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Zusammenfassung

Galaxienhaufen sind die groften gravitativ gebundenen und virialisierten Strukturen im
Universum, und aufgrund ihrer extremen Bedingungen dienen sie als wertvolle Labore zur
Erforschung kosmologischer und plasmaphysikalischer Prozesse. Die Verschmelzung von
Galaxienhaufen oder die Aktivitit des Active Galactic Nucleus (AGN) injiziert Energie rdumlich
grof3skalig, die in einem turbulenten Zerfall in kleinere Skalen iibergeht und so Turbulenz
im Intracluster Medium (ICM) erzeugt. Kiirzlich gemachte Beobachtungen von Hitomi und
XRISM zeigen jedoch unerwartet niedrige Turbulenzniveaus, was auf eine Unterdriickung
der Turbulenz hindeutet. In dieser Arbeit untersuchen wir die Rolle der Viskositit bei der
Regulierung von Mischungs- und Transportprozessen in Galaxienhaufen und in mehrphasigem
astrophysikalischem Gas als einen zentralen Mechanismus zur Unterdriickung von Turbulenz.
Ziel unserer Arbeit ist es, die regulierende Rolle der Viskositit durch den Einsatz fortschrittlicher
numerischer Simulationen und theoretischer Analysen niher zu bestimmen.

Die Arbeit ist wie folgt gegliedert:

In Kapitel 1 fiihren wir die grundlegenden physikalischen Prozesse ein, die die Dynamik
und Entwicklung von Galaxienhaufen bestimmen, und heben insbesondere die beobachteten
Turbulenzniveaus hervor, die niedriger als erwartet ausfallen. Anschlieend untersuchen wir
in Kapitel 2 die Viskositdt im Detail, wobei wir sowohl isotrope (Spitzer) als auch anisotrope
(Braginskii) Beschreibungen betrachten und ihre jeweiligen Anwendungsbereiche erldutern.

Anschliefend stellen wir in Kapitel 3 die verschiedenen Codes vor, die wir fiir unsere
Simulationen verwenden: OPENGADGET3, ein Smoothed Particle Hydrodynamics (SPH)-Code,
der fortschrittliche Modelle fiir Gravitation, Hydrodynamik, Magneto-Hydrodynamik (MHD),
und physikalische Viskositit enthélt; ATHENA, ein eulerbasierter Gittercode, der auf die Erfassung
detaillierter Fluiddynamik ausgelegt ist; und das Nachbearbeitungswerkzeug vorTEX-p, das zur
Analyse von Geschwindigkeitsfeldern und zur Isolierung turbulenter Strukturen verwendet wird.

Nach der Einfiihrung der Theorie und der numerischen Methoden untersuchen wir in Kapitel
4, wie physikalische Viskositit die Plasmadynamik verdndert, indem sie scherkraftgetriebene
Instabilitdten unterdriickt und Turbulenz in einem idealisierten Szenario dimpft. Mit dem
SPH-Code OPENGADGET3 analysieren wir die lineare Entwicklung der Kelvin-Helmholtz
Instabilitat (KHI) in verschiedenen Viskosititsszenarien. Die Simulationen bestdtigen, dass
Viskositit das Wachstum der KHI signifikant unterdriickt und einen kritischen Schwellenwert
bei etwa 0.1% der klassischen Spitzer-Viskositit fiir unsere Anfangsbedingungen etabliert,
ab dem die Instabilitdt vollstindig geddmpft wird. Die numerische Viskositit, die der
SPH-Implementierung innewohnt, erweist sich als deutlich geringer, was bestitigt, dass moderne
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SPH-Methoden diese physikalischen Prozesse zuverlédssig abbilden.

In Kapitel 5 erweitern wir die Analyse aus Kapitel 4, indem wir mit dem Code ATHENA
die Abhingigkeit der kritischen Viskositit von der relativen Dichte und der Mach-Zahl
des Mediums untersuchen. Dariiber hinaus analysieren wir die nichtlinearen Eigenschaften
einer mehrphasigen Gasumgebung und untersuchen, wie sich Viskositidt auf Turbulenz und
die Effizienz radiativer Kiihlung auswirkt. In einer mehrphasigen Umgebung existieren
demnach zwei unterschiedliche Bereiche.  Im Grenzfall schwacher Kiihlung dominiert
Viskositdt und erzeugt laminare Stromungen, welche zu Abweichungen in nicht-viskosen
Skalierungsrelationen fiihren, die Gesamthelligkeit jedoch weitgehend unveridndert lassen. Im
Grenzfall starker Kiihlung dominieren Strahlungsverluste iiber viskose Effekte, sodass klassische
Zusammenhinge zwischen Turbulenz und Kiihlungn erhalten bleiben. Diese Ergebnisse haben
wichtige Auswirkungen auf die Interpretation von Beobachtungen und die Verfeinerung von
Subgrid-Physik in kosmologischen Simulationen.

Alle in idealisierten Szenarien gewonnenen Erkenntnisse werden in Kapitel 6 auf
realistischere kosmologische Simulationen von Galaxienhaufen angewendet. Mit OPENGADGET3
fiihren wir kosmologische Simulationen fiir drei massereiche Haufen durch (M, > 109 M) und
quantifizieren, wie sich unterschiedliche Viskosititsniveaus auf die Morphologie, Temperatur und
Dichteschwankungen der Haufen auswirken. Viskositit unterdriickt insbesondere Instabilititen
auf kleinen Skalen, wodurch filamentire und kleinrdumige Strukturen durch reduzierte Mischung
verstiarkt werden. Sie erhoht auch die Virialtemperaturen um etwa 5-10%, wihrend dichte
Regionen kiihl bleiben. Die Amplitude der Dichte- und Geschwindigkeitsfluktuationen steigt
mit zunehmender Viskositdt. Vergleiche mit Rontgenbeobachtungen zeigen jedoch konsistente
Ergebnisse im Rahmen der Messungenaugigkeiten, unabhingig von der Viskositdt. Dies
erschwert die Eingrenzung der Viskositit durch Dichtefluktuationen. Das Verhéltnis von
Dichte- zu Geschwindigkeitsfluktuationen bleibt robust bei etwa Eins, was mit theoretischen
Erwartungen tbereinstimmt. Dies stellt die erste detaillierte kosmologische Untersuchung
viskoser Effekte im ICM dar.

In Kapitel 7 erweitern wir die vorherigen Ergebnisse, indem wir analysieren, wie stark die
Turbulenz in Galaxienhaufen in Abhingigkeit von der Viskositidt unterdriickt wird. Es zeigt
sich, dass die Viskositit mit zunehmender Entfernung vom Zentrum des Haufens effektiver
wird. Gleichzeitig wird bei geringerer Turbulenz die Selbstverstirkung von Magnetfeldern
beeintriachtigt, was in den dulleren Bereichen von Galaxienhaufen zu schwicheren Magnetfeldern
fiihrt.

Die in den vorherigen Kapiteln vorgestellten Analysen wurden mit einer isotropen
Spitzer-Viskositdt durchgefiihrt. In Kapitel 8 pridsentieren wir jedoch die ersten Ergebnisse
unserer neuen Implementierung einer anisotropen Braginskii-Viskositit in OPENGADGET3. Die
ersten Tests zeigen vielversprechende Resultate und erfassen realistischere, richtungsabhingige
Transportprozesse in magnetisierten Plasmen.

Abschliefend stellen wir in Kapitel 9 unsere Schlussfolgerungen vor und in Kapitel 10
die zukiinftigen Schritte im Anschluss an diese Arbeit. Diese beinhalten die Erweiterung
kosmologischer Simulationen von Galaxienhaufen durch ein realistischeres anisotropes
Viskositidtsmodell sowie die Untersuchung isolierter Systeme, in denen viskose Effekte eine
bedeutende Rolle spielen konnten, etwa bei ,,Jellyfish*“~-Galaxien.
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Insgesamt untersucht diese Arbeit die Rolle der Viskositit {iber verschiedene Skalen hinweg
— von fundamentalen Fluidinstabilititen bis hin zu realistischen Galaxienhaufenumgebungen.
Durch die Verkniipfung detaillierter mikrophysikalischer Erkenntnisse mit beobachtbaren Grof3en
verbessert diese Arbeit unser Verstindnis der Plasmadynamik in Galaxienhaufen erheblich und
liefert wertvolle Beitridge zur Weiterentwicklung theoretischer Modelle und zur Interpretation
zukiinftiger hochauflésender astrophysikalischer Beobachtungen.
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Abstract

Galaxy clusters are the largest gravitationally bound and virialized structures in the Universe, and
due to their extreme conditions, they serve as essential laboratories for exploring cosmological
processes and plasma physics. Processes like mergers or Active Galactic Nucleus (AGN) activity,
injectenergy at large scales, which decays towards smaller scales in a turbulent cascade, generating
turbulence within the Intracluster Medium (ICM). However, recent observational results by
Hitomi and XRISM find unexpectedly low turbulence levels, suggesting that there is a suppression
of turbulence. In this thesis, we investigate the role of viscosity in regulating mixing and
transport processes within galaxy clusters and multiphase astrophysical gas, as a key mechanism
for suppressing turbulence. Our work aims to constrain the magnitude and influence of viscosity
by employing advanced numerical simulations and theoretical analysis.

The work is structured as follows:

In Chapter 1, we introduce the fundamental physical processes governing the dynamics and
evolution of galaxy clusters, emphasizing the lower-than-expected observational turbulence levels.
Subsequently, in Chapter 2 we explore viscosity in detail, considering both isotropic (Spitzer)
and anisotropic (Braginskii) descriptions, highlighting their applicable regimes.

Once we have presented the physics describing the dynamical evolution of galaxy clusters,
in Chapter 3 we introduce the different codes we use to run our simulations: OPENGADGET3,
a Smoothed Particle Hydrodynamics (SPH) code that incorporates sophisticated models for
gravity, hydrodynamics, Magnetohydrodynamics (MHD), and physical viscosity; ATHENA, an
Eulerian mesh-based code designed to capture detailed fluid dynamics; and the postprocessing
tool VORTEX-P, used to analyze velocity fields and isolate turbulent structures.

After having introduced the theory and numerics used in this work, in Chapter 4 we explore
how physical viscosity modifies the dynamics of plasma by suppressing shear-driven instabilities
and damping turbulence in an idealized setup. Using the SPH code OpPENGADGET3, we analyze
the linear evolution of the Kelvin-Helmholtz instability (KHI) under different viscosity scenarios.
The simulations confirm that viscosity significantly suppresses the growth of KHI, establishing a
critical threshold at approximately 0.1% of the classical Spitzer viscosity for our initial conditions
(ICs), beyond which the instability is fully damped. The numerical viscosity intrinsic to the SPH
implementation is found to be significantly lower, confirming that modern SPH methods reliably
capture these physical processes.

In Chapter 5, we expand the analysis made in Chapter 4 by analyzing the dependence of the
critical viscosity on the overdensity and Mach number using the code ATHENA. We additionally
explore the non-linear regime of a multiphase gas environment, and investigate how viscosity



affects turbulence and radiative cooling efficiency. In a multiphase environment, two distinct
regimes emerge: a weak cooling regime, where viscosity dominates and produces laminar flows
disrupting inviscid scaling relations, yet leaving total luminosity relatively unchanged; and a
strong cooling regime, where radiative losses overpower viscous effects, thus preserving classical
turbulence-cooling relationships. These findings have critical implications for interpreting
observations and refining subgrid physics in cosmological simulations.

All these results found in idealized setups are applied to more realistic cosmological
simulations of galaxy clusters in Chapter 6. Using OPENGADGET3, we run cosmological
simulations for three massive clusters (My;; > 10'> M), and we quantify how varying viscosity
levels impact cluster morphology, temperature, and density fluctuations. Viscosity notably
suppresses small-scale instabilities, enhancing filamentary and small-scale structures due to
reduced mixing. It also increases virial temperatures by approximately 5%-10% while keeping
dense regions cool. The amplitude of density and velocity fluctuations increases with viscosity,
yet comparison with X-ray observations reveals consistent results regardless of viscosity within
error margins of measurements. This complicates direct observational constraints of viscosity
from density fluctuations. The ratio of density to velocity fluctuations remains robustly around
unity, aligning with theoretical expectations. This represents the first detailed cosmological
exploration of viscous effects in the ICM.

In Chapter 7 we expand the previous results by analyzing the level of turbulence in galaxy
clusters depending on the amount of viscosity, finding that viscosity becomes more effective
further from the cluster center. This reduction of turbulence leads to a suppression of magnetic
field amplification, producing weaker magnetic fields in the outskirts of galaxy clusters, the more
viscous the ICM is.

All the analysis presented in the previous chapters was done using an isotropic Spitzer
viscosity. However, in Chapter 8 we present the first results of our new implementation of an
anisotropic Braginskii viscosity in OPENGADGET3. The preliminary tests indicate promising
results, capturing more realistic, direction-dependent transport processes in magnetized plasmas.

Finally, in Chapter 9, we present our final conclusions, and in Chapter 10 the future steps
following this thesis. These future steps include extending cosmological simulations of galaxy
clusters to incorporate a more realistic anisotropic viscosity model, as well as investigating
isolated systems where viscous effects may be significant, such as jellyfish galaxies.

Overall, this thesis explores the role of viscosity across different scales, from fundamental
fluid instabilities to realistic galaxy cluster environments. By linking detailed microphysical
insights to observational constraints, this work significantly enhances our understanding of
plasma dynamics in galaxy clusters, informing both theoretical models and observational
interpretations. Ultimately, these results contribute critically to refining the physical models
underlying cosmological simulations and interpreting future high-resolution astrophysical
observations.
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1 Introduction

1.1 The Cosmology of our Universe

Our understanding of the Universe on its largest scales is founded on the Cosmological Principle,
which asserts that the Universe appears homogeneous and isotropic when averaged over scales
of hundreds of megaparsecs (Peebles, 1993). Early hints of this large-scale uniformity emerged
from galaxy counts, but it was the discovery of the Cosmic Microwave Background (CMB) in
1965, which showed a near perfect blackbody spectrum and temperature fluctuations of only
6T /T ~ 1072 in the large-scales of the Universe, confirming isotropy (Penzias & Wilson, 1965;
Planck Collaboration et al., 2020). This foundational assumption enables the use of a single
metric to describe spacetime, rather than having to account for every local inhomogeneity.

A crucial measurement to understand the behavior of our Universe was done in 1929 by Edwin
Hubble, who quantified the recession of galaxies by measuring their redshifts and distances,
finding a linear relation now known as Hubble’s law (Hubble, 1929):

v =cz=Hyr, (1.1)

where v is the recessional velocity, z is the observed redshift, c is the speed of light, r is the distance,
and Hj is the Hubble constant, the value of the present-day Hubble parameter, which shows the
rate of expansion. Modern observations have measured Hy = 67.55 + 0.42 kms™' Mpc~! from
Planck CMB data (Planck Collaboration et al., 2020), and Hy = 73.04 + 1.04 kms™! Mpc_1
from Cepheids observations (Riess et al., 2022). Hubble’s law implies that space itself is
expanding: comoving observers see all distant galaxies receding, with velocities proportional to
their separation. This global expansion stretches photon wavelengths, producing the cosmological
redshift. This cosmological redshift (z) is defined by the ratio of observed to emitted wavelengths:
ao

/lobs
l4z7=20 =20 1.2
T Aem  alt) (12

where a(t) is the scale factor, and ag its value today. Thus, measuring z tells us when we are
observing, with larger z corresponding to earlier times, when the scale factor was smaller than 1
(Peebles, 1993). a(t) describes the separation between two points in space due to the expansion of
the Universe: r(t) = a(t)x, where x is the comoving separation, which remains fixed for objects
moving with the Hubble flow. This distinction simplifies the treatment of structure growth, as
comoving scales factor out the overall expansion and allow direct comparison of length scales at
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different epochs (Peacock, 1999). By convention, we set ag = 1 at the present cosmic time 7y, SO
that lengths measured today match comoving lengths directly. The expansion rate of the Universe
at any point in time can be quantified by the Hubble parameter as:
a(r)
H(t) = —=, 1.3

=20 (13)
which measures how fast distances between comoving observers grow with time. At z = 0
(present cosmic time), the Hubble parameter (presented in equation (1.1)) is given by

Ho =100/ kms™ Mpc™!, (1.4)

where the dimensionless number /4 absorbs the uncertainty in its precise measurement (currently
h ~0.67-0.72).

Assuming homogeneity and isotropy, the geometry of spacetime (in spherical coordinates)
is described by the Friedmann—Lemaitre—Robertson—Walker (FLRW) metric (Friedmann, 1922,
1924; Lemaitre, 1931, 1933; Robertson, 1935, 1936b,a; Walker, 1937):

ds? = —c2di? + d2(1) [ +r? (de2 + sin29d¢2)] ; (1.5)

1 —kr?
where k denotes spatial curvature (k = 0 flat, k > O closed, k£ < 0 open; Ryden, 2003).

The time evolution of a(¢) is derived from Einstein’s field equations (Einstein, 1916), leading
to the Friedmann equations (Friedmann, 1922). The first equation defines the expansion rate of
the Universe:

—p - —+ =, 1.6

3 az 3 (1.6)
where p is the total energy density (radiation, matter, and dark energy), G the gravitational
constant, and A the cosmological constant (Peebles, 1993). The second is the acceleration
equation:

i\’ 817G  ke* A
~) =

+—, 1.7

revealing how pressure p and A control whether expansion accelerates or decelerates. During
the radiation-dominated era (p > 0) and the matter-dominated era (p ~ 0), gravity decelerated
the expansion. In the current dark energy-dominated epoch (p < 0), the Universe expands at an
accelerated rate (Ryden, 2003). As the Universe evolves, H(t) changes according to the balance of
energy components—matter, radiation, curvature, and dark energy—via the Friedmann equations
(Dodelson, 2003).

It is useful to compare each component’s density to the critical density, the energy density
required for a spatially flat geometry (Mukhanov, 2005). This critical value separates open and
closed cosmologies. If the actual density equals this value, the Universe is exactly flat. It is
defined by:

3H?(1)

pcrit(t): 871G (18)
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Comparing the density of each component p; to pri; defines the dimensionless density parameters:

pi(1)
Perie(t) ,

Q;(1) = (1.9)

for radiation (€2,), matter (£2,,), curvature (€2;), and dark energy (£25). Summing over all yields
Q +Q, +Qr+Qp =1. (1.10)

Current observations constrain these values at z = 0 to be approximately €2, = 0.3111 £ 0.0056,
Qx = 0.6889 + 0.0056, Q, ~ 107, This implies that Q; ~ 0, indicating a spatially flat, dark
energy-dominated Universe today (Planck Collaboration et al., 2020).

In the early development of structure formation theory, Press & Schechter (1974) introduced a
simple yet powerful analytic expression for the abundance of collapsed haloes. Their formalism,
now known as the Press—Schechter model, assumed an Einstein-de Sitter Universe: a flat-matter
only model with Q,, = 1 and Q = 0 (Einstein & de Sitter, 1932). The predicted mass function is

ydn 1 p M\'"? M
—=— — exp|- :
M~z M\ M Pl v

(1.11)

Here, p is the mean matter density of the Universe, and M™ is the characteristic mass scale. For
masses well below M*, the abundance of collapsed halos rises, while for M > M* the exponential
term enforces a rapid cutoff, reflecting the rarity of high—mass peaks in the Gaussian initial field.
The prefactor 1/+/mr corrects for the fraction of underdense regions in the original derivation, and
ensures that integrating M dn/dM over all masses recovers the total mass density p (Press &
Schechter, 1974).

Subsequent observations, particularly in the 1990s, showed that the Einstein-de Sitter model
could not simultaneously account for the expansion rate, structure growth, and geometry of the
Universe (Efstathiou et al., 1992; Riess et al., 1998). This led to the formulation of the Lambda
Cold Dark Matter (ACDM) model as the standard cosmological paradigm (Ostriker & Steinhardt,
1995; Turok, 1997). In this picture, the total energy density today is partitioned into pressureless
Cold Dark Matter (CDM) and a cosmological constant A (dark energy), with negligible curvature
and radiation. The expansion history follows

H*(2)
2
HO

=Qom (1+2)° +Qoa, (1.12)

where € ,, and Q A are the present—day density parameters.

The linear growth factor, which describes how density perturbations grow over time, depends
on the expansion rate H(z) and the density parameters (£;). Thus, comparisons between
the predicted Press—Schechter mass function and observations provide tight constraints on €,
and oy, the present-day fluctuation amplitude at 8 4~! Mpc (Press & Schechter, 1974; Planck
Collaboration et al., 2020).

Galaxy clusters thus stand as the link between theory and observations. Their massive scales
make them rare peaks in the density field, so small variations in cosmological parameters lead
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to measurable differences in their abundance and distribution. By combining cluster counts,
scaling relations (such as mass—observable correlations), and spatial clustering with other probes
like the CMB and Type Ia supernovae, we can break degeneracies among parameters. This sets
constraints on the matter density (£2,,), the dark energy equation of state, and the amplitude
of matter fluctuations (og). In this way, galaxy clusters are characterized by the interplay
between gravity, dark matter, and dark energy, offering one of the most powerful laboratories for
understanding the fundamental constituents and fate of our Universe.

1.2 Galaxy Clusters

Galaxy clusters represent the largest gravitationally bound structures in the Universe, providing
unique laboratories for studying cosmological and astrophysical processes. These massive
systems span several Mpc and typically contain total masses of up to 10> My, dominated by
dark matter (DM), with baryons making up only ~ 10% of the total mass (see review by Caprioli
et al., 2019). At the heart of these clusters lies a hot, diffuse gas known as the Intracluster
Medium (ICM), which is primarily composed of ionized hydrogen and helium with temperatures
typically of 10% — 108 K, corresponding to energies of approximately 1 — 10 keV, and densities of
1074 — 107! ecm™3 (Markevitch & Vikhlinin, 2007; ZuHone & Roediger, 2016).

Galaxy clusters were first recognized through systematic catalogs of nebulae created by
Charles Messier and William Herschel. In the 1920s, Edwin Hubble established that these
nebulae were indeed external galaxies, emphasizing the immense scale of galaxy clusters (Hubble,
1925, 1926). Soon after, measurements of galaxy velocities and the assumption of a virialized
equilibrium were used to quantify the total mass of Coma (Zwicky, 1933) and Virgo (Smith,
1936). These mass measurements exceeded the total mass accounted for stars in the cluster,
indicating for the first time the existence of DM. X-ray observations further confirmed this DM
through the detection of the hot ICM emitting via thermal bremsstrahlung (Cavaliere et al., 1971;
Gursky et al., 1971; Forman et al., 1972), requiring significant additional gravitational mass
beyond visible matter (see review by Kravtsov & Borgani, 2012).

Galaxy clusters form and evolve through hierarchical collapse driven by gravitational
instability, where initial density fluctuations in the early Universe grow via gravitational accretion
and mergers (e.g. Hoffman & Shaham, 1985; Syer & White, 1998). Cosmological simulations
and theoretical models consistently show that mergers significantly influence cluster structures,
triggering turbulence, shocks, and particle acceleration processes (see reviews by Markevitch &
Vikhlinin, 2007 and Caprioli et al., 2019).

Clusters consist predominantly of DM, galaxies, and the ICM (see Fig. 1.1, taken from
Markevitch & Vikhlinin, 2007). The ICM, which is observed primarily in X-rays and through the
Sunyaev-Zeldovich (SZ) effect, provides essential diagnostics on gas density, temperature, and
chemical composition (Kravtsov & Borgani, 2012). Gravitational lensing measurements offer
complementary information on cluster mass distributions, serving as critical tools for testing
cosmological models (see reviews by Allen et al., 2011 and Pratt et al., 2019).

Galaxy clusters serve as fundamental probes of cosmological parameters since their mass
distribution and growth history sensitively depend on the cosmological model. They also provide
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Figure 1.1: Bullet cluster observations in different wavelengths. a) Optical image, where faint red
galaxies can be seen in two concentrations (Clowe et al., 2006). b) Same image as in a), but the
contours show the projected total mass derived from gravitational lensing (Clowe et al., 2006).
The total mass is dominated by DM, and the two peaks of mass concentration correlate with
the two areas where galaxies are concentrated. c¢) Image taken with Chandra, where the X-ray
emission due to the hot diffuse ICM can be seen. d) Same image as in ¢), but the contours show
the surface brightness of the diffuse radio emission due to synchrotron emission of ultrarelativistic
electrons in the magnetic field (Liang et al., 2000). Figure taken from Markevitch & Vikhlinin
(2007).
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unique conditions for studying plasma physics, which cannot be reproduced in laboratories on
Earth, such as collisionless shocks, transport processes, or plasma microinstabilities (see reviews
by Bykov et al., 2019 and Kunz et al., 2022). Furthermore, clusters offer critical environments
for investigating galaxy evolution mechanisms, including ram-pressure stripping, galaxy mergers,
and feedback processes like Active Galactic Nucleus (AGN) (see review by Simionescu et al.,
2019).

The understanding of the gas properties of galaxy clusters has significantly benefited from
observatories such as Chandra (Weisskopf et al., 2000), XMM-Newton (Jansen et al., 2001),
and the LOFAR telescope (van Haarlem et al., 2013), which allow the study of the cluster
dynamics and structure. More recently, the detections from the high-resolution spectrometer
of XRISM facilitate the direct measurement of turbulent velocities, shedding light on energy
transport mechanisms (XRISM Science Team, 2020; XRISM, 2025). Future telescopes like
Athena (Barret et al., 2013) or the Square Kilometer Array (SKA; Lazio, 2009), aim to map
the distribution and behavior of hot gas and magnetic fields in unprecedented detail, as well as
enabling detailed studies of synchrotron emissions and magnetic field structures across a vast
range of cluster environments.

1.2.1 Formation and Evolution of Galaxy Clusters

According to the ACDM cosmological model, galaxy clusters form through hierarchical structure
formation. Initially, small primordial matter density field fluctuations, seeded during cosmic
inflation, provide the initial seeds from which galaxy clusters grow (Hoffman & Shaham, 1985).
They originate as quantum perturbations in the scalar field driving cosmic inflation, which then
become classical perturbations that can be observed in the CMB (see reviews by Mukhanov et al.,
1992 and Mo et al., 2010). The statistical nature of these fluctuations is described by their power
spectrum, which is typically assumed to follow a nearly scale-invariant Harrison-Zeldovich
spectrum (Harrison, 1970; Zeldovich, 1972). Observations from the Planck satellite have
precisely measured these fluctuations (see Fig. 1.2, obtained from Planck Collaboration et al.,
2014), allowing detailed predictions of structure formation patterns and aiding in cosmological
parameter estimation (Mo et al., 2010; Planck Collaboration et al., 2020).

Initially, the density fluctuations are very small and evolve due to gravitational force
according to linear perturbation theory. These initial density fluctuations are characterized by
the overdensity:

6(x) = (p(x;%p), (1.13)

where x is the position, and p is the mean density of the Universe. Assuming a simple Einstein-de
Sitter Universe (flat-matter only), the mean density of the Universe evolves as

1

_— 1.14
6r1G1t? (1.14)

b=

During this initial phase, fluctuations grow proportionally to the cosmological scale factor in
an expanding Universe. The linear growth is governed by the Jeans instability criterion, which
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Figure 1.2: Primordial temperature fluctuations of the CMB measured by Planck Collaboration
et al. (2014). Note that 3% of the sky was replaced by a constrained Gaussian realization to fill
the Galactic mask. Figure taken from Planck Collaboration et al. (2014).

determines the minimum scale of fluctuations that can collapse gravitationally (Jeans, 1902; Mo

et al., 2010):
T
Ay =cs | —, 1.15
I c‘/Gﬁ (1.15)

with ¢, the soundspeed. As fluctuations grow larger and the overdensity becomes 6 ~ 1, they
enter a quasi-linear regime where perturbation amplitudes become significant, and non-linear
effects start to become important (Mo et al., 2010).

A description of how small matter density fluctuations can result in large-scale structures
is given by the Zeldovich approximation (Zel’dovich, 1970)!. These initial fluctuations grow
through gravitational instability while gradually decoupling from the Hubble flow, with overdense
regions becoming increasingly dense over time. Once the amplitude of the perturbations becomes
non-linear, gravitational collapse results in the formation of virialized dark matter halos. Baryonic
matter subsequently falls into these potential wells, forming galaxies and galaxy clusters. On
large scales, the initial density fluctuations lead to the formation of coherent structures like sheets
and filaments. This bottom-up scenario is usually referred to as hierarchical clustering, and
describes how galaxy clusters are built through the sequential merging and accretion of smaller
structures like galaxies, galaxy groups, and dark matter halos in the ACDM model. Clusters thus
emerge from overdense regions in the primordial matter density field, subsequently amplified

The Zeldovich approximation is a first-order Lagrangian perturbative solution which does not describe the fully
non-linear collapse. To describe non-linear collapse, one needs to use more complex descriptions like the spherical
collapse.
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through gravitational attraction and mergers (Springel et al., 2005; Kravtsov & Borgani, 2012).
Galaxy cluster formation fundamentally involves gravitational collapse governed by Newtonian
dynamics, well described by the Poisson equation in comoving coordinates:

V20 = 47Ga’5 6, (1.16)

where @ denotes the gravitational potential perturbation. This equation states that the gravitational
potential @ is sourced by the density contrast 6. In a perfectly homogeneous Universe (6 = 0),
V2® = 0 (see equation (1.13)). However, in overdense regions (6 > 0), the RHS of equation (1.16)
is positive. Given the boundary condition ® — 0 at infinity, the Green-function solution results
in ® < 0, creating attractive potential wells that draw in surrounding matter (Mo et al., 2010).
These wells grow deeper over time as matter accumulates, enhancing gravitational collapse and
leading to non-linear structure formation.

Gravitational growth is initially linear, but as the density contrast between the cluster and
the background increases, it transitions into a highly non-linear regime, ultimately resulting
in virialized structures. During virialization, kinetic and potential energies equilibrate, and a
quasi-steady state, known as virial equilibrium, is satisfied:

2(Exin) = —(Epot) » (1.17)

where (Eyin) and (Eo) are the time-averaged kinetic and potential energy, respectively. However,
processes like accretion or major mergers inject kinetic energy into the system, thus breaking the
virial equilibrium until the galaxy clusters are thermalised.

The simplest model of non-linear collapse assumes a spherical model (see Kravtsov & Borgani,
2012 for a more detailed derivation). Initially, the overdense region expands along with the
Universe, while slowing down under its own gravity. When the radial velocity cancels exactly
the local Hubble flow, the overdense region reaches the turnaround point (at time ¢ = t,), and
it stops expanding, with a radius Ry,. After reaching turnaround, it collapses under gravity and
virializes, reaching a final radius R.o; = R,/2, set by the virial theorem, at t = ... The interval
between the collapse and the turnaround time (Z¢o11 — fa = fta) must be equal to the free-fall time

of a sphere with density py,:
3n
tg = , 1.18
= / 32Gpn (1.18)

leading to a density at turnaround of

3n
= . 1.19
Since the radius after collapse is Rcoi = Ra/2, this leads to a collapse density of
3n
Peoll = 8pa = G (1.20)

coll

Thus, once the cluster is virialized, the overdensity in an Einstein-de Sitter Universe (flat-matter

only) can be defined as

Avi = Pl — 1872 = 177.653 . (1.21)
o
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In the case of a ACDM with Q,, = 0.27 and Q5 = 0.73, Ay; = 358 at z = 0 (Komatsu et al.,
2011). This allows us to define the virial radius (Rvj;), the radius at which the density contrast
is Avyir. The mass inside this radius is the virial mass (Mv;;) and the temperature predicted from
the virial theorem, the virial temperature (7vi;). Another common definition is to consider the
distance for which the density is 200 times the critical density of the Universe (pcyit, €quation
(1.8)) R200, and in the case of central regions of the cluster, R»500, the distance at which the
overdensity is 2500 times the critical density of the Universe.

Once the galaxy cluster has collapsed, the DM radial profile follows (approximately) a NFW
profile (Navarro et al., 1996):

4p;

5 (1.22)
A1)

PNFW(7) =

where r; is the distance at which the logarithmic slope of the profile is equal to -2, and p; is
the value of the density at r = r;. This quasi-universal profile emerges from the hierarchical
assembly of structures in a cosmological context, shaped by the anisotropic collapse of matter
along the large-scale features (Navarro et al., 1997).

Cosmological simulations predict the formation of a complex large-scale structure called the
“cosmic web”, consisting of voids, sheets, filaments, and nodes (see Fig. 1.3, obtained from
Springel et al., 2005). Galaxy clusters are located at the nodes — the intersections of filaments
—representing the densest regions in this cosmic structure. Matter streams along filaments,
continuously feeding the gravitational growth of clusters through smooth accretion and discrete
merging events (see reviews by Bond & Myers, 1996 and Overzier, 2016). The baryonic matter
in galaxy clusters is heated primarily through these gravitational processes, including shock
heating during mergers and adiabatic compression during collapse. The high-density core of
the ICM cools radiatively, predominantly emitting X-rays through thermal bremsstrahlung. This
cooling can initiate star formation and feed central supermassive black holes (SMBHs). Feedback
mechanisms, particularly from AGN jets and supernova-driven winds, significantly impact cluster
evolution (see review by Fabian, 2012). They inject substantial energy into the ICM, balancing
cooling flows and influencing the observed thermal structure, metallicity distribution, and entropy
profiles of clusters (see reviews by McNamara & Nulsen, 2007 and Simionescu et al., 2019).

Galaxy clusters are fundamental cosmological probes providing essential information about
dark matter, dark energy, and the large-scale structure of the Universe. Their mass function, spatial
clustering, and evolution serve as precise tests of cosmological models (Vikhlinin et al., 2009).
Moreover, detailed studies of the ICM, via X-ray spectroscopy and SZ effect measurements,
offer fundamental information into baryonic physics, feedback processes, and plasma dynamics
(Mantz et al., 2010; Bohringer & Werner, 2010). Clusters also act as natural gravitational lenses,
magnifying distant galaxies and enabling detailed studies of early galaxy formation (see review
by Kneib & Natarajan, 2011). Hence, understanding galaxy clusters significantly advances our
comprehension of cosmological evolution, galaxy formation processes, and the fundamental
components of the Universe (Allen et al., 2011; Kravtsov & Borgani, 2012).
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Figure 1.3: Dark matter density field of the large-scale cosmic web obtained from the Millennium
Simulation (Springel et al., 2005), color-coded by density and local dark matter velocity
dispersion. Figure taken from Springel et al. (2005).

1.3 The Cosmic Baryon Cycle

Galaxy clusters contain hundreds to thousands of galaxies bound within deep gravitational
potential wells filled with the hot, X-ray emitting ICM. However, the evolution of these
clusters, and of the galaxies they host, is governed not only by dark matter and gravity, but
also by complex interactions between various baryonic components: the Interstellar Medium
(ISM) within galaxies, where stars form; the Circumgalactic Medium (CGM), which surrounds
galaxies within their dark matter halos; and the ICM, which spans the space between galaxies
within clusters. Each of these media represents a different thermodynamic phase of baryonic
matter, characterized by its temperature, density, pressure, and dynamical history. Yet they are
fundamentally interconnected through a multiscale, multiphase baryon cycle that regulates gas
accretion, star formation, feedback, chemical enrichment, and environmental quenching.

The ISM

The ISM is the gas and dust that resides within galaxies and directly participates in star formation.
It is highly inhomogeneous and multiphase, existing in approximate pressure equilibrium. The
classic three-phase model includes the cold neutral medium, with temperatures 7 < 100 K and
densities n > 100 cm™3; the warm media, which is partially ionized and has temperatures of
T ~ 10* K and densities of n ~ 0.1 — 1 cm™3; and the hot ionized medium, with 7 > 10° K and
n ~ 1073 cm=3, which is heated by supernova explosions (McKee & Ostriker, 1977; Cox, 2005).
On large scales, the ISM exhibits turbulence, magnetization, and thermal instabilities that regulate



1.3 The Cosmic Baryon Cycle 11

its fragmentation and phase structure (see review by Elmegreen & Scalo, 2004). Feedback from
massive stars and supernovae drives material from the ISM into the CGM via winds and fountains
(Chevalier & Clegg, 1985). This gas carries metals and energy out of galaxies, enriching and
heating the CGM (see review by Tumlinson et al., 2017). Thus, the ISM acts both as the engine
of baryon condensation and as a source of galactic feedback.

The CGM

The CGM is the gaseous halo surrounding galaxies, extending out to the virial radius (~ 10% kpc
for Milky Way-like galaxies), and the total gas and metal mass can exceed the mass of the galaxy.
It 1s the interface between the ISM and the ICM, playing a central role in both gas accretion
and feedback regulation, mediating in the interaction between the two environments (see review
by Faucher-Giguere & Oh, 2023). Observations provide clear evidence of multiphase gas in the
CGM. For instance, hot gas (T > 10° K) in halos around galaxies has been detected in X-rays
(e.g. Anderson & Bregman, 2010; Bregman et al., 2018). Meanwhile, cool gas (T ~ 10* K) has
been detected through Lya emission (e.g. Steidel et al., 2010; Wisotzki et al., 2018; Arrigoni
Battaia et al., 2023), as well as absorption lines in the spectra of background quasars (e.g. Tripp
et al., 1998; Péroux et al., 2019). Its multiphase structure arises from the interplay of turbulent
mixing layers, thermal instability, conduction, and magnetic fields (Gronke et al., 2021; Fielding
& Bryan, 2022).

