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List of abbreviations 
 
Abbreviation Definition   

4-1BB CD137, TNF receptor superfamily member 9 
  
AKT Protein kinase B  
ALL Acute lymphoblastic leukemia 
ANOVA Analysis of variance 
APC Antigen presenting cell 
apeglm Approximate posterior estimation for the general linear model 
  
BATF Basic leucine zipper transcription factor ATF-like 
BCL-6 B cell lymphoma 6 protein  
BSA Bovine serum albumin   

CAR Chimeric antigen receptor 
CD Cluster of differentiation 
CLL Chronic lymphocytic leukemia   

DMEM Dulbecco’s modified Eagle medium 
DMSO Dimethyl sulfoxide 
DNA Deoxyribonucleic acid   

EDTA Ethylenediaminetetraacetic acid 
ELISA Enzyme-linked immunosorbent assay 
EMA European Medicines Agency    

FACS Fluorescence-activated cell sorting 
Fas Fas receptor (CD95) 
FBS Fetal bovine serum 
FDA Food and Drug Administration    

GALV Gibbon ape leukemia virus 
GATA-3 Trans-acting T cell-specific transcription factor GATA-3  
GSEA Gene set enrichment analysis   

h Hours   

ICD Intracellular domain 
ICOS Inducible T cell costimulator (CD278) 
IFN Interferon 
IL Interleukin 
IRF Interferon regulatory factor 
ISR Integrated stress response   

LCMV Lymphocytic choriomeningitis virus    

MACS Magnetic-activated cell sorting 
MCPIP-1 Monocyte chemotactic protein-induced protein 1 



 

 
 

2 

MHC Major histocompatibility complex  
MSLN Mesothelin   

NES Normalized enrichment score 
NF-kB Nuclear factor k-light-chain-enhancer of activated B cells 
NFAT Nuclear factor of activated T cells  
NHL Non-Hodgkin lymphoma   

OVA Ovalbumin   

PBMC Peripheral blood mononuclear cell 
PBS Polybutylene succinate 
PD-1 Programmed cell death protein 1 
PI3K Phosphoinositide 3-kinase  
  
RNA Ribonucleic acid 
ROS Reactive oxygen species 
RPMI Roswell Park Memorial Institute 
RTCA Real-time cell analysis   

SASP Senescence-associated secretory phenotype  
scFv Single-chain variable fragment 
SEM Standard error of the mean 
SMAD Mothers against decapentaplegic homolog 
STAT Signal transducer and activator of transcription   

T-bet T-box transcription factor TBX21  
Tcm Central memory T cell 
TCR T cell receptor 
Teff Effector T cell 
Tem Effector memory T cell 
TGF Transforming growth factor 
Th T helper 
TIL Tumor-infiltrating lymphocyte 
TLR Toll-like receptor 
TNF Tumor necrosis factor 
TNFR Tumor necrosis factor receptor  
TRAF TNF receptor associated factor  



 

 
 

3 

Introduction 
 
Cancer is a leading cause of death worldwide, accounting for an estimated ten million 
deaths in 2020 (Sung et al., 2021). The leading causes were lung, liver and colorectal 
cancer in men and breast, lung and colorectal cancer in women (Sung et al., 2021). 
The global burden of cancer is projected to increase considerably with an estimated 
28.4 million new cancer cases predicted for 2040, representing a 50 % increase 
compared to 2020 (Sung et al., 2021). Cancer therapy classically relies on three pillars 
of treatment: surgery, radiotherapy and chemotherapy (Hunter, 2017). In the last two 
decades, a fourth treatment pillar - immunotherapy - has emerged, harnessing the 
immune system’s ability to detect and eradicate anomalous cells (Hunter, 2017). 
Immunotherapies include monoclonal antibodies, immune checkpoint inhibitors as well 
as cellular therapies such as tumor-infiltrating leukocyte (TIL) and chimeric antigen 
receptor (CAR) T cell therapy (Hunter, 2017, Weber et al., 2020). TIL therapy has 
recently been authorized by the Food and Drug Administration (FDA) for the treatment 
of melanoma (Julve et al., 2024), and six CAR T cell therapies have been approved by 
the FDA and by the European Medicines Agency (EMA) for the treatment of 
hematological malignancies since 2017 (Labanieh and Mackall, 2023). CAR T cells 
targeting cluster of differentiation (CD) CD19 have been approved for the treatment of 
acute lymphoblastic leukemia (ALL) (Laetsch et al., 2023, Shah et al., 2021) and 
B-Non-Hodgkin lymphoma (B-NHL), including diffuse large B cell lymphoma, follicular 
lymphoma, primary mediastinal large B cell lymphoma and mantle cell lymphoma 
(Abramson et al., 2020, Jacobson et al., 2022, Schuster et al., 2019, Wang et al., 2020, 
Wang et al., 2024). In addition, CAR T cells targeting B cell maturation antigen have 
been approved by both agencies for the treatment of multiple myeloma (Berdeja et al., 
2021, Munshi et al., 2021). 
 
1.1 Structure of chimeric antigen receptors 
 
CAR are genetically engineered constructs that enable target antigen recognition and 
binding through a single-chain variable fragment (scFv) in a major histocompatibility 
complex (MHC)-unrestricted manner (Labanieh et al., 2023). CAR are composed of an 
extracellular scFv and spacer, which are connected to intracellular signaling domains 
(ICD) through a transmembrane domain (Benmebarek et al., 2019, Labanieh et al., 
2023). CAR can be categorized into different generations based on the number of ICD 
incorporated into a receptor’s structure. First-generation CAR contain one ICD 
consisting of a part of the T cell receptor’s (TCR) CD3z (CD3z) chain (Eshhar et al., 
1993). This CD3z chain contains a large proportion of the immunoreceptor 
tyrosine-based activation motifs (ITAM) essential in initiating TCR activation (signal 1) 
(Benmebarek et al., 2019). Second-generation CAR contain an additional costimulatory 
ICD, such as CD28, 4-1BB or inducible T cell costimulator (ICOS) (van der Stegen et 
al., 2015). These ICD are physiologically responsible for augmenting and sustaining 
T cell activation upon TCR stimulation (signal 2) and were essential in increasing both 
expansion and cytokine secretion of first-generation CAR T cells (Labanieh et al., 2023, 
Maher et al., 2002, van der Stegen et al., 2015). In contrast to naturally occurring TCR, 
CAR are unable to recognize intracellular antigens and require a higher antigen density 
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on target cells for activation (Gudipati et al., 2020, Harris et al., 2018, Labanieh et al., 
2023). However, since both ICD are connected in cis in a CAR, signals 1 and 2 are 
activated concurrently upon target antigen binding in CAR T cells (Benmebarek et al., 
2019).  
 
1.1.1 Signaling through intracellular costimulatory domains 
 
Signaling through the B7/CD28 immunoglobulin superfamily member CD28 involves 
activation of phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) (Chen and 
Flies, 2013, van der Stegen et al., 2015). In turn, this enhances T cell proliferation and 
survival through the activation of nuclear factor-kΒ (NF-kB) and nuclear factor of 
activated T cells (NFAT) (Chen et al., 2013, van der Stegen et al., 2015). Additionally, 
PI3K-AKT signaling promotes a metabolic switch to glycolysis (Chen et al., 2013, van 
der Stegen et al., 2015). While it is unclear whether signaling through a costimulatory 
ICD in CAR T cells is identical to signaling through endogenous costimulatory 
receptors, PI3K-AKT signaling has also been reported to be activated in CD28-CD3z 
(CD28z) CAR T cells (Zhong et al., 2010). Furthermore, endogenous CD28 signaling 
enhances cell cycle progression through an upregulation of cyclin D (van der Stegen et 
al., 2015). CD28 signaling also upregulates the expression of additional costimulatory 
receptors to amplify T cell activation (van der Stegen et al., 2015). Lastly, 
CD28 signaling enhances effector cytokine production, in particular interleukin (IL)-2 
secretion, through the activation of NFAT and T-box transcription factor TBX21 (T-bet) 
(Chen et al., 2013, van der Stegen et al., 2015).  
 
4-1BB, also known as CD137, is a member of the tumor necrosis factor (TNF) receptor 
superfamily (van der Stegen et al., 2015). 4-1BB augments cell cycle progression, 
proliferation and cytokine production by activating TNF receptor-associated factors 
(TRAF1, TRAF2, TRAF3) (Chen et al., 2013, van der Stegen et al., 2015). 
TRAF signaling leads to canonical NF-kB and p38 mitogen-activated protein kinase 
(MAPK) signaling and to the production of effector cytokines (Chen et al., 2013, van 
der Stegen et al., 2015). Moreover, 4-1BB signaling enhances cell cycle progression 
through TRAF, extracellular signal-regulated kinase (ERK) and PI3K-AKT-IL-2 
signaling (van der Stegen et al., 2015). The latter pathway has also been found to be 
activated in 4-1BB-CD3z (BBz) CAR T cells (Zhong et al., 2010). Through 
phosphorylation of adaptor proteins, 4-1BB signaling, like CD28 signaling, amplifies 
endogenous TCR activation (Nam et al., 2005). Importantly, signaling through 4-1BB 
was shown to reduce T cell exhaustion and anergy and enhance the survival of CD8+ 
memory T cells (Habib-Agahi et al., 2007, Pulle et al., 2006, Wang et al., 2012). 
 
Activation of the B7/CD28 immunoglobulin superfamily member ICOS, also referred to 
as CD278, results in signaling through PI3K-AKT and c-MAF, short for v-MAF avian 
musculoaponeurotic fibrosarcoma oncogene homolog, pathways (Chen et al., 2013, 
Simpson et al., 2010, van der Stegen et al., 2015). Unlike CD28, however, ICOS 
cannot induce relevant IL-2 production as it cannot bind growth factor receptor-bound 
protein 2 (GRB2) and lymphocyte-specific protein tyrosine kinase (LCK) (Chen et al., 
2013, van der Stegen et al., 2015). This difference in cytokine production has also 
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been reported for ICOS-CD3z (ICOSz) CAR T cells when compared to 
CD28z-CAR T cells (Guedan et al., 2018). Moreover, ICOS signaling activates B cell 
lymphoma 6 protein (BCL-6), mediating both a transition from an effector to a memory 
phenotype as well as a shift away from glycolytic metabolism in T cells (Choi et al., 
2011, Oestreich et al., 2014).  
 
1.1.2 Effects of CD28, 4-1BB and ICOS costimulation on CAR T cell function 
 
The ideal costimulation for optimal CAR T cell function might differ based on 
CAR T cell subset and tumor entity (van der Stegen et al., 2015). FDA-approved 
CAR T cell therapies include CAR designs incorporating either a CD28 ICD (Jacobson 
et al., 2022, Shah et al., 2021, Wang et al., 2020) or a 4-1BB ICD (Abramson et al., 
2020, Laetsch et al., 2023, Schuster et al., 2019). CD28z- and BBz-CAR T cells 
targeting CD19 have shown similar complete response and survival rates in patients 
with ALL and large B cell lymphoma (Davila et al., 2014, Maude et al., 2014, Neelapu 
et al., 2017, Schuster et al., 2019). In the setting of CLL, however, CD28z-CAR T cells 
were less efficient (Geyer et al., 2019, Porter et al., 2015). In general, a CD28 ICD 
mediates faster tumor cell killing (Zhao et al., 2015), while a 4-1BB ICD preferentially 
enhances CAR T cell persistence, mitochondrial metabolism and memory development 
(Kawalekar et al., 2016, Long et al., 2015). While ICOSz-CAR T cells have not yet 
been studied in clinical trials, they were shown to improve CAR T cell persistence in 
pre-clinical models (Guedan et al., 2014, Guedan et al., 2018).  
 
1.2 Limitations of chimeric antigen receptor T cell therapy  
 
CAR T cell therapy has been established for the treatment of various hematological 
malignancies. However, its clinical success and application to solid tumors is still 
limited by treatment-associated complications and tumor relapse. Significant limitations 
include reduced tumor trafficking due to a suppressive tumor microenvironment or 
antigen loss on tumor cells as well as insufficient CAR T cell function, for instance 
through limited persistence, exhaustion or tonic signaling in CAR T cells (Stoiber et al., 
2019, Weber et al., 2020). Treatment-associated toxicities include cytokine release 
syndrome and immune effector cell-associated neurotoxicity syndrome (Stoiber et al., 
2019, Weber et al., 2020). Various approaches to reduce these limitations have been 
proposed, including altering CAR design by incorporating a suicide switch or by 
overexpressing chemokine receptors (Stoiber et al., 2019, Weber et al., 2020). 
Modulating CAR affinity to an AND- or NOT-gated or an adaptor CAR structure has 
also been suggested (Stoiber et al., 2019, Weber et al., 2020). Furthermore, CAR can 
be targeted to components of the tumor microenvironment or be administered locally to 
improve tumor trafficking (Adusumilli et al., 2014, Ash et al., 2024). Lastly, preselecting 
a desired T cell phenotype, such as memory T cells, during CAR T cell manufacturing 
has been proposed to overcome these treatment limitations (Sabatino et al., 2016).  
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1.3 CD4+ T cells in chimeric antigen receptor T cell therapy 
 
Conventional CAR T cell infusion products contain a heterogeneous mixture of CD4+ 
and CD8+ CAR T cells. To date, both higher and lower ratios of CD4+ to CD8+ 
CAR T cells have been described to improve clinical responses, suggesting that an 
optimal ratio might depend on CAR target antigen and tumor entity (Cohen et al., 2019, 
Fraietta et al., 2018, Galli et al., 2023). CD4+ T cells, also known as T helper (Th) cells, 
have conventionally been regarded as intermediaries amplifying a cytotoxic response 
mediated by CD8+ T cells (Zander et al., 2019). Accordingly, CD4+ CAR T cells were 
critical for both expansion and development of a memory phenotype in CD8+ 
CAR T cells (Lee et al., 2023, Sommermeyer et al., 2016, Wang et al., 2019). However, 
CD4+ CAR T cells are potent effectors as such (Liadi et al., 2015). In comparison to 
CD8+ CAR T cells, CD4+ CAR T cells were even shown to be less prone to apoptosis 
and exhaustion upon tumor encounter or upon additional stimulation through 
endogenous TCR (Adusumilli et al., 2014, Wang et al., 2018, Yang et al., 2017). 
Furthermore, it has been suggested that the functional persistence of CAR T cells is 
mediated predominantly by CD4+ CAR T cells (Adusumilli et al., 2014, Louis et al., 
2011, Melenhorst et al., 2022). Consequently, specific CD4+ T cell subsets, such as 
Th17 and Th9 cells, have been studied in the preclinical setting with the intention of 
generating more potent, long-lived CAR T effector cells (Guedan et al., 2014, Liu et al., 
2020). 
 
