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Summary

Driven by digital communication, social media, satellite technology, and the widespread digitiza-
tion of information, the past few decades have seen a dramatic increase in the volume of data
that is being produced and collected every day. As a result, data science, in the form of statistical
modelling, machine learning and artificial intelligence, is playing an increasingly important role
across both industry and academic research. In recent years, these developments have also begun
to impact and transform the field of conflict research. This thesis contributes to this transforma-
tion by utilizing modern computational methods and novel data sources to improve the analysis,
forecasting and understanding of armed conflict.

Part I of this thesis introduces conflict research and provides the broader context for the con-
tributing articles. It outlines the field’s main objectives and challenges, and the potential of data
science in addressing them. Following an overview of well-established conflict event databases and
best practices for working with them, the first part turns to novel data sources for the field. It
first introduces satellite imagery and remote sensing variables, which are derived from the former,
and explores their applications in conflict research. It then discusses social media as a data source,
highlighting its opportunities and limitations. Next, it provides an introduction into statistical
modelling, with a particular focus on generalized additive models (GAMs), which play an im-
portant role across all contributions. This is followed by an overview on predictive modelling in
the context of conflict forecasting, covering the most widely used machine learning approaches in
the field. Part I closes with a summary of the contributing articles and an outlook on the future
direction of the field.

Part II of the thesis demonstrates how these novel data sources can be incorporated into both
statistical and machine learning models for conflict. The first contribution shows how remote
sensing datasets, such as landcover classifications and nighttime lights, can improve the forecasting
performance of predictive models in conflict-ridden countries with limited official data sources. The
second contribution employs freely available synthetic aperture radar (SAR) satellite images from
the European Space Agency (ESA) to detect the destruction of buildings during war. Specifically,
a technique called Interferometric SAR (InSAR) is used and combined with a non-parametric
median regression and a robust statistical assessment to identify destruction and its timing at the
building level. In the third contribution, the language used in tweets from Ukraine is analysed
before and during the Russian invasion. Using generalized additive mixed models, the study
disentangles sample effects, arising from the in- and outflux of users, from behavioural effects.
It identifies a clear shift in language from Russian to Ukrainian with the outbreak of the war,
primarily driven by behavioural changes of the users.

In the final part of the thesis, Part III, a statistical model is proposed to capture the diffusion
effects of armed conflict across space and time. Specifically, the fourth contribution develops a
generalized additive model with a flexible smoothing basis over past conflict, constructed from a
set of exponential decay functions with varying decay rates. The model is able to capture the
long-lasting and far-reaching spatio-temporal dependencies exhibited by conflict. Further analysis
shows that conflict typically breaks out in densely populated areas and from there subsequently
diffuses into less populated regions.






Zusammenfassung

Getrieben durch digitale Kommunikation, soziale Medien, Satellitentechnologie und die um-
fassende Digitalisierung von Informationen hat die Datenmenge, die téglich erzeugt und gesammelt
wird, in den vergangenen Jahrzehnten dramatisch zugenommen. Infolgedessen spielt Data Sci-
ence, in Form von statistischer Modellierung, maschinellem Lernen und kiinstlicher Intelligenz,
eine zunehmend wichtige Rolle sowohl in der Industrie als auch in der akademischen Forschung.
In den letzten Jahren haben diese Entwicklungen auch begonnen, die Konfliktforschung zu bee-
influssen und zu verdndern. Diese Dissertation trégt zu diesem Wandel bei, indem moderne
statistische und datenwissenschaftliche Methoden sowie neuartige Datenquellen genutzt werden,
um die Analyse, Vorhersage und das Versténdnis zu bewaffneten Konflikten zu verbessern.

Teil I dieser Dissertation fiihrt in die Konfliktforschung ein und liefert den tibergeordneten Kon-
text fiir die Forschungsbeitrdge. Es werden die zentralen Ziele und Herausforderungen des
Forschungsfeldes skizziert sowie das Potenzial von Data Science zur Bewiltigung dieser Her-
ausforderungen aufgezeigt. Nach einem Uberblick iiber etablierte Datenbanken fiir Konflik-
tereignisse und bewahrte Praktiken im Umgang mit diesen, widmet sich der erste Teil neuartigen
Datenquellen fiir die Konfliktforschung. Zunéchst werden Satellitenbilder und daraus abgeleitete
Fernerkundungsvariablen vorgestellt und ihre Anwendungsmoglichkeiten in der Konfliktforschung
erlautert. Anschliefend werden soziale Medien als Datenquelle thematisiert, wobei deren Poten-
ziale und Grenzen diskutiert werden. Es folgt eine Einfithrung in die statistische Modellierung mit
besonderem Fokus auf generalisierte additive Modelle (GAMs), die in allen Forschungsbeitrédgen
dieser Dissertation eine wichtige Rolle spielen. Im nachfolgenden Abschnitt wird ein Uberblick
iiber pradiktive Modellierung im Kontext der Konfliktvorhersage gegeben, einschliefllich der am
héufigsten eingesetzten maschinellen Lernverfahren in diesem Bereich. Teil T schlieffit mit einer
Zusammenfassung der Forschungsbeitridge und einem Ausblick auf zukiinftige Entwicklungen im
Forschungsfeld ab.

Teil IT der Arbeit zeigt, wie diese neuartigen Datenquellen in statistische und maschinelle Lern-
modelle fir Konflikte integriert werden konnen. Der erste Forschungsbeitrag veranschaulicht, wie
Fernerkundungsdaten, bspw. Landbedeckungsklassen und néchtliche Lichtemissionen, die Prog-
nosegiite von Vorhersagemodellen in konfliktreichen Léndern mit begrenzten amtlichen Daten
verbessern konnen. Der zweite Beitrag verwendet frei verfiigbare Synthetic Aperture Radar (SAR)
Satellitenbilder der Européaischen Weltraumorganisation (ESA), um die Zerstérung von Gebduden
wéhrend Kriegen zu erkennen. Hierzu wird eine Technik namens interferometrisches SAR (InSAR)
eingesetzt und mit einer nichtparametrischen Medianregression sowie einer robusten statistischen
Evaluierung kombiniert, um Zerstérung und dessen Zeitpunkt auf Gebaudeebene zu identifizieren.
Im dritten Forschungsbeitrag wird die Sprachnutzung in Tweets aus der Ukraine vor und wéhrend
der russischen Invasion analysiert. Unter Verwendung generalisierter additiver Mischmodelle wer-
den Stichprobeneffekte, verursacht durch das Zu- und Abwandern von Social-Media-Nutzer:innen,
von Effekten durch Verhaltungsdnderungen getrennt. Die Analyse zeigt einen klaren Wechsel von
Russisch zu Ukrainisch mit Ausbruch des Krieges, der hauptséchlich auf Verhaltensdnderungen
zuriickzufithren ist.

Im abschlielenden Teil der Arbeit, Teil I1I, wird ein statistisches Modell vorgeschlagen, um die Dif-
fusionseffekte von bewaffneten Konflikten iiber Raum und Zeit zu erfassen. Konkret entwickelt der
vierte Beitrag ein generalisiertes additives Modell mit einer flexiblen Glattungsbasis iiber vergan-
genene Konflikte, die aus einer Vielzahl exponentieller Zerfallfunktionen mit unterschiedlichen Ab-



nahmefaktoren besteht. Das Modell kann die langfristigen und weitreichenden raumlich-zeitlichen
Abhéngigkeiten, die Konflikte aufweisen, addquat erfassen und abbilden. Weitere Analysen zeigen,
dass bewaffnete Konflikte typischerweise in dicht besiedelten Gebieten ausbrechen und sich von
dort aus in weniger besiedelte Regionen ausbreiten.

viii



Contents

l. Introduction and background
1. Introduction
2. Data Sources for Conflict Research
2.1. Conflict Databases . . . . . . . . . . . e e e e e
2.1.1. Uppsala Conflict Data Program Georeferenced Event Dataset . . . . . .
2.1.2.  Armed Conflict Location & Event Data Project . . . . . . . . ... ..
2.1.3. Precision Levels & Units of Analysis . . . . . . . ... ... ... ...
2.2. Satellite Data . . . . . . . . . . e e e e
2.2.1. Remote Sensing Datasets . . . . . . . . . . ... oL
2.2.2. Satellite Data in Conflict Research . . . . . . . . . . ... ... ...
2.3. Social Media . . . . . . ..o e e e e e e
2.3.1. Social Media in Conflict Research . . . . . . . . ... ... ... ...
3. Statistical Modelling
3.1. Parametric Statistical Models . . . . . . . . . . .. ..o
3.1.1. Linear Regression . . . . . . . . . . . . ..o
3.1.2. Generalized Linear Regression . . . . . . . . .. ... ... ... ...
3.2. Non- & Semiparametric Statistical Models . . . . . . . . . . . ... ... ..
3.2.1. Generalized Additive Models . . . . . . . . . ... ...
4. Forecasting Conflict
4.1. Core Concepts . . . . v v v v i e e e e e e e e e e e e e e e
4.2. Common Machine Learning Models . . . . . . . . . . ... ... ... ....
4.2.1. LASSO Regression . . . . . . . . . . v 0 v v v i e e e e
4.2.2. Decision Trees . . . . . . . . . oo
4.2.3. Random Forests . . . . . . . . . . . . e e
4.2.4. (Gradient) Boosting . . . . . . . . .. L L o
4.2.5. Other Machine Learning Approaches . . . . . . . . .. .. ... ...
4.3. Interpretable Machine Learning Techniques . . . . . . . . . . . .. ... ...
5. Concluding Remarks
5.1. Contributions . . . . . . . . . L. e e e e
5.2. Outlook . . . . . . L e e e e
References
Il. Utilizing Novel Data Sources
6. Conflict forecasting using remote sensing data: An application to the Syrian civil
war
7. Unsupervised Detection of Building Destruction during War from Publicly Available
Radar Satellite Imagery
8. The Russian war in Ukraine increased Ukrainian language use on social media

NoREN IEN NeorNo e ¢, | w o

41

43

71
87



Contents

I1l. Developing New Models 103

9. Capturing the Spatio-Temporal Diffusion Effects of Armed Conflict: A Non-
parametric Smoothing Approach 105

Contributing Publications 125

Eidesstattliche Versicherung 127



Part |I.

Introduction and background






1. Introduction

Armed political conflict is responsible for thousands of fatalities worldwide each month (Davies
et al., 2024). Such conflicts can occur within countries, as in civil wars, or between nations,
stemming from a range of political, economic, or ethnic tensions. In both cases, the consequences
are severe and far-reaching (Gates et al., 2012). Armed conflict often forces people to migrate
within and across borders, triggering refugee crises that can spill over into neighbouring and
distant countries, thus destabilizing entire regions. It also disrupts local economies, undermines
both domestic and international trade, and weakens governments’ capacity to maintain order and
provide essential services. As a result, countries caught in cycles of conflict often struggle to escape
poverty (Collier et al., 2003).

Research on armed conflict generally pursues three main objectives. First, it seeks to quantify
and understand the consequences of conflict, including its economic, political, and humanitarian
impacts. Second, it aims to identify the key determinants and mechanisms that drive political
violence. Third, a central goal is to develop early warning systems that help predict where
and when violence is likely to break out or escalate. All of these can help policymakers and
humanitarian organizations to prepare for conflict and design targeted interventions that may
prevent or mitigate future conflicts (Hegre et al., 2019; Rohner, 2024).

Historically, conflict research has relied on manually compiled historical records and databases
created by individual scholars. However, with the increasing globalization and digitization of in-
formation, conflict reporting has improved both in speed and level of detail. News organizations,
social media platforms, and NGOs now provide information on conflicts in near real-time. This
shift has led to dedicated research teams systematically collecting and curating conflict event data
into globally spanning databases (Raleigh et al., 2010; Sundberg and Melander, 2013). Over the
past decade, these developments have allowed the field to move away from country-level designs
towards more fine-grained subnational analyses that were previously impossible. In addition, the
regular and timely updates of these databases have facilitated the development of more sophisti-
cated and accurate early warning systems (Rod et al., 2024).

As conflict research is increasingly moving to subnational levels, scholars are turning to novel data
sources such as satellite imagery, remote sensing data, and social media as alternatives to official
statistics, which are often unavailable at these levels in conflict-affected areas. An introduction into
these data sources, alongside an overview on conflict event databases, will be provided in Chapter
2. The shift towards subnational analyses also requires more advanced modelling techniques.
To obtain a better understanding of the determinants and mechanisms of conflict, statistical
modelling approaches are essential. Hence, Chapter 3 introduces the key concepts of statistical
modelling, with a specific focus on generalized additive models (GAMs), which play a key role in
this dissertation. In contrast, forecasting models and early warning systems prioritize predictive
performance, thus often relying on black-box machine learning models. The core concepts and
most widely used approaches will be discussed in Chapter 4. Concluding remarks and an outlook
on future research are provided in Chapter 5.
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The remainder of this thesis consists of four contributing articles. Part II demonstrates how these
new data sources can be incorporated into both statistical and machine learning models for the
study of armed conflict, with the corresponding contributions in Chapter 6, 7 and 8. Part III,
with the contributing article in Chapter 9, develops a novel statistical model specifically designed
to capture and investigate the diffusion of armed conflict across space and time.



2. Data Sources for Conflict Research

“Without data you're just another person with an opinion.”
— William E. Deming
(* 1939, 1 1998)

Data is at the heart of any empirical study, not only in conflict research. It provides the empirical
grounding on which analyses are built, and enables researchers to draw real-world conclusions
substantiated by evidence found in the data. In the context of conflict research, having reliable
and detailed information is essential for understanding where, when and how armed conflicts
unfold, as well as their wider impacts on societies. Over the past decade, both the volume and
variety of available data sources have increased substantially, allowing for more detailed and timely
insights into conflict and its dynamics than ever before. This increase in data availability not only
advances academic research, but may also help to inform policy decisions, humanitarian efforts,
and peacekeeping missions.

This chapter is dedicated to introducing the primary data sources used throughout this thesis.
It covers conflict event databases, which have been one of the key advancements for conduct-
ing subnational conflict studies. For a long time, researchers had only access to country-level
data and events, which severely limited empirical analyses and research (Eck, 2012). This dras-
tically changed roughly a decade ago with the introduction of conflict event databases, which
systematically report conflict events across the world on a fine-grained subnational level (Raleigh
et al., 2010). With their introduction and the accompanied shift of research to subnational levels,
scholars have recently started to explore alternative data sources that can supplement or replace
official government statistics, which are often only available at the national level and unreliable in
conflict-affected countries. In this context, this chapter introduces both satellite and social media
data as "novel” data sources, that have emerged over the past decade, and are beginning to find
a foothold in the field. Satellite images provide snapshots of on-the-ground conditions and are
available globally, independent of whether a country is experiencing conflict or not. Meanwhile,
social media platforms capture public sentiment and discourse in real time, providing a valuable
source and continuous stream of information on unfolding events, without requiring traditional
surveys or interviews, which are often difficult or impossible to conduct.

The remainder of this chapter is organized as follows. Section 2.1 introduces conflict event
databases, which form the backbone of subnational conflict research. Section 2.2 then discusses
satellite imagery and remote sensing datasets, along with their applications in conflict research.
Finally, Section 2.3 explores social media data and its use cases.
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2.1. Conflict Databases

Conflict event databases are essential for studying political violence, as they provide access to
structured and systematically collected datasets on events of armed conflict on a subnational
level. A conflict event typically refers to an individual occurrence of political violence, such as
a battle, an attack on civilians, or a bombing. Each event is assigned an approximate date and
location, a classification of the violence type (e.g., "battle” or "violence against civilians”), and
an estimated number of fatalities. Depending on the dataset, these core attributes are often
supplemented by additional details, such as information on the actors involved, more granular
event categories, high and low estimates for the fatalities, time and spatial precision codes, and
source references.

Among the many available databases, the Uppsala Conflict Data Program (UCDP) Georeferenced
Event Dataset (GED) (Sundberg and Melander, 2013) and the Armed Conflict Location & Event
Data Project (ACLED) (Raleigh et al., 2010) are the most widely used datasets in the field due
to their global coverage and systematic data collection efforts. To collect up-to-date information
on conflict events, both rely on media monitoring, reports from international organizations, and
non-governmental organizations (NGOs), many of which operate at the local level. ACLED ad-
ditionally incorporates information from trusted social media accounts for their coverage. Both
UCDP GED and ACLED are publicly available, allowing researchers to freely download their data
or access it via their respective APIs. The two datasets and their history are discussed in more
detail next.

2.1.1. Uppsala Conflict Data Program Georeferenced Event Dataset

The Uppsala Conflict Data Program (UCDP) Georeferenced Event Dataset (GED) was officially
introduced in 2013, initially covering only Africa before expanding to a global coverage. Main-
tained by the Uppsala Conflict Data Program, the dataset is updated annually and provides
event-level data on armed conflict dating back to 1989. UCDP GED systematically records in-
stances of armed force involving organized actors, such as governments and rebel groups, provided
the event results in at least one direct (estimated) fatality. To align with UCDP’s definition of
armed conflict, events in which at least one actor does not surpass a total of 25 fatalities within
a calendar year are excluded from the dataset.

In 2020, UCDP introduced a candidate version of their dataset (Hegre et al., 2020), which provides
preliminary monthly event data with a delay of roughly 1.5 months and which does not apply the
annual 25-fatality threshold. Most of these candidate events are later incorporated into the annual
release, which is usually published approximately 18 months after the end of the calendar year.
Hence, the candidate dataset offers a much more timely version of the GED for time-sensitive
studies and analyses.

2.1.2. Armed Conflict Location & Event Data Project

The Armed Conflict Location & Event Data Project (ACLED) was officially launched in 2010,
initially covering 50 “unstable” countries before expanding globally. Unlike UCDP GED, ACLED
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does not apply fatality thresholds in its reporting on political violence, and includes events involv-
ing unknown or generic actors (e.g., “unidentified armed men”) (Eck, 2012), thus also capturing
incidents of unorganized or semi-organized activities. Furthermore, ACLED records events of ri-
ots and protests, even when they are non-violent, offering an additional source of information for
studying political unrest. As of the time of writing, ACLED is updated on a weekly basis, making
it the most up-to-date, manually curated and globally-spanning conflict event dataset available.

2.1.3. Precision Levels & Units of Analysis

Independent of the dataset, the precision of recorded conflict events varies substantially. Both
UCDP GED and ACLED assign spatial and temporal precision codes to indicate the accuracy
of event locations and dates. These precision levels depend on the availability and reliability of
the original sources used to document each event. On the spatial level, each event is assigned
geographic coordinates. These can be highly precise, such as a specific town, but in many cases
are not. When precise coordinates are unavailable, events are typically geocoded to the nearest
town, the capital of the region, or the closest natural location (e.g., a border area or forest),
hence introducing spatial uncertainty. On the temporal level, the exact date of an event is not
always known. Some events are reported with a precise day, while others are only known to
have occurred within a certain week or month. In UCDP GED, events may even be recorded as
having taken place at some point within an entire year. The exact coding strategies vary between
the datasets, and thus they need to be carefully accounted for to avoid any misinterpretations.
Detailed documentation is provided in each dataset’s respective codebook.

Due to these lower levels of reporting precision for many events, in conflict research, events and/or
fatalities are generally aggregated into larger spatial and temporal units of analysis. Common
approaches are to study and forecast conflict at the level of grid cells or administrative regions,
large enough to mitigate biases potentially arising from the spatial imprecision. It is important
to note that the varying sizes of administrative zones within and across countries, as well as
their irregularity in shape, complicates spatial inference. This issue is further discussed in the
contribution in Chapter 6. In a similar fashion, events are also aggregated temporally, typically
to monthly or yearly counts. These aggregation strategies inherently involve a trade-off between
introducing biases and obtaining more fine-grained insights. Biases can arise from incorrectly
assigning events to specific spatio-temporal units of analysis. For example, an event may be
assigned to a grid cell covering the capital, even though its spatial precision code suggests it
could have also taken place in one of the surrounding cells. This trade-off is further explored and
discussed in Cook and Weidmann (2022).

2.2. Satellite Data

Satellite imagery captures the Earth’s surface and is taken by satellites, orbiting the planet,
operated by both governments and businesses. Over the past decades, advancements in satellite
technology have substantially improved image quality, temporal availability, and affordability, and
thus satellite images are an increasingly powerful tool in many fields, including research on armed
conflict. Satellite images vary in resolution, frequency and spectral coverage. They can broadly
be categorized into two main types: optical imagery and radar-based imagery.
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(a) Optical image from Sentinel-2A. (b) SAR image from Sentinel-1.

Figure 2.1.: Publicly available satellite images from the Sentinel program of the European Space Agency
(ESA) of the same location. (a) is an optical image with 10m resolution from Sentinel-2A, using spectral
bands 4, 3 and 2. (b) is a multi-looked SAR image with 20m resolution from Sentinel-1. For visualization of
the two-dimensional image of complex samples with a real and imaginary part, a vy greyscale visualization
of the VV polarization is used.

Optical Satellite Images Optical images are captured through passive sensors that detect re-
flected sunlight from the Earth in multiple spectral bands, both in the visible and near-visible part
of the electromagnetic spectrum. Optical images are widely used for applications such as land
cover classification, vegetation and agricultural monitoring, as well as urban mapping. However,
since optical sensors rely on sunlight, they can only capture images during the day. Furthermore,
cloud cover and shadows can obstruct the view of the ground, thus often requiring multiple satel-
lite passes to obtain a clear image of a given area. An excellent introduction to optical satellite
imagery is provided by Enright (2022), survey articles are available from Cheng and Han (2016)
for object detection and Gémez et al. (2016) for landcover classification.

Synthetic Aperture Radar (SAR) Satellite Images SAR images are captured by active sensors
that emit microwave signals and then record the backscattered signals. Due to the movement of
the satellite, signals are sent out and received from different sensor positions, allowing for two-
and three-dimensional reconstructions of objects. SAR imagery is particularly valuable for surface
mapping, forestry applications (see e.g., Kugler et al., 2015), and monitoring urban infrastructure.
Due to microwaves’ longer wavelengths, SAR images are not affected by cloud coverage and only
minimally by weather conditions. Furthermore, since these active sensors do not rely on sunlight,
images can be captured both during the day and at night. A tutorial paper for SAR imagery and
its processing techniques is for example provided by Moreira et al. (2013).

Many public satellite programs provide free access to their imagery. For example, the European
Space Agency (ESA) offers open access to data from all of its Sentinel satellite missions, including
for commercial usage (ESA, 2025). A comparison of an optical and a SAR image from the
Sentinel program is shown in Figure 2.1. NASA’s Landsat program (Wulder et al., 2022) is also
providing free access to their imagery since 2008 (USGS, 2018). Notably, these publicly available
images are only of medium resolution, ranging from 10m to 60m per pixel, which can limit the
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ability to capture fine-grained details. In contrast, commercial providers such as Maxar and
Planet offer high-resolution imagery with spatial resolutions as fine as 20cm, enabling much more
detailed analyses. However, these high-resolution images are proprietary and often costly to obtain
(Planet Labs, 2025), making widespread usage unfeasible for both researchers and humanitarian
organizations.

Generally, working with raw satellite imagery requires considerable technical expertise in both
remote sensing and image processing. Consequently, instead, researchers often rely on already
processed remote sensing datasets, derived from satellite imagery, discussed next. However, recent
advancements in foundational earth observation models, pre-trained in an unsupervised manner
on millions of satellite images across various modalities, are reducing this technical entry barrier
(Cong et al., 2022; Jakubik et al., 2025). These models can often be used out-of-the-box, enabling
researchers to directly extract meaningful insights from satellite imagery.

2.2.1. Remote Sensing Datasets

Remote sensing datasets provide large-scale structured features about the Earth’s surface. They
are generated by extracting relevant information from satellite imagery using trained models and
algorithms, sometimes combined with additional geospatial data sources such as census records.
These datasets enable downstream analyses to use already pre-processed features and thus elim-
inate the need for researchers to work directly with raw satellite images, which can be complex
and challenging to process.

Commonly used freely available remote sensing datasets include but are not limited to:

o Land Cover: Datasets such as Copernicus’ Global Landcover Map (Buchhorn et al., 2020)
and NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover dataset
(Friedl and Sulla-Menashe, 2022) classify the Earth’s surface into categories such as urban
areas, forests, cropland, and water bodies.

e« Topography and Elevation: Detailed information about topography and elevation, in-
cluding measures of terrain ruggedness and slope, are for example available globally from
Amatulli et al. (2018).

o Population Estimates: Products like WorldPop (Tatem, 2017) and Meta’s High-
Resolution Settlement Layer (HRSL) (Tiecke et al., 2017) estimate population densities
using satellite imagery combined with other geospatial data sources.

o Nighttime Lights: Datasets such as the VIIRS Nighttime Lights (Elvidge et al., 2021)
capture nighttime illumination and are often used as a proxy for economic activity and
infrastructure development.

o Vegetation Monitoring: Indices such as the Vegetation Health Index (VHI) and the
Vegetation Condition Index (VCI), for example available from the Food and Agriculture
Organization (FAO) of the UN (FAO, 2025), track vegetation health over time. These
datasets are often used for assessing drought conditions and monitoring agriculture.

e« Temperature and Precipitation: Satellite images also allow to estimate both surface
temperature and rainfall. Remote sensing datasets on precipitation are for example available
from the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) (Funk
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et al., 2015), whereas both day- and nighttime temperature recordings can be obtained from
NASA’s MODIS Land Surface Temperature and Emissivity dataset (Wan et al., 2021).

These datasets are usually available in raster format, which is a grid of equally sized cells, all
containing values for one or more remote sensing variables of the area they are covering. An
overview about the various spatial data types and introduction into spatial data manipulation
with R is for example freely available (online) from Pebesma and Bivand (2023).

2.2.2. Satellite Data in Conflict Research

Satellite images and remote sensing datasets can be extremely valuable for research on armed
conflict. Many conflict-affected regions lack reliable official statistics on, for example, population,
urban infrastructure, economic conditions, or agricultural activity, as long-term violence disrupts
data collection and often prevents government agencies from conducting censuses and/or main-
taining records about their economic activity and population. In these settings, remote sensing
data offers a potential alternative. Its global coverage makes it possible to draw on up-to-date
information even when no other data sources are available. The contribution in Chapter 6 demon-
strates that remote sensing datasets can substantially improve the predictive performance of both
machine learning and statistical models forecasting conflict during the Syrian civil war from 2011
to 2020. Syria presents itself as an ideal use case for evaluation, as the only other available data
source are demographics from the 2004 census. In particular, the contribution showcases that
remote sensing data leads to more accurate predictions of conflict onset.

Satellite images on the other hand can help to facilitate near real-time monitoring of on-the-
ground conditions during conflict, enabling the detection of, for example, building destruction
(Mueller et al., 2021), population displacement (Rufener et al., 2024), and disruptions to critical
infrastructure such as bridges, power plants, or hospitals. The contribution in Chapter 7 showcases
how freely available SAR images from the ESA can be used to detect the destruction of individual
buildings in conflict zones. Combining interferometric SAR (InSAR) (Bamler and Hartl, 1998)
with a robust statistical assessment of each building pixel’s stability over time, the approach is
able to correctly identify destroyed buildings in near real-time.

2.3. Social Media

In the past decade, social media platforms, such as Twitter (now known as X), Facebook, Red-
dit and Instagram, have become an important source of real-time information and public dis-
course. Unlike traditional (or sometimes also "old”) media, social media content is primarily
user-generated. This can provide additional insights into both past and ongoing events, not (yet)
reported by newspapers or other agencies. Social media data offers a constant stream of informa-
tion that researchers can analyse to detect trending topics, shifts in sentiment, and more generally,
behavioural patterns. Depending on the platform, the available data can include text, images,
videos, geolocations, timestamps, social interactions (likes, shares, reposts), network relationships,
and user metadata. This breadth of data allows researchers to study not only what people say, but
also how information spreads, how communities form and evolve, and how individuals and groups
engage with specific topics over time. An influential study that showcases how social media data
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can be used for research is the work by Vosoughi et al. (2018), who investigated the spread of true
and false news online.

Working with social media also presents several challenges. The large volume of user-generated
content can be difficult to store and process, and extracting relevant pieces of information can
be challenging. Moreover, it is important to keep in mind that social media users are not rep-
resentative of the general population, leading to potential selection biases in analyses relying on
social media posts (see, e.g., Ruths and Pfeffer, 2014). In recent years, bots have played an in-
creasingly prominent role on these platforms (Geissler et al., 2023). They can distort measures of
user activity, amplify certain messages or narratives, and complicate analyses of public opinion,
and therefore need to be carefully accounted for. Social media platforms have also started to im-
pose strict limits on their APIs, making data collection for large-scale studies substantially more
difficult, and in some cases even impossible (Davidson et al., 2023). For example, Twitter (now
X)), closed its official research API in 2023, which had granted academic researchers free access
to millions of tweets per month. Broad access to the API now costs several thousand euros per
month (X, 2025). Finally, researchers need to be aware of ethical considerations when working
with social media data, including questions of user privacy, informed consent, and the responsible
handling of potentially sensitive information.

2.3.1. Social Media in Conflict Research

In the context of conflict research, social media offers opportunities to monitor public discourse and
behaviour during war or conflict in near real time, without the need for resource-intensive surveys
on the ground, which may be dangerous or impossible to conduct. Natural language processing
(NLP) techniques can be used to automatically identify language, topics, and sentiment, sometimes
even at a granular geographic level through geotagged content, enabling researchers to efficiently
process large volumes of data for further analysis. The contribution in Chapter 8 demonstrates
how millions of tweets can be processed and analysed to track the language use of Ukrainian users
before and during the Russian invasion of Ukraine. Using a form of generalized additive models
(GAMs; introduced in Chapter 3) to separate sample effects, arising from the in- and outflux of
users on the platform, from behavioural effects, the analysis identifies a clear shift in language
use from Russian to Ukrainian. This change is mainly attributable to behavioural shifts, hence
can be interpreted as users’ conscious choice towards a more Ukrainian identity as a result of the
Russian invasion.

Social media data can also be used to draw on information about conflict events themselves.
As discussed earlier, for example, ACLED has started incorporating reports from trusted social
media accounts into its conflict event collection and coding process. Notably, more automated
solutions are also starting to be developed, to utilize social media at scale. For instance, Scholz
et al. (2025), develop a transparent classifier that distinguishes protest images from non-protest
images on social media, while Sobolev et al. (2020) use social media posts to estimate the size of
protests.

Finally, social media data may also help to improve the forecasting performance of early warning
systems. As discussed later in Chapter 4, forecasting conflict is particularly challenging, and
while many data sources are available, only a few contain signals that actually improve predictive
accuracy. In this aspect, near real-time shifts in social media posts, such as rising hostility, hate
speech, or a spike in activity in contested areas, seem promising to help identify regions at risk for

11



2. Data Sources for Conflict Research

political violence. However, due to the aforementioned challenges with social media data, at the
time of writing, research in this area is still limited to exploratory studies (Zeitzoff, 2017; Dowd
et al., 2020).
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“The statistician cannot evade the responsibility for understanding
the process he applies or recommends.”

— Ronald Fisher

(* 1890, T 1962)

Statistical modelling plays an essential role in identifying patterns in data and making informed
inferences about the underlying processes that generate them. At its core, it provides a framework
for reasoning under uncertainty, and a way to quantify relationships between variables while
accounting for randomness. This stands in contrast to algorithmic approaches, usually in the
form of black-box machine learning models, which focus on the final output, i.e., a prediction,
and treat the underlying data generating processes as unknown. Their primary goal is optimizing
the performance in making this prediction, but they are typically difficult to interpret. This
distinction is further discussed in both Breiman (2001b) and Kauermann et al. (2021).

In the context of conflict research, statistical models are used to investigate the drivers and con-
sequences of armed conflict, identify causal relationships, and more broadly improve our under-
standing of conflict. Well-known examples in the literature include the work by Von Uexkull et al.
(2016), who analyse the impact of growing-season droughts on conflict, and Bazzi and Blattman
(2014), who examine the relationship between price shocks and violence. In contrast, machine
learning models are primarily employed for forecasting conflict and developing early-warning sys-
tems (Hegre et al., 2017). The latter is discussed in more detail in Chapter 4.

Following the view outlined in Cox (2006) and Kauermann et al. (2021), a data generating pro-
cess can be divided into a systematic component and a stochastic component. The former is
deterministic, and captures the structured relationships between variables. The stochastic com-
ponent, the randomness when observing data in the real-world, allows one to separate the two,
draw conclusions and quantify the uncertainty. To capture this data generating process more
formally, one assumes that the data comes from a statistical model. Such models can be broadly
categorized into parametric and non- (or semi-) parametric models. The former assume a fixed
functional form and a set of parameters for the data generating process, whereas the latter lift
this restriction for parts of, or the whole data generating process, to allow for more flexibility.
In the following section, first parametric models are introduced in general, before discussing lin-
ear regression and generalized linear models (GLMs) as specific examples. Then, in Section 3.2,
non- and semiparametric models are covered, with a specific focus on generalized additive models
(GAMs).
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3.1. Parametric Statistical Models

Formally, a random variable Y comes from a parametric probability model
Y ~ F(y:0).

The term F(y;0) denotes the cumulative distribution function of the random variable defined
as F(y;0) = P(Y < y), which gives the probability that Y takes a value less than or equal to
y. This known distribution function is parametrized by the vector 8, and may contain multiple
components p, with 8 = (61, 6-,...6,) € RP. The distribution of the random variable Y can be
either discrete or continuous, depending on the nature of the values it can take. A discrete random
variable takes values from a countable set, such as in the Binomial or Poisson distribution. In
contrast, a continuous random variable can take any value over an interval of real numbers. Ex-
amples include both the Normal as well as the Exponential distribution. For an introduction into
probability theory, including fundamental concepts and commonly used probability distributions,
see for example Fahrmeir et al. (2016).

In practice, the true parameter vector 8 of the distribution is unknown and can only be estimated
from observed realisations y1, ..., ¥, of the random variable, i.e. the data sample. Naturally, this
means the estimate 0, typically indicated through the hat, is dependent on the realisations and
thus itself a random variable. Several approaches exist for parameter estimation, with two of the
most widely used classic statistical approaches being maximum likelihood and Bayes estimation.
Alternatively, one could also take a more traditional optimization route and minimize a loss
between predicted and observed values, as often done in predictive tasks (see Chapter 4). An
overview on different estimation approaches and the decision which one to choose is for example
provided in Wasserman (2013).

3.1.1. Linear Regression

In a regression setting, one is interested in modelling a random Variable Y, the so-called target,
response or dependent variable, conditional on one or more explanatory variables, also known as
covariates or features . The idea is that the covariates influence the distribution of ¥ through
the parameters 8, and one wants to learn about and model this relationship. Formally, this means
modelling the conditional distribution of Y given x

Yie ~ F(y; 0(x)).

The most simple regression is the classic linear regression model. Here, the mean of the variable
of interest Y is modelled as

Y =By + iz + e,

where [ is the intercept and 51 the slope of the regression line. The latter measures the influence
of x on Y. The term € is known as the error term and captures random deviations with a mean
of zero from this relationship. This means the expectation of Y given x can be written as

E(Y|z) = Bo + fix.
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In the classic linear regression model, the error term is assumed to follow a normal distribution
€|z ~ N(0,0%) and thus the conditional distribution

Y|z~ N(Bo + piz,0°)

also follows a normal distribution. The parameters of the model, 8y and (51, which are unknown,
can be estimated from the data through, for example, maximum likelihood. This simple linear
regression model can easily be extended to k covariates x1, zo, ..., £ through

Y = By + fix1 + Poxa + ... + Brar + €,

where 1, (o, ..., B are the associated coefficients. Each coefficient measures the effect on the target
Y, when the corresponding covariate is increased by one unit, while holding all other covariates
constant. This so-called multiple linear regression model is sometimes more compactly written in
vector notation as

Y =28 +e,

where = (1,21, 72,...,2%)T and B8 = (Bo, B1, B2, ., ). Note that the covariates = can only
linearly affect the target variable, hence the name linear regression. However, the included covari-
ates can be transformed in various ways, thus allowing for more complex relationships with the
target. For example, one can use a log-transformation, include polynomials, or also account for
interaction effects between variables, by including their product as a covariate in the model.

