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2. Introduction 

2.1 The Role of DLPFC in Cognition and Psychiatric Disorders 

The dorsolateral prefrontal cortex (DLPFC) plays an important role in high-level 

cognitive functions, including executive processing (Panikratova et al., 2020; Sylvester et al., 

2003), decision-making  (Mohr et al., 2010; Philiastides et al., 2011), problem-solving (Barbey 

& Barsalou, 2009; Juliyanto et al., 2021), and working memory (Barbey et al., 2013; 

Blumenfeld & Ranganath, 2006). It is also a key region in psychiatric research due to its 

fundamental role in the top-down modulation of emotions and behavior (Sallet et al., 2013). 

Abnormalities in this region have been associated with impulsivity (Sala et al., 2011), 

emotional dysregulation (Salehinejad et al., 2017), and various neuropsychiatric disorders 

(Grimm et al., 2008; Ye et al., 2012; Zugman et al., 2013). Among these disorders, major 

depressive disorder (MDD) and schizophrenia (SCZ) exhibit profound structural and functional 

abnormalities in the DLPFC (Zhang et al., 2020). 

MDD, one of the most prevalent psychiatric disorders, is characterized by depressed 

mood, feelings of worthlessness, and a loss of energy and interest (American Psychiatric 

Association, 2013). These symptoms significantly impair daily functioning, contributing to a 

high societal burden and increased healthcare costs (Greenberg et al., 2015; Welch et al., 

2009). Although various treatment options, including selective serotonin reuptake inhibitors 

(SSRIs) and psychotherapy, are available, a substantial subset of patients remain resistant to 

pharmacological interventions (Gaynes et al., 2012; Rush et al., 2006). This highlights the 

need for alternative therapeutic approaches that can effectively reduce symptoms in 

individuals who do not respond to conventional treatments. 

One promising alternative involves non-invasive brain stimulation techniques, such as 

transcranial direct current stimulation (tDCS), which modulates DLPFC activity to reduce 

symptom severity (Li et al., 2022; Zheng et al., 2024). Understanding the function of the 

DLPFC has traditionally relied on studies of impairment, such as research on traumatic brain 

injuries (TBI) and focal lesions (Barbey et al., 2012; Cazalis et al., 2006), where damage to 

this region reveals its critical role in cognition and behavior. However, it has also recently been 

possible to investigate the DLPFC by directly manipulating its activity using tDCS. This 

technique has been preferred due to its practical and ethical reasons for exploring brain 

function in healthy and patient populations, allowing researchers to examine more causal 

relationships between DLPFC activity and cognitive processes. Given its crucial role in 
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psychiatric disorders and cognitive functions, targeting the DLPFC with tDCS not only 

enhances our understanding of its functions but also but also offers new possibilities for 

symptom management. 

2.2 tDCS: Mechanisms and Evolution 

tDCS is a non-invasive method to target specific brain areas with electrical stimulation. 

The use of electricity for medical purposes dates back centuries, with early examples including 

the use of torpedo fish, which naturally produce electricity, to reduce epileptic seizures (Harris, 

1908). Natural electricity from animals was used for centuries until 1660, when Otto von 

Guericke invented the first machine to generate electricity. Later, Giovanni Aldini began using 

electrical currents in clinical trials for therapeutic purposes (Comroe & Dripps, 1976). tDCS 

lost its popularity in the 1970s due to the rise of pharmacological treatments for psychiatric 

disorders (Dubljević et al., 2014). However, it gained attention again after Nitsche and Paulus 

reintroduced tDCS and demonstrated that tDCS can create excitatory and inhibitory effects 

on neurons (Nitsche & Paulus, 2000), marking a significant turning point in research. 

tDCS delivers a low current (typically 1-2 mA) through the scalp using at least two 

electrodes. The anode promotes depolarization (making neurons more likely to fire) of the 

resting membrane potentials, while the cathode induces hyperpolarization (reducing neuronal 

excitability) (Brunoni et al., 2012). After passing through the scalp and skull, the remaining 

current modulates cell membrane polarization and adjusts the spike timing of neurons 

receiving suprathreshold inputs rather than directly triggering action potentials (Anastassiou 

et al., 2011; Ruffini et al., 2013). This process may also influence neurotransmitter release 