1.4 Th9 CD4+ T cells as effector cells for adoptive T cell therapies 
1.4.1 Role of Th9 cells in disease 
 
Th9 cells were first described as reprogrammed Th2 cells generated in the presence of 
transforming growth factor b (TGF-b) (Dardalhon et al., 2008, Veldhoen et al., 2008). 
They have since been established as critical pro-inflammatory mediators in 
inflammatory bowel disease and allergy and as effectors of an immune response 
against helminthic infections (Gerlach et al., 2014, Licona-Limón et al., 2013, Sehra et 
al., 2015). The role of Th9 cells in cancer is more ambivalent. The infiltration of solid 
tumors by Th9 cells has been associated with both enhanced and impaired anti-tumor 
immunity in different tumor entities ranging from breast cancer to hepatocellular 
carcinoma (Salazar et al., 2020, Tan et al., 2017, Wang et al., 2020, You et al., 2017). 
Furthermore, peripheral blood Th9 cells have been proposed as potential biomarkers to 
predict clinical responses to anti-programmed cell death protein blockade (anti-PD-1) 
with nivolumab in patients with metastatic melanoma (Nonomura et al., 2016). 
 
1.4.2 Differentiation of Th9 cells 
 
The differentiation of naïve CD4+ T cells into effector subsets occurs upon the 
recognition of an antigen presented by MHC II molecules on antigen-presenting cells 
(APC) (Kaplan et al., 2015). T helper cell differentiation depends on the local cytokine 
environment, on costimulation provided by APC and on TCR activation strength 
(Kaplan et al., 2015, Luckheeram et al., 2012). Importantly, CD4+ T cell subsets retain 
the ability to re-differentiate, termed T helper cell plasticity (Zhou et al., 2009). Hence, 
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commitment to a T helper cell lineage is not irreversible. CD4+ T cell differentiation into 
Th9 cells is initiated in the presence of IL-4, TGF-b and IL-1b (Kaplan et al., 2015). 
IL-4-STAT6-IRF4/BATF/GATA-3 signaling, IL-2-STAT5-IRF4/PU.1 signaling, 
TGF-b-SMAD2-4/PU.1 signaling and IL-1b-STAT1-IRF1 signaling are essential for the 
commitment to a Th9 lineage (Kaplan et al., 2015). 
 
IL-4 leads to the activation of signal transducer and activator of transcription 6 
(STAT6), which in turn induces the expression of interferon regulatory factor 4 (IRF4), 
basic leucine zipper transcription factor ATF-like (BATF) and trans-acting T cell-specific 
transcription factor GATA-3 (GATA-3) (Goswami et al., 2012, Jabeen et al., 2013, 
Kaplan et al., 2015). IRF4 and BATF form a complex which binds the IL-9 promoter (Li 
et al., 2012, Staudt et al., 2010). IRF4 further enhances Th9 differentiation through a 
downregulation of T-bet, the master regulator of Th1 differentiation (Staudt et al., 
2010). GATA-3 inhibits T-bet and forkhead box protein P3 (FOXP3), thus suppressing 
Th1 and Treg differentiation, respectively (Veldhoen et al., 2008). GATA-3 binding to 
the IL-9 promoter can be further enhanced through IL-4- and TGF-b-mediated 
downregulation of DNA-binding protein inhibitor ID-3 (Nakatsukasa et al., 2015). 
 
TGF-b is essential in redirecting CD4+ differentiation from a Th2 to a Th9 phenotype. 
TGF-b activates SMAD2, SMAD3 and SMAD4 (mothers against decapentaplegic 
homolog) as well as the transcription factor PU.1 (Chang et al., 2010, Goswami et al., 
2012, Jabeen et al., 2013, Tamiya et al., 2013, Wang et al., 2013). SMAD molecules 
bind the IL-9 promoter and alter its chromatin structure, and SMAD2 and 3 also form a 
complex with IRF4 (Tamiya et al., 2013, Wang et al., 2013). PU.1 binds the IL-9 
promoter directly and can form a complex with IRF4, BATF and IRF8 to further 
enhance IL-9 transcription (Chang et al., 2010, Humblin et al., 2017).  
 
IL-2 leads to the activation of STAT5, which directly binds the IL-9 promoter and 
increases its accessibility to BATF binding (Fu et al., 2020, Liao et al., 2014). 
IL-2/STAT5 signaling also increases expression of IRF4 (Liao et al., 2014). Moreover, 
STAT5 can inhibit expression of BCL-6, leading to a disinhibition of Th9 differentiation 
(Liao et al., 2014). STAT5 signaling has also been implicated in the promotion of 
Th9 differentiation through signaling via mammalian target of rapamycin (mTOR) (Bi et 
al., 2017). 
 
IL-1b signaling leads to STAT1 activation and subsequent expression of IRF1, which 
binds the IL-9 promoter (Végran et al., 2014). IL-1b signaling also suppresses BCL-6 
expression, disinhibiting Th9 differentiation (Canaria et al., 2022).  
 
1.4.3 Mechanisms of Th9 cell cytotoxicity 
 
Various mechanisms of Th9 cell cytotoxicity have been proposed, including direct 
tumor cell lysis through effector cytokine secretion as well as recruitment and activation 
of effector immune cells. Recombinant IL-9 has previously been shown to directly 
induce the apoptosis of various tumor cell lines (Chauhan et al., 2019, Purwar et al., 
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2012). Accordingly, neutralization of IL-9 reduced tumor cell lysis by Th9 cells in a 
squamous cell carcinoma model in vitro and in a murine melanoma model in vivo (Kim 
et al., 2015, Miao et al., 2017, Nakatsukasa et al., 2015, Xue et al., 2019). However, 
Th9 cells have also been reported to induce tumor lysis independently of IL-9, instead 
relying on the secretion of granzyme B or IL-21 (Lu et al., 2018, Végran et al., 2014). 
 
In addition, Th9 cells might recruit and activate mast cells, dendritic cells and CD8+ 
T cells to effectuate an anti-tumor response. In melanoma and colorectal carcinoma 
models, the absence of mast cells has been reported to abrogate the anti-tumor effects 
of recombinant IL-9 and Th9 cells in vivo (Abdul-Wahid et al., 2016, Purwar et al., 
2012). However, in a B-NHL model, mast cell activation mediated through IL-9 was 
associated with reduced in vivo tumor control (Feng et al., 2011). Moreover, mast cell 
deficiency did not seem to impair the cytolytic capacity of Th9 cells differentiated in the 
presence of IL-1b (Végran et al., 2014). These conflicting results suggest that the 
involvement and effect of mast cells on tumor control mediated by Th9 cells might 
depend on tumor entity. Fittingly, mast cell infiltration itself has been associated with 
both improved and impaired clinical outcomes in different tumor entities (Hedström et 
al., 2007, Nonomura et al., 2007, Strouch et al., 2010, Welsh et al., 2005). 
 
Furthermore, Th9 cells have been found to enhance a CD8+-driven anti-tumor 
response by promoting dendritic cell recruitment and survival and by secreting IL-21 
and IL-9 (Kim et al., 2015, Lu et al., 2012, Park et al., 2014, Végran et al., 2014, You et 
al., 2017). Dendritic cell activation has also been found to promote Th9 differentiation, 
suggesting a potential cycle of reciprocal activation (Zhao et al., 2016). However, CD8+ 
T cell depletion has also been reported to have little to no effect on tumor lysis by 
Th9 cells in murine melanoma models in vivo (Lu et al., 2018, Purwar et al., 2012). 
Overall, Th9-mediated cytotoxicity is a multi-facetted process involving an interplay of 
various immune effector cells. Its exact mechanisms remain to be conclusively 
established.  
 
1.4.4 Th9 cells as CAR T cells 
 
Th9 cells have shown promising results as adoptively transferred T cells and as 
CAR T cells in preclinical tumor models. The adoptive transfer of ovalbumin 
(OVA)-specific Th9 cells mediated superior tumor control in vivo in OVA-expressing 
melanoma models when compared to Th1, Th2 and Th17 cells (Lu et al., 2012, Lu et 
al., 2018, Purwar et al., 2012). The addition of IL-1b during Th9 differentiation further 
enhanced Th9 phenotype and tumor cell killing in vivo (Végran et al., 2014, Xue et al., 
2019). Additionally, mixed CD4+ and CD8+ CAR T cells that were expanded under 
Th9-polarizing conditions showed greater in vivo clearance of leukemic tumor cells 
compared to mixed CD4+ and CD8+ CAR T cells expanded under Th1-polarizing 
conditions (Liu et al., 2020). Interestingly, mesothelin (MSLN)-specific Th9 CAR T cells 
were the only subset to effectively eliminate tumors containing antigen loss variants in 
a MSLN-expressing ovarian cancer model in vivo (Xue et al., 2021). Th9 CAR T cells 
could thus potentially possess a distinctive advantage for the treatment of solid tumors, 
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which exhibit significant antigen heterogeneity and can express antigen loss variants 
during adoptive T cell transfer (O'Rourke et al., 2017). 
 
1.5 Aims of this thesis 
 
While the addition of IL-1b during T helper cell differentiation has been described to 
enhance Th9 phenotype and cytotoxicity in murine T cells, its effects on Th9 phenotype 
in human T cells has not yet been studied (Canaria et al., 2022, Végran et al., 2014, 
Xue et al., 2019). Furthermore, the suitability of IL-1b-differentiated Th9 cells for 
CAR T cell therapy remains to be evaluated (Liu et al., 2020). Moreover, both 4-1BB 
and ICOS ICD have been described to enhance CAR T cell functionality, including the 
functionality of Th17 and mixed CD4+ CAR T cells (Guedan et al., 2014, Guedan et al., 
2018, Kawalekar et al., 2016, Long et al., 2015). Studies of Th9 CAR T cells thus far, 
however, have only been conducted using a 4-1BB ICD (Liu et al., 2020, Xue et al., 
2021).  
 
Therefore, the following project aims were defined: 
 

1. Generation of a comprehensive transcriptional profile of human, 
IL-1b-differentiated Th9 cells 

2. Evaluation of the in vitro cytotoxic potential of human, IL-1b-differentiated 
Th9 CAR T cells 

3. Assessment of a potential enhancement of in vitro cytotoxicity of human, 
IL-1b-differentiated Th9 CAR T cells through a CD28, 4-1BB or ICOS ICD 
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Materials and methods 
 
2.1 Materials 
2.1.1 Technical equipment 
 
-80°C freezer HERAfreeze™ HDE series 

ultra-low temperature freezers 
ThermoFisher Scientific, 
Waltham, MA, USA 

Centrifuge Color sprout plus mini-centrifuge Biozym, Hessisch Oldendorf, 
Germany  

Rotina 420R benchtop centrifuge Hettich, Tuttlingen, Germany  
Fresco™ 17 microcentrifuge Fisher Scientific, Schwerte, 

Germany  
Multifuge™ X3 ThermoFisher Scientific, 

Waltham, MA, USA 
Counting chamber Neubauer improved counting 

chamber 
Marienfeld Superior, Lauda 
Königshofen, Germany 

ELISA plate reader Tristar 3 multimode reader Berthold Technologies, Bad 
Wildbad, Germany 

ELISA plate washer CAPPWash plate washer 
(12 channel) 

CAPP, Nordhausen, 
Germany 

Flow cytometer BD FACSCanto™ II flow cytometer BD Biosciences, San Jose, 
CA, USA  

BD LSRFortessa™ cell analyzer BD Biosciences, San Jose, 
CA, USA 

Freezing container Nalgene® Mr. Frosty Sigma-Aldrich, St. Louis, 
MO, USA 

Incubator BBD 6220 CO2 incubator ThermoFisher Scientific, 
Waltham, MA, USA 

Microscope Microscope Primovert with 
binocular tube  

Zeiss, Oberkochen, 
Germany 

Pipette Eppendorf Research® plus pipettes 
(2.5 µl, 20 µl, 200 µl, 1000 µl) 

Eppendorf, Hamburg, 
Germany  

Multichannel pipette (8 channels) 
Nichipet EX II (200 µl) 

Biozym, Hessisch Oldendorf, 
Germany 

Pipette pump Pipetus®  Hirschmann, Eberstadt, 
Germany 

Scale Analytical balance ALJ 160-4AM Kern, Balingen, Germany  
Precision balance EWJ 6000-1SM Kern, Balingen, Germany 

Shaker MaxQ™ 4000 benchtop orbital 
shaker 

ThermoFisher Scientific, 
Waltham, MA, USA 

Spectrophotometer NanoDrop™ 2000/2000c 
spectrophotometer 

ThermoFisher Scientific, 
Waltham, MA, USA 

Sterile hood Herasafe™ KS, class II biological 
safety cabinet 

ThermoFisher Scientific, 
Waltham, MA, USA 

Test tube racks Nalgene™ Unwire™ test tube 
racks (30 mm & 13 mm tubes) 

Fisher Scientific, Schwerte, 
Germany 
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Vortex mixer Vortex-Genie 2 Scientific Industries, Inc., 
Bohemia, NY, USA 

Waterbath Waterbath 1012 Gesellschaft für 
Labortechnik mbH, 
Burgwedel, Germany 

xCELLigence plate 
reader 

xCELLigence RTCA single plate 
reader 

Agilent, Santa Clara, CA, 
USA 

 
2.1.2 Consumables 
 
Cell culture flasks Cellstar® cell culture flask with filter 

screw cap (25 cm²) 
Greiner Bio-One, 
Frickenhausen, Germany  

Cell culture flask with filter cap 
(T-75, T-175)  

Sarstedt, Nümbrecht, 
Germany 

Cell culture plates 6-well flat bottom cell culture plate Sarstedt, Nümbrecht, 
Germany  

Falcon® 24-well flat bottom tissue 
culture-treated cell culture plate 

Corning, Corning, NY, USA 
 

Falcon® 24-well flat bottom 
not-treated cell culture plate 

Corning, Corning, NY, USA 
 

96-well round bottom cell culture 
plate 

Sarstedt, Nümbrecht, 
Germany  

96-well flat bottom cell culture plate Sarstedt, Nümbrecht, 
Germany 

Cell scraper Cell scraper Sarstedt, Nümbrecht, 
Germany 

Cryopreservation 
tubes 

CryoPure tubes (2 ml) Sarstedt, Nümbrecht, 
Germany 

ELISA plates 96-well half area flat bottom 
microplate 

Corning, Corning, NY, USA 

Fixation/permeabi-
lization buffer 

BD Cytofix/Cytoperm™  BD Biosciences, San Jose, 
CA, USA 

Flow cytometer 
setup & tracking 
beads 

CS&T research beads BD Biosciences, San Jose, 
CA, USA 

Flow cytometry 
compensation 
beads 

UltraComp eBeads™ 
compensation beads 

Invitrogen™, Waltham, MA, 
USA 

Flow cytometry 
counting beads 

CountBright™ absolute counting 
beads 

ThermoFisher Scientific, 
Waltham, MA, USA 

Injection cannulas BD Microlance™ 3 injection 
cannula (20 G, 24 G) 

Becton Dickinson, Franklin 
Lakes, NJ, USA 

Microcentrifuge 
tubes 

Eppendorf safe-lock tubes (0.5 mL, 
1.5 mL) 

Eppendorf, Hamburg, 
Germany 

MiniPrep kit GeneJET plasmid MiniPrep kit ThermoFisher Scientific, 
Waltham, MA, USA 
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Pipette tips epT.I.P.S.® standard (200 µl) Eppendorf, Hamburg, 
Germany  