3.1.2. Generalized Linear Regression

Generalized linear regression models (GLMs) extend standard linear regression by relaxing the
assumption that the conditional distribution of Y needs to follows a normal distribution. Instead,
GLMs allow Y to follow any distribution from the exponential family, which includes most of the
commonly used distributions. This allows one to model a wide variety of target variables, such as
discrete counts or strictly positive continuous values.

As in standard linear regression, GLMs model the conditional expectation E(Y |z). However, for
transformation, a response function h(.) is required, with

E(Y|x) = h(Bo + Brx1 + Paxz + ... + Brar), (3.1)

which links the linear predictor n = 8y + B1x1 + Box2 + ... + Brxk to the conditional expectation
E(Y|z). This transformation ensures that the linear predictor n is mapped onto the appropriate
scale for Y. Hence, the response function h(.) needs to be chosen accordingly. For example,
when modelling count data using a Poisson distribution, an exponential function is typically used
as a response function to ensure positivity and to additionally simplify estimation (compared to
other possible options; see e.g., McCullagh (2019) for details). Generalized linear models retain
their linearity in the linear predictor . Equivalently to standard linear regression models, the
included covariates can be transformed to also account for more complex effects. Notably, due to
the transformation of the linear predictor with the response function h(.), covariates may have
a non-linear effect on the conditional expectation E(Y|x), even though the linear predictor itself
remains a linear combination of the covariates. Estimation can similarly be carried out through
maximum likelihood. Generalized linear models were first introduced by Nelder and Wedderburn
(1972). A comprehensive overview is, for example, available in Fahrmeir et al. (2022).
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GLMs are widely used across disciplines such as economics, social science and political science, to
analyse the relationships between variables of interest, often with causal interpretations. Naturally,
they also play an important role in conflict research to improve our understanding of armed
conflict. For instance, the earlier mentioned work by Bazzi and Blattman (2014) employs classic
linear regression models. Buhaug (2010) use both linear and logistic regression, the latter assuming
a Bernoulli distribution of the target variable, to examine the effect of climate on African civil wars.
Similarly, Fjelde and Hultman (2014) investigate the role of ethnic affiliation in violence against
civilians in Africa using GLMs, by employing a negative binomial regression with zero-inflation,
the latter to account for excess zeros (Dunn et al., 2018).

3.2. Non- & Semiparametric Statistical Models

While parametric models assume a fixed functional form for the distribution of a random variable
Y, non- and semiparametric models relax this assumption, to allow for more flexibility in capturing
the sometimes complex relationships observed in the data. Thus, they are used when the true form
of the data generating process is unknown or too complex to be captured by a parametric model.
However, both require larger sample sizes for a reliable estimation. Nonparametric models make
minimal assumptions about the data generating process and allow the data to almost entirely
determine the structure of the (estimated) distribution and its relationship between the variables
of interest. Semiparametric models, on the other hand, have nonparametric elements while also
containing a parametric component. A well-known example of a semiparametric regression model
is the generalized additive model, discussed next. A general overview on nonparametric methods
is provided in the textbook by Hollander et al. (2013).

3.2.1. Generalized Additive Models

Generalized additive models (GAMs), first introduced by Hastie and Tibshirani (1990), extend
GLMs by allowing the linear predictor n to include non-parametric smooth functions of the co-
variates. The model has the form

E(Y|a:, z) = h(,@o + Bix1 + Boxs + ... + Brxi + m1(21) + m2(2’2) + ...+ ml(zl)), (3.2)

where, as earlier in (3.1),  are the covariates that are linearly included, and z are the newly
included covariates with an unknown nonlinear effect on Y, determined by the smooth functions
mi(.),...,m(.). In order to be able to use the same estimation routines as for GLMs, (3.2) needs
to be representable as a linear model (Wood, 2017). This is achieved by choosing a so-called basis,
made up of known basis functions, that define the space of possible functions of which m(.) is an
element. More specifically, for a covariate z, the unknown smooth function m(z) is defined as

m(z) = b(z)"0 = b;(2)0; (3.3)

where b;j(z) is the 4% basis function with an associated unknown coefficient ;. By substituting
(3.3) into (3.2), one obtains a linear predictor.

There are various possibilities on how to define this basis and estimate the smooth function,
such as P-splines (Eilers and Marx, 1996) or regression splines. They all involve setting up a
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sufficiently large basis and penalizing 6 in some form, in order to both obtain a good fit as well
as smooth function. Possibilities for optimization include cross validation, as well as in-sample
criteria such as the Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC).
An introduction and overview on GAMs is provided by Wood (2017).

GAMs are particularly useful when the relationships between the target variable and (some of) the
covariates are non-linear, and difficult or cumbersome to capture through a combination of linear
transformations, or when they are completely unknown a priori. They can also model nonlinear
interaction effects between covariates, making them highly flexible in a variety of settings. For
these reasons, they are a powerful tool for conflict research, to better understand the often complex
patterns observed in the data. Despite these reasons, and their prominent use in other fields such
as ecology (Guisan et al., 2002) or epidemiology (Schneble et al., 2021), GAMs have seen relatively
little application in the conflict literature, with only a few notable exceptions (Zhukov, 2012; Fritz
et al., 2022).

Generalized additive models play a key role across all contributions in this thesis. In the contribu-
tion in Chapter 6, which systematically evaluates the conflict forecasting performance of remote
sensing datasets during the Syrian civil war, a GAM is one of the four models used in the perfor-
mance evaluation. Notably, the difference in performance to black-box machine learning models,
which are covered next in Chapter 4, is only minor. In the contribution in Chapter 8, which
analyses language use of Ukrainian users before and during the Russian invasion of Ukraine on
Twitter, a generalized additive mixed model (GAMM), which adds random effects into a GAM
(see e.g., Faraway, 2016), is used to disentangle sample effects, arising from the in- and outflux of
users on the platform, from behavioural effects.

In the contribution in Chapter 7, a non-parametric median regression is used to detect the de-
struction of buildings in conflict zones. This median regression differs from traditional regression
models, by modelling the median instead of the mean, making it more robust to outliers (see
Koenker (2005) for details). Specifically, median regressions with a flexible non-linear trend (as
in GAMs) are fitted to interferometric coherence scores (Bamler and Hartl, 1998) of individual
building pixels over time, in order to separate actual destruction from random background noise in
SAR satellite images. Finally, the contribution in Chapter 9 designs a novel generalized additive
model to capture the spatio-temporal diffusion effects of armed conflict. The model utilizes a basis
of exponential decay functions with varying decay rates, which smooth across the spatio-temporal
conflict history of each observation.
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“Prediction is very difficult, especially if it’s about the future.”
— Niels Bohr
(* 1885, T 1962)

Anticipating the future is a central task across a wide range of disciplines, from epidemiology
and meteorology to economics and businesses making demand forecasts. The basic idea behind
forecasting is to use past and present data to predict future outcomes. This typically means
identifying patterns or structures in the observed data and inferring what is likely to happen next.
The main goal is to generate the best possible predictions, often without explicitly modelling or
understanding the underlying data-generating process. For this reason, algorithmic approaches
such as black-box machine learning models are commonly employed.

The prediction of armed conflict has been one of the most important tasks in peace and conflict
research for decades (Singer, 1973). As early as 1963, the Correlates of War Project (Small and
Singer, 1982) started systematically collecting quantitative data on war, adhering to scientific
principles. Since then, the development of early-warning systems for conflict has become one
of the main goals of the field. For a long time, most forecasting efforts focused on large-scale,
country-level events such as civil wars (Harff and Gurr, 1998; King and Zeng, 2001; Goldstone
et al., 2010). Only with the introduction of global disaggregated conflict event datasets such as
ACLED and UCDP in the 2010s (see Chapter 2), studies increasingly moved to more fine-grained
subnational levels (Hegre et al., 2019). More recently, forecasting competitions hosted by the
Violence & Impacts Early-Warning System (VIEWS) project (Vesco et al., 2022; Hegre et al.,
2024) have highlighted current advances in the field, both in terms of methodology and the use of
new data sources.

As these competitions and many other studies show, forecasting conflict remains a notoriously
difficult task. Conflict events are rare, especially at the subnational level, which leads to highly
unbalanced datasets. Moreover, only a few of the available data sources actually carry signal that
helps improve forecasting performance. Indeed, past conflict remains the best predictor of future
conflict (Bazzi et al., 2022). But past conflict usually does not help to anticipate new outbreaks,
making the forecasting of conflict onset particularly challenging, as thousands of covariates, or
features, as denoted in the machine learning community, are usually employed in an attempt to
obtain any performance improvement (Hegre et al., 2021b). For these reasons, black-box machine
learning models have typically outperformed more interpretable statistical models in conflict fore-
casting applications. The following section introduces the core concepts of such predictive models,
before providing a short summary of the most popular machine learning approaches in Section 4.2,
with a focus on models that have been particularly successful in conflict research. The chapter
closes by providing a brief introduction into interpretable machine learning methods, which aim
to open the black-box and make machine learning models more interpretable.
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4.1. Core Concepts

Any predictive model is built on the idea of minimizing the prediction error. This is formalized
through a so-called loss function, which, for each observation, quantifies how well a model’s pre-
diction matches the observed target variable. The loss function defines the objective the model
minimizes when it is trained, i.e., fitted, and thus is crucial in determining the model’s parame-
ters.

One of the most commonly used loss functions for continuous target variables is the Lo-loss, also
known as squared error loss, defined as

L(yi, 0i) = (yi — 9:)%,

where y; is the observed outcome, i.e., the prediction target, and g; the predicted value. Summing
this across all observations gives the total loss, which the model seeks to minimize during training,
typically via optimization routines such as gradient descent. Notably, a key characteristic of the
Lo-loss is that it penalizes larger errors more heavily due to the squaring, making it more sensitive
to outliers. For this and other reasons, alternative loss functions such as the Li-loss, defined as

where the |.| operator denotes taking the absolute value, are sometimes preferred. In classification
settings, where the target is categorical (e.g., predicting whether conflict will occur in a given
region), different loss functions are used. A common example is the log loss, also known as
cross-entropy loss, defined as

L(yi, pi) = — (yilog(pi) + (1 — ;) log(1 — p;)) ,

where p; is the predicted probability that y; = 1. Naturally, the choice of loss function depends
on the nature of the problem and the particular use case at hand. Importantly, there is a direct
link between minimizing loss functions and maximizing the log-likelihood in classical statistical
modelling. For instance, maximizing the log-likelihood in a linear regression model under the
assumption of normally distributed errors corresponds to minimizing the Ls-loss of the linear
predictor. More generally, the assumed distributional form determines the loss function that is
minimized (Murphy, 2012).

When fitting a machine learning model, the available data is typically split into a training set
and test set. The model is trained, meaning its parameters are chosen optimally, on the training
set by minimizing the total loss. The test set, which remains unseen during training, is then
used to evaluate the model’s predictive performance on new, previously unseen data. This is
required, as machine learning models, due to their large number of parameters, can easily overfit
the training data, thus capture noise instead of the underlying structure, and hence perform poorly
on new observations. Notably, in forecasting applications, this split becomes substantially more
challenging, as the temporal dimension of the data needs to be taken into account. Specifically,
the training set must not contain any information from future time points, i.e., observations from
the evaluation period, to avoid data leakage and to ensure a realistic performance assessment. An
overview over more elaborate evaluation strategies, such as cross-validation, is provided in Arlot
and Celisse (2010). Best practices for forecasting and model evaluation in forecasting settings
are, for example, discussed in Petropoulos et al. (2022). Among others, the latter work covers
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time-series cross validation, which is used for model evaluation in the contributions in Chapter 6
and Chapter 9.

Loss functions are closely related to, but not equivalent to evaluation metrics, the latter of which
assess model performance. For continuous outcomes, a common evaluation metric is the mean
squared error

1 n

MSE = =% (i — §:)°,

s
which corresponds directly to the average Lo-loss on the test set. Other metrics include the mean
absolute error (MAE) for regression, or accuracy, Fl-score, and AUC for classification. While
evaluation metrics are only chosen based on the specific goals of an application, loss functions
also need to have desirable optimization properties that allow for efficient model training. As a
result, loss functions may not always align perfectly with the evaluation metric used to assess
model performance. Further information and a general introduction into predictive modelling and
machine learning is for example provided in James et al. (2013).

4.2. Common Machine Learning Models

4.2.1. LASSO Regression

One of the simplest yet often surprisingly effective prediction models, especially in settings with a
large number of features, is Least Absolute Shrinkage and Selection Operator (LASSO) regression,
originally proposed by Tibshirani (1996). Like generalized additive models (GAMs), LASSO
belongs to the broader class of penalized regression models. It extends the (generalized) linear
regression framework by adding an Lq penalty to the loss function.

Formally, in a linear regression setting, LASSO solves the optimization problem

n k
B= argmin Y wi—x! B+ 2D 1B ¢

i=1 j=1

where y; is the prediction target and x; is the vector of k covariates for observation ¢ in the
training set. The first term denotes the standard Lo-loss, which is minimized in linear regression,
the second term imposes an L penalty on the coefficients 8. The tuning parameter A > 0 controls
the strength of this penalty. Hence, when A\ = 0, this reduces to a standard linear regression model.
As X increases, coefficients 8 are shrunk towards zero, with some (the least important ones for the
prediction task), being set to exactly zero and thus effectively excluding them from the model.
This property makes LASSO particularly attractive in sparse high-dimensional settings, where the
number of covariates k is large, but only a few have an influence on y, as often the case in conflict
forecasting applications. The exact value of A is typically selected optimally via cross-validation.

In a way, LASSO bridges the gap between classical statistical modelling and more complex ma-
chine learning approaches. While the model retains the interpretability of a linear model, the
regularization effect of the penalty generally improves predictive performance compared to stan-
dard linear regression. Its main limitation is the linearity in effects between covariates and target.
As in GLMs, non-linear and interaction effects need to be explicitly included as covariates to
be captured. Additionally, one needs to be aware that in case of highly correlated covariates,

21



4. Forecasting Conflict

LASSO selects one at random, while all others are (nearly) zeroed out. Closely-related methods
include Ridge Regression (Hoerl and Kennard, 1970), which replaces the L; penalty with an Lo
penalty, and Elastic Net (Zou and Hastie, 2005), which includes both penalties in the optimization
problem.

LASSO regression has been successfully employed across a wide variety of disciplines such as
ecology (Tredennick et al., 2021) and medicine (Gotlieb et al., 2022), and has been used in several
conflict forecasting studies (Mueller and Rauh, 2018; Bazzi et al., 2022). In the contribution in
Chapter 6, which systematically evaluates the conflict forecasting performance of remote sensing
datasets during the Syrian civil war, LASSO logistic regression is one of the four models used in
the performance evaluation.

4.2.2. Decision Trees

Decision trees, popularized by Breiman et al. (1984), recursively partition the feature space into
disjoint regions, with the aim of improving predictive accuracy at each split. Each split is defined
by a simple decision rule based on the value of one of the features. The resulting model resembles a
tree structure, hence the name, where internal nodes define the splitting rules, and terminal nodes,
the so-called leaves, assign a predicted value to all observations that fall into the corresponding
partition. An example is depicted in Figure 4.1.

Car Type

= SUV SUvV

Age Driver Risk = High

> 60 < 60

Risk = High Risk = Low

Figure 4.1.: Exemplary depiction of a decision tree. Here, the decision tree classifies driver risk based on
car type and age. If the car is not an SUV, the risk is classified as high. If the car is an SUV, the driver’s
age determines the outcome. Then, over 60 leads to a high risk, while under 60 results in a low risk.

The tree is constructed in a top-down recursive manner. At each step, a feature and corresponding
threshold is chosen that best split the data into two homogenous groups based on a chosen impurity
criteria or loss function. For regression trees, where the target variable is continuous, the Ls-loss
is typically employed. Hence, at each step, the tree seeks to find the split that minimizes

Yo wi—gp)+ D> (wi—im)?

i:x; EPy i:x; EPa
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where y; is the observed target variable for an observation i, with a corresponding covariate x;
that determines which partition (P or P») the observation is assigned to. The term §p, denotes
the mean target across the observations in partition P, and §p, the mean in P». This splitting
procedure continues until a pre-defined convergence criteria is met, for example, a minimum
amount of observations in a partition. Usually, for reasons of computational complexity, each
partition is assigned a constant prediction, with the mean being the optimal choice under the
Lo-loss.

Due to their recursive construction, decision trees can model both non-linear effects and interac-
tions between features, while remaining easy to interpret through these decision rules. However,
they are also known to be highly sensitive to small changes in the data and prone to overfitting.
Thus, individual trees are generally not used when prediction performance is the main priority.
Nonetheless, they form the building blocks of several successful ensemble methods, such as random
forests and boosting, which are discussed in the following.

4.2.3. Random Forests

Random forests are an ensemble learning method that uses bagging to train multiple decision
trees to improve model stability and thus predictive performance. Ensemble learning refers to
techniques that combine multiple individual models, often called base learners, to form a single,
(stronger) composite model. Random forests date back to Breiman (2001a) and have since become
a standard tool across many fields.

As discussed earlier, single decision trees are highly sensitive to small changes in the training
data, meaning they exhibit high variance. Random forests address this by employing bagging, a
technique where multiple samples from the original training dataset are drawn with replacement,
i.e. bootstrapped, to train each tree on a different bootstrap sample. The predictions from all B
trees are then averaged,

| B
O(x;) = 5 > (i),
b=1

where g, () is the prediction made by the b-th tree based on the covariates x;, and g(x;) denotes
the final (averaged) prediction made by the forest. This aggregation reduces variance and leads
to a more robust model. Random forests introduce an additional layer of variety, by drawing
a random subset of features that is considered at each split within each tree. This ensures that
individual decision trees actually differ from one another, essentially de-correlating them to reduce
the variance of the random forest. Without this subsetting, the trees may look very similar if there
are strong predictors that dominate the splits, and the variance reduction from bagging would be
limited. Since each tree is trained independently on a different bootstrap sample, the training can
be parallelized.

Random forests can freely model complex non-linear relationships and interactions between fea-
tures, without requiring these to be specified in advance. Contrary to individual decision trees,
they are not sensitive to small changes in the dataset and are relatively robust to overfitting. How-
ever, due to the aggregation of often hundreds of trees, the final model is essentially a black box
and cannot be interpreted. While random forests have many hyperparameters (e.g., the number
of trees, the maximum depth of each tree, the minimum number of observations per leaf node),
they tend to perform well even without any tuning (Fernandez-Delgado et al., 2014).
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Due to these reasons, random forests have become one of the most widely used machine learning
methods, and are employed across various disciplines, including medicine (Jia et al., 2019), finance
(Ballings et al., 2015), criminology (Kounadi et al., 2020), and psychology (Stachl et al., 2020). In
recent years, in conflict research, they have become one of the most commonly used approaches
for forecasting conflict (Colaresi and Mahmood, 2017; Bazzi et al., 2022; Rod et al., 2025). They
also serve as the primary modelling component of the conflict early warning system and ensemble
model VIEWS (Hegre et al., 2019, 2021a) and are integrated into several other early warning
systems (Rod et al., 2024). In the contribution in Chapter 6, a random forest is among the four
models evaluated, and achieves the best performance in forecasting conflict during the Syrian civil
war. Additionally, the contributing article in Chapter 8, which analyses tweets in Ukraine, uses a
random forest in the data cleaning stage to detect and filter out bots from the dataset.

4.2.4. (Gradient) Boosting

Boosting is another ensemble technique that combines multiple base learners into a single com-
posite model. Unlike bagging, where each base learner is trained independently on bootstrapped
samples, boosting algorithms iteratively fit new models by using information from previous it-
erations to continuously update and modify the training dataset. The original idea dates back
to Schapire (1990), with AdaBoost (Freund and Schapire, 1997) being the first widely successful
implementation.

The central idea behind boosting is to sequentially fit new base learners to the residuals of the
current ensemble model. Hence, each new base learner specifically targets observations that
the current ensemble struggles to predict accurately and thus allows the boosting algorithm to
progressively refine predictions. The final model is a weighted sum of sequentially fitted base
learners

B
J(xi) = ouie(s),
b=1

where §p(x;) is the prediction made by the b-th base learner based on covariates x;, a; denotes
the corresponding weight assigned to that base learner’s contribution, and g(x;) denotes the final
prediction. The weights « are typically determined by each learner’s ability to reduce prediction
errors. Decision trees are most commonly chosen as base learners, as they are flexible and fast to
construct, and usually lead to the best predictive performance of the boosted ensemble (Breiman,
1998; Hastie et al., 2009).

Gradient boosting, first introduced by Friedman (2001), views boosting as an iterative functional
gradient descent routine, step by step "nudging” the model’s predictions closer and closer to the
observed data points. This allows for an efficient training procedure across various different loss
functions and predictive tasks, which has made gradient boosting the preferred boosting approach.
Popular and efficient implementations of gradient boosting include XGBoost (Chen and Guestrin,
2016) and LightGBM (Ke et al., 2017).

Equivalently to random forests, gradient boosting methods can freely model complex non-linear
relationships and interactions between features, but due to the ensembling also constitute black-
boxes. Notably, they are often able to achieve higher predictive performances than random forests
(Borisov et al., 2022). However, to perform well, they usually require hyperparameter tuning, as
gradient boosting approaches are much more prone to overfitting. Furthermore, since the base
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learners are trained sequentially rather than in parallel, the overall training procedure tends to
take longer.

Gradient boosting generally outperforms other machine learning methods on tabular data and is
thus often considered as state-of-the-art (Borisov et al., 2022; Grinsztajn et al., 2022). Recently,
gradient boosting has also started to see increasing use in conflict forecasting applications (Vestby
et al., 2022; Bazzi et al., 2022) and early-warning ensembles (Rgd et al., 2024). In the contributing
article in Chapter 6, XGBoost is among the four models evaluated, with predictive performance
slightly below the random forest.

4.2.5. Other Machine Learning Approaches

In addition to the models discussed so far, naturally a wide range of other machine learning
approaches exists. Examples include support vector machines (SVMs) and k-nearest neighbors
(KNN) (James et al., 2013). However, in conflict forecasting, they have only seen limited applica-
tion, as tree-based models such as random forests and gradient boosting generally achieve better
predictive performance in these difficult tabular settings with large numbers of features.

Neural networks deserve explicit mention, as they have become increasingly important across a
variety of fields, with the rise and improvement of deep learning methods over the past decade.
Neural networks model complex relationships between covariates and target(s) by passing the
data through multiple layers of interconnected nodes, called neurons, each applying a (non-linear)
function on the neurons of the previous layer. Deep neural networks, which stack many such
layers, can capture highly non-linear patterns and interactions in the data. A comprehensive
introduction is, for example, provided in Goodfellow et al. (2016).

While deep learning has been widely successful in both computer vision and natural language
processing (NLP), including the development of large language models (LLMs), its application
to structured tabular data, as typically used for conflict forecasting, has been more limited. As
studies show (Borisov et al., 2022; Grinsztajn et al., 2022), tree-based models still continue to
outperform deep learning methods in these settings and, for this reason, they have likely not yet
been integrated into conflict early-warning systems (Rod et al., 2024).

Nonetheless, deep learning methods play an important role when employing alternative data
sources. For example, convolutional neural networks (CNNs) (Schmidhuber, 2015) and, more re-
cently, vision transformers (Dosovitskiy et al., 2021) are used for analysing (satellite) images (Cong
et al., 2022), while various transformer-based architectures (Vaswani et al., 2017) have become
standard tools for analysing text data. Hence, deep learning methods are also increasingly applied
in conflict research for such tasks (Won et al., 2017; Sticher et al., 2023). In the contribution in
Chapter 8, a multilingual SentenceBERT model (Reimers and Gurevych, 2019) is used to infer
the topics discussed in Ukrainian tweets before and during the Russian invasion.

4.3. Interpretable Machine Learning Techniques

While machine learning models achieve excellent predictive performance, most of them are con-
sidered black-boxes, as it is almost impossible to understand how these models arrive at their
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predictions. In many applications however, interpretability is highly important, both to ensure
model robustness and to potentially gain insights into the underlying processes and mechanisms.

Hence, in recent years, a variety of methods have been developed to make machine learning models
and their predictions more interpretable. Most of these methods are model-agnostic, meaning they
can be applied independently of the specific machine learning model to be interpreted. Following
Molnar (2020), these so-called interpretable machine learning (IML) techniques can be divided
into local and global methods. Local methods try to explain individual predictions, whereas global
methods aim to explain the overall behaviour of a machine learning model across a dataset. In
the following, one example of each is briefly introduced.

Individual Conditional Expectation (ICE) ICE plots represent a local interpretation technique.
For a given observation, an ICE plot shows how the model’s prediction changes when varying a
single covariate, while keeping all others fixed. This is achieved by creating different versions of
the same observation, replacing the covariate’s original value with values from a pre-defined grid,
and then making predictions for each modified observation. This procedure can be repeated for
multiple (or all) observations to identify general effects and, for example, to detect interactions
between covariates.

Permutation Feature Importance Permutation feature importance is a global interpretation
method that measures the importance of a covariate, i.e., feature, by quantifying the increase in
the model’s prediction error when randomly permuting the covariate’s values across a dataset. This
permutation breaks any systematic association between covariate and target and thus eliminates
any predictive power. More specifically, one first calculates the original error of the model

. 12 R
Forig — g ZL (yuy(mz)) ,
i=1

where y; is the observed target, §(x;) is the prediction made by the model based on covariates
x; for observation i, and L(.,.) denotes the pre-defined loss function. Then, for a covariate j, its
values are randomly permuted across the dataset and the prediction error is recalculated,

J_ 1< 0 perm, ()
prerm,j _ - ;L (yz, y(x; )) ,

erm,(j . . . . . j
f U) denotes the covariate vector of an observation i after permuting covariate z}. The

permutation feature importance for covariate j is then computed by

where x

PFI] — Eperm,j . Eorig’

which measures the average drop in predictive performance after permutation, and thus the im-
portance of that covariate for the model’s predictive power. To achieve a more robust estimate,
the calculation of EP®™J can be repeated multiple times and the results averaged. In prac-
tice, permutation feature importance is usually computed on the test set due to potential model
overfitting.

While IML methods are useful, they also face limitations, particularly in high-dimensional settings
with many correlated covariates. For example, importance scores become unstable and misleading
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in the presence of high correlation between covariates. A detailed discussion on this is provided in
Hooker et al. (2021). Hence, if interpretability is the primary goal, interpretable statistical models
(see Chapter 3) are likely the better option.

Despite some of these limitations, IML methods have also started to see use in conflict research (see
e.g., Rod et al., 2025, or Scholz et al., 2025). In the contributing article in Chapter 6, permutation
feature importance is employed to analyse the importance of individual remote sensing variables
for the random forest. A comprehensive overview on IML methods is provided in Molnar (2020).

27






5. Concluding Remarks

The increasing availability of fine-grained conflict data, alongside the emergence of new data
sources, is reshaping the study of armed conflict. This dissertation explores how modern data
science methods can leverage these developments to address longstanding questions in conflict
research that were previously difficult or impossible to study. The contributing articles illustrate
how both statistical modelling and machine learning, when combined with these datasets, can ad-
vance our understanding of conflict and its effects, and how they can be jointly used for predictive
tasks.

5.1. Contributions

Part II focuses on how to utilize and integrate satellite and social media data, both new data
sources for the field, into statistical and machine learning models. The contribution in Chapter
6 showcases that remote sensing datasets, derived from satellite imagery, can improve conflict
forecasting performance in conflict-ridden countries, and thus serve as a replacement for the lack
of official data sources in such countries. Specifically, the inclusion of remote sensing variables
improves the models’ ability to predict conflict onset during the Syrian civil war. Once all remote
sensing datasets are included, the performance gap between statistical and machine learning mod-
els narrows substantially, suggesting that, given enough informative data is available, researchers
may be able to forego the use of black-box machine learning models in favour of more interpretable
alternatives.

The following contribution in Chapter 7 moves beyond remote sensing datasets and directly em-
ploys SAR satellite imagery to detect building destruction during war. Interferometric SAR (In-
SAR), a remote sensing algorithm that measures ground surface deformation between two radar
images, is applied to generate pixel-wise stability scores. These scores are then evaluated over
time with a non-parametric median regression and a robust estimate of the standard deviation of
the resulting residuals, in order to identify destruction and its timing at the building level.

The contributing article in Chapter 8 utilizes social media data, specifically tweets from Ukraine,
to analyse tweeting behaviour in Ukraine before and during the Russian invasion. First, the
tweets undergo an extensive cleaning routine, including a random forest classifier to detect and
filter out bot-generated tweets. Then, tweeting activity and language patterns are investigated
via generalized additive mixed models (GAMMSs), revealing a stark shift in language from Russian
to Ukrainian following the outbreak of the war.

As also evident in the contribution in Chapter 6, past conflict is the best predictor of future
conflict. Nonetheless, the diffusion of conflict, i.e., its spread across time and space, is not suf-
ficiently accounted for in statistical models currently employed in the field. To address this,
Part III develops a statistical model that captures the diffusion of conflict across space and time.
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Specifically, the contribution in Chapter 9 proposes a novel generalized additive model with a
smoothing basis over past conflict, which is constructed from a set of exponential decay functions
with varying decay rates. The results show that armed conflict in Africa exhibits long-lasting and
far-reaching dependencies that decay exponentially in both space and time, which can be captured
and interpreted using the developed model.

5.2. Outlook

Looking ahead, there are several promising directions for future research. First, the data sources
used in this thesis, satellite imagery and social media, are still relatively new to the field of conflict
research and thus remain underutilized. As such, they hold considerable potential for addressing
a broad set of questions and methodological improvements. For example, social media data could
be integrated into early warning systems by monitoring online user behaviour through content and
sentiment. In addition, building on the work in Chapter 8, social media studies could be expanded
to infer geographic locations from the text of social media posts, allowing for regionally specific
insights by matching post content to coordinates. Moreover, as satellite technology continues to
improve, both the resolution and temporal availability of freely available satellite images are likely
to increase. This will allow for a simpler and more reliable tracking of infrastructure damage and
destruction, as well as the broader dynamics of conflicts and wars, in near-real time.

Second, future work could focus on developing more specialized models tailored to investigate
specific mechanisms or particular conflicts in greater detail. For example, the diffusion model
developed in the contributing article in Chapter 9 could be extended to incorporate actor-specific
information, shedding light into how conflicts unfold between rebel groups and governments.
Likewise, predictive models, part of early warning systems, could be adapted to better reflect
the grid-based structure commonly adopted in forecasting scenarios, for instance, by employing
convolutional neural networks (CNNs) or other machine learning architectures that explicitly
model the spatial dependencies between the cells.

Third, an ongoing challenge in conflict research is the often substantial reporting delay that comes
with the event data. These delays complicate real-time monitoring of armed conflicts, hinder the
evaluation of peacekeeping efforts, and can distort forecasts, thereby reducing the reliability of
early warning systems. Nowcasting methods, which aim to correct for such delays and have been
successfully applied in other domains, for example during the COVID-19 pandemic (Schneble
et al., 2021), could help to address this issue.

Finally, as conflict forecasts are increasingly informing real-world decision making, the quantifica-
tion of uncertainty around these forecasts is becoming ever more important. This is also reflected
in the most recent VIEWS conflict forecasting competition, which explicitly focused on evaluating
the quality of uncertainty estimates (Hegre et al., 2024). As of the time of writing, none of the
publicly available conflict early-warning systems provides uncertainty estimates alongside their
forecasts yet.

Summarizing, this dissertation demonstrates how data science can address fundamental challenges
and answer central questions in conflict research. By combining statistical modelling and machine
learning with data sources such as satellite imagery and social media, it shows how conflict can
be studied at fine-grained spatial and temporal levels, even in the absence of reliable official data
sources. The contributions highlight both predictive and explanatory approaches and underscore

30



5.2 Outlook

the importance of developing scalable and robust methods that account for the specific charac-
teristics and limitations of conflict data. Advancing this line of work will require interdisciplinary
collaboration, bringing together domain knowledge from political science and conflict research
with methodological expertise from statistics and computer science.
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Conflict research is increasingly influenced by modern computational and statistical
techniques. Combined with recent advances in the collection and public availability of
new data sources, this allows for more accurate forecasting models in ever more fine-
grained spatial areas. This paper demonstrates the utilization of remote sensing data as
a potential solution to the lack of official data sources for conflict forecasting in crisis-
ridden countries. We evaluate and quantify remote sensing data’s differentiated impact
on forecasting accuracy across fine-grained spatial grid cells using the Syrian civil war as
a use case. It can be shown that conflict, particularly its onset, can be forecasted more
accurately by employing publicly available remote sensing datasets. These results are
consistent across a range of established statistical and machine learning models, which
raises the hope to get closer to reliable early-warning systems for conflict prediction.

© 2023 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

already one of the central goals of conflict research. Shift-
ing to the 1970s and early 1980s, interest in this space

Conflict prediction has been considered the number
one task of peace research for decades (Singer, 1973).
According to Hegre, Metternich, Nygard, and Wucherpfen-
nig (2017), early work on conflict prediction was in-
spired by the works of Richardson (1960), Sorokin (1962),
Wright (1965) and influenced by the Correlates of War
Project (Small, Singer, & Bennett, 1982), which in 1963
started systematically collecting quantitative data on war,
adhering to scientific principles. During this time, the
development of early-warning systems for conflict was

* Funding Information: This work is supported by the Helmholtz
Association, Germany under the joint research school “Munich School
for Data Science - MUDS”.

* Correspondence to: Institut fiir Statistik, Ludwigstr. 33, 80539

Miinchen, Germany.

E-mail address: daniel.racek@stat.uni-muenchen.de (D. Racek).
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declined, where explicit prediction studies were an excep-
tion in the published literature (Hegre et al., 2017). This
subsequently changed in the decades thereafter. Although
there were early efforts to move away from country-year
datasets (Schrodt & Gerner, 2000) such as the Corre-
lates of War Project, in the following decades most of
the prediction studies predominantly focused on large-
scale country-level events, such as civil wars (Gleditsch &
Ward, 2013; Goldstone et al., 2010; Harff & Gurr, 1998;
King & Zeng, 2001). Only within the last decade, an
increasing number of studies have moved to more fine-
grained subnational levels (Bazzi et al., 2022; Hegre et al.,
2019; Koren & Bagozzi, 2017), as more and more dis-
aggregated global conflict datasets have become avail-
able (Raleigh, Linke, Hegre, & Karlsen, 2010; Sundberg &
Melander, 2013). Most recently, a forecasting competition
organized by ViEWS (Vesco et al., 2022) showcased the

0169-2070/© 2023 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
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current advances in the field in both methodology and
data sources.

One of the main difficulties in subnational analyses is
often the lack of (reliable) structural data sources, such
as population density or economic indicators commonly
associated with conflict (Blattman & Miguel, 2010; Jerven,
2013). Hence, subnational studies are either conducted
using the (low-level) administrative zones of those coun-
tries that have sufficient data available (see Bazzi et al.,
2022), or are using the well-known 0.5 x 0.5 decimal
degree PRIO grid cells, corresponding to an area of roughly
55 x 55 km (at the Equator; Tollefsen, Strand, & Buhaug,
2012). The former are highly country-dependent and thus
cannot be easily compared. Administrative zones often
vary greatly in size, can be irregular in shape and may
change over time, which renders spatial inference more
difficult (Wood & Sullivan, 2015). The latter specifica-
tion via PRIO grid cells, however, is quite coarse, with a
cell size of roughly 55 x 55 km, which similarly limits
spatial inference. Furthermore, defining cells in decimal
degrees means that their size differs by a substantial
margin across the world. For example, in Africa alone,
the width of the PRIO grid cells differs by up to 11 km
based on this definition. But even when using one of
those two spatial structures, sufficient data availability for
developing and/or crisis-ridden countries are rare, which
makes reliable forecasting of conflict in those countries,
in which it is needed the most, particularly difficult.

