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Zusammenfassung

Der Gravitationslinseneffekt, das heißt die Ablenkung des Lichts durch Masseninhomoge-
nitäten entlang der Sichtlinie, hat sich zu einem wichtigen Werkzeug für die Untersuchung
der Eigenschaften unseres Universums entwickelt. Im Bereich des so genannten “schwachen
Gravitationslinseneffekts” führt dieses Phänomen zu leichten, kohärenten Verzerrungen der
Bilder entfernter Galaxien und bietet eine leistungsstarke Methode zur Untersuchung der
zugrunde liegenden gesamten Materieverteilung, unabhängig von ihrer leuchtenden Kom-
ponente.

Himmelsdurchmusterungen des schwachen Gravitationslinseneffekts, basierend etwa auf
der Hyper Suprime-Cam, dem Dark Energy Survey und dem Kilo-Degree Survey, haben im
letzten Jahrzehnt bereits wichtige Hinweise auf den Wert der kosmologischen Parameter,
sowie Einblicke in die Natur der dunklen Materie und der dunklen Energie geliefert. Die
kosmologischen Himmelsdurchmusterungen der nächsten Generation, wie Euclid, das Large
Synoptic Survey Telescope oder Roman werden voraussichtlich hochpräzise Daten mit ei-
ner noch nie dagewesenen Himmelsabdeckung, Winkelauflösung und Rotverschiebungstiefe
liefern. Daher besteht ein Bedarf an ebenso präzisen numerischen Vorhersagen.

Diese Arbeit stellt eine Reihe von umfassenden numerischen Experimenten vor, die
auf dem MillenniumTNG (MTNG)-Projekt basieren, einem hoch modernen Satz von kos-
mologischen Simulationen, die das große Volumen der Millennium-Simulation mit dem
realistischen, physikalisch motivierten Galaxienentstehungsmodell von IllustrisTNG kom-
binieren. Durch die Nutzung des reichhaltigen Datensatzes von MillenniumTNG zielt diese
Arbeit darauf ab, die Auswirkungen einiger der wichtigsten physikalischen und numeri-
schen Systematiken, die im Zusammenhang mit dem schwachen Gravitationslinseneffekt
wichtig sind, zu quantifizieren und zu charakterisieren.

Im ersten Teil dieser Arbeit untersuche ich, wie sich die baryonische Physik und mas-
senbehaftete Neutrinos auf die Beobachtungsdaten der schwachen Gravitationslinsen aus-
wirken, indem ich Simulationen mit vollständiger Physik mit ihren Gegenstücken, die nur
dunkle Materie berechnen, vergleiche. Außerdem evaluiere ich eine Varianzunterdrückungs-
technik, die die Rechenkosten ohne Präzisionsverlust reduziert. Meine Ergebnisse bestätigen,
dass sowohl Baryonen als auch Neutrinos einen signifikanten Einfluss auf die Gravitations-
linsen-Statistiken haben, was die Notwendigkeit einer detaillierten physikalischen Modellie-
rung in zukünftigen Bemühungen um Präzisionskosmologie unterstreicht. Diese Ergebnisse
stimmen gut mit anderen führenden Simulationen überein, was die Robustheit der derzei-
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tigen Modellierungsansätze unterstreicht.

Im dritten und letzten Teil der Arbeit befasse ich mich mit der intrinsischen Ausrich-
tung (IA) von Galaxien, einer wichtigen astrophysikalischen Verunreinigung von Messungen
des schwachen Gravitationslinseneffekts. Unter Verwendung des nahtlosen Lichtkegels der
hydrodynamischen Simulation von MTNG konstruiere ich einen realistischen Galaxienka-
talog und berechne sowohl die intrinsische als auch die linseninduzierte Scherung für alle
Galaxien. Dies ermöglicht eine detaillierte, nicht-lineare Bewertung der Auswirkungen von
IA auf verschiedene Scherungsmessgrößen. Insbesondere untersuche ich, wie sich IA auf die
gängigen Linsen-Statistiken auswirken kann, wobei ich mich auf die Abhängigkeit dieser
Auswirkungen von der Rotverschiebung und der stellaren Masse der Galaxien konzentrie-
re. Meine Erkenntnisse unterstreichen die Bedeutung einer präzisen IA-Modellierung für
künftige Himmelsdurchmusterungen mit schwachen Gravitationslinsen und zeigen, dass
dieser simulationsbasierte Ansatz die bisher genaueste und robusteste Modellierung von
IA bietet.

Insgesamt trägt diese Arbeit zur Vorbereitung auf kosmologische Himmelsdurchmuste-
rungen der nächsten Generation bei, indem sie hochpräzise simulationsbasierte Vorhersagen
liefert, die kritische physikalische und numerische Systematiken berücksichtigen.



Abstract

Gravitational lensing, i.e. the deflection of light caused by mass inhomogeneities along the
line of sight, has emerged as a key probe to investigate the properties of our Universe. In
the weak regime, known as weak lensing (WL), this phenomenon leads to subtle coherent
distortions in the shapes of distant galaxies, offering a powerful method to investigate the
underlying total matter distribution, independent of its luminous component.

WL surveys of the previous decade like the Hyper Suprime-Cam, the Dark Energy
Survey and the Kilo-Degree Survey have already yielded important constraints on the
cosmological parameters as well as insights into the nature of dark matter and dark energy.
Next generation cosmological surveys such as Euclid, the Large Synoptic Survey Telescope,
and Roman, are expected to deliver high-precision lensing data featuring unprecedented sky
coverage, angular resolution, and redshift depths. Consequently, the demand for equally
precise numerical predictions has become essential.

This thesis presents a comprehensive set of numerical experiments based on the Mil-
lenniumTNG (MTNG) project, a state-of-the-art suite of cosmological simulations that
combines the large volume of the Millennium Simulation with the high-fidelity physically-
motivated galaxy formation model of IllustrisTNG. By leveraging the rich dataset produced
by MillenniumTNG, this work aims to quantify and characterize the impact of some of the
most relevant physical and numerical systematics inherent in popular weak lensing statis-
tics.

In the first part of this thesis, I investigate how baryonic physics and massive neutri-
nos affect weak lensing observables by comparing full-physics simulations with their dark-
matter-only counterparts. I also evaluate a variance suppression technique that reduces
costs without a loss in precision. My findings confirm that both baryons and neutrinos
have a significant impact on lensing statistics, underscoring the need for detailed physi-
cal modeling in upcoming precision cosmology efforts. These results align well with other
leading simulations, supporting the robustness of current modeling approaches.

In the second part, I test the robustness of the Born approximation, a common ap-
proach used in numerical WL. To do so, I develop DORIAN, a full-sky ray-tracing code
which features nonuniform fast Fourier transform, a novel interpolation technique that
is both faster and more accurate than traditional approaches. By applying this code to
the MillenniumTNG simulations, I investigate non-Gaussian effects that arise beyond the
Born approximation. The resulting differences in lensing statistics are examined in detail,
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providing guidance for when simplified modeling may or may not be adequate for precision
cosmology.

In the third and final part of the thesis, I address the intrinsic alignment (IA) of galaxies,
a key astrophysical contaminant in WL measurements. Using the seamless lightcone output
from the MTNG hydrodynamical simulation, I construct a realistic mock galaxy catalogue
and calculate both intrinsic and lensing-induced shear for all galaxies. This allows for a
detailed, non-linear assessment of IA impacts on various shear observables. In particular,
I study how IA can affect popular lensing statistics, focusing on the dependence of this
impact on redshift and galaxy stellar mass. These insights highlight the importance of
precise IA modeling for future weak lensing surveys, and demonstrate that this simulation-
based approach offers the most accurate and robust modeling of IA to date.

Overall, this thesis contributes to the preparation for next-generation cosmological
surveys by providing high-precision simulation-based predictions that account for critical
physical and numerical systematics.



Chapter 1

Introduction

Cosmological observations show that the majority of the present-day energy density of the
Universe is composed of two mysterious “dark” components, with ≈ 70% made up of Dark
Energy, modeled as a cosmological constant, and ≈ 25% of Dark Matter; with only the
remaining ≈ 5% being ordinary (baryonic) matter. Understanding the physical nature of
these two dark entities is one of the major challenges of modern cosmology. One valuable
cosmological probe that can help us to shed light on the dark sector is weak gravitational
lensing, whose upcoming generation of surveys will be characterised by unprecedented an-
gular resolution and sky coverage. To fully exploit these rich and complex data far into the
non-linear regime, it is crucial to provide high-fidelity numerical predictions. Throughout
this Thesis, I will present my work: a series of weak lensing numerical experiments based on
the MillenniumTNG simulations, a suite able to combine cosmological volume with state-
of-the-art galaxy formation sub-grid modeling from IllustrisTNG. Such experiments aim
at assessing, with high fidelity, the impact of a variety of factors on popular weak lensing
statistics. These include physical systematics like the impact of baryons, the presence of
massive neutrinos, and the intrinsic alignment of galaxies, as well as numerical aspects such
as ray-tracing, angular resolution, mass resolution, and paired and fixed initial conditions.

The rest of this introductory chapter is organized as follows. In Section 1.1 I present
an overview of the standard model of cosmology, from its assumptions and formalism up
to its most recent tensions. In Section 1.2, I introduce the physical phenomenon of gravi-
tational lensing, focusing on weak lensing and its employment as a powerful cosmological
probe. Finally, in Section 1.3, I outline the primary motivations underlying this thesis and
summarize the structure and content of the main body of work.

1.1 The standard model of cosmology

Cosmology is the branch of physics that studies the fundamental properties and large-scale
evolution of the Universe. The foundation of modern cosmological theory lies in Einstein’s
General Relativity, which, in combination with the Cosmological Principle, naturally leads
to the Friedmann equations. These equations describe how the Universe expands over time
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as a function of its intrinsic curvature and its components, typically modeled as perfect
fluids. In this chapter, I will introduce some essential cosmological quantities and concepts,
as well as give an overview of the standard model of cosmology and some of its main critical
points.

1.1.1 From basic principles to the Friedmann equations

A fundamental assumption on which standard cosmological theory relies states that:

The Universe is homogeneous and isotropic at sufficiently large scales.

This is known as Cosmological Principle, and is supported by a variety of observational
evidence, with one of the most important being the Cosmic Microwave Background (CMB,
Penzias & Wilson, 1965).

Another fundamental assumption is that at sufficiently large scales, the Universe is
governed predominantly by gravity, which is described by General Relativity (GR, Einstein,
1915) as the manifestation of spacetime curvature. Requiring the Cosmological Principle to
hold brings to a description of spacetime known as Friedmann–Lemâıtre–Robertson–Walker
(FLRW) metric, which line-element is given by:

ds2 = a2(t)dx2 − c2dt2. (1.1)

Where c is the speed of light, x = (x1, x2, x3) is a vector representing the three spatial
dimensions, and a(t) is the scale factor, a parameter with the dimension of length that
encodes the expansion of the universe, conventionally normalized to a0 = 1 at present
time. Once the metric is defined, we want to obtain the dynamical equations of motion to
describe the time evolution of a(t), the only dynamical quantity appearing in the metric.
To do so, we start by considering the Einstein equations, which, as can be shown, in the
FLRW metric, assume the following form:

Gµν + Λgµν =
8πG

c4
Tµν , (1.2)

where

Gµν ≡ Rµν −
1

2
gµνR. (1.3)

Here, Gµν is the Einstein tensor, gµν is the metric tensor, Rµν and R the Ricci tensor and
scalar respectively, and Λ is the cosmological constant. T µ

ν is the energy-momentum tensor,
which in the FLRW spacetime, T µ

ν takes the perfect fluid form:

T µ
ν = (ρ+ P )uµuν + Pδµν , (1.4)

where ρ and P are the energy and pressure densities, uµ = (−1, 0, 0, 0) is the four-velocity
in comoving coordinates, and δµν is the Kronecker delta. Finally, equations 1.1 and 1.2
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can be combined together to give the desired cosmological dynamics equations, known as
Friedmann equations:

H2 =
8πG

3
ρ− Kc2

a2
+

Λc2

3
, (1.5)

ä

a
= −4πG

3
(ρ+

3P

c2
) +

Λc2

3
. (1.6)

Here we have introduced the Hubble parameter H ≡ ȧ/a, describing the expansion rate
of the Universe is expanding at a certain cosmic time; and K, the curvature constant,
describing the intrinsic geometry of the Universe: K = +1,−1, 0 corresponds respectively
to closed, open and flat geometries. In the above equations, the single and double dots
represent the first and second time derivatives, respectively.

1.1.2 Components of the Universe

The homogeneous Universe under consideration consists of multiple components, each of
which can be effectively treated as a perfect fluid characterized by its own equation of
state:

w ≡ P

ρ
. (1.7)

To describe the dynamics of a Universe composed of multiple components, we must account
for the individual contributions to the total energy density and pressure from each i-th
component. In this case, the Friedmann equations take the following form:

H2 =
8πG

3

∑
i

ρi −
K

a2
, (1.8)

ä

a
= −4πG

3

∑
i

(ρi + 3Pi). (1.9)

For ordinary matter, both pressure P and energy density ρ are strictly positive quantities,
therefore, we expect the condition w ≥ 0 to be satisfied. From statistical mechanics, one
finds w = 1/3 for radiation and other relativistic species, and w = 0 for non-relativistic
(cold) matter. Furthermore, it is interesting to note that the cosmological constant can
be accounted for in the above equations as a fluid component with negative pressure and
equation of state w = −1. In this context, the cosmological constant can be interpreted
as a particular kind of dark energy, a family of exotic fluids characterized by w < −1/3.
Finally, we introduce an important quantity associated with each species, the dimensionless
density parameter, defined for a generic component I as:

ΩI ≡
8πGρI
3H2

=
ρI
ρcrit

, (1.10)

where ρcrit = 3H2/(8πG) is the so-called critical density.
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1.1.3 The ΛCDM model and its tensions

In the past few decades, a concordance cosmological model known as Lambda-Cold Dark
Matter (ΛCDM) has emerged as the standard framework for describing the large-scale
structure and evolution of the Universe. As the name suggests, the two pillars of this
model are the cosmological constant Λ, a form of dark energy which drives the accelerated
expansion of the Universe, and cold dark matter (CDM), a form of non-relativistic matter
that only interacts with gravity. As mentioned at the beginning of this chapter, Λ and
CDM are the main constituents of the present-day Universe, making up respectively for
≈ 70% and ≈ 25% of its energy budget.

The ΛCDM model is supported by a wide range of observational evidence: among
the earliest and most striking indicators for a non-zero cosmological constant were the
luminosity-distance measurements of Type Ia supernovae, which revealed a late-time ac-
celerated expansion of the Universe (Riess et al., 1998; Perlmutter et al., 1999). Comple-
mentary and independent confirmation of the ΛCDM model comes from the precise mea-
surements of the temperature anisotropies in the CMB(Planck Collaboration et al., 2020),
which not only corroborate the accelerated expansion but also point to the existence of
CDM. Additional support for dark matter comes, amongst other things, from galactic rota-
tion curves (Rubin et al., 1980), the dynamics of galaxy clusters (Zwicky, 1933), and weak
gravitational lensing measurements (Clowe et al., 2006), all of which exhibit gravitational
effects that cannot be explained by visible matter alone.

Despite its remarkable success in describing a wide range of cosmological observations, the
ΛCDM model faces several challenges and open questions that have motivated continued
theoretical and observational examination.

From a theoretical perspective, the cosmological constant gives rise to at least two main
conceptual problems. The first is the fine-tuning problem (Weinberg, 1989), which stems
from the discrepancy of 121 orders of magnitude between the observed value of Λ and the
one predicted by quantum field theory. The second is the coincidence problem(see e.g.,
Dyson, 1998), which asks why the energy densities of matter and dark energy are of the
same order of magnitude precisely today, given their significantly different time evolution.

On the observational side, tensions have emerged in recent years between high- and
low-redshift cosmological probes. One of the most prominent among these is the so-called
Hubble tension, a statistically significant discrepancy between the value of the Hubble
constant H0 inferred from the CMB observations assuming ΛCDM (Planck Collaboration
et al., 2020), and the value obtained from local measurements using standard candles such
as Cepheids and Type Ia supernovae (Riess et al., 2019, 2021). Current estimates place
this tension at the ∼ 5σ level (Riess et al., 2022).

Another notable discrepancy is the so-called S8 tension, which refers to differences in the
measured amplitude of matter clustering. Specifically, weak lensing surveys tend to infer a
lower clustering amplitude compared to that derived from CMB measurements under the
assumption of the standard ΛCDM model. I will describe this tension in more detail in
Section 1.2.3, after having introduced the phenomenon of weak gravitational lensing in the
next section.
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1.2 Weak gravitational lensing

After providing an overview of the standard cosmological model and its associated tensions,
I now introduce the physical phenomenon of gravitational lensing, with an emphasis on
weak lensing and its use as a powerful probe in modern cosmology.

1.2.1 Overview

As already intuited by Newton, light is deflected by the gravity of massive objects (Newton,
1704). However, it was not until the 1919 solar eclipse that the deflection of starlight by
the Sun’s gravitational field was observed, confirming predictions from Einstein’s General
Theory of Relativity (Dyson et al., 1920). These results, in addition to constituting a
milestone in the acceptance of Einstein’s theory of gravity over Newton’s (Eddington,
1920), initiated a new branch of astrophysics: gravitational lensing. This term, probably
popularized by Lodge (1919), encompasses a wide range of light deflection phenomena that
can be mainly grouped into the following three families.

We have strong lensing when a massive object in the foreground produces multiple
highly distorted or magnified images of a background source. It was theoretically considered
by Einstein and Zwicky (Einstein, 1936; Zwicky, 1937a,b), who also recognized its potential
for probing mass distributions and distant galaxies. The first observational evidence arrived
with the discovery of multiply imaged quasars (Walsh et al., 1979; Weymann et al., 1980)
and giant arcs in galaxy clusters (Lynds & Petrosian, 1986; Soucail et al., 1987).

We have microlensing when light deflection by compact objects, such as stars, planets,
and black holes, causes magnification without image multiplicity. It was first detected
through variability in lensed quasars (Irwin et al., 1989; Vanderriest et al., 1989). Among
other remarkable applications, microlensing has constrained the dark matter content in
galactic halos (Tisserand et al., 2007) and enabled the detection of exoplanets (Bond et al.,
2004; Beaulieu et al., 2006), with many new of them being discovered in this way each year
(Mroz & Poleski, 2023).

Last but not least, the vast majority of galaxy images we observe, are neither subject
to strong lensing nor to microlensing, but experience a subtle and coherent shear due to
the gravitational influence of the large-scale structure, an effect known as weak lensing
(hereafter WL, for reviews see e.g., Bartelmann & Schneider, 2001; Hoekstra & Jain, 2008;
Kilbinger, 2015; Mandelbaum, 2018; Prat & Bacon, 2025). Such effect, not easy to identify
in individual images, can be statistically extracted from large ensembles of sources, offering
a unique and powerful way to probe the mass distribution in the Universe (Kaiser, 1992).
The first detection of WL came from observations around galaxy clusters (Tyson et al.,
1990), followed by statistical measurements around galaxies (Brainerd et al., 1996) and
finally the detection of lensing by the large-scale structure of the Universe (Bacon et al.,
2000; Kaiser et al., 2000; Van Waerbeke et al., 2000).
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1.2.2 Stage III surveys and popular statistics

Over the past two decades, WL has shown its potential in constraining cosmological pa-
rameters and for investigating the nature of the dark sector of the Universe. It has, in
fact, become a standard probe in modern cosmology, especially with the advent of the so-
called Stage-III surveys conducted in recent years, which include the Kilo-Degree Survey
(KiDS, Hildebrandt et al., 2016; Heymans et al., 2021; Wright et al., 2024), the Dark En-
ergy Survey (DES, Abbott et al., 2022; Bechtol et al., 2025), and the Hyper Suprime-Cam
(HSC, Hikage et al., 2019; Aihara et al., 2022). These are characterised by a sky coverage
of ≈ 4,143, 137, and 777 deg2, and source galaxy number densities of ≈ 5.9, 17, and 6.2
arcmin−2, respectively. Each of them thus occupies a distinct position in the trade-off
between survey area and source density.

Among the current landscape of WL statistics, the most widely used is the so-called
“3×2pt” statistic (see e.g., Abbott et al., 2018). This combines three two-point correla-
tion functions: galaxy clustering, WL galaxy shear, and the galaxy-shear cross-correlation.
Additionally, higher-order WL statistics have gained popularity and shown their efficacy
for extracting complementary cosmological information. Some examples include: one-
point PDF (Liu & Madhavacheril, 2019; Boyle et al., 2021), counts of peaks and/or min-
ima (Martinet et al., 2018; Coulton et al., 2020; Davies et al., 2022; Marques et al., 2024),
Minkowski functionals (Grewal et al., 2022), voids (Davies et al., 2021; Boschetti et al.,
2023), bispectrum (Rizzato et al., 2019), trispectrum (Munshi et al., 2022), aperture mass
statistic (Schmalzing & Gorski, 1998; Martinet et al., 2021), three-point correlation func-
tion (Takada & Jain, 2003), and integrated three-point correlation function (Halder et al.,
2023).

1.2.3 Selected current WL constraints

Recent results from Stage-III WL surveys have converged on a consistent but rather puz-
zling picture. Each survey, using the 3×2pt or other statistics, has yielded tight constraints
on the parameter S8 ≡ σ8

√
Ωm/0.3, which combines the root-mean-square fluctuation of

the matter density field on 8h−1 Mpc scales (σ8) and the total matter density parame-
ter (Ωm). For example, DES Year 3 data reports S8 = 0.776+0.017

−0.017 (Abbott et al., 2022),
KiDS-1000 finds S8 = 0.766+0.020

−0.014 (Heymans et al., 2021), and HSC finds S8 = 0.775+0.043
−0.038

(Sugiyama et al., 2023). These results show remarkable internal consistency, despite the
different survey strategies and analysis pipelines.

However, as already mentioned in Section 1.1.3, when compared to CMB constraints
from Planck (Planck Collaboration et al., 2020), which report S8 = 0.834±0.016, a mild but
persistent discrepancy emerges. This so-called S8 tension can be visualized in Figure 1.1,
where cosmological constraints from the 3×2pt statistics of Stage-III WL surveys are shown
together with the ones from Planck. As one can see, this tension is now observed at the
∼ 2–3σ level, depending on the exact datasets and combinations used. Several explanations
have been proposed, including unaccounted-for systematics in either WL or CMB analyses,
or indications of new physics such as modified gravity or evolving dark energy. While not
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Figure 1.1: Cosmological constraints from the 3×2pt analyses of DES Y3 (Abbott et al., 2022),
KiDS-1000 (Heymans et al., 2021), and HSC Y3 (Sugiyama et al., 2023), compared to early
Universe measurements from the Planck satellite (Planck Collaboration et al., 2020), all within
the framework of the ΛCDM model. This figure is taken from Prat & Bacon (2025).

yet definitive, this tension has become one of the key puzzles in contemporary cosmology
and motivates both improvements in analysis and modeling, as well as the next generation
of surveys.