SafeSeal SurPhob pipette tips 
(sterile, with filter) (10 µl, 200 µl, 
1000 µl) 

Biozym, Hessisch Oldendorf, 
Germany 

RNA isolation kit RNeasy Plus micro kit Qiagen, Hilden, Germany 
Serological pipettes Stripette™ serological pipette 

(5 ml, sterile) 
Corning, Corning, NY, USA 

 
Serological pipette (10 ml, sterile) Sarstedt, Nümbrecht, 

Germany  
Serological pipette (25 ml, sterile) Greiner Bio-One, 

Frickenhausen, Germany 
Syringe Injekt® syringe (5 ml, 10 ml, 20 ml) Braun, Melsungen, Germany 
Syringe filter Filtropur S (pore size: 0.2 µm, 

0.45 µm) 
Sarstedt, Nümbrecht, 
Germany 

Test tubes Falcon® 5 mL round bottom 
polystyrene test tube (nonsterile)  

Corning, Corning, NY, USA 
 

Falcon® 5 mL round bottom 
polystyrene test tube (sterile)  

Corning, Corning, NY, USA 
 

Screw cap tube polypropylene 
(15 ml, 50 ml) 

Sarstedt, Nümbrecht, 
Germany 

Wrapping film Parafilm™ laboratory wrapping film ThermoFisher Scientific, 
Waltham, MA, USA 

xCELLigence plates E-Plate 96 PET Agilent, Santa Clara, CA, 
USA 

 
2.1.3 Reagents 
 
Albumin fraction V Carl Roth, Karlsruhe, Germany 
BD FACSFlow™ BD Biosciences, San Jose, CA, USA 
BD OptEIA™ TMB substrate reagent set BD Biosciences, San Jose, CA, USA 
Dulbecco's phosphate-buffered saline powder 
(1X)  

PanReac AppliChem ITW Reagents, 
Darmstadt, Germany 

eBioscience™ cell stimulation cocktail (500X) Invitrogen™, Waltham, MA, USA 
eBioscience™ fixable viability dye eFluor™ 780 ThermoFisher Scientific, Waltham, 

MA, USA 
eBioscience™ protein transport inhibitor cocktail 
(500X) 

Invitrogen™, Waltham, MA, USA 

Ethylenediaminetetraacetic acid disodium salt 
solution (EDTA) 

Sigma-Aldrich, St. Louis, MO, USA 

FlowClean cleaning agent Beckman Coulter, Brea, CA, USA 
Gibco™ Dulbecco's phosphate-buffered saline 
(no calcium, no magnesium) 

ThermoFisher Scientific, Waltham, 
MA, USA 

Heparin-sodium-25000-ratiopharm®  Ratiopharm, Ulm, Germany 
HEPES solution Sigma-Aldrich, St. Louis, MO, USA 
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Lipofectamine™ 2000 transfection reagent ThermoFisher Scientific, Waltham, 
MA, USA 

RetroNectin® recombinant human fibronectin 
fragment 

Takara Bio Group, Kusatsu, Japan 

Sodium carbonate (Na2CO3) Merck, Darmstadt, Germany 
Sodium hydrogen carbonate (NaHCO3) Carl Roth, Karlsruhe, Germany 
Sulphuric acid (1 mol / l) Carl Roth, Karlsruhe, Germany 
Trypan Blue solution Sigma-Aldrich, St. Louis, MO, USA 
Trypsin-EDTA solution 10X Sigma-Aldrich, St. Louis, MO, USA 
Tween® 20 Carl Roth, Karlsruhe, Germany 
 
2.1.4 Buffers 
 
MACS buffer PBS 

+ 0.5 % BSA 
+ 2 mM EDTA  

ELISA coating 
buffer 

1 L ddH2O (double-
distilled water) 
+ 7.19 g NaHCO3 
+ 1.59 g Na2CO3 
Adjust pH to 9.5  

ELISA washing 
buffer 

20 L ddH2O (double-
distilled water) 
+ 191 g PBS 
+ 10 ml Tween® 20  

ELISA buffer 
(R&D kits) 

PBS 
+ 1 % BSA  

ELISA buffer 
(BD kits) 

PBS 
+ 10 % FBS 

2.1.5 Cell separation products 
 
CD3 human MicroBeads Miltenyi Biotec, Bergisch Gladbach, Germany 
CD8 human MicroBeads Miltenyi Biotec, Bergisch Gladbach, Germany 
EasySep™ human naïve CD4+ T cell 
isolation kit II 

STEMCELL Technologies, Vancouver, Canada 

EasySep™ magnet STEMCELL Technologies, Vancouver, Canada 
Histopaqueâ-1077 Sigma-Aldrich, St. Louis, MO, USA 
LS columns Miltenyi Biotec, Bergisch Gladbach, Germany 
MACS® MultiStand Miltenyi Biotec, Bergisch Gladbach, Germany 
QuadroMACS™ separator Miltenyi Biotec, Bergisch Gladbach, Germany 
 
2.1.6 Antibodies 
 
Table 1 Fluorochrome-conjugated antibodies 
Antibody Clone Isotype  Concentration Company  
FITC anti-human/ 
mouse/rat c-myc 

SH1-
26E7.1.3 

Mouse  
IgG1 

1:100 Miltenyi Biotec, Bergisch 
Gladbach, Germany 

PE anti-human IL-9 MH9A4 Mouse 
IgG2b, k 

1:100 BioLegend, San Diego, CA, 
USA 

PE/Cyanine7 
anti-human IFN-g 

4S.B3 Mouse 
IgG1, k 

1:100 BioLegend, San Diego, CA, 
USA 
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2.1.7 ELISA kits 
 
Human IFN-g ELISA set BD Biosciences, San Jose, CA, USA 
Human IL-9 DuoSet ELISA R&D Systems, Minneapolis, MN, USA 
 
2.1.8 Cytokines 
 
Dynabeads™ human T-activator CD3/CD28 
for T cell expansion and activation 

ThermoFisher Scientific, Waltham, MA, 
USA 

Recombinant human IL-12 p70 (Chinese 
hamster ovary/CHO-derived) 

PeproTech, Cranbury, NJ, USA 

Recombinant human IL-1𝛽 PeproTech, Cranbury, NJ, USA 
Recombinant human IL-23 PeproTech, Cranbury, NJ, USA 
Recombinant human IL-4 PeproTech, Cranbury, NJ, USA 
Recombinant human IL-6  R&D Systems, Minneapolis, MN, USA 
Recombinant human TGF-𝛽1 PeproTech, Cranbury, NJ, USA 
Ultra-LEAF™ purified anti-human IFN-g 
antibody 

BioLegend, San Diego, CA, USA 

Ultra-LEAF™ purified anti-human IL-4 
antibody 

BioLegend, San Diego, CA, USA 

 
2.1.9 Plasmids 
 
Table 2 CAR constructs 
Construct Target Transmembrane 

domain 
ICD  
(signal 2) 

ICD 
(signal 1) 

a.MSLN.CD28.CD3z Mesothelin (human) CD28 CD28 CD3z 
a.MSLN.4-1BB.CD3z Mesothelin (human) CD8a 4-1BB CD3z 
a.MSLN.ICOS.CD3z Mesothelin (human) ICOS ICOS CD3z 

 
2.1.10 Cell lines 
 
Table 3 Cell lines 
Cell line Description Culture 

medium 
Reference 

SUIT-2-MSLN Mesothelin overexpressing pancreatic 
adenocarcinoma cell line  

DMEM 3+ (Karches et 
al., 2019) 

293Vec-GALV Amphotropic packaging cell line DMEM 4+ (Ghani et al., 
2009) 293Vec-RD114 Amphotropic packaging cell line DMEM 4+ 

 
2.1.11 Cell culture media and supplements 
2.1.11.1 Cell culture supplements 
 
Dulbecco′s modified Eagle medium 
(DMEM) 

Sigma-Aldrich, St. Louis, MO, USA 

Fetal bovine serum (FBS) ThermoFisher Scientific, Waltham, MA, USA 
Human serum Sigma-Aldrich, St. Louis, MO, USA 
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IL-15 Miltenyi Biotec, Bergisch Gladbach, Germany 
IL-2 Clinigen, Yardley, PA, USA 
L-glutamine Sigma-Aldrich, St. Louis, MO, USA 
Non-essential amino acid solution 
(minimum essential medium/MEM, 
100X) 

Sigma-Aldrich, St. Louis, MO, USA 

Penicillin-streptomycin Sigma-Aldrich, St. Louis, MO, USA 
Roswell Park Memorial Institute 
(RPMI)-1640 medium 

Sigma-Aldrich, St. Louis, MO, USA 

Sodium pyruvate solution (100 mM) Lonza, Basel, Switzerland 
 
2.1.11.2 Cell culture media 
 
Dulbecco’s modified Eagle medium 3+ 
(DMEM 3+) 

DMEM 
+ 10 % FBS 
+ 1 % L-glutamine 
+ 1 % Penicillin/streptomycin 
  

Dulbecco’s modified Eagle medium 4+ 
(DMEM 4+) 

DMEM 
+ 10 % FBS 
+ 2 % L-glutamine 
+ 1 % Penicillin/streptomycin 
  

xCELLigence assay medium Tumor cell medium  
+ 1 % Non-essential amino acids  
+ 1 % Sodium pyruvate 
  

Human T cell medium (hTCM) RPMI-1640 
+ 2.5 % Human serum 
+ 1 % L-glutamine 
+ 1 % Penicillin/streptomycin 
+ 1 % Non-essential amino acids 
+ 1 % Sodium pyruvate 

 
2.1.12 Software 
 
BD FACSDiva™ BD Biosciences, San Jose, CA, USA 
EndNote 20 Clarivate, Philadelphia, PA, USA 
FlowJo™ 10 BD, Ashland, OR, USA 
GraphPad Prism version 9  GraphPad Software, San Diego, CA, USA 
Microsoft Office 2021 Microsoft, Redmond, WA, USA 
MicroWin 2010 Labsis Laborsysteme GmbH, 

Neunkirchen-Seelscheid, Germany 
NanoDrop™ 2000/2000c ThermoFisher Scientific, Waltham, MA, USA 
RStudio version 1.4.1717 RStudio, Boston, MA, USA 
RTCA software 2.0 Agilent, Santa Clara, CA, USA 
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2.2 Methods 
2.2.1 Cell culture 
 
All cell culture work was performed in S1 or S2 laboratories as appropriate. Cells were 
cultured in sterile 6-well, 24-well or 96-well flat-bottom plates or in sterile cell culture 
flasks (T-25, T-75, T-175) at 37 °C with 5 % CO2 and 95 % humidity. All cell culture 
work was performed under a sterile cell culture hood. Adherent cell lines were 
passaged when cells reached a confluency of 70 – 80 % under a microscope. Cells 
were either detached with a sterile cell scraper or with a 1X trypsin solution (T-25: 2 ml 
trypsin; T-75: 5 ml trypsin; T-175: 8 ml trypsin), washed once with PBS and 
resuspended in the appropriate medium. 
 
2.2.2 Cell counting 
 
Cells were counted using Neubauer improved cell counting chambers. Prior to 
counting, adherent cells were detached and resuspended in an appropriate volume for 
counting. For counting, cells were diluted 1:10 in Trypan Blue, and 10 µl of this 1:10 
dilution was added to the counting chamber. For low cell counts, cells were diluted 1:2. 
To determine accurate cell counts, all four large squares of the Neubauer counting 
chamber, each containing 16 smaller squares, were counted. Absolute cell counts in 
106 cells / ml were determined as the product of the number of cells counted per large 
square and the dilution factor multiplied by 104. Viability was assessed by determining 
the proportion of live cells to the total number of cells. Cells were only used for assays 
if their viability was greater than 80 %. 
 
2.2.3 Cryopreservation of cells 
 
Prior to cryopreservation, cells were washed twice in PBS, counted, and resuspended 
in FBS. 100 µl of DMSO was added to every cryopreservation tube, followed by 900 µl 
of the cell suspension. Cryos were immediately transferred to a Mr. Frosty and placed 
in a -80 °C freezer. Approximately 5 x 106 cells were preserved per cryopreservation 
tube. Cryopreserved cells were stored at -80 °C for short-term storage and 
below -140 °C in the vapor phase of a liquid nitrogen tank for long-term storage. 
 
2.2.4 Generation of producer cell lines 
 
Producer cell lines stably produce retroviral virus, ensuring the reproducibility of 
retroviral transductions. Plasmid-DNA containing the CAR construct was first amplified 
using a MiniPrep kit according to the manufacturer’s protocol. A 293Vec-Galv retroviral 
packaging cell line was then transfected with the amplified plasmid-DNA. The 
supernatant produced by the packaging cell line was subsequently used to transduce a 
293Vec-RD114 packaging cell line to generate RD114-construct producers. For 
retroviral transductions, fresh virus supernatant was collected from producer cell lines 
at a cell confluency of 70 – 80 %. 
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2.2.5 Isolation of primary human peripheral blood mononuclear cells, naïve 
CD4+ T cells and CD3+ T cells 

 
Primary human peripheral blood mononuclear cells (PBMC) were isolated from the 
blood of healthy donors using a Histopaque®-1077 gradient and were further sorted for 
CD3+ T cells or naïve CD4+ T cells. Human T cell medium (hTCM) was used for the 
culture of primary human T cells, and anti-CD3/CD28 Dynabeads were added to the 
cell suspension at a cell to bead ratio of 3:1 for T cell activation. 
 
CD3+ T cells were isolated from healthy donor PBMC using a magnetic activated cell 
sorting approach (MACS) with CD3 MicroBeads and LS columns. CD3+ T cells were 
resuspended in hTCM supplemented with human IL-2 1:50 and human IL-15 1:20000 
at a concentration of 0.25 – 1 x 106 cells / ml.  
 
Naïve CD4+ T cells were isolated from healthy donor PBMC through negative selection 
using an EasySep™ human naïve CD4+ T cell isolation kit. Naïve CD4+ T cells were 
resuspended in hTCM supplemented with human IL-2 1:100 and human IL-15 1:20000 
at a concentration of 0.25 x 106 cells / ml.  
 
2.2.6 Retroviral transduction of human T cells 
 
Non-tissue culture treated 24-well-plates were coated with RetroNectin one day prior to 
retroviral transduction. Primary human T cells were retrovirally transduced on day two 
after isolation using fresh virus supernatant generated by producer cell lines. Naïve 
CD4+ T cells were transduced at a concentration of 0.25 x 106 cells / ml. CD3+ T cells 
were transduced at a concentration of 0.25 – 1 x 106 cells / ml. Transduction efficiency 
was measured one day after transduction, and in case of insufficient transduction 
efficiency, T cells were retrovirally transduced once again. T cells were expanded every 
two days and cultured at a concentration of 0.25 – 1 x 106 cells / ml. 
 
