
Reference patterns of semantic paradoxes and the
problem of their graph-theoretic characterization

Inaugural-Dissertation
zur Erlangung des Doktorgrades

der Philosophie an der Ludwig-Maximilians-Universität
München

vorgelegt von

Timo Beringer

aus

München

2025

Referent: Prof. Dr. Dr. Hannes Leitgeb

Korreferent: PD Dr. Martin Fischer

Tag der mündlichen Prüfung: 10.02.2025

2

Abstract. This thesis is a contribution to the field of semantic paradoxes. It
joins a tradition of works that investigate the questions of why certain referential
structures of sentences or sentence systems lead to semantic paradoxes.

The approach presented in Chapter 2 is language-independent. The funda-
mental concept it is based on is that of a Boolean network. Other frameworks
of the tradition that could be described as graph-theoretic approach to the se-
mantic paradoxes can be embedded in ours straightforwardly.

As in various other accounts, reference patterns are formally conceived as
directed graphs. A question every graph-theoretic account has to answer is
what graphs should be conceived as being potentially paradoxical. The answer is
not straightforward, since graphs that occur as reference graphs of paradoxical
sentences usually do so not exclusively, but occur also as reference graphs of
sentences that are not paradoxical.

I will suggest three candidates for the class of all potentially paradoxical
directed graphs: dangerous digraphs, digraphs of infinite character and not
strongly kernel-perfect digraphs. Each of them captures a different aspect of
the intuition one might have about potentially paradoxical graphs and each
gives rise to a characterization problem, i.e., the problem of finding a graph-
theoretic property that is a necessary and sufficient condition for a graph to
be a member to this class. To each of the three characterization problems I
conjecture a solution. A directed graph is conjectured to be dangerous if and
only if it contains a directed cycle or a finitary inflation of the Yablo-graph
(i.e., the reference pattern of Yablo’s paradox); it is conjectured to be of infinite
character if and only if it contains a finitary inflation of the Yablo-graph; and
it is conjectured to be not strongly kernel-perfect if and only if it contains an
odd directed cycle or an odd finitary inflation of the Yablo-graph. It will be
investigated how these conjectures are interrelated.

The goal of Chapter 3 is to show that any Boolean network (and the question
of whether it has a fixed point in particular) can be analyzed in terms of an
associated directed graph. Such a graph is called a characteristic digraph of
the Boolean network and contains more information about it than a reference
graph. This reduces the question of whether a sentence system is paradoxical
to a purely graph theoretic one. In Chapter 4 it is shown that all three criteria
conjectured as sufficient and necessary are sufficient indeed. In Chapter 5 it
is shown that the criterion for dangerous digraphs is necessary under certain
additional assumptions.

1

Acknowledgments. I would like to thank my supervisor Hannes Leitgeb for
his support and encouragement. His paper ‘What truth depends on’ [34] was a
great inspiration to my work on this project.

A special thanks goes to Thomas Schindler, who is the co-author of two of
my papers. The many inspiring discussions with him helped me a lot to develop
my ideas. He has always been available to discuss any of my problems or to give
me advice.

I would like to thank Martin Fischer, Lavinia Picollo, Andrea Cantini, Ric-
cardo Bruni, Edoardo Rivello, Roy Cook, Brian Rabern, Johannes Stern, Catrin
Campbell-Moore and Elio La Rosa for discussions and their valuable feedback.

Parts of the material contained in this thesis have been presented in Munich
and Florence. I thank the audiences for their valuable feedback. I would like
to acknowledge the support of the Munich Center for Mathematical Philosophy
and the generous support of the German Research Foundation (DFG), ‘Refer-
ence patterns of paradox’ (PI 1294/1-1).

Included material from co-authored publications. Section 1.1, which is
presented here in a slightly modified form, was jointly written with Thomas
Schindler and is part of our joint article [5]. Some of the material in Subsection
2.7.2 can also be seen as taken from this paper, though being presented here
in a modified and more elaborate form. Conjecture 2.8.1 in Subsection 2.8.1 is
also contained in [5] as Conjecture 4.24, as well as in [4] (another paper jointly
written with Thomas Schindler) as Conjecture 1. Although Conjecture 2.8.1 is
formulated for the more abstract domain of Boolean networks and is strictly
speaking not equivalent to Conjecture 4.24 in [5], it seems to be fair to regard
both as essentially the same.

Some theorems and definitions of Chapter 2 can be seen as more abstract
counterparts of definitions and theorems in [5]. In most of these cases, how-
ever, the transfer is not a straightforward one. It is problably more appropriate
to speak of reconstructions of concepts and theorems within a more abstract
framework. This is the cases with some of the material in Section 2.3 (in partic-
ular Definition 2.3.1) and some of the material in Subsections 2.4.8, 2.4.10 and
2.4.11.

