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SUMMARY

This thesis investigates the concept of researcher degrees of freedom (RDF), which refers
to the analytical flexibility available to researchers performing data analysis tasks. This
flexibility can lead to different and potentially conflicting results, even when analyzing the
same research question with the same dataset. When combined with selective reporting,
RDF can inflate effect sizes, increase false positive rates, and produce over-optimistic
results. This work is centered around the concept of RDF in three domains of statistical
research: applied, methodological, and didactic.
At first, RDF are conceptualized as a multiple testing problem, recognizing that differ-
ent analytical strategies often result in highly dependent hypothesis tests. Traditional
methods like the Bonferroni correction are overly conservative in this context, resulting
in a substantial loss of power. As a solution, we propose using the minP method in the
context of RDF—a permutation-based approach that offers better power while controlling
the family-wise error rate. This method is applied in a study investigating the relationship
between perioperative paO2 levels and post-operative complications in a neurosurgical con-
text. The results demonstrate that the minP approach provides valid p-value adjustments,
enabling selective reporting without inflating type I error rates.
The second manuscript focuses on Mendelian Randomisation (MR), a causal inference
method using genetic variants as instruments to infer causal effects of risk factors on an
outcome. A method to detect and account for pleiotropic single-nucleotide polymorphisms
(SNPs) in both uni- and multivariable MR analyses is introduced. An inflation factor is
applied to the general heterogeneity statistic to correct for overdispersion. This study
provides the basis for one of the use cases presented in the next manuscript.
The third manuscript shifts the focus to RDF in methodological research. Generally, the
flexibility in benchmarking new statistical methods—such as selecting favorable datasets or
comparison methods—can make new/preferred methods appear artificially superior. This
manuscript deals with the interpretation of real data examples and introduces the so-called
storytelling fallacy : the selective interpretation of real-data examples to support the supe-
riority of a new/preferred method. Researchers often develop domain-specific narratives
that favor their method while ignoring alternative, equally plausible interpretations. This
practice can result in misleading conclusions and an over-optimistic representation of new
methods. The concept is illustrated by examples related to pleiotropy detection in MR
analyses and COVID–19 prediction modeling.
Finally, the fourth manuscript addresses RDF in the context of statistical education. Stu-
dents may develop unrealistic expectations about data analysis, believing that there is a
single correct way to address research questions and find significant results. In reality,
empirical research involves many valid analytic decisions, which may lead to different and
even conflicting outcomes. A seminar course for advanced undergraduate and early grad-
uate students was developed to address this issue. It combines theoretical and practical
modules to raise awareness of RDF and train students in open science principles.
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ZUSAMMENFASSUNG

Diese Arbeit befasst sich mit dem Konzept der sogenannten researcher degrees of freedom
(RDF), also der analytischen Flexibilität, die Wissenschaftler:innen im Rahmen statis-
tischer Analysen haben. Diese Flexibilität kann dazu führen, dass selbst bei identisch-
er Forschungsfrage und gleicher Datengrundlage unterschiedliche—mitunter sogar wider-
sprüchliche—Ergebnisse entstehen. In Kombination mit selektivem Reporting kann dies
dazu führen, dass Effekte überschätzt, falsch-positiv-Raten erhöht und Ergebnisse ins-
gesamt zu optimistisch dargestellt werden. RDF werden in dieser Arbeit aus drei ver-
schiedenen Perspektiven beleuchtet: der angewandten, der methodologischen und der
didaktischen Forschung.
Im ersten Manuskript werden RDF im Kontext multipler Testprobleme formalisiert. Dabei
liegt der Fokus insbesondere auf der Korrelation zwischen Hypothesen, die sich aus unter-
schiedlichen Analysestrategien ergeben. Klassische Korrekturverfahren wie die Bonferroni-
Methode erweisen sich in diesem Zusammenhang als zu konservativ und gehen mit einem
deutlichen Verlust an Power einher. Als Alternative wird die sogenannte minP-Methode
vorgestellt—ein Permutationsverfahren, das bei schwacher Kontrolle der family-wise error
rate eine höhere Power ermöglicht. Angewendet wird diese Methode in einer Studie zum
Zusammenhang zwischen perioperativen paO2-Werten und postoperativen Komplikatio-
nen in der Neurochirurgie. Die Ergebnisse belegen die Validität der minP-Methode unter
analytischer Unsicherheit.
Das zweite Manuskript führt eine Methode zur Identifikation pleiotroper Single-Nukleotid-
Polymorphismen (SNPs) in Mendelian-Randomisation-Analysen ein—ein Verfahren der
kausalen Inferenz, das genetische Varianten als Instrumentalvariablen nutzt. Die vorgestell-
te Methode erkennt pleiotrope SNPs sowohl im uni- als auch im multivariaten Kontext,
indem sie einen Inflationsfaktor zur Korrektur von Überdispersion in der allgemeinen Het-
erogenitätsstatistik schätzt. Diese Arbeit bildet zugleich die Grundlage für einen der
Anwendungsfälle, die im darauffolgenden Manuskript diskutiert werden.
Auch in der methodologischen Forschung spielen RDF eine Rolle, wenngleich sie dort
seltener thematisiert werden. Die Flexibilität bei der Entwicklung neuer statistischer
Verfahren—etwa durch die gezielte Auswahl günstiger Datensätze oder Vergleichsmetho-
den—kann zu einer überoptimistischen Darstellung der Performance der jeweiligen Meth-
ode führen. Im dritten Manuskript definieren wir die storytelling-fallacy als den selek-
tiven Einsatz von anekdotischem Expertenwissen, um die vermeintliche Überlegenheit
einer bevorzugten Methode durch reale Datenbeispiele zu stützen. Dabei werden häu-
fig fachspezifische Interpretationen herangezogen, während ebenso plausible alternative
Erklärungen unberücksichtigt bleiben. Dies kann insbesondere in Benchmarking-Studien
zu invaliden Ergebnissen führen. Veranschaulicht wird dieses Problem anhand zweier
Beispiele: bei der Erkennung von Pleiotropie in MR-Analysen und bei der Prädiktion von
COVID-19-Infektionen.
Abschließend befasst sich das vierte Manuskript mit RDF im Kontext der Hochschullehre.
Studierende haben häufig die Vorstellung, es gebe einen „richtigen“ Analyseansatz, der
zwangsläufig zu signifikanten oder interessanten Ergebnissen führt. Diese Erwartung steht
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im Widerspruch zu den vielen möglichen Analyseansätzen, die zu verschiedenen Ergebnis-
sen führen können. Vor diesem Hintergrund wurde ein Seminarkonzept für fortgeschrittene
Bachelor- und Masterstudierende erarbeitet, das mithilfe von theoretischen Modulen und
praktischen Übungen das Bewusstsein für RDF schärfen und die zentralen Prinzipien der
Open-Science-Bewegung vermitteln soll.
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1 Introduction

1 Introduction

»[A]s Kempthorne (1976) suggests, statistics may

be seen as “applied philosophy of science”«.
— Mayo (1980)

1.1 Foundations

Contrary to the proposition in the opening quote of this section, the perception of

statistics within society and broader audiences of applied statistical research differs

substantially: Empirical research is often seen as clear-cut and unambiguous. However,

this understanding may be deceptive. For this reason, the general objective of this

thesis is to create awareness for and deal with different sources of uncertainty and the

consequent researcher degrees of freedom (RDF) in empirical research in an applied

and methodological context. In addition, it highlights the role of academic education

as one of the potential remedies to counteract the claimed crisis of empirical sciences

in the 21st century.

Uncertainty is an inherent feature of empirical analyses. Statistical reasoning is usu-

ally based on a general logic of induction, i.e., we use past or present observations to

form future expectations and make predictions about the world. These conclusions

are evidently subject to considerable uncertainty, standing in contrast to the certainty

typically associated with deductive reasoning.

For instance, if all the swans we have seen are white, we may conclude that all swans are

white—until we encounter a black swan. While such an observation is highly unlikely, it

is not impossible. This type of reasoning is known as inductive inference, as it involves

concluding the unobserved based on what has been observed (Henderson, 2024). The

problem becomes clearer when we compare the rules of deduction and induction. A

generally valid deductive rule, for example, might be the following:

∀x ∈ D : (A(x) → B(x))

A(y),with y ∈ D

⇒ B(y)

(1)

In simple terms: The rule depends on the premises that, e.g., all men are mortal and

Ronald Fisher is a man. Thus, we can conclude that Ronald Fisher is mortal. Rules

of this nature are valid because a situation in which the premises are true and the

1



1 Introduction

conclusion is false is logically impossible (Harman and Kulkarni, 2006). In contrast,

inductive rules might take the following form:

∃x ∈ D : (A(x) → B(x))

A(y),with y ∈ D

⇒ B(y)

(2)

The rule above is not valid in the same way as a deductive rule. The premises could

be true, even if the conclusion is false (Harman and Kulkarni, 2006). Let’s take the

example mentioned above: Suppose all the swans we know are white. In this case, the

premise would be true. However, if we later observe a black swan, the conclusion that

all swans are white would be proven false. Nevertheless, this is the underlying logic of

empirical research, where conclusions are based on observed evidence, but may change

with new findings.1

Empirical results are still often seen as unequivocal. In recent years, however, the

scientific community has tried to address the causes and implications of the so-called

replication crisis (Baker, 2016; Loken and Gelman, 2017), i.e., the crisis therefore lies in

the differing conclusions drawn from prior studies, which may not align with the findings

of replication studies based on independent data. A high analytical variability became

evident in this context. Even for very simple settings, there is a multitude of different

possible analysis strategies to address a particular research question—with potentially

different and even contradicting results (Gelman and Loken, 2014; Silberzahn et al.,

2018). See, e.g., the conflicting results and subsequent discussions of Fields et al. (2019),

Childers and Maggard-Gibbons (2019), Turner et al. (2019), and Childers and Maggard-

Gibbons (2021) on studies examining the association of infectious complications and

the use of retrieval bags for patients who had undergone laparoscopic appendectomies.

However, contradictory results are not always a stimulating basis for scientific debate.

Instead, they lead to a severe loss of trust in science among policymakers and the

general public—as the COVID–19 pandemic showed with regard to the biomedical

sciences (Caplan, 2023).

1.2 Uncertainty and RDF

Empirical research is subject to various sources of uncertainty. Hoffmann et al. (2021)

categorise these into data preprocessing, parameter, model, method, measurement, and
1Note, that there is also the concept of abduction (Douven, 2021) which is outside the scope of this

short introduction.
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1 Introduction

sampling uncertainty as depicted in Table 1. While measurement and sampling uncer-

tainty may be classified as aleatoric uncertainty, which is generally unavoidable due

to inherent variability in a process, the other forms of uncertainty are of epistemic

nature, i.e., resulting from a lack of knowledge. See, e.g., Gruber et al. (2023) and

Hüllermeier and Waegeman (2021) for an extensive introduction in the field of ma-

chine learning. Consequently, the potential for RDF arises from the epistemic sources

of uncertainty. When combined with aleatoric uncertainty and selective reporting—

which means reporting only the most favorable or “noteworthy” result—the outcome

is often a lack of replicability (Hoffmann et al., 2021). Note that there are many (and

sometimes confusing) definitions of the term replication. This work adopts a common,

pragmatic definition, i.e., re-evaluating prior research findings using new data but the

same or similar methods. Nosek and Errington (2020) provide a broad starting point

for exploring the discussion around the term replication.

Aleatoric Uncertainties

Measurement Randomness arising from the inherent imprecision of measurements (see,

e.g, Brakenhoff et al. (2018)).

Sampling Randomness due to the selection of a subset from a population (see, e.g.,

Klau et al. (2020)).

Epistemic Uncertaintes

Data preprocessing Uncertainty introduced during the selection of relevant data, feature engi-

neering, cleaning, and transformation processes (see, e.g. Klau et al. (2023)).

Parameter Uncertainty due to the specification and choice of input parameters (see,

e.g., Baio and Dawid (2015) and Probst et al. (2019)).

Model Uncertainty arising from the specification of the model (see, e.g. Chatfield

(1995)).

Method Uncertainty resulting from the specific implementation and computational

methods used for estimation (see, e.g., Sauerbrei et al. (2014)).

Table 1: Description of the sources of uncertainties (Hoffmann et al., 2021).

The RDF—resulting from the epistemic uncertainties—are defined as the free choices

within the statistical analysis pipeline, representing the flexibility a researcher has re-

garding all decisions made during the analysis (Boulesteix et al., 2017; Simmons et al.,

2011; Wicherts et al., 2016). The concept of RDF is closely related to other topics cov-

ered by the meta-science community, some of them referred to as questionable research

practices (QRPs) (Andrade, 2021): P-hacking, or fishing for significance (Boulesteix

et al., 2017; Gelman and Loken, 2013; Head et al., 2015), refers to the process of trying

different analysis strategies to find a significant result. As Andrade (2021) states: »the
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1 Introduction

purpose is not to test a hypothesis but to obtain a significant result«. HARKing stands

for “Hypothesizing After the Results are Known” and refers to presenting a hypothesis

developed after seeing the results (post-hoc) as if it had been proposed beforehand (a

priori) (Kerr, 1998). These practices are sometimes linked to the incentive structure

in academia. Publication bias (Marín-Franch, 2018; Turner et al., 2012) means that

studies with positive or significant results are more likely to be published. However,

it is important to emphasize that we do not imply that scientists always intentionally

engage in the above-mentioned QRPs. In fact, selective reporting often occurs sub-

consciously, without any malicious intent, or by pure accident. Hodges et al. (2023)

present a prime example—RDF may display a wide variety, and even using different

software frameworks, such as R, Stata, or SPSS, may change results due to algorithmic

variations or computational errors.

1.3 Meta-science and how to address the replication crisis

According to Schooler (2014), meta-science is defined as

»the science of science, [that] uses rigorous methods to examine how sci-

entific practices influence the validity of scientific conclusions. It has its

roots in the philosophy of science and the study of scientific methods, but

is distinguished from the former by a reliance on quantitative analysis, and

from the latter by a broad focus on the general factors that contribute to the

limitations and successes of research.«

Originating in philosophy, modern meta-science seeks to understand the causes and

implications of the replication crisis in the empirical sciences and to offer tools for

addressing it. To overcome the problems regarding RDF mentioned in the previous

section, Hoffmann et al. (2021) suggest distinguishing between different ways to deal

with the underlying sources of uncertainty: reduce, report, accept, and integrate uncer-

tainties. In the following, some influential approaches and ideas are introduced.

One way to report uncertainty is the assessment of an association of interest through the

so-called vibration of effects (VoE) framework (Ioannidis, 2008; Klau et al., 2021, 2023;

Patel et al., 2015). Figure 1 depicts an exemplary volcano plot from Contribution 4. Its

x-axis displays the estimated effect sizes of the variable of interest for different model

specifications within a regression setting, while the y-axis shows the −log10 transformed

p-values for each model. Usually, the VoE framework can be used to assess the impact

of different sources of uncertainty and to check the robustness and flexibility of results.

Simple summary measures may be applied, such as relative effect estimates or p-values,

and additionally volcano plots, like the one in Figure 1, can be used to identify, e.g.,

4



1 Introduction

Janus effects—inspired by the two-headed Roman god—where results are significant

for both positive and negative effects (Patel et al., 2015). This allows us to see how

strongly the results depend on the chosen analysis strategy.

Figure 1: Exemplary VoE plot from Contribution 4 (Mandl et al., 2024b). Different esti-
mates (x-axis) come from different model specifications of a simple regression problem with
the respective −log10 transformed p-values. The respective quantiles (2.5%, 50%, 97.5%) are
represented by the grey dashed lines for both axes. The black dashed lines additionally mark
different significance levels (0.001 and 0.05). The orange dashed line depicts the true underly-
ing effect.

Figure 1 shows effect estimates for different model specifications from the didactic

experiment conducted in Contribution 4. Students were asked to analyse simulated

data and report the effect estimate of the variable of interest. The vertical dashed

orange line shows the true underlying effect. Using specific model specifications makes

it easy to obtain inflated and significant estimates—note that even for this simple RDF,

2p models may be chosen, with p being the number of covariates. Criticism has been

raised that the framework often incorporates implausible and unrealistic analytical

strategies. As a result, the plot interpretation may not accurately reflect the set of

specifications researchers would typically select.

Furthermore, Rohrer et al. (2017) and Simonsohn et al. (2020) introduced a permutation-

based procedure called specification curve. The specification curve only visualises a set

of reasonable analytical strategies and evaluates the joint distribution of the estimated

effects using a null hypothesis of the median effect across all the specifications being

zero. This can be seen as some kind of multiverse analysis carried out by a single re-
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searcher or team. Within a typical multiverse analysis (Olsson-Collentine et al., 2023;

Steegen et al., 2016) researchers or different teams perform a whole set of alternative

analysis approaches that arise from RDF to examine the robustness of results.

Approaches to integrating sources of uncertainty include using Bayesian models, e.g.,

hierarchical modeling or model averaging. In this context, Rehms et al. (2024) provide

a flexible Bayesian framework that incorporates various sources of uncertainty in the

modeling of infectious diseases. While these approaches offer a great deal of flexibility,

they naturally come with certain costs—such as requiring specific assumptions about

prior distributions. This should not be taken as a criticism of Bayesian methods per

se. However, it does highlight the methodological flexibility they entail, which in turn

allows for multiple valid analysis strategies. Due to the commonly held criticism di-

rected at Bayesian models, reference should be made to Gelman and Hennig (2017) and

their discussion on the concepts of subjectivity and objectivity in statistics. What is

interesting here is that, due to the multiplicity of analysis strategies, many subjective

decisions also have to be made in frequentist statistics—a problem that is more often

attributed to Bayesian approaches.

Furthermore, aleatoric uncertainties may also be reduced through an increase of sample

size (Button et al., 2013) or standardised experimental conditions (Jarvis and Williams,

2016).

In many cases, however, there is little we can do but to accept the inherent uncer-

tainty in statistical findings. This can help to prevent us from taking single studies

and findings too seriously—whether exploratory or confirmatory—and reminds us that

generalisations are built upon the shoulders of giants2, relying on cumulative knowledge

and efforts.

1.4 Related Topics

Even though meta-research has gained significant popularity in recent years, it still

faces considerable criticism from outside and even within its own community—a great

overview can be found in Rubin (2023). Mayo and Hand (2022) »[...] [argue] that

the central criticisms arise from misunderstanding and misusing the statistical tools,

and that in fact the purported remedies themselves risk damaging science«. These on-

going debates arise from different approaches to understand the underlying reasons

for the replication crisis. This thesis focuses on rather pragmatic solutions regarding

the non-replicability of results from a statistician’s point of view, while acknowledging

that other more conceptual or philosophical problems might exist: For example, some
2This phrase refers to the famous aphorism by Isaac Newton. Its origin is discussed in the book by

Merton (1993).
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research focuses on the incentive structure of science in general, e.g., Smaldino and

McElreath (2016) argue that the use of poor methods leads to high false discovery

rates. The current incentive system, in which publication output is key to a scien-

tist’s career, rewards researchers using these methods. As a result, these practices tend

to spread to students and colleagues, much like traits favored by natural selection in

biology. Additional criticism is raised concerning the fundamental concepts of statis-

tics: Typical discussions involve the role of p-values (Wasserstein and Lazar, 2016;

Wasserstein et al., 2019), the concept of significance testing (Mayo and Hand, 2022;

Schneider, 2015), subjectivism vs. objectivism (Gelman and Hennig, 2017; Gelman

and Shalizi, 2013), or the discussion on exploratory vs. confirmatory research (Fife

and Rodgers, 2022). We recognize that these topics also contribute to explaining the

replication crisis. Nonetheless, this thesis does not adopt a specific stance—we neither

defend nor promote the use of specific methods, analytical strategies, or philosophies.

Our approach is based on a pragmatic understanding of the current situation and how

to (at least partly) fix it.

Returning to the opening quote of this dissertation: Why should statistics be viewed

as an applied philosophy of science? Statistics, and generally the empirical sciences,

are concerned with drawing inferences from data in the presence of uncertainty. Be-

cause ground truths are typically inaccessible, scientists formulate hypotheses, test

them against evidence, and revise or reject them accordingly—and this fundamental

process of reasoning under uncertainty is precisely what motivates this thesis.

The remainder of this work is organized as follows: Section 2 introduces important

methodological concepts relevant to the contributions of this thesis. Section 3 gives

short summaries of the contributions with regard to the three main categories addressed

in this thesis: Section 3.1 presents RDF in an applied statistical context and outlines

a methodology for adjusting for RDF (Contribution 1). Section 3.2 is divided into

two parts: First, we introduce a method to detect pleiotropic SNPs in the context of

Mendelian Randomisation (Contribution 2); second, this preceding example (alongside

with another case from Woehrle et al. (2024)) is used to discuss RDF in the context

of methodological research (Contribution 3). Section 3.3 focuses on academic teaching

and highlights the importance of familiarising students with meta-scientific concepts

like RDF (Contribution 4). Finally, Section 4 offers concluding remarks and an outlook.

The four manuscripts included in this cumulative dissertation can be found in the

appendix.
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2 Methods

»There are two cultures in the use of statistical

modeling to reach conclusions from data.«
— Breiman (2001b)

As Breiman (2001b) describes, there are two (main) approaches or philosophies for

drawing conclusions from data. This thesis does not take a position on which culture

is preferable as it employs a broad range of different philosophies/cultures, which are

introduced in the following. Section 2.1 addresses the multiple testing problem which

is central to Contribution 1 (Mandl et al., 2024a). Section 2.2 introduces the concept

of Mendelian Randomisation, discussed in Contributions 2 and 3 (Mandl et al., 2025b,

2025a). Subsequently, Section 2.3 covers some introductory concepts of supervised

machine learning, as applied in Contributions 1 and 3 (Mandl et al., 2024a, 2025b).

2.1 Multiple Testing

In the following, let H0 and H1 be the null and alternative hypothesis in a general,

unspecified statistical testing scenario. Table 2 summarizes the used notations for type

I and type II errors along with their complementary probabilities based on the truth

of the null hypothesis and whether it is rejected or not.

Decision H0 true H1 true

Reject H0 Type I error: α Power = 1− β
Fail to reject H0 1− α Type II error: β

Table 2: The four possible situations in a hypothesis test setting depending on the null hy-
pothesis being true/false and the respective test decision.

Now, assume that we are testing m hypotheses H i
0 for i = 1, ...,m. Usually, we are

interested in controlling the number of type I errors V , see Table 3.

Decision H0 true H1 true

Reject H0 Type I errors: V True Positives: S
Fail to reject H0 True Negatives: U Type II errors: T

Table 3: Testing m hypotheses: V , U , S, and T are random variables that count each outcome
for the m tests. These are unobservable, as the true underlying state of the hypotheses is
unknown.

Note, that Contribution 1 and this section follows the definitions and mathematical

notations of Dudoit et al. (2003). More specifically, we want to control P (V ≥ 1), i.e.,
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P (Reject at least one trueH i
0) which means making at least one type I error when test-

ing H i
0 for i = 1, ...,m—exactly the definition of the family–wise error rate (FWER).

For error rates like the FWER, we distinguish between a strong and a weak control.

The difference depends on the specific composition of the subset Λ0 ⊆ {1, ...,m} of

true and false H0’s for the underlying unknown data-generating mechanism. A mul-

tiple testing correction is said to achieve strong control of the FWER if it controls

P (Reject at least one trueH i
0) under any combination of true and false H0’s, i.e., any

subsets of Λ0 ⊆ {1, ...,m} of true and false H i
0’s. Alternatively, a procedure is said to

achieve a weak control of the FWER if all H i
0 for i = 1, ...,m are true, i.e., we want

to control P (Reject at least one trueH i
0| ∩m

i=1 H i
0). In the context of this thesis, we

are primarily concerned with avoiding false positives, particulary in the case when all

H i
0 for i = 1, ...,m are true—i.e., the weak control is satisfactory. Note that in the

following, and according to Contribution 1, we can formalize the problem of RDF as a

multiple testing scenario, with m being the number analytical specifications.

2.1.1 Bonferroni correction

The Bonferroni procedure is arguably the most well-known and straightforward method—

it provides strong control of the FWER, meaning it controls P (reject at least one trueH i
0)

under any configuration of true and false null hypotheses. Bonferroni-adjusted signifi-

cance levels α̃ and p-values p̃i are equivalently defined as

α̃ =
α

m
and p̃i = min(mpi, 1) (3)

with m being the number of tests or analytical specifications, α the global significance

level, and pi the unadjusted p-values. However, the Bonferroni adjustment yields low

power in rejecting false null hypotheses, particularly in the presence of strong depen-

dencies among the tests (Bland and Altman, 1995). To address this issue, the minP

procedure is introduced in the following section.