2.2.7 Polarization of naïve CD4+ T cells 
 
To induce the differentiation of naïve CD4+ T cells, subset-specific polarizing cytokines 
were added to cell suspensions every two days. Th1 cells were differentiated using 
IL-12 (5 ng / ml, only on day 0) and aIL-4 (10 µg / ml). Th2 cells were polarized using 
IL-4 (20 ng / ml) and aIFN-g (10 µg / ml). Th9 and Th9+ cells were differentiated using 
IL-4 (20 ng / ml), TGF-b (2 ng / ml), aIFN-g (10 µg / ml) and, in the case of Th9+ cells, 
IL-1b (10 ng / ml). Th17 cells were polarized using IL-6 (10 ng / ml), IL-23 (20 ng / ml), 
IL-1b (10 ng / ml), aIL-4 (10 µg / ml) and aIFN-g (10 µg / ml). Correct polarization was 
analyzed using ELISA and flow cytometry. 
 
2.2.8 Flow cytometry 
 
Flow cytometry (FACS, fluorescence activated cell sorting) enables the detection and 
sorting of cells based on the binding of fluorochrome-coupled antibodies. Cells were 
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first stained for cell surface antigens (antibody concentration 1:100). A fixable viability 
dye at a concentration of 1:1000 was included in this step to differentiate live from dead 
cells. Subsequently, cells were either washed and resuspended in PBS for immediate 
FACS analysis or fixed and permeabilized to stain for intracellular antigens (antibody 
concentration 1:100). Fixed and stained cells were washed and resuspended in 
permeabilization buffer with 2 % FBS prior to FACS analysis. To assess CD4+ T cell 
polarization, antibodies detecting interferon-g (IFN-g) and IL-9 were used. To measure 
transduction efficiency, a FITC-conjugated antibody detecting c-myc was used. 
 
2.2.9 Cytokine secretion assay  
 
An enzyme-linked immunosorbent assay (ELISA) enables the detection of cytokines or 
other secreted molecules in the supernatant of the cells of interest. Supernatants were 
first incubated with a plate-bound capture antibody. After washing, detection antibodies 
were added and subsequently coupled to streptavidin-horseradish peroxidase. After 
stopping the reaction with sulfuric acid, absorbance was measured. A nonlinear least 
squares regression based on the absorbance values of a standard was used to infer 
cytokine secretion from absorbance measurements.  
 
2.2.10 Proliferation assay 
 
Naïve CD4+ T cells were cultured in polarizing medium at a concentration of 
0.25 x 106 cells / ml. 200 µl of the cell suspension was added to every well of a 
96-well-plate. Every two days, 100 µl of supernatants were collected to assess cytokine 
secretion. Cells were resuspended in the remaining 100 µl and stained with a fixable 
viability dye. Proliferation was assessed using counting beads for flow cytometry. Cells 
in the remaining wells were split 1:2 and resuspended in 150 µl of polarizing medium. 
 
2.2.11 Real-time cytotoxicity assay 
 
Prior to xCELLigence measurements, T cells were retrovirally transduced on day two 
after isolation and expanded for a total of six days. xCELLigence measurements 
enable the real-time and continual assessment of tumor cell adhesion, proliferation and 
lysis. Changes in electrical impedance resulting from target cell adhesion or 
detachment are translated into a unit-free measure, the cell index. After blanking with 
an electrically conductive medium, 3 x 104 MSLN-overexpressing SUIT-2-MSLN tumor 
cells were seeded per well in a 96-well xCELLigence plate. Once the tumor cells had 
entered a linear phase of proliferation, 6 x 104 CAR T cells or untransduced T cells 
were added per well for an effector to target ratio of 2:1. 
 
2.2.12 RNA sequencing 
 
To prepare samples for ribonucleic acid (RNA) extraction, DynaBeads were removed 
from the cell suspension, and cells were washed twice. RNA was extracted using a 
RNeasy micro kit according to the manufacturer’s protocol. In brief, samples were lysed 
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and homogenized and subsequently resuspended in ethanol. Purified RNA was bound 
to a silica membrane, washed and eluted in water. To check the quality of the isolated 
RNA, RNA concentration was measured using a NanoDrop instrument, and the 
integrity of the isolated RNA was assessed using a Bioanalyzer. 
 
RNA was isolated on day 7 after primary T cell isolation. The following subsets were 
analyzed for RNA sequencing: Th1, Th2, Th9, Th9+, Th17. RNA sequencing and the 
bioinformatic analysis of the sequencing results were performed by our collaborators at 
the Technical University of Munich (principal investigator Prof. Dr. Roland Rad). 
 
2.2.13 RNA sequencing analysis 
 
For the analysis of the transcriptional profiles of different T helper cell subsets, DESeq2 
log2 fold changes with apeglm-shrinkage and adjusted p-values were used. For gene 
set enrichment analysis (GSEA), pathways from the Reactome Pathway Database and 
normalized enrichment scores (NES) were used (Gillespie et al., 2021). Gene 
expression was considered significant if p < 0.01.  
 
For the calculation of expression scores, gene signatures were either downloaded from 
the Molecular Signatures Database or adapted from previous publications. The gene 
sets “HALLMARK_APOPTOSIS”, “GOBP_ALPHA_BETA_T_CELL_ 
PROLIFERATION_GO 0046633”, “HALLMARK_GLYCOLYSIS” and “HALLMARK_ 
OXIDATIVE_PHOSPHORYLATION” were downloaded from the Molecular Signatures 
Database (Ashburner et al., 2000, Carbon et al., 2008, Liberzon et al., 2015, 
Subramanian et al., 2005, The Gene Ontology Consortium et al., 2023). Gene 
signatures of a 4-1BB ICD phenotype (Boroughs et al., 2020, Long et al., 2015), 
CD28 ICD phenotype (Long et al., 2015), effector phenotype (Sheih et al., 2020, 
Willinger et al., 2005) and exhaustion (Sheih et al., 2020, Wherry et al., 2007) were 
adapted from previous publications. Expression scores were calculated by forming the 
sum of the apeglm-shrunken log2 fold changes of all significantly up- or downregulated 
genes in a gene set. Only fold changes < -1 or > 1 were considered.  
 
2.2.14 Statistical analysis 
 
FACS data was analyzed using BD FACSDiva and FlowJo software. xCELLigence 
data was analyzed using RTCA software. ELISA data was analyzed using MicroWin 
software. NanoDrop data was analyzed using NanoDrop 2000/2000c software. 
GraphPad Prism was used to make figures 1, 4, 5, 8, 13 and 14. The packages ggplot2 
(Wickham, 2016), ggrepel (Slowikowski, 2021), cowplot (Wilke, 2020) and fmsb 
(Nakazawa, 2023) in RStudio (R Core Team, 2021) were used to generate figures 2, 3, 
6, 7, 9, 10 and 11. Figure 12 was created using Microsoft Office PowerPoint. Analyses 
of differences between groups were performed using one-way analysis of variance 
(ANOVA) with correction for multiple testing by the Turkey method or using two-way 
ANOVA with correction for multiple testing by the Bonferroni method. Unless otherwise 
stated, a p-value cutoff of p < 0.05 was used to determine statistical significance.  
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Results  
 
3.1 Incubation of naïve CD4+ T cells with polarizing cytokines results in 

effective polarization of T helper cell subsets 
 
Naïve CD4+ T cells were incubated with polarizing cytokines to induce their 
differentiation towards either a Th1, Th2, Th9, Th9+ or Th17 phenotype. To confirm 
effective polarization, the secretion of subset-specific cytokines was determined using 
flow cytometry and ELISA. The percentage of IFN-g-positive T cells was increased in 
the Th1 subset compared to the Th2, Th9, Th9+ and Th17 subsets on day seven after 
isolation (Fig. 1a). Likewise, the percentage of IL-9-positive T cells was higher in the 
Th9+ subset compared to the Th1, Th2, Th9 and Th17 subsets (Fig. 1b). While the 
percentage of IL-9-positive T cells also seemed to be higher in the Th9 subset relative 
to the Th1, Th2 and Th17 subsets, this effect was not statistically significant (Fig. 1b).  
 

 
Figure 1 Incubation with polarizing cytokines results in effective polarization of 
T helper cell subsets 
Human CD4+ T cells were polarized towards a Th1, Th2, Th9, Th9+ or Th17 phenotype. IFN-g 
and IL-9 expression were measured in the abovementioned subsets on day 7 after isolation 
using flow cytometry. Depicted in (A) are mean percentages of IFN-g-positive cells ± SEM in 
Th1, Th2, Th9, Th9+ and Th17 cells of three (n = 3) independent donors. The Th1 subset is 
highlighted in grey. Depicted in (B) are mean percentages of IL-9-positive cells ± SEM in the 
abovementioned subsets of three (n = 3) independent donors. The Th9 and Th9+ subsets are 
highlighted in grey. Each point represents one donor. For each donor, measurements were 
performed in duplicates. Analyses of differences between groups were performed using 
one-way analysis of variance (ANOVA) with correction for multiple testing by the Turkey 
method. 
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To confirm effective polarization on a gene expression level, RNA was extracted from 
CD4+ T cells polarized towards either a Th1, Th2, Th9, Th9+ or Th17 phenotype and 
sequenced on day seven after isolation. For every T helper cell subset, a set of 
subset-defining genes was defined to include cytokines characteristically produced by 
a subset as well as lineage-driving transcription factors. An upregulation of these 
subset-defining genes could be found in every T helper cell subset (Table 4).  
 
Table 4 Gene expression of T helper cell subset-defining genes 
CD4+ T cells were polarized towards either a Th1, Th2, Th9, Th9+ or Th17 phenotype. RNA 
was extracted from each group on day 7 after isolation and sequenced. Data was pooled for 
three (n = 3) independent donors. Subset-defining genes were defined as transcription factors 
essential for driving polarization towards a T helper cell lineage or as cytokines characteristically 
produced by a subset. Fold changes represent log2 fold changes with apeglm-shrinkage. All 
fold changes are depicted relative to the Th1 subset. To determine significance, a p-value cutoff 
of p = 0.05 was used. Fold changes that did not reach statistical significance are depicted in 
grey and annotated with the term (ns). 
 

Comparison: 
Th1 vs. subset Gene 

Apeglm-adjusted 
log2 fold change 

Adjusted 
p-value 

Th2 

IFN-g -4.604 3.52E-88 
IL-2 -3.168 0.002 
Tbx21 -4.283 2.79E-15 
Tnf -1.032 0.014 
Gata3 1.247 1.61E-09 
IL-13 0.068 0.764 (ns) 
IL-5 1.073 0.049 
Irf4 0.085 0.767 (ns) 

Th9 

IFN-g -4.358 8.24E-80 
IL-2 -2.980 0.002 
Tbx21 -4.901 8.63E-14 
Tnf -0.258 0.421 (ns) 
IL-9 1.820 0.004 
Irf4 0.075 0.840 (ns) 

Th9+ 

IFN-g -4.015 2.28E-70 
IL-2 -3.796 3.93E-04 
Tbx21 -3.964 2.67E-15 
Tnf 0.590 0.101 (ns) 
IL-9 3.505 3.47E-08 
Irf4 0.080 0.832 (ns) 

Th17 

IFN-g -2.734 6.79E-34 
IL-2 -0.033 0.376 (ns) 
Tbx21 -2.504 1.53E-08 
Tnf -0.065 0.437 (ns) 
IL-17F 3.387 7.54E-11 
IL-21 -0.097 0.213 (ns) 
IL-22 0.019 0.730 (ns) 
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IFN-g and Tbx21 were upregulated in the Th1 subset compared to the Th2, Th9, 
Th9+ and Th17 subsets. IL-2 was upregulated in the Th1 subset compared to every 
subset except for Th17. Tnf, encoding TNF-a, was upregulated in the Th1 subset 
relative to the Th2 subset. IL-5 and Gata3 were upregulated in the Th2 subset 
compared to the Th1 subset. IL-17F was upregulated in the Th17 subset compared to 
the Th1 subset (Table 4). 
 
Table 5 Gene expression of IL-9 in different T helper cell subsets 
CD4+ T cells were polarized towards either a Th1, Th2, Th9, Th9+ or Th17 phenotype. RNA 
was extracted from each group on day 7 after isolation and sequenced. Data was pooled for 
three (n = 3) independent donors. Gene expression data for IL-9 is shown for Th9 and 
Th9+ cells, each compared to Th1, Th2 or Th17 cells. Fold changes represent log2 fold 
changes with apeglm-shrinkage. To determine significance, a p-value cutoff of p = 0.05 was 
used. Fold changes that did not reach statistical significance are depicted in grey and annotated 
with the term (ns). 
 

Population 
Comparison 
to subset 

Apeglm-adjusted 
log2 fold change 

Adjusted 
p-value 

Th9 

Th1 1.820 0.004 
Th2 0.072 7.35E-04 
Th9+ -0.016 0.410 (ns) 
Th17  1.986 0.002 

Th9+ 
Th1 3.505 3.47E-08 
Th2 4.125 5.47E-10 
Th17  3.646 1.23E-08 

 
IL-9 was upregulated in the Th9 subset compared to Th1 and Th17 cells and in the 
Th9+ subset compared to Th1, Th2 and Th17 cells. IL-9 was not differentially 
expressed between the Th9 and Th9+ subsets. While statistically significant, the 
apeglm-adjusted log2 fold change of IL-9 between conventional Th9 and Th2 cells was 
less than one (Table 5). 
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Figure 2 Th9-defining genes are differentially expressed by Th9 cells compared to 
Th1 and Th17 cells 
CD4+ T cells were polarized towards either a Th1, Th2, Th9, Th9+ or Th17 phenotype. RNA 
was extracted from each group on day 7 after isolation and sequenced. Depicted here is the 
gene expression profile of Th9 cells compared to (A) Th1 cells, (B) Th2 cells, or (C) Th17 cells. 
Data was pooled for three (n = 3) independent donors. For each comparison, subset-defining 
genes are highlighted. Genes characteristic of a Th9 lineage are consistently highlighted in 
green (adjusted fold change > 1 and p < 0.01), while those characteristic of either a (A) Th1, (B) 
Th2, or (C) Th17 lineage are highlighted in red (adjusted fold change < -1 and p < 0.01). 
Subset-defining genes which were not differentially expressed are highlighted in black 
(-1 < adjusted fold change < 1 and/or p > 0.01). Fold changes represent log2 fold changes with 
apeglm-shrinkage and are depicted on the x-axis. Adjusted p-values were logarithmically 
transformed and are depicted on the y-axis. To determine significance, a p-value cutoff of 
p = 0.01 was used. 
 