1.2.4 Stage IV surveys

Looking ahead, Stage-IV surveys such as Euclid (Amendola et al., 2018; Euclid Collab-
oration et al., 2025) and LSST (LSST Science Collaboration et al., 2009), will feature a
much bigger sky coverage of ≈ 15,000 and 18,000 deg2, and increased source galaxy num-
ber densities of ≈ 30, and 37 arcmin−2, respectively. This will significantly enhance the
richness of WL datasets and promise more precise measurements. To fully exploit the
scientific potential of present and future WL surveys, it is crucial to provide highly accu-
rate theoretical predictions for the aforementioned statistics. This becomes increasingly
challenging as observations probe the non-linear regime, where analytic frameworks break
down and physical systematic uncertainties become significant. A non-exhaustive list of the
main known physical systematics includes: uncertainties in baryonic physics (White, 2004;
Jing et al., 2006), massive neutrinos (Kitching et al., 2008), source clustering (Bernardeau,
1998), and the intrinsic alignment of galaxies (Heavens et al., 2000).

1.2.5 Simulations

In this context, numerical simulations are the main tool for investigating the non-linear
regime of WL, offering a powerful way to identify potential systematics in observations.
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Motivated by this, several numerical methodologies for studying WL have been developed
in the last decades. Among these are ray-tracing algorithms (e.g., Hilbert et al., 2009),
production of full-sky maps (e.g., Fabbian et al., 2018; Hadzhiyska et al., 2023), on-the-fly
computation (e.g., Barreira et al., 2016), and Hamiltonian-based algorithms (Zhou et al.,
2024). Numerical codes implementing some of these approaches have been compared in
Hilbert et al. (2020), which found them to produce consistent results provided certain
resolution requirements are met.

Irrespective of the specific algorithm, upcoming observations will require WL simu-
lations with very high angular resolution that go beyond modeling based on CDM and
purely gravitational interactions alone. This is why there is now increasing interest in
WL predictions from high-fidelity cosmological simulations that include galaxy formation
and additional components. Some recent studies along these lines include Osato et al.
(2021), Coulton et al. (2020), and Gouin et al. (2019), which focus on the impact of bary-
onic physics; Fong et al. (2019) and Liu et al. (2018), who study the impact of massive
neutrinos; and Lee et al. (2025), who investigates the impact of the intrinsic alignment
of galaxies. Their results suggest that all of these physical systematics must be included
when interpreting data from upcoming stage-IV surveys.

1.3 This Thesis

In this thesis, making use of the MTNG suite of cosmological galaxy formation simulations,
introduced in Section 3.2.1, I perform state-of-the-art numerical experiments to investigate
some of the main criticalities and systematics of WL as a high-precision cosmological probe.
This thesis is organized as follows. In Chapter 2, I provide fundamentals of weak lensing
formalism and an overview of its measurement from observations. In Chapter 3, I focus
on the impact of physical systematics like baryonic physics and massive neutrinos, as well
as more technical aspects of WL simulations like angular resolution, mass resolution, and
the employment of paired and fixed initial conditions. In Chapter 4, I develop a novel
ray-tracing code for WL simulations, and make use of such code to investigate the impact
of the Born approximation versus ray-tracing in WL simulations. In Chapter 5, I produce
a mock galaxy catalogue starting from the lightcone particle output of MTNG, and use it
in combination with my ray-tracing code to study the impact of the intrinsic alignment of
galaxies on WL. Finally, in Chapter 6, I summarize the results of this thesis and present
future prospects.



Chapter 2

Weak lensing formalism and methods

In this chapter, I present the mathematical formalism of weak lensing, as well as an overview
of its practical measurement from observations.

2.1 Weak lensing theory

In this section, I outline the fundamentals of the WL formalism and then focus on the
Born approximation and higher-order corrections.

2.1.1 Fundamentals

Let us assume a FRLW universe, introduced in Section 1.1.1. In the presence of weak scalar
inhomogeneous perturbations expressed in terms of the Newtonian gravitational potential
Φ, and the absence of anisotropic stress, the two Bardeen potentials are equal. Under these
conditions, equation 1.1 assumes the following form:

ds2 = −
(

1 +
2Φ

c2

)
c2dt2 + a2(t)

(
1 − 2Φ

c2

)
dx2 . (2.1)

We now introduce the lens equation from geometric optics which, as schematized in Figure
2.1, relates the observed angular position θ to the true angular position β of a ray of light
that, encountering a lens (or a system of lenses), is deflected by an angle α:

β = θ −α . (2.2)

In the context of gravitational lensing, matter acts as a lens, thus leading to the gravita-
tional lens equation, which tells us that the observed position of a light ray starting from
redshift zs will depend on the surrounding matter field during its travel to the observer.
Starting from equation 2.1, the deflection angle can be computed and written explicitly:

β(θ, zs) = θ − 2

c2

∫ χs

0

dχd
fds
fdfs

∇βΦ(β(θ, χd), χd, zd) , (2.3)
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θ

Image

Source
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β

Deflector

fd

fs

fds

Figure 2.1: Schematic representation of a gravitational lens system. As described by equa-
tion 2.2, β, the angular position of the source, is given by θ, its image angular position, subtracted
by α, the deflection angle.

where we have introduced the angular gradient ∇β, the comoving line-of-sight distance
χ, and the comoving angular diameter distance fK(χ). The subscripts “s” and “d” refer,
respectively, to the source and the deflector (i.e. the lens); hence the geometric factors are
fds = fK(χs − χd), fd = fK(χd) and fs = fK(χs). The distortion of an image, formed by
the ray at θ and the ones nearby, can be described by the distortion matrix A, obtained
by differentiating the previous equation with respect to θ:

Aij ≡
∂βi(θ, zs)

∂θj
= δij −

2

c2

∫ χs

0

dχd
fds
fdfs

× ∂2Φ(β(θ, χd), χd)

∂βi∂βk

∂βkβ(θ, χd)

∂θj
, (2.4)

where δij is the Kronecker delta. This matrix can be decomposed as follows:

A ≡
(

1 − κ− γ1 −γ2 − ω
−γ2 + ω 1 − κ+ γ1

)
, (2.5)

where we have introduced three fundamental WL quantities. The convergence, κ, is a scalar
that measures the isotropic lensing distortion, which corresponds to a uniform scaling of
the image, as shown in the left column of Figure 2.2. The rotation, ω, is a scalar that
expresses the rigid rotation of the image about its center. It can be shown that, in the
context of WL, one can typically assume ω ≈ 0. The shear, γ = γ1 + iγ2, is a spin-2
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κ > 0

κ < 0

γ1 > 0

γ1 < 0 γ2 < 0

γ2 > 0

Figure 2.2: Qualitative visualization of the effect of the distortion matrix components, conver-
gence κ and shear γ = γ1+iγ2, on the image of a background object that is intrinsically circular.

quantity that describes the anisotropic deformation of the source, which corresponds to
elongation in a specific direction, as dictated by the individual components γ1 and γ2,
shown in the center and right columns of Figure 2.2 respectively. Throughout this work,
when considering the shear field on the celestial sphere, we adopt the convention that γ1
corresponds to east-west elongation and γ2 corresponds to northeast-southwest elongation.

2.1.2 The Born approximation

A common way to approach the integral in equation (2.4), known as the Born approxima-
tion, consists of integrating along an unperturbed straight light path; i.e., directly over θ
instead of β. This significantly simplifies the equation, leading to:

∂βi(θ, zs)

∂θj
= δij −

2

c2

∫ χs

0

dχd
fds
fdfs

∂2Φ(θ, χd)

∂θi∂θj
. (2.6)

We can now make use of the Poisson equation for the gravitational potential Φ and neglect
boundary terms at the observer and source positions to obtain the following expression for
the convergence:

κborn(θ, zs) =

∫ χs

0

dχd qds δm(θ, χd, zd) , (2.7)
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where δm is the density contrast and we introduced the lensing efficiency factor qds, defined
as:

qds =
3H2

0Ωm

2c2
(1 + zd)fd

fds
fs
. (2.8)

By assuming statistical isotropy and applying a Limber-type approximation (Limber, 1953;
LoVerde & Afshordi, 2008), one can furthermore obtain an equation that connects the
angular power spectrum of the convergence Cκ(ℓ) to the three-dimensional matter power
spectrum Pm (see, e.g., Hilbert et al., 2020, for the complete derivation):

Cκ(ℓ) =

∫ χlim

0

dχ
q2ds
f 2
d

Pm(ℓ/χd, zd) . (2.9)

where Pm(ℓ/χd, zd) is the matter power spectrum evaluated at redshift zd and wave number
k = ℓ/χd. This last equation shows how the convergence power spectrum mixes different
3D k-modes into 2D ℓ-modes through line-of-sight integration. It is possible to show that
with the approximations made so far, the angular power spectra of the shear (E and B
modes), convergence, and rotation are related as follows:

C(EE)
γ (ℓ) = Cκ(ℓ) , (2.10a)

C(BB)
γ (ℓ) = Cω(ℓ) = 0 . (2.10b)

2.1.3 Post-Born corrections

The Born approximation is obtained by expanding equation (2.4) to linear order in terms
of Φ. By expanding to the quadratic order, one would obtain the following two additional
terms:

κ = κborn + κll + κgeo +O(Φ3). (2.11)

We refer the reader to equations (9) and (10) of Petri et al. (2017) for the explicit expres-
sions of κll and κgeo, respectively. In the following, we briefly describe the physical meaning
of these two terms. The first post-Born term, κll, accounts for non–local couplings between
lenses at the quadratic level; in other words, it considers that light is not perturbed inde-
pendently by the series of deflectors along the line of sight, but rather that the deformation
from background lenses is progressively distorted by the foreground lenses. This term is
the lowest-order one to introduce a non-zero rotation. The second post-Born term, κgeo,
accounts for the actual bending of light rays by integrating the matter density contrast
along the corrected path at the lowest order in the geodesic deflections, as opposed to a
straight trajectory. For this reason, it is sometimes called the Born correction (see e.g.,
Cooray & Hu, 2002).

2.2 Weak lensing measurements from observations

In practice, extracting the WL signal from observational data introduces a number of
additional challenges. As mentioned in Chapter 1, WL refers to the coherent distortions
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in the shapes of distant galaxies. These distortions are typically subtle, with the values
of κ and γ being of the order of a few percent or less, and therefore can only be detected
statistically by averaging over large ensembles of galaxies. Moreover, it is important to
note that WL observations do not directly measure the shear γ, but rather the reduced
shear g, defined as:

g =
γ

1 − κ
. (2.12)

This is because galaxy shape measurements are sensitive to anisotropic distortions intro-
duced by shear, but insensitive to the isotropic magnification caused by convergence. In
the WL regime, where κ≪ 1 and |γ| ≪ 1, the reduced shear approximates the true shear
well, i.e., g ≈ γ (see e.g. Section 4.2 of Bartelmann & Schneider, 2001). Throughout this
work, I adopt this approximation, following the common approach in most theoretical and
numerical WL studies.

As I will discuss in more detail in Chapter 5, the observed shear of a galaxy is influenced
both by its intrinsic shape and by the lensing-induced shear. Assuming random intrinsic
orientations, the average ellipticity in a region of the sky provides an unbiased estimate of
the local shear field. To extract this signal, several steps are involved, including: point-
spread function correction (see e.g., Paulin-Henriksson et al., 2009; Rowe, 2010; Liaudat
et al., 2023; Schutt et al., 2025); shape measurement via algorithms such as lensfit (Miller
et al., 2007), IM3SHAPE (Zuntz et al., 2014), or METACALIBRATION (Huff & Mandelbaum,
2017); and redshift estimation via photometric or spectroscopic techniques (see e.g., Man-
delbaum et al., 2008; Cai & Bernstein, 2012; Hildebrandt et al., 2021; Tanaka et al., 2018).
Errors and systematics at any stage of the measurement pipeline can introduce biases in
the inferred shear and therefore must be carefully accounted for. This complexity high-
lights the essential role of accurate numerical simulations, not only for interpreting the WL
signal but also for validating and calibrating the entire measurement process.
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Chapter 3

The impact of baryons and massive
neutrinos on high-resolution weak
gravitational lensing convergence
maps

The content of this chapter has been published in the Monthly Notices of the Royal Astro-
nomical Society, Volume 524, Issue 4, October 2023, Pages 5591–5606, and reported here
with slight modifications.

Abstract

We study weak gravitational lensing convergence maps produced from the Millenni-
umTNG (MTNG) simulations by direct projection of the mass distribution on the past
backwards lightcone of a fiducial observer. We explore the lensing maps over a large dy-
namic range in simulation mass and angular resolution, allowing us to establish a clear
assessment of numerical convergence. By comparing full physics hydrodynamical simula-
tions with corresponding dark-matter-only runs we quantify the impact of baryonic physics
on the most important weak lensing statistics. Likewise, we predict the impact of massive
neutrinos reliably far into the non-linear regime. We also demonstrate that the “fixed &
paired” variance suppression technique increases the statistical robustness of the simula-
tion predictions on large scales not only for time slices but also for continuously output
lightcone data. We find that both baryonic and neutrino effects substantially impact weak
lensing shear measurements, with the latter dominating over the former on large angu-
lar scales. Thus, both effects must explicitly be included to obtain sufficiently accurate
predictions for stage IV lensing surveys. Reassuringly, our results agree accurately with
other simulation results where available, supporting the promise of simulation modeling
for precision cosmology far into the non-linear regime.
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3.1 Introduction

In this chapter, we introduce our Born-approximation-based method for computing high-
resolution full-sky WL convergence maps, starting from the mass-shell outputs produced
by our simulation set; we also present a way of efficiently partitioning a full-sky map into
smaller square patches, which is based on the Fibonacci sphere distribution. We apply
our WL machinery to the MillenniumTNG (MTNG) state-of-the-art simulation suite to
study the impact of baryonic physics, massive neutrinos, and angular resolution. We also
test how the use of fixed and paired initial conditions (see Angulo & Pontzen, 2016) can
improve the statistical robustness of WL simulations obtained from simulation boxes of
limited size. The observables considered in this study are the angular power spectrum of
the WL convergence, its one-point probability distribution function (PDF), and peaks and
minima counts in the corresponding maps.

This study is part of the introductory paper set of the MTNG project. In Hernández-
Aguayo et al. (2022), the technical aspects of the simulations are introduced together with
a high-level analysis of matter and halo statistics. Pakmor et al. (2022) provides more
details of the hydrodynamical simulations, focusing, in particular, on the galaxy cluster
population. Barrera et al. (2022) presents an updated version of the L-Galaxies semi-
analytic modeling code and applies it to obtain lightcone output for the dark-matter-only
simulations. Hadzhiyska et al. (2022b,a) present improved halo occupation distribution
models for the halo–galaxy connection, focusing on the one-halo and two-halo terms, re-
spectively. Bose et al. (2022) analyzes galaxy clustering, in particular, as a function of
the colour selection. Delgado et al. (2023) investigates the intrinsic alignment of galaxy
shapes and large-scale structure, and how it is affected by baryonic physics. Kannan et al.
(2022) study the properties of the predicted galaxy population at z > 8 in the full-hydro
run. Finally, Contreras et al. (2022) shows how the cosmological parameters of MTNG can
be recovered from mock SDSS-like galaxy samples, using an extended subhalo abundance
matching technique combined with a fast-forward prediction model.

This chapter is organized as follows. In Section 3.2 we describe the methods we use
to compute our WL maps and the associated observables. In particular, we describe the
“mass-shell” outputs of the MTNG simulations (Sec. 3.2.2) and how these are used in
our code to produce WL convergence maps (Sec. 3.2.3). We then introduce our method
for partitioning a full-sky map efficiently into square patches via the Fibonacci sphere
distribution (Sec. 3.2.4), and we briefly describe how the observables are extracted from the
maps (Sec. 3.2.5). In Section 3.3, we begin by comparing results from maps with different
angular resolution (Sec. 3.3.1). We then show the impact of baryonic effects (Sec. 3.3.2)
and massive neutrinos (Sec. 3.3.3) on WL statistics. Lastly, we study the extent to which
the use of fixed and paired initial conditions improves statistical robustness (Sec. 3.3.4).
In Section 3.4, we compare our findings on the impact of baryons and massive neutrinos to
results from similar recent studies. In Section 3.5, we summarise our findings, concluding
that WL lensing simulations aimed to inform stage-IV surveys must have high angular
resolution and correctly model both baryonic and neutrino effects. In Appendix A, we
show how different smoothing scales vary our results on the impact of resolution.
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Table 3.1: Specifications of the simulations of the MillenniumTNG project used in this thesis.

Type Run name Series Box size Ncdm Ngas Nν Mass-shell Nside

∑
mν ϵcdm

[h−1Mpc] [eV] [h−1kpc]
DM only MTNG740-DM-1 A/B 500 43203 − − 12288 − 2.5

MTNG740-DM-2 A/B 500 21603 − − 9182 − 5
MTNG740-DM-3 A/B 500 10803 − − 4096 − 10
MTNG740-DM-4 A/B 500 5403 − − 2048 − 20
MTNG740-DM-5 A/B 500 2703 − − 1024 − 40

Hydro MTNG740-1 A 500 43203 43203 − 12288 − 2.5
Neutrinos MTNG3000-DM-0.1ν A 2040 102403 − 25603 12288 0.1 4

MTNG630-DM-0.3ν A/B 430 21603 − 5403 12288 0.3 4
MTNG630-DM-0.1ν A/B 430 21603 − 5403 12288 0.1 4
MTNG630-DM-0.0ν A/B 430 21603 − 5403 12288 0.0 4

3.2 Methods

3.2.1 The MTNG project

The MillenniumTNG (MTNG) project is based on a suite of high-resolution cosmological
structure formation simulations. The project focuses on the connection between galaxy
formation and large-scale structure by combining the statistical power reached with the
large box size of the Millennium simulation (Springel et al., 2005), with the high mass-
resolution and sophisticated baryonic physics modeling of the IllustrisTNG project
(Nelson et al., 2018; Springel et al., 2018; Marinacci et al., 2018; Pillepich et al., 2018;
Naiman et al., 2018; Pillepich et al., 2019; Nelson et al., 2019; Nelson et al., 2019). The
goal of this synthesis, which inspired the name of the MTNG project, is to realize accurate
and reliable theoretical predictions for galaxy formation throughout volumes large enough
to be adequate for the upcoming surveys of cosmic large-scale structure.

The initial conditions of MTNG were generated at z = 63 with an updated version
of the N-GenIC code, directly incorporated in Gadget-4. The algorithm is based on
second-order Lagrangian perturbation theory, and the input linear theory power spectrum
was the same as the one used for the IllustrisTNG simulations (based on Planck15
cosmological parameters). A new transfer function with updated cosmological parameters
was adopted for the simulations with massive neutrinos.

The dark matter (DM)-only simulations were run with the Gadget-4 code (Springel
et al., 2021), using the variance-suppression technique introduced by Angulo & Pontzen
(2016), so that for every resolution there are two simulations (which we refer to as A- and
B-series) whose initial conditions are characterized by perturbations with opposite phases
but the same amplitude, fixed to the rms value predicted by the power spectrum. The
hydrodynamical simulations start from the same initial conditions as the DM A-series and
were performed with the moving-mesh Arepo code, featuring the same galaxy formation
model as IllustrisTNG (Weinberger et al., 2017; Pillepich et al., 2018), modulo very
small changes1.

1Magnetic fields were not included, and the metallicity tracking was simplified. Both were necessary to
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The main characteristics of the MTNG simulations that are primarily used in this work
are summarised in Table 3.1. For the bulk of our analysis, and in particular for studying
the impact of resolution and of baryons, we use a box size of 500h−1Mpc ≃ 740 Mpc. For
the cosmological parameters, we use the Planck Collaboration (2016) cosmology, which
is consistent with what had been used for IllustrisTNG: Ωm = Ωcdm + Ωb = 0.3089,
Ωb = 0.0486, ΩΛ = 0.6911, h = 0.6774, σ8 = 0.8159 and ns = 0.9667. For the study of the
impact of massive neutrinos, we use a slightly smaller box size of 430h−1Mpc ≃ 630 Mpc,
and updated cosmological parameters that also take the different neutrino masses into
account (Abbott et al., 2022). We consider three cases for the neutrino masses, Σmν =
0 meV (massless), 100 meV, and 300 meV (see Table 3.1). The reader is referred to
Hernández-Aguayo et al. (2022) and Pakmor et al. (2022) for a more detailed description
of the MTNG simulations. We simulate the effect of massive neutrinos using the so-called
δf method introduced in Elbers et al. (2021), however, we refer to Hernández-Aguayo et al.
(2024) for a detailed description of the technical aspects of the simulations with neutrinos.

3.2.2 Mass-shell outputs

Along with snapshot and lightcone data (see Hernández-Aguayo et al., 2022, for further
details), the MTNG simulations provide “mass-shell” outputs, introduced as a new feature
in Gadget-4. These consist of a series of onion-shell-like full-sky maps built on-the-fly,
which store the line-of-sight projected matter field of the full-sky lightcone. Each shell
consists of a HEALPix map (Hivon et al., 1999), where each pixel contains, in turn, the
total mass of all particles that intersect the lightcone’s time-variable hypersurface2 at a
comoving distance that falls within the shell boundaries, and at an angular position that
falls within the solid angle corresponding to the pixel. For all the simulations of the
MTNG suite, we fixed the comoving depth of these shells to 25h−1Mpc. The angular
resolution of a HEALPix map is modulated by the Nside parameter, which determines
the total number of pixels through Npix = 12N2

side. For simulations with increasing mass
resolution, we typically constructed mass-shells with increasing Nside, as can be seen in
Table 3.1. The highest angular resolution we reach with the mass-shells is 0.28 arcmin,
given by Nside = 12288, which corresponds to approximately 1.8 billion pixels in the sky.

3.2.3 Computation of full-sky convergence maps

Starting from the mass-shell output, we developed a Gadget-4 post-processing Python
package for the computation of full-sky convergence maps in the Born approximation. This
works as follows. The i-th mass-shell can be converted into an angular surface mass density
distribution Σ dividing the mass at each pixel’s angular position by the area of each pixel

reduce the memory consumption of the production run to make it fit into the available memory.
2This is simply the spherical surface whose comoving radius varies with time according to the finite

propagation speed of light, and reaches the observer at the present time.
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Figure 3.1: Orthographic projection from the side (left) and from above (right) of the 1195
square maps with size 5 × 5 deg2 that we extract from a full-sky map. The method we use is
based on the Fibonacci grid and manages to cover ≈ 72% of the sphere surface.

in steradians (given by Apix = 4π/Npix, since HEALPix has equal area pixels):

Σ(i)(θ) =
M(θ)

Apix

. (3.1)

Every shell is then treated as a lens. For a fixed source redshift zs, the convergence in the
Born approximation will be given by integrating over the surface mass density at every lens
plane (i.e. at every shell) between the source and the observer, weighted by the lensing
efficiency factor:

κ(θ, χs) =
4πG

c2
1

fs

∑
i

(1 + z
(i)
d )

f
(i)
ds

f
(i)
d

[
Σ(i)(θ) − Σ̄(i)

]
, (3.2)

where Σ̄(i) is the mean angular surface mass density of the i-th shell. To optimize compu-
tational efficiency, this calculation is parallelized with MPI4PY (Dalcin & Fang, 2021).