2.1.2 The minP approach

The single-step minP adjustment (Westfall et al., 1993; Westfall and Young, 1993)

is a procedure that corrects for multiple testing, while indirectly accounting for the

dependencies between tests and thus leading to an increased power compared to the

Bonferroni approach. Note, that it controls the FWER only weakly, which is suffi-

cient in the context of RDF. Let Pℓ denote the random variable corresponding to the

unadjusted p-value for Hℓ
0 (Dudoit et al., 2003). The adjusted p-values, denoted as

p̃i for i = 1, . . . ,m, are derived from the distribution of the smallest p-value among

9
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p1, . . . , pm. The single-step minP adjusted p-values are thus defined as:

p̃i = P

(
min

1≤ℓ≤m
Pℓ ≤ pi | ∩m

i=1H
i
0

)
(4)

To apply the minP adjustment method, two key components are required: (1) the orig-

inal unadjusted p-values pi—e.g., derived from the different analytical specifications,

and (2) p-values obtained from the analysis of permuted datasets, as we approximate

the probability in Equation (4) using permutations of the original data that mimic the

global null-hypothesis ∩m
i=1H

i
0. Adjusting the minimal p-value involves counting how

often the minimal p-values from the permuted datasets are smaller than the original

minimal p-value. This proportion constitutes the adjusted p-value.

For illustrative purposes, consider a researcher comparing variable X between two in-

dependent groups, using either a two-sample t-test or a nonparametric Wilcoxon test.

This results in two analytical specifications (m = 2). In practise, the number of spec-

ifications, m, can be considerably higher, and the degree of adjustment depends on

both the total number of specifications and the interdependence of the hypotheses.

The researcher conducts these two tests, resulting in two unadjusted p-values p̃i. To

implement the minP method, the procedure involves performing B iterations, in which

the group assignments are randomly shuffled without replacement for each iteration.

Hypothesis tests are then applied to each permuted dataset, resulting in a matrix of re-

sults with dimensions [m,B], where m is the number of specifications and B represents

the number of permutations. Each iteration provides a set of p-values corresponding

to the two specifications, leading to two p-values per iteration. To adjust the initial

minimal p-value, the number of instances in which the permuted minimal p-values are

smaller than the original p-value is counted. This count yields the min-P adjusted

p-value p̃i. For a more formal description of the approach, see Procedure 1.
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Procedure 1: minP adjustment (Westfall et al., 1993; Westfall and Young,
1993) in the context of RDF.

Input: Original dataset D including exposure X and outcome Y , analytical
specifications i = 1, ...,m

1. Apply each analytical specification i = 1, ...,m to D to calculate the
unadjusted p-values p1, . . . , pm

2. Randomly shuffle Y without replacement and generate B permuted datasets
D̃j with j = 1, ..., B

3. for D̃j with j = 1, ..., B do
3.1 Apply each analytical specification i = 1, ...,m
3.2 Return min1≤ℓ≤m pℓj

end
4. for pi with i = 1, ...,m do

4.1 Calculate minP adjusted p-values: p̃i = 1{minj pℓj≤pi}/B

end

2.2 Mendelian Randomisation—an instrumental variable approach

The use of instrumental variables originates in econometrics (Angrist and Krueger,

2001). The key idea is to isolate the variation in a risk factor that is caused by an ex-

ogenous instrumental variable (IV), and use this variation to estimate the risk factor’s

causal effect on an outcome. Applying the IV approach to epidemiology in order to

estimate causal effects from observational data was a logical next step as alleles are as-

signed randomly during meiosis before birth—and thus, independently of the potential

confounding. The development of the Mendelian Randomisation (MR) approach can

be traced in Katan (1986) and Davey Smith and Ebrahim (2003).

The key idea of (multivariable) MR is to utilise genetic variants Gi as IVs in order to

infer causal effects θj of exposures Xj on an outcome Y for i ∈ 1, ..., n and j = 1, ..., d

(Burgess et al., 2013), as illustrated in Figure 2.

Multivariable MR incorporates multiple risk factors into a single model, accounting for

measured pleiotropy. Pleiotropy is a violation to the exclusion restriction assumption,

which refers to the effect of any genetic variant Gi on the outcome Y through any path-

way other than the risk factors Xj included in the MR model—as depicted by the red

dashed lines in Figure 2. To define a valid IV, the genetic variants in the multivariable

MR analysis must satisfy the following assumptions for each genetic variant Gi and

each risk factor, where i = 1, ..., n and j = 1, ..., d (Burgess et al., 2013; Zuber et al.,

2020):
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G1

...

Gn

X1

...

Xd

U

Yθ1

θd

Figure 2: Causal directed acyclic graph for the multivariable MR scenario in Mandl et al.
(2025a). Genetic variants Gi (i ∈ 1...n), a set of confounders U and causal effects of the risk
factors Xj (j ∈ 1...d) on the outcome Y being θj . The red dashed lines represent an effect
caused by pleiotropy.

IV1: Relevance—each genetic variant Gi is associated with at least one of the

risk factors Xj .

IV2: Exchangeability—each genetic variant Gi is not associated with any con-

founder of the risk factor-outcome associations.

IV3: Exclusion restriction—each genetic variant Gi is independent of the out-

come Y conditional on the risk factors Xj and confounders U .

RF1: Relevance—each risk factor Xj needs to be strongly instrumented by at

least one genetic variant Gi.

RF2: No multi-collinearity—each risk factor Xj considered in the analysis cannot

be linearly explained by the genetic associations of any other risk factor Xj or

by the combined genetic associations of several other risk factors included in the

analysis.

If IV1 to RF2, linearity, and homogeneity assumptions hold, the consistent estimates

of the direct causal effects θj can be obtained from individual-level data via a two-stage

least squares (2SLS) approach or through the multivariable two-sample summary-level

inverse variance weighted (IVW) method, with weights se(β̂Yi)
−2 being the inverse of

the estimated variance for genetic variant i and β̂Xij , and β̂Yi being the genetic effects

of Gi on Xij and Yi for variant i and risk factor j (Burgess and Thompson, 2015):

β̂Yi =
d∑

j=1

θj β̂Xij + εi. (5)

As with many methods, the underlying assumptions can never be fully verified. In the

context of detecting pleiotropic effects, tests for heterogeneity may be used to check if
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IV3 holds. These tests are commonly based on Cochran’s Q, i.e., the test statistic is

based on the weighted sum of squared residuals—with variations in the choice of the

weighting factors (Del Greco et al., 2015). Cochran’s Q is especially well-suited in two–

sample summary–level MR which can be interpreted as a meta-analysis across genetic

variants. Sanderson et al. (2019) introduced a generalized version of the Q-statistic for

multivariable MR, which is defined as

Q =
n∑

i=1

(
1

ωi

)
β̂Yi −

d∑

j

θ̂j β̂Xij




2

∼ χ2
(n−d), (6)

with SNP index i, risk factor index j, and ωi the weight approximated either using 1st

or 2nd order weights. Cochran’s Q follows a χ2
n−d distribution with n − d degrees of

freedom under H0. ωi = σ2
Yi

are 1st order weights, with σYi being the standard error

of β̂Yi , and are known to lead to overdispersion in Q, which inflates the type I error

rate (Bowden et al., 2018). Accordingly, Contribution 2 introduces the GC-Q method

based on the work by Devlin and Roeder (1999) which corrects for overdispersion in

the heterogeneity statistic.

2.3 Supervised Machine Learning

2.3.1 General principle

Following the notation of Bischl et al. (2023), supervised machine learning (ML) is

concerned with fitting a model f : X → Rg with g ∈ N based on training data D with

observations (xi, yi) ∈ X × Y with i ∈ 1, ...n in order to make predictions on unseen

data drawn from the same underlying data-generating mechanism. D is sampled i.i.d.

from an unknown distribution PXY . For a classification problem3, |Y| = g with g being

the number of classes. The goal is to fit a model f that generalises well to unseen data

from PXY . f̂—the approximation of f—is induced by a learner or inducer algorithm

I : D × Λ → H, with the inducer I being configured by hyperparameters λ ∈ Λ and

H being the function space of the model or hypothesis space. Let L : Y × Rg → R+
0

be a loss function that evaluates the deviation of the prediction from the actual label,

then the true generalisation error is defined as R(f) := E(x,y)∼PXY
[L(y, f(x))]. Many

inducer algorithms rely on empirical risk minimisation to learn f̂ , i.e. they minimise

Remp(f̂) = E(x,y)∼PXY
[L(y, f̂(x))]. To prevent overfitting, the learned model is usually

assessed on independent test data. Resampling methods like cross-validation can be

applied to improve the stability of results. Frameworks like mlr3 (Lang et al., 2019)

make it quite easy to try different analytical strategies and use a variety of different
3Note: The classification setting can be easily transferred to the regression setting.
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learners (or inducers) I to approximate the underlying relationship f . Here, we focus

on Random Forests (RFs) and Support Vector Machines (SVMs).

The RF algorithm was first introduced by Breiman (2001a). Unlike standard bagging

trees, the RF reduces correlation among individual trees by introducing randomness

in the selection of the features. At each split within a decision tree, a random subset

of features is selected from the full set as potential split candidates. The increased

diversity of the ensemble improves the overall robustness and accuracy of the model

(Hastie et al., 2009; James et al., 2013).

SVMs generalise the basic idea of the Support Vector Classifier that aims to find optimal

separation between classes. This is done by maximising the margin between the so-

called support vectors which are the closest data points to the decision boundary. For

non-linear separation problems, SVMs employ the kernel trick to map features into

higher–dimensional spaces and thus enable linear separation of the transformed data.

The use of regularization parameters and soft margins enables SVMs to handle noise

and reduce the risk of overfitting (Cortes and Vapnik, 1995; Hastie et al., 2009).

2.3.2 Permutation Feature Importance

The Permutation Feature Importance (PFI) metric for random forests was introduced

by Breiman (2001a). Later, a generalised model-agnostic version was introduced by

Fisher et al. (2019). The procedure is straight-forward: First, we estimate the original

model error e = L(y, f̂(x)), with the fitted model f̂ , the features x, the label y, and

the loss function L (usually on the test set). Then for each feature xj with j = 1, ..., p,

we permute xj and generate a new feature matrix xperm,j. Then, we estimate the new

model error based on xperm,j: eperm,j = L(y, f̂(xperm,j)) and subsequently calculate the

PFIj as either quotient or difference of eperm,j and e (Fisher et al., 2019; Molnar, 2025).

The core concept of the PFI is to measure how much the prediction error increases when

the values of a feature are randomly shuffled, thereby breaking its original relationship

with the outcome. If the feature is important for the model’s predictions, this disruption

will significantly reduce performance. In contrast, permuting irrelevant features will

have little or no impact on the model’s accuracy (Molnar, 2025).

2.3.3 Applications

Supervised ML methods were used in both Contribution 1 and Contribution 3. Con-

tribution 1 builds on the work of Becker-Pennrich et al. (2022) and uses a RF regressor

(I) to impute perioperative paO2 values (y) for patients undergoing neurosurgery us-

ing non–invasive features (x). These paO2-levels were subsequently aggregated for each
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patient and used to test their association to post-operative complications.

Besides the GC-Q method from Contribution 2, Contribution 3 addresses a second use

case that is based on the work of Woehrle et al. (2024) and includes a supervised ML

classification task: The objective was to evaluate a diagnostic tool called E-Nose, which

may be used to distinguish between individuals infected with SARS-CoV-2 and those

who are not. Generally, the tool is able to detect volatile organic compounds in human

breath. The analysis is conducted using an array of ten metal oxide semiconductor

sensors. These produce specific signal patterns, as shown in Figure 3. In Contribution 3,

two models were used to classify SARS-CoV-2 infected patients—a RF and a SVM

classifier. Since the raw sensor data is complex, specific global time series features were

extracted for each sensor (Hyndman et al., 2024): Stability is defined as the variance of

means of each time series based on k non-overlapping windows: S = Var(µ1, µ2, . . . , µk),

with µl being the mean of the l–th window. Lumpiness is defined as the variance of

variances of these k non-overlapping windows: L = Var(Var1,Var2, . . . ,Vark), with

Varl denoting the variance of the l–th window. Furthermore, other features such as

the standard deviation, the minimum and maximum were extracted. In total, this

resulted in a feature matrix x with dimension 126 × 120—i.e., 120 features and 126

patients—and a binary label y indicating the COVID–19 status. After applying a

nested resampling procedure (Varma and Simon, 2006) for hyperparameter tuning and

performance evaluation, PFI was interpreted for both learners. The PFI measures were

used in Contribution 3 to illustrate the storytelling fallacy, which is based on a newly

introduced RDF in methodological research.

Figure 3: Raw data generated from the E-Nose analysis (Woehrle et al., 2024) for the upper
respiratory tract of a single patient. The curves show temporal changes in conductivity for
10 different sensors over a period of 60 seconds, with each line representing one sensor. Con-
ductivity values are normalized with baseline values. For each of these ten time series, global
features were extracted.
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3 Summary of contributions

The next section presents a summary of the four contributions of this dissertation,

structured according to the three focus areas: RDF in applied, methodological, and

didactic research.

3.1 Contribution 1: Mandl et al. (2024a)

RDF in applied research—a multiple testing problem

»One statistical analysis must not rule them all.«

— Wagenmakers et al. (2022)

As Hoffmann et al. (2021) state, routinely collected clinical data pose even greater

challenges than other types of data, as it is not initially generated for scientific pur-

poses. Because such data are often messy and the data-generating process is typically

unknown, issues related to measurement, data preprocessing, and model/method un-

certainty play a central role in their analysis. Now, let us start with a common but

loosely defined research hypothesis along the lines of

»partial arterial pressure of oxygen (paO2) during neurosurgery has an im-

pact on post-operative complications of the patients«

that was investigated in Contribution 1 (Mandl et al., 2024a). The project was based

on a study by Becker-Pennrich et al. (2022) that had used routinely collected data from

a Munich-based university hospital to impute missing paO2 values during neurosurgery

using machine learning methods—as the continuous measurement of these is usually

too invasive. Its motivation stems from the observation that, although the harmful

consequences of hypoxia have been well established, the clinical effects of hyperoxia

remain insufficiently understood and are subject to continued debate.

As mentioned in Section 1, many analysis strategies exist to address the research ques-

tion at hand. Some potential choices include: the handling of missing values, the

model choice to predict unobserved paO2-levels, the choice of (hyper-)parameters, the

creation of the risk and outcome variables, and the testing method. In this project, we

came up with a total number of n = 48 reasonable analysis strategies, i.e., including

all steps performed before the final statistical test and the choice of test itself. The

problem arises when selectively reporting a single analysis strategy, which in turn leads

to over-optimistic and non-replicable results.
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When different analytical approaches—resulting in some kind of statistical test—are

applied to the same research question, it effectively results in a multiple testing problem.

Let m be the number of analysis strategies a researcher considers and H i
0, i = 1, . . . ,m

the corresponding null hypotheses tested for each of the m analyses. Our vaguely

defined research hypothesis may be formalized differently, as shown in Table 4.

Option 1 Option 2

H0 The mean paO2 level is equal in patients with
and without post-operative complications.

vs.

H1 The mean paO2 level is not equal in these
two groups.

H0 The rate of post-operative complications is
equal for patients with paO2 < 200mmHg and
those with paO2 ≥ 200mmHg.

vs.

H1 The rate of post-operative complications is
not equal for patients with paO2 < 200mmHg
and those with paO2 ≥ 200mmHg.

Table 4: Two different formalizations of the vaguely defined research hypothesis as introduced
in Mandl et al. (2024a).

If the existence of various analysis strategies is now defined as a multiple testing prob-

lem, one can draw on established methods from this field of research. Our main goal is

to control the family-wise error rate (FWER), i.e., the probability to make at least one

type I error when testing H i
0 with i = 1, ...,m: P (reject at least one trueH i

0). There-

fore, we propose using the single-step minP adjustment method (Westfall et al., 1993;

Westfall and Young, 1993) as this approach stands out due to its relatively intuitive

principle and higher power compared to, e.g., the Bonferroni correction, while still

ensuring weak control of the FWER.

The central idea of Contribution 1 is the formalisation of different analytical strategies

as multiple testing problem. The proposed minP approach is subsequently tested in a

(real data based) simulation study to compare the type I error rates to an unadjusted

and Bonferroni adjusted strategy. Furthermore, we compare these approaches in the

above-mentioned study on the impact of paO2 on post-operative complications after

neurosurgery.

We conclude that methods like the minP correction may help to choose the strategy

that provides the strongest evidence, while controlling the type I error rate and thereby

reducing the risk of non-replicable results. Further potential developments are discussed

in Section 4.
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3.2 Contributions 2–3: Mandl et al. (2025a) and Mandl et al. (2025b)

RDF in methodological research—the storytelling fallacy

»[A]ccept that there is no universally best method

[...].«
— Strobl and Leisch (2024)

The concept of RDF has mainly been discussed in fields of applications of statistics,

such as epidemiology and psychology. However, we can assess methodological research

analogously. Methodological research in statistics focuses on developing and evaluat-

ing new methods. Researchers typically face similar decision problems when designing

methodological comparison studies. The use of specific datasets, preprocessing pro-

cedures, and method variants that are subsequently selectively reported may lead to

over-optimistic results of the preferred/newly introduced method. Illustrations regard-

ing RDF within methodological studies can be found in Jelizarow et al. (2010), Nießl

et al. (2022, 2024), Ullmann et al. (2023), and Pawel et al. (2024).

In this context, Contribution 3 introduces a new kind of RDF which focuses on real data

examples that are often part of methodological studies. Authors might tell a domain-

specific “story” supporting the results of their preferred method(s). Nonetheless, there

is a multitude of equally plausible stories that may lead to different conclusions. In

this sense, we define the so-called storytelling fallacy as the selective use of anecdotal

domain-specific knowledge to support the superiority of the preferred method in real

data examples. This practice may lead to biased and non-replicable results. The con-

cept is illustrated using two examples of our own research (Mandl et al., 2025a; Woehrle

et al., 2024). In this section, we focus on the example dealing with the detection of

pleiotropic SNPs in MR analyses, as introduced in Contribution 2:

The GC-Q method is based on the work of Devlin and Roeder (1999) and uses a

correction factor in the standard heterogeneity statistic to correct for overdispersion.

In applied analyses using the two–sample summary–level MR setting, excess hetero-

geneity may arise from several additional sources, including widespread but negligible

pleiotropic effects, or small discrepancies in allele frequencies between the samples used

for exposure and outcome associations. In Contribution 2, we propose to correct for

overdispersion by using an estimated inflation factor to identify and remove outlying

instruments that may be invalid due to pleiotropy. This correction approach is in-

spired by the Genomic Control method, which was originally developed in the context

of genome-wide association studies (GWAS) (Devlin and Roeder, 1999). Motivated

from a Bayesian standpoint, the distribution of the local q-statistic—considering the
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presence of pleiotropic SNPs—can be represented by a mixture of two χ2 distributions.

A straightforward frequentist estimate of the inflation parameter can be computed di-

rectly from the data. Subsequently, the GC-Q method is evaluated against a variety

of other approaches for detecting outlying SNPs, using both an extensive simulation

study and real data examples.

With this new methodology in mind, we illustrate the so-called storytelling fallacy.

Usually, methodological evaluations include real data applications. In the following,

the causal effect of circulating vitamin D levels (exposure: X) on multiple sclerosis

(MS, outcome: Y ) using an Mendelian Randomisation (MR) approach is investigated.

Table 5 shows the results of two pleiotropy detection methods: Method A (Standard)

and the newly introduced Method B (GC-Q). While Method A identifies one pleiotropic

SNP—rs4944958—Method B detects no pleiotropic SNP.

Method pleiotropic SNP

Method A (Standard) rs4944958
Method B (GC-Q) —

Table 5: Real data analysis from Mandl et al. (2025a): pleiotropic SNPs for the analysis of
vitamin D on MS in the univariable MR analysis.

Imagine playing devil’s advocate for each approach. We can easily develop two domain-

specific stories to support each method’s superiority, as shown in Contribution 3. As-

sume that we want to justify the use of Method A with a plausible domain-specific

Story A:

»Genetic variants linked to vitamin D fall into three main categories: those

involved in the direct vitamin D pathway, U/V absorption, and choles-

terol metabolism (Manousaki et al., 2020). The SNP rs4944958, flagged

by method A, is an intron of the NADSYN1 gene, which influences choles-

terol precursor synthesis. Given cholesterol metabolism’s potential role as

a confounder in multiple sclerosis (MS) (Murali et al., 2020), this suggests

that rs4944958 may exert horizontal pleiotropy. This interpretation aligns

with the results of method A.«

However, the development of a plausible Story B is equally applicable to Method B:

»The SNP rs4944958, identified by method A, is considered a perfect proxy

for rs12785878 (Mokry et al., 2015), a genetic variant consistently asso-

ciated with serum vitamin D levels in multiple studies. For this reason,
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rs4944958 has been explicitly included in related MR studies, e.g., Mokry

et al. (2015). Although it also plays a role in cholesterol metabolism, the

relevance of this pathway in mediating effects on multiple sclerosis remains

unresolved (Lorincz et al., 2022). Consequently, excluding rs4944958 based

on presumed pleiotropy appears unjustified, and its removal by method A

likely represents a false positive finding. These considerations are consis-

tent with the findings from method B.«

These two contrasting interpretations (or “stories”) that might be constructed to sup-

port the superiority of both Method A and B, demonstrate that the interpretation of

real data examples is inherently uncertain—and highlights the need for caution when

concluding from real data analyses in methodological studies. This raises the ques-

tion of whether a newly introduced method must always outperform its competitors

in every analytical setting. We agree with Strobl and Leisch (2024) and think that

we have to »accept that there is no universally best method«. Furthermore, from a

general scientific perspective, employing multiple analytical strategies may yield valu-

able insights—therefore, it is advisable to consider and potentially combine several

approaches rather than relying on a single one.
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3.3 Contribution 4: Mandl et al. (2024b)

RDF in a teaching context

»[I]t seems to me that statistics is often sold as a

sort of alchemy that transmutes randomness into

certainty [...].«
— Gelman (2016)

In addition to examining RDF in applied and methodological contexts, an essential

perspective on the problem is missing: university education. As Gelman (2016) notes

in the opening quote of this section, statistics is often portrayed as a tool for trans-

forming randomness into certainty—and not only to those outside the field, but also to

those within. Statistics and data analysis education often emphasises learning specific

techniques sequentially and isolatedly. For example, students might first take a course

focused on linear models, without addressing realistic analytical challenges such as han-

dling missing data and outliers. These issues are typically introduced in more advanced

courses—however, without adopting a holistic analytical approach. In the classroom,

students usually work with clean, well-structured data and are guided through (toy)

examples with clear, straightforward solutions. These exercises often include signifi-

cant results, which may condition students to expect similar outcomes in their future

real-world tasks.

While this approach mis pedagogically convenient, it might give students the misleading

impression that every data analysis task has a single correct solution and will naturally

produce significant results. In practise, analytical challenges often arise simultaneously

and interact in complex ways. These misconceptions are further reinforced by aca-

demic publications, in which researchers typically present only one analytical strategy

and report noteworthy and significant results, without detailing the many alternative

strategies that may have been explored. This lack of transparency can mislead readers

into believing that data analysis is a straightforward, deterministic process, rather than

an iterative and interpretive one.

We argue that exposing students only to clean data sets and one single, supposedly

correct analysis strategy that reliably produces significant or interesting results leaves

them poorly prepared for the complexities of real-world data analysis. More critically,

they may struggle to recognize and guard against the risks of selective reporting. While

many courses focus on the correct application of statistical models, it is equally impor-

tant to foster students’ awareness of aleatoric and epistemic uncertainties and RDF.

Creating this awareness is essential for promoting responsible and transparent empirical

research.
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To address these challenges, Contribution 4 presents a seminar course designed for

advanced undergraduate and early graduate students in fields such as statistics or data

science. The course aims to raise awareness of the multiplicity of analysis strategies

and to equip students with theoretical frameworks and practical tools to deal with

the problem of RDF through a combination of conceptual instructions and hands-on

sessions.

As shown in Table 6, the concept is structured around four fundamental elements:

The first element (I) consists of the key concepts of reproducibility and replicabil-

ity, including an introduction to version control frameworks and R-Markdown. The

second fundamental part (II.1/2) of the course focuses on replicability: Each stu-

dent performs two data analysis tasks with specific pre-defined instructions. Between

these tasks (III), they are introduced to a theoretical module that addresses relevant

meta–scientific topics, such as different sources of uncertainties, selective reporting, and

potential strategies for addressing these challenges. While the practical task evaluates

the extent of selective reporting, the second theoretical module acts as an intervention

to prevent students from selectively reporting only the most promising results. The ef-

fect of the intervention might be assessed by comparing the results of the two practical

sessions, since the second task follows the (meta-scientific) intervention and involves

re-analysing data generated from the same data-generating mechanism as in the first

task. The students’ experiences with the practical sessions, the intervention effect,

and their key takeaways (e.g., over-optimistic results) are discussed in the debriefing

sessions (IV).