Recently, new and emerging data sources, such as
news (Attina, Carammia, & lacus, 2022; Mueller & Rauh,
2018), social media (Zeitzoff, 2017), and remote sens-
ing data (Avtar et al., 2021), have increasingly gained
attention to solve these problems. This work examines
the capabilities of remote sensing data for the task of
conflict prediction. Remote sensing data are acquired by
applying complex prediction pipelines on sets of high-
resolution satellite images. This results in highly fine-
grained datasets previously unheard of. Notably, these
datasets typically have global coverage, which creates
a number of opportunities for conflict research. For in-
stance, as we show in this work, this allows for their use
anywhere across the world in custom-defined spatial ar-
eas of any size or shape. In recent years, a number of new,
high-quality, and high-resolution remote sensing datasets
have been made publically available, such as improved
global landcover maps (Buchhorn et al., 2020) and vegeta-
tion indicators (FAO, 2022). This has become possible due
to long-term records of satellite imagery through satellite
systems such as AVHRR and MODIS (Pedelty et al., 2007),
Landsat Loveland and Dwyer (2012), and Sentinel (Berger,
Moreno, Johannessen, Levelt, & Hanssen, 2012), in com-
bination with improvements in classification techniques
through, for example, deep learning (Ball, Anderson, &
Chan Sr, 2017).

Our work utilizes (novel) remote sensing datasets in
order to forecast conflict in self-defined, fine-grained, and
regular-sized cells across Syria and tests as well as quan-
tifies their effectiveness for this task. Syria experienced
(and to some extent still experiences) one of the largest
and deadliest civil wars of the past century, with more
than 392,000 recorded fatalities by the end of 2020 (Pet-
tersson et al.,, 2021). According to scholars, the uprising

374

International Journal of Forecasting 40 (2024) 373-391

and the subsequent civil war started with mass protests in
the city of Dara’a (Leenders & Heydemann, 2012, p. 142)
in March 2011, which quickly escalated due to repression
and the use of heavy force exerted by government se-
curity forces (Leenders & Heydemann, 2012, p. 149) and
ultimately led to war. Although there was a significant
decline in violence in 2020, as of today, the war is still
ongoing (Human Rights Watch, 2022; Pettersson et al.,
2021).

Given Syria’s long history of conflict, it presents itself
as an ideal use case for examining the potentials of remote
sensing data, because the availability of other data sources
is sparse to non-existent. To the best of our knowledge,
one can likely only obtain the social demographics for
the 14 Syrian governorates based on the 2004 census,
as well as location polygons of selected ethnic groups.
This problem of data limitation, which exists for many
developing and crisis-ridden countries, can be alleviated
by drawing on remote sensing data sources with global
coverage, as motivated in this paper.

In this work, we systematically test the effectiveness
of various remote sensing datasets for spatial forecasts
of armed conflict across Syria and quantify the change
in performance using each data source for this task. Only
recently, remote sensing data have been identified as an
essential addition in the development of early warning
systems (Avtar et al,, 2021). Hence, we extend this no-
tion by systematically analyzing their effectiveness for
forecasting. Additionally, we further extend current work
in the field, as the use of remote sensing data allows
us to conduct our forecasting in custom-defined cells.
This means that we are not constrained in having to use
traditional administrative zones or the PRIO grid cells in
our analyses. Instead, we manually construct cells that are
more fine-grained than those employed in other studies.
These cells are regular and fixed in size across Syria, as
they are defined in the Universal Transverse Mercator
(UTM) coordinate system. It is worth noting that through
this definition, our cells are indeed country-independent.
Moreover, all of our employed data sources have global
coverage. Hence, applications, extensions, and compar-
isons to other countries or even continents can easily be
undertaken.

Specifically, for our analysis, we rasterize Syria into
25 x 25 km cells and match these cells with various
remote sensing datasets. Then, for each cell, we construct
aggregated remote sensing variables and use those along-
side other traditional predictors to forecast the monthly
occurrence of armed conflict. We do this through a one-
step-ahead recursive window forecast using a range of
established statistical and machine learning models. By
repeatedly re-running our models with different specifi-
cations, in which we alter the set of included variables, we
are able to quantify the effectiveness of each remote sens-
ing dataset with respect to a classical literature-inspired
baseline specification. This allows us to evaluate the gain
of using remote sensing data for conflict prediction with-
out being reliant on a specific model type. We provide
details on our forecasting procedure and chosen models
in our methodology section and an in-depth discussion of
model selection in our discussion.
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(a) The original (uncropped) cells are depicted in grey. The
relevant Syrian area is marked in blue.
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A

(b) The 34 removed cells with an area of less than 150 km?
are depicted in red. The others, which are used in this study,
are depicted in blue.

Fig. 1. Illustration of the rasterization and cropping process to construct the 322 Syrian cells used as the main observation units in the study.

We are able to show that by adding remote sensing
variables to our baseline, we can consistently improve
the overall forecasting performance of our models. By
further differentiating conflict into onset and persistence,
a distinction frequently made and discussed in the litera-
ture (Bazzi et al., 2022; Blattman & Miguel, 2010; Fearon
& Laitin, 2003), we show that most of the overall perfor-
mance increase stems from the former. In other words,
utilizing remote sensing data primarily helps to predict
new conflicts in areas not suffering from conflicts be-
fore. According to our results, population, landcover, and
crop data are the most important remote sensing-based
predictors of conflict. Qur full specification, including vari-
ables from each dataset, performs the most consistently
well across all types of models. Finally, we want to high-
light the generalizability and ease of reproducibility of
our study, with which we are answering a recent call
by Vesco et al. (2022). Our definition of cells is country-
independent and all of our employed data sources are
freely available and have global coverage.

The rest of the paper is organized as follows. First,
we describe all data sources utilized and how they are
processed, followed by a thorough description of our
methodological approaches and evaluation criteria. Next,
we report the results of our study, before providing an
in-depth discussion and a final conclusion.

2. Data
2.1. Constructing the dataset

For our analysis, we rasterize Syria into fine-grained
evenly sized 25 x 25 km (625 km?) grid cells, in which we

forecast the monthly occurrence of armed conflict from
2011 to 2020.! We chose this time period because 2011

1 We exclude the Quneitra Governorate, which mainly con-
sists of the Israeli-occupied Golan Heights and the United Nations
Disengagement Observer Force (UNDOF) buffer zone.
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marks the year in which the Syrian civil war broke out,
and 2020 is the last year for which the Uppsala Conflict
Data Program (UCDP) Georeferenced Event Dataset (GED)
provides conflict data. The rasterization takes place in
accordance with the UTM coordinate system (zone 36N),
a projected coordinate system, in order to avoid cell size
distortions. Such distortions would otherwise occur when
using any geographic coordinate system (e.g. the World
Geodetic System (WGS) 1984 with latitude/longitude co-
ordinates). Additionally, we crop any cells crossing the
Syrian border, because for this case study we are only
interested in conflict taking place within Syria. Last but
not least, we remove any cells with an area of less than
150 km? after cropping (roughly a quarter of the full cell
size), as those cells almost never experience conflict and
hence might skew the results. Nonetheless, we addition-
ally report our results without this filtering in Appendix L.
This process results in a total of 356 cells, of which 34
are removed after cropping. The whole process is illus-
trated in Fig. 1. The resulting 322 cells are our primary
observations of interest in this study.

For the time period between 2011 and 2020, we match
all subsequently described (remote sensing) datasets based
on time and geolocation to our cells of interest and mo-
tivate their potential use based on findings from the
conflict literature. We emphasize that all data used in this
study are freely available and can be directly accessed
and downloaded from the web addresses provided in
Table A.6 in Appendix A. All our code and the processed
datasets can be found on the Open Science Framework
(OSF) here.

For our remote sensing data sources, perfect spatial
matching is not always possible, as we are matching a
raster of cells (consisting of remote sensing data) to our
raster of Syrian cells. Hence, in some instances, the cells of
the former will overlap with two or more Syrian cells. To
solve this issue, we relatively distribute their contribution
based on the percentage of covered area of the respective
Syrian cells. An illustrative example of this procedure is
shown in Fig. 2.
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Fig. 2. Illustration of the matching process for overlapping remote sensing data grid cells. The top shows all the resulting Syrian grid cells (in blue)
after the rasterization process described in Section 2.1. In the middle, we zoom in on two of those constructed cells and plot six remote sensing
data cells (in grey; e.g. consisting of population numbers) onto them. These remote sensing cells (and their data values) are matched to the Syrian
grid cells in the matching routine. The four cells on the sides (two on the left, and two on the right) are entirely covered by a single Syrian grid
cell and thus matched in their entirety to the respective cell. The two remote sensing cells in the middle are partially covered by both of the Syrian
grid cells. Hence, a relative distribution of their data values is necessary. In the bottom, we zoom in on one of those remote sensing data cells. From
the dashed line we can infer that one-third of the cell is covered by the left Syrian grid cell, and the remaining two-thirds by the right cell. Hence,
in this instance, we would allocate one-third of the data value (e.g. the amount of population) to the left cell and two-thirds to the right cell. The

same strategy is applied for all remote sensing datasets.

2.2. Conflict & ethnic data

Data on armed conflict were drawn from the widely
known UCDP Georeferenced Event Dataset (GED) (Sund-
berg & Melander, 2013). The dataset reports events of
organized violence, resulting in at least one estimated
direct death through armed force, across the world from
1989 to 2020. The data were systematically collected and
coded by experienced researchers using national and in-
ternational news reports, as well as data from NGOs and
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international organizations. Each event is (among others)
assigned a specific date, place, type of violence, and es-
timated number of resulting fatalities. This study focuses
on forecasting battle-related fatalities, i.e. deaths result-
ing from either state-based or non-state conflict between
organized parties. It additionally uses (lagged) one-sided
violence, i.e. violence against civilians, as an explanatory
variable in order to account for preceding escalatory pro-
cesses. For a small portion of events, the exact location
and/or time point is unknown. We discard these events
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in our analysis.2 As a result, around 15% of the Syrian
events from 2011 onwards are discarded. Naturally, this
is a limitation in our study. All remaining events are
matched based on location and time to the respective cell
in the respective month of the study period. Hence, for
each cell we have aggregated monthly information on the
prevalence of conflict from the beginning of 2011 to the
end of 2020.

As noted by scholars (Abosedra, Fakih, & Haimoun,
2021; Ismail, 2011), ethnicities play a central role in the
Syrian civil war. Hence, we gather information on the
location of “politically relevant ethnic groups” from the
Geo-referencing Ethnic Power Relations (GeoEPR) 2021
dataset (Vogt et al., 2015), which is part of the Geograph-
ical Research On War, Unified Platform (GROW"P) (Gi-
rardin, Hunziker, Cederman, Bormann, & Vogt, 2015). It
assigns every ethnic group to settlement patterns and
provides polygons of their location globally from 1946 to
2020. For Syria, the identified (and largest) ethnic groups
are the Sunni Arabs, Alawis, Christians, Kurds, and Druze.
For each of those groups we create an indicator that
describes whether at least 5% of the respective cell area
is covered by the respective settlement polygon.

2.3. Remote sensing data

Population data come from the WorldPop project
(Tatem, 2017). The project estimates population numbers
across the world in 100 m resolution grid cells, with
the help of census data and detailed geospatial datasets
through a semi-automated dasymetric modeling tech-
nique using random forests. In order to ensure that these
estimates are as close to reported real-world popula-
tion numbers, we chose the estimates adjusted to match
national UN numbers. Furthermore, because the Syrian
population estimates are based on the 2004 census, and
the civil war reportedly led to large-scale migration across
the country (Kelley, Mohtadi, Cane, Seager, & Kushnir,
2015), we only employ the population numbers stemming
from the year 2010 in this study. Additional information
on, for example, age and sex structures are only available
on a country-wide level and thus are not considered. We
aggregate these estimated population numbers for each of
the 322 Syrian cells to obtain total amounts. In accordance
with earlier studies (Raleigh & Hegre, 2009), we expect
areas with higher population numbers to be more likely to
experience conflict and thus this information to be highly
relevant.

Landcover information is drawn from the Copernicus
Global landcover map collection 3 (Buchhorn et al., 2020),
which classifies the entire world into 23 different land-
cover classes at 100 m resolution through an elaborate

2 This includes all events for which the UCDP variable where_prec
is larger than two (i.e. only the second-order administrative division
for the location is known) and all events for which date_prec is larger
than four (i.e. a day range which is longer than 30 days is reported).
All remaining events have a geo-precision of <= 25 km and a reported
time period of <= 30 days and thus can be unambiguously assigned
to the most likely month/cell combination. Note that there is still some
uncertainty left using this assignment, as it is not always guaranteed
to be correct.

48

377

International Journal of Forecasting 40 (2024) 373-391

prediction pipeline (supervised classification, expert rules,
temporal cleaning via break detection, etc.) on a yearly
basis from 2015 to 2019. We employ some of the “level
1” classes, such as cropland, forest, and permanent wa-
ter, for which the authors report an average accuracy
of 80.6%. Data from each year of the landcover map are
matched to the cells accordingly, and average shares for
each class (per cell) are derived. These landcover classes
contain structural information that might be relevant for
the prediction of conflict, for instance, the amount of
urban area (related to population, see above; and/or eco-
nomic activity, see below), crop area (see below), bare
area (e.g. desert), tree-covered area (with potential hide-
outs), or the existence of rivers. The latter might be re-
lated to strategically important locations, as rivers might
allow for the transportation of weapons and food, and can
be used for energy production.

Topography data are collected from (Amatulli et al.,
2018). The authors calculate a variety of elevation-based
topographic variables such as slope, roughness, and ter-
rain ruggedness for the entire globe using the digital
elevation model products of the 250 m Global Multi-
resolution Terrain Elevation Data 2010 (GMTED2010)
(Danielson & Gesch, 2011), which was released in 2010
by the United States Geological Survey and the National
Geospatial-Intelligence Agency. They aggregate each vari-
able to a resolution of 1, 5, 10, 50, and 100 km using
different spatial aggregation methods. In this study, we
employ several topographic variables from the most fine-
grained 1 km resolution dataset and derive the respective
median of each variable (as also used by the authors for
the original aggregate calculation) for each cell. Topog-
raphy, specifically ruggedness or rough terrain, has been
associated with conflict (Collier & Hoeffler, 2004; Fearon &
Laitin, 2003), as such terrain arguably provides protection
and opportunities to hide for rebels.

Satellite-observed nighttime lights are drawn from the
Defense Meteorological Satellite Program (DMSP)
Operational Linescan System (OLS) version 4 nighttime
stable lights, which discards ephemeral events and back-
ground noise, for the years 2010 to 2013 (Baugh, Elvidge,
Ghosh, & Ziskin, 2010) with a 1 km resolution. In ear-
lier studies, nighttime illumination has been shown to
be a good indicator of built infrastructure, and thus of
economic activity, on a country-wide level (see Elvidge,
Hsu, Baugh, & Ghosh, 2014). A more recent study has
demonstrated that nighttime lights are also a good pre-
dictor of economic wealth at local (within-country) lev-
els (Weidmann & Schutte, 2017). We derive the total
amount of nighttime lights for each of our cells and,
similar to other studies (Bazzi et al.,, 2022; Weidmann &
Schutte, 2017), calculate a logged per capita value. Gener-
ally, countries with persistent conflict are associated with
lower per capita gross domestic product (GDP) (Collier,
2004; Pinstrup-Andersen & Shimokawa, 2008). In our
specific setting, nighttime lights might point to industry-
heavy and wealthier areas, which might again constitute
strategically important locations in conflicts and thus
improve predictive performance.

Crop production statistics are drawn from MapSPAM
(Yu et al,, 2020). MapSPAM estimates detailed patterns



D. Racek, P.W. Thurner, B.I. Davidson et al.

of crop statistics for 42 different crops in 10 km grid
cells across the world. This is achieved through an es-
timation procedure that combines information on crops
(from the lowest available administrative units), land-
cover classes, and climate and soil conditions—all three
derived from satellite imagery. We employ the most re-
cent (2010) statistics and calculate the total amount of
production for all types of crops for each of our cells.
According to reports (Eng & Martinez, 2014), rebel areas
with agricultural crops were specifically targeted by the
Syrian army as a form of punishment by the government.
More generally, it is common that conflict parties de-
liberately destroy infrastructure and resources for food
production (Messer & Cohen, 2015) or try to seize crop-
land in order to secure and guarantee access to food for
sustenance (Koren & Bagozzi, 2017).

Daytime temperature recordings are collected from
the Terra Moderate Resolution Imaging Spectroradiome-
ter (MODIS) Land Surface Temperature/Emissivity Daily
(MOD11A1) version 6.1 (Wan, Hook, & Hulley, 2021).
It retrieves daily temperature levels at 1 km resolution
across the world from 2000 onwards, using the MODIS
thermal infrared channel received by satellite sensors, and
is validated by accurate ground-based measurements. In
this work, we calculate the average monthly temperature
for each cell over the entire study period. Drought (and
thus to an extent temperature) has been discussed as a
potential contributing factor to the outbreak of the Syrian
civil war (Kelley et al., 2015) and has been related to
an increase in violence against civilians (Bagozzi, Koren,
& Mukherjee, 2017) as well as conflict in general (Von
Uexkull, Croicu, Fjelde, & Buhaug, 2016), as it threatens
food security. Moreover, we can see drought as a form of
local income shock, which can trigger violent mobilization
in the case of existing grievances such as ethnic political
cleavage (Buhaug, Croicu, Fjelde, & Uexkull, 2021).

Monthly precipitation data come from the Climate
Hazards Group InfraRed Precipitation with Station data
(CHIRPS). CHIRPS estimates rainfall maps at 5 km reso-
lution going all the way back to 1981 (Funk et al., 2015)
using climatology models, satellite imagery, and local
station data. We derive the total amount of precipitation
for each cell in a given month over the study period. Like
temperature, precipitation is closely related to drought.

Last but not least, we use monthly data on vegetation
health from the Food and Agriculture Organization (FAO)
of the UN (FAO, 2022). More specifically, we draw on
the Vegetation Health Index (VHI) developed by Kogan
(1997), which is a composite indicator constructed from
the Vegetation Condition Index (VCI) and the Temperature
Condition Index (TCI), both derived from Advanced Very
High Resolution Radiometer (AVHRR) satellite imagery.
The VHI has been used in numerous studies to identify
droughts (see for example Kogan, Yang, Wei, Zhiyuan, &
Xianfeng, 2005 and Rojas, Vrieling, & Rembold, 2011) and
is reported for 10-day periods from 1984 onwards. We de-
rive the monthly average VHI for each cell over the entire
study period. We provide an overview on the spatial and
(employed) temporal resolution of each remote sensing
data source in Table A.7 in Appendix A.
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3. Methodology & models
3.1. Variables & model specifications

For our forecasting analysis, we define our target vari-
able as a binary measure, indicating whether there was
at least one direct fatality as a result of armed force
through either state-based or non-state conflict (battles)
in a given cell in a given month. With 322 grid cells,
from the beginning of our study period in 2011 to the
end of 2020 (=120 months), this adds up to a total of
38,640 observations, of which 6698 (~17.3%) experienced
conflict according to our definition.

Our explanatory variables (predictors) are constructed
from the data sources listed in Section 2. All time-varying
explanatory variables are lagged by one month or year, in
order to reflect a real-world setting. For example, we only
have temperature data available for the current month,
and not for the month ahead for which we want to fore-
cast conflict. We construct our “zero-model” using only
temporal and spatial covariates. The zero-model accounts
for all effects relating to the spatial and temporal struc-
ture of the civil war and thus should already capture some
of the main effects. We obtain our baseline specification
by extending the zero-model with a set of covariates cap-
turing both civilian and battle-related fatalities of the past
12 months, in addition to ethnic indicators. The former are
generally included in most well-performing forecasting
routines (see for example Bazzi et al., 2022; Fritz, Mehrl,
Thurner, & Kauermann, 2022; Hegre et al., 2019), whereas
the latter are specifically included because of the Syrian
use case, as explained above. Hence, our baseline model
constitutes a specification a researcher would typically
employ when not including any type of special or novel
dataset and thus should allow for a fair performance
comparison against more complex specifications.

In order to test the effectiveness of different remote
sensing data sources for our task at hand, we extend
our baseline specification by separately adding variables
from each source. Doing this for all of the remote sensing
datasets reported in Section 2.3, we obtain a total of eight
additional specifications. Finally, we construct a full speci-
fication, which adds variables from all of the remote sens-
ing datasets jointly to the baseline. An overview over all
11 tested specifications is provided in Table 1. A detailed
table with the exact variables used in each specification is
reported in Table C.8 in Appendix C. All specifications are
run and their performance evaluated with the forecasting
procedure described in the subsequent section.

3.2. Forecasting setup

Forecasting is conducted through a monthly one-step-
ahead recursive (expanding) window classification, in
which for each month t, we forecast conflict in t + 1. This
means our models are trained on all historical data from
the first month ¢ty up to the current month t. This is a
commonly employed evaluation strategy for time series
data, as explained e.g. in Petropoulos et al. (2022). We
leave multiple-step-ahead forecasts as a potential future
work (forecasting conflict for t + 2, t + 3, etc., while
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Table 1
Model specifications.

# Specification Remote sensing data source

1 Zero-Model -

2 Baseline -

3 Baseline + Population Tatem (2017)

4 Baseline + Landcover Classes Buchhorn et al. (2020)
5 Baseline + Nighttime Lights Baugh et al. (2010)

6 Baseline + Topography Amatulli et al. (2018)
7 Baseline + Vegetation Health FAO (2022)

8 Baseline + Crops Yu et al. (2020)

9 Baseline + Precipitation Funk et al. (2015)

10 Baseline + Temperature Wan et al. (2021)

11 Baseline + All All of the above

Notes: Definition of the different specifications tested in this study,
with a reference to the respective remote sensing data source used.

being in month t), as this would require training sepa-
rate models for each step ahead and thus substantially
increase computational complexity. With a time period
from 2011 to 2020, we have t = 1,2, ..., 120. In order
to ensure we have enough data to train our models, we
skip the first year and start our forecasting procedure in
t = 12. Because most of the employed models require the
specification of hyperparameters, hyperparameter tuning
is carried out every 12 steps of the forecast, by training
the models on data from to up to t — 1 and forecasting
for t, optimizing the AUROC (the area under the receiver
operator characteristic curve; see Section 3.4 for an exact
definition). We decided against tuning our models at each
step in order to reduce computational complexity. More-
over, the goal of this work is to analyze and highlight the
capabilities of remote sensing data for conflict prediction,
rather than optimizing performance scores to the very
last digit. As a result, we have a total of nine tuning runs
(108/12 = 9) per model per specification over the entire
study period.

Specifically, the procedure at each stept = 12,13, ...,
119 is as follows:

1. Assign all observations from ty up to t to the train-
ing dataset. Assign all observations in t + 1 to the
test dataset.

2. If t mod 12 = 0: conduct hyperparameter tuning by
repeatedly training the model on data from t, up to
t —1 and evaluating the performance for t. Save the
best performing hyperparameters for the model.

3. Load the last hyperparameter specification for the
model.

4, Train the model with those hyperparameters on the
entire training dataset.

5. Predict (forecast) conflict for all observations in the
test dataset.

This procedure is repeated for each of the specifications
reported in Table 1 and each of the models listed here-
after.

3 We define mod as the modulo operation, which returns the
remainder of the division.
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3.3. Models, packages, & hyperparameters

In our study, we employ a range of established sta-
tistical and machine learning models in and outside the
field. For an in-depth discussion of the selection process,
see Section 5. In the following, we list each of the chosen
models and name the packages employed to conduct the
analysis. Moreover, we report the selected hyperparame-
ters. Hyperparameter optimization is carried out for those
parameters that are generally understood to be most vi-
tal to the performance and set to default values for the
remaining ones, in an attempt to reduce computational
complexity. This limitation is necessary, as we are running
11 specifications with nine tuning runs each per model,
resulting in a total of 99 tuning runs per model.

The following models are employed in our study:

1. Least absolute shrinkage and selection operator
(LASSO): We make use of the R package glmnet to
fit the logistic LASSO regression. We optimize the
only hyperparameter A, specifying the weight of the
penalty.

2. Generalized additive model (GAM): We use the R
package mgcv for fitting, add selection penalties
to our model, and make use of both thin plate
splines and P-Splines in our models. See Table C.8 in
Appendix C for a complete model description. The
selection penalties are optimized during training.
Additional hyperparameters, such as the number of
knots, are not tuned and are left at their default
values.

3. Random forests (RF): We employ the highly opti-
mized R implementation ranger. Since RFs rarely
overfit when increasing the number of fitted trees,
we set this number to be sufficiently large, at 500.
We also tested larger numbers of trees, but they
did not lead to any relevant changes in perfor-
mance. We optimize the maximum depth of the
trees and the minimum node size. The remaining
hyperparameters are left at their default values.

4. Gradient boosting (GB): We employ the commonly
used extreme gradient boosting (XGBoost) algo-
rithm and its R implementation xgboost. We opti-
mize the number of rounds, the learning rate (eta),
and the minimum child weight, whereas the re-
maining hyperparameters are left at their default
values.

See Appendix B for more information about the models,
including references for more details.

3.4. Performance evaluation

Our main evaluation criteria are the area under the
receiver operator characteristic (ROC) curve (AUROC) and
the area under the precision-recall curve (AUPRC), which
are described subsequently.

The ROC curve plots the true positive rate (TPR), also
known as the recall and defined as the ratio of correctly
identified positives (%), against the false positive rate
(FPR), defined as the ratio of false positives to negatives
(%). The curve describes the tradeoff between the two
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when choosing different classification thresholds for a
trained model. This means that the AUROC is between
0 and 1, where 0.5 describes a random classifier and 1
describes a perfect classifier. The advantage of the AUROC
is its invariance to the classification threshold. That is, it
alleviates the difficult decision of choosing a threshold
or thresholds for the performance analysis. Hence, it is
often used in general classification scenarios and more
specifically in the conflict literature (Bazzi et al., 2022;
Hegre et al,, 2019; Hegre, Nygdrd, & Landsverk, 2021).

In imbalanced classification settings, the AUROC can
sometimes be misleading, as the focus does not lie in the
prediction of the minority (positive) class (see Cranmer
and Desmarais (2017) for a discussion on this topic in
empirical political research). In our study, we face such
an issue, as only ~16% of our observations experience
conflict and thus are assigned to the positive class. In such
cases, the area under the precision-recall curve (AUPRC),
which again does not require thresholding, is typically
used in addition. The precision-recall curve describes the
tradeoff between precision, defined as the ratio of true
positives over all positive predictions (%), and recall
when using different classification thresholds. The AUPRC
is similarly between 0 and 1, where 1 describes a classifier
that is perfectly able to identify the positive class, and 0
the opposite.

4. Results

Our overall results for the entire study period for our
four models and 11 different specifications are reported
in Table 2 and Table 3, respectively. The former reports
the results using the AUROC, the latter using the AUPRC.
In both tables, for each model and given each specifi-
cation, we report the absolute number of the respective
evaluation criteria. Additionally, in brackets, we report the
relative difference (in percentage) compared to our base-
line specification (using the same model), to describe the
performance gain (or loss) of the each specification with
respect to our baseline. The ROC curves and PR curves are
reported in Appendix I. Bootstrapped confidence intervals
for the performance of three of our specifications (zero-
model, baseline, and full specification) are also available
there.

We start the analysis of our results with the AUROC,
i.e. Table 2. Our zero-model specification, which only in-
cludes spatial and temporal variables, is arguably already
performing well, as the AUROC is between 0.77 (LASSO)
and 0.923 (RF). This can be explained by two factors.
First, a significant part of Syria is covered by desert (95
out of 322 cells are covered by more than 80% “bare”
area according to our landcover map; see Appendix I
for an illustration) with little to no inhabitants (mean
population of 2224 vs. 82,845 in the remaining cells), in
which naturally almost no conflict took place over the
study period (1.7% vs. 26.7% of observations). This can
be largely captured through our spatial variables. Second,
civil wars are generally characterized by location-specific
battle lines that might slowly change over time (Raleigh
& Hegre, 2009), which can be (partly) captured through
a combination of both spatial and temporal variables. We
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can also see that both GB and RF, which can freely model
non-linear effects, are much better at capturing the two
aforementioned patterns, compared to our GAM, which
can only partially model them, and LASSO, which can only
model linear effects.

Moving to our baseline specification, which adds both
lagged fatality information as well as ethnic indicators,
we can see performance increases compared to the zero-
model specification for all models. These increases are
rather small for our non-linear models (RF and GB) and
significantly larger for the other two (GAM and LASSO), as
also confirmed by our bootstrapped confidence intervals
(see Appendix I). This means that both RF and GB can
model the spatial and temporal structure of the civil war
so well that adding additional information on past fatali-
ties and ethnicities only leads to minor improvements in
overall performance, whereas both GAM and LASSO profit
much more from the addition. In our baseline specifica-
tion, all models perform well (AUROC > 0.91) and the
differences between the models are not substantial.

Next, we look into the performance gains when includ-
ing remote sensing data, our main question of interest
in this study. We can see (small) performance increases
across the board (compared to our baseline) for the in-
dividual specifications using landcover classes, popula-
tion, and crops, whereas the results for the other re-
mote sensing data sources are more mixed and model-
dependent. For both nighttime lights and temperature,
we can see (minor) performance gains for GAM, RF, and
GB, whereas the LASSO performance is on par with the
baseline. In other cases, for instance for topography, the
inclusion leads to either negligible performance increases
or even small decreases, depending on which model per-
formance we look at. For topography, the highest in-
crease is achieved by GB with only 4+0.26%, and we can
spot a decrease for RF (—0.21%). Patterns such as this
can occur if the dataset itself does not contribute a lot
of relevant information to our task at hand, i.e. fore-
casting conflict. Then, the inclusion can possibly lead to
overfitting and performance will fall off, as our models
will pick up random signals (noise) from the respec-
tive dataset during training. Although both GB and GAM
show minor performance gains for topography, we can
arguably still conclude that our chosen topography vari-
ables contain little to no relevant information to predict
conflict, at least without combining it with additional
remote sensing information (from other data sources).
Similar arguments can be made for vegetation health
and precipitation. Finally, our full specification (Baseline
+ All), including variables from all remote sensing data
sources, performs consistently better than our baseline
(0.37%-1.75%) but (for GB and RF) slightly worse than
some of the individual specifications, again hinting at
the fact that some remote sensing data sources (or the
combination of them) are unnecessarily included. Overall,
we can conclude that the inclusion of remote sensing
data (marginally) increases our predictive performance in
terms of the AUROC.

As noted above, the AUROC can be misleading, par-
ticularly if a researcher is interested in identifying the
minority class, the prevalence of conflict in our setting.
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Table 2
AUROC performance (all observations).
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Specification AUROC for model

GAM

LASSO

RF

GB

Zero-Model 0.850 (—6.68%)
Baseline 0.910

Baseline + Landcover Classes 0.912 (+0.23%)
Baseline + Population 0.915 (+0.49%)
Baseline + Nighttime Lights 0.919 (+0.99%)
Baseline + Topography 0.911 (+0.06%)
Baseline + Vegetation Health 0.912 (+0.19%)
Baseline + Crops 0.916 (+0.63%)
Baseline + Precipitation 0.916 (+0.58%)
Baseline + Temperature 0.917 (+0.73%)
Baseline + All 0.926 (+1.75%)

0.767 (—16.37%)
0.917

0.922 (+0.53%)
0.919 (+0.26%)
0.917 (+0%)
0.917 (+0%)
0.917 (—0.02%)
0.919 (+0.23%)
0.917 (+0.02%)
0.917 (+0%)
0.923 (+0.73%)

0.923 (—0.62%)
0.929

0.933 (+0.43%)
0.933 (+0.51%)
0.931 (+0.22%)
0.927 (—0.21%)
0.929 (+0.04%)
0.933 (+0.46%)
0.928 (—0.05%)
0.929 (+0.02%)
0.932 (+0.37%)

0.917 (—0.7%)
0.923

0.927 (+0.39%)
0.929 (+0.67%)
0.926 (+0.25%)
0.926 (+0.26%)
0.926 (+0.35%)
0.930 (+0.74%)
0.924 (+0.12%)
0.925 (+0.19%)
0.929 (+0.59%)

Notes: Average area under the receicer operator characteristics curve (AUROC) performance for one-step ahead forecasts over the entire forecasting
horizon of the different model specifications and types. For an explanation of the AUPRC, see Section 3.4. Each row reports the performance of
one specification (details in Section 3.2), each column of one type of model (details in Section 3.3). In brackets we report the relative performance
difference to our baseline specification (of the same model), except for the baseline specification itself. The best performing specification for each

model is highlighted in bold.

Table 3
AUPRC performance (all observations).

Specification

AUPRC for model

GAM

LASSO

RF

GB

0.499 (—35.76%)
0.777

0.784 (—3.11%)
0.810

0.779 (—2.23%)
0.796

Zero-Model 0.657 (—16.84%)
Baseline 0.790

Baseline + Landcover Classes 0.794 (+0.49%)
Baseline + Population 0.796 (+0.68%)
Baseline + Nighttime Lights 0.798 (+1%)
Baseline + Topography 0.792 (+0.24%)
Baseline + Vegetation Health 0.794 (+0.51%)
Baseline + Crops 0.797 (+0.9%)
Baseline + Precipitation 0.797 (+0.88%)
Baseline + Temperature 0.797 (+0.85%)
Baseline + All 0.805 (+1.91%)

0.786 (+1.11%) 0.821 (+1.43%) 0.805 (+1.12%)
0.781 (+0.5%) 0.822 (+1.5%) 0.809 (+1.64%)
0.777 (+0%) 0.815 (+0.64%) 0.802 (+0.74%)
0.774 (—0.46%) 0.802 (-1%) 0.802 (+0.65%)
0.773 (—0.52%) 0.815 (+0.72%) 0.807 (+1.35%)
0.781 (+0.47%) 0.822 (+1.49%) 0.813 (+2.08%)
0.774 (—0.46%) 0.813 (+0.47%) 0.799 (+0.34%)
0.777 (—0.02%) 0.814 (+0.5%) 0.804 (+0.95%)
0.789 (+1.51%) 0.817 (+0.95%) 0.812 (+1.93%)

Notes: Average area under the precision-recall curve (AUPRC) performance for one-step ahead forecasts over the entire forecasting horizon of the
different model specifications and types. For an explanation of the AUPRC, see Section 3.4. Each row reports the performance of one specification
(details in Section 3.2), each column of one type of model (details in Section 3.3). In brackets we report the relative performance difference to our
baseline specification (of the same model), except for the baseline specification itself. The best performing specification for each model is highlighted

in bold.

Hence, Table 3 reports the AUPRC of the different specifi-
cations for our forecasting task. First of all, we can see that
the difference between the zero-model and the baseline is
significantly larger than before. This makes sense in that,
for our positive-class (conflict) observations, knowing and
modeling the location of the Syrian Desert will reduce
the number of false positives (FPs) and hence increase
the precision, but it will not increase the number of true
positives (TPs) and thus the recall. For the latter, knowing
past conflict through information on lagged fatalities will
most certainly have a positive effect, hence the larger
performance difference between the zero-model and the
baseline. Notably, this difference is not as large for both
RF and GB, as both models can more easily capture the dy-
namics of the civil war through non-linear combinations
of both spatial and temporal variables.