3.2.4 Partitioning into square patches

Once a full-sky map is created, one may want to partition it into smaller non-overlapping
square patches in order to simplify the analysis. Performing this operation in an efficient
way, i.e. covering as much as possible of the sphere’s surface while avoiding overlap, is
not a trivial task. An example is found in Davies et al. (2019), where a HEALPix-based
partitioning is performed to extract 192 maps with size 10 × 10 deg2; this scheme covers
≈ 47% of the sphere’s surface.
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Figure 3.2: Lensing convergence power spectra (upper panel) of MTNG740-DM-1B obtained
with our code from N = 1195 non-overlapping 5× 5 deg2 square maps (light blue line), and from
the full-sky map (green line). These are compared with the convergence power spectrum obtained
starting from the redshift-dependent non-linear 3D matter power spectra of the simulation (yellow
lines, with the dashed line accounting for the suppression due to finite angular resolution as
modeled by Eq. (3.4)) and from 3D power spectra given by the Halofit formula (black line). In
both cases, the 3D matter power spectra are integrated according to Eq. (2.9). Ratios relative to
the full-sky map are shown in the lower panel.

In this work, we introduce a new and more efficient way of partitioning the sphere
into smaller square maps. This is directly inspired by a botanical phenomenon known
as phyllotaxis (from Latin ”leaf arrangement”), which refers to the way in which plants
arrange their repeating parts (leaves, seeds, florets, etc...) in order to maximize the space
occupation (see e.g., Conway & Guy, 1996, p. 113). It turns out that in many cases (e.g.,
for the dandelion seeds or the florets on the sunflower head) the spatial distribution of
points is mathematically described by the so-called Fibonacci grid. As shown in Swinbank
& Purser (2006), the spherical coordinates which describe the i-th point on a Fibonacci
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Figure 3.3: The top left shows a full-sky convergence map with zs = 1.0 computed with our
code from DM only runs with same initial conditions, but increasing resolution both in mass and
in angles; the zoom on the top right focuses on a single 5 × 5 deg2 square patch. The bottom
panels show a further zoom onto a square region of 0.5 × 0.5 deg2; these all represent the same
region with increasing resolution from left to right.

grid with a total of 2N + 1 points are given by,

sin θi =
2i

2N + 1
, ϕi =

2πi

φ
, −N ≤ i ≤ N, −π/2 ≤ θi ≤ π/2, (3.3)

where φ ≈ 1.618 is the golden ratio. We use these coordinates as the centers of our maps3.
In addition, for square patches, we find that the coverage of the sphere is maximized when
one diagonal of the squares lies on a meridian. Using this method, we place 1195 square
patches of size 5 × 5 deg2; therefore covering ≈ 72% of the sphere’s solid angle (the same
approximate percentage would also be reached in the case of 10× 10 deg2 square patches).
The arrangement of spherical squares is shown in Figure 3.1. Every square patch we
extract is sampled on a regular grid with 20482 pixels, resulting in a pixel size of about
0.14 arcmin.

3Instead of following Eq. (3.3), the first ≈ 10 patches closest to each pole have been placed manually,
in order to avoid overlapping.
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Figure 3.4: Top left: WL convergence power spectrum; top right: WL convergence PDF; bottom
left: WL convergence peak counts; bottom right: WL convergence minimum counts. All the
observables are computed on the B realization of the MTNG740-DM runs, taking zs = 1.0. The
solid lines indicate the mean of 1195 5×5 deg2 square maps with increasing darkness representing
increasing resolution both in mass and Nside. The dotted line refers to the case with the highest
mass resolution but down-sampled to Nside = 1024. In each lower sub-panel, we show the ratio
w.r.t. the reference case with Npart = 43203 and Nside = 12288 (noted with the subscript ”ref”).

3.2.5 Computation of the observables

We compute angular power spectra by means of the HEALPix anafast routine. This
operation has been performed for maps with resolution up to Nside = 8192, which marks
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Figure 3.5: Left panel: one of our 5 × 5 deg2 square maps at zs = 0.5 from MTNG DM-only
run. Right panel: the same map but with the map from the corresponding MTNG hydro run
(with the same initial conditions) subtracted.

the maximum resolution for which the HEALPix library is able to perform a spherical
harmonics decomposition. In the case of square patches, the power spectra are calculated
with Fourier transforms on a regular grid with 20482 pixels in the flat-sky approximation,
which is valid for the small field-of-view covered by their relatively small area (5× 5 deg2).
The full-sky spectra are then binned into 80 equally spaced logarithmic bins in the range
ℓ ∈ [100, 104]. The spectra extracted from the square patches are binned into 20 equally
spaced logarithmic bins in the range ℓ ∈ [102, 104]. Before computing the probability
distribution function for the convergence, and its peaks and minima statistics, all the
square maps are smoothed with a Gaussian kernel characterized by a standard deviation
of 1 arcmin. We compute the PDF in 50 linearly spaced convergence bins in the range
κ ∈ [−0.05, 0.1]. We identified peaks and minima as pixels in the maps that are greater or
smaller than their 8 nearest neighboring pixels, respectively. We bin the peak counts into 50
equally spaced bins with κ ∈ [−0.1, 0.25], and the minima counts into 50 equally spaced bins
with κ ∈ [−0.07, 0.06]. We have fewer maps for the case that includes baryons, as explained
in (Sec. 3.3.2), therefore the peak counts are binned into 12 equally spaced bins with
κ ∈ [−0.02, 0.1] and the minima counts into 16 equally spaced bins with κ ∈ [−0.07, 0.06].
Statistics are computed using only one simulation run (B for the study on resolution, A for
the impact of baryons and massive neutrinos) except in the section 3.3.4 in which combined
results from both A and B series runs are also calculated. Unless stated otherwise, all the
observables are computed for a source redshift of zs = 1.0. Finally, we do not include galaxy
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Figure 3.6: Power spectra of full-sky lensing convergence maps assuming zs = 0.5. The red
and green lines indicate results for the DM-only and Hydro runs, respectively. The purple line
indicates the power spectrum of the difference between the two maps.

shape noise in this analysis, as the focus of this study is to investigate the properties of
the physical signal.

3.3 Results

We begin the presentation of our results with the following sanity check shown in Figure 3.2.
We compute the convergence power spectrum in four different ways:

• We take the average of the convergence power spectrum computed on a large number
of 5 × 5 deg2 square maps extracted from the MTNG740-DM-1-A full-sky map.

• We compute the angular power spectrum of the full-sky map of the MTNG740-DM-
1-A simulations by means of the HEALPix anafast routine.

• We use Eq. (2.9) to obtain the convergence power spectrum by integrating over the
3D matter power spectra measured for MTNG740-DM-1-A at the discrete set of
snapshot times.
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Figure 3.7: Top left: WL convergence power spectrum; top right: WL convergence PDF;
bottom left: WL convergence peak counts; bottom right: WL convergence minimum counts. All
the panels show the ratio of the results computed from full-hydro and DM-only runs obtained
with our code, considering zs ∈ [0.2, 1.4] with ∆zs = 0.2. The solid lines indicate the mean of 125
5× 5 deg2 square maps, with the shaded regions representing the standard errors on the means.

• Finally, we use the same approach but plug in the 3D matter power spectrum as
predicted by the Halofit emulation formula (Takahashi et al., 2012a) using the
CLASS code (Blas et al., 2011).

As Figure 3.2 shows, we find quite good agreement between the four spectra. Those
computed from the full-sky map and from the square patches differ by less than 2.5% over
100 ≲ ℓ ≲ 4000, indicating the validity of the flat sky approximation in this regime. The
increasing discrepancy at smaller angular scales, i.e. for ℓ ≳ 4000, is consistent with our
predictions for different angular resolutions of the maps, as we will discuss in detail in
the next section. The loss of power for Halofit (black curve) at ℓ ≳ 4000 is most likely
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Figure 3.8: Top left: WL convergence power spectrum; top right: WL convergence PDF; bottom
left: WL convergence peak counts; bottom right: WL convergence minimum counts. The orange,
pink, and violet curves indicate the mean of 1195 5×5 deg2 square maps computed on simulations
with summed neutrino masses equal to 0, 100, 300meV respectively.The lower subpanels show the
ratio of each distribution to that of the case with zero neutrino masses.

explained by the fact that this model was calibrated on simulations with lower resolution.
On the other hand, we observe that the spectra computed from our maps (both full-sky and
square patches) tend to lose power at ℓ ≳ 4000 with respect to the prediction obtained by
plugging in the 3D matter power spectra computed from the simulation into Eq. (2.9). This
effect can be explained by the finite angular resolution of the maps. As noted by Takahashi
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et al. (2017), one can approximately describe this effect by introducing a damping factor:

Cκ(ℓ) → Cκ(ℓ)

1 + (ℓ/ℓres)2
. (3.4)

By setting the free parameter ℓres = 2Nside (yellow dashed curve), we recover the 5%
concordance at the smallest scales.

3.3.1 Numerical resolution study

In Figure 3.3 we show an example of a full-sky convergence map computed with our code.
We zoom in on such a map to show an example of an extracted 5× 5 deg2 square patch. A
further zoom-in to a 0.5 × 0.5 deg2 square region is performed to give a visual impression
of how the different angular resolutions look at the smallest scales. By comparing this
zoomed region for the Nside = 1024, 2048 and the Nside = 8192, 12288 cases, one can
see that information on structures on the smallest angular scales is progressively lost as
the resolution becomes lower. In this subsection, we investigate how this loss of angular
resolution, in combination with reduced mass resolution in the simulation itself, can impact
weak lensing observables extracted from the corresponding convergence maps. All the
following observables are computed as averages of the 1195 square maps of size 5 × 5 deg2

extracted from the full-sky maps from the B realization of MTNG740-DM runs.
The first observable we study is the convergence power spectrum, as shown in the top

left panel of Figure 3.4. The solid lines refer to simulations increasing both in mass
resolution and angular resolution. This shows that decreasing the resolution (both in mass
and angle) reduces the power at progressively larger scales. We verified that this effect
is generally independent of zs over the range zs ∈ [0.2, 3.0]. In order to understand how
much of this reduction in power is due to the decrease in angular resolution and how much
is due to the decrease in mass resolution, we now consider the convergence maps of the
simulation with the highest mass resolution but down-sample the maps to Nside = 1024, this
is represented by the dashed line. We see that for the fixed angular resolution Nside = 1024
we obtain essentially the same result, independent of the mass resolution. The small-scale
suppression we find with the decreasing resolution is consistent with the one found in
previous studies (see e.g., Takahashi et al., 2017).

Next, we consider how changes in the resolution impact the WL one-point PDF; the
results are shown in the top right panel of Figure 3.4. First, we see that the PDF is
characterized by an asymmetrical shape that reflects the non-Gaussian nature of the WL
convergence. The solid lines (which refer to increasing angular and mass resolution) show
a broadening of the distribution when the resolution is increased. Since the maps with the
higher angular resolution are able to capture the details of the smaller (angular) structures,
more extreme convergence values are resolved; as seen in Figure 3.3, this results in a
broader PDF. This explanation is supported by the dashed line (referring to the simulation
with the highest mass resolution, but down-sampled to Nside = 1024) which is almost
indistinguishable from the solid line which refers to maps computed with the same angular
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resolution but from a simulation with much lower mass resolution. We find that angular
resolution affects the convergence PDF similarly for source redshifts over the full range
0.2 ≤ zs ≤ 3. The narrowing of the PDF we observe here is consistent with the suppression
of the power spectrum seen previously. The comparison between these two indicates that
the most extreme values of κ are contained in the smallest angular scales.

Finally, we present that same investigation for the WL peak and minimum counts; the
results are shown in the left and right lower panels of Figure 3.4, respectively. For the
peak counts, we find that when increasing resolution in angle and mass, the high κ tail
is more extended and the amplitude of the distribution increases. For the distribution of
minimum counts also, we see an increase in amplitude with increasing resolution. In both
cases, the suppression of the counts with decreasing resolution is not uniform; in particular,
it is stronger for higher κ values. Again, we conclude that the differences are dominated
by the angular resolution, since the high-mass-resolution simulation, once down-sampled
to Nside = 1024, is again almost indistinguishable from the low-mass-resolution simulation
analyzed with the same Nside. As before, we find qualitatively similar results for source
redshifts throughout the range zs ∈ [0.2, 3.0]. The results we find for peak and minimum
abundance are consistent with what has been seen for the PDF: decreasing the resolution
will narrow the PDF, therefore damping the most extreme values of κ, which in turn will
result in fewer counts of peaks and minima. Finally, we tested the impact of varying
the smoothing scale applied to the convergence map before the PDF, peak counts, and
minima counts were computed, and found that the results are qualitatively consistent with
Figure 3.4. We refer the interested reader to Appendix A, where we show and discuss these
results.

3.3.2 Impact of baryons

In this section, we study the impact of baryonic physics on weak lensing observables. In
the left panel of Figure 3.5, we show a 5 × 5 deg2 square patch with zs = 0.5 extracted
from a full-sky map for MTNG740-DM-1-A. We do not separately show the corresponding
convergence map for the hydro run (which was run with the same initial conditions) as
the difference with respect to the DM case is almost imperceptible by eye. Instead, in the
right panel, we show the difference between the two maps. By comparing the two panels,
we notice that the regions where the baryonic physics has the strongest impact (redder
and bluer areas in the right panel) roughly correspond to regions where the convergence
map has high values (lighter areas in the left panel, corresponding to massive structures).
We also see that the difference is often characterized by a dipole pattern (neighboring red-
blue pairs). This largely reflects the fact that the same objects can end up having slightly
different positions when baryonic physics is included and does not necessarily signal a
significant difference in internal structure between the two cases.

In order to quantify how baryonic processes affect different angular scales, we compute
the power spectrum of the difference between the two full-sky maps; this is shown as a pur-
ple line in Figure 3.6, which is compared to the power spectra of the two individual maps.
We see that the power spectrum of the difference map drops rapidly and approximately



3.3 Results 29

as a power law towards large scales. The impact of baryonic physics increases strongly
towards smaller angular scales over the range of l-values considered here.

We now consider results for the four primary observables considered previously, adopt-
ing a set of source redshifts over the range zs ∈ [0.2, 1.4] with ∆zs = 0.2. For the hydrody-
namic simulation MTNG740-1, a code configuration error, unfortunately, caused the loss of
the original full-sky mass-shells for z > 0.5, which were intended to be produced on-the-fly.
However, it proved possible to reconstruct these data partially in post-processing, because
the full-particle lightcone of the simulation was stored for one octant of the sky out to
z = 1.5. Straightforwardly binning this data onto HEALPix arrays thus allows lensing
maps to be recovered over 1/8-th of the full sky out to this redshift. While this restricts
us to a direct comparison of just 125 square maps (those that fall into the first octant),
resulting in a somewhat larger statistical error (as indicated by the shaded regions that give
standard errors), this does not substantially weaken our ability to assess the small-scale
impact of baryonic physics.

In the top left panel of Figure 3.7, we show the ratio between the convergence power
spectrum of DM-only and Hydro runs. We observe a small and almost constant suppres-
sion at the larger angular scales and a stronger, scale-dependent suppression at smaller
scales. The transition between these two regimes takes place at ℓ ≈ 103 and happens
at progressively larger ℓ with increasing zs. The overall effect produces a spoon-shaped
suppression which reaches ≈ 15%. The dominant component of the power suppression can
be explained in terms of feedback from black hole accretion and supernovae explosions,
which blow away matter from the central regions of the halos. This will primarily affect
relatively small physical (and consequently angular) scales, but the associated redistribu-
tion of baryons also induces an impact on larger scales, particularly due to AGN as they
are capable of affecting very massive halos. The shift of the spoon feature that we ob-
serve can be explained by considering that the physical scale at which the effect of baryons
suppresses the most the power spectrum, will correspond to smaller angular scales (and
therefore higher values of ℓ) for increasing zs.

We show the ratio between the WL PDF in the Hydro and in the DM-only cases in
the top right panel of Figure 3.7. We find a roughly constant ≈ 5 − 10% suppression in
the high-κ tail for the Hydro run relative to the DM-only run. In the low-κ regime, there
is a suppression as well, and this increases dramatically as κ becomes more negative. The
central region of the PDF is in turn enhanced by ≈ 2 − 3%. These changes impact a
progressively broader κ range as zs increases. Finally, we consider the effect of baryonic
physics by considering the WL peaks and minima, shown in the right and left panels of
Figure 3.7, respectively. In the case of the peak abundance, we observe a suppression of
≈ 5−15% for κ ≳ 0.02, which is stronger for decreasing zs; although the results are noisier
in the case of lower zs. The distribution of the minima shows suppression in the baryonic
case in both the high-κ and low-κ tails, and this effect increases the more κ reaches extreme
values. The trend is approximately symmetric and broader in κ as zs increases.

The effects we observe are consistent with the physical explanation given previously
for the power spectrum: feedback processes redistribute matter from denser regions to
lower-density regions. This manifests in a narrower PDF, and in a suppression of the
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peaks and minima counts. In particular, the high-κ peaks are expected to correspond
mostly to the presence of galaxy clusters along the line of sight, while the low-κ peaks
could be produced by haloes in voids or chance alignments of small haloes along the line of
sight. We, therefore, expect the baryons to impact the peak abundance in a κ-dependent
fashion. This could help in explaining the upturn we see for increasing κ (for a more
detailed discussion we direct the reader to e.g., Liu & Haiman, 2016; Yang et al., 2011;
White et al., 2002).

Finally, we notice that the impact of baryonic physics on all four observables is pro-
gressively stronger with decreasing zs: we indeed expect this to happen because, at lower
redshifts, baryonic processes have had more time to take place and therefore influence the
overall cosmic structure.

3.3.3 Impact of neutrinos

Another important element that influences structure formation, and therefore WL observ-
ables, is the presence of massive neutrino species. In the early Universe, these act as an
additional relativistic component, thus delaying the onset of structure formation and sup-
pressing the formation of structures below the free-streaming scale (for reviews, the reader
is redirected to e.g., Lesgourgues & Pastor, 2006; Wong, 2011). We, therefore, expect mas-
sive neutrinos to reduce the WL signal at those scales. Consequently, the use of WL has
been suggested as a tool to constrain the neutrino mass (see, e.g., Cooray, 1999). In the
following, we show results obtained by comparing MTNG DM-only with runs that include
neutrino components with different overall mass contributions, corresponding to summed
neutrino rest masses of

∑
mν = [0, 100, 300] meV.

We start by considering the angular power spectrum, which is shown in the top left
panel of Figure 3.8. We notice that this is suppressed by ≈ 5 and 15−20% for

∑
mν = 0.1

and 0.3 eV, respectively, relative to the massless case. The suppression is slightly greater
for intermediate angular scales (ℓ ≈ 1000); this effect, which is barely noticeable in the∑
mν = 0.1 eV case, becomes more prominent for

∑
mν = 0.3 eV. Such an effect is

consistent with massive neutrino species suppressing structure formation on small scales.
We verified that, as expected, this effect decreases significantly at the smallest l-values.

We show the convergence PDF in the top right panel of Fig. 3.8. Here the distribution
is enhanced in its central region (for −0.015 ≤ κ ≤ 0.015) of order ≈ 11 and 4% for the∑
mν = 0.1 and 0.3 eV cases, respectively. On the other hand, we see that the PDF

is progressively suppressed in the tails, an effect that gets stronger for higher neutrino
masses. Interestingly, we find that the impact of massive neutrinos on the convergence
PDF is quite similar to that induced by decreasing the angular resolution of the map, as
one can notice by comparing this panel with the top left panel of Fig. 3.4. The effect we
observe is consistent with the physical interpretation given above: massive neutrinos will
smooth out the density field, therefore narrowing the PDF of the WL convergence.

Finally, in the bottom panels of Fig. 3.8 we consider the effect of neutrinos on the
convergence peak and minimum counts. For the peak counts, we see an enhancement for
−0.015 ≤ κ ≤ 0.015, reaching ≈ 11% for

∑
mν = 0.3 eV and ≈ 4% for

∑
mν = 0.1 eV.
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Figure 3.9: Lensing convergence power spectrum of full-sky convergence maps computed with
our code considering zs = 1.0. The blue and red lines indicate respectively the A and B series
with fixed and paired initial conditions of MTNG630-DM-0.1ν, the dashed green line refers to the
mean of these two, while the solid green line to the run with the biggest box size, i.e. MTNG3000-
DM-0.1ν. In the lower sub-panel, we show the ratio w.r.t. the MTNG3000-DM-0.1ν run (noted
with the subscript ”ref”).

In the case of the minimum counts, the enhancement is present at −0.015 ≤ κ ≤ 0.01
and reaches ≈ 20% and 6% for

∑
mν = 0.1 and 0.3 eV, respectively. Both the peak and

minima counts are progressively suppressed along the tails of the distribution, and this
effect becomes again stronger when the mass of neutrinos increases. What we observe is
consistent with the effects on the PDF and the power spectrum. Massive neutrino species
will tend to fill the emptiest regions, thus suppressing the negative-κ tail of the minimum
counts, and oppose the formation of large structures, thus damping the high-κ tail of peak
counts.

3.3.4 Paired and fixed initial conditions

To conclude the presentation of our primary results, we investigate the impact of the
variance suppression technique introduced by Angulo & Pontzen (2016). As they show,
averaging the 3D matter power spectra of two simulations with fixed and paired initial
conditions can reduce the noise due to cosmic variance very significantly (for another work
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that employs a variance suppression technique inspired by the previous citation, we direct
the reader to Harnois-Déraps et al., 2019). Here we test whether this approach also helps
in the case of the convergence angular power spectrum. This requires a redshift integration
over the lightcone, rather than a single time-slice of the underlying simulation, so it remains
to be validated that the cancellation of second-order deviations from linear theory will work
equally well in this case.

We show our results for this in Figure 3.9, where the blue and red lines indicate the
angular power spectra of full-sky convergence maps computed for the A and B versions
of MTNG630-DM-0.1ν, respectively, while the green dashed line shows their mean. For
comparison, the power spectrum obtained from the full-sky lightcone of the A version of
MTNG3000-DM-0.1ν is shown as a green solid line. Because of its larger box, the initial
conditions of this simulation contain about 100 times as many modes on each scale as those
of the smaller box simulations, and so the cosmic variance in its power spectrum is expected
to be about 10 times smaller. We find that the power spectra of the smaller simulations
differ from each other by up to 5% and from the power spectrum of the big simulation by
up to 3% for 300 ≤ l ≤ 104. Their mean, however, differs from the power spectrum of
the big run by a maximum of 1% and by much less at the smaller angular scales. Thus,
although the suppression of cosmic variance is less strong than found by Angulo & Pontzen
(2016) for the power spectra of the dark matter distribution in simulation snapshots, it
is still very substantial, thus supporting the notion that the fixed and paired technique is
an effective way to reduce cosmic variance uncertainties in simulation results also for WL
observables.