Topic Details

I Reproducibility Introduction to frameworks like Git and R-Markdown.
II.1 1st practical session First assignment.
III Lecture on meta-scientific concepts Uncertain choices in the analysis of empirical data,

selective reporting, and ways to address these issues.
II.2 2nd practical session Second assignment.
IV Debriefing: Review and discussion of results.

Table 6: Sample structure of the course as described in Mandl et al. (2024b).

Given that a lack of awareness of RDF has contributed to the replication crisis, address-

ing these issues in academic teaching is crucial. In particular, we must raise awareness

of the negative consequences of selective reporting in the education of future (empiri-

cal) scientists. The growing availability of large, complex datasets introduces greater

analytical challenges and increases the uncertainty of analytical choices even further.

Therefore, students must be adequately equipped to address these challenges.
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4 Conclusion and Outlook

4 Conclusion and Outlook

»[A] solution to the current crisis is to acknowledge

the inherent uncertainty in scientific findings.«
— Hoffmann et al. (2021)

As mentioned in Section 1, this thesis is motivated from a philosophical standpoint.

Statistics draws inferences while dealing with different sources of uncertainty. It tries to

unveil causal relationships, unravel complex associations, and test hypotheses against

evidence. Some of these techniques come at a certain price: Causal inference is usually

strongly assumption-driven, while opening the “black box” of certain ML models seems

to be nearly impossible. If one takes a step further towards the underlying principle of

the field itself, it even gets more complex—e.g., what does the underlying truth look

like? Is there a true parameter value, or is the value itself uncertain? This is where

Heisenberg’s uncertainty principle—which could open a whole new discussion here—

comes to mind. That said, this thesis is part of a broader range of pragmatic approaches

aimed at addressing some of the problems of the replication crisis. Emphasising both

applied and methodological research is one way to see the problem holistically. We do

not believe that only the improper application of methods is the problem. Rather, the

incentive structure within academia further exacerbates the implications of this crisis.

Furthermore, we must address these problems from the very beginning in academic

teaching to end this self-reinforcing loop. Meta-science is on the right track to do so—

yet it is essential to remain constructive rather than merely critical or destructive. In

the following, we present the main conclusions drawn from this thesis’ contributions

and offer an outlook on future work.

4.1 Conclusion

RDF come in many shapes and forms—be it in an applied or methodological context.

Furthermore, teaching meta-scientific concepts must not be overlooked, as doing so

allows us to foster awareness from the very beginning. Some RDF are quite apparent,

whereas others are not that obvious initially.

In applied statistical research, effective methods exist for addressing RDF. Moreover,

we can draw on existing tools and methods if the multiplicity of analysis strategies is

understood as a multiple testing problem. One of the goals of this thesis is to build

bridges between different communities that have each developed solutions to known

problems. In our case, these are the meta-science and the multiple testing community.

Furthermore, methodological studies can be biased in favor of the authors’ preferred
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method(s) through selective reporting. Numerous recommendations—often grounded

in principles of scientific integrity and open science—have been developed to ensure

that such studies are conducted as neutrally and objectively as possible. Nonetheless,

the storytelling fallacy shows that some RDF might be harder to spot than others.

Thus, careful interpretation is not only required for simulation studies but also for real

data examples.

Finally, with the growing volume of data and new methodologies, it is crucial to prepare

future empirical scientists for the issues discussed in this thesis. Therefore, academic

teaching must raise awareness of the implications of uncertainty and RDF to ensure

the validity of statistical results.

So, where do we go from here to address these problems? First and foremost, we must

acknowledge the inherent uncertainty in scientific findings. Subsequently, we must

revisit and clarify our research goals. One way to achieve this for the case of method-

ological research is through the various »phases of methodological research« (Heinze

et al., 2024). The underlying idea is to conceptualize methodological research in anal-

ogy to clinical trials: Early-phase studies might introduce new methodological ideas

based on theoretical considerations while late-phase studies aim to generate robust evi-

dence across diverse contexts. This also aligns with the idea to abandon the »one beats

them all philosophy« (Strobl and Leisch, 2024)—i.e., no method should be expected to

perform better in every possible situation.

Although the expectation that new methods must outperform existing ones in every

scenario and that research findings must always be “positive”, are often only implicit in

the research community and among journal decision-makers, challenging this view could

improve the underlying incentive structure. Ultimately, this may encourage a more

balanced and less biased presentation of results in both applied and methodological

research.

4.2 Outlook

As a final point, some topics are beyond the scope of this thesis, but should nonethe-

less be briefly addressed. Contribution 1 introduced a way to deal with the multi-

plicity of analysis strategies. However, in multivariate regression settings with multi-

ple confounders, defining a valid permutation scheme may be challenging. Permuting

the exposure breaks its link to confounders, while permuting the outcome disrupts

exposure–outcome and confounder–outcome associations. More advanced permutation

methods may be preferable (Berrett et al., 2020; Girardi et al., 2024). Alternatively,

asymptotic approaches, such as the one by Ristl et al. (2020), offer an efficient way to
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adjust p-values and confidence intervals for the multiplicity of analysis strategies.

Nevertheless, these approaches do not represent a universal solution, and despite their

flexibility in many contexts, they rely on assumptions—such as parametric test struc-

tures and specific input data requirements—that do not always hold in complex settings.

Furthermore, validation-based strategies (Daumer et al., 2008)—as used in the ML

literature—involve sample-splitting. In this context, multiple analytical strategies

might be run on a “training” set first. The preferred analysis strategy is validated

on a holdout set. Like the minP method in Contribution 1, this reduces power. Still,

the concept is compelling, as a key advantage is that it controls the type I error rate

even when researchers are unaware of the risks linked to RDF or unable/unwilling to

clearly report the number of analytical approaches conducted during their analyses.

Some theoretical considerations for using the validation approach and related power

considerations have already been discussed in Labonne and Fafchamps (2017).

So, which approach is superior? Choosing the right approach obviously depends on

the context, e.g., power considerations might result in favoring a particular strategy.

Moreover, these approaches might be combined.

Finally, sometimes researchers unintentionally “fool” themselves (Nuzzo, 2015) which

makes the control of the type I error rate impossible. Study registration involves a

(publicly available) pre-specified analysis plan (Hardwicke and Wagenmakers, 2023;

Munafò et al., 2017; Nosek et al., 2018) and might help to address this issue. We

encourage the use of this practise to improve openness and trustworthiness in empirical

research (Naudet et al., 2024). However, even in clinical trials, there is a debate about

whether analysis plans are detailed enough to prevent potential selective reporting

(Greenberg et al., 2018). Ultimately, even in the case of meta-scientific practices—such

as the approaches discussed in this thesis—we simply may have to accept that there is

no universally best method.
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Anne‑Laure Boulesteix1,5 

Abstract 

When different researchers study the same research question using the same dataset they may obtain different 
and potentially even conflicting results. This is because there is often substantial flexibility in researchers’ analytical 
choices, an issue also referred to as “researcher degrees of freedom”. Combined with selective reporting of the smallest 
p-value or largest effect, researcher degrees of freedom may lead to an increased rate of false positive and overop‑
timistic results. In this paper, we address this issue by formalizing the multiplicity of analysis strategies as a multiple 
testing problem. As the test statistics of different analysis strategies are usually highly dependent, a naive approach 
such as the Bonferroni correction is inappropriate because it leads to an unacceptable loss of power. Instead, we 
propose using the “minP” adjustment method, which takes potential test dependencies into account and approxi‑
mates the underlying null distribution of the minimal p-value through a permutation-based procedure. This proce‑
dure is known to achieve more power than simpler approaches while ensuring a weak control of the family-wise error 
rate. We illustrate our approach for addressing researcher degrees of freedom by applying it to a study on the impact 
of perioperative paO2 on post-operative complications after neurosurgery. A total of 48 analysis strategies are con‑
sidered and adjusted using the minP procedure. This approach allows to selectively report the result of the analysis 
strategy yielding the most convincing evidence, while controlling the type 1 error—and thus the risk of publishing 
false positive results that may not be replicable.

Keywords  Multiplicity, Open science, Replication crisis, Researcher degrees of freedom, Uncertainty

Introduction
In recent years, the scientific community has become 
increasingly aware that there is a high analytical vari-
ability when analysing empirical data, i.e. there are 
plenty of sensible ways to analyse the same dataset for 
addressing a given research question, and they may 
yield (substantially) different results [1, 2]. If combined 
with selective reporting, this variability may lead to an 
increased rate of overoptimistic results, e.g.—depend-
ing on the context—false positive test results and infla-
tion of effect sizes [3–5], or, beyond the context of 
testing and effect estimation, to exaggerated measures 
of predictive performance [6] or clustering validity [7].

Hoffmann et  al. [8] outline six sources of uncertainty 
that are omnipresent in empirical sciences and lead to 
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variability of results in empirical research regardless 
of the considered discipline, namely sampling, meas-
urement, model, parameter, data pre-processing, and 
method uncertainty. Failure to take these various uncer-
tainties into account may lead to unstable, supposedly 
precise, but overoptimistic and thus potentially unrepli-
cable results. Most importantly, model, parameter, data 
preprocessing and method uncertainties lead to the ana-
lytical variability mentioned above. In this context, Sim-
mons et  al. [3] denote the flexibility researchers have 
regarding the different aspects of the analysis strategy as 
“researcher degrees of freedom”.

While it is clear that selective reporting of the “most 
favorable results” out of a multitude of results is a ques-
tionable research practice that invalidates statistical 
inference, it is less clear how researchers should deal with 
their degrees of freedom in practice. In this study, we sug-
gest to tackle this issue from the perspective of multiple 
testing. More precisely, for analyses based on hypothesis 
testing we formalize researcher degrees of freedom as a 
multiple testing problem. We further propose to use an 
adjustment procedure to correct for the over-optimism 
resulting from the selection of the lowest p-value out of a 
variety of analysis strategies.

As the results of different analysis strategies addressing 
the same research question with the same data are usu-
ally highly dependent, a naive approach such as the Bon-
ferroni correction is inappropriate. It would indeed lead 
to an unacceptable loss of power. Instead, we propose 
resorting to the single-step “minP” adjustment method 
[9, 10] and discuss its use in this context. The power 
achieved by the minP procedure is typically larger than 
with simpler approaches while ensuring a weak control 
of the family-wise error rate. This is because the proce-
dure is based on the distribution of the minimal p-value, 
which is obviously affected by the level of correlation 
between the tests.

The minP procedure has the major advantage that it 
has a relatively intuitive principle, as illustrated by the 
following example. In a comment on a study by Mathews 
et  al. [11] claiming that breakfast cereal intake before 
pregnancy is positively associated with the probability 
to conceive a male fetus, Young et al. [12] reinterpret the 
small p-value of 0.0034 obtained in the original article. 
They notice that Mathews et al. [11] did not only analyse 
the association between fetal sex and the consumption 
of breakfast cereals, but also many other food items—a 
typical case of multiple testing. Based on the analysis of 
permuted data (i.e. data with randomly shuffled fetal sex 
status), Young et al. [12] argue that “one would expect to 
see a p-value as small as 0.0034 approximately 28 percent 
of the time when nothing is going on”. Implicitly, they 
apply the minP procedure for adjusting the smallest raw 

p-value of 0.0034 to 0.28 in this context where multiple 
tests are performed to investigate multiple food items. 
Our suggestion consists of translating this approach into 
the context of the analytical researcher degrees of free-
dom towards addressing the statistical factors of the rep-
lication crisis.

The minP procedure as used in the example by Young 
et  al. [12] and considered in this paper is based on an 
approximation of the null distribution of the minimal 
p-value through a permutation-based procedure. We 
note, however, that such a permutation-based procedure 
is not always possible, and that resorting to theoretical 
asymptotical results on the distribution of the minimal 
p-value (or maximal statistic) is more appropriate in 
some cases, as will be discussed later.

The goal of this paper can be seen as building bridges 
between two scientific communities. On one hand, the 
metascientific community has long recognized that the 
replication crisis in science is partly related to multiplic-
ity issues, but has to date neither formalized the issue in 
terms of multiple testing nor applied known adjustment 
procedures for reducing the occurrence of false positive 
results. On the other hand, the multiple testing com-
munity is increasingly developing theoretically founded 
general approaches to multiple testing taking into 
account the dependence of the tests; see Ristl et al. [13] 
for a recent important milestone. These approaches are 
however not yet routinely used to adjust for researcher 
degrees of freedom in practice. The reasons are manifold. 
The lack of communication between the two communi-
ties and the methodological complexity of these meth-
ods certainly play an important role. Another reason is 
that these approaches, even if increasingly efficient and 
general, do not address all types of analyses but only 
regression models, and require assumptions regarding 
the data format that may not always be fulfilled in prac-
tice. In this context, the present paper aims to formalize 
and demonstrate the use of minP to adjust for researcher 
degrees of freedom in simple situations not only involv-
ing linear models, while hopefully creating a common 
basis fostering communication between the two commu-
nities towards the development (by statistical research-
ers) and routine use (by applied data analysts) of more 
complex approaches. This paper aims to establish an easy 
approach designed to prevent the detection of false-posi-
tive findings in the context of fishing expeditions.

The rest of this paper is structured as follows. Prob-
lems related to researcher degrees of freedom are out-
lined in more detail in Background: researcher degrees 
of freedom  section, including potential approaches for 
handling it in practice that were proposed in the litera-
ture. As a motivating example, Motivating example sec-
tion presents a study on the impact of perioperative 
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partial arterial pressure ( paO2 ) on post-operative com-
plications after neurosurgery that uses routinely collected 
real-world data. Our suggested approach is described 
in Method  section, while Illustration  section shows its 
results on the example dataset and Discussion  section 
briefly discusses limitations of the approach and possible 
extensions. Furthermore, we have added a brief tutorial 
to our GitHub repository to make the method’s dissemi-
nation and application simple and understandable1.

Background: researcher degrees of freedom
Overview
When analysing biomedical data, researchers are often 
confronted with a number of decisions that may appear 
trivial at first view, but often have a considerable impact 
on study results. Which confounders should we adjust 
for? How should we handle missing values and outliers? 
Should we log-transform a continuous variable? What 
about categorical variables with categories that include 
no more than a handful of patients? Should these small 
categories be merged? Is a parametric or non-paramet-
ric test more appropriate? The term “researcher degrees 
of freedom” [3] denotes, in a broad sense, this flexibility 
arising from the many analytical choices researchers face 
when analysing data in practice.

In most cases, neither theory nor precise practical 
guidance from the literature can reliably point research-
ers to the “best way” to analyse their data. Model selec-
tion techniques based, e.g., on the Akaike Information 
Criterion (AIC) and diagnostic tools (e.g., to assess 
whether a variable is normally distributed) may be help-
ful in some cases. However, they most often do not 
provide definitive clear-cut answers to all the arising 
questions. Furthermore, the choice of these techniques is 
itself affected by uncertainty: there usually exist several 
suitable variants of them. For example, should we prefer 
the AIC or the Bayesian Information Criterion (BIC) for 
model selection? Should we use a QQ-plot or apply a test 
(if yes, which one and at which level?) to assess normality 
of a variable?

Combined with selective reporting, researcher degrees 
of freedom can lead to an increased rate of false posi-
tive results, inflation in effect sizes, and overoptimistic 
results [3–5, 8]. The terms “p-hacking” and “fishing for 
significance” have been used in the context of hypoth-
esis testing to denote the selective reporting of the most 
significant results out of a multitude of results arising 
through the multiplicity of analysis strategies. The result-
ing optimism is however not limited to the context of 
hypothesis testing. “Fishing expeditions” (also termed 

“cherry-picking” or “data dredging”) are common issues 
in all types of analyses beyond hypothesis testing [7].

The multiplicity of possible analysis strategies particu-
larly affects studies involving electronic health records and 
administrative claims data, which currently raise hopes 
and promises of “real-world” evidence and personalized 
treatment regimes. With data that have not been primar-
ily collected for research purposes, uncertainties related 
to the analysis strategies may indeed be even more pro-
nounced compared to the analysis of classical observational 
research data. In the last few years, contradictory results 
have been published in this setting, which can be viewed 
as a consequence of the uncertainties in a broad sense. See 
for example the conflicting results on infectious complica-
tions associated with laparoscopic appendectomies [14–17] 
and on the association between cardiovascular disease and 
marijuana consumption [18, 19]. In both cases, different 
teams of researchers used the same data set to answer the 
same research question and found contradictory results 
which can be explained by seemingly trivial choices.

Partial solutions and related work
There are a number of approaches that have been pro-
posed to deal with uncertainty regarding the analysis 
strategy and are preferable to the selective reporting of 
the preferred results.

A natural approach is to fix the analysis strategy in 
advance, i.e. prior to running the analyses, to avoid 
obtaining multiple results in the first place. For more 
transparency, this may be done within a publicly avail-
able pre-registration document [20–22], thus prevent-
ing result-dependent selective reporting [23]. This type 
of pre-registration is the standard for clinical trials [24]. 
However, even in the strictly regulated context of clini-
cal trials, there is some controversy about the ques-
tion whether statistical analysis plans of clinical trials 
are detailed enough [25] to prevent potential selective 
reporting. Fixing the analysis strategy in advance tends to 
be even more difficult for exploratory research questions 
and for complex data sets and research questions.

The opposite approach consists of transparently 
acknowledging uncertainty and reporting the variety 
of results obtained with the considered analysis strate-
gies. This concept has been proposed in different vari-
ants in the last decade: it encompasses, e.g., the vibration 
of effect framework [26, 27], multiverse analyses [28] 
and the specification curve analysis [29, 30]. With these 
approaches, the multiple reported results might be con-
flicting, sometimes yielding a confusing picture and a 
paper without clear-cut take-home message. In other 
words, the pitfalls of selective reporting are obviously 
avoided, but this comes at a high price in terms of inter-
pretability and clarity.1  https://​github.​com/​mmax-​code/​resea​rcher_​dof
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Finally, let us mention the approach of conducting vari-
ous analyses, selecting the preferred results but—instead 
of reporting it in a cherry-picking fashion—publishing it 
only if it can be qualitatively confirmed by running the 
exact same analysis on independent “validation” data 
[31]. This is the approach Ioannidis [32] indirectly rec-
ommends when claiming “Without highly specified a 
priori hypotheses, there are hundreds of ways to analyse 
the dullest dataset. Thus, no matter what my discovery 
eventually is, it should not be taken seriously, unless it can 
be shown that the same exact mode of analysis gets simi-
lar results in a different dataset.” This approach, however, 
requires to set apart (or subsequently obtain) a validation 
dataset of adequate size. This might not always be pos-
sible, and even in cases where it is possible, splitting the 
data may imply a substantial loss of power compared to 
the analyses that would have been performed using the 
totality of the data [31].

In the context of analyses strongly affected by uncer-
tainties where none of these simple approaches seems 
applicable, we suggest an alternative approach based on 
multiple testing correction. More specifically, we view 
researcher degrees of freedom from a multiple testing 
perspective and propose to apply correction for multiple 
testing to the preferred result to reduce the risk of type 
1 error, as outlined in Researcher degrees of freedom as 
a multiple testing problem and Controlling the Family-
Wise Error Rate (FWER) sections.

Motivating example
Data
As a motivating example, we use a current research pro-
ject on the effect of partial arterial pressure of oxygen 
(paO2) during craniotomy on post-operative complica-
tions among neurosurgical patients. This study is based 
on a routinely collected dataset from a Munich Univer-
sity Hospital preprocessed as described in Becker-Penn-
rich et al. [33].

While the irreversible damage to the brain caused by 
reduced levels of oxygen in the blood (hypoxemia) has 
been the topic of extensive research, the potential harm 
caused by an increased amount of oxygen (hyperoxemia) 
is comparatively not well understood. The dangers of 
over-supplementation of oxygen during surgical pro-
cedures are still debated among anesthesiologists and a 
topic of current research [34, 35].

The dataset under consideration was extracted from 
routine clinical care data of n = 3, 163 surgical proce-
dures performed on lung healthy neurosurgical patients. 
Vital data was measured at several timepoints during sur-
gery for each surgical procedure. As outlined in Becker-
Pennrich et al. [33], measuring paO2 continuously is not 
feasible, in contrast to other vital parameters. To obtain 

a reliable assessment of hyperoxemia during the surgi-
cal procedure, the paO2 values thus have to be imputed 
using a surrogate model based on proxy variables that 
can be measured continuously using non-invasive 
techniques. Becker-Pennrich et  al. [33] suggest to use 
machine learning methods for this purpose and identify 
random forest, and regularized linear regression as well-
performing candidates.

In this paper, we consider the assessment of the effect 
of paO2 on the binary outcome defined as the occurrence 
of post-operative complications after surgery. Even if we 
ignore model choice issues arising from the selection of 
a set of potential confounders, this analysis is character-
ized by a large number of uncertain choices. They are 
described in more detail in Researcher degrees of free-
dom  section along with the options considered in our 
illustrative study in Illustration section.

Researcher degrees of freedom
In our study, we focus on the following choices, depicted 
in the form of a decision tree in Fig. 1: (i) missing value 
imputation, (ii) surrogate model for the unobserved 
paO2-values, (iii) parameter choice approach, (iv) aggre-
gation procedure, and (v) coding of the exposure variable 
paO2 and testing method. Uncertainty (ii) is discussed in 
more details by Becker-Pennrich et al. [33]. In this study, 
we use the data preprocessed as described in Becker-
Pennrich et al. [33] resulting from the different surrogate 
modelling strategies.

Uncertainties (i) to (iv) can be seen as preprocessing 
uncertainty in the terminology of Hoffmann et  al. [8]. 
For the missing value imputation (i) the two considered 
options are to either drop or impute the missing values 
using multiple imputation in the ’mice’ package [36]. For 
surrogate modelling of the unobserved paO2-values (ii) 
we either use random forest or a regularized general lin-
ear model, either using the default parameter values or 
the parameter values obtained through tuning via ran-
dom search using predefined tuning spaces (iii) as imple-
mented in the ’mlr3’ package [37].

After obtaining a prediction of unobserved paO2 val-
ues through surrogate modelling, for each surgery the 
paO2 measurements are aggregated to a single value over 
multiple measurements for a single patient: either the 
mean or the median (iv). Finally (v), we either consider 
paO2 as a continuous variable and use a logistic regres-
sion model to assess its effect on the binary outcome, 
we dichotomize it using the clinically meaningful cutoff 
value of 200mmHg, or we categorize it into a three-cat-
egory variable using the clinically meaningful cutoff val-
ues of 200mmHg and 250mmHg and use Fisher’s exact 
test. The latter choice can be seen as referring both to 
preprocessing and method uncertainty, since the choice 
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of the test is related to the transformation of the variable 
paO2.

All in all, we consider a total of 48 specifications of the 
analysis strategy: 2 (missing values) × 2 (surrogate model) 
× 2 (parameter choice) × 2 (aggregation) × 3 (method) = 48.

Method
Researcher degrees of freedom as a multiple testing 
problem
In the remainder of this paper, we will focus on analyses 
that consist of statistical tests. We consider a researcher 
investigating a—possibly vaguely defined—research 
hypothesis such as “paO2 has an impact on post-oper-
ative complications”, as opposed to the null- and alter-
native hypotheses of a formal statistical test, which 
are precisely formulated in mathematical terms. From 
now on, we assume that the research hypothesis the 
researcher wants to establish corresponds to the formal 
alternative hypothesis of the performed tests.

In this context, the term “analysis strategy” refers to 
all steps performed prior to applying the statistical test 
as well as to the features of the test itself. The following 
aspects can be seen as referring to preprocessing uncer-
tainty in the terminology by Hoffmann et al. [8]: transfor-
mation of continuous variables, handling of outliers and 
missing values, or merging of categories. Aspects related 
to the test itself refer to model and method uncertainty 
in the terminology of Hoffmann et al. [8]. They include, 
for example, the statistical model underlying the test, the 
formal hypothesis under consideration, or the test (vari-
ant) used to test this null-hypothesis.

In the context of testing, an analysis strategy can be 
viewed as a combination of such choices. Obviously, 
different analysis strategies will likely yield different 

p-values and possibly different test decision (reject 
the null-hypothesis or not). Applying different analy-
sis strategies successively to address the same research 
question amounts to performing multiple tests. From 
now on, we denote m as the number of analysis strat-
egies considered by a researcher. The null-hypotheses 
tested through each of the m analyses are denoted as 
Hi
0 , i = 1, . . . ,m.
These null-hypotheses and the associated alternative 

hypotheses can be seen as—possibly different—math-
ematical formalizations of the vaguely defined research 
hypothesis—“paO2 has an impact on post-operative 
complications” in our example. One may decide to for-
malize this research hypothesis as “ H0 : the mean paO2 
is equal in the groups with and without post-operative 
complications versus H1 : the mean paO2 is not equal 
in these two groups”. But it would also be possible to 
formalize it as “ H0 : the post-operative complication 
rates are equal for patients with paO2 < 200mmHg and 
those with paO2 ≥ 200mmHg” versus “ H1 : the post-
operative complication rates are not equal for patients 
with paO2 < 200mmHg and those with paO2 ≥ 200

mmHg”. Analysis strategies may thus differ in the 
exact definition of the considered null- and alternative 
hypotheses.