(Rohan et al., 2015), though the precise mechanisms remain incompletely understood. 

tDCS is widely used due to its low intensity and minimal side effects (Bikson et al., 

2016; Chhatbar et al., 2017). Although various studies have documented its effects on 

cognitive functions and clinical conditions, contradictory findings highlight the need for more 

research to understand how tDCS works (Berryhill & Martin, 2018; Horvath et al., 2015; 

Jacobson et al., 2012; Narmashiri & Akbari, 2023). Combining tDCS with other techniques as 

a multimodal approach may help explore its effects on brain metabolism and better understand 

its mechanisms in healthy brains (Saiote et al., 2013). This knowledge could facilitate 

translating tDCS applications to clinical populations where they are most needed. Magnetic 

resonance imaging (MRI) and magnetic resonance spectroscopy (MRS), in particular, offer a 
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unique opportunity to directly assess stimulation-induced changes at both neural and 

metabolic levels, making them strong candidates for investigating tDCS mechanisms. 

2.3 MRI and MRS: History, Principles, and Applications 

MRI is one of the most commonly used brain imaging techniques for investigating the 

structural and functional aspects of the brain. The history of MRI is marked by several 

groundbreaking discoveries. In 1938, Isidor Isaac Rabi demonstrated that the magnetic 

moments of atoms and molecules interact with magnetic fields in specific ways, laying the 

theoretical foundation for magnetic resonance (Rabi et al., 1938). Later, in 1971, Raymond 

Damadian discovered that cancerous tissues exhibit distinct magnetic resonance properties 

compared to healthy tissues, highlighting the potential of MRI as a clinical diagnostic tool 

(Damadian, 1971). Building on these findings, Paul Lauterbur (1973) created the first two-

dimensional images using magnetic resonance, demonstrating the practical imaging 

capabilities of the technique (Lauterbur, 1973). The image quality and acquisition speed were 

further enhanced with Fourier transformation, enabling shorter imaging times and more 

detailed visualizations (Edelman, 2014). 

Today, MRI is a non-invasive imaging technique that operates without ionizing 

radiation, making it a safer alternative to computed tomography (CT) (Brenner & Hall, 2007). 

It is also capable of facilitating the investigation of brain metabolites in specific regions of 

interest. This is called MRS and provides valuable insights into brain function and pathology. 

Proton magnetic resonance spectroscopy (¹H-MRS) is the most widely used MRS modality 

due to its high sensitivity in detecting a broad range of metabolites, including glutamate (Glu) 

and gamma-aminobutyric acid (GABA) (Govindaraju et al., 2000). 

MRS is based on the principle that atomic nuclei, particularly those with a non-zero 

spin, such as hydrogen, exhibit distinct responses to radiofrequency (RF) pulses in a strong 

magnetic field. These responses vary depending on the molecular environment surrounding 

the nuclei, as the local electronic shielding alters the effective magnetic field experienced by 

each nucleus. This phenomenon, known as chemical shift, allows for the differentiation of 

nuclei within various chemical compounds (Cecil, 2013). MRS can measure these shifts, 

providing insights into the relative concentrations of specific metabolites within tissues. 

Specific metabolites are represented as peaks on an MRS graph where signal intensity 

corresponds to metabolite concentration, and the x-axis represents the signal frequency. The 

frequency is expressed in parts per million (ppm), a scale normalized to account for differences 
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in the magnetic field strength of the spectrometer, allowing for standardized comparison of 

chemical shifts (Cecil, 2013). 