Irf4 was not upregulated in the Th9 or Th9+ subsets compared to the Th1, Th2 and 
Th17 subsets (Fig. 2 and 3). Gata3 was upregulated in the Th9 and Th9+ subsets 
compared to the Th1 and Th17 subsets (Fig. 2 and 3). Il4r, encoding IL-4 receptor, was 
upregulated in the Th9 subset compared to the Th1 subset (Fig. 2). IL-5 and IL-13 were 
upregulated in the Th9+ subset compared to the Th2 subset (Fig. 3). No subset-
defining genes were differentially expressed between the Th9 and Th2 subsets (Fig. 2). 
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Figure 3 Th9-defining genes are differentially expressed by Th9+ cells compared to Th1, 
Th2 and Th17 cells 
CD4+ T cells were polarized towards either a Th1, Th2, Th9, Th9+ or Th17 phenotype. RNA 
was extracted from each group on day 7 after isolation and sequenced. Depicted here is the 
gene expression profile of Th9+ cells compared to (A) Th1 cells, (B) Th2 cells, or (C) Th17 cells. 
Data was pooled for three (n = 3) independent donors. For each comparison, subset-defining 
genes are highlighted. Genes characteristic of a Th9 lineage are consistently highlighted in 
green (adjusted fold change > 1 and p < 0.01), while those characteristic of either a (A) Th1, (B) 
Th2, or (C) Th17 lineage are highlighted in red (adjusted fold change < -1 and p < 0.01). 
Subset-defining genes which were not differentially expressed are highlighted in black 
(-1 < adjusted fold change < 1 and/or p > 0.01). Fold changes represent log2 fold changes with 
apeglm-shrinkage and are depicted on the x-axis. Adjusted p-values were logarithmically 
transformed and are depicted on the y-axis. To determine significance, a p-value cutoff of 
p = 0.01 was used.  
 
To determine whether cytokine secretion is stable throughout the polarization process, 
the secretion of IFN-g and IL-9 was measured in supernatants every two days using 
ELISA. The secretion of IFN-g by Th1 cells as well as the secretion of IL-9 by Th9 and 
Th9+ cells were variable throughout the polarization process. IFN-g secretion by 
Th1 cells was highest on day four after isolation (Fig. 4a). IL-9 secretion by Th9 and 
Th9+ cells was highest between days four and six after isolation (Fig. 4b-c).  
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Figure 4 Cytokine secretion is variable and highest four to six days after polarization 
CD4+ T cells were polarized towards a Th1, Th9 or Th9+ phenotype. Supernatants were 
collected on days 2, 4, 6, 8 and 10 after isolation. IFN-g and IL-9 secretion were measured using 
ELISA. Depicted in (A) is mean IFN-g secretion ± SEM in Th1 cells. Depicted in (B) and (C) is 
mean IL-9 secretion ± SEM in (B) Th9 and (C) Th9+ cells, respectively. Shown here is data of 
one donor representative of three (n = 3) independent donors. For each donor, measurements 
were performed in triplicates. Analyses of differences between groups were performed using 
one-way ANOVA with correction for multiple testing by the Turkey method. 
 
IL-1b has been shown to enhance the differentiation of murine CD4+ T cells towards a 
Th9 phenotype (Végran et al., 2014). To assess polarization efficacy between 
conventional Th9 and Th9+ cells, IL-9 secretion was compared between both subsets. 
IL-9 secretion was higher in the Th9+ condition on days four and six after isolation 
(Fig. 5). 
 

 
Figure 5 Incubation with IL-1b enhances T cell polarization towards a Th9 phenotype 
CD4+ T cells were polarized towards a Th9 phenotype in the presence (Th9+) or absence (Th9) 
of IL-1b. Supernatants were collected on days 2, 4, 6, 8 and 10 after isolation. IL-9 secretion 
was measured using ELISA. Depicted here is mean IL-9 secretion ± SEM of three (n = 3) 
independent donors. Each point represents one donor. For each donor, measurements were 
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performed in triplicates. Analyses of differences between groups were performed using two-way 
ANOVA with correction for multiple testing by the Bonferroni method. 
 
To further evaluate the influence of IL-1b on human Th9 differentiation, the gene 
expression profiles of conventional Th9 and Th9+ cells were compared (Fig. 6). Three 
genes were differentially expressed using an apeglm-shrunken log2 fold change cutoff 
of one and an adjusted p-value cutoff of 0.01 (Fig. 6). Zc3h12a, encoding monocyte 
chemotactic protein-induced protein 1 (MCPIP-1), as well as Basp1, encoding brain 
acid soluble protein 1, were upregulated in the Th9+ subset. Clic3, encoding chloride 
intracellular channel protein 3, was upregulated in the Th9 subset. 
 

 
Figure 6 Zc3h12a, Basp1 and Clic3 are differentially expressed in the Th9+ and 
Th9 subsets 
CD4+ T cells were polarized towards either a Th1, Th2, Th9, Th9+ or Th17 phenotype. RNA 
was extracted from each group on day 7 after isolation and sequenced. Depicted here is the 
gene expression profile of Th9+ cells compared to Th9 cells. Data was pooled for three (n = 3) 
independent donors. Genes upregulated in Th9+ cells are highlighted in green (adjusted fold 
change > 1 and p < 0.01), and those upregulated in Th9 cells are highlighted in red (adjusted 
fold change < -1 and p < 0.01). Fold changes represent log2 fold changes with 
apeglm-shrinkage and are depicted on the x-axis. Adjusted p-values were logarithmically 
transformed and are depicted on the y-axis. To determine significance, a p-value cutoff of 
p = 0.01 was used. 
 
To further characterize these differences, GSEA based on the Reactome Pathway 
Database was performed (Fig. 7). In the Th9 subset, gene sets associated with protein 
translation, including cellular responses to amino acid deficiency, and with 
G-protein-mediated signaling were upregulated. In the Th9+ subset, gene sets 
associated with interleukin signaling, particularly interleukin-1 signaling, and with cell 
cycle and DNA replication were upregulated. In addition, gene sets related to organelle 
biogenesis, including cilium assembly, and NF-kB pathway activation were upregulated 
in this subset. Furthermore, gene sets related to TNF receptor (TNFR) signaling, 
Hedgehog signaling and apoptosis were upregulated in the Th9+ subset.  
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Figure 7 Gene sets associated with interleukin signaling and cell cycle regulation are 
enriched in the Th9+ subset relative to the conventional Th9 subset 
CD4+ T cells were polarized towards either a Th1, Th2, Th9, Th9+ or Th17 phenotype. RNA 
was extracted from each group on day 7 after isolation and sequenced. Depicted here is the 
differential expression of gene sets based on the Reactome Pathway Database in the Th9 and 
Th9+ subsets. Data was pooled for three (n = 3) independent donors. To determine relative 
gene set expression, normalized enrichment scores (NES) were used (Th9: NES < -1; Th9+: 
NES > 1). Only pathways whose NES was significant (p < 0.01) are displayed. For each gene 
set, bar shading corresponds to p-values. 
 
3.2 Th9+ cells exhibit an efficient and sustained proliferative capacity 
 
Since reduced CAR T cell persistence is a key factor limiting the success of CAR T cell 
therapy (Fraietta et al., 2018), the proliferative capacity of Th1, Th2, Th9, Th9+ and 
Th17 cells was analyzed. To determine proliferative capacity, the ratio of live cells to 
counting beads was measured using flow cytometry over the course of ten days. The 
only subsets presenting increases in cell number between days two and eight were 
Th2 and Th9+ cells (Fig. 8). While Th1, Th9 and Th17 cells also seemed to proliferate, 
this difference was not statistically significant. 
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Figure 8 Th9+ cells exhibit an efficient and sustained proliferative capacity 
CD4+ T cells were polarized towards either a Th1, Th2, Th9, Th9+ or Th17 phenotype. 
Proliferative capacity was measured using flow cytometry by analyzing the ratio of live cells to 
counting beads. For each donor, measurements were performed in duplicates. Depicted here 
are mean cell to bead ratios ± SEM of three (n = 3) independent donors for the abovementioned 
subsets. Analyses of differences between groups were performed using two-way ANOVA with 
correction for multiple testing by the Bonferroni method. The following comparisons were 
significant: Th2 day 2 vs. day 8 p = 0.026, day 2 vs. day 10 p = 0.005, and day 4 vs. day 10 
p = 0.008. Th9+ day 2 vs. day 8 p = 0.020. All other comparisons were not significant. 
 
3.3 Th9+ cells exhibit an advantageous phenotypic and metabolic profile for 

CAR T cell therapy 
 
We next sought to further characterize the transcriptional phenotype of Th9+ cells by 
comparing it to the gene expression profile of Th1 cells. To this end, GSEA based on 
the Reactome Pathway Database was performed (Fig. 9). In the Th9+ subset, gene 
sets associated with metabolic and biosynthetic processes were upregulated, including 
fatty acid and amino acid metabolism and oxidative phosphorylation. In the Th1 subset, 
gene sets associated with an inflammatory response and signaling by interferons and 
interleukins were upregulated. In addition, gene sets associated with cellular 
senescence and programmed cell death were upregulated in Th1 cells.  
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Figure 9 Gene sets associated with mitochondrial metabolism are enriched in the 
Th9+ subset relative to the Th1 subset 
CD4+ T cells were polarized towards either a Th1, Th2, Th9, Th9+ or Th17 phenotype. RNA 
was extracted from each group on day 7 after isolation and sequenced. Depicted here is the 
differential expression of gene sets based on the Reactome Pathway Database in the Th1 and 
Th9+ subsets. Data was pooled for three (n = 3) independent donors. To determine relative 
gene set expression, normalized enrichment scores (NES) were used (Th1: NES < -1; Th9+: 
NES > 1). Only pathways whose NES was significant (p < 0.01) are displayed. For each gene 
set, bar shading corresponds to p-values. 
 
To explore whether a Th9+ subset exhibits a favorable phenotypic profile for 
CAR T cell therapy, the expression of genes associated with factors contributing to 
CAR T cell therapy success or failure was compared between Th9+ and Th1 cells. 
Factors associated with enhanced CAR T cell function include a sufficient proliferative 
capacity, a metabolic profile favoring oxidative phosphorylation over anaerobic 
processes and a central memory phenotype (Chen et al., 2021, Fraietta et al., 2018, 
Melenhorst et al., 2022). Factors associated with CAR T cell therapy failure include 
T cell exhaustion, apoptosis and an effector phenotype (Deng et al., 2020, Finney et 
al., 2019, Fraietta et al., 2018). For each subset, an expression scored was calculated 
for each factor by forming the sum of the fold changes of all significantly upregulated 
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genes in that gene set (Fig. 10). Genes related to apoptosis (expression scores: 
Th1: 37.872; Th9+: 8.530), exhaustion (Th1: 22.895; Th9+: 5.230), effector phenotype 
(Th1: 22.687; Th9+: 2.081) and proliferation (Th1: 16.423; Th9+: 2.112) were 
upregulated in the Th1 subset. Genes associated with oxidative phosphorylation 
(Th1: 1.153; Th9+: 10.568) were upregulated in the Th9+ subset. Genes associated 
with glycolysis (Th1: 8.441; Th9+: 9.765) were expressed in a similar manner in both 
subsets (Fig. 10). 
 

 
Figure 10 Genes associated with CAR T cell therapy failure are upregulated to a greater 
extent in the Th1 subset compared to the Th9+ subset 
CD4+ T cells were polarized towards either a Th1, Th2, Th9, Th9+ or Th17 phenotype. RNA 
was extracted from each group on day 7 after isolation and sequenced. Data was pooled for 
three (n = 3) independent donors. Depicted here are expression scores of factors associated 
with CAR T cell therapy failure (apoptosis, exhaustion, Tem/Teff vs. Tcm phenotype, glycolysis) 
or with enhanced CAR T cell persistence (proliferation, oxidative phosphorylation) in the Th1 
and Th9+ subsets. For each subset, an expression score was calculated for each factor by 
forming the sum of apeglm-shrunken log2 fold changes of all significantly upregulated genes 
(p < 0.01) associated with that specific factor. Expression scores for the Th1 subset are 
depicted in grey, expression scores for the Th9+ subset in green.  
 
The transcriptional profile described for 4-1BB-based CAR T cells closely resembles 
that of Th9+ cells, notably in terms of metabolism, memory phenotype and 
susceptibility to exhaustion (Boroughs et al., 2020, Long et al., 2015). We next sought 
to analyze the differential expression of a 4-1BB ICD and a CD28 ICD gene signature 
in Th1 and Th9+ cells. The 4-1BB ICD gene signature was adapted from Long et al. 
and Boroughs et al. and comprised 4511 genes associated with 4-1BB ICD signaling in 
BBz-CAR T cells (Boroughs et al., 2020, Long et al., 2015). The CD28 ICD gene 
signature was adapted from Long et al. and included 5338 genes associated with 
CD28 ICD signaling in CD28z-CAR T cells (Long et al., 2015). For each subset, an 
expression scored was calculated for each gene signature by forming the sum of the 
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fold changes of all significantly upregulated genes in that gene set. The expression 
score of a 4-1BB ICD gene signature was higher in Th9+ cells (Th1: 170.495; 
Th9+: 237.693). The expression score of a CD28 ICD gene signature was higher in 
Th1 cells (Th1: 329.879; Th9+: 85.901) (Fig. 11). 
 

 
Figure 11 Genes associated with a 4-1BB ICD gene signature are upregulated in the 
Th9+ subset, and genes associated with a CD28 ICD gene signature are upregulated in 
the Th1 subset 
CD4+ T cells were polarized towards either a Th1, Th2, Th9, Th9+ or Th17 phenotype. RNA 
was extracted from each group on day 7 after isolation and sequenced. Data was pooled for 
three (n = 3) independent donors. Depicted here is the expression of genes associated with 
either a (A) 4-1BB ICD gene signature or with a (B) CD28 ICD gene signature in the Th1 and 
Th9+ subsets. Genes upregulated in Th9+ cells are highlighted in green (adjusted fold 
change > 1 and p < 0.01), and those upregulated in Th1 cells are highlighted in red (adjusted 
fold change < -1 and p < 0.01). Fold changes represent log2 fold changes with 
apeglm-shrinkage and are depicted on the x-axis. Adjusted p-values were logarithmically 
transformed and are depicted on the y-axis. To determine significance, a p-value cutoff of 
p = 0.01 was used. 
 
3.4 Th9+ CAR T cells effectively control tumor growth in vitro 
 
Due to their phenotypic profile, we hypothesized that Th9+ CAR T cells would exhibit a 
superior functionality when transduced with a 4-1BB ICD or ICOS ICD instead of a 
CD28 ICD. To test this hypothesis, every T helper cell subset was transduced with a 
second-generation CAR directed towards MSLN containing either a CD28, 4-1BB or 
ICOS ICD. All T helper cell subsets could be effectively transduced with each CAR 
(Fig. 12). Transduction efficiencies were highest for the CD28z-CAR across subsets, 
followed by the BBz-CAR and the ICOSz-CAR.  
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Figure 12 All T helper cell subsets can be effectively transduced with an 
aMSLN.CD28.CD3z CAR, an aMSLN.4-1BB.CD3z CAR or an aMSLN.ICOS.CD3z CAR 
CD4+ T cells were polarized towards a Th1, Th2, Th9, Th9+ or Th17 phenotype and transduced 
with either an aMSLN.CD28.CD3z CAR, an aMSLN.4-1BB.CD3z CAR or an 
aMSLN.ICOS.CD3z CAR. Transduction efficiency was measured on day 6 after isolation using 
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a c-myc staining for flow cytometry. Depicted here are transduction efficiencies of one donor 
representative of three (n = 3) independent donors. For each donor, measurements were 
performed in duplicates. 
 