Gas flows in the CGM are shaped by accretion from the cosmic web, satellite stripping, and
feedback from star formation and AGN (Tumlinson et al., 2017). These complex processes lead to
a messy structure on a big range of scales, from the galactic halo (~ 100 kpc) to turbulent mixing
layers (< 1 pc) (Faucher-Giguere & Oh, 2023). The CGM also hosts recycled outflows: material
is ejected from the ISM as galactic winds, cools, and re-accretes onto the galaxy (Oppenheimer
etal., 2010). The CGM acts as a reservoir for galaxy evolution, balancing inflow and feedback to
regulate the galaxy’s gas budget available for star formation (Tumlinson et al., 2017).

The ICM

The ICM fills the deep gravitational potentials of galaxy clusters, extending over Mpc scales
and containing the majority of baryonic mass. Despite its relatively homogeneous appearance,
the ICM contains complex structures including cold fronts, shock fronts, sloshing gas, and
metal-enriched bubbles from AGN feedback (Markevitch & Vikhlinin, 2007). In cluster centers,
cooling times can be lower than 1 Gyr, potentially forming cooling flows of gas condensing
onto the central galaxy, unless regulated by mechanical heating from AGN jets (Fabian, 1994;
McNamara & Nulsen, 2007). The ICM also interacts with infalling galaxies, stripping their
ISM and CGM via ram-pressure, therefore suppressing star formation and reshaping galaxy
morphologies in clusters (Gunn & Gott, 1972; Boselli et al., 2022).

While the ISM and CGM are shaped by internal galactic processes, the ICM is dominated by
gravity and fluid dynamics. It stores a fossil record of galaxy evolution and cluster assembly,
evident in its temperature, entropy, and metallicity distributions.
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Figure 1.4: Schematic picture of the cosmic baryon cycle between the ICM accreted onto the
CGM, galactic outflows emitting the gas from the ISM to the CGM and recycled gas infalling
again to the ISM. Figure taken from Tumlinson et al. (2017).

Although the ISM, CGM, and ICM are often studied independently, they are deeply
interconnected through the cosmic baryon cycle (see schematic picture of the interaction between
ICM, CGM and ISM in Fig. 1.4, taken from Tumlinson et al., 2017). Material condenses from
the ICM into the CGM, cools and accretes onto the ISM, and forms stars. Stellar and AGN
feedback eject mass, metals, and energy back into the CGM, and eventually into the ICM. Metals
observed in the CGM and ICM trace this cumulative enrichment history (Peeples et al., 2014;
Tumlinson et al., 2017). Ultimately, these media define a continuum from dense, star-forming
regions to the vast hot diffuse gas of galaxy clusters. Their interplay governs the life cycle of
baryons and supports galaxy formation across cosmic time.

A crucial component of this interplay is the process of gas mixing, which mediates the transfer
of mass, momentum, energy, and metals across these environments. Mixing occurs across a
wide range of spatial and temporal scales, driven by a complex combination of hydrodynamic
instabilities, turbulence, conduction, and magnetic fields. At the interfaces between cold and hot
gas phases—such as outflows from the ISM into the CGM, or ram-pressure stripped material
in the ICM—shear and density contrasts give rise to instabilities like the Kelvin-Helmholtz and
Rayleigh-Taylor instabilities (Marin-Gilabert et al., 2022). These generate multiphase-turbulent
mixing layers that broaden over time and foster the creation of intermediate-temperature gas
(Fielding et al., 2020; Mandelker et al., 2020).

Such layers are not only sites of energy dissipation, but also regulate the survival of cool gas
clouds as they traverse the hot halos (Gronke & Oh, 2018). In the CGM, mixing can enhance
radiative cooling, enabling gas to condense and rain back onto the galaxy. In the ICM, infalling
galaxies exhibit complex multiphase tails, showing that stripped ISM material survives and mixes
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Figure 1.5: AGN jets in galaxy NGC 1265 mixing with the ICM due to the growth of instabilities
as a consequence of ram-pressure stripping. Each picture shows a different configuration of the
observations. Color scale units are Jy beam™!. Figure taken from Gendron-Marsolais et al.

(2020).

over significant distances (Tonnesen et al., 2011; Poggianti et al., 2019). Thermal conduction
and magnetic fields modulate this process: conduction smooths temperature gradients, while
magnetic tension can either suppress or guide turbulent eddies, depending on the field geometry
(Armillotta et al., 2016; Ji et al., 2019).

On cluster-wide scales, mixing contributes to the distribution of heavy elements. Metals
produced by stars and expelled via feedback are found dispersed across large volumes of the CGM
and ICM, often showing remarkably uniform radial profiles (Werner et al., 2013; Simionescu et al.,
2015). This implies either very early enrichment or long-term, large-scale mixing mechanisms,
including turbulence driven by AGN feedback and mergers. AGN jets inflate cavities in the hot
ICM, driving shocks and stirring motions that entrain ambient gas (see in Fig. 1.5 the filamentary
AGN in galaxy NGC 1265 mixing with the hot ICM, triggered by the growth of instabilities.
Figure taken from Gendron-Marsolais et al., 2020). Observations of metal-enriched, uplifted
gas around cluster centers, along with simulations, support the view that AGN-driven turbulence
plays a vital role in mixing and regulating cooling (McNamara & Nulsen, 2007; Gaspari et al.,
2011; Bourne & Sijacki, 2017; Voit et al., 2017).

Despite significant progress in understanding these multiphase interactions, many
uncertainties remain in the modeling of turbulent transport and mixing in astrophysical plasmas.
The efficiency of these processes depends not only on the large-scale driving mechanisms, such
as AGN feedback or galactic outflows, but also on the microphysical properties of the medium
itself. The behavior of the plasma—whether it readily develops instabilities or sustains coherent
structures—depends sensitively on how it responds to shear, compression, and anisotropic
stress. For instance, observations of buoyant bubbles inflated by AGN jets in the ICM show
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that they often remain coherent over tens to hundreds of kiloparsecs, persisting far longer than
expected from simple hydrodynamic predictions (e.g. Fabian et al., 2003; Forman et al., 2007;
Birzan et al., 2020). This apparent stability suggests that additional physical processes may
be suppressing disruptive instabilities and damping turbulent mixing. Understanding how the
internal properties of the plasma influence such behavior is therefore essential for building a
complete picture of gas dynamics in galaxy clusters.

1.4 Plasma Physics of the ICM?

The high temperature and low density of the ICM ensure that it is a fully ionized plasma, which is
characterized by electromagnetic interactions among electrons and ions. Due to its low density,
the ICM is a good example of a weakly collisional plasma, where particle-particle collisions
are infrequent compared to the dynamical timescales of the system (Schekochihin et al., 2005;
Schekochihin & Cowley, 2006).

To properly describe the plasma physics of the ICM, we must first define its characteristic
scales. The typical macroscopic scales of galaxy clusters range from tens to hundreds of kpc,
representing the scales of density, temperature, and magnetic field gradients. Within these
large-scale structures, an ion can travel freely between Coulomb collisions a distance known as
the mean free path, defined as:

332(kpTi)? Vi
/ll' = =~
Al 2pie*In A Vi

) (1.23)

where vy, = v2kgT;/m; is the ion thermal velocity, and v;; is the ion collision frequency, given
by:
_An ne* In A

Vii= — 525 >
1/2+3/2
mi/Ti/

(1.24)

with n; is the number density, with values of n ~ 1072 — 1073 cm™ in the cores of clusters, and
In A = 37.8 is the Coulomb logarithm. v;; describes the number of Coulomb deflections an ion
experiences each second, and vy, ; as the distance it would cover in a second if it flew straight
ahead. Therefore, A; ~ vy,;/v;; represents the distance an ion can travel before experiencing a
collision. A hotter plasma (larger vy, ;), or a more diffused plasma (smaller v;;) increase the mean
free path (Sarazin, 1986; Kulsrud, 2004).

The mean free path in galaxy clusters is typically of the order of 1 — 10 kpc. Such a long
mean free path has significant consequences for the dynamics and transport properties of the
ICM. Since A; can approach or even exceed the characteristic scales of temperature and pressure
gradients, the plasma behaves as weakly collisional, and the assumptions underlying classical fluid
descriptions begin to fail (Schekochihin et al., 2005; Kunz et al., 2012). In this regime, transport
processes such as heat conduction and momentum exchange become non-local, with particles

ZParts of this section was published in MNRAS by Marin-Gilabert et al. (2022) and in ApJ by Marin-Gilabert
et al. (2024).
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carrying energy and momentum over macroscopic distances before interacting (Braginskii, 1965).
As a result, classical diffusion approximations become inadequate, and kinetic descriptions are
required to accurately capture the physics. A long mean free path also implies that the plasma
can develop large-scale anisotropies in pressure and temperature, potentially triggering kinetic
instabilities (see review by Kunz et al., 2014). These instabilities act to scatter particles and can
effectively reduce the mean free path, providing a form of self-regulation for transport processes.
To put this into perspective, a mean free path of ~10 kpc is comparable to the size of a dwarf
galaxy and constitutes a substantial fraction of a cluster core, highlighting the need to consider
kinetic effects in models of the ICM. In this regime, magnetic fields play a crucial role in
shaping these transport processes; therefore, understanding their strength and geometry is key for
understanding the plasma physics in the ICM.

1.4.1 Magnetic Fields in the ICM

The ICM plasma is magnetized, although the origin of these magnetic fields in the early Universe
is still unclear (see review by Subramanian et al., 2006, and references therein). Magnetic fields
significantly influence the structure, dynamics, and observational properties of galaxy clusters,
acting alongside relativistic particles as a crucial non-thermal component (Feretti et al., 2012).
The presence of these magnetic fields is inferred primarily from observational signatures such as
synchrotron emission, Faraday rotation measurements (RM), and inverse-Compton scattering
measurements (Govoni & Feretti, 2004). Synchrotron radiation from relativistic electrons
spiraling around magnetic fields produces diffuse radio halos and relics, which directly indicate
the existence of magnetic fields within clusters (Feretti et al., 2012). Additionally, RM provide
independent evidence of magnetic fields by detecting the rotation of polarized radio waves passing
through magnetized plasma (Clarke et al., 2001). Current observational estimates indicate that
magnetic fields in clusters typically range from 0.1 to 10 uG, significantly affecting cluster
thermal dynamics by modulating transport processes, gas dynamics, and providing additional
non-thermal pressure components (Subramanian et al., 2006).

The strength of magnetic fields within magnetized fluids, such as the ICM, is usually
characterized by the plasma beta parameter, defined as the ratio of thermal to magnetic pressure,
B = P/ Pmag. In many astrophysical systems, including the ICM, the medium is typically weakly
magnetized (8 > 1). This is analyzed in more detail in section 2.6.

Magnetic fields strongly influence the dynamics of charged particles within the ICM.
Specifically, the ions gyrate around the magnetic field lines in a circular motion of radius given

by the gyroradius (or Larmor radius):
Vith,i
;= —, 1.25

i Q. ( )
where €; = eB/m;c is the ion cyclotron frequency, m; is the ion mass, B is the magnetic field
strength, e is the electron charge, kg the Bolztmann constant and c the speed of light (Schekochihin
etal.,2005; Kunz et al., 2022). In typical ICM conditions, A; > r;, which means that collisions are
largely infrequent on the gyration scale and the ions undergo many rotations around the magnetic
field lines before a collision (Schekochihin & Cowley, 2006). This condition implies that the

plasma s collisionless at the gyration scale, thus ions maintain adiabatic invariants and the plasma
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exhibits anisotropic pressure. Such anisotropy significantly affects plasma stability, making it
susceptible to various instabilities, notably firehose and mirror instabilities (Schekochihin et al.,
2005). The presence of these instabilities has important consequences, such as altering thermal
conduction and viscosity, modifying turbulence properties, and potentially regulating the effective
transport processes within the ICM (Kunz et al., 2014).

The origin of ICM magnetic fields remains a highly active research area, generally divided
into primordial and astrophysical scenarios. Primordial magnetic fields may originate from
early Universe processes, including inflationary mechanisms, phase transitions, or cosmic strings
(see review by Grasso & Rubinstein, 2001). These fields can imprint detectable signatures in
cosmic voids—regions largely untouched by astrophysical processes, thus retaining primordial
magnetic information (Neronov & Vovk, 2010). Cosmic voids provide an ideal environment
for detecting weak primordial fields (of the order of 10~'® G) via observations of gamma-ray
blazars. By measuring the secondary emission from blazar-induced electromagnetic cascades,
upper limits on magnetic fields in voids can be established, helping to constrain primordial
field models (Neronov & Semikoz, 2009; Tavecchio et al., 2010). Astrophysical mechanisms,
however, remain prominent candidates for generating and amplifying magnetic fields within
clusters. Stellar winds and AGN jets inject magnetic energy directly into the ICM, although these
processes alone typically produce fields around 0.1 uG or lower (see review by Brandenburg
& Lazarian, 2013). Therefore, additional mechanisms must amplify these initial seed fields to
observed levels.

The amplification and evolution of magnetic fields are deeply linked with turbulence
resulting from hierarchical cluster formation and mergers of clusters (Schekochihin et al., 2005;
Subramanian et al., 2006). Turbulent motions amplify magnetic fields primarily through a
dynamo process, where turbulent flows stretch and fold magnetic field lines, exponentially
increasing their strength. This fluctuation dynamo can effectively amplify initially weak
fields to observed microgauss strengths within typical cluster evolution timescales (~ 5 Gyr)
(Brandenburg & Lazarian, 2013).

Turbulence is a fundamental process influencing the magnetic field scale. Initially, magnetic
fields generated on smaller scales (~10-20kpc) through galaxy wakes and interactions evolve into
coherent structures across larger scales (hundreds of kiloparsecs) through turbulent cascading
(Dimopoulos & Davis, 1997; Subramanian et al., 2006). The existence and effectiveness of
such turbulent dynamos have been demonstrated through extensive numerical simulations and
analytical theory (see Porter et al., 2015 and review by Brandenburg & Subramanian, 2005).
Once the magnetic fields are amplified, they become crucial for the transport properties of the
plasma and its overall dynamical behavior (Squire et al., 2017, 2023).

1.4.2 Turbulence

Turbulence in the ICM plays a critical role in the formation and evolution of galaxy clusters.
It has an important effect on heat and mass transport, magnetic field amplification, cosmic-ray
re-acceleration, and the thermodynamic properties of the cluster gas (Schekochihin et al., 2005;
Brunetti & Lazarian, 2007; Brunetti & Jones, 2014). Understanding the nature of turbulence,
driving mechanisms, and dissipation processes is essential for understanding the gas properties
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of the ICM.

The ICM gas is continually perturbed by galaxy motions (e.g. Faltenbacher et al., 2005),
mergers (e.g. ZuHone, 2011; Iapichino et al., 2017), AGN outflows (e.g. O’Neill et al., 2009;
Gaspari, 2015) and accretion of gas along filaments (e.g. Kravtsov & Borgani, 2012; Vallés-Pérez
et al., 2021a). These processes inject energy at large scales (low wavenumber k), which decays
towards higher £ modes in a Kolmogorov-like cascade, introducing turbulence on a wide range
of scales (e.g. Kolmogorov, 1941, 1962). The energy is dissipated into heat at the Kolmogorov
scale (171, Kolmogorov, 1941), affecting small-scale processes such as cosmic ray re-acceleration
(e.g. Fujita et al., 2003; Brunetti & Lazarian, 2007), star formation (e.g. Federrath, 2016) or
magnetic field amplification (e.g. Kazantsev, 1968; Kulsrud & Anderson, 1992). These complex
mechanisms over cosmological periods of time produce very complicated scenarios in which the
transport properties of the gas are fundamental.

Turbulence is a time-dependent, stochastic flow characterized by a chaotic behavior
(Beresnyak, 2019). It can be described by the Reynolds number (Re), defined as:

Re= YLk (1.26)

4 n

where v is the characteristic turbulent velocity, L is the driving scale of turbulence, v is the
kinematic viscosity, and 7 is the dynamic viscosity. In galaxy clusters, the Reynolds number is
estimated to be in the range Re ~ 10? — 103 (Schekochihin et al., 2005; Schekochihin & Cowley,
2006; Roediger et al., 2013b). These moderate Reynolds numbers indicate that, while turbulence
can be sustained, it is not fully developed in the classical hydrodynamic sense due to the complex
microphysics of the ICM. Transport processes like viscosity or conduction significantly alter the
turbulent cascade and dissipation mechanisms, leading to moderate low Reynolds numbers. For
comparison, fully developed turbulence has typically Re > 10%, where the dissipation scale is
orders of magnitude smaller than the driving scale (5. < 1073L), leading to a highly chaotic
environment where coherent structures do not survive (Landau & Lifshitz, 1987; Pope, 2000).
In contrast, at Re ~ 10? — 103, the dissipation scale is .. ~ 0.01L, producing that microphysics
play an important role. This leads to a chaotic environment, but where we can find coherent
structures, like cold fronts (ZuHone & Roediger, 2016).

The energy injection at large scales is dominated by major and minor mergers (Vallés-Pérez
et al., 2021a), which inject energy at scales of L ~ 1 Mpc with velocities of v ~ 10? — 103 km/s
(Schekochihin et al., 2005). These mergers stir the ICM, generating bulk flows that fragment into
smaller-scale eddies, where solenoidal turbulence dominates the dissipation of turbulent motions
in the center, while compressive modes dominate at large radii (Vazza et al., 2016). AGN feedback
also contributes to the energy injection, although at smaller scales, typically L ~ 10 — 100 kpc
(Gaspari, 2015; Lau et al., 2017). Buoyant expanding bubbles trigger shocks and stir the local
gas, leading to turbulence near the galaxy cluster center (at distances of ~ 10 — 100 kpc, Lau
et al., 2017).

This energy injected at large scales decays in a turbulent cascade until it reaches the
dissipation scale (Kolmogorov scale), where viscosity dissipates the kinetic energy into heat.
The viscous scale of turbulence in galaxy clusters is typically of the order of 771, ~ 0.1 — 100 kpc
(Schekochihin & Cowley, 2006; Ruszkowski & Oh, 2010). For incompressible, isotropic
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turbulence, Kolmogorov’s dimensional analysis predicts the energy spectrum (Kolmogorov, 1941,
1962):
E(k) o k713, (1.27)

where k is the wavenumber.

In a magnetized plasma like the ICM, the presence of Alfven waves and magnetic
tension leads to a more complex and anisotropic cascade. In the regime of incompressible
Magnetohydrodynamics (MHD), the turbulent energy cascades primarily in directions
perpendicular to the local magnetic field, resulting in anisotropic spectra. This turbulent cascade
follows a Kolmogorov-like slope: E(k,) o kf/ 3, while the parallel spectrum steepens due to
anisotropic interactions: E (k) o kiz (Beresnyak, 2015; Goldreich & Sridhar, 1995). As energy
cascades toward smaller scales, the eddies become more and more elongated in the direction of
the magnetic field (Brandenburg & Lazarian, 2013).

In the case of compressible MHD turbulence, this anisotropic cascade reveals a mixture
of Alfven, slow, and fast magnetosonic modes (Cho & Lazarian, 2003; Kowal et al., 2009).
The slow modes behaves similar to the incompressible MHD, following a Kolmogorov-like
cascade: E(k,) o le/ Sand E (k) o kiz; while the fast modes are nearly isotropic and follow:
E(k) « k32 (Cho & Lazarian, 2003; Brunetti & Lazarian, 2007).

All these turbulent processes stretch, fold, and bend the magnetic field lines, amplifying the
extremely weak primordial magnetic field of the order of 10~!3 G in a process known as turbulent
dynamo (see Fig. 1.6). During the kinematic (early) phase of the dynamo, the magnetic field
grows exponentially:

dEmag

dr

where vy is the growth rate of the dynamo, which is correlated with the smallest eddies’ turnover
time (Subramanian et al., 2006). Once the magnetic energy is equal to the kinetic energy of
the smallest eddies, the magnetic field back-reacts, suppressing the turbulence at these small
scales. Larger eddies, which are more energetic but have longer timescales, continue the dynamo
effect until the magnetic field becomes strong enough to suppress those eddies too (Schekochihin
et al., 2002). This process produces an inverse turbulent cascade, where the magnetic field is
amplified from small towards large scales (Steinwandel et al., 2022). Once the magnetic energy
becomes comparable to the turbulent kinetic energy, the growth stops, and the magnetic energy
saturates. The magnetic and turbulent energy reach an (approximately) equipartition (see reviews
by Brandenburg & Subramanian, 2005 and Donnert et al., 2018). In galaxy clusters, the magnetic
field saturates at a strength of a few uG in the cluster center (Schekochihin et al., 2005; Ryu et al.,
2008).

Understanding turbulence in the ICM is therefore essential not only to characterize how energy
cascades across spatial scales, but also to constrain the efficiency of mixing, heat transport, and
magnetic field evolution in galaxy clusters. Turbulent motions play a key role in driving the
redistribution of metals and thermal energy, shaping the structure and composition of the ICM.
However, the extent to which turbulence promotes or suppresses mixing depends critically on
the plasma’s internal transport properties. Small-scale processes governing how momentum and
energy diffuse can regulate the cascade itself and determine how efficiently turbulence couples to

= 2')/Emag > (1.28)
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Turbulence Amplifies Magnetic Fields

Galactic turbulence distorts magentic field lines, increasing both the magnetic

Figure 1.6: Sketch on how the small-scale dynamo amplifies the magnetic field with time. Figure
taken from Steinwandel et al. (2024).

the surrounding gas. Subtle changes in these properties may have huge implications: altering how
cold gas survives, how bubbles remain coherent, or how feedback redistributes mass and energy.
This raises a fundamental question: how well do our current models capture the true behavior
of turbulence and its impact on mixing in a medium as complex as the ICM? Understanding the
role of these microphysical effects is essential for a complete picture of cluster thermodynamics.

1.4.3 Density Fluctuations as a Proxy for the Turbulent Velocity Field

Assuming subsonic gas motions within the galaxy cluster (v < c¢y), small density perturbations
are expected to be proportional to the one-component velocity at each scale [ = 1/k; therefore,
measuring density fluctuations can allow us to understand the turbulent velocity field.

On large scales, assuming local pressure balance (6P/P < ép/p) and an adiabatic equation
of state s = P/p?, where s is the entropy and y the adiabatic index, the small density perturbations

can be written as ) )

- (ee
p Y s

where s is the specific entropy of the gas. The restoring buoyancy force over a gas element will

create an oscillatory movement in the radial direction, dependent on the scale. Considering this,

we can rewrite equation (1.29) as

sp\2 [ ve V' Hp K2 (v,\?
—| = =——(—] . (1.30)
Je ywH, H; k% \cs
where v, is the radial velocity, w is the oscillation frequency, k is the wavenumber of the
oscillations, k, is its projection perpendicular to the radial direction, H, = (dIn Py/ dr)~! the
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pressure scale height and Hy = (dInso/dr)~! is the entropy scale height (see Zhuravleva et al.,
2014 for a detailed derivation). Assuming a stratified atmosphere, the motions are dominated by
the perpendicular component of the velocity (vip ~ v, ~ (k,/ki)v, > v,) and we can write
equation (1.30) as

op ? 2 (VID ? 2 Aq2
(] sl s
Pk Cs Jk
where 7, is a scale-independent dimensional constant of the order of unity (Zhuravleva et al.,
2014).

On small scales (i.e. smaller than the Ozmidov scale’), the turbulent cascade becomes
isotropic (k, ~ k, and v, ~ v ) and the density fluctuations become a passive scalar field. Thus,
its variance is conserved and can be written as

(@)2 - (1.32)

ple
which describes a flux &, over the cascade time 7 at which (6p/p) is mixed, normalized by the
soundspeed. The turbulent motions decay at a speed

Vi~ 8Ty, (1.33)

where g, is the kinetic flux. Plugging equation (1.33) into equation (1.32), the density fluctuations

can be written as
2 2
o &
(_,0) ~ £ (1) . (1.34)
P Cs |k

&y /&, depends on how much variance of the scalar field reaches the inertial range from the larger
scales, which must be equal to equation (1.31) at the Ozmidov scale (g,/&, ~ nf,). For a more
detailed derivation of equations (1.31) and (1.34), see Zhuravleva et al. (2014).

Relation (1.31) has been tested in galaxy cluster simulations, where Zhuravleva et al. (2014)
found a proportionality coefficient between density and velocity amplitude fluctuations of , ~
1.0 £ 0.3, as predicted theoretically, and Gaspari et al. (2014) a value of 17, ~ 1.3. Using
cosmological simulations of galaxy cluster formation, Simonte et al. (2022) found that this
relation depends on the dynamical state of the cluster, with 7, ~ 1.15 + 0.06 for relaxed clusters,
but a flatter relation and a larger dispersion for unrelaxed clusters persists. The importance of the
dynamical state was tested by Zhuravleva et al. (2023), showing that relaxed clusters tend to have
a proportionality coefficient closer to 1 than unrelaxed clusters, where the coefficient tends to be
larger. This is because in unrelaxed clusters, the assumption of a nearly hydrostatic atmosphere
does not hold anymore, producing a larger scatter in the density-velocity fluctuations. Zhuravleva
et al. (2023) also showed that accounting for halo ellipticity might be important, especially for the
inner regions of relaxed clusters. The density-velocity fluctuations relation is not universal, but

3The Ozmidov scale (Ozmidov, 1992) is defined as the scale where the turbulent shear and the stratification terms
are equal in magnitude.
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depends on the level of stratification, characterized by the Richardson number Ri*. Mohapatra
et al. (2020) found that 17, increases with Ri, ranging from 0.01 < 77/% < 1 for Ri from 0O to 10.

Itis important to note that the derivations above rely on the assumption that the ICM behaves as
an ideal, adiabatic gas in local pressure equilibrium. In particular, equations (1.29) through (1.34)
are based on linear perturbation theory applied to a stratified, subsonic, and nearly hydrostatic
atmosphere, where thermodynamic variables are smoothly varying and fluid elements respond
predictably to buoyant and turbulent forcing. However, the ICM is a weakly collisional plasma, and
deviations from ideal behavior, such as anisotropic pressure, magnetic tension, or finite transport
coefficients, may introduce corrections to this picture. In particular, any process that modifies the
efficiency of momentum or entropy transport could alter both the amplitude and scale-dependence
of density fluctuations. The proportionality coeflicient 7, while robust in idealized conditions,
may become scale- or environment-dependent when additional microphysical processes are at
play. Understanding the limits of this theory is therefore essential when applying it to real
astrophysical systems, where non-ideal effects could significantly alter the observed relation
between density and velocity fluctuations.

1.4.4 Radiative Cooling

Radiative cooling is a natural process in astrophysical fluids that influences the gas properties,
therefore affecting the evolution of galaxies, galactic halos, and galaxy clusters. It takes place
when a gas emits radiation, loses internal energy, and, therefore, cools down (Sarazin, 1986).
These gas losses take place over a timescale defined as cooling time 7.,0). The particular process
that leads to radiative cooling depends on the environmental conditions: temperature, densities,
and metallicities (Binney & Tremaine, 2008).

The main radiative processes contributing to cooling are (Cimatti et al., 2019):

1. Bremsstrahlung (free-free radiation): This mechanism dominates at high temperatures,
typically above 107 K. It occurs when free electrons pass close to ions and are accelerated
by their Coulomb fields, emitting continuous X-ray radiation.

2. Recombination (free-bound radiation): Free electrons recombine with ions, emitting
photons as they transition to lower energy bound states or form neutral atoms.

3. Radiative de-excitation (bound-bound radiation): Electrons bound to atoms or ions
transition from higher to lower energy levels, emitting discrete spectral lines.

4. Collisional ionization (bound-free): Collisions of free electrons with bound electrons
result in ionization.

5. Collisional excitation (bound-bound): Free electrons excite bound electrons to higher
energy states, which subsequently emit photons upon de-excitation.

4On large scales, stratification is expected to be dominant over turbulence (Ri > 1), while on small scales
turbulence dominates (Ri < 1) (Mohapatra et al., 2020).
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In astrophysical fluids, it is often assumed that the gas is in a state of collisional ionization
equilibrium. This means that the rates of collisional ionization and recombination are balanced
perfectly, meaning there is no net change in the ionization state of the gas. This equilibrium
condition neglects external photoionization processes and assumes that ions and neutral atoms
predominantly remain in their ground states (Dopita & Sutherland, 2003; Draine, 2011). Despite
being an idealized assumption, collisional ionization equilibrium provides valuable insights and
enables detailed tabulations of cooling functions (e.g. Cox & Tucker, 1969; Raymond et al., 1976;
Sutherland & Dopita, 1993).

We introduce the internal energy per unit volume of a gas as:

3
U= EnkBT, (1.35)
where 7 is the total gas number density, kg is Boltzmann’s constant, and 7 is the gas temperature
(Sutherland & Dopita, 1993; Cimatti et al., 2019).
Assuming an optically thin gas, the rate of change of internal energy due to radiative cooling
under the assumption of collisional ionization equilibrium can be expressed as:

v = —nmnA\(T), (1.36)
dt
where n; is the total atomic number density (including ions and neutral atoms), 7. is the electron
number density, and A(T) is the cooling function (Sutherland & Dopita, 1993; Wiersma et al.,
2009). The cooling function, A(T), encapsulates the energy lost per unit time per unit volume due
to radiative processes, and it depends uniquely on the temperature and metallicity. Fig. 1.7 shows
the typical cooling curve assuming solar metallicity, where different elements contribute to the
total cooling rates, depending on the temperature (figure taken from Wiersma et al., 2009). Each
peak corresponds to a temperature at which particular ions of these elements are most abundant
and therefore most effective at radiating energy.
The efficiency and timescale of radiative cooling are characterized by the cooling time, defined

as:
U 3l’lkBT

teool = = )
ol T1qU/dt| T 2ngneA(T)

This equation represents the characteristic timescale over which the gas would lose its thermal
energy completely, assuming the cooling rate remains constant (Binney & Tremaine, 2008).

Depending on the medium, the temperatures are different, and so are the mechanisms of
radiation and cooling rates. The ICM is very hot, with temperatures above 107 K; therefore, the
dominant radiative cooling mechanism is the Bremsstrahlung emission (Sarazin, 1986; Sutherland
& Dopita, 1993). For temperatures lower than 107 K, line emission from electrons transitioning
between energy levels becomes important. In contrast, in the CGM, where temperatures are
typically lower than in the ICM (10* K < T < 107 K), the emission lines dominate radiative
cooling, predominantly carbon, oxygen, neon and iron. Free electrons transfer energy via
collisions to bound electrons, exciting them to higher energy levels. Different ions dominate
at different temperatures, producing the peaks observed in Fig. 1.7.

(1.37)
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Figure 1.7: Cooling curve depending on the temperature, assuming solar metallicity, normalized
to the number density. Figure taken from Wiersma et al. (2009).

The efficiency of radiative cooling is closely linked to how effectively gas phases interact
and exchange energy across temperature regimes. In particular, mixing between hot and cold
components of the plasma can generate intermediate-temperature gas that cools more rapidly
due to enhanced line emission (Fielding et al., 2020). If mixing is suppressed, the amount of
gas passing through these temperature ranges may be reduced, limiting the formation of rapidly
cooling phases. This has direct implications for the cooling budget of galactic halos and the cores
of galaxy clusters. The degree to which mixing occurs depends on the characteristics of turbulence
and on the transport properties of the plasma itself. Even subtle differences in how momentum
and thermal energy are redistributed across mixing layers can shift the balance between heating
and cooling. Accurately describing this behavior is therefore essential for understanding how gas
cools, condenses, and ultimately fuels star formation in large-scale structures.

1.4.5 Turbulent Radiative Mixing Layers

The dependence of cooling rates with temperature produces that mixing of hot and cold gas affects
cooling strongly, where the cooling curve peaks at intermediate temperatures 10* K < 7 < 10° K
(Begelman & Fabian, 1990; Fielding et al., 2020; Tan et al., 2021). As hot and cold gas mix,
intermediate temperature gas is created, which can cool more efficiently than the two stable
phases separately (Ji et al., 2019). This intermediate temperature gas is unstable and determines
the amount of cold gas available for star formation; therefore, a proper understanding of turbulence
and mixing is key in order to understand galaxy formation and evolution.

The mass transfer from the hot to the cold gas due to cooling has been extensively studied in
the context of turbulent radiative mixing layers (TRMLs) (e.g. Begelman & Fabian, 1990; Slavin
et al., 1993), which can be applied to several astrophysical systems, such as galactic outflows
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(Briiggen & Scannapieco, 2016; Schneider & Robertson, 2017; Fielding & Bryan, 2022), or
stellar wind bubbles (El-Badry et al., 2019; Lancaster et al., 2021a,b). These layers are formed
at the interface of two gas phases: a hot, diffuse gas phase and a cold, dense gas phase. The
relative motion of these two phases induces shear instabilities, mainly the Kelvin-Helmholtz
instability (KHI), which drives turbulence and leads to the gas mixing between the phases (Tan
et al., 2021). The structure and evolution of TRMLs can be understood using analogies taken
from combustion theory. In turbulent combustion, the flame front is described by the mixing and
reaction of fuel and oxidizer, producing products. Similarly, in radiative mixing layers, the hot
gas acts as “fuel”, cold gas as the “oxidizer”, and the resultant cooled gas as the “combustion
product” (Tan et al., 2021).

To describe the strength of radiative cooling, it is important to introduce the Damkdhler number
(Da, Damkohler, 1940), a dimensionless parameter taken from combustion theory, defined by the
ratio of turbulent to cooling time:

_ Tturb A
Da = ~ — ,
Teool (T) U’ feool (T)

where fy, ~ A/u’ is the eddy turnover time, f.0 the cooling time, and u’ the turbulent velocity.

When f6 < feoo1 (Da < 1), the effect of cooling is weak compared to turbulence, and the gas
entropy is dominated by mixing. This leads to a characteristic luminosity o tc_ol 0/12 (Jietal., 2019;
Tan et al., 2021). However, when #.o0] < furp (Da > 1), cooling is stronger than turbulence and,
as soon as the gas is mixed, it is cooled down, leading to a multiphase medium where the gas
entropy is dominated by cooling (see e.g. Kuo & Acharya, 2012; Tan et al., 2021). Specifically,
in this strong cooling regime, the total luminosity of the mixing layer scales as o tgol 0/14 (Gronke
& Oh, 2019; Fielding et al., 2020; Tan et al., 2021).

In radiative mixing layers, the net radiative losses due to cooling are balanced by the enthalpy
flux, producing a mass flow from the hot to the cold medium. This means that the total luminosity
is proportional to the mass transfer from the hot to the cold medium: m oc L,q (Ji et al., 2019;
Gronke et al., 2021). The total luminosity of a system depends on how much gas can be mixed
to intermediate temperatures, therefore, the suppression of turbulence and mixing might lead to
differences in luminosity.

The emission due to cooling follows a power-law relation, which depends on the cooling
strength (Damkohler number). The surface brightness Q = L,q/! 2 where [? is the surface area,
depends on Da as

(1.38)

(1.39)

w1212 o« w'Dal’?, if Da < 1 (Weak cooling)
w344 o w'Dal’*, if Da > 1 (Strong cooling) .

This relation has been tested numerically by Tan et al. (2021), where the change of slope can be
seen at Da ~ 1 (see Fig. 1.8, taken from Tan et al., 2021).

Another important dimensionless parameter in combustion theory is the Karlovitz number
(Klimov, 1963; Williams, 1975), defined as the ratio of the Field length to the Kolmogorov
scale squared: Ka = (5% / ni. The Kolmogorov scale (771,, Kolmogorov, 1941) is set by viscosity
and marks the smallest scale of the turbulent cascade, where kinetic energy is dissipated into
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Figure 1.8: Surface brightness Q as a function of Da. The orange dashed line shows the best fit
in the weak cooling regime (Da < 1) with a slope of @ = 1/2. The red dashed line shows the best
fit in the strong cooling regime (Da > 1) with a slope of @ = 1/4. Figure taken from Tan et al.
(2021).

heat; below this scale, hydrodynamic instabilities are suppressed. On the other hand, the
Field length (61, Field, 1965) is set by thermal conduction and represents the largest scale
over which conduction can efficiently suppress thermal instability in the presence of radiative
cooling (Begelman & McKee, 1990). The Karlovitz number thus captures the competition
between turbulent and thermal stabilization mechanisms. If Ka < 1, the small-scale turbulence
is not small enough to break up the flame, and the combustion happens in a laminar flow. If
Ka > 1, the small-scale turbulence grows faster than it can locally burn through its thickness,
leading to a turbulent flame front (Kuo & Acharya, 2012). Translated to TRMLs terminology,
Ka < 1 describes a scenario in which cooling takes place in a laminar regime, whereas if Ka > 1,
cooling happens in a turbulent regime. In the absence of explicit conduction and viscosity, the
Kolmogorov scale and Field length are given numerically by a similar multiple of the resolution
scale in both cases (. ~ oL ~ Ax), therefore, Ka ~ 1 (Tan et al., 2021). By including explicit
viscosity, the Kolmogorov scale becomes larger than the Field length set by resolution (7, > d1),
therefore Ka < 1.