  

2.4 Investigating the Effects of Bifrontal tDCS: Neurochemical, 

Cognitive, and Clinical Perspectives 

MRS provides insights into the neurobiological mechanisms underlying tDCS effects 

by quantifying neurotransmitter levels before, after, and even during stimulation. Bifrontal 

tDCS, which targets the DLPFC, is a commonly used montage due to its ability to modulate 

activity bilaterally, making it an effective approach in both cognitive and clinical research 

(Brunoni et al., 2014; Fecteau et al., 2007; Ferrucci et al., 2009). This dual-hemisphere 

stimulation is particularly advantageous for addressing functional impairments observed in 

psychiatric conditions while facilitating investigations into cognitive functions. Several studies 

have attempted to investigate the metabolic effects of tDCS on the prefrontal cortex using 

MRS. However, the findings remain inconsistent (see Table 1), which may be attributed to 

variations in stimulation intensities, durations, experimental protocols, sample sizes, and the 

specific brain metabolites measured. These discrepancies highlight the need for more 

standardized and refined methodologies to better understand the neurochemical impact of 

tDCS. 
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Table 1 

Summary of Bifrontal tDCS Studies Utilizing MRS 

  

Study 

Total 

n 

Stimulation 

A=anodal; 

C=cathodal 

Intensity 

duration 

  

Baseline 

MRS 

regions 

Time 

points 

  

GABA 

  

Glx 

  

Glu 

  

NAA 

  

Present 

study 

  

40 

 

A: lDLPFC 

C: rDLPFC 

  

2mA 

20m 

  

corrected 

 

lDLPFC 

pre-

during1-

during2-

post 

  

  

NS 

  

lDLPFC 

  

NS 

  

NS 

 

(Mezger 

et al., 

2021) 

  

20 

 

A: lDLPFC 

C: r DLPFC 

  

2mA 

20m 

  

corrected 

 

rDLPFC 

pre-

during1-

during2-

post 

  

  

NS 

  

NS 

  

only 

females 

  

- 

 

(Hone-

Blanchet 

et al., 

2016) 

  

17 

 

A: lDLPFC 

C: rDLPFC 

  

  

1mA 

30m 

  

no 

baseline 

 

lDLPFC 

and left 

striatum 

  

during-

post 

  

NS 

  

left 

striatum 

  

- 

  

lDLPFC 

  

(Dickler et 

al., 2018) 

  

16 

 

A: rDLPFC 

C: lDLPFC 

  

1mA 

30m 

  

no 

baseline 

 

rDLPFC 

and right 

striatum 

  

during 

  

right 

DLPFC 

  

NS 

  

- 

  

NS 

  

(Mugnol-

Ugarte et 

al., 2022) 

  

  

41* 

  

A: vmPFC.  

C: rDLPFC 

  

  

  

2mA 

20m 

  

not 

corrected 

 

vmPFC 

and 

DLPFC 

  

pre-post 

  

vmPFC 

& right 

DLPFC 

  

vmPFC 

& right 

DLPFC 

  

- 

  

- 

(Bunai et 

al., 2021) 

17 A: lDLPFC. 

C: rDLPFC 

2mA 

13m 

(x2) 

no info lDLPFC 

and 

bilateral 

striata 

post striatum 

lDLPFC 

- - NS 

(GABA:NAA 

ratio) 

  

(Habich 

et al., 

2020) 

55** A: lDLPFC  

C: right 

supraorbital 

area 

1mA 

20m 

not 

corrected 

lDLPFC pre-after NS NS - - 



 17 

 

 

 

 

Note. Parametric and technical details of the studies which combine bifrontal tDCS with MRS. This table was 

adapted from the supplemental material of (Vural et al., 2024). 

* Between group design 

** 33 were healthy young participants 

“-” not measured 

NS: not significant 

  

While neurochemical assessments such as MRS provide valuable insights into the 

underlying mechanisms of stimulation, cognitive and clinical measures remain essential for 

evaluating the efficacy and therapeutic potential of tDCS, particularly in patient populations. 

To address this, the present thesis includes two complementary investigations aimed at 

understanding the impact of bifrontal tDCS in both healthy individuals and clinical populations: 

(1) to investigate the changes in brain metabolites induced by bifrontal tDCS in healthy 

individuals (Study 1) and (2) to examine the effects of bifrontal tDCS on symptom severity and 

cognitive performance in patients with SSRI-resistant MDD, as well as to assess the potential 

role of baseline cognitive performance as a predictor of tDCS treatment response (Study 2). 