3.4 Discussion

We now discuss the implications of the results presented in the previous sections, in par-
ticular, for the relative impact of baryons and massive neutrinos on WL observations.
Further, we compare our estimates of these effects with results from other recent studies.

The four panels of Figure 3.10 show results for the four convergence map observables
that we focus on in this study, the angular power spectrum (top-left), the one-point PDF
(top right), and the peak and minimum counts (bottom left and bottom right). In this case,
in order to make the comparison consistent with other works, we smoothed the square maps
with a Gaussian kernel with a standard deviation of 2 arcmin when studying the PDF, peak,
and minimum counts. As in Figure 3.7 and in the lower subpanels of Figure 3.8 we plot the
ratios of results obtained in a simulation including either baryons or massive neutrinos to
those for a simulation from identical initial conditions that followed only the CDM. First,
we discuss the new results from this work, which is represented by the thicker lines: green
for the baryons, blue for

∑
mν = 0.1 eV, and dark blue for

∑
mν = 0.3 eV. For the last

case, neutrino effects dominate baryonic effects for all four observables: the suppression of
the power spectrum, the distortion induced in the PDF, and the modification of the peak
and minimum counts are all substantially stronger. On the other hand, for

∑
mν = 0.1 eV

the baryonic and neutrino effects are comparable, though with different scale dependence,
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mν h Ωm Ωb σ8

[h−1Mpc] [eV]
■ MTNG740-1 Arepo 500 43203 - 0.6774 0.3089 0.0486 0.8159
■ MTNG630-DM-0.1 Gadget-4 430 21603 0.1 0.68 0.306 0.0487 0.8040
■ MTNG630-DM-0.3 Gadget-4 430 21603 0.3 0.68 0.306 0.0487 0.7623
■ TNG300-1 Arepo 205 25003 - 0.6774 0.3089 0.0486 0.8159
■ Bahamas Gadget-3 400 10243 - 0.7 0.2793 0.0463 0.821
■ Horizon AGN Ramses 100 10243 - 0.704 0.272 0.045 0.81
■ MassiveNuS Gadget-2 512 10243 0.1 0.7 0.3 0.046 0.8295

Figure 3.10: Top left: WL convergence power spectrum; top right: WL convergence PDF;
bottom left: WL convergence peak counts; bottom right: WL convergence minimum counts. All
the panels show the ratio between a simulation and its DM-only version. Here we compare our
findings with those of similar recent studies. The results concerning baryonic effects are from
MTNG (green), TNG (yellow), HorizonAGN (brown), and Bahamas (orange); Bahamas
comes in three different AGN intensities: low (dashed line), fiducial (solid line), and high (dotted
line). The results concerning massive neutrinos are from MTNG with

∑
mν = 0.1 eV (blue),

MTNG with
∑

mν = 0.3 eV (dark blue), and MassiveNuS (purple).
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Table 3.2: Overview of the fractional differences between our results and those from other
simulations for the four observables considered in this study: WL convergence power spectrum,
PDF, peak counts, and minima counts. The values of the table are computed based on the results
shown graphically in Figure 3.10.

Simulation
C(ℓ) PDF Peaks Minima

ℓ = 103 ℓ = 104 κ = 0 κ = 0.05 κ = 0 κ = 0.05 κ = 0 κ = −0.02
Baryons

TNG300-1 < 0.01 0.03 0.02 0.01 0.01 0.01 < 0.01 0.05
Bahamas low AGN < 0.01 0.09 0.01 < 0.01 < 0.01 < 0.01 0.03 0.02
Bahamas fiducial 0.02 0.05 0.02 0.05 0.02 0.04 0.04 0.10

Bahamas high AGN 0.06 0.01 0.03 0.12 0.05 0.12 0.06 0.22
Horizon AGN < 0.01 0.05 / / / / / /

Massive neutrinos
MassiveNuS < 0.01 < 0.01 / / < 0.01 0.03 < 0.01 /

highlighting that these effects are partly degenerate.

For the power spectra, the suppression induced by baryonic physics is negligible com-
pared to that induced by neutrinos with

∑
mν = 0.1 eV for angular scales ℓ < 2000,

but becomes dominant on smaller angular scales ℓ > 4000. In the case of the PDF, peak
counts, and minimum counts, we see that even a total neutrino mass of

∑
mν = 0.1 eV

produces distortions that are larger than those induced by baryonic physics, especially in
the tails of the distributions.

A crucial test to validate the reliability of results coming from numerical experiments
is the comparison between independent simulation studies. In Figure 3.10 results from
previous studies are indicated by the thinner lines, yellow, brown, and orange referring
to the baryonic effects computed for IllustrisTNG (Osato et al., 2021), HorizonAGN
(Gouin et al., 2019), and Bahamas (Coulton et al., 2020), respectively. This last simu-
lation project considered three different models with increasingly strong AGN feedback:
these are indicated by dashed (low) solid (fiducial) and dotted (high) lines. In purple,
we include the result reported for massive neutrinos with

∑
mν = 0.1 eV for the Mas-

siveNuS simulations, where the angular power spectrum effects were computed by Liu &
Madhavacheril (2019), and the peak and minimum counts were computed in Coulton et al.
(2020).

Focusing first on the comparison with previous results for
∑
mν = 0.1 eV neutrinos,

we see that our angular power spectrum modification agrees to ≈ 1% with that of Mas-
siveNuS at all angular scales. For the peak and minimum counts, we also find a reassuring
≈ 1 − 2% agreement for all values of κ other than the high-κ tails, where some statisti-
cal fluctuations are present. This exemplifies the robustness of such neutrino predictions,
provided a sufficiently accurate simulation methodology is employed. This agrees with
conclusions from the recent neutrino simulation code comparison project of Adamek et al.
(2022).

Next, considering the impact of baryons as predicted by different studies, we can directly
compare the power spectrum modification we measure to results from the three independent
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projects included in Figure 3.10. We find a ≈ 1 − 2% agreement up to ℓ ≈ 4000 between
MTNG and IllustrisTNG, HorizonAGN, and the ‘low AGN’ variant of Bahamas. At
smaller angular scales, we see that MTNG and TNG predict a suppression that is of the
same order as that in the high AGN variant of Bahamas; for ℓ ≈ 104, this is stronger by
roughly a factor of two than the predictions of HorizonAGN and of the low and fiducial
AGN versions of BAHAMAS. Clearly the predictions are strongly affected by the specific
implementation of feedback for ℓ > 103. Even at ℓ = 103 the fiducial version of Bahamas
predicts a 3% effect, which is more than twice that found in the other models.

Moving to the PDF, we find ≈ 2% agreement between MTNG, TNG, and the Ba-
hamas’s low-AGN model, the only exception being for κ ≲ 0.01, where our results predict
a milder suppression of the tails. The fiducial and high AGN versions of Bahamas de-
viate substantially, predicting a more extreme narrowing of the PDF. It is interesting to
observe that these two cases become quite close to the effects seen for massive neutrinos
with

∑
mν = 0.1 eV. Similar conclusions can be drawn concerning the peak and minimum

distributions, where we agree at ≈ 5% with TNG, and the low-AGN version of Bahamas.
Here also, the Bahamas’s fiducial and (especially) high AGN models differ substantially,
and are quantitatively closer to the results for the

∑
mν = 0.1 eV neutrino case. As a

summary of this discussion, we explicitly quantify the deviation between our results and
the ones from other numerical studies in Table 3.2.

Overall, our results reaffirm the strong sensitivity of WL observables to AGN feedback
physics, and they also point out an important partial degeneracy between the impacts of
massive neutrinos and baryonic physics. At the same time, the comparatively good agree-
ment between different simulation methodologies can be seen as encouraging, underlining
the predictive power of the simulations far into the non-linear regime, even though the
high systematic uncertainty in the strength of AGN feedback clearly remains a point of
concern.

3.5 Conclusions and outlook

In this chapter, we introduced our methodology for computing full-sky maps of weak lensing
convergence, starting from the mass-shell outputs of Gadget-4. We applied our code to a
selection of simulations from the MillenniumTNG suite, presenting predictions for four
observables, namely the angular power spectrum, the one-point PDF, and counts of peaks
and minima as a function of convergence.

After assessing the internal consistency of our code by comparing our results to theo-
retical predictions, we investigated the impact of mass and angular resolution on the weak
lensing convergence, finding low angular resolution to be particularly problematic. Even if
the underlying simulation has high mass resolution, insufficient angular resolution causes
significant suppression of the angular power spectrum at small scales, as well as a narrowing
of the one-point PDF and an underprediction of the number of peaks and minima at all val-
ues of the WL convergence. Creating convergence maps featuring high angular resolution
is therefore of critical importance, arguably even more important than the underlying mass
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resolution. We also tested whether the “fixed and paired” variance-suppression technique
proposed by Angulo & Pontzen (2016) remains beneficial when applied to continuous light-
cone output over a wide redshift range, rather than to individual simulation snapshots. We
found that it does indeed significantly reduce cosmic variance uncertainties in the angular
power spectrum of WL convergence at medium to large ℓ-values.

We investigated the impact of baryonic physics on WL measurements by comparing
convergence maps from DM-only and full-hydro simulations run from identical initial con-
ditions. We found that including the baryons results in a redshift-dependent suppression
of angular power which can reach ≈ 15% for ℓ ≳ 103. The PDF in turn becomes narrower,
increasingly so for higher source redshift, while the counts of peaks and minima are sup-
pressed in an κ-dependent fashion by up to ≈ 15%. This emphasizes the need to include
the impact of baryons in any attempt to model WL observables with high precision.

We also studied the effect of massive neutrinos on WL observables by comparing simu-
lations with different total neutrino masses, viz.

∑
mν = [0, 100, 300] meV. The impact is

significant, and is especially drastic for
∑
mν = 300 meV, producing a suppression of the

angular power spectrum by up to ≈ 20%, and inducing a significant distortion of the PDF
and of the distributions of peak and minimum counts, primarily a suppression of the tails
and an enhancement of the central parts of the distributions.

In summary, weak lensing predictions of the precision needed to interpret stage IV sur-
veys require appropriate modeling of the impact both of baryonic physics and of massive
neutrinos. Furthermore, these must be implemented in simulations which simultaneously
have both sufficiently high angular and mass resolution and large enough periodic box size.
In the present study, we adopted a purely theoretical perspective, focusing exclusively
on the mass distributions predicted by the MTNG simulations. However, this simulation
suite also predicts the properties of the galaxies themselves, either directly in the large
hydrodynamical simulation MTNG740, or through semi-analytic modeling throughout the
extremely large-volume DM-only simulation MTNG3000 (which also includes massive neu-
trinos). Forthcoming work will thus consider realistic forward modeling of weak lensing
observations in order to study various correlations between the WL signals and the galaxy
distribution.



Chapter 4

Ray-tracing vs. Born approximation
in full-sky weak lensing simulations
of the MillenniumTNG project

The content of this chapter has been published in the Monthly Notices of the Royal As-
tronomical Society, Volume 533, Issue 3, September 2024, Pages 3209–3221, and reported
here with slight modifications.

Abstract

Weak gravitational lensing is a powerful tool for precision tests of cosmology. As the
expected deflection angles are small, predictions based on non-linear N-body simulations
are commonly computed with the Born approximation. Here we examine this assumption
using DORIAN, a newly developed full-sky ray-tracing scheme applied to high-resolution
mass-shell outputs of the two largest simulations in the MillenniumTNG suite, each with a
3000 Mpc box containing almost 1.1 trillion cold dark matter particles in addition to 16.7
billion particles representing massive neutrinos. We examine simple two-point statistics like
the angular power spectrum of the convergence field, as well as statistics sensitive to higher-
order correlations such as peak and minimum statistics, void statistics, and Minkowski
functionals of the convergence maps. Overall, we find only small differences between the
Born approximation and a full ray-tracing treatment. While these are negligibly small at
the power spectrum level, some higher-order statistics show more sizable effects; ray-tracing
is necessary to achieve percent-level precision. At the resolution reached here, full-sky maps
with 0.8 billion pixels and an angular resolution of 0.43 arcmin, we find that interpolation
accuracy can introduce appreciable errors in ray-tracing results. We therefore implemented
an interpolation method based on nonuniform fast Fourier transforms (NUFFT) along
with more traditional methods. Bilinear interpolation introduces significant smoothing,
while nearest grid point sampling agrees well with NUFFT, at least for our fiducial source
redshift, zs = 1.0, and for the 1 arcmin smoothing we use for higher-order statistics.
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4.1 Introduction

Accurately computing the statistics mentioned in Section 1.2.2, either numerically or an-
alytically, is a significant challenge, as many approximations need to be employed. A
non-exhaustive list of assumptions often made in numerical WL experiments includes: the
Limber and flat-sky approximations (Lemos et al., 2017); the projection of 3D mass dis-
tributions into infinitely thin planes, i.e. the thin lens approximation (Frittelli & Kling,
2011; Parsi Mood et al., 2013; Zhou et al., 2024); neglecting higher-order image distortions
beyond convergence and shear, e.g. flexions (Schneider & Er, 2008); the use of DM-only
simulations rather than including full baryonic physics (Semboloni et al., 2011; Yang et al.,
2013; Osato et al., 2021; Broxterman et al., 2024; Ferlito et al., 2023); and simplifying
assumptions for the sample redshift distribution n(s) (Zhang et al., 2023).

Finally, one of the most common approximations used in calculating WL from simu-
lations is the Born approximation. This assumes that the perturbations to the light path
induced by gravitational lensing are negligible, so that it can be well approximated by
an undeflected straight line. Carrying out a WL simulation in the Born approximation
requires significantly less memory and computational effort than tracing the paths of rays
explicitly (see e.g., Petri et al., 2017), making it particularly attractive. The accuracy of the
Born approximation in WL simulations has previously been studied for square maps (Petri
et al., 2017), and, in the case of lensing of the cosmic microwave background (CMB), also
for full-sky maps (Fabbian et al., 2018). These studies have shown its impact to be ef-
fectively negligible at the level of the power spectrum (see also e.g., Fabbian et al., 2019;
Hilbert et al., 2020). Nevertheless, it has also been found to have a non-negligible impact
on higher moments of the convergence PDF; i.e. the skewness and kurtosis (Petri et al.,
2017; Fabbian et al., 2018; Barthelemy et al., 2020).

In this chapter, we revisit this question and develop a full-sky ray-tracing scheme that
works on the lightcone mass-shell outputs produced by the GADGET-4 code (Springel et al.,
2021) for the MillenniumTNG simulation suite. This allows us to explicitly test the Born
approximation, not only on the power spectrum and PDF, but also on a set of popular
higher-order statistics: counts of peaks and minima, the abundance and profiles of voids,
and Minkowski functionals.

This chapter is organized as follows. In Section 4.2, we describe the numerical simu-
lations and methods employed in this work. We first introduce the simulations and rela-
tive data products employed (Sec. 4.2.1), we discuss our implementation of a ray-tracing
scheme (Sec. 4.2.2), and we then focus on the spherical harmonics relations (Sec. 4.2.3)
and the interpolation schemes (Sec. 4.2.4) used. At the end of the section, we provide
additional details relevant to the computation of observables (Sec. 4.2.5). In Section 4.3,
after a qualitative discussion of our full-sky maps, we show the impact of ray-tracing on
the following statistics: the angular power spectrum (Sec. 4.3.2); the PDF and counts of
peaks and minima of the convergence (Sec. 4.3.3, 4.3.4); void statistics (Sec. 4.3.5); and
Minkowski functionals (Sec. 4.3.6). Finally, in Section 4.4 we summarize our conclusions,
and in Appendix B we discuss in further detail the effects caused by bilinear interpolation.
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4.2 Methods

4.2.1 Simulations

The simulations used in this work are a subset of the MillenniumTNG (MTNG) project,
introduced in Section 3.2.1. In order to avoid repetitions of the simulation volume along
the line of sight and to maximize statistical robustness, we employ the simulations of
the MTNG suite, which feature the biggest box size together with the highest particle
number. These are the A- and B-realizations of the N-body cosmological run MTNG3000-
DM-0.1ν, which feature dark matter (DM) and massive neutrinos with a summed mass of
Σmν = 100 meV.

In continuation of Ferlito et al. (2023), the main simulation product of interest for WL
applications is the “mass-shell” output: a collection of concentric HEALPix maps (Górski
et al., 2005) produced during the simulation on the fly in an onion-like fashion with fixed
comoving thickness. For each shell, every pixel stores the cumulative mass of particles
intersecting the time-evolving hypersurface of the lightcone of a putative observer. In the
present work, we use a HEALPix parameter of Nside = 8192, corresponding to 8.053 × 108

pixels and an angular resolution of 0.43 arcmin.

4.2.2 Implementation of ray-tracing

Our ray-tracing implementation, dubbed DORIAN1, is a Python code based on the multiple-
lens-plane approximation (e.g., Blandford & Narayan, 1986; Schneider et al., 1992; Jain
et al., 2000), which has been adopted in a number of codes (see e.g., Hilbert et al., 2009;
Becker, 2013; Petri, 2016; Fabbian et al., 2018). In our setup, each mass-shell (as described
in the previous section), here labeled with an index k, constitutes a thin lens. The surface
mass density distribution of the lens is given by

Σ(k)(β) =
M(β)

Apix

. (4.1)

This is obtained by dividing the mass assigned to each pixel by the pixel area Apix =
4π/Npix (in steradians). Using equation (2.7), we can compute an approximation of the
convergence at the kth lens plane as:

κ(k)(β) =
4πG

c2
(1 + z

(k)
d )

f
(k)
K

[
Σ(k)(θ) − Σ̄(k)

]
, (4.2)

where f (k)
K = fK(χ(k)). We introduce the lensing potential ψ as the 2-D projection of the

Newtonian gravitational potential onto the kth lens surface:

ψ(k)(β) =
2

c2f
(k)
K

∫ χk+∆χ/2

χk−∆χ/2

Φ(β)dχ, (4.3)

1Acronym for ”Deflection Of Rays In Astrophysical Numerical simulations”.
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where ∆χ is the comoving thickness of each shell. The above quantity is related to κ(k)

through the Poisson equation:

∇2
βψ

(k)(β) = 2κ(k)(β) , (4.4)

where ∇2
β is the Laplacian operator. The multiple lens plane approximation neglects modes

along the line of sight larger than the shell thickness, and therefore is expected to become
unreliable as the lens planes become too thin (Das & Bode, 2008). This motivates us to set
the shell thickness to ∆χ = 100h−1Mpc in the present work (see also Zorrilla Matilla et al.,
2020). We refer the reader to section 2.2 of Becker (2013) and appendix B of Takahashi
et al. (2017) for a more detailed discussion.

By taking the first derivative of the lensing potential, one obtains the deflection angle
at the kth lens plane:

α(k)(β) =
∂ψ(k)(β)

∂βi
. (4.5)

The second derivatives of the lensing potential give the shear matrix U at the kth lens
plane:

U
(k)
ij (β) =

∂2ψ(k)(β)

∂βi∂βj
=
∂α

(k)
i (β)

∂βj
. (4.6)

We note that, since we are dealing with quantities on the curved sky, partial derivative
operators are promoted to covariant derivatives (Becker, 2013). We have now introduced
all the quantities needed for a numerical implementation of equations (2.3) and (2.4). In
particular, the integrals can be carried out as a discrete summation over N spherical lens
planes, which leads to the following expressions for β and A, respectively:

β(N)(θ) = θ −
N−1∑
k=0

f
(k,N)
K

f
(N)
K

α(k)(β(k)) , (4.7)

A
(N)
ij (θ) = δij −

N−1∑
k=0

f
(k,N)
K

f
(N)
K

U
(k)
il A

(k)
lj , (4.8)

where f
(k,N)
K ≡ fK(χ(N) − χ(k)).

Using the above formulae with high-resolution maps would, however, require a large
number of operations, and most importantly, the memory needs would be prohibitively
large. Hilbert et al. (2009) reformulated these equations to allow the quantities to be
calculated with an iterative procedure that requires only information about the previous
two lens planes:

β(k+1) =

(
1 − f

(k)
K

f
(k+1)
K

f
(k−1,k+1)
K

f
(k−1,k)
K

)
β(k−1)

+
f
(k)
K

fk+1
K

f
(k−1,k+1)
K

f
(k−1,k)
K

β(k) − f
(k,k+1)
K

f
(k+1)
K

α(k)(β(k)) ,

(4.9)
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Here the initial conditions at the first lens plane are set to β(−1) = β(0) = θ and A
(−1)
ij =

A
(0)
ij = δij; i.e. we perform backward-in-time ray-tracing from the observer to the source

plane.
As noted by Becker (2013), when working with spherical lens planes, one has to parallel

transport the distortion matrix (a tensor on the sphere) along the geodesic connecting the
angular positions of the ray at consecutive planes, which takes into account the change in
the local tensor basis.

4.2.3 Spherical harmonics relations

Since we are working with full-sky maps, the optimal way to compute the derivatives in
equations (4.5) and (4.6) is by performing them in the spin-weighted spherical harmonics
domain (see Varshalovich et al., 1988, for a standard reference). In this section, we will
discuss how we compute α and U at each lens plane by making use of the relations derived
in Hu (2000).

Once κ, a spin-0 (i.e. scalar) quantity, is computed from equation (4.2) (in this section
we omit the superscript k for clarity), we can obtain its spherical harmonic coefficients κℓm
using the HEALPix map2alm routine. The key relation is then:

κ(β) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

κℓmY
m
l (β) , (4.11)

where Y m
l are the spin-0 spherical harmonics. The Poisson equation on the surface of the

sphere, i.e. equation (4.4), takes the following form in the spherical harmonics domain:

κℓm = −ℓ(ℓ+ 1)

2
ψℓm , (4.12)

while the derivative in equation (4.5) yields the spin-1 (i.e. tangential vector) field:

αlm = −
√
ℓ(ℓ+ 1)ψℓm . (4.13)

We point out that one can skip the computation of the potential and obtain the deflec-
tion field directly from the convergence by combining equations (4.12) and (4.13):

αlm =
2√

ℓ(ℓ+ 1)
κℓm . (4.14)
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Regarding the shear matrix, we combine equations (7) and (8) of Castro et al. (2005),
yielding:

Uij(β) = κ(β)δij + [γ1(β)σ3 + γ2(β)σ1]ij , (4.15)

where σ1 and σ3 are the Pauli matrices. Therefore, the only additional quantity we need
to obtain for the shear matrix is the shear, a spin-2 quantity which can be computed from
κ as follows:

γlm = −
√

(ℓ+ 2)(ℓ− 1)/(ℓ(ℓ+ 1))κℓm , (4.16)

under the assumption that the B-modes of the shear (which have comparable power to the
rotation) can be neglected (see e.g., Hadzhiyska et al., 2023).