Moving to the remote sensing specifications, we see
similar results as above. We report increases for land-
cover classes, population, crops, and nighttime lights. No-
tably, the relative increases are around double in percent-
age points compared to earlier and range up to 2.08%
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(GB with crops). For vegetation health, precipitation, and
temperature we similarly report performance gains, with
the exception for LASSO, whereas topography is more
mixed, as it again shows decreases for both LASSO and RF.
Our full specification performs consistently well (0.95%-
1.93%) and is only marginally outperformed by some in-
dividual specifications for RF and GB.

By setting a probability threshold, we can analyze the
performance increase of our full specification compared
to the baseline in individual observation numbers. For
reasons of simplicity, we do not tune this threshold and
instead set it to the standard value of 0.5. Doing this, out
of 34,776 conflict observations in the forecasting test sam-
ple, the GAM is able to predict 31,266 correctly (+89 com-
pared to the baseline), and LASSO, RF, and GB correctly
predict 31,147 (+20), 31,452 (+53), and 31,330 (+78),
respectively. Note that this does not necessarily mean that
we are able to correctly forecast the same instances as
with our baseline. Moreover, we can very likely achieve
better performance by tuning the probability threshold.

Next, we explore where some of these performance
increases stem from. By differentiating our observations
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Table 4

AUPRC performance for conflict onset observations.
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Specification

AUPRC for model

GAM

LASSO

RF

GB

Zero-Model
Baseline

Baseline + Landcover Classes
Baseline + Population
Baseline + Nighttime Lights
Baseline + Topography
Baseline + Vegetation Health

Baseline + Crops

Baseline + Precipitation
Baseline + Temperature

Baseline + All

0.241 (—26.79%)
0.329

0.336 (+1.94%)
0.337 (+2.5%)
0.331 (+0.39%)
0.335 (+1.59%)
0.336 (+1.9%)
0.336 (+2.05%)
0.338 (+2.61%)
0.334 (+1.55%)
0.347 (+5.42%)

0.161 (—48.49%)
0.312

0.324 (+4%)
0.318 (+2.11%)
0.312 (+0.02%)
0.308 (—1.13%)
0.309 (—0.99%)
0317 (+1.77%)
0.308 (—1.06%)
0.312 (+0%)
0.327 (+4.9%)

0.357 (—1.49%)
0.362

0.384 (+6.03%)
0.38 (+4.88%)
0.37 (+2.07%)
0.365 (+0.7%)
0.364 (+0.53%)
0.378 (+4.37%)
0.361 (—0.33%)
0.362 (+0.01%)
0.386 (+6.66%)

0.323 (—1.9%)
0.330

0.341 (+3.61%)
0.352 (+6.84%)
0.336 (+1.82%)
0.346 (+5.1%)
0.338 (+2.59%)
0.359 (+8.83%)
0.334 (+1.28%)
0.342 (+3.66%)
0.356 (+7.91%)

Notes: Average area under the precision-recall curve (AUPRC) performance for one-step ahead forecasts over the entire forecasting horizon of the
different model specifications and types. The sample is limited to all conflict onset observations as described in the text. For an explanation of the
AUPRC, see Section 3.4. Each row reports the performance of one specification (details in Section 3.2), each column of one type of model (details
in Section 3.3). In brackets we report the relative performance difference to our baseline specification (of the same model), except for the baseline
itself. The best performing specification for each model is highlighted in bold.

into two categories, we can analyze how well we are able
to predict conflict onset vs. conflict persistence. We define
our conflict onset observations as observations with no
conflict in the current month (t). Hence, analyzing the
AUPRC and thus the (minority) conflict class in the next
month (t + 1) means that we are analyzing how well
we are able to predict the outbreak of conflict from one
month to the next. This category includes 28,141 obser-
vations, of which 1988 experience such an outbreak. We
define our conflict persistence observations as those ob-
servations that experience conflict in the current month
(t). Similarly, by analyzing the AUPRC, we are analyzing
how well we are able to predict the persistence of conflict
from one month to the next. This category comprises the
remaining 6635 observations, of which 4652 experience
persistent conflict according to our definition. Based on
this distinction, we recalculate the AUPRC from Table 3
for all specifications and report the results in Table 4
(onset) and Table 5 (persistence). By comparing the two
tables, we can immediately spot the performance differ-
ence in forecasting conflict onset vs. persistence. Predict-
ing “new” conflict is generally more difficult (AUPRC ~
0.35) than predicting the continuance of it (AUPRC ~ 0.9).

By comparing the performance for conflict onset across
our specifications (Table 4), we can see the clear posi-
tive impact of including remote sensing data sources. For
example, the inclusion of landcover classes leads to per-
formance increases of 1.94% to 6.03%. We can see mixed
results for the individual specifications regarding topogra-
phy, vegetation health and precipitation, and (substantial)
performance increases for landcover classes, population,
nighttime lights, crops, and temperature. The combination
of all remote sensing data sources leads to the high-
est increases with respect to the baseline for the GAM
(5.42%), LASSO (4.9%), and RF (6.66%), and to the second-
highest increase for GB (7.91%). Hence, when it comes to
the prediction of conflict onset, the inclusion of remote
sensing data increases the performance considerably, and
a combination of different data sources seems to works
well.
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Moving to Table 5 and thus the results for conflict
persistence, the performance gains when adding remote
sensing data to our baseline are much more moderate.
Similar data sources seem to perform well and not so well.
The full model leads to consistent performance increases,
but they are much smaller compared to conflict onset
(0.62%-1.61%).

5. Discussion

In this work, we set out to test the effectiveness of
various remote sensing datasets for conflict prediction. A
number of key findings can be inferred from our results.
First and foremost, our results confirm that remote sens-
ing data help to increase overall predictive performance
according to both the AUROC (up to 1.75% for the full
specification) and AUPRC (1.93%). The overall increases
seem rather small at first glance, but this was to be
expected due to three reasons. First, our baseline per-
formed well from the outset (AUROC > 0.91; AUPRC >
0.78), which is a common finding in the literature that
is reinforced for our Syrian case study (e.g. see Bazzi
et al., 2022; Hegre et al., 2019. Hence, large increases in
performance are typically difficult to achieve and much
less expected. Second, our marginal performance gains
are in line with (and sometimes above) those reported in
studies across the literature, all of which extend a baseline
specification consisting of lagged fatality information by
additional predictors (AUROC increase of ~1.6% in Bazzi
et al,, 2022; ~1.2% increase in AUROC in Hegre et al.,
2019; ~0.8% decrease in MSE (=performance increase)
in Mueller & Rauh, 2022). Third, our baseline is actually
a richer model than those employed as a baseline in the
cited studies, as we additionally include spatial, temporal,
and ethnic variables. Therefore, our results being consis-
tent with current literature, despite employing this richer
baseline, demonstrates the additional value of remote
sensing data impressively. Fourth, even when removing
contextual information such as lagged fatalities and eth-
nicities from the model (=zero-model), remote sensing
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Table 5
AUPRC performance for conflict persistence observations.
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Specification AUPRC for Model

GAM LASSO RF GB

Zero-Model 0.869 (—4.39%) 0.825 (—7.16%) 0.894 (—1.97%) 0.886 (—1.89%)
Baseline 0.909 0.889 0.912 0.903

Baseline + Landcover Classes 0.911 (+0.3%) 0.895 (+0.67%) 0.923 (+1.19%) 0.912 (+0.96%)
Baseline + Population 0.912 (+0.34%) 0.891 (+0.24%) 0.924 (+1.31%) 0.914 (+1.25%)
Baseline + Nighttime Lights 0.912 (+0.41%) 0.889 (+0%) 0.917 (+0.56%) 0.909 (+0.69%)
Baseline + Topography 0.910 (+0.09%) 0.886 (—0.29%) 0.904 (—0.84%) 0.906 (+0.34%)
Baseline + Vegetation Health 0.911 (+0.24%) 0.886 (—0.33%) 0.919 (+0.82%) 0.915 (+1.31%)
Baseline + Crops 0.913 (+0.42%) 0.891 (+0.22%) 0.924 (+1.32%) 0.918 (+1.58%)
Baseline + Precipitation 0.912 (+0.38%) 0.886 (—0.28%) 0.917 (+0.59%) 0.907 (+0.41%)

Baseline + Temperature
Baseline + All

0912 (+0.33%)
0.915 (+0.64%)

0.889 (—0.02%)
0.898 (+1.05%)

0.917 (+0.6%)
0.918 (+0.62%)

0.911 (+0.9%)
0.918 (+1.61%)

Notes: Average area under the precision-recall curve (AUPRC) performance for one-step ahead forecasts over the entire forecasting horizon of the
different model specifications and types. The sample is limited to all conflict persistence observations as described in the text. For an explanation
of the AUPRC, see Section 3.4. Each row reports the performance of one specification (details in Section 3.2), each column of one type of model
(details in Section 3.3). In brackets we report the relative performance difference to our baseline specification (of the same model), except for the
baseline itself. The best performing specification for each model is highlighted in bold.

data provide clear performance gains when they are in-
cluded (see Appendix D). Overall, we can conclude that
remote sensing data indeed provide an additional source
of information relevant for the prediction of conflict.

Although we did not initially set out to differentiate
between the onset and persistence of conflict, during our
performance analysis we identified that remote sensing
data are particularly important for correctly predicting
the onset of conflict. Generally, predicting conflict onset
is considered a much more difficult task in the conflict
literature, as similar studies (Hegre et al., 2021; Mueller &
Rauh, 2022), as well as our results (lower AUPRC), show.
Providing additional information through remote sensing
data sources turns out to be particularly important for
this challenging task. Notably, our full specification, which
includes all remote sensing data sources, performs the
best with one exception (GB; but in second place here),
which supports our argument. By inspecting the onset
results more closely (see Appendix F), we can identify
that the prediction task (expectedly) becomes more and
more difficult as the number of months since last conflict
increases (lower AUPRC). At the same time, the relative
performance increase of the full specification becomes
larger and larger. Hence, according to our results, the
importance of remote sensing data increases, as the time
that has passed since last conflict becomes longer.

This leads to our third observation. Depending on the
model and setting (onset vs. persistence), particular spec-
ifications perform better or worse, respectively. There are
a few implications to draw from this finding. First, these
results point to the fact that training and using individ-
ual models for onset and persistence, respectively (pos-
sibly with different data sources or variables included),
might improve forecasting performance. To the best of
our knowledge, this has not been considered in the lit-
erature yet. Second, including all remote sensing data
sources into the models might not necessarily be the best
choice. For our non-linear models (RF and GB), individual
specifications (with only one remote sensing data source
included) at times outperform the full specification (with
all of them included). Notably, these patterns are not
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consistent across models. This makes sense in that regard,
insofar as different models vary in their ability to extract
relevant information for the conflict prediction task. Both
RF and GB are in theory able to extract (highly) non-linear
relationships between the target variable (conflict) and
our explanatory variables, including possible interactions,
whereas both the GAM and LASSO are only partially able
to or are unable to, respectively. Hence, for the former two
models, the same variables offer more possibly relevant
information (e.g. reflected in the higher performance of
the baseline), which makes it more likely that some of
the remote sensing data sources are rendered redundant,
and thus that their inclusion leads to overfitting and a
performance decrease. As a consequence, researchers not
only need to be careful what variables or data sources
they consider, but also need to take into account the
model they intend to use when making any decisions
on variable inclusions. Future works could consider au-
tomating this data-driven process to achieve the best
possible performances. For example, one could pursue a
forward selection process, in which data sources and/or
specific variables are continually added to the model in
a systematic fashion (starting from the baseline) as long
as the performances are increasing. A researcher could
even go so far as to perform this forward selection and
thus adjust the included variables for each step of the
study period (i.e. every time a new model is trained) in
order to achieve optimal results across the entire forecast-
ing horizon. Note that such a selection approach would
need to be treated in a similar fashion as hyperparameter
tuning; i.e. we need to guarantee a true out-of-sample
performance evaluation.

Next, we investigated the performance of our models
over time (see Appendix E for the results and a more thor-
ough discussion). We conclude that both the GAM and to
some extent LASSO profit considerably from the inclusion
of remote sensing data early into the study period, where
less training data are available. Closer to the end of the
study period, the AUPRC performance starts to drop for all
models and specifications, as conflict events are thinning
out and the task of correctly identifying conflict becomes
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considerably more difficult. Nonetheless, the relative per-
formance gains from including remote sensing data are
largely steady throughout, strengthening the confidence
of our findings.

Moreover, we want to contribute to the ongoing dis-
cussion in the literature on the tradeoff between expla-
nation and prediction (Hegre et al., 2017) by highlighting
that our model performances do not substantially differ.
Although there is a clear ranking in terms of model per-
formance (RF > GB > GAM > LASSO), once we arrive
at our baseline specification, the performance difference
in both AUROC (up to 1.3%) and AUPRC (4.2%) between
the models for any specification is much lower than one
might expect. Notably, for our full specification, these dif-
ferences further decrease. Hence, a researcher could easily
fall back on using one of the inherently interpretable
models, such as LASSO or the GAM, without giving up
or forgoing substantial performance gains. Note that in-
depth analyses in this setting remain a difficult endeavor,
even with interpretable models, as we are re-training
our models for each step of the study period (e.g. here,
108 different GAMs for one specification only). Moreover,
identifying causal chains of effects additionally requires
distinct variable setups and theoretical considerations.
Nonetheless, the small performance gap reported here
seems promising.

This brings us to our sixth point of discussion: our se-
lection of models. Drawing from the latest VIiEWS conflict
prediction competition (Vesco et al.,, 2022), and similar
studies such as (Bazzi et al., 2022; Hegre et al., 2019), we
decided on a versatile set of commonly employed mod-
els, ranging from classical statistical to common machine
learning models, in order to ensure that our results are
consistent across a variety of different models. All chosen
models (GAM, LASSO, RF, and GB) have proven themselves
to perform well in the conflict forecasting domain (see
the cited studies) as well as across a variety of other
fields (Bastin et al., 2019; Chaudhary, Richardson, Schoe-
man, & Costello, 2021; Fabbri et al., 2020; Fife & D’Onofrio,
2022; Greener, Kandathil, Moffat, & Jones, 2022; Rustam
et al.,, 2020; Schroeders, Schmidt, & Gnambs, 2022; Xie
& Zhu, 2020). Our set of chosen models consists of two
“simpler” models with the GAM and LASSO, which have
a limited capacity to model non-linear and interaction
effects but remain easier to analyze and interpret. On the
other hand, with RF and GB, we chose two models that
can freely model non-linear and interaction effects, but
are consequently much more difficult to analyze and in-
terpret (and hence oftentimes considered black-box mod-
els), with GB additionally being more prone to overfitting.
We refrained from including neural networks, as they
require large amounts of data to train and are generally
outperformed by classical machine learning models on
tabular datasets such as the one here (Borisov et al., 2021).
Notably, redefining our observations in the form of images
and implicitly taking into account the spatial structure of
each cell and their surroundings—and thus taking advan-
tage of the high resolution the remote sensing datasets of-
fer, and moving away from the tabular structure—through
convolutional neural networks (CNNs) might be a viable
future path. Moreover, we decided against including an
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ensemble of different individual models, as for example
pursued in Bazzi et al. (2022) and in the VIEWS fore-
casting competition (Vesco et al., 2022), since such an
ensemble is simply a weighted combination of individual
models. Hence, performance increases in the individual
models (as reported here across the board) are very likely
similarly reflected in the performance of the ensemble.

Last but not least, we want to briefly reflect on the per-
formance and thus importance of different remote sensing
datasets. According to our individual results, landcover
classes, population, and crop data provide the highest and
most consistent overall performance increases, whereas
the remaining datasets seem less important. Nonetheless,
once we look at the results for conflict onset, most, if
not all, of the remote sensing datasets seem to provide
relevant information for the prediction of conflict. This is
confirmed by the fact that our full specification performed
the best in three out of four models. Moreover, by looking
at the variables selected by LASSO, we can see that in our
full specification, each remote sensing dataset is selected
in more than half of the model fits (see Table G.14 in
Appendix G), with landcover classes, population, and crop
data being selected most often. Finally, by inspecting the
feature importance scores for RF (full specification, see
Fig. H.3 in Appendix H), we can corroborate this pat-
tern. While our lagged battle-related features seem to be
most important for the prediction, both landcover classes
and population are not too far behind. On average, each
remote sensing dataset contributes to the model perfor-
mance according to these importance scores. Hence, we
conclude that each remote sensing data source seems to
provide relevant information for the prediction of conflict,
but some of them are more important than others.

6. Conclusion

We tested the effectiveness and capabilities of remote
sensing data for conflict prediction in the context of the
Syrian civil war. Using remote sensing data enabled us
to conduct our study in self-defined, fine-grained, and
evenly sized spatial cells across Syria. Our results con-
firmed that including a variety of remote sensing datasets
consistently improved forecasting performance compared
to a rich baseline independent of the chosen prediction
model. As our analysis showed, a large portion of this per-
formance gain came from correctly identifying the onset
of conflict. We conclude that remote sensing data can and
indeed should be used to forecast conflict in countries
with a lack of reliable official data sources.

Future work could try to take advantage of the fine-
grained spatial structure of the remote sensing datasets
through specific modeling techniques. Moreover, as more
and more high-quality datasets are published, identifying
causal effects for conflict on a subnational level might
prove to be possible. Finally, evaluating other emerging
data sources such as news or social media, and finding
ways to combine disparate and emerging datasets into
a joint model, may further improve forecasting perfor-
mance. This provides an interesting set of data sources,
methods, and approaches to further advance conflict re-
search globally.
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Appendix A. Data sources
See Tables A.6 and A.7.
Appendix B. Model descriptions

Here, we provide concise descriptions of the models
employed in this study. For details we refer the reader to
the respective publications.

1. Least absolute shrinkage and selection operator
(LASSO): Using LASSO (Tibshirani, 1996), we fit
a simple (logistic) regression model in conjunc-
tion with an L;-penalty on the coefficients. This
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shrinks the model coefficients compared to a stan-
dard regression. Additionally, some of the coeffi-
cients (those for “less important” variables) are
set to exactly 0, which resembles a feature se-
lection. Generally, the penalty reduces the gener-
alization error of the fitted model. Using LASSO,
we can only capture linear effects of the included
covariates. Hence, any non-linear effects or inter-
actions of covariates need to be explicitly included
in the model through transformations, as done in
standard regression models.

. Generalized additive model (GAM): A GAM (Hastie,
2017) is a generalized linear model (in our case a
logistic regression) with an additional set of linearly
included unknown smooth functions of (some of
the) explanatory variables. The set of smooth func-
tions is chosen by the user, in terms of both the
included variables and the types of functions. Com-
monly chosen smooth functions are, for example,
thin plate regression splines (Wood, 2003), cubic
regression splines (Durrleman & Simon, 1989), and
P-splines (Eilers & Marx, 1996). By including these
smooth terms into the model, the GAM is able to
model non-linear effects of the chosen variables.
Similar to LASSO, interactions need to be explicitly
included in the model.

. Random forests (RF): RF (Breiman, 2001) is an en-
semble consisting of multiple (decision) trees. The
overall prediction is the average of the individual
predictions over all trees. RFs typically employ bag-
ging and a random selection of the features in order

Table A.6
Data sources with web addresses for download.
Data Source Downloaded from:
Conflict Sundberg and Melander (2013) https://ucdp.uu.se/downloads/
Ethnicity Vogt et al. (2015) https://icr.ethz.ch/data/epr/geoepr/
Population Tatem (2017) https://hub.worldpop.org/project/categories?id=3

Landcover Classes Buchhorn et al. (2020)

Nighttime Lights Baugh et al. (2010)

Topography
Vegetation Health

Amatulli et al. (2018)
FAO (2022)

Crops
Precipitation

Yu et al. (2020)
Funk et al. (2015)

Temperature Wan et al. (2021)

https://developers.google.com/earth-engine/datasets/catalog/
COPERNICUS_Landcover_100m_Proba-V-C3_Global
https://developers.google.com/earth-
engine/datasets/catalog/NOAA_DMSP-OLS_NIGHTTIME_LIGHTS
http://[www.earthenv.org/topography
https://data.apps.fao.org/map/catalog/srv/eng/catalog.search#
/metadata/84e27651-0bb4-4a26-8b4a-2b10bbccb7e0
https://www.mapspam.info/data/
https://developers.google.com/earth-
engine/datasets/catalog/UCSB-CHG_CHIRPS_DAILY
https://developers.google.com/earth-
engine/datasets/catalog/MODIS_061_MOD11A1

Table A.7
Remote sensing data sources temporal & spatial resolution.

Data Available temporal resolution Temporal resolution & time period employed Spatial resolution
Population Yearly Fixed (2010) 100 m
Landcover Classes Yearly Yearly from 2015-2019, fixed before & after 100 m

Nighttime Lights Yearly Yearly from 2010-2013 1 km
Topography None Fixed 1 km

Vegetation Health 10 days Monthly from 2010-2020 1 km

Crops 10 years Fixed (2010) 10 km
Precipitation Daily Monthly from 2010-2020 5 km
Temperature Daily Monthly from 2010-2020 1 km
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to reduce the correlation between the trees and
thus the variance of the ensemble. RF is able to
freely model non-linear effects and the interactions
between the variables without the requirement of
including any of them explicitly.

4, Gradient boosting (GB): In boosting, we construct
an ensemble of weak prediction models, typically
(decision) trees, and iteratively apply the model to
modified versions of the training data. After each
iteration, misclassified inputs are assigned higher
weights such that they are focused on in the next
training iteration. GB (Friedman, 2001) mimics this
process by viewing the boosting algorithm as it-
erative functional gradient descent and “nudging”
the model prediction function step by step, closer
to the real data points. An efficient and scalable
implementation of this technique is XGBoost (Chen
& Guestrin, 2016), which is employed in this study.
GB can freely model non-linear effects and the in-
teractions between the variables without including
any of them explicitly.

Appendix C. Specifications
See Table C.8.
Appendix D. Additional model specification results

The following two tables expand on our main results
by reporting the performance of an additional specifica-
tion that extends the zero-model with all remote sensing
data sources (Zero-Model + All). Hence, the results of Ta-
ble D.9 correspond to Table 2 and Table D.10 corresponds
to Table 3 in the main text. Notably, we only compare
the performance between these two specifications. The
results show that even without including information on
lagged fatalities and ethnicities, remote sensing data in-
crease predictive performance in both AUROC and AUPRC.
The performance increases are particularly large for the
“simpler” models (GAM and LASSO) and smaller for the
other two (RF and GB). Arguably, both RF and GB al-
ready learn most of the relevant remote sensing infor-
mation implicitly through a (non-linear) combination of
spatial and temporal variables (e.g. more populous areas
experience more conflict during certain time periods).
Nonetheless, even without additional contextual infor-
mation (lagged fatalities, ethnicities), we see consistent
performance increases when adding remote sensing data
to the respective model across all four models.

Appendix E. Performance over time

Here, we provide additional insights into the perfor-
mance of our different models and specifications over the
study period. Table E.11 splits up the AUROC performance
reported in Table 2 in the main text into separate scores
for each year for both the baseline and the full specifica-
tion. Table E.12 does the same for the AUPRC performance
reported in Table 3.

Table E.11 shows that both the GAM and LASSO (and
to a smaller extent, RF) considerably benefit from the
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inclusion of remote sensing data in the first year of the
analysis period, as indicated by the large performance
gains in AUROC. Apparently, the “simpler” models par-
ticularly struggle with the lack of historical information
when only using baseline features, but most of this perfor-
mance gap can be made up for by the inclusion of remote
sensing data. In the remaining years, the performance
increases from baseline to full specification are mostly
steady (with some smaller fluctuations). Notably, we see
a small drop in performance from 2016 onwards. We
attribute this drop to the changing circumstances (Rus-
sian support in form of airstrikes, pushing back of the
Islamic State by both the Kurds and the Assad regime,
and Turkish offensives in northern Syria) that are not
immediately picked up by the models. Nonetheless, we
want to highlight that our performance gains from remote
sensing data are (mostly) consistent even throughout this
period.

Similarly, Table E.12 shows considerable AUPRC per-
formance gains for the GAM with the inclusion of remote
sensing in the first year. Again, we can identify a drop
in performance in 2016, from which the performance
continues to fall off. While we can attribute some of
this performance drop to the changing circumstances de-
scribed above, after 2018 especially, the task of correctly
identifying conflict becomes considerably more difficult,
as the civil war moves more towards the border regions
next to Turkey and Iraq, and fewer cells experience con-
flict. In 2018, only 13% of the observations suffer from
conflict (see the second column in the table), compared
to 25.2% in 2015. In 2020 we are down to only 9.3%.
The increased difficulty in the prediction task that results
from this is distinctly reflected across all models and
specifications, with a considerably lower AUPRC of around
0.55. Nonetheless, on average, the performance increase
from the use of remote sensing continues to hold even
throughout these years.

Appendix F. Detailed onset performance

The following table offers a more detailed view on the
performance results for conflict onset, by differentiating
observations by the number (#) of months since the last
conflict took place in the respective cell. Overall, we can
see that the prediction task becomes more and more
difficult as the number of months increase (i.e. AUPRC
decreases as we move down the rows), across all models.
At the same time, the relative performance increase of
the full specification increases substantially. Even when
leaving out the first row (conflict persistence), the per-
formance increase rises by 7 (GB) to 16 (RF) percentage
points when moving down to the last row (months since
last conflict > 6). We can observe this pattern consis-
tently across all models. Notably, for GB we can spot a
performance decrease with respect to the baseline twice
(for 3 and 5 months). We attribute this effect to potential
overfitting, since the number of observations is quite low
(1259 and 773 vs. 23,202 for > 6 months), GB is particu-
larly prone to overfitting and we cannot observe the same
pattern for any of the other models. Hence, overall, we
can conclude that remote sensing data become more and
more important for the prediction of conflict as the time
since last conflict increases (see Table F.13).
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Table C.8
Specifications with covariates.
# Specification Included covariates
1 Zero-Model - Time Trend: integer

GAM: Included using a P-Spline
- Monthly dummies (11): binary
- Cell size in km?: numeric
- Latitude: numeric
GAM: Inclusion see Longitude
- Longitude: numeric
GAM: Included with Latitude using a thin plate spline
- Distance to capital in km: numeric

2 Baseline - All from specification 1)
- Alawi dummy (share > 0.05): binary
- Christians dummy (share > 0.05): binary
LASSO: Included as interaction with Time Trend
GAM: Included as interaction with Time Trend using a P-Spline
- Druze dummy (share > 0.05): binary
LASSO: Included as interaction with Time Trend
GAM: Included as interaction with Time Trend using a P-Spline
- Kurds dummy (share > 0.05): binary
LASSO: Included as interaction with Time Trend
GAM: Included as interaction with Time Trend using a P-Spline
- Sunni Arabs dummy (share > 0.05): binary
LASSO: Included as interaction with Time Trend
GAM: Included as interaction with Time Trend using a P-Spline
- # of fatalities through battle last month: integer
- # of fatalities through battle last 12 months: integer
- # of month since last fatality through battle: integer
- # of civilian fatalities last month: integer
- # of civilian fatalities last 12 months: integer
- # of month since last civilian fatality: integer

3 Baseline + Population - All from specification 2)
- Total amount of population (logged): numeric

4 Baseline + Landcover Classes - All from specification 2
- Share crop area: numeric
- Share bare area: numeric
- Share built area: numeric
- Share grass & shrub area: numeric
- Permanent water dummy (share > 0.01): binary
- Tree-covered area dummy (share > 0.01): binary

5 Baseline + Nighttime Lights - All from specification 2)
- Total amount of stable lights per person (logged): numeric

6 Baseline + Topography - All from specification 2)
- Elevation (median): numeric
- Slope (median): numeric
- Vector ruggedness measure (median): numeric

7 Baseline + Vegetation Health - All from specification 2)
- Vegetation health index (average): numeric

8 Baseline + Crops - All from specification 2)
- Total amount of food crops (logged): numeric
- Total amount of non-food crops (logged): numeric

9 Baseline + Precipitation - All from specification 2)

- Total amount of precipitation: numeric
10 Baseline + Temperature - All from specification 2)

- Day temperature (average): numeric
11 Baseline + All - All variables

Notes: If not noted otherwise, all variables are included linearly without any interaction in both LASSO and the GAM.

Appendix G. Lasso model selection Appendix 1. Supplementary data

See Table G.14. Supplementary material related to this article can be
found online at https://doi.org/10.1016/].ijforecast.2023.
04.001. There, we 1) provide further information on the

Appendix H. Feature importance Syrian desert cells, 2) provide the ROC curves & PR curves,
3) report the bootstrapped performance and 4) report
See Fig. H.3. performance results without the cell filtering.
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Table D.9
AUROC performance (all observations), expansion.
Specification AUROC for model
GAM LASSO RF GB
Zero-Model 0.850 0.767 0.923 0.917
Zero-Model + All 0.892 (+5.04%) 0.876 (+14.21%) 0.926 (+0.34%) 0.925 (+0.92%)

Notes: Expansion of the performance results of Table 2 in the main results section. Here, we compare the results of our zero-model, with a
specification that adds all remote sensing data sources to the zero-model. Cell filtering takes place. Relative performance differences are calculated
with respect to the zero-model.

Table D.10
AUPRC performance (all observations), expansion.
Specification AUPRC for model
GAM LASSO RF GB
Zero-Model 0.657 0.499 0.784 0.779
Zero-Model + All 0.725 (+10.38%) 0.665 (+33.18%) 0.786 (+0.19%) 0.793 (+1.91%)

Notes: Expansion of the performance results of Table 3 in the main results section. Here, we compare the results of our zero-model, with a
specification that adds all remote sensing data sources to the zero-model. Cell filtering takes place. Relative performance differences are calculated
with respect to the zero-model.

Table E.11

AUROC Performance Yearly (All Observations).
Year Share Pos. GAM LASSO RF GB

Baseline Baseline + All Baseline Baseline + All Baseline Baseline + All Baseline Baseline + All

2012 0.182 0.818 0.923 (+12.83%) 0.924 0.952 (+2.95%) 0.931 0.948 (+1.83%) 0.942 0.951 (+0.93%)
2013 0.250 0.945 0.947 (+0.19%) 0.947 0.951 (+0.39%) 0.950 0.953 (+0.35%)  0.948 0.95 (+0.26%)
2014 0.258 0.929 0.933 (+0.42%) 0.920 0.920 (+0%) 0.933 0.938 (+0.47%)  0.929 0.93 (+0.05%)
2015 0.252 0.942 0.943 (+0.11%) 0.941 0.944 (+0.38%) 0.945 0.948 (+0.31%)  0.940 0.944 (+0.38%)
2016 0.236 0914 0.912 (—0.19%) 0912 0.914 (+0.19%) 0914 0.916 (+0.25%)  0.897 0.913 (+1.81%)
2017 0.209 0.899 0.901 (+0.24%) 0.889 0.901 (+1.31%) 0.904 0.905 (+0.11%) 0.898 0.903 (+0.59%)
2018 0.130 0.912 0.911 (—0.12%) 0.910 0.915 (+0.54%) 0911 0.917 (+0.66%)  0.900 0.912 (+1.38%)
2019 0.108 0915 0.918 (+0.33%) 0.903 0.891 (—1.31%) 0916 0.922 (+0.63%)  0.910 0.905 (—0.53%)
2020 0.093 0.895 0.899 (+0.38%) 0.891 0.898 (+0.77%) 0.902 0.902 (+0.01%)  0.900 0.895 (—0.56%)

Notes: Detailed AUROC performance results for all observations differentiated by the forecasting year for the two main specifications (Baseline,
Baseline + All). The year 2011 is not included, as it is only used for training. The second column (Share Pos.) reports the share of observations
experiencing conflict in the respective year. As in the main text, the relative performance differences (%) are calculated with respect to the baseline
specification of the same model type.

Table E.12

AUPRC performance yearly (all observations).
Year Share Pos. GAM LASSO RF GB

Baseline Baseline + All Baseline Baseline + All Baseline Baseline + All Baseline Baseline + All

2012 0.182 0.703 0.82 (+16.59%) 0.850 0.872 (+2.64%) 0.859 0.872 (+1.55%) 0.861 0.868 (+0.89%)
2013 0.250 0.885 0.888 (+0.34%) 0.889 0.891 (+0.26%) 0.887 0.900 (+1.53%) 0.889 0.894 (+0.59%)
2014 0.258 0.839 0.848 (+1.01%) 0.826 0.826 (+0%) 0.854 0.860 (+0.71%) 0.841 0.843 (+0.18%)
2015 0.252 0.864 0.861 (—0.24%) 0.862 0.863 (+0.11%) 0.870 0.876 (+0.75%) 0.858 0.867 (+1.1%)
2016 0.236 0.803 0.799 (—0.47%) 0.808 0.811 (+0.45%) 0.807 0.810 (+0.34%) 0.767 0.809 (+5.48%)
2017 0.209 0.742 0.744 (+0.26%) 0.730 0.747 (+2.35%) 0.747 0.751 (+0.56%) 0.728 0.746 (+2.38%)
2018 0.130 0.703 0.696 (—0.93%) 0.693 0.711 (+2.63%) 0.721 0.730 (+1.35%) 0.696 0.713 (+2.53%)
2019 0.108 0.695 0.700 (+0.68%) 0.692 0.673 (—2.72%) 0.707 0.713 (+0.91%) 0.691 0.694 (+0.46%)
2020 0.093 0.525 0.534 (+1.59%) 0.520 0.531 (+2.28%) 0.568 0.570 (+0.39%) 0.557 0.559 (+0.36%)

Notes: Detailed AUPRC performance results for all observations differentiated by the forecasting year for the two main specifications (Baseline,
Baseline + All). The year 2011 is not included, as it is only used for training. The second column (Share Pos.) reports the share of observations
experiencing conflict in the respective year. As in the main text, the relative performance differences (%) are calculated with respect to the baseline
specification of the same model type.
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Table F.13

AUPRC performance since last conflict (all observations).
# Months GAM LASSO RF GB
last conflict Baseline Baseline + All Baseline Baseline + All Baseline Baseline + All Baseline Baseline + All
1 0.909 0.915 (+0.64%) 0.889 0.898 (+1.05%) 0.912 0.918 (+0.62%) 0.903 0.918 (+1.61%)
2 0.513 0.532 (+3.73%) 0.486 0.503 (+3.49%) 0.535 0.576 (+7.55%) 0.502 0.550 (+9.51%)
3 0.378 0.398 (+5.38%) 0.360 0.380 (+5.38%) 0.378 0.397 (+5.18%) 0.377 0.354 (—5.94%)
4 0.276 0.277 (+0.43%) 0.268 0.276 (+3%) 0.297 0.333 (+12.16%)  0.242 0.261 (+7.86%)
5 0.208 0.212 (+2.28%) 0.181 0212 (+17.47%) 0210 0.247 (+17.37%)  0.203 0.183 (—10.05%)
>6 0.094 0.105 (+12.07%)  0.076 0.091 (+19.27%)  0.088 0.103 (+16.16%) 0.084 0.098 (+16.64%)

Notes: Detailed AUPRC performance results for all observations differentiated by the number (#) of months since last conflict for the two main
specifications (Baseline, Baseline + All). The results in the first row (1 month since last conflict) are equivalent to the results reported in Table 5 in
the main text, as they represent conflict persistence. The five remaining rows offer a more detailed view on the performance for conflict onset. As
in the main text, the relative performance differences (%) are calculated with respect to the baseline specification of the same model type.
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Fig. H.3. Boxplot of the permutation feature importance scores for the full specification (Baseline + All) using RF. We derived the importance scores
for each of the 108 models (trained over the entire forecasting horizon) by calculating the average increase in classification error on the out-of-bag
data sample for all trees. The features are ordered with respect to their median importance. We excluded the monthly dummies from our feature
set, as they require a more elaborate permutation strategy. The boxplots for all other specifications are available on the OSF.
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Table G.14

Remote sensing dataset inclusions by LASSO.
Remote sensing dataset % Included
Landcover classes 77.8%
Population 76.9%
Nighttime Lights 55.6%
Topography 60.2%
Vegetation Health 66.7%
Crops 73.1%
Precipitation 73.1%
Temperature 50.9%

Notes: % of times a remote sensing dataset was included by LASSO in
the full specification over the entire forecasting horizon (108 model
fits). Each time one variable of a remote sensing dataset is included,
we count this as an inclusion of the respective dataset.
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Fig. S1: Illustration of the grid cells mostly covered by the Syrian Desert. The Figure shows all the Syrian
grid cells derived according to the rasterization process described in section 2.1. The 34 removed cells with
an area of less than 150 km? at the Syrian border are shown in grey and not considered here. The remaining
cells are either categorized into "desert" (yellow) or "normal" (blue) cells respectively. We consider a cell as
covered by desert, if the landcover classes indicate a "bare" area of more than 80% of the total area. This
holds true for 95 of the remaining 322 cells. The Figure shows that most of those cells are clustered together
at the southern Syrian boarder (which aligns with other maps depicting the Syrian Desert). Hence, this
area can be easily captured by models through spatial coordinates.
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Fig. S2: Receiver operating characteristic curves corresponding to the main results in Table 2. Each subplot
corresponds to one specification, with the curves for all four models. The larger the area under a curve, the
better a model performs according to the AUROC.
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Fig. S3: Precision recall curves corresponding to the main results in Table 3. Each subplot corresponds to
one specification, with the curves for all four models. The larger the area under a curve, the better a model
performs according to the AUPRC.
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S3. Bootstrapped Performance Results

The following three tables report the two-sided 95% confidence intervals of our perfor-
mance results in the main text for three selected specifications (zero-model, baseline, full
specification) using bootstrapping. We restricted the bootstrap to our test dataset, as a
full bootstrap (train & test) would drastically increase the computational complexity. Each
bootstrap iteration would then require re-running our entire forecasting pipeline including
the hyperparameter tuning. Instead, we evaluate each model of the forecasting pipeline on
B = 25 bootstrapped samples, drawing observations with replacement from the respective
test dataset for each month (i.e. if we are in ¢ = 100 and want to evaluate the forecasting
performance for ¢ 4+ 1, we are only drawing test observations with ¢ = 101), and derive the
performance and relative difference for each of the samples. Table S1 provides confidence
intervals for the results in Table 2, Table S2 for Table 3 and Table S3 for Table 4.