Both studies employed 2 mA bifrontal stimulation, with the anode positioned over the left 

DLPFC (F3) and the cathode over the right DLPFC (F4). The protocols were sham-controlled 

and double-blinded including ramp-up and ramp-down phases to maintain blinding. 
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3. Experimental Studies 

3.1 Study 1: tDCS and MRS in Healthy Participants 

3.1.1 Aim and Hypothesis 

The first project investigates the impact of tDCS on brain metabolites in healthy 

individuals, providing insights into how stimulation influences metabolic processes. By 

examining the tDCS effect in the healthy brain, this study contributes to the understanding of 

stimulation-induced metabolic changes, which may help to translate these findings to clinical 

populations. 

Due to the differential methodological approaches in the existing literature, the first 

study aimed to investigate tDCS-induced changes in brain metabolites using a well-controlled 

design that addresses key methodological gaps. Accordingly, baseline metabolite levels were 

measured to account for individual differences, and post-tDCS assessments were conducted 

to evaluate the after-effects of stimulation. By employing a placebo-controlled, double-blind, 

crossover methodology and one of the largest sample sizes in this field, this study aimed to 

address discrepancies in previous findings. Key metabolites, including GABA, Glu, Glx, and 

NAA, were measured via single-voxel 1H-MRS, targeting the left DLPFC, providing an 

overview of neurometabolic changes induced by tDCS. 

We hypothesized that a single session of bifrontal tDCS leads to significant alterations 

in these brain metabolites, measured from the anodal side (left DLPFC), during and/or after 

active stimulation compared to sham stimulation. These neurometabolic changes are 

expected to provide valuable insights into the mechanisms of tDCS in the healthy brain. 

3.1.2 Methods  

A total of 41 participants were scanned using a 3T Siemens Prisma scanner. Each 

participant completed two sessions - one with active stimulation and one with sham 

stimulation, separated by one week to minimize potential carryover effects.  

tDCS was delivered using a NeuroConn single-channel device. The stimulation 

targeted the left DLPFC with a 2 mA bifrontal montage, where the anode was positioned over 

F3 and the cathode over F4. MRS data were acquired using a 2.2 cm³ single-voxel placement 

in the left DLPFC. Spectroscopy data were analyzed using LCModel, and Mescher-Garwood 
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Point-Resolved Spectroscopy (MEGA-PRESS) sequences were used to acquire GABA 

metabolite concentrations, which were further processed with Gannet. Metabolite 

concentrations were measured at four time points: before, during the first half (during1), and 

the second half (during2) of the stimulation and after the stimulation. Each acquisition lasted 

10 minutes per time point, resulting in a total scanning time of 40 minutes. 

3.1.3 Results 

Two main analyses and one exploratory analysis were conducted to investigate the 

tDCS-induced metabolite effects. Linear mixed models (LMMs), implemented in R Studio, 

were used to analyze the data while controlling for sex and age for each brain metabolite. P-

values were corrected for multiple comparisons. 

A significant difference in Glx levels was observed between the active and sham 

stimulation sessions during the second half of stimulation and the post-stimulation period 

(during2 stimulation: pBonferroni = .049; post-stimulation: pBonferroni = .01). Specifically, Glx levels 

were significantly higher in the active stimulation session compared to the sham session. No 

significant differences were found in other measured metabolites (GABA, Glu, or NAA) across 

time points. 

E-field analyses at the 75th percentile were conducted to examine individual 

neuroanatomical differences and assess the relationship between electric field intensities and 

Glx concentration levels. The analysis revealed no significant correlation between E-field 

intensities and Glx levels. 

Finally, an exploratory cluster analysis was performed to examine the distribution of 

responders and non-responders to the stimulation, specifically for the Glx metabolite. The 

results identified three distinct groups based on stimulation response in Glx levels. 