4.2.4 Interpolation on HEALPix maps

As one can see from equations (4.9) and (4.10), α(k) and U (k) have to be evaluated at the
angular position β(k) for each ray, which in general will not coincide (apart from the first
iteration) with the center of a HEALPix pixel. A classic approach to this problem consists
of transforming the quantities back to real space with the HEALPix alm2map spin routine,
and then performing interpolation in the resulting maps, with the simplest choices being
Nearest Grid Point (NGP, e.g., Fabbian et al., 2018) and bilinear (e.g., Broxterman et al.,
2024) interpolation. The first is faster but less precise, while the second is in principle more
precise, but at the cost of being slower and introducing significant smoothing. We discuss
the impact of the additional effective smoothing from bilinear interpolation in Appendix B.

A novel, more accurate and faster approach, based on the nonuniform fast Fourier
transform (NUFFT, cf. Fessler & Sutton 2003; Barnett et al. 2019) algorithm, has been
efficiently implemented in the context of gravitational lensing by Reinecke et al. (2023).
The idea is to accurately synthesize the fields at the desired angular positions by first
computing a map on an equiangular grid from the spherical harmonic coefficients using
a conventional spherical harmonic transform algorithm, then extending this map to 2π in
the θ direction (which results in a map that is periodic along both coordinate axes), and
finally interpolating the result to the desired locations using non-uniform FFTs.

In this work, we will compare NGP, bilinear, and NUFFT interpolated ray-tracing
simulations to the Born approximation. This will allow us to evaluate not only the impact
of ray-tracing as opposed to the Born approximation, but also to capture and study the
differences between the three different interpolation schemes employed.

4.2.5 Computation of the WL statistics

The power spectra are computed with the HEALPix routine anafast, and binned into
80 equally spaced logarithmic bins in the range ℓ ∈ [1, 2.5 × 104]. Before computing all
the other statistics, every map is smoothed with the HEALPix smoothing routine with a
Gaussian symmetric beam characterized by a standard deviation of 1 arcmin, consistent
with Ferlito et al. (2023) and with other similar studies. For the convergence PDF, we bin
all pixels in 100 linearly spaced bins in the range κ ∈ [−0.15, 0.25]. Peaks and minima are
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Figure 4.1: Top row: convergence field computed with our ray-tracing code using NUFFT
interpolation. Middle row: difference of the convergence field when computed with ray-tracing
instead of the Born approximation. Bottom row: amplitude of the deflection field α, computed
as the difference between the observed angular position θ and the original angular position β.
In each case, the panels on the right-hand side show enlargements with a size of 10 degrees on a
side. They may also be compared to the corresponding regions in the fields shown in Figure 4.2.
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Figure 4.2: Top row: effective lensing potential, computed by plugging the convergence field
into equation (4.12). Middle row: shear field amplitude |γ| =

√
γ21 + γ22 . Bottom row: rotation

field. All quantities were computed with our ray-tracing code using NUFFT interpolation. In
each case, the panels on the right-hand side show enlargements with a size of 10 degrees on a
side. They may also be compared to the corresponding regions in the fields shown in Figure 4.1.
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computed as the pixels that are, respectively, greater or smaller than their 8 neighbours2,
which are retrieved using the HEALPix get all neighbours routine. For the peaks, we set
25 linearly spaced bins in the range κ ∈ [−0.04, 0.2], while for the minima 30 linearly spaced
bins in the range κ ∈ [−0.045, 0.045] are used. Void statistics were computed following
Davies et al. (2018). In particular, for the void abundance, we set 25 linearly spaced bins in
the range Rv ∈ [0, 0.2] deg where Rv is the void radius, and for the stacked void profiles, we
use 20 linearly spaced bins in the range r/Rv ∈ [0, 2], where r/Rv is the distance from the
void center (r) in units of void radius. Finally, Minkowski functionals (MF) were computed
with the publicly available Python package PYNKOWSKI (Carones et al., 2024), using 130
linearly spaced bins in the range κ ∈ [−0.03, 0.11]. For all of the above statistics, the
value at each bin is computed as the average of the A- and B-realizations of our MTNG
simulations. In the case of the void profiles and the third MF, in the lower sub-panel of the
respective plots, we decided to show the difference with respect to the Born approximation.
The reason is that since these two statistics cross the zero value, the ratio would diverge to
infinity, making the plot somewhat more difficult to interpret. For all the other statistics,
the lower sub-panel shows the ratio with respect to the Born approximation.

4.3 Results

We begin the presentation of our results with an overview of some key quantities produced
by our simulations, then move our focus to the impact of the Born approximation on
the following WL statistics: power spectrum, PDF, Peaks, Minima, Void statistics, and
Minkowski functionals. For definiteness, all the WL statistics in the present work are
computed assuming a source redshift of zs = 1.0.

4.3.1 Overview of WL quantities

Figures 4.1 and 4.2 show maps of some essential WL quantities, as computed with our
ray-tracing code using the NUFFT interpolation. We start by looking at the amplitude of
the deflection field (bottom panel of Figure 4.1), which is defined as the difference between
the observed angular position θ and the original angular position β. We see that the
characteristic angular scale of fluctuations is larger than that of the convergence field (top
panel of Figure 4.1): this is expected as the convergence is the derivative with respect to
the angular position of the deflection. Features that cause the strongest deflection, i.e. with
an intensity ≳ 2 arcmin (colored in red), reach an angular size of ≈ 5 − 10 degrees. This
reflects the fact that for cosmological WL, the dominant component of the deflection field
is generated from the large-scale structure of the Universe, rather than single objects. To
better quantify the magnitude of the deflection field, we can look at its PDF in Figure 4.3.
We notice that the median deflection that a ray experiences along its path from the source
to the observer is ≈ 0.79 arcmin, which is almost twice the angular size of a pixel in

2In the HEALPix tessellation, every pixel has 8 neighbors, except for a small minority of pixels, for
which it can be 7 or 6.
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Figure 4.3: PDF of the deflection field α, computed with our ray-tracing code using NUFFT
interpolation as the difference between the observed angular position θ and the original angular
position β. The dashed lines indicate the median and the 99% percentile.

our setting. Interestingly, only 1% of the rays experience a deflection greater than ≈ 2.1
arcmin.

By comparing the full-sky map of |α| with the one of the convergence difference (center
panel of Figure 4.1), we can perform a qualitative consistency check by noticing that the
regions where the rays experience the least deflection (colored from dark blue to black)
correspond to the regions where the difference between the Born approximation and ray-
tracing is the closest to zero (colored from light grey to white). This becomes even more
evident by looking at the zoomed-in region, where a low-deflection region is seen in the left
half of the panel.

In the top panel of Figure 4.2, we show the “effective” lensing potential ψeff , computed
by plugging the convergence field (the final product of our code) into equation (4.12).
Consistent with theoretical expectations, a flatter potential will correspond to a smaller
deflection (e.g. left half of the zoomed panel). Conversely, where the potential has strong
variation, the deflection will be greater (e.g. right half of the zoomed panel). Analogously
to the relation between convergence and deflection, we notice that the characteristic angular
scales of fluctuations of the lensing potential are larger than those of the deflection, which
is its derivative with respect to angular position.

In the center and bottom panels of Figure 4.2, we show the shear amplitude |γ| =√
γ21 + γ22 and the rotation ω, respectively. Both quantities are obtained from the distor-

tion matrix A computed with our ray-tracing code. By looking at the zoomed regions of
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Figure 4.4: Top left: angular power spectrum; top right: PDF; bottom left: WL peak counts;
bottom right: minimum counts. All the observables are computed adopting a fiducial source
redshift of zs = 1.0. The statistics are extracted from WL convergence maps computed in the
Born approximation (blue), as well as with our ray-tracing code, by using NGP (red), bilinear
(green), and NUFFT (orange) interpolation. The lower sub-panel of each plot shows the ratio of
these three ray-tracing results with respect to the Born approximation. In the case of the angular
power spectrum, we also show the WL rotation computed with the ray-tracing code using NGP
(purple) and bilinear (brown) interpolation. In the case of the PDF, we also include a Gaussian
fit to the map obtained with the Born approximation (dashed grey). We observe that the power
spectrum is not significantly affected by the Born approximation, while the convergence PDF is
slightly Gaussianised by ray-tracing, and peaks and minima counts are impacted correspondingly.
We also notice that, for all the observables, bilinear interpolation introduces a smoothing that
significantly distorts the effects of ray-tracing itself.
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Figure 4.5: Left: void abundance distribution; right left: stacked void profiles. The statistics are
extracted fromWL convergence maps computed in the Born approximation (blue), as well as with
our ray-tracing code, by using NGP (red), bilinear (green) and NUFFT (orange) interpolation.
The maps have a source redshift of zs = 1.0. The lower sub-panel of each plot shows the ratio
(or the difference, in the case of the profiles) of these three ray-tracing results with respect to
the Born approximation. Neither statistic is significantly affected by the Born approximation.
We also notice that bilinear interpolation introduces a smoothing that moves the void abundance
distribution toward larger radii and flattens the void profiles.

convergence and shear, we can recognize the same underlying cosmic structure in both
fields. But the two fields show strikingly different features: the convergence field is dom-
inated by a huge number of single objects, which will result in many peaks with different
intensities; on the other hand, the shear intensity field shows a more interconnected struc-
ture, in which filaments and walls are clearly visible. Finally, we observe that the rotation
field shows a very similar morphology to that of the shear intensity field.

4.3.2 Power Spectrum

In the top left panel of Figure 4.4, we show the angular power spectra of WL convergence
and rotation. As expected from theoretical predictions, the power of the rotation field is ∼2-
3 orders of magnitude smaller than that of the convergence field. The most striking feature
that can be observed for both quantities is the progressive power suppression at smaller
angular scales. This suppression, observed when the ray-tracing scheme with bilinear
interpolation is used, is around ≈ 1% at ℓ ≈ 1500. As we discuss in more detail in
Appendix B, this effect is not directly connected to the ray-tracing, but rather arises when
performing a series of bilinear interpolations on a HEALPix grid.
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Figure 4.6: Top: first Minkowski functional (MF, area); middle: second MF (perimeter); bottom:
third MF (genus). The statistics are extracted from WL convergence maps computed in the Born
approximation (blue), as well as with our ray-tracing code, by using NGP (red), bilinear (green),
and NUFFT (orange) interpolation. The maps have a source redshift of zs = 1.0. The lower
sub-panel of each plot shows the ratio (or the difference, in the case of the genus) of these
three ray-tracing results with respect to the Born approximation. We see that the three MFs
are affected to different degrees and that the bilinear interpolation introduces a smoothing that
significantly distorts the effects of ray-tracing itself.

Next, in the lower sub-panel, we show the ratio between the convergence spectra with
ray-tracing and Born approximation. In the case of ray-tracing performed with NGP
interpolation, we see that the fluctuations with respect to the Born approximation never
exceed 0.2%, at least until ℓ ≈ 104 where we see a suppression of 0.25%, followed by a
steep increase in power. This effect, which occurs at approximately the pixel scale, could
also be connected to the interpolation scheme. We have verified this by checking that
this feature moves to lower multipoles when we decrease the angular resolution of the
corresponding HEALPix maps. Finally, in the case of ray-tracing performed with NUFFT
interpolation, we see that fluctuations never exceed 0.1% at every scale, until the very last
bin, at ℓ ≈ 2.3 × 104, where a ≈ 1% suppression is found.
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We conclude that, modulo some ≲ 0.2% fluctuations (consistent with Hilbert et al.,
2020), the effects on the power spectrum when performing ray-tracing instead of the Born
approximation are dominated by the interpolation schemes, rather than from the improved
modeling of the physical process. For this reason, NUFFT is found to be a preferable
scheme, as it introduces the least power distortions.

4.3.3 Convergence PDF

Having verified that ray-tracing has a negligible impact with respect to the Born approx-
imation at the level of the power spectrum, we next investigate whether this is also true
for higher-order statistics. We start with the convergence one-point PDF, shown in the
top right panel of Figure 4.4. By looking at the lower sub-panel, which shows the ratio of
the ray-tracing schemes to the Born approximation, we see that for NGP and NUFFT the
central region is minimally distorted, with deviations never exceeding ≈ 1% in the range
−0.015 < κ < 0.07. Conversely, the outer regions of the distribution exhibit two opposite
trends: for κ ≳ 0.04 there is a weak but progressive suppression that reaches ≈ 1.5% at
κ ≈ 0.09; for κ ≲ −0.015, we see a steep enhancement that reaches ≈ 10% at κ ≈ −0.025.
In the case of ray-tracing with bilinear interpolation, there is a larger suppression of the
high-κ tail, which reaches ≈ 4% at κ ≈ 0.09, while the steep upturn in the low-κ tail is
shifted to smaller values. The discrepancy between this last ray-tracing method and the
previous two can be explained by taking into account the smoothing introduced by the
bilinear interpolation, which narrows the PDF. We conclude that the Born approximation
is likely to mildly overestimate the high-κ tail and significantly underestimate the low-κ
part of the PDF.

In contrast to the power spectrum, the features here are not dominated by the inter-
polation schemes. In particular, a smoothing of the PDF will lead to a suppression at
negative κ, whereas we see the opposite in this case. Additionally, while for the power
spectrum the three interpolation schemes have noticeably different effects, for the PDF
the impact is similar in all cases, indicating that this is driven by a common underlying
process.

An interpretation of this result can be given by referring to the leading-order post-Born
corrections introduced in equation (2.11). Both the geodesic correction and the lens-lens
coupling contribute to making the convergence distribution more Gaussian. This can be
directly seen by considering the Gaussian fit (dashed grey line). The former does this by
repeatedly displacing the ray positions along directions tangential to the line of sight. The
latter by progressively processing the light signal through a system of lenses that are not
correlated on sufficiently large scales.

We note that our results found in the case of NGP interpolation are qualitatively
consistent with the numerical study of Fabbian et al. (2018) and the theoretical work
of Barthelemy et al. (2020). While they found somewhat stronger effects, this is to be
expected as they studied CMB lensing.
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4.3.4 Peaks and minima

In the bottom left and bottom right panels of Figure 4.4, we show our results regarding
peaks and minima counts. In the case of ray-tracing with bilinear interpolation, we observe
for both a uniform ≈ 2.5% suppression of the counts of peaks and minima at all values
of κ. For a better comparison, this effect was removed in our figures by normalizing the
count distributions to unity.

Let us first discuss the peak counts. We see that the overall results are qualitatively
similar to what we found for the PDF. In this case, the most relevant effect is the sup-
pression of the high-κ tail, which, in the case of the ray-tracing with NGP and NUFFT
interpolation, reaches ≈ 1.5% at κ ≈ 0.15. The additional suppression in the tails of
the distribution in the case of ray-tracing with bilinear interpolation is explained by the
smoothing that such a scheme introduces.

In the case of the minima counts, we observe that both tails of the distribution are
distorted quite significantly. In particular, in the case of ray-tracing with NGP and NUFFT
interpolation, the low-κ tail experiences a steep enhancement amounting to ≈ 15% at
κ ≈ −0.025, while the high-κ tail is suppressed by ≈ 7% at κ ≈ 0.03. Similarly to the case
of the PDF, ray-tracing with bilinear interpolation introduces a delay in the enhancement
of the low-κ tail, which can again be explained in terms of the smoothing introduced by
the interpolation.

Overall, it is interesting that the effects of Gaussianisation induced by ray-tracing are
stronger for minima. This appears clearer by noting that the red and orange curves (NGP
and NUFFT respectively) are the ones deviating more from the Born approximation, while,
in the case of the peaks, it is the green curve (bilinear) that has the stronger deviation,
indicating that the smoothing from bilinear interpolation is dominating over the post-Born
effects.

4.3.5 Void statistics

We continue our investigation by considering WL tunnel voids, a WL higher-order statistic
that is sensitive to extended underdense regions and has been shown to have promising
constraining power on cosmological parameters (Davies et al., 2021). The voids are defined
as large underdense regions in the convergence field. The void-finding method used here
is the tunnel algorithm, which identifies the largest circles that are empty of suitably
defined tracers. In the present case, the tracers are the WL peaks of the convergence field.
The corresponding void abundance and profiles are shown in the left and right panels of
Figure 4.5, respectively.

From the void abundance, we find that ray-tracing with bilinear interpolation distorts
the distribution by shifting it towards larger void radii Rv, which is consistent with the
induced additional smoothing. In particular, we observe a ≈ 20% suppression in the low
radii tail at Rv ≈ 0.02 deg, and a ≈ 40% enhancement in the high radii tail at Rv ≈ 0.14
deg. In the case of ray-tracing with NGP and NUFFT interpolation, we only find a much
smaller effect, namely a suppression at Rv ≈ 0.15 deg amounting to around ≈ 10%, and
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deviations at the most extreme bins of the distribution, at Rv < 0.02 deg and Rv < 0.16
deg.

Moving to the stacked radial void profiles, we find that, also in this case, ray-tracing
with bilinear interpolation has the strongest impact: it enhances the inner and outer
regions while suppressing intermediate radii by ≈ 5%, at the peak of the convergence.
This flattening of the profile can be explained by the effective smoothing introduced by
bilinear interpolation. The effect of ray-tracing with NGP and NUFFT interpolation is
significantly weaker, with the most noticeable feature being a ≈ 0.5% suppression of the
convergence in the innermost regions of the voids. This effect can be connected to the
enhancement we observe in the low tail of the PDF of the minima distribution. In the case
of NUFFT interpolation, we observe additional ≈ 1% deviations at r/Rv ≈ 1.

In general, we find that, modulo the artificial smoothing effects introduced by the
bilinear interpolation, the post-Born corrections do not have a significant impact on void
statistics. We tested the above statistics for a range of peak catalogue thresholds (Davies
et al., 2018) and found qualitatively similar results.

4.3.6 Minkowski Functionals

Finally, we investigate the impact of the Born approximation on the Minkowski functionals.
These are, in general, a set of N + 1 morphological descriptors invariant under rotations
and translations that characterize a field in an N -dimensional space. The MFs are defined
on an excursion set Σ(ν) = κ > νσ0; i.e. for the set of pixels whose values exceed a certain
threshold νσ0. Here σ0 is conventionally chosen as the standard deviation of the field.

In our case we are dealing with a 2D field on the surface of the sphere, therefore we have
the following three MFs: V0 is simply the total area of the excursion set; V1 is one-fourth of
the total perimeter of the excursion set; and finally V2, called “genus”, is associated with
the number of connected regions minus the number of topological holes of the excursion
set. We refer the reader to equations (2.5), (2.6) and (2.7) of Marques et al. (2024) for
the mathematical expressions of V0, V1 and V2. Since MFs encode information from all
the moments of the distributions of a field, they are highly sensitive to non-Gaussianities
and have thus been proposed as a powerful cosmological statistic in a number of different
studies (see e.g., Springel et al., 1998; Schmalzing & Gorski, 1998; Hikage et al., 2008;
Ducout et al., 2013).

We show our results for the V0, V1, and V2 functionals in the top, middle and bottom
panels of Figure 4.6, respectively. In general, also in this case we note that any discrepancy
between bilinear interpolation (green curve) with respect to the other two methods, NGP
and NUFFT (red and orange curves), helps us to disentangle the impact of an additional
smoothing introduced by bilinear interpolation, from the impact of post-Born corrections
themselves.

Let us recall that, by definition, V0 is the cumulative PDF. Indeed, the impact of the
three ray-tracing schemes can be directly related to what we observed for the PDF earlier
(top right panel of Figure 4.4). All of the ray-tracing schemes show qualitatively the same
trend, with an initial tiny suppression, followed by a small enhancement, and then by a
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stronger suppression. At κ ≈ 0.1, this reaches ≈ 2.5% for the bilinear interpolation, and
≈ 1.2% for the NGP and NUFFT interpolation.

In the case of V1, at κ ≈ −0.028, we see an enhancement of ≈ 35% for ray-tracing
with bilinear interpolation and of ≈ 25% in the case of NGP and NUFFT. With increasing
values of κ there is a progressive suppression that, at κ ≈ 0.1, reaches ≈ 4% for bilinear
interpolation and ≈ 1% for NGP and NUFFT.

In the case of V2, the genus statistic, we notice that ray-tracing with bilinear interpo-
lation results in notably different effects: we see an enhancement of ≈ 3.5% at κ ≈ −0.01,
followed by a suppression of ≈ 2.5% at κ ≈ 0.01 that then progressively diminishes, and
eventually fades completely. For NGP and NUFFT interpolation, the effects are smaller.
These are a suppression of ≈ 3% at κ ≈ −0.02, followed by an enhancement of 0.5% in the
range −0.015 ≲ κ ≳ 0.04.

Also in this case, the effects of smoothing by bilinear interpolation dominate the post-
Born corrections. In particular, as expected, smoothing will shift the distribution to lower
thresholds for the perimeter, while for the genus, it will dampen the amplitude.

4.4 Conclusions and outlook

In this chapter, we present our methodology for computing full-sky ray-traced weak lensing
maps, starting from the mass-shell outputs of GADGET-4 and applying our code to a
subset of the MillenniumTNG simulation suite. After having qualitatively inspected key
WL quantities such as convergence, deflection, shear, and rotation, we test the impact of
the Born approximation against three ray-tracing schemes that employ NGP, bilinear, and
NUFFT interpolation, respectively. These tests were performed on the power spectrum,
as well as on a number of popular higher-order WL statistics.

We confirm, in line with theoretical predictions, that post-Born effects tend to Gaus-
sianise the convergence PDF and consequently impact higher-order statistics as well. Re-
garding the use of different interpolation approaches in ray-tracing schemes, we interest-
ingly find that although bilinear interpolation is in principle more accurate than NGP, the
effective smoothing that this introduces at our grid resolution dominates the post-Born
effects, even when using a HEALPix map with the maximum resolution of Nside = 8192.
Additionally, we find that NUFFT interpolation, which is the most accurate method, agrees
well with the NGP scheme in the present study. We can explain this by noting that a 1
arcmin smoothing, applied before the computation of all the higher-order statistics, tends
to wash out information at the smallest angular scales, where the differences between these
two methods are expected to become appreciable. We note that since the accuracy of NGP
interpolation strongly depends on the HEALPix resolution, we expect the agreement with
NUFFT to be degraded for lower values of Nside.

We summarize the impact of using a ray-tracing scheme instead of the Born approxi-
mation for the different statistics as follows:

• The angular power spectrum is not significantly affected by the Born approximation.
Smoothing due the use of bilinear interpolation in a ray-tracing approach suppresses
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the power at progressively smaller scales.

• The convergence PDF is slightly Gaussianised by ray-tracing, which enhances the
low-κ tail and suppresses the high-κ tail. We find deviations at κ ≈ −0.025 of
≈ 10% when NGP and NUFFT interpolation are used, and of ≈ 4% when bilinear
interpolation are used.

• Peaks counts are suppressed, at κ ≃ 0.15, by ≈ 1.5% for ray-tracing with NGP and
NUFFT interpolation and by ≈ 2.5% for bilinear interpolation.

• Minima counts on the other hand are mainly enhanced, at κ ≈ −0.025, by ≈ 15%
for NGP and NUFFT interpolation and by ≈ 7% for bilinear interpolation.

• The void abundance and the void profiles are not significantly influenced by the
Born approximation. However, smoothing due to bilinear interpolation distorts the
void abundance with deviations up to ≈ 40%, and it flattens the void profiles with
deviations up to ≈ 5%.