To assess their functionality, CAR T cells were incubated with a MSLN-overexpressing 
SUIT-2-MSLN pancreatic cancer cell line. Tumor cell killing was determined using a 
real-time impedance-based cytotoxicity assay (xCELLigence). MSLN was selected as a 
target antigen as it is highly differentially expressed on solid tumors and is associated 
with cancer aggressiveness in a variety of tumor entities (Beatty et al., 2018, Kachala 
et al., 2014, Servais et al., 2012, Tozbikian et al., 2014).  
 
In Figure 13, tumor cell lysis by T helper CAR T cells is shown for one representative 
donor. Tumor cell killing could be observed in every CD4+ CAR T cell condition 
(Fig. 13). No tumor cell killing occurred when untransduced T cells, irrespective of 
T cell subset, were incubated with tumor cells.  
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Figure 13 All T helper CAR T cell subsets can effectively kill tumor cells  
CD4+ T cells were polarized towards a (A) Th1, (B) Th2, (C) Th9, (D) Th9+ or (E) Th17 
phenotype. CD3+ T cells (F) were isolated as a control. All subsets were transduced with either 
an aMSLN.CD28.CD3z CAR, an aMSLN.4-1BB.CD3z CAR or an aMSLN.ICOS.CD3z CAR. 
SUIT-2-MSLN tumor cell killing was measured using xCELLigence technology. Tumor cells 
were added at 0 h, and T cells were added at 17.8 h (dashed line). All conditions were adjusted 
for transduction efficiency to ensure a comparable ratio of transduced CAR T cells to tumor cells 
between conditions. Cell indices were normalized to the time point of T cell addition (t = 17.8 h). 
Depicted here are mean values ± SEM of normalized cell indices of one donor representative of 
three (n = 3) independent donors. For each donor, measurements were performed in triplicates, 
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except for the CD3+ T cell BBz- and ICOSz-CAR conditions, which were performed in 
duplicates. p-values were calculated for the final time point (t = 35 h) using one-way ANOVA 
with correction for multiple testing by the Turkey method. 
 
To better objectify the cytotoxic capacity of T helper CAR T cell subsets between 
donors, maximal tumor cell lysis was assessed at 35 hours after T cell addition. 
Maximal cytotoxicity was calculated as the complement to 100% of the ratio of 
normalized cell indices of the CAR T cell condition to the tumor only condition. Tumor 
cell lysis was significant in all conditions except for the Th2 ICOSz-CAR, 
Th17 ICOSz-CAR and CD3+ T cell ICOSz-CAR conditions (Fig. 14, table 6). Overall, 
cytotoxicity was highest in the CD28z conditions, followed by the BBz conditions and 
ICOSz conditions. Whilst not significant, Th9+ CAR T cells seemed to have the highest 
mean cytotoxicity in the BBz and ICOSz conditions compared to other subsets.  
 

 
Figure 14 Cytotoxic capacity of T helper CAR T cells varies based on CAR ICD 
CD4+ T cells were polarized towards a Th1, Th2, Th9, Th9+ or Th17 phenotype. CD3+ T cells 
were isolated as a control. All subsets were transduced with either an aMSLN.CD28.CD3z CAR, 
an aMSLN.4-1BB.CD3z CAR or an aMSLN.ICOS.CD3z CAR. SUIT-2-MSLN tumor cell killing 
was measured using xCELLigence technology. Tumor cells were added at 0 h, and T cells were 
added at 17.8 h. Cell indices were normalized to the time point of T cell addition (t = 17.8 h). 
Maximal cytotoxicity was calculated as the complement to 100% of the ratio of the normalized 
cell indices of the CAR T cell condition compared to the tumor only condition at 35 h after T cell 
addition. Depicted here are mean maximal cytotoxicity values ± SEM of three (n = 3) 
independent donors. Each point represents one donor. For each donor, measurements were 
performed in triplicates. Analyses of differences between groups were performed using one-way 
ANOVA with correction for multiple testing by the Turkey method. p-values for comparisons 
between the tumor only and different CAR T cell conditions are shown in table 6. Comparisons 
between different CAR T cell conditions did not reach statistical significance. 
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Table 6 Cytotoxic capacity of T helper CAR T cells based on CAR ICD 
For experimental details, see figure 14. Depicted here are mean maximal cytotoxicity 
values ± SEM and corresponding adjusted p-values for the CAR T cell vs. tumor only conditions 
of three (n = 3) independent donors. For each donor, measurements were performed in 
triplicates. Analyses of differences between groups were performed using one-way ANOVA with 
correction for multiple testing by the Turkey method. Values that did not reach statistical 
significance are depicted in grey and annotated with the term (ns).  
 
 

CAR T cell condition Cytotoxicity [%] Adjusted 
p-value 

CD28z 

Th1 73.907 ± 2.837 < 0.001 
Th2 78.406 ± 2.072 < 0.001 
Th9 75.968 ± 4.527 < 0.001 
Th9+ 76.616 ± 1.999 < 0.001 
Th17 70.332 ± 4.284 < 0.001 
CD3+ T cells 84.222 ± 8.128 < 0.001 

BBz 

Th1 61.293 ± 9.405 0.003 
Th2 75.396 ± 4.673 < 0.001 
Th9 70.968 ± 9.129 < 0.001 
Th9+ 78.691 ± 1.488 < 0.001 
Th17 51.214 ± 14.773 0.034 
CD3+ T cells 62.530 ± 10.113 0.012 

ICOSz 

Th1 53.753 ± 6.342 0.020 
Th2 46.148 ± 12.608 0.096 (ns) 
Th9 51.398 ± 11.486 0.033 
Th9+ 70.108 ± 7.263 < 0.001 
Th17 46.642 ± 11.349 0.087 (ns) 
CD3+ T cells 45.098 ± 5.718 0.259 (ns) 
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Discussion 
 
The clinical success of CAR T cell therapy depends on a variety of factors. These 
include efficient on-target antigen recognition and tumor cell lysis, CAR T cell 
persistence as well as minimal T cell dysfunction. We sought to investigate the role of 
IL-1b in enhancing human Th9 differentiation and cytotoxicity and to further examine 
the suitability of an IL-1b-differentiated Th9+ subset for CAR T cell therapy. 
 
4.1 Effects of IL-1b on Th9 polarization 
 
Differentiating naïve CD4+ T cells in the presence of IL-1b enhanced a Th9 phenotype 
on a secretory and a transcriptional level, in line with previous reports (Végran et al., 
2014). IL-9 levels detected in supernatants of Th9 cells polarized in the presence of 
IL-1b were more than eightfold higher than those detected in supernatants of 
conventional Th9 cells. Intriguingly, the expression of IL-9 was not upregulated in the 
Th9+ subset relative to the conventional Th9 subset. Cytokine secretion dynamics, 
including a peak in IL-9 secretion between days four and six of polarization, resembled 
previously published reports (Tan et al., 2010). In both conventional Th9 and 
Th9+ cells, Th9-defining genes such as IL-9 and Gata3 were upregulated in 
comparison to Th1 and Th17 cells. When comparing the relative expression of 
subset-defining genes between the Th2 and both Th9 subsets, however, we found 
striking differences. Th9-defining genes such as IL-5 and IL-13 were upregulated in the 
Th9+ subset relative to the Th2 subset. However, there was no significant difference in 
their expression between conventional Th9 cells and Th2 cells. Even though Th2 and 
Th9 differentiation are closely related, the absence of an upregulation of Th9-defining 
genes in conventional Th9 cells compared to Th2 cells is surprising (Veldhoen et al., 
2008). Nevertheless, these findings might be a byproduct of the apeglm fold change 
shrinkage applied to log2 fold changes during statistical analysis. apeglm-shrinkage 
alters fold changes to reduce the overestimation of effect sizes of small or highly 
variable sequenced read counts during RNA sequencing analysis (Zhu et al., 2018).  
 
4.1.1 Upregulation of Zc3h12a and Basp1in IL-1b-differentiated Th9 cells 
 
Only three genes were highly differentially expressed between the Th9+ and the 
conventional Th9 subsets after in vitro polarization. Zc3h12a and Basp1 were 
upregulated in the Th9+ subset, while Clic3 was upregulated in the conventional 
Th9 subset. Upregulation of Zc3h12a, encoding MCPIP-1 or Regnase-1, most likely 
represents a direct effect of IL-1b signaling during Th9+ differentiation. IL-1b can 
induce the transcription of Zc3h12a in a NF-kB-dependent manner (Skalniak et al., 
2009). MCPIP-1 subsequently acts as a RNase for the degradation of pro-inflammatory 
cytokines including IL-1b (Mizgalska et al., 2009). MCPIP-1 also acts as a negative 
regulator of NF-kB activation after IL-1b stimulation, thus limiting uncontrolled 
inflammation through IL-1b signaling (Skalniak et al., 2009). Basp1 encodes brain acid 
soluble protein 1 and has been described to translocate from the nucleus to the 
cytoplasm in cells undergoing apoptosis (Ohsawa et al., 2008). It has also been 
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reported to inhibit a Myc target gene network involved in the promotion of cell cycle 
progression, protein synthesis and mitochondrial metabolism (Dang et al., 2006, Hartl 
et al., 2020). Since gene sets related to cell cycle progression and apoptosis were 
enriched in the Th9+ subset compared to the Th9 subset, upregulation of Basp1 could 
represent a regulatory mechanism activated in this subset.  
 
An upregulation of Clic3, encoding chloride intracellular channel protein 3, has been 
described for various tumors, where it promotes tumor cell invasion (Hernandez-
Fernaud et al., 2017, Macpherson et al., 2014). The role of Clic3 in T cell biology, 
however, has not yet been extensively studied. 
 
4.1.2 Enrichment of gene sets associated with pro-inflammatory signaling in 

IL-1b-differentiated Th9 cells 
 
GSEA based on the Reactome Pathway Database revealed an enrichment of 
pathways associated with pro-inflammatory signaling, cell cycle progression, organelle 
biogenesis and apoptosis in Th9+ cells in comparison to conventional Th9 cells. As 
could be expected, pathways related to IL-1 signaling were enriched in the 
Th9+ subset relative to conventional Th9 cells. IL-1 signaling mainly involves the 
activation of NF-kB, c-Jun N-terminal kinase and p38 mitogen-activated protein kinase 
pathways (Weber et al., 2010, Xue et al., 2019). Signaling through NF-kB can also be 
activated by TNF receptors such as TNFR2 to promote cellular proliferation (Faustman 
and Davis, 2010). Pathways associated with TNFR-mediated NF-kB signaling were 
also enriched in the Th9+ subset, as previously described (Xue et al., 2019). 
Furthermore, pathways related to programmed cell death were enriched in the 
Th9+ subset relative to the Th9 subset, which could be interpreted as a result of a 
more pronounced pro-inflammatory phenotype of Th9+ cells. 
 
4.1.3 Enrichment of gene sets associated with cellular proliferation in 

IL-1b-differentiated Th9 cells 
 
Furthermore, pathways related to DNA replication and cellular proliferation were 
enriched in Th9+ cells relative to conventional Th9 cells. These transcriptional changes 
mirror a sustained proliferative capacity found in this subset. Th9 cells, including Th9 
CAR T cells, have previously been described to have an enhanced proliferative 
capacity compared to other T helper cell subsets in vitro and in vivo (Liu et al., 2020, Lu 
et al., 2018). This effect has been attributed to enhanced PU.1-TRAF6-NF-kB signaling 
in Th9 cells (Lu et al., 2018).  
 
CAR T cell persistence is a prerequisite for CAR T cell therapy success and requires 
sufficient CAR T cell expansion and minimal T cell dysfunction. Clinical CAR T cell 
expansion, including CD4+ CAR T cell expansion, has been found to correlate with 
response to CAR T cell therapy (Finney et al., 2019, Fraietta et al., 2018, Jain et al., 
2021, Louis et al., 2011, Maude et al., 2014). Moreover, in the setting of CLL, the 
extent of in vitro proliferation of CAR T cells during clinical manufacturing directly 
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correlated with their clinical expansion (Fraietta et al., 2018). Insufficient persistence of 
CAR T cells still represents a large barrier in the treatment of solid tumors such as 
glioblastoma or malignant pleural mesothelioma (Haas et al., 2019, O'Rourke et al., 
2017, Vitanza et al., 2021). Hence, a sustained proliferative capacity, as seen in the 
Th9+ subset, could be advantageous to CAR T cell therapy in solid tumors. 
 
4.1.4 Enrichment of gene sets associated with organelle biogenesis in 

IL-1b-differentiated Th9 cells 
 
Furthermore, pathways enhancing organelle biogenesis, including ribosome biogenesis 
and cilium assembly, and pathways promoting gene expression were enriched in the 
Th9+ subset compared to the conventional Th9 subset (Cai et al., 2015). The primary 
cilium is the locus for multiple intracellular signaling pathways, including Wnt and 
Hedgehog signaling (Berbari et al., 2009). Intriguingly, a Hedgehog-off signature was 
enriched in the Th9+ subset compared to the conventional Th9 subset. Constitutive 
activation of Hedgehog signaling has been suggested to inhibit the proliferation of 
mature T cells upon TCR engagement (Rowbotham et al., 2007). In the tumor setting, 
however, activation of Hedgehog signaling in T cells has been proposed to enhance 
immunological synapse formation and in vitro tumor lysis (de la Roche et al., 2013). A 
Hedgehog-off signature in Th9+ cells could thus be interpreted in relation to their 
enhanced proliferative capacity. However, Hedgehog signaling has also been reported 
to be involved in CD4+ T cell differentiation, particularly in Th17 differentiation (Hanna 
et al., 2022). In this subset, Hedgehog signaling also enhanced the development of a 
stem-cell-like phenotype under stimulation with IL-6- but not IL-1b (Hanna et al., 2022). 
However, Hedgehog signaling has not yet been studied in Th9 cells (Hanna and de la 
Roche, 2024). Thus, the potential consequences of its relative downregulation through 
the addition of IL-1b during Th9 differentiation remain to be explored. 
 
4.1.5 Enrichment of gene sets associated with cellular stress in conventional 

Th9 cells 
 
Furthermore, adaptive pathways to cellular stress, referred to as an integrated stress 
response (ISR), seem to be enriched in conventional Th9 cells in comparison to 
Th9+ cells. The ISR is activated by various cellular stressors, such as amino acid 
deprivation, endoplasmic reticulum stress and hypoxia, and is characterized by the 
phosphorylation of eukaryotic translation initiation factor 2 a (EIF-2a) (Holcik and 
Sonenberg, 2005, Pakos-Zebrucka et al., 2016). Its initial activation aims to maintain 
cellular homeostasis and survival by reducing global protein synthesis and stimulating 
autophagy (Holcik et al., 2005, Pakos-Zebrucka et al., 2016, Rutkowski et al., 2006, Ye 
et al., 2010). A prolonged ISR in response to sustained and severe stress, however, 
can lead to the induction of cell death (Holcik et al., 2005, Pakos-Zebrucka et al., 
2016). 
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Overall, the transcriptional profile of Th9+ cells compared to Th9 cells suggests that 
differentiation in the presence of IL-1b generates a fitter Th9 subset. As a next step, we 
sought to evaluate the functionality of Th9+ cells for CAR T cell therapy. 
 