They may, however, also differ in other aspects, some 
of which were mentioned above (for example the han-
dling of missing values or outliers). If two analysis strat-
egies i1 and i2 (with 1 ≤ i1 < i2 ≤ m ) consider exactly 
the same null-hypothesis, we have Hi1

0 = H
i2
0  . Of course, 

it may also happen that the research hypothesis is not 
vaguely defined but already formulated mathematically 
as null- and alternative hypotheses, and that the m analy-
sis strategies thus only differ in other aspects such as the 

Fig. 1  Overview of the different researcher degrees of freedom. All in all 48 specifications were analyzed. Green depicts the data pre-processing 
decisions while brown depicts the method choices
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handling of missing values or outliers. In this case the m 
null-hypotheses would all be identical.

Regardless whether the hypotheses Hi
0 ( i = 1, . . . ,m ) 

are (partly) distinct or all identical, a typical researcher 
who exploits the degree of freedom by “fishing for sig-
nificance” performs the m testing analyses successively. 
They hope that at least one of them will yield a significant 
result, i.e. that the smallest p-value, denoted as p(1) , is 
smaller than the significance level α . If it is, they typically 
report it as convincing evidence in favor of their vaguely 
defined research hypothesis. It must be noted that in this 
hypothetical setting the researcher is not interested in 
identifying the “best” model or analysis strategy but only 
in reporting the lowest p-value that supports the hypoth-
esis at hand.

Considering this scenario from the perspective 
of multiple testing, it is clear that the probability to 
thereby make at least one type 1 error, denoted as 
Family Wise Error Rate (FWER), is possibly strongly 
inflated. In particular, even if all tested null-hypothe-
ses are true, we have a probability greater than α that 
the smallest p-value p(1) is smaller than α ; this is pre-
cisely the result researchers engaged in fishing for sig-
nificance will report. This problem can be seen as one of 
the explanations as to why the proportion of false posi-
tive test results among published results is substantially 
larger than the considered nominal significance level of 
the performed tests [5].

A related concept that has often been discussed 
in the context of the replication crisis is “HARKing”, 
standing for Hypothesing After Results are Known 
[38]. Researchers engaged in HARKing also perform 
multiple tests, but to test (potentially strongly) differ-
ent hypotheses rather than several variants of a com-
mon vaguely defined hypothesis. While related to the 
concept of researcher degrees of freedom, HARKing is 
fundamentally different in that the rejection of these 
different null-hypotheses would have different (scien-
tific, practical, organizational) consequences. In the 
sequel of this article, we consider sets of hypotheses 
that can be seen as variants of a single vaguely defined 
hypothesis, whose rejections would have the same con-
sequences in a broad sense.

Controlling the Family‑Wise Error Rate (FWER)
Following the formalization of researcher degrees of free-
dom as a multiple testing situation, we now consider the 
problem of adjusting for multiple testing in order to con-
trol the FWER. More precisely, we want to control the 
probability P(Reject at least one trueHi

0) to make at least 
one type 1 error when testing H1

0 , . . . ,H
m
0  , i.e. the FWER.

More precisely, we primarily want to control the FWER 
in case all null-hypotheses are true. Imagine a case where 

some of the null-hypotheses are false and there is at 
least one false positive result. On one hand, if p(1) is not 
among the falsely significant p-values, the false positive 
test result(s) typically do(es) not affect the results ulti-
mately reported by the researchers (who focus on p(1) ). 
This situation is not problematic.

On the other hand, if p(1) is falsely significant, H (1)
0  

is wrongly rejected, and strictly speaking a false posi-
tive result (“p(1) < α ”) is reported. However, some of 
the m− 1 remaining null-hypotheses, which are closely 
related to H (1)

0  (because they formalize the same vaguely 
defined research hypothesis), are false. Thus, reject-
ing H (1)

0  is not fundamentally misleading in terms of the 
vaguely defined research hypothesis. As assumed at the 
end of Researcher degrees of freedom as a multiple test-
ing problem  section, the rejection of H (1)

0  has the same 
consequence as the rejection of the hypotheses that are 
really false.

For example, in a two-group setting when studying a 
biomarker B, we may consider the null-hypotheses “ H1

0 : 
the mean of B is the same in the two groups” and “ H2

0  : 
the median of B is the same in the two groups”. H1

0 and 
H2
0  are different, but both of them can be seen as vari-

ants of “there is no difference between the two groups 
with respect to biomarker B”, and rejecting them would 
have similar consequences in practice (say, further con-
sidering biomarker B in future research, or—in a clinical 
context—being vigilant when observing a high value of B 
in a patient).

If biomarker B features strong outliers, the result of 
the two-sample t-test (addressing H1

0 ) and the result of 
the Mann-Whitney test (addressing to H2

0  ) may differ 
substantially. However, rejecting H2

0  if it is in fact true 
and only H1

0 is false would not be dramatic (and vice-
versa). This is because, if H1

0 is false, there is a difference 
between the two groups, even if not in terms of medians. 
The practical consequences of a rejection of H1

0 and a 
rejection of H2

0  are typically the same (as opposed to the 
HARKing scenario).

To sum up, in the context of researcher degrees 
of freedom, false positives have to be avoided pri-
marily in the case when all null-hypotheses are true. 
In other words, we need to control the probability 
P(Reject at least one trueHi

0| ∩
m
i=1 H

i
0) to have at least 

one false positive result given that all null-hypotheses are 
true, i.e. we want to achieve a weak control of the FWER. 
Various adjustment procedures exist to achieve strong or 
weak control of the FWER; see Dudoit et al. [39] for con-
cise definitions of the most usual ones (including those 
mentioned in this section).

The most well-known and simple procedure is certainly 
the Bonferroni procedure. It achieves strong control of 
the FWER, i.e. it controls P(Reject at least one trueHi

0) 
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under any combination of true and false null hypotheses. 
This procedure adjusts the significance level to α̃ = α/m ; 
or equivalently it adjusts the p-values pi ( i = 1, . . . ,m ) to 
p̃i = min(mpi, 1) . However, the Bonferroni procedure 
is known to yield low power in rejecting wrong null-
hypotheses in the case of strong dependence between 
the tests. The so-called Holm stepwise procedure, which 
is directly derived from the Bonferroni procedure, has 
a better power. However, the Holm procedure adjusts 
the smallest p-value p(1) exactly to the same value as the 
Bonferroni procedure. It implies that, if none of the m 
tests lead to rejection with the Bonferroni procedure, it 
will also be the case with the Holm procedure. The latter 
can thus not be seen as an improvement over Bonferroni 
in terms of power in our context, where the focus is on 
the smallest p-value p(1).

The minP‑procedure
The permutation-based minP adjustment procedure 
for multiple testing [9] indirectly takes the depend-
ence between tests into account by considering the dis-
tribution of the minimal p-value out of p1, . . . , pm . This 
increases its power in situations with high dependencies 
between the tests, and thus makes it a suitable adjust-
ment procedure to be applied in the present context. In 
the general case it controls the FWER only weakly, but as 
outlined above we do not view this as a drawback in the 
present context.

The rest of this section briefly describes the single-step 
minP adjustment procedure based on the review article 
by Dudoit et  al. [39]. The following description is not 
specific to researcher degrees of freedom considered in 
this paper. However, for simplicity we further use the 
notations ( pi , Hi

0 , for i = 1, . . . ,m ) already introduced 
in Researcher degrees of freedom as a multiple testing 
problem section in this context.

In the single-step minP procedure, the adjusted p-val-
ues p̃i , i = 1, . . . ,m are defined as

with Pℓ being the random variable for the unad-
justed p-value for the ℓth null-hypothesis Hℓ

0 [39]. The 
adjusted p-values are thus defined based on the distri-
bution of the minimal p-value out of p1, . . . , pm , hence 
the term “minP”. In the context of researcher degrees 
of freedom considered here, the focus is naturally on 
p̃(1) = P min1≤ℓ≤m Pℓ ≤ p1 | ∩

m
i=1H

i
0 .

In many practical situations, including the one con-
sidered in this paper, the distribution of min1≤ℓ≤m Pℓ 
is unknown. The probability in Eq. (1) thus has to be 
approximated using permuted versions of the data that 

(1)p̃i = P

(

min
1≤ℓ≤m

Pℓ ≤ pi | ∩
m
i=1H

i
0

)

,

mimic the global null-hypothesis ∩m
i=1H

i
0 . More pre-

cisely, the adjusted p-value p̃i is approximated as the 
proportion of permutations for which the minimal 
p-value is lower or equal to the p-value pi observed 
in the original data set. Obviously, the number of per-
mutations has to be large for this proportion to be 
estimated precisely. In the example described in Moti-
vating example  section involving only two variables 
(paO2 and post-operative complications), permuted 
data sets are simply obtained by randomly shuffling one 
of the variables. More complex cases will be discussed 
in Discussion section.

Illustration
Study design
The study aims at illustrating the use and behavior of 
the minP-based approach when used to adjust for the 
multiplicity arising through researcher degrees of free-
dom. We use the original as well as permuted versions 
of the paO2 data set. The 48 specifications of the anal-
ysis strategy outlined in Motivating example  section 
are successively applied. P-values are either left unad-
justed, or adjusted using the Bonferroni procedure, or 
adjusted using the recommended minP procedure with 
1000 permutations. All analyses are performed for dif-
ferent sample sizes. Subsets of each considered size 
are randomly drawn from the original data set without 
replacement.

The study consists of two distinct parts. In the first 
part, we assess the family-wise error rate (FWER) for 
different sample sizes with the three approaches (no 
adjustment, Bonferroni adjustment, and minP adjust-
ment). For this purpose, we generate data without asso-
ciation between the two variables of interest (paO2 and 
the outcome “post-operative complications”) by using a 
paO2 covariate vector drawn without replacement from 
the true dataset but randomly generating the binary out-
come variable from a binomial distribution ( p = 0.5 ) 
to break the association between the outcome and 
paO2. This procedure is repeated 1000 times for every 
n ∈ {100, 200, 300, 500, 2000, 3000} . For each run, we 
calculate unadjusted, minP-adjusted, and Bonferroni-
adjusted p-values as outlined above and check whether 
there is at least one false positive, i.e. whether at least one 
of the respective p-values of the 48 specification is signifi-
cant at the 5% level. The proportion of the 1000 runs for 
which this happens yields an estimate of the FWER of the 
three approaches.

In the second part, the original data set is analysed. 
Based on medical knowledge we expect a strong rela-
tionship between paO2 and the outcome to be present, 
but do not formally know the truth. For each of the three 
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approaches (no adjustment, Bonferroni adjustment, and 
minP adjustment), we calculate the proportion of sig-
nificant p-values at the 1%, 5% and 10% level among the 
48 specifications. This was repeated 1000 times for each 
sample size n ∈ (50, 100, 150, 200, 250, 300) . As in our 
example study, the association becomes highly significant 
for larger sample sizes and all p-values are then very close 
to zero, we only focus on these small sample sizes here. 
The code for reproducing the analyses can be found on 
GitHub2.

Results
Figure  2 shows the estimated FWER for different sam-
ple sizes along with the Newcombe confidence intervals 

[40]. In the absence of adjustment, false-positive results 
appear to be present in at least one of the 48 specifica-
tions for about 70% of the data sets of size n = 100 and 
76% of the data sets of size n = 3000 , which aligns with 
the results of Simonsohn et al. [30]. If we adjust the p-val-
ues using the minP-approach (green), the 5% level is held 
for all considered sample sizes. As expected the Bonfer-
roni adjustment (blue) is more conservative: the con-
fidence intervals for FWER, which do not include 0.05, 
only overlap with those of the minP procedure for a sam-
ple size of n = 3000.

Figure  3 presents the proportion of significant p-val-
ues at the 1%, 5% and 10% level over the 48 specifica-
tions for the three approaches and different sample 
sizes. These proportions are averaged over 1000 runs. 
As we expect a highly significant association between 

Fig. 2  FWER with Newcombe confidence intervals (computed over 1000 simulation runs) for different sample sizes without an association 
between post-operative complications and paO2. Dashed red line indicates 5% significance level

Fig. 3  Proportion of significant results for all 48 specifications for α ∈ (0.01, 0.05, 0.1) and sample size n ∈ (50, 100, 150, 200, 250, 300, 500) . Line 
colors indicate results based on unadjusted (red), minP-adjusted (green) and Bonferroni-adjusted (blue) p-values

2  https://​github.​com/​mmax-​code/​resea​rcher_​dof
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the two variables of interest, we focus on small sample 
sizes only. The observed trend is not surprising: For all 
n ∈ (50, 100, 150, 200, 250, 300, 500) it holds that

(where the overline stands for the average over 1000 runs 
and α ∈ (0.01, 0.05, 0.1) ), i.e. more significant results 
appear for the unadjusted p-values compared to the 
adjusted p-values. Furthermore, the Bonferroni approach 
is more conservative than the minP-adjustment.

Discussion
In this work, we described a framework for performing 
valid statistical inference in the presence of researcher 
degrees of freedom through adjustment for multiple 
testing. Our results on simulated data and in an applica-
tion concerning paO2 and post-operative complications 
suggest that the minP procedure is appropriate for this 
purpose. They are in line with known general principles 
related to (multiple) testing: (i) the minP procedure is 
less conservative than the Bonferroni procedure—espe-
cially when the hypotheses are strongly dependent—and 
thus better suited in the context of the adjustment for 
researchers degree of freedom, (ii) both are appropriate 
to avoid type 1 error inflation, and (iii) statistical power 
grows with increasing sample size, which is the reason 
why the attractive alternative to our approach—the two-
stage split approach discussed below—is not a panacea.

The use of permutation-based procedures has already 
been recommended by Simonsohn et al. [30] to address 
researcher degrees of freedom. There are, however, fun-
damental differences between this approach and ours. 
Simonsohn et al. [30] address the problem of researcher 
degrees of freedom by specifying all plausible specifica-
tions (analysis strategies in our terminology) and ulti-
mately evaluating the joint distribution of the estimated 
effects of interest across these model specifications. This 
evaluation is done graphically through the so-called 
specification curve, but also through a permutation test 
addressing null-hypotheses such as “the median effect 
across the specifications is zero”.

This approach, while similar to ours at first view and 
interesting, is different in several aspects. Firstly, per-
mutations are used by Simonsohn et al. [30] as part of a 
permutation-based test and not within a multiple testing 

48
∑

i=1

1(piunadjusted < α)/48 >

48
∑

i=1

1(piminP < α)/48 >

48
∑

i=1

1(pibonferroni < α)/48,

adjustment procedure. Our suggestion is precisely to for-
malize the multiplicity of analysis strategies as a multiple 
testing problem—and to benefit from various methodo-
logical results obtained in the field, for example on the 
weak control of the FWER through the minP procedure. 
That said, minP adjustment can be viewed as a simple 
permutation test for the test statistic “minimal p-value”, 
hence the apparent similarity with the permutation test 
for the median effect.

Secondly, and more importantly, the focus on the 
median effect makes the procedure by Simonsohn et  al. 
[30] sensitive to misspecifications that do not model the 
data properly and thus fail to show an effect even if there 
is one. Imagine a fictive example where one runs 99 fully 
inappropriate analyses yielding non-significant results 
and one meaningful analysis that identifies a highly sig-
nificant (truly existing) effect. The true median effect is 
zero, and the permutation test by Simonsohn et al. [30] 
will certainly not reject the null. In contrast, with our 
approach the truly existing effect is likely to be detected 
by the meaningful analysis. This is because the minP pro-
cedure focuses on the minimal p-value, which is very 
small in this fictive example. This focus on the minimal 
p-value better accounts for the fact that, in practice, one 
would often include some analysis strategies that are in 
fact inappropriate to detect the effect of interest. It also 
better reflects the common p-hacking practice that con-
sists of selecting and reporting the smallest p-value. 
However, our approach raises a number of questions that 
may be addressed in future research.

Firstly, the specification of an appropriate permuta-
tion procedure taking the data and the specificity of the 
research question into account is not always easy/pos-
sible. Let us consider the following example: the null-
hypothesis of interest is that the means of a variable are 
equal in two groups, while the variances may be differ-
ent in the two groups. By permuting the group labels, one 
also inevitably enforces equality of the variances, which is 
a stronger assumption than the null-hypothesis of inter-
est [39]. Defining a permutation scheme that reflects the 
global null-hypothesis ∩m

i=1H
i
0 may also be intricate in the 

case of multivariable regression models involving con-
founders in addition to the exposure of interest whose 
effect on the dependent variable is to be investigated. On 
the one hand, permuting only the exposure of interest 
will destroy the association between this exposure and 
confounders. On the other hand, permuting the outcome 
will not only destroy the association between exposure 
variable and dependent variable, but also the associa-
tion between the confounders and the outcome. In prin-
ciple, none of these simple permutation procedures are 
suitable. Both enforce more than the considered null-
hypothesis of no effect of the exposure on the outcome. 



Page 10 of 11Mandl et al. BMC Medical Research Methodology          (2024) 24:152 

Complex alternative permutation procedures may be 
preferred [41, 42]. Alternatively, if all analysis strategies 
are based on marginal generalized estimating equation 
models, one may resort to asymptotical results on the 
distribution of the maximally selected statistic to derive 
adjusted p-values, thus avoiding time-consuming and 
methodologically complex permutation procedures; see 
for example Ristl et al. [13]. Even though this approach is 
extremely powerful for most cases and has the advantage 
that it can also adjust confidence intervals for multiplic-
ity, it comes at the cost of some assumptions that are not 
applicable in our case (restrictions regarding the input 
data and focus on parametric tests).

Secondly, it would be interesting to investigate the 
behavior of our suggested approach compared to the 
validation approach mentioned in Partial solutions and 
related work  section, that consists of splitting the data 
into two parts, applying all candidate analysis strategies 
to the first part, and validating the preferred result by 
applying the analysis strategy that was used to obtain it 
to the second part of the data. Both this splitting pro-
cedure and the adjustment for multiple testing sug-
gested in this paper imply a loss of power compared 
to the unadjusted analysis one would perform with 
the selected analysis strategy on the whole dataset. 
Researchers may prefer to run analyses on the whole 
dataset without arbitrary splitting, which may be seen 
as an argument in favor of our adjustment approach. 
However, the concept of validation using independent 
data may also seem attractive. Importantly, this con-
cept has the advantage that type 1 error inflation would 
be avoided even by researchers who are not yet aware 
of the dangers of researcher degrees of freedom or not 
willing (or able) to make a transparent list of the m 
tests that they conducted in the course of the project. 
Preference for one or the other approach is a matter 
of perspective. But the power resulting from these two 
approaches may yield a decisive argument in favor for 
one of them. Note that one might also combine the two 
approaches by applying the minP procedure in the first 
stage and proceeding with the second stage only if its 
results are promising.

Thirdly, one may also think about possible ways to 
make our approach more reliable in  situations where 
researchers tend to “fool themselves” [43] and “forget” 
some of the hypothesis tests they performed, thus pre-
venting full control of the type 1 error. Our approach 
may be particularly useful in combination with study 
registration including the elaboration of a detailed plan 
of the different analysis strategies to be applied before 
seeing any result—a concept that should in our view be 
more widely adopted in empirical scientific research for 
various reasons [23].

Finally, note that our paper should not be understood 
as a plea for the use of p-values in general. We merely 
claim that, if statistical testing is used and several analysis 
variants are performed, it certainly makes sense to adjust 
for multiplicity before interpreting these p-values. Our 
approach allows to selectively report the results of the 
analysis strategy yielding the most convincing evidence, 
while controlling the type 1 error—and thus the risk of 
publishing false positive results that may not be replica-
ble. In future research, this approach could in principle be 
extended beyond the context of hypothesis testing. Pro-
vided a meaningful permutation scheme can be defined, 
minP-type approaches allow in principle to assess whether 
quantitative results of any type (such as, e.g., a cross-val-
idated error [6] or a cluster similarity index [7]) selected 
out of many analysis variants may be the result of chance.
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ABSTRACT
Mendelian randomization (MR) uses genetic variants as instrumental variables to infer causal effects of exposures on an outcome.
One key assumption of MR is that the genetic variants used as instrumental variables are independent of the outcome conditional
on the risk factor and unobserved confounders. Violations of this assumption, that is, the effect of the instrumental variables on
the outcome through a path other than the risk factor included in the model (which can be caused by pleiotropy), are common
phenomena in human genetics. Genetic variants, which deviate from this assumption, appear as outliers to the MR model fit and
can be detected by the general heterogeneity statistics proposed in the literature, which are known to suffer from overdispersion,
that is, too many genetic variants are declared as false outliers. We propose a method that corrects for overdispersion of the het-
erogeneity statistics in uni- and multivariable MR analysis by making use of the estimated inflation factor to correctly remove
outlying instruments and therefore account for pleiotropic effects. Our method is applicable to summary-level data.

1 | Introduction

Identification of causal effects in biomedical sciences is a
challenging task. Most causal inference methods rely on spe-
cific assumptions which must be properly tested in practice.
Mendelian randomization (MR) is an instrumental variable
approach that uses genetic variants to infer causal effects of risk
factors on an outcome [1]. Due to the randomization of the
genetic variants during meiosis, these can be used as instrumen-
tal variables that can potentially meet the restrictive methodolog-
ical requirements naturally. Thus, causal effects can be consis-
tently inferred even if unobserved confounders are present. For
example, relevant clinical questions that have been addressed
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using MR include the investigations of the effect of blood lipids
on coronary heart disease (CHD), age-related macular degen-
eration (AMD) or Alzheimer’s disease [2–4], and the effect of
vitamin D levels on Multiple Sclerosis (MS) [5]. The instru-
mental variable assumptions underlying MR require that the
genetic variants are independent of the outcome conditional
on the risk factor and unobserved confounders, also known as
the exclusion restriction assumption. Violations of this exclu-
sion restriction assumption, that is, the effect of the instru-
mental variables on the outcome through a path other than
the risk factor included in the model, can be caused by hori-
zontal pleiotropy, which is a common phenomenon in human
genetics [6].
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Genetic variants which deviate from this assumption appear
as outliers in the MR model fit and can be detected by general
heterogeneity statistics proposed in the literature [7]. In MR
analysis, these statistics are often inflated due to the heterogene-
ity of genetic variants exerting their downstream effects on the
exposures of interest, mismatches of allele frequencies when data
is integrated from distinct samples, or the variant-specific het-
erogeneity estimates not being normally distributed, as a ratio of
two normal distributions does not follow a normal distribution.
This excess heterogeneity may impede the detection of outlying
instruments using the traditional methods and result in the
removal of too many IVs which are not true outliers that impact
the causal effect estimate and consequently the conclusions
drawn from the MR analysis.

In this paper, we propose GC-Q, a simple method that corrects for
overdispersion of the heterogeneity statistics in uni- and multi-
variable MR analysis by making use of the estimated inflation fac-
tor to correctly remove outlying instruments, therefore account-
ing for pleiotropic effects (Section 2). As we show in an extensive
simulation study and analysis of real data examples, our proposed
method is more conservative in detecting outliers than existing
methods because it removes the minimum number of instru-
ments necessary to retain unbiased effect estimates. Moreover,
GC-Q leads to a reduction of the type I error in detecting outly-
ing genetic variants used as instruments compared to the existing
methods based on Cochran’s Q.

Moreover, we provide a comprehensive review of different outlier
detection methods in uni- and multivariable MR. The code for
the simulation study and the real data example in this paper
are provided on GitHub for the purpose of reproducibility.1
Furthermore, our manuscript is accompanied by a dedicated
R-function in the MendelianRandomization R-package for both
our proposed method and the existing methods based on first
and second order weights. In the recently introduced phases
classification for methodological research [8], our contribution
can be assigned to phase 2: it presents and demonstrates the
use of a new method on real data and provides first simulation
results suggesting that it is useful in some cases and worth being
further considered in phase 3 studies.

2 | Methods

In this section, we first give a brief overview of univariable and
multivariable MR, and how horizontal pleiotropy violates the
exclusion restriction assumption of instrumental variable anal-
ysis. Next, we discuss how heterogeneity statistics can be used to
detect violations of this assumption and how specific pleiotropic
genetic variants can be detected as outliers. We further show
limitations of existing implementations of heterogeneity statis-
tics, and we introduce our novel method, GC-Q. Finally, we end
with an overview and comparison of existing outlier detection
methodologies for MR.

Regarding the notation, we examine the causal effect 𝜃 of a
risk factor 𝑋 on an outcome 𝑌 using genetic variants 𝐺𝑖 for
𝑖 = 1, . . . , 𝑛 as instrumental variables (IVs). Subsequently, in a
multivariable MR model we consider multiple causal effects 𝜃𝑗
(𝑗 = 1, . . . , 𝑑) for multiple risk factors 𝑋𝑗 (𝑗 = 1, . . . , 𝑑) on an

outcome 𝑌 . Following the most common MR design [9], real data
examples are based on two-sample summary-level data to take
advantage of large sample sizes and thus improve the precision of
the estimates [10]. Additionally, all of our derivations are based
on summary-level data. We therefore assume that the associa-
tions of genetic variants with the risk factor(s) and the outcome,
and the causal effect of the risk factor(s) on the outcome, are
linear and homogeneous. These assumptions have already been
discussed in the literature [11].