These findings demonstrate that tDCS can selectively modulate brain metabolite 

levels, specifically increasing Glx during active stimulation. This effect persisted after 

stimulation, highlighting the after-effects of tDCS. These results support the potential of tDCS 

as a tool for neuromodulation. Further implications and interpretations will be discussed in the 

Conclusion/Discussion section. 
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3.2 Study 2: tDCS Effect on Symptom Severity in MDD 

3.2.1 Aim and Hypothesis 

The second project extends this work by assessing the effects of tDCS on cognitive 

and clinical symptoms in MDD, a group characterized by cognitive dysfunction and 

neurometabolic imbalances. We hypothesized that repeated sessions of bifrontal tDCS would 

result in significant improvements in cognitive performance across multiple domains, such as 

working memory, attention, and executive functions in patients with SSRI-resistant MDD. 

Furthermore, we proposed that reductions in symptom severity, as assessed by the 

Montgomery-Åsberg Depression Rating Scale (MADRS), would indicate greater clinical 

improvement in the active tDCS group compared to the sham tDCS group. 

3.2.2 Methods  

The second study (DepressionDC trial) aimed to investigate changes in symptom 

severity and cognitive performance before and after 24 sessions of bifrontal tDCS (2 mA, 30 

minutes per session) in MDD patients. This triple-blind, sham-controlled study assessed 

symptom severity using the MADRS and the State-Trait Anxiety Inventory (STAI). Cognitive 

performance was evaluated across multiple domains using the validated EmoCogMeter test 

battery, including memory span, working memory, selective attention, sustained attention, 

executive function, and processing speed. Assessments were conducted at baseline, after 

treatment (week 6), and at a 6-month follow-up. This comprehensive assessment allowed for 

a detailed evaluation of both clinical symptoms and cognitive functioning, offering insights into 

the therapeutic potential of tDCS in treatment-resistant depression. 

3.2.3 Results 

LMM was used to perform the analyses on the effect of the active stimulation on 

cognitive performance via R by controlling sex, age and MADRS scores from the baseline 

level. False discovery rate (FDR) correction was applied for multiple comparisons. Baseline 

characteristics between the groups were compared using Pearson’s chi-square tests and 

Wilcoxon rank-sum tests. 

The investigated neurocognitive functions did not show any significant differences 

between active and sham tDCS over the 6-month study period. Moreover, baseline cognitive 

scores did not predict treatment response. The results indicate that the investigated 
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neurocognitive domains do not predict the tDCS response in the MDD group. Additionally, 

baseline cognitive performance did not significantly influence treatment outcomes. 
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4. Conclusion/Discussion 

This thesis incorporates two interrelated studies investigating the neurometabolic 

effects of tDCS and its potential clinical applications. By examining how tDCS influences brain 

metabolites in healthy individuals (Study 1), we aim to inform the development of personalized 

tDCS treatment strategies for MDD. These studies seek to bridge the gap between basic 

research and clinical practice, exploring the potential effect of tDCS both as a cognitive 

enhancement tool and as a treatment option for psychiatric conditions. 

The significant Glx change observed in Study 1, but the absence of changes in other 

metabolites, highlights the complexity of interpreting the metabolic effects of tDCS. Glx 

represents the combined measurement of Glu and Gln. While Glu is primarily associated with 

neuronal activity, astrocytes reuptake Glu from the synaptic cleft and convert it into Gln. This 

process suggests that tDCS may also influence astrocytic functions and that Glx changes 

reflect both neuronal and astrocytic processes, suggesting a broader metabolic effect. The 

rapid astrocytic reuptake of Glu, combined with the inherent limitations of 3T MRI scanners in 

detecting subtle metabolite changes, may explain the absence of significant alterations in Glu 

levels. While GABA and NAA levels also remained unchanged, the significant modulation of 

Glx indicates a localized effect of anodal stimulation on the left DLPFC. 