The dimensionless Damkohler and Karlovitz numbers are essential for distinguishing different
regimes of turbulent mixing and radiative cooling, determining the efficiency of multiphase gas,
and the associated observational signatures. Understanding these processes in detail is crucial
for accurately interpreting astrophysical observations and improving subgrid physics models in
large-scale cosmological simulations.

These relations, however, rely on the assumption that turbulence behaves according to ideal
fluid dynamics, where eddy turnover times and turbulent velocities evolve predictably with scale.
In realistic astrophysical plasmas, small-scale physical processes can modify both the efficiency
of turbulent mixing and the spectral distribution of energy. Even modest changes in the turbulent
velocity field or its characteristic timescale can alter the Damkohler number and shift the system
between weak and strong cooling regimes. This has important implications for scaling relations
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such as equation (1.39), potentially breaking their universality across different environments. The
presence of additional transport effects could further suppress or enhance mixing, changing the
fraction of gas able to reach intermediate temperatures and, consequently, the overall luminosity.
Accurately capturing these effects is therefore essential to robustly link turbulence, cooling, and
observable emission in galaxy halos and clusters.

1.5 Observations

The large variety of physical processes happening in galaxy clusters lead to very different
emissions that can be measured across the electromagnetic spectrum. Multi-wavelength
observations are fundamental for a comprehensive understanding of the ICM. Each wavelength
of the electromagnetic spectrum reveals a unique process of the ICM, enabling us to study
its thermal, non-thermal, magnetic, and dynamical properties. These observations are crucial
for constructing a detailed picture of galaxy cluster physics, their evolution, and their role in
large-scale structure formation (e.g. Sarazin, 1986).

X-ray observations are a cornerstone for studying the ICM, as this hot plasma mainly emits
thermal bremsstrahlung radiation due to the presence of free electrons interacting with positively
charged ions (see review by Walker et al., 2019). The intensity and spectral shape of this
emission allow us to determine fundamental plasma properties such as temperature, electron
density, and metallicity distributions within clusters (see review by Bohringer & Werner, 2010).
These measurements are key for understanding the thermal structure, energy content, and gas
distribution of galaxy clusters. X-ray observations show that the temperature of the ICM typically
ranges from about 2 to 10 keV (~ 107 — 10% K), requiring vast gravitational potential wells to
contain the gas (Walker et al., 2019).

Together with X-ray, optical, and infrared observations also contribute to the understanding
of the potential well via gravitational lensing. The gravitational lensing of background galaxies
by galaxy clusters can determine the total mass distribution independently of the dynamical state
of the cluster. These lensing measurements, when combined with X-ray observations, provide
robust constraints on the mass profiles and hence the gravitational potential governing the ICM
distribution (Umetsu et al., 2014; Walker et al., 2019).

Complementary radio observations reveal the presence and properties of magnetic fields and
cosmic-ray particles within the ICM. Synchrotron radiation from relativistic electrons spiraling
around magnetic field lines manifests in diffuse, extended radio sources such as radio halos and
relics, typically associated with merging and dynamically active galaxy clusters (van Weeren
et al., 2021). These features indicate large-scale acceleration mechanisms, such as shocks or
turbulence induced by cluster mergers, thus providing valuable diagnostics on the magnetic field
strength. The observed magnetic fields in clusters typically range from a fraction of a microgauss
up to several microgauss, depending on the cluster dynamical state and region considered (Feretti
et al., 2012).

RM offers another observational technique, sensitive to the line-of-sight component of
magnetic fields weighted by the electron density. Polarized radio signals from background
sources passing through the cluster medium experience rotation due to these magnetic fields,
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allowing us to infer their strength and spatial structure. Studies show differences between relaxed
and dynamically disturbed clusters. Disturbed systems typically exhibit higher RM dispersions,
suggesting enhanced magnetic fields and increased coherence lengths. In contrast, relaxed
clusters show smaller coherence lengths and intrinsic depolarization effects (Bonafede et al.,
2013; Stasyszyn & de los Rios, 2019).

Additionally, observations using the SZ effect provide information about the ICM pressure
distribution. The SZ effect occurs when the hot ICM electrons inverse-Compton scatter CMB
photons, causing characteristic distortions of the CMB spectrum observable at millimeter and
sub-millimeter wavelengths (Walker et al., 2019). SZ measurements, in combination with X-ray
data, are particularly powerful for determining the thermal pressure profile and total mass of
clusters (see reviews by Birkinshaw, 1999 and Carlstrom et al., 2002).

1.5.1 Observations of Turbulence in the ICM

Understanding the velocity structure of the hot, diffuse ICM is essential to constrain the
microphysical properties of this plasma and to quantify the non-thermal processes that can
influence cluster thermodynamics. Direct measurements of the turbulent velocities can be done
via high-resolution spectroscopy of emission lines, with missions like Hitomi (Hitomi et al.,
2016) or XRISM (XRISM Science Team, 2020). This can be done by measuring the broadening
of X-ray emission lines. By modeling the thermal and instrumental contributions to line widths,
one can isolate the line-of-sight velocity dispersion associated with turbulence, allowing direct
measurements of gas motions and the corresponding non-thermal pressure support in galaxy
clusters.

Direct Measurements

Hitomi was able to measure the turbulent velocities of the core of the Perseus cluster using a
Soft X-ray Spectrometer (SXS). The velocity dispersion measured was of o, = 163 + 10 km
s~!, corresponding to a three-dimensional Mach number of approximately Msp =~ 0.30 — 0.45.
The turbulent pressure support measured was of ~ 2 — 7%, indicating that the core of Perseus is
relaxed (Hitomi et al., 2018).

More recently, XRISM observations of the relaxed, hot galaxy cluster Abell 2029 revealed a
similarly low velocity dispersion of o, = 169 + 10 km s~!, despite the higher ICM temperature
(~ 7 keV). This translates to a Mach number of approximately Msp =~ 0.22 and a turbulent
pressure support of only 2.6 + 0.3%, one of the lowest levels yet measured (XRISM, 2025).
In observations of Centaurus, the velocity dispersion found is o, < 120 km s~!, the 3D Mach
number Msp < 0.25 for T ~ 2.5 keV and the turbulent pressure support is ~ 3% (Audard et al.,
2025). In the case of Coma (XRISM et al., 2025), the velocity dispersion is o, = 208 +12km s~!,
with Msp = 0.24+0.015 and a turbulent pressure support of only 3.1 +0.4% (see Fig. 1.9, where
the measurements of line of sight velocities relative to the mean velocity of the cluster (left panel)
and the line of sight velocity dispersion (right panel) measured by XRISM, are overplotted with
an image taken by XMM-Newton. Figure taken from XRISM et al., 2025). These measurements

are still consistent with the predictions, but they are at the lower end expected in galaxy clusters.
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Figure 1.9: XRISM measurements overplotted on a Coma image taken by XMM-Newton. Left
panel: Measurements of line-of-sight velocities relative to the mean velocity of the cluster. Right
panel: Measurements of line-of-sight velocity dispersion. Image taken from XRISM et al. (2025).

They suggest that the turbulent velocity in galaxy clusters might be lower than expected, therefore,
a suppression mechanism (such as viscosity) could be reducing the motions of the gas.

Indirect Measurements

Nevertheless, direct observations of turbulent velocity via spectroscopy are still scarce. Therefore,
indirect methods such as measurements of density fluctuations (see §1.4.3) are needed to measure
turbulent velocities and constrain the microphysical properties of the ICM. Using X-ray telescopes
like Chandra (Weisskopf et al., 2000) and XMM-Newton (Jansen et al., 2001), fluctuations of the
X-ray surface brightness can be used as a proxy for the turbulent velocity field (Zhuravleva et al.,
2014).

Using high-resolution Chandra observations of 80 nearby galaxy clusters, Heinrich et al.
(2024) inferred the turbulent velocities across the ICM, excluding the cool-core regions to
avoid contamination from AGN feedback. They found characteristic one-dimensional turbulent
velocities of approximately 150 km s~! in relaxed clusters and up to 200-250 km s~! in
intermediate and unrelaxed clusters, respectively. These values correspond to a M3p = 0.31+0.09
on average. The inferred non-thermal pressure support was found to be modest, with turbulent
to total pressure ratios of about 6% in relaxed clusters, 4% in intermediate, and up to 7% in
unrelaxed clusters. Table 1.1 summarizes key turbulence measurements from various clusters
and instruments.

The consistently low levels of turbulent velocity and pressure support observed across a range
of galaxy clusters raise a critical question: what physical processes could be acting to suppress
turbulence in the ICM? One plausible candidate is the action of transport processes, particularly
viscosity, which governs the rate at which momentum is redistributed throughout the plasma. In
a highly ionized, weakly collisional medium like the ICM, viscosity can have a big influence on
the evolution of turbulent flows. Even when large-scale stirring mechanisms such as mergers or
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Table 1.1: Observational measurements of turbulence in galaxy clusters. The first column shows
the cluster observed and the reference; the second column shows the instrument used for the
measurement; the third whether they use a direct or indirect method to calculate the turbulent
velocities; the fourth column is the value of velocity dispersion; fifth the 3D Mach number; and
sixth the turbulent pressure support.

] Cluster | Instrument [Method| o, [kms™'] |  Msp | Pnr/Pu |
Perseus L )
Hitomi etal. 2018y | Thtomi | Direct 163 + 10 0.30-0.45 | 2-7%
Abell 2029 )
XRISM (2025) XRISM Direct 169 + 10 0.22 2.6 +0.3%
Centaurus ]
Audard etal. 2025) | ~RISM | Direct < 120 <0.25 ~ 3%
Coma .
XRISM et al. (2025) XRISM Direct 208 + 12 0.24 £0.015 | 3.1 £ 0.4%
80 clusters - Relaxed: ~ 150 6 + 2%
Heinrich et al. (2024) Chandra | Indirect | - Intermediate: ~ 200 | 0.31 +0.09 | 4 +2%
ammee - Unrelaxed: ~ 250 7 + 4%

AGN feedback are active, viscous dissipation can act efficiently to damp turbulent eddies and
suppress the energy cascade at smaller scales. This not only affects the amplitude and spectrum of
turbulent motions but also alters the way energy is redistributed within the cluster, with potential
implications for mixing, thermal conduction, and gas dynamics. The fact that turbulence appears
lower than expected suggests that viscosity—and more broadly, transport processes—may play
a far more significant role than currently appreciated. Understanding the extent to which these
processes operate in the ICM is therefore essential to constructing a self-consistent picture of
cluster thermodynamics.
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2 Viscosity in the ICM

The ICM is a hot, diffuse plasma with temperatures reaching 7 ~ 10’ — 108 K and densities of
n ~ 1073 cm~3, where thermal particle velocities are high and Coulomb collisions are infrequent.
In such a weakly collisional environment, the particle mean free path becomes comparable
to—or even exceeds—typical macroscopic length scales such as pressure or temperature gradients
(Sarazin, 1986). Under these conditions, individual particles can carry momentum over large
distances, making collisional transport processes, like viscosity, effective even in a plasma that
is not strongly collisional in the classical sense. Viscosity arises from the momentum exchange
between particles moving along different velocity gradients (Schekochihin et al., 2005; Kunz
etal., 2012). In the ICM, where the ion mean free path can be on the order of several kiloparsecs,
ions from one fluid element can traverse significant distances before scattering. This means that
even weak velocity gradients can lead to substantial momentum flux, resulting in a non-negligible
viscous stress tensor.

The dynamic viscosity coefficient n reflects this transport, and for a fully ionized plasma it
scales approximately as n ~ nm; v, A; (Spitzer, 1962; Sarazin, 1986), where vy,; o« VI and
A; oc T? (see §1.4). This leads to a temperature dependence of 77 o« T°/2, increasing rapidly with
temperature. Consequently, with the hot temperatures of the ICM, viscosity can become large
enough to suppress velocity perturbations on scales of tens to hundreds of kiloparsecs. This
sets a viscous cutoff scale above which turbulent motions may develop, therefore suppressing
significantly the development of the turbulence (Sijacki & Springel, 2006; Kunz, 2011).

This is a potential explanation of the recent high-resolution X-ray spectroscopic measurements
from XRISM and Hitomi, which reveal unexpectedly low levels of turbulent pressure support in
cluster cores: values as low as 2—3% of the total pressure in systems like Perseus, Abell 2029,
and Coma (Hitomi et al., 2018; XRISM, 2025; XRISM et al., 2025; Audard et al., 2025, see
§1.5.1). These results challenge expectations from cosmological simulations, which typically
predict non-thermal pressure fractions of 5-15% even in relaxed clusters (Nelson et al., 2014;
Vazza et al., 2018; Sayers et al., 2021). Viscous stresses can naturally provide such damping, and
may also regulate mixing, modify shock structures, and influence the propagation of sound waves
and weak shocks generated by AGN feedback (Fabian et al., 2005). Taken together, these clues
point to viscosity as a potentially crucial but under-constrained transport process in the ICM.

To evaluate whether viscosity can indeed play this regulatory role in the ICM, we must first
understand its theoretical foundations. The classical description for describing viscosity in a fully
ionized plasma is given by the formulation developed by Spitzer (Spitzer, 1962), which applies
in the limit where Coulomb collisions dominate particle interactions. This collisional regime
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provides a useful starting point for quantifying momentum transport.

2.1 Spitzer Viscosity

Spitzer viscosity describes momentum transport in plasmas dominated by Coulomb collisions,
where the plasma can be considered collisional. In this regime, the particle mean free path
is shorter than the gyro-radius (1; < r;, see §1.4.1), and frequent collisions rapidly isotropize
particle velocities, making the viscosity isotropic. This scenario is typical in high-temperature
plasmas of astrophysical objects, where the influence of collisions surpasses that of magnetic
fields. Under these conditions, the isotropic components of viscosity dominate the transport
properties, simplifying the understanding of plasma behavior on large scales. Thus, isotropic
viscosity is generally appropriate for weakly magnetized or unmagnetized plasmas, where particle
trajectories are less restricted by magnetic fields, allowing momentum transport to be directionally
uniform.

The behavior of a viscous plasma is determined by the viscous stress tensor, which in the case
of an isotropic viscosity is given by:

2
M =no =7 VV+VVT—§(V-V)I , 2.1

where we have dropped the bulk viscosity term, since it is related to the degrees of freedom of
molecular rotations, being zero for monoatomic gases (Zeldovich & Raizer, 1967; Pitaevskii &
Lifshitz, 1981). The viscous stress tensor is equal to the rate of strain tensor (o-) multiplied by
the shear viscosity coefficient 7 (also referred to as dynamic viscosity), defined as

1/2 \5/2
. . m. ~ (kgT;
nikeli _ 0.406#, 2.2)

= 0.960
7 Vii (Z 8)4 InA

where n; is the number density, v;; is the collision frequency (see §1.4), m; is the mass of the
proton, and 7; is the temperature of the plasma. The numerical prefactor and scaling follow
from solving the linearized Boltzmann equation with a Fokker—Planck collision operator under
the assumption of a small departure from a Maxwellian distribution (Spitzer, 1962; Braginskii,
1965).

2.2 Viscous Diffusivity

Viscosity fundamentally describes how plasma responds to shear motions and how momentum
is diffused. Two forms of viscosity are typically considered in fluid dynamics: dynamic viscosity
and kinematic viscosity. Although they are closely related, these two forms of viscosity quantify
different physical aspects of the viscous behavior in fluids, including astrophysical plasmas.

The dynamic viscosity (17, equation (2.2)) describes the resistance of the fluid to be deformed
under a shear stress, and it is independent of the density. It measures the internal friction between
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layers of the plasma, i.e. how hard it is for the plasma layers to slide past each other. This
parameter is the shear viscosity coefficient that appears in the viscous stress tensor (2.1) and it

has units of g - cm™'s7!.

On the other hand, the kinematic viscosity (v) is defined as the ratio between the dynamic
viscosity and the density:

2.3)

Rl BN

The kinematic viscosity has units of cm? - s~! and describes how momentum-diffusive a medium
is, i.e., how fast the velocity gradient is smoothed out. Therefore, when considering multiphase
systems with large density contrasts — typical in astrophysical contexts such as CGM or ICM —
it becomes essential to distinguish between these two viscosity parameters (Landau & Lifshitz,
1987). When there is a shear movement between two fluids, assuming symmetry — i.e., a planar
slab (or sheet) setup —, the shear velocity gradient is smoothed out following:

y
VShear(y) = |VShear0| erf (2\/%) > (2.4)

where Vghear, 15 the initial shear velocity, y is the direction perpendicular to the interface, 7 is the
time and v is the kinematic viscosity. This formula arises from solving the Rayleigh problem
(also known as Stokes’ first problem; Stokes, 1851; Rayleigh, 1911) for a viscous fluid where
there are two flat plates located at the boundaries. These plates suddenly accelerate to some fixed
constant velocities in opposite directions, leading to the velocity profile shown in equation (2.4)
(e.g. Drazin & Riley, 2006).

In a scenario with constant dynamic viscosity, the diffusivity of momentum in each fluid differs
primarily due to their respective densities. This difference in momentum diffusivity increases
the larger the density contrast is. Specifically, since kinematic viscosity depends inversely on
density, the hot, less dense medium will possess a higher diffusivity compared to the cold, denser
medium. As a consequence, in systems exhibiting a high density contrast, the hot medium
typically dominates momentum diffusion processes, setting the characteristic diffusivity scale for
the entire system. On top of that, since the dynamic viscosity depends strongly on temperature,
it is negligible in the cold medium compared to the hot medium. Thus, from a practical point
of view, viscous diffusion becomes predominantly controlled by the hot medium, making the
viscous effects in the cold phase negligible.

It is important to note that, although the hot medium dominates momentum diffusion, the cold
medium carries almost all the momentum of the system. This implies that a denser cold medium
will have a larger effect on momentum diffusion than a lighter cold medium. The momentum
diffused by viscosity in the hot medium is determined by the cold medium. These two processes
work together, and are key in understanding the growth or suppression of instabilities (this is
studied in detail in §5.2.4).
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2.3 Consequences of a Viscous ICM

The effect of viscosity primarily manifests through the smoothing of velocity gradients, reducing
differences in velocity across adjacent fluid layers. By redistributing momentum, viscosity acts to
dampen small-scale motions, effectively limiting the growth of fluid instabilities that rely on sharp
shear flows. Examples of such instabilities are the KHI or the Rayleigh—Taylor instability (RT),
which arise at the interface of two fluids with different shear velocities. The growth of KHI
depends critically on the steepness of the velocity gradient, with a more pronounced gradient
facilitating greater instability growth (Chandrasekhar, 1961). High viscosity counteracts this
process by significantly reducing velocity gradients, thereby suppressing instability growth (this
is studied in detail in §4.4.2).

This might be particularly relevant in several astrophysical processes in galaxy clusters,
particularly involving sharp velocity gradients that trigger the growth of instabilities. A prime
example is ram-pressure stripping of galaxies, where the hot ICM interacts dynamically with
the cooler CGM surrounding infalling galaxies. In such interactions, the high viscosity of the
ICM might effectively suppress KHI at the CGM-ICM interface, resulting in smoother, elongated
gaseous tails that exhibit reduced small-scale turbulence (Roediger et al., 2015; Kraft et al., 2017;
Ignesti et al., 2024). Consequently, stripped tails remain coherent over larger spatial scales,
significantly altering their observational signatures.

Another critical phenomenon impacted by viscosity-induced instability suppression involves
cold fronts observed in clusters. These sharp discontinuities in temperature and density
typically result from sloshing motions within the ICM, generating shear interfaces prone to
instability-driven disruption (Markevitch & Vikhlinin, 2007; ZuHone et al., 2015). When
instabilities such as the KHI grow, they induce the characteristic creation of ‘bays’ along cold
front interfaces, effectively disrupting their coherent structure (Walker et al., 2017; Ge et al.,
2020; Breuer et al., 2020). Conversely, in a viscous ICM, the potential suppression of these
instabilities stabilizes the cold fronts, preserving their sharp boundaries and coherent structures
over extended periods (Roediger et al., 2013a; ZuHone et al., 2015).

The suppression of fluid instabilities by viscosity extends its influence to turbulence dynamics
within the ICM. Turbulence significantly impacts energy transport, metal mixing, and entropy
redistribution in galaxy clusters. Viscosity primarily damps turbulent eddies at smaller scales,
reducing the effective Reynolds number and thus diminishing turbulent mixing and diffusion
(Gaspari et al., 2014; Zhuravleva et al., 2019). This decrease in turbulence might lead to less
efficient mixing between the ISM of galaxies and the surrounding ICM, resulting in distinct and
potentially steeper metallicity gradients observed in cluster cores (Rebusco et al., 2005; Werner
et al., 2013; Simionescu et al., 2019). Such gradients reflect inhibited metal transport, which can
alter local cooling and star formation rates by limiting the availability of enriched gas (Miiller
et al., 2021).

Radiative cooling in the dense central regions of clusters can lead to the formation of cold gas
and subsequent star formation, unless counteracted by heating mechanisms such as thermal
conduction, AGN feedback, or mixing with high-entropy gas. When viscosity suppresses
turbulent mixing, it effectively isolates the cooling gas from its surroundings, making it harder
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for heat to be transported into the core of the cluster. This can exacerbate the development of
cooling flows and lead to the formation of dense, cold gas reservoirs. Moreover, reduced turbulent
mixing has significant consequences for radiative cooling processes in galaxy clusters. Dense
cluster cores are prone to cooling instabilities, which can form cold gas reservoirs and stimulate
star formation unless balanced by energy injection processes such as thermal conduction, AGN
feedback, or turbulent mixing (see reviews by McNamara & Nulsen, 2012 and Fabian, 2012). In
a viscous environment, suppressed turbulence isolates cool gas regions by limiting energy and
entropy transport from hotter, outer regions. Consequently, viscosity enhances the conditions
necessary for the development of cooling flows, potentially increasing the mass of cold gas
reservoirs and intensifying star formation episodes within cluster cores (Ruszkowski et al., 2011;
Voit et al., 2017).

In summary, viscosity might profoundly affect galaxy cluster evolution by modulating
instability growth, turbulent dynamics, metal transport, and cooling processes. All these viscous
effects leave distinct observational signatures, such as smoother and extended ram-pressure
stripped tails, stable and sharp cold front boundaries, reduced turbulence-induced mixing, and
distinct metal abundance gradients. Current and future observational facilities are capable of
detecting these signatures, thereby providing crucial constraints on the magnitude and physical
characteristics of viscosity within the ICM.

2.4 Constraints of Viscosity from Observations

To determine how viscous the ICM actually is, we can rely on observational diagnostics
by comparing observed signatures with predictions from theoretical models and numerical
simulations. Structures such as the coherence and smoothness of ram-pressure stripped galaxy
tails, the sharpness and stability of cold fronts, and the spectrum of density and pressure
fluctuations are all influenced by viscosity. By analyzing these features in high-resolution X-ray
and radio observations, and matching them with simulations that incorporate different levels of
viscosity, we can place meaningful constraints on the effective viscosity of the ICM. This method
provides a link between theoretical predictions and empirical data, enabling a more quantitative
understanding of plasma microphysics in galaxy clusters.

Ram-Pressure Stripped Galaxies

Observations of ram-pressure stripped galaxies, such as NGC 4552 observed with Chandra
(Roediger et al., 2015; Kraft et al., 2017) and the jellyfish galaxies from the GASP survey
(Ignesti et al., 2024), provide valuable constraints on ICM viscosity. In NGC 4552, the observed
morphology of the stripped gas tail indicates efficient turbulent mixing of the ICM and stripped
gas, matching inviscid hydrodynamical simulations rather than viscous models (see Fig. 2.1
comparing observations with simulations with different levels of viscosity. Figure taken from
Roediger et al., 2015). The comparison shows that only the inviscid case reproduces key
morphological features: the irregular flaring of the tail, small-scale turbulence, and efficient
downstream mixing of the ISM with the ambient ICM. Simulations with even a modest viscosity
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Figure 2.1: Comparison of the tail morphology in galaxy NGC 4552 with numerical simulations
with different levels of viscosity. From left to right: Merged Chandra ACIS-S image, inviscid
fluid simulation, 0.01 of Spitzer value, 0.1 of Spitzer value. Figure taken from Roediger et al.
(2015).

(~10% of Spitzer’s value) suppress the development of the KHI, resulting in smooth, laminar
tails that are inconsistent with the observed filamentary and diffuse morphology.

Deep Chandra observations showed that the turbulent wake behind this galaxy is well-mixed,
which requires a high Reynolds number flow, implying a strongly suppressed viscosity. The lack
of coherent vortices or layered structure in the wake suggests that the characteristic damping scale
of turbulence lies well below the observed spatial resolution (Kraft et al., 2017).

Similarly, velocity structure function (VSF) analysis, derived from MUSE integral-field
spectroscopy, exhibits complex and chaotic motions, probing that the turbulent cascade extends
down to scales of a few kpc, substantially smaller than expected if classical Coulomb collisions
determined the plasma viscosity (Ignesti et al., 2024). This implies that energy is cascading
to small scales with minimal damping, inconsistent with a high-viscosity ICM. Comparisons
with synthetic VSFs from high-resolution hydrodynamical simulations, including both viscous
and inviscid ICM models, demonstrate that only scenarios with effective viscosities in the range
of 0.3% to 25% of the Spitzer value are compatible with the data (Ignesti et al., 2024). The
best-fitting models are found around ~1-5% of Spitzer, consistent with previous findings for
individual galaxies such as ESO137-001 (Li et al., 2023) and with constraints derived from the
wake of NGC 4552.

Cold Fronts Stability

Cold fronts are sharp contact discontinuities characterized by density and temperature jumps,
common in both merging clusters and relaxed, cool-core systems undergoing gas sloshing. These
structures are prone to the growth of the KHI due to shear flows across the interface (Breuer
et al., 2020). The presence, morphology, and suppression of these instabilities are sensitive to
the microphysical properties of the ICM, particularly viscosity.



2.4 Constraints of Viscosity from Observations 37

Perseus

Centaurus

Figure 2.2: Observations of cold fronts show well-developed KHI eddies that lead to the partial
disruption of the structure. Left panel: Chandra observation of Perseus, with a ‘bay’ along the
cold front interface indicated by the arrows. Right panel: Chandra observation of Centaurus,
with a ‘bay’ along the cold front interface. Both images were filtered with the GGM filter. Figure
taken from Walker et al. (2017).

Detailed observational analysis show well-developed KHI eddies at cold front interfaces (see
Chandra images of Perseus (left panel) and Centaurus (right panel) of Fig. 2.2, highlighting the
‘bays’ along the interface of the cold fronts due to the growth of KHI. Figure taken from Walker
etal., 2017). These features offer a direct way to probe the transport properties of the ICM, since
the growth of the KHI should be strongly damped by viscosity. Comparisons of these structures
with numerical simulations allow constraints on viscosity (ZuHone et al., 2015). Specifically, the
morphology and development of these instabilities suggest that an effective viscosity of 10% of
the isotropic Spitzer viscosity is in qualitative agreement with observations. This suggests that
the effective viscosity of the ICM must be reduced by at least an order of magnitude (ZuHone
et al., 2015). Moreover, simulations of the Virgo cluster by Roediger et al. (2013a) agree on this
level of suppression, indicating that observed cold fronts imply suppression factors around 10%
of the isotropic Spitzer viscosity, pointing again toward reduced ICM viscosity.

Additional analysis has been done by Wang & Markevitch (2018) of Chandra observations of
the merging galaxy cluster A2142. By comparing the wavelength and amplitude of well-developed
KHI in the southern cold front of the cluster with hydrodynamic simulations, they estimated the
effective viscosity to be at most 20% of the Spitzer value. This limit is consistent with other
observationally inferred values and further supports a model in which the plasma viscosity is
significantly reduced.
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Density Fluctuations

The amount of viscosity can be constrained at large scales by analyzing the amplitude of density
fluctuations and their corresponding power spectra. Zhuravleva et al. (2019) performed a detailed
analysis using deep Chandra observations of the Coma cluster, computing the gas density
fluctuations down to spatial scales where transport processes should manifest. To calculate
the density fluctuations, they first divided the observed X-ray surface brightness image by the
best-fitting S-model of the unperturbed cluster emission to isolate small-scale perturbations.
They then applied the A-variance method to this residual image to derive the two-dimensional
power spectrum of surface brightness fluctuations (see Arévalo et al., 2012 for details). This
2D spectrum was deprojected into a 3D power spectrum of gas density fluctuations, assuming
isotropy and using the known emissivity distribution along the line of sight (Churazov et al.,
2012; Zhuravleva et al., 2014). Finally, the 3D fluctuations amplitude as a function of the scale

can be computed as
)
(_P) - AP, 2.5)
P Tk

where P(k) is the power spectrum, and k£ = 1// the wavenumber.

Assuming that the gas motions are subsonic and isotropic, they used the density fluctuations
as a proxy for velocity fluctuations (see §1.4.3). This way, the 3D amplitude fluctuations
power spectrum derived from observations can be directly compared with Direct Numerical
Simulations (DNS) results, where the simulations explicitly modeled turbulent motions and
viscous dissipation. In these simulations, varying the level of viscosity modifies the slope and
shape of the power spectrum. Higher viscosity increases the dissipation scale, producing a cutoff
of the power spectrum at larger scales, thus steepening significantly the power spectrum at small
scales. By comparing the slope of the density fluctuations power spectrum with the DNS results,
they were able to constrain the amount of viscosity in Coma (Zhuravleva et al., 2019; Kunz et al.,
2022).

Observational data from the Coma Cluster revealed no such steepening in the measured power
spectrum, indicating that the effective isotropic viscosity in the ICM must be suppressed by at least
an order of magnitude compared to predictions from purely hydrodynamic models dominated by
Coulomb collisions (see Fig. 2.3 comparing the power spectrum obtained from observations of
Coma, with DNS simulations with different levels of viscosity. Figure taken from Caprioli et al.,
2019). Quantitatively, their results suggested that the effective viscosity is smaller by factors
ranging from approximately 5 to 1000, depending on the thermal Prandtl number (the ratio of
kinematic viscosity to thermal conductivity).

Similarly, Heinrich et al. (2024) used a dataset of 80 galaxy cluster observations by Chandra,
where they extracted the density fluctuations and computed the power spectrum. By fitting the
slopes with DNS simulations, they obtained that the effective viscosity in galaxy clusters is
suppressed by at least a factor of 8 compared to the Spitzer value.

In summary, by calculating the amplitude of density fluctuations from high-resolution X-ray
observations and comparing these to DNS simulations with varying viscosity levels, these
studies robustly concluded that the effective viscosity in the ICM is substantially suppressed.
The observed power spectra do not exhibit the exponential cutoff predicted by high-viscosity
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Figure 2.3: Comparison of density fluctuations power spectrum obtained from Chandra
observations of Coma (red regions), with DNS simulations with different levels of viscosity
(dashed lines). By fitting the slope of observations with simulations, one can constrain the
amount of viscosity. Left panel: Prandl number of 0.1, where the value of viscosity obtained is
1% the Spitzer value. Right panel: Prandl number of 5.56, where the value of viscosity obtained
is 20% the Spitzer value. Figure taken from Zhuravleva et al. (2019).

models, indicating a low-viscosity regime. These combined observational, numerical, and
theoretical results highlight the complex and highly suppressed nature of viscosity within the [CM.

Collectively, these observational approaches strongly support a scenario where the effective
viscosity of the ICM is significantly suppressed compared to the classical isotropic Spitzer
model. Although the plasma is characterized by low densities and large Coulomb mean free
paths, the presence of magnetic fields and plasma microinstabilities effectively reduces the mean
free path of particles, thereby limiting the role of classical isotropic viscosity. Instead, transport
processes in the ICM are governed by anisotropic mechanisms, for which the Braginskii viscosity
model offers a more accurate theoretical framework (Schekochihin et al., 2005; Kunz, 2011).

2.5 Braginskii Viscosity

In contrast to the collisional approximation, when considering a weakly collisional plasma where
the gyro-radius is smaller than the mean free path (4; > r;, see §1.4.1), anisotropic viscosity
becomes relevant. Magnetic fields impose a directional preference within a plasma, leading to
an anisotropic behavior that significantly impacts the plasma’s physical properties (see Fig. 2.4
for a sketch of a magnetized plasma, where the magnetic field lines result in a preferred direction
of plasma). This anisotropy affects different transport properties of the plasma, like thermal
conductivity and viscosity. This anisotropy due to the change of magnetic fields can be written
as:

— = = hh:Vv-V.v, (2.6)
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Figure 2.4: Sketch of a magnetized medium, showing how magnetic fields produce a preferred
direction of the plasma, resulting in pressure anisotropies.

where b = B/B. The notation “:” denotes the Frobenius inner product and is defined as the sum
of the products of their components: bb : Vv = 2,5 ;b;b 9, ;.

The constrained motion of particles in directions perpendicular to the magnetic field leads
to a difference in pressure parallel (p|)) and perpendicular (p,) to the magnetic field, resulting
in pressure anisotropy. This anisotropy can affect the stability of the plasma, leading to various
instabilities such as the firehose and mirror instabilities (see §2.5.1, Kunz et al., 2014), which
further influence the dynamics and evolution of the plasma. The total thermal pressure can be
split into its parallel and perpendicular components:

Ph=2ZpL+ §P|| . (2.7)

The anisotropy in pressure arises naturally due to the conservation of the first adiabatic
invariant, u = m;v? /(2B), where m; is the ion mass and v is the particle velocity perpendicular
to the magnetic field'. In the regime where A; > r;, the conservation is only weakly broken by
collisions. This conservation produces that any change in B leads to a change in p, (Schekochihin
et al., 2005).

The Braginskii viscosity (Braginskii, 1965; Squire et al., 2023) accounts for these anisotropies.
The plasma moves according to the pressure anisotropy, leading to a viscous pressure anisotropy,
where viscosity behaves as the isotropic case only when the velocity gradient is parallel to the
magnetic field lines. When collisions dominate the pressure anisotropy (|Vv| < v;;) and 8 > 1

I The first adiabatic invariant u corresponds to the magnetic momentum of a gyrating particle.
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(Chew et al., 1956; Squire et al., 2017), the pressure anisotropy can be written as:

_3pdnB

Ap:pL—p||:77(31313:Vv—V-v)
Veﬁ dt

, (2.8)
where v is the effective collision frequency, which is equal to the plasma collision frequency
(equation (1.24)) plus the collision rate due to scatter (Veg = Vij + Vscart)-

This expression describes the creation of pressure anisotropy due to motions of the plasma:
through the parallel rate of strain (b5 : Vv) and through the compression of the fluid (V - v).
Positive Ap is created in regions of increasing field strength, while negative Ap in regions of
decreasing field strength (Schekochihin et al., 2005; Squire et al., 2023). The shear viscosity
coeflicient (77) is the same as the isotropic case (equation (2.2)).

This anisotropy strongly affects viscous transport. Parallel to magnetic fields, the plasma
can move freely along the magnetic field lines, and viscosity behaves similarly to the isotropic
Spitzer viscosity. However, perpendicular to the magnetic field lines, the movement is restricted
and viscosity becomes significantly suppressed due to the smaller gyroradius (r;) compared to A;.
Assuming a strongly magnetized plasma, the effective parallel and perpendicular components of
the shear viscosity coefficient are given by (Braginskii, 1965):

2
| =~ MNiso » N1 = Niso (2) . 2.9
A
Fig. 2.5 shows how, when the magnetic field is aligned with the velocity gradient (red arrow), the
parallel rate of strain (bb : Vv) becomes maximum (right panel), while if they are perpendicular,
the rate of strain becomes zero.
The anisotropic viscous stress tensor accounts for the pressure anisotropy and can be written
as:

PN |
I Aniso = Ap (bb - §I) . (2.10)

2.5.1 Plasma Microinstabilities

When B > 1, weakly collisional plasmas might become unstable against plasma
microinstabilities, such as firehose and mirror instabilities. = They arise from pressure
anisotropies and are crucial for understanding plasma dynamics in a magnetized medium. These
instabilities manifest when the differences between each pressure direction reach thresholds
that destabilize the magnetic field structure, keeping pressure anisotropy at marginally stable
levels, and significantly affecting the plasma’s macroscopic behavior and transport properties
(Schekochihin & Cowley, 2006; Kunz et al., 2014). The plasma microinstabilities grow, and
when they reach a critical value, they feed back on the plasma (Rappaz & Schober, 2024). In the
regime where the gyro-radius is much smaller than the mean free path, this feedback takes place
effectively instantaneously (Squire et al., 2023).

