulation
realizations (Ns = 540), or simply that lognormal realizations do not provide reliable
estimates of the ζ± covariance matrix.

Overall, our results corroborate with a realistic MCMC-based simulated likelihood
analysis the encouraging findings from previous idealized Fisher matrix forecasts [32, 38]. The
analysis pipeline developed and tested here can be readily applied to real survey data, enabling
the exploration of the potential of the integrated shear 3PCF ζ± to improve cosmological
parameter constraints using cosmic shear observations.
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A The modelling of intrinsic alignments

In this appendix we describe our modelling of galaxy intrinsic alignments in ξ± and ζ±.

General considerations
The observed galaxy ellipticity in cosmic shear observations εobs is a combination of the
gravitational (G) lensing shear component γ and the intrinsic (I) ellipticity of the galaxies εI
induced by correlations with local gravitational tidal fields at the source (in this appendix,
we ignore the random stochastic component that would contribute as shape noise):

εiobs(θ) = γi(θ) + εiI(θ), (A.1)

where i denotes a specific source galaxy redshift bin. The lensing shear is related to the
lensing convergence κ as [2]

γ(`) = e2iφ`κ(`) ; κ(`) =
∫

d2θ κ(θ)e−i`θ ; κ(θ) =
∫

dχ q(χ)δm(θχ, χ), (A.2)

where δm is the three-dimensional matter density contrast.9 In analogy, we can write for the
intrinsic component εI

εI(`) = e2iφ`κI(`) ; κI(`) =
∫

d2θ κI(θ)e−i`θ ; κI(θ) =
∫

dχ n(χ)δI(θχ, χ), (A.3)

where δI is a three-dimensional field that determines effectively the intrinsic alignment (IA) of
the galaxies with their local gravitational tidal fields; note also that the line-of-sight kernel is
now just the source galaxy distribution n(χ), and not the lensing kernel q(χ).

In the popular nonlinear linear alignment (NLA) model [51, 52], one writes

δI(x, z) = fIA(z)δm(x, z), (A.4)
9To ease the notation, we distinguish between real- and harmonic-space variables by their arguments. For

example, κ(θ) and κ(`) are the lensing convergence in real and harmonic space, respectively.
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treating δm as the nonlinear matter density contrast. The amplitude fIA(z) is

fIA(z) = −AIA,0

( 1 + z

1 + z0

)αIA c1ρcritΩm,0
D(z) , (A.5)

where AIA,0, αIA are free redshift-independent parameters, c1 = 5×10−14 (h2M�/Mpc3)−1 [52],
ρcrit is the critical cosmic energy density, D(z) is the growth factor normalized to unity today,
and z0 is some reasonable pivot redshift value.

Note that this is only an effective parametrization of the impact of IA in cosmic shear
observations. A more rigorous approach would involve a description of the relation of galaxy
shapes and tidal fields in 3D, subsequently projected to the sky plane. This is the approach
described in refs. [82, 83] based on bias expansions in effective field theory, which is however
valid only in the quasi-linear, large-scale regime of structure formation. Extensions of the
NLA model to include nonlinear corrections to eq. (A.4) also exist [84].

Contributions to ξ±

The two shear 2PCF ξ± are given by

ξij+,obs(α) = 〈εiobs(θ)εj∗obs(θ +α)〉 (A.6)

ξij−,obs(α) = 〈εiobs(θ)εjobs(θ +α)e−4iφα〉, (A.7)

and each can be decomposed into GG, GI, IG and II terms as

ξij±,obs = ξij±,GG + ξij±,GI + ξij±,IG + ξij±,II. (A.8)

The GI case of ξij+,obs, for example, is given by (the derivations are analogous for all terms):

ξij+,GI(α) = 〈γi(θ)εj∗I (θ +α)〉

=
∫ d``

2π P
ij
κκI(`)J0(`α), (A.9)

where P ijκκI(`) is defined as (2π)2P ijκκI(`)δD(`+ `′) = 〈κi(`)κjI (`′)〉 and given by

P ijκκI(`) =
∫

dχq
i(χ)nj(χ)
χ2 P 3D

δmδI(`/χ, χ). (A.10)

The P 3D
δmδI

is defined as (2π)3P 3D
δmδI

(k1 + k2) = 〈δm(k1)δI(k2)〉, and in the NLA model it is

P 3D
δmδI(k, z) = fIA(z)P 3D

δmδm(k, z). (A.11)

That is, the GI contribution to ξij+,obs can be obtained by replacing the jth lensing kernel qj(χ)
in the expression of the GG term with nj(χ)fIA. It follows as a result that all contributions from
GG, GI, IG and II can be obtained by replacing all lensing kernels q(χ) with q(χ) + n(χ)fIA,
as in eq. (2.24). This yields terms ∝ f0

IA (GG), ∝ fIA (GI, IG) and ∝ f2
IA (II).
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Contributions to ζ±

The observed integrated shear 3PCF ζ± is defined as

ζijk±,obs(α) =
〈
M̂ i

ap,obs(θC)ξ̂jk±,obs(α;θC)
〉
. (A.12)

The position-dependent shear 2PCF ξ̂jk±,obs(α;θC) also contains GG, GI, IG and II terms.
Further, the IA terms also contribute to the 1-point aperture mass M̂ i

ap,obs(θC), which contains
G and I terms as

M̂ i
ap,obs(θC) =

∫
d2θ

[
κi(θ) + κiI(θ)

]
U(θC − θ). (A.13)

This thus generates the following 8 contributions to ζijk±,obs(α):

ζijk±,obs = ζijk±,GGG + ζijk±,GGI + ζijk±,GIG + ζijk±,GII + ζijk±,IGG + ζijk±,IGI + ζijk±,IIG + ζijk±,III. (A.14)

Again, just as a single example, the IIG case for ζ+,obs can be written as

ζijk+,IIG(α) = 1
A(α)

∫ d``
2π B

ijk
+,IIG(`)J0(`α), (A.15)

where

Bijk+,IIG(`) = d2`1
(2π)2

∫ d2`2
(2π)2B

ijk
κIκIκ (`1, `2,−`12) e2i(φ2−φ−1−2)U(`1)W (`+ `2)W (−`− `12),

(A.16)
with `12 = `1 + `2 and

Bijk
κIκIκG (`a, `b, `c) =

∫
dχn

i(χ)nj(χ)qk(χ)
χ4 B3D

δIδIδm

(
`a
χ
,
`b
χ
,
`c
χ

;χ
)
. (A.17)

The derivation of these expressions is the same as the usual gravitational lensing GGG
expression, except one replaces the first two instances of κ by κI. In the NLA model,
B3D
δIδIδm

= f2
IAB

3D
δmδmδm

. That is, the IIG contribution to ζijk+,obs(α) term can be obtained from
GGG by simply replacing the ith and jth lensing kernels qi(χ), qj(χ) with ni(χ)fIA and
nj(χ)fIA. It follows as a result that all of the 8 contributions to ζijk±,obs(α) can be obtained
by replacing all lensing kernels q(χ) with q(χ) + n(χ)fIA, as in eq. (2.24). This yields terms
∝ f0

IA (GGG), ∝ fIA (GGI, GIG, IGG) and ∝ f2
IA (GII, IGI, IIG) and ∝ f3

IA (III).
These 3-point contributions from galaxy IA are different than those derived in ref. [56]

using also the NLA model. Among other differences, their III term is ∝ f4
IA and their GII

+ IGI + IIG terms are ∝ f3
IA (cf. their eqs. (30–32)). Reference [56] does not provide a

detailed derivation of their expressions, which keeps us from inspecting this issue further. We
emphasise, however, that the NLA model is in itself only an approximation of the effect of
galaxy IA on small-scales, and so even our expressions should be interpreted in light of this.
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Abstract

Modern cosmological research in large-scale structure has witnessed an increasing number of machine-learning
applications. Among them, convolutional neural networks (CNNs) have received substantial attention due to their
outstanding performance in image classification, cosmological parameter inference, and various other tasks.
However, many models based on CNNs are criticized as “black boxes” due to the difficulties in relating their
outputs intuitively and quantitatively to the cosmological fields under investigation. To overcome this challenge,
we present the Cosmological Correlator Convolutional Neural Network (C3NN)—a fusion of CNN architecture
and cosmological N-point correlation functions (NPCFs). We demonstrate that its output can be expressed
explicitly in terms of the analytically tractable NPCFs. Together with other auxiliary algorithms, we can open the
“black box” by quantitatively ranking different orders of the interpretable outputs based on their contribution to
classification tasks. As a proof of concept, we demonstrate this by applying our framework to a series of binary
classification tasks using Gaussian and log-normal random fields and relating its outputs to the NPCFs describing
the two fields. Furthermore, we exhibit the model’s ability to distinguish different dark energy scenarios
(w0=−0.95 and −1.05) using N-body simulated weak-lensing convergence maps and discuss the physical
implications coming from their interpretability. With these tests, we show that C3NN combines advanced aspects
of machine learning architectures with the framework of cosmological NPCFs, thereby making it an exciting tool
to extract physical insights in a robust and explainable way from observational data.

Unified Astronomy Thesaurus concepts: Astrostatistics techniques (1886); Classification (1907); Convolutional
neural networks (1938); Weak gravitational lensing (1797); Cosmological parameters (339)

1. Introduction

In recent years, numerous machine-learning methods have
found applications in cosmology and astrophysics ranging from
classification and regression tasks to acceleration of computa-
tional methods (see Dvorkin et al. 2022 for a recent review).
Among the various machine-learning techniques, convolutional
neural networks (CNNs; LeCun et al. 2015) have been used
extensively. Briefly, CNNs can compress a large data set
(e.g., images) into several feature representations through a
series of alternative linear and nonlinear transformations. The
large number of parameters in a CNN model is typically
determined by training the model to numerous simulated data
that aim at reproducing actual scientific phenomena. In the
context of astronomy and cosmology, these compressed
features can be used for classification, such as searching for
strong gravitational lensing systems (Rojas et al. 2022) and
classifying different galaxy morphologies (Domínguez Sánchez
et al. 2022), or for inference analyses such as constraining
parameters in various cosmological models (Fluri et al.
2019, 2022; Lu et al. 2023), to name a few.

However, this impressive development of CNNs has raised
an important question: How to interpret the output feature
representations of a CNN? Ideally, we would like to establish a

complete and controllable process in the application of CNN
models in cosmology. However, most of the output features of
a conventional CNN are notoriously difficult to interpret and
hence they have often been termed “black boxes.” To open
such a black box, one good approach would be to connect the
output feature representations from a CNN to either the
analyzable statistical properties underlying the training data or
visually understandable images that resemble the input training
maps. If this can be achieved, we can understand what physical
information in the training data the CNN pays the most
attention in order to complete an assigned task. Moreover, the
mechanism that the model adopts to extract this physical
information can potentially provide us with certain knowledge
that cannot be acquired by conventional CNN methods.
To address this problem of interpretability in CNN models,

different methods and architectures have been developed such
as saliency maps (Simonyan et al. 2013; see, e.g., Matilla et al.
2020 and Villanueva-Domingo & Villaescusa-Navarro 2021
for a few applications), the three-dimensional CNN framework
in Lucie-Smith et al. (2024), variational autoencoders applied
to find a compressed representation of dynamical dark energy
(DE-VAE) models (Piras & Lombriser 2024), and so on.
However, these techniques are either more visual-based checks,
which can only lead to qualitative conclusions, or involve
complex nonlinear transformations such that one cannot
establish a straightforward mathematical relation between the
output features and the input data. This can to a certain degree
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limit our interpretation of the physical information captured
by CNNs.

To overcome this challenge, we introduce the Cosmological
Correlator Convolutional Neural Network (C3NN) for cosmo-
logical analyses, adapted from the model initially proposed by
Miles et al. (2021) in studies of correlated quantum matter. The
output of this model can be explicitly related via a one-to-one
correspondence to different orders of cosmological N-point
correlation functions (NPCFs). The whole framework of
NPCFs and their applications in cosmology (Bernardeau
et al. 2002; Peebles 2020) have been subject to extensive
theoretical as well as practical developments over the last
several decades. The two-point correlation function (2PCF), or
its Fourier space counterpart the power spectrum, is currently
the most widely used statistical method in many fields of
cosmology such as weak gravitational lensing (Asgari et al.
2021; Secco et al. 2022; Dalal et al. 2023), galaxy clustering
(Ivanov et al. 2020; Chen et al. 2022) and cosmic microwave
background (Planck Collaboration et al. 2020; Rosenberg et al.
2022) analyses. Within the correlation function framework,
active research has been done to push the theoretical modeling
beyond 2PCF to access non-Gaussian cosmological informa-
tion, e.g., in the studies of weak lensing and projected galaxy
density fields such as those of Takada & Jain (2003a, 2003b),
Semboloni et al. (2010), Friedrich et al. (2018), Halder et al.
(2021, 2023), Halder & Barreira (2022), Gatti et al. (2022),
Gong et al. (2023), Burger et al. (2024), Heydenreich et al.
(2023), Anbajagane et al. (2023), Barthelemy et al. (2024) to
name a few. However, due to the difficulties in modeling,
measurement, and the treatment of systematic effects, extensive
analyses of higher-order correlation functions in actual data
remain challenging. Therefore, it is difficult to quantify the
amount of additional cosmological information contained in
three-point, four-point, or even higher-order correlation func-
tions. From this perspective, C3NN can provide some novel
insights as we design it such that:

1. It can efficiently extract a series of statistical features,
which we call moments. These moments are directly
related to compressed NPCFs of the input data up to a
desired order N (user specified) by construction. C3NN
relies on simulations for its training wherein one can
include all the desired physics and systematic effects at
the field level. Therefore, in extracting these output
moments, C3NN sidesteps the need for involved theor-
etical modeling of higher-order correlation functions.

2. At the same time, if one has a theoretical model for a
given NPCF it can be directly used to interpret the
corresponding order C3NN moment through straightfor-
ward mathematical relations as explained later.

3. Using a certain postprocessing numerical method called
regularization path analysis, we can easily understand the
relative importance of the output moments in tasks such
as binary classification, e.g., to distinguish between
different cosmological model scenarios beyond ΛCDM.
This in turn can guide corresponding NPCF analyses in
real observations.

4. Finally, the filter weights that are learned by C3NN can
be used to pick out the specific configurations within a
given NPCF. This is extremely desirable as it also allows
us to understand the relative importance of a given order
moment as well as the configurations that carry the most
distinct information for performing an assigned task.

As this is the first time we have introduced C3NN in
cosmology, we only consider the task of binary classification
with two-dimensional simulated maps in this work. However,
the same architecture can be exploited in cosmological
parameter inference or classification with three-dimensional
simulated boxes, etc. We leave such topics to future works.
This paper is organized as follows: In Section 2, we describe
the architecture of C3NN. We then give clear mathematical
expressions for the output moments and explicitly show their
relations to the conventional correlation functions in cosmol-
ogy. We also discuss the differences among C3NN, CNN, and
scattering transforms. In the following Sections 3.1 and 3.2, we
present as a proof of concept, two test cases of C3NN
classifying between (i) two different Gaussian random fields,
and (ii) between Gaussian and log-normal random fields. Then
in Section 4 we further apply C3NN to distinguish between
different dark energy scenarios using N-body simulated weak-
lensing convergence maps and discuss the physical implica-
tions coming from its interpretability. Finally, we summarize
and conclude in Section 5.

2. C3NN Model Architecture and Interpretability

In this section, we present the architecture of C3NN whose
overall structure is shown in Figure 1. We split it into two parts
and name them as CNN-based N-point moment map generator
and moment-map-based classifier, respectively.
CNN-based N-point moment map generator: The generator

part of the architecture performs convolution operations
recursively in order to produce moment maps ( )

aC N (of order
N), which we define as follows:
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Here, w is the filter weight exploited in standard CNN filters
and S denotes the input map (e.g., a pixelized image of a 2D
field). During training, we enforce w to take its absolute value
to aid interpretation. The curly brackets above the summation
include constraints for the summed variables. Position vectors
a, a1 ... aN of the filter weight run over every pixel within the
finite support of the filter. The factorial factor removes repeated
counting of the same combination of filter weights and input
map pixels. Index α represents different filters while index k
goes through different channels. Each filter can have several
channels that correspond to those in the input data,
e.g., different tomographic bins of an observable. From the
above equations, we see clearly that for N� 2, ( )( )

aC xN is the
weighted summation of all possible pixel configurations within
the filter at position x. For N= 1, ( )

aC 1 represents the usual
convolution of the input data with the standard CNN filter. In
the summation, we strictly exclude zero-lag contributions for
any order. The summation over k enables C3NN to measure
cross correlations among different channels of the input data. It
is exactly relying on this property that we can straightforwardly
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implement C3NN within the context of a tomographic analysis
as we will discuss later in Section 4. Moreover, in the case
when one provides different observables as input to the
different channels, C3NN would capture cross correlations
among these quantities, e.g., the 3× 2-point probes of cosmic
shear and galaxy clustering that are routinely analyzed in
galaxy imaging surveys (Heymans et al. 2021; Abbott et al.
2022). We defer such investigations to future works.

One difficulty in computing moment maps in Equation (1) is
the increasing computational cost along with the order N. The
cost can be approximated as (( ) ) KP N per input map pixel
where K is the number of input data channels and P is the
number of pixels in the convolutional filter. To solve this
problem, Miles et al. (2021; see their Section S II) have proved
that ( )

aC N can be calculated using a recursive formula:
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where the power operation is taken on every pixel and we set
( )( )

a xC 0 to be 0. Through this relation, the computational cost
decreases to ( ) N KP2 . Instead of direct computation at each
order of the moment map, we can now convolve the input only
once to produce ( )

aC 1 . Then ( )
aC 2 can be calculated from ( )

aC 1 .
Similarly, ( )

aC 3 can be calculated from ( )
aC 1 and ( )

aC 2 and so on

via Equation (2). This recursive relation holds until we truncate
at an order N.
Moment-map-based classifier: This classifier part of the

architecture starts with compressing the ( )
aC N maps obtained

from the generator into scalars ( )
ac

N by taking the spatial
average over the maps:

( ) ( )( ) ( )å=a ac
N

C x
1

, 3N N

xpix

where Npix is the total number of pixels in the input map S.
Based on Equations (1) and (3), we can explicitly show the
relation between ( )

ac
N and the corresponding NPCF both at the

discrete filter pixel level and in the continuous limit. As an
example, when N= 2, we have
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Figure 1. A schematic illustration of the C3NN architecture. The input data can be multichannel 2D maps (e.g., weak-lensing convergence maps with multiple distinct
source redshift bins). The dimensionality of the input data tensor is (D, C, W, and H) where D is the number of simulation realizations, C the number of channels, and
W and H describe the width and height (in pixels) of each map. This input data tensor is then convolved with isotropic filters built with ESCNN (see details in
Section 2) in order to produce the first-moment map ( )

aC 1 . With this single convolution operation, one can calculate higher-order moment maps of the input field (up to
order N, which is user defined) recursively (see Section 2 for details). The maps are then spatially averaged to obtain compressed scalar quantities that we call moments

( )
ac

N . As shown in the top red rectangular box, these ( )
ac

N are associated with the corresponding orders of NPCFs. The calculated moments can then be passed through
the classifier part of the model to perform a binary classification task. Part of this figure has been adapted from Miles et al. (2021).
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where x̂ ¢kk is the volume average estimator for auto/cross
2PCFs at a separation r between channels k and ¢k . Note that
both a and a+ r in the last line should be strictly contained
within the filter. Therefore, the scale of correlation functions
that C3NN can probe is restricted by the filter size. Similarly,

( )
ac

3 can be written as⎡⎣⎢
( )( ) ( ) ( ) ˆ ( )]
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where ẑkk k1 2
is the volume average estimator for auto/cross

three-point correlation functions (3PCFs) where closed trian-
gles can be formed by 3 pixels within the filter. To complete
the demonstration, we consider the calculation of ( )

ac
2 in the

limit of a continuous filter function:
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where Wα,k acts as a continuous two-dimensional kernel
function that has a sharp boundary outside which its values
are always 0. This takes the finite filter size into consideration.
A similar calculation for ( )

ac
3 follows analogously. These

explicitly show the relation between ( )
ac

N and NPCFs thereby
robustly identifying them as interpretable summary statistics.