Table S1: Bootstrapped AUROC Performance (All Observations), 95% Confidence Interval

AUROC for Model

Specification GAM LASSO REF GB

Baseline [0.0095: 0.0111]  [0.9162; 0.9175]  [0.9280; 0.9293]  [0.9225; 0.9239]
Zero-Model [0.8483; 0.8507]  [0.7650; 0.7685]  [0.9223; 0.9235]  [0.9160; 0.9174]
Baseline -+ All 0.9255: 0.9270]  [0.9227; 0.9242]  [0.9315; 0.9326]  [0.9280; 0.9292]
% Difference Zero-Model  [-6.781; -6.574]  |-16.556; -16.185] [:0.662; -0.578] [:0.758; -0.650]

% Difference Baseline + All  [+1.696; +1.802]  [+0.690; +0.766]  [+0.342; +0.389]  [+0.536; +0.634]

Notes: Bootstrapped performance two-sided confidence intervals (95%) pertaining to Table 2 in the
main results section. The %-difference is calculated with respect to the Baseline specification.

Table S2: Bootstrapped AUPRC Performance (All Observations), 95% Confidence Interval

AUPRC for Model

Specification GAM LASSO REF GB

Baseline [0.7886: 0.7917]  [0.7757; 0.7788] __ [0.8084; 0.8109]  [0.7948; 0.7978]
Zero-Model [0.6551; 0.6591]  [0.4968; 0.5018]  [0.7827; 0.7863]  [0.7772; 0.7801]
Baseline - All [0.8038; 0.8066]  [0.7875; 0.7904]  [0.8161; 0.8186]  [0.8101; 0.8132]
% Difference Zero-Model  [-17.029; -16.647] [-36.058; -35.457]  [-3.252; -2.962] _ [-2.368; -2.084]

% Difference Baseline + All  [+1.837; +1.977]  [+1.414; +1.598]  [+0.908; +0.994]  [+1.779; +2.072]

Notes: Bootstrapped performance two-sided confidence intervals (95%) pertaining to Table 3 in the
main results section. The %-difference is calculated with respect to the Baseline specification.



Table S3: Bootstrapped AUPRC Performance for Conflict Onset Observations, 95% Confidence
Interval

Specification AUPRC for Model

GAM LASSO RF GB
Baseline [0.3246; 0.3340]  [0.3068; 0.3168]  [0.3570; 0.3675]  [0.3242; 0.3349)]
Zero-Model [0.2379; 0.2442]  [0.1583; 0.1629]  [0.3521; 0.3617]  [0.3176; 0.3289)]
Baseline + All [0.3417; 0.3525]  [0.3215; 0.3326]  [0.3808; 0.3921]  [0.3503; 0.3608]
% Difference Zero-Model [27.490; -26.092] |[-49.259; -47.715] [-2.203; -0.782]  [-2.850; -0.958]

% Difference Baseline + Al [+4.913; +5.923]  [+4.392; +5.401] [+6.178; +7.142]  [+6.995; +8.823]

Notes: Bootstrapped performance two-sided confidence intervals (95%) pertaining to Table 4 in the
main results section. The %-difference is calculated with respect to the Baseline specification.

S4. Results without Cell Filtering (will be moved to supplementary material)

The following two tables report our results for the entire study period (all observations),
without the filtering of the 34 small cells as described in section 2.1. Hence, the results
of Table S4 correspond to Table 2 and Table S5 correspond to Table 3 in the main text.
As we can see, the overall patterns are very similar to the ones observed before and we
can similarly conclude that remote sensing data increases forecasting performance. Notably,
these increases are smaller than in our chosen sample for both LASSO and GB, larger for
RF and similar for the GAM. Possible performance drops are expected due to two reasons.
First, for those 34 cells the main variable of importance is the cell size (included in all
specifications), as the cells are so small, that conflict almost never takes place. Hence,
including additional predictors such as variables constructed from remote sensing data will
provide little to no additional information, which in turn will decrease average performance
gains for our remote sensing specifications. Second, these small cells pose an additional
problem in model training, as they substantially increase the risk of overfitting. Some of these
cells are not larger than 10 km? (compared to 625 km? for full cells), thus they sometimes
exhibit unusual explanatory variable values. Hence, in those rare instances where conflict
indeed takes place in one of those cells, the models might incorrectly attribute this effect to
one of the remote sensing explanatory variables. Arguably, in such a setting, models that
can capture non-linear effects and at the same time have a low risk of overfitting should thus
perform best. Indeed, this is confirmed by the fact that the performance (gain) of RF is not
negatively affected by the inclusion of those cells, as RFs can model non-linear effects and
are much less prone to overfitting than for example GB.
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Table S4: AUROC Performance (All Observations), Non-filtered Cells

Specification

AUROC for Model

GAM LASSO RF GB

Zero-Model 0.854 (-6.52%)  0.771 (-16.58%) 0.928 (-0.03%) _ 0.926 (-0.1%)
Baseline 0014 (10%)  0.024 (10%) 0029 (10%)  0.927 (10%)
Baseline + Landcover Classes 0.915 (+0.09%) 0.924 (+0%) 0.936 (+0.83%) 0.93 (+0.38%)
Baseline + Population 0.915 (+0.19%) 0.927 (+0.32%) 0.936 (+0.77%) 0.933 (+0.67%)
Bascline | Nighttime Lights  0.914 (10.07%) 0924 (10%)  0.935 (10.64%) 0.93 (10.41%)
Baseline + Topography 0.011 (-0.25%)  0.923 (-:0.09%) _ 0.033 (10.48%) 0.929 (10.23%)
Bascline | Vegetation Health  0.915 (10.12%) 0.924 (10.01%) 0.929 (10.06%) 0.93 (10.38%)
Baseline | Crops 0.917 (10.36%) 0.926 (10.23%) 0.936 (10.79%) 0.931 (10.43%)
Baseline + Precipitation 0.917 (+0.35%) 0.923 (-0.08%)  0.932 (+0.33%) 0.93 (+0.35%)
Baseline + Temperature 0.916 (+0.3%)  0.924 (-0.01%)  0.933 (+0.48%) 0.927 (+0.07%)
Baseline + All 0.922 (+0.94%) 0.927 (+0.36%) 0.936 (+0.85%) 0.926 (-0.05%)

Notes: Average area under the receicer operator characteristics curve (AUROC) performance for one-step
ahead forecasts over the entire forecasting horizon of the different model specifications and types. The
results reported are for all cells, without the filtering described in section 2.1. For further details we refer
to the corresponding Table without the cell filtering (Table 2) in the main results section.

Table S5: AUPRC Performance (All Observations), Non-filtered Cells

AUPRC for Model

Specification GAM LASSO RF GB
Zero-Model 0.649 (-17.59%) 0.494 (-36.87%) 0.784 (-1.76%)  0.783 (-0.74%)
Baseline 0.787 0.782 0.798 0.789 (+0%)
Baseline + Landcover Classes 0.789 (+0.24%) 0.776 (-0.74%)  0.817 (+2.48%) 0.799 (+1.34%)
Baseline + Population 0.788 (10.09%) 0.784 (10.18%) 0.815 (12.24%) 0.802 (1 1.61%)
Bascline | Nighttime Lights  0.788 (10.08%) 0.782 (10.03%) 0.811 (11.72%) 0.798 (1 1.19%)
Baseline -+ Topography 0.78 (-0.84%)  0.776 (-0.75%) _ 0.809 (+1.45%) 0.798 (1 1.15%)
Baseline | Vegetation Health  0.788 (10.1%)  0.783 (10.08%) 0.805 (10.91%) 0.801 (1 1.53%)
Baseline + Crops 079 (10.37%)  0.782 (10.01%) 0.816 (12.33%) 0.803 (1 1.85%)
Baseline + Precipitation 0789 (10.29%) 0.777 (-0.66%) _ 0.805 (10.02%) 0.799 (11.26%)
Baseline + Temperature 0.787 (-0.01%)  0.782 (-0.04%)  0.811 (+1.64%) 0.794 (+0.63%)
Baseline + All 0.796 (+1.12%) 0.783 (+0.1%) 0.815 (+2.17%) 0.795 (4+0.78%)

Notes: Average area under the precision-recall curve (AUPRC) performance for one-step ahead forecasts
over the entire forecasting horizon of the different model specifications and types. The results reported
are for all cells, without the filtering described in section 2.1. For further details we refer to the
corresponding Table without the cell filtering (Table 3) in the main results section.
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ABSTRACT

Automated detection of building destruction in conflict zones is crucial for human rights monitoring,
humanitarian response, and academic research. However, existing approaches 1) rely on proprietary
satellite imagery, both expensive and not accessible at wartime, 2) require manually labeled training
data, usually not available in war-affected regions, or 3) use optical imagery, regularly obstructed by
cloud cover. This study addresses these challenges by introducing an unsupervised method to detect
destruction at the building level using freely and globally available Sentinel-1 synthetic aperture radar
(SAR) images from the European Space Agency (ESA). By statistically assessing interferometric
coherence changes over time, unlike existing approaches, our method enables the detection of
destruction from a single satellite image, allowing for near real-time destruction assessments every
12 days. We provide a continuous, statistically grounded probability measure for the likelihood of
destruction at both the building and pixel level, thereby quantifying the level of uncertainty of the
detection. Using ground truth data and reported sequences of events, we validate our approach both
quantitatively and qualitatively, across three case studies in Beirut, Mariupol, and Gaza, demonstrating
its ability to accurately identify the spatial patterns and timing of destruction events. Using open-
access data, our method offers a scalable, global, and cost-effective solution for monitoring building
destruction in conflict zones.

Keywords Destruction - Conflict - Remote Sensing - Satellites

Significance Statement

Understanding the extent and timing of building destruction during conflicts is crucial for improving crisis response
and advancing our understanding of conflicts. Yet, current approaches are often inaccessible due to their reliance on
proprietary satellite data and ground truth labels unavailable in conflict zones. Combining remote sensing techniques
with robust statistics, our study introduces an unsupervised algorithm that uses freely available Sentinel-1 radar imagery
to detect destruction with uncertainty estimates. Tested across three real-world case studies, our method is able to
reconstruct the chronology of destruction events. By leveraging open data, we democratize access to critical tools for
conflict monitoring and assessment.

*Corresponding author: daniel.racek@Imu.de



Detection of Building Destruction

1 Introduction

The ability to detect and assess damage and destruction of buildings in conflict zones is important for monitoring
human rights, facilitating humanitarian aid, guiding reconstruction efforts, and more generally academic research on
armed conflict. Traditionally, data on destruction has come from ground reports or manually inspected satellite images,
which is often resource-intensive, prone to bias, and limited in scope. This has led to a recent shift towards automated
remote sensing solutions, often using machine or deep learning learning techniques in combination with high-resolution
satellite imagery.

Despite substantial progress, existing methods face significant limitations. Many rely on proprietary high-resolution
imagery (e.g., 30 cm), which is expensive, difficult to scale, and usually not made available during wartime [Hou et al.,
2024, Kahl and Chen, 2024]. Approaches using publicly available medium-resolution images (e.g., 10-20m), on the
other hand, face challenges in reliably identifying the destruction of individual buildings, hence recently introduced
techniques rely on multiple images taken over a longer period of time for detection [Hou et al., 2024, Dietrich et al.,
2025]. As a result, they cannot precisely determine when destruction occurs or provide near real-time assessments of
destruction patterns. Another limitation of most methods is that they are supervised [Cheng et al., 2024, Hou et al.,
2024, Dietrich et al., 2025], requiring labeled ground truth data for training, which is, at least initially, unavailable in
war-affected regions. Finally, most existing approaches rely on optical satellite images, which are frequently obstructed
by cloud cover, further limiting the timely detection of destruction.

To address these limitations, in this work, we propose an unsupervised solution to detect building destruction caused
by armed conflict and war, using publicly available imagery from the European Space Agency (ESA), specifically
synthetic-aperture radar (SAR) images from Sentinel-1, in 12-day time periods, available globally since 2016. Unlike
optical satellite imagery, which relies on clear weather and daylight for optimal image quality, SAR technology can
operate day and night under all weather conditions [Moreira et al., 2013, Cheng et al., 2024], making it particularly
suitable for conflict zones. Although the spatial resolution of Sentinel-1 imagery is comparably low (20m after
processing; see also Fig.1), our approach is able to identify destruction every 12 days at the building level.

We employ Interferometric SAR (InSAR) to measure the stability of an area between two SAR images acquired
at different points in time [Bamler and Hartl, 1998, Yagiie-Martinez et al., 2016]. We repeatedly calculate these
interferometric coherence scores of temporally adjacent images over extended periods of time. Based on a statistical
assessment, using non-parametric median regressions and outlier-robust estimation techniques, this allows us to
differentiate destruction from random background noise for each time period, one of the central challenges for change
detection techniques [Shafique et al., 2022]. Generally, in the remote sensing literature, change detection refers to
a set of methods that aim to identify changes in the earth’s surface, with broad applications in fields such as urban
development [Plank, 2014], agriculture [Zhang et al., 2020], and land cover monitoring [Khan et al., 2017], using

Fig. 1: Comparison of satellite images of the Beirut harbor, July 2020. (A) is a proprietary high-resolution (30cm) optical image

from Maxar WorldView-3. Due to the harbor explosion, the image was made freely available by Maxar [Maxar Technologies, 2024].

(B) is a publicly available optical image with medium-resolution (10m) from Sentinel-2A, using bands 4, 3 and 2. (C) is a publicly
available multi-looked SAR image with medium-resolution (20m after processing; see Methods for details) from Sentinel-1. It is one
of the images used in our detection. For visualization of the two-dimensional image of complex samples with a real and imaginary
part, we use a yo greyscale visualization of the VV polarization.
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various types of satellite images with varying levels of resolution. For a recent overview of the literature, we refer the
reader to Osmanoglu et al. [2016], Shi et al. [2020], Cheng et al. [2024]. For an introduction to SAR imagery and its
applications, we refer to Bamler and Hartl [1998], Moreira et al. [2013]. In Fig.1, we provide a comparison of different
satellite images, including a Sentinel-1 image.

Our approach is fully unsupervised and hence does not require any labeled training data, making it applicable in
scenarios where ground truth data are sparse or even entirely unavailable. This is particularly relevant in the early stages
of wars and in conflicts that receive less media attention, where little information on damage and destruction is available
[Dietrich et al., 2025]. Contrary to destruction caused by natural disasters, conflict-related scenarios typically exhibit
extreme class imbalance, as destruction is limited to comparatively few buildings [Mueller et al., 2021, Hou et al., 2024].
Notably, our approach remains robust to this imbalance. Moreover, it provides a continuous, statistically grounded
probability measure for the likelihood of destruction at both the building and pixel level. This stands in contrast to
most existing approaches, which generally lack a measure of uncertainty [Sticher et al., 2023] and focus exclusively on
classifying either pixels or buildings [Cheng et al., 2024].

Focusing on three case studies - Beirut, Mariupol, and Gaza - each with different destruction dynamics, we demonstrate
both quantitatively as well as qualitatively that our method can reliably detect the destruction of buildings and also
determine the timing of the destruction, using ground truth data and reported sequences of events for validation.
Summarizing, we propose a novel unsupervised approach for detecting building destruction using publicly available
Sentinel-1 SAR images. Our results highlight the potential of using freely available satellite imagery to detect destroyed
buildings during armed conflict and war at scale, as our approach can be transferred to any other place or region in the
world.

2 Results

2.1 Beirut

The Beirut harbor explosion on August 4, 2020, constitutes our first case study. Although not caused by armed conflict,
the explosion’s effects resemble those observed in conflict-related destruction, with extensive damage concentrated
within a densely populated area. This event is particularly practical for analyzing our method, as destruction is limited
to a single day, providing a clear temporal boundary for our detection. Furthermore, ground truth data for buildings
located in the harbor that were fully destroyed by the explosion are available and field-validated.

Fig.2A visualizes p-values of destruction of all 10mx 10m building pixels over 12-day time periods in the area around
the explosion, using our detection algorithm. The first time period marks the 12 days before the explosion, the second
covers the time of the explosion, and the third is directly after the explosion. Lower p-values indicate a higher likelihood
and more evidence that a building was destroyed. We provide the same maps for all time periods in Supp.1. The location
of the explosion is denoted by the red dot. Buildings at the harbor annotated as fully destroyed by the explosion are
marked by a red border. As evident from the figure, most of the annotated buildings show high evidence of destruction
according to our method in the time period of the explosion. Additionally, almost in a perfect radius around the
explosion, we identify additional buildings as destroyed. As we move further away from the explosion site, p-values
increase, representing likely lower levels of damage to these buildings. These findings are in line with previous research
[Pilger et al., 2021, Al-Hajj et al., 2021], which has identified destruction and substantial damage to buildings farther
from the explosion site. In both of the other time periods, as expected, there is limited evidence of destruction (high
p-values).

Fig.2D provides kernel density estimates of the distribution of p-values of all building pixels across different time periods.
The explosion is clearly evident from the spike in low p-values during that period (density in green). Furthermore,
we can observe that our approach almost exclusively assigns low p-values for the explosion, and not for any other
time period. Note that there is an asymmetric spike in p-values in the periods after the explosion due to the use of first
differences in our detection.

To evaluate our approach in a strict classification setting, we assign the 1,754 pixels of annotated buildings to our
positive destruction class, as for these we have definitive evidence that the corresponding buildings were fully destroyed.
However, there are different options on how to define the set of pixels of the negative class, i.e. those that were
neither damaged nor destroyed, as ground truth information for the remaining buildings in the explosion time period is
unfortunately not available. This is a general problem when designing and evaluating change detection algorithms [Shi
et al., 2020, Shafique et al., 2022] and exacerbated in conflict scenarios [Mueller et al., 2021, Dietrich et al., 2025], thus
highlights one of the advantages of our unsupervised approach, which does not need to be trained.

The simplest option is to use all building pixels from all other time periods as our set of data points in the negative class.
However, this results in a total of 994,651 data points and thus in an extremely unbalanced sample (0.16% pos. class), for
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Fig. 2: (A) P-values of destruction of all 10mx 10m building pixels in Beirut over 12-day periods from July 11 to July 23 (left),
July 23 to August 4 (middle), August 4 to August 16 (right; all 2020). Lower p-values indicate a higher likelihood that part of a
building was destroyed. The harbor explosion on August 4 is denoted by the red dot in the middle image, with radii of the blast
wave with varying distances (also in red). Buildings located directly next to the sea are missing some pixels due to the processing
of the images. The background of each image is an optical Sentinel-2A image (freely available) from July 24, 2020 based on
bands 4, 3 and 2. (B) The same building pixels over the same time periods as in A, categorized into destruction and no destruction
for an F1-score-optimizing probability threshold. (C) Classification of entire buildings into destruction and no destruction for an
F1-score-optimizing probability threshold after combining pixel-wise p-values. (D) Kernel density estimates of the distribution of all
building pixel p-values over 12-day time periods before, during and after the explosion (all 2020). (E) Precision-recall curves using
the building pixels of the annotated buildings only (red), using random sampling for the negative class (blue), using all building
pixels over all time periods (green). The dashed lines denote the curves when pixels are weighted by their building coverage.
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which performance scores are skewed by individual outliers that naturally occur, e.g., due to building construction works.
This imbalance also motivates our subsequent use of precision-recall (PR) curves for evaluation [Davis and Goadrich,
2006]. Independent of the definition of our evaluation dataset, the corresponding receiver operating characteristic
(ROC) curves exhibit almost perfect areas under the curves (AUCs) of > 0.985 (see Supp.5) and thus are not well
suited for evaluation. The issue of imbalance in the context of detecting building destruction is extensively discussed in
Mueller et al. [2021], and thus we refer the reader for more information to the work of these authors. Hence, instead,
in Fig.2E we visualize the precision-recall (PR) curves and the corresponding areas under the curve (AUPRCs) when
defining varying probability thresholds as cut-offs for categorizing pixels into destruction vs. no destruction, for various
definitions of the evaluation dataset.

Another possibility for evaluation is to only use the pixels of the annotated buildings across all other time periods
(32,571 data points; 5.39% pos. class). However, this arguably leads to overoptimistic performance scores (red PR
curves). We find that an F1-optimizing probability threshold in this setting to classify many building pixels in other
time periods incorrectly as destroyed (see Supp.3). Hence, instead, we opted for randomly sampling building pixels
across all other time periods, while retaining the imbalance at a reasonable level (155,100 data points; 1% pos. class).
In order to reduce noise, we repeat this process 100 times and average the results. Finally, because many pixels only
partially cover buildings, as the resolution of most buildings is more fine-grained than our interferometric coherence
scores, we additionally weight each pixel by its relative share of building coverage. The corresponding average PR
curve is visualized in Fig.2E in dashed-blue and has a AUPRC of 0.657 (SD = 0.010). The F1-optimizing probability
threshold, results in an F1 score of 0.663 (SD = 0.004), with an associated precision of 0.694 (SD = 0.01) and a recall
of 0.634 (SD < 0.001).

In Fig.2B we visualize the corresponding classification of all building pixels over the same three time periods as in
Fig.1A. We provide the maps for all time periods in Supp.2. As evident, using this threshold, we correctly classify most
pixels of the annotated buildings as destroyed. Note, not all pixels will always provide the same level of evidence for
destruction (e.g., buildings might only be partially damaged or destroyed). Hence, it is reasonable to classify entire
buildings as destroyed, even when only some pixels indicate destruction.

To classify buildings, we combine the pixel-wise p-values of each building by constructing the harmonic mean p-
value (HMP) [Wilson, 2019], often used for meta-analyses [Errington et al., 2021]. Equivalently to our pixel-wise
classification, we randomly sample buildings from other time periods for evaluation (2,200 data points; 1% pos.
class), and repeat this process 100 times. The corresponding PR curve has an AUPRC of 0.905 (SD = 0.058). The
F1-optimizing probability threshold results in an F1 score of 0.905 (SD = 0.032), with an associated precision of 0.861
(SD = 0.059) and a recall of 0.955 (SD < 0.001). In Fig.2C, we again visualize this classification. Only a single
building (top right in the middle image) is incorrectly classified as not destroyed, while the amount of false positives in
the remaining time periods is highly limited. We provide maps for the remaining time periods in Supp.4, and both ROC
and PR curves in Supp.5.

In the explosion time period, we classify a total of 361 buildings as destroyed, which are 5.222% of all buildings in our
analysis region. In all other time periods, on average, we incorrectly classify only 11.450 (SD = 13.407) as destroyed,
a share of 0.166% (SD = 0.194) over all buildings. Notably, the latter is very likely to be at least partially driven
by reconstruction efforts, which are similarly identified by our detection algorithm, as these constitute changes in a
building’s structure. Before the explosion, we classify on average 9.250 (SD = 13.551) as destroyed, whereas this
increases to 12.916 (SD = 13.701) after the explosion. We provide further evidence for this theory in Supp.7. We report
results for the other two evaluation strategies in Supp.6.

In Supp.8, we present a sensitivity analysis to evaluate the impact of the number of time periods, that is, satellite images,
used for the detection. The results show that destruction can be identified immediately within the time period in which
it occurs, with as few as eight images observed prior.

2.2 Mariupol

For our second case study, we investigate building destruction during the course of the Russian invasion of Ukraine.
Our area of interest is the center of Mariupol, Zhovtnevyi district, for which UNOSAT has compiled ground truth data
for a subset of buildings, manually labeled through high-resolution satellite images from Maxar and not field validated.
Unlike in Beirut, destruction in Mariupol unfolded over several weeks, allowing us to test our method’s ability to detect
destruction over an extended period of time. Note, due to the limited and partially validated nature of the ground truth
data, performance evaluation should be interpreted with caution.

Fig.3A visualizes p-values of destruction of all 10mx 10m building pixels over 12-day time periods from the start
of the invasion to the fall of Mariupol. During the first 4 days of the invasion, the center of Mariupol remained
mostly unscathed. Over the course of the following weeks, we can observe how the patterns of destruction move
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from north-west towards the south-east of the center district, as the Russian army destroys most of the city through
bombardments [Ellyatt, 2022]. As evident, our approach is capable of tracking these dynamics over the course of the
invasion. We provide the same maps for all time periods in Supp.9.

For evaluation, we rely on a limited number of ground truth labels from May 12, 2022. As these only contain buildings
that are destroyed, equivalently to the previous application, we sample data points for our negative class by drawing
on pixels and buildings for time periods before the invasion. We derive our summarized destruction classification, by
categorizing a pixel or building as destroyed when it is marked by our algorithm as destroyed in any of the 12-day time
periods from February 28 to May 11.

We report both pixel- and building-level performance scores in Table 1. For each, we present the F1 score, recall,
and precision using both the optimal probability threshold derived from the Beirut use case and the F1-maximizing
threshold for Mariupol. AUROC and AUPRC are broadly comparable to those observed in the Beirut case study for
both pixels and buildings, with the building AUPRC being the notable exception. Unlike in Beirut, where the building
AUPRC was exceptionally high, in Mariupol, it is much closer to pixel-level performance. This difference is likely
caused by the fact that the large buildings in the Beirut harbor were particularly easy to classify correctly. Although
calibration further improves classification performance (+2.06% for pixels and +17.02% for buildings; both F1 scores),
our approach performs well overall. For the same reason as previously discussed, building-level calibration also results
in a larger performance improvement.

Based on the optimal classification threshold, we estimate that 2437 (22.22%) out of 10964 buildings were completely
destroyed in Zhovtnevyi district, with likely many more damaged. We visualize a map for this classification with
the corresponding ground truth labels in Fig.3B. Individual classification maps for each time period are visualized in
Supp.10. Both PR and ROC curves are provided in Supp.11.

Table 1: Mariupol performance

Pixels Buildings
Annotations 421 93
AUROC 0.987 (<0.001) 0.992 (<0.001)
AUPRC 0.550 (0.020) 0.650 (0.035)
FI 0.534 (0.011) 0.558 (0.011)
0.545 (0.014) 0.653 (0.017)
Recall 0.470 (<0.001) 0.430 (<0.001)
0.587 (<0.001) 0.624 (<0.001)
Precision 0.619 (0.030) 0.795 (0.045)
0.509 (0.024) 0.687 (0.038)

Note: Performance scores for Mariupol, Zhovtnevyi district, for both pixels and buildings. The annotations denote the number of
pixels resp. buildings in the positive destruction class. The data points of the negative class are sampled from periods before the
invasion (up to a 99:1 distribution). This process is repeated 100 times. The mean performance scores across these repetitions are
reported for each measure with the standard deviation in brackets. For F1, recall and precision, the first line denotes the corresponding
performance score when using the optimal probability threshold from the Beirut case study, the second line denotes the score when
using the F1-optimizing threshold.

2.3 Gaza

The third case study analyzes the destruction of buildings during the ongoing Isracl-Hamas war in Gaza, which began
on October 7, 2023. Here, our focus lies on tracking the dynamics of the war over several months. In Fig.4 we present
p-values of destruction for building pixels from September 18 to December 11, 2023. Key events are displayed in the
bottom time bar. The figure highlights that the dynamics of the war are reflected in patterns of destruction. Following the
initial attack on October 7, widespread airstrikes across the Gaza Strip are clearly visible in the second map. Subsequent
calls for the evacuation of northern Gaza (north of the drawn evacuation border) correspond to destruction being mostly
limited to these areas, as seen in maps 3 and 4. From the fifth map onward, the Israeli ground offensive becomes evident,
with destruction closely tracking troop movements, initially in Gaza City (map 5), and later in Shuja’iyya and Khan
Yunis (final map). We provide the maps for the remaining time periods in Supp.12.

UNOSAT regularly publishes updated damage statistics for Gaza (see Methods). Using the optimal building classifica-
tion threshold from our previous case study, we compare their composite destruction estimates with ours in Table 2.
Our estimates of the share of destroyed buildings in Gaza follow a trend similar to those of UNOSAT. As expected,
due to the unbalanced sampling strategy and a resulting lower classification threshold to reduce false positives, our
estimates are more conservative than those of UNOSAT. In the time periods before the war, we only incorrectly classify
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Fig. 3: (A) P-values of destruction of all 10mx 10m building pixels in the center of Mariupol (Zhovtnevyi district) over 12-day
periods clockwise from February 16 to February 28 (top left), February 28 to March 12 (top right), March 12 to March 24 (bottom
left), March 24 to April 5 (bottom right; all 2022). Lower p-values indicate a higher likelihood that part of a building was destroyed.
The Russian invasion of Ukraine started on February 24, 2022. According to reports, the siege of Mariupol intensified after March 2
[Gunter, 2022]. The background of each image is an optical Sentinel-2A image (freely available) from February 10, 2021 based on
bands 4, 3 and 2. (B) Classification of entire buildings into destruction and no destruction for an F1-score-optimizing probability
threshold after combining pixel-wise p-values. The classification is summarized across all 12-day time periods from February 28
to May 11, which aligns most closely with the ground truth labels from May 12. On May 16, the fall of Mariupol was officially
declared by the Ukrainian army [Hopkins and Santora, 2022]. Buildings labeled by UNOSAT as fully destroyed are marked by a red
border. Note, this labeling is incomplete. Many more buildings were likely destroyed.

7



Detection of Building Destruction

Jabalia

Gaza City
Centre

Evacuation
Border

Khan Yunis

%, o O, 4/% 4’0, Y, %

S i/'g (N is i,) % 2

Shuja'iyya

[

Pre-war period Start of war, Calls for evacuation Start of ground offensive Troops reach Gaza City Airstrikes in Jabalia, Troops reach Shuja‘iyya &
Airstrikes across Gaza of North into northern Gaza 4-day ceasefire Khan Yunis

Fig. 4: P-values of destruction of all 10mx 10m building pixels in Gaza over 12-day periods from September 18, to December 11,
2023. Lower p-values indicate a higher likelihood that part of a building was destroyed. The background of each image is an optical
Sentinel-2A image (publicly available) from May 5, 2023 based on bands 4, 3 and 2. The timeline at the bottom denotes key events
taking place between image acquisition dates.

on average 0.021% (SD = 0.010) buildings as destroyed. We provide corresponding classification maps across all time
periods in Supp.13.

Table 2: Gaza cumulative building destruction estimates

UNOSAT Ours
Date % destroyed Date % destroyed

October 10, 2023 0.84% October 12, 2023 1.57%
November 11, 2023 2.99% November 5, 2023 2.56%
November 26, 2023 4.44% November 29, 2023 4.34%
January 7, 2024 10.31% January 4, 2024 7.89%
February 29, 2024 14.25% March 4, 2024 10.31%
April 1, 2024 15.43% March 28, 2024 10.69%

Note: Comparison of the cumulative share of destroyed buildings estimated by UNOSAT (see Methods) compared to our estimates,
based on the optimal classification threshold obtained from Mariupol. Includes all buildings across Gaza over the course of the
Israel-Hamas war. The date corresponds to the day of the latest satellite image used for the destruction estimates. As these do not
perfectly align due to image acquisition, we use the closest possible match.

3 Discussion

In this work, we have presented an unsupervised method for detecting building destruction in conflict zones using freely
available Sentinel-1 SAR imagery, and applied it across three case studies, Beirut, Mariupol, and Gaza. We demonstrate
that our approach is not only able to identify the destruction of buildings, but, unlike recently introduced techniques
[Hou et al., 2024, Dietrich et al., 2025], also determine when it occurs. The unsupervised nature of our algorithm
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eliminates the need for labeled training data, which is often unavailable in conflict regions, and thus also allows for an
application in scenarios where timely information on destruction is of importance.

Our reliance on publicly available satellite data from the European Space Agency (ESA) makes our method easily
accessible and scalable. Sentinel-1 imagery is available globally since 2016 and is completely free of use to both
researchers and the public. Although our approach based on lower resolution imagery (20m) will generally not match
the performance of methods using proprietary high-resolution images (e.g., 20cm), our results demonstrate that it
is sufficient to detect patterns of destruction at the building level, without any financial costs for these images. In
contrast, acquiring up-to-date high-resolution imagery (20-50cm) costs approximately $25-50 per km? per image
[Planet Labs, 2025, LAND INFO, 2025]. For the entire Gaza Strip, which spans roughly 365km?, a single day of
high-resolution coverage would cost between $9,125 and $18,250, with an analysis similar to ours (28 images) costing
up to $511,000. It is important to note that high-resolution images are usually not made available for regions at war
[Hou et al., 2024]. High-resolution approaches also face challenges in processing the vast amounts of data required
for large-scale applications. Our method, on the other hand, is computationally efficient and can be deployed at scale.
Additionally, this means it can also serve as a valuable tool for initial analysis to guide decisions on where and when
costly high-resolution imagery should be acquired for more detailed investigations.

An important feature of our algorithm is its use of p-values to quantify the evidence for destruction. This statistical
framework provides a measure of uncertainty for the detection, and allows users to adjust thresholds based on specific
priorities. For example, lower thresholds might be employed for exploratory analyses of broad damage patterns, at
the cost of a higher rate of false positives. Beyond threshold adjustment, p-values offer users additional flexibility and
granularity in their analyses, compared to a strict binary classification. Finally, the use of p-values enables a seamless
and statistically sound transition between pixel- and building-level analyses, addressing a common limitation in the
literature where these approaches are typically treated as mutually exclusive [Cheng et al., 2024].