The firehose instability occurs when the parallel pressure component significantly exceeds
the perpendicular component (Ap < 0, see equation (2.8)). The magnetic field lines are stretched



42 2. Viscosity in the ICM

‘A

ro6

6 (Polar angle)
bb: Vu

ro4

02
Perpendicular arllel
00
/2 2r

/2 =
x ¢ (Azimuthal angle)

Figure 2.5: Left panel: Spherical coordinates showing the direction of the magnetic field and the
red arrow indicating the direction of the velocity gradient. Right panel: Normalized value of the
parallel rate of strain (bb : Vv) depending on the direction of the magnetic field, with the velocity
gradient in the x-direction. bb : Vv becomes one when they are parallel, and zero when they are
perpendicular.

by the parallel pressure component, reducing magnetic tension and leading to the growth of
Alfvénic, oblique perturbations. These perturbations scatter plasma, increasing the effective
collision frequency (Ve = Vi; + Vscat) by Vscare ~ (|0B|/Bo) k| vin,i» reducing the Coulomb mean
free path (equation (1.23)), decreasing the system’s viscosity (equation (2.2)), and maintaining the
pressure anisotropy at marginally stable levels (equation (2.8)) (Kunz et al., 2014; Arzamasskiy
et al., 2023):
P > pL (2.1 1)
32
Ap=pi —p| <—4—. (2.12)
Vs
In contrast, the mirror instability arises from perpendicular pressure anisotropy being larger
than the parallel component (Ap > 0, see equation (2.8)), bending the magnetic field lines and
creating zones of weaker magnetic field strength (Rincon et al., 2014). This generates magnetic
field structures (mirrors) that trap and scatter particles, increasing the collision frequency by
Vseatt ~ (|0B|/Bo) kvin;,> reducing the system’s viscosity, and keeping the pressure anisotropy
near marginal stability (Kunz et al., 2014; Arzamasskiy et al., 2023):

Pl >p|| (2.13)

BZ
Ap=p.—-p|> S (2.14)
T

2Note that k| < k. for mirror modes. However, the mirror instability saturates at values of |[0B|/By ~ 0.1 — 1,
while the firehose instability at values of |6B|/By ~ B~'/> (Rincon et al., 2014; Squire et al., 2017). Thus,
Vscae ~ (|0B|/Bo) kv, of both instabilities is comparable in magnitude.
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Figure 2.6: ‘Brazil plot’: histogram of the pressure anisotropy (expressed as 7', /7)) as a function
of 3, color-coded by the normalized probability. The Ap distribution is dominated by the values
of the firehose and mirror instabilities. Figure taken from Squire et al. (2023).

The pressure anisotropy is stable within the firehose and mirror instability limits, therefore,
we can write the stability criterion as (Kunz et al., 2012, 2014):

B? B?

This means that the stability of Ap depends on the magnetic field strength. In high-8 plasmas
(weak magnetic fields), the thermal pressure dominates over magnetic pressure, and the
magnetic field is more susceptible to distortion, thus triggering the instabilities more easily. The
threshold for triggering plasma microinstabilities is reduced, limiting the pressure anisotropy and
suppressing the effect of viscosity. On the other hand, in low-8 plasmas (strong magnetic fields),
magnetic tension stabilizes the field lines against perturbations and the plasma microinstabilities
are not triggered so easily. Therefore, the plasma can sustain larger pressure anisotropies, leading
to larger viscosity.

Both instabilities play a key role in the energy distribution and stability of high-beta plasmas,
influencing large-scale plasma behavior. They act as self-regulating mechanisms to maintain
the anisotropy within marginally stable limits, thereby fundamentally affecting the evolution and
transport properties of magnetized astrophysical plasmas. This behavior can be observed in the
so-called ‘Brazil plots’, 2D-histograms where the pressure anisotropy is plotted versus the local
B (see Fig. 2.6 taken from Squire et al., 2023).
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2.6 Equations of Magnetohydrodynamics

The large difference in magnitude between the gyroradius and the viscous scale allows treating the
ICM as a compressible magnetized plasma, where the dynamic interactions significantly impact
the evolution of magnetic fields. The magnetic field applies forces to the plasma, while plasma
motions bend, fold, and stretch the magnetic field lines in return, leading to the amplification of the
magnetic field itself. These complex interactions are captured by the equations of MHD, which
describe the large-scale evolution of a conducting fluid coupled to electromagnetic fields. This
framework is particularly well-suited for describing the behavior of the ICM, where magnetic
fields, though dynamically subdominant to thermal pressure in high-g regions, still regulate
plasma dynamics through both large-scale forces and the mediation of microscale instabilities.

In the Lagrangian form, the MHD equations (conservation of mass, momentum, energy, and
magnetic field) can be written as:

dp
— +pV.v=0, 2.16
3 TPV (2.16)
d VxB)xB
o vp - pvooy. e YXBIXB 2.17)
dr 4
C(lj—lf+v-VP+(E+P)v-v—V-B(Z'B):—pv-Vcb—V-Q—V-(H-v), (2.18)
JT
OB
E:VX(VXB), (219)
where q 5
— - .V 2.2

is the Lagrangian derivative. p is the gas density, v the velocity of the fluid, Q is the heat flux, IT
is the viscous stress tensor and @ is the gravitational potential. E is the energy per unit volume
(kinetic + thermal + magnetic)
2 2
B
E=2" s pu+ 2 2.21)
2 8

The total pressure P is equal to the thermal pressure Py, = (y — 1) pu plus the magnetic pressure
Puag = B%/87
2

B
P:Pth+Pmag:('y—1)pu+§, (2.22)

with an adiabatic index of y = 5/3 for monoatomic gases.
The ratio of thermal to magnetic pressure is given by

Py 8Py 8r(y — Dpu
Prag B2 B?

B= (2.23)

and gives an estimate of the magnetic field strength in a magnetized fluid. In many astrophysical
systems, such as the ICM, the medium is weakly magnetized (8 > 1).
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2.6.1 Thermal Conduction

The second term of the RHS of equation (2.18) describes the thermal conduction, the transport
of heat through the scattering of electrons. In the isotropic approximation, the heat flux is given
by:

Qo = —« VT, (2.24)

where « is the thermal conductivity and VT the temperature gradient. In plasma physics, the
value of « is defined as (Spitzer, 1962):

3/2 5/2
2) (kBTe) (225)

k=20 (— ,
T (Ze) m*InA

where m, is the electron mass. Unlike viscosity, where the momentum transfer is dominated
by protons, the heat transfer is dominated by electrons. When the temperature gradient and the
mean free path of the electrons are of the same order of magnitude, the energy transfer due to
conduction is limited by the low number of interactions within the plasma (Cowie & McKee,
1977). In this case, the value of thermal conductivity saturates as (Sarazin, 1986):

K

—, (2.26)
1 +4.2%
T

KSat =

where [7 = T /VT is the length scale associated with the temperature gradient, and A, is the mean
free path of electrons, which is the same as the ion’s mean free path (equation (1.23)) (Sarazin,
1986).

In the same way as viscosity, when considering a weakly collisional plasma, the motions
across the magnetic field lines are suppressed, leading to an anisotropic heat flux dependent on
the magnetic field direction:

Qaniso = —K| (13 - VT) bh-«. [VT - (13 - VT) IS] . (2.27)
Conduction sets the Field length (61, Field, 1965), the maximum scale over which conductive

energy transport is effective in the presence of radiative cooling (see §1.4.5 Begelman & McKee,
1990).
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3 Numerical Methods

Numerical simulations represent an essential tool for studying the formation and evolution
of astrophysical systems, such as galaxy clusters, allowing detailed investigation of processes
including gravitational collapse, turbulence, cooling, or transport processes. Simulations help in
interpreting observational data, testing theoretical predictions, and guiding future observational
strategies.

Different numerical methods have been introduced to perform astrophysical hydrodynamical
simulations, which can be mainly divided into two types: Eulerian mesh-based methods (e.g.
Evans & Hawley, 1988; Stone & Norman, 1992), with and without Adaptive Mesh Refinement
(AMR) (Berger & Colella, 1989) and Lagrangian Smoothed Particle Hydrodynamics (SPH)
(Lucy, 1977; Gingold & Monaghan, 1977). In grid-based codes (e.g. Zeus, Stone & Norman,
1992; RamsEs, Teyssier, 2002; ATHENA, Stone et al., 2008; Enzo Bryan et al., 2014; or ATHENA++
Stone et al., 2020), the volume of the whole domain is discretised into cells, and a Riemann
problem is solved between the two states that meet at each plane separating adjacent zones
(Springel, 2014). Conversely, in SPH codes (e.g. GasoLINE, Wadsley et al., 2004; GADGET,
Springel, 2005; OpeENGADGET3, Beck et al., 2016; or PuaNTOM, Price et al., 2018), the fluid
is discretised in comoving mass elements, leading to Galilean-invariance and exact momentum,
energy, angular momentum, and entropy conservation. Due to the conservation of entropy, no
energy dissipation occurs, which might be an advantage over grid codes. However, this becomes
a problem in treating discontinuities and mixing processes properly as a consequence of spurious
surface tension at the interface between the two fluids (Agertz et al., 2007).

An alternative to overcome the shortcomings of pure Eulerian or pure Lagrangian approaches
is offered by methods combining their advantages. Such hybrid methods include moving mesh
techniques, where the computational mesh is allowed to deform and move with the fluid,
adapting dynamically to fluid flows, thereby retaining high accuracy and resolving structures
more efficiently (e.g. Springel, 2010). Another class of hybrid methods comprises the Meshless
Finite Volume (MFV) and Meshless Finite Mass (MFM) approaches (Hopkins, 2015; Groth et al.,
2023). MFV discretizes fluid properties into volumes surrounding each particle but solves the
hydrodynamic equations similarly to traditional finite-volume schemes. This preserves excellent
shock-capturing capabilities and reduces numerical diffusion. In contrast, MFM, similarly to SPH,
uses mass-defined particles without explicitly requiring a fixed volume partitioning, combining
the benefits of particle-based methods, such as intrinsic Galilean invariance and conservation
properties, with improved treatment of discontinuities and reduced artificial surface tension.
These hybrid methods can effectively capture the strengths of both Eulerian and Lagrangian
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schemes.

Within Lagrangian codes, OPENGADGET3 1is particularly optimized for large-scale
cosmological simulations due to its efficient parallel performance and adaptive resolution. In
contrast, ATHENA is a grid-based, Eulerian code designed to solve the equations of MHD using
higher-order Godunov schemes. While it lacks self-gravity and cosmological capabilities, its
accuracy and robustness make it ideal for high-resolution simulations of fluid dynamics.

3.1 OpPENGADGET3!

OpPeNGADGET3 is a simulation code optimized for cosmological N-body and hydrodynamic
simulations. It is an improved version of GADGET2 (Springel, 2005), including a modern SPH
implementation (Beck et al., 2016). OPENGADGET3 employs a TreePM algorithm to compute
the gravitational forces across vast dynamic ranges typical in astrophysical phenomena. For
solving the equations of hydrodynamics, OPENGADGET3 uses an improved implementation
of SPH, including a Wendland kernel function, as well as the implementation of artificial
conductivity (AC) and artificial viscosity (AV). These improvements allow an accurate modeling
of shocks and subsonic turbulence, as well as proper treatment of mixing and the development of
hydro-instabilities. We will discuss the individual methods in detail in the following sections.

3.1.1 Gravity Solver - TreePM

Gravity is the fundamental force driving structure formation in the Universe on large scales. To
accurately simulate the gravitational interactions in cosmological volumes, numerical methods
must efficiently handle the vast range of scales and particle numbers involved. To solve this issue,
OPeENGADGET3 uses a TreePM (Tree Particle Mesh) algorithm (Xu, 1995; Bode et al., 2000),
described in detail in Springel (2005).

The TreePM method is a hybrid scheme designed to combine the advantages of both tree
and particle-mesh (PM) approaches. PM methods are highly efficient at computing gravitational
interactions on large scales using Fast Fourier Transforms (FFTs) but lack sufficient resolution
for small-scale dynamics. On the other hand, tree algorithms offer high spatial adaptivity and
accuracy at short distances but become computationally expensive on large scales (Springel,
2014).

In the TreePM method, the gravitational potential is explicitly split into two components: a
long-range part, which is computed with a PM method; and a short-range part, calculated with a
tree algorithm. This decomposition is conducted in Fourier space as

Dy = D" + @Ot 3.1)

where the long-range potential is defined by

D" = Dy exp(—k*r?). (3.2)

IParts of this section were published in MNRAS by Marin-Gilabert et al. (2022) and in ApJ by Marin-Gilabert
et al. (2024).
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Here, r; is the spatial scale parameter that separates the long and short-range components of the
force (Springel, 2005).

Long-Range forces - PM algorithm

The long-range component of the gravitational potential (<I)1k°ng) is computed using a PM
algorithm. First, a mass density field is built by assigning the particle masses to a grid using
the Cloud-In-Cell (CIC) interpolation method (Hockney & Eastwood, 1981). This mass density
field, defined on a regular mesh, is then transformed into Fourier space, where the Poisson
equation is solved:

—k>®y = 4nGpy, (3.3)

with corrections for small-scale truncation and periodic boundary conditions. Then, the
gravitational potential in real space is obtained via an inverse Fourier transform.

Forces are derived by finite differencing the potential using the four-point differencing rule.
This leads to an accuracy of order O(Ax*), where Ax is the mesh spacing (Springel, 2005).
Finally, these forces are interpolated back to particle positions using the CIC scheme, ensuring
consistency in mass and force assignment.

Short-Range Forces - Tree algorithm

The short-range gravitational potential (d)zhort) is calculated in real space using a hierarchical
multipole expansion, known as the tree algorithm (Barnes & Hut, 1986). Particles are
grouped into hierarchical structures (nodes) based on their spatial locations. For each particle,
the gravitational influence of distant nodes is approximated by their multipole expansions
(OPENGADGET3 uses monopole contributions only), while nearby nodes are individually
considered. This approach reduces the computational complexity dramatically from O (N?) for
direct summation to approximately O(N log N) (Springel, 2014).

In the TreePM approach, the short-range gravitational potential (ry << L) for a particle located
at position X is given by:

oort(x) = —G > Werfe [ 1) 3.4
(x) Z erfe |5 - (3.4)

where r; is the distance from particle i to the target particle at position x, and erfc is the
complementary error function. This function ensures a rapid decrease of the short-range forces
beyond a certain scale (~ 4.5r; for a drop to about 1% in force), effectively restricting the
computational domain of the tree algorithm to only local neighborhoods (Springel, 2005).

The accuracy of the tree algorithm critically depends on the opening criterion (Barnes &
Hut, 1986), which determines whether a node’s multipole expansion is sufficiently precise for
approximating the gravitational influence on a given particle, or if the node needs to be further
subdivided (Springel et al., 2001). The opening criterion is commonly defined as:

GM

r2

7\2
(—) < alal, (3.5

r
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where M is the node mass, [ is the node size, r is the distance to the particle, |a| is the magnitude
of the total acceleration at the last time-step, and the tolerance parameter @ = 0.005 controls the
error magnitude. Additionally, a spatial criterion is employed to prevent errors when particles
are close to or within nodes:

Ir —c| < 0.6/, (3.6)

where ¢ is the geometric center of the node (Springel, 2005). A node that meets this condition
is not subdivided further and contributes as a single multipole expansion. The choice of the
opening criterion is vital because it directly influences both the computational speed and the
accuracy of the gravitational forces calculated. If the criterion is too relaxed, force errors can
grow significantly, compromising the physical reliability of the simulation. Conversely, overly
conservative criteria drastically increases computational costs (Springel, 2005).

Advantages of the TreePM Method

The TreePM method decreases the computational costs of gravitational force interaction while
keeping a high spatial force accuracy. It effectively mitigates the anisotropies inherent in pure PM
schemes by introducing an exponential truncation at small scales, thus delivering isotropic and
highly accurate long-range forces. Additionally, it resolves efficiently short-range interactions
with arbitrary precision controlled by the opening criterion (Springel, 2014). This combination
makes this algorithm perfect for large cosmological simulations, where a high gravitational force
accuracy is needed across all scales of cosmological interest.

3.1.2 Hydrodynamics Solver - SPH

OPENGADGET3 is a Lagrangian - SPH code. This means that, instead of discretizing the volume
of the domain like AMR codes, or moving mesh codes, the fluid is discretized in comoving mass
elements, leading to Galilean-invariance and exact momentum, energy, angular momentum, and
entropy conservation.

SPH works by interpolating physical quantities among the closer neighbor particles (Nygp)
using a Gaussian-like smoothing kernel with compact support, which means that the kernel is
truncated at a finite radius to reduce the total number of computations. This kernel assigns more
weight to nearby particles and less to those further away, enabling a smooth interpolation that
avoids the issues of fixed-grid approaches. Using this kernel, the density is computed as

Nngb
Pi=zij(|ri—Vj|,hi), 3.7
=1

where m is the particle’s mass. The kernel W depends on the distance between particles and the
smoothing length /;, which scales with local density as

m\1/d
h=n (—) , (3.8)
P
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where 7 specifies the smoothing length in units of the average particle spacing and d is the spatial
dimension of the system. The dependence of 4 on p ensures a roughly constant number of
neighbors.

The kernel must satisfy the normalization condition

/W(lri—rjl,hi)dvzl, (3.9)

and it must be symmetric with respect to (r; — r;), positive, monotonically decreasing, and
have smooth derivatives (Price, 2012). Furthermore, it should flatten near the center to avoid
overweighting close neighbors. Wendland functions fulfill all these requirements (Wendland,
1995; Dehnen & Aly, 2012). In particular, we employ the Wendland C® kernel in 3D (Price et al.,
2018), defined as

Wi (r, ) = S22 £(g), (3.10)
with normalization constant Cyorm = 1365/512m, and
_4q 2561 :
£lq) = (1 ) 4 + 2L +4g+1), g<2; G.11)
0, q=>2,

with g = |r; — rj|/h.

The Wendland functions preserve the smooth, positive, and compact characteristics of a
Gaussian-like kernel with a compact support of R = 2A, but with the crucial advantage of having
a non-negative Fourier transform, making them stable even for high Npgp,.

In cases of an irregular particle distribution, the so-called ‘Eg error’ (e.g. Read et al., 2010;
Hu et al., 2014) may arise, caused by particles not being perfectly arranged according to an
ordered pattern. This error is the attempt of SPH to restore the particle order, and it can
produce spurious results in fluid mixing (e.g. Hopkins, 2013; Beck et al., 2016; Wadsley et al.,
2017). The ‘Eg error’ can be reduced by increasing Npg,. However, a high Ny, leads to the
‘pairing instability’ (e.g. Schuessler & Schmitt, 1981; Price, 2012). The ‘pairing instability’
arises from kernels whose Fourier transform is not non-negative and becomes dominant for large
numbers of neighbors. It causes particles to attract each other at very small separations, forming
artificial “pairs” that collapse to the same location, thus degrading the accuracy of the simulation.
Therefore, the higher N, allowed by the Wendland kernels provides a big advantage against
other Gaussian-like kernels.

The derivatives can be expressed as derivatives of the kernel. In the case of p, the derivative
with respect to time can be written as

ngb

d" IZmJ(V, ) VWi (r, By) (3.12)

where v; ; is the velocity of each partlcle. Q; is a term that depends on the derivative of the kernel
with respect to the smoothing length, which reads as

Ohi & OW;(r, hy)
Qi: 1- Z JT A,

3.13
oo " an, -
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The density gradient is given by

Ny
_ apl‘ 1 £

= == ) mjViWi(r, hi)(ik — i) - 3.14)
ark Qi; Jj Yk 1]( 1)( ik ]k) (

Vp

The dynamics of the system are derived from the discretization of the fluid Lagrangian and
result in motion equations that naturally conserve mass, momentum, and energy. The acceleration
of a particle is given by
Ny b
dv; : P; P;
Ee_zm,agwmmm+a%wmmm), (3.15)

j=1 i J

and the internal energy evolves as

du; P; M
d—t’:ﬁij (Vi =vy) VWi (r, ), (3.16)
iPi 3

where P; ; is the pressure of each particle.

Optionally, one can evolve the entropic function A = P/p? (this is the choice in
OPeNGADGET3), where 7y is the adiabatic index. The entropic function A is constant in the
absence of dissipation:

p!
= A. (3.17)
y—-1
Evolving A is advantageous because it decouples the evolution from numerical integration
schemes in non-dissipative flows (Price, 2012).

However, SPH in its ideal form cannot properly capture discontinuities such as shocks and
contact interfaces. To mitigate this, artificial diffusion is introduced. AV is used to resolve shock
fronts and prevent post-shock oscillations and noise, by introducing momentum dissipation;
while AC introduces thermal energy diffusion across contact discontinuities, addressing issues
with energy discontinuities at interfaces.

u

3.1.3 Artificial Conductivity

The AC (Price, 2008) is introduced in OPENGADGET3 to treat discontinuities in the internal energy
and capture mixing processes properly (we follow the notation introduced by Beck et al., 2016).
The AC implemented is time and space dependent, where the variation of internal energy due to

AC reads:
Nngb

J sig,c 1=
= —(Ltj —I/tl') ozl-cjvij Fl'j. (318)
cond - Pij

du;
dt

Here, vf}g’c is the signal velocity, fij = (F;j(h;) + F;j(h;))/2 is the symmetrised scalar part of
the kernel gradient terms V;W;;(h;) = F;; i, pij = (pi + p;)/2 is the symmetrised density and
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ozl.cj = (af + aj) /2 is the symmetrised conduction coefficient. The signal velocity depends on the

pressure gradient (see Price, 2008):
. P — P
yiEC = L1y (3.19)
/ Pij

e hilVul;
;] = = ,
2 fuyl
where the time dependence stems from the dependence on the internal energy and on its gradient,
which is computed using

The AC coeflicient is defined as

(3.20)

Nngb

(Vi = — > mj (u; = u)ViWi; . (3.21)
j=1

1
Pi

When al.c is larger than a threshold value (in our case amax = 1.0), we set af = max-

3.1.4 Artificial Viscosity

OPENGADGET3 includes AV to damp post-shock oscillations and reduce kernel distribution noise.
Since in ideal fluids AV is not needed away from shocks, a switch triggers viscosity in shocks but
keeps it inactive otherwise. Our implementation of an adaptive AV reads (Monaghan & Gingold,
1983; Monaghan, 1992):

1 Nngb

=5 D (i=w el ST E (3.22)

visc j=1 1

dvi
dt

An additional term accounting for the variation of internal energy due to AV offsets the work
done against the viscous force in the thermal reservoir. It reads:

1 Nngb .
— J (o w2 LV
j=1 P

du,-
dr

shear _ Sig,vgs
i Vi Fij;.

(3.23)

visc

Here, a}; = (] +@j)/2 is the symmgtrised viscosity coefficient, fl.;hear = (fShear 4 f; shear) /9 the
sig,v
ij

The signal velocity? (Monaghan, 1997) aids in switching on or off the AV, depending on
whether two particles are approaching (vjj - 7;; < 0) or moving away (vjj - 7;; > 0), respectively.
It also determines the strength of the AV and measures the particle disorder:

symmetrised shear flow limiter and v, the pairwise signal velocity.

sig,v_{Cs,i'*‘cs,j_ﬁvij'fij’ Vij'fij <0; (3.24)

i A
J 0, vij - i > 0,

ZNote that this signal velocity is not the same as for the AC ((3.19)).
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where c; is the sound speed of the particle and S = 3 (see Beck et al., 2016).
To avoid a shear viscosity that could lead to sub-optimum behavior in simulations of shear
flows, Balsara (1995) suggested the shear flow limiter:

fshear _ |V ’ Vli
i

- s 3.25
|V'V|i+|VXV|,‘+O',' ( )

with o; = 0.0001c¢g;/h; for numerical stability reasons. When there is a shock, the limiter is
dominated by |V - v|; and thus, ffhear ~ 1, while if there is a shearing flow, the limiter is dominated
by |V x v|; and fher ~ 0.

The viscosity coefficient @} is computed following Cullen & Dehnen (2010), which use the

shock indicator
N, ngb

Ri=— )" sign(V-v)m;Wi;, (3.26)
i o
where sign(V - v); is negative and, therefore, R; ~ —1 when there is a shock. Nevertheless, R;

cannot distinguish between pre- and post-shock regions. To determine the direction of the shock,
an additional factor, A;, exploits the time derivative of the velocity divergence:

A; = & max(0,—(V -v)), (3.27)

where (V - v); < 0 indicates a pre-shock region and (V - v); > 0 a post-shock region. &; indicates
the ratio of the strength of the shock and reads:

2(1 - R)*(V - w)i[*

L= : (3.28)
2 2
[2(1 = R)*(V-v)i|” + |V x v];
The target value a/ll.oc’v of AV is therefore:
h2A;
100 = ' (3.29)

max—si .
]’llel + (Vl- g)2

When all.oc’v < a}, the latter is set to a}oc’v. If a/ll.oc’v > a}, @) decays with time, and the value is
calculated by integrating:
vsig
. loc,v i
df = (o™ - at) 7
where we set [ = 4.0 (Beck et al., 2016), which specifies the decay length of the AV. We set an
initial value @; = 0.02 in all our simulations.

(3.30)

3.1.5 Magnetohydrodynamics Solver - SPMHD

The evolution of magnetic fields is governed by the MHD equations, which can be solved in
OPeENGADGET3 (see Dolag & Stasyszyn, 2009; Bonafede et al., 2011; Stasyszyn et al., 2013 for
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a detailed description). In ideal MHD, the magnetic field evolves according to the induction
equation (Dolag & Stasyszyn, 2009):
dB

5 - B-VV-B(V-v), (3.31)

assuming a perfectly conducting plasma without dissipative terms. The discretization
implemented in OPENGADGET3 reads

B, 1 [ Nif
L=t m; |B;(v;; -V-W-)—V~-(B~~V~W~)] -2B;, (3.32)
) ] J [ j ivi ij\ D iV
dr Ha* p; P
where H is the Hubble parameter, a is the scale factor and
hi dpi\~"
014+ , 3.33
/i ( 3 ahl-) -39

accounts for correction terms arising from varying the smoothing length. The Lorenz factor is
included via the magnetic stress tensor (Phillips & Monaghan, 1985)

1
MK = B¥B! - §|B,-|25“ : (3.34)
producing an acceleration
Ny, b
dvi)(mag) 3y ‘Ing o M; M;
avi =— )y m;|fO = VWi + o —LV,w, |, (3.35)
(dt MOJZ::‘J p?llJP?J]

with ug the vacuum permeability.

The magnetic divergence must be generally zero, therefore, for a correct integration, numerical
schemes keep the magnetic divergence V - B to a minimum. For this reason, a divergence cleaning
is implemented in OPENGADGET3, following Dedner et al. (2002). An additional term dependent
on a scalar potential () is added to the induction equation (Stasyszyn et al., 2013). This scalar
potential represents the non-vanishing V - B, and propagates the numerical errors outwards the
simulation, while damping them. This term is implemented in OPENGADGET3 as

dB Ded
— =—(Vy);. 3.36
a|, =~ (3:36)
Although, to be energy conserving, the internal energy needs to be modified as
du Ded
Ho | =B (V)i . (3.37)
L

The most efficient solution to construct and evolve ¢ is to use a hyperbolic/parabolic cleaning,
where the evolution of i is given by

Wi _ | 2wy, Y
Fr [(Ch)'(v B), . (3.38)
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Now ¢ satisfies a wave equation propagating the errors outwards the source at a speed cp, and
decaying on a time-scale 7 (Stasyszyn et al., 2013).

In non-ideal MHD, the induction equation (3.31) includes the magnetic diffusivity term
1nmV?B, which modifies the magnetic field evolution by including an extra term (Bonafede et al.,
2011)

Nhsb
0B; Mm Pi OO M Tij
= — (B; - B;) —~ - V;W;, (3.39)
01 |y  Ha? ;piz,j l ! T o

Nnb
du; 1 : m; 2
dui| - __ 1 B —B)> VW, (3.40)
dt res 20 ]ZI Pi ( ) |rl]| /

with Wl-, ; being the mean between the two kernels W; and W;. However, in our simulations, we
will solve ideal MHD only.

3.1.6 Spitzer Viscosity Implementation

While AV is necessary for the correct behavior of SPH in treating shocks with ideal fluids, the
physical viscosity rules viscous fluids according to the Navier-Stokes equation.

The isotropic physical viscosity implemented in OPENGADGET3 follows Sijacki & Springel
(2006). Taking into account the summation notation for repeated Greek indices, the viscous stress
tensor (equation (2.1)) is discretised as:

( Ovy
=1

Bxﬁ

ovp 2 av,

= 3% 5y,

I—[Iso aﬂ = 770-&,8 ) . (341)

0xq|;

This stress tensor enters the hydrodynamic equations by modifying the momentum evolution.
Specifically, the acceleration of a particle i due to shear viscosity is given by:

dva

i, shear

Nngp so.a l-IIso, a'ﬁ| i
_Z [ .ol (VWU(rh))‘ e ’(Vl-W,-j(r,hj))‘ﬁ]- (3:42)

J

In addition to affecting momentum, the friction due to viscosity causes an increase in the entropy,
which is computed using the entropic function A; (see Sijacki & Springel (2006) for details) as:

dA; ly—-1n;
r_m (3.43)
dr shear 2 y Pi
Finally, the additional variation to the internal energy reads:
d i 1 i
st} L (3.44)
dr shear 2P l
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3.1.7 Viscosity Saturation

A proper treatment of viscosity in cosmological simulations requires the implementation of a
viscosity saturation to avoid unphysical results. The viscous stress saturates when the scale
over which the velocity varies becomes smaller than the ion mean free path. This means that
the viscous momentum transfer propagates faster than the mean soundspeed of the medium,
overestimating this momentum transfer (Sarazin, 1986).

To avoid this, we need to introduce a viscosity saturation that limits the momentum propagation
and ensures a smooth transition from the non-saturated to the saturated state. We do this in such
a way that the momentum transfer of the saturated viscosity propagates at a velocity comparable
to the soundspeed of the medium. We define the velocity length scale as [, = 2 ¢;/|o|, where

o] = Vir(0) = Vir(o - 0) = \Jtr(oZ + 02, + 02 + 202, + 202 +202) (3.45)

is the strength of the rate of strain tensor. We introduce the viscosity saturation as analogous to the
thermal conduction saturation (see §2.6.1; Cowie & McKee, 1977), following the implementation
of Su et al. (2017):

Nsat = (3.40)

_n
1+4.2%

This way we make sure that when [, < A;, the shear viscosity coefficient saturates, avoiding
unphysical large values of the viscous stress tensor Il and numerical issues like extremely small
timesteps.

3.1.8 Braginskii Viscosity Implementation

In addition to the isotropic implementation, to capture the directional momentum transfer in
weakly magnetized plasmas, an anisotropic viscosity formulation is currently under testing in
OpPeNGADGET3. In this case, the pressure anisotropy (equation (2.8)) is discretised as:

v,y
ap 0x,

~ OVy

Ap| =n|3b,bg—2
pi n( 'Ba)%

-5 ), (3.47)

where b = B/|B| is the magnetic unit vector. And the anisotropic viscous stress tensor (equation
(2.10)):

PN 1
HAniso,a,B ; = _Ap)i (babﬂ‘i - géaﬂ) . (3.48)

Similarly to the isotropic case, the change in velocity and entropy are described as:

Nn b .
dv, = | I N ,Q,BL' HAmso, a'ﬁ| i
Sl =y | (VW k) |+ (TaWy ()| | (3.49)
i, shear j=1 pi p pf p
and: )
da;| - _1ly-14p (3.50)
dt shear 2 pl?/_l 3pi77i
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3.2 ATHENA

ATHENA is a computational hydrodynamics code designed specifically for astrophysical
hydrodynamics (Stone et al., 2008). It solves numerically the hydrodynamic equations using
finite-volume methods, where the fluid domain is discretised into cells, forming either a fixed
mesh or using an AMR. Within each cell, the physical quantities are represented by average
values. These quantities can be expressed using vectors of the conserved (U) and primitive (W)
variables:

Y Y
M, Vx
U=|M,|, W=|v|, (3.51)
M, Vz
E P

where M = pv is the momentum density. The conserved variables are quantities directly related
to the fundamental conservation laws of physics—mass, momentum, and energy. They represent
quantities that, in the absence of sources or sinks, remain constant within a closed system. In
contrast, primitive variables are quantities that have a direct physical interpretation and are often
more intuitive to understand. Although primitive variables are easier to interpret physically, the
hydrodynamic equations are formulated and solved in terms of conserved variables to ensure
numerical conservation and stability.
The conservation laws in Cartesian coordinates can be written in a compact way as

oU 9F 4G  OH _

E'FE'FE'FE— s (352)

where F, G, H are the vectors of the fluxes in the x, y and z directions respectively. They can be
expressed as:

PVx
pv)zc +P
F=| pvov, , (3.53)

PVxVz
(E + P)vy

PVy
PVyVx
G=| pvi+P |, (3.54)

PYyV;
(E+P)vy

PV
vavX
H=| pvyv,y . (3.55)

pv% + P
(E + P)v,
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Equation (3.52) is integrated over the volume of a grid cell, and over a discrete interval of
time ot. After applying the divergence theorem, the integration of the discretised equations reads:

ot ot ot
+1 _ n+1/2 n+1/2 n+1/2 n+1/2 n+1/2 n+1/2
U?,j,k - U?,j,k_a (Fi+1/2,j,k - Fi—1/2,j,k)_5 ( Lj+1/2,k i,]‘—l/z,k)_é_z ( ijk+1/2 Hi,j,k—1/2
(3.56)
where " 1 lk+1/2 Yj+1/2 Xi+1/2 "
U’ = / / / U(x,y,z,t")dx dy dz (3.57)
i,j, 0x 5)7 0z Zk=1/2 Yj-1/2 Xi-1/2

is the vector of volume-averaged variables, while

tn+1

w12 _ 1
=120k 5y 676t Jm

Zk+1/2 Yj+1/2
/ F(xi_1/2.y,2,t) dy dz dt (3.58)
y

k-1/2 j—1/2

1
" s1/2 L Xixl)2

nrt2 1 .
Gw._l/z’k = Svosor /zn G(x,yj-1/2,2,1) dx dz dt (3.59)

Zk—-1/2 Xi-1/2
M ey P
2 = I / " CH(x . 2o 1) ddy di (3.60)
IS 6x 6y 6t Jpn yi-12 Jxicip
are the vectors of the time and area-averaged fluxes. Half-integer subscripts indicate the edges of
the cells, while integers indicate the center of the cell.

At each cell boundary, ATHENA utilizes Riemann solvers, which determine the fluxes by
solving local Riemann problems that describe how discontinuities propagate in the fluid. The code
also incorporates reconstruction methods to estimate variable states at cell interfaces, enhancing
accuracy. The computations in ATHENA proceed in discrete time steps. During each step, fluxes
are computed based on the current cell states, and these fluxes are used to update the cell-averaged
quantities.

Solving a Riemann problem produces entropy implicitly when fluxes from different
thermodynamic states mix in one single cell: as a consequence, there is no need to add numerical
dissipation artificially. However, some finite volume schemes introduce AV to stabilize the
solver, which is the case of the early version of zeus (Stone & Norman, 1992). Nevertheless,
mesh-based methods are not strictly Galilean-invariant; therefore, difficulties can arise when,
e.g., simulating galaxies in high-velocity orbits, where galaxy velocity is larger than the sound
speed of the medium (Springel, 2010). In addition, dissipation terms are purely numerical and
sensitive to the absolute velocity of the flow, which means that the mixing occurs even when no
physical motivation exists (Wadsley et al., 2008).

3.3 VORTEX-P

VvORTEX-P (Vallés-Pérez et al., 2021b,a, 2024) is a postprocessing tool designed to perform a
numerical Helmholtz-Hodge decomposition and an optional Reynolds decomposition of the
velocity field. Although to achieve this numerically an AMR is needed, it can also be used
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in particle-based simulations, such as SPH or moving-mesh, by mapping the particle data onto
an AMR hierarchy and then solving elliptic equations using a hybrid of Fourier and iterative
solvers. The approach ensures accuracy across a wide range of spatial resolutions and preserves
the physical separation of turbulent components relevant to cosmological and astrophysical fluid
dynamics.

3.3.1 Helmholtz-Hodge Decomposition

Any vector field v can be decomposed in:
V = Veomp + Vsol + Vharm » (3.61)

where Veomp is the compressive (irrotational, V X veomp = 0) component, v is the solenoidal
(divergence-free, V-vy, = 0) component, and Vhyrpy, s the harmonic part. Under periodic boundary
conditions, the harmonic term vanishes, and the compressive and solenoidal components are
derived as:
Veomp = —V¢,  with V2 = -V -,
{ comp ¢ ¢ (362)

Ve = V X A, with V2A = -V X v.

The scalar potential ¢ and the vector potential A are obtained by solving these Poisson equations
on the AMR grid. For the base grid, vorTEX-P uses Fourier transforms under the assumption
of periodicity, which reduces the equations to multiplications by the Green’s function in Fourier
space. At finer AMR levels, boundary conditions are interpolated from coarser grids, and the
equations are solved iteratively using a Successive Over-Relaxation method. Once the potentials
¢ and A have been obtained, Vcomp and vy can be calculated by differentiating ¢ and A.

3.3.2 Reynolds Decomposition

To isolate turbulent velocities, vVORTEX-P implements a multi-scale filter based on the iterative
algorithm of Vazza et al. (2012, 2016), adapted to AMR. This method separates the bulk (v(x))
and turbulent motions dv(x) of the velocity field by constraining the injection scale of turbulence
L(x) without explicitly fixing a filter length (Vallés-Pérez et al., 2021a):

ov(x) = v(x) — (V). (X). (3.63)

The injection scale L(x) is initialized to L,—o = 3Ax;, where Ax; is the cell size at the refinement
level [ and n is the algorithm iteration. Then, L(x) grows iteratively until the turbulent field
converges or until a shock is encountered, as identified by either Mach numbers or thresholds in
AV and velocity divergence.