We note that ( )
ac

N is an integration over all the configurations
of a given order NPCF and hence we call it an N-point moment.
It is interesting to compare ( )

ac
n to the mass aperture moments

used for weak lensing (Schneider et al. 2005; Kilbinger &
Schneider 2005; Heydenreich et al. 2023):
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where we show the analytic expressions for the second and
third-order mass aperture moments. In the above expressions,
Pκ and Bκ are the power spectrum and bispectrum of the
underlying cosmological field, here the weak-lensing conv-
ergence κ (see Section 3.2), whereas û is the Fourier
counterpart of the filter function used for computing the
aperture mass moments. Though written as integrals in Fourier
space, their expressions are essentially similar to those of ( )

ac
N .

The difference is that mass aperture moments exploit
predetermined analytical kernel functions (the û in the above
equations) such as compensated filters (Crittenden et al. 2002)
that can have different scale radii while the C3NN filters are
automatically learned and optimized by the training process
and the same filter is applied to all input data pixels. One point
to note is that measuring aperture mass moments beyond the
third order has been difficult to date (see Porth et al. 2020 for
some recent progress). On the other hand, C3NN can measure a
whole sequence of ( )

ac
n up to any arbitrary order very efficiently

leveraging the recursion relation mentioned in Equation (2).
Another point to note regarding ( )

ac
n is that since it explicitly

excludes the measurement of self-correlation, it is also different
from the conventional definition of Nth-order moment, which is
composed of zero-lag correlation functions. For simplicity, in
the following texts, we will mention ( )

ac
n as moments unless

otherwise specified.
After building all the ( )

ac
N up to a given order N, we

group them together to form a feature vector =c
{ }( ) ( ) ( ) ( )¼a a a ac c c c, , , , N1 2 3 . Then the vector goes through a batch
normalization, which applies standard normalization to each
batch of the training data to scale all entries of c to the same
order of magnitude for numerical stability during the latter
training process. Finally, the model passes it through a logistic
classifier for a final probabilistic prediction ŷ to differentiate
two classes:

ˆ ( )·=
+ b- +

y
1

1 e
, 9

c

where β is a trainable vector composed of coefficients ( )ba
N which

have a one-to-one correspondence to ( )
ac

N . The other trainable
parameter is the bias scalar ò. When −β · c+ ò= 0, the
probabilistic prediction would always be 0.5, which implies a
random classification between two classes. From that naturally the
hyperplane −β · c+ ò= 0 acts as the decision boundary in the
high N-dimensional space. C3NN would classify the feature
vector c that falls to either side of the decision boundary into a
specific class. In other words, if ˆ [ )Îy 0, 0.5 , the model would
predict the input data to belong to one class. Otherwise, the input
data would be considered as the other class.
To further develop the interpretability, we adopt a two-round

training strategy: In the first round, we train the whole C3NN
exhibited in Figure 1. In this case, we use the binary cross
entropy as the loss function with an extra L1 regularization
term on the filter weights

( )( ˆ) ˆ ( ) ( ˆ) ( )åg= - - - - +
a

a 10aL y y y y y y w, log 1 log 1 ,
ak

k1st
, ,

,

where γ is the regularization strength. This regularization term
helps to turn off unnecessary pixels (Bluecher et al. 2020),
which aids our later interpretation of the filter weights. The
resulting C3NN model can be directly used to perform binary
classification tasks. In the second round, we freeze the filter
weights from the previous round and use the moment map
generator to produce moment maps. We then use those maps to
retrain ( )ba

N coefficients and ò in Equation (9). It is important to
note that the value of ( )ba

N indicates the relative importance of
( )
ac

N in its contribution to the classification, e.g., from
Equation (9) when ( )b =a 0N , its corresponding ( )

ac
N would be

irrelevant in C3NN’s decision making. Based on this property,
we use a different L1 regularization term in the binary cross-
entropy loss during the second round of training:

( ˆ) ˆ ( ) ( ˆ) ∣ ∣
( )

( )ål b= - - - - +
a

aL y y y y y y, log 1 log 1 ,

11
n

n
2nd

,

where λ is the regularization strength. We train the ( )ba
N

coefficients iteratively with gradually decreasing λ values. This
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is a process of feature selection using the so-called regulariza-
tion path analysis (Efron et al. 2004; Tang et al. 2014). Initially,
when λ is large, all ( )ba

N values are close to 0 in order to
minimize L2nd and therefore the model does not possess any
classification power. After λ decreases to a certain value, the
most important feature represented by a given ( )ba

N would be
activated since at this stage the increase in the loss from

∣ ∣( )l båa an
n

, would be overcompensated by the decrease from
ˆ ( ) ( ˆ)- - - -y y y ylog 1 log 1 and thus minimize the total

loss. As ( )ba
N is coupled to ( )

ac
N , the sequence of the activation

of ( )ba
N can provide us insights into the relative importance of

different moments.
Once we find the sequence of the ( )ba

N activation, we can
check the filter weights that are trained during the first round.
For each corresponding moment ( )

ac
N measured by a specific

filter, we can quantify the relative importance of a particular
NPCF configuration. The method is demonstrated in Figure 2.
As an aside, we note here that the smallest configuration of the
correlation function at a given order is determined by the pixel
resolution of the input map. This method implies that we can
not only infer a rank of moments based on their relative
importance in classification but also a rank of correlation
function configurations based on the relative weights within
each moment.

The filters used in the convolution are constructed in such a
way that their weights after training are rotationally symmetric
about the central filter pixel, i.e., weights that have the same
distance to the central pixel are identical. We impose this
symmetry because the spatially averaged moments ( )

ac
N should

be invariant to rotations of the training maps. From the
perspective of the cosmological principle, this ensures that our
model obeys the isotropy of the Universe. In practice, we
implement this in our filters using the equivariant steerable
convolutional neural network5 (ESCNN; Weiler & Cesa 2019;
Cesa et al. 2022) architecture. The requirement of rotational
invariance imposed on the filter naturally decreases the number
of free weights to be trained and therefore makes the training
procedure more numerically efficient as it needs fewer
training data.

Besides the actual trainable parameters such as filter weights
and ( )ba

N , we also consider the hyperparameters within the
model. Parameters like the learning rate or regularization
strength cannot update themselves during the training but their
values can affect the model performance. Therefore, in practice,
we use Optuna6 (Akiba et al. 2019) as the framework for
optimizing these hyperparameters.

It is necessary to point out, based on what we have already
discussed, the differences between C3NN and some other AI
methods at first glance can look similar to our model.
For example, in conventional CNNs used in cosmological
research (Fluri et al. 2019, 2022; Lu et al. 2023), there are
several convolutional layers, each of which is followed by a
nonlinear activation function. This type of information
extraction compresses the input data into some compact feature
vectors, which are then used by the model to undertake tasks
such as classification or regression. Although very powerful,
one disadvantage of this conventional CNN framework is
that it is generally hard to interpret the reasons why the CNN

compresses the input data in the way it does to train its
model parameters. On the other hand, our C3NN architecture
has only one convolution layer. We discard the general
nonlinear transformations and instead replace them with the
expansion of moment maps via a recursive relation. In
other words, our C3NN architecture is simpler than the
conventional multilayered CNNs. Meanwhile, the final com-
pressed feature vectors from C3NN can be mathematically
related to the concept of NPCFs as discussed above, which are
summary statistics with great theoretical tractability and are the
basis of statistical analyses in cosmology over the past few
decades.
Scattering transforms (Cheng et al. 2020; Cheng &

Ménard 2021) are also different from C3NN in the sense that
they use predetermined wavelet filters. C3NN filters on the
other hand are optimized during the training process. More-
over, unlike C3NN, the final compressed coefficients of the
scattering transform (no matter up to which order they are
computed) do not represent the corresponding NPCF that is
contained in the C3NN output ( )

ac
N .

Figure 2. A demonstration of how C3NN filter weights can be analyzed:
suppose we have ( )b1

3
first activated in the regularization path analysis, we can

then check the filter and quantify the relative importance of different
configurations of 3PCF that ( )c1

3 is composed of. Here, we assume that the
trained rotationally symmetric filter is of size 9 × 9 pixels and it only has one
channel. Each intersection between a vertical and a horizontal line represents
the center of a pixel. The trained weight is denoted by wij and any distinct
triplet would form a closed triangle that is included in the measurement of ( )c1

3 .
As an example, the three triangles drawn in red dashed lines are weighted as
w35w55w74, w27w47w66, and w15w17w29, respectively, according to Equation (1).
Since they are equivalent triangles, their weights can be summed, along with all
the other equivalent triangles that can be found within the filter. The summation
is the total weight W of this particular triangle configuration. We want to
emphasize that all configurations of the 3PCF mentioned here are in real space,
which is different from triangles in Fourier space often discussed in the context
of bispectrum studies in literature. The same approach can be applied to two-
point separations, quadrilaterals, etc.

5 Currently hosted at https://github.com/QUVA-Lab/escnn.
6 Currently hosted at https://optuna.org/.
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3. Proof of Concept Tests

In this section, we test C3NN on two binary classification
tasks: (i) Gaussian random fields with different correlation
lengths (Section 3.1), and (ii) Gaussian and log-normal random
fields with the same power spectrum but different higher-order
spectra (Section 3.2). Using these two tests we also
demonstrate how the regularization path analysis and filter
weights analysis relate to our model’s interpretability as
mentioned in the previous section.

3.1. Test Case of Gaussian Random Fields

As the first proof of concept, we apply C3NN to distinguish
two classes of Gaussian random fields, each with a different
correlation length. We use the GSTools7 (Müller et al. 2022)
framework to generate these Gaussian random fields as square
2D maps. While keeping the variance amplitude of the two
fields the same, we vary their field correlation lengths ℓ as
shown in Figure 3 where the realization in the left panel
(smaller correlation length) clearly shows more fluctuations on
small scales than the right one (larger correlation length).

We prepare 5000 maps for each class, and every map only
has one channel. We split this sample into 4500 for training and
500 for validation. Some model parameters including filter
number, filter size, and the highest correlation order to measure
are predetermined to be 1, 31× 31 pixels and 3, respectively.
The filter size is chosen to be large enough to capture the
correlation scales of both training classes. We then use
Optuna for a grid search to optimize the hyperparameters in
the model such that their combination can maximize the
validation accuracy. The results are shown in Table 1. The
model with the above hyperparameter values can return a
validation accuracy of 99.2% after 100 training epochs.
We implement the regularization path analysis as discussed

in the previous section and results are shown in the left panel of
Figure 4.
It is clear that the second-order moment ( )c1

2 is the most
important feature in this classification as ( )b1

2 is activated first.
Once it is activated, both the training and validation accuracy
increase from 50%, i.e., no classification power, to more than
90%. Afterward, both the training and validation accuracy
experience a slow increase while the value of ( )b1

2 goes through
a fine-tuning along the regularization path. At the activation of

( )b1
1 and ( )b1

3 , the validation accuracy has almost reached 100%
already. Therefore, we interpret these two activations as
overfitting. This result is consistent with our expectation that
the two classes of training data are completely distinguished
based on the second-order moment ( )c1

2 since for a Gaussian
random field, one can characterize it completely by its
expectation value and covariance. Since the two classes of
training data have the same expectation value, the dominant
power to distinguish them should come from the quantity that
relates to the covariance, i.e., the second-order moment ( )c1

2 .
The right panel in Figure 4 shows that C3NN successfully
captures this statistical property by using its trained filter to
map the two classes of Gaussian random fields into two distinct
distributions in the { ( )c n

1 } space, particularly along the margin-
alized dimension of ( )c1

2 . It is based on these different
distributions that the classifier learns the decision boundary
between the two classes.

Table 1
Four Optimized Hyperparameters in C3NN Trained on Two Classes of

Gaussian Random Fields with Different Correlation Lengthsa

Parameter γ

Learning
Rate

Learning Rate Decaying
Ratio Optimizer

(lr) (f)

Value 2.33 0.47 0.02 “Adam”

Notes. γ is the regularization strength in Equation (10). We use a learning rate
scheduler that decays the initial learning rate (lr) of each parameter group by a
factor f after every epoch. We simultaneously also search for the type of
optimizer that performs the best and we obtain Adam, which is derived from
adaptive moment estimation (Kingma & Ba 2014).
a See Figure 3.

Figure 3. Two classes of Gaussian random fields generated by GSTools where we show one example for each. Both classes have the same variance amplitude of 1.0
and a map size of 120 × 120 pixels. They differ from each other on the correlation length, with one having ℓ = 5.0 (left panel) and the other having ℓ = 20.0 (right
panel), with the correlation lengths specified in units of pixels. The color bar to the right shows the scale of the field amplitude.

7 https://geostat-framework.readthedocs.io/projects/gstools/en/stable/

6

The Astrophysical Journal, 971:156 (16pp), 2024 August 20 Gong et al.



Looking at the filter in the left panel of Figure 5 we see that
the learned filter weights show a rotationally symmetric pattern
as required by our architecture. There are two prominent annuli
on different scales. This indicates that there is a correspondence
between the annulus scales in the filter and the characteristic
scales in the Gaussian random fields. The outer annulus has a
much larger radius than the correlation length 5.0; hence, it can

measure correlation function signals that only appear in the
training data class with ℓ= 20.0. The inner annulus, which has
a radius of approximately 5 pixels, is more efficient in
extracting correlation function signals from the training data
class with ℓ= 5.0. As ( )b1

2 is first activated, we can quantify the
relative importance of 2PCF with different separations
following the approach described in Section 2 and Figure 2.

Figure 4. Left: the regularization path analysis result of C3NN trained on two classes of Gaussian random fields with correlation lengths ℓ = 5.0 and 20.0 (see
Figure 3). The upper panel shows the evolution of the ( )ba

N coefficients along with the decrease in the regularization strength λ in Equation (11) (an increase in 1/λ).
The bottom panel shows the corresponding changes in training and validation accuracy. Different types of vertical lines indicate the first λ value at which each ( )ba

N

becomes nonzero (i.e., gets activated). Right: contours of moment ( )
ac

N distributions mapped by passing the full training data set into the moment map generator and
spatial averaging after the first round of training. The diagonal subplots show the marginalized distributions of each order of moments from the two training classes.
The green contours represent the moment distribution of the Gaussian random field with ℓ = 5.0 and the red contours represent that with ℓ = 20.0. The orange and blue
stars are the theoretical predictions of different ( )

ac
N for the two classes based on the trained filter weights and analytical expressions of correlation functions for a

Gaussian random field.

Figure 5. Left: the trained filter of C3NN classifying two Gaussian random fields with different correlation lengths (see Figure 3). Right: the trained filter of C3NN
classifying Gaussian and log-normal random fields with the same power spectrum but different higher-order NPCFs (see Figure 5). In both cases, the filter is of size
31 × 31 pixels and all weights are non-negative. Both color bars show the scales of the filter weights.
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We show in Figure 6 all possible 2PCF separations together
with their total weights.

We find that the most important 2PCF that contributes to the
classification is exactly the one with a separation of 5.0 pixels
with a corresponding total weight is 0.028.

The above filter can even be used to compute { }( ) ( ) ( )c c c, ,1
1

1
2

1
3

analytically. We know theoretically for the training Gaussian
random fields, their expectation value and all connected 3PCFs
should be 0.0. Therefore, ( )c1

1 and ( )c1
3 for both training data

classes would be 0.0. For ( )c1
2 , first, we select all possible 2PCF

configurations within the filter and calculate the total weight for
each of them, then by following Equation (4) we combine these
total weights with the corresponding 2PCF amplitudes that can
be computed analytically for Gaussian random fields. The
equation we use in this case is the one used by GSTools to
create the Gaussian maps (Webster & Oliver 2007):

⎜ ⎟⎛⎝ ⎡⎣⎢ ⎛⎝ ⎞⎠ ⎤⎦⎥⎞⎠( ) ( )g s= - -r
sr

ℓ
1 exp , 122

2

where γ represents the 2PCF amplitude at a given separation r.
The standard rescale factor is p=s 2. The variance
amplitude is denoted by σ2 and ℓis the correlation length of
the Gaussian random field. The results are ( ) =c 0.1991

2 for
ℓ= 5.0 and 1.049 for ℓ= 20.0. They are marked by orange and
blue stars in the right panel of Figure 4 and are well contained
within the 1σ confidence interval of the distributions mapped
by C3NN from the input maps of the two classes. This confirms
that the moments ( )

ac
N measured by C3NN can be interpreted in

terms of correlation functions.

3.2. Test Case of Gaussian and Log-normal Distributed Weak-
lensing Convergence Fields

In cosmology, one of the central quantities of interest is the
3D matter density contrast field δ3D whose evolution is
governed by the interplay of large-scale gravitational and
small-scale baryonic feedback processes. One way to probe the
δ3D field is through gravitational lensing. Gravitational lensing

is the bending of light rays coming from background light
sources, e.g., galaxies, by the gravitational potential of
foreground lens objects, e.g., galaxy clusters, resulting in our
observation of shifted, magnified, and distorted images. In most
cases where a light ray passes far away from the centers of
galaxy clusters where the gravitational potential is weak, it only
experiences slight deflections by many foreground lenses
distributed along its trajectory to us. Hence, we only observe
a minuscule distortion in the image of the source. This is
usually the case when light from sources passes through the
foreground matter distribution of the large-scale structure
(LSS). The distortion is so small that one can only see this
effect on a statistical basis through correlations of the alignment
of the weakly but coherently distorted images of many
background source galaxies. This is known as weak gravita-
tional lensing and serves as a probe for investigating the
distribution of matter in the LSS. This field can be interpreted
as the shear caused by a weighted line-of-sight projection of
the 3D matter density contrast field—known as the weak-
lensing convergence field. The weak-lensing convergence field
κ(θ) can be written as a line-of-sight projection of the 3D
matter density contrast field (Bartelmann & Schneider 2001)

( ) ( ) ( ) ( )òq qk c c d c t c= -qd , , 133D
0

where χ is the radial comoving distance, θ is a 2D planar
vector denoting positions on the sky and τ0 is the conformal
time today. The term q(χ) is the projection kernel (also known
as lensing efficiency) and for the case when all source galaxies
are located in a Dirac-δ function-like tomographic bin at χs it
becomes

( ) ( ) ( )c
c
c

c c
c

c c=
W -

q
H

c a

3

2
; with . 14s

s
s

0
2

m
2

However, it is straightforward to write q(χ) for an ensemble of
sources (instead of a single source) in terms of a distribution in
a tomographic redshift bin following a normalized probability

Figure 6. All possible 2PCF configurations from the filter in the left panel of Figure 5 with their corresponding total weights. The green horizontal dashed line
indicates a total weight of 0.02 and one can observe that there are five separations with weight contributions exceeding this threshold. These separations are 5.0, 8.06,
9.22, 12.04, and 13.04 pixels, respectively. The intersection of red dashed lines marks the separation with the largest weight contribution (i.e., 5.0 pixels with a total
weight of 0.028).
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density function (PDF) ( )c¢p (Kilbinger 2015):

( ) ( ) ( )
( )

òc
c
c

c c
c c
c

c c

=
W

¢ ¢
¢ -

¢
´

k c

c



q
H

c a
p

3

2
d

with . 15

0
2

m
2

lim

lim

In the equations above Ωm is the total matter density parameter
of the Universe today, H0 the Hubble parameter today, a the
scale factor, and c the speed of light.