2.1 | Univariable Mendelian Randomization

In order to define a valid IV, the genetic variants in the univariable
MR analysis require the following assumptions to hold [12]:

• IV1(U): Each genetic variant 𝐺𝑖 for 𝑖 = 1, . . . , 𝑛 is associated
with the exposure.

• IV2(U): Each genetic variant 𝐺𝑖 for 𝑖 = 1, . . . , 𝑛 is not associ-
ated with any confounder of the risk factor-outcome associ-
ation.

• IV3(U): Each genetic variant 𝐺𝑖 for 𝑖 = 1, . . . , 𝑛 is indepen-
dent of the outcome 𝑌 conditional on the risk factor 𝑋 and
confounders 𝑈 .

Figure 1 shows the causal DAG for the univariable MR setting.
Each genetic variant𝐺𝑖 should only have an effect on the outcome
via the risk factor. Pleiotropy is defined as the effect of any genetic
variant 𝐺𝑖 that contains an effect via an independent pathway,
that is, not through the included risk factor in the MR model (red
dashed lines in Figure 1). Therefore, IV3 would be violated.

If IV1(U)–IV3(U)2 hold, the consistent estimate of the causal
effect 𝜃 is the inverse-variance weighted (IVW) estimate [13]

𝜃 =
∑𝑛

𝑖 𝜔𝑖𝜃𝑖∑𝑛
𝑖 𝜔𝑖

, (1)

FIGURE 1 | Causal directed acyclic graph (DAG) for the univariable
Mendelian randomization setting. Genetic variants are denoted as 𝐺𝑖 for
𝑖 ∈ 1, . . . , 𝑛, the set of confounders as 𝑈 and the causal effect of the
risk factor 𝑋 on the outcome 𝑌 being 𝜃. The red dashed lines represent
the effect of the instrumental variable(s) on the outcome through paths
other than the risk factor included in the model, for example, caused by
pleiotropy.
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FIGURE 2 | Causal directed acyclic graph (DAG) for the multivari-
able Mendelian randomization setting. Genetic variants 𝐺𝑖 (𝑖 ∈ 1 . . . 𝑛),
set of confounders 𝑈 and causal effects of the risk factors 𝑋𝑗 (𝑗 ∈ 1 . . . 𝑑)
on the outcome 𝑌 being 𝜃𝑗 . The red dashed lines represent the effect of
the instrumental variable(s) on the outcome through paths other than the
risk factors included in the model, for example, caused by pleiotropy.

where 𝜃𝑖 is the ratio estimate of the i-th IV, defined as 𝜃𝑖 =
𝛽𝑌𝑖
𝛽𝑋𝑖

,

where in the summary-level data setting 𝛽𝑋𝑖
and 𝛽𝑌𝑖 are the

genetic effects of IV 𝐺𝑖 on 𝑋 and 𝑌 for variant 𝑖 respectively.
The IV-specific inverse-variance weight 𝜔𝑖 is the precision of the
respective ratio estimate. The estimate based on individual-level
data can be obtained via the two-stage least-squares (2-SLS)
approach [14]. The 2-SLS estimate is equivalent to the IVW esti-
mate [15]. However, in finite samples this is only true if all of the
instruments are perfectly uncorrelated with each other.

2.2 | Multivariable Mendelian Randomization

As an extension to the standard MR approach, multivariable
MR includes multiple potential risk factors in one joint model
accounting for measured pleiotropy (see Figure 2). In order
to define a valid IV, the genetic variants in the multivariable
MR analysis require the following assumptions to hold for each
genetic variant 𝐺𝑖 where 𝑖 = 1, . . . , 𝑛 [16]:

• IV1(M): Each genetic variant 𝐺𝑖 for 𝑖 = 1, . . . , 𝑛 is associated
with at least one of the risk factors 𝑋𝑗 .

• IV2(M): Each genetic variant 𝐺𝑖 for 𝑖 = 1, . . . , 𝑛 is not asso-
ciated with any confounder of the risk factor-outcome asso-
ciations.

• IV3(M): Each genetic variant 𝐺𝑖 for 𝑖 = 1, . . . , 𝑛 is indepen-
dent of the outcome 𝑌 conditional on the risk factors 𝑋𝑗 for
𝑗 = 1, . . . , 𝑑 and confounders 𝑈 .

Moreover, the following assumptions relate to which risk factors
𝑋𝑗 for 𝑗 = 1, . . . , 𝑑 can be included in a multivariable MR model:

• RF1(M) Each risk factor 𝑋𝑗 for 𝑗 = 1, . . . , 𝑑 needs to be
strongly instrumented by at least one genetic variant 𝐺𝑖 for
𝑖 = 1, . . . , 𝑛, also denoted as relevance assumption.

• RF2(M) Each risk factor 𝑋𝑗 for 𝑗 = 1, . . . , 𝑑 considered in
the analysis cannot be linearly explained by the genetic
associations of any other risk factor 𝑋𝑗 for 𝑗 = 1, . . . , 𝑑
or by the combined genetic associations of several other

risk factors included in the analysis, also denoted as no
mulit-collinearity assumption.

If IV1(M)–IV3(M)3 hold, the consistent estimates of the direct
causal effects 𝜃𝑗 can be obtained from individual-level data
via a 2-SLS approach or through the multivariable two-sample
summary-level IVW method, with weights se

(
𝛽𝑌𝑖

)−2
being the

inverse of the estimated variance for genetic variant 𝑖 [17] and
𝛽𝑋ij

, and 𝛽𝑌𝑖 being the genetic effects of𝐺𝑖 on𝑋ij and 𝑌𝑖 for variant
𝑖 and risk factor 𝑗, respectively

𝛽𝑌𝑖 =
𝑑∑

𝑗=1
𝜃𝑗𝛽𝑋ij

+ 𝜀𝑖. (2)

2.3 | Heterogeneity Statistics

Tests for heterogeneity in the MR setting examine the null
hypothesis that all genetic variants follow the same causal path-
ways through which the risk factors 𝑋1, . . . , 𝑋𝑑 act on the out-
come 𝑌 . The following heterogeneity statistics are based on
Cochran’s Q and compute weighted sums of squared residuals
and differ in the variance factors they use for weighting [18].
Cochran’s Q was established in meta-analysis for the detection
of heterogeneity between studies. Two-sample MR can be viewed
as a meta-analysis over genetic variants used as IVs. Analogously,
the sample size or the number of studies included equals the
number of genetic variants used as IVs. Previous research has
shown that the power of Cochran’s Q increases with the num-
ber of studies and the total information available (total weight or
inverse variance) and decreases substantially if a large proportion
of the total information is based on one study [19]. On the other
hand, the test arguably shows “excessive” power when the num-
ber of large studies increases [20]. Translating this into the MR
framework means that the Q-statistic is likely to miss true het-
erogeneity (not rejecting the null hypothesis) when there are few
genetic variants as IVs available and detects false heterogeneity
(rejecting the null hypothesis) when there are many genetic vari-
ants available. Usually, genome-wide association studies (GWAS)
entail high statistical power given their huge case numbers (n
> 1 million), that is, we are more concerned about detecting too
many SNPs as outliers. Therefore, we introduce a modification
of the Q-statistic which allows the calibration of the standard
Q-statistic, in order to reduce the “excessive” power of the test
and decrease the type I error.

Cochran’s Q-statistic was first applied as a global test to identify
the presence of any invalid instruments in two-sample summary
data MR with a single exposure by del Greco et al. [18]. A gen-
eralized version of the Q-statistic for multivariable MR [21] is
defined as

𝑄 =
𝑛∑
𝑖=1

(
1
𝜔𝑖

)(
𝛽𝑌𝑖 −

𝑑∑
𝑗
𝜃𝑗𝛽𝑋ij

)2

∼ 𝜒2
(𝑛−𝑑), (3)

with 𝑖 being the SNP index, 𝑗 being the risk factor index, and
𝜔𝑖 being the SNP-specific weight which can be approximated
either using first or second order weights [22]. Under the null
hypothesis, Cochran’s Q follows a 𝜒2

𝑛−𝑑 distribution with 𝑛 − 𝑑
degrees of freedom. First order weights are simply defined as
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𝜔𝑖 = 𝜎2
𝑌𝑖

with 𝜎𝑌𝑖 being the standard error of 𝛽𝑌𝑖 . The first order
weights are an approximation relying on the so-called no mea-
surement error (NOME) assumption which assumes that the
standard errors of the exposures associations are negligible [22].
These first-order weights are known to lead to an overdisper-
sion in the heterogeneity statistic resulting in an inflation of the
type 1 error rate, that is, detecting heterogeneity when it is not
present [22].

In applied analysis, using the two-sample summary-level MR set-
ting, there are additional sources of excess heterogeneity due to:

• Wide-spread but negligible pleiotropic effects

• Small disagreements in allele frequencies between the first
sample used to derive the exposure association and the
second independent sample used to derive the outcome
associations.

• The variant-specific estimates being not normally dis-
tributed (as the ratio of two normal distributions is not
normal)

Bowden et al. [22] and Sanderson et al. [21] propose an adjusted
weighting scheme of the Cochran Q-statistic to test for invalid
instruments in the two-sample univariable [22] and multivari-
able [21] summary-level data setting using the following mod-
ified second-order weights based on a Taylor expansion of the
ratio estimate. In contrast to the first-order weights that are pro-
portional to the uncertainty of the standard error of the genetic
associations with the outcome, the second-order weights also
account for the standard error of the genetic associations with
the exposure and thus model uncertainty in both the numerator
and denominator of the ratio estimate.

The second order weights for multivariable MR are defined as
𝜔𝑖 = 𝜎2

𝑌𝑖
+
∑𝑑

𝑗 𝜃
2
𝑗 𝜎

2
𝑋ij

+
∑

jk 2𝜃𝑗𝜃𝑘𝜎𝑋ijk
, with 𝑖 being the SNP index,

𝑗 being the risk factor index, 𝜎𝑌𝑖 and 𝜎𝑋ij
being the standard error

of 𝛽𝑌𝑖 and 𝛽𝑋ij
respectively, and 𝜎𝑋ijk

being the covariance for all
pairs 𝛽𝑋ij

and 𝛽𝑋ik
for 𝑗, 𝑘 ∈ 1, . . . , 𝑑 and 𝑗 ≠ 𝑘. Importantly, the

covariance term 𝜎𝑋ijk
for exposures 𝑗 and 𝑘, which is necessary in

multivariable MR cannot be estimated from the data at hand and
can only be calculated from individual-level data, which is often
not available in practice [21].

2.4 | Outlier Detection in MR

The main aim of outlier detection in MR is the detection of invalid
IVs with strong pleiotropic effects that can when included into
the MR model bias the causal effect estimate 𝜃 and consequently
distort conclusions drawn from the MR analysis. The objective is
to identify these individual genetic instruments with pleiotropic
effects which appear as outliers to the MR model fit. The local test
statistic 𝑞𝑖 of SNP 𝑖 defined as:

𝑞𝑖 =
(

1
𝜔𝑖

)(
𝛽𝑌𝑖 −

𝑑∑
𝑗
𝜃𝑗𝛽𝑋ij

)2

(4)

has been proposed for outlier detection [7]. Under the null
hypothesis, 𝑞𝑖 asymptotically follows a 𝜒2

(1) distribution with one

degree of freedom. Note, that we must correct for multiple test-
ing if we test individual genetic instruments, for example, using
a Bonferroni correction, that is, dividing the significance level by
the number of instruments 𝑛 [22]. A conservative multiple testing
procedure is recommended in order to only remove clear outliers
and to retain as many genetic variants as possible as instrumental
variables. Yet, outlier detection using the current implementa-
tion of the local q-statistic is impeded by overinflation when using
first-order weights. In contrast, when using second-order weights
in multivariable MR, one essential parameter (covariance term
𝜎𝑋ijk

) is not readily available when working with summary-level
data and consequently often set to zero in practice.

2.5 | Correction for Overdispersion With
Genomic Control (GC-Q)

We suggest correcting for overdispersion of the first-order
weighted heterogeneity statistics in MR-analysis by making use
of the estimated inflation factor to remove outlying instruments
which may be invalid due to horizontal pleiotropy. The idea of
correcting for overdispersion is based on the Genomic Control
approach which was originally used in the context of GWAS [23].
More precisely, the Genomic Control approach was developed
for testing if a large set of genomic markers or SNPs are asso-
ciated with a quantitative trait of interest. Typically, when per-
forming genome-wide testing of genetic markers, like in GWAS,
only a small proportion of genetic markers are associated with a
trait of interest, and the large majority of genetic markers can be
considered as following the null model. Yet, Devlin and Roeder
observed that even these null genetic markers do not follow the
theoretical null distribution of the statistical association test, but
display overdispersion which is constant across the genome [23].
In GWAS, this observed overdispersion is due to population strat-
ification, cryptic relatedness, or unobserved confounding [24].

In analogy with genetic association tests as described in Devlin
and Roeder [23], the local heterogeneity statistic 𝑞𝑖 of instrument
𝑖 follows a 𝜒2 distribution with one degree of freedom and a
non-centrality parameter 0 under the Null (𝜒2

1 (0)), that is:

𝑞𝑖∕𝜆
𝐻0∼ 𝜒2

1 (0), (5)

where 𝜆 is the overdispersion parameter and constant for all
SNPs. Thus the empirical distribution of the local 𝑞𝑖-statistic is
inflated from 𝜒2

1 (0) to 𝜆𝜒2
1 (0). This means that no heterogeneity

is present or in other words, the instrument is valid. This follows
from the general Cochran’s statistic in Section 2.3 that is, gener-
ally inflated.

From a Bayesian perspective the distribution of the local
q-statistic—with outlying SNPs being present—can be modeled
using a mixture model of two 𝜒2 distributions, where the distri-
bution under the Null (𝜒2

1 (0)) is representing the valid IVs and
𝜒2

1
(
𝐴2

𝑖

)
is the distribution with non-centrality parameter 𝐴2

𝑖 > 0
associated with the i-th outlier

𝑞𝑖∕𝜆
𝐻1∼ 𝜌𝜒2

1
(
𝐴2

𝑖

)
+ (1 − 𝜌)𝜒2

1 (0), (6)

where 𝜌 is the prior probability that a given SNP is an outlier
as indicated by excess heterogeneity and consequently invalid.
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As Devlin and Roeder [23] propose, a simple frequentist estimate
of the inflation parameter 𝜆 can be derived from the data as

𝜆 = 𝑞
0.6752 , (7)

with 𝑞 being the median of 𝑞𝑖 for all 𝑖 = 1, . . . , 𝑛 SNPs and 0.6752

being the median of the theoretical 𝜒2
1 distribution.

An important assumption when estimating 𝜆 according to
Equation (7) is that at least half of the genetic variants used as IVs
are valid instruments. This assumption is common to the median
MR approach [25] and more general for any type of outlier detec-
tion approach [26]. For all 𝑖 = 1, . . . , 𝑛 SNPs, we reject the Null,
that is, SNP 𝑖 is considered as outlier, if 𝑞𝑖∕𝜆 > 𝜒2

1,𝛼∗ with 𝜒2
1,𝛼∗

being the critical value at level 𝛼∗ and 𝛼∗ = 𝛼∕𝑛 being the Bonfer-
roni adjusted significance level to provide a conservative multiple
testing adjustment.

The local heterogeneity statistic 𝑞adj
𝑖 can subsequently formu-

lated as

𝑞adj
𝑖 =

( 1
𝜆

)( 1
𝜔𝑖

)(
𝛽𝑌𝑖 −

𝑑∑
𝑗
𝜃𝑗𝛽𝑋ij

)2

. (8)

2.6 | Other Methods to Detect Outliers in
Summary-Level MR

2.6.1 | Heterogeneity Statistics With Second Order
Weights

Sanderson et al. [21] propose an adjustment to Cochran’s Q in
the two-sample summary setting for testing the presence of hor-
izontal pleiotropy as the standard version of Cochran’s Q merely
has a weighting of the variance of 𝛽Yi denoted as 𝜎2

Yi, and is thus
not asymptotically 𝜒2 distributed. Therefore, they make use of
second-order weights,

𝜔𝑖 = 𝜎2
Yi +

𝑑∑
𝑗
𝛽𝑋ij

𝜎2
𝑋ij

+
𝑑∑
𝑗

𝑑∑

𝑘
𝑗 ≠ 𝑘

𝜎ijk (9)

where 𝛽𝑋ij
are efficient estimators of the causal effects and 𝜎ijk are

the covariances of the exposures which need to be estimated from
individual-level data.

2.6.2 | MR-PRESSO

Verbanck et al. [27] developed the MR-PRESSO method to detect
pleiotropy (global test), the correction for pleiotropy via outlier
removal (outlier test), and test for significant distortions in the
causal estimates before and after the outlier removal (distortion
test). The MR-PRESSO global test is defined as the following
residual sum of squares (RSS)

RSS =
𝑛∑
𝑖=1

(
1
𝜔𝑖

)(
𝛽𝑌𝑖 −

∑
𝑗
𝜃−𝑖𝑗 𝛽𝑋ij

)2

∼ 𝜒2
(𝑛−𝑑) (10)

where 𝜔𝑖 are the first-order weights and 𝜃−𝑖𝑗 is the causal
effect estimate from an IVW MR model without variant 𝑖. The

respective p-values are calculated using a simulation procedure.
The main difference between the RSS of MR–PRESSO and the
Q-statistic is that the causal effect estimate of MR–PRESSO is
calculated excluding the i-th IV and that p-values are derived in
a non-parametric fashion using a simulation procedure which
scales with the number of IVs and becomes prohibitively slow
when including hundreds of IVs.

As with the local q-statistics, the outlier test aims at detecting
individual SNPs as outliers. For a given genetic variant 𝑖, the
observed RSS defined as

(
1
𝜔𝑖

)(
𝛽𝑌𝑖 −

∑
𝑗 𝜃

−𝑖
𝑗 𝛽𝑋ij

)2
is compared

to the distribution of the expected simulated residual sum of
squares. The detection mechanism can be described as follows:
For each variant the causal effect 𝜃−𝑖 is computed without vari-
ant 𝑖. Afterwards, the observed residual sum of squares is com-
pared to the expected residual sum of squares. Finally, an empir-
ical p-value that is, Bonferroni adjusted is computed to decide
whether variant 𝑖 is an outlier or not.

2.6.3 | Radial MR

The Galbraith Radial plot, adapted for MR, plots the z-statistics
for genetic variant 𝑖, which is the ratio estimate 𝜃𝑖 divided by its
standard error, against the precision of the ratio estimate which is
equal the inverse standard error [28]. This is particularly relevant
when different IVs have varying precision and consequently
contribute with different weights to the final causal estimate.
Moreover, the Radial MR approach allows for a flexible use of
first or second order weights and can adapt an intercept in the
MR model fit which is also known as the MR-Egger approach
[29]. Outlier detection is based on the heterogeneity statistics as
described above.

2.6.4 | Summary and Comparison of Outlier
Detection Methodologies for MR

To conclude the Methods section, we present an overview of
outlier detection methodologies for MR. The Q-statistic with
first order weights is easy to estimate, but relies on the NOME
assumption. Consequently, it is not well calibrated and shows
an overinflation. In contrast, the Q-statistic with second order
weights is well calibrated, but needs additional parameters which
cannot be estimated from summary-level data alone. Moreover,
since the second order weights include the causal effect estimate
and iterative estimation procedure needs to be implemented [22].
MR-PRESSO relies on a permutation procedure which is compu-
tationally expensive when the number of genetic variants used as
IVs increases.

Our newly proposed GC-Q approach is a recalibrated version of
the first-order weights Q-statistic, which can be estimated from
the data at hand and does not rely on computationally intensive
permutation procedures. As we are going to show in an exten-
sive simulation study in the next section, GC-Q selects the min-
imum number of potential outliers necessary to achieve unbi-
ased MR effect estimates. All outlier detection methods perform
a Bonferroni correction for multiple testing of the individual IV
heterogeneity statistics with the aim to be as conservative as pos-
sible and to only remove the minimum number of outliers neces-
sary to avoid any bias of the MR model.
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3 | Simulation Study

The primary objective of this simulation study is to compare the
performance of different methods to detect outlying genetic vari-
ants used as IVs, that is, SNPs that entail pleiotropic effects and
violate the exclusion restriction assumption. For this purpose,
we mainly consider a scenario reflecting directional pleiotropy,
that is, some of the genetic variants 𝐺 are consistently positively
associated with the outcome 𝑌 through a different causal path-
way than the risk factors for both uni- and multivariable MR.
However, we show results for the balanced pleiotropy setting in
Table 4.

The simulation study is set up as follows4 for each individual
𝑥 ∈ 1, . . . ,500,000, we simulate 100 genetic variants from a bino-
mial distribution where the minor allele frequency is a probabil-
ity that is, drawn uniformly between [0.01, 0.5]. In the follow-
ing, three 𝛽-coefficients are simulated from a normal distribution
with 𝛽𝑋𝑗

∼ 𝑁(1, 2) for the first-stage regression, with 𝑗 ∈ 1, . . . , 𝑑
being the index of risk factors. We fix the variance explained for
the first stage regression at 15% for all risk factors and the con-
founder. The calculated variances are used to simulate correlated
error terms for the first-stage regression from a multivariate nor-
mal distribution, that is, ϵ𝑖 ∼ MVN(𝜇,Σ) with 𝜇 = (0,0,0) and Σ
being a positive-definite covariance matrix to simulate a medium
correlation between the risk factors. The outlying SNPs are sim-
ulated as an additional unknown risk factor with a coefficient 𝜌
which is equal to zero for (1 − 𝑝)% of the SNPs and drawn from a
uniform or normal distribution for the remaining 𝑝%. The vari-
ance explained for the second-stage regression is fixed at 50%
with causal effects set to 0, 1, and −0.5, for the three risk factors
and to 1 for the additional variable that represents the unmea-
sured pleiotropic pathway that creates outliers (i.e., the unob-
served risk factor). From the individual-level data, summary-level
data on genetic associations is generated and the different meth-
ods are compared for different measures, namely the sensitivity
and specificity of the outlier classification, the mean bias of the
causal effect estimates ( 1

𝑧

∑𝑧
𝑖=1𝜃𝑖 − 𝜃𝑖), the mean squared error

( 1
𝑧

∑𝑧
𝑖=1(𝜃𝑖 − 𝜃𝑖)2), the average number of detected outliers in rela-

tion to the true outlier rate, and the average absolute number of
detected outliers. In total 𝑧 = 1,000 simulation runs were per-
formed for each setting. Note that the parameter settings are
inspired by Sanderson et al. [21]. The code for the simulation and
real data analysis is available on GitHub.5

The competing methods are referred to as follows: Full model
denotes the estimated model with all SNPs, Standard denotes
the standard Cochran’s q-statistic based on first-order weights,
Sanderson denotes the adjusted q-statistic by Sanderson et al.
based on second-order weights [21], MR-Presso refers to the
outlier test by Verbanck et al. [27], MR-Radial describes the
MR-Radial method using modified second order weights [28],
and GC-Q refers to the newly proposed method based on the cal-
ibrated first-order weights.

As Tables 1 and 2 show, GC-Q outperforms the other methods in
terms of specificity (true negative rate) with nearly 100% for the
uni- and multivariable simulation settings. The specificity is sim-
ilar for MR-Presso and the GC-Q version in the multivariate set-
ting. With regard to the sensitivity (true positive rate), the GC-Q

method performs as well as the other methods for most univari-
able settings and nearly as well as the Standard and Sanderson
methods for the multivariable setting (except for the 20% out-
liers case). Note that the GC-Q method performs still better than
MR-Presso (57%). With an increasing outlier rate, the sensitivity
of the GC-Q method decreases. This is due to an increasing bias
of the median of the q-statistics and is expected since by design
GC-Q works up to 25% outlying SNPs for directional pleiotropy
and analogously up to 50% for the balanced case.

This means that our method is more conservative in terms
of detecting outlying SNPs than the Standard and Sanderson
approaches, that is, we can observe less power but a smaller type I
error. The average number of detected outliers is always closer to
1 for GC-Q. This illustrates the conservative behavior of GC-Q to
only remove the minimum number of outliers necessary to obtain
an unbiased causal effect estimate. Our method outperforms the
other methods with regard to the bias for most settings, show-
ing that the smaller number of outliers removed by GC-Q also
provides the causal effect estimate that is, closest to the actual
simulated effect. Even though this is true for a small number of
outliers, the Sanderson method should be preferred if more than
25% outlying SNPs are expected. The violin plots in Figure 3 show
that even though the GC-Q method exhibits a higher variance
than the Standard and Sanderson methods, on average the bias
is centered close to zero in contrast to the other methods that
have a positive bias. The advantage of GC-Q becomes obvious
with stronger outlier effects. As Table 3 shows, GC-Q still per-
forms well in terms of bias, MSE, and average number of detected
outliers while the results of the other methods seem to be more
harmed by pleiotropic effects that are stronger. In addition, the
behavior of GC-Q is as expected if balanced pleiotropy occurs.
Table 4 once again depicts its conservatism in terms of sensitivity
and its features with regard to bias and MSE.