• The three 2D Minkowski functionals we investigated are affected to different degrees.
Most noticeably, V1 is enhanced at κ ≈ −0.028 by ≈ 35% for ray-tracing with bilinear
and by ≈ 25% for ray-tracing with NGP and NUFFT interpolation.

Overall, we find only very subtle consequences due to the use of the Born approximation.
However, for higher-order statistics, they become sizable enough that the use of ray-tracing
is necessary if exquisite precision is required. The need for interpolation arising in ray-
tracing schemes typically introduces the technical problem of additional discreteness effects
that can diminish or even defeat the accuracy improvements that ray-tracing in principle
offers. Such problems can be overcome by adopting a novel interpolation scheme based on
NUFFT. For currently achievable all-sky HEALPix resolutions, we find that low-order NGP
interpolation agrees well with the NUFFT scheme, especially when a 1 arcmin smoothing
is adopted. On the other end, the bilinear interpolation is found to be unreliable as it
introduces sizable smoothing effects. Ultimately, in the limit of infinite resolution, we
would expect the three interpolation schemes to agree.

Note that the impact of post-Born corrections will increase with increasing source
redshift. For WL surveys, source redshift distributions are smooth functions that vary
between z = 0 up to approximately z ≈ 3, peaking at z ≈ 1. In this work, our source
redshift distribution corresponds to a δ-function at z = 1, which is roughly the median
source redshift of typical Stage-IV WL surveys. Therefore, we expect the results presented
here to be indicative of what can be expected for more realistic redshift source distributions.

We conclude that harvesting the accuracy benefits of ray-tracing is ultimately required in
full-sky WL simulations in order to accurately model higher-order statistics to the percent
level.

The methods presented and tested in this work pave the way to several applications
in the context of high-fidelity modeling in the era of precision cosmology. One possible
development could be to compute, from the simulations used in this work, a detailed and
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realistic full-sky galaxy mock catalogue based on the latest version of the semi-analytic
galaxy formation code L-GALAXIES (Barrera et al., 2023), which can be then combined
with our ray-tracing code to obtain highly accurate predictions for the 3x2pt as well as
higher-order statistics. Another possibility consists of using the full-hydro MTNG run to
extract the galaxy intrinsic alignment signal (a key contaminant of cosmological WL) from
the lightcone (in a similar way to Delgado et al., 2023) and to compare/combine it with
the shear signal computed with our ray-tracing code.
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Chapter 5

Fully non-linear simulations of galaxy
intrinsic alignments for weak lensing
with the MillenniumTNG lightcone

The content of this chapter has been submitted to the Monthly Notices of the Royal As-
tronomical Society and reported here with slight modifications.

Abstract

We present a complete forward model of a realistic weak lensing galaxy catalogue based
on the 740 Mpc hydrodynamical MillenniumTNG (MTNG) simulation. Starting with
a complete particle and cell lightcone covering one octant of the sky with redshift range
0 < z < 1.5, we apply a group and subhalo finder to generate the corresponding galaxy
catalogue for a fiducial observer. For all galaxies, we compute both their intrinsic and
lensing-induced shear. The intrinsic component is derived from the luminosity-weighted in-
ertia tensor of stellar particles, while the extrinsic (gravitational) shear is obtained through
full-sky ray-tracing on the same lightcone. This allows us to directly predict the impact
of intrinsic alignment (IA) of galaxies on the shear correlation function and popular con-
vergence statistics in a fully non-linear forward model. We find that IA modifies the
convergence power spectrum at all angular scales by up to 20%, it significantly impacts
the PDF, altering its tails by 10–20%, and distorts peak and minimum counts up to 30%,
depending on redshift and scale. We also evaluate the impact of the IA signal on the shear
correlation function, finding that, along with a redshift dependence, the signal strongly
increases for higher galaxy stellar mass cuts applied to the catalogue. Notably, with the
highest stellar mass cut we apply, the intrinsic shear autocorrelation can become compara-
ble to the gravitational shear component on small angular scales. Our results highlight the
importance of accurately modeling IA for precision weak lensing cosmology with upcoming
Stage IV surveys.
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5.1 Introduction

It is well known that galaxies tend to align with the surrounding matter field (Valdes et al.,
1983; Miralda-Escude, 1991; Hirata et al., 2007), referred to as galaxy intrinsic alignment
(IA, for reviews, see e.g., Joachimi et al., 2015; Kirk et al., 2015; Kiessling et al., 2015;
Lamman et al., 2024). Such alignment, aside from being used as a cosmological probe (see
e.g., Chisari & Dvorkin, 2013; Schmidt et al., 2015; Akitsu et al., 2021; Kurita & Takada,
2023; Schmidt & Jeong, 2012b; Akitsu et al., 2023; Taruya & Okumura, 2020; Okumura
& Taruya, 2023; Xu et al., 2023), directly contaminates the WL signal, by introducing
an additional correlation between galaxy shapes and alignments that is independent of
WL, where the WL signal itself is extracted from galaxy shape measurements (Joachimi
& Bridle, 2010; Zhang, 2010; Troxel & Ishak, 2012).

The degree to which IA contaminates WL measurements is still not well constrained,
and efforts to quantify and describe the IA signal have resulted in a range of analytical
models that span different approaches and degrees of sophistication. Examples include
the Linear Alignment model (LA, Catelan et al., 2001; Hirata & Seljak, 2004), Nonlinear
Alignment model (NLA, Bridle & King, 2007; Joachimi et al., 2011), Tidal Alignment
and Tidal Torquing model (TATT, Blazek et al., 2019), hybrid Lagrangian models (e.g.
HYMALAYA, Maion et al., 2024), effective field theory models (e.g., Vlah et al., 2020,
2021; Bakx et al., 2023; Chen & Kokron, 2024), and models based on the halo model
formalism (Schneider & Bridle, 2010; Fortuna et al., 2021). These analytical models can
only be incorporated into summary statistics for which analytic models also exist, such
as the WL power spectrum. It is generally nontrivial to extend these analytic models to
higher-order statistics, where one instead needs to rely on measurements from simulations.
Recent strategies to address this problem include the IA infusion approach (Harnois-Déraps
et al., 2022), which uses the same mass-shells employed in numerical WL ray-tracing to
forward model the IA signature.

The intrinsic alignment of galaxies is a complex phenomenon, which is influenced by
a variety of factors ranging from cosmological scales down to sub-galactic scales (see e.g.,
Troxel & Ishak, 2015), which are highly nonlinear. For this reason, hydrodynamical simula-
tions have emerged as an essential tool to quantify this effect (a non-exhaustive list includes
Chisari et al., 2015; Tenneti et al., 2015; Velliscig et al., 2015b; Hilbert et al., 2017; Bate
et al., 2020; Bhowmick et al., 2020; Shi et al., 2021; Kurita et al., 2021; Samuroff et al.,
2021; Zjupa et al., 2022; Lee et al., 2025). These studies demonstrate that hydrodynamical
simulations can meaningfully capture IA, as they incorporate detailed galaxy formation
physics and do not assume any relationship between galaxies and the surrounding gravita-
tional field or their host halos.

Recently, Delgado et al. (2023, hereafter D23) used a very large hydrodynamical simula-
tion of galaxy formation, the flagship simulation of the MillenniumTNG (MTNG) project,
to measure the projected correlation function of the intrinsic shear of galaxies, and detected
IA with the density field at high significance. D23 further detected a significant IA signal
for elliptical galaxies assuming the NLA model, a weak IA signal for spirals assuming the
TATT model, and a mass-dependent misalignment between central galaxies and their host
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dark-matter halos.
Our work significantly extends the analysis conducted by D23 for the MTNG simulation,

with a focus on the lightcone output, to produce a realistic shear catalogue which directly
captures both the intrinsic shear, as well as the extrinsic (lensing-induced) shear; i.e. the
pure WL signal. Such a catalogue, which covers an octant of the sky and spans the
redshift range z = [0, 1.5], allows us to directly predict the impact of intrinsic alignments
on a range of commonly used WL lensing statistics, in the fully non-linear regime, and
without relying on analytic models. The statistics measured here include: shear correlation
function, convergence power spectrum, convergence PDF, convergence peaks, and minima.

This chapter is organized as follows. In Section 5.2, we provide some key quantities
of the intrinsic alignment formalism (Sec. 5.2.1) and introduce the correlation function
(Sec. 5.2.2). In Section 5.3, after describing the methodology used to construct the galaxy
catalogue (Sec. 5.3.1), we show our galaxy selection (Sec. 5.3.2), and describe how we
compute intrinsic and extrinsic shear (Sec. 5.3.3 and 5.3.4), and generate convergence maps
(Sec. 5.3.5). In Section 5.4, we present our main results. Starting with a comparison to
theoretical prediction (Sec. 5.4.1), we then investigate the redshift dependence (Sec. 5.4.2)
and the mass dependence (Sec. 5.4.3) of IA on WL. We conclude in Section 5.5 with a
summary of our findings and an outlook on future applications.

5.2 Theoretical background

In this section, we integrate the theoretical framework presented in Section 2.1 by introduc-
ing key quantities related to the intrinsic alignment of galaxies, along with the formalism
of the correlation function.

5.2.1 Intrinsic ellipticity of galaxies

In this chapter, we will refer to the gravitationally induced (extrinsic) shear as γG, in order
to distinguish it from the intrinsic shear γI, which we are about to introduce.

The three-dimensional shape of galaxies can be approximated as a triaxial ellipsoid. The
projection of such an object onto the celestial sphere (described in detail in Section 5.3.3)
results in an ellipse with major axis a, minor axis b, and orientation angle ϕ, defined as
East of North. This lets us introduce another spin-2 field, the ellipticity1:

ϵ ≡ a2 − b2

a2 + b2
exp (2iϕ) , (5.1)

which can be converted to the intrinsic shear through:

γI =
ϵ

2R . (5.2)

1Note that there is more than one possible definition of the ellipticity, for a discussion we refer the
interested reader to section 2.2 of Lamman et al. (2024).
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Here the responsivity factor R accounts for the average response of the ellipticity to a
given shear. Consistently with D23, in the following we assume R = 1, justified by the
assumption that galaxy isophotes are elliptical and the absence of measurement noise (see
e.g., Bernstein & Jarvis, 2002). Finally, under the assumption that the gravitational shear
is sufficiently small, one can obtain the total (observed) shear γO simply by adding the
intrinsic and the (extrinsic) gravitational components:

γO ≈ γI + γG , (5.3)

which is the relation employed in this work.

5.2.2 Correlation function

The two-point shear correlation function is the most well studied and widely used WL
summary statistic. For two generic shear fileds A and B, it is defined as:

ξ±,AB(θ) = ⟨γA,+(θ′)γB,+(θ′ + θ)⟩ ± ⟨γA,×(θ′)γB,×(θ′ + θ)⟩ , (5.4)

where γ+ and γ× are the tangential and cross components of the shear with respect to
the direction connecting a pair of galaxies separated by an angular distance2 θ. Given the
Cartesian shear components γ1 and γ2, these projections are defined as:

γ+ = − (γ1 cos 2φ+ γ2 sin 2φ) , (5.5a)

γ× = − (−γ1 sin 2φ+ γ2 cos 2φ) , (5.5b)

where φ is the polar angle of the separation vector between the two galaxies (for a schematic
visualization, see e.g. Figure 2 of D23).

The correlation function is particularly useful for comparing observational data with
theoretical models in real space, as it can be directly estimated from galaxy shape mea-
surements. In this work, we compute its GG (gravitational), II (intrinsic), and GI (cross)
components.

The Fourier counterpart of the correlation function is the angular power spectrum
CAB(ℓ), the two are related via the Hankel transforms:

ξ+,AB(θ) =

∫ ∞

0

ℓ dℓ

2π
CAB(ℓ) J0(ℓθ), ξ−,AB(θ) =

∫ ∞

0

ℓ dℓ

2π
CAB(ℓ) J4(ℓθ), (5.6)

where J0 and J4 are the zeroth- and fourth-order Bessel functions, respectively (see e.g.,
Schneider et al., 2002).

In this study we will focus on the shear correlation function and on the convergence
power spectrum. We recall Equation (2.10) to motivate the interchangeability of the con-
vergence and shear power spectrum under the assumption of negligible shear B-modes (see
e.g., Kilbinger, 2015).

2In the context of the correlation function, θ denotes a scalar separation angle between two objects
on the celestial sphere. This should be distinguished form θ, which refers to a two-dimensional position
vector on the sky, whose components are θ1 and θ2.



5.3 Methods 61

0.2 0.5 0.8 1.0 1.2 1.5
z

0.24

0.26

0.28

0.30

0.32

0.34

d
n
/d
z

[h
3
M

p
c−

3
]

Galaxy redshift distribution

9 10 11 12 13

log10(M∗ [h−1M�])

10−8

10−6

10−4

10−2

d
n
/d

lo
g

1
0
M
∗

[h
3
M

p
c−

3
]

Stellar mass function

0.0 0.2 0.4 0.6 0.8 1.0

|ε|

0.00

0.02

0.04

0.06

d
n
/d
|ε|

[h
3
M

p
c−

3
]

Intrinsic ellipticity distribution

Figure 5.1: The left, center and right panels show the redshift distribution, the mass function
and the absolute ellipticity distribution of galaxies in our catalogue, respectively. The shaded
regions in the left panel refer to the three redshift bins used in this work and are consistent with
the colours adopted in the two rightmost panels. The grey dashed lines in the central panel refer
to the minimum stellar mass cuts of [5×109, 1×1010, 5×1010] h−1M⊙ applied to the catalogue in
Section 5.4.3. We observe that, as expected, the galaxy number density decreases with increasing
redshift. We also note that, as the redshift decreases, the mass function grows consistently with
hierarchical structure formation, and that the galaxy ellipticities tend to move toward lower values
(i.e. rounder shapes).

5.3 Methods

In this work, we use the lightcone and mass-shell output of the flagship full-hydrodynamics
run of the MillenniumTNG (MTNG) project, introduced in Section 3.2.1.

5.3.1 Generation of the galaxy catalogue

Our galaxy catalogue is generated by running an updated version of the Friends-of-Friends
(FoF) group finding algorithm (Davis et al., 1985) combined with the Subfind-HBT
substructure finder codes present in GADGET-4. These routines have been specifically
optimised for efficiency on lightcones, where the output structure consists of a succession
of consecutive redshift slices. In this work, we decided to use the particle lightcone with
the combination of sky coverage and redshift depth that best matches the specifications of
a stage IV survey. The chosen lightcone corresponds to one octant of the sky (coordinates
x > 0, y > 0, z > 0) for redshifts 0 ≤ z ≤ 1.5, reaching comoving distance ≈ 3050h−1Mpc
(see Section 3.5 of Hernández-Aguayo et al., 2023, for a comprehensive list of the available
MTNG lightcones). For this lightcone, the raw particle data amounts to over 540 TB,
requiring significant computational resources to process. From this, by means of the FoF
algorithm, we identified more than 1.30× 1010 halos, and, by means of the Subfind-HBT
algorithm, we identified more than 1.26 × 1010 substructures.
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5.3.2 Galaxy selection and redshift distribution

In order to cover a galaxy stellar mass range that is as close as possible to that which is
observed with stage IV surveys, we select our galaxies as the subhalos with at least 100
stellar particles and a minimum total mass of 1.0 × 1010 M⊙. This results in a galaxy
population with a minimum stellar mass of ≈ 1.0 × 109 M⊙, as one can see in Figure 5.1,
where we show the stellar mass function of our catalogue in the three redshift bins described
in the following paragraph. We point out that the same stellar particle threshold has been
applied in Hilbert et al. (2017), and we refer the reader to Chisari et al. (2015) and Velliscig
et al. (2015a) for details on measurement errors of ellipticity distributions as a function of
particle number.

With the selection described above, the resulting galaxy redshift distribution is shown
in the left panel of Figure 5.1. Our catalogue features a total of ≈ 2.10× 108 galaxies, cor-
responding to an angular source density of ≈ 11.31 galaxies per square arcminute. In order
to investigate the redshift dependence of the impact of IA on WL observables, we partition
our catalogue into three tomographic redshift bins with edges at z = [0.2, 0.8, 1.2, 1.5],
highlighted by the shaded regions in the left panel of Figure 5.1. The corresponding co-
moving distance width for each of the bins is ∆χ ≈ [1371, 676, 416]h−1Mpc. This choice
results in each bin containing a similar number of galaxies, and thus gives a constant noise
level between different redshift bins.

5.3.3 Computation of intrinsic ellipticity

In numerical simulations, galaxies and haloes are typically represented by an ensemble of N
particles. A common way to quantitatively describe the three-dimensional shape of these
objects is to consider the inertia tensor I, which sums over all particle distances from the
center associated with a given object and is given by the expression:

Iij =
1

W

N∑
k=1

wkxki x
k
j , (5.7)

where x represents the distance of a given particle from the centre of the object, with the
indices i and j running over the three spatial components, i, j ∈ (x, y, z), and wk are weight
factors (e.g. mass or luminosity of the particles) whose sum is W . We now want to compute
the 2D ellipticity of the galaxy as seen on the celestial sphere, defined in Equation (5.1).
To do so, we need to project I onto a two-dimensional surface perpendicular to the line of
sight n̂ at the galaxy angular position θ. Similarly to Tsaprazi et al. (2022), we define an
orthonormal basis (n̂, θ̂1, θ̂2), where

θ̂1 = cos θ1 cos θ2x̂ + cos θ1 sin θ2ŷ − sin θ1ẑ , (5.8a)

θ̂2 = − sin θ2x̂ + cos θ2ŷ , (5.8b)

with (θ1, θ2) being the colatitude and longitude of the galaxy, and (x̂, ŷ, ẑ) is the orthonor-
mal basis of the Cartesian coordinates.
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Following Schmidt & Jeong (2012a) and Schmidt et al. (2015) we then define the linear
combinations:

m± ≡ (θ̂2 ∓ iθ̂1)/
√

2 , (5.9)

where i is the imaginary unit. This allows us to decompose the inertia tensor into the
spin-2 field I± = I1 ± iI2 according to

I± =
3∑

i=1

3∑
j=1

mi
∓m

j
∓Iij . (5.10)

In this way, after having also defined the normalization factor

Inorm =
3∑

i=1

3∑
j=1

mi
−m

j
+Iij , (5.11)

we can write the ellipticity projected onto the sky as:

ϵ = ϵ1± iϵ2 =
I1 ± iI2
Inorm

. (5.12)

In this work, consistent with D23, we will use the V-band luminosity as a weight for
the inertia tensor, which leads to the following specialisation of equation (5.7):

q
(V )
ij =

1

L(V )

N∑
k

Lk,(V )
(
xk − x(V )

)
i

(
xk − x(V )

)
j
, (5.13)

where Lk,(V ) and L(V ) are the V-band luminosity of the k-th stellar particle and of the whole
galaxy, respectively; and xk and x(V ) are the position vector of the k-th stellar particle and
the V-band luminosity weighted centre of the galaxy, respectively.

As a sanity check, in the right panel of Figure 5.1 we show the ellipticity modulus
distribution in the three redshift bins we defined in Sec. 5.3.2. We find that both the shape
distribution and the redshift evolution of the distribution are qualitatively consistent with
similar studies (Samuroff et al., 2021; Chisari et al., 2015; Zhang et al., 2022; Lee et al.,
2025), with an increasing fraction of rounder object as the redshift is decreasing. This
trend can be mainly interpreted as a consequence of phenomena like dynamical relaxation
(see e.g., Lynden-Bell, 1967; Binney & Tremaine, 2008) and mergers (see e.g., Negroponte
& White, 1983; Naab & Burkert, 2003), both of which tend to isotropize galaxy shapes over
time. We note that the observed trend toward rounder galaxy shapes at lower redshift,
while qualitatively consistent with expectations from the aforementioned effects, may be
affected by numerical limitations. In particular, the relatively low particle count per galaxy
in the simulation used in this work can lead to artificially short relaxation times, potentially
exaggerating this effect. A natural extension would be to perform higher-resolution zoom-in
simulations of selected galaxies within the MTNG volume to assess how shape distributions
evolve with improved resolution.
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5.3.4 Computation of galaxy image positions and gravitational
shear

To compute the gravitational shear and the image (observed) positions of the galaxies, we
start by producing a collection of full-sky shear and deflection HEALPix maps (Górski
et al., 2005) using the DORIAN ray-tracing code (Ferlito et al., 2024). We compute
these maps for slices with a thickness of 100h−1Mpc, starting at a comoving distance of
100h−1Mpc from the observer (z ≈ 0.03), up to 3.1h−1Gpc (z ≈ 1.55). We use a HEALPix
tessellation with Nside = 8192, which yields an angular resolution of 0.43 arcmin.

A deflection map relates the image position of each ray, located at the pixel centre of a
regular HEALPix grid, to the respective position on the source plane, where we note that
source positions generally do not follow a regular arrangement. We can use the deflection
map to compute the image position of galaxies in our catalogue, starting from their source
(true) positions. For a given galaxy source position βg, one can define a triangle whose
vertices are neighbouring rays3 and that contains βg; once such a triplet of rays is found,
one can perform a barycentric interpolation (see e.g. section 21.3 of Press et al., 2007) from
the source plane to the image plane to estimate the observed galaxy position θg (see e.g.
Figure 7 of Hilbert et al., 2009, for a visualization of this interpolation scheme). Operating
on the curved sky, the algorithm we implemented for the galaxy image search is similar in
many aspects to the one of Becker (2013, we refer the interested reader to section 3.3 of
this work for further details). One difference is that our code performs a KD-tree-based
neighbour search, which looks for the 30 closest rays on the source plane for each galaxy4.

For each galaxy, we first compute the image position using the two deflection maps
corresponding to the neighbouring source planes that enclose the galaxy’s redshift; then
we perform a linear interpolation between these two to obtain our final estimate of the
image position. We note that galaxies for which multiple image positions are found are
excluded from the catalogue, as they are likely subject to strong lensing, and therefore
would be excluded in a WL lensing survey.

Once the observed galaxy positions are determined, we apply non-uniform fast Fourier
transform (NUFFT) interpolation (Fessler & Sutton, 2003; Barnett et al., 2019; Reinecke
et al., 2023; Ferlito et al., 2024) on HEALPix shear maps to compute the gravitational
shear at those positions. Again, we evaluate this quantity at the two maps with source
redshifts that enclose each galaxy and linearly interpolate the shear values to obtain the
final estimate. Compared to the more conventional approaches like nearest-grid-point
or bilinear interpolation on the HEALPix grid, NUFFT offers both higher accuracy and
efficiency when evaluating the shear at arbitrary positions.

5.3.5 From shear to convergence maps

With the methodology outlined above, we have built a catalogue containing, amongst other
quantities, each galaxy’s observed angular position, intrinsic shear, and gravitational shear.