In this section, we are interested in applying C3NN to a
cosmological scenario where we study how well our
architecture can distinguish simulated convergence fields that
follow two different distributions: one a Gaussian random field
and another a log-normal random field. Log-normal random
fields have been extensively studied and shown to closely
approximate the one-point PDF of the convergence field
(Hilbert et al. 2011; Xavier et al. 2016). In order to simulate
these sets of maps, we use the publicly available FLASK tool
(Xavier et al. 2016) to create realizations of Gaussian/log-
normal fields on the celestial sphere with a Dirac-δ source
redshift distribution at z= 1.0334 in HEALPix format with
NSIDE= 2048 (Górski et al. 2005; Zonca et al. 2019). The
detailed process of creating the maps is described in Section 4.2
of Halder et al. (2021). The generated Gaussian and log-normal
maps share the same power spectrum (or the 2PCF) but differ
in the higher-order correlations of the field, which in the case of
the log-normal field is induced by the so-called log-normal shift
parameter (see Xavier et al. 2016). This toy scenario is hence
well set for us to apply C3NN in a cosmological context and
study its power in tapping into higher-order information in the
lensing convergence field.

With the full-sky simulation maps from FLASK, we partition
them into nonoverlapping square patches on which we can
implement C3NN. We adopt the approach in Ferlito et al.
(2023; see their Section 2.4 and Figure 1) for partitioning the
spherical sky. Each square map is 20× 20 deg2 with an angular
pixel resolution of 6′. In Figure 7 we show one example from
Gaussian and log-normal random field respectively. Both
random fields have the same underlying cosmological

parameters and power spectrum. As in Section 3.1, we prepare
5000 maps for each class where 4500 is for training and 500 for
validation. Each map only has one channel, which in this case
is a single source redshift bin lensing convergence field. We fix
the filter number, filter size, and the highest correlation order to
be 1, 31× 31 pixels and 4, respectively. The optimized
hyperparameters from Optuna are shown in Table 2. With
these parameters, the model is able to reach a validation
accuracy of 100% after 100 training epochs.
The regularization path analysis in the upper left panel of

Figure 8 shows that the third-order moment ( )c1
3 is activated first

(dotted line) and contributes most to the classification accuracy.
This is consistent with our expectation as the Gaussian and log-
normal random fields that we have constructed should only
start to differ at the 3PCF level. The second and fourth-order
moments only become activated when both training and
validation accuracy have reached 100% so that their contribu-
tions can be counted as overfitting. One notices that ( )c1

1 , which
according to Equation (3) is the average of the field, is critical
in complementing ( )c1

3 in the classification between the two
classes. The reason behind this is explained in the bottom panel
of Figure 8 where we show the marginalized distributions of
feature vectors from training data in the ( ) ( )-c c1

1
1

3 plane. As
described in Section 2, we can visualize the evolution of the

Figure 7. Simulated Gaussian and log-normal square maps with the same underlying cosmology and power spectrum but different higher-order correlation functions.
Both classes of maps have a size of 200 × 200 pixels spanning an area of 20 × 20 deg2 on the spherical sky maps from which they are partitioned (see Section 3.2 for
details). The color bar indicates the field amplitude.

Table 2
Four Optimized Hyperparameters in C3NN Trained on Gaussian and Log-

normal Random Fieldsa

Parameter γ

Learning
Rate

Learning Rate
Decaying Ratio Optimizer

(lr) (f)

Value 0.0026 0.15 0.66 “RMSprop”

Notes. γ is the regularization strength in Equation (10). We use a learning rate
scheduler that decays the initial learning rate (lr) of each parameter group by a
factor f after every epoch. We also simultaneously search for the best
optimizer and obtain RMSprop (Graves 2013).
a See Figure 7.
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decision boundary in the projected ( ) ( )-c c1
1

1
3 plane, along with

the changes in the regularization strength λ. At the very
beginning of ( )b1

3 activation, the decision boundary can only be
drawn based on the marginalized distribution of ( )c1

3 since all
the other dimensions are still suppressed by the large λ value.
Once ( )b1

1 is activated, the decision boundary can be probed
within a two-dimensional plane. It turns out that the mapped
distributions of { }( ) ( )c c,1

1
1

3 from the two random fields have the
same degeneracy so that C3NN can rotate the decision
boundary to achieve higher classification accuracy. This
process is exactly depicted in the rotation from the green solid
line ( ( )b1

1 activation) to the blue dashed one ( ( )b1
2 activation) in

the figure. The blue decision boundary completely separates the
two classes. Activation of ( )b1

2 together with others until the end
of the regularization path makes almost no difference to the
classification.

As in the previous discussion, we can also combine the filter
weights (see the right panel of Figure. 5) and the theoretical
expressions for NPCFs to predict the corresponding moments ( )c N

1
for both the Gaussian and log-normal fields. Any 2PCF of a given
angular separation within the filter size is the same for both
random fields and can be computed from the power spectrum. For
the Gaussian random field, all 4PCFs directly depend on the
2PCFs within the quadrilateral configurations while all its odd
correlation functions are zero. For the log-normal random field,
any of its 3PCFs and 4PCFs can be written in terms of the 2PCF
within a given configuration and the log-normal shift parameter
mentioned above. Readers who are interested in the exact
equations are referred to Appendix B of Hilbert et al. (2011). The
calculations give us { } {( ) ( ) ( ) ( ) = ´ -c c c c, , , 0.0, 2.414 10 ,1

1
1

2
1

3
1

4 4

}´ -0.0, 1.315 10 8 for the Gaussian random field and
{ } {( ) ( ) ( ) ( ) = ´ ´- -c c c c, , , 0.0, 2.414 10 , 8.078 10 ,1

1
1

2
1

3
1

4 4 7 ´1.613
}-10 8 for the log-normal random field. These are marked by the

orange and blue stars in the upper right panel of Figure 8,
respectively. Once again, the calculations fall well within the bulk
of the moments distribution output by C3NN, which we obtain by
passing all the training data through our trained model. The right
panel of Figure 5 shows that the dominant weights that hold the
classification power mainly concentrate in the central part of the
filter. Qualitatively, we can understand this as statistically
speaking, log-normal random fields asymptotically resemble
Gaussian random fields when smoothed on large scales. The
differences between the two fields are mainly captured through the
higher-order correlation functions which become increasingly
more significant on small scales. An efficient way to distinguish
the two classes therefore would be to select correlation functions
beyond 2PCFs on small scales. Then it is no wonder that out of all
triangular configurations that can be selected from the filter
constituting ( )c1

3 , C3NN considers the smallest one the most
important in aiding the classification, which is the isosceles
triangle with two side lengths equal to 6′ (neighboring pixel
separation) and the third equal to 6 2 arcmin.

4. Results from N-body Cosmological Simulations

In Sections 3.1 and 3.2, we have shown that C3NN can
classify different random fields by correctly capturing the
underlying statistical properties. In this section, we are
interested in applying the framework to weak-lensing fields
from realistic N-body simulations to investigate whether a
successful classification is still possible and what statistical
features C3NN extracts from the training data. We shall also

investigate the impact of shape noise and smoothing scale of
the simulated maps on the model’s performance.

4.1. Weak-lensing Convergence Maps from N-body
Simulations

In the rest of this work, we use weak-lensing convergence
maps from the publicly available CosmoGridV18 simulations
(Fluri et al. 2022; Kacprzak et al. 2023). We focus on the
simulation products around the fiducial cosmology adopted by
CosmoGridV1, which has the following parameter values:
Ωm= 0.26, Ωb= 0.0493, σ8= 0.84, w0=−1.0, ns= 0.9649,
and H0= 67.3 km s−1 Mpc−1. The two classes of maps we use
as training data share the same parameters as the fiducial one
except for w0. One class of simulation has w0=−1.05, which
is in the realm of “phantom dark energy” (Ludwick 2017) and
the other has w0=−0.95, which is characterized as “quintes-
sence” (Tsujikawa 2013). For each simulation set, there are 200
independent full-sky simulations. Each simulation contains a
series of light cone shells along the redshift until z= 3.5. We
project these shells following the four source galaxy redshift
distributions of the Dark Energy Survey Year 3 (DES Y3) data
release (see Figure 11 in Myles et al. 2021) to produce the
corresponding full-sky weak-lensing convergence maps. Read-
ers can refer to Sgier et al. (2019, 2021) and Reeves et al.
(2024) for details of the methodology we adopt for the shell
projection and convergence map generation. These maps from
the four different source redshift distributions constitute the
four channels in the input data and enable us to perform a
tomographic analysis with C3NN.
On top of these noiseless maps, we also add shape noise to

make more realistic tests. We directly add noise to each pixel in
the full-sky convergence map by sampling independently from
a Gaussian distribution with zero mean and variance
σ2= ò2/(Ang) where ò is the dispersion of galaxy ellipticity,
ng is the galaxy surface number density and A is the pixel area.
We adopt DES Y3 values for ò and ng, which are 0.255, and
{1.476, 1.479, 1.484, 1.461} -arcmin 2 for each source redshift
bin, respectively (Jeffrey et al. 2021). The pixel area of the full-
sky convergence map is 2.95 arcmin2. Besides shape noise, we
also take into account the smoothing of the input maps. This is
motivated by the concern that in real observations we may need
to discard small-scale measurements of correlation functions
since they are impacted by the baryonic feedback effects that
we cannot realistically model (Abbott et al. 2022) in N-body
gravity-only simulations. For map smoothing, we apply
Gaussian kernels with full widths at half maximum (FWHM)
of { }¢ ¢ ¢ ¢10 , 20 , 30 , 40 to the tomographic full-sky maps.
In this analysis, we use the same partition method mentioned

in the previous section to obtain 5800 nonoverlapping square
maps for each cosmology and source redshift bin. We split 90%
of the data for training and 10% for validation. Regardless of
the smoothing scales, the square map always has an area of
20× 20 deg2 and a size of 200× 200 pixels. The difference of
w0 between the two cosmologies while other parameters are
fixed to the same values is about 1/6 of the 1σuncertainty as
constrained by the state-of-the-art DES Y3 analysis (Abbott
et al. 2022) marginalized over other cosmological parameters
as well as nuisance parameters. This constraint comes from a
combination of cosmic shear and galaxy clustering, the so-
called 3× 2pt analysis, within the w0CDM model. Only when

8 http://www.cosmogrid.ai/
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data from 3× 2pt and the external low-redshift probes
(including baryon acoustic oscillations, supernovae Type Ia,
and redshift space distortions) are combined can the margin-
alized 1σ uncertainty of w0 be constrained approximately to
0.1. Based on these contexts, it would require multiple
powerful cosmological probes to accurately distinguish
between the two dark energy scenarios we are testing. Hence,
in the context of the above training setups, we would like to

address the following questions: (i) with weak-lensing conv-
ergence alone (i.e., no external probes), how much generic
improvement can higher-order correlation functions as captured
by the moments ( )

ac
N contribute to differentiating the two dark

energy equation of state parameters; (ii) what is the relative
importance of each order of moment in such a classification
task; (iii) how do shape noise and different smoothing scales
affect the model performance.

Figure 8. Upper left: the regularization path analysis applied to C3NN trained on two classes of Gaussian and log-normal random fields (see Figure 7). The upper part
shows the evolution of the ( )ba

N coefficients along with the decrease of the regularization strength λ in Equation (11) (an increase in 1/λ). The lower part shows the
corresponding changes in training and validation accuracy. Different types of vertical dashed lines indicate the first λ value at which each ( )ba

N becomes nonzero
(i.e., gets activated). Upper right: contours of moment ( )

ac
N distributions mapped by passing the full training data set into the moment map generator and spatial

averaging after the first round of training. The diagonal subplots show the marginalized distributions of each order of moments from the two training classes. The
green contours represent the moment distribution of the Gaussian random field and the red contours represent that of the log-normal random field. The orange and blue
stars are the theoretical predictions of different ( )

ac
N for the two classes based on the trained filter weights and analytical expressions of correlation functions for the two

fields. Bottom: the distribution of { }( ) ( )c c,1
1

1
3 with decision boundaries from the classifier. The values of both moments are batch normalized compared to the

corresponding upper right panel. The blue distribution is from the log-normal random field and the red one is from the Gaussian random field. Lines with different
colors and styles corresponding to the vertical lines in the upper left panel represent the decision boundaries of C3NN at activations of ( )ba

N coefficients up to N = 4, as
well as the boundary at the last regularization strength value.
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4.2. Noiseless Tomographic Training Results with Varying
Smoothing Scales

With the above-mentioned noiseless training data, we apply
C3NN to them at each smoothing scale and summarize the
results in the left panel of Figure 9. To keep the model simple,
at the beginning we freeze the filter number, filter size, and the
highest correlation order (1, 31× 31 pixels and 4, respectively)
while changing the smoothing scales of the training data. The
tuned hyperparameters are shown in Table 3.

From the figure we can observe that the second and third-
order moments are the major contributors to the classification.
The activation of ( )b1

3 (onset of the gray bars) always follows
that of ( )b1

2 (end of the light blue bars), indicating that when one
only searches for a single moment to distinguish the above two
w0CDM cosmologies, the second-order moment ( )c1

2 is most
effective. However, once the third-order moment ( )c1

3 is
activated and combined with ( )c1

2 , it can significantly improve
the validation accuracy. This is analogous to what Gong et al.
(2023) found from the perspective of parameter inference that
w0 constraint can be particularly tightened by combining 2PCF
and a compressed version of the 3PCF (called the integrated
3PCF). As for the other higher-order moments, here ( )c1

4

specifically, can only bring minor validation accuracy improve-
ment compared to ( )c1

2 and ( )c1
3 . This can be explained by either

the cosmic variance caused by the lack of sampling of 4PCF
configurations within the filter due to the limited 400 deg2

simulated map area resulting in a lower signal-to-noise

compared to lower order moments, or the map resolution,
which prohibits the higher-order moments in probing smaller
and smaller scales where their importance become increasingly
more significant. Both effects can lead to the weakening of the
classification capability of higher-order moments. Another
explanation for the weak classification power contribution from

( )c1
4 under the current setups is that there is not much

information contained in the fourth-order moment of weak-
lensing convergence that can be added to differentiate between
these two different cosmologies. One supportive evidence is
that the increased validation accuracy after activating ( )b1

4 is not
as significant as the increment brought by ( )c1

3 .

Figure 9. Left: the validation accuracy from regularization path analysis (see Section 2) of C3NN trained on two classes of tomographic weak-lensing convergence
maps with different w0 values (−1.05 and −0.95). The four source redshift distributions follow that of DES Y3 analyses. Test names in black indicate that the analyses
are with noiseless data. The first four tests deviate from each other in the FWHM of the Gaussian kernels used for smoothing. In the fifth row of the bar chart, we give
the model one extra free parameter by allowing Optuna to optimize the highest correlation order while still fixing the filter number and size. In the sixth row, we
further add filter size to the set of tuning parameters. The sixth and seventh rows of the bar charts are results from different noisy training data with the same model
setups as the corresponding noiseless test with 10’ smoothing. The name in orange represents that the test is with noisy data produced with DES Y3 ò and ng values
while the one in blue uses training data with ng rescaled to 7.5 arcmin−2 for each tomographic bin (as expected for a Stage IV survey like Euclid/LSST). In each single
row of the bar chart, from left to right, the different color components form the sequence of the activation of moments in the regularization path analysis. The length of
every color component represents the improvement in validation accuracy added by the current activation combined with all the previous ones. The total validation
accuracy starts from 50% (random classification) and ends with the summation of all color components. Right: the percentage of improved validation accuracy from
the activation of different moments with respect to the total validation accuracy in each test. It shares the same color labels and test names as the left panel. Color
components in each bar are also arranged according to the activation sequence.

Table 3
Same as Table 1, the Optimized Hyperparameters of C3NN for Varying
Smoothing Scales Applied to Noiseless Tomographic Weak-lensing
Convergence Maps with Different w0 Values (−1.05 and −0.95)a

γ

Learning
Rate

Learning Rate
Decaying Ratio Optimizer

(lr) (f)

40′ smoothing 0.06 0.018 0.58 “Adam”

30′ smoothing 1.10 0.041 0.24 “Adam”

20′ smoothing 0.0023 0.043 0.34 “Adam”

10′ smoothing 0.0022 0.064 0.14 “Adam”

Notes. Here, we fix the filter number, filter size, and the highest correlation
order.
a See Section 4.2.
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One should also notice that although the amount of
validation accuracy associated with ( )c1

2 (i.e., the size of the
light blue bars in the first four rows in the left panel of Figure 9)
increases along with the decrease of the smoothing scale, the
results are still similar to each other i.e., they make up 6%–8%
of the total validation accuracy. In comparison, the additional
validation accuracy brought by ( )c1

3 (size of the gray bars)
depends more drastically on the smoothing scale. The result
from 40′ smoothing is approximately six times smaller than the
result from 10′ smoothing. This different dependence indicates
that the joint distribution of { }( ) ( )c c,1

2
1

3 mapped by the trained
model from two classes has a larger overlapping region as we
increase the smoothing scale. Similar to the bottom panel in
Figure 8, we show in Figure 10 the batch-normalized{ }( ) ( )c c,1

2
1

3

joint distributions for the different smoothing scales. It is clear
that the initial activation of ( )b1

2 leads to the horizontal decision
boundary in each panel. Those decision boundaries then
gradually rotate to the direction along the degeneracy of ( )c1

2

and ( )c1
3 after other activations. However, as the smoothing

scale increases, the distributions from two classes in ( ) ( )-c c1
2

1
3

plane become more extended along the orthogonal direction of
the degeneracy. This naturally enlarges the overlapping region
of the two distributions and reduces the validation accuracy
C3NN can obtain with the activation of ( )b1

3 .