3.3.3 Astrophysical Applications

The Helmholtz-Hodge decomposition enables the direct analysis of the physical role of different
turbulent modes in structure formation. Solenoidal motions, linked to vorticity and magnetic
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field amplification, can be distinguished from compressive flows, which are more directly
associated with shock heating and entropy generation. Furthermore, the Reynolds decomposition
isolates turbulent component contributions that may bias hydrostatic mass estimates in galaxy
clusters without imposing a fixed filtering scale. This flexibility is crucial in the inherently
multi-scale environment of cosmological simulations, where characteristic turbulence scales
vary dramatically across environments such as the ICM, cosmic filaments, and galactic halos.
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4 The Role of Physical Viscosity in
Hydrodynamical Instabilities'

Understanding the role of viscosity in the ICM is crucial, as it can significantly modify the
dynamics of the plasma by damping turbulence and suppressing the development of fluid
instabilities. Among these, the suppression of shear-driven modes like the KHI is one of the
most important signatures of viscous effects. By analyzing the linear evolution of the KHI, we
aim to quantify the accuracy of OpPENGADGET3 in reproducing its linear growth under different
physical setups. In particular, we consider a physically motivated Spitzer viscosity, quantify its
effect on the growth of the instability, and study the overall contribution of numerical viscosity.

As expected, our simulations recover the suppression of the KHI in the presence of physical
viscosity and allow us to determine the threshold level required to fully damp the instability. For
conditions typical of the ICM in clusters with a virial temperature of 3 x 10’ K, this threshold
corresponds to a suppression factor of ~ 1073 relative to the classical Spitzer value. The intrinsic
numerical viscosity of our SPH implementation is inferred to be at least an order of magnitude
smaller (i.e. ~ 107%), re-ensuring that modern SPH methods are suitable to study the effect of
physical viscosity in galaxy clusters.

4.1 Kelvin-Helmholtz Instability

Despite Moore (1979) proposed an approximation to the exact evolution equation for
incompressible fluids, no analytic solution for the non-linear KHI has been achieved yet in the
case of compressible fluids. However, the growth of the instability in the linear regime, including
viscosity, can be described using 2D analysis (Chandrasekhar, 1961). From linear perturbation
theory, the y-velocity of the instability can be found to grow exponentially ~ exp [i - n - t] (see
Junk et al., 2010, for a detailed derivation). n is the mode of the perturbation:

n= [kzv)%(az - al)] +1i >

k2 2k4
Ye o \/V4 + 4k2v,%ala2] , 4.1)

I'This Chapter was published in MNRAS by Marin-Gilabert et al. (2022).
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where k is the wavenumber of the perturbation, v, is the velocity of one of the fluids (in the
laboratory frame of reference), and v is the kinematic viscosity. a; and a; are defined as

o= =2 (4.2)
P11t 2 P11+ 02

The real part of equation (4.1) deals with the oscillatory behavior of the KHI and is not of interest

here. The imaginary part determines whether the KHI decays (positive solution of the square

root) or grows exponentially (negative solution), damped by v.

In the ideal case where v = 0, equation (4.1) becomes:

n=[kiay — )| +i[£2kvi(a1a2)'?] . 4.3)
Expressing the exponential growth of the perturbation as ~ exp [iwt], one can write the growth
time of the KHI as

2 2n A (p1+p2)
Im(w)  2kve(aiaz)'?  Avy (p1 p2)!/2°

TKH = 4.4)
where Av, is the velocity difference between the two fluids (Av, = 2vy)and A = 27” the wavelength
of the perturbation.

4.2 Setup

To describe the growth of the KHI, we set up the initial conditions (ICs) following Murante et al.
(2011). We create a 3D box (see Fig. 4.1) with 774144 particles of equal mass (m = 3.13 - 1079),
using a cubic lattice with periodic boundary conditions. The size of the box in internal units? is
Ax =256, Ay = 256, and Az = 8. The domain satisfies:

p1.T1,vi |yl <64

p2, T, vy |y > 64" (4.5)

P T» Vy = {
Densities, temperatures, and x-velocities are: p; = 6.26 - 1078, p2=3.13- 1078, 7, =2.5- 106,
T =5-10% v; = —40 and v, = 40, respectively. The density and temperature ratio is constant,
i.e. R, = p1/p2 = T»/T1 = 2, ensuring a pressure equilibrium in the system. With these ICs, the
Mach number corresponds to M; = v{/c = 0.23 for the first fluid and M, = —v,/cr = 0.17 for
the second one. The initial properties of both fluids can be seen in Fig. 4.1.
We introduce a small perturbation in the y-velocity at yp,, = 64 (equation (4.6)) to trigger
the instability. This is similar to Read et al. (2010), but values have been adapted to our ICs:

vy = —6v, [sin (M) exp (_ (y _O_ylm)z) + sin (2%) exp (— (%)2)] . (4.6)

Here, A = 128 is the wavelength of the perturbation, év, = |v,|/10 = 4 is the amplitude, and
o = 0.24 is a scaling parameter to control the width of the perturbation layer.

The internal units correspond to the basic Gadget units, where mass is given in 10'® Mg, length in kpc, and
velocity in km/s. We use a mean molecular weight of ~ 0.588. In this Chapter, we will always refer to internal units.
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Figure 4.1: Graphical description of the ICs set in our simulations.

4.3 Effect of Physical Viscosity

The viscosity of a fluid can determine its properties and behavior, so in order to study this effect,
we introduce viscosity in the system to quantify how the results change when the assumption of
an inviscid fluid does not hold. For this purpose, we use OPENGADGET3 with Nyg, = 295 to study
the behavior of the system depending on the amount of viscosity implemented.

To study the effect that physical viscosity has on our results, we run 11 different simulations
with 11 different fractions of Spitzer viscosity>. Table 4.1 shows the 11 different fractions with the
corresponding value of the dynamic viscosity (1) in internal units, as well as the corresponding
value of kinematic viscosity (v). Taking fractions of 7 mimics the effect that the magnetic field
has on viscosity, which is suppressed in the direction perpendicular to the magnetic field (see
§2.5).

Note that the kinematic viscosity (defined by equation (2.3)) depends on the density of the
fluid. Since we have two different fluids but the dynamic viscosity is the same for both of them,
in our analysis we have computed the kinematic viscosity using the mean value of the kinematic
viscosities of each fluid*.

As a first qualitative result, Fig. 4.2 shows the mass-weighted projected density for three
different viscosities, 10‘277 (top), 1073 n (center) and 10‘477 (bottom), where n is the value
of Spitzer viscosity at 7 = 3 - 10’ K. With a large amount of viscosity, the instability is fully
suppressed and the roll is no longer developed, but as soon as we decrease the amount of viscosity,
the instability appears and grows with higher amplitude. In the particular case with a viscosity
of 10~* 7, the shape of the roll happens to be similar to the ones expected for the ideal case.

3 As mentioned before, for the viscosity we will assume a constant temperature of the fluids of 3 - 107 K to match
the typical conditions within the ICM.
4For a detailed discussion on how to average the kinematic viscosities of two fluids, see §5.2.1.
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Figure 4.2: Projection of the mass-weighted density. Left to right: Different times. Top to
bottom: Three different values of the physical viscosity from higher viscosity to lower. The run
with the highest viscosity 1072 (top row) suppresses completely the growth of the KHI. In the
case of 1073 7 (middle row), the instability is partially suppressed, but there is still some growth
of the perturbation. With a low viscosity 10~ ;7 (bottom row), the instability can grow properly,
showing similar results to the ideal case.
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Table 4.1: Different amounts of viscosity employed in our simulations with the actual viscosity
computed for both Nyg, = 150 and Npgp, = 295 and their deviation with respect to the theoretical
value.

Fraction i % Actual v Deviation Actual v Deviation
(n) (Nngb = 150) | (Nngb = 150) | (Nngp = 295) | (Npgp = 295)
107% [1.379-1077] 3.305 | 9.57 £0.15 | 6.26 (189.53%) | 5.69 + 0.31 [ 2.38 (72.15%)

2.5-107%13.449-1077| 8.263 |14.68 +0.38 | 6.42 (77.65%) | 10.15 = 0.21 | 1.89 (22.83%)

5-107% [6.897-1077| 16.527 [ 23.41 +0.65 | 6.88 (41.65%) | 18.20 £ 0.32 | 1.67 (10.13%)

7.5-107%]1.035-107°] 24.790 [ 31.46 +0.97 | 6.67 (26.91%) | 26.32 +0.34 | 1.53 (6.17%)
1073 [1.379-107°] 33.053 [39.25+0.80 | 6.20 (18.75%) |34.37 +0.36 | 1.25 (3.77%)

1.5-1073]2.069 - 107°| 49.580 |55.27 +0.76 | 5.69 (11.48%) | 50.10 £ 0.55 | 0.52 (1.05%)

2-1073 [2.759-107°| 66.106 | 70.66 + 1.64 | 4.55 (6.89%) |66.50 +0.56 | 0.39 (0.60%)

2.5-107313.449-107°| 82.633 | 87.34 + 1.28 | 4.71 (5.70%) |83.08 + 1.47 | 0.45 (0.54%)

5-1073 [6.897-107°[165.265| 169.3£2.9 | 4.07 (2.46%) | 168.0+4.1 | 2.76 (1.67%)

7.5-1073[1.035-107°[247.898 | 249.9+9.2 | 2.00(0.81%) | 247.2+9.0 | —0.70 (0.28%)
1072 [1.379-107°[330.530| 326.9 +3.6 | —3.64 (1.10%) | 334.0+5.5 | 3.48 (1.05%)

4.4 Growth of the KHI

4.4.1 Amplitude Analysis

Theory predicts that, in an inviscid fluid, the initial perturbation triggers the instability and its
amplitude starts to increase approximately linearly until it saturates with a height of ~ 1/2 (see
e.g. Roediger et al., 2013b). The amplitude is expected to decrease afterwards, as each billow
pairs with the adjacent ones (e.g. Rahmani et al., 2014). The height of the roll is a good indicator
of the level of viscosity, which suppresses the instability and prevents its growth.

By measuring the height of the rolls, we are able to study the level of suppression that the KHI
suffers depending on how viscous the system is. The top panel of Fig. 4.3 shows that the amplitude
is reduced when the fluids are more viscous due to the fact that the friction between particles
reduces the kinetic energy, causing the KHI not to develop. This means that the instability is
fully suppressed for the simulations with the highest viscosities, and as soon as the fluids are
less viscous, the instability is able to develop with larger amplitudes. At early times, we can
see some increase in the amplitude due to the mixing of the fluids triggered by the thermal
conduction. However, after this, the amplitude does not grow anymore. Despite the case with
10~* ;7 (orange line) reaches an amplitude of almost 1/2, we can observe a difference compared
to the non-viscous case (07, dark blue line), where the maximum height reached is larger than
the 10 7 case.

4.4.2 Velocity Analysis

In the non-viscous case, the y-velocity is expected to grow exponentially until # = gy (see §4.1).
To measure the growth rate of the instability, depending on Ny, we calculate how the y-velocity
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Figure 4.3: Top panel: Height of the rolls depending on how viscous the fluids are. For the most
viscous case (1072 7), the amplitude barely increases, but as soon as we decrease the viscosity
of the system, the rolls reach a higher amplitude until we have 10~*5, where the rolls reach an
amplitude close to 41/2. However, this height is smaller than the one reached in the ideal case.
Bottom panel: Evolution of the y-velocity depending on the amount of viscosity of the system.
In a very viscous system (1072 7), the KHI decays exponentially, while the case with the lowest
amount of viscosity (107*7) follows a similar path to the ideal case. The amount of viscosity
that produces no growth of the y-velocity (slope zero) characterizes a viscosity threshold above
which the KHI is fully suppressed. This threshold can be determined numerically and compared
to a theoretical estimate.
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of the particles changes with time. This tells us the level of suppression of the KHI. To compute
the amplitude of the y-velocity, we use a discrete convolution of the sinusoidal perturbation (see
appendix B for a detailed description of the method; Sijacki & Springel, 2006; Obergaulinger &
Aloy, 2020). The results are shown in the bottom panel of Fig. 4.3. Due to friction, the more
viscous the system is, the slower the KHI grows. For higher viscosities, the growth rate of the
y-velocity up to t = gy progressively decreases. Beyond a critical viscosity, the velocity no
longer grows exponentially (positive slope) but instead decays exponentially (negative slope).
We consider the amount of viscosity where the slope changes as the major indication for full
suppression. For viscosities higher than this threshold, the instability decays, i.e., it is fully
suppressed.

By fitting a linear function to our data we can estimate when the slope changes its sign, and
therefore, the viscosity threshold®>. We obtain that the viscosity threshold computed numerically
is between 1.5 - 10737 and 2 - 1073 5. This translates to a kinematic viscosity threshold in the
range of v = [49.580 — 66.106] (see Table 4.1).

For a validation of our numerical result, we estimate this viscosity threshold theoretically
using three different approaches suggested by Roediger et al. (2013b).

The growth of a viscous KHI described in §4.1 is only true for a steady background flow
(0vy/0t = 0), which is strictly speaking only true for low values of viscosity. For higher values
of viscosity, we cannot assume a steady background flow anymore (dv,/0t # 0) due to the
fact that viscosity smooths out the x-velocity gradient (see appendix C). Therefore, we cannot
get an analytical solution, and we need to make different assumptions to estimate this viscosity
threshold.

For the first estimate, we use the fact that the physical viscosity smooths out the velocity
gradient over a length +d above and below the interface. As demonstrated by Chandrasekhar
(1961), the KHI is suppressed for wavelengths smaller than ~ 10d. Now, we make use of the
diffusion length {5, = +2+/v¢, which measures how much the interface gets widened by diffusion
at time 7. If we take into account that in the inviscid case it takes t = tgy for the instability to
grow, we can calculate the width of the interface at that time and see whether the instability is
able to grow or not. If 1 < 10/p(¢t = Txu), the KHI will be suppressed, and otherwise it will
grow. So using the inviscid definition of Txy (equation (4.4)), we obtain

A< IOID (TKH) = ZO\IVTKH (4.7)
2
A~ y 4 (p1+p2) 4.8)
400 Avy (p1 p2)'/?
AA » 1/2
b > e = LAY (p1p2) 4.9)

400 (p1+p2)

Using our values inferred from our initial setup, we get a critical viscosity of vy = 12.07, which
is below what we calculated numerically. However, as Roediger et al. (2013b) states, the interface

SFor this fit we used the time interval of [0.057ky, Tky] to avoid the initial decay of the velocity at early times
due to the loss of kinetic energy of the particles by moving along the y axis through a fluid streaming in the opposite
direction (Junk et al., 2010).
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is being smoothed out continuously, and therefore comparing the wavelength of the perturbation
with the diffusion length at ¢ = 7¢y is somewhat arbitrary.

For the second estimate, we assume that the effect of viscosity dominates when the viscous
dissipation time-scale, which is given by 7, = d?/v, is shorter than the KHI time-scale Tgy. As
mentioned before, the KHI is suppressed if 4 < 10d, so we can write d as d = 1/10. Now, if we
compare both time-scales, we get

TKH > Ty (4.10)

A (pr+p) A
Avy (p1p2)t? 100y
12

(4.11)

AAvy (p1 p2)
100 (p1+p2)

Under these assumptions, the critical value of viscosity is four times bigger than before, leading
to vcrir = 48.27. This threshold correlates much better with our results and is in the range of
values we measured.

Finally, we made a third estimate assuming that the instability is suppressed when it reaches
its maximum height and the width of the x-velocity gradient is bigger than the height of the roll.
The roll usually reaches a height of 1/2 at t = 7gyy, so this means that at t = gy the width of the
x-velocity gradient must be larger than 4/2

YV > V(Crit = (412)

A

5 < ZD(TKH) = 2\/VTKH (413)
2
L, A lptp) 4.14)
16 Avy (p1 p2)'/2
AAvy (py p2)'?
4= . 4.15

This gives us a value of v¢yiy = 301.70, which is too large for our simulations. This can be due to
the fact that we assumed that the maximum height is reached at r = 7xy;. However, by considering
the ideal case on the top panel of Fig. 4.3 (dark blue line), one can see that the maximum is
reached at later times. If, for example, instead of considering that the maximum height is reached
att = Ty, we consider that it is reached at t = 27y, the value for the critical viscosity is reduced
by half.

Additionally, we do an extra estimate depending on the exact smoothing of the x-velocity
gradient. As explained in appendix 2.2, the x-velocity gradient is smoothed out following
equation (2.4). In our case, we do not have fixed plates moving at constant velocities, which
means that the particles at the boundaries will progressively slow down, and the theoretical result
will not be valid anymore.

The more viscous the system is, the faster the system will move away from the initial state of
the Rayleigh problem. Assuming that the instability is not suppressed if at + = 7gy the system
still follows equation (2.4), i.e., the particles at the boundaries still move at their initial v, one
can estimate the maximum viscosity that allows this behavior.
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We also assume that our boundaries correspond to the particles at d = +4/2, which is the
height that the rolls are expected to reach. Only at r = O the particles move exactly at the initial
x-velocity, so in order to do this calculation, we consider three different cases: we consider that
the particles still move at their initial v, when they move 10% slower than the initial vy, when
they move 1% slower and 0.1% slower. After this computation, we got

1. 10% slower — vy = 66.02
2. 1% slower - verie = 45.00

3. 0.1% slower — vy = 33.97.

Given the values obtained by these estimates, we can see that the results we obtained for the
viscosity threshold are in agreement with what we have estimated. These estimates were made
using very general and ideal assumptions, and we cannot rely much on the exact value we got.
However, we can observe that our results are in keeping with theoretical expectations.

4.5 Energy Conservation

As the simulation runs, the friction between particles produces a loss of kinetic energy, turning it
into internal energy, and since the domain is a closed system with periodic boundary conditions,
the total energy has to be conserved as a function of time. To test how well the code conserves
energy, we compute the mass-weighted mean of kinetic energy per unit mass of the whole
simulation domain and the internal energy per unit mass of the system.

In Fig. 4.4 we show the variation of the internal (top panel) and kinetic energy (bottom panel)
of the system normalized to the initial total energy for each run. For higher values of viscosity,
there is more friction between particles, and more kinetic energy is turned into internal energy.
The symmetry between the two panels shows the conversion of kinetic into internal energy and
the conservation of energy of the system. By summing up the two values to compute the total
energy, we find that the runs with physical viscosity conserve 99.992% of the total energy and the
run without physical viscosity the 99.986%. We note that, while energy is largely conserved in
both cases, the performance of the runs with viscosity in terms of energy conservation is slightly
improved.

4.6 Total Viscosity

Finally, we measure the actual viscosity of the system and compare it to the theoretical input
viscosity. For the computation of the effective viscosity, we follow the method explained in
appendix C. After computing the total viscosity of our simulations and calculating the average
value for different times, we find small standard deviation errors (~ 1%, with the highest error
being 5.45% in the least viscous case®), meaning that the results are consistent in time. These
results can be seen in Table 4.1.

The relative errors are calculated dividing the standard deviation by the value and multiplying by 100.



72 4. The Role of Physical Viscosity in Hydrodynamical Instabilities

0.01

0.005

0.0025

0.0

-0.0025

-0.005

AK/E,

-0.0075

-0.01
0.0 0.5 1.0 1.5 2.0

t/TKH

Figure 4.4: Top panel: Variation of the mean internal energy per unit mass normalized to the
initial total energy. Bottom panel: Variation of the mean kinetic energy per unit mass normalized
to the initial total energy. The runs with a higher viscosity transform more kinetic energy into
internal energy, and the symmetry of the two plots demonstrates the conservation of energy in all
the runs. We use the same color code as the previous plot (Fig. 4.3).

To see the correlation between the theoretical (input) value and the actual (from the fit) value
of viscosity for the different runs, we plot the viscosity we obtained numerically versus the
theoretical one in Fig. 4.5. For comparison, we show the cases with Nyg, = 150 and Npgp = 295.
Since they are expected to be the same, we would expect a relation with a slope of 1 and the
intercept at y = 0 (black dashed line). Hence, we fit our points to a linear function. In the case of
Nygb = 295, the data follows a linear trend with a slope of 1.001631 + 0.000013, which is what
we could expect, but an intercept of 1.3 + 0.3, meaning that the actual viscosity of the system
is slightly higher than the theoretical one. This deviation becomes more relevant in the case of
Niygb = 150, where the slope is 0.973146 + 0.000009, also close to one, but the intercept is higher
than in the previous case. In this case, the intercept is 7.04 + 0.17, showing a systematic shift
upwards. This systematic increase is likely due to the intrinsic numerical viscosity of the code,
which is acting alongside the physical, Spitzer-type viscosity that we implemented in the code.
This would explain the effective larger viscosity for Npep, = 150 vs Nygp = 295, indicating that
Nygp = 150 introduces more numerical viscosity in the system than Nyg, = 2957, This result
indicates that, when the physical viscosity is low enough (< 2.5 - 10~ in the case of Npep = 150
and < 107* in the case of Nngp = 295, see Table 4.1), the system will be governed by the intrinsic
viscosity of the code over the physical viscosity implemented.

"Note that the recommended amount of Nygp for a Wendland C® kernel is Nygb = 295 (Dehnen & Aly, 2012;
Price et al., 2018).
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Figure 4.5: Numerical computation of the total viscosity of the system against the theoretical
viscosity we implement. One would expect a one-to-one relation (black dashed line). In the run
with Nygp = 295, the data follows a linear function with a slope of 1.001631 + 0.000013, but an
intercept of 1.3 + 0.3, which is slightly higher than the one expected. In the case of Ny, = 150,
the slope is 0.973146 + 0.000009 and the intercept 7.04 + 0.17, which corresponds to a shift
upwards of the data.

4.7 Conclusions

In this Chapter, we carried out a detailed investigation on how physical viscosity affects the
behavior of the KHI in the linear regime. The results found can translate into a significant impact
in the non-linear regime, and as a consequence, the development of turbulence and mixing in the
ICM.

To study the role of the physical viscosity, we computed the amplitude of the KHI billows,
showing that the instability cannot grow in a highly viscous fluid, but the height of the rolls
increases when the amount of viscosity decreases. By measuring the evolution of the y-velocity,
we found a viscosity threshold (= 1073 57) where, for viscosities higher than this threshold, the
KHI is fully suppressed and for smaller amounts of viscosity the instability is able to grow
exponentially. We computed the threshold numerically and compared it with three different
theoretical estimates and one numerical estimate, concluding that the threshold computed from
our simulations is in agreement with these estimates. In terms of energy conservation, the higher
the viscosity in the simulations is, the more kinetic energy is turned into internal energy. In this
process, the code is always conserving more than 99.99% of the total energy.

Additionally, we measured the actual viscosity of the system and compared it to the theoretical
viscosity we had implemented, observing that the effective viscosity of the system tends to be
higher than the one we implemented. This effect could be explained if the intrinsic viscosity of
the code is taken into account, meaning that the total viscosity of the system we simulate is not
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only the physical viscosity we implement, but the intrinsic viscosity of the code contributes as
well. This contribution is also dependent on Nygp, where the case with Nyg, = 150 shows a larger
contribution compared to the run with Ny, = 295.

In summary, OPENGADGET3 successfully reproduces the expected reduction of the growth
rate of the KHI in the presence of physical viscosity and recovers very well the threshold level
of physical viscosity needed to fully suppress the instability. In the case of galaxy clusters with
a virial temperature of 3 x 107 K, this level corresponds to a suppression factor of ~ 107> of the
classical Spitzer value for instabilities with 4 = 128 kpc wavelength. The intrinsic, numerical
viscosity of our SPH implementation corresponds to a value smaller by an order of magnitude
(i.e. ~ 107*7) within an ICM environment. All the tests presented are re-ensuring that modern
SPH methods are suitable to study the effect of physical viscosity in galaxy clusters.

Appendix A: Amplitude of the Rolls

The method employed to compute the height of the rolls is similar to the one described in Roediger
et al. (2013b). We focus only on the upper half of the domain (since the domain is symmetric,
we choose only the upper half, and therefore, the total number of particles is reduced by half).
Then we mark every particle depending on whether they are “red” (denser fluid) or “blue” (lighter
fluid) at # = 0 so we can trace them later. Once we have marked every particle, we divide the half
domain into 100 bins along the y direction and calculate the number of “red” and “blue” particles
in every bin for every snapshot. The top of the billow will correspond to the lowest bin, where at
least 95% of the particles are “blue”, while the bottom will be the highest bin with at least 95% of
“red” particles. Finally, we compute the amplitude of the roll by calculating the distance between
the top and the bottom of the billow for every snapshot.

Appendix B: Growth of the Velocity

We use the discrete convolution suggested by McNally et al. (2012) to compute the amplitude M
of the initially excited mode. We have adapted the formula to our ICs, leading to

27 (x + 4 2
s; = vyhf’ sin (%) exp (—Tﬂ |64 — yI) (B1)
27 (x + 2 2
ci =vyh? cos (%) exp (—Tﬂ |64 — yl) (B2)
2
d; = 13 exp (—7ﬂ|64—y|) (B3)

2 2
M=2 5\;1 Si l]'\il Ci (B4)
= —+ s
ilil di i[il di



4.7 Conclusions 75

le-3x 7

10 =0

+ t=037xn
v = 33.75
+  t=0.61xy
v = 34.52
20 + t =107y
34.77
1.27xn

30

v
+ t
v = 34.56

t = ldrgy
v = 34.22

Vg

—60 —40 —20 l‘) 20 40 60

Figure C1: Fit of the analytic formula (2.4) to our data for the computation of the kinematic
viscosity for the different simulations. It starts from a discontinuity in the x-velocity profile at
t = 0 and, as time passes, the x-velocity gradient is smoothed out by viscosity. The crosses
represent our data, and the solid lines the fit of the analytic function, coded by different colors for
different times.

where #; is the smoothing length, A the wavelength of the perturbation and N is the total number
of particles in the domain. For the computation of M, we used only one quarter of the full domain
in order to take only one perturbation for the calculation.

Appendix C: Total Viscosity of the System

The effect of viscosity is to smooth out the velocity gradient between the two fluids by momentum
diffusion, and therefore, the more viscosity a system has, the more the gradient is smoothed out
and the more difficult it is to develop the instability (see §2.2). The x-velocity profile is smoothed
out following equation (2.4) (see Fig. C1, which shows the velocity gradient at different times).
In order to calculate the intrinsic viscosity of the system, we simulate our two fluids without any
initial perturbation and we fit the analytical function (2.4) to our data at different times with the
kinematic viscosity as a free parameter. To do so, we use only the top half of the full domain
and we displace it to set the interface at y = 0. We then divide the half domain into 127 bins and
compute the mean x-velocity of each bin at five different times. Finally, we calculate the average
value of the five fits in order to get a value for the total viscosity of the system.
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5 The (Limited) Effect of Viscosity in
Multiphase Turbulent Mixing'

In Chapter 4 we quantified how physical viscosity can suppress the growth of instabilities in
idealized shear layers, identifying a critical threshold beyond which the KHI is fully suppressed.
The results found indicated a potential impact on the non-linear evolution of the instability, and
therefore the development of turbulence, although it was not studied in detail. In this Chapter,
we study the effects of viscosity in turbulence and mixing, also introducing radiative cooling. By
exploring how viscosity modulates both the development of turbulence and radiative losses, we
aim to determine under which conditions multiphase structure is maintained or disrupted, and
how these processes shape the thermodynamic evolution of gas in the CGM and ISM.

Multiphase gas can be found in many astrophysical environments, such as galactic outflows,
stellar wind bubbles, and the CGM, where the interplay between turbulence, cooling, and viscosity
can significantly influence gas dynamics and star formation processes. In this Chapter, we aim
to determine how different amounts of viscosity affect the KHI, turbulence evolution, and the
efficiency of gas mixing and cooling. Using idealized 2D numerical setups, we compute the
critical viscosity required to suppress the KHI in shear flows characterized by different density
contrasts and Mach numbers. These results are then used in a 3D shear layer setup to explore the
impact of viscosity on cooling efficiency and turbulence across different cooling regimes. We find
that the critical viscosity follows the expected dependence on overdensity and Mach number. Our
viscous TRMLs simulations show different behaviors in the weak and strong cooling regimes. In
the weak cooling regime, viscosity has a strong impact, resulting in laminar flows and breaking
previously established inviscid relations between cooling and turbulence (albeit leaving the total
luminosity unaffected). However, in the strong cooling regime, when cooling timescales are
shorter than viscous timescales, key scaling relations in TRMLs remain largely intact. In this
regime — which must hold for gas to remain multiphase — radiative losses dominate, and the system
effectively behaves as non-viscous regardless of the actual level of viscosity. Our findings have
direct implications for both the interpretation of observational diagnostics and the development
of subgrid models in large-scale simulations.

I'This Chapter was submitted for publication to A&A (Marin-Gilabert et al., 2025).
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5.1 Numerical setup

In this Chapter, we perform our simulations using the code ATHENA (Stone et al., 2008), which
is well suited for hydrodynamics simulations (see §3.2). We use the HLLC Riemann solver, a
second-order reconstruction with slope limiters in the primitive variables, the van Leer unsplit
integrator (Gardiner & Stone, 2008), a Cartesian geometry, and an adiabatic EOS with y = 5/3.
In all our simulations, we keep the shear viscosity coefficient (17) constant, to simplify the analysis
and understand the effect of viscosity in the most simple way?.

5.1.1 Adiabatic 2D simulations

To better understand fluid dynamics and the effects of viscosity while reducing computational
costs, two different 2D setups are used without cooling. These provide a more controlled
environment compared to a chaotic 3D system, while allowing us to study the KHI in detail. The
first setups explore how critical viscosity depends on overdensity and Mach number by varying
viscosity across different overdensity and Mach number values.

We describe each 2D setup in detail below.

The planar slab

To understand how the critical viscosity at which the KHI is suppressed changes as a function of
the overdensity, we use a modified version of the numerical setup suggested by Lecoanet et al.
(2015), which provides a benchmark for the growth of the KHI in grid codes. We create a 2D
domain with a resolution of 320 X 320 in the £ and § directions, respectively, with periodic
boundary conditions with dimensions L, = 256 and L, = 256. The density and velocity profiles

satisfy:
a— + J—
0 = Phot + pcold2 Phot [tanh (y ylnt) _ tanh (y yInt)] , (51)
a a
+ —
Vi = —Vepear X [tanh (y Y I‘“) _ tanh (w) - 1] . (5.2)
a a

Phot 18 a fixed value for all our simulations, and we modify pc.q as we change the value of
overdensity. yp,; = 64 indicates the position of the interface between the two fluids, and vgpe,y 1S
the shear velocity of each fluid, i.e., the relative motion can be expressed as My = 2Vghear/Ce hot-

In this setup we keep M, = 0.34 constant, as well as To1q = 10* K, while Tjo will be given
by the overdensity to ensure pressure equilibrium in the whole domain. The value of a = 1/10
ensures smooth initial conditions, fundamental for the growth of the desired instability mode
without spurious secondary instabilities in grid codes. 4 = 128 indicates the wavelength of the
perturbation used to trigger the instability. We use the initial perturbation described in equation
(4.6).

To study how the critical viscosity changes with the overdensity of the system, we use
different values of y = pcold/pPhot from 1 to 100, and we test different values of viscosity for each

2For a discussion on the effect of temperature-dependent viscosities, see §5.2.4.
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overdensity. For reference, the Spitzer viscosity value of a fluid with 7 = 10° K is nsp = 0.11g(cm
s)~!, which corresponds to nsp = 1809.28 in our unit system.

The planar sheet

When increasing the Mach number, body modes caused by pressure waves moving across the
domain between the stream boundaries appear in the planar slab setup (Mandelker et al., 2019).
To avoid this, we modify our initial conditions to study the dependence of the critical viscosity
as a function of the Mach number. We use a similar setup as before, but with just one interface
between the two fluids at y1, = 0. The density and velocity profiles read:

1
o=~ x [pcold (1 — tanh (X)) + Phot (1 + tanh (X))] , (5.3)
2 a a
B y
Vi = Vehear X tanh (—) , (5.4)
a

and the initial perturbation:

vy = =0V, sin (M) exp (— (X)z) . (5.5)

(o

With this setup, we want to study the dependence of the critical viscosity on the Mach number.
Therefore, we keep constant y = 10 and we modify v¢pesr in order to have values of Mach number
ranging from 0.01 to 1.8. As with the previous setup, we test different values of viscosity for each
Mach number to identify the critical viscosity in each case.

5.1.2 3D simulations: Turbulent Radiative Mixing Layers

Once we have obtained the value for the critical viscosity in a system with an overdensity of 100,
we make use of this value to study how different values of viscosity affect a TRMLs system. For
a proper development of turbulence, a 3D setup is needed, therefore, we use a modified version of
the setup suggested in Ji et al. (2019), where the density profile is the same as in equation (5.3),
but the velocity profile is:

vy = 2 |1~ tanh (‘2)] : (5.6)

and the initial perturbation:
2 2 2
vy = 0V, sin (%) sin (%) exp (— (g) ) . 5.7)

In this case, vghear corresponds to the velocity difference between the media, where the
lower (colder) medium is stationary and the upper one moves at vghear. We use a Mach number
of My = 0.5 and 6vy = Vgpear/100. In this case, our domain is ten times larger in the y
direction, whereas in the £ and Z directions it is equal to the wavelength of the perturbation
L, = 10L, = 10L; = 104. We keep the hot gas density and the cold gas temperature constant,
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Phot and Tiolg = 10* K, respectively. In this setup, we use a fixed overdensity y = 100 (i.e.,
Thot = 10° K). The resolution is the same as in Das & Gronke (2023), consisting of 64 X 640 x 64
in the X, § and Z directions respectively, with outflow boundaries in the y direction and periodic
boundaries in X and Z.

We use the Townsend radiative cooling algorithm (Townsend, 2009) (as, e.g., in Gronke
et al., 2021), with a solar metallicity cooling curve (Sutherland & Dopita, 1993, Fig. 1.7) and
a Thoor = 10* K. Unlike Tan et al. (2021), we do not modify the cooling strength. Instead,
we modify the wavelength to have different values of Damkohler number (see §1.4.5). Since
Da = tub/teool, and fyrh < A (see equation (1.38)), by varying the wavelength (and also the size
of the box) we get different values of Da. We run a total 12 simulations with different Da for each
amount of viscosity, from Dap,jx ~ 2.3 X 1073 to Dayix =~ 1.1 x 103, where the temperature of the
intermediate mixed gas chosen to compute the cooling time is Tiyix = 2 X 10° K (to be consistent
with Tan et al., 2021). The values of Da are calculated assuming that #y,+, ~ Tgg. In the presence
of cooling, the box is filled with cold gas, causing the mixing layer to leave the domain, especially
in the strong cooling regime. To prevent this, we calculate the velocity at which the box is being
filled with cold gas and add a velocity in the opposite direction to the whole box, following Das
& Gronke (2023).

5.2 Results

5.2.1 Critical Viscosity vs Overdensity

We provide an analytical estimate for the critical viscosity in a KHI setup in §4.4.2 (in this Chapter
we only use the second estimate described in §4.4.2, equation (4.12)), based on the growth time
of the KHI and the viscous time. Numerically, this critical viscosity is computed by measuring
the growth or decay of the instability within 17y (see appendix B for details).

The analytical estimate presented in §4.4.2 sets a criterion for the kinematic viscosity (v).
However, in our simulations, we use a constant dynamic viscosity (1) for both fluids. In a
multi-fluid system with different densities but the same 7, each fluid will exhibit its own v.
Therefore, to be able to compute the critical 7 for our setup, it is necessary to define an appropriate
average of these v to find a general ¥ of the whole system. Thus, for a system characterized by a
single dynamic viscosity (77), two densities (pp and p.), and consequently two different kinematic
viscosities (v, and v.), we define an averaged kinematic viscosity using the harmonic mean:

Vo=,  ye=-L, (5.8)
Ph Pc
N 2 2 2
oo il _ 21 I —— (5.9)
Zipi Pnt+ Pc E+V_c V_h+V_c

which is equivalent to a density-weighted mean:

7= VhPh + VePe — 277 (510)

Ph + Pc Ph+pPc




5.2 Results 81

104

Low density

High density
Arithmetic mean

Harmonic mean

100,

T)Crit / 7Isp

H
<
L

1072}

00 107 10
X

Figure 5.1: Dependence of ncyj; on the overdensity y. The red dots show the numerical results;
the blue line shows the theoretical expectation assuming that only the low density is relevant
for kinematic viscosity; red line that only the high density is relevant; green line assuming an
arithmetic mean of kinematic viscosity between the fluids; and black line a harmonic (weighted)
mean. Note that we normalized the values of viscosity to the Spitzer value at 10° K.

With the harmonic mean, we can express the value of critical dynamic viscosity using
expression (4.12) as
o A pn ths,cold/\/
ncrit = 200 s

where the wavelength (1), the density and Mach number of the hot gas (pn, My) and the
soundspeed of the cold gas (cs ¢o1q) are kept constant.

Previous studies have tested the critical viscosity estimate for different overdensities, but
the results deviated from the predictions at high overdensities since they did not consider the
difference in momentum (e.g. Esch, 1957; Roediger et al., 2013b). For high overdensities, each
fluid carries a very different momentum (inertia) that viscosity needs to compensate for. By using
a harmonic (weighted) mean, we are taking this effect into account.