3Note that the rays have to be neighbours in the image plane.
4We found that looking for the ≈ 10–20 closest rays already gives convergent results.
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Figure 5.2: From left to right: full “WL + GSN + IA” (Weak Lensing + Galaxy Shape Noise
+ Intrinsic Alignment) map displayed as an octant of the sky with a zoom into a 10 × 10 deg2

square patch, followed by zoomed patches of the same area, for the “WL”, “GSN + IA”, and
“GSN” cases. The maps are computed considering source galaxies in our central redshift bin,
0.8 < z < 1.2. For illustrative purposes we have smoothed the maps using a Gaussian symmetric
beam characterised by a standard deviation of 1 arcmin. We see that the IA contribution in the
“GSN + IA” panel leads to weak correlations with the WL signal, while the “GSN” panel appears
consistent with white noise.

Our aim is now to compute convergence maps on a regular (HEALPix) grid starting from
the value of the shear at the observed galaxy position. To perform this transformation we
use the relationship between κ and γ in Fourier space (Kaiser & Squires, 1993), known as
the Kaiser-Squires transformation. In particular, we first extract the spherical harmonics
coefficients γℓm from the shear map with the pseudo analysis general routine5, which is
part of the ducc library (Reinecke, 2020), and then use the relation

κℓm = −γℓm/
√

(ℓ+ 2)(ℓ− 1)/(ℓ(ℓ+ 1)) (5.14)

to obtain the spherical harmonics coefficients of the convergence (we refer the interested
reader to Hu, 2000, for a derivation of this relation). We then use the HEALPix alm2map

routine to compute the convergence map on the regular HEALPix grid.
To directly test the impact of IA on higher-order statistics measured in the κ field,

we compute three main types of convergence maps, depending on the shear field we use
as input for the above equation. The first one, labelled “WL + GSN + IA”, is obtained
by using the total shear given by equation (5.3); this field contains the WL signal as well
as the galaxies’ intrinsic shear contribution, introduced in equation (5.2). By plugging
equation (5.1) into equation (5.2), one can see that the intrinsic shear, represented by a
complex quantity, can be split into its modulus (i.e. shape), which gives rise to the galaxy
shape noise component (GSN, see e.g., Kaiser et al., 1995; Bernstein & Jarvis, 2002), and
orientation, which contains information about the intrinsic alignment.

The second type of convergence map, labeled “WL + GSN”, is obtained by adding
the gravitational shear and a modified version of the intrinsic shear field, where for each

5This routine can be seen as a generalized version of the HEALPix alm2map routine, which accepts as
input a generic, non-uniform, distribution of points on the sphere.
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galaxy the shape is preserved, but the orientation has been rotated by a random angle.
This preserves the shape noise contribution, but erases the intrinsic alignment.

Finally, the third type is obtained by considering only the gravitational shear compo-
nent, and is referred to as “WL”. Additionally, one can compute the “GSN + IA” and
“GSN” cases, by using the original intrinsic shear and the intrinsic shear with randomized
orientations as inputs respectively.

We note that given that the WL signal is only evaluated at (observed) galaxy positions,
the convergence maps generated here also include contamination of the lensing signal from
source clustering.

Figure 5.2 shows a visualisation of the different types of convergence maps described
above, for the central redshift bin 0.8 < z < 1.2. For illustrative purposes we have smoothed
the maps using a Gaussian symmetric beam characterised by a standard deviation of
1 arcmin. The first panel shows the full “WL + GSN + IA” map displayed as an octant
of the sky. Subsequent panels show a zoom into a 10× 10 deg2 square patch, starting with
a zoom of the same “WL + GSN + IA” map. We then show zoomed patches of the same
area, for the “WL”, “GSN + IA”, and “GSN” cases. The first zoomed panel (“WL + GSN
+ IA”) clearly depicts a noisy realisation of large-scale-structure features, which can be
visually verified by comparing it to the adjacent panel of “WL”, where only the true WL
signal is displayed. The next panel shows the “GSN + IA” map, where weak correlations
with the ‘WL” map can be observed. This can be attributed to the IA signal in the “GSN
+ IA” map, since the IA signal is a direct consequence of the large-scale structure. Finally,
the last panel shows the “GSN” map, which is visually consistent with a white noise field.

5.3.6 Computation of WL and IA statistics

Here we outline the numerical procedures and binning specifications used when measuring
each of the WL statistics studied in this work. The shear correlation function is computed
with the TreeCorr code (Jarvis, 2015), and binned into 40 equally spaced logarithmic
bins in the range θ ∈ [1, 400] arcmin. The convergence power spectrum is computed using
the HEALPix routine anafast, and binned into 50 equally spaced logarithmic bins in
the range ℓ ∈ [1, 1.2 × 104]. Before computing probability distribution functions (PDFs)
for convergence, peaks and minima, every convergence map is smoothed with a Gaussian
symmetric beam characterised by a standard deviation of 2 arcmin using the HEALPix
smoothing routine. For the convergence PDF, we bin the pixels into 50 linearly spaced
bins in the range κ ∈ [−0.07, 0.12]. Peaks and minima are identified as the pixels that
are greater or smaller than their 8 neighbours, respectively6, which are retrieved using the
HEALPix get all neighbours routine. For the peaks, we use 30 linearly spaced bins in
the range κ ∈ [−0.1, 0.2], while for the minima we use 25 linearly spaced bins in the range
κ ∈ [−0.07, 0.05].

6In the HEALPix tessellation, every pixel has 8 neighbours, except for a small minority of pixels, for
which it can be 7 or 6.
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Figure 5.3: Comparison between the shear correlation function as computed on our results and
its theoretical prediction, obtained by means of the CCL library (Chisari et al., 2019). Each
column refers to a different redshift bin. The top panels show the shear correlation function,
while the bottom panels give the ratio of the theoretical prediction over our results. In the case
of ξII and ξGI we use the Nonlinear Alignment model (NLA) for the theory prediction, which
provides good overall agreement with the measured signals, with best-fit alignment amplitudes
around A1 ≈ [2.06, 2.55, 3.52] for bins with increasing redshift.

5.4 Results

5.4.1 Comparison to theory

To validate our pipeline, we begin by examining the shear correlation function and com-
pare it with theoretical predictions, as shown in Figure 5.3. We select galaxies from our
catalogue that reside in each of our redshift bins, and compute the auto-correlation of the
gravitational and intrinsic shear components, labeled “GG” and “II” respectively, as well
as the cross-correlation function, labeled “GI”. The GI term, as expected, exhibits a neg-
ative sign. This anti-correlation arises because the intrinsic shape of (foreground) galaxies
tends to align radially with the large-scale gravitational potential, pointing toward over-
dense regions, while the lensing shear of (background) galaxies is tangential around the
same overdense regions.

We produce theoretical predictions for the above quantities with the CCL7 library
(Chisari et al., 2019). To do so, we start by computing the shear E-mode auto and cross

7https://github.com/LSSTDESC/CCL



68 5. The impact of intrinsic alignment of galaxies on weak lensing

10−7

10−6

10−5

10−4

ξ

0.2 < z < 0.8 0.8 < z < 1.2 1.2 < z < 1.5

100 101 102

θ (arcmin)

10−3

10−2

10−1

100

ξ/
ξ G

G

ξGG

ξII

−ξGI

ξ+

ξ−

ξ+

ξ−

100 101 102

θ (arcmin)

100 101 102

θ (arcmin)

Shear correlation function

Figure 5.4: Shear auto-correlation of the pure weak lensing component ξGG (green lines), auto-
correlation of the pure intrinsic alignment component ξII (red lines), and their cross-correlation
ξGI with inverted sign (yellow lines). The solid and dashed lines indicate the ξ+ and ξ− statistics,
respectively. The top panels show the correlation function, while the bottom panels display the
ratio with respect to the auto-correlation ξGG. Each column refers to a different redshift bin.
The II and GG signals grow with redshift while maintaining a roughly constant ξII/ξGG ratio,
whereas the GI signal decreases in relative amplitude, reflecting the redshift evolution of the IA
signal.

angular power spectra according to equations (50), (51), and (52) of Lamman et al. (2024).
The corresponding formulae require the source redshift distribution as input (shown in
Figure 5.1), as well as the 3D matter power spectrum in the redshift range of interest,
which in this work is computed with the Halofit formula (Takahashi et al., 2012b). In
the case of the II and GI power spectra, we employ the NLA model (Bridle & King, 2007),
which assumes a linear proportionality between the intrinsic shape of galaxies and the
local tidal gravitational field. Although similar to the LA model (Catelan et al., 2001),
the NLA model also incorporates the nonlinear evolution of the matter density field. The
proportionality is expressed in terms of the A1 parameter, consistent with the definitions
in equation (11) of Samuroff et al. (2023). Once the angular power spectra are computed,
these can be converted into correlation functions according to Equation (5.6).

Overall, we observe a qualitatively good agreement between our results and the theoret-
ical predictions in the angular range we investigate. The NLA model provides a reasonably
good fit to the data on scales where its assumptions hold: particularly at intermediate and
large angular separations. Best-fit values of the alignment amplitude, obtained by minimiz-
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ing the root mean square error between the NLA prediction and our data for θ ≳ 2 arcmin,
are approximately A1 ≈ [2.06, 2.55, 3.52] for the low-, intermediate-, and high-redshift bin
respectively.

Figure 5.3 shows that the NLA model agrees with our simulated pipeline to within
≈ 50%. While such deviations are expected given the limitations of the NLA model,
this large discrepancy serves as motivation for our fully non-linear simulated pipeline.
This enables a more accurate characterization of the IA signal and gives us direct access
to higher-order statistics measurements that include IA contributions without relying on
simplifying assumptions.

5.4.2 Redshift dependence

Having validated our basic results, we now move on to investigate the redshift dependence
of the shear correlation function, as well as the convergence angular power spectrum, its
PDF, and peaks and minima.

Shear Correlation function

In Figure 5.4, we present the shear correlation functions computed for the three redshift
bins investigated in this work. Looking at the gravitational (GG) and intrinsic (II) auto-
correlations, we see that, as the redshift increases, both increase in amplitude, maintaining
roughly the same ratio of ξII/ξGG ≈ 0.1 at intermediate angular scales; i.e. θ ≈ 10 arcmin,
as shown by the red curve in the bottom sub-panels. The redshift evolution of ξII has been
reported in previous numerical studies (see e.g. D23; Chisari et al., 2015; Zjupa et al.,
2022), and the increase of its amplitude with redshift can be explained by the following
two arguments. First, it is consistent with the theoretical framework in which a lower non-
linear disruption of alignments at high redshift is expected (see e.g., Lamman et al., 2024).
Second, we recall that, as seen in Section 5.3.2, our three redshift bins are characterised
by a decreasing comoving width with redshift. It is important to note that, as the width
of the shell increases, regions that are progressively more separated in physical space, and
thus less correlated, will be projected together, diluting the overall signal.

Regarding the gravitational-intrinsic (GI) cross-correlation function, we see that the
amplitude remains relatively constant for different redshift bins, with the ratio −ξGI/ξGG

going from ≈ 0.1, to ≈ 0.02, to ≈ 0.008, at low, intermediate and high redshifts respectively.
Furthermore, it is interesting to note that the GI signal shows a decreasing trend relative to
the II signal with increasing redshift. In particular, in the lowest redshift bin, we find that
ξGI and ξII have similar amplitude and scale dependence, especially at angular scales larger
than ≈ 10 arcmin. This redshift trend can help us understand the substantial redshift
evolution of the impact of IA on WL convergence statistics, which we investigate in the
next section.
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Figure 5.5: Angular power spectrum of convergence maps. Dashed green lines show the pure
weak lensing (WL) signal; light blue dotted lines indicate galaxy shape noise (GSN); purple solid
lines represent maps including both WL and IA, with GSN subtracted. Bottom sub-panels show
ratios relative to the WL case. Each column corresponds to a redshift bin. IA introduces a scale-
and redshift-dependent modulation of the WL power spectrum, due to the interplay between
negative GI and positive II terms causing suppression at low redshift and large scales, and up to
∼ 20% enhancement at small scales and high redshift.

Convergence power spectrum

In Figure 5.5, we show the convergence power spectrum in the three redshift bins investi-
gated in this work. After computing the convergence maps according to Section 5.3.5, we
measure the angular power spectrum for the pure WL signal (green dashed curve), and the
GSN signal (blue dotted curve), using the corresponding convergence fields. To obtain the
power spectrum of the WL convergence field with the IA signal (“WL + IA”, purple solid
curve), i.e. no GSN contribution, we first compute the power spectrum of the convergence
field corresponding to WL + GSN + IA, and then subtract the GSN power spectrum.

First, we observe that the GSN curve follows a white noise spectrum, as expected (see
e.g., Kaiser et al., 1995). We note that the noise component crosses the WL spectrum
at ℓ ≈ 500 in the low redshift bin, and at ℓ ≈ 1500 in the two remaining redshift bins.
Looking at the ratio between the WL + IA and WL curves, we see that the IA signal
has a significant qualitative impact on the WL signal over all redshift bins. At high
redshift, we observe a ≈ 10% power enhancement at all scales, which is slightly weaker
at the largest angular scales plotted here. At the intermediate redshift, we see a stronger
trend in ℓ, which is weaker at large-intermediate scales, giving a ≈ 5% enhancement at
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Figure 5.6: PDF of convergence maps; purple solid lines correspond to maps including WL,
GSN, and IA; orange solid lines show the same case but with randomized intrinsic orientations;
dashed green lines show the pure WL signal; light blue dotted lines indicate the GSN. Bottom
sub-panels show ratios with respect to the WL + GSN case. Maps were smoothed with a 2
arcmin Gaussian kernel before PDF computation. Each column corresponds to a redshift bin.
IA alters the convergence PDF in a redshift-dependent way that can be partially explained by
considering the power spectrum: boosted power at high redshift broadens the PDF, suppression
at low redshift narrows it; at intermediate redshift, enhanced small-scale power induces non-
Gaussian PDF distortions.

102 ≲ ℓ ≲ 103, but becoming progressively larger at the smaller angular scales, reaching
20% at ℓ ≈ 5000. Moving to the low redshift bin, we see a ≈ 10% suppression at large
scales, then the suppression progressively decreases, with the ratio approaching one at
intermediate angular scales (ℓ ≈ 900), which then turns into an enhancement (similar to
the intermediate redshift bin), reaching 20% at ℓ ≈ 4000.

The strong redshift dependence observed in the power spectrum can be better under-
stood by comparing it to the shear correlation function in Figure 5.4. In particular, let
us start by noting that the WL + IA power spectrum, being the sum of two components,
i.e. gravitational and intrinsic, can be expressed as Cκ,WL+IA = Cκ,GG+2Cκ,GI+Cκ,II. Addi-
tionally, from Figure 5.4, we note that the values of |ξGI| and |ξII| are roughly comparable,
especially at scales larger than 10 arcmin. Finally, we recall that the gravitational and
intrinsic shear fields are anti-correlated; i.e. ξGI is negative (and so is Cκ,GI). By combining
the above information, it becomes clearer that the Cκ,WL+IA/Cκ,WL ratio is less than one at
large-to-intermediate scales in the low redshift bin, which can be explained in terms of the
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Figure 5.7: Peak counts distribution of convergence maps; the purple solid lines refer to maps
containing the total signal comprehensive of WL, intrinsic galaxy shapes (GSN), and orientations
(IA); the orange solid lines refer to a version of the previous case where intrinsic ellipticities have
been preserved, but intrinsic orientations have been randomized; the dashed green lines refer to
the pure weak lensing signal. The maps have been smoothed with a 2 arcmin Gaussian kernel
before the computation of the statistic. The top sub-panels show the peak counts, while the
bottom sub-panels give the ratio with respect to the WL + GSN case. Each column refers to a
different redshift bin. The impact of IA on peak counts mirrors the redshift-dependent trends
observed in the convergence PDF (shown in Figure 5.6), with tail suppression at low redshift,
enhancement at high redshift, and more complex, small-scale-driven distortions at intermediate
redshift.

cross-correlation term (GI) dominating the intrinsic auto-correlation term (II) in this bin.
On the other hand, the cross term becomes progressively less important at intermediate
and high redshift, which explains the increasing values of Cκ,WL+IA/Cκ,WL seen in these
bins.

Convergence PDF, peaks and minima

In Figure 5.6, we show the convergence PDF for the three redshift bins investigated in
this work. First, we note that the PDF of the pure WL convergence field (green dashed
curve) shows a significant positive skewness, which arises from nonlinear structure growth
(see e.g., Valageas, 2000). In contrast to this, we see that the pure GSN convergence
field (blue dotted curve) follows a Gaussian distribution, consistent with white noise. The
convergence field that contains both of the components described above, i.e. WL + GSN
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Figure 5.8: Minimum counts distribution of convergence maps; the purple solid lines refer
to maps containing the total signal comprehensive of WL, intrinsic galaxy shapes (GSN), and
orientations (IA); the orange solid lines refer to a version of the previous case where intrinsic
ellipticities have been preserved, but intrinsic orientations have been randomized; the dashed
green lines refer to the pure weak lensing signal. The maps have been smoothed with a 2 arcmin
Gaussian kernel before the computation of the statistic. The top sub-panels show the minimum
counts, while the bottom sub-panels give the ratio with respect to the WL + GSN case. Each
column refers to a different redshift bin. The impact of IA on minimum counts mirrors the
redshift-dependent trends observed in the convergence PDF (shown in Figure 5.6), with tail
suppression at low redshift, enhancement at high redshift, and more complex, small-scale-driven
distortions at intermediate redshift.

(orange solid line), is characterised by a PDF that results from the convolution of the PDFs
of its individual components. Therefore, as we can see in the top sub-panels, the PDF of
the WL + GSN convergence field is broader, less skewed, and has diluted non-Gaussian
features with respect to the pure WL convergence PDF.

Let us now investigate the impact of IA on the convergence PDF. To do so we consider
the lower sub-panels, where the ratio between the WL + GSN + IA and WL + GSN cases
is shown. To ease the interpretation, we now discuss the redshift bins in an order where
the underpinning physics of interest increases in complexity, which is high-z, then low-z,
followed by intermediate-z. For the high-z bin, we see that the impact of IA leads to a
clear broadening of the PDF. This is characterised by an enhancement of the high- and
low-κ tail that reaches ≈ 20% and ≈ 13% at κ ≈ −0.04 and κ ≈ 0.055 respectively; and a
suppression of the central region, that reaches ≈ 4.5% at κ ≈ 0. To better understand the
nature of this broadening, let us notice that, as seen in the previous section, the presence
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of IA boosts the convergence power spectrum at all scales in this redshift bin. Therefore,
a boost in power will increase the field’s variance, resulting in a broader PDF, since the
width of the PDF is set by the variance of the field. Moving our attention to the low-
redshift bin, and using the same argument given above, the reduction in power leads to
a narrowing of the convergence PDF when IA is included. This appears as a suppression
of the high- and low-κ tails that reaches ≈ 20% and ≈ 12% at κ ≈ −0.03 and κ ≈ 0.055
respectively, with a distortion of the central region that remains below ≈ 3%. Focusing
now on the intermediate redshift bin, we observe that IA distorts the PDF in a more
complex way, showing intermediate features between the other two redshift bins. Given
that the power is enhanced the most at small scales with the inclusion of IA in this redshift
bin, we can conclude that the impact from IA that we observe on the PDF is driven by
the small scales. Noting that these scales are non-linear, this leads to modifications of the
higher-order moments of the convergence field, which manifest as more complex alterations
to the shape of the PDF, namely the multiple crossings of NWL+GSN+IA/NWL+GSN = 1 at
low κ. The impact in this bin is characterised by a suppression of the low-κ tail that
reaches ≈ 15% at κ ≈ −0.045, and distortions in the rest of the PDF that reach ≈ 12% at
κ ≈ 0.08.

We continue our analysis of the redshift dependent impact of IA on WL convergence
statistics by studying peak and minimum counts, shown respectively in Figure 5.7 and
Figure 5.8. Looking at the overall picture, we first remind the reader that distortions in
the peaks and minima distributions are closely linked to distortions in the convergence
PDF, particularly in its tails. Indeed, it can be clearly seen that the impact of IA on both
peaks and minima, at each redshift bin, show trends that are qualitatively consistent with
the impact on the PDF. We also note that, while the trends are similar to the PDF, the
peaks and minima statistics are measured with coarser bins relative to the PDF, as there
are far fewer extrema than pixels in a given WL map, which leads to the coarser ratios
presented in Figure 5.7 and Figure 5.8 compared to the PDF.

In the case of the peak counts, focusing on the low-redshift bin, we observe that the
inclusion of IA leads to a suppression of the tails that reaches ≈ 20% at κ ≈ −0.019,
and ≈ 18% at κ ≈ 0.055. Regarding the intermediate redshift bin, we observe that the
distribution tends to fluctuate, similar to the PDF, showing an alternation of enhancements
and suppressions that never exceed ≈ 13%. In the case of the high-redshift bin, we observe
an enhancement of the tails that reaches ≈ 30% at κ ≈ −0.02, and ≈ 17% at κ ≈ 0.075.

Finally, in the case of the minimum counts, looking at the low-redshift bin we find a
suppression in the low-κ tail that reaches ≈ 30% at κ ≈ 0.041, and fluctuations in the
high-κ tail that reach ≈ 10% at κ ≈ 0.018. In the intermediate redshift bin, we observe
fluctuations below ≈ 7% over the range −0.04 ≲ κ ≲ 0.02. In the case of the high-redshift
bin we observe an enhancement of the tails that reaches ≈ 20% at κ ≈ −0.05, and κ ≈ 0.02.

Before moving on to the next section, we remark that our findings are consistent with
a very recent study by Lee et al. (2025), who performed a similar analysis based on the
IllustrisTNG project, finding IA to impact the convergence power spectrum, PDF,
peaks and minima with comparable magnitude to what is detected in our study. However,
we point out that a direct comparison with this study is not possible, since, amongst
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Figure 5.9: Left (right): the light blue, violet and pink curves refer to the auto-correlation of
the pure intrinsic alignment component ξII (cross-correlation between intrinsic and gravitational
shear ξGI) for increasingly higher minimum stellar mass thresholds. The green lines refer to the
auto-correlation of the gravitational shear ξGG. The top panels give the correlation function,
while the bottom panels display the ratio with respect to the auto-correlation ξGG. The shear
intrinsic auto- and gravitational-intrinsic cross-correlation amplitudes increase with stellar mass,
with a stronger effect on ξII than on ξGI. The case with the highest minimum stellar mass cut
shows IA signals comparable to the WL signal, especially at small angular scales.

other things, their analysis considered the total source population without redshift binning
and uses different selection criteria to build the catalogue (e.g. minimum number of star
particles). Moreover, our analysis offers improved robustness and sampling of large scale
modes as it is based on a box volume that is ≈ 15 times bigger.
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5.4.3 Galaxy stellar mass dependence

Having investigated the redshift dependence of the impact of IA on a variety of WL statis-
tics, we conclude our analysis by studying the galaxy stellar mass dependence of the shear
intrinsic autocorrelation and the gravitational-intrinsic cross-correlation. To do so, we
first select three possible minimum stellar mass thresholds Mmin = [5 × 109, 1 × 1010, 5 ×
1010] h−1M⊙ (indicated by the grey dashed lines in the central panel of Figure 5.1) and
apply them to our catalogue. Successively, we compute ξII and ξGI in our central redshift
bin and present it in Figure 5.9, where the left and right sub-panels refer to ξII and ξGI,
and increasing minimum stellar mass cuts are represented by the light blue, violet, and
pink curves, respectively. For a direct comparison with the WL signal, we also include ξGG

in all panels, represented by the green curves.