To ensure that our validation accuracy is not limited by the
fixed model parameters, i.e., filter number, filter size, and the
highest correlation order, we alternatively treat them as
hyperparameters and optimize them using Optuna. The 5th
and 6th rows of the bar charts in the left panel of Figure 9 show
the results of tuning the highest correlation order and
simultaneously tuning it with the filter size, respectively (see
Tables 4 and 5 for the results).
In both cases where C3NN can measure moments beyond

fourth order, the validation accuracy only shows little
improvement. The dominant contribution still comes from the
joint distribution of { }( ) ( ) ( )c c c, ,1

1
1

2
1

3 . We even further allow the
tuning process to vary the number of filters in the model but it
does not help to substantially increase the validation accuracy
either. We do not show the corresponding result in the plot as
the optimized filter number is 5 and the highest correlation
order is 8 according to Optuna, which is difficult to fit into
the plotting space. This is another sign suggesting that
moments of convergence beyond the third order in total may
not contain sufficient information to classify different dark
energy equation of state parameters at the desired precision of
Δw0= 0.1 within the context of our test setup. To address this
issue, one promising approach would be to include more
observables such as projected galaxy number density into the
training data and measure the cross correlations among these

Figure 10. The batch-normalized { }( ) ( )c c,1
3

1
2 joint distributions mapped by C3NN trained on simulated noiseless weak-lensing convergence data for different

smoothing scales. The blue distribution represents the mapping from data with w0 = −1.05 and the red distribution represents the mapping from data with
w0 = −0.95. Lines with different colors and styles are the decision boundaries learned by the classifier during the regularization path analysis at the activation of
different orders of moments.
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quantities rather than keep adding higher-order moments
beyond the third order in the data vector. We defer this study
to future works.

From the above discussion, we show that C3NN can be a
useful tool to investigate the sensitivity of moments with
respect to the w0 parameter within the w0CDM model. Broadly
speaking, it is possible to extend this functionality to any given
binary classification tasks of two cosmological models that can
impact differently the matter distribution in our Universe, e.g.,
between the standard cold dark matter and other exotic models
such as wave dark matter (Hui 2021) or self-interacting dark
matter (Tulin & Yu 2018). Moreover, it can provide a
quantitative understanding of the relative importance of
different orders of moments, which are directly related to
correlation functions, in classifying different cosmological
parameters or models. All exact numeric values in Figure 9
may vary slightly from one evaluation to another, but the
comparison among the total validation accuracy of different
tests is certain. Moreover, we can always confirm the
dominance of second and third-order moments as the first
and second-activated features that carry, relatively, the most
significant information in the classification.

4.3. Noisy Tomographic Training Results

For simplicity, we only show the training result from data at
10′ smoothing scale with shape noise with DES Y3 dispersion
of galaxy ellipticity and surface number density. This is the
seventh row of the bar chart in the left panel of Figure 9. The
validation accuracy of the other smoothing scales with the same
noise addition gradually decreases as in the noiseless cases.
Compared to the corresponding noiseless result (fourth row),
here the total validation accuracy reduces by approximately
6.6%, and ( )c1

3 contributes less significantly to the classification
power. Moreover, the contributions from both ( )b1

1 and ( )b1
4

almost vanish in the activation sequence. Overall, the effects of
shape noise are similar to that of smoothing: it mainly
decreases the total validation accuracy through moments
beyond second order.

Besides adding the shape noise associated with DES Y3
analyses, we also rescale the galaxy surface number density
mentioned in Section 4.1 to approximately the value that would
be provided by upcoming Stage IV lensing surveys such as
Euclid (Euclid Collaboration et al. 2022) and Vera Rubin

Observatory’s LSST (LSST Dark Energy Science Collabora-
tion 2012). We adopt the new total galaxy surface number
density to be 28 galaxies arcmin−2, which is between those of
the two surveys (Euclid Collaboration et al. 2020; Chang et al.
2013). We retain the four tomographic bins in the training data
and equally divide this new number density among all of them.
The original shape noise thus should be rescaled by a factor of
{0.444, 0.444, 0.445, 0.441} for each tomographic bin,
respectively. Through this, we obtain a crude estimation of
C3NN performance on next-generation survey data. One
should bear in mind that in this test the map size of the
training data (20× 20 deg2) is much smaller than the actual
footprints of these Stage IV surveys and that we also use fewer
tomographic bins. The result is shown in the eighth row of the
bar chart in the left panel of Figure 9. Clearly, with a higher
signal-to-noise ratio, the total validation accuracy exceeds that
of noisy simulated data using DES Y3 shape noise parameters.
Out of all moments, ( )c1

3 gains the largest relative growth in its
classification power. Although relatively small compared to ( )c1

2

and ( )c1
3 , we also find that ( )c1

1 and ( )c1
4 can bring non-negligible

improvements to the total validation accuracy. Another point to
observe is that though it is not as powerful as the model trained
on the corresponding noiseless data as expected, there is not a
great contrast between the results that these two models
manifest. This implies that with the forthcoming Stage IV
surveys, C3NN can potentially be close to reaching its best
performance.
Another useful perspective to understand all the above

results is shown in the right panel of Figure 9. The total
validation accuracy of each test is used as a normalization
constant, based on which we calculate the percentage of
increased validation accuracy associated with each order
moment. We notice that with larger smoothing scale or shape
noise, the percentage of the second-order moment increases
while that of higher orders, here particularly third and fourth-
order, decreases. This is consistent with our previous findings
that the power of second-order moment is robust against
varying smoothing scales or shape noise but higher-order
moments can be significantly impacted. Another point the right
panel helps to stress is that ( )c1

3 is powerfully complementary to
( )c1
2 , e.g., in the test case of noisy data with Euclid/LSST

galaxy surface number density, the combination of ( )c1
3 and ( )c1

2

almost double the classification ability of the model compared

Table 4
Optimized Hyperparameters Including the Highest Correlation Order for the C3NN Model Trained on Simulated Noiseless Tomographic Convergence Maps with 10′

Smoothinga

Parameter Correlation Order γ Learning Rate Learning Rate Decaying Ratio Optimizer
(lr) (f)

Value 6 0.0039 0.18 0.75 “Adam”

Note.
a See Section 4.2.

Table 5
Same as Table 4 but also Allowing the Optimization of the Filter Size along with the Highest Correlation Order in the Training

Parameter Filter Size Correlation Order γ Learning Rate Learning Rate Decaying Ratio Optimizer
(lr) (f)

Value 11 × 11 8 0.002 0.019 0.93 “Adam”
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to ( )c1
2 alone. Unfortunately, we do not observe this feature in

moments beyond third order within our test setups.

5. Summary and Conclusion

C3NN, originally proposed by Miles et al. (2021) in the
context of correlated quantum matter, is an interpretable
machine-learning architecture that we have introduced for
cosmological analyses. It is composed of two parts (see
Figure 1). The first part comprises a CNN-based N-point
moment map generator that outputs a series of statistics ( )

ac
N ,

which we call N-point moments and have an explicit
mathematical connection to traditional NPCFs that we are
familiar within cosmology. In this part of the model we first
perform a single convolution on the input data and then without
applying a nonlinear transformation as the usual practice, we
construct moment maps directly from the initial convolved map
through a recursive procedure (see Equation (2)). We adapt the
filters of the convolution to be rotationally invariant (Cesa et al.
2022) such that the output remains stationary for arbitrary
rotations of the input. This benefits the training data efficiency
of our analyses and the interpretation of the trained filter
weights. The second part of the model, which is a moment-
map-based classifier, exploits these output moment maps to
perform classification tasks by passing them through con-
secutive layers of spatial averaging, batch normalization, and
logistic regression. We optimize all hyperparameters of C3NN
using the package Optuna.

The interpretability of C3NN mainly exists in the following
three aspects (Section 2): (i) the output moment ( )

ac
N of a

specific order N can be mathematically expressed in terms of
the correlation function at the same order. This is unlike the
often hard-to-interpret summary statistics extracted by conven-
tional CNN models, (ii) through a regularization path analysis
(Efron et al. 2004; Tang et al. 2014), which is integrated into
the classifier part of our model, we can have a quantitative
understanding of the relative importance of the different order
moments ( )

ac
N in contributing to the model’s classification

power. Moreover, (iii) we can investigate the trained filter
weights by connecting individual pixels to form the config-
uration of any given NPCF. The filter weights for a given
NPCF configuration directly allow us to rank different
correlation function configurations within a given moment.

Since this is the first time we introduce this architecture into
the field of cosmology, we focus on the relatively simple task
of binary classification and implement C3NN on three tests
including both proof of concept as well as application to
simulated cosmological data. The results are summarized as
follows:

1. Gaussian random fields with different correlation lengths
(Section 3.1). The performance of C3NN to distinguish
between two Gaussian random fields with different
correlation lengths is in line with theoretical expectations.
The model successfully achieves 100% classification
based on the second moment ( )c1

2 alone. Its trained filter
weights reflect the respective correlation lengths of the
two classes of training data. We find good agreement
between the distributions of each order of moment
measured by C3NN and the corresponding theoretical
prediction where we combine the trained filter weights

and the analytical calculation of all possible correlation
functions at each order.

2. Gaussian and log-normal random fields with the same
2PCF but different higher-order moments (Section 3.2). In
this test, we apply C3NN to distinguish a Gaussian from a
log-normal random field, which starts to differ from each
other at the third moment. C3NN reaches a perfect
classification by first activating and tapping into the
information in the third moment of the field ( )

ac
3 and then

via the field’s first moment ( )c1
1 (arising due to finite field

map sizes). The ( )c1
3 activation is consistent with the

theoretical expectation since the two random fields share the
same 2PCF but not the 3PCF. We further demonstrate that
the activation of ( )c1

1 can separate the mapped distribution
from the two classes in ( ) ( )-c c1

1
1

3 plane completely (see
lower panel in Figure 8). Similar to the previous test, we
also find good agreement between the distributions of each
order of moment output by C3NN and the corresponding
theoretical predictions.

3. N-body simulated weak-lensing convergence fields with
w0=−1.05 and −0.95 (Sections 4.2 and 4.3). Finally,
we investigate the classification power of C3NN on
weak-lensing convergence maps between two simulated
dark energy scenarios of w0=−1.05 and −0.95. C3NN
can maximally reach a classification accuracy of around
70% with our training setups for a 400 deg2 survey map.
We find that the classification power of the second
moment ( )c1

2 is robust against varying smoothing scales or
shape noise but higher-order moments can be signifi-
cantly impacted. In all our tests, ( )c1

2 and ( )c1
3 dominate the

classification accuracy and the activation of ( )c1
3 is the

major complementary component to ( )c1
2 (Figure 9). On

the other hand, higher-order moments of convergence
beyond the third order in total do not contain sufficient
information to classify between the two different dark
energy equation of state parameters, at least within the
context of our investigation setup. This suggests that
including more observables besides convergence in the
input data and using C3NN (or the conventional 2PCFs
and 3PCFs) to measure the cross correlations among
these different observables may be a more efficient
approach.

Overall, we show that the architecture of C3NN contains
novel features that can be robustly and quantitatively
interpreted and are rarely seen in the application of machine-
learning tools to cosmology nowadays. Through multiple tests,
we prove its validity and reveal its potential to provide us with
physical insights. C3NN can have many interesting extensions
such as simulation-based inference with the CNN-based
N-point moment generator or 3D C3NN, which can measure
moments in the context of galaxy clustering. The former can be
built by replacing the moment-map-based classifier with a
neural network-based likelihood-free-inference pipeline using
methods such as normalizing flows or mixture density
networks (Alsing et al. 2019). The latter can be constructed
by extending the current 2D architecture in Equation (2) to 3D.
All these can offer us promising opportunities for future
exciting applications of C3NN in cosmology.
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1 Introduction

In weak gravitational lensing (WL), light rays from background source galaxies propagate
through the foreground inhomogeneous distribution of baryonic and dark matter. This
induces (de)magnification of the brightness of galaxies and a coherent distortion pattern
in their observed shapes [1, 2]. The statistics of the projected WL fields depend on the
three-dimensional large-scale structure (LSS) and hence provide a powerful way to probe
and address critical questions in cosmology such as structure formation history, the nature
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of dark energy and dark matter, and the laws of gravity. WL cosmology is therefore an
active area of research in currently ongoing wide-area galaxy imaging surveys such as DES [3],
KiDS [4] and HSC-SSP [5]. The promising results from these surveys have also motivated
the development of new generation surveys such as Euclid [6] and Vera Rubin’s LSST [7]
which will soon provide data with unprecedented quality.

One standard approach to extract cosmological information from WL fields is to analyse
their power spectra (in Fourier space) or the real space 2-point correlation function (2PCF).
These statistics can completely characterise the information contained in Gaussian random
fields which describe our Universe accurately at its earliest stage of evolution [8] and on linear
(large) scales. However, at late times, the evolution of matter density fluctuations becomes
nonlinear due to gravitational instability and develops non-Gaussian features on nonlinear
(small) scales. As a consequence, to probe the rich information contained in this non-Gaussian
late-time cosmic density field one needs to continue standard 2PCF analyses as well as go
beyond and investigate non-Gaussian statistical tools. We follow this path in our work.

There are various kinds of non-Gaussian statistics that have already been or that will
be applied to weak-lensing survey data. We mention as examples the cosmic shear 3-point
correlation function (3PCF) [9, 10], the integrated 3PCFs [11–14], aperture-mass moments [15–
17], lensing peaks [18, 19] and density-split statistics [20–22] (to name a few). All of these
have distinct advantages and disadvantages based on both their measurement and modelling
strategies. A typical WL survey analysis strategy would rely on a baseline 2PCF analysis and
further complement that with non-Gaussian statistics [13, 23] to obtain stringent constraints
on cosmological parameters. Extracting non-Gaussian information is a promising avenue as
field-level approaches have been shown to enhance the constraining power for σ8 and Ωm
by a factor of 3 and 5, respectively and to break the weak lensing degeneracy [24, 25]. The
Probability Distribution Function (PDF) of the weighted projection of the matter density
fluctuation field along the line-of-sight, the weak lensing convergence field (κ), was shown to
contain a significant amount of cosmological information [23] and to hold the potential to
break cosmological parameter degeneracies that are exhibited in standard weak lensing 2PCF
analyses [26–28]. By measuring the smoothed κ field value inside apertures (or cells), the
one-point κ-PDF statistic has the advantage of being straightforward to measure compared
to other non-Gaussian WL convergence field probes such as bispectrum (counting triangular
configurations) or Minkowski functionals (topological measurement). An emulation approach
to constrain cosmological parameters using the κ/σ-PDF (σ is the κ standard deviation)
jointly with convergence power spectrum was applied to HSC Year 1 (Y1) data [29]. A
similar analysis was carried out for KiDS-1000 and LSST mock data as well [30]. Both these
works relied on small patches obtained from N -body simulations as models for the κ-PDF
to perform their cosmological analyses. In this series of work we instead use a from-first-
principles theoretical modelling framework based on the large deviation theory (LDT) for
the κ-PDF in the mildly nonlinear regime, giving access to the cosmological signal [28] as
well as the covariance [31]. This is complementary to the halo-model approach aimed to
describe the more nonlinear regime [32].

However, one major difficulty in applying κ-PDF to real data analyses is that κ itself is
not a direct observable. Reference [33] showed that the κ and the more directly observable
weak lensing cosmic shear γ are related to each other through a convolution and pointed out

– 2 –
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that the κ field can be reconstructed from the shear field through an inversion called the
Kaiser-Squires (KS) inversion. An important point to note is that this KS reconstruction
procedure is exact only if one has access to the shear field at every location on the celestial
sphere (full-sky), which unfortunately is not feasible. As a consequence, since the KS
inversion of the shear field is non-local, the reconstructed κ field is severely affected by the
unobserved regions on the sky due to survey geometry, the presence of masks and holes in
the data as well as the field borders. The KS reconstructed κ field can hence be significantly
different from the true inaccessible κ field. Thus, it is absolutely crucial that one includes
the accurate modelling/control of the masking effect when analysing any κ-statistic from a
reconstructed κ-field. To side step this problem, recent works have adopted informed priors in
the reconstruction of κ fields to infer the underlying true κ fields, e.g. the usage of a log-normal
prior [34] or a sparse wavelet prior with nulled B-modes inside the survey mask [35]. Some
of these informed priors were shown to work better than the KS inversion procedure at the
map-level in reconstructing the κ field [36], and recent machine-learning-based reconstruction
techniques seem to be extremely accurate [37, 38]. However, these other strategies come
with the disadvantage that the impact of the reconstruction under the presence of mask is
not at all straightforward to include in theoretical models of κ-field summary statistics. On
the other hand, this can instead be achieved within the context of the KS reconstruction
procedure and for example, has been done in the modelling of the KS reconstructed 1-point
κ-map moments [39] and as we shall present for the first time in this paper — is also possible
in the case of the KS reconstructed κ-PDF.

Previous works [15, 40, 41] have developed an accurate theoretical model for the cumulant
generating function and also the probability distribution function of the lensing-aperture
mass or the κ field using LDT.1 In this paper, we present for the first time a few-percent
accurate (within cosmic variance for the DES Y3 survey area) analytical prediction of the
KS reconstructed κ-PDF based on LDT while incorporating a realistic survey mask into
our modelling through the pseudo-Cl formalism [44], mitigation of convergence E to B

mode leakage and modification of the scaling relations between the cumulants of the density
contrast field through purely geometric corrections. We show that the reconstructed κ-PDF
from N -body simulations and the corresponding theoretical prediction is consistent within
statistical uncertainty of cosmic variance. We also present the framework to include the
modelling of different astrophysical and survey systematic effects in the reconstructed κ-PDF,
including shape noise, galaxy intrinsic alignments, additive and multiplicative shear biases,
photometric redshift uncertainties and higher-order lensing corrections. Using hydrodynamic
simulations, we also quantify the impact of baryonic feedback on the κ-PDF and find that it
mainly affects the variance of the PDF. All these components can be treated theoretically and
thus significantly strengthens the case for a κ-PDF analysis in real data using a theoretical
framework which is from-first-principles up to a re-scaling by the amplitude of fluctuations.

This paper is structured as follows: we first recap in section 2 the base model for the
true but observationally inaccessible (i.e. non-reconstructed from shear field) convergence
PDF from LDT. In section 3 we detail the KS reconstruction procedure of the κ field from a
simulated full-sky shear field with a realistic mask, that of the DES Year 3 (Y3) data release.

1Readers interested in the application of LDT in LSS cosmology are referred to refs. [42, 43].
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We show the modification of our original LDT theoretical model of the κ-PDF to account
for this reconstruction with the realistic mask in section 4 and test it against measurements
from N -body simulations in section 5. Furthermore, in section 6 we present the strategy for
modelling higher-order lensing, astrophysical and survey systematic effects in the κ-PDF.
We summarise and conclude in section 7. Appendix A recaps details about the treatment
of the masking effect on the cosmic shear power spectrum in the pseudo-Cl formalism. In
appendix B we quantify the effect of the KS reconstruction on the moments/cumulants of
the reconstructed κ-field. Finally, in appendix C we present a simplistic study of the impact
of a square mask (without holes) on the KS reconstructed κ-PDF.