4 | Real Data Application

In this section, we compare the results of different heterogene-
ity measures for uni- and multivariable MR based on real data
with regard to Vitamin D as exposure for Multiple Sclerosis and
blood lipids as candidate exposures for coronary heart disease,
age-related macular degeneration, and Alzheimer’s.

4.1 | Univariable MR: Vitamin D as Exposure
for Multiple Sclerosis

The following application example considers circulating vitamin
D levels as exposures for multiple sclerosis (MS) in the univari-
able MR setting. Summary-level data on genetic associations with
vitamin D are derived from 361,194 individuals and taken from
UK Biobank.6 Summary-level data on genetic associations, with
the outcome MS including 14,498 European ancestry cases and
24,091 European ancestry controls, was taken from the Interna-
tional Multiple Sclerosis Genetics Consortium (IMSGC)7 [30].

As instrumental variables we selected 𝑛 = 22 independent
(clumping threshold of 𝑟2 < 0.001) genetic variants associated
with vitamin D at genome-wide significance (p-value< 5 × 10−8).
As shown in Table 5 the GC-Q q-values did not detect any outlier,
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TABLE 1 | Simulation results for outlier detection in the univariable MR scenario.

Measure Full model Standard Sanderson MR-presso MR-radial GC-Q

5% outliers
Sensitivity — 1.00 1.00 1.00 1.00 0.99
Specificity — 0.97 0.99 0.99 0.90 1.0
Mean bias 0.041 0.002 −0.001 0.0001 −0.0001 −0.002
MSE 0.004 0.0002 0.0001 0.004 0.0005 0.0001
𝑝 — 1.40 1.11 1.18 2.81 1.01
𝑎 — 7.01 5.55 5.88 14.04 5.05

10% outliers
Sensitivity — 1.00 1.00 1.00 1.00 0.99
Specificity — 0.94 0.97 0.97 0.84 1.0
Mean bias 0.09 0.01 0.003 0.005 0.03 −0.002
MSE 0.01 0.0004 0.0002 0.01 0.001 0.0001
𝑝 — 1.55 1.23 1.29 2.47 0.99
𝑎 — 15.45 12.27 12.89 24.72 9.93

15% outliers
Sensitivity — 1.00 1.00 1.00 1.00 0.97
Specificity — 0.88 0.94 0.93 0.76 1.0
Mean bias 0.13 0.02 0.01 0.01 0.04 0.0007
MSE 0.02 0.001 0.0003 0.02 0.003 0.0002
𝑝 — 1.66 1.34 1.39 2.37 0.97
𝑎 — 24.92 20.06 20.88 35.54 14.52

20% outliers
Sensitivity — 1.00 1.00 1.00 1.00 0.91
Specificity — 0.82 0.89 0.88 0.68 1.0
Mean bias 0.18 0.03 0.02 0.02 0.06 0.02
MSE 0.04 0.002 0.0006 0.04 0.005 0.002
𝑝 — 1.73 1.42 1.47 2.26 0.91
𝑎 — 34.60 28.38 29.40 45.20 18.23

Note: Sensitivity and specificity for detecting outliers. Mean bias and MSE for the causal effect estimate 𝜃, average number of detected outliers in relation to the true outlier
rate (𝑝), and average number of detected outliers (𝑎).

while the Standard and Sanderson’s adjusted q-values detected
the same single outlier, rs4944958. MR-Presso and MR-Radial
detected two outliers, rs4944958 and rs7041. Genetic variants
associated with vitamin D are known to belong to three tiers,
the direct vitamin D pathway, U/V absorption and the choles-
terol metabolism [31]. Of interest, the one outlier identified by
MR-Presso, MR-Radial, the Standard and Sanderson q-values,
rs4944958, is an intron of the NADSYN1 gene which affects a pre-
cursor of cholesterol and is part of cholesterol metabolism which
may indicate horizontal pleiotropy. In contrast, rs7041, which
was only identified by MR-Presso and MR-Radial, is located in
the GC gene, also known as vitamin D-binding protein, which
is part of the direct vitamin D pathway and unlikely to reflect
other biological pathways and may represent a false positive
finding.

Interestingly, the effect size of the MR analysis depends
on the outlier removal approach, with the MR-Presso and

MR-Radial approaches that removed more genetic variants hav-
ing the strongest protective effect estimate, as can be seen
in Table 5.

4.2 | Multivariable MR: Blood Lipids
as Candidate Exposures

As a second application example, we consider blood lipids
as exposures in a multivariable MR setting following Burgess
and Davey Smith [4] who analysed if genetically predicted lev-
els of low-density lipoprotein cholesterol (LDL-C), high-density
lipoprotein cholesterol (HDL-C), and triglycerides are associated
with age-related macular degeneration (AMD) and used coro-
nary heart disease (CHD) as a positive control where clear evi-
dence for lipids being a causal risk factor for CHD exists [32].
In contrast, evidence for lipids being causal for Alzheimer’s dis-
ease is mixed and not supported by MR studies [33]. Independent
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TABLE 2 | Simulation results for outlier detection in the multivariable MR scenario.

Measure Full model Standard Sanderson MR-presso GC-Q

5% outliers
Sensitivity — 1.00 1.00 0.71 1.00
Specificity — 0.98 0.99 1.00 1.00
Mean bias 0.03 0.002 0.0005 0.01 −0.0004
MSE 0.003 0.0002 0.0002 0.002 0.0002
𝑝 — 1.31 1.12 0.71 1.01
𝑎 — 6.57 5.61 3.57 5.04

10% outliers
Sensitivity — 1.00 1.00 0.66 1.00
Specificity — 0.94 0.96 1.00 1.00
Mean bias 0.06 0.007 0.004 0.03 −0.0004
MSE 0.008 0.0004 0.0003 0.004 0.0002
𝑝 — 1.58 1.32 0.66 1.00
𝑎 — 15.82 13.17 6.65 10.01

15% outliers
Sensitivity — 1.00 1.00 0.62 0.98
Specificity — 0.86 0.91 1.00 1.00
Mean bias 0.09 0.02 0.01 0.05 0.006
MSE 0.02 0.0007 0.0005 0.009 0.0008
𝑝 — 1.81 1.53 0.62 0.98
𝑎 — 27.14 22.92 9.28 14.65

20% outliers
Sensitivity — 1.00 1.00 0.57 0.77
Specificity — 0.77 0.83 1.00 1.00
Mean bias 0.13 0.02 0.02 0.09 0.06
MSE 0.03 0.001 0.0008 0.02 0.01
𝑝 — 1.92 1.67 0.57 0.78
𝑎 — 38.46 33.38 11.46 15.62

Note: Sensitivity and specificity for detecting outliers. Mean bias and MSE for the causal effect estimates 𝜃1, 𝜃2, and 𝜃3, average number of detected outliers in relation to the
true outlier rate (𝑝), and average number of detected outliers (𝑎).

genetic variants were selected as IVs if they were associated with
any of the blood lipids at genome-wide significance [4] resulting
in 𝑛 = 185 IVs.

Table 6 shows the genetic variants used as IVs and detected
as outliers by the different approaches. In general, the GC-Q
approach detected the fewest outliers, followed by MR-Presso,
which is in line with the simulation results for the methods based
on Cochran’s Q. The Standard q-value approach and Sanderson’s
q-value detected exactly the same outliers. The difference in
detection of outliers is reflected in the respective MR estimates
as shown in Table 7. For CHD, all methods yield similar effect
sizes independent of the removal for outliers. In contrast, for
the outcomes AMD and Alzheimer’s disease, the MR effect
estimates not only differ in their effect sizes but also in their
significance. For example, the effect estimate of HDL-cholesterol
on AMD is significant at the 5% level for the full model without
outlier removal, whereas it doubles its effect size and is even

significant at the 0.001 level after outlier removal with the
other methods. The benefit of outlier removal is most striking
for the effect of LDL-cholesterol on Alzheimer’s disease. Here,
including all genetic variants associated with any blood lipid,
provided significant evidence for genetically predicted levels of
LDL-cholesterol to be associated with Alzheimer’s disease. The
removal of outliers, in particular of one genetic variant, rs6859,
in the APOE gene region, leads to an insignificant MR effect
estimate.

5 | Related Work

Some researchers prefer to use robust methods, such as the
MR-Median approach to avoid dealing with outliers. But firstly,
we are more interested in detecting outlying SNPs and thus robust
estimation methods such as the Median-MR approach would not
be helpful in this endeavor. And secondly, these approaches have
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FIGURE 3 | Violin plots for the bias of the causal effect estimates of 𝜃1 (red), 𝜃2 (green), and 𝜃3 (blue) in the multivariate simulation setting (15%
outliers) after outlier adjustment and for the full model.

TABLE 3 | Simulation results for outlier detection in the univariable MR scenario with a strong outlier effect (𝑝 = 15%).

Measure Full model Standard Sanderson MR-presso MR-Radial GC-Q

Sensitivity — 1.00 1.00 1.00 1.00 0.98
Specificity — 0.60 0.67 0.66 0.47 1.0
Mean bias 0.54 0.11 0.07 0.07 0.19 0.007
MSE 0.40 0.02 0.01 0.40 0.05 0.003
𝑝 — 3.25 2.85 2.90 4.02 0.98
𝑎 — 48.70 42.69 43.50 60.37 14.68

Note: Sensitivity and specificity for detecting outliers. Mean bias and MSE for the causal effect estimate 𝜃, average number of detected outliers in relation to the true outlier
rate (𝑝), and average number of detected outliers (𝑎).

TABLE 4 | Simulation results for outlier detection in the univariable MR scenario with balanced pleiotropy (𝑝 = 20%).

Measure Full model Standard Sanderson MR-presso MR-Radial GC-Q

Sensitivity — 1.00 1.00 1.00 1.00 0.99
Specificity — 0.96 0.98 0.97 0.86 1.0
Mean bias −0.0005 −0.002 −0.003 −0.003 −0.003 −0.002
MSE 0.009 0.0004 0.0002 0.009 0.001 0.0003
𝑝 — 1.18 1.09 1.11 1.57 0.99
𝑎 — 23.59 21.78 22.24 31.37 19.73

Note: Sensitivity and specificity for detecting outliers. Mean bias and MSE for the causal effect estimate 𝜃, average number of detected outliers in relation to the true outlier
rate (𝑝), and average number of detected outliers (𝑎).
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TABLE 5 | Real data analysis: Causal effect estimates, standard errors, p-values, and outlying SNPs for vitamin D on multiple sclerosis for the
univariable MR scenario.

Method Causal estimate 𝜽 Std. Error p SNP

Full model −0.44 0.10 0.0003 —
Standard −0.30 0.09 0.0048 rs4944958
Sanderson −0.30 0.09 0.0048 rs4944958
MR-presso −0.53 0.12 0.0002 rs4944958, rs7041
MR-radial −0.54 0.10 0.00001 rs4944958, rs7041
GC-Q −0.44 0.10 0.0003 —

TABLE 6 | Real data analysis: Outlying SNPs in the multivariate MR
scenario.

Method CHD AMD ALZ

Standard rs1250229,
rs4530754,
rs579459,
rs12801636,
rs653178,
rs6489818,
rs952044

rs1883025,
rs653178,
rs1532085,
rs261342
rs9989419,
rs6859,
rs492602

rs1883025,
rs17788930,
rs6859

Sanderson rs1250229,
rs4530754,
rs579459,
rs12801636,
rs653178,
rs6489818,
rs952044

rs1883025,
rs653178,
rs1532085,
rs261342
rs9989419,
rs6859,
rs492602

rs1883025,
rs17788930,
rs6859

MR-presso rs4530754,
rs12801636,
rs653178,
rs952044

rs1883025,
rs1532085,
rs261342,
rs9989419,
rs6859

rs17788930,
rs6859

GC-Q rs653178 rs1532085,
rs261342

rs6859

Note: Data from Burgess and Davey Smith [4], originally from the Global Lipids
Genetics Consortium [34] and Fritsche et al. [35].

their own specific disadvantages, for example, MR-Median has
less power compared to other methods. If we use the MR-median
method in our real data application in Section 4 on the effect of
vitamin D on multiple sclerosis, we get an estimate of −0.296
(0.164) with a p-value of 0.07. Even though the Standard and
Sanderson method perform similarly in the effect size, we end up
with higher standard errors and a change of significance of the
causal estimate. Nonetheless, these methods offer an alternative
to circumvent the issue of outliers in MR analyses with respect to
less biased causal effect estimates. Table 8 we benchmarked GC-Q
with the Median-based method [25] and the MR-RAPS method
[36]. For the setting with 10% outliers, all methods perform simi-
larly well. However, the bias and MSE get very large in the setting
with 80% outliers for MR-RAPS and GC-Q, with an advantage for
the Median-based method with respect to the bias and the MSE.
GC-Q performs similarly to the full model without any outliers
removed.

6 | Limitations

An important aspect of introducing new methods is to highlight
their respective limitations. As we have already mentioned, GC-Q
works for up to 25% outlying SNPs for directional pleiotropy and
analogously up to 50% for the balanced case. Table 9 shows its per-
formance in extreme cases with 50% and 80% of the SNPs being
outliers in the univariate MR setting for directional pleiotropy,
that is, the assumptions of the methods do not hold anymore.

As the estimation of 𝜆 is dependent on the median of the unad-
justed local 𝑞-statistics, we observe an extremely inflated distribu-
tion over the simulation runs. 𝜆 is on average inflated by a factor
of 100, which results in a deflation of the local q-statistics and sub-
sequently no outlying SNPs can be found. GC-Q thus performs
similar to the full model without any outliers removed.

As Table 9 the other outlier detection methods still work better in
the 50% setting—the bias, however, is not negligible and seems
to gradually approach the bias of the full model with higher out-
lier proportions. Since 𝜆 of the GC-Q method can no longer be
estimated correctly and is based on the median of the 𝜒2

1 distri-
bution, there might be a way to adjust it with a simple correction
factor for the hyper-inflated median of the unadjusted q-statistic
for settings where its assumptions do not hold. As a reliable rule
of thumb for the correction factor is beyond the scope of this
manuscript, we leave it open for future investigations.

7 | Discussion

Overdispersion in the heterogeneity statistic is a common
problem in meta-analysis [19, 20] and is not limited to MR. For
example, in meta-analysis of clinical trials, heterogeneity may
arise because of a diverse range of factors including diversity in
doses, lengths of follow-up, study quality, and inclusion criteria
for participants [20]. In MR, heterogeneity can be caused by dif-
ferent molecular pathways affecting the exposure. For example,
there genetic variation acts via many different biological path-
ways on obesity including the metabolism, cholesterol transport,
fat storage, appetite regulation, food preference, reward mecha-
nisms, and physical exercise. The heterogeneity test statistic is
known to depend on the sample size [19] which is the number
of studies included in a meta-analysis or in MR, the number of
genetic variants used as IVs. The power is low when there are few
SNPs; in contrast, the heterogeneity statistic shows substantial
overdispersion when there are many SNPs. Powerful GWAS have
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TABLE 7 | Real data analysis: Causal effect estimates for LDL- (𝜃1), HDL-cholesterol (𝜃2), and triglycerides (𝜃3) on coronary heart disease, macular
degeneration, and Alzheimer’s.

Method CHD AMD ALZ

Estimate Std. Err. p Estimate Std. Err. p Estimate Std. Err. p

Full model
𝜃1 0.39 0.04 2 × 10−16 −0.04 0.07 0.55 0.24 0.08 0.002
𝜃2 −0.07 0.05 0.116 0.18 0.08 0.028 −0.11 0.09 0.206
𝜃2 0.14 0.06 0.012 −0.07 0.10 0.437 −0.14 0.11 0.186

Standard
𝜃1 0.41 0.04 2 × 10−16 −0.03 0.06 0.646 0.09 0.05 0.055
𝜃2 −0.06 0.04 0.165 0.35 0.08 1.7 × 10−5 −0.06 0.05 0.238
𝜃3 0.14 0.05 0.005 0.10 0.08 0.250 −0.09 0.06 0.161

Sanderson
𝜃1 0.41 0.04 2 × 10−16 −0.03 0.06 0.646 0.09 0.05 0.055
𝜃2 −0.06 0.04 0.165 0.35 0.08 1.7 × 10−5 −0.06 0.05 0.238
𝜃3 0.14 0.05 0.005 0.10 0.08 0.250 −0.09 0.06 0.161

MR-presso
𝜃1 0.41 0.04 2 × 10−16 −0.03 0.06 0.640 0.08 0.05 0.082
𝜃2 −0.05 0.04 0.201 0.34 0.08 1.7 × 10−5 −0.10 0.05 0.074
𝜃2 0.13 0.05 0.010 0.14 0.08 0.106 −0.12 0.07 0.078

GC-Q
𝜃1 0.40 0.04 2 × 10−16 −0.06 0.06 0.324 0.09 0.05 0.081
𝜃2 −0.06 0.05 0.155 0.47 0.08 1.7 × 10−5 −0.08 0.06 0.148
𝜃3 0.14 0.05 0.011 0.18 0.09 0.045 −0.11 0.07 0.091

Note: Data from Burgess et al. [4].

TABLE 8 | The simulation results for outlier detection in the univari-
able MR scenario.

Measure Full model GC-Q Median MR-RAPS

10% outliers
Mean bias 0.087 −0.002 0.002 0.090
MSE 0.011 0.0001 0.0002 0.011

80% outliers
Mean bias 0.72 0.65 0.39 0.72
MSE 0.54 0.50 0.26 0.54

Note: Mean bias and MSE for the causal effect estimates 𝜃 for GC-Q, MR-RAPS
(with overdispersion and L2 loss), and the Median-based method. For details on
the parameter settings see Section 3.

identified hundreds of regions in the genome associated with
potential exposures and provide a large number of IVs, making
the calibration of the heterogeneity statistic an important statis-
tical problem.

Here, we propose GC-Q, an adjusted version of the local q-statistic
to detect outliers. GC-Q has the potential to decrease the type I
error at the price of a reduced power (see Tables 1 and 2). With
this method, we correct for overdispersion of the heterogeneity
statistics by making use of the estimated inflation factor using a
mixture model approach.

GC-Q is using the first-order weights, which in contrast to
the second-order weights do not include the precision of the
genetic association with the exposure, which is also known as the
no measurement error (NoME) assumption. Another important
assumption of GC-Q is that less than half of the IVs are invalid
(in the balanced pleiotropy setting), an assumption that is, nec-
essary to guarantee the identifiability of the mixture model. In
order to estimate the over-dispersion parameter, GC-Q requires
a minimum number of IVs and is only recommended for poly-
genic exposures where there are many genetic variants available
as IVs. The mixture model on which GC-Q is formulated has been
shown in simulations to perform well on 50 observations and con-
servative when fewer observations are available [37]. In addition,
GC-Q performs especially well if the outlier effect is strong (see
Table 3). Another advantage of GC-Q is that it does not require
additional parameters, as the observational covariance between
exposures, and it does not require a two-step procedure for esti-
mation (note the second-order weights require the causal effect
estimate and can only be obtained in an iterative procedure).
MR-PRESSO uses a computationally expensive simulation pro-
cedure to define the Null distribution, which becomes compu-
tationally more expensive as the number of instruments grows.
In contrast, GC-Q is based on a fast and simple computational
implementation which uses first-order weights and relies on a
closed-form mixture model formulation. Thus, no iterative proce-
dure to calculate the weights or simulations are needed to define
the Null distribution. A disadvantage of GC-Q is that it relies on
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TABLE 9 | A simulation results for outlier detection in the univariable MR scenario.

Measure Full model Standard Sanderson MR-presso MR-radial GC-Q

50% outliers
Sensitivity — 0.99 0.99 0.99 1.00 0.01
Specificity — 0.54 0.65 0.64 0.42 1.0
Mean bias 0.45 0.14 0.13 0.12 0.18 0.45
MSE 0.22 0.04 0.05 0.22 0.05 0.22
𝑝 — 1.45 1.33 1.35 1.57 —
𝑎 — 72.67 66.74 67.30 78.70 —

80% outliers
Sensitivity — 0.96 0.94 0.94 0.97 0
Specificity — 0.39 0.50 0.49 0.31 1.0
Mean bias 0.72 0.63 0.67 0.66 0.60 0.72
MSE 0.54 0.49 0.54 0.54 0.46 0.54
𝑝 — 1.12 1.06 1.07 1.15 —
𝑎 — 89.25 85.14 85.47 91.67 —

Note: Sensitivity and specificity for detecting outliers. Mean bias and MSE for the causal effect estimates 𝜃, average number of detected outliers in relation to the true outlier
rate (𝑝), and average number of detected outliers (𝑎).

the assumption that less than half of the IVs are valid, but this
assumption is common to all other methods which rely on out-
lier detection, including MR-PRESSO, Radial MR, or the Median
MR method.

However, we do not claim that our method outperforms
the existing methods in all cases. We see our approach
as complementary to the outlier detection methods in
MR analysis.

When removing outliers in MR models, it is necessary to strike a
balance between removing all invalid IVs that may bias the causal
effect estimate and retaining the largest number of IVs to retain
the largest sample size possible.

As we show in our simulation study and in the real data
analysis, GC-Q removes the smallest number of outliers while
obtaining unbiased causal effect estimates, which highlights
that GC-Q is conservative and removes only the minimum
number of invalid IVs necessary to obtain the unbiased causal
effect.

Let us finish by a recent quote from Strobl and Leisch [38]. They
claim that “the research question ‘What is the best method in
general’ is ill-posed” and warn methodological researchers who
present new methods against the “one method fits them all” phi-
losophy. In this spirit, we emphasize that our method certainly
cannot be recommended universally for all datasets and in all
contexts (especially in an early phase paper such as ours [8]),
but shows a promising behavior in practically relevant situations.
With this in mind, we do not want to claim that our newly intro-
duced method outperforms existing methods in every analyti-
cal setting and can be seen as complementary within the MR
literature.
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Endnotes
1 GitHub: https://github.com/mmax-code/MR_outliers.
2 Note that also linearity and homogeneity assumptions must hold.
3 Note that also linearity and homogeneity assumptions must hold.
4 The simulation setup is similar for the univariate case with only one risk

factor.
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5 GitHub: https://github.com/mmax-code/MR_outliers.
6 https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=30890.
7 https://www.ebi.ac.uk/gwas/studies/GCST005531.
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Abstract

The term “researcher degrees of freedom” (RDF), which was introduced in metascientific literature

in the context of the replication crisis in science, refers to the extent of flexibility a scientist has in

making decisions related to data analysis. These choices occur at all stages of the data analysis

process, e.g., data preprocessing and modelling. In combination with selective reporting, RDF may

lead to over-optimistic statements and an increased rate of false positive findings. Even though

the concept has been mainly discussed in fields of application of statistics such as epidemiology or

psychology, similar problems affect methodological statistical research. Researchers who develop and

evaluate statistical methods are left with a multitude of decisions when designing their comparison

studies. This leaves room for an over-optimistic representation of the performance of their preferred

method(s) and false positive findings. In this context, the present paper defines and explores a

particular RDF that has not been previously identified and discussed. When interpreting the results

of real data examples that are most often part of methodological evaluations, authors typically tell

a domain-specific “story” that best supports their argumentation in favor of their preferred method.

However, there are often plenty of other plausible stories that would support different conclusions.

We define the “storytelling fallacy” as the selective use of anecdotal domain-specific knowledge to

support the superiority of specific methods in real data examples. While such examples fed by domain

knowledge play a vital role in methodological research, if deployed inappropriately they can also harm

the validity of conclusions on the investigated methods. The goal of our work is to create awareness for

this issue, fuel discussions on the role of real data in generating evidence in methodological research

and warn readers of methodological literature against naive interpretations of real data examples.

We illustrate this newly introduced RDF through two examples related to pleiotropy detection in

Mendelian Randomisation and a prediction model to detect SARS-CoV-2 infections, respectively.

Keywords— Metascience, real data application, selective reporting, over-optimism,

comparison studies
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1 Introduction

The term “researcher degrees of freedom” (RDF) [1], which was introduced in metascientific literature in

the context of the replication crisis in science [2, 3, 4], refers to the extent of flexibility a scientist has in

making decisions related to data analysis. These choices occur at all stages of the data analysis process,

e.g., data preprocessing and modelling [5]. In combination with selective reporting, RDF may lead to

over-optimistic statements and an increased rate of false positive findings [5, 6]. Even though the concept

has been so far mainly discussed in fields of application of statistics such as epidemiology or psychology,

similar problems affect methodological statistical research. Here, we define methodological statistical

research as research dedicated to the development and evaluation of statistical methods, for example

statistical tests or regression modelling—as opposed to research addressing epidemiological questions

using these methods.