4.2 Transcriptional profile of IL-1b-differentiated Th9 cells relative to Th1 cells 
4.2.1 Enrichment of gene sets associated with pro-inflammatory signaling in 

Th1 cells 
4.2.1.1 Enrichment of gene sets associated with interleukin-1 signaling in 

Th1 cells 
 
GSEA comparing Th9+ cells to Th1 cells revealed an expected enrichment of 
pathways associated with pro-inflammatory signaling in the Th1 subset relative to the 
Th9+ subset. Surprisingly, pathways related to IL-4 and IL-13 signaling were also 
enriched in the Th1 subset relative to the Th9+ subset. As IL-4 signaling and 
IL-13 production are typically associated with a Th2 phenotype, this finding was 
unexpected (Veldhoen et al., 2008). 
 
CD4+ T cells can acquire different phenotypes depending on the environment they are 
exposed to. A shift towards a Th1-like phenotype was critical for adoptively transferred 
Th17 cells directed towards tyrosinase related protein 1 (TRP-1) or transduced with a 
MSLN-CAR (Guedan et al., 2014, Muranski et al., 2011). These cells shifted towards a 
Th1/Th17 phenotype upon target antigen encounter in vitro and in vivo, and their tumor 
cell killing was impaired in IFN-g and Tbx21 knockout mice (Guedan et al., 2014, 
Muranski et al., 2011). However, it is unclear whether a shift towards a Th1 phenotype 
is a critical component of Th9-mediated cytotoxicity. Th9 cells targeting myelin 
oligodendrocyte glycoprotein adopted a Th9/Th1 phenotype in vivo in a murine model 
of autoimmune encephalitis (Jäger et al., 2009). Likewise, Th9 CAR T cells switched to 
a Th1-like phenotype in vivo in a murine leukemia model (Liu et al., 2020). 
OVA-specific Th9 and IL-1b-induced Th9 cells, however, maintained a Th9 phenotype 
upon adoptive transfer in murine pulmonary melanoma models (Lu et al., 2012, Végran 
et al., 2014). Their cytotoxicity was unaffected when IFN-g was knocked out Th9 cells 
(Végran et al., 2014). 
 
Moreover, different ICD have been suggested to promote the development of different 
T helper phenotypes in CD4+ T cells in vitro (Guedan et al., 2018). A combined 
Th1/Th2 phenotype has been described in CD28z-CAR T cells, a Th1 phenotype with 
an isolated additional secretion of IL-13 in BBz-CAR T cells and a Th1/Th17 phenotype 
in ICOSz-CAR T cells (Guedan et al., 2018). 
 
Whether a Th1-like phenotype represents an advantage or a disadvantage for 
CAR T cell therapy remains to be conclusively determined. IFN-g/IFN-g receptor 
signaling has been suggested to enhance tumor cell killing by CAR T cells in various 
solid tumor models, including glioblastoma, ovarian cancer and pancreatic cancer 
(Larson et al., 2022). This anti-tumor effect has been attributed to enhanced CAR T cell 
adhesion through intercellular adhesion molecule 1 (ICAM-1) (Larson et al., 2022). In 
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hematological malignancies, however, IFN-g/IFN-g receptor signaling did not seem to 
affect CAR T cell cytotoxicity (Bailey et al., 2022, Larson et al., 2022). As a matter of 
fact, stimulating pro-inflammatory type I interferon response genes during CAR T cell 
production was associated with poor clinical CAR T cell persistence in patients with 
B-ALL (Chen et al., 2021). Thus, the benefit of the development of a Th1-like 
phenotype might depend on the degree of its activation and on tumor entity.  
 
4.2.1.2 Enrichment of gene sets associated with toll-like receptor signaling in 

Th1 cells 
 
Furthermore, pathways related to toll-like receptor (TLR) signaling, inflammasome 
activation and pyroptosis were upregulated in Th1 cells relative to Th9+ cells. 
Activation of TLR in response to pathogen- or damage-associated molecular patterns 
initiates a pro-inflammatory response, including a release of type I interferons (Kabelitz, 
2007, Uematsu and Akira, 2007). Furthermore, TLR can prime inflammasomes and 
induce pyroptosis (Guo et al., 2015, Liu et al., 2016). While classically associated with 
an innate immune response, TLR are also expressed on T cells and can enhance their 
proliferation (Hornung et al., 2002, Kabelitz, 2007, Quigley et al., 2009). Moreover, 
various components of inflammasomes and TLR activation have been reported to 
affect CD4+ T cell differentiation (Linder and Hornung, 2022). TLR2 stimulation has 
mainly been described to induce Th1 differentiation; however, it has also been reported 
to enhance Th17 and Th9 differentiation (Imanishi et al., 2007, Karim et al., 2017, 
Nyirenda et al., 2011). In addition, incorporating a TLR2 ICD or co-expressing a TLR4 
construct in CAR T cells enhanced their anti-tumor responses in vivo in various tumor 
models (Lai et al., 2018, Mikolič et al., 2024). Thus, an enrichment of TLR signaling in 
Th1 cells could be a reflection of a general activation of pro-inflammatory pathways in 
this subset and might potentially further promote their phenotypic differentiation. 
 
4.2.2 Enrichment of gene sets associated with T cell dysfunction in Th1 cells 
4.2.2.1 Enrichment of gene sets associated with apoptosis in Th1 cells 
 
We found an enrichment of pathways related to programmed cell death in the 
Th1 subset relative to the Th9+ subset, which was reflected in a more than quadrupled 
apoptosis score. These results mirror previously published reports demonstrating that 
Th9 CAR T cells were less prone to apoptosis compared to Th1 CAR T cells in a 
murine leukemia model (Liu et al., 2020). Moreover, we found a transcriptional 
upregulation of genes associated with exhaustion in the Th1 subset, reflected in a 
quadrupled exhaustion score. These results are consistent with previous reports, which 
found that IFN-g signaling could promote exhaustion in vitro (Bailey et al., 2022). In line 
with these findings, Th1 CAR T cells were shown to upregulate inhibitory receptors 
such as PD-1 to a greater extent than Th9 CAR T cells in a murine leukemia model 
in vivo (Liu et al., 2020). Moreover, during in vitro expansion, Th9 CAR T cells showed 
a higher expression of c-jun (Liu et al., 2020), which has been associated with 
reversing exhaustion in CAR T cells (Lynn et al., 2019).  
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Both programmed cell death and hyporesponsive T cell states such as exhaustion and 
senescence have been associated with clinical CAR T cell failure in hematological 
malignancies (Deng et al., 2020, Finney et al., 2019, Fraietta et al., 2018). CAR T cell 
apoptosis was shown to be mediated through Fas/Fas ligand signaling in response to 
tumor exposure in vivo and occurred even in the absence of CAR activation (Tschumi 
et al., 2018). However, Fas signaling has also been shown to enhance the anti-tumor 
effects of CAR T cells, for instance by inducing the lysis of target-antigen-negative 
tumor cells in a testicular cancer model in vitro (Hong et al., 2018).  
 
Moreover, Fas has been suggested to be involved in non-apoptotic signaling. Fas 
signaling has been proposed to enhance Th9 differentiation through protein kinase C 
(PKCb) and NF-kB activation and to promote Th17 differentiation through STAT1 
inhibition (Meyer Zu Horste et al., 2018, Shen et al., 2019). Accordingly, Fas signaling 
might assume different roles during differentiation and effector programs in 
CD4+ T cells. 
 
4.2.2.2 Enrichment of gene sets associated with T cell exhaustion in Th1 cells 
 
T cell exhaustion describes the progressive loss of effector function of T cells upon 
chronic antigen stimulation (Wherry and Kurachi, 2015). This process is marked by a 
sustained upregulation of inhibitory receptors, an impaired effector response, a failure 
to acquire a memory phenotype and altered metabolism (Baitsch et al., 2011, Doering 
et al., 2012, Pauken and Wherry, 2015, Wherry et al., 2007, Wherry et al., 2015). 
Importantly, exhaustion represents a potentially reversible state (Weber et al., 2021, 
Wherry et al., 2015). CD4+ T cell exhaustion shares many common features of CD8+ 
T cell exhaustion and further involves the loss of a Th1-like effector phenotype with 
concomitant upregulation of IL-10 and IL-21 (Crawford et al., 2014). Due to 
suppressive tumor microenvironments, T cell exhaustion represents a significant 
barrier for adoptive cellular therapies in solid tumors (Jiang et al., 2015).  
 
Intriguingly, transcription factors critical for Th9 differentiation, notably IRF4 and BATF, 
have been linked to both the promotion and prevention of exhaustion in T cells. IRF4 
enhanced effector function and clonal expansion in CD8+ T cells in vivo in a murine 
influenza model (Man et al., 2013). However, IRF4 was also shown to promote CD8+ 
T cell exhaustion in a murine chronic lymphocytic choriomeningitis virus (LCMV) 
infection model (Man et al., 2017). Similarly, BATF knockout in MSLN-CAR T cells 
enhanced their anti-tumor effect in vivo in squamous cell and pancreatic carcinoma 
models (Zhang et al., 2022). Conversely, BATF overexpression in CD19-CAR T cells 
was associated with superior in vivo tumor control and reduced expression of inhibitory 
receptors in a CD19-expressing melanoma model (Seo et al., 2021). 
 
4.2.2.3 Enrichment of gene sets associated with T cell senescence in Th1 cells 
 
Pathways related to cellular senescence were enriched in the Th1 subset relative to the 
Th9+ subset. During cellular senescence, cells undergo cell cycle arrest as well as 
characteristic changes in morphology, chromatin structure and secretome in response 
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to stimuli such as persistent DNA damage, cellular stress or reactive oxygen species 
(ROS) (Kuilman et al., 2010, Ruhland and Alspach, 2021). Tumor cells can induce 
T cell senescence in the tumor microenvironment, promoting cancer immune evasion 
(Montes et al., 2008, Ye et al., 2014). Changes in secretome during senescence are 
referred to as the senescence-associated secretory phenotype (SASP) (Ye and Peng, 
2015). A SASP includes both pro-inflammatory cytokines, such as IL-6, IL-8, IFN-g and 
TNF-a, and anti-inflammatory cytokines, such as IL-10 and TGF-b (Ye et al., 2015). 
Secretion of a SASP can further uphold a senescent phenotype in an autocrine manner 
(Ruhland et al., 2021). An enrichment of senescence-associated pathways including a 
SASP in the Th1 subset could therefore reflect a pro-inflammatory profile of Th1 cells 
as well as early signs of T cell dysfunction. 
 
4.2.2.4 Enrichment of gene sets related to an effector phenotype in Th1 cells 
 
While chronic antigen stimulation can lead to T cell dysfunction, CAR T cells can also 
adapt to antigen stimulation by developing a functional memory phenotype. We found a 
skewing towards an effector phenotype in the Th1 subset compared to the 
Th9+ subset, reflected by a tenfold increase in effector vs. central memory score. In 
line with these results, Th9 CAR T cells have been shown to be enriched in a central 
memory gene signature during in vitro expansion (Liu et al., 2020). However, they have 
also been reported to shift towards an effector memory and terminally differentiated 
effector memory phenotype upon adoptive transfer in a murine leukemia model (Liu et 
al., 2020). The development of a stem cell memory or central memory phenotype has 
been described to improve therapeutic responses to TIL and CAR T cell therapy (Deng 
et al., 2020, Fraietta et al., 2018, Krishna et al., 2020). A higher proportion of central 
memory T cells in CAR T cell infusion products also correlated with clinical CAR T cell 
persistence in patients with ALL and neuroblastoma (Chen et al., 2021, Louis et al., 
2011). Selectively enriching a stem cell memory-like T cell population during CD8+ 
CAR T cell production enhanced in vivo tumor control in murine leukemia and Burkitt 
lymphoma models (Sabatino et al., 2016, Sommermeyer et al., 2016). 
 
4.2.3 Enrichment of gene sets associated with mitochondrial metabolism in 

IL-1b-differentiated Th9 cells 
 
T cell memory and dysfunction are intricately linked to cellular metabolism. Naïve 
T cells mainly rely on mitochondrial fatty acid oxidation as a source of energy (Rangel 
Rivera et al., 2021). Upon activation, they undergo metabolic reprogramming, 
increasing glucose uptake and glycolysis (Macintyre et al., 2014, Rangel Rivera et al., 
2021, van der Windt et al., 2012). During memory development, T cells become less 
dependent on glycolysis and increase mitochondrial biogenesis and mitochondrial fatty 
acid oxidation through TRAF6 activation (Pearce et al., 2009, Sukumar et al., 2013, 
van der Windt et al., 2012). Mitochondria in effector T cells exist in a fragmented state, 
also referred to as fission (Buck et al., 2016), which has been associated with 
increased ROS production (Yu et al., 2006). Central memory T cells, on the other hand, 
contain fused mitochondria, favoring a close association of electron transport chain 
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complexes, oxidative phosphorylation and fatty acid oxidation (Buck et al., 2016, Yu et 
al., 2006). Moreover, memory T cells show an increased spare respiratory capacity, 
defined as the difference between maximal and basal oxygen consumption rates, 
which improves a cell’s ability to tolerate cellular stress (Teijeira et al., 2018, van der 
Windt et al., 2012).  
 
Many pathways related to mitochondrial metabolism and protein synthesis were 
enriched in the Th9+ subset relative to the Th1 subset, which was further illustrated by 
an almost tenfold increase in oxidative phosphorylation score in the Th9+ subset. 
Glycolysis scores, on the other hand, were similar between both subsets. These results 
closely align with previous findings demonstrating that Th9 CAR T cells had a more 
pronounced respiratory capacity during in vitro expansion compared to 
Th1 CAR T cells (Liu et al., 2020). Th9 CAR T cells also increased their mitochondrial 
mass upon an in vivo tumor challenge in a murine leukemia model (Liu et al., 2020). 
Moreover, T-bet, the master regulator of Th1 differentiation, was shown to inhibit the 
suppression of glycolysis-related genes typically mediated by BCL-6 (Oestreich et al., 
2014).  
 
Like a central memory phenotype, increased mitochondrial mass and biogenesis have 
been associated with improved clinical persistence and response to CAR T cell therapy 
(van Bruggen et al., 2019). Increased mitochondrial respiration has also been 
suggested to enhance the infiltration of solid tumors by CD8+ T cells in vitro (Simula et 
al., 2024). Intriguingly, a recent study investigating persisting CD19-CAR T cells, which 
were isolated from a patient with CLL who had received CAR T cells ten years earlier 
and had subsequently achieved complete remission, found an upregulation of oxidative 
phosphorylation pathways in these cells (Melenhorst et al., 2022). Coincidentally, these 
persisting CAR T cells were exclusively CD4+ (Melenhorst et al., 2022). 
 