2 Modelling the (observationally inaccessible) true convergence PDF

In this section we review how one can model the “true” but observationally inaccessible
1-point convergence κ-PDF based on large deviation theory (LDT). Readers already familiar
with this model originally described in e.g. [40, 45] can skip to section 3.

2.1 Statistical definitions

We use different statistical quantities that we briefly introduce here for clarity. From the
PDF PX of some continuous random variable X, one can define the Moment Generating
Function (MGF) as the Laplace transform of the PDF

MX(λ) = E
(
eλX

)
=
∫ +∞

−∞
dx eλxPX(x), (2.1)

or equivalently as the expectation value2 of the random variable eλX . Note however that
the existence of an MGF is not guaranteed for all possible random fields. For example, the
MGF of a strictly lognormal field is undefined for real positive λ. For the MGF to exist
(in cases where the PDF also exists), the PDF needs to decay faster than the exponential
eλx for the integral in equation (2.1) to exist. In the case of the one-point statistics of the
cosmic density field, as computed within the large deviation framework (see section 2.2),
there actually exists a critical positive real value λc — hereafter dubbed critical point —
beyond which the MGF is not defined. In practice and for a field sampled within a finite
volume, the MGF along the real axis will always exist and will simply tend towards eλXmax

for λ ≥ λc, where Xmax is the maximum value of X in the finite field.
The moment generating function, as its name implies, can be used to compute the moments

of the distribution as can be seen from the series expansion of the expectation of eλX ,

MX(λ)=E
(
eλX

)
=

+∞∑

n=0

λnE (Xn)
n! , (2.2)

2Note that we make use throughout this work of the ergodicity hypothesis, in which one assumes that
ensemble averages are equivalent to spatial averages (E(·) → ⟨·⟩) over one realisation of a random field at one
fixed time. This requires that spatial correlations decay sufficiently rapidly with separation so that one has
access to many statistically independent volumes within one realisation.
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so that the nth derivative of the MGF at λ = 0 is equal to the nth-order moment, E (Xn).
The logarithm of the MGF is the Cumulant Generating Function (CGF)

ϕ(λ) = log(M(λ)) = log(E(eλX)) =
+∞∑

n=1
kn
λn

n! , (2.3)

where kn are the cumulants (i.e. the connected moments) of the distribution and where we
have dropped the subscript X for clarity.

The reduced cumulants are defined as

Sn = kn

kn−1
2

, n ≥ 1 (2.4)

where k2 is the variance. These are important in the context of cosmological structure
formation because the Sn of the cosmic matter density field have been shown to be independent
of redshift down to mildly nonlinear scales [46, 47] and thus introduce relevant scaling relations
between the cumulants. We thus also define the scaled cumulant generating function (SCGF
hereafter) as

φ(λ) = lim
k2→0

+∞∑

n=1
Sn

λn

n! = lim
k2→0

k2 ϕ

(
λ

k2

)
, (2.5)

which we also extrapolate to non-zero values of the variance (i.e. evaluate at finite k2 on
our chosen smoothing scale). One can reconstruct the PDF from the CGF using an inverse
Laplace transform (inverting equation (2.1))

P(x) =
∫ +i∞

−i∞

dλ
2πi exp (−λx+ ϕ(λ)) . (2.6)

2.2 Large deviation theory of the matter density field

The large deviation theory (LDT) framework in large-scale structure has mainly been used
to model the one-point statistics of the smoothed 3D matter density field [see, for example,
42, 43, 48] and also of projected 2D quantities such as weak lensing convergence and aperture-
mass fields [15, 28, 40]. It has also been extended to the joint distribution between densities
measured at some distance [49] and projected quantities between different source redshift
bins [50] (i.e. n-point PDF). The results are most simply applied for highly symmetrical
window functions such as two- or three-dimensional top-hats, but can be generalised to other
smoothing schemes [15, 42, 51]. We begin here by recalling some of the results of LDT for
the one-point statistics of the matter density contrast smoothed in two-dimensional disks
(which replicates the dynamics within long cylinders), which in turn will allow us to compute
the one-point statistics of projected 2D quantities like the convergence field.

A set of random variables {ρϵ}ϵ with PDF Pϵ(ρϵ) is said to satisfy a large deviation
principle if the limit

Ψρϵ(ρϵ) = − lim
ϵ→0

ϵ log [Pϵ(ρϵ)] (2.7)

exists, where ϵ is the driving parameter. Ψ is known as the rate function of ρϵ and describes
the exponential decay of its PDF. The driving parameter ϵ indexes the random variables
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with respect to some evolution, for example an evolution in time. In the case of the matter
density field smoothed on a single scale R, this driving parameter is the variance, which
acts as a clock from initial to late times (ϵ ≡ σ2

R). We now omit the ϵ sub/superscripts
in our notation for simplicity.

The existence of a large deviation principle for the random variable ρ implies that its
SCGF φρ is given through Varadhan’s theorem as the Legendre-Fenchel transform of the
rate function Ψρ [52–54]

φρ(λ) = sup
ρ

[λρ− Ψρ(ρ)] , (2.8)

where the Legendre-Fenchel transform reduces to a simple Legendre transform when Ψρ

is convex. In that case,

φρ(λ) = λρ− Ψρ(ρ), (2.9)

where ρ is a function of λ through the stationary condition3

λ = ∂Ψρ(ρ)
∂ρ

. (2.10)

Another consequence of the large-deviation principle is the so-called contraction principle.
This principle states that for a random variable τ satisfying a large deviation principle and
related to ρ through the continuous mapping f , the rate function of ρ can be computed as

Ψρ(ρ) = inf
τ :f(τ)=ρ

Ψτ (τ). (2.11)

This is called the contraction principle because f can be many-to-one, in which case we are
contracting information about the rate function of one random variable down to the other.
In physical terms, this states that an improbable fluctuation of ρ is brought about by the
most probable of all improbable fluctuations of τ .

For the case of the normalised 3D matter density field ρ ≡ ρ/ρ̄, the rate function of the
late-time normalised density field at different scales can be computed from initial conditions
if the most likely mapping between the two is known — that is, if one is able to identify
the leading field configuration that will contribute to the infimum of equation (2.11). In
cylindrically symmetric configurations, as for a disk of radius R at redshift z (in 2D space)
or alternatively a very long 3D cylinder centered on this disk, the most likely mapping
between final and initial conditions should preserve the symmetry [55, 56].4 This in turn
leads to initial conditions also being cylindrically symmetric and the dynamics between the
two being that of cylindrical collapse.

3The ρc value at which Ψρ ceases to be convex leads to a λc value which corresponds to the critical point
mentioned when discussing equation (2.1).

4This is only true for a certain range of density contrasts around zero, very much sufficient for our purposes.
However, one could note that there are counter-examples in which the spherical or cylindrical symmetry does
not lead to spherical/cylindrical collapse being the most likely dynamics, for example in 1D for very high
values of the density.
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Thus, starting from Gaussian initial conditions,5 the rate function Ψτ̄ of the most probable
initial (linear) density field τ̄ is simply a quadratic term. From the dynamics of cylindrical
collapse that maps the most probable initial and late-time fields, the rate function Ψcyl of
the normalised late-time density field ρ in a disk of radius R is then given by

Ψcyl(ρ) = σ2
R

τ̄2

2σ2
r

, (2.12)

where σ2
R — our driving parameter — is the variance of the nonlinear density field in the disk,

σ2
r is the variance of the linear density field inside the initial disk (before collapse) of radius
r = Rρ1/2 (from mass conservation), and τ̄ is the linear density contrast obtained through the
most probable mapping between the linear and late-time density fields. This mapping is given
by 2D spherical (cylindrical) collapse, for which an accurate parametrisation is given by [59]

ζ(τ̄) = ρ =
(

1 − τ̄

ν

)−ν

. (2.13)

This parametrisation is in the spirit of previous works involving the density filtered in spherical
cells, while the value of ν in this parametrisation of ζ is chosen to be ν = 1.4, so as to
reproduce the value of the leading-order (tree-level) skewness in cylinders as computed from
Eulerian perturbation theory [48].

Then, as a straightforward consequence of the contraction principle, the rate function
given by equation (2.12) is also the rate function of any monotonic transformation of ρ, so that
for the density contrast δ = ρ− 1, we have Ψδ(δ) = Ψρ(ρ(δ)). Thus, plugging equation (2.12)
into equation (2.9) gives us the SCGF φcyl of the matter density contrast in a disk at redshift z.

Finally, one of the key aspects of the large deviation formalism in the cosmological context
is that we apply the result for the SCGF beyond the σ2

R → 0 limit. This extrapolation of the
exact result allows us to obtain a realistic CGF ϕcyl of the real density field for non-vanishing
σ2

R by rescaling the SCGF by the driving parameter (the nonlinear variance) at the scale
and redshift being considered. This yields:

ϕcyl(λ) = 1
σ2

R

φcyl(λσ2
R). (2.14)

This is physically meaningful because we thus construct a CGF naturally matching its
quasi-linear limit and since the reduced cumulants Sn from the cylindrical/spherical collapse
dynamics have been shown to be very robust over a large range of scales and redshifts
down to mildly nonlinear scales (≳ 5 Mpc/h at z ≳ 0, see for example figure 2 in [43] and
figure A1 in [48]) so that rescaling by the nonlinear variance σ2

R allows access to the full
one-point statistics of the nonlinear density field. In LDT terms, the SCGF given by the
large deviation principle is the well-defined asymptotic form taken by the reduced cumulants
of the field in the regime where the variance goes to zero, and we simply keep this form
for our predictions of the nonlinear CGF.

Finally, note that though equations (2.9) and (2.12) have been known and used for
three decades in the context of count-in-cells statistics, that is the density field filtered in

5Primordial non-Gaussianity can also straightforwardly be accounted for in this formalism as shown
by [57, 58].
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3D top-hat windows [see for example 60, 61], their re-derivation through large deviation
statistics is more general and allows to set up a framework for the computation of different
probabilities in the cosmological context.

2.3 From matter density to convergence

Let us recall that for a flat cosmology, the convergence κ can be interpreted as a line-of-
sight projection of the matter density contrast between the observer and the source and
can be written as [62]

κ(ϑ) =
∫ +∞

0
dzdχ

dz ωn(z)(χ) δ(χ, χϑ), (2.15)

where χ is the comoving radial distance and the generalised lensing kernel ωn(z) for a wide
distribution of sources following the normalised distribution n(z) is

ωn(z)(z) = 3ΩmH2
0

2c2

∫
dzs n(zs)

[χ(zs) − χ(z)]χ(z)
χ(zs)

H(zs − z)(1 + z), (2.16)

where the Heaviside H ensures that the integrand vanishes for z ≥ zs. Hereafter we only note
the lensing kernel ω for simplicity. Under the small-angle/Limber approximation, it can be
shown that correlators of the (smoothed) convergence field can be seen as a juxtaposition (by
which we mean an integral along the line-of-sight) of the 2D correlators of the underlying
density field, as if each 2D slice along the line-of-sight is statistically independent of the
others [40, 45]. In terms of the one-point statistics of the smoothed κ field within a top-hat
window function of angular radius θ, this translates to saying that the CGF of κ is a sum
along the line-of-sight of the CGF of independent 2D slices of the matter density contrast:6

ϕκ,θ(λ) =
∫ +∞

0
dzdχ

dz ϕ
<χ(z)θ
cyl (ωn(z)(z)λ, χ(z)), (2.17)

where ϕ<χ(z)θ
cyl is the CGF of the density contrast filtered within a disk of radius χ(z)θ so

as to reproduce the geometry of the light cone.
Equation (2.17) thus reduces the complexity of the problem down to computing the

one-point statistics of the 2D matter density in each two-dimensional slice (or equivalently
within long 3D cylinders at the same redshift up to some factor depending only on the length
of the cylinder) along the line-of-sight, which we have already done in section 2.2. Using
these results, we can then build the nonlinear CGF ϕκ,θ of the convergence field. Note that
equation (2.17) highlights the nice property of the projected CGF being expressible simply as
a sum of independent redshift slices. This is an important property when considering more
complicated joint distributions (e.g. joint convergence CGF of multiple source tomographic
redshift bins), in which the only modification in this integral would be the replacement of

6Rigorously, this result applies for a juxtaposition of very long cylinders centered on the slices and of
length L → ∞. Since the symmetry and thus the most likely dynamics of these long cylinders are the same
as for a 2D slice in a 2D space, and since the results are independent of L, we refer to ‘2D slices’ for clarity.
This emphasises that correlations along the line-of-sight are negligible compared to those in the transverse
directions.
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the ωn(z)(z)λ term by a term depending on more than one λ variable. This form is much
simpler than that of the corresponding multi-variate PDF [50].

Finally, it is important when working with the CGF (albeit to compute the PDF) to
know the approximate location of the (theoretical) critical point of the convergence field, λc.
First, the critical points δc in each redshift slice are calculated by finding where the second
derivative of the rate function becomes zero. The corresponding critical λ values can be
obtained by applying the stationary condition (equation (2.10)). The minimum λc along the
line-of-sight is then taken as the critical point of the convergence CGF.

The convergence PDF P(κ) is then computed from its CGF ϕκ,θ using the inverse
Laplace transform of equation (2.6) as

P(κ) =
∫ i∞

−i∞

dλ
2πi exp (−λκ+ ϕκ,θ(λ)) , (2.18)

and thus explicitly depends on the lensing kernel ωn(z) from equation (2.16). This computation
involves a continuation of the CGF in the complex plane that can be performed using different
techniques. We refer to [40] and [15] for technical discussions on the two possible methods
that have been used in the literature to perform this complex continuation in the LDT context.
Here, we use the one of [15] that relies on an informed fitting function of the CGF.

3 Measuring the KS reconstructed convergence PDF

In this section we describe how one performs a Kaiser-Squires inversion on an observed
masked shear field in order to create a reconstructed convergence κ map as well as how one
can measure a meaningful κ-PDF from this map.

3.1 From galaxy ellipticities to shear field

In real-life weak-lensing experiments, the convergence field is not a direct observable (except
maybe through magnification, see for example [63]). What we actually observe are the shapes
of source galaxies, their ellipticities, which are a noisy estimate of the reduced shear g:

ϵ = g + ϵIA + ϵn
1 + g(ϵIA + ϵn) (3.1)

with g = γ/(1 − κ), ϵIA the intrinsic shape of the galaxy and ϵn the shape measurement noise.
In the weak-lensing regime, both the shear γ and the convergence κ are ≪ 1 so that the
ellipticities can serve as a noisy estimate of the shear field through

ϵ ≈ γ + ϵIA + ϵn. (3.2)

In the following we will ignore intrinsic alignments whose introduction in the modelling
will be described later in section 6.1. On the other hand, the contribution of noise is estimated
in the literature by randomly rotating the shape of the galaxies to erase the cosmological
contribution which would lead to pure-noise ellipticity, shear and then convergence fields
(whose reconstruction we detail below) of zero average but non-negligible variance. By virtue
of the central limit theorem, this noise is expected to become Gaussian for large numbers of
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galaxies and is also expected to be closely independent from the reconstructed field. Since the
simulations we use in this work contain no intrinsic shape noise, we will assume that those two
hypotheses are valid and shape noise can thus be trivially taken into account in the theoretical
modelling of the convergence PDF by simple convolution of the clean PDF with a Gaussian of
the correct shape noise amplitude (we will test this in paper II of the series). For a survey with
varying source galaxy density across the sky, this would lead to a mean shape noise variance
which would still convolve the clean PDF. Note however that the Gaussian hypothesis can be
easily lifted if needed — simply by replacing the Gaussian convolution by another one — as
well as the hypothesis of zero correlation between the noise and reconstructed field which can
be tested by computing the joint PDF between the noise map (obtained through random
rotations) and the observed convergence. A denoised estimator of the observed convergence
would then be obtained by marginalisation over the noise in this joint PDF.

3.2 From shear to convergence

Crucially, for a footprint of approximately 5000 deg2 such as the one from the DES Y3 — and
up to three times that for a Euclid-like experiment — we need a full-sky, spherical harmonics
approach to estimate the convergence field from the shear [36, 64]. In this formalism, the
(Born-)projected Poisson equation reads [65]

κ = 1
4(ðð̄ + ð̄ð)ψ, (3.3)

with ψ the usual projected (under Born approximation) gravitational potential and ð, ð̄ are
respectively the raising and lowering operators acting on the spin-weighted spherical harmon-
ics [see appendix A of 65]. Similarly, the usual complex shear field equations translate into

γ = γ1 + iγ2 = 1
2ððψ. (3.4)

Finally, expanding the projected gravitational potential and convergence (scalar, spin-0
fields) as well as the spin-2 complex shear on the spin-weighted spherical harmonics basis
0Ylm and 2Ylm respectively, we get

ψ(θ, ϕ) =
∑

l,m

ψlm 0Ylm(θ, ϕ), (3.5)

κ = κE + iκB =
∑

l,m

(κE,lm + iκB,lm) 0Ylm, (3.6)

γ = γ1 + iγ2 = 2
∑

l,m

(γE,lm + iγB,lm) 2Ylm. (3.7)

Both the convergence and the shear have been decomposed into curl-free E-modes and
divergence-free B-modes, and we can relate the shear to the convergence as

κE,lm + iκB,lm = 1
2 l(l + 1)ψlm, (3.8)

γE,lm + iγB,lm = 1
2 [l(l + 1)(l − 1)(l + 2)]1/2 ψlm, (3.9)

=⇒ κE,lm + iκB,lm =
√

l(l + 1)
(l + 2)(l − 1)(γE,lm + iγB,lm). (3.10)
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Equation (3.10) is the harmonic space spherical-sky generalisation of the Kaiser-Squires (KS)
inversion formula (originally proposed by [33] for flat-sky convergence field reconstruction
from the observed shear field). An inverse spherical-harmonic transform on the full-sky allows
one to then obtain the KS reconstructed κE and κB fields on the celestial sphere. Strictly
speaking, the equations above are correct assuming no couplings between the lenses that
would appear when relaxing the Born approximation and taking into account corrections of
the same order in the Sachs’ equation of gravitational lensing [66, 67]. In this paradigm, the
only allowed B-modes are those produced by the effect of masking the full-sky or observational
systematics. On the other hand, allowing for couplings between lenses along the line-of-sight
would slightly change the definitions of the shear and convergence and as a consequence
their relationship. This is not a fundamental issue since those higher-order corrections can
be modelled respectively for the shear and the convergence in cases where one or the other
can be accessed [see for example 67–69], and since these corrections are small, one could
still reconstruct a field from equation (3.10) and call it convergence. Alternatively, the
knowledge of what are both the true shear and convergence has also permitted to build
Bayesian reconstruction schemes of the convergence based on an observed shear field with the
help of informed priors [see for example 34–36] as well as machine learning reconstruction
algorithms [37] and more recently clever mix of the two [38]. In this paper, we reconstruct a
convergence field by applying the KS inversion equation (3.10) on a masked full-sky shear
field which contains higher-order lensing corrections and thus admits B-modes. We then
only work with the reconstructed κE field and theoretically model the E-modes one-point
PDF assuming that the main difference between the reconstructed and “true” PDFs are
sourced only by masking the full-sky shear field.7

3.3 Reconstructing the convergence PDF from simulated shear maps

In actual observations, one would start from a discrete shear catalogue that has to be
interpolated (pixelised) to create a shear map. We here skip that step and directly use a set
of publicly available full-sky weak lensing shear maps in Healpix format [70]8 generated from
the ray-traced N -body simulation suite from Takahashi et al. [71].9 We have 108 realisations
of several fixed source redshifts up to zs ∼ 5 and combine them to mimic a realistic source
distribution from an input n(z) (see section 5 for the description of how we do that in
practice to mimic the 4th source redshift bin of the DES Y3). For each set of full-sky shear
maps, we multiply those by a binary mask, shown in figure 1, mocking observed maps from
DES Y3 and reconstruct the E-modes full-sky convergence field using KS reconstruction
equation (3.10). This reconstruction makes use of the functions map2alm and alm2map
of the Healpy package [72]. We then smooth the maps with top-hat filters of radius θ in

7The theoretical model for the non-reconstructed κ-PDF does not natively include higher-order lensing
corrections (though they can also be included in the model if desired as discussed in section 6.4) hence the
quotation marks around “true”. However, the simulated convergence fields we use are either obtained through
ray-tracing hence beyond Born-approximation or reconstructed from ray-traced shear fields thus admitting
physical B-modes. We have thus checked explicitly that those are fortunately negligible at the scales and
redshifts we consider.