However, limitations remain. The comparably low resolution of Sentinel-1 imagery prevents the reliable detection
of lower levels of damage to buildings. Additionally, while our method performs well without ground truth data, as
demonstrated, performance improvements in classification can be achieved through calibration with ground truth labels
specific to the corresponding use case.

As also discussed in prior research [Mueller et al., 2021], the automated large-scale detection of destruction during
war and conflict allows for the analysis of questions that were previously difficult or impossible to answer. For
example, they can provide information on when, where, and which regions and types of buildings are targeted and
destroyed, including schools, hospitals, and other critical infrastructure. While this supports academic research, such
information is particularly valuable for governments and international organizations to help guide humanitarian aid
and plan post-conflict reconstruction. By offering an objective assessment of destruction, they may also help mitigate
potential biases inherent in manually conducted destruction reporting. A logical next step could be the development and
deployment of an interactive online dashboard that continuously updates and visualizes destruction patterns across the
world in near real-time. Such a tool would further enhance transparency and accessibility, ensuring that information on
building destruction is available to a broad range of stakeholders.

4 Materials and Methods

4.1 Areas of Interest

Our areas of interest (AOIs) for analysis of both Beirut and Mariupol are based on available ground truth data (see
section Destruction Labels). The considered bounding boxes (Zmin, Tmazs Ymins Ymaz) i the corresponding Universal
Transverse Mercator (UTM) zones are for Beirut, UTM zone 36N with a bounding box of 730447.1, 735069, 3751937,
3754567, and for Maripol, UTM zone 37N with a bounding box of 385635.7, 391574.4, 5215443, 5219254. For Gaza,
we consider the whole Gaza Strip, and use UTM zone 36N with a bounding box of 615957.4, 648847.4, 3455159,
3496499.

4.2 Satellite Data

We utilize Sentinel-1 Single Look Complex (SLC) Synthetic Aperture Radar (SAR) satellite images for our three
case studies Beirut, Mariupol, and Gaza. Sentinel-1A and 1B were launched on April 3, 2014 and April 25, 2016,
respectively, to a sharing sun-synchronous orbit at 693 km altitude with a repeat cycle of 12 days for a single satellite
and 6 days for the two-satellite constellation. The Sentinel-1 satellites each carry a C-band SAR instrument with a
central frequency at 5.405 GHz providing acquisitions in all weather and time conditions [ESA, 2025]. The SAR sensors
aboard can collect images in different operation (Strip Map (SM), Interferometric Wide (IW), Extra Wide (EW), Wave
(WV)) and different polarization modes (HH+HV, VH+VV, HH, VV). Synthetic Aperture Radar (SAR) technology,
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specifically Interferometric SAR (InSAR), has emerged as a valuable remote sensing tool for damage detection due
to its ability to operate under all weather conditions and capture information in both day and night. Interferometric
SAR (InSAR) coherence, a measure of the stability or similarity between SAR images acquired over the same area
at different times, has proven to be a reliable indicator of surface changes [Hu et al., 2014]. High coherence values
typically indicate stable and unchanged surfaces, while low coherence values often suggest disruptions or alterations in
the structure, such as vegetation growth, ground displacement, or destruction of buildings.

We download Sentinel-1 SLC images for Beirut from April 6, 2020 to December 26, 2020, for Mariupol from October
7, 2021 to July 22, 2022, and for Gaza from May 9, 2023 to April 9, 2024, using 12-day intervals for full coverage of
each analysis period. The original Sentinel-1 SLC images are captured in IW mode with spatial resolutions of 20 m in
the azimuth and 5 m in the ground range direction. These images are then multi-looked by a window of 4 pixels in the
range direction in order to reduce speckle noise, resulting in MLC (Multi-Looked Complex) images with sampling
spacings of 20 meters in both azimuth and ground range directions. All downloaded images are freely available from
the Copernicus Open Access Hub of the European Space Agency (ESA) [ESA, 2024].

4.3 Coherence Scores

Interferometric coherence is calculated from two co-registered MLC images taken at the beginning and end of each
12-day time period over the same area. The complex images are multiplied pixel-by-pixel to compute coherence,
considering both the amplitude and phase information. Specifically, coherence is calculated by averaging the phase
differences between the two images over a local window and normalizing it by the product of their amplitudes [Bamler
and Hartl, 1998],

|2, 516) - S500)

¥ =

VEL 18102 - XN, 1920
where S (i) and Sz(7) are the complex pixel values from the first and second MLC image, Sj(¢) is the complex
conjugate of Sa(7), and N represents the number of pixels in the averaging window. The coherence value, which
ranges between 0 and 1, reflects the similarity between the two images: a coherence close to 1 indicates high similarity
(minimal change), while a value close to 0 indicates substantial differences, potentially caused by changes in the surface
or disturbances.

(€))

Decorrelation sources in an interferometric coherence can be represented by a product of different decorrelation
components [Bamler and Hartl, 1998].

7V = 7YSNR * Vtemporal * Vspatial ()

where, ysnr is the noise decorrelation due to the signal-to-noise ratio (SNR). Yiemporal accounts for temporal decorrelation
resulting from changes in the ground surface between the acquisition times of the two MLC images. 7spaial T€presents
spatial or baseline decorrelation depending on the geometry of the satellite passes, particularly the spatial baseline
between the two acquisitions. Each decorrelation component takes a value between 0 and 1, with 1 indicating no
decorrelation and 0O indicating complete decorrelation. The overall coherence 7 is thus reduced when any of these
decorrelation sources are present.

When buildings or infrastructure are damaged or destroyed between two image acquisitions, the change in surface
structure results in a loss of coherence due to temporal decorrelation. In order to detect these temporal changes, SNR
and spatial decorrelations are approximated through the use of both Digital Elevation Model (DEM) and satellite
trajectories based on Interferometric SAR (InSAR) [Yagiie-Martinez et al., 2016, Bamler and Hartl, 1998, Moreira
et al., 2013], leaving only the temporal decorrelation as the dominant component in the interferometric coherence. The
final coherence scores, which are based on sampling spaces of 20m, are then resampled and projected into UTM, using
the corresponding UTM zone of each AOI, to a pixel size of 10mx 10m in order to limit the possible loss of information
due to the projection.

4.4 Detection of Destruction

To reliably identify damage and destruction from changes in the coherence, we analyze the first differences of the
coherence values for each pixel over time. For each pixel, we fit a non-parametric median regression with a flexible
trend to these differences [Koenker, 2005]. Median regression is employed to reduce the influence of outliers on the
fitted trend, including those resulting from actual destruction. The flexible trend allows us to account for gradual
deviations in coherence, such as those caused by atmospheric changes or other non-structural variations.

We then calculate the differences between observed values and fitted trend, i.e., the residuals. Generally, large residuals
can be classified as outliers and are likely due to changes in the building’s structure, such as those caused by damage or
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Table 3: Dataset Summary

Case Study Pixels Buildings # of Time Periods
Beirut 57,581 6,915 22
Mariupol 67,737 10,964 24
Gaza 859,502 172,916 28

Note: Number of pixels, buildings and time periods considered for each case study. The corresponding number of pixels and
buildings refers to a single 12-day time period. Each pixel and building is observed over the entire analysis period. Due to the use of
first differences in the coherence scores, the first time period drops out.

destruction. However, since noise levels vary between pixels, this classification is challenging. We solve this by using a
robust estimator of the standard deviation, )., first discussed in Rousseeuw and Croux [1993].

We find that residual distributions for each pixel to be approximately normally distributed, though with substantially
larger tails due to outliers that clearly do not follow the same distribution (see Supp.15). Hence, to estimate the standard
deviation of the residuals of each pixel, while being minimally affected by these outliers, we use (),,, defined as

Qn = d{|@i — 2451 < ), (3)

where d is a constant and k£ = (g), with b = [%] + 1. This means, we take the k" order statistic of all (Z) pairwise
distances. The multiplication with d is chosen accordingly to achieve consistency. As demonstrated in Rousseeuw and
Croux [1993], this estimator has a low error-sensitivity while simultaneously achieving a high efficiency.

Under the hypothesis of a normal distribution with the estimated standard deviation &;, we can now derive the probability
to observe each residual r; ; for a pixel ¢ in time period ¢. Specifically, we derive the probability to observe a given
residual or a more extreme one in the negative direction, i.e. a one-sided p-value with

p(rie) = Pr(Ri: <rit) 4)

where 7; ; is the observed residual and R;; ~ Normal(0, 52) a random variable. The negative direction is required, as
we are only interested in drops in coherence over time.

This p-value provides evidence and thus certainty for how likely it is that a given coherence score is not just observed
by chance and instead due to structural changes of the building. Higher levels of damage or destruction should lead
to lower p-values. These p-values can either be used directly to visualize likely buildings and areas of destruction, or
specific cut-offs can be chosen at which pixels are classified as destroyed.

Using the available ground truth data for Beirut, we experimented with different levels of flexibility in the regression
(see Supp.14), different robust scale estimators (see Supp.16), and directly using the coherence scores in the regression
instead of their first differences (see Supp.17), before we ultimately decided on the described setup. Note, fitting these
median regressions can be carried out at scale, as the computation is straightforward to parallelize. This means even for
the Gaza case study, computation only took roughly two hours on a single machine.

To classify entire buildings, the p-values of each building need to be combined. We do this by constructing the weighted
harmonic mean p-value (HMP) [Wilson, 2019] defined as

N
> j=1Wj
N wj;
2ij=1 s
where B refers to the building, ¢ to the time period, N to the number of pixels that make up the building, p; ; the p-value
of a pixel j that is part of building B, and wy; its corresponding weight based on building coverage. The HMP is often

for meta-analyses [Errington et al., 2021], and robust to the expected positive dependencies between the p-values of
each building.

(&)

Pp: =

4.5 Building Footprints

To identify individual buildings, we use building footprints from OpenStreetMap (OSM), widely used for applications
in urban planning [Milojevic-Dupont et al., 2020], public health [Sturrock et al., 2018], and disaster management
[Poiani et al., 2016]. We obtain these footprints by querying OSM through the building key on the first day of the
analysis period of each use case, ensuring that each building remains consistent throughout the entire analysis period.
This approach prevents any changes, e.g., due to destruction, from being reflected in the building footprints. Using this
building information allows us to only analyze those pixels that constitute buildings. We provide a dataset summary in
Table 3.
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4.6 Destruction Labels

For the Beirut harbor explosion we utilize georeferenced information on destruction from Kondmann et al. [2021].
The authors draw on ground truth data from the Center for Satellite Based Crisis Information (ZKI) at the German
Aerospace Center, who manually annotated buildings based on high-resolution satellite images and field reports. Each
labeled building represents a structure at the harbor fully destroyed by the explosion. Note, multiple studies [Pilger
et al., 2021, Al-Hajj et al., 2021] have documented destruction and substantial damage to buildings located farther from
the explosion site.

For Mariupol we use building damage labels in the city center, Zhovtnevyi district, from UNOSAT, part of the United
Nations Institute for Training and Research (UNITAR) [UNITAR, 2024]. Selected buildings are annotated manually
based on high-resolution (30cm) optical satellite images from Maxar WorldView-3 on May 12, 2022, with varying
levels of visible damage. Note, contrary to Beirut, these annotations are not field validated. Hence, we only retain those
annotations marked as "high confidence’ and labeled as destruction. As each annotation is only recorded through a
single set of geographic coordinates, we match these to our building footprints to annotate entire buildings.

For the composite damage statistics in Gaza we similarly utilize information provided by UNOSAT, based on high-
resolution (30-50cm) satellite images from both Maxar and the French national space agency CNES. Theoretically,
manual annotations with exact coordinates are available, however, in practice, we find these coordinates to be imprecise.
In a vast amount of cases we cannot successfully match these to our building footprints and hence decided for a
composite analysis only. We provide more details in Supp.18.

5 Data Availability

All datasets, except SAR imagery, are available on the OSF [Racek et al., 2025a]. Raw satellite images are not provided
due to their large file size. However, they are freely available from the Copernicus Open Access Hub of the European
Space Agency (ESA) [ESA, 2024]. Additionally, full reproducibility for the remaining parts of the analysis is possible,
as all intermediate results and datasets are also provided.

6 Code Availability

Interferometric coherence scores were calculated using Python 3.7 [Van Rossum and Drake Jr, 1995] and Gamma
[Werner et al., 2000]. The coherence scores were further processed using R 4.3.3 [R Core Team, 2013]. A complete
list of all used libraries and their corresponding versions is available in the project’s GitHub repository [Racek et al.,
2025b]. There, we also provide all code needed to reproduce the results.
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The use of language is innately political, often a vehicle of cultural identity and the basis for
nation building. Here, we examine language choice and tweeting activity of Ukrainian citizens
based on 4,453,341 geo-tagged tweets from 62,712 users before and during the Russian war
in Ukraine, from January 2020 to October 2022. Using statistical models, we disentangle
sample effects, arising from the in- and outflux of users on Twitter (now X), from behavioural
effects, arising from behavioural changes of the users. We observe a steady shift from the
Russian language towards Ukrainian already before the war, which drastically speeds up with
its outbreak. We attribute these shifts in large part to users’ behavioural changes. Notably,
our analysis shows that more than half of the Russian-tweeting users switch towards
Ukrainian with the Russian invasion. We interpret these findings as users' conscious choice
towards a more Ukrainian (online) identity and self-definition of being Ukrainian.
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recent years, it has played a key role in a number of political
shifts and crises®>. While social media has been found to
amplify all manners of misinformation, propaganda, populism,
and xenophobia®8, it can also serve as a mechanism to call for
aid and as a source for live updates of major events unfolding®~12.

In this article, we analyse language use of Ukrainian citizens on
social media before and during the Russian invasion of Ukraine
(subsequently referred to as war), where after years of tensions
and open aggression between Russia and Ukraine!3, on 24th
February 2022, Russian forces began to invade and occupy parts
of Ukrainel4. At the time of writing, it has been estimated that the
war has led to over 23,000 civilian casualties!® and hundreds of
billions of dollars worth of damage!®17. This has caused world-
wide unrest, alongside 8.2 million Ukrainian refugees recorded
across Europe and 5 million registered for temporary
protection!8:19,

The war in Ukraine is also taking place in the digital era, with
social media coverage documenting the horrific events in up to
real-time. This provides a unique digital trace of many first-hand
accounts of the war, as citizens are communicating among each
other and to the public. This is generally known as crisis infor-
matics, whereby social media data are utilized before, during, or
after emergency events for use cases such as disaster monitoring,
management, and prevention®1%20-22 Recent studies have
demonstrated that tweets can capture events of political
violence?? and can help in monitoring and understanding intra-
country conflicts?4.

In our work, the user’s choice of language in a tweet is of
particular interest. Many people across the world (including most
Ukrainian citizens with the Russian and Ukrainian language??)
are multilingual. This multilingualism comes with a number of
links to an individual’s identity, as someone may speak one
language at work, but another one at home with their family.
Thus, different languages are spanning across multiple facets of
one’s identity?0. These context-based adaptations of our self-
presentation and behaviour are expected by those around us?7-30.
Hence, it is important to note that a user’s choice of language
online can be argued as an active choice to communicate and a
way they seek to present themselves to their audience?. For
example, many non-natives switch to English in order to ensure a
wider intelligibility online3!.

The use of language is also inherently political. Languages can
be the cause of conflict and they are often incorporated in cultural
and ethnic identity definition and are the basis for nation building
and political change3?33. After the dissolution of the USSR, most
post-soviet countries introduced new language laws in order to
assert their original native language and build a new nation3>34,
In Ukraine, after their independence, many people were con-
sidering themselves Russians by nationality or Ukrainian with
Russian as their main native language3>3¢. While the government
aimed to reverse those effects, they were only moderately suc-
cessful in achieving this goal, as census results show3>-37. Only
more recently, with the Euromaidan protests and the Russian
military intervention in Crimea and the Donbas, surveys between
2012 and 2017 show a consistent and substantial shift away from
Russian ethnic and linguistic identification towards Ukrainian
practice?’.

We investigate language choice and tweeting activity on
Ukrainian Twitter (now called X) from January 2020 to
November 2022 using over 4 million geo-tagged tweets from
more than 62,000 different users. In doing this, we study how
Ukrainian citizens (and non-citizens living there) respond to their
country being aggressively attacked and invaded by its direct
neighbour they share a long history and language with, and how
the use of language evolved before and during this war. Our study

S ocial media is critically important in today’s society!-3. In

allows us to follow the same set of users and observe their (change
in) behaviour over both the short- and longer-term as the war
breaks out and continues to unfold on an individual level. Hence,
we are able to comment on recent news articles outlining shifts in
language use from Russian to Ukrainian as a direct result of the
war3$3%, Moreover, we are able to monitor long-term language
trends even before the war without the necessity of relying on
small-scale surveys nor the infrequent censuses, the last one of
which was conducted in 2001.

More specifically, we study overall trends in the number of
tweets in the three main languages (Ukrainian, Russian, English)
over time. Second, we investigate how these trends translate to
users” individual tweeting activity and if changes result from the
in- and outflux of users, common in online communities*°-42, or
if they result from users changing their behaviour over time#3-4>.
We quantify the magnitude of both effects respectively. Third, we
study if changes in users’ tweeting activity originate from shifts
between languages and quantify the magnitude of these shifts.
Fourth and finally, we take a closer look at those users that switch
from predominately tweeting in Russian to predominately
tweeting in Ukrainian with the outbreak of the war.

Methods

This study was ethically approved by the ethics commission of the
faculty of mathematics, computer science and statistics at
Ludwig-Maximilians-Universitit (LMU) Miinchen, Germany.
The reference identifier is EK-MIS-2022-127. We did not pre-
register this study. No information on user demographics such as
age, sex, gender or race were collected or determined and - in
accordance with the ethics commission - no informed consent by
the Twitter users was obtained.

Data

Data collection & final dataset. We collected tweets from 9th
January 2020 to 12th October 2022 using the 1% real-time stream
of the Twitter API. During collection, we filtered the data such
that we only gathered tweets containing geo-information from
the API. We then manually filtered the dataset to only retain
tweets from Ukraine (denoted by the “UA” country tag), as
common in the literature6, and excluded any retweets, which left
us with primary tweets, quotes and replies, all of which contain
original tweet texts.

This dataset obtained from the 1% stream consisted of
4,102,982 tweets. As we began cleaning, we noticed gaps with
missing tweets, most likely due to server and internet outages
during the real-time data collection process. Hence, we retro-
spectively identified and filled all gaps. To do this, we first
identified all time windows >10 min without any tweet and added
them to our download queue. Days with more than two of such
time windows were added to the queue as a whole. We then
queried the Twitter Research API 2.0 using the tweets/search/all
endpoint to obtain tweets with Ukrainian geoinformation for all
time windows in this queue and added the newly obtained tweets
to our original dataset. Finally, we repeated this process for the
15 days with the least amount of tweets in our dataset. After
removing all duplicates, this meant we added a total of 350,359
additional tweets to our dataset this way. Our subsequently
conducted sensitivity analysis shows that through the two-stage
filtering process combined with the recollection efforts, we were
able to recover almost all geo-tagged tweets from Ukraine during
this time period (see section “Sensitivity Analysis” for more info).

We conducted an extensive spam filtering scheme, in which we
(1) removed any duplicate tweets, (2) identified and removed
potential spam bots by training a bot detection model following”,
(3) removed users with >100 tweets per day, (4) only kept tweets
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coming from official Twitter clients or Instagram, and (5) applied
additional filtering rules specific to our dataset. This reduced our
dataset from originally 4,453,341 tweets (62,712 users) down to
2,845,670 tweets (41,696 users). For a more extensive description
and rationale see section “Data Cleaning”.

User characteristics. Unsurprisingly, social media is popular in
Ukraine, particularly among the younger generation, with almost
all citizens aged 18-39 in 2021 reporting that they use social
media. For Twitter, user statistics are as follows: 18-29 (13%
usage), 30-39 (8%), 40-49 (7%), 50+ (1%)*8.

We provide an overview and descriptive statistics on all user
attributes as available from the API in Supplementary Table 4.
The relevant user attributes for our main results and their
assigned names are described in the following. Followers are the
number of accounts that follow a user. Followings reports the
number of accounts a user is following. The account age the
number of months a user account has existed from account
creation to their latest tweet in our dataset. The tweet frequency
the number of tweets per day. The like frequency the number of
liked tweets (by the user) per day. # of Tweets in Ukraine reports
the total number of tweets in our dataset. All Twitter user
attributes are a snapshot from the last time we observe a user’s
respective tweet in our sample.

As described in Supplementary Notes 1, we conduct multi-
lingual topic modelling using BERTopic#®. War topic 1 reports
the number of tweets assigned to first war topic cluster (topic #1),
which covers updates about the war and calls for help. War topic
1 (rel.) the relative share of tweets assigned to this topic. War
topic 2 reports the number of tweets assigned to second war topic
cluster (topic #3), which covers a more political side of the overall
conflict. War topic 2 (rel.) the relative share. A full list of all topic
clusters is available in Supplementary Table 1.

Sensitivity analysis. After data collection (before the cleaning), we
evaluated the completeness of the dataset, i.e. whether we were
able to recover most of the tweets published in Ukraine over the
course of the study period, using the following strategy. We draw
a random subset of 29 days from our analysis period and draw
tweets from the Twitter Research API 2.0 using the tweets/search/
all endpoint, which returns all historic tweets that have not been
deleted since. We find a coverage of 98.24% (SD: 3.09%). More
importantly, in the opposite direction we are only able to report a
coverage of 77.67% (SD: 9.55%). Hence, employing our strategy
using the real-time stream offers substantially more tweets, which
have been deleted since (for more information on tweet deletion
and its effects see ref. 50). Moreover, this suggests we were able to
recover most of the geo-tagged tweets from Ukraine.

Data cleaning. For cleaning our dataset, we first train a Twitter
bot detection model using a random forest (RF), as described in
ref. 47. We use the exact same model as described in the authors’
work (except for removing the attribute profile_use_back-
ground_image, which is no longer available from the Twitter
API), using the training datasets botometer-feedback, celebrity,
political-bots, as well as 100 manually labelled Twitter accounts
from our dataset. To evaluate performance, we first set up a
nested cross validation (CV) routine, with both a fivefold CV in
the inner and outer loop. The inner CV is used for hyperpara-
meter tuning, tuning both the number of trees as well as the
minimum node size of the RF, whereas the outer loop is used for
evaluating model performance. This results in an average area
under the receicer operator characteristics curve (AUROC) of
0.9837 and an average area under the precision-recall curve
(AUPRC) of 0.7707. For our final model, we replicate this pro-
cedure, by setting up a 5-fold CV on the entire dataset to find the

best performing hyperparameters. We then train our RF on the
entire dataset and use this model to identify bots and spam
accounts in our dataset.

As we are only interested in removing the most prevalent
spam, we opt for a conservative removal strategy to not falsely
remove too many real and non-spam users. Hence, we only
remove users with a predicted bot probability >50% and more
than 10 tweets since account creation as well as users with a
predicted bot probability >30% and more than 10,000 tweets.
While thresholds of 50% and 30% respectively might not seem
conservative, in the given setting, in which the bot class is heavily
underrepresented (3.7% of observations in training dataset), an
Fl-optimizing threshold on the training dataset would lie far
below that. We are somewhat less conservative with users that
published over 10000 tweets, as in most cases they are spam
accounts (e.g. related to bitcoins or NFTs). We do to not remove
users with less than 11 tweets, as even for a human it becomes
incredibly difficult to determine if a user is a bot with such limited
amount of information to draw from. At the same time, we
noticed a large influx of new users after the outbreak of the war
who exclusively called for help in a short span of time, a
behaviour which can easily be mistaken for a bot. Notably, we do
not tune the optimal classification threshold, as the outbreak of
the war in Ukraine represents an unprecedented event, with an
unusual amount of new users joining (see Section “User
Activity”). Hence, we expect the distribution between the target
label (bot or human) and our features to be different between the
bot training dataset and our Ukrainian dataset. Unfortunately, an
extensive manual labelling strategy and more elaborate bot
detection is beyond the scope of this work and would warrant its
own paper. In summary, with this strategy we remove a total of
2021 users and their tweets from our dataset.

To further identify and remove potential spam accounts, we
identify all accounts with more than 100 tweets on a single day
(the mean is ~4.4 and the median = 2), and remove those 257
users from the dataset. We also noticed an unusual amount of
Tweets containing the word “BTS” (45,579; referring to the
Korean K-Pop band®!) with spikes on specific days, which we
subsequently filter out. Next, we identify and remove any tweets
published by the same user that contain the exact same text as
their previous tweet if both tweets were published within a one
minute window. Fifth and finally, we filter out any tweets with the
source attribute not being equal to Instagram or Twitter. That
way, we discard any tweets automatically published by social
media schedulers such as dlvr, which are often used by news
agencies or other companies.

Statistical modelling

Tweet modelling. We define the number of tweets Y, ,; made in
week t by user u in language I. As tweets are count data, we model
the Y,,; to follow a Poisson distribution with intensity A,
where

At,u,l = exp(ﬂ + 5Z(t) + Wu,l)' (1)

Here, u is a general time-constant intercept, which captures the
average tweet intensity over all users, languages and weeks. The
W, are language-specific time-constant random intercepts for
each user u, assumed to be normally distributed. They capture by
how much the average tweeting behaviour (more or less tweets)
of each user in each language differs from the general mean p.
Finally, s/(f) denotes a smooth global time trend for each language
I (Ukrainian, Russian, English) and captures changes in the
tweeting behaviour over all users over time. Hence, with the
latter, we can measure behavioural changes of the users over time
(e.g. are users tweeting more with the outbreak of the war?),
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whereas the random intercepts measure changes in the user
sample over time (e.g. are users that enter the platform after the
war tweeting more on average?). This results in a generalized
additive mixel model (GAMM). For more information, we refer
the reader to ref. 52 and ref. 53. We fit the model with the R
package mgcv v1.8.4154 using the GAM implementation for very
large datasets bam. To speed up the estimation, we use the dis-
crete option, which discretizes covariates to ease storage and
increase efficiency. For fitting s,(f), we employ thin plate regres-
sion splines. Our estimation sample consists of y = 1,045,245
observations, with t = 143 weeks, = 3 languages and u = 13,643
users. For our fitted model, we report an explained deviance
of 71.3%.

The effect sizes in the results are calculated as follows. For the
behavioural effects we derive the change in s,(f) between two
respective dates #; and t, and take the exp(.), i.e. exp(s/(t,) —
5)(t})) for each language I The result is the change in expected
tweeting activity due to behavioural changes, when controlling for
the in- and outflux of users. The sample effects are derived by
averaging the random effects of the active users at the two
respective dates and taking the exp(.), i.e. exp(W, ; — W, )). We
define W, as the average random effect in language I over all
users u active at time point f. This captures the averaged change
in expected tweeting activity due to a change in average tweeting
intensity of the active users, when controlling for behavioural
changes.

Language modelling. To model users’ pairwise language prob-
ability, we refrain from a multinomial modelling strategy, as even
with a weekly setup our dataset is particularly large. (To the best
of our knowledge, a package with a parallel estimation routine for
large datasets that can fit a GAMM for a multinomial distribution
does not exist.) Instead, we model each pairwise probability
separately through a binomial distribution. Our pairwise eva-
luation gives us a total of three different language pairs (UA over
RU, UA over EN, RU over EN), for which we model the prob-
ability 7 to tweet in language one (subsequently ;) over language
two (subsequently L,). The order in which we specify these pairs is
irrelevant, as the probability to tweet in I, over [; is simply 1 — 7.
More specifically, we define X, as the number of tweets made in
week t by user u in I,. We assume X, , ~ Binomial(n, ,, n;,), where
ny,, denotes the total number of tweets made by user u in week ¢
(sum of tweets in /; and l,) and 7, corresponds to the probability
to tweet in [, over l,. We assume that #,, is known and instead
model 7;, by setting

T =fu+s() + W), @

where f{.) is defined as the logistic function. Similarly to before, y
is a general time-constant intercept, which captures the average
mean probability over all users and weeks to tweet in [; over L.
Again, the W, are time-constant random intercepts for each user
u that capture by how much the average probability differs from
the general mean y, and are assumed to be normally distributed.
The smooth global time trend s(f) captures changes in the
probability over all users over time. Hence, as before, we can
measure behavioural changes of the users over time with the latter
(are users actively changing the language they are tweeting in?),
whereas the random intercepts measure changes in the sample
over time (how does the language probability of users entering/
leaving the platform evolve?). We estimate this model specifica-
tion for all three aforementioned language-pairs with the R
package mgcv v1.8.41%4 using the GAM implementation for very
large datasets bam. To speed up the estimation, we use the dis-
crete option, which discretizes covariates to ease storage and
increase efficiency. For fitting s(f), we employ thin plate

regression splines. Users not tweeting in either of the two lan-
guages of the respective language pair, need to be discarded by
definition. Hence, for UA over RU our estimation sample consists
of of x = 194,178 observations, with t = 143 weeks and u =
10,531 users. For UA over EN: x = 146,984, t = 143, u = 9,133.
For RU over EN: x = 170,853, t = 143, u = 10777. For our fitted
models, we report explained deviances of: 85.8% (UA over RU),
90.5% (UA over EN) and 90% (RU over EN).

The coefficients of a logistic regression, as employed here, must
be interpreted with respect to changes in the odds (also known as
odds ratio). The odds ratio is defined as odds = p/(1 — p). Hence,
it describes how likely an event is going to happen compared to
not happen. In this setting, it describes how likely it is to tweet in
language 1 over language 2.

The effect sizes in the results are calculated as follows. For the
behavioural effects we derive the change in s(f) between two
respective dates t; and t, and take the exp(.), ie. exp(s(t,) — s(t,))
for each of the three models. The result is the change in odds to
tweet in [, over [, due to behavioural changes, when controlling for
the in- and outflux of users. The sample effects are derived by
averaging the random effects of the active users at the two respective
dates and taking the exp(.), i.e. exp(W, — W, ) for each of the three

models. We define W, as the average random effect over all users u
active at time point t. This captures the averaged change in odds due
to a change in average tweeting probability of the active users, when
controlling for behavioural changes.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results

Descriptive findings. To determine the language of a tweet, in
accordance with the literature®>>6, we utilize the language field
provided by the Twitter API. Ukrainian (35.8%) and Russian
(35.4%) tweets are most prevalent in our dataset, followed by
English (11.5%). A large proportion of tweets (11.1%) is labelled
as “undefined”, which among others consists of tweets that are
too short, contain only hashtags, or only have media links. All
other languages have shares of 1.2% or less. For the subsequent
analysis we focus on tweets coming from the three main lan-
guages (English, Russian, Ukrainian) and discard all remaining
tweets. A full breakdown of the language distribution is reported
in Supplementary Figure 6.

In our dataset, there are clear trends in the aggregate over time
(Fig. 1). In the beginning of 2020, we can see that Russian is the
predominant language being used on Twitter in Ukraine,
however, over time, this number gradually declines. The number
of Ukrainian and English tweets on the other hand remains more
or less constant over this initial time period. In the figure, we
mark two key dates. On 11th November 2021, the United States
officially report a mobilization of Russian troops along the
Ukrainian border for the first time®’->%, We will subsequently call
this the first signs of aggression. 24th February 2022 marks the
begin of the Russian invasion of Ukraine (subsequently referred
to as outbreak of the war). As we approach this outbreak, there is
a clear spike in tweets across all three languages, with a larger
spike in both English and Ukrainian. Afterwards, English and
Russian remain mostly constant, although the former on a much
higher level than before. For Ukrainian, there is a clear upward
trend in the daily number of tweets after the outbreak of the war.

Given these remarkable shifts in the number of tweets in the
three considered languages, we want to investigate the underlying
factors contributing to these changes. Note, that from the
aggregate trends, we can not distinguish whether the observed
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Fig. 1 Daily number of tweets in the three most common languages. Russian in red, Ukrainian in blue, English in green. From 9th January to 12th October

(1008 days). The first vertical line denotes the mobilization of the Russian
denotes the outbreak of the war (24th February 2022).

patterns are due to large in- and outfluxes of users, i.e. user
turnover, which are common in online communities0-42, or
whether the actively tweeting users change their behaviour over
time#3-4>. The disentanglement of this question is the aim of the
rest of this article.

User activity. In order to address this question, we restructure
our dataset by aggregating the number of tweets made by each
user in English (EN), Ukrainian (UA), and Russian (RU) in each
week. (Note, that we employ the Ukrainian country code “UA”
instead of the official Ukrainian language tag “UK” in order to
avoid confusion.) This allows us to study users’ individual
behaviour over time. To obtain reliable results, we restrict the
further analysis to users who have tweeted in total at least ten
times in any of the three languages. Furthermore, we choose
weeks instead of days, as we are interested in general shifts and
overall changes in behaviour over time, which are captured suf-
ficiently well on a weekly basis. Through this weekly definition,
we can dramatically reduce the size of our dataset, hence more
complex modelling approaches become computationally feasible.
We drop the first and last week in our dataset as these are
incomplete (less than 7 days) and aggregate the remaining tweets
on a weekly basis for each user and language. Finally within this,
we are only considering weeks in which users are active (we
define this as any week in which a user is tweeting at least once, as
well as up to two weeks after), in order to account for the times in
which users may be inactive for several weeks at a time or
abandon their accounts. Thus, our new sample ranges from 13th
January 2020 to 10th October 2022 and consists of 143 analysis
weeks, 13,643 users and 1,045,245 observations.

Using this definition of user activity, we can visualize the total
amount of active users as well as turnover rates (switch from
active to inactive and vice versa) over time (Fig. 2). In the
beginning of 2020, we have around 2800 active users per week.
This number gradually decreases to roughly 1,800 until we
approach the outbreak of the war. Afterwards, the number of
active users starts increasing again. Note the drop and subsequent
spike in activity shortly before and with the outbreak of the war.

troops along the Ukrainian border (11th November 2021). The second line

Looking at the turnover rates, we find that there is a constant
stream of ~250 (potentially different) users per week that switch
from active to inactive and vice versa. The aforementioned spikes
are also evident in these turnover rates. Finally, we find that there
are roughly 50 users per week that join our sample for the first
time and about the same amount that leave it altogether. Both of
these numbers almost double after the outbreak of the war.

Tweeting activity. To obtain a better understanding on how the
average active Ukrainian Twitter user changes over time, we
visualize the average number of published tweets by a user in each
language in Fig. 3a. From the figure, we can clearly see that there
are substantial shifts. Overall, the average number of RU tweets
per user decreases constantly over time (from over 6.5 to 2.1), the
outbreak of the war being no exception. The average number of
EN tweets decreases slightly until the war, where we notice a
sudden uptick (from 0.7 to 2.8), followed by a steady decline.
Meanwhile, the number of UA tweets slowly but steadily rises
(from 2.4 to 2.9), with steeper increases after the first signs of
aggression in November 2021 and no appearance of slowing
down (5.3 at the end).

By combining these findings with Fig. 2, we can at least
partially explain the aggregate trends evident in Fig. 1. While the
active user sample is shrinking over time, those users that stay
(and join) the sample are tweeting more in UA. Hence, there is no
decrease in the overall amount of UA tweets. We find the exact
opposite for RU tweets. As the number of active users is
declining, the users that stay active are tweeting less in RU,
resulting in the visible decrease of aggregate RU tweets over time.
Notably, so far, we do not know, if those changes in the average
amount of tweets per user are simply driven by shifts in our active
user sample (i.e., are those users that initially tweet a lot in RU
leaving over time and this is why we see this decrease in the
average?), or, if these changes are (at least partially) driven by
behavioural changes in those users that remain active on Twitter
(i.e., are the same users tweeting less in RU over time?).