By looking at ξII and ξGI, we notice that both quantities experience a nearly scale-
independent increase in amplitude with increasing stellar mass thresholds. To quantify
such an increase in the theoretical context, we have performed a fit of the NLA model to
our results, finding best matches with A1 = [3.31, 4.07, 7.93] for Mmin = [5×109, 1×1010, 5×
1010] h−1M⊙. This trend is qualitatively consistent with observations (see e.g., Joachimi
et al., 2013; Singh et al., 2015; Samuroff et al., 2023) and previous simulation results (see
e.g. D23; Chisari et al., 2015; Hilbert et al., 2017; Zjupa et al., 2022), indicating that
more massive galaxies, which are often of early-type and reside in denser environments,
are more coherently aligned with the surrounding large-scale structure, thereby amplifying
the intrinsic alignment signals.

Focusing on the lower sub-panels, it becomes clearer that the mass dependence has
a stronger impact on the amplitude of ξII than on that of ξGI. This behavior can be
directly explained in the context of the NLA model, by noting that it predicts ξII ∝ A2

1

and ξGI ∝ A1. We observe that, considering the lowest and highest mass cuts, and looking
at intermediate angular scales, ξII/ξGG changes from ≈ 0.12 to ≈ 0.65, while −ξGI/ξGG

goes from ≈ 0.03 to ≈ 0.07. Notably, we find that a mass cut of 5 × 1010 h−1M⊙ boosts
the amplitude of ξII to a level that is of the same order of magnitude as ξGG. Interestingly,
we see that ξ−,II dominates ξ−,GG at all angular scales smaller than ≈ 7 arcmin, with
ξ−,II/ξ−,GG reaching 170% at the arcmin scale.

The strong stellar mass dependence of the IA signal highlighted above has important
implications for interpreting our results throughout the study. As stated in the previous
paragraph, a higher mass cut will boost ξII quadratically and ξGI linearly, leading the II
component to increasingly dominate over the GI component. In the light of the discussions
in Section 5.4.2, we expect the effects of higher mass cuts on convergence statistics to be
qualitatively similar to the ones observed in the high-z bin of this study, where the II
component dominates over the GI component the most.
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5.5 Conclusions and outlook

In this chapter, we have presented a fully non-linear and self-consistent forward model
to study the impact of intrinsic alignments (IA) on weak lensing (WL), based on the
flagship 740 Mpc full-hydro simulation of the MillenniumTNG project. Starting from the
particle lightcone covering an octant of the sky in the redshift range z = [0, 1.5], we
have identified galaxies with the Subfind halo and galaxy finder, and we simultaneously
computed both the intrinsic and gravitationally induced (extrinsic) shear signals for each
galaxy. The intrinsic shear component is computed from the luminosity-weighted inertia
tensor of stellar particles. The extrinsic (gravitational) shear is extracted via full-sky ray-
tracing on the same simulation using the DORIAN code (i.e., without invoking the Born
approximation). This allowed us to directly evaluate the impact of IA on a range of WL
observables, including shear correlation functions, convergence power spectra, and higher-
order statistics such as the convergence PDF, peak, and minimum counts. All of these
quantities where studied for three different redshift bins, with edges at z = [0.2, 0.8, 1.2, 1.5].

To validate our pipeline, we compared the measured shear correlation functions with
theoretical predictions derived using the Nonlinear Alignment model (NLA) for IA. We
found good qualitative agreement across the redshift bins and angular scales considered,
with the best fit obtained for an alignment amplitude of A1 ≈ [2.06, 2.55, 3.52] for the low-,
intermediate-, and high-redshift bin respectively.

We analysed the redshift evolution of the shear correlation functions and found that
both the gravitational and intrinsic auto-correlations (ξGG and ξII respectively) increase in
amplitude with redshift, while maintaining a roughly constant ratio of ξII/ξGG ≈ 0.1 at
intermediate angular scales (θ ≈ 10 arcmin). This redshift evolution of ξII is consistent with
reduced non-linear disruption of alignments at high redshift and the narrower comoving
width of the redshift bins, which reduces signal dilution. In contrast, the gravitational-
intrinsic cross-correlation ξGI shows a strong decline in relative amplitude, with −ξGI/ξGG

decreasing from ≈ 0.1 to ≈ 0.008 from low to high redshift, indicating a diminishing role
of the GI term at higher redshift.

We then focused on WL convergence statistics and computed these both in the presence
and absence of IA. In the case of the convergence power spectrum, we found that the
IA signal introduces a notable modification to the WL power spectrum, with redshift-
and scale-dependent behavior: a ∼ 10% enhancement at high redshift, a scale-dependent
increase peaking at ∼ 20% at small scales at intermediate redshift, and a transition from ∼
10% suppression at large scales to ∼ 20% enhancement at small scales at low redshift. This
complex trend is attributed to the interplay between the gravitational-intrinsic (GI) and
intrinsic-intrinsic (II) components, where the GI term dominates at low redshift, leading
to suppression, while its influence diminishes with redshift, allowing the II contribution to
enhance the signal at higher redshifts.

We examined the redshift-dependent impact of IA on the convergence PDF, peak, and
minimum statistics. At high redshift, IA induces a broadening of the PDF, with tail
enhancements up to ≈ 20% and ≈ 13% at κ ≈ −0.04 and κ ≈ 0.055, respectively, and a
central suppression of ≈ 4.5%, consistent with increased power on small scales. Conversely,
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at low redshift, the reduced power leads to a narrowing of the PDF, with tail suppressions
of ≈ 20% and ≈ 12%. These distortions propagate to peak and minimum counts, which
mirror the PDF trends: in the low-redshift bin, peak and minimum tails are suppressed
by up to ≈ 20–30%, while in the high-redshift bin, enhancements reach ≈ 30% for peaks
and ≈ 20% for minima; intermediate redshift bins show alternating enhancements and
suppressions below ≈ 13%.

We further examined the dependence of IA on galaxy stellar mass by applying three in-
creasing minimum stellar mass thresholds and computing the corresponding shear intrinsic
and cross-correlations in the central redshift bin. We find that both ξII and ξGI increase
nearly uniformly across scales with stellar mass, consistent with the expectation that more
massive galaxies exhibit stronger alignment with the large-scale structure. Notably, ξII
shows a stronger sensitivity to mass, with its amplitude reaching levels comparable to ξGG

for the most massive galaxies, and even dominating ξ−,GG at scales below ≈ 7 arcminutes.
The results obtained here can also be viewed as an illustration of the power of the new

methodology we have explored in this study, namely to study a seamless lightcone obtained
directly from a large-volume cosmological hydrodynamical simulation of galaxy formation.
This approach is free of many approximations made in more conventional analysis and
thus offers the prospect of improved quantitative accuracy and reliability. Looking ahead,
future extensions of this work could involve a more detailed exploration of the IA signal
and its impact on WL as a function of galaxy morphology, colour, or environment, as well
as the influence of different shape estimators on the measured alignment. Furthermore, the
framework developed in this work can be used to explore the impact of intrinsic alignments
on other observables, including galaxy-galaxy lensing. The galaxy catalogue and associated
shear measurements produced in this work will be soon publicly released, providing a
valuable resource for a wider range of cosmological and astrophysical studies.



Chapter 6

Summary and outlook

The phenomenon of weak gravitational lensing (WL) refers to the subtle and coherent shear
of the images of distant galaxies due to the deflection of light by large-scale structure along
the line of sight. WL stands as one of the most powerful probes in modern cosmology,
and as the next generation of WL cosmological surveys enters an era of high precision, the
need for accurate theoretical modeling and numerical predictions has become essential. In
this thesis, I addressed this challenge by performing and analyzing a series of high-fidelity
WL simulations based on the MillenniumTNG (MTNG) project, a suite of state-of-the-
art cosmological galaxy formation simulations. In this final chapter, I will summarize the
findings of this thesis and outline some of the possible future developments.

6.1 Summary of Results

In Chapter 3, by comparing full-physics hydrodynamical simulations with their dark-
matter-only counterparts, I quantified the impact of baryonic physics and massive neutrinos
on key WL observables, including the convergence power spectrum, probability distribution
function (PDF), peaks, and minima. I found that baryons suppress the convergence power
spectrum by up to ≈ 15% at ℓ ≳ 103, while massive neutrinos with

∑
mν = 0.3 eV

produce a suppression of ∼ 20% at similar scales. Moreover, I found that both baryons
and massive neutrinos distort the convergence PDF, and peak and minimum counts with
similar magnitude. Encouragingly, my findings are in close agreement with other state-of-
the-art simulations, reinforcing the reliability of high-precision WL numerical experiments.

In Chapter 4, I tested the validity of the Born approximation, commonly adopted in
WL simulations, by developing DORIAN, a novel full-sky ray-tracing code. I applied this
code on the mass-shell outputs from the two largest simulations in the MTNG suite, each
spanning 3000 Mpc. I focused on all the aforementioned WL statistics, as well as WL
voids, and Minkowski functionals. My results showed that while the Born approximation
closely matches full ray-tracing at the power spectrum level, several higher-order statis-
tics exhibit percent-level deviations, underscoring the importance of ray-tracing for high-
precision studies. I found that interpolation schemes can significantly affect ray-tracing
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accuracy when reaching the arcmin resolution. To address this, I incorporated and studied
nonuniform fast Fourier transform (NUFFT), a novel interpolation technique, along with
standard methods like nearest grid point and bilinear interpolation.

In Chapter 5, I addressed the intrinsic alignment (IA) of galaxies, a key astrophysical
contaminant in WL. To do so, I generated a high-fidelity mock galaxy catalogue based on
the seamless lightcone output of the MTNG full-hydro run, spanning over the redshift
range 0 < z < 1.5. For each galaxy, I computed both intrinsic and lensing-induced
shear: the intrinsic component was derived from the luminosity-weighted stellar moment
of inertia tensor, while the gravitational shear was obtained by running DORIAN on the
same lightcone. This enabled a fully non-linear forward prediction of IA effects on WL.
I found that IA alters the convergence power spectrum by up to 20% across all angular
scales, modifies the convergence PDF tails by 10–20%, and distorts peak and minimum
counts by as much as 30%, depending on redshift and smoothing scale. Examining the
shear correlation function, I observed that the IA contribution increases significantly with
stellar mass cuts, and at the highest mass threshold, the intrinsic shear autocorrelation
can reach the gravitational signal on small angular scales.

Overall, the findings of this thesis highlight the critical need for accurate modeling of
both physical and numerical systematics in WL analyses. The quantified effects of baryonic
physics, massive neutrinos, and intrinsic alignments highlight that omitting these compo-
nents could lead to significant biases in key WL observables, potentially compromising
cosmological inference from future high-precision surveys. Furthermore, the limitations of
the Born approximation and the sensitivity to interpolation methods at high resolutions
stress the necessity of adopting full ray-tracing techniques in WL simulations.

6.2 Outlook and Future Developments

The results presented in this thesis have highlighted the importance of accurate modeling
of a variety of physical and numerical effects in weak lensing (WL) studies. However, there
remain several promising directions for further investigation.

An immediate and natural extension of this work consists in expanding the WL frame-
work presented here by including a broader set of WL statistics. While the focus of this
thesis was placed mainly on the convergence power spectrum, PDF, peak, and minimum
counts, other higher-order statistics, such as the WL voids and Minkowski functionals,
on which I tested only the impact of the Born approximation, as well as the bispec-
trum, trispectrum, and wavelet-based decompositions, offer complementary insights into
the non-Gaussian component of the lensing signal and are particularly sensitive to small-
scale physics. Quantifying the impact of baryonic physics, massive neutrinos, and IA on
these additional statistics would help us in having a more complete and panoramic overview
of the impact of those physical systematics.

In the context of baryonic effects, it would be valuable to study the impact on WL
statistics of variations in sub-grid model parameters, such as those governing AGN feed-
back, star formation, and galactic winds. Additionally, testing different implementations
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of these models can help quantify the uncertainties associated with numerical choices in
hydrodynamical simulations.

Regarding the intrinsic alignments of galaxies, further progress could consist of ex-
ploring different galaxy shape estimators, such as the reduced inertia tensor or iterative
prescriptions, as well as investigating how the IA signal varies across galaxy populations
distinguished by type, luminosity, color, or environment. A better understanding of these
dependencies will help improve the current IA theoretical modeling, potentially providing
more robust cosmological analyses.

Beyond the ones studied in this thesis, other physical and observational WL system-
atics certainly merit further investigation. Examples include the uncertainty in source
redshift distributions as well as the clustering of source galaxies, which can bias WL mea-
surements if unaccounted for. Incorporating these systematics into simulated WL maps
will be fundamental for producing realistic forecasts, e.g. in the context of likelihood anal-
yses. Related to this, a key step forward would be to extend the framework presented here
to construct end-to-end simulated WL surveys that incorporate instrumental effects such
as point-spread function convolution, noise, and masking. This would significantly push
forward the degree of realism of WL numerical modeling.

Looking ahead, the cross-correlation of WL with different astrophysical signals is in-
creasing in popularity. Such a technique not only helps to mitigate survey-specific system-
atics but also breaks cosmological parameter degeneracies and offers deeper insights into
the nature of the dark sector. Therefore, providing high-fidelity numerical predictions of
cross-correlation between WL and complementary observables, such as galaxy clustering,
X-ray, and thermal Sunyaev–Zel’dovich signals, or even the gravitational wave background,
represents a crucial step toward multi-probe cosmology.

Another exciting and vast domain to explore is the numerical simulation of the WL
signal in alternative cosmological models beyond ΛCDM, such as those involving modified
gravity, interacting dark energy, or early dark energy scenarios. These models often predict
enhanced or suppressed structure formation on certain scales, and their signatures may be
significantly peculiar and recognizable in higher-order WL statistics.

In conclusion, the work presented in this thesis provides a foundational step in the
growing effort to improve the modeling of WL for upcoming cosmological surveys. By
combining the MTNG suite of state-of-the-art cosmological galaxy formation simulations
with advanced WL numerical methodology, I have investigated several key physical and
numerical effects that impact WL statistics. While significant progress has been made, the
results also highlight areas where further development is needed. As observational data
continue to improve in redshift depth, sky coverage, and angular resolution, additional
work will be essential for maximizing their scientific return. The methods and results
presented here aim to support this ongoing process.
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Appendix A

Impact of different smoothing scales
and resolutions

As mentioned in Section 3.2.5, before computing the PDF, peak counts, and minima counts,
the convergence maps are smoothed with a Gaussian kernel with a standard deviation
of 1 arcmin. Here we assess how varying the smoothing scale impacts our results from
Section 3.3.1. In Figure A.1 we show the measurements of the PDF (top row), peak counts
(center row), and minimum counts (bottom row) for two additional cases, with smoothing
scales of 0.5 (left column) and 2 (right column) arcmin. To ease the comparison, we also
reproduce the measurements of these statistics with 1 arcmin smoothing from Figure 3.4
(center column).

We observe that, for all three summary statistics, varying the resolution gives the same
qualitative behaviour for the smoothing scales considered here. Quantitatively, we find
that when the smoothing scale is smaller, the distortion of the statistics induced by lower
angular and mass resolution is greater. The agreement between the dashed and solid green
lines is consistent for all smoothing scales, indicating that the conclusions from Section 3.3.1
do not depend on the choice of smoothing scale.



84 A. Impact of different smoothing scales and resolutions

10−1

100

101

102

P

zs = 1.0

PDF (0.5 arcmin smoothing)

−0.02 0.00 0.02 0.04 0.06 0.08 0.10

κ

0.0

0.5

1.0

1.5

P
/P

re
f

10−1

100

101

102

P

zs = 1.0

PDF (1 arcmin smoothing)

−0.02 0.00 0.02 0.04 0.06 0.08 0.10

κ

0.0

0.5

1.0

1.5

P
/P

re
f

10−1

100

101

102

P

zs = 1.0

PDF (2 arcmin smoothing)

Np, Nside = 2703, 1024

Np, Nside = 5403, 2048

Np, Nside = 10803, 4096

Np, Nside = 21603, 8192

Np, Nside = 43203, 12288

Np, Nside = 43203, 1024

−0.02 0.00 0.02 0.04 0.06 0.08 0.10

κ

0.0

0.5

1.0

1.5

P
/P

re
f

10−1

100

101

102

103

n
p

e
a
k
s

zs = 1.0

Peaks (0.5 arcmin smoothing)

0.00 0.05 0.10 0.15 0.20

κ

0.0

0.5

1.0

n
p

e
a
k
s
/n

p
e
a
k
s,

re
f

10−1

100

101

102

103

n
p

e
a
k
s

zs = 1.0

Peaks (1 arcmin smoothing)

0.00 0.05 0.10 0.15 0.20

κ

0.0

0.5

1.0

n
p

e
a
k
s
/n

p
e
a
k
s,

re
f

10−1

100

101

102

n
p

e
a
k
s

zs = 1.0

Peaks (2 arcmin smoothing)

0.00 0.05 0.10 0.15 0.20

κ

0.0

0.5

1.0

n
p

e
a
k
s
/n

p
e
a
k
s,

re
f

10−1

100

101

102

103

n
m

in
im

a

zs = 1.0

Minima (0.5 arcmin smoothing)

−0.03 −0.02 −0.01 0.00 0.01 0.02 0.03 0.04

κ

0.0

0.5

1.0

n
m

in
im

a
/n

m
in

im
a
,r

e
f

10−1

100

101

102

103

n
m

in
im

a

zs = 1.0

Minima (1 arcmin smoothing)

−0.03 −0.02 −0.01 0.00 0.01 0.02 0.03 0.04

κ

0.0

0.5

1.0

n
m

in
im

a
/n

m
in

im
a
,r

e
f

10−1

100

101

102

n
m

in
im

a

zs = 1.0

Minima (2 arcmin smoothing)

−0.03 −0.02 −0.01 0.00 0.01 0.02 0.03 0.04

κ

0.0

0.5

1.0

n
m

in
im

a
/n

m
in

im
a
,r

e
f

Figure A.1: WL convergence PDF (top row), peak counts (center row), and minimum counts
(bottom row); computed in the case of 0.5 (left column), 1 (center column), and 2 (right column)
arcmin smoothing. All the observables are computed on the B realization of the MTNG740-DM
runs, taking zs = 1.0. The solid lines indicate the mean of 1195 5 × 5 deg2 square maps with
increasing darkness representing increasing resolution both in mass and Nside. The dotted line
refers to the case with the highest mass resolution but down-sampled to Nside = 1024. In each
lower sub-panel, we show the ratio with respect to the reference case with Npart = 43203 and
Nside = 12288 (noted with the subscript “ref”).



Appendix B

Impact of bilinear interpolation

In the present work, one of our ray-tracing setups features bilinear interpolation on HEALPix
maps, which introduces a smoothing that progressively suppresses the power on small
scales. This also narrows the PDF of the convergence, as well as the peaks and minima
count distributions.

In the case of a field like the convergence, in which values can vary drastically from pixel
to pixel, interpolating on points that are far from pixel centers introduces a significantly
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Figure B.1: Left panel: angular power spectrum; right panel: PDF of the convergence field.
These observables are computed for a fiducial source redshift of zs = 1.0. The solid lines indicate
maps that were computed by interpolating from a convergence map in the Born approximation,
but using a grid whose pixel centers were shifted longitudinally by an angle ∆ϕ, which was
systematically varied from 0 to the pixel size ϕpix, as labeled. The red dashed line indicates
convergence maps computed with ray-tracing and bilinear interpolation, for comparison.
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stronger smoothing with respect to points close to pixel centers. To better quantify this
effect we performed the following numerical test. We start with a convergence map, based
on a HEALPix grid with Nside = 1024. We then computed a new map by performing
a bilinear interpolation on the original map where we effectively rotated the underlying
HEALPix grid along the equator by ∆ϕ, a fraction of the pixel angular size ϕpix. By
repeating the above operation with increasing values of ∆ϕ, we interpolated on angular
positions that are progressively and coherently farther away from the pixel centers. In
the left and right panels of Figure B.1, we show the resulting power spectra and the PDF
of the convergence maps that have been rotated and interpolated according to the above
procedure.

In our ray-tracing scheme, all the rays start from an observed angular position that
coincides with the pixel centers, but as these are propagated from plane to plane, their
angular positions will be displaced at every step. We therefore expect the overall smoothing
effect of bilinear interpolation for each ray and for each lens plane to correspond to an
effective smoothing over an intermediate angular offset from the pixel centers. This is
exactly what is observed in both panels of Figure B.1, where the line referring to ray-tracing
with bilinear interpolation lies consistently within the set of lines indicating increasing
values of ∆ϕ, closely sticking to the line with ∆ϕ = 0.2ϕpix.
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Benson, B. A., Bernstein, G. M., Bertin, E., Blazek, J., Bridle, S. L., Brooks, D., Brout,
D., Buckley-Geer, E., Burke, D. L., Busha, M. T., Campos, A., Capozzi, D., Carnero



88 BIBLIOGRAPHY

Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F. J., Cawthon, R., Chang, C.,
Chen, N., Childress, M., Choi, A., Conselice, C., Crittenden, R., Crocce, M., Cunha,
C. E., D’Andrea, C. B., da Costa, L. N., Das, R., Davis, T. M., Davis, C., De Vicente,
J., DePoy, D. L., DeRose, J., Desai, S., Diehl, H. T., Dietrich, J. P., Dodelson, S.,
Doel, P., Drlica-Wagner, A., Eifler, T. F., Elliott, A. E., Elsner, F., Elvin-Poole, J.,
Estrada, J., Evrard, A. E., Fang, Y., Fernandez, E., Ferté, A., Finley, D. A., Flaugher,
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Grewal, N., Zuntz, J., Tröster, T., Amon, A. (2022), Minkowski Functionals in Joint Galaxy
Clustering & Weak Lensing Analyses , The Open Journal of Astrophysics, 5(1), 13

Hadzhiyska, B., et al. (2022a), The MillenniumTNG Project: An improved two-halo model
for the galaxy-halo connection of red and blue galaxies , ArXiv e-prints

Hadzhiyska, B., et al. (2022b), The MillenniumTNG Project: Refining the one-halo model
of red and blue galaxies at different redshifts , ArXiv e-prints

Hadzhiyska, B., Yuan, S., Blake, C., Eisenstein, D. J., Aguilar, J., Ahlen, S., Brooks, D.,
Claybaugh, T., de la Macorra, A., Doel, P., Emas, N., Forero-Romero, J. E., Garcia-
Quintero, C., Ishak, M., Joudaki, S., Jullo, E., Kehoe, R., Kisner, T., Kremin, A.,
Krolewski, A., Landriau, M., Lange, J. U., Manera, M., Miquel, R., Nie, J., Poppett,
C., Porredon, A., Rossi, G., Ruggeri, R., Saulder, C., Schubnell, M., Tarlé, G., Weaver,
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Heymans, C., Tröster, T., Asgari, M., Blake, C., Hildebrandt, H., Joachimi, B., Kuijken,
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