8https://healpix.sourceforge.io/.
9http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky_raytracing/.
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harmonic space and the only remaining step is to select the pixels on the full-sky map to
then construct a meaningful/physical convergence PDF. Indeed, since large parts of the shear
field were set to zero due to the binary survey mask (and though the reconstruction of the
convergence is in principle non-local) the reconstruction of κE in the previously masked areas
yields unphysically small values compared to the fluctuations of the true convergence κtrue
values (obtained directly from the simulation suite) in those regions. We illustrate this point
in figure 2 where we display a full-sky (FS) reconstructed field κE,FS smoothed with a top-hat
of radius 20 arcmin. We thus only take into account pixels whose smoothed convergence
values κE,unmasked results from unmasked regions on the sky.10 That way, we can expect a
loss of power of κ E-modes to B-modes in the reconstruction due to the presence of the mask
and the non-locality of the transform, but sufficiently mitigated such that physical scaling
relations for example between higher-order cumulants of the matter density field still hold.
We illustrate this fact more quantitatively in the next section in equation (4.1). In practice,
this can be done by smoothing the binary mask with the same top-hat kernel as the field,
and only keeping pixels where the smoothed masked has values sufficiently close to 1. For
the DES Y3 mask, we find in practice that keeping all pixels where the smoothed mask is
higher than 0.98 is a good equilibrium between keeping the maximum possible portion of
the survey volume and mitigating the influence of masked pixels. This approach might be
improved by upweighting the pixels that are partially masked as done in the density-split
statistics context [20, 21] which is similar to ours. It might allow to consider more pixels
but we do not implement here such a strategy.

4 Modelling the KS reconstructed convergence PDF

Having described the LDT based framework for modelling the observationally inaccessible
κ-PDF in section 2 and then the actual procedure to reconstruct and measure the κ-PDF
under the presence of a realistic survey mask using KS inversion in section 3, we now describe
how to modify our original framework to incorporate the effect of the survey mask and
develop a model for the KS reconstructed κ-PDF.

4.1 Schematic view

Let us first have a look at how the reconstruction scheme presented in the previous section
affects the amplitude of convergence fluctuations. Schematically, masking the field reduces the
overall shear power spectrum and thus the reconstructed convergence power spectrum by a
factor fmix,11 due to mode-mixing which is at first order comparable to the observable fraction
of the full-sky fsky. On the other hand, the reconstructed convergence in the masked regions
(e.g. far away from the survey footprint) is mostly 0 so that we could model the full-sky
reconstructed PDF as a sum of the distribution of κE values in the unmasked regions and a

10Measuring the full-sky convergence PDF (i.e. using all the pixels over the entire sky) reconstructed
from a partial sky shear field would yield a distribution with very high kurtosis (highly peaked around zero)
illustrating the fact that most values are close to zero around which we observe fluctuations that correspond
to the unphysically small (close to zero) reconstructed convergence values in the masked regions.

11Note that this is an effective and schematic treatment. In reality the loss of power is modelled by the
convolution of the underlying true power spectrum by a mode-mixing matrix as described in appendix A.
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0 1

Figure 1. Illustrative Mollweide projection of the binary mask applied to the full-sky shear field
to mimic DES Y3 observations. The mask is as close as possible to the real one, notably keeping
the multiple holes of different sizes across the field of view. The observed fraction of the full-sky
is fsky = 0.1149.

-0.0292103 0.0292103

Figure 2. Illustrative Mollweide projection of the full-sky reconstructed κE,FS field for sources
mimicking the DES Y3 fourth redshift bin and from a simulated shear field under the DES Y3 mask
shown in figure 1. The reconstructed κE field has been further smoothed by a top-hat window of
radius 20 arcmin. Observed carefully, one can spot the non-locality of the KS reconstruction through
the blurring of the mask boundaries and holes. It should also be noted that the majority of the pixel
values far outside the survey footprint fluctuate very closely around zero (but are not exactly zero),
as expected.
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Dirac-delta distribution, both weighted by fsky and (1 − fsky) respectively. As a consequence,
the variance of the reconstructed κE in the unmasked region of the sky σ2

κE ,unmasked is roughly
the variance σ2

κE ,FS of the full-sky κE,FS reconstructed from the masked shear field divided
by fsky and we have

σ2
κE ,unmasked ≈ 1

fsky
σ2

κE ,FS ≈ fmix
fsky︸ ︷︷ ︸
O(1)

σ2
κ,true . (4.1)

This is further illustrated with actual values of the κE variance under the DES Y3 mask
in appendix B.

Additionally, the core idea behind the large deviation approach to the statistics of the
cosmic matter density field is to identify asymptotic scaling relations between the cumulants
of the field such that specifying the value of the variance serves both as a dial controlling the
proximity to the asymptotic limit and as a closure relation allowing to compute all cumulants
of the field from the variance. For now neglecting the projection along the line-of-sight (and
since the convergence reconstruction scheme only affects the amplitude of fluctuation mildly),
it could seem natural to assume that at first order the reconstruction affects the successive
cumulants of the convergence field in a manner consistent with their scaling relations with the
variance based on constant reduced cumulants Sn (see equation (2.4)). This would typically
mean that the loss of power from E to B modes in the region of the sky where it is mitigated
the most (which we call the “unmasked” regions, see section 3.3), preserves core physical
properties of the field. As such, neglecting the projection along the line-of-sight, the nth

cumulants of the reconstructed κE field in the unmasked regions can schematically be related
to the cumulants of the true but observationally inaccessible κ field as

⟨κn
E⟩c,unmasked ≈

(
fmix
fsky

)n−1

⟨κn⟩c,true. (4.2)

In the above equation (4.2), the subscript c denotes the connected parts of the moments,
i.e. the cumulants.

4.2 Reconstructed cumulant generating function

More precisely, the large deviation principle applied to the cosmic matter density field implies
that the scaling relations (constant Sn in equation (2.4)) between cumulants are correct for
the matter density field, but not for the projected convergence field itself. However, under
the Born and Limber approximations, the total lensing effect that we observe can be treated
as the independent combination of successive lensing events along the line-of-sight. As a
consequence, taking into account the convergence reconstructing scheme while preserving the
scaling relations between cumulants must be understood at the level of each lensing event,
that is for the cumulants of the matter density contrast along the line-of-sight. In terms of
the reconstructed CGF ϕκE , this can be written by modifying equation (2.17) as

ϕκE ,θ(λ) =
∫ +∞

0
dzdχ

dz
⟨δ2

true⟩
⟨δ2

E⟩ ϕ<χθ
cyl

(
⟨δ2

E⟩
⟨δ2

true⟩
ω(χ)λ, χ(z)

)
(4.3)
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where ⟨δ2
true⟩ is the true variance of slices of the density field at redshift z and of radius χ(z)θ,

while ⟨δ2
E⟩ is to be understood as the variance that results from the reconstruction scheme

(as schematically done in equation (4.1) for the whole projection) and whose modelling we
describe in the next subsection.

4.3 Reconstructed variance along the line-of-sight

We now take a more detailed look at the ⟨δ2
E⟩ term that appears in equation (4.3). In the

Limber approximation, it corresponds to a variance measure12 of a 2D matter density contrast
slice of radius χ(z)θ at redshift z which acts locally as the (reconstructed) convergence from
a single lens plane. In the absence of a mask, it can be written as

〈
δ2

true
〉

=
∑

l

2l + 1
4πχ(z)2Wl (χ(z)θ)2 PNL(l/χ(z), z), (4.4)

where PNL is the nonlinear matter power spectrum and Wl is the angular top-hat window
function in harmonic space given by

Wl (θ0) = Pl−1 (cos (θ0)) − Pl+1 (cos (θ0))
(2l + 1) (1 − cos (θ0)) (4.5)

where Pl are Legendre polynomial of degree l.
In the presence of masks, equation (4.4) is modified as follows [39]

〈
δ2

E

〉
= 1
fsky

∑

l

2l + 1
4πχ(z)2Wl (χ(z)θ)2 f−1

l

∑

l′
MEE,EE

ll′ PNL
(
l′/χ(z), z

)
fl′ , (4.6)

where MEE,EE
ll′ is the element of the mode-mixing matrix that accounts for the transfer of

power in the power spectrum from the unmasked shear E-modes to the masked shear E-modes.
This term is explained in more detail in appendix A. Here, fl = [(l + 2)(l − 1)]/[l(l + 1)]
and accounts for the passage from convergence to the shear power spectrum in order to
apply the mode-mixing formalism to the shear field directly. Finally, the fsky factor is not
necessarily to be understood as the true sky fraction observed by the survey. Instead, it
actually comes from the parametrisation of the full-sky reconstructed convergence PDF
as a sum of the fluctuations within the mask weighted by fsky and a Dirac-delta (for the
unobserved sky regions) weighted by (1 − fsky). However, this parametrisation, though very
accurate in practice, is not exact at the boundaries and holes of the mask, and even more so
after smoothing the reconstructed convergence field. Having said that, this fsky term is not
free either as it can directly — without any theoretical input — be estimated from data as
the ratio of the reconstructed smoothed full-sky variance to the one within the considered
pixels. Note moreover that the reconstructed κE unmasked variance values measured after
masking from the Takahashi simulation maps tend to be equal to the κE full-sky variance
divided by the true fraction of the full-sky observed in the mask up to less than a percent for
the DES Y3 mask and for the range of smoothing scales that we tested (up to ∼ 30 arcmin),
hinting to the fact that our parametrisation is very accurate.

12It formally has a unit of length (Mpc or Mpc/h) because the derivation of the projection formula used in
equations (2.17) and (4.3) makes use of cylinders of infinite length L (and not 2D slices) which cancels out in
the end result but for which the variance is formally ⟨δ2

E⟩/L.
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5 Testing the model

In this section we implement the theoretical formalism for the Kaiser-Squires reconstructed
convergence PDF described in the previous section and compare it to measurements made in
the Takahashi simulations. Given that the simulated shear maps also contain higher-order
lensing corrections, the comparison presented here allows us to test that the mask modelling
is accurate even when neglecting other sources of B-modes than the ones created by the
mask. We study two test cases and a third in appendix C. In subsection 5.2 we test the
reconstruction scheme in a regime where the large deviation theory is known to be very
accurate, that of the Bernardeau-Nishimichi-Taryuya (BNT) transform [73] which allows us to
construct lensing observables only sensitive to the dynamics of the quasi-linear regime of the
matter density field. It allows us to understand how well we are probing the Kaiser-Squires
reconstruction without mixing additional inaccuracies that the theory could present. In
subsection 5.3, we test our theoretical κE PDF for a source distribution mimicking that
of the 4th bin from DES Y3 analysis and where we applied the real DES Y3 mask to the
full-sky shear field. We present in appendix B supplementary information to subsection 5.3
but at the level of the cumulants and in appendix C the effect of a reconstruction similar
to subsection 5.3 but where we replace the DES Y3 mask by a square patch with no holes
and of the same area (∼ 70 × 70 deg2).

5.1 Mock data preparation and simulation-specific corrections

As mentioned previously, the simulated true convergence and cosmic shear maps used in this
work are obtained from the publicly available N -body simulations by Takahashi et al. [71]. The
simulation suite provides weak lensing maps for N = 38 fixed source redshift planes between
zs = 0.05 and zs = 5.3 in Healpix format. We combine these maps according to a source
distribution n(z) inspired by the 4th tomographic bin of the DES Y3 analysis to simulate a
DES Y3-like lensing map in its 4th redshift bin. The procedure to do that is as follows:13

κn(z) =
N∑

i=1
siκzi

s
, (5.1)

where si is a specific weight for a given full-sky lensing map κzi
s

at source plane zi
s. The

weights used for combining the discrete source planes from the simulations are shown in
figure 3. This final simulated convergence map can then be expressed as a line-of-sight
projection of the matter density contrast through equation (2.15) with a lensing kernel wn(z):

wn(z)(z) =
N∑

i=1
siwzi

s
(z) . (5.2)

The wzi
s

is in turn the lensing kernel for a given discrete source plane at redshift zi
s and reads

wzi
s
(z) = 3ΩmH2

0
2c2

[χzi
s

− χ(z)]χ(z)
χzi

s

H(zs − z)(1 + z) . (5.3)

13Although we show here the procedure on the κ field, the same source plane combination scheme is applied
to create the shear maps.
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Figure 3. Weights applied to the discrete source planes of the Takahashi simulation to mimic the
DES Y3 source distribution in its fourth redshift bin. The weights are normalised so that their sum is
equal to one. The thin line is only there to guide the eye and does not have any meaning.

To fairly compare the theory and our measurement from the simulations, we further include
a few corrections to the theoretical modelling described in section 4. These corrections are
specific to the Takahashi simulation and take into account inaccuracies in the simulation
itself rather than additional effects present in a real survey. Firstly, we take into account the
fact that the simulation has discrete spherical lens shells of thickness 150 Mpc/h. This is
done both by replacing the continuous integrations along the line-of-sight by discrete sums∫

dχf(χ) →
∑

i

150 × f [150(i− 0.5)], (5.4)

and at the level of the nonlinear power spectrum by correcting it following (equation (28)
in appendix B of ref. [71]):

PNL(k, z) → (1 + c1k−α1)α1

(1 + c2k−α2)α3 PNL(k, z), (5.5)

with c1 = 9.5171 × 10−4, c2 = 5.1543 × 10−3, α1 = 1.3063, α2 = 1.1475 and α3 = 0.62793.
Note that the wave-modes k are in units of h/Mpc and the power spectrum in units of
(Mpc/h)3. Finally, in a manner analogous to taking into account the pixel window function
at the map level, the resolution effects of the Takahashi maps can be taken into account by
multiplying the nonlinear power-spectrum by a damping factor that depends on the nside
of the Healpix map (equation (5) in ref. [71]):

PNL(l/χ(z), z) → PNL(l/χ(z), z)
1 + (l/1.6/nside)2 . (5.6)

Note that taking into account corrections (5.5) and (5.6) at the level of the nonlinear power
spectrum has some effects on all other higher-order (density contrast) cumulants through
their scaling relations with the variance while keeps the Sn ratios constant in equation (2.4).
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5.2 DES Y3 mask and BNT transform

One issue faced by theoretical approaches that aim at describing quantities projected along
the line-of-sight is the mixing of both very nonlinear scales not accurately probed by standard
from-first-principles approaches such as ours, and reasonably larger (quasi-linear) scales more
accessible to the theory. As such, usual weak lensing statistical probes are (i) modelled
accurately only on sufficiently large angular scales with scale-cuts on small angular scales,
so as to mitigate the influence of small nonlinear physical scales at the tip of the light-cone,
(ii) modelled by more phenomenological approaches such as halo models that can also take
into account nonlinear and baryonic physics which becomes important on small scales [74],
(iii) or by making use of numerical recipes and simulations for e.g. specifically incorporating
baryonic feedback effects [75] which have unfortunately not been tested in great detail,
especially for higher-order non-Gaussian statistics.

Alternatively, a theoretical strategy to disentangle quasi- and non-linear scales in lensing
quantities known as the Bernardeau-Nishimichi-Taruya (BNT) transform or nulling strategy
was proposed by [73]. It allows for very accurate theoretical predictions in the context of power
spectrum analysis and has recently been extended to the convergence and aperture-mass
PDFs [15, 40]. This nulling strategy was used recently in [76] to remove the sensitivity to the
poorly modelled small scales for the cosmic shear 2PCF, and therefore improve cosmological
constraints using the DES Y1 shear data. This strategy could become even more relevant
for future lensing experiments with better knowledge of redshifts and the division of sources
in more redshift bins.

This BNT transform can only be used in the context of a tomographic analysis of
at least 3 source redshifts (or redshift bins, although not treated here) and is a linear
transformation M applied to the set of lensing kernels ωi ≡ ω(χ, χs,i), giving rise to a new
set of re-weighted kernels

ω̃j = M ijωi. (5.7)

For a set of 3 source planes labeled from j = i − 2 to j = i arranged by ascending order,
it was shown in [73] that M must satisfy the system





i∑

j=i−2
M ji = 0,

i∑

j=i−2

M ji

χs,j
= 0 .

(5.8)

This system of equations is under-constrained and hence we also impose by convention M ii = 1.
The elements of M can thus be computed considering sequential triplets of tomographic bins,
going from the lowest to the highest redshift, such that

M i−2,i = χi−2(χi−1 − χi)
χi(χi−2 − χi−1) , (5.9)

M i−1,i = χi−1(χi − χi−2)
χi(χi−2 − χi−1) . (5.10)
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Figure 4. Illustration of the effect of the BNT transform on lensing kernels. The green, yellow and
blue dashed lines are the kernels up to zs = 1.0, 1.2, 1.4 respectively re-weighted by their appropriate
BNT coefficients, M ij = [0.80,−1.80, 1] where j is fixed and equal to 3 if the blue kernel is the third
of a tomographic analysis. The thick red line is the sum of the 3 re-weighted kernel. The effect of
nulling is to set to zero the contribution of all lenses below the closest source plane.

We display in figure 4 an example for a set of 3 source planes located at zs = 1.0, 1.2, 1.4.
This is the kernel we use in this subsection. The green, yellow and blue dashed lines are the
kernels up to zs = 1.0, 1.2, 1.4 respectively re-weighted by their appropriate BNT coefficients
while the thick red line is the sum of the 3 re-weighted kernels. Note that the blue dashed
line is also the original kernel since its BNT coefficient is set to 1. One can thus clearly see
that the effect of nulling is to set to zero the contribution of all lenses below the closest source
plane and therefore remove the contribution of small scales (at the tip of our light-cone)
which are very nonlinear and where the effect of baryonic physics becomes non-negligible.

For our purpose, the BNT transform — which boils down to a simple linear combination
of the maps — is applied at the level of the masked shear field14 and is also straightforward
to implement in our theoretical approach to the convergence PDF since we only need to
replace the original kernel with its nulled counterpart.