We address this through our tweet model described in Section
“Tweet Modelling”. We fit a generalized additive mixed model
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Fig. 2 Weekly user activity graphs. The brown graph reports the number of active users in each week. The blue (red) graph reports the number of users
who switch to active (inactive), the green the number of users who switch to active for the first time, the purple the number of users who were active for
the last time, i.e. drop out of the sample altogether. All graphs, but particularly the latter two, are skewed upwards respectively downwards towards
beginning and end of the study period due to the nature of how the dataset is constructed. Hence, we drop the first and last three weeks for visualization
purposes (137 total weeks left). The full plot is available in Supplementary Notes 5.

(GAMM) to predict the number of tweets made by each user in
each language in each week, assuming a Poisson distribution. By
incorporating both a smooth global time trend for each language,
as well as user-specific random effects for each of the languages,
we disentangle sample shifts (random effects) from behavioural
changes (global trend). Hence, the former capture any changes in
the population of active Ukraine-based Twitter users, while the
latter strictly measures how these active users change their
behaviour.

Figure 3b visualizes the average fitted sample (population)
effects, i.e. the graphs depict how the average time-constant
tweeting intensity in our active user sample changes over time
due to user turnover. The figure shows, that the average RU
tweeting intensity is mostly constant over time until November
2021, where aggression starts. From that point onward, in the
span of only a few months, we see a decline of 21% in RU tweets
from November 2021 to October 2022 (end of study period),
solely attributed to changes in the user sample during that period.
For EN, we find somewhat of an opposite effect. Similarly, there
are only minor fluctuations until November 2021. But afterwards,
there is a sharp increase of 107%. Taking a look at UA, we find a
long-term increase of about 43% before the aggression starts. This
increase comes to a hold shortly before the war, and considerably
speeds up in the weeks after (+87%). All (relative) effect sizes
calculated between the most relevant dates in our analysis period
(start of study period, first signs of aggression, outbreak of war,
end of study period) are reported in Table 1. We elaborate on this
in Supplementary Notes 6, where we provide an additional figure,
which illustrates sample changes over four-weekly intervals
(Supplementary Fig. 9). From there, we can observe that the
largest shifts clearly take place with and after the outbreak of the
war. We also provide an alternative to Table 1, which measures
the speed of change between the key dates in Supplementary
Table 5. A full breakdown of all model coefficients is available in
Supplementary Table 7.

Next, we will investigate behavioural changes using Fig. 3c. The
graphs depict how the tweeting behaviour of the active users
changes throughout the study period, when controlling for the
user turnover (sample effects). Starting with RU, we notice that
users are tweeting less and less over time. From January 2020 to
November 2021, users tweet 49% less in RU due to behavioural
changes. Subsequently, we see a small rise with the outbreak of
the war (+5%), followed up by an even steeper decline (—24%).
In contrast, UA is reasonably consistent in its use up until the
start of aggression. From there, we observe a surge (+36%) until
the outbreak of the war, followed by a gentler increase (4+15%)
after. Finally, looking more closely at EN tweeting behaviour, we
can observe a general downward trend (—34%) until November
2021. Once the aggression starts, there is a huge spike (+130%),
as users are tweeting a lot more in EN. After the outbreak of the
war, this somewhat reverses (—40%), however, without dropping
back down to pre-aggression levels. A full breakdown of all
changes is reported in Table 1. Again, we elaborate in in
Supplementary Notes 6. Supplementary Figure 9 shows that the
largest behavioural shifts take place shortly before, with, and after
the outbreak of the war. As a robustness check, we also pursue
two alternative modelling strategies, one using factor smooths
instead of random intercepts, the other implementing a
regression discontinuity design, which are discussed extensively
in Supplementary Notes 2.1 and 2.2 respectively. Both confirm
the behavioural patterns described here.

Overall, we can conclude that there are only minor sample
shifts pre-dating aggression that affect tweeting activity, but
major shifts thereafter. In terms of behaviour, we can already
observe steady changes early on, which considerably intensify
with the war. However, as of yet, we cannot exactly pinpoint
where those changes come from. Are users that already tweet in
UA simply tweeting more with the outbreak of the war, or is it
possible that users are actively switching the language they are
tweeting in?
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Table 1 Tweet activity effect sizes between key dates

Language Sample effects
Start— Aggression War—End Aggression—
Aggression —War Study End Study
English +6.16% +34.87% +53.14% +106.54%
Ukrainian  +43.12% —0.44% +87.70%  +86.87%
Russian —2.91% —17.41% —4.12% —20.82%
Behavioural Effects
English —34.41% +130.11% —39.98% +38.09%
Ukrainian  +4.67% +35.72% +15.184% +56.32%
Russian —48.90% +4.68% —23.86% —20.30%

Effect sizes for both sample and behavioural changes extracted from the tweet model described
in Section “Tweet Modelling” between key dates. All effect sizes are relative increases in the
number of tweets between the two respective dates. For the start date calculation, we drop the
first two weeks of the study period. Start: start of the study period—27th January 2020.
Aggression: first official US report of a mobilization of the Russian troops along the Ukrainian
border—11th November 2021. War: outbreak of the war—24th February 2022. End Study: end of
the study period—10th October 2022.

Choice of language. We analyze the choice of language more
closely in the following. As we are interested in shifts between the
individual languages, we look at the pairwise probability to tweet
in one language over another over time. Hence, the probability
reports how likely it is that a user tweets in language one (e.g.
UA) over language two (e.g. EN). With three languages, this
pairwise evaluation gives us a total of three different language
pairs (UA over RU, UA over EN, RU over EN), where the order
in which we specify each pair is irrelevant. Figure 4a visualizes
how these pairwise probabilities evolved for an average user over
time. For RU over EN the probability is mostly constant (82% to
tweet in RU) until aggression starts, from where it continuously
drops down to 58%. For UA over EN we see small increases over
time (68-72%). With the mobilization of the Russian troops, we
see a drop (62%), followed by a rise back to pre-aggression levels
months into the war. Finally, for UA over RU we see a completely
different pattern. Initially, the probability to tweet in UA is low
(32%), from where it continues to rise consistently. In the weeks
leading up to the war, there is a considerable speed up in this
shift, resulting in a probability of 76% to tweet in UA over RU
towards the end of the analysis period in October 2022.

Similarly to before, we can disentangle sample shifts from
behavioural changes through statistical modelling. In summary,
we fit a GAMM to model users’ pairwise language probability to
tweet over time, assuming a binomial distribution. As before, we
include a smooth global time trend and user-specific random
effects into the model. We fit such a model, for all three
aforementioned language-pairs. A full description is provided in
Section “Language Modelling”.

Figure 4b visualizes the fitted average sample effects across all
three models, i.e. the graphs depict how the average time-constant
tweeting probabilities in the active user sample change over time.
As we are working with coefficients of a logistic regression,
changes must be interpreted with respect to changes in the odds.
The figure shows that for RU over EN, initially, there is only a
minor decline (—19%). However, as we approach the outbreak of
the war, we can report a large drop in the odds, as users are 62%
less likely to tweet in RU over EN than before, with further
decreases thereafter (—29%). For UA over EN, we find a small to
moderate increase until aggression (+21%) due to sample shifts,
followed by a large drop until war outbreak (—52%), which is
recovered in the months after (+42%). Finally, for UA over RU,
there is a constant increase in the odds over time (+66%), which
speeds up once aggression starts (+87% until October 2022).
Table 2 details all changes. As before, changes over four-weekly

intervals are visualized in Supplementary Fig. 10. The figure
shows that the sample effects for the language choice are slightly
more erratic, but the major shifts take place with and after war
outbreak. The alternative to Table 2, with the speed of changes is
available in Supplementary Table 6, the full breakdown of all
model coefficients in Supplementary Table 8.

Combining this with the results from the previous section, we
can conclude that the user turnover in the first 1.5 years shifts the
sample such that users are more likely to tweet in UA (than RU or
EN), but not at the expense of either of the two other languages,
as the sample effects for tweeting activity are (mostly) steady for
both. As we approach the outbreak of the war, this drastically
changes. Then, the user sample clearly shifts away from RU, as
users are instead tweeting more in EN (initially) and UA (long-
term). Upon further investigation (Supplementary Notes 7 and
8), we find that users tweeting in RU start leaving around
November 2021 (start of aggression), with EN users joining. The
former continue to leave as the war unfolds, with a few of the
latter also leaving the sample again over time. This is also
reflected in the increase of the UA odds over time (UA over RU
consistently, UA over EN as war continues).

Figure 4c reports behavioural language changes across all three
language pairs, when controlling for the user turnover. For RU
over EN we see a constant decline in the odds over time (—38% to
tweet in RU), which further speeds up once aggression starts
(—51%). For UA over EN we see the exact opposite, as over time
users are more likely to tweet in UA (4+64% in odds). This change
reverses with the start of aggression and the outbreak of the war
(—34%), but subsequently reaches pre-aggression levels as the war
unfolds. Finally, we can see a clear shift from UA to RU even
early on (+129%). This switch becomes even more striking with
the outbreak of the war, as users are actively changing their
behaviour such that the average user is 249% more likely to tweet
in UA over RU in the span of a single year. Table 2 reports all
relevant changes. Supplementary Figure 10 similarly illustrates
that the biggest behavioural shifts take place around the outbreak
of the war, but also that there already is a constant long-term shift
from UA towards RU before. Our alternative modelling strategies
in Supplementary Notes 2.1 and 2.2 confirm these findings.

Connecting these language shifts with the results on tweeting
activity, we find that the initial decline in EN and RU tweeting
activity is not limited to monolingual users. Instead, users are
actively shifting towards UA, by reducing their amount of RU
and EN tweets (with a stronger shift from RU than EN
respectively). Similarly, the temporary increase in EN tweeting
behaviour leading up to the war can be linked to both UA and RU
users. Finally and most importantly, the decline of RU and the
rise of UA tweeting behaviour that manifests itself with the war is
strongly driven by a major language shift (2.5 times increase)
from RU to UA.

We visualize and demonstrate this substantial behavioural
language shift from RU to UA in Figs. 5, 6. Figure 5 plots the
language proportion of each user (UA to RU; from 0 to 1) that
tweet in either language before (y-axis) and after the war (x-axis).
Hence, along the straight black line through the origin we have
users that do not switch language (top right UA, bottom left RU),
users above the line switch to RU, below the line to UA, with
users switching completely from one language to the other being
located in either the top left (all tweets in UA to all in RU) or
bottom right corner. Statistically significant (p <0.05, z>1.96)
language shifts from before to after war outbreak are determined
using a two-sided z-test with unequal variances on each user’s
language proportion, and are marked in the plot (the distribu-
tions were assumed to be normal but this was not formally
tested). From the figure it becomes evident that there are many
users that do not switch language (in both UA and RU), as well as
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many users clearly switching from RU to UA at various levels,
whereas there are only very few switching from UA to RU.

In this sample of users who tweet in either RU or UA both
before and after the outbreak of the war (3237 users), we have
1363 users who predominately tweet in RU (>80% of tweets)
before the war. Of those, 839 (61.6%) tweet more in UA after the
war, with 566 (41.5%) reporting a significant behavioural change
(z>1.96, p <0.05). Out of those 850 users, 341 (25%) even switch
to predominately tweeting in UA (>80% of tweets), i.e. perform a
hard-switch, with 296 (21.7%) statistically significant hard-
switches (z>1.96, p <0.05). We pick those 296 users and plot

their weekly language proportion over time in Fig. 6. Red points
denote 100% of the tweets being phrased in RU, blue points
denote the same in UA. From the figure, we can clearly see a
substantial break and change in behaviour around the time the
war breaks out (second black line), as most of the users switch
from RU to UA around this mark.

On Ukrainian side, we have 1172 users who predominately
tweet in UA (>80% of tweets) before the war. Of those, 471
(40.2%) tweet more in RU after the war, with only 83 (7.1%)
reporting a significant behavioural change (z>1.96, p<0.05).
More importantly, we only observe 35 (3%) hard-switches, out of

Table 2 Language choice effect sizes between key dates

Language Sample Eeffects
Start—Aggression Aggression—War War—End study Aggression—End Study
UA over RU +66.13% +13.00% +65.72% +87.25%
UA over EN +21.43% —52.08% +41.96% —31.98%
RU over EN -19.01% —61.74% —29.33% —72.96%
Behavioural effects
UA over RU +128.69% +52.08% +129.24% +248.63%
UA over EN +64.14% —33.61% +92.663% +27.90%
RU over EN —38.23% —38.69% —20.659% —51.36%

Effect sizes for both sample and behavioural changes extracted from the language model described in Section “Language Modelling” between key dates. All effect sizes are relative increases in the odds
between the two respective dates. For the start date calculation, we drop the first two weeks of the study period. Start: start of the study period—27th January 2020. Aggression: first official US report of
a mobilization of the Russian troops along the Ukrainian border—11th November 2021. War: outbreak of the war—24th February 2022. End Study: end of the study period—10th October 2022.
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Fig. 5 Scatterplot of users’ language proportions before and after the outbreak of the war. We are only considering users who tweet in either RU or UA
(or both) before and after (n =3237). The points are coloured with respect to each user’s shift in language. 1 (orange) denotes a complete shift to UA, —1
(green) a complete shift to RU, O no shift. The straight line through the origin covers all points without a shift. Significant shifts (z>1.96, p < 0.05) using a
two-sided z-test with unequal variances on each user's language proportion are denoted through full (non-empty) points. n =1808 (821 significant) shifts
towards Ukrainian, n = 818 (106 significant) shifts towards Russian. Only RU and UA tweets of each user are considered.
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ach row (on the y-axis) denotes one of the n =295 users with a statistically
to each user's language proportion in the respective week (145 total weeks).

Blue = 100% Ukrainian, red = 0% Ukrainian (=100% Russian). Missing points indicate that a user was not tweeting in the respective week. Only RU and
UA tweets of each user are considered. The first vertical line denotes the mobilization of the Russian troops along the Ukrainian border. The second line

denotes the outbreak of the war.

Table 3 Median % differences in user characteristics

Characteristic No switch Switch Difference P-value 22(1)

Followers 77 19 +54.54% 0.004 8223

Followings 16 132 +13.8% 0.155 2.023

Account age (month) 94.15 105.66 +12.22% 0.073 3.196

Tweet frequency 0.79 116 +47.73% 0.021 5.352

Likes frequency 0.84 1.25 +48.93% 0.021 5.352

# of tweets in Ukraine 57 85 +49.12% 0.001 10.639

War topic 1 4.0 6.5 +62.5% <0.001 22.061

War topic 1 (rel.) 0.061 0.063 +4.71% 0.801 0.063

War topic 2 1 2 +100% 0.007 7.312

War topic 2 (rel.) 0.013 0.015 +17.6% 0.461 0.543

n=1067 users in the no switch group, n =296 users in the switch group. Column 2 reports the median of the respective user characteristic for those Russian users that do not perform a statistically
significant hard-switch to Ukrainian with the outbreak of the war, column 3 for the users that do. Significant (p < 0.05) differences using a two-sided chi-squared are marked in bold. A description of all
user attributes is provided in Section “User Characteristics”.

which 20 (1.7%) are significant (z>1.96, p < 0.05). Hence, there
are only very few UA tweeting users for which we can report a
significant switch towards RU after the war.

Finally, we analyze potential differences in those RU users that
perform a hard-switch to UA from those that do not (see
Table 3). We find that there are significant differences (p < 0.05)
in the median in various user characteristics between the two
groups using a two-sided chi-squared test (no distributional
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assumptions required). Users switching have more followers
(+54.5%, x*(1)=8.223, p=0.004), a higher tweet frequency
(+47.7%, x*(1)=5.352, p=0.021) as well as a higher like
frequency (+48.9%, y2(1) = 5.352, p = 0.021) and published more
Ukraine geo-tagged tweets during the study period (449.1%,
*(1) =10.639, p=0.001), whereas there are only small non-
significant differences in account age (+12.2%, y*(1) =3.196,
p=10.07) and followings (+13.8%, x*(1) = 2.023, p =0.16).
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We also conduct a multilingual topic modelling on the tweets
using BERTopic?®. The method and its results are thoroughly
described in Supplementary Notes 1. We find two topic clusters
referencing the war (topic #1 and topic #3). The former is mostly
related to updates regarding the situation, asking for help, and
supporting the people of Ukraine, the latter covers a more
political side of the overall conflict. Both topics are in total more
discussed by those RU users that switch language (462.5%,
x3(1) =22.061, p<0.001; +100%, y2(1)=7.312, p=0.007).
However, once we control for their total amount of tweets in
our dataset, i.e. we compute a relative share of war related tweets
for each user, the differences shrink and turn non-significant
(+4.71%, x*(1)=0.063, p=0.801; +17.6%, x*(1)=0.543,
p=0.461).

Discussion

In our work, we collected geo-tagged tweets from Ukraine and
analyzed tweeting activity and language choice before and during
the Russian war in Ukraine from 9th January 2020 to 12th
October 2022. Due to the nature of our longitudinal dataset and
our methodological approach using a generalized additive mixed
model (GAMM), we were able to disentangle and quantify shifts
in the user sample, arising from user turnover, from behavioural
changes of the actively tweeting users. Our GAMMs were able to
handle the large sample size and take care of user’s varying
periods of inactivity within the study period, while at the same
time allowing for a flexible non-linear but interpretable model fit.

Our analysis shows a steady long-term shift away from Russian
towards Ukrainian already before the war, as the Ukrainian tweet
probability rises substantially (vs. Russian; 33% to 48%). This
shift is majorly driven by behavioural changes. The actively
tweeting users reduce their number of Russian tweets in favour of
Ukrainian over time. This is likely a conscious choice and thus
shift in how the users communicate and present themselves to
their online audience?6-2%31. This finding is also in line with
trends observed over a 20-year period between the 1989 and the
last conducted census in 20013¢ and more recently across
surveys3’, where the share of people reporting Ukrainian as their
native language perpetually rose over time. Notably, with the
Euromaidan protests and the subsequent Russian military inter-
vention in 2014, this shift seems to have sped up, as citizens
ethnonational identification and everyday language use is sub-
stantially shifting towards Ukrainian. This recent shift towards
Ukrainian has also been identified in a small qualitative study on
Facebook posts®®. We can confirm these findings quantitatively
both at-scale and in an ecologically valid setting.

We find this gradual shift to drastically speed up with the start
of Russian aggression in November 2021 and the subsequent
outbreak of the war. In the span of a few months, Ukrainian tweet
probability rises from 48% to a remarkable 76%. While some of
this increase can be explained by Russian tweeting users leaving
and Ukrainian users joining (+87% in odds to tweet in Ukrai-
nian), the major factor is a behavioural change (+249% in odds to
tweet in Ukrainian), with a rise in Ukrainian (456%) and a
decrease in Russian tweeting activity (—20%). Notably, we show
that out of those users predominately tweeting in Russian before
the war, roughly half of them tweet more in Ukrainian after.
Strikingly, around a quarter of them switch to predominately
tweeting in Ukrainian, i.e., they are performing a hard-switch. It
is worth noting, that we do not observe more than a handful of
switches in the other direction. This shift from Russian to
Ukrainian is in line with news reports and small-scale surveys
outlining the war as the cause for the recent changes in language
use across Ukraine383°, We theorize that this is a highly politi-
cized response. Users want to distance themselves from any

support of the war by no longer using Russian, and consciously
change their self-expressed (online) identity?6-2%31, as also
already to some extent reported after the Russian military inter-
vention in 2014 both on- and offline37-°0 and confirmed in our
study through the gradual shift before the war. However, with the
Russian invasion, this shift seems to have sped up massively.
Moreover, the distancing from supporting the war may also
explain why Russian users that perform a hard-switch to Ukrai-
nian seem to be more active on Twitter (including discussions on
the war) and have a larger follower base (median of 119 vs. 77).
Pressure and general interactions on social media were already
reported among the main reasons for the language switch after
2014%. Note, that this might also (partially) explain the sample of
active users shifting from Russian towards Ukrainian (sample
effects).

In addition, we observe a long-term behavioural shift away
from English tweeting activity up until November 2021. This
could be interpreted as a reduction in talking to a broader
international audience during that time®1-63, due to the fact that
English is the most widely understood language on the internet by
far31.64, However, not surprisingly, with the mobilization of the
Russian troops along the Ukrainian border and specifically in the
weeks leading up to the war, with a spike during outbreak, we
observe a substantial shift towards English. We hypothesize users
wanted to let the world know what was happening and called for
aid3!, which is supported by the fact that we observe a heavy spike
in English tweets assigned to the first war topic (more related to
help, support and updates). While we record a large influx of
English speaking users during that time (4+35% in number of
tweets), we can also see a substantial behavioural shift (+130%).
Already active users tweet substantially more in English, inde-
pendent of the language they were normally tweeting in. As the
war continues to unfold, this somewhat reverses, with some of the
newly joined English users leaving and behaviour reverting,
although not to pre-aggression levels. With the world being more
aware of the situation, and the international community sup-
porting Ukraine in various ways®>%0, users likely have less rea-
sons to continue tweeting in English. Instead, they return back to
intra-national discussions and thus their native language(s).

Limitations. We recognize that while our study provides a strong
foundation towards a better understanding on how the Ukrainian
population reacted to the Russian invasion both on- and offline,
possible limitations need to be acknowledged. The sample of
users investigated here is not representative of the entire Ukrai-
nian population. Indeed, it is skewed towards the younger and
middle-aged part of the population (aged 18-49, see also Section
“User Characteristics”). Additionally, we want to emphasize that
geo-information is not included on most Twitter clients by
default, which might further skew the sample. As on most other
social media platforms, users have the option to create new
accounts, which we cannot match to their prior ones. Hence,
some of the behavioural effects might even be underestimated
and instead accounted for as sample effects. Moreover, users
might stop tweeting (with Ukrainian geo-information) for various
reasons (e.g. because they fled the country). One should keep in
mind that the behavioural language shifts taking place with the
outbreak of the war are only demonstrated for those users who
continue to tweet at and/or after the outbreak, which could
potentially lead to a selection bias. Future work may analyze the
content and sentiment of the tweets more closely. This could be
augmented through the use of media objects attached to the
tweets such as images and videos. An investigation of retweet and
follower networks may reveal additional differences between
those users that are shifting language to those that are not.
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ABSTRACT

Facilitated by advancements in conflict event databases, studies have moved towards predicting
armed conflict and understanding its determinants subnationally. However, existing statistical mod-
els do not analyze nor capture the diffusion of armed conflict, and hence do not adequately account
for its dependence across both time and space. To address this, we introduce a regression approach
that simultaneously captures both spatial and temporal dimension of the diffusion of armed conflict
through non-parametric smoothing, while all its effects and parameters remain fully interpretable.
Using fine-grained conflict data on Africa, we observe that diffusion exhibits long-lasting and far-
reaching dependencies that decay exponentially in both space and time, thus highlighting the impor-
tance of controlling for these effects. We illustrate the flexibility of our method for studying conflict
diffusion, by investigating the role of population in the transmission of conflict. We find that con-
flict typically breaks out in densely populated areas, and from there diffuses, specifically to lower
population areas.

Keywords Armed Conflict, Diffusion, Smoothing, Spatio-temporal Modelling

1 Introduction

Predicting armed conflict and understanding its determinants has been the key focus of conflict research for decades
(Blattman and Miguel, 2010; Hegre et al., 2017). However, only in recent years the field has moved away from
country-level designs towards analyzing conflict in more fine-grained subnational areas (Bazzi et al., 2022), as new
conflict event databases such as the Uppsala Conflict Data Program (UCDP) Georeferenced Event Dataset (GED)
(Sundberg and Melander, 2013) and the Armed Conflict Location & Event Data Project (ACLED) (Raleigh et al.,
2010) have become available. Paired with the emergence of new data sources such as social media and remote sensing
data obtained from satellite imagery (Racek et al., 2024), numerous new studies have been published that analyze
conflict at a local, disaggregate level (Von Uexkull et al., 2016; Abidoye and Cali, 2021; Mueller et al., 2022). As a
consequence, more advanced statistical models are finding their way into the field (Fritz et al., 2022).

Recent studies at the subnational level have often utilized monthly observations across a lattice grid of equally-sized
cells (Ge et al., 2022; R¢d and Weidmann, 2023; McGuirk and Nunn, 2024). However, most of the employed models
do not adequately account for the dependence structure of conflict over both time and space. Using Monte Carlo
simulations, Schutte and Weidmann (2011) have shown that armed conflict indeed exhibits patterns of spatio-temporal
diffusion, meaning, that future conflict is influenced by past conflict within the same grid cell but also by past conflict
in its (further-away) neighbours. Although numerous studies have reported that past conflict is the best predictor of
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future conflict (Bazzi et al., 2022; Racek et al., 2024), conflict diffusion has not yet received the necessary attention,
especially compared to other fields such as criminology (Fitzpatrick et al., 2019; Kounadi et al., 2020; Butt et al.,
2020) or epidemiology (Meyer and Held, 2017; Briz-Redén and Serrano-Aroca, 2020). Diffusion follows patterns of
social behaviour and can often be attributed to rational decisions of actors (Goyal, 2023, p.590). For example, Mueller
et al. (2022) argue that ethnic groups act strategically and rationally choose where and when to attack. Schutte (2017)
shows that conflict takes place both close as well as far away from capital cities, likely due to differences in location-
dependent power between both rebels and the government. However, including such underlying diffusion patterns into
statistical models remains a challenge, both practically, i.e., in terms of design, as well as computationally (Weidmann
and Ward, 2010). Hence, empirical insights on the diffusion of armed conflict are still very limited. Instead, most
studies treat the dependence that arises from this diffusion “as a nuisance” (Schutte and Weidmann, 2011, p.152)
and try to control for it by including simple temporal and (rarely) spatial lags. Indeed, many studies do not consider
conflict in neighbouring grid cells at all (see e.g., Bazzi et al., 2022; Fritz et al., 2022; Chadefaux, 2022; Schon
et al., 2023), or make the simplifying assumption that spatial dependence is limited to the direct neighbours and only
existent for a small number of time lags (Weidmann and Ward, 2010). While the situation is slowly starting to improve
for black-box machine learning models (see e.g., Radford, 2022; Brandt et al., 2022), for interpretable regression
models and other statistical models it has not. Consequently, (causal) analyses on the determinants of conflict may
over- or underestimate the impact of the respective predictors of interest due to omitted-variable bias arising from
the uncontrolled dependence (see Cook et al., 2023 for an recent in-depth discussion on this), and thus may derive
incorrect policy implications (Schutte and Weidmann, 2011).

To address these limitations, in this work, we propose a regression model that can flexibly incorporate both the spa-
tial and the temporal dimension of the diffusion of armed conflict, while — contrary to black-box machine learning
models — all its effects and parameters remain fully interpretable. Our main contributions are the following. First, our
findings highlight that organized armed conflict indeed exhibits substantial diffusion across time and space, and that
this dependence cannot be captured by traditional models employed in the field. Using our proposed model, which
covers diffusion up to 550km in distance and 24 months in the past, we demonstrate how conflict is triggered across
cells, over both varying distances and time lags. Second, we exemplify the flexibility of our approach for studying
the diffusion of conflict, by exploring the role of population in the transmission process. We find that diffusion is
heavily driven by population structures. Conflict generally breaks out in densely populated areas and from there dif-
fuses across the region, disproportionately affecting less populated areas. Third, although our method is designed to
study armed conflict, it is highly adaptable and can be applied to analyze or account for any other diffusion process
across spatio-temporal units with long-lasting and far-reaching dependencies. Analogue to other regression models,
the distribution and thus unit of analysis can be specified freely. Fourth and finally, model estimation can be carried
out with existing R estimation routines and packages. We provide a tutorial on how researchers can apply our method
for their own work in our Supplementary Material and repository (https://osf.io/ypwuv/).

To study conflict diffusion, we draw on conflict fatalities from UCDP GED and employ the 0.5 x 0.5 decimal degree
(roughly 55 x 55 km? at the equator) lattice grid structure across Africa, predominantly used in the literature. We
design a generalized additive model (GAM) (Wood, 2017) with a flexible non-parametric spatio-temporal smoothing
component over past conflict, to predict the monthly conflict fatalities in each grid cell, assuming a Poisson distribution.
Our smoothing basis is constructed through a set of exponential decay functions with varying decay rates.

Thus, our proposed model has similarities to a spatio-temporal Hawkes process (Reinhart, 2018; Jun and Cook, 2022),
a self-exciting point-process with an underlying Poisson intensity, that typically employs exponentially decaying trig-
gering functions across time and space, increasingly used in epidemiology (Meyer et al., 2012; Schoenberg et al.,
2019) and to model the dynamics of crime (Mohler, 2014; Reinhart, 2018; Reinhart and Greenhouse, 2018). Like-
wise, (spatio-temporal) log-Gaussian Cox processes (LGCPs) (Zammit-Mangion et al., 2012) can model complex
spatial point patterns through the use of Gaussian fields. Note, the close connection between Gaussian processes and
kriging (Zammit-Mangion and Cressie, 2021; Christianson et al., 2023). The main difference between LGCPs and
Hawkes processes is that the latter explicitly differentiate between exogenous and endogenous effects through their
self-excitation mechanism (for a comparison, see Miscouridou et al., 2023). Our model is more closely aligned with
Hawkes-type processes, as our diffusion component is included directly in the linear predictor of the GAM. This al-
lows us to investigate specific (endogenous) spatio-temporal diffusion mechanisms, separate from other (exogenous)
covariates, while being able to use existing GAM software for efficient model estimation. Although point processes
(see e.g., Daley and Vere-Jones (2006), and Mgller and Waagepetersen (2017), for an introduction and overview),
such as Hawkes processes and LGCPs, are, in principle, the true generators of individual conflict events, each event is
only coded with an approximate date and location, i.e., the events come with a high spatial and temporal uncertainty
(e.g., they are often assigned to the capital city of a district or state). Thus, conflict is generally analyzed in coarser
spatio-temporal units, instead of as individual events, covering larger areas (e.g., grid cells or administrative units) and
longer time intervals (e.g., months or years). Under these conditions, employing point process models may lead to
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biased estimates, incur unnecessarily high computational costs and they may become unstable due to the low number
of events in many regions. Hence, in our proposed diffusion model, we make explicit use of the lattice grid, i.e.,
discretize both time and space, which leads to a stable and comparably low-cost estimation routine. This also means,
fitting more complex model specifications over larger sets of areas, such as entire continents, becomes computationally
feasible.

Our approach is also related to models from both the spatial and temporal econometrics literature, such as the autore-
gressive (AR) and autoregressive exogenous input (ARX) model (Box et al., 2015), the spatial-autoregressive (SAR)
(LeSage and Pace, 2009) and Durbin model (Mur and Angulo, 2006), as well as the recently proposed spatio-temporal
autoregressive distributed lag (STADL) model (Cook et al., 2023). Contrary to these, we do not only include temporal
and/or spatial lags, but an exhaustive combination of both. Hence, we allow for (varying) direct effects of the spatio-
temporal lags of the dependent variable and/or potentially any other exogenous variable(s). One could conceive this
design as including an entire spatio-temporal cylinder of past information into the model for each observation (see
Figure 2). This implies that a large number of coefficients needs to be fitted. Hence, smoothing becomes a necessity
in order to reduce the impact of noise on the model fit and to correctly capture the diffusion. Predicting subnational
conflict, specifically its onset and escalation, has continuously been recognized as an extremely difficult task, as there
are very few observations of actual conflict (Hegre et al., 2021, 2022; Bazzi et al., 2022; Racek et al., 2024). Hence
overfitting (Cawley and Talbot, 2010; Mullainathan and Spiess, 2017), in which a model does not generalize (as well)
to new unseen data points, becomes an issue. Our proposed smoothing approach overcomes these difficulties, as will
be demonstrated by our out-of-sample evaluation.

One can also draw parallels to time-space (adaptive) smoothing approaches such as the one recently applied for conflict
in Tapsoba (2023), and more generally in other fields such as climatology (Lee and Durbédn, 2011) and seismology
(Helmstetter and Werner, 2014). Contrary to these, we do not smooth across explicit points in time and space, but
instead across the spatio-temporal history of each observation. While the former captures the general intensity of
conflict in certain regions at specific points in time, our approach explicitly models the diffusion and thus dependence
of conflict. Note, these two approaches can be seen as complementary. In fact, our model additionally includes a
spatial effect across the lattice grid, separate from the spatio-temporal diffusion component, in order to account for the
varying levels of conflict intensity across the continent.

Finally, our contribution is closest to the small body of literature investigating spatial patterns in armed conflict.
Mueller et al. (2022) find exponentially decaying diffusion effects in distance that differ between selected countries
based on the composition of ethnic groups. Studying conflict in the North Caucasus, Zhukov (2012) observes spatial
diffusion facilitated by road networks. Developing a statistical test using Monte Carlo simulations, Schutte and Wei-
dmann (2011) find statistically significant spatio-temporal diffusion effects for first-order neighbouring cells in four
cases of civil war. The main difference of our work is that we do not only account for the spatial dimension of the
diffusion, but instead also combine it with the temporal dimension, to consider spatio-temporal lags for both large
distances as well as many past points in time. Notably, contrary to e.g. Schutte and Weidmann (2011), we capture this
through a regression model. Hence, we can measure effect sizes of the diffusion, combine it with other explanatory
variables, i.e., investigate interactions, or use the model to study other mechanisms while controlling for the diffusion.

The remainder of the article is organized as follows. Section 2 describes all utilized data sources and how they are
pre-processed. In Section 3 we thoroughly describe our proposed method, introduce reference models employed in the
literature, explain our model evaluation criteria and discuss the model extension to investigate the role of population.
Then, in Section 4, we present our results. Finally, in Section 5, we discuss the results and conclude our work.

2 Data

We rely on conflict data from the widely known UCDP GED (Sundberg and Melander, 2013), which reports events
of organized violence resulting in at least one estimated death from 1989 onwards. These events are systematically
collected by an experienced team of researchers, and draw on information from national and international news reports,
international organizations as well as NGOs. Each event is assigned an approximate date and location, type of violence
and an estimated number of fatalities. We utilize battle-related fatalities, i.e., deaths which result from either state-
based or non-state violence between organized parties (similar to other recent studies, see e.g., Vesco et al., 2022;
Rgd and Weidmann, 2023). We discard a small number of events with unknown/imprecise time (1.6%) and location
estimates (14.3%), and only keep those that have a time precision < 1 month and for which at least the second order
administrative region is known.

The remaining events are matched on a monthly basis to the commonly employed PRIO grid cells (Tollefsen et al.,
2012), used across numerous studies in conflict research (Koren and Bagozzi, 2017; Vesco et al., 2022; McGuirk and
Nunn, 2024). They have a size of 0.5 x 0.5 decimal degrees, which is roughly equivalent to 55 x 55 km? at the equator,
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and cover the whole world. We employ these grid cells instead of administrative units, in order to avoid problems with
varying sizes of the latter within and across countries (see also Racek et al., 2024). For reasons of comparability, we
study Africa, where armed conflict is prevalent and many research studies have been conducted in (Von Uexkull et al.,
2016; Schutte, 2017; Bagozzi et al., 2017; Koren and Bagozzi, 2017; Abidoye and Cali, 2021; Maconga, 2023). A
visualization of the grid cells with the considered events is provided in 1a. We analyze conflict on a monthly basis, as
a more fine-grained temporal resolution becomes problematic due to the imprecision in reported event dates.

We restrict our analysis period to the years 2000 to 2020, due to the limited availability of some of our data sources,
and focus on the monthly amount of battle-related fatalities in each cell. Altogether, this means we have a total of
10,640 grid cells and 252 months, resulting in 2,681,280 observations. Note, armed conflicts are in most parts of the
world, including Africa, extremely rare events. Only 0.38% of all monthly observations contain one or more fatalities
(mean = 0.068), with a maximum of 1024 fatalities in a single month. The distribution of all non-zero observations is
reported in 1b.