To test the dependence of a critical viscosity on the overdensity y, we run different simulations
changing the value of y and measure the critical viscosity in each case, using the planar slab
setup described in §5.1.1. Since we use a unique dynamic viscosity in our setup, we quantify
the critical dynamic viscosity (equation (5.11)). Fig. 5.1 shows the numerical results (red dots)
normalized to the Spitzer value of viscosity at 7 = 10% K, together with different methods to
average the kinematic viscosity besides the harmonic mean (black line): considering only the low
density fluid v = n/py (blue line); considering only the high density fluid v = n/p. (red line);
and doing an arithmetic mean v = (v + v.)/2 (green line).

The cold medium becomes denser when the density contrast increases. This has two effects:
(i) the cold medium has a much lower kinematic viscosity v, = n/pc. (ii) The cold medium

(5.11)




82 5. The (Limited) Effect of Viscosity in Multiphase Turbulent Mixing

carries much more momentum than the hot medium. For the high overdensity flows y > 1
we consider, it is a good approximation that the viscosity of the cold gas is negligible (as we
show explicitly in §5.2.4, the hot gas viscosity is what matters), but that it contains almost all
the momentum. Thus, the critical viscosity increases with overdensity, 77¢i; o« x (equation (5.11)
and Fig. 5.1), because the total momentum in the flow is higher and stronger friction is required
to have an effect’.

From the values of critical viscosity obtained and using the harmonic mean, we can compute
their corresponding Reynolds number as

A Vshear _ AVshear (On + Pc) 1+yx

= =100

) (5.12)
VCrit 21 Crit b% 1/2

Recrit =

1/2

1.e., Recrit = 100y '/~ for large y.

5.2.2 Ciritical Viscosity vs Mach Number

According to our analytical estimate, the critical viscosity depends linearly on the Mach number
for a given overdensity (see equation (5.11)). To test this relation, we run different simulations
varying My while keeping y = 10 fixed, and we measure the critical viscosity in each case, using
the planar sheet setup described in §5.1.1. However, the theoretical analysis was made assuming
incompressible fluids, which is a good approximation for low Mach number, but breaks down at
high Mach numbers, where compressibility effects become significant.

When compressibility is taken into account, the classical dispersion relation of the KHI
derived from linear analysis is not valid anymore (Landau, 1944; Landau & Lifshitz, 1987).
Instead, the dispersion relation for compressive fluids in a planar sheet is

[)((w -1)?%- wz] . [X(w — 1)2(/\/(}21132 -1)- wz] =0, (5.13)

where @ = w/kAvghear (see Mandelker et al., 2016 for details).

The two roots of the quadratic part of the equation are always real, therefore, they do not
describe the growth of the KHI. Two of the four roots in the quartic factor are also real, while two
are complex conjugates. We take the imaginary part of both complex conjugates, which describe
an exponential growth (positive sign) or decay (negative sign) of the instability. The positive
imaginary numerical solutions of equation (5.13) for y =5, 10, 100 are shown in Fig. 5.2.

In the case of y = 10, the instability grows (positive Im(w@)) for My < 1.77. Above this
critical value of Mach number (Mcyi), the solution becomes real and the KHI is stable (vertical
dashed lines in Fig. 5.2). The general solution for Mgy is given by (Mandelker et al., 2016)

3/2
Mo = (1 +X—‘/3) . (5.14)

The value of Mcyj for y = 10 is computed numerically in Fig. 5.3 for non-viscous fluids using
the method described in appendix B4, finding a Mcyie = 1.65 £0.5.

3Note that in §4.3 we averaged by doing an arithmetic mean. However, at low overdensities (y = 2), the
differences with a harmonic mean are small.
“The method in grid codes is slightly different than SPH codes. See McNally et al. (2012) for details.
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Figure 5.2: Numerical solution for the values of Im(w) of equation (5.13) as a function of My
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Figure 5.3: Growth of the KHI with time for y = 10, color-coded by My,. The solid lines indicate
the simulations in which the KHI is still unstable and the dash-dotted lines where the instability
is suppressed (values above Mcy), finding a Mcyje = 1.65 +0.5.
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For My > Mcri, the instability is suppressed and the growth rate decays. An intuitive
explanation for this is that when the instability starts growing, areas of high and low pressure are
formed around the perturbation at a rate of approximately the sound-crossing time. These areas
feed the instability, leading to its growth. At large Mach number, the shear motion of the fluids
is faster than the soundspeed, preventing these areas of high and low pressure from forming and
leading to the flattening and stabilization of the wave.

For My > Mcryit, the instability is fully suppressed by the compressive nature of the fluids,
and the viscosity needed to keep the system stable is zero. Therefore, there is a transition from the
incompressible limit where the suppression is dominated by viscosity to the compressible limit
set by Mcrit. An analytical solution for ncyi¢ as a function of My, can be estimated in a similar
way as in §4.4.2, but for compressible fluids.

In the incompressible limit (My — 0), the positive imaginary solution of equation (5.13)

yields
VX VX

Im(w) = , Im(w) = kAv , (5.15)
(x+1) (x+1)
recovering the KHI time scale (equation (4.4)), which in its general form is defined as
2 2
_— ” dl (5.16)

- Im(w) - kAVhear Im (@) .

By using the numerical solution for Im(z) (shown in Fig. 5.2) and evaluating 7xg > 7, (i.e.,
the same analysis as in §4.4.2 for the incompressible case), we obtain an analytical solution for a
critical viscosity in the compressible case:

A pn ths,cold\/)_( (X + 1) Im(w)
200 '

Ncrit = (5.17)

Fig. 5.4 shows the analytical estimate of 7ci;, normalized to the Spitzer value at 7 = 10°K, as
a function of My, for incompressible fluids (black dashed line) and for compressible fluids (blue
dashed line). The red data points are the numerical values of 7cyi; obtained from the simulations.
Although the fit is not perfect due to the large assumptions made in the estimate, the initial growth
at low My, and the decay when My ~ Mgy match the theoretical estimate. However, there is a
drop at My ~ 1, indicating that the KHI becomes stable at transonic speeds. Although the origin
of this drop is not clear, one possibility is that higher order modes of the KHI have different values
of ncric. We will explore this purely adiabatic suppression in future work.

5.2.3 Turbulent Radiative Mixing Layers

To study how viscosity affects the TRMLs, we make use the value of critical viscosity and
Reynolds number obtained in §5.2.1 for y = 100: ncyie = 6425 + 25 and Recyj = 248.6 + 2.4
respectively. In terms of Spitzer viscosity, the critical viscosity measured corresponds to ncyj; =
3.55msp at a temperature of T = 10% K. We express the amount of viscosity in our setup as a
function of the critical viscosity needed to suppress the instability. Using the 3D setup described
in §5.1.2, we run a simulation with no viscosity for each Damkohler number Da (labeled as “No
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Figure 5.4: Dependence of 1y with the Mach number M. The numerical results (red
dots) deviate from the analytical incompressible 1¢it(My) (equation (5.11), black dashed line).
However, this is corrected by taking into account the suppression due to high My, (equation (5.17),
dashed blue line). Note that we normalized the viscosities to the Spitzer value at 10° K.

Table 5.1: Simulations of viscous, radiative mixing layers.

Label  Fraction of ncyi Re Spitzer Fraction
No visc - - -
0.057¢rit 5% of ncyit 4972 + 48 0.187sp
0.177Crit 10% of T Crit 2486 + 24 O.367]Sp
0.57¢rit 50% of ncrie 497.2 +£4.8 1.78nsp

visc”), with 5% of the critical viscosity (“0.051¢yic”"), 10% of critical viscosity (“0.1ncyi”) and
50% of critical viscosity (“0.51¢yi;””). Although the definition of critical viscosity considers only
the growth of the KHI within 17xp, in this section we run the simulations for longer times for the
proper development of turbulence. The set of simulations with different viscosities, as well as
the value of the Reynolds number in each case, are shown in Table 5.1.

It is important to note that in the No visc run, although we do not include any explicit physical
viscosity, there is still numerical viscosity given by resolution. Since our resolution consists of
64 X 64 in the £Z plane and the length of the box is L, = L, = 4, the cell length is Ax = 1/64,
which sets the Kolmogorov scale of our No visc runs. The runs with explicit viscosity set the
Kolmogorov scale at larger values, given by the percentage of critical viscosity taken in each case.
Since we have not included explicit thermal conduction, the Field length of thermal conduction is
given by 6 = Ax = 4/64. This allows us to explore the Karlovitz number (cf. §1.4.5) parameter
space from Ka = 1 (No visc run) towards smaller values of Ka.
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Front Morphology

Fig. 5.5 shows how viscosity affects mixing in the different runs for Dapjx < 1 (weak cooling,
top panels) and Day,ix > 1 (strong cooling, bottom panels). Each panel shows a temperature
slice through the box, centered at the interface between the two fluids at t = 2.57¢y. In the
weak cooling regime (low Da, top panels), turbulence has developed in the run without explicit
viscosity, whereas it is more suppressed the more viscous the mediums are (left to right).

It is important to note that the computation of critical viscosity is done during ¢ < 7kq,
but naturally, viscosity is affecting the fluid movement for the entire simulation. This implies
that, although during ¢ < gy the instability can grow (n < ncyi), it might eventually lead to a
quasi-laminar flow. This can be seen in the top right panel of Fig. 5.5, where a laminar regime
has already been reached.

In the strong cooling regime (high Da, bottom panels), the results look similar regardless of
the amount of viscosity. In all cases, the hot and cold media are clearly separated, and the front
consists of (approximately) one cell only. Surprisingly, unlike in the weak cooling regime, the
simulations show some movement in the interface independently of the amount of viscosity. This
will be analyzed in §5.2.3.

Effect of Viscosity on Cooling Efficiency

The luminosity of turbulent radiative mixing layers is predominantly due to enthalpy flux (i.e.,
mass conversion from hot to cold medium) and not due to dissipation of kinetic energy (cf. Ji
et al., 2019; Tan et al., 2021). We checked that this is also true in the case with viscosity (cf.
appendix D), specifically also that viscous heating plays a negligible role.’

To study quantitatively the difference in results with and without viscosity, we measure the
surface brightness Q in each case for each Dapx. This surface brightness is calculated by
measuring the total luminosity of the box L, and dividing it by the area of the interface
Q= Lrad//lz)-

Fig. 5.6 shows the effect of viscosity for the simulations with the weakest cooling (left panel)
and the simulations with the strongest cooling (right panel) considered. Note that the dark blue
lines correspond to the No visc run, considering the estimated numerical viscosity. Although
visually viscosity suppresses the development of turbulence in the weakest regime (see top panel
of Fig. 5.5), the surface brightness obtained after several gy is very similar in all cases.

In the case of strong cooling (right panel of Fig. 5.6)° the differences become larger, with an
increase of Q with viscosity. This might be counter-intuitive if one thinks of viscosity suppressing
the turbulent movement and, therefore, the cooling process. This will be analyzed in more detail
in §5.2.3.

Fig. 5.7 shows the relation between surface brightness and Da (equation (1.39)).
Our simulations without viscosity reproduce the expected broken powerlaw behavior (cf.

>We checked that viscous dissipation (RHS of equation (2.18)) contributes negligibly to Q by switching off the
relevant terms explicitly and found no differences in the overall cooling.
6Since for Damix > 1, feool < TkH, We run the simulations for less Kelvin-Helmholtz times.
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Figure 5.6: Evolution of the surface brightness due to cooling in the mixing layers. Left panel:
Evolution of Q color-coded by viscosity in a very weak cooling regime with Day;, ~ 2.3 x 1073,
Right panel: Evolution of Q for different viscosities in a very strong cooling regime with
Dapiy =~ 1.1 x 10%.

equation (1.39)) with the change of regime from weak to strong cooling occurring at Day; =~ 17.
Although in the weak cooling regime the differences are small, in the strong cooling regime,
viscosity leads to larger values of Q. This implies that the transition from weak to strong cooling
regime is shifted towards larger values of Dap,jx when increasing the amount of viscosity.

In summary, both Figs. 5.6 and 5.7 reveal two counter-intuitive behaviors: while we expect
viscosity to suppress the mixing process and, thus, the amount of intermediate temperature gas
available for cooling, we find (i) for the weak cooling regime a mass transfer rate between the
phases independent of viscosity, and (i) for the strong cooling regime even an increased rir with
larger values of viscosity. This implies that either the naive expectation of how viscosity affects
turbulence is wrong, or the u’-Q relation is changed due to viscosity. We will explore this by
analyzing the turbulence inside the mixing layer in the next sections.

Effect of Viscosity on Turbulence

From visual inspection of Fig. 5.5, viscosity seems to suppress turbulence in the weak cooling
regime, but not in the strong cooling regime. To test this in a quantitative way, we compute
the turbulent velocity in our domain following Tan et al. (2021), i.e., to avoid the effect of bulk
motions, we measure the velocity dispersion in the Z direction, by taking the maximum of v,
profile for each snapshot and then averaging over several Tgy®.

Fig. 5.8 shows relation (1.39), between Q and the turbulent velocity normalized to the cold gas
sound speed, color—coded by Dapix. To get rid of the Dayix dependence we normalize the value
of O to the value of Da as done in Das & Gronke (2023). Da is calculated from equation (1.38),
using the turbulent Ve1001ty measured from the simulations and @ corresponds to the index from
equation (1.39). By doing this normalization, Q/ Da” « u’. This relation is satisfied in the strong

cooling regime (Dapix > 1), regardless of the amount of viscosity. However, in the weak cooling

"The values for very weak cooling lie under the fitted line. This was also found in Das & Gronke (2023). For
this reason, for the fit we take the values of Dapyix > 5 X 1072,

81n this process, we also check the velocity dispersion in the £ and § direction after subtracting the bulk motions,
making sure that turbulence is isotropic.
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Figure 5.7: Surface brightness Q as a function of Day,x color-coded by viscosity. The darker
dashed line shows the best fit in each case in the weak cooling regime (Da < 1) with a slope of
a = 1/2. The lighter dashed line shows the best fit in each case in the strong cooling regime
(Da > 1) with a slope of @ = 1/4.

regime (Dapix < 1), the relation is satisfied for the No visc (circles) and 0.057cy (triangles)
cases. The turbulent velocity of the runs with 0.17¢j; (squares) is one order of magnitude lower
than expected, and the runs with 0.57n¢yj; (crosses), more than two orders of magnitude lower.

This result indicates that, as previously noticed by visual inspection in Fig. 5.5, viscosity
suppresses turbulence but does not reduce surface brightness. However, the suppression occurs
in the weak cooling regime, whereas in the strong cooling regime, the relation between Q and u’
is not modified. This is surprising, due to the weak dependence of u’ with Da («’ o« Da'/10, see
Tan et al., 2021).

We also tested this weak dependence of the cooling on turbulence explicitly and show the
results in Fig. 5.9. The simulations without viscosity fall on the u’ o« Da'/1° relation found in Tan
et al. (2021). In the weak cooling regime (Dayx < 1), the relation is not satisfied in the viscous
runs. The turbulent velocities drop until they reach the u” in adiabatic simulations, saturating
at this value (blue-dashed lines). The adiabatic system sets the floor for turbulent velocities
depending on viscosity.

In this weak cooling regime, the simulations show the expected behavior: the more viscous
the system is, the less turbulent it becomes. However, for larger values of Dapix > 1, all the runs
tend to follow the i’ o« Da!'/!0, j.e., the runs mostly exhibit a level of turbulence (a) much higher
than expected and (b) fairly independent of viscosity.

Furthermore, Fig. 5.9 also shows that the characteristic Damkohler number at which the
simulations follow the expected u’ oc Da'/!0 relation increases with increasing viscosity, i.e. the
runs with lower viscosity start following the relation at a lower Day,ix, while the more viscous
runs at a higher Dayx. In the strong cooling regime, all the simulations follow the u’ o Dal!/10
relation, suggesting that the effect of viscosity is reduced due to cooling.

Viscosity acts as a friction, reducing the velocity of the gas, therefore, it is expected to produce
lower values of turbulent velocity. However, two questions arise:
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1. Viscosity suppresses turbulence in the weak cooling regime (Da < 1) — as expected.
However, why is the amount of cooling only weakly affected (cf. Fig. 5.7), and therefore
effectively breaking the universal u’ — Q relation (cf. Fig. 5.8)?

2. On the other hand, viscosity has a weak effect on both the level of turbulence as well as the
amount of cooling in the strong cooling regime (cf. Figs. 5.8 and 5.9). This is particularly
puzzling, since turbulence only depends very weakly on cooling (cf. Fig. 5.9); thus, even
with very strong cooling, turbulence should not directly ‘overpower’ the effect of viscosity.

In the following two sections, we will discuss the two questions raised above subsequently.

Weak Cooling Regime

To address the first question, i.e., why for Da < 1 the cooling rate is not affected by viscosity (but
u’ is), we need to understand the behavior of a viscous gas in the weak cooling regime. Due to
the long cooling time, the gas behaves similarly to an adiabatic gas, which has been previously
studied in detail (e.g. Roediger et al., 2013b; Marin-Gilabert et al., 2022). Viscosity smooths
out the shear velocity gradient and suppresses the growth of instabilities, leading to a reduced
turbulent velocity (see the top panel of Fig. F1, and Chapter 4). However, if turbulence is not the
driver for mixing, why is Q of the same order of magnitude regardless of the amount of viscosity?

When viscosity is strong enough, the instabilities are suppressed, leading to a laminar flow,
rather than a turbulent flow. The theoretical relation in Fig. 5.8 assumes turbulent mixing (e.g.
Damkohler, 1940; Shchelkin, 1943), therefore it is not surprising that for high viscosities the
simulations do not follow the expected relation. Viscous diffusion dominates over convection and
cooling, increasing the thickness of the interphase, producing that the theoretical analysis fails
(e.g. Klimov, 1963; Libby & Williams, 1982). Although the viscous runs present a laminar flow,
the amount of gas at intermediate temperatures where the cooling curve peaks is similar among
the viscous cases (see top row of Fig. E1 in appendix E). The non-viscous case leads to a higher
amount of intermediate temperature gas due to turbulent mixing. However, the long cooling time
in the weak cooling regime produces a bottleneck effect, which explains the constant Q obtained,
despite the different diffusion mechanisms. Note that our criterion for critical viscosity is defined
within 17gy, but our simulations in the week cooling regime are run until 507gy. This means
that, although within 17gy the instability might grow, the system might become laminar after
several Tkgy.

Strong Cooling Regime

To answer the second question, i.e., why neither u” nor the cooling is strongly affected by viscosity
for Da > 1, we need to study in detail the strong cooling regime. Viscosity is expected to reduce
turbulence, although in the strong cooling regime, the Q — u’ relation follows the analytical
expectations from turbulent theory. So if viscosity is expected to suppress turbulence, why is u’
similar in all cases regardless of the amount of viscosity?

In the strong cooling regime, cooling acts much faster than turbulent mixing, cooling quickly
all the intermediate gas and producing a front where cooling occurs that is ~ 1 cell thick. As
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a consequence, cooling tends to keep the temperature profile sharp and, if the system is in
pressure equilibrium, also the momentum and shear velocity profiles. This is the opposite effect
to viscosity, which tends to smooth out the shear velocity gradient. This produces that, in the
strong cooling regime, cooling dominates over viscosity, keeping the shear velocity profile sharp
and, as a consequence, being able to induce turbulence in a similar way as the non-viscous case
and reducing the effect of viscosity (see Fig. F1 in appendix F).

Keeping the shear profile sharp leads to continuous Kelvin-Helmholtz instabilities forming
(see Chapter 4), and hence to turbulence, as we can see in the top panel of Fig. 5.10, where
we show the dependence of turbulence with the scale d at which the shear velocity profile is
smoothed after t = 1.257ky (see appendix G for details). For No visc and 0.05ncyj, d is always
small, producing larger values of u’ (i.e. turbulence). For the cases of 0.17¢yjt and 0.57¢y, the
weak cooling regime results show the effect of viscosity in smoothing out the gradient (large
values of d), leading to a low u’. However, in the strong cooling regime, the shear velocity
gradient becomes sharp (low values of d), inducing turbulence. In summary, while cooling does
not (strongly) affect the turbulence directly, it sharpens the density gradient required to seed KHI,
and hence combats the smoothing effect of viscosity.

In other words, a sharp velocity gradient induces turbulence and, therefore, leads to larger
surface brightness. This can be seen in the bottom panel of Fig. 5.10, where larger values of
Dapix lead to sharper gradient (lower d) and, therefore, larger Q.

To test our assumption that the system follows the expected u’ o« Da!'/!'® when cooling
dominates over viscosity, we estimate analytically at which value of Dayp;x this should happen.
Cooling dominates over viscosity when t.oo1 < Ty, Where f.qo 1S measured at Tpyix = 2 X 10° K
and 7, corresponds to the time that a given viscosity takes to smooth out the velocity gradient a
distance d = A/10 (see §4.4.2).

In our case, we express the different amounts of viscosity as a function of the critical viscosity
as n = { ncrit, Where £ is the fraction of the critical viscosity used. Using the equation for critical
viscosity (equation (4.12)), KH time (equation (4.4)) and v = i/ p, we can express 77 as

A’p
= L= . 5.18
n { NCrit é 100TKH ( )
We can also express f¢oo] as
.
feool = T (5.19)
where tq = A/u’ ~ gy and the viscous time scale as
> d’ A2
n=—=2£_-°F _TKH (5.20)
v n 1007 4
Therefore, cooling will dominate over viscosity when
Da > (. (5.21)

We tested this estimate with our simulations by checking the critical value of Dayix (Which
we denote as Da*), when the simulations start to follow the u” o« Da!/10 relation for the different
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Figure 5.10: Top panel: Turbulent velocity as a function of the velocity gradient width,
color-coded by the surface brightness. Bottom panel: Surface brightness as a function of the
velocity gradient width, color-coded by Dayx.
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Figure 5.11: Measured critical Da (Da*) vs fraction of critical viscosity ({) for different sets of
simulations. We included two more sets for completeness that are not shown in the previous
plots. The dashed line indicates the expected one-to-one relation.

amounts of viscosity (cf. Fig. 5.9 in which one can read off Da* directly). We included two more
sets of simulations for completeness, and we plot the computed values of Da* as a function of ¢
in Fig. 5.11.

Although the theoretical estimate was based on broad assumptions, the computed values of
Da* from our simulations fit the theoretical estimate. This agrees with our previous assumption
that cooling effectively reduces the effect of viscosity by keeping the temperature gradient sharp.

To understand why cooling is increased (by a factor of ~ 2) for the more viscous runs at
Da > Da*, recall that while cooling reduces the effect of viscosity, the viscous runs still lead
to a broader front (see bottom row of Fig. 5.5). As a consequence, the amount of gas with an
intermediate temperature is larger with viscosity (see bottom row of Fig. E1 in appendix E). This
produces that the overall amount of cooling is larger with viscosity than without viscosity, leading
to a slightly higher Q in the strong cooling regime in the cases with higher viscosity.” This can
also be seen in the bottom panel of Fig. 5.10 where, despite d becomes small in the strong cooling
regime regardless of the amount of viscosity, d is still larger in the most viscous runs, leading
also to a larger Q for a given Dayix.

To study how u” depends on viscosity in more detail, Fig. 5.12 shows how turbulent velocities
change with viscosity. In the non-viscous case, the data points cluster together, corresponding to
the weak dependence of u’ with Da. For higher viscosities, the two regimes defined by Da*(7)
can be identified in each case: the data points group separately in the viscous-dominated regime
(Dapix < ¢) and in the cooling-dominated regime (Dapix > ).

Assuming that #’ depends on viscosity by a power law u’ o« n%, we can fit the slopes for
individual Day,ix in Fig. 5.12 and check the two different regimes. Fig. 5.13 shows the different
values of @ depending on Day,x, reflecting the change of regime from viscous-dominated to
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Figure 5.12: Turbulent velocity as a function of the amount of viscosity of the medium (Karlovitz
number), color-coded by Dayx.

cooling-dominated at Dap,ix ~ 0.5. In the viscous-dominated regime (low Dap,ix) the turbulent
velocity decays with viscosity as u” oc 73, while in the cooling-dominated regime (high Dayy;y)
the exponent is close to zero, indicating that the system behaves similarly regardless of the amount
of viscosity”.

5.2.4 Temperature Dependent Viscosity

Considering a more realistic Spitzer viscosity dependent on the temperature of the gas, each fluid

will have a viscosity 1. In the case of the cold fluid: ncelg o T, é(/) 12d; while in the hot medium:

NHot & T, éé f Therefore, by comparing both viscosities, we have:

THot 312
MHot = NCold ( Od) = ncola x°/* . (5.22)

In the case of an overdensity of y = 100: nygo = 10° Ncold, rendering the viscosity of the cold
medium negligible.

Additionally, the diffusivity of a system depends on the diffusion coefficient, which in the
viscous case is set by the kinematic viscosity (v, see §2.2). For a system with a constant dynamic
viscosity (7, as in our setup) but two different densities, each fluid will have a different diffusivity
(see equation (2.3)). Since the kinematic viscosity depends on the inverse of the density, for
a given dynamic viscosity, the cold medium will have a lower diffusivity compared to the hot
medium. As a consequence, for systems with a high density contrast, the diffusivity of the system
is set by the hot gas.

Taking into account that: with a more realistic temperature-dependent Spitzer viscosity, the
dynamic viscosity of the cold medium is negligible and that the viscous diffusion is set by the hot

9Since the change of regime depends on the value of viscosity, the “transition zone” produces big errors in the
fit, where low viscosity runs behave already as non-viscous, but high viscosity runs are still viscous-dominated.
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Figure 5.13: Exponent of the dependence of the turbulent velocity with the amount of viscosity
(Karlovitz number) calculated from Fig. 5.12 as a function of Day;x.

gas, a viscous cold medium should have a small impact compared to a viscous hot medium. We
tested this using 1D simulations, with the following setup:

, TColds —Vix» fory <O
(0. T v. 1) = (pcold> Tcolds —Vis MCold) y (5.23)
(pHOt’ THOta Vxs 77Hot) for y > 0 >

where Av,/cy = 0.24, we keep Tyot and ppgot constant and change density (and temperature) of
the cold medium as Tyot/Tcold = PCold/PHot = 2,5, 10,100, 1000. To analyze the diffusivity
depending on the medium, we set a constant viscosity of 7 = 25 (in internal units) first in the cold
medium and then in the hot medium. Fig. 5.14 shows the v, profile after Av,¢/L = 2.50 for the
two cases: the viscous cold medium on the top panel and the viscous hot medium on the bottom
panel.

When the cold medium is viscous (top panel in Fig. 5.14), diffusivity is decreased as the cold
medium becomes denser. Thus, if the initial (i.e., lowest overdensity) value of viscosity is too
low to have a discernible effect, it becomes increasingly negligible at higher overdensity. When
the hot medium is viscous (bottom panel in Fig. 5.14), diffusivity remains constant, since the
density of the hot medium is kept constant. However, the velocity profile becomes smoother
as the cold medium becomes denser, despite the cold medium not being viscous. This happens
because, although the cold medium is not viscous, it carries a lot more momentum than the
hot (and viscous) medium. Therefore, when the cold medium transfers momentum to the hot
medium, viscosity changes the momentum of the hot medium very effectively, smoothing the
velocity gradient. The denser the cold medium is, the more momentum is transferred to the hot
medium, leading to a smoother velocity profile. These results corroborate the assertion in §5.2.1,
that the hot phase dominates viscosity and the cold phase dominates momentum. Note that this
leads to the interesting effect that higher overdensities imply a larger degree of smoothing of the
velocity profile, however, as 1. also rises (cf. equation (5.11); Fig. 5.1), a higher viscosity is
required to suppress the KHI.
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Figure 5.14: Velocity profile of 1D simulations. Top panel: Only the cold gas (y < 0) is viscous.
Bottom panel: Only the hot gas (y > 0) is viscous.
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Considering a constant i for the whole system leads to a diminishing momentum diffusion
in the cold medium, similar to a realistic temperature-dependent Spitzer viscosity. Therefore, a
constant 7 would lead to more realistic results than considering a constant v, where both media
would be equally diffusive.

In this Chapter, we have focused on the sub-critical viscosity regime, where all the cases
studied have a viscosity smaller than the critical viscosity. The instability is able to grow within
one KH time, being enhanced by strong cooling and allowing to keep the turbulence (see §5.2.3).
In the temperature domain that we consider in this Chapter, where the cooling function peaks
(10*K < T < 10° K), the Spitzer value for the 2ncyi¢ i 2ncric = 7.10ms, (cf. §5.2.3, Table 5.1),
which is not realistic in plasma physics (Kunz et al., 2022). Therefore, an astrophysical scenario
with such a high level of viscosity is very unlikely.

5.3 Applications

Viscosity becomes relevant in very hot and ionized media, with temperatures typically above
10% K. On the other hand, cooling efficiency peaks between 10* — 10% K. This means that both
cooling and viscosity will act together in astrophysical scenarios where very hot and cold mediums
co-exist and mix, which is the case for the ICM, ISM, and CGM (see §1.3) — but also in other
multiphase systems such as galactic winds or coronal rain. This interaction might happen in
different astrophysical processes, where the Reynolds number is comparable to the ones used
in this Chapter (see Table 5.1). Similarly, mixing and radiative cooling are physical processes
that occur frequently in these multiphase systems. In fact, viscosity, mixing, and cooling are
commonly thought of as being crucial in determining their long-term evolution.
Examples of such multiphase systems include:

* Galaxies moving through the ICM experience a ram pressure that strips the cold ISM (e.g.
Gisler, 1976; Nulsen, 1982). The growth of instabilities in the tails mixes the hot ICM
with the cold ISM (e.g. Iapichino et al., 2008; Ghosh et al., 2024). As a consequence,
the hot ICM cools down, providing new gas and enhancing star formation (Miiller et al.,
2021). Viscosity not only affects the morphology and mixing of the tail with the medium
(e.g. Kraft et al., 2017; Marin-Gilabert et al., 2024), but also the cooling efficiency and,
therefore, it might change the star formation rate.

* The existence of multiphase gas within galactic winds is commonly often attributed to the
effects of continuous cooling (see reviews by Veilleux et al., 2020; Thompson & Heckman,
2024). Similarly, cold clouds infalling through the CGM is another example where the
hot gas of the CGM mixes with the cold gas of the cloud being disrupted (Gronke & Oh,
2018; Gronke et al., 2021). When the CGM is hot enough (T > 10° K), transport processes
become relevant and shape the morphology of the tails of the cloud (Briiggen et al., 2023).
Viscosity affects the cloud dynamics, as well as the evolution and evaporation of the tail
(Jennings & Li, 2021). It will affect, therefore, the amount of cold gas and the mixing
efficiency of the cloud and the CGM. The mixing between the cold stripped gas and the
medium can be observed and studied using different ion lines (e.g. Kwak & Shelton, 2010).



5.3 Applications 99

* ‘Cold streams’ in hot galactic halos are likely crucial in order to understand galaxy fueling
and growth (Dekel et al., 2009). As those are another classical example of multiphase gas
interactions, mixing, cooling, as well as the effect of viscosity, have been discussed in the
context of cold streams (Briiggen & Ruszkowski, 2005; Mandelker et al., 2020).

In each of these systems, turbulence, mixing, and cooling are key to understanding the
dynamics and ultimate fate of the gas. As aresult, key findings from studies of turbulent radiative
mixing layers (e.g. Ji et al., 2019; Fielding et al., 2020; Tan et al., 2021) are commonly invoked to
interpret a wide range of observational diagnostics (e.g. Quetal., 2022; Lin et al., 2025). However,
most previous work has neglected the role of viscosity, meaning that such interpretations could
be significantly biased. Particularly if viscosity were to strongly suppress turbulent mixing and,
consequently, cooling, as might be naively expected.

In this study, however, we show that—contrary to expectations—viscosity has only a modest
impact on the dynamics of turbulent mixing layers. In particular, for systems in the ‘fast cooling’
regime (Da > 1), which includes most of the astrophysical environments described above, not
only does the u’—Q relation remain unchanged, but also the amount of turbulence expected from
KHI. This allows one to continue using established theoretical predictions to relate, for instance,
line widths to expected emissivities.

Another important application of our work relates to the growing number of multiphase
subgrid models, which aim to address the long-standing resolution problem in large-scale
(e.g., cosmological) simulations. Such simulations are unable to fully resolve multiphase
structures—Ilike those discussed above—and therefore rely on subgrid prescriptions to
approximate their behavior (Huang et al., 2020; Smith et al., 2023; Butsky et al., 2024; Das et al.,
2024). These models commonly adopt a numerical multi-fluid framework (e.g. Weinberger &
Hernquist, 2022), with source and sink terms for each fluid component informed by small-scale
simulations of TRMLs (e.g. Tan et al., 2021).

However, to date, none of these models account for the combined effects of radiative cooling
and viscosity. Instead, they implicitly assume — or hope — that the omitted effect (e.g., viscosity)
has a negligible influence on the relevant dynamics. In this work, we provide a robust physical
foundation for current and future implementations of multiphase subgrid models by explicitly
testing this assumption. In particular, we show how mass transfer rates between phases are
(largely) unaffected by viscosity, thus justifying the use of existing cooling-based prescriptions
in multi-fluid models.

Taken together, our results show that viscosity, while potentially important in shaping
large-scale morphology, does not significantly alter the fundamental scaling relations governing
turbulent mixing and radiative cooling. Although one might naively expect viscosity to suppress
mixing and thereby invalidate commonly used theoretical predictions, we find — perhaps
surprisingly — that this is not the case. This lends confidence to both the interpretation of
observational diagnostics and the construction of multiphase subgrid models, which often rely
on idealized, inviscid small-scale simulations. By clarifying the limited role of viscosity, our
work helps bridge the gap between detailed local physics and the broader astrophysical systems
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in which these processes operate.

5.4 Conclusions

The role of viscosity in turbulent radiative mixing layers is key for understanding the suppression
of hydrodynamical instabilities and their effect on multiphase gas evolution in astrophysical
environments. In this Chapter, we investigated the impact of viscosity on the KHI and its
implications for mixing and cooling processes. Using numerical simulations, we systematically
varied viscosity, overdensity, and Mach number to study the transition from turbulent to laminar
regimes and characterized the interplay between viscosity and radiative cooling.

We confirm previous results (e.g. Roediger et al., 2013b; Marin-Gilabert et al., 2022, see
Chapter 4) that in adiabatic setups, the KHI is suppressed when the dynamical viscosity exceeds
a critical threshold. We derived an analytical solution based on the comparison between the
viscous time scale and the instability growth time, and confirmed numerically that the critical
viscosity depends linearly on overdensity.

At high Mach numbers in compressive-adiabatic setups, the KHI transitions from a
viscosity-dominated suppression to a compressibility-induced stabilization. =~ We verified
numerically that the instability is fully suppressed above a critical Mach number, in agreement
with previous analytical work (Mandelker et al., 2016).

In a multiphase system, viscosity alters the turbulent cascade, modifying the mixing layer
properties. In the weak cooling regime, viscosity suppresses turbulence, transitioning the mixing
layer into a laminar state dominated by diffusion rather than convection (leading to an altered
u’ — Q relation). Nevertheless, because here cooling is the bottleneck, the overall luminosity is
unchanged.

Perhaps surprisingly, in the strong cooling regime, we find that all the TRMLs simulations
have the same surface brightness and net cooling rates as inviscid simulations, regardless of
the amount of viscosity. This counter-intuitive behavior arises from cooling, sharpening the
temperature profile, thus, directly compensating the smoothing effect of viscosity, allowing for
KHI to develop and keeping the scaling relations in TRMLs intact. We derived an analytical
estimate for when viscosity does not affect cooling rates based on the relative time scales of
turbulence, viscosity, and cooling. Our numerical results match this theoretical prediction,
confirming that cooling can compensate for the viscous suppression in sufficiently strong cooling
conditions.

The suppression of turbulence only mildly affects the energy dissipation in TRMLs. In the
weak cooling regime, viscosity reduces turbulent velocities but has a weak effect on surface
brightness. In the strong cooling regime, the surface brightness increases up to a factor ~ 2
with viscosity, suggesting that the smoother temperature gradient leads to a larger amount of
intermediate temperature gas, enhancing cooling efficiency.

These results quantify the impact of viscosity in astrophysical TRMLs and have important
implications for the dynamics of ram-pressure stripping galaxies, galaxy halos, as well as the
CGM and ICM.
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Figure D1: Mass conversion from hot to cold gas as a function of the total luminosity, color-coded
by Dapix. The mass transfer is proportional to the total luminosity, indicating that the luminosity
is due to enthalpy flux.

Appendix D: Mass Conversion and Luminosity

In radiative mixing layers, the net radiative losses due to cooling are balanced by the enthalpy
flux, producing a mass flow from the hot to the cold medium. This means that the total luminosity
is proportional to the mass transfer from the hot to the cold medium: m oc L,q (Ji et al., 2019;
Gronke et al., 2021). We checked that the total luminosity measured in our system was due to
enthalpy flux and not to dissipation of kinetic energy by measuring the mass transfer from hot to
cold gas and the total luminosity (see Fig. D1). The linear dependence (black dashed line) shows
that the luminosity in our system is due to enthalpy flux (mass transfer from hot to cold gas), and
not due to dissipation of kinetic energy or viscous heating, regardless of the amount of viscosity
and the Da.