We then show in figure 5 — in the regime where the traditional BNT transformed
PDF is perfectly described by the LDT formalism — how the theoretical integration of the
convergence reconstruction scheme performs. The BNT convergence field is smoothed with a
top-hat window of radius θ = 10 arcmin. By looking at the top panels, one can appreciate that

14Since the BNT transform is a linear transformation, it can without distinction be applied at the level of
the (masked) shear or the convergence. The consideration of nonlinear high-order lensing or reduced shear
corrections would formally break the exactness of the nulling but would still mitigate the influence of small
scales so that it could still be used on real data. The same comment applies to the inexact knowledge of the
underlying cosmology: an inexact nulling still mitigates the influence of small scales.
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Figure 5. Top panels: PDF of the Kaiser-Squires reconstructed nulled convergence map using
source planes located at zs = 1.0, 1.2 and 1.4 under the DES Y3 mask. The red line is the theory
described by equation (4.3) and the blue points with error bars are the mean and 1σ fluctuations of
the measured PDF in 108 realisations. The grey solid line is the theory described by equation (2.17)
that is without taking into account the KS reconstruction masking effect. Bottom panel: residuals
between the theory and the simulation. The green line is the residual of the original non-KS theory to
the true, non-reconstructed simulated convergence PDF. It is highly compatible with the residuals
between the KS-theory and the simulated reconstructed KS PDF (blue points). Neglecting the KS
reconstruction effects (grey points) significantly worsens the quality of the theoretical prediction while
taking them into account does not improve nor worsen the predictive power of our LDT formalism.

the exponential cut-off in the tails of the PDF, a prediction of our formalism, is well-observed
once one reduces the lensing kernel down to scales accessible to from-first-principles theoretical
modelling (such as ours). More interestingly, this behaviour is still observed through the
Kaiser-Squires reconstruction scheme presented in section 3, and our theoretical modelling of
this reconstruction does not reduce our ability to capture the shape of the PDF in this regime.
This hints at the fact that our model is accurate enough to reproduce the reconstruction
effects, at least in the regime where our initial large-deviation formalism is accurate. This is
further illustrated in the bottom panel of figure 5 where blue points denote the residuals of
our KS theory with respect to the measurement from the KS reconstructed simulations. The
green line describes the residual between the original LDT theory without reconstruction
and the measurement of the PDF from the true κ map (i.e. not reconstructed from the
shear field using KS method). Here we observe that the two residuals are highly compatible.
Moreover, we also find that taking the reconstruction into account does not reduce in the
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slightest our ability to describe the PDF in this regime, while neglecting it (grey points)
would seriously damage our predictive power.

5.3 DES Y3 mask for sources in the fourth DES Y3 redshift bin
For the more traditional case of a source distribution mimicking the 4th source bin of the DES
Y3 analysis (that we replicate using the source redshift distribution shown in figure 3), and
for a shear field under the DES Y3 mask, we show in figure 6 the results of our theoretical
prediction for the reconstructed κE PDF. The field is smoothed with a top-hat window of
radius θ = 20 arcmin. By looking at the top-left panel, one can appreciate that the theoretical
formalism seems to capture well the bulk of the PDF when considering the 1σ fluctuations
across the 108 Takahashi realisations estimating the diagonal of the PDF covariance matrix.
This is to be contrasted with the theoretical formalism that neglects the KS reconstruction
effects and thus performs poorly which justifies the need for its modelling. Looking at the PDF
on a log-scale (top-right panel), one can however observe an increasingly larger departure of
the theory from the simulation as one enters the high and low-density tails. This is expected
since cumulants from the large-deviations formalism are only valid in the quasi-linear regime
and the mixing of scales (that the BNT transform would prevent as shown in subsection 5.2)
worsens the quality of the theoretical prediction in the tails.

This is clearly seen in the residuals between the theory and the simulation (bottom panel)
where a typical mismatched skewness modulation15 is visible, showing that higher order
correction to the skewness would be needed if we had smaller error bars, especially since only
the cosmic variance is here used to obtain those error bars. The alternatives include looking
at larger angular scales, considering sources at higher redshifts, incorporating modelling
errors in the error budget or making use of the BNT transform shown in subsection 5.2
which we consider the most principled approach.

Focusing on the accuracy of the modelling of the KS reconstruction, we now look at the
green line in the bottom panel which describes the residual of the original LDT theory without
KS reconstruction to the measurement of the PDF from the true κ map (i.e. not reconstructed
from the shear field using KS method). As in the previous subsection, we once again observe
that the two residuals are highly compatible, highlighting the fact that the reconstruction
does not weaken nor improve our ability to describe the PDF in this regime. This again hints
at the fact that our implementation of the KS effects on the PDF is accurate enough.

6 Incorporating observational systematics in the modelling

In this section we discuss the modelling of additional effects in the reconstructed κ-PDF,
including galaxy intrinsic alignments, baryonic feedback effects, additive and multiplicative
shear biases, higher-order lensing corrections and photometric redshift uncertainties.

15Let us remind here that the skewness enters the Edgeworth expansion of the PDF at the first non-Gaussian
correction order and multiplies a third order Hermite polynomial of the convergence field as follows

P(κ) = G(κ)
[
1 + σ

S3,κ

3! H3

(
κ

σ

)
+ O(σ2)

]
,

where H3(x) = x3 − x. We emphasise that the predictions shown in this paper do not use or assume an
Edgeworth expansion. It is however useful to interpret the shape of the residuals between the theory and the
simulation.
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Figure 6. Top panels: PDF of the Kaiser-Squires reconstructed convergence map for the simulated
DES Y3-like 4th bin in the Takahashi simulation and under the DES Y3 mask. The red line is the
theory described by equation (4.3) and the blue points with error bars are the mean and 1σ fluctuations
of the measured PDF in 108 masked Takahashi maps. The grey solid line is the theory described by
equation (2.17) that is without taking into account the KS reconstruction. Bottom panel: residuals
between the theory and the simulation. The green line is the residual of the original non-KS theory to
the true, non-reconstructed simulated convergence PDF. It is highly compatible with the residuals
between the KS-theory and the simulated reconstructed KS PDF (blue points). Neglecting the KS
reconstruction effects (grey points) significantly worsens the quality of the theoretical prediction while
taking them into account preserves the predictive power of our LDT formalism. We note that the
slight increase in the size of residuals is due to the complicated shape of the mask and presence of
holes as demonstrated in figure 9 for the case of the square mask of similar area.

6.1 Intrinsic alignments

As noted in equation (3.2), the observed source galaxy ellipticity is a combination of the
gravitational lensing shear component γ, the intrinsic ellipticity of the galaxies ϵIA induced
by correlations with local gravitational tidal fields at the source, and the random stochastic
component that contributes as shape noise. In this section we include the ϵIA (also known
as intrinsic alignment) component in our framework using the popular non-linear tidal
alignment (NLA) model [77, 78]. Indeed, recent work based on a perturbative field-level
forward modelling of weak lensing fields [25] indicates that on scales of about 15 arcmin, the
NLA model is adequate and leads to conservative and unbiased cosmology constraints even
when analysing data generated through a more complex tidal alignment and tidal torquing
(TATT) intrinsic alignment model [79].
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As shown in section 3.2, through second derivatives of the projected gravitational potential
ψ, the lensing shear γ is related to the lensing convergence κ, the latter being expressed as a
line-of-sight integration of the matter density contrast δ (see equation (2.15)). In analogy,
for the intrinsic ellipticity component ϵIA we can define a quantity κIA

κIA(ϑ) ≡
∫ +∞

0
dzdχ

dz n(z) δIA(χ(z), χ(z)ϑ), (6.1)

where δIA is a three-dimensional field that effectively determines the intrinsic alignment (IA)
of the source galaxies with their local gravitational tidal fields. Note that the line-of-sight
projection kernel in equation (6.1) is the source galaxy redshift distribution n(z), and not
the lensing kernel ωn(z)(z) as in equation (2.15).

In the NLA model, δIA can be expressed as a first order bias expansion with the nonlinear
matter density contrast field16 [77, 78]:

δIA(χ, χϑ) = fIA(χ(z)) δ(χ, χϑ) . (6.2)

The fIA(z) term is the amplitude of the intrinsic alignment of the specific source galaxies
and is given by

fIA(z) = −AIA

( 1 + z

1 + z0

)αIA c1ρcritΩm
D(z) , (6.3)

where AIA, αIA are redshift-independent parameters, c1 = 5 × 10−14 (h2M⊙/Mpc3)−1 [80],
ρcrit is the critical energy density, D(z) is the growth factor normalised to unity today, and z0
is a pivot redshift. The fact that c1 was calibrated in h2 units allows us to fix c1ρcrit = 0.0134.
Therefore, the intrinsic alignment of source galaxies can thus be readily included in the overall
convergence signal as an additive component on top of the lensing κ

κ → κ+ κIA . (6.4)

In practice, the inclusion of the intrinsic alignment effect in the modelling of the PDF P (κ)
within the NLA framework is straightforward and can be achieved by replacing the lensing
kernel in equation (2.15) with

ωn(z)(z) → ωn(z)(z) + n(z)fIA(z) . (6.5)

One can treat these intrinsic alignment terms as nuisance parameters which can be
marginalised over in order to constrain cosmological parameters of interest when analysing
P(κ). Note that even though marginalized constraints over the IA parameters in the DES Y3
shear 2PCF analysis are compatible with no IA (see for example [81] or [82]), neglecting the
IA effect would bias the constraints on other parameters of interest. Based on those analyses,
the typical order of magnitude of the IA effect would be around AIA ∼ 0.4 and αIA ∼ 1.7
but again one should not fix those values in an analysis, also because the uncertainty on

16Strictly speaking, in the linear tidal alignment model one performs the bias expansion around the linear
matter density contrast field δlin (as is correct in perturbation theory), whereas in the NLA model one simply
replaces δlin with the nonlinear matter density field δ (as adopted in our work).
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σκ [10−3] DM only fid AGN high AGN low AGN
full n(z) 3.955 3.919 [−0.9%] 3.874 [−2.0%] 3.944 [−0.27%]
z-bin 2 [0.43, 0.63] 3.483 3.442 [−1.2%] 3.398 [−2.4%] 3.468 [−0.45%]
z-bin 4 [0.9, 1.3] 6.149 6.129 [−0.33%] 6.080 [−1.2%] 6.154 [+0.08%]

Table 1. Impact of bayronic effects on the standard deviation of the weak lensing convergence at
scale θ = 10′ for a DES Y1 n(z) as measured from the BAHAMAS simulations.

the IA nuisance parameters is one of the limiting aspect of cosmic shear analysis that one
might want to mitigate through the use of high-order statistics. For the PDF, the interplay
with cosmological parameters will be studied in more detail in our upcoming work (paper II
in the series). One potentially important follow-up line of work would consist in extending
the current bias-like IA expansions to the PDF so that higher-order terms in models such
like TATT to alleviate for potential biases in the IA treatment. Current DES Y3 analysis of
convergence moments [39] or third-order aperture mass in KiDS-1000 [83] which both contain
NLA modelling are nevertheless respectively compatible with the main 3 × 2 points analysis
from DES Y3 which is made with TATT [82] and the KiDS-1000 2-point analysis [83].

6.2 Baryonic feedback

We determine the effect of baryonic feedback on the mildly nonlinear convergence PDF
by relying on simulated DES Y1-like lensing maps from the BAHAMAS hydrodynamical
simulation suite [84], where the strength of AGN feedback has been varied in various
simulation runs. The convergence PDF for the full DES Y1 n(z) and the separate redshift
bins is illustrated in the upper panel of figure 7. Note that for our purpose, the distribution
of sources between DES Y1 and Y3 is similar enough, specifically, the four bins roughly peak
respectively at redshift zs = 0.3, 0.5, 0.8 and 1. In the lower panel we show the residual
between the PDFs including baryonic feedback and the dark-matter only runs, which shows
a clear signature of a changed standard deviation, whose values we summarise in table 1.
Conjecturing that the main impact is on the variance, we obtain the PDFs of the weak
lensing convergence divided by its variance νκ = κ/σκ and show exemplary results for the
whole n(z) and two redshift bins in figure 8. The excellent agreement of the PDFs for the
standard deviation-normalised convergence field demonstrates that modelling the impact of
baryons at the level of the variance is likely sufficient, as assumed in the recent analysis of
HSC Y1 data [29]. Using conservation of probability, this implies that the κ-PDF in the
presence of baryonic feedback is given by

Pb(κb) = PDM

(
κ = κb

σDM
σb

)
σDM
σb

. (6.6)

For the purpose of obtaining the variance correction factor, the baryonic feedback model
within HMcode can be used as illustrated in figure 5 of [74] showing a simple single-parameter
model reproducing the 3D matter power spectrum in BAHAMAS.

We have further checked (not shown) that our the results are fully compatible with
similar measurements from kappaTNG maps for single source redshifts [85] obtained from
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Figure 7. Top panel: smoothed convergence PDF from the BAHAMAS runs for the full DES Y1
n(z) (black) and the 4 tomographic bins (colours) for the DM-only run (solid) and the high AGN run
(dashed) averaged over 25 lensing cones. The dotted vertical line at κ = 0 highlights the non-Gaussian
shape of the κ-PDF. Bottom Panel: residual of convergence PDF comparing the hydro BAHAMAS
runs with fiducial (blue), high (red) and low (green) AGN feedback to the DM-only result for the
whole n(z). The solid lines indicate the residual between the means (averaged over 25 runs) while
the shaded bands indicate the mean and standard deviation of the residual ratio in individual runs
(obtained from 25 runs). The horizontal black dashed and dotted lines indicate a residual of 2% and
1%, respectively.

the IllustrisTNG hydrodynamical simulations [86], and for tomographic bins following the
Euclid n(z) as adopted by the Magneticum simulations [18, 87].

6.3 Additive and multiplicative shear biases

We adopt the modelling of any biases coming from the shear measurement pipeline, such as
noise bias (e.g. [88]), model-fitting bias (e.g. [89]), selection bias (e.g. [90]) and bias from the
imperfect correction of the image point spread function (PSF; e.g. [91]), with a multiplicative
factor 1 +m to any instance of the estimated shear as is common in literature. As the weak
lensing shear and convergence fields are connected to each other via linear transformations, we
can propagate the shear measurement biases to convergence with the following transformation
using a multiplicative 1 + m and an additive bias c term

κ −→ (1 +m)κ+ c . (6.7)

This linear relation holds in the weak lensing regime where κ is small. It is common in
the literature [39, 82, 92] to consider that these biases are redshift and scale independent
within a given source redshift distribution n(z), and thus fixed at the map level. In that
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Figure 8. Residual of ν = κ/σ lensing PDF comparing the hydro BAHAMAS runs with fiducial
(blue), high (red) or low (green) AGN feedback to the DM-only result averaged over 25 lensing cones
smoothed for the whole n(z) and in two different tomographic bins corresponding to DES Y1 n(z).
Bin 2 corresponds to the range z ∈ [0.43, 0.63] while bin 4 corresponds to z ∈ [0.9, 1.3]. The solid lines
indicate the residual between the means (averaged over 25 runs) while the shaded bands indicate the
mean and standard deviation of the residual ratio in individual runs.

case, since the KS reconstruction of the convergence forces us to fix the l = 0 wave mode
to zero as a straightforward consequence of the mass-sheet degeneracy, we are forcing the
mean κ(E/B) to be zero which renders inconsistent the consideration of an additive bias c.
This is consistent with the assumption that any additive bias component can be perfectly
removed from the measurement pipeline for compactness through calibration with image
simulations on average [93]. The PDF of the multiplicative biased shear κ̃ = (1 + m)κ is
straightforwardly obtained by conservation of probability as

P(κ̃) = P (κ = κ̃/(1 +m)) /(1 +m) . (6.8)

Previous works have indicated that the presence of shear biases enhances the complementarity
of the shear 2PCF and the convergence PDF [26] which may help to further lift parameter
degeneracies appearing at the 2-point level.

6.4 Higher-order lensing corrections

At the scales and redshift where the large-deviations formalism can be considered accurate
enough to be applied to real data analysis, the corresponding weak-lensing PDFs of either the
convergence or the aperture mass can be generated from a finite set of cumulants in the sense
that a correct variance, skewness, and a consistent manner to generate higher-order cumulants
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yield good results [15, 40, 67]. In that context, studying the corrections to the PDF induced
by higher-order lensing corrections amounts to computing the leading-order corrections on
the variance and skewness which can then be incorporated straightforwardly to the formalism
for the non-linear variance, and by slight modification of the spherical collapse ν parameter
in equation (2.13) to match the new values of the skewness along the line-of-sight [see for
example 67, that does it for post-Born corrections in the LDT context]. We detail in the
following the corrections that could be considered in our theoretical formalism and explain
why we could discard them for our DES Y3 analysis of the reconstructed κE PDF. This is
consistent with what was done for the weak-lensing moments analysis in DES [39, 94].

Among all possible corrections, most of the traditional ones have been estimated in past
works and in the LDT context. More precisely, the relaxation of the Born approximation and
accounting for the coupling between lenses was studied in detail in [67] and in appendix F1
of [15]. These terms will tend to Gaussianise the convergence field since they characterise the
introduction of random deflections along the light path which will in turn tend to diminish
the impact of the non-linear clustering of matter. The heuristic picture one could form
is that of clustered chunks of matter blurred by these lensing terms. It was shown that
the effect matters for higher source redshifts (e.g. CMB lensing) but is totally negligible
for cosmic shear experiments.

Reduced shear corrections which at first order account to replacing the shear field by
γ → γ+ γκ was studied in the LDT context in [51] and in appendix F2 of [15] and was shown
to induce only a percent-level change in the skewness at our scales and source-redshifts of
interest. This tiny effect can be ignored for the analysis we propose here since the gravity-
induced skewness directly implemented in the LDT formalism is itself not accurate to the
percent-level because of the mixing of scales discussed in section 5.

Finally, individual galaxies can be (de)magnified through lensing effects and thus their
fluxes are de-/increased. At the flux limit of a survey, this can cause fainter sources to be
included in the observed sample while they would, in the absence of lensing, be excluded.
At the same time, the density of galaxies in the small region around this source appears
(increased) reduced since the area of the region is also (de)magnified. As such, the net
effect depends on the slope of the intrinsic, unlensed, galaxy luminosity function at the
survey’s flux limit. This is known as the magnification bias and it also induces a correction
on the overall measured skewness of the convergence field. However, as for the reduced
shear correction, it was shown in appendix F3 of [15] to matter very little and we hence
could discard its implementation in the theoretical formalism used to analyse DES Y3-like
survey data in our upcoming works.

6.5 Photometric redshift uncertainties

In cosmic shear surveys the redshifts of source galaxies are determined using photometric
methods. Any systematic error in the photometric estimates of the galaxies can lead to biases
in the redshift distribution of the source galaxies which can in turn lead to biased cosmological
parameter inference. In order to include the effect of such a systematic uncertainty on the
source redshift distribution, one can propagate this through the theory by updating the weak
lensing kernel equation (2.16). We could either compute this for a set of redshift distributions
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(obtained through different methods, for example the hyperrank software developed in the
context of DES [95]) or parametrise it through a single shift parameter ∆z via [39, 82, 95]

n(z) = n′(z + ∆z) , (6.9)

where n(z) denotes the shifted redshift distribution of the source galaxies and n′(z) the
default redshift distribution estimate. This simple parametrization of a single mean redshift
uncertainty (one for each tomographic redshift bin) is reported to be sufficient within the
statistical power of surveys such as DES Y3 2-point main analysis (see figure 10 of [81] and
figure 12 of [95]), and will be considered sufficient for this series of papers, in coherence with
the previous high-order statistics analysis of current data sets [39, 83].