We draw on population data from the WorldPop project (Tatem, 2017). Using satellite imagery, surveys, census data
and various other geospatial datasets, it estimates yearly population numbers across the world from the year 2000
onwards. We employ the 1km resolution dataset and derive the total amount of population for each cell for each year.
In order to avoid a leakage of future information into our models, we lag these numbers in the matching process by a
year. As la shows, conflict events typically take place in areas with higher population numbers.

From 1la we can observe that grid cells differ in size, as cells at the coast are cropped by definition. Hence, we
compute the total area covered by each cell in km?. Finally, we also draw on yearly country-level PPP-adjusted
GDP data from the World Bank (2024), and the revised Polity Score (Polity2) as an indicator for the yearly level of
democracy from the Center for Systemtic Peace (Marshall et al., 2017) (both lagged by a year). As cells might cover
territory of more than a single country, we determine each cell’s country through the majority coverage of its area,
using border information provided by CShapes (Schvitz et al., 2022). We provide a Table with descriptive statistics of
all variables in Supplementary Material S.1.
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Figure 1: Descriptive plots.
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3 Methods

3.1 Standard Spatio-Temporal Diffusion Model

Let Y; 5 denote the number of fatalities occurring in month ¢ in cell location s. We define s = (r, )T as a bivariate

location vector, where 7 refers to the row, and c to the column of the respective location in the grid. As the number of
fatalities are count data we assume that
Y, s ~ Poisson(\; )

with intensity A; s. Note, in theory, the model described subsequently could be fitted with any distribution from the
exponential family, with the corresponding change in interpretation as the conditional mean of the chosen distribution.
In our spatio-temporal diffusion model (we will refer to this as model M1) , we define the intensity as

)\t,s = erp(mIqBT + g(s) + V(Ht,s))z (D

where x; 5 is a feature vector including the intercept, the time-constant cell size, the lagged (logged) population of
each cell, the lagged (logged) country-level GDP per capita and the lagged country-level Polity Score. We include
the latter two controls, as countries with a lower GDP per capita (Pinstrup-Andersen and Shimokawa, 2008) and a
lower level of democracy (Hegre, 2014) typically experience more conflict (outbreaks). We include population, as it
has been shown to be among the best and few consistent predictors of armed conflict (Racek et al., 2024), with higher
population numbers being associated with an increased risk of conflict (Raleigh and Hegre, 2009). Theoretically, x; s
could be extended to include any additional covariates. The component g(s) represents a smooth location effect that
captures time-constant levels of conflict intensity across Africa. For this, we employ thin plate regression splines
(Wood, 2003), which are low rank approximations of thin plate splines. They avoid the problem of knot placement
and are isotropic, i.e., independent to rotations of our grid. We denote y(Hy ) as our diffusion effect of conflict, using
the notation H; , to express that we are utilizing the history and neighbouring history H of a cell location s at time
point ¢ in our flexible spline representation. More specifically, we make use of a basis function representation leading
to the linear structure
V(Hys) = b(Hy o) "u,

where b(H, ;) is a high-dimensional basis and w are the associated basis coefficients to be estimated. We model the
basis as follows. Let 7 > 0 be the maximum time lag considered and 6 > 0 be the maximum distance considered. We
then define our basis as

t—1
b(His)= Y > all,t)@o(3,s)log(Vi; +1)
i=t—7 3€Ns(s)
where ® is the Kronecker product of all our basis vectors in time (a) and space (o), where
Ns(s) ={8:|s —s|| < 6}

defines the neighborhood of location s. The distance between s and s is measured through Euclidean distance on grid
cell indices. In practice, this means we sum up our time-space basis vector (that results from the Kronecker product)
over all past time points for which ¢ — ¢ < 7 and all neighbouring cells for which ||§ — s|| < d.

The individual basis functions in both time and space are defined as exponential decay functions, which are scaled
such that their maximum value is 1 and their minimum value is 0 for all w. To be specific, we set

- exp(—wy (T—1t)) — exp(—wy 7)
ak(t, ) = exp(—wy) — exp(—wy T)

where wy, > 0 and wy, = {wy, ..., wx } are pre-defined decay rates. Accordingly we define the basis in space as

= o ap(=vg ||3 — s]|) — exp(—vy 9)
0(8,8) = 1—exp(—vy 0)

with decay rates v, = {vy,...,ug}. Hence, b(H; ;) € REDX1 where K and G are chosen to be large for model
flexibility, necessitating smoothing to prevent overfitting.

Our method can be conceived as including a spatio-temporal cylinder of past information into the model for each
observation (see Figure 2), over which we construct our basis. This implies, we allow for direct spatio-temporal
dependence for any of the included lags. Similar to other temporal and spatial dependence models, these direct effects
are amplified indirectly through spatial and temporal multipliers. For example, conflict in a neighbouring cell in the
past increases present conflict in a given cell directly, this in turn (indirectly) increases future conflict in the cell
through temporal dependence and in its neighbours through spatio-temporal dependence. This has close similarities to
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p C

=

Figure 2: Visualization of all information included in the basis representation of the diffusion model for each observa-
tion. The cylinder results from using the Euclidean distance function in the neighborhood definition combined with a
maximum time lag. For each time lag ¢, we have a slice of conflict information comprising of the neighborhood of the
blue-colored grid cell. r and c refer to the row respectively column in the grid definition. The dots denote additional
grid cells (left part of Figure) and temporal slices (right part of Figure). This spatio-temporal cylinder (times the num-
ber of observations) is the input to each basis function over which the smooth effects are ultimately fitted.

the self-exciting behaviour of a Hawkes process (Hawkes, 1971), i.e., the occurrence of conflict in a cell makes future
conflict fatalities in the cell itself and its surroundings much more likely in the short- to medium-term, with further
conflict fatalities continuing and potentially amplifying this process. This ultimately allows us to model the dynamic
spread of conflict across regions.

We utilize a set of ten basis functions each. We set 7 = 24 to consider the past 24 lags in time, and set 6 = 10 to
consider all neighbouring cells up to a distance of (roughly) 550 km from the source cell (horizontally and vertically
this would include cells up to the 10th-order neighbour). This gives us in total a combination of 10 x 10 = 100 basis
functions that differ across time and/or space. Both 7 and § are chosen based on upper bounds of effects identified in
the literature (Zhukov, 2012; Mueller et al., 2022; Fritz et al., 2022). Hence, we ensure to include a sufficient amount of
temporal lags and neighbouring cells that might still exhibit direct dependencies. Theoretically, due to the smoothing,
these upper bounds could be increased arbitrarily. However, to reduce computational complexity, reasonable cut-offs
are necessary.

As highest decay rate we choose w = 5, resulting in a basis function that only captures the first temporal lag respec-
tively the cell itself (i.e., no spatial lag). As lowest decay rate we choose w = 0.05, resulting in a basis function which
is (almost) linear. The remaining w are chosen such that there is a constant multiplicative increase in their rate. To be
specific, we choose wy, = vy = {0.05,0.0834,0.1391, ..., 5}, with wy, = 1.6681 wy,_1 for k& > 1. Both individual sets
of basis functions are visualized in Figure 3.

Due to the large amount of coefficients to be estimated (a total of 24 x 44 = 1056) , smoothing becomes a necessity in
order to reduce the impact of noise on the model fit and to correctly capture the diffusion effects. Here, this means we
assume that neighbouring points, i.e., lags in both time and space, have similar effect sizes. To guarantee smoothness
of v(H;, ), we employ a ridge penalty, i.e., we utilize the penalized log-likelihood

Lpen(0,u, p) = £(0,u) — %p u'u,

where ¢ is the log-likelihood, p the penalty and @ the remaining parameter vector. This results in a generalized additive
model (GAM) that we can estimate with the R package mgcv (Wood, 2017). For a discussion on the estimation of the
penalty p we refer to Supplementary Material S.3.

An additional advantage of our method is, contrary to traditional temporal and spatial dependence models (e.g., AR,
SAR), one does not have to choose the presumed amount of lags of the true process in advance. Instead, a researcher
may simply choose sufficiently large upper bounds (as done here). Lags beyond the dependency bounds, i.e., without
an effect, will be (almost) fully penalized out of the model and their effects will be close to zero.
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Figure 3: Visualization of the basis functions employed in the diffusion model.

‘We make the conscious decision to utilize exponential decay functions in our basis, as exponentially decaying effects
have been reported in the conflict literature before (Hegre et al., 2019; Fritz et al., 2022; Mueller et al., 2022) and
diffusion across numerous fields typically follows and is modelled through such decays (Reinhart, 2018; Meyer et al.,
2012). Thus, the model has an implicit tendency to fit an exponentially decaying effect over both time and space, while
it can still fit other patterns if more applicable. We also experimented with other approaches to construct our basis,
such as capturing the history and neighbouring history of a cell through separate basis blocks of the spatio-temporal
cylinder. While they all lead to closely similar results, as expected, issues arise when trying to achieve a smooth fit
due to forgoing this implicit tendency. We refer to Supplementary Material S.6 for details.

3.2 Extending the Model: Interplay between Population and Diffusion

The above modelling strategy can now easily be extended to improve our understanding of specific diffusion patterns
and to analyze if and how these depend on additional sets of variables. Here, we explore population as a driver for
the underlying diffusion process. In the literature, country-level (Briickner, 2010) as well as disaggregated analyses
(Raleigh and Hegre, 2009) have found that higher population numbers are generally associated with an increased risk
of conflict. Additionally, both diffusion as well as violent events are rooted in social behaviour and interactions (Goyal,
2023; Ives and Lewis, 2020; Pinckney, 2018). Hence, we suspect that conflict transmission paths can be traced along
population numbers.

We incorporate population into the diffusion, by adding a multiplicative interaction between the space-time effect of
conflict and the population of each cell. To be specific, we define

Ypop(Ht,s) = lpop(t — 12, s)b(Htﬁs)Tupup.

where }

— t

lpop(t,s) = lpop(t; 5) 73),

Ipopmaz

is the normalized logged population (from O to 1), of cell location s at time point ¢. The latter is obtained by dividing
the respective logged population by the maximum [pop,,q, over all s and t. We employ the normalized logged
population, as it makes the interpretation of the effects substantially easier, and its lagged version in 7,0, (., ) in order
to avoid potential leakage of future information into our model.

Solely adding the interaction ~y,,,(H;,s) into the model equation, would assume by definition that cells with a higher
population are more strongly affected by the diffusion of conflict (given that the base diffusion effect is already posi-
tive). Hence, we estimate

s = eap(x/ B, +9(8) +1(Hus) + Ypop (Hes)): &)

which allows for a more flexible effect of population on the diffusion. We will refer to this as model M2.

3.3 Reference Models in the Literature

To evaluate our proposed diffusion model, we formulate a range of reference models, allowing us to pursue compar-
isons with models often employed in the conflict literature. Our focus lies on fully interpretable regression models



Spatio-Temporal Conflict Diffusion

used to study and improve our understanding of armed conflict. We explicitly do not include any machine learning
model in the comparison, as their fitted effects are generally not interpretable and forecasting is not our main objec-
tive. Instead, we use the comparison to showcase that diffusion is not fully captured by the set of interpretable models
employed in the field.

For our first reference model (MO-1), we define the monthly cell intensity in the most basic form as

Mrs = exp(x] B, +g(s)), 3)

i.e., we exclude conflict diffusion and fit the model without any information on past conflict. As before, our feature
vector x; s includes the intercept, the time-constant cell size, the lagged (logged) population of each cell, the lagged
(logged) country-level GDP per capita and the lagged country-level Polity Score.

In the conflict literature, models typically only include information on past conflict within a cell, often ranging from
1-12 months (Bazzi et al., 2022; Schon et al., 2023; Chadefaux, 2022; Mueller and Rauh, 2022; Fritz et al., 2022).
Hence we set our second reference model (M0-2) to

Ais = exp(x! B, +9(s) + y. B,), )

where we define y, ; to be a T' dimensional vector capturing past conflict at time point ¢ for cell location s. The
inclusion of past conflict can be done in various ways. We opt for preserving as much information as possible and
include each lag individually, again using the logged version, which yields y, , = (log(ys—1,s + 1),log(ys—2,s +
1), ..., log(ys—7s +1))T and set T = 1,12, 24, i.e., we fit the model using 1, 12 and 24 lags of past (logged) conflict
fatalities respectively. Note, model MO-2 only accounts for conflict diffusion within a cell, i.e., it only captures the
temporal dimension of the diffusion.

A simple strategy to also account for the spatial dimension, without relying on more complex modelling approaches
such as ours, is to include first-order neighbouring lags (Weidmann and Ward, 2010). To define this formally in our
given setting, we can return to our neighborhood definition from Section 3.1. All first-order neighbouring cells are
captured by the neighbourhood

Nys(s) = {35 - s|l < V2}.

as first-order neighbours in the diagonal have an Euclidean distance of exactly v/2 in our given grid definition. In
order to avoid an overparameterization of our model, we do not include the lags of each neighbour individually, but
instead include the sum of logged fatalities of all neighbours (summing up neighbouring cells is a common strategy in
the conflict literature, see e.g., Rgd and Weidmann, 2023; Lindholm et al., 2022; D’Orazio and Lin, 2022). We define

individual
Zts = Z log(yes + 1)
€N s5(s)

and denote the vector of the first T' (first-order) neighbouring lags as z; s = (2¢—1,s, Zt—2,s, - Zt—Tvs)T~ We can now
extend MO-2 to

At,s = ea:p(wzs,@z +g(s)+ y,:s,@y + z;ﬂz)- (%)
We will refer to this model as MO-3. We similarly fit MO-3 with 7" = 1, 12, 24 lags respectively. For 24 lags this yields
Zt,s = (zt71,57 Zt—2,85 00y Zt724,s)T-

3.4 Estimation & Evaluation Strategy

We set up the estimation and evaluation of our models the following. We use the years 2000 to 2018 to fit our models,
and evaluate out-of-sample performance on all observations from 2019 to 2020. Out-of-sample evaluation is necessary,
as predicting conflict has been shown to be a particularly difficult task (Bazzi et al., 2022; D’Orazio and Lin, 2022;
Racek et al., 2024), partially due to the large amount of no-conflict observations, which means models can easily
pick up and model noise and thus exhibit poor generalization behaviour. In the forecasting literature, this evaluation
approach is also known as time-series cross-validation (Petropoulos et al., 2022, p.736).

To allow for a model comparison both in- as well as out-of-sample, rooted in statistical theory (Dunn et al., 2018), we
compute the mean Poisson unit deviance defined as

n

=_ 2 Yi N
D=2 (yilog= —yi+ 1),
n ‘= Yi
i=1
where y; are the observed and ¢; the predicted fatalities for an observation ¢, and n denotes the total number of
observations either in- or out-of-sample. By removing the division (i.e., using the sum instead), this is equivalent to
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—2£(0) in the Poisson setting (up to a small constant) , where £(0) is the loglikelihood of the fitted model. This would
be analogous to the mean squared error when assuming a normal distribution.

In order to understand how well the models are performing relatively compared to a null (intercept-only) model, we
add a measure of explained deviance into our model analysis. We define this as

D —2/0(6

Explained Deviance = Deyp =1 — — =1 — #,

D 0 -2/ (0 0)
where D denotes the deviance of the respective model and the 0-subscript the null model. This would be equivalent
to R? for a normal distribution. We fit a separate null-model on our out-of-sample observations to better understand
generalization behaviour. Finally, we also look at in-sample performance by comparing our models using the AIC.

4 Results

We will start this section by analyzing the diffusion effects of conflict, using model M1. Then, we will compare its
performance to reference models employed in the literature. Next, we will analyze the interplay between population
and conflict diffusion. Finally, we validate our findings through various robustness checks.

4.1 Diffusion of Conflict
4.1.1 Diffusion Effects

In the first row of Table 1 we report the performance of model M1 for our preferred penalty p. Recall that we define D
as the mean Poisson unit deviance and Dy, as the explained deviance compared to a null-model. Our diffusion model
can explain roughly 37.3% of the deviance in-sample and 33.5% out-of-sample, with a mean Poisson unit deviance of
0.56 and 0.70 respectively. The small difference between in- and out-of-sample performance metrics suggests that our
model generalizes well and overfitting is limited.

We visualize the fitted diffusion coefficients in Figure 4. These are obtained by summing over all 100 basis function
coefficients and are the predictor of conflict y(H; ) across space (x-axis) and time (y-axis). Hence, these coefficients
capture by how much the linear predictor log(\; s) increases when the past logged fatalities increase by one unit.
For illustration, the coefficient for the first temporal lag for d = 0 is 0.5559, hence one logged fatality in the past
month within the same grid cell increases the predicted fatalities by 74.35%, given A); s = exp(0.5559). Overall,
we observe the desired smooth effect, as well as an exponentially decreasing effect of the diffusion in both time and
space. All effects can be interpreted as a direct dependence between present (future) conflict in a cell and past conflict
in its surroundings.

Naturally, the impact of conflict diffusion is dependent on the base intensity, which is determined by all control
variables and the location of the respective cell in the grid. We provide all fitted coefficients 3, in the first column of
Table 2 and refer for the location intensity map g(s) to Supplementary Material S.2, as it is not of main interest here.
The former, as expected, exhibit a positive (increasing) effect of the logged population and a negative effect for both
GDP as well as Polity Score. The negative effect of the cell size is (most likely) an indication for cells at the coast

Table 1: Performance metrics of the diﬁusion models (top), compared to all reference models (bottom)

Model AIC In-sample D In-sample Deypl. Out-of-sample D Out-of-sample Deyp,
Ml 1,394,485 0.5622 0.3734 0.6959 0.3347
M2 1,370,278 0.5522 0.3845 0.6610 0.3681
MO-1 1,677,601 0.6789 0.2433 0.9491 0.0926
MO-2, 1 Lag 1,482,589 0.5985 0.3329 0.8005 0.2347
MO-2, 12 Lags 1,451,965 0.5859 0.3469 0.7640 0.2696
MO-2, 24 Lags 1,447,854 0.5842 0.3488 0.7697 0.2641
MO-3, 1 Lag 1,463,068 0.5905 0.3418 0.7767 0.2575
MO-3, 12 Lags 1,416,360 0.5712 0.3633 0.7351 0.2972
MO-3, 24 Lags 1,407,997 0.5677 0.3672 0.7461 0.2867

Notes: Results of all reference models (MO0) reported for varying number of time lags. Reference models include lag
structures of past conflict often employed in the literature. For diffusion models M1 and M2, we report the performance
for our preferred penalty (see Supplementary Material S.3). A lower AIC, a lower D and a higher Deyp. indicate a
better performance. n = 2,425,920 observation in-sample, n = 255,360 out-of-sample.
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Figure 4: Conflict diffusion coefficients for model M1. The coefficients capture the change in the linear predictor
log(A¢,s) when the past logged fatalities increase by one unit. ¢ refers to the respective monthly time lag, d to the
distance of a cell. For 0 < d < 1 no neighbouring cells exist (the nearest neighbour has a distance of d = 1), hence
we removed these coefficients from the visualization.

experiencing more conflict. Not taking into account the location effects (centered around zero), a cell with a median
value in all controls and no past conflict would have a base intensity of A = —2.28, hence experience 0.10 fatalities
per month.

In order to better understand the spatial diffusion patterns, we visualize them in a spatial grid map with rows (r) and
columns (c) for temporal lags t = 1,2, 3,4 in Figure 5. In the origin (¢ = 0, » = 0), we have our cell of interest.
The visualized diffusion effects are symmetrical, i.e., we can understand them as the effect conflict in cell (0,0) has
on all surrounding cells, and, as the effect conflict in all surrounding cells has on cell (0, 0). However, for simplicity,
we will restrict interpretation to the latter. The effect is largest at (0, 0) (temporal diffusion only) and exponentially
decreases as the spatial distance increases (spatio-temporal diffusion). This pattern holds for all monthly lags (see
also Figure 4). Surprisingly, in the Figure, we observe two rings as we move further away from the origin. In the
inner ring, according to our model, the diffusion effects are substantially smaller (note the log colour scale), than in
the outer ring. As the distance further increases in the outer ring, the effect eventually decreases to (roughly) 0. For
t = 2, this pattern moves further inwards and then disappears. We will encounter the same pattern later on in Section

Table 2: Coefficients for diffusion models M1 and M2

M1 M2

Intercept -5.8667 -7.6843
(0.0908) (0.1109)

Barea -0.0497 -0.0467
(0.0089) (0.0099)

Bpop 0.5399 0.6780
(0.0020) (0.0025)

Bydp -0.1541 -0.1249
(0.0089) (0.0057)

Bpolity -0.0169 -0.0213
(0.0020) (0.0008)

Notes: Standard errors in parentheses. n = 2,425,920 observations in-sample, n = 255,360 out-of-sample. Due to the
large sample size, all coefficients are statistically significant (p < 0.001). Results reported for our preferred penalties
(see Supplementary Material S.3).
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Figure 5: Diffusion coefficients of model (M1) on a spatial grid map. r refers to the row, c to the column in the spatial
grid. ¢ refers to the respective monthly time lag. Effects are symmetrical, i.e., they can be understood as the effect
conflict in cell (0, 0) has on all surrounding cells, and, as the effect conflict in all surrounding cells has on the cell at
(0,0). These coefficients are analogue to those in Figure 4, but instead visualized on a spatial map.

4.2 and refer for an interpretation and discussion to the following Section. We refer to Supplementary Material S.14
for a larger coefficient map with exact coefficient values for selected distances and temporal lags.

4.1.2 Comparison with Reference Models from the Literature

We report the performance of our reference models (M0), as discussed above, in the bottom rows of Table 1. Accord-
ing to all performance metrics, our proposed diffusion model (M1) outperforms all reference models. In-sample, the
differences are minor, with an increase of roughly 0.62 percentage points in explained deviance (+1.68%), compared
to the best reference model. However, out-of-sample, our model performs substantially better, with an increase in ex-
plained deviance of 3.75 percentage points (+12.61%). Hence, we can conclude that our proposed diffusion model has
the superior generalization behaviour, and better captures the underlying patterns of conflict diffusion. Additionally,
this means that even the richest reference model, in terms of temporal and spatial lags, does not sufficiently control for
the dependence of conflict across time and space. More generally, controlling for the dependence of conflict compared
to not (MO-1), improves in-sample performance by 53.47% and out-of-sample performance by 261.45%. Controlling
for the spatial dimension of the dependence compared to not (M0-2), increases performance by 7.05% respectively
24.14%.

In the following, we will elaborate on additional insights we can draw from the performance of the reference models.
The base model (M0-1), which does not include any variables on past conflict, can explain roughly 24.33% of the
null deviance, which decreases to 9.26% out-of-sample. The predictive power can be explained by the fact that some
locations never or almost never experience any fatalities (see e.g., Bazzi et al., 2022; Racek et al., 2024) and populous
areas are more likely to experience conflict (Raleigh and Hegre, 2009). Both are captured by the constrained set of
variables in the base model. However, as evident from the results, the generalization error is substantial. Once we
include lagged fatality information into the model, performance improves considerably, both in- as well as out-of-
sample with 33.29% and 23.47% explained deviance respectively, given a single cell-only temporal lag (model M0-2).
Notably, the out-of-sample increases are substantially larger than the in-sample increases. Hence, we can infer, as
expected, that information on lagged fatalities is particularly important to reduce the generalization error. The results
also highlight that adding additional information on past conflict, by including more temporal lags into the model,
further improves model performance (34.88% and 26.96% explained deviance respectively). Similarly, performance
considerably increases when adding information on past conflict of a cell’s neighbours into the model (36.72% and
29.72%; model MO-3).

Finally, we can note that the difference between including 12 compared to 24 temporal lags is minor, both cell-only
(MO0-2) as well as direct neighbours (M0-3), and both in- as well out-of-sample. Our results even show, given our
model specification, that including more than 12 lags is detrimental to the out-of-sample performance. This implies
that mechanically adding additional information into the model in the form of spatial and temporal lags is not sufficient
to improve model fit and performance. Instead, more complex modelling approaches for the diffusion, such as the one
proposed in this work, are needed to make use of this information.

4.2 Interplay between Population and Conflict Diffusion

In the following, we will analyze the interplay between conflict diffusion and population. In the second row of Table 1
we report the performance of our population interaction model M2. As evident from the comparison with M1, the
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inclusion of the interaction further improves the model fit substantially, as the explained deviance increases by 3.34
percentage points (+9.98%) out-of-sample. Also note that the difference in explained deviance in-sample compared
to out-of-sample is minor (1.64 percentage points), hence model M2 generalizes particularly well. We visualize the
estimated diffusion effects in Figure 6. While the base effect is highly positive ( 6a), the interaction with the population
is negative ( 6b). This implies, the spatio-temporal diffusion of conflict decreases with an increase in the population
of the cell of interest.

To facilitate interpretation, we visualize the spatial maps of the combined effect (for lags t = 1, 2, 3, 4) for the 0.05,
0.5 and 0.95 population percentile in Figure 7. This means, we fix the logged population to the respective percentile
and plot the sum of base diffusion + interaction for each of them. Notably, with the inclusion of the interaction the
effects are no longer symmetrical. Instead, we have to interpret the spatial maps with respect to the base cell, i.e.,
how past conflict in the surrounding cells affects future conflict in the cell at (0,0). We can observe that the spatial
diffusion decreases substantially with an increase in population, i.e., cells with a higher population are much less
affected by conflict in their surrounding cells (coefficients first temporal lag, distance d = 1: 0.2048, 0.0981, 0.0402).
The temporal diffusion also seems to be lower, given that the population count is higher (coefficients first temporal
lag, d = 0: 0.9025, 0.6590, 0.5269). However, note, the logged population itself is included in the model and exhibits
a highly positive effect (3,,, = 0.6780; see Table 2). Hence, the base intensity for conflict fatalities is substantially
larger in cells with high population numbers.

In combination with the results on the diffusion, the positive coefficient (8,0, > 0) implies that conflict tends to
originate in high population cells, and from there diffuses to other cells and areas, with lower population cells being
relatively much more affected (due to the substantially larger diffusion effects). While the increased risk for conflict
in populous areas has been well-known and observed across numerous studies (Raleigh and Hegre, 2009; Briickner,
2010), the interplay with diffusion and thus population’s dynamic role in conflict outbreaks is, to the best of our
knowledge, a novel empirical finding. This is in line with Toft (2010), who finds that dispersed minorities are weakest
(compared to urban groups and concentrated minorities) to create the conditions required for separatist conflict, as they
are less able to mobilize and control the resources required. Herbst (2014) argues that capital areas are most important
for conflict, hence political battles are much more likely to take place there. More generally, densely populated areas
have either important strategic locations, or control valuable resources, thus are being important for both rebels as well
as the government (Raleigh and Hegre, 2009). In all cases, arguably, conflict would first break out in these highly
populous areas and from there spread across the region. Our model is able to demonstrate the corresponding effects
empirically.
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Figure 6: Conflict diffusion coefficients for model M2. The coefficients capture the change in the linear predictor
log(A:,s) when the past logged fatalities increase by one unit. ¢ refers to the respective monthly time lag, d to the
distance of a cell. For 0 < d < 1 no neighbouring cells exist (the nearest neighbour has a distance of d = 1), hence
we removed these coefficients from the visualization.
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Figure 7: Conflict diffusion coefficients of combined effect (base effect + interaction) for model M2 for fixed popu-
lation percentiles on a spatial grid map for the first ¢ = 1, 2, 3, 4 temporal lags. r refers to the row, c to the column in
the spatial grid. p refers to the respective population percentile (upper row: 5%, middle row: 50%, bottom row: 95%).

We provide an illustrative example observed in our dataset in Figure 8. It visualizes a snippet of 11x11 grid cells
over the course of eight months, with the central cell located at 31.75° latitude and 12.25° longitude near the coast
in the north-west of Libya. We colour each cell based on its population number percentile with respect to the overall
population distribution over all cells and denote the number of logged fatalities in a cell through yellow- to red-coloured
circles. We can observe that before February 2011, there were no reported conflict fatalities in this region. In February
2011 we observe the first fatalities, coinciding with the outbreak of the First Libyan Civil War (Britannica, 2024), in a
cell that is among the most populous cells in this region (city of Zawiya; 96th population percentile across dataset). In
the months that follow, conflict intensifies and spreads across Libya, with many of the cells affected exhibiting lower
population numbers.

Returning to the diffusion effects in Figure 7, we note that the previously described ring patterns disappear for low
population cells, and persist particularly for high population cells. We theorize, that these may arise from ongoing
targeted violence between different ethnic groups (Mueller et al., 2022), and/or rebels and the government (Schutte,
2017). Battles would then take place between the main territories respectively headquarters (higher population) of the
respective actor, which are typically located further away in distance. Hence, the higher diffusion effects for larger
distances, compared to moderate distances, and thus the ring pattern. As these territories would span across multiple
cells and are likely heavily contested, spatial diffusion slows down, thus the inwards movement of the ring pattern for

the second monthly lag.

In Supplementary Material S.5, we additionally integrate country borders into the diffusion process, as these may
arguably stop or at least slow down diffusion of conflict. However, we find that most of the discussed patterns remain
unchanged, as conflict evidently also diffuses across country borders. Notably, the aforementioned ring patterns disap-
pear for across-country (interstate) diffusion, but remain for within-country (intrastate) diffusion, which supports our
theory that these may arise from continuous battles between different ethnic groups and/or rebels and the government.
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Figure 8: Illustrative data example on how conflict diffuses from high to lower population cells over time. Visualization
of 11 x 11 grid cells in the north-west of Libya (31.75° latitude and 12.25° longitude) from December 2010 to July
2011 (8 months). Each cell is coloured with respect to its population percentile over all observations in the dataset
from white (low population) to darkblue (high population). The logged fatalities in each cell are denoted by yellow-
to red-coloured circles. The white space above the grid is the Mediterranean Sea.

4.3 Robustness & Model Validation

We have conducted a multitude of checks and validation strategies to ensure that our model and its results are fully
robust. We provide a detailed discussion on the estimation and the selection of our penalty parameter(s) in Supple-
mentary Material S.3. We present an in-depth evaluation of diffusion model M1 and its residuals in Supplementary
Material S.4. As expected, the model has reduced accuracy in predicting some of the rare high-fatality observations.
However, we find no evidence of systematic over- or underpredictions across time or space, both in- and out-of-
sample. We evaluate an alternative strategy to construct our basis, which does not rely on exponentially decaying
basis functions, in Supplementary Material S.6. While we encounter the expected difficulties to achieve a smooth fit,
our main findings (exponentially decaying effects; ring patterns) remain unchanged. We demonstrate that the basis
in our diffusion model is sufficiently rich and its results are not sensitive to the number of chosen basis functions in
Supplementary Material S.7. We reduce the maximum amount of included spatio-temporal lags in our diffusion model
(smaller 7 and 4) and assess the resulting performance in Supplementary Material S.12. We find this model to perform
worse than our standard diffusion model, while still outperforming all reference models. We conclude that a large set
of spatio-temporal lags is advantageous.

We examine the use of non-logged fatalities for both diffusion as well as reference models in Supplementary Material
S.8. A clear performance gain of our diffusion model over the reference models remains. In Supplementary Material
S.9, we find that a negative binomial distribution to account for possible overdispersion is not applicable in the given
highly unbalanced data distribution setting. Additionally, we discuss the topic of overdispersion and possible solutions
more generally. In Supplementary Material S.10, we conclude that zero-inflation is not required. Finally, we evaluate
an alternative set of reference models, for which we gradually increase the included spatio-temporal lags, in Supple-
mentary Material S.11. The results highlight that the performance gap between reference models and diffusion model
does not arise from the excess information included in the latter. In fact, a reference model including the exact same
amount of spatio-temporal lags as the diffusion model performs almost as poorly as base model MO-1, which does not
include any information on past conflict.
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5 Conclusion

In this work we proposed a regression approach that is able to capture the dynamic spreading of armed conflict in
both time and space through a non-parametric smoothing component. Our proposed model is fully interpretable,
generalizes well to new data points and considerably improves predictive performance compared to typical reference
models both in- as well as out-of-sample. We demonstrate the flexibility of our approach for studying the transmission
of conflict by investigating and identifying a relationship between diffusion and population numbers.

Our results highlight that armed conflict exhibits substantial long-lasting and far-reaching spatio-temporal diffusion.
We capture diffusion up to 550km in distance and 24 months in the past, and are able to examine and study these
effects more closely. We find that predictions can be improved by 24% (compared to temporal lags only) respectively
13% (compared to also including direct neighbours) using our model, which further increase when integrating popu-
lation into the diffusion process. This demonstrates that existing models cannot capture the full complexity of these
transmission mechanisms.

Extending our model to analyze the interaction between conflict diffusion and population, we find that conflict gen-
erally breaks out in densely populated areas, and from there diffuses across the entire region, with less populated
areas being disproportionately affected. We are aware that this finding does not provide conclusive evidence for a
specific mechanism driving conflict, but it offers novel insights into the dynamic nature and interdependencies of con-
flict as well as its close connection to population, which we believe to be valuable for future research. Additionally,
in conjunction with our analysis on the impact of country borders, it allows us to demonstrate the flexibility of our
approach.

As discussed in the introduction, many studies in the field do not incorporate spatial lags, i.e., information from
neighboring cells, which is a notable limitation in light of our findings. This lack of control for spatio-temporal
dependence can bias predictors in regression analyses and the identification of causal mechanisms (see e.g., Cook
et al., 2023, for a discussion on this). This, in turn, may risk drawing inaccurate conclusions and misinform subsequent
analyses and applications. Addressing this issue requires modelling approaches that fully incorporate the spatio-
temporal conflict history while avoiding overfitting. Our smoothing strategy offers one such approach. We would also
like to encourage researchers to evaluate their models on out-of-sample observations. As shown, even slightly more
complex models can easily overfit on the noisy and highly-unbalanced conflict data.

Although our approach is designed to study armed conflict, it could similarly be applied to capture any diffusion
process with long-lasting and far-reaching spatio-temporal dependencies across any type of spatio-temporal units.
Notably, without using a regular lattice grid, the spatial neighbourhood definition becomes more difficult. Either, one
could employ a graph-based approach using the shortest path of spatial units, or, one could utilize distances (e.g.,
border, centroid) to implicitly define the neighbourhood. As long as the diffusion effects are (mostly) decreasing
across space and time, our approach should be able to correctly capture them. If the effects are expected to exhibit
other patterns, we recommend the alternative approach described in Supplementary Material S.6.

In summary, this paper sheds light on some of the complex diffusion dynamics of conflict, the importance of controlling
for its spatio-temporal dependence and offers a solution to integrate conflict diffusion into regression models. We
believe that this approach provides a valuable framework for future research, both for exploring the determinants
of conflict and for understanding its patterns of diffusion. Our work can be expanded in several directions. First,
our model can be extended to account for different diffusion patterns across different types of conflicts, for example
through a hidden Markov model. Instead, one could also fit the model separately to specific countries, regions and/or
years, or include space-time interaction effects. Second, as already discussed in our analysis on country borders, actor-
specific variables, such as information on politically relevant ethnic groups (Mueller et al., 2022), can be integrated in
a dyadic fashion into the model to study specific mechanisms. Third, comprehensive analyses on the diffusion effects
of other variables could investigate how other factors, such as political protests (Weidmann and Rgd, 2019; Rg¢d and
Weidmann, 2023), contribute to the spread of conflict. Fourth, existing work studying causal mechanisms such as the
effect of droughts (Von Uexkull et al., 2016; Maconga, 2023) or climate change (Selby et al., 2017; Ge et al., 2022)
on conflict can be replicated while more thoroughly controlling for the dependence of conflict. Naturally, all armed
conflicts are context-specific and unique, thus models will never be able to capture their full complexity. However,
incorporating spatio-temporal dependencies represents a first step towards more robust and realistic analyses.
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