Researchers developing and evaluating statistical methods are left with a multitude of decisions when

designing their comparison studies. Jelizarow et al. [7] demonstrate how a new class prediction method

that is in fact worse than existing methods can artificially seem superior through selective reporting. More

precisely, they intentionally focus on the datasets, data preprocessing settings, and method variants that

maximize the performance of the new method while downplaying others. They show that this selective

reporting approach leads to an overoptimistic and misleading representation of their preferred method.

Such bias induced by the RDF typically affects the evaluations presented as part of papers introducing

new methods, including those based on statistical simulation studies [8, 9].

It should be emphasized that we do not insinuate that scientists deliberately engage in scientific

misconduct. In fact, selective reporting often happens subconsciously without malicious intention, as a

result of self-deception [10]. The reasons are manifold. One key factor that has been widely acknowledged

in health and social sciences is publication bias that encourages the reporting of positive findings. It is

likely that such a bias also affects methodological literature [11]—in the sense that researchers are required

to propose methods that outperform existing methods to have their research published.

In this context, the present paper defines and explores a particular RDF that has not been previ-

ously identified and discussed. When interpreting the results in real data examples that are most often

part of methodological evaluations, authors typically tell a domain-specific “story” that supports their

argumentation in favor of their preferred method. However, there are often plenty of other plausible

stories that would support different conclusions. We define the “storytelling fallacy” as the selective

use of anecdotal domain-specific knowledge to support the superiority of specific methods in real data

examples. While applications fed by domain knowledge play a vital role in methodological research, if

deployed inappropriately they can also harm the validity of conclusions on the investigated methods and

lead to the publication of non-replicable methodological results.

The goal of our paper is to create awareness for this issue, fuel discussions on the role of real data

in generating evidence in methodological research and warn readers of methodological literature against

naive interpretations of real data examples. After introducing the concept of the “storytelling fallacy”

in more detail in Section 2, we illustrate it through two examples inspired from our own research. In

Section 3, we consider methods for pleiotropy detection in Mendelian Randomisation (MR) for causal

inference. The different methods yield different sets of results. For each of these sets of results, a plausible

biological interpretation (“story”) can be elaborated to strengthen the case of the corresponding method.

In Section 4, we consider a new diagnostic method for SARS-CoV-2 infections based on machine learning

models. Different models identify different predictor variables as relevant. Again, for each set of results,

2



a plausible biological “story” based on prior knowledge on these predictor variables can be created to

support the use of the corresponding model. The paper finally discusses these findings and formulates

recommendations for authors and readers of methodological comparison studies with respect to real data

examples (Section 5).

2 The “storytelling fallacy”

2.1 Definition

Building on Jelizarow et al. [7], Nießl et al. [12] systematically investigate the impact of RDF on the

results of a showcase study comparing the accuracy of various survival prediction methods. Typical

RDF included in their study are the choices of performance measures, datasets, summarization of results

over datasets, and handling of method failures. Depending on these choices, different survival prediction

methods can be identified as best performing. Assuming that authors often engage (consciously or not)

in selective reporting, this may largely explain why papers introducing new methods are generally over-

optimistic with respect to their performances, even if they use essentially objective criteria [13, 14, 15].

In this context, a natural reaction would be to give more importance to real data applications and

to the plausibility of the results obtained therein from a domain-knowledge perspective. If—according to

expert judgement derived from domain knowledge—the results obtained with method A are much more

plausible and meaningful than those obtained with method B, it is often seen as an argument in favor of

the superiority of method A.

Such interpretations are common in methodological articles presenting new methods. For example,

let us consider the case of a new model selection approach for multivariable regression modelling (called

method A and compared to a standard approach called method B). In a real data application, the

inventors of method A who want to present it as superior to method B may scrutinize the variables it

selects and argue that they are more meaningful than those selected by method B. They may for example

argue that method A selects a variable that was identified as important predictor of the target variable

in previous literature, and that method B fails to select it. This would be presented as an argument in

favor of the superiority of method A.

The goal of the present paper is to outline that RDF also affect this type of comparisons in a broad

sense, and that the interpretation of real data applications is consequently not immune against bias.

This is because, for a given real data application, there are usually numerous possible sensible domain-

specific interpretations. Focusing on the one that makes method A appear better than method B in

some sense (while ignoring those that make method B look better) can be seen as a form of selective

reporting. This happens in a particularly subtle way, because in practice the authors do not actively

select their interpretation out of a collection of ready-to-use interpretations: instead, they elaborate their

interpretation based on the results of methods A and B—but may have elaborated another one if their

preferences had been different.

With this in mind, we define the “storytelling fallacy” as the use of anecdotal domain-specific knowl-

edge in order to support the superiority of the preferred method in real data examples.
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2.2 Related literature

The “storytelling fallacy” is related to the question of the reliability and objectivity of domain-specific

expert knowldege, which has been widely discussed in different fields of research. We give a brief overview

of this literature in connection with the “storytelling fallacy” in the rest of this section.

Experts are generally assumed to be immune to blind spots and generally impartial [16] and, as

stated by O’Hagan [17], “[e]xpert opinion and judgment enter into the practice of statistical inference and

decision-making in numerous ways. Indeed, there is essentially no aspect of scientific investigation in

which judgment is not required.” Regarding subjectivity, they further argue that “[j]udgment is necessarily

subjective, but should be made as carefully, as objectively, and as scientifically as possible.” Kaptchuk

[18] points out that the interpretation of data is inevitably subjective and is not preserved from bias—

referred to as interpretative bias. Furthermore, the well-known confirmation bias [19] refers to the fact

that researchers may evaluate evidence in a way that supports their own prior beliefs.

In statistics, the notion of expert judgement is often considered in the debate opposing frequentist

to Bayesian statistics, which often ends in discussions on the subjectivity and objectivity of decisions

[20, 21] such as the choice of the prior distributions in Bayesian statistics. The “storytelling fallacy” in

methodological literature is related to the subjectivity of expert judgement, but in a different manner.

The judgement of an expert who elaborates an interpretation to strengthen the argument in favor of a

newly introduced method is subjective—in the sense that another expert may have another judgement.

However, the core issue is the RDF combined with selective reporting, i.e. the multiplicity of potential

post-hoc stories and the fact that the one that best fits the authors’ hopes is chosen, leading to a biased

evaluation of the methods.

With a different perspective, Boutron and Ravaud [22] address the problem of misrepresentation of

research in biomedical literature and discuss the notion of “spin”. The spin is defined as a type of re-

porting that does not accurately represent the nature and scope of findings and may influence readers’

perceptions of the results. There are different shades of “spins”, such as the misreporting of methods and

the misreporting of results. Similarly, methodological researchers may evaluate their results in a biased

way by focusing on specific performance measures (i.e. methods), datasets (i.e. results) or, as outlined

in this paper, specific biological theories supporting the veracity of results of real data analyses and thus

the superiority of the method that produced them.

3 Use Case I: Detection of pleiotropic SNPs in Mendelian Ran-

domisation

Mendelian Randomisation (MR) employs genetic variants as instrumental variables to deduce the causal

effects of exposures on an outcome. A crucial assumption in MR is that these genetic variants, used

as instrumental variables, are independent of the outcome, given the risk factor and any unobserved

confounders.[23] More precisely, the goal of MR is to examine the causal effect θ of a risk factor X on

an outcome Y using genetic variants Gi for i ∈ 1, ..., n as instrumental variables (IV), see Figure 1.

Pleiotropy is defined as the effect of any genetic variant Gi (IV) on the outcome Y through any other

path than the risk factor X included in the MR model—see the red dashed lines in Figure 1. Different

approaches to detect pleiotropic SNPs exist in the literature [24, 25, 26]. They are mainly based on
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Figure 1: Causal directed acyclic graph (DAG) for univariable MR, based on Mandl et al. [27]. Genetic
variants are denoted as Gi for i ∈ 1, ..., n, confounders as U , and the causal effect of the risk factor X
on the outcome Y as θ. Red dashed lines represent the effect of the instrumental variable(s) Gi on the
outcome through paths other than the risk factor—e.g., caused by pleiotropy.

adjusted versions of Cochran’s Q.

In this section, we revisit parts of the results of our recent study comparing methods for the detection

of pleiotropic SNPs [27] to illustrate the “storytelling fallacy”. Beyond extensive statistical simulations,

this comparison study includes a real data application assessing the effect of circulating vitamin D levels

(exposure: X) on multiple sclerosis (MS, outcome: Y ) through MR; see the original paper for details on

data and methods [27]. Table 1 shows the results of two different pleiotropy detection methods: Method

A (Standard) and method B (GC-Q). Method A detects one pleiotropic SNP, namely rs4944958 while

method B does not detect any pleiotropic SNPs.1

Method pleiotropic SNP

Method A (Standard) rs4944958
Method B (GC-Q) —

Table 1: Real data analysis from [27]: pleiotropic SNPs for the analysis of vitamin D on MS in the
univariable MR analysis.

Table 2 shows two different interpretations (“stories”) that could be used to argue in favor of the

superiority of the methods A and B, respectively, using prior biological domain knowledge. This clearly

illustrates that the interpretation of real data results is uncertain or, in other words, affected by RDF,

and should be considered with caution.

4 Use Case II: Breath sample analysis by semi-conductor based

E-Nose technology

In order to distinguish SARS-CoV-2 infected from non-infected patients, an experimental analytical ap-

proach (E-Nose technology) can be applied, where volatile organic molecules, also termed gasotransmit-

1Details on code and data for the analysis can be found on GitHub: https://github.com/mmax-code/MR_outliers
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Story 1
Method A (Standard)

Story 2
Method B (GC-Q)

SNPs associated with vitamin D are known to be-
long to three tiers, the direct vitamin D pathway,
U/V absorption, and the cholesterol metabolism
[28]. The pleiotropic SNP identified by method A,
rs4944958, is an intron of the NADSYN1 gene
which affects a precursor of cholesterol and is thus
involved in cholesterol metabolism—which can be
seen as confounder for MS [29]. Therefore, it may
indicate horizontal pleiotropy. These arguments
are in line with the result of method A.

The SNP identified by method A, rs4944958, is
considered a perfect proxy for rs12785878 [30]—
a SNP that has been linked directly to vita-
min D serum concentrations by several stud-
ies. Therefore, rs4944958 has been explicitly in-
cluded in similar studies, see, e.g, [30]. Even
though rs4944958 is involved in the cholesterol
metabolism, the effect through this causal path
on MS is not finally clarified [31]. rs4944958
should be included in the MR analysis and is a
false-positive finding of method A. These argu-
ments are in line with the result of method B.

Table 2: Two different domain-specific “stories” in favor of two different methods for the MR use case.

ters, contained in human exhaled air are enriched and analysed by 10 different metal oxide semiconductor

sensors [32]. Subsequently, these variations produce signal patterns that can be analysed using machine

learning (ML) methods to detect SARS-CoV-2 infections. See the original paper for more details [32].2

Two prediction models with SARS-Cov-2 status as dependent variable and different sensor covariates

are obtained using a Random Forest (RF: method A) and a Support Vector Machine (SVM: method B)

[33], respectively. Note that for each sensor different covariates were extracted due to the complexity of the

raw data. For the purpose of model interpretability, the covariates are then assessed using permutation

importance measures. Table 3 shows the three top-ranked sensor-covariates according to the RF- and

SVM-based variable importances, respectively. Even though sensor 9 is in the top three ranks for both

methods, the other sensors differ.

Ranking Method A Method B
(RF) (SVM)

1. Sensor 9, covariate9-3 Sensor 2, covariate2-7
2. Sensor 9, covariate9-8 Sensor 10, covariate10-1
3. Sensor 9, covariate9-2 Sensor 9, covariate9-1

Table 3: Top three ranked sensor-covariates according to the permutation importance measure for meth-
ods A and B. Note that due to the complexity of the raw sensor data different covariates were extracted
for each sensor. The first index of the covariate corresponds to the sensor, while the second stands for
the specific covariate extracted from this sensor.

As outlined in Table 4, it is possible to interpret the results in such a way that method A appears to

yield more plausible results. But it is also possible to make method B appear superior. As in Section 3

we can thus again use domain knowledge to favor one or the other method.

This example shows that despite identifying different sensors, both variable importance measures

may have revealed valuable sensors for the detection of pathological processes during infections caused by

SARS-CoV-2. From a medical point of view, both approaches yield highly interesting results, and espe-

cially in the medical setting with high inter-individual variations, several strategies should be considered

and potentially combined, rather than focusing on a single analytical strategy. The results of the two

2Details on the code of the original analysis can be found on GitHub: https://github.com/mmax-code/enose
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Story 1
Method A (RF)

Story 2
Method B (SVM)

Method A only outputs sensor 9 in the first three
ranks, which detects aromatic and sulphor or-
ganic compounds [32]. It is a highly sensitive
broad range sensor, that cannot identify a sin-
gle marker molecule alone. Sensor 9 is especially
sensitive for sulphor compounds, with H2S as
its calibration gas. Like hydrogen and methane,
H2S represents a well-described gasotransmitter
in lung disease [34], and endogenous H2S produc-
tion in humans may be increased to counteract
viral infection and inflammation [35]. These ar-
guments are in line with the ranking output by
method A.

Method B identified sensor 2, which is a very sen-
sitive broad range sensor, and sensor 10 which
is selective for methane. Sensors identified by
method B hint at methane and hydrogen as po-
tential biomarkers of an underlying SARS-CoV-2
infection. Methane producing microbes can gen-
erate methane (CH4) from carbon dioxide (CO2)
and hydrogen (H or H2), often encountered in
anoxic environments. Thus, elevated levels of
hydrogen may facilitate increased production of
methane, and both hydrogen and methane have
been described as so-called gasotransmitters—
small gas molecules that are endogenously gener-
ated, have well-defined functions, and play a role
in respiratory diseases [34]. These arguments are
in line with the ranking output by method B.

Table 4: Two different domain-specific “stories” in favor of two different methods for the E-Nose use
case.

methods are different, but not necessarily incoherent. The fallacy lies solely in the selective reporting of

arguments in favor of one of the methods.

5 Discussion

This manuscript discusses a new type of RDF that has not been described before. It was already well-

known that methodological comparison studies can be biased in favor of the authors’ preferred method(s)

through the selective reporting of, e.g., specific datasets or performance measures [9, 12]. We argue that

the selective reporting of “stories” based on domain knowledge that make the results of the preferred

method(s) seem more reliable than those of other methods also contributes to present a biased picture of

the methods’ qualities.

This raises the question on the role of real data applications in methodological research in general and

as piece of evidence on the behavior of methods in particular. We do not claim that real data applications

are meaningless. In fact, they have a pivotal role in the various “phases of methodological research” [36].

In an early phase study presenting a new method idea, real data applications may be used to demonstrate

that the method can be applied to real data and which type of results it yields. In a late phase study

whose goal is to generate reliable evidence of the behavior of a method in various contexts, real data

applications may be used to discuss special cases in which the method shows a particular behavior. In

this context, it may also make sense to interpret the results based on multiple real data examples along

with the results of simulation studies—where the ground truth is known.

If the biological plausibility of the results is considered a crucial criterion for the evaluation of methods,

it is also conceivable, although not common, to define objective criteria for plausibility referring to

literature or, say, biological databases, and to evaluate the plausibility of the methods’ results for several

real datasets. Such an evaluation would not be without practical and conceptual difficulties, but would in

principle address the flaw of the interpretations of real data examples discussed in this paper in two ways.

Firstly, the evaluation would base on several datasets rather than on a single anecdotal dataset. Secondly,
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by defining objective criteria for plausibility one would reduce the RDF affecting interpretations.

Increasing awareness for the “storytelling fallacy” is especially important since the emergence of large

language models (LLMs) in recent years. This stems from the fact that the flexibility researchers have

when telling “stories” increases with the rise of user-friendly LLMs, which make it easier to generate

literature-based consistent and plausible “stories” supporting the results of statistical methods—without

even having to seek expert advice.

Based on the considerations outlined in this paper and previous literature on the design of methodolog-

ical comparison studies, we formulate the following tentative recommendations. Real data applications

are important and should remain an important part of methodological evaluations for illustrative pur-

poses. However, anecdotal stories based on domain knowledge supporting the results of methods should

not be considered as reliable evidence in favor of one or the other method—with only few exceptions

involving several datasets and objective criteria. More generally, it is recommended to interpret real

data applications in combination with those of simulation studies, and to abandon the “one beats them

all philosophy” [37]. It should be acknowledged that no method is expected to yield uniformly “better

results” in all situations. Relaxing the implicit expectation (of, e.g., editors and reviewers) that new

methods should work clearly better than existing ones in all respects would certainly have a positive

impact in terms of the incentive structure towards less biased interpretations.
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Author summary

Throughout their education and when reading the scientific literature, students may get

the impression that there is a unique and correct analysis strategy for every data analysis

task and that this analysis strategy will always yield a significant and noteworthy result.

This expectation conflicts with a growing realization that there is a multiplicity of possible

analysis strategies in empirical research, which will lead to overoptimism and nonreplic-

able research findings if it is combined with result-dependent selective reporting. Here,

we argue that students are often ill-equipped for real-world data analysis tasks and unpre-

pared for the dangers of selectively reporting the most promising results. We present a

seminar course intended for advanced undergraduates and beginning graduate students

of data analysis fields such as statistics, data science, or bioinformatics that aims to

increase the awareness of uncertain choices in the analysis of empirical data and present

ways to deal with these choices through theoretical modules and practical hands-on

sessions.

Introduction

Statistics and data analysis education frequently focuses on acquiring skills and techniques

concerning specific topics that are covered successively and in isolation. Students may, for

instance, first take a course on general techniques for regression modeling without considering

the challenges associated with missing data, outliers, or nonrepresentative sampling mecha-

nisms. They may then acquire skills to specifically address these additional challenges in a later

course. In the classroom, students are often presented with clear examples and with clean data

sets to practice these skills and techniques on. These exercises typically have unique, correct

solutions to the analysis task and often yield significant results, possibly conditioning students

to expect the same from real-world data. In this vein, problems arising during the analysis are

considered in isolation, even though they occur simultaneously and may be interrelated.

While the simplified and sequential treatment of specific topics certainly makes sense from a

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011936 March 28, 2024 1 / 10

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Mandl MM, Hoffmann S, Bieringer S,

Jacob AE, Kraft M, Lemster S, et al. (2024) Raising

awareness of uncertain choices in empirical data

analysis: A teaching concept toward replicable

research practices. PLoS Comput Biol 20(3):

e1011936. https://doi.org/10.1371/journal.

pcbi.1011936

Editor: B.F. Francis Ouellette, bioinformatics.ca,

CANADA

Published: March 28, 2024

Copyright: © 2024 Mandl et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Funding: The authors gratefully acknowledge the

funding by DFG grants BO3139/7-1 and BO3139/9-

1 to A-LB. The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.



pedagogical standpoint, it may convey the unrealistic expectation that for any data analysis

task, there is a unique and correct analysis approach that will always yield a significant or inter-

esting finding. This expectation is further strengthened when reading published research arti-

cles in which the authors commonly describe a single analysis strategy and report a significant

finding without a detailed discussion of alternative analysis options.

This impression conflicts with a growing realization that there is a multiplicity of possible

analysis strategies when analyzing empirical data [1–3] and that data analysts require the abil-

ity to make subjective decisions and acknowledge the multiplicity of possible perspectives [4].

In particular, so-called multianalyst projects [5–7] show that different teams of researchers

make very different choices when they are asked to answer the same research question on the

same data set. These uncertain choices, which are also referred to as researcher degrees of free-

dom [8,9], can be combined with result-dependent selective reporting to obtain the “most

noteworthy” or impressive results. This is a practice known as “p-hacking” or “fishing for sig-

nificance” in the context of hypothesis testing and, more generally, “fishing expeditions” or

“cherry-picking.” These practices lead to overconfident and nonreplicable research findings in

the literature and, ultimately, to situations where some may argue that “most published

research findings are false,” especially in combination with a low prior probability of the

hypothesis being true [10,11]. Computational biology as a field is, unfortunately, not immune

to these types of problems [3,12].

For example, Ullmann et al. [3] show how the combination of researchers’ expectations and

selective reporting may lead to overoptimistic results in the context of unsupervised micro-

biome analysis. Their paper highlights the relevance of open science practices in the field of

computational biology.

Here, we argue that if students always encounter clean data sets with a correct unique analy-

sis strategy yielding a significant and/or noteworthy finding during their training, they are ill-

equipped for real-world data analysis tasks and unprepared for the dangers of selectively

reporting the most promising results. In particular, data analysis courses commonly teach stu-

dents to understand and apply statistical models, but in order to equip them against the

cherry-picking, we need to strengthen awareness and understanding of uncertainties in the

analysis of empirical research data. To address this point, we present a seminar course

intended for advanced undergraduates and beginning graduate students of data analysis fields

such as statistics, data science, or bioinformatics that aims to increase awareness of the multi-

plicity of analysis strategies and of ways to deal with this multiplicity through the introduction

of theoretical concepts and practical hands-on sessions.

The remainder of the article is organized as follows: Section “Teaching concept” presents

the general teaching concept of the proposed seminar course. Section “Implementation and

student feedback” provides evidence on the instructional value of the proposed course. Section

“Potential adaptations” discusses potential adaptations of the course, and in Section “Conclu-

sion,” we highlight key skills and takeaways that we hope students will gain.

Teaching concept

Overview

The course consists of theoretical modules and practical hands-on sessions. It starts with two

short lectures, providing a brief introduction to the concepts of reproducibility and replicabil-

ity. Subsequently, it focuses on reproducibility by introducing the students to version control

software and R-Markdown to make their analyses reproducible, i.e., they learn to prepare their

code in a way that all results can be reproduced “by mouse click.” In this paper, we follow the
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definition by Nosek et al. [13], i.e., reproducibility involves verifying the reliability of a previ-

ous discovery by employing the identical data and analysis strategy.

The second part of the course is devoted to replicability in a broad sense, where a result is

said to be replicable if one obtains a similar result when repeating the same study including the

collection of independent data. More specifically, the students participate in a hands-on ses-

sion, in which each student is asked to perform a regression analysis on the same data set.

After this first hands-on session, they are presented with a second theoretical module that

focuses on uncertain choices in the analysis of empirical data, the consequences of result-

dependent selective reporting, and ways to address these issues. While the hands-on session

can be seen as an evaluation of the extent of selective reporting in the classroom, this second

theoretical module can be seen as an intervention. It aims to prevent the students from selec-

tively reporting the most promosing results arising through the multiplicity of possible analysis

strategies. The effect of this intervention can, to some extent, be measured by comparing the

results of the first phase of the hands-on session with a second phase, which follows the theo-

retical module on researcher degrees of freedom, in which the students are again asked to ana-

lyze a data set that has been generated according to the same model and parameter values as

the data set in phase 1. The students’ experience with the two hands-on sessions, the results

concerning this intervention effect, and their takeaways are discussed in the last two sessions

of the course. A sample weekly schedule for a 10-week academic term is shown in Table 1.

Note that the course might alternatively be conducted as an intensive course in one or few

days as discussed in the section on potential adaptations.

Practical hands-on sessions

In the two hands-on sessions, which should ideally take around 3 hours and be onsite to guaran-

tee that there is no exchange between the students, each student receives the same simulated

data set and is asked to estimate the effect of a predictor of interest in a linear regression model

and to provide a point estimate and a 95% confidence interval. See Section C “Instructions for

the students” in S1 Appendix for more details on the exact instructions received by the students.

The analysis task is designed in such a way that several uncertain choices related to model

selection, treatment of missing values, and handling of outliers are required. Although we real-

ize that such questions should ideally be tackled at the design stage of a study, in practice many

researchers unfortunately address these difficulties post hoc.

To help the students with these choices, they are provided with literature that gives an over-

view of methods and guidance on these choices (see, for instance, [14,15]) and they are able to

ask the lecturer for advice during the entire session. Additionally, the students are given infor-

mation on the “likely range” of the effect of interest, while the true effect is somewhat below

this range. The goal is to mimic a realistic data analysis situation in which the life scientist may

Table 1. Sample weekly schedule for a 10-week academic term.

Topic Details

Week 1–2: Reproducibility Introduction to version control software (Git, GitLab) and R-Markdown.

Week 3: Phase 1 hands-on session First assignment: 3-hour onsite task.

Week 4–7: Introduction of

theoretical concepts

Lectures on uncertain choices in the analysis of empirical data, consequences

of result-dependent reporting of analysis strategies, and ways to address these

issues.

Week 8: Phase 2 hands-on session Second assignment: 3-hour onsite task.

Week 9–10: Debriefing: Review and discussion of results and the data generation process of the

simulation setup.

https://doi.org/10.1371/journal.pcbi.1011936.t001
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hope for a large effect and exert gentle pressure on the data analyst toward observing it in the

data. For each of the hands-on sessions, students are asked to analyze the data in the best possi-

ble way (which is not necessarily the same for both phases) and to hand in their results and

reproducible analysis code.