4.2.3.1 Metabolic reprogramming during T cell exhaustion and senescence 
 
Mitochondrial dysfunction has been reported to be both a cause and a consequence of 
T cell exhaustion. Inducing mitochondrial dysfunction in T cells led to a shift from 
mitochondrial respiration to aerobic glycolysis, giving rise to an exhausted T cell 
phenotype in a murine LCMV infection model (Wu et al., 2023). Furthermore, TIL 
isolated from murine melanoma models and from patients with renal cell carcinoma 
exhibited fragmented mitochondria and a reduced respiratory capacity (Scharping et 
al., 2016, Siska et al., 2017, Yu et al., 2020). In addition, these cells showed an 
insufficient response to ROS marked by a downregulation of superoxide dismutase 2 
(SOD2), which is responsible for protecting mitochondrial DNA from oxidative damage 
(Che et al., 2016, Siska et al., 2017). Notably, these effects were less pronounced in 
CD4+ TIL compared to CD8+ TIL (Scharping et al., 2016, Siska et al., 2017).  
 
Mitochondrial dysfunction has also been described during the development of cellular 
senescence. During this process, mitochondrial production of ROS has been described 
to be increased and catabolic lipid metabolism to be downregulated (Liu et al., 2021, 
Moiseeva et al., 2009). 
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4.3 In vitro cytotoxicity of CD4+ chimeric antigen receptor T cells 
4.3.1 Enrichment of a 4-1BB ICD gene signature in IL-1b-differentiated Th9 cells 
 
The gene expression profile of Th9+ cells is highly reminiscent of a phenotype 
previously described for CAR T cells transduced with a 4-1BB ICD, especially in regard 
to cellular metabolism, memory phenotype, susceptibility to T cell dysfunction and 
persistence (Boroughs et al., 2020, Long et al., 2015). We thus sought to investigate 
whether genes related to a 4-1BB ICD phenotype were enriched in Th9+ cells at 
baseline. An enrichment of such a phenotype could be suggestive of a potential 
functional synergism of a 4-1BB ICD in Th9 CAR T cells. 
 
Signaling through endogenous 4-1BB and a 4-1BB ICD enhances mitochondrial 
metabolism. It increases mitochondrial and spare respiratory capacity and upregulates 
genes involved in mitochondrial replication, oxidative phosphorylation and long-chain 
fatty acids uptake (Kawalekar et al., 2016, Long et al., 2015, Teijeira et al., 2018). 
Signaling through endogenous CD28 and a CD28 ICD, on the other hand, has been 
shown to favor glucose uptake and glycolysis (Frauwirth et al., 2002, Kawalekar et al., 
2016). These metabolic changes were associated with an enrichment of a central 
memory phenotype in BBz-CAR T cells and an effector memory phenotype in 
CD28z-CAR T cells (Kawalekar et al., 2016). Notably, clinical CAR T cell persistence 
has been reported for both CD28z- and BBz-CAR T cells (CD28z: (Brentjens et al., 
2013, Jain et al., 2021), BBz: (Finney et al., 2019, Fraietta et al., 2018, Maude et al., 
2014)). A 4-1BB ICD, however, has been suggested to promote CAR T cell persistence 
more significantly in preclinical models (Long et al., 2015). In line with this, changing 
one amino acid residue of a CD28 ICD to direct CAR T cells towards a central memory 
phenotype improved their in vivo persistence and anti-tumor activity (Guedan et al., 
2020). Lastly, while tonic signaling occurs in both CD28z- and BBz-CAR T cells, 
4-1BB-based CAR T cells appear to be less prone to tonic signaling (Frigault et al., 
2015, Gomes-Silva et al., 2017, Long et al., 2015, Sun et al., 2020). Intriguingly, tonic 
signaling through a 4-1BB ICD has even been reported to improve CAR T cell 
functionality by enhancing immune synapse formation and stability in a murine 
leukemia model (Singh et al., 2021). 
 
We found a pronounced upregulation of a CD28 ICD gene signature in Th1 cells with 
an approximately fourfold increase in CD28 ICD gene expression score. A 4-1BB ICD 
gene signature, on the other hand, was slightly upregulated in Th9+ cells. However, 
when interpreting these results, it is important to keep in mind that the experimental 
conditions used to generate both gene signatures were slightly different from those we 
used for RNA sequencing. These gene signatures were generated at later time points 
during in vitro differentiation (day 9 or 15 after isolation) and using different CAR target 
antigens (ganglioside G2 or CD19) (Boroughs et al., 2020, Long et al., 2015). 
Moreover, different forms of stimulation were used (anti-CD3/CD28 beads with or 
without additional stimulation with irradiated NALM-6 leukemia tumor cells) (Boroughs 
et al., 2020, Long et al., 2015). Activation of CD4+ T cells with anti-CD3/CD28 beads 
has been suggested to induce different T helper cell phenotypes compared to 
physiological stimulation with APC (Tan et al., 2014). Moreover, Long et al. did not 



 

 
 

46 

differentiate between CD4+ and CD8+ gene signatures (Long et al., 2015). 
Nonetheless, these results indicate a higher upregulation of genes associated with 
4-1BB costimulation in the Th9+ subset, which led us to hypothesize that 
Th9+ BBz-CAR T cells would outperform other T helper cell subsets in functional 
assays. 
 
4.3.2 Effective lysis of a mesothelin-overexpressing SUIT-2-MSLN pancreatic 

cancer cell line in vitro by CD4+ chimeric antigen receptor T cells 
 
Due to a less pronounced upregulation of phenotypes associated with CAR T cell 
therapy failure in untransduced Th9+ cells, we hypothesized that these cells would be 
more suitable effectors for CAR T cell therapy. We could confirm effective transduction 
of all CD4+ T cell subsets with a MSLN-CAR incorporating either a CD28z, BBz or 
ICOSz ICD. Transduction efficiencies were comparable with previously published 
transduction efficiencies of a MSLN-directed CD28z-CAR (Adusumilli et al., 2021). As 
transduction efficiencies were consistently higher for the CD28z-CAR compared to the 
BBz- and ICOSz-CAR, CAR T cell numbers were normalized for functional assays. All 
CD4+ CAR T cells showed effective tumor cell clearance in vitro in a 
MSLN-overexpressing SUIT-2-MSLN pancreatic cancer model. However, tumor cell 
lysis was not statistically significant for Th2 and Th17 CAR T cells transduced with an 
ICOSz-CAR, which might be a result of inter-donor variability. Tumor cell lysis was 
CAR-dependent, as untransduced CD4+ T cells did not mediate tumor cell lysis. 
Strikingly, ICOSz-CAR T cells appeared to be less efficient at clearing tumor cells 
compared to CD28z- and BBz-CAR T cells.  
 
Enhancing a Th9 phenotype through the addition of IL-1b during differentiation has 
been shown to increase Th9-mediated cytotoxicity in murine pulmonary melanoma 
models in vivo (Végran et al., 2014, Xue et al., 2019). Intriguingly, the cytotoxic 
capacity of Th9+ CAR T cells seemed to be equally high irrespective of ICD. 
Th9+ CAR T cells even seemed to surpass all other subsets when transduced with a 
BBz or ICOSz ICD. However, the lack of statistically significant differences in in vitro 
cytotoxicity between CD4+ CAR T cell subsets led us to question whether we would 
see differences in cytotoxicity using different experimental setups. Different target 
antigens, different tumor cell lines or lower effector to target ratios might help unmask 
potential differences in cytotoxicity. Furthermore, assessing a response to sustained 
antigen exposure or potential interactions with other immune effector cells through 
long-term assays might provide valuable insights into Th9+ CAR T cell cytotoxicity 
(Guedan et al., 2018, Wang et al., 2019). 
 
4.4 Conclusion and outlook 
 
In conclusion, this project provides new insights into the transcriptional profile of human 
Th9 cells differentiated in the presence of IL-1b and their suitability as effector cells for 
CAR T cell therapy. Effective subset polarization could be confirmed for Th1, Th2, 
conventional Th9, IL-1b-differentiated Th9, and Th17 cells on a transcriptional level. 
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The transcriptional profile of Th9+ cells, with a relative enrichment of pathways related 
to organelle biogenesis and cell cycle progression compared to Th9 cells, suggests 
that differentiation in the presence of IL-1b enhances Th9 fitness. In comparison to 
Th1 cells, the gene expression profile of Th9+ cells pointed to a less pronounced 
upregulation of phenotypes associated with CAR T cell therapy failure, such as 
programmed cell death, exhaustion, senescence and effector phenotype differentiation. 
Furthermore, genes related to 4-1BB ICD signaling were enriched in Th9+ cells 
compared to Th1 cells. Functional assays showed effective tumor cell lysis of a 
SUIT-2-MSLN pancreatic cancer cell line in vitro by Th1, Th2, conventional Th9, Th9+, 
and Th17 cells transduced with a MSLN-directed CAR containing either a CD28 ICD, a 
4-1BB ICD or an ICOS ICD, except for Th2 and Th17 CAR T cells transduced with an 
ICOSz-CAR. While the differences in cytotoxicity between CD4+ CAR T cell subsets 
were not statistically significant, Th9+ CAR T cells seemed to outperform other 
subsets, especially when transduced with a 4-1BB ICD. A potential synergism of a 
4-1BB ICD in Th9+ CAR T cells warrants further investigation. In particular, the effects 
of sustained antigen exposure on Th9+ CAR T cell function and potential interactions 
of Th9+ CAR T cells with other immune effector cells remain to be explored. 
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Summary 
 
Chimeric antigen receptor (CAR) therapy has revolutionized the treatment of 
hematological malignancies. However, treatment-associated complications and tumor 
relapse still limit its clinical success and represent a barrier to its application to solid 
tumors (Weber et al., 2020). Th9 CAR T cells mediated superior tumor control in 
murine models (Liu et al., 2020, Xue et al., 2021). The addition of IL-1b during murine 
Th9 differentiation has been suggested to enhance Th9 phenotype and cytotoxicity 
(Végran et al., 2014, Xue et al., 2019). This project aimed to further investigate the 
transcriptional profile of human Th9 cells differentiated in the presence of IL-1b and to 
examine the suitability of an IL-1b-differentiated Th9 subset for CAR T cell therapy. 
Gene set enrichment analysis revealed an enrichment of pathways related to 
IL-1 signaling, cellular proliferation and organelle biogenesis in IL-1b-differentiated 
Th9 cells relative to conventional Th9 cells during in vitro polarization. Adaptive 
pathways to cellular stress were enriched in the conventional Th9 subset. Th2 and 
IL-1b-differentiated Th9 cells were the only subsets to significantly proliferate during 
in vitro differentiation. Further transcriptional profiling of the IL-1b-differentiated 
Th9 subset revealed an enrichment of pathways associated with mitochondrial 
metabolism in IL-1b-differentiated Th9 cells relative to Th1 cells. Pathways associated 
with pro-inflammatory signaling, effector phenotype differentiation, programmed cell 
death, exhaustion and senescence were enriched in the Th1 subset. Genes related to 
4-1BB intracellular costimulatory domain signaling were enriched in IL-1b-differentiated 
Th9 cells compared to Th1 cells. Effective lysis of a mesothelin-overexpressing 
SUIT-2-MSLN pancreatic cancer cell line could be confirmed in vitro for Th1, Th2, 
conventional Th9, IL-1b-differentiated Th9, and Th17 cells transduced with either an 
aMSLN.CD28.CD3z CAR, an aMSLN.4-1BB.CD3z CAR or an 
aMSLN.ICOS.CD3z CAR. While these differences in cytotoxicity between CD4+ 
CAR T cell subsets were not statistically significant, IL-1b-differentiated Th9 CAR 
T cells seemed to outperform other subsets – albeit not significantly – when transduced 
with a 4-1BB or ICOS intracellular costimulatory domain. 
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Summary (in German) 
 
Die chimeric antigen receptor (CAR) T-Zell-Therapie hat die Behandlung 
hämatologischer Tumore revolutioniert. Behandlungsbedingte Komplikationen und 
Tumorrezidive begrenzen jedoch weiterhin ihr Therapieergebnis und stellen ein 
Hindernis für ihre Anwendung bei soliden Tumoren dar (Weber et al., 2020). 
Th9-CAR-T-Zellen bewirkten in Mausmodellen eine bessere Tumorkontrolle (Liu et al., 
2020, Xue et al., 2021). Die Differenzierung mittels IL-1b verstärkte den Phänotyp und 
die Zytotoxizität von murinen Th9-Zellen (Végran et al., 2014, Xue et al., 2019). Ziel 
dieses Projekts war es, das transkriptionelle Profil von humanen Th9-Zellen, die mittels 
IL-1b differenziert wurden, weiter zu untersuchen und die Eignung dieses Th9-Subsets 
für die Anwendung als CAR-T-Zellen zu prüfen. Im Vergleich zu konventionellen 
Th9-Zellen zeigte eine gene set enrichment Analyse von IL-1b-differenzierten 
Th9-Zellen während der in-vitro-Differenzierung eine Hochregulierung von 
Signalwegen, welche für die Signalübertragung von IL-1, Proliferation und die 
Biogenese von Organellen zuständig sind. In konventionellen Th9-Zellen waren 
dahingegen adaptive Signalwege als Folge von zellulärem Stress hochreguliert. Th2 
und IL-1b-differenzierte Th9-Zellen waren die einzigen T-Helferzell-Subsets, die 
während der in-vitro-Differenzierung signifikant proliferierten. Weitere gene set 
enrichment Analysen der IL-1b-differenzierten Th9-Zellen im Vergleich zu Th1-Zellen 
zeigten im IL-1b-differenzierten Th9-Subset eine Hochregulierung von Signalwegen, 
welche für eine mitochondriale Stoffwechsellage relevant sind. Im Th1-Subset waren 
dahingegen Signalwege hochreguliert, die mit Inflammation, einer Differenzierung zu 
Effektor-Zellen, programmiertem Zelltod, T-Zell Erschöpfung und zellulärer Seneszenz 
verbunden sind. Ein Genprofil, welches mit der intrazellulären kostimulatorischen 
Domäne 4-1BB zusammenhängt, war in IL-1b-differenzierten Th9-Zellen im Vergleich 
zu Th1-Zellen verstärkt exprimiert. Th1-, Th2-, konventionelle Th9-, IL-1b-differenzierte 
Th9- und Th17-CAR-T-Zellen, welche entweder einen aMSLN.CD28.CD3z-CAR, einen 
aMSLN.4 1BB.CD3z-CAR oder einen aMSLN.ICOS.CD3z-CAR exprimierten, konnten 
eine Mesothelin-exprimierende SUIT-2-MSLN-Tumorzelllinie in vitro fast vollständig 
lysieren. Während die Unterschiede in der Zytotoxizität der verschiedenen 
CD4+-CAR -T-Zell-Subsets statistisch nicht signifikant waren, schienen 
IL-1b-differenzierte Th9-CAR-T-Zellen die zytotoxischen Fähigkeiten der anderen 
T-Helferzell-Subsets in Zusammenhang mit einer 4-1BB oder ICOS intrazellulären 
kostimulatorischen Domäne zu übertreffen, wenngleich dies nur eine Tendenz und 
keinen statistisch signifikanten Unterschied darstellte.  
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