Appendix E: Intermediate Temperature Histogram

The cooling curve reaches the highest values at intermediate temperatures (see Fig. 1.7), making
cooling more effective in this range. This means that the amount of Q for a given Da depends on
the amount of gas with an intermediate temperature. Quantifying the amount of intermediate gas
gives us a hint at what Q looks like for different simulations.

Fig. E1 shows the histogram of intermediate temperature gas for different Day,ix (top to
bottom: Dapix = 2.3 X 1073, Damix ~ 2.3 and Dapix ~ 1.1 X 10%) and different times (left to
right: ¢ = 2.57gy, t = Stgy and 1 = 6.257gy).

In the weak cooling regime (top row), the No visc mixes the gas more effectively, leading to
a larger amount of intermediate temperature gas. However, since cooling is the bottleneck in this
case, this does not make a big impact on Q (see Fig. 5.8). In the viscous runs, the amount of
intermediate temperature gas is very similar. This is due to the smooth momentum profile as a
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consequence of viscosity. Due to pressure equilibrium, this smoother momentum is translated
into a smoother temperature profile, leading to more intermediate temperature gas. Note the flat
histogram in the case of 0.57¢;j; due to its laminar flow, where the temperatures are distributed
approximately equally along the y-axis.

For Dap,ix ~ 2.3 (middle row), the histograms look very similar, since at this value of Dap;x
all the simulations are already cooling-dominated, although at later times the No visc seems to
produce more intermediate temperature gas.

In the strong cooling regime (bottom row), viscosity leads to a slightly broader temperature
profile, and therefore, more intermediate temperature gas. Although the effect is only a factor of
~ 2, the strong cooling produces that this effect can be visible when Q is calculated (see right
panel of Fig. 5.6).

Appendix F: Shear Velocity Profiles

In a planar slab (or sheet) setup, the effect of viscosity in the velocity gradient is obtained by
equation (2.4). The more viscous the medium is, the faster the velocity gradient is smoothed out.
This can be seen in the top panel of Fig. F1, where in the weak cooling regime, a higher viscosity
leads to a smoother velocity profile within the same amount of time. The effect of turbulence can
be seen in the No visc case, where the profile is not completely smooth. However, in the strong
cooling regime (bottom panel), all the profiles remain sharp after the same amount of time due
to the effect of cooling.

Appendix G: Measurement of Smoothing Distance d

To quantify the distance d at which the velocity gradient has been smoothed due to the effect
of viscosity, we focus on the hot medium (y > 0, see Fig. G1). The reason for this is that, in
a system with a constant dynamic viscosity (17), the high density of the cold medium leads to
a lower diffusion coefficient (v), therefore the overall diffusion of the system is dominated by
the hot gas (see §5.2.4). The effect of viscosity is given by equation (2.4), which tells us how
much the velocity gradient has been smoothed after a time ¢ for a given viscosity. By fitting this
equation to our data (thick dashed lines), we have a smooth function for our system, avoiding
spurious artifacts that can affect the results. Once we have fitted the function, we calculate the
distance d from the center to the point where the velocity gradient has been smoothed 5% with
respect to the initial value (vertical dashed lines).
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Figure F1: vghear profiles after + = 1.257gy color-coded by viscosity. Top panel: Results for
Dapix =~ 2.3 X 1073, where the velocity gradient is smoothed depending on the amount of
viscosity. Bottom panel: Results for Dap, ~ 1.1 x 10, where cooling dominates over viscosity
and keeps the profiles sharp.
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6 An Attempt to Constrain Viscosity in
the ICM with Cosmological Simulations'

In previous chapters, we studied in detail how viscosity affects the growth and development of
instabilities, and consequently, the evolution of turbulence and mixing. We found that viscosity
can significantly reduce, or even suppress completely, the growth of hydrodynamical instabilities.
This leads to a notable reduction in the level of turbulence. However, these conclusions were
drawn from idealized simulations with controlled initial conditions. To understand whether
these microphysical results hold in the stratified, evolving, and highly non-linear environment of
galaxy clusters, we now investigate the effect of viscosity in fully cosmological simulations. In
this Chapter, we deliberately omit radiative cooling to isolate the specific impact of viscosity on
the dynamics of the ICM.

The impact of viscosity in the ICM is still an open question in astrophysics. To address this
problem, we have run a set of cosmological simulations of three galaxy clusters with a mass larger
than My;, > 101°Mg, at z = 0 using the Smoothed Particle Magneto-Hydrodynamics (SPMHD)
code OPENGADGET3. We aim to quantify the influence of viscosity and constrain its value in
the ICM. Our results show significant morphological differences at small scales, temperature
variations, and density fluctuations induced by viscosity. We observe a suppression of instabilities
at small scales, resulting in a more filamentary structure and a larger number of small structures
due to the lack of mixing with the medium. The conversion of kinetic to internal energy leads to
an increase of the virial temperature of the cluster of ~5% - 10%, while the denser regions remain
cold. The amplitude of density and velocity fluctuations is found to increase with viscosity.
However, comparison with observational data indicates that the simulations, regardless of the
viscosity, match the observed slope of the amplitude of density fluctuations, challenging the direct
constraint of viscosity solely through density fluctuations. Furthermore, the ratio of density to
velocity fluctuations remains close to 1 regardless of the amount of viscosity, in agreement with
the theoretical expectations. Our results show, for the first time in a cosmological simulation of a
galaxy cluster, the effect of viscosity in the ICM, a study that is currently missing in the literature.

!'This Chapter was published in ApJ by Marin-Gilabert et al. (2024).
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6.1 Simulation Setup

We perform cosmological, magneto-hydrodynamical simulations of galaxy clusters using the
SPMHD code OPENGADGET3 (Springel, 2005; Groth et al., 2023). Gravity is solved via the
Tree-PM method, where the long-distance gravitational forces are computed on a PM mesh and
the short-distance forces are computed on a gravity tree (see §3.1.1). For the hydro computation
we used the modern SPH implementation (Beck et al., 2016, see §3.1.2), including artificial
viscosity (Balsara, 1995; Cullen & Dehnen, 2010, see §3.1.4) and artificial conductivity (Price,
2008, see §3.1.3), with a Wendland C 6 kernel (Wendland, 1995; Dehnen & Aly, 2012) and 295
neighbors (see §3.1.2). This is necessary to avoid the ‘pairing instability’ (Price, 2012) and the
‘Eg error’ (Read et al., 2010) and capture mixing properly (Tricco & Price, 2013; Hu et al., 2014).

We also include magnetic fields based on the implementation of Bonafede et al. (2011) and
Stasyszyn et al. (2013) (see §3.1.5), with an initial seed of Bgeeq = 10712 G (comoving) in
the x-direction, which corresponds to an initial magnetic field of Bjniph = Bgeeq * (1 + Zini)? =
1.98 x 10® G in physical units. The choice of this initial magnetic field leads to a saturation of
the dynamo at z~1.5 at this resolution (Steinwandel et al., 2022, this will be discussed in detail in
§7.2). Our simulations also include anisotropic thermal conductivity via a bi-conjugate gradient
solver (Arth et al., 2017; Steinwandel et al., 2022).

To properly understand the effects of physical viscosity, we perform three different simulations
for each cluster: one with no viscosity (labeled as “Ideal"), one with 1/3 of Spitzer viscosity
(labeled as “1/3 ") and one with full Spitzer viscosity (labeled as “n"). The implementation
of viscosity in OPENGADGET3 is described in §3.1.6. Now, we additionally include a viscous
saturation (see §3.1.7 for details) to avoid unphysical results (Cowie & McKee, 1977; Sarazin,
1986; Su et al., 2017). On top of the physical viscosity, a higher-order shock capturing method
(i.e., artificial viscosity) is necessary to properly capture shocks in SPH (Monaghan & Gingold,
1983; Monaghan, 1992) even when physical viscosity is implemented (Sijacki & Springel, 2006).

We want to focus on understanding the complex properties of gas in the ICM, in particular
the effect of viscosity and its observational implications. For this reason, we run non-radiative
simulations without the effects of subgrid models (e.g., star formation and feedback).

6.2 Initial Conditions

We ran a total of nine zoom-in simulations of three different galaxy clusters from the Dianoga suite
(Bonafede et al., 2011; Ragone-Figueroa et al., 2013): the g5503149, g1657050, and g6348555
regions (labeled as g55, g16, and g63, respectively) at the 10x resolution level. These clusters
were taken from a low-resolution N-body cosmological simulation of a periodic box of 1 1~ Gpc
comoving size. Each Lagrangian region was then re-simulated with a higher resolution using the
zoomed initial conditions technique (Tormen et al., 1997).

We chose the g55, g16 and g63 clusters because they have a My;> > 105 My, at z = 0; 55

’The suffix Vir indicates the virialized gas, i.e. the gas within the galaxy cluster that satisfies the virial theorem
(see §1.2.1).
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Table 6.1: Properties of the three different clusters used in this work with three different amounts
of viscosity. The first column shows the virial mass, the second column the virial temperature,
the third column the R;sqqc, and the fourth column shows Rygqc, each at z = 0.

My;r [10" Mo ] Tvir [107 K] Ras00c [kpc] Roooc [kpe]

Ideal 1/3n n |Ideal 1/3n n Ideal 1/3 7 n Ideal 13 n n
g55| 1.34 1.38 1.33]7.05 7.32 7.39(498.21 509.77 510.40|3000.96 3020.54 2995.14
glo| 1.44 140 1.20]6.22 6.29 6.22(459.07 460.04 435.29|3232.38 3204.37 3086.66
g63 | 1.11 1.22 1.17]6.40 7.81 6.91]455.19 499.39 471.84|2939.73 3019.53 2976.75

and g16 are expected to be unrelaxed, while gb63 is very relaxed. To classify the clusters as relaxed
or unrelaxed, we used the centre-of-mass offset, where we measured the separation between the
density peak position and the center of mass within Rygo. (Power et al., 2012; Cui et al., 2016).
The adopted cosmological parameters are Qy = 0.24, Qp = 0.76, Q, = 0.04, h = 0.72 and
og = 0.8. The initial redshift for all the simulations is zj,; = 140 and the mass resolution is
Mgas = 1.56 X 10" Mg, in gas particles and mgy, = 8.44 X 107 My, in dark matter. The choice
of this particle resolution is due to the convergence in the magnetic field amplification shown in
Steinwandel et al. (2022) against a lower particle resolution. The details of each cluster at z = 0
are shown in Table 6.1.

6.3 Morphology

Viscosity acts by transforming kinetic energy into internal energy, leading to a suppression of the
growth of hydrodynamical instabilities and an increase of the gas temperature (Roediger et al.,
2013b; Marin-Gilabert et al., 2022, see also §4.5). This is expected to produce a strong effect
in the morphology of galaxy clusters at small scales (a few kpc), where the turbulent cascade is
truncated due to the effect of viscosity. Fig. 6.1 shows the surface density for each of the three
clusters and the three different configurations. The inner dotted circle corresponds to Ry500. and
the outer dashed circle corresponds to Roooc.

By comparing each cluster independently, we can observe that there are no major changes
at large scales (a few hundred kpc - Mpc), where the big structures remain in the same position
in the three different cases and the overall gas distribution is very similar. However, the ICM is
more homogeneous in the non-viscous case, whereas in the viscous cases we find sharper density
discontinuities and more regions with very diffuse gas.

Although at a large scale the picture is similar, we find many differences at smaller scales.
The lack of mixing due to viscosity leads to more small structures that have not been disrupted
due to the growth of instabilities. The survival of the clump will depend on different parameters
such as the size of the clump, its velocity, or the overdensity with respect to the medium (Klein
et al., 1994; Pittard et al., 2005; Valentini & Brighenti, 2015), which is beyond the scope of this
Chapter. The growth or suppression of instabilities will also depend on the amount of viscosity,

3In this Chapter, Rysooc (Ra00c) is defined as the radius enclosing the region of the cluster with a mean density
2500 (200) times larger than the critical density of the Universe (see §1.2.1).
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which depends on the temperature, generating a very complex system difficult to analyze in
cosmological simulations. However, its effect can be seen in the amount of clumps observed in
Fig. 6.1.

Another morphological difference observed in the cases with viscosity is the filamentary
structure. This is produced by the infalling structures moving towards the center of the cluster,
which experience a ram pressure stripping (e.g. Gisler, 1976; Nulsen, 1982; Randall et al.,
2008). This stripped gas produces a tail with a density contact discontinuity with respect to the
medium, resulting in the growth of instabilities. Viscosity slows down the growth process of
these instabilities, leading to longer tails that last for longer periods of time (Roediger et al., 2015;
Kraft et al., 2017). Although magnetic fields can also produce these filamentary structures (Das
& Gronke, 2023), all our simulations include magnetic fields, excluding them as the origin of
these differences.

Because of the strong dependence of viscosity on temperature, one might expect that the
above-mentioned differences might correlate well with the temperature of the cluster. In Fig. 6.2
we show temperature colormaps of the nine different simulations. The cases with more viscosity
lead to higher temperatures in the diffuse gas; however, the temperatures of the dense clumps are
very similar in all three cases. Overall, the virial temperature at z = 0 is around 5% to 10% higher
in the viscous cases compared to the ideal ones due to heat dissipation (see Table 6.1). We find
again a more homogeneous temperature in the ideal runs, while more fluctuations are present in
the viscous runs. Due to the dependence of viscosity on temperature, viscosity starts to become
important at low redshift, when the virial temperature becomes larger than ~ 107 K. In this
respect, the merger history of the cluster becomes very important, as mergers behave differently
whether we have or do not have viscosity. The hotter medium leads to a larger viscosity, which
heats up the medium, producing a larger viscosity, entering a runaway cycle which is prevented
by the viscous saturation, avoiding unphysical temperatures (see §3.1.7).

6.4 Density and Velocity Fluctuations

6.4.1 Gas Distribution

Quantifying the density fluctuations observed in Fig. 6.1 is fundamental for understanding the
small-scale processes which determine the ICM properties. Comparing with observations can
help us to constrain the amount of viscosity in the ICM, as suggested by Zhuravleva et al. (2019)
(see §2.4). To this end, we first remove the high-density clumps, leaving only the bulk gas (source
of the X-ray emission in the ICM), and then compute the density and velocity fluctuations.

To remove the high-density regions, we follow the method introduced by Zhuravleva et al.
(2012): we divide the galaxy cluster into spherical shells and compute the density PDF for each
of the shells. We calculate the median value of each shell and, alongside it, a threshold value
to separate the bulk gas from the high-density gas. A particle is considered to belong to the
high-density gas if the following criterion is met:

log;on > logp{n} + feuwron0, (6.1)
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Figure 6.1: Density projections for all of our simulations listed in Table 6.1. From left to right:
MHD only, MHD with 1/3 of Spitzer viscosity, and full Spitzer viscosity at redshift zero. From
top to bottom: the runs g55, g16 and g63.
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Figure 6.2: Temperature projections for all of our simulations listed in Table 6.1. From left to
right: MHD only, MHD with 1/3 of Spitzer viscosity, and full Spitzer viscosity at redshift zero.
From top to bottom: the runs g55, g16 and g63.
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where {n} is the median value of the density in the shell, f., is a parameter tuned to select more
or less gas as high-density and o is the standard deviation (log, based) assuming a log-normal
distribution of the density PDF. o7 can be expressed as

Wio

o0 = , (6.2)
2V21In2
with
nyp

Wi accounts for the logarithmic interval where 76% of the particles are contained, n; corresponds
to the 12th percentile of density and n; to the 88th percentile. The value of f; is set to be between
2.5 and 4.5 (Zhuravleva et al., 2012). A lower value will displace the threshold towards lower
densities, selecting a larger number of particles as high-density gas, while a higher value will
displace it towards larger densities. We choose a value of f., = 2.5 for our analysis. The reason
for this choice can be seen in Fig. 6.3. This figure shows the effect of viscosity in the density
distribution within a thin shell of 5 kpc around the virial radius of the cluster g55. The vertical
dashed lines indicate the position of the density threshold to split the distribution into bulk and
high-density gas. Once the gas has been separated, we fit the bulk gas to a log-normal distribution,
indicated with the dash-dotted lines. Even though the mean value of the distribution does not
change much, viscosity broadens the distribution. This result shows quantitatively what we
observed in Fig. 6.1. Viscosity produces larger density fluctuations, where particles deviate more
from the mean value of the density distribution than in the non-viscous case. As a consequence,
choosing a larger value of f., would displace the threshold in the viscous case further towards
larger densities, taking particles of the high-density tail as bulk gas. On the other hand, choosing
a rather low value of f,; means that we might be underestimating the threshold in the ideal case
(see appendix H). For this reason, we take the lowest value suggested by Zhuravleva et al. (2012).

6.4.2 Density Fluctuations

Fig. 6.3, however, only shows a thin slice of cluster g55 to illustrate the effect of viscosity on
the gas distribution and the method employed to separate the bulk gas from the high-density gas.
To understand the overall effect of viscosity in the whole cluster, Fig. 6.4 shows the variation
of the standard deviation (o) of the log-normal fit as a function of the radius for the three
different clusters. Assuming the bulk gas follows a log-normal distribution, the value of o can
be understood as a density fluctuation measurement (i.e., the width of the distribution), since

5p_1 P2 2V2In2

o Oglopl ~ Inl0
where, as before, p; and p; correspond to the 12th and the 88th percentile of the density,
respectively. Increasing the amount of viscosity produces broader distributions for all the shells
along the radius, which translates into larger density fluctuations. Overall, with full Spitzer
viscosity, we get the largest fluctuations. Comparing the case with 1/3 i and the ideal case, we
still see larger fluctuations in the runs with 1/3 n, although the differences are not large.

o =1.020, (6.4)
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Figure 6.3: Density probability density function (PDF) of a thin shell of 5 kpc of the cluster
g55 to show the effect of viscosity on the gas density distribution. The solid lines show the
data; the vertical dashed lines indicate the values of the density thresholds separating bulk and
high-density gas; and the dash-dotted lines indicate the log-normal distribution fit to the bulk
density component of the gas.
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Figure 6.4: Radial profile of the standard deviation of the log-normal fit for each one of the
spherical shells. From left to right: clusters g55, g16 and g63 for the different runs.
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Figure 6.5: Velocity fluctuations against density fluctuations within Rygo.. The transparency of
the dots indicates the distance to the center of the cluster. The dots are calculated by averaging
over 40 snapshots from redshift 0.4 to redshift O for each radial shell. For each of the runs, we do
a linear fit, indicating the slope, intercept, and the Pearson’s coefficient for each case. From left
to right: clusters g55, g16 and g63 for each one of the configurations.

6.4.3 Density vs Velocity Fluctuations

As explained in §1.4.3, the density fluctuations are expected to scale linearly with velocity
fluctuations. In the ICM, it has been found that the density fluctuations correlate with M;p with
a slope close to 1 (Zhuravleva et al., 2014; Gaspari et al., 2014). However, this might also depend
on the dynamical state of the cluster, where unrelaxed clusters might deviate from that value
(Simonte et al., 2022; Zhuravleva et al., 2023). We want to investigate how viscosity affects that
relation. To do so, we first calculate the velocity fluctuations via the root mean square velocity

(Vrms) as

5v = (s = ()2 + (v = vy )2+ (v, = (V)2 (6.5)

where (vy), (vy) and (v,) are the mean velocities in each shell. We then calculate the 1D mach
number of each particle as Mp = dv/(c; V3). We take the region within Ry of the cluster,
similar to the one taken in Zhuravleva et al. (2023). For better statistics, we take the last 40
snapshots from z ~ 0.4 to z = 0 and calculate the mean value of density and velocity fluctuations
of each shell in each snapshot using equations (6.4) and (6.5) respectively. For each snapshot, we
take the same radial bins normalized to Rgo.. Finally, we take the mean value of the density and
velocity fluctuations for each shell over the snapshots and plot M;p against 6p/p, as shown in
Fig. 6.5. Since we have taken the average over a period of time, we cannot take into account the
dynamical state of the clusters here.

There is a clear linear trend in all clusters, independently of the amount of viscosity, with
a low scatter in all cases (the Pearson’s correlation coefficient is close to 1, indicating a good
correlation). Viscosity reduces the slopes of the linear fits*. We observe that density and

“Note that the slope is the inverse Np-



116 6. An Attempt to Constrain Viscosity in the ICM with Cosmological Simulations

: 855 216 963
3 . .

K T
— Ideal < >= 1.35+0.12 <, >= 1.17+0.09 <, >= 1.09+0.29

<, >= 1.65+0.09 <, >= 1.87+0.21 <, >=191£0.25

0T 10 0T 10 0T 100
7/ Ragoc 7/ Roooc 7/ Raooc

Figure 6.6: Ratio between density fluctuations and velocity fluctuations as a function of the radius

within Rygo. (same data as in Fig. 6.5). The solid lines indicate the data from the simulations,

while the dashed lines indicate the mean value in each case within Rygg.. The mean value and

the standard deviation calculated over all the shells in each run are indicated in each panel. From

left to right: clusters g55, g16 and g63 for each one of the configurations.

velocity fluctuations increase further from the center (lighter data points). This reflects the state
of the ICM in clusters that keep growing by accretion (Zhuravleva et al., 2023). The values
of Mip are consistent with direct observations of Perseus (Hitomi et al., 2018), where they
found Msp = V3Mp =~ 0.3 — 0.45 within the central 100kpc of the cluster (~ 0.03Ry0(.) and
indirect measurements from observations (Lovisari et al., 2024; Dupourqué et al., 2024), with
Msp = 0.36—0.41 for relaxed clusters in the inner regions of the cluster (within Rsppc ~ 0.7 R200c).

To study in more detail the ratio of density to velocity fluctuations, Fig. 6.6 shows the radial
dependence of this ratio (77,).

The cases with full viscosity consistently have a larger value of 17,, as a consequence of the
shallower slope seen in Fig. 6.5. Cluster gb3 shows a mean value closer to one (although with
a large scatter) in the inviscid case compared to clusters g55 and g16, all in agreement with the
results found previously by Simonte et al. (2022) and Zhuravleva et al. (2023). The values of 7,
in the cases with 1/3 17 do not change significantly among the different clusters, whereas the runs
with full viscosity have a larger value of 7,,.

6.5 Comparison with Observations

We have discussed the effects that viscosity has in galaxy clusters, focusing so far on the
comparison between viscous and inviscid simulations. However, for a comparison with
observations, we need to calculate the 3D amplitude fluctuations as a function of the wavenumber
k = 1/1 (where [ is the length scale of the fluctuations). To do so, we first need to calculate
the density fluctuations of our data elements and then compute the power spectrum (see §2.4).
In particle-based simulations, the computation of the Fourier Transform to calculate the power
spectrum is not possible, so we need to interpolate the particle properties onto a grid. By
doing so, we also avoid spurious effects caused by the voids after removing the high-density
regions (see §6.4.1). In grid simulations, the voids are replaced by the median value of the
shell (e.g. Zhuravleva et al., 2023). In our case, the voids are automatically replaced by an
average value over the particles of the region due to the interpolation method employed. This
is done using the code vorTEx-P (Vallés-Pérez et al., 2021b,a, 2024), which creates an ad-hoc
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AMR mesh hierarchy from the density and velocity fields with the ultimate goal of providing
a multi-resolution Helmholtz-Hodge and Reynolds decomposition (see §3.3). In this Chapter,
we use it exclusively to assign the density and velocity fields onto an AMR mesh, which is
done using the same kernel configuration as for evolving the simulation. Once the particle data
have been interpolated into the mesh, we calculate the density fluctuations. This is done by
decomposing the density field into unperturbed and fluctuating components (Churazov et al.,
2012):

,D(X, Vs Z) = PO(X’ Vs Z)[l + 5()(, Vs Z)] > (66)

where po(x, y, z) is the unperturbed density distribution and

loi = pol _ |pi = {p)]
Po {0

0
5(x,y,2) = L = (6.7)
Po
are the fluctuations. p; is the density of each cell, and (p) is the value of the density profile at that
distance from the center (see density profiles in appendix I). In our case, we evaluate the density
profile at a given radius to estimate the unperturbed po(x,y,z). For the power spectrum, we

assume an isotropic fluctuation field that is a function of k = /k? + k3 + k2. The 3D amplitude
fluctuations can be computed from the power spectrum as

(%ﬂ) — aP(OR, (6.8)
k

where P(k) is the power spectrum.

These 3D amplitude density fluctuations can be observed from X-ray emission and can be used
to constrain the amount of viscosity in the ICM (Zhuravleva et al., 2019, §2.4). Fig. 6.7 shows a
comparison of density fluctuations of our sample of clusters for both unrelaxed (g55 and g16) and
relaxed clusters (g63), with observations taken from Heinrich et al. (2024). The observational
data is composed by 80 clusters (24 relaxed, 30 intermediate and 26 unrelaxed) of Masoo. €
[8 x 1013, 1015] Mg, comparable to our sample (our clusters have Masgpc ~ 2.4 — 3.9 X 10"My).
For a better comparison with observations, we take the same region of the cluster as in Heinrich
et al. (2024), i.e., the gas inside Rys500.. The gray region indicates the average at each scale of the
density fluctuations for the relaxed (unrelaxed) subsample, plus/minus one standard deviation.

In all cases, viscosity leads to a larger amplitude of the fluctuations at all scales, leading to
around two times larger amplitude in the cases with full viscosity. Furthermore, the case with
1/3 n has similar results compared to the non-viscous case in g55 and g63, but it is ~ 30%
higher in g16. Although in cluster g55 the 1/3  and non-viscous runs are more consistent with
observations, in clusters g16 and g63 the full viscosity case matches better the overall amplitude
of observations. However, due to the small sample of simulations that we have, it is difficult to
exclude any particular amount of viscosity by comparing our results with the overall amplitude
of the observations.

To constrain the amount of viscosity in the ICM, Zhuravleva et al. (2019) suggested a criterion
based on studying the slope of the density fluctuations spectrum. In the cases with higher viscosity,
the turbulent cascade is stopped earlier, leading to a steeper power spectrum that translates into
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Figure 6.7: Comparison between density fluctuations obtained from our simulations with different
viscosities (solid lines) and observations from Heinrich et al. (2024) (gray areas) as a function
of the scale within Rys0oc. From left to right: clusters g55, gl6 and g63 for each one of the
configurations. The unrelaxed clusters (g55 and g16) are compared with the observational data
of unrelaxed clusters, and the relaxed cluster (g63) with the observational data of relaxed clusters.

steeper 3D density amplitude fluctuations. This was probed by comparing Coma observations
with direct numerical simulations (DNS) of hydrodynamic turbulence. They found a level of
suppression of at least a factor of 10 with respect to the Spitzer value, depending on the Prandtl
number’.

Assuming that the motions are subsonic and driven at large scales, one can assume that
the fluctuations in the ICM are passively advected by the velocity field (Kunz et al., 2022).
Therefore, a comparison with a hydrodynamic turbulence simulation is somewhat reasonable.
However, the DNS simulations employed in Zhuravleva et al. (2019) use a rather idealised setup,
where compressible fluids (important mainly for unrelaxed clusters) or magnetic fields are not
considered. They also assumed an isothermal fluid of 7, ~ 8 keV (~ 9.28 x 10’ K) for Coma.
And, since viscosity is highly dependent on the temperature (see equation (2.2)), that means that
they used a constant value of viscosity. This might produce the sharp viscous cutoff observed
in their results. However, in cosmological simulations, we observe a range of temperatures from
3.3 x 10° K to 2.5 x 108 K, and therefore, a big range of values for viscosity. This range of
values for viscosity at different scales prevents the power spectrum from having a sharp cutoff, as
observed in Fig. 6.7 for density and Fig. J1 for the velocity power spectrum. As a consequence,
the slope of the 3D amplitude of density fluctuations is insensitive to the amount of viscosity.
This is investigated in more detail in §6.6.

It is important to note the maximum observed at k ~ 2.5R2‘51OOC ~ 175 kpc in the viscous
runs of clusters gl6 and g63 in Fig. 6.7. This feature is not found either in observations or in
the other simulations, where the amplitude of density fluctuations decreases monotonically with
k. The reason is the value of f., used in equation (6.1), where we used a value of f.,; = 2.5,

3The Prandtl number is defined as the ratio of momentum to thermal diffusivity (i.e., the ratio between viscosity
and thermal conduction).
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the minimum value suggested in Zhuravleva et al. (2012). This value was reasonable for our
cluster g55, where we have a clear separation of bulk gas following a log-normal distribution
and a high-density tail (see Fig. 6.3). However, there is no clear separation between the bulk
gas and high-density regions in the density PDF of cluster g16 (see appendix H) and g63, which
looks more like a log-normal plus power law distribution. Due to its broad PDF, the median
value is large, and a value of f., = 2.5 sets a threshold at a large density value, causing very few
or no particles to be considered as high-density (see Fig. H1). The small fraction of particles
removed due to the choice of f increases the amplitude density fluctuations at the scale of
the high-density clumps (50 kpc - 200 kpc). A more reasonable value for this cluster would be
Jeut = 0.5, where the split between bulk and high-density gas is more appropriate, as shown in
the top panel of Fig. H2. With a lower value of f.,, the maximum observed in the middle panel
of Fig. 6.7 disappears, as can be seen in Fig. H3. However, the same value should be applied to
all the analyses for consistency, and that would imply that in cluster g55, a lot of bulk gas would
be considered as high-density gas (see bottom panel of Fig. H2). For this reason, we perform our
analysis with a value of f.,; = 2.5, acknowledging that it has an impact on the viscous runs of
clusters g16 and g16, leading to a factor of ~ 2 larger amplitude at the scales of the high-density
clumps (~ 175 kpc). However, the slope of the density fluctuations is not affected by the choice
of feut (see Fig. H3), indicating that the method to constrain viscosity is still robust regardless of
the value of f.y.

The code vorTEX-P also allows us to interpolate the velocity fluctuation field calculated from
V,rms as shown in equation (6.5) and the soundspeed of each particle. Then we calculate the power
spectrum of the velocity fluctuations in an analogous way as shown in equation (6.8)

(?) = V4nP3p(k)k3 = Map i, (6.9
sk

where P3p(k) = P,(k) + P, (k) + P.(k). To obtain the 1D velocity fluctuations we do Mipx =
Mspi/ V3. Fig. 6.8 shows the velocity fluctuations for the three different clusters.

Since viscosity reduces the velocity of the particles (Marin-Gilabert et al., 2022, §4) and, at
the same time, increases the temperature (see §6.3) and, therefore, the soundspeed, one could
expect that the Mp; decreases with viscosity. However, Fig. 6.8 shows very similar results
among the simulations or even larger amplitude fluctuations in the viscous cases. This apparently
counter-intuitive result might be due to the lack of mixing in the viscosity runs. This causes
the most massive structures in the cluster to keep their mass for a longer time compared to the
non-viscous runs, experiencing a larger gravitational pull and accelerating as they fall into the
gravitational well of the cluster before being stripped. This can also be observed in the kinetic
energy spectrum in appendix J, where at large scales the runs with viscosity lead to larger values
of the energy spectrum.

Considering density and velocity fluctuations, we can study the relationship between the
density and velocity fluctuations of equation (1.31). In Fig. 6.9 we show the value of 71, x
calculated as 17, x = (6p/p)x/ Mip,« for different scales. The runs with greater viscosity tend to
have larger values of 1, ,. This means that, even though both density and velocity fluctuations are
higher in the viscous runs, they do not compensate for each other, and the ratio between the two is
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Figure 6.8: Comparison of velocity fluctuations obtained from our simulations with different
viscosities as a function of the scale within Rysooc. From left to right: clusters g55, g16 and g63
for each one of the configurations.
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Figure 6.9: Ratio between density fluctuations and velocity fluctuations as a function of the scale
within Ry500.. The solid lines indicate the data from the simulations, while the dashed lines
indicate the mean value in each case along the different scales. The mean value and the standard
deviation in each run are indicated in each panel. From left to right: clusters g55, g16 and g63
for each one of the configurations.

still larger than for the non-viscous runs. The cluster g55 has values larger than 1, however, this
is in agreement with previous work for unrelaxed clusters (Gaspari et al., 2014; Simonte et al.,
2022). The cluster gl6 shows a relation very close to 1, as expected theoretically (Zhuravleva
et al., 2014, 2023), although in the case with full viscosity we still see the maximum analyzed in
appendix H. In cluster g63, we observe a value close to, but lower than 1, also consistent with
previous work for a very relaxed cluster.

6.6 Thermodynamical Structure

For a better understanding of the gas dynamics of the clusters, in this section, we study the
thermodynamical structure of the different clusters. For a better comparison with observations,
we focus only on the inner regions of the cluster (within R»500c), as we did in previous sections.
To visualize the thermodynamical structure of the clusters, Fig. 6.10 shows 2D histograms of the



6.7 Conclusions 121

line-of-sight velocity (v1,s) as a function of the temperature, color-coded by the emissivity. For
the calculation of the emissivity, we assume it to be o« ,o2 T, expected for thermal bremsstrahlung
(Sarazin, 1986). We also overplot the mass distribution of the particles as a contour for the different
VLos and temperatures.

The unrelaxed dynamical state of cluster g55 (top row) can be identified by analyzing the vy s,
where the mass is distributed over a larger range of velocities. The emissivity is also distributed
over a larger range of velocities, and there is no clear emissivity peak, as can be seen in the
other two clusters. Although cluster g16 is unrelaxed and g63 is relaxed, the distributions of vy g
look very similar, being approximately vi,s € [—1000, 1000] km/s in both cases. The peak of
emissivity in both g16 and g63 is localized around vy o5 = 0 km/s for all the configurations in the
two clusters.

In all cases, the peak of emissivity is approximately between 107 and 10® K, within the
range expected for galaxy clusters (Biffi et al., 2012). However, cluster g55 exhibits a broader
temperature distribution due to its unrelaxed state, reaching temperatures of 5 x 108 K. The cases
with full viscosity tend to have more mass at larger temperatures, as can also be seen in Fig. 6.2.

It is important to note that cluster gl6 exhibits a narrower mass-weighted temperature
distribution in the three configurations. The majority of the mass is concentrated in a narrow
range of temperatures, meaning that this cluster is closer to being isothermal for the three runs
than the other two clusters. This is similar to the case analyzed by Zhuravleva et al. (2019),
where they assumed an isothermal fluid of 7 ~ 9.28 x 107 K for Coma. The narrower the
temperature distribution is, the narrower is the range of viscosities as well (see equation (2.2)).
This would imply a sharper cutoff in the turbulent cascade, leading to steeper 3D amplitude
density fluctuations. Although cluster g16 is not perfectly isothermal, these steeper 3D amplitude
density fluctuations can be seen in the middle panel of Fig. 6.7 by comparing the non-viscous and
the viscous case. The maximum produced by the choice of f., might affect the results; however,
the steeper spectrum can also be seen in Fig. H3 for different values of f.,. The difference in
slope is not as prominent as the one suggested by Zhuravleva et al. (2019), however, it indicates
that their criterion to constrain viscosity might be applicable only to isothermal galaxy clusters.
The consequence of the narrower temperature distribution can also be seen in the middle panel
of Fig. J1, where the dynamical range of the spectrum reaches smaller scales in the non-viscous
than in the viscous case.

Fig. 6.10 shows how a more isothermal cluster produces a steeper slope in the density
fluctuations amplitude for the cases with viscosity compared to the inviscid cases. However, the
differences in the slope vanish if the temperature distribution within the cluster is broader.

6.7 Conclusions

In this Chapter, we performed a set of cosmological simulations using the code OPENGADGET3
of three different galaxy clusters, each with three different values of viscosity, to quantify the
effect of viscosity in the ICM. First, we compared the results of these simulations at redshift zero
in order to understand the effect that viscosity has in the ICM. Then we tried to constrain the
amount of viscosity in the ICM by comparing with X-ray observations of density fluctuations.
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Figure 6.10: 2D histograms of the vy o5 as a function of the temperature, color-coded by emissivity.
The contours indicate the mass distribution of the particles within the cluster. From left to right:
MHD only, MHD with 1/3 of Spitzer viscosity, and full Spitzer viscosity at redshift zero. From
top to bottom: clusters g55, g16 and g63.
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Although the overall morphology remains the same, by visual inspection, one can identify
morphological differences produced by viscosity due to the suppression of instabilities on small
scales. The runs with more viscosity show a larger amount of small clumps that have not
been disrupted by instabilities; a more filamentary structure produced by the gas stripped from
infalling structures towards the center of the cluster; and more gas concentrated in the denser
regions, rather than the more mixed and homogeneous gas seen in the non-viscous cases. The
kinetic energy transformed into internal energy by viscosity leads to the heating of the less dense
regions, although the denser regions remain as cold as in the inviscid runs. This is translated into
a higher virial temperature in the runs with viscosity by ~5% - 10%.

The lack of mixing in the viscous case produces a broader density PDF of the bulk gas of
the cluster, which can be interpreted as larger density fluctuations. The density fluctuations are
consistently larger along the cluster radius, the more viscous the medium is, increasing towards
longer distances from the center.

Using a fixed value of f.y, used to divide the bulk and high-density gas, works well for inviscid
simulations of galaxy clusters. However, the results with full viscosity (where the density PDF
is broader) are slightly dependent on the choice of f.,. Therefore, a more accurate method to
separate bulk and high-density gas should be investigated in the future to avoid the dependence
on the shape of the density PDF.