Theoretical module on uncertain choices in the analysis of empirical data

and ways to address them

The theoretical module consists of lectures that address the ubiquity of uncertain choices in

the analysis of empirical data, their consequences on the validity of statistical inference if they

are combined with selective reporting, and solutions to address this issue. In particular, the lec-

tures detail how result-dependent selective reporting (cherry-picking, HARKing [16], and

selective publication of significant findings) can lead to overoptimism. Further, they outline

that there is increasing evidence that this practice is both common and detrimental for the rep-

licability and credibility of the scientific literature.

Finally, as an outlook, the theoretical module also presents general strategies to deal with

the multiplicity of possible analysis strategies while preserving the validity of statistical infer-

ence. This can include preregistration, blind analysis, and multiverse-style analyses. A list of

articles that can be used to design this theoretical module can be found in Section A “Details

on the implementation” in S1 Appendix.

Debriefing

The last two sessions leave space for the discussion of the results of the two hands-on sessions,

of the students’ experience with the course, and of student takeaways. In the first session, the

students are presented with the results of the first hands-on session in which they analyzed the

same data set. Due to the uncertain choices in the analysis of this data set, it is likely that the

students chose a variety of analysis strategies and obtained different results, providing them

with first-hand experience that there is not a single correct analysis strategy for every data anal-

ysis task. These results are then compared with the true parameter value that was used to gen-

erate the data, providing insight to the extent of selective reporting that was performed during

the analysis. Instructors may stress that true parameter values are not known in real data analy-

sis and point out the principles of statistical simulations and their importance for data analysis

methods by mimicking real-world scenarios with known truth.

In the second debriefing session, the results of the two hands-on sessions are compared to

assess the intervention effect of the theoretical module on uncertain choices in the analysis of

empirical data. As seminar courses tend to be small (with less than 30 students) and some stu-

dents might lack motivation or skills to either perform multiple analyses (and selective report-

ing) in the first hands-on session or to change their analysis strategy in the second hands-on

session, it is unlikely that a statistically significant intervention effect would be observed. Such

a nonsignificant finding opens the discussion to reasons for this “failed experiment,” including

lack of power, imperfect adherence and, more generally, that this nonsignificant finding can-

not be interpreted as evidence that the intervention is useless since “absence of evidence is not

evidence of absence” [17] and that practical importance and significance are distinct concepts

[18]. After discussing the realities of experimental design, the lecturer can present the students

with alternative possible results on this intervention effect resulting, for instance, from more

or less plausible inclusion and exclusion criteria or outcome switching that would lead to a sta-

tistically significant intervention effect. This could raise student awareness of their own pre-

conceived expectations that it is only a matter of finding the right analysis strategy to produce
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an intended result. This is a common fallacy that can arise, especially in the analysis of under-

powered studies.

Implementation and student feedback

We implemented a version of the course concept described in Section “Teaching concept” as a

seminar course for advanced undergraduate students in statistics at Ludwig-Maximilians-Uni-

versität München (Germany) in 2021/2022.

The overall feedback from the students was very positive and indicated that the course had

the intended effect of raising awareness of uncertain choices in the analysis of empirical data

and of the dangers of result-dependent selective reporting.

The following 2 student statements, which we received after asking the students for more

detailed feedback, further support this conclusion:

“I think that the learning effect of the seminar was greater than in a classical seminar, which

consists exclusively of frontal teaching and presentations. [. . .] This also made me aware of

how difficult it is to make statistical decisions on the basis of the available information.”

“The seminar was very practical compared to other seminars, which made itself and the

experience unique. This seminar and the experiment have had a sustainable effect on the

way I do statistics. For example, it is okay to get an inconclusive result when analysing data,

not everything has to be significant.”

Fig 1 shows the difference between the estimated and true effects (represented as relative

under- or overestimation) in phases 1 and 2 for the full sample (n = 26) and 3 further selected

subsamples. In phase 1, the students reported a parameter estimate that was on average 17.55%

larger than the true parameter value (one-sided t test: p = 0.03; Wilcoxon: p = 0.04), indicating

that our instructions may indeed have incited the students to selectively report promising

results.

In phase 2, the reported effect was on average 11.67% larger than the true effect (one-sided t
test: p = 0.18; Wilcoxon: p = 0.05), providing less evidence for result-dependent selective

reporting after the theoretical module on uncertain choices and their consequences for the

validity of statistical inference. Even if there was a significant overestimation of the effect in

phase 1 (17.55%) but not in phase 2 (11.67%), the 2 phases did not significantly differ with

respect to this difference (paired one-sided t test: p = 0.35; Wilcoxon: p = 0.40), a result that

may appear counterintuitive to students and is certainly worth pointing out.

An aspect worth being discussed with the students is shown in Fig 1. The intervention effect

becomes significant (or very close to the 5% level) if we (slightly) change our analysis strategy,

for instance, by performing the analysis only on students who overestimated the effect in

phase 1 (Fig 1(c): n = 18, paired one-sided t test: p = 0.04; Wilcoxon: p = 0.06) or only on

female students (Fig 1(d): n = 11, paired one-sided t test: p = 0.06; Wilcoxon: p = 0.09), leaving

room for the selective reporting of promising intervention effects in this highly underpowered

experiment. Conversely, the p-value of the intervention effect can also increase if we include

only the students who performed well in terms of grades in the course (Fig 1(b): n = 15, paired

one-sided t test: p = 0.57; Wilcoxon: p = 0.68).

For more details, see Sections A “Details on the implementation,” B “Data simulation,” and

C “Instructions for the students” in S1 Appendix. The code and data can be found on GitHub

(https://github.com/mmax-code/teaching_concept).
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Potential adaptations

Since the multiplicity of possible analysis strategies and result-dependent selective reporting

are complex issues with many different aspects, there are several potential adaptations that can

be made to tailor the course to varying preferences and needs.

In our implementation of the course, we chose to have the students work on simulated data

sets, but it is of course possible to choose real data sets for the hands-on-sessions. To decide

between these two options, it is important to decide whether one merely intends to raise

awareness for the multiplicity of possible analysis strategies or to caution students against the

dangers of result-dependent selective reporting. More generally, questionable research prac-

tices that may result from this multiplicity of possible analysis strategies include HARKing,

Fig 1. Difference in % between the estimated and true effects (represented as relative under- or overestimation) in phases 1

and 2. (a) Full sample (n = 26); (b) students with higher grades (n = 15); (c) students who overestimated the true effect in phase 1

(n = 18); (d) female students (n = 11). Connected points represent the values for phases 1 and 2 for each student. Red lines indicate

an increased estimated effect size in phase 2 compared to phase 1, and blue lines indicate the reverse.

https://doi.org/10.1371/journal.pcbi.1011936.g001
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fishing for significance, and data dredging. In the case where the aim is to caution against

result-dependent selective reporting, it is indispensable to use simulated data sets in the hands-

on session to be able to show how these practices lead to an overestimation of the true parame-

ter value (which would be impossible on a real data set since the true parameter value is

unknown). If, on the other hand, the course only focuses on raising awareness of uncertain

choices and the multiplicity of possible analysis strategies, it seems more advisable to use real

data sets with all their “ugly” features including, for instance, complex patterns of missing data

and outliers since they offer a more realistic framework to achieve this teaching purpose, in the

vein of the multiverse analysis in the classroom suggested by Heyman and Vanpaemel [19].

A second important decision in the teaching concept concerns the question of whether to

focus on long-term strategies to address the multiplicity of possible analysis strategies or to pres-

ent students with short-term solutions whose effects will be more observable when comparing

the results from the first and the second phase of the hands-on session. The course concept that

we presented here was designed to be instructive in the long term (such an effect being impossi-

ble to demonstrate in the course setting) rather than to show a large intervention effect. In this

sense, the strategies that we presented to prevent result-dependent selective reporting included

preregistration, blind analysis, and multiverse analyses. While these strategies are indubitably

very helpful for students to address the multiplicity of possible analysis strategies in future proj-

ects, they may be of rather limited value in the second hands-on session of the course.

Related to this latter point, we chose the timing of the course to be rather early in the stu-

dents’ curriculum to inoculate them against result-dependent selective reporting among a

multiplicity of possible analysis strategies. This is hopefully before they were even aware of the

wealth of methods and modeling strategies that they could choose from. While we believe that

this may very well increase the long-term effectiveness of the teaching intervention, it will inev-

itably reduce the size of the intervention effect that we can observe when comparing the first

and the second phase of the hands-on session because this lack of awareness reduces the num-

ber of analysis strategies that the students can choose from. In contrast, one could choose a

later timing of the course in the students’ curriculum or provide the students with abundant

literature on various methods and include additional lectures on methods (for instance, on

model selection or missing values) in the course. In our implementation of the course of lim-

ited volume, we deliberately decided not to handle methodological issues beyond a brief intro-

duction, in order to focus on reproducibility and replicability. The fact that students used

(mostly the same) rather simple methods (for instance, AIC-based model selection) in the

implementation suggests that they were probably not aware of the many possibilities they had

—which may de facto prevent them from fishing for significance. Presenting the students with

a multiplicity of methods before or during the hands-on sessions, on the other hand, might

increase their fishing behavior, at least in the first hands-on session. Finally, we did not explic-

itly ask the students to change their analysis strategies, which may have led students with lim-

ited motivation to keep the same analysis strategy for both phases.

This focus on the long-term effectiveness of the course rather than on short-term strategies

that may be perceivable in the comparison of the first and the second hands-on session might

very well explain why we did not observe a significant reduction in result-dependent selective

reporting between the two phases. However, as pointed out in Section “Debriefing,” we would

consider this nonsignificant result less of a bug and more of a feature since it opens the discus-

sion to topics including lack of power, imperfect adherence and, more generally, reminds the

students that a nonsignificant finding cannot be interpreted as evidence that an intervention

did not work.

On a completely different level, the course could be adapted to other types of data analyses

in a broad sense beyond the generic example of effect estimation with regression models
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considered here. Selective reporting is relevant and may be considered in various contexts

such as supervised learning [20], cluster and network analysis [3], or gene set analysis [21]

rather than statistical testing in regression models. Examples inspired from these studies may

be appropriate for students majoring in fields related to computational biology. Note that even

though a prerequisite for our course is the use of an interpreted programming language such

as R or Python and at least basic knowledge of regression models, the general concept of the

course can, in principle, also be applied to students with a weaker computational background.

For example, one could implement the course with a simple hypothesis test setting using a sta-

tistical software framework including a user interface (for instance, SPSS).

Finally, depending on the complexity of the considered analyses and the amount of effort

required from students to understand and execute the analyses, the course concept could also

be adapted to a one or multiple day intensive course. With such a shorter format, the complex-

ity of the hands-on task and the width of the covered theoretical topics (see section A in S1

Appendix) should probably be reduced compared to our original version of the course. For

example, one could address primarily the multiplicity of analysis strategies and put less focus

on specific software aspects (such as the use of R-Markdown).

Conclusion

There has been growing evidence in recent years that the current use (and misuse) of data

analysis methods has contributed to what has been referred to as a “replication crisis” or “sta-

tistical crisis” in science. We argue that we need to address these problems in the way we teach

statistics and data analysis [22]. In particular, we need to raise awareness regarding the poten-

tial dangers of selective reporting in the education of computational scientists. With the con-

cept of the presented course, we address this issue through practical hands-on sessions and

theoretical modules. Going beyond selective reporting, the course also provides the opportu-

nity to teach students reproducible research practices [23] and to discuss important issues in

the design and analysis of experimental studies, including lack of statistical power, nonadher-

ence, and the common misinterpretation of absence of evidence as evidence of absence.

While the combination of a multiplicity of possible analysis strategies with selective report-

ing is an important issue today, it is likely to pose even more challenges in the future with the

increasing availability of large complex data sets. In the analysis of these data sets, researchers

are faced with even more uncertain choices than in data that are collected within simple

focused experiments, as there is far less knowledge of the data generating mechanisms and

control over measurement procedures. To avoid what Meng [24] calls “Big data paradoxes” in

the analysis of these data sets (“the more the data, the surer we fool ourselves”), we urgently

need to prepare our students for the realities of empirical data analysis by fostering their

awareness and understanding of uncertain choices and ways to address these choices that pre-

serve the validity of statistical inference.

Supporting information

S1 Appendix. Details on the implementation, data simulation, and instructions for the stu-

dents.

(PDF)
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2. Hoffmann S, Schönbrodt F, Elsas R, Wilson R, Strasser U, Boulesteix A L. The multiplicity of analysis

strategies jeopardizes replicability: lessons learned across disciplines. R Soc Open Sci. 2021; 8

(4):201925. https://doi.org/10.1098/rsos.201925 PMID: 33996122

3. Ullmann T, Peschel S, Finger P, Müller C L, Boulesteix A L. Over-optimism in unsupervised microbiome

analysis: Insights from network learning and clustering. PLoS Comput Biol. 2023; 19(1):e1010820.

https://doi.org/10.1371/journal.pcbi.1010820 PMID: 36608142

4. Gelman A, Hennig C. Beyond subjective and objective in statistics. J R Stat Soc Ser A Stat Soc.

2017:967–1033.

5. Silberzahn R, Uhlmann EL, Martin DP, Anselmi P, Aust F, Awtrey E, et al. Many analysts, one data set:

Making transparent how variations in analytic choices affect results. Adv Methods Pract Psychol Sci.

2018; 1(3):337–356.

6. Aczel B, Szaszi B, Nilsonne G, Van Den Akker O R, Albers C J, Van Assen M A, et al. Consensus-

based guidance for conducting and reporting multi-analyst studies. Elife. 2021; 10:e72185. https://doi.

org/10.7554/eLife.72185 PMID: 34751133

7. Wagenmakers E J, Sarafoglou A, Aczel B. One statistical analysis must not rule them all. Nature. 2022;

605(7910):423–425. https://doi.org/10.1038/d41586-022-01332-8 PMID: 35581494

8. Simmons J P, Nelson L D, Simonsohn U. False-positive psychology: undisclosed flexibility in data col-

lection and analysis allows presenting anything as significant. Psychol Sci. 2011; 22(11):1359–1366.

https://doi.org/10.1177/0956797611417632 PMID: 22006061

9. Wicherts J M, Veldkamp C L, Augusteijn HE, Bakker M, van Aert R C, Van Assen M A. Degrees of free-

dom in planning, running, analyzing, and reporting psychological studies: A checklist to avoid p-hacking.

Front Psychol. 2016; 7:1832. https://doi.org/10.3389/fpsyg.2016.01832 PMID: 27933012

10. Ioannidis J P. Why most published research findings are false. PLoS Med. 2005; 2(8):e124. https://doi.

org/10.1371/journal.pmed.0020124 PMID: 16060722

11. Leek J T, Jager L R. Is most published research really false? Annu Rev Stat Appl. 2017; 4:109–122.

12. Boulesteix A L. Ten simple rules for reducing overoptimistic reporting in methodological computational

research. PLoS Comput Biol. 2015; 11(4):e1004191. https://doi.org/10.1371/journal.pcbi.1004191

PMID: 25905639

13. Nosek B A, Hardwicke T E, Moshontz H, Allard A, Corker K S, Dreber A, et al. Replicability, robustness,

and reproducibility in psychological science. Annu Rev Psychol. 2022; 73:719–748. https://doi.org/10.

1146/annurev-psych-020821-114157 PMID: 34665669

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011936 March 28, 2024 9 / 10



14. Sauerbrei W, Perperoglou A, Schmid M, Abrahamowicz M, Becher H, Binder H, et al. State of the art in

selection of variables and functional forms in multivariable analysis–outstanding issues. Diagn Progn

Res. 2020; 4:3. https://doi.org/10.1186/s41512-020-00074-3 PMID: 32266321

15. Little R J, Carpenter J R, Lee K J. A comparison of three popular methods for handling missing data:

complete-case analysis, inverse probability weighting, and multiple imputation. Sociol Methods Res.

2022; 0(0):00491241221113873.

16. Kerr N L. HARKing: Hypothesizing after the results are known. Pers Soc Psychol Rev. 1998; 2(3):196–

217. https://doi.org/10.1207/s15327957pspr0203_4 PMID: 15647155

17. Altman D G, Bland JM. Statistics notes: Absence of evidence is not evidence of absence. Br Med J.

1995; 311(7003):485.

18. Witmer J. Editorial. J Stat Educ. 2019; 27(3):136–137.

19. Heyman T, Vanpaemel W. Multiverse analyses in the classroom. Meta-Psychology. 2022; 6:

MP.2020.2718.

20. Boulesteix A L, Strobl C. Optimal classifier selection and negative bias in error rate estimation: an empir-

ical study on high-dimensional prediction. BMC Med Res Methodol. 2009; 9(1):1–14.
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S1 Appendix 1

A Details on the implementation 2

The course and its hands-on sessions that we present in this paper were conducted in 3

the context of a mandatory seminar course for bachelor of science in statistics students 4

at Ludwig-Maximilians-Universität München (Germany). Its experimental setting, i.e., 5

the measurement of a potential intervention effect, was approved by the ethical 6

committee of the faculty for mathematics, informatics and statistics at the 7

Ludwig-Maximilians-Universität München, Germany (EK-MIS-2021-065). Furthermore, 8

the students gave their informed consent to participate in the experiment. 9

Table A shows an overview of the analytical choices of the students for phase 1 and 2. 10

Most students (phase 1 and 2: 81% and 69%, respectively) used a stepwise AIC 11

approach for model selection. For outlier detection, the preferred method was to 12

visually detect them via boxplots (phase 1 and 2: 50%) and subsequently drop or 13

adjust them according to the 97.5% and the 2.5% quantiles. Missing values were either 14

naively dropped or mean imputed in most cases (phase 1 and 2: 84% and 79%, 15

respectively). The rest of the students either imputed the median, imputed a value 16

using parametric assumptions, replaced the missings with zeros, or dropped the entire 17

variable containing missing values. Only one student in each phase implemented lasso 18

regression for model selection in addition to the stepwise AIC approach. A few students 19

based their model selection on univariate selection via Pearson’s correlation. 20

The analytical choices in phase 2 were overall quite similar to phase 1. Interestingly, 21

some students applied p-splines for the potential non-linear effect or a train/test split 22

approach, which was not necessary in this setting. Only one student discussed the 23

problem of the multiplicity of possible analysis strategies. This student reported two 24

results and decided against the AIC criterion and in favor of the smaller effect size. 25
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Table B gives an overview of articles that can be used to design the theoretical module 26

of the course. The selected topics include, among others, the multiplicity of analysis 27

strategies, different sources of uncertainty in the analysis of empirical data, researcher 28

degrees of freedom, p-hacking, and HARKing. 29

Topic Details Literature

Multiplicity Introduce the multiplicity of analysis
strategies and illustrate sources of un-
certainties, namely measurement, data
pre-processing, parameter, model, and
method uncertainty

[1–5]

Researcher degrees of free-
dom

Introduce the topic and show how these
free analytical choices may lead to an
inflated type I error rate

[6]

P-Hacking Introduce and define p-hacking and
show how p-hacking leads to a change
of the distribution within the area of
significance

[7, 8]

Strategies against p-
hacking and coping with
sources of uncertainty

Adjusting for multiple comparisons and
create a statistical analysis plan before
the analysis or data collection takes
place. Present the notion of confirma-
tory study and pre-specified/registered
data analysis protocol. Reduce uncer-
tainty (e.g., increase sample size), re-
port uncertainty (e.g., vibration of ef-
fects framework), accept uncertainty
(e.g. replication studies), and integrate
uncertainty (e.g. Bayesian framework)

[2, 9–18]

Other literature notices
and topics

Vibration of effects framework; Measur-
ing sampling, model and measurement
uncertainty; multiverse analysis; HARK-
ing; p-values; publication bias; replica-
tion

[19–28]

Table B. Articles that can be used to design the theoretical module.
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B Data simulation 30

All data sets were simulated from a similar data generating process (DGP) with slightly 31

different parameter values. The data included different methodological difficulties that 32

can be addressed in different ways, yielding so-called researcher degrees of freedom. 33

These difficulties were: interaction effects, non-linear effects, missing values, outliers, 34

and unbalanced classes in the categorical variables. See Table A for a detailed 35

description. Both the effect and the methodological difficulties were the same for each 36

student in phase 1 and 2. 37

For the assignment in phase 1 and 2, the students received instructions on the data and 38

the (fictive) problem at hand (see Section C Instructions for the students). 39

The code for the simulation of the data sets can be found on Github 40

(https://github.com/mmax-code/teaching_concept). The simulation was 41

straightforward; the covariates were drawn from a (multivariate) normal, cauchy, 42

uniform, t-, log-normal, beta, multinomial, and binomial distribution and the response 43

variable was built as a linear combination of some of these covariates. The covariates 44

that did not have an effect were also included in the data set to make the model 45

selection more complex. 46

We randomly allocated each of the n = 26 students to one of four groups, whereby the 47

characteristics of the data sets were the same within each group; see the code for more 48

details. The group structure was implemented to avoid collaboration between the 49

students. In an idealized version of the course, the students should not work on the 50

exercises remotely, i.e., the allocation to groups can be avoided. 51

To analyze the potential for cherry-picking present in the data sets, we analyzed the 52

different simulated data sets within the vibration of effects framework introduced 53

by [19]. As an example, Fig A and B show a vibration of effects plot for a representative 54

data set, i.e., a plot that represents the -log10 p-value against the effect estimate of 55

interest (for X3) obtained for different model choices, where the density of the points is 56

coded using different colors. Yellow represents the highest and purple, the lowest 57

density. The respective quantiles (2.5%, 50%, 97.5%) are represented by the violet 58

dashed lines for both axes. The black lines additionally mark different levels of 59

significance (0.001 and 0.05). 60

10,000 randomly sampled model combinations including the variable of interest were 61

included. Fig A shows that the density concentrates around the true effect, β3 = 0.7, 62

which is depicted by the vertical red dashed line. However, many points lie between 63

x = 0.85 and x = 3.1, indicating that it was possible to selectively report results 64

towards the given interval I = (0.85, 3.1) suggested in the instructions, which is 65

depicted by the blue shaded area. 66

Fig B, on the other hand, displays the results for 10,000 randomly sampled model 67

combinations, if missing values were naively dropped and outliers were not addressed. 68

As can be seen from the many points with abscissa larger than 0.85, it was possible to 69

obtain overoptimistic effect estimates in I even with a naive procedure ignoring missing 70

values and outliers. The density of the estimates has two modes within the range of our 71

intended interval I, both corresponding to significant results. This shows that reporting 72

overoptimistic results could be achieved quite easily within our experimental setting. 73
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Fig A. Vibration of effects plot for 10,000 possible models (randomly sampled).
Simulated data for the complete dataset without any difficulties such as interaction and
non-linear effects, missing values, and outliers.

Fig B. Vibration of effects plot for 10,000 possible models (randomly sampled).
Simulated data including outliers and MAR data. Missings were dropped and outliers
ignored.

February 27, 2024 5/8



C Instructions for the students 74

Imagine yourself in the following situation1: You work at 75

Ludwig-Maximilians-Universität München (Germany) and have been assigned as a 76

statistician at Klinikum Großhadern (teaching hospital) to provide your statistical 77

knowledge to a group of physicians. You receive a dataset with 12 variables (Y , 78

X1,...,X11) and n = 350 observations. The physicians assume there is a linear effect of 79

variable X3 on Y , which was previously reported in scientific publications to be in the 80

range (0.85, 3.1). You also receive the following relevant information: 81

• X10 and X11 are categorical variables without intrinsic ordering to the categories. 82

• There may be further interaction effects, especially with the binary variable X11. 83

However, the literature is inconclusive on this interaction. 84

• Based on the variable X6, one might suspect that the relationship is non-linear. 85

Some studies have modeled it as non-linear, however others have modeled it 86

linearly. 87

• Physicians are unsure of the effect or presence of an effect for the remaining 88

variables. 89

(a) Estimate a linear regression model or related model for the situation described 90

above. Make sure your results are reproducible, i.e., your model must always lead to the 91

same results when you run your R-Markdown file. 92

(b) Explain the decisions you made during model selection and any data pre-processing 93

procedures you followed. Typical data pre-processing procedures include, for example, 94

handling missing values and outliers. 95

(c) Report the regression coefficient β̂3 (including the confidence interval) for the 96

variable X3. 97

Note: Please avoid collaboration with classmates. Each participant has received a 98

unique dataset, no conclusions can be drawn regarding other data sets. Your results 99

and/or the reproducible code will be checked for similarities with your peers’ work. 100
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Nutzung von Large Language Models

Zur Anfertigung dieser Dissertation wurden Large Language Models ausschließlich

dafür herangezogen, um vereinzelt Vorschläge für sprachliche und grammatikalische

Korrekturen auf Basis bereits verfasster Inhalte zu generieren. Das folgende Modell

kam zum Einsatz: GPT-4o (OpenAI).
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