Contrary to our expectations, the Study 2 found that tDCS did not result in significant 

improvements in either symptom severity or cognitive test scores. These results suggest that 

while tDCS may influence neurometabolic processes in healthy individuals, its clinical and 

cognitive benefits in SSRI-resistant MDD require further investigations such as different 

protocols with higher current intensities or longer stimulation times. The possible explanations 

for the findings will be discussed in the following section. 
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5. Future Directions 

Our cluster analyses in Study 1 demonstrated distinct subgroups of responders and 

non-responders based on Glx metabolic levels, highlighting the heterogeneity in 

neurometabolic responses to stimulation (Figure 1). Future research should investigate how 

factors such as scalp thickness and hormonal levels contribute to this variability, particularly 

in clinical populations where comorbidities and treatment histories introduce additional layers 

of complexity (Mastria et al., 2021; Vergallito et al., 2022). 

 

Figure 1 

K-means Clustering of Percent Changes in Glx 

 

 

Note. Scatter plot visualizing the outcomes of k-means clustering, showing percentage changes in Glx 

responses to active and sham stimulation grouped by the derived clusters. Each point represents a 

participant's response, with asterisks indicating the centroids of the clusters. This figure was adapted 

from the supplemental material of (Vural et al., 2024). 

 

The limited effectiveness of tDCS observed in Study 2 can be attributed, in part, to the 

specific characteristics of the participant sample. These individuals were classified as 

medication-resistant, a condition often associated with a more severe and treatment-refractory 

form of depression. As highlighted in a meta-analysis of 342 studies (Meron et al., 2015) and 

a comprehensive review (Palm et al., 2016), tDCS effects are generally diminished in this 
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population. This resistance likely stems from the complex neurobiological alterations that 

accompany long-term medication use and the more entrenched nature of the depressive 

symptoms. Therefore, relying solely on standalone tDCS may be insufficient for achieving 

significant clinical improvements in medication-resistant depression. Future research should 

explore adjunctive strategies, such as combining tDCS with pharmacological agents. 

Specifically, pairing tDCS with medications that modulate the glutamatergic or dopaminergic 

systems, as suggested by previous studies (Brunoni et al., 2014; Loo et al., 2012), could 

potentially synergize and enhance treatment efficacy in this challenging patient group. 

Previous research in our lab reported decreased Glu levels on the cathodal side in 

females under similar stimulation parameters (Mezger et al., 2021). While tDCS modulated 

Glu levels in Mezger et al.'s study and Glx levels in Study 1 of this thesis, it did not significantly 

alter cognitive scores or symptom severity in Study 2. This discrepancy highlights the 

variability in neurometabolic and cognitive responses to tDCS, suggesting that standardized 

stimulation protocols are not universally effective across populations. The complex 

neurophysiological underpinnings of depression explained through theories such as 

interhemispheric frontal imbalance (Hui et al., 2021), hypofrontality (Galynker et al., 1998), 

and limbic-cortical dysfunction (Mayberg, 1997) likely contribute to these heterogeneous 

responses. Given these complexities, refining stimulation parameters - such as increasing the 

number of sessions (Bennabi & Haffen, 2018) or personalizing current intensity and duration 

based on individual anatomy (Mosayebi-Samani et al., 2021), baseline cortical excitability 

(Filmer et al., 2019), hormonal status (Rudroff et al., 2020), and resting-state connectivity 

(Abellaneda-Pérez et al., 2020) is necessary to enhance cognitive and clinical outcomes 

(Esmaeilpour et al., 2018; Rudroff et al., 2020; Sabé et al., 2024). Furthermore, individual 

differences in gray matter density, previously linked to antidepressant response (Bulubas et 

al., 2019), should be explored as a potential biomarker for optimizing tDCS efficacy in 

neuropsychiatric disorders. Identifying such robust predictors across both neurometabolic and 

cognitive domains will be crucial to maximize the therapeutic potential of tDCS.  

In conclusion, future research should adopt a precision-medicine approach to tDCS, 

integrating neurobiological and individual patient characteristics to enhance clinical efficacy 

while utilizing high-field MRI, such as 7T, to gain deeper insights into metabolic concentrations 

and neuromodulatory effects. 
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6. Paper I 
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7. Paper II 
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