The density and velocity fluctuations are directly proportional to one another, and both increase
with the distance from the center. However, in all three clusters, the slope of the relationship
between velocity and density fluctuations decreases with increasing viscosity. This linear relation
is translated into a density-to-velocity fluctuations ratio of the order of unity for distances up to
R200c-

The runs with viscosity tend to have larger amplitudes of density fluctuations as a function
of the scale. However, the density fluctuations obtained from our simulations are consistent with
observations, even in the case with full viscosity. This is due to the large range of temperature
distribution. In isothermal clusters, the slope of the amplitude of density fluctuations is affected
by viscosity. This means that the method suggested by Zhuravleva et al. (2019) to constrain the
amount of viscosity in the ICM by measuring the slope of the amplitude of density fluctuations
is only applicable to isothermal clusters.

The amplitude of velocity fluctuations also appears to increase with viscosity, mainly at large
scales. This behavior can also be observed when computing the velocity power spectrum, where
viscosity leads to more power at large scales but decreases at smaller scales. The ratio of density
to velocity fluctuations tends to be higher for cases with full viscosity, while remaining close to
unity for all cases regardless of the amount of viscosity.

In summary, the cosmological simulations with viscosity show some morphological
differences as well as temperature differences. We can quantify these morphological differences
by measuring the fluctuations in density, which become larger in the cases with higher viscosity.
This can be compared with observational measurements of the amplitude of density fluctuations.
Our results are consistent with observations, making it difficult the task of constrain the amount
of viscosity in the ICM solely from density fluctuations. The velocity fluctuations also happen
to be larger at large scales in the cases with viscosity, although the ratio of density to velocity
fluctuations is larger with viscosity, but close to one.
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Figure H1: Density PDF of a 5 kpc shell centered around the virial radius of cluster g16 using
a value of f.yx = 2.5. The solid lines show the data obtained from the simulations; the dashed
lines show the calculated threshold to split bulk and high-density gas; and the dashed-dotted lines
show the fit of the bulk gas to a log-normal distribution.

Appendix H: Dependence on f

Viscosity broadens the density PDF due to the lack of mixing. As a result, it becomes difficult
to define a dividing line between the bulk and the high-density gas. The median value of density
is displaced towards larger values of density, causing the threshold defined in equation (6.1) to
be a poor choice for the division between bulk and high-density gas. In the most extreme cases,
this threshold lies outside the range of densities for certain shells of the cluster, as can be seen in
Fig. H1 for cluster gl6 for fo, = 2.5.

This signifies that some high-density clumps are not removed, leading to a maximum in the
density fluctuations spectrum, as shown in Fig. 6.7. This can be solved by reducing the value
of f.ut 1n equation (6.1) to lower values than 2.5. By doing this, we can successfully split bulk
and high-density gas, as can be seen in the upper panel of Fig. H2, where we used f., = 0.5.
As a consequence, the maximum observed in the amplitude of the density fluctuations is reduced
(see Fig. H3). However, if we use f.y¢ = 0.5 in other clusters, the split of bulk and high-density
gas is not properly done (see bottom panel of Fig. H2 to observe the effect in cluster g55). This
value of f.,. would consider part of the bulk gas as high-density gas and would remove more gas
than only high-density clumps. For consistency we use the same value of f in all our clusters,
choosing the value suggested in Zhuravleva et al. (2012) of f.,« = 2.5 and acknowledging the
spurious effects that it can have in the amplitude of density fluctuations.
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Figure H2: Density PDF of a 5 kpc shell centered around the virial radius using a value of
feut = 0.5. The solid lines show the data obtained from the simulations; the dashed lines show
the calculated threshold to split bulk and high-density gas; and the dashed-dotted line shows the
fit of the bulk gas to a log-normal distribution. Top panel: cluster gl6. Bottom panel: cluster

g55.
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Figure H3: Comparison of the amplitude of density fluctuations in cluster g16 for different values
of feu with and without viscosity.

Appendix I: Density Profile

If we look at the radial density profile of each one of the clusters (Fig. I1), we do not observe
any clear trend among the cases with different viscosities. This shows how, at large scales, the
viscosity effects do not significantly affect the cluster morphology. We need to study the density
fluctuations (~ 5%-10% of the total density, Churazov et al., 2012; Sanders & Fabian, 2012)
to see bigger differences between the cases with and without viscosity. When making a radial
profile, using the mean density for each shell hides the main impact of the viscosity, which is
seen in the fluctuations about the mean. Fig. 6.3 shows how, even though the density distribution
is broader with viscosity, the mean value remains more or less the same, leading to very similar
radial density profiles.

Appendix J: Velocity Power Spectrum

We can make use of the code VORTEX-P to interpolate the particles into a grid and compute the
velocity power spectrum for each cluster and each amount of viscosity in each case. Fig. J1 shows
the power spectrum normalized to Kolmogorov for each cluster within Ry500c. In all cases, the
slope is steeper than Kolmogorov, however, the slope is the same in each cluster regardless of
the amount of viscosity. At larger scales, the runs with viscosity appear to be more energetic,
although at intermediate and small scales, the viscosity runs become less energetic (except for
the cluster g16).
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Figure J1: Velocity power spectrum normalized to Kolmogorov. From left to right: clusters g55,
g16 and g63 for each one of the configurations.
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7 The Effect of Viscosity on the Dynamics
of Galaxy Clusters'

After having attempted to quantify the impact of viscosity in the ICM and to constrain its value
from the power spectrum of density fluctuations, in this Chapter we analyze how viscosity
influences the dynamical evolution of galaxy clusters. Although there is no current method
to constrain the amount of viscosity quantitatively from cosmological simulations besides the
comparison with density fluctuations, investigating the effect of viscosity in individual processes
in detail is still valuable. It allows for a more comprehensive understanding of how viscosity
shapes not only observable cluster characteristics but also their long-term evolution.

7.1 Turbulent Pressure Support

Viscous forces damp the turbulent motions in the ICM, which has a direct impact on the dynamics
of galaxy clusters. A direct consequence of this, together with the dissipative effect of viscosity,
might be to reduce the turbulent pressure support, leading to the lower values observed recently
(see §1.5.1). The decrease of turbulent velocity, together with an increase of temperature, might
potentially lead to a lower turbulent to total pressure ratio (P / Piot)

7.1.1 Measurement of Turbulence

Astrophysical turbulent flows display an intrinsically multi-scale nature, making their numerical
simulation and the subsequent analysis of simulated data a complex problem. In particular, the
study of turbulent velocity fields can be done by performing a Helmholtz-Hodge decomposition
(compressive + solenoidal) and a Reynolds decomposition (bulk + turbulent). This problem
is relatively simple to perform numerically in uniform grids, such as the one emerging from
Eulerian, fixed-grid simulations, but its computation is remarkably more complex in the case
of non-uniformly sampled data, such as the one stemming from particle-based or meshless
simulations. This can be done using the code vorTEX-P (Vallés-Pérez et al., 2021b,a, 2024, §3.3),
which creates an ad-hoc AMR mesh hierarchy from the velocity field with the ultimate goal of
providing a multi-resolution Helmholtz-Hodge and Reynolds decomposition.

I'This Chapter is expected to be published by Marin-Gilabert et al, in prep.
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Table 7.1: Volume-weighted average of the Mjsp within Rypo. and Rpsgo. and the turbulent
pressure fraction within R»500. depending on the amount of viscosity, for a direct comparison
with observations (see Table 1.1 for comparison). Clusters g55 and g16 (first and second rows)
are unrelaxed, while cluster g63 (third row) is relaxed.

M3D| Ry | M3DI R0 | P/ Protl Rysgy,
Ideal 1/3n n [Ideal 13n n |Ideal 13n 7
g55 1 044 040 029|050 053 053] 0.13 0.14 0.14
gl6| 044 040 026 ] 026 030 024 | 0.04 0.06 0.04
g63 | 033 038 025 0.18 0.19 0.18 | 0.02 0.03 0.02

To measure the turbulent velocity field in galaxy clusters, we perform a Reynolds
decomposition in our galaxy cluster after having removed the high-density clumps (see §6.4.1).
We then use the turbulent field and compute the turbulent pressure support as

1
Pury = _thzurb 5 (7.1)

3
and the total pressure as the sum of the thermal pressure of the gas, the turbulent pressure, and
the magnetic pressure:

Pt = Pty + P + Pmag s (7.2)

although the magnetic pressure has a negligible effect. Then the turbulent pressure fraction is
calculated as Py /Pior. The results of turbulent pressure fraction, as well as Mjp for our three
clusters and the three levels of viscosity can be seen in Table 7.1. The calculation has been done
within Rjs00c, to be comparable with observations (see Table 1.1), as well as within Rsggc, by
volume-weighted averaging over the particles.

While cluster g55 shows a larger turbulent pressure support due to its recent activity?, clusters
g16 and g63 show a very low turbulent pressure in the cluster core, although g16 is considered
unrelaxed, consistent with recent observations (see Table 1.1). Although both g55 and g16 are
active clusters, the discrepancy is due to a recent merger in cluster g55, which produces an
increase of a factor of three with respect to gl6. Overall, viscosity seems to have a small effect
on the turbulent to total pressure ratio within Ry500c. Viscosity does not show a significant effect
in the averaged Mach number within Rjs00. either. However, when averaging within Ry, the
effect of viscosity is remarkable, leading to a factor 1.3-1.7 lower M3p in the most viscous cases
compared to the ideal ones.

For a more detailed study of the turbulent pressure support in our clusters, we plot the ratio
of the turbulent to total pressure as a function of the radius (see Fig. 7.1). Although P/ Pyot 1S
expected to increase towards the outskirts of galaxy clusters (Groth et al., 2025), in the case of g55
it decays with the radius, as a consequence of a recent merger, which increases Py, in the center.
In both g16 and g63, the turbulent to total pressure ratio increases with the radius, reaching a
Purb/ Prot ~ 0.1 at Rypoc. Although the radial profile of g16 shows consistently larger turbulent to

There was a recent merger in cluster g55 just before z = 0.
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Figure 7.1: Volume-weighted radial profile of the turbulent pressure support (P /Prot) Of our
three clusters within Ry, depending on viscosity (solid lines). The data points correspond to
different observations shown in Table 1.1: Hitomi (Hitomi et al., 2018), A2029 (XRISM, 2025),
Centaurus (Audard et al., 2025), and Coma (XRISM et al., 2025). From left to right: clusters
g55, g16 and g63 for each one of the configurations.

total pressure values compared to g63, both g16 and g63 are in agreement with the observations.
While the impact of viscosity appears minimal in the central regions of the cluster, its influence
becomes more evident at larger radii, resulting in a reduced P/ Piot ratio in the outskirts of
the galaxy cluster. Note that these simulations are non-radiative, and the contribution of AGN
feedback might increase the turbulent to total pressure ratio in the cluster centers, therefore, these
results should be understood as lower limits.

7.2 Magnetic Fields

Although the ICM is weakly magnetized, magnetic fields have a crucial effect in several
astrophysical processes, such as cosmic ray acceleration and non-thermal emission (Brunetti
& Lazarian, 2007; Boss et al., 2024), energy transport and cooling flows (Carilli & Taylor, 2002),
or structure formation and evolution (Feretti et al., 2012). Therefore, understanding the magnetic
field structure, magnitude, and evolution is key for a proper description of the physics of the ICM.
Magnetic fields are amplified over time due to a dynamo effect, until an (approximately)
equipartition is reached between the turbulent and magnetic energy. This continuous process
amplifies the magnetic fields to the order of ~ 1-10 uG at z = 0 in the cluster center. The dynamo
effect relies on the amplification due to small-scale turbulence. Therefore, the interplay between
viscosity and turbulence might significantly influence the dynamo processes within clusters, as
viscosity can suppress the small-scale eddies of the turbulent cascade where magnetic fields are
amplified (see §1.4.2). To measure the impact of viscosity in the magnetic field amplification,
Fig. 7.2 shows the magnetic field strength for our three different clusters and viscosities at z = 0.
In all cases, the magnetic field reaches a strength of the order of ~ 10 uG, consistent with
observations (Feretti et al., 2012), and then decays when increasing the distance from the cluster
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Figure 7.2: Magnetic field strength projections for all of our simulations listed in Table 6.1. From
left to right: MHD only, MHD with 1/3 of Spitzer viscosity, and full Spitzer viscosity at redshift
zero. From top to bottom: clusters g55, g16 and g63.
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Figure 7.3: Radial profile of the magnetic pressure (solid lines) and turbulent pressure (dashed

lines) at redshift zero. From left to right: clusters g55, g16 and g63 for the different runs.

center. While viscosity appears to have little influence on the magnetic field strength near the
core, it leads to a noticeably weaker magnetic field in the outskirts compared to the non-viscous
scenario. This effect can be seen in more detail by plotting the magnetic field radial profile.
Fig. 7.3 shows the magnetic pressure (solid lines) and the turbulent pressure® (dashed lines) as a
function of the radius. The reduced magnetic field in the outskirts is a direct consequence of the
lower turbulent velocities shown in Table 7.1, indicating that viscosity plays a more significant role
at larger radii. The suppression of turbulence by viscosity results in a less efficient amplification
of the magnetic field in these outer regions, as it was already shown in Fig. 7.2. The high activity
of cluster g55 produces a turbulent pressure that is more than an order of magnitude larger than
the magnetic pressure, probably because the energy injection due to a recent merger has not been
able to amplify the magnetic field yet. In contrast, g16 and g63 exhibit a turbulent and magnetic
pressure of the same order of magnitude, as expected from dynamo theory (see §1.4.2).
Although no big effects can be seen in the turbulent pressure profile due to viscosity, the
continuous viscous effect over cosmological times has a significant impact on the magnetic field
evolution. Fig. 7.4 shows this effect, where the magnetic pressure (solid lines) and turbulent
pressure (dashed lines) are plotted as a function of the scale factor (time) by averaging over Rygoc.
In all cases, the magnetic field grows exponentially regardless of the level of viscosity, although
in the viscous cases, this growth is slower. The growth rate of the dynamo depends on the
smallest eddies’ turnover time (see §1.4.2). Therefore, since viscosity suppresses the small-scale
turbulence, the smallest eddies’ turnover time is larger. This leads to a slower amplification,
although it eventually saturates when an equipartition with the turbulent pressure is reached. In
all clusters, the magnetic field saturates at the same magnetic field strength (B ~ 10 uG). From
our three clusters, we can observe that the saturation is reached at z ~ 1.5 — 1, although this
saturation is reached later the more viscous the medium is. At z = 0, the magnetic field strength
is dominated by the strength at the center, which is several orders of magnitude larger than in the

3In this case, we use the solenoidal component of velocity as a proxy of turbulence, to account also for bulk
motions.
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Figure 7.4: Magnetic pressure (solid lines) and turbulent pressure (dashed lines) evolution from
z=4until z = 0. From left to right: clusters g55, g16 and g63 for the different runs.

outskirts.

These results show that even a modest level of viscosity can have a measurable impact on
the evolution of galaxy clusters, particularly at large radii and over cosmological timescales.
While the impact of viscosity in the inner regions of the cluster seems to be limited, the effect
becomes significantly stronger in the outskirts. This leads to a clear suppression of small-scale
turbulent motions, resulting in a reduced turbulent pressure support and, consequently, a lower
efficiency in the amplification of magnetic fields. The slower growth of magnetic energy and the
delayed onset of saturation observed in the more viscous runs are a direct consequence of the
reduced turbulent cascade, especially at the smallest scales where magnetic amplification operates.
Although the central magnetic field strength at z = 0 eventually reaches similar values across
all models, the buildup is noticeably delayed in the viscous cases, highlighting the cumulative
nature of viscous damping in the outer regions. This highlights the importance of accurately
modeling microphysical processes when aiming to capture the long-term thermodynamical and
magnetohydrodynamical evolution of the ICM, especially accounting for its weakly collisional
and magnetized nature, where the assumption of isotropy may no longer hold.



3 Braginskii Viscosity — A More Accurate
Treatment of Viscosity!

The isotropic (Spitzer) viscosity treatment shown in previous sections represents a simplification
of the plasma conditions present in the ICM (see §2.1 and 2.5). In reality, the ICM behaves as
a weakly collisional plasma, and its viscosity is governed by anisotropic transport processes due
to the suppression of particle motion perpendicular to magnetic field lines (Schekochihin et al.,
2005; Squire et al., 2023). Therefore, a more physically consistent description of viscosity in
such environments is achieved by adopting the Braginskii viscosity formalism, which accounts
explicitly for the anisotropic nature of momentum transport along magnetic fields (Braginskii,
1965). In this section, we present the initial tests of the anisotropic (Braginskii) viscosity
implementation in OPENGADGET3, described in §3.1.8, following the setups described by Berlok
et al. (2019). These tests serve to validate the numerical approach and explore the fundamental
differences arising from anisotropic transport relative to the isotropic approximation.

8.1 Soundwave Test

The first test is the propagation of a simple soundwave in a 3D setup of sizes L = L, , , with an
initial velocity of
vy = Asin(k - x)%, (8.1)

where A is the initial amplitude of the perturbation and k = 2zX is the wavenumber. We
start with a constant density p and a resolution of 1283, given by the number of particles per
unit length placed in a regular grid. We include a constant static magnetic field B, first in the
x-direction (parallel to the velocity gradient) and then in the y-direction (perpendicular to the
velocity gradient).

Fig. 8.1 shows the velocity profile at ct/L = 1 for B, on the left, and B, on the right. In
both cases, the inviscid run keeps the initial amplitude, showing that it has not been damped due
to numerical viscosity, while the isotropic run suppresses the soundwave by the same amount
regardless of the magnetic field direction. In the soundwave with a parallel magnetic field
(By || Av, left panel), the isotropic and the anisotropic cases have the same amplitude, showing
that, in the direction of the magnetic field lines, the overall effect of the anisotropic viscosity is

I'This Chapter is expected to be published by Marin-Gilabert et al, in prep.
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Figure 8.1: Velocity profile of the soundwave described by equation (8.1) after ct/L = 1. Left
panel: Magnetic field in the x-direction, parallel to the velocity gradient. The inviscid case
(green) follows the initial soundwave amplitude, while the isotropic case (red) and anisotropic
case (blue) have been damped due to viscosity by the same factor. Right panel: Magnetic field
in the y-direction, perpendicular to the velocity gradient. The inviscid and isotropic runs remain
unchanged compared to the parallel case, but the amplitude in the anisotropic case has been
reduced due to the compression of the wave.
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equal to the isotropic one. In contrast, when the magnetic field is perpendicular to the velocity
gradient (B, L Av, right panel), the anisotropic case does not mimic the isotropic case, although
there is still some suppression. This suppression corresponds exactly to Ap =n 'V - v, the second
term of the RHS in equation (2.8). This means that, although the magnetic field is perpendicular
to the velocity gradient, viscosity has some effect due to the compression (or expansion) of
the fluid. In an incompressible fluid, the overall effect of anisotropic viscosity should be zero,
although this is not the case in a compressible fluid.

8.2 KHI Test

To perform the second test, we use the KHI setup described in §4.2, although in this case we add
a magnetic field B. With this setup, the velocity gradient has only a y component, therefore, we
would see the maximum viscous effects when B = B §. However, in the case of a magnetic field
in the y-direction, the fluids’ motion leads to a shear amplification due to the compression of the
magnetic field lines, thus suppressing the instability (see Das & Gronke, 2023). For this reason,
we can only include a magnetic field in the z-direction (B, L Vv) and in the x-direction (B, L Vv).
In the presence of magnetic fields in the shear direction (£), the KHI is fully suppressed due to
magnetic tension when
PhPc

Ph + Pc

where By, and B. are the magnetic field of the hot and cold medium, respectively (Vikhlinin
et al., 2001). In our setup, where By, = B., the KHI is suppressed when 8 < 16, therefore we
use a 8 = 107 to be able to study the growth of the instability depending on viscosity without
suppression due to magnetic tension. Fig. 8.2 shows the results after # = 1.57gy of the simulation
with B, in the top row, and By in the bottom row.

The left panel of Fig. 8.2 shows the density colormap normalized to the hot medium density.
In the run with B, (upper row), the KHI can grow in a similar way to the non-viscous (or low
viscosity) case shown in the bottom row of Fig. 4.2, where the characteristic rolls of the KHI
are fully developed”. The magnetic field remains similar to the initial one after 1.5ty (middle
panel), while the pressure anisotropy remains close to zero (right panel). The growth of the
instability can be quantified by measuring the growth rate, as we did in §4.4.2, although now we
compare the growth rate of the inviscid, isotropic, and anisotropic cases. Note that in the isotropic
and anisotropic case, the same value of the Spitzer coeflicient is used: n = 0.0577sp, assuming
aT = 3-107 K (a viscosity much higher than the critical viscosity found in §4 to highlight the
differences, see Table §4.1). The left panel of Fig. 8.3 shows the growth rate of the instability
for the different cases. The isotropic case strongly suppresses the growth of the KHI, while the
inviscid and anisotropic cases behave very similarly, allowing the growth of the instability. This
kind of behavior is expected, since B, L Vv, therefore, the effect of the anisotropic viscosity
should be almost zero.

AV?

shear °

Bl + B2 >4n (8.2)

ZNote that the version of the code used here is different than the one used in §4, therefore the results might be
slightly different.
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Figure 8.2: Colormaps of the KHI with anisotropic viscosity. Top row: Magnetic field in the
z-direction. Bottom row: Magnetic field in the x-direction. Left column: Density colormap,
normalized to the hot gas density. Middle column: Magnetic field strength colormap, normalized
to the initial magnetic field. Right column: Pressure anisotropy, normalized to B%/ 8m, where the
white dashed line in the colorbar indicates the limits for the firehose and mirror microinstabilities
(left and right, respectively).
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In the run with B, (bottom row of Fig. 8.2), although the magnetic field and the velocity
gradient are initially perpendicular, the density colormap (left panel) shows a clear suppression
of the instability. The reason is the bend of the magnetic field lines due to the growth of the
KHI. Due to the fluid motions, the magnetic field lines (indicated by the yellow vector field in the
colormap) are bended in the y-direction (parallel to the velocity gradient), producing a non-zero
pressure anisotropy that results in a strong suppression of the growth (note that > ncit). The
plasma motions also lead to an increase in the magnetic field strength in areas where the magnetic
field lines are compressed, or decrease where they are decompressed (middle panel). These
processes lead to a non-zero pressure anisotropy (right panel), with a positive value in regions
where the field strength increases and a negative value where the field strength decreases (see
§2.5). The pressure anisotropy colormap shows regions where the firehose instability is triggered
8rAp/ B(z) < -2, blue colors) and regions where the mirror instability is triggered (87Ap/ Bg > 1,
yellow colors), where the limits are indicated by white-dashed lines in the colorbar. These white
lines are plotted over the colormap, highlighting that only the gas inside the white lines lies
within the limits set by the plasma microinstabilities. This means that, if we set the limit for
plasma microinstabilities, the value of Ap of the vast majority of the plasma will be limited by
the microinstabilities (see §2.5.1). Due to the weak magnetic field used (8 = 103), the magnetic
field lines are bent more easily. This has three effects: i) the KHI is able to grow; ii) the bend of
the lines produces a strong effect of anisotropic viscosity; iii) the plasma microinstabilities are
triggered easily.

The growth rate of the instability with B, can be seen in the right panel of Fig. 8.3. While the
isotropic case strongly suppresses the KHI, as in the B, case, the inviscid case allows the growth.
However, the maximum y-velocity reached is lower than the B, case, since the magnetic field
itself slightly suppresses the growth of the instability. In the anisotropic case, there is an initial
growth; however, as soon as the magnetic field lines are bent, viscosity suppresses the growth,
reaching a much lower amplitude than the non-viscous case. As described above, the pressure
anisotropy values exceed the limits set by the plasma microinstabilities. If we set these limits,
the growth of the instability follows a similar growth as the inviscid case, since the Ap of the
majority of the gas is limited by these microinstabilities.

To analyze in detail the amount of particles affected if we switch on the plasma
microinstabilities limits, Fig. 8.4 shows a histogram of Ap of all the particles in the setup with
B = 10° (left column) and 8 = 107 (right column), together with the values of the limits set by
the microinstabilities (dashed lines). The top-left panel shows the histogram of the simulation
without the limits after t = 0.57gy, allowing Ap to go beyond the limits. It shows how the vast
majority of particles are found outside the limits set for 8 = 103. If we switch on the limits
(bottom-left panel), the range allowed for Ap is much smaller, thus, the viscous effect is largely
reduced, which explains why the KHI behaves similarly to the inviscid case in Fig. 8.3.

In the case of 8 = 10, the magnetic field lines have a larger tension, thus they are more
difficult to bend. This leads to a stronger suppression of the KHI due to magnetic fields, as can
be seen in Fig. 8.5 by measuring the growth rate in the case with B = B% and 8 = 10%. The
inviscid case grows (the slope is positive within 17gg), but much less than the case with 8 = 10°.
Since the field lines are more difficult to bend, this means that the contribution to anisotropic
viscosity is also lower than in the case of 8 = 107, although the effect is still noticeable. Since the
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Figure 8.3: Growth rate of the KHI of a setup with 8 = 103 for different viscosity treatments:
inviscid (green), isotropic (red), anisotropic (blue), and anisotropic with plasma microinstabilities
limits (purple). Left panel: Runs where the initial magnetic field has only a z-component. Right
panel: Runs where the initial magnetic field has only x-component.

magnetic component parallel to Vv is smaller compared to the case with 8 = 10, the range of
values of Ap is narrower (see top-right panel of Fig. 8.4), producing that the majority of particles
are found within the plasma microinstabilities limits for 8 = 10?. This translates into a smaller
overall effect of anisotropic viscosity. Additionally, the stronger magnetic field sets the plasma
microinstability limits to larger values of Ap, therefore, if we switch on the limits (bottom-right
panel in Fig. 8.4), the behavior is similar to the anisotropic case without the limits (see Fig. 8.5).

These initial tests constitute an important step toward a more accurate modeling of viscosity
in the ICM, capturing the inherently anisotropic nature of momentum transport in magnetized,
weakly collisional plasmas. The results show that, unlike the isotropic treatment, anisotropic
viscosity responds to the orientation and evolution of the magnetic field, allowing or suppressing
instabilities depending on the local field geometry and fluid dynamics. While configurations
aligned with the velocity gradient reproduce similar damping to the isotropic case, perpendicular
or evolving field geometries reveal substantial differences, including directional suppression
of instabilities and the emergence of pressure anisotropies that can exceed microinstability
thresholds. These effects, although explored here in controlled setups, have clear implications for
realistic astrophysical environments, where magnetic fields are neither static nor homogeneous.
These tests set a first step toward a more comprehensive understanding of anisotropic transport
in the ICM, requiring further development, testing, and eventual integration into cosmological
simulations.
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9 Conclusions

In this thesis, we have presented a detailed investigation of the physical processes governing the
evolution of the ICM and CGM, with particular emphasis on the roles of turbulence, isotropic
viscosity, and multiphase gas dynamics. Utilizing both idealized setups and cosmological
simulations, we quantified how these mechanisms influence observable characteristics of galaxy
clusters and galactic halos.

Detailed simulations of the KHI under realistic conditions relevant to galaxy clusters showed
that physical viscosity substantially suppresses instability growth below a well-defined threshold.
This threshold corresponds to a small fraction (approximately 10~3) of classical Spitzer viscosity
in our setup, although this threshold depends on the overdensity, Mach number, and wavelength
of the instability. The numerical viscosity in our implementation in OPENGADGET3 was explicitly
quantified and found negligible relative to physical values in cluster-like environments, reinforcing
the validity of our numerical approach for astrophysical applications.

The role of viscosity in multiphase systems and its effect on cooling has also been
thoroughly explored. Our simulations confirm that physical viscosity suppresses turbulent
velocities in the weak cooling regime, while keeping cooling efficiency intact, thus modifying
previously established inviscid relations between cooling and turbulence. In contrast, in the
strong cooling regime, viscosity was found to (slightly) enhance the surface brightness by
smoothing temperature gradients, thereby increasing intermediate-temperature gas fractions
and overall cooling efficiency. In this regime, cooling dominates over viscosity, allowing
the system to develop turbulence, thus keeping the scaling relations in TRMLs largely intact.
We derived analytical criteria predicting when viscosity would minimally impact cooling
processes, validated through our numerical simulations. These results have direct implications
for understanding observations of multiphase systems like galactic outflows, or the interaction
between ISM-CGM-ICM, and it will be important for the implementation of subgrid models in
large-scale simulations.

In our cosmological simulations, we found that viscosity significantly modifies turbulence
and mixing in galaxy clusters, leading to a hotter ICM, as well as morphological differences.
Specifically, viscosity enhances velocity fluctuations at large scales while suppressing small-scale
mixing. This scale-dependent behavior directly impacts the amplitude and morphology of density
fluctuations. Importantly, the ratio of density to velocity fluctuations increases with viscosity
but remains close to unity, as theoretically expected. The power spectrum of density fluctuations
increases with viscosity, although the slope remains the same regardless of the amount of viscosity.
This was expected to be used as a method to constrain the amount of viscosity from observations,
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however, our results are consistent with observational constraints from X-ray studies for all levels
of viscosity. The reason for this is the large distribution of temperatures found in the gas of galaxy
clusters, which ultimately sets the dissipation scale. This broad distribution does not set a unique
dissipation scale, therefore keeping the slope of the power spectrum unchanged. These findings
imply that current observations alone face challenges in constraining viscosity due to its subtle
yet measurable morphological signatures.

The lack of turbulence found in galaxy clusters due to viscosity directly influences the dynamo
effect needed for the magnetic field amplification. Viscosity leads to weaker magnetic fields in the
outskirts of galaxy clusters, a consequence of the reduced turbulence compared to the non-viscous
case. This result, however, is still consistent with both theory and observations, reaching a mean
magnetic strength of ~ 10 uG within the virial radius.

Finally, the first tests with anisotropic viscosity show promising results, where the simulations
can reproduce the expected behavior in the weakly collisional ICM. These tests confirm the
accuracy and robustness of our numerical implementation of Braginskii viscosity. So far, these
tests have demonstrated the capability of our simulations to capture the subtle physical effects of
anisotropic viscosity, crucial for ensuring the reliability of future studies. This implementation,
however, still needs a more careful and detailed study before we can fully trust the results in a
cosmological simulation.

Collectively, the findings of this thesis establish a link between microscopic plasma processes
and macroscopic observables in galaxy clusters and galactic halos. Through a combination of
idealized and cosmological simulations, we have systematically shown how isotropic viscosity,
turbulence, and multiphase gas dynamics shape the evolution of the ICM and CGM. We
demonstrated that even a small fraction of Spitzer viscosity can suppress the growth of instabilities
and affect turbulent motions, with direct consequences for mixing, cooling, and magnetic field
amplification. Our results highlight how viscosity modifies the morphological and spectral
properties of the gas, including density fluctuations and velocity fields, while remaining broadly
consistent with current observational constraints. The scale-dependent nature of these effects
explains why current X-ray observations struggle to provide precise constraints on viscosity,
despite its measurable impact on cluster structure. Moreover, the first successful tests of
our implementation of anisotropic (Braginskii) viscosity in OPENGADGET3 open the door to
more realistic modeling of the weakly collisional ICM. Altogether, the work presented here
advances our understanding of the baryonic physics in galaxy clusters and halos and provides a
solid foundation for improving subgrid models in future large-scale simulations, as well as for
interpreting upcoming high-resolution observations.



10 Outlook and Future Work

While this work has provided a comprehensive analysis of isotropic viscosity and its influence
on the ICM, several important physical regimes remain to be explored. In particular, the role
of anisotropic viscosity, expected in magnetized, weakly collisional plasmas, requires deeper
investigation. This extension is not only theoretically motivated but also numerically and
observationally relevant, as recent high-resolution simulations and X-ray spectroscopic data
point toward phenomena that might be explained through anisotropic transport mechanisms.

In addition to cluster-scale dynamics, future work will benefit from examining the impact
of viscosity on smaller-scale processes such as ram pressure stripping in galaxies. Systems
like jellyfish galaxies, which exhibit strong ICM-ISM interactions, provide a unique test for
understanding how viscosity shapes gas morphology, mixing, and star formation in dynamic
environments. Incorporating a physically accurate viscosity model in such contexts is crucial
for improving subgrid physics and for connecting small-scale processes with large-scale galaxy
evolution.

10.1 Anisotropic Viscosity in Cosmological Simulations

Having studied in detail the effects of isotropic viscosity within the ICM, the next natural
step of this research is to extend the analysis to the more realistic scenario of anisotropic
viscosity. Anisotropic viscosity, governed by the magnetic field orientation within the ICM,
differs significantly from isotropic viscosity due to its directional dependence, thus potentially
impacting the cluster dynamics in different ways.

Although a Braginskii viscosity is already implemented in OPENGADGET3, it is still under
testing to understand the limits and accuracy of the scheme. This treatment must ensure an
accurate modeling of the complex plasma behavior governed in the weakly collisional ICM.
Preliminary tests show promising results so far; however, extensive validation and optimization
remain necessary to guarantee the robustness and accuracy of future simulations.

The state-of-the-art high-resolution cosmological simulations achieve a spatial resolution
high enough to resolve the Coulomb collision scale (Steinwandel et al., 2024), entering the
kinetic-aware regime (see Fig. 10.1, taken from Steinwandel et al., 2024). At this resolution,
a simple isotropic treatment of viscosity becomes inadequate. Instead, a detailed Braginskii
implementation is needed to properly capture the anisotropic nature of momentum transport along
magnetic field lines. This is particularly crucial for understanding turbulence and instabilities in
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Figure 10.1: Left panel: Global distribution of the resolution (/41) as a function of the electron
mean free path (Avpp). Right panel: Resolution as a function of the electron mean free path
as a measure for the Coulomb diffusion length scale. This shows the region in the ICM that
carries most of the mass in the ICM, densities above 10~/ ¢m™3 and temperatures above 10° K.
The resolution in this regime resolves the Coulomb mean free path over a broad density and
temperature regime in the ICM. The oink and turquoise lines mark the transition regions at
which the smoothing length gy, ~ Apmpp and hgyy = 0.1 X Aypp respectively, indicating that the
resolution transits into a regime where kinetic-aware MHD becomes relevant. To the right of the

turquoise line, one should consider a fully kinetic treatment. Figure taken from Steinwandel et al.
(2024).

the ICM at scales relevant for observational comparisons.

The recent observations provided by XRISM (XRISM et al., 2025; XRISM, 2025; Audard
etal., 2025) underline the importance of incorporating accurate viscosity models into simulations.
These measurements show unexpectedly low turbulence levels in cluster cores, which could be
explained by viscous damping effects, potentially arising from anisotropic viscosity. These
observational constraints offer a unique opportunity to validate simulation outputs, reinforcing
the importance of accurate viscosity modeling. Furthermore, the combination of simulations
with isotropic and anisotropic viscosity with observations can be used to constrain the overall
level of viscosity expected in galaxy clusters.

10.2 Pressure Stripping Galaxies

Another interesting aspect for future investigation involves the morphology and dynamical
evolution of jellyfish galaxies. As galaxies move through the ICM, their cold ISM and CGM gas
is stripped away, forming extended tails of gas that mix with the hot ICM. In these systems, the
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cooling of the hot ICM in the interaction of the ISM might enhance the star formation (Miiller
etal., 2021). In this process, not only does mixing become important, but also cooling efficiency,
which accounts for the amount of cold gas available to form stars.

The suppression of instabilities and consequent lack of mixing due to viscosity leads to
morphological differences in the tails of these jellyfish galaxies moving through the ICM (see
§6.3). Previous studies have analyzed the effect of isotropic viscosity in the morphology of
stripped galaxies, showing longer tails the more viscous the ICM is (Roediger et al., 2015; Kraft
etal., 2017), however, the effect of an anisotropic viscosity has never been studied in this context.

Viscosity reduces the total mixing of the hot and cold phases, decreasing the amount of
intermediate-temperature gas entering the regime where the cooling curve peaks. Additionally,
viscosity might (slightly) modify the cooling efficiency (see §5.2.3), directly affecting star
formation in the tails of jellyfish galaxies. A deeper study with an idealized setup, combined with
a thorough comparison with observations, might help us understand the overall effect of viscosity
in such environments.

Understanding all these complex processes happening in the tails of jellyfish galaxies in
more detail will enhance our ability to accurately model the intricate physics governing the ICM.
Moreover, they will not only provide valuable insights into ram pressure stripping but will also aid
the development of more accurate subgrid models, such as star formation, for larger cosmological
simulations. These models are essential for capturing the complex interactions between galaxies
and their environments, ultimately improving our understanding of galaxy evolution on both
small and large scales.

In summary, this work provides a solid foundation for understanding the role of isotropic
viscosity in the ICM, while highlighting the importance of extending this analysis to the more
realistic regime of anisotropic viscosity. The implementation and validation of a Braginskii-type
viscosity scheme in high-resolution cosmological simulations will be a crucial step forward,
particularly as we enter a regime where the Coulomb mean free path is resolved and kinetic
effects become increasingly relevant. Exploring the impact of anisotropic viscosity across
different environments — from cluster-wide turbulence to the gas dynamics of ram pressure
stripped galaxies — will allow us to probe the role of microphysical transport processes in
shaping observable structures. Ultimately, this line of investigation will not only advance our
theoretical understanding of the ICM but also help develop more accurate subgrid models for
galaxy formation and evolution.
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