7 Discussion and conclusion

The weak lensing convergence κ denotes a weighted projection of the three-dimensional
matter density fluctuations. Intuitively, it quantifies a projected ‘mass’ of all the late-time,
non-Gaussian distributed foreground structures which contribute to the deformation of a light
beam emanating from a background source galaxy on its way to us. Therefore, studying the
full 1-point Probability Distribution Function (PDF) of the smoothed κ field inside apertures
(see [32, 41]) is a promising way to access the non-Gaussian cosmological information of the
foreground matter density field beyond the variance (or the widely used 2PCF) and holds
the potential to tighten constraints on cosmological parameters.

Unfortunately, the κ field itself is not a direct observable as what is actually seen in lensing
surveys is the cosmic shear field — the weak coherent distortions imprinted in the shapes
of the source galaxies. Nevertheless, one can apply the widely known Kaiser-Squires (KS)
inversion technique on the shear field to reconstruct the “true” inaccessible convergence field.
However, the KS inversion is exact and recovers the “true” convergence only when one has
information of the shear field over the entire celestial sphere.17 This is of course not the case in
practice as one has access only to the shear information inside a given footprint on the sky due
to survey masks (consisting of holes, complicated survey geometry and boundaries). Applying
the full-sky KS inversion on the masked shear field thus results in a reconstructed κ field
which differs from the “true” inaccessible κ field. Hence, for any κ-statistic which one desires
to measure and analyse using a KS reconstructed κ map from observed masked shear data, it
is of paramount importance to correctly quantify and account for the effect of the survey mask
in the theoretical modelling of the corresponding κ-statistic. In this paper we have presented
for the first time how to do that in a from-first-principles theoretical modelling of the KS
reconstructed κ-PDF. Our main achievements on this front can be summarised as follows:

• Our reconstructed full-sky convergence PDF is obtained from the “true” one [15, 40]
inside the survey footprint and purely geometric factors which take into account the
effect of the survey window and the survey area on the variance (4.6) and hence the series
of cumulants (4.3). Explicitly, this is achieved by both an accurate parametrisation

17The KS inversion to reconstruct κ at a given location involves the convolution of the shear field over the
full-sky with a specific kernel.

– 28 –



J
C
A
P
0
3
(
2
0
2
4
)
0
6
0

(without free parameters) of the reconstructed full-sky convergence PDF as a function
of the one inside the survey footprint and modifying the scaling relations of the matter
density contrast field cumulants (which are needed to compute the line-of-sight projected
κ cumulants that are in turn required in the modelling of the KS reconstructed κ-PDF)
by purely geometric factors which take into account the effect of the survey window
and the survey area.

• We have applied the recipe for the full-sky KS κ-map reconstruction under the presence
of a realistic survey mask (in our case, DES Year 3 survey mask) to the simulated
cosmic shear data from the Takahashi suite of weak lensing N -body simulations and
measured the reconstructed κ-PDF. We have tested our theoretical modelling of the
same against the measurements and found excellent agreement between them within
cosmic variance (figure 6). We further find that using the baseline theoretical model for
the “true” κ-PDF without accounting for the masking effect significantly deviates from
simulation measurements of the reconstructed PDF. These conclusions are valid for
scales and source redshifts relevant for the baseline theoretical model which is accurate
on quasi-linear scales as we have also demonstrated in figure 5 where we have applied a
nulling strategy to construct lensing observables less-sensitive to very small non-linear
scales normally probed through scale-mixing in the projection along the line-of-sight.

• In preparation for an upcoming real data analysis of the KS reconstructed κ-PDF
we have also discussed and laid down the strategy to include several effects such as
astrophysical and measurement systematics as well as higher-order lensing corrections
to the theoretical model for the reconstructed κ-PDF. We included a modelling for
intrinsic alignments based on an adaptation of the weak lensing kernel (6.5) and
tested in simulations that baryonic feedback can be included through a rescaling of
the variance (6.6). We describe how the lensing PDF is affected by a multiplicative
shear biases (6.8) and how to propagate photometric redshift uncertainties through our
theoretical model.

Thus, our work not only presents a proper theory-based modelling framework for a real
analysis of the KS reconstructed κ-PDF under the presence of realistic survey masks but it
also underlines the susceptible errors when analysing any statistic from a KS reconstructed
κ-map with a theoretical model that does not correctly include the E/B mode mixing due
to the presence of survey masks.

Overall, our results indicate that the κ-PDF measured from the straightforward to
implement spherical-sky KS reconstructed κ-map on the observed shear field (in the presence
of masks) can be treated accurately within a theoretical framework without the need for any
forward-modelling simulation-based approach. In particular, though some of the systematics
modelling presented in this paper might need to be improved for Stage-IV surveys, the
modelling of masks in combination with LDT in the context of the BNT transform will
remain valid. This paves the way for us to explore the power of the κ-PDF in probing
higher-order information in current lensing surveys such as DES, and in the future using
Euclid and Vera Rubin’s LSST data. We will perform cosmological inference analyses on
simulated and real data in the following papers of this ‘Making the leap’ series.
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A Mode-coupling matrices in the pseudo-Cℓ formalism

For completeness and better readability of this paper, we reproduce here key-results and
broad derivation steps of the pseudo-Cℓ formalism [44] that aims at taking masks into account
in the computation of the shear power spectra. For the shear field which formally admits both
E and B modes, we can define its full power spectra as a vector Cl ≡ (CEE

l , CEB
l , CBB

l ) with

Cij
l = 1

2l + 1
∑

m

γi,lmγ
∗
j,lm, with i, j ∈ {E,B}. (A.1)

We will then see that its masked power spectra Ĉl can be seen as a convolution with
a mode-mixing matrix Mll′ through

Ĉl =
∑

l′
Mll′Cl′ . (A.2)

The formalism thus takes into account transfers of power due to masking from pure E-modes
spectra to pure B-modes and all other possible combinations. In this work, since we neglect
any source of shear B-modes prior to masking, we are mostly interested in the element
MEE,EE

ll′ that allows to compute the contribution from the unmasked shear EE spectrum
to the masked ĈEE

l . Let us now sketch the derivation of these terms.
In the presence of a footprint K(θ, ϕ) (in our case the DES Y3 mask) the observed

shear field becomes

γ̂1(θ, ϕ) + iγ̂2(θ, ϕ) = K(θ, ϕ) (γ1(θ, ϕ) + iγ2(θ, ϕ)) . (A.3)

Written in terms of spherical harmonics coefficients, this leads to the generation of both
pseudo-E and pseudo-B modes

γ̂E,lm ± iγ̂B,lm =
∫

dΩ [K(θ, ϕ) (γ1(θ, ϕ) ± iγ2(θ, ϕ))] ±2Y
∗

lm(θ, ϕ) (A.4)
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which can be expressed in terms of the original E and B modes via

γ̂E,lm ± iγ̂B,lm =
∑

l′m′
(γE,lm ± iγB,lm) ±2Wll′mm′ (A.5)

where

±2Wll′mm′ =
∫

dΩ±2Yl′m′(θ, ϕ)K(θ, ϕ)±2Y
∗

lm(θ, ϕ)

=
∑

l′′m′′
Kl′′m′′(−1)m

√
(2l + 1) (2l′ + 1) (2l′′ + 1)

4π

(
l l′ l′′

±2 ∓2 0

)(
l l′ l′′

m m′ m′′

)
.

(A.6)

In the above, Klm are the conjugate spherical harmonics coefficients of the window function∫
dΩK(θ, ϕ)Y ∗

lm(θ, ϕ), and
(

l l′ l′′
m m′ m′′

)
are the usual Wigner 3j symbols. Finally, combining

the last result in equation (A.5) with the definition of the power spectra (A.1) for the pseudo-E
and pseudo-B modes, one can then access the mode-mixing matrix coefficients and obtain

MEE,EE
ll′ = MBB,BB

ll′ = 2l′ + 1
8π

∑

l′′

(
2l′′ + 1

)
Kl′′

[
1 + (−1)l+l′+l′′

]( l l′ l′′

2 −2 0

)2

, (A.7)

MEE,BB
ll′ = MBB,EE

ll′ = 2l′ + 1
8π

∑

l′′

(
2l′′ + 1

)
Kl′′

[
1 − (−1)l+l′+l′′

]( l l′ l′′

2 −2 0

)2

, (A.8)

MEB,EB
ll′ = 2l′ + 1

4π
∑

l′′

(
2l′′ + 1

)
Kl′′

(
l l′ l′′

2 −2 0

)2

, (A.9)

with Kl ≡ 1/(2l + 1)∑mKlmK
∗
lm, the power spectrum of the mask. All other elements of

the mode-mixing matrix are equal to zero.

B Masking effects on the Kaiser-Squires reconstructed convergence
moments

Here we quantify the effect of the KS reconstruction scheme on the moments/cumulants of
the κE field. The goal of this appendix is (i) to illustrate that the KS reconstruction has
an important quantifiable effect on the variance and skewness, thus justifying the need for
its theoretical modelling and (ii) to demonstrate that the theoretical model captures well
this reconstruction effect on the variance and the skewness.

We provide in table 2 the values of the variance and skewness of the true convergence
fields as measured in the Takahashi simulation (i.e. without any reconstruction) and the
analytically computed (theory) values with a halofit power spectrum [96]. We also provide
those same values for the reconstructed κE field. As expected from the mode-mixing formalism
used in this paper, the modelling of the KS reconstruction perfectly recovers the effect on the
variance as measured. The roughly ∼ 15% loss in the value of the skewness as measured in the
simulations (cf. the fractional difference of the measured ⟨κ3⟩c,true and ⟨κ3

E⟩c,unmasked values)
is also well recovered by the theory modelling (cf. the fractional difference of the theory
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σ2
κ,true (10−5) σ2

κE ,FS (10−6) σ2
κE ,unmasked (10−5) ⟨κ3⟩c,true (10−8) ⟨κ3

E⟩c,unmasked (10−8)

Measured 2.29 ± 0.02 2.43 ± 0.05 2.07 ± 0.05 5.56 ± 0.18 4.86 ± 0.47
Theory 2.30 2.44 2.08 4.97 4.05

Table 2. Smoothed second and third cumulants (θ = 20 arcmin) of the reconstructed κE under the
DES Y3 mask on the shear field and for sources in the 4th DES Y3 redshift bin. All measurements
are made in the Takahashi simulation and this table is supplementary to figure 6. We give values for
the reconstructed full-sky κE variance and the variance and skewness values across the pixels under
the mask that we take into account as described at the end of section 3.3.

⟨κ3⟩c,true and ⟨κ3
E⟩c,unmasked values). As expected, the reconstruction does not significantly

improve nor reduce the accuracy of the large-deviations formalism describing the underlying
dynamics of the matter density field. The values given in table 2 are supplementary to figure 6
and are thus taken from a reconstructed field under the DES Y3 mask and for sources in
the Takahashi simulation mimicking the DES Y3 4th bin displayed in figure 3.

C Square mask for sources in the DES Y3 4th bin

We here replicate the results of section 5.3, that is a source distribution (shown in figure 3)
mimicking the 4th source bin of the DES Y3 analysis but this time using a square mask
without holes of roughly the same area as the DES Y3 mask. Since by construction the KS
effects on the variance are perfectly taken into account, any discrepancy in the modelling of
the KS effects comes at the level of the skewness of the reconstructed κE field. As before,
we quantify the quality of the KS modelling by comparing the residuals of the theoretical
KS PDF to the simulated KS reconstruction PDF and the residuals of those same PDFs
without any reconstruction. That way we visually do not include the intrinsic quality of
the LDT prediction in our assessment.

Looking at the bottom panel of figure 9 we observe that the green line matches better
the mean residuals of the theoretical KS PDF to the simulated KS reconstruction PDF (blue
points) than what we could observe in the case of the true DES Y3 mask in figure 6. At
the same time the impact of neglecting the KS effects in the modelling are less pronounced
for this idealised mask (grey points). This is understandable to a certain extent. Indeed,
the presence of multiple holes of various sizes within the DES Y3 mask makes the mixing
of wave-modes in the E to E/B modes leakage more complicated to a degree where our
mitigation (performed by restricting ourselves to the less affected pixels, cf. section 3.3) is
less effective than in this simpler square-mask case. Note that similarly, finding it harder to
mitigate the E/B mode leakage, would happen if the area of the square patch is small since
the boundary effects would then affect more seriously the entire available area under the mask.
The next step to improve the modelling would be to compute explicitly the convolution kernel
on the shear bispectrum induced by the mask and include the new correction on the skewness
in a manner analogous to how we would include higher-order weak lensing correction, i.e.
by modification of the spherical collapse parameter ν in equation (2.13) [67]. This however
does not seem to be necessary at this stage for a DES Y3 analysis.

– 32 –



J
C
A
P
0
3
(
2
0
2
4
)
0
6
0

-0.02 -0.01 0.00 0.01 0.02 0.03

0

20

40

60

80

-0.01 0.00 0.01 0.02 0.03 0.04

0.001

0.010

0.100

1

10

100

-0.01 0.00 0.01 0.02 0.03
-0.2

-0.1

0.0

0.1

0.2

Figure 9. Top panels: PDF of the Kaiser-Squires weak-lensing convergence map for the DES Y3-like
4th bin in the Takahashi simulation and under an idealised square-patch mask of 70×70 deg2. The red
line is the theory described by equation (4.3) and the blue points with error bars are the mean and 1σ
fluctuations of the measured PDF in 108 Takahashi maps. The grey solid line is the theory described
by equation (2.17) that is without taking into account the KS reconstruction. Bottom panel: residuals
between the theory and the simulation. The green line is the residual of the original non-KS theory to
the true, non-reconstructed simulated convergence PDF. It is highly compatible with the residuals of
the KS-theory to the simulated reconstructed KS PDF (blue points). Though their inclusion allows to
recover the full predictive power of our LDT formalism, neglecting the KS reconstruction effects is
less imperative for this simple idealised square-mask, as opposed to the more realistic DES Y3 mask.
This is understandable as discussed in appendix C.
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Chapter 9

Summary and conclusions

The current and upcoming galaxy photometric and spectroscopic surveys provide us with a
rich information to study the large-scale structure (LSS) in the Universe and gain insights
into the mysterious energy components, the dark matter and the dark energy. However,
the amount of data that we need to perform statistical analyses with high precision is
enormous, and together with the task of optimally extracting cosmological information
from them, they impose challenges that require spontaneous responses. Researchers have
been dedicated to the statistical analyses on galaxy positions (2D or 3D) and shapes
induced by weak gravitational lensing on two fronts: the analytical modeling and machine
learning (ML) techniques. In this thesis, I contribute to the progress in both directions
and explored the potential of combining the two approaches in different ways, with weak
gravitational lensing fields (both shear and convergence) as the main target.

One representative statistic in analyzing the LSS is the 2-point correlation function (2PCF)
which can be used to study the clustering of galaxies and weak lensing signals. In Chap-
ter. 2, I briefly reviewed the analytical modeling of the 2PCF in the context of weak lensing,
and introduced the concept of multiprobe cosmology where the 2PCFs of different observ-
ables are combined to extract cosmological information. However, besides the weak lensing
fields themselves, it was shown that the 2PCFs of critical points, which are biased tracers
of the underlying weak lensing fields such as peaks (maxima), voids (minima) and saddle
points, can provide complementary constraining power on cosmological parameters. In
Chapter. 5, I present the analytical modeling of the auto- and cross-2PCFs among critical
points, considering a mild non-Gaussianity in the underlying weak lensing fields. This is the
first time that the clustering of critical points in weak lensing has taken the non-Gaussian
probability density distribution (PDF) of the underlying fields into account. Compared
to the previous works that assumed Gaussian distribution, this new approach of modeling
is more realistic in the context of LSS in late Universe. As current mainstream method
for analyzing weak lensing maxima and minima clustering is based on N-body simulations
and ML techniques, this analytical modeling can provide a well-defined calibration and
complementary calculation for these statistics on large scales.

Back to the ML side, in Chapter. 3 I introduce the basic concepts of ML and some of its pop-



184 9. Summary and conclusions

ular model architectures such as multi-layer perceptrons (MLPs) (Sec. 3.1), convolutional
neural networks (CNNs) (Sec. 3.2). Some more advanced topics are also discussed such as
the simulation-based inference (SBI) (Sec. 3.3). I demonstrate how these ML techniques
can be utilized to enhance the statistical analyses of weak lensing fields. In particular, in
Chapter. 6, I present the application of MLPs to the emulation of a specific weak lensing
shear statistic, the integrated 3-point correlation function (i3PCF), which is promised to
extract higher-order information of the cosmological parameters beyond Gaussianity ac-
cessed by the 2PCFs. This emulation, together with other GPU-based algorithms, greatly
reduce the computational cost of the parameter inference task using i3PCFs. With this
efficient pipeline, we are able to show on simulated likelihood analysis that the i3PCF can
improve the constraints on As, the amplitude of the primordial power spectrum, and w0,
the dark energy equation of state parameter, by 10 − 25% on top of the 2PCFs. We are
currently working on the real Dark Energy Survey (DES) Year 3 data analysis with this
higher-order statistic and the ML-supported pipeline, and the results will be published
soon.

One step further, in Chapter. 7, I present a special ML model which fuses the CNN architec-
ture and the formalism of correlation functions, the cosmological correlator convolutional
neural network (C3NN). This model is designed to directly learn and output summary
statistics that can be mathematically expressed in terms of N-point correlation functions
(NPCFs). It possesses the property of being interpretable both in the outputs and the
learned weights of the CNN layer. I demonstrate how helpful it can be in classifying differ-
ent cosmological models with their evolved weak lensing convergence maps as inputs. We
are currently working on embedding the C3NN model into the SBI framework, with aim
of performing the cosmological parameter inference and the quantitative investigation of
the information content in each order of the NPCFs, as well as the information existing
beyond this correlation function ladder.

For an overarching view of the interactions between analytical methods and ML techniques,
I give another discussion in Chapter. 4 as a summary for the previous introduction chapters
(Chapter. 2 to 3) and a starter for the following Chapters. 5 to 7. In Chapter. 8, I
show another co-author work on the modeling of weak lensing convergence PDF with
large deviation theory (LDT), including major realistic survey and astrophysical systematic
effects.

In the end, the thesis shows our works on major aspects of the weak lensing statistical
analyses. And I would like to convey the message that the fusion of analytical methods
with ML is redefining how cosmologists analyze data, test theories, and make discoveries.
By combining physical principles with data-driven techniques, researchers can potentially
tackle previously intractable problems while ensuring robustness and interpretability. As
computational methods continue to advance, this integration will play a crucial role in
future cosmological experiments, driving deeper insights into the nature of the Universe.
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