Finally, Definition 3.6.3 in Section 3.6 of Chapter 3 can be seen as a recon-
struction of Definition 5.1 of [5].

2

Contents

1 Introduction 6
1.1 Semantic paradoxes and reference patterns 6
1.2 Graph-theoretic accounts of the semantic paradoxes 10

1.2.1 What is a graph-theoretic account? 10
1.2.2 The approach of Cook . 10
1.2.3 The approach of Rabern et al. 13
1.2.4 The approach of Beringer and Schindler 14

1.3 Guiding questions . 14
1.4 Richardson’s theorem for infinite graphs 15
1.5 Outline of the thesis . 17

1.5.1 Outline of Chapter 2 . 17
1.5.2 Outline of Chapter 3 . 20
1.5.3 Outline of Chapter 4 . 22
1.5.4 Outline of Chapter 5 . 23

2 Boolean networks and semantic paradoxes 25
2.1 Basic terminology . 25
2.2 Discrete dynamical systems . 29

2.2.1 Dynamical systems and iteration graphs 29
2.2.2 Invariant sets and attractors 31
2.2.3 Boolean networks and Boolean automata 32

2.3 Dependency graphs . 33
2.3.1 Automata dependency and dependency graphs 33
2.3.2 Reconstruction of FOL frameworks 35
2.3.3 Constructing Boolean networks on digraphs 36
2.3.4 Trajectories of automata 37

2.4 Paradoxical sentences and automata 41
2.4.1 Notions of paradoxical automata 41
2.4.2 Transfinite trajectories . 43
2.4.3 General function networks 46
2.4.4 Subtypes . 48
2.4.5 A topology for the state space 49
2.4.6 Subnetworks and digraph topology 51
2.4.7 Kripke fixed points . 53

3

2.4.8 Kripke-extensions of Boolean networks 55
2.4.9 Kripke-paradoxicality in terms of subspace invariance . . 58
2.4.10 Fixed points by type reduction 61
2.4.11 Core, periphery and kernel-perfect digraphs 63

2.5 System- and network transformations 65
2.5.1 System transformations 65
2.5.2 Network isomorphisms . 70
2.5.3 Function network products 73
2.5.4 What is a reference pattern? 74

2.6 Three related characterization problems 75
2.6.1 Dangerous and safe digraphs 75
2.6.2 Compactness and digraphs of finite character 76
2.6.3 Strongly kernel-perfect digraphs 80

2.7 Digraph transformations . 83
2.7.1 Subdivisions . 84
2.7.2 Inflations and minors . 85
2.7.3 The parity of an inflated Yablo-graph 89

2.8 Conjectured solutions for the characterization problems 92
2.8.1 The characterization problem for safe digraphs 92
2.8.2 The characterization problem for digraphs of finite character 93
2.8.3 The characterization problem for strongly kernel-perfect

digraphs . 94

3 Characteristic digraphs of constrained Boolean networks 96
3.1 Regular inflations . 96
3.2 Characteristic digraphs . 97
3.3 Danger preserving digraph transformations 99
3.4 Walicki’s conjecture . 103
3.5 Existence of characteristic digraphs 104

3.5.1 Representation of Boolean networks as sentence systems . 104
3.5.2 Construction of a characteristic digraph 107

3.6 Signed dependency graphs . 115

4 The parity of an inflation and strong kernel-perfectness 118
4.1 Convergent inflations . 118
4.2 Construction of convergent inflations of the Yablo-graph 119
4.3 Necessary conditions for the characterization problems 124
4.4 Finitary inflations of the Yablo-graph 125

5 Safe digraphs 127
5.1 Partitions of function networks 127

5.1.1 Open exhaustions . 127
5.1.2 Well-founded partitions 129

5.2 Prolific digraphs . 131
5.2.1 Quasi-finitely out-branching digraphs 131
5.2.2 Prolific digraphs . 132

4

5.3 Ends . 134
5.3.1 Ends and end covers . 134
5.3.2 Normal ends . 136

5.4 Digraphs with countably many ends 140

6 Final remarks 141
6.1 How to make further progress? 141
6.2 Are there only two semantic paradoxes? 142
6.3 Application to axiomatic theories of truth 143
6.4 Application to the logical paradoxes 144

5

Chapter 1

Introduction

1.1 Semantic paradoxes and reference patterns

‘Why are some sentences paradoxical while others are not? Since Russell the
universal answer has been: circularity, and more especially self-reference.’ These
are the opening lines of Stephen Yablo’s paper ‘Paradox without self-reference’
[50] that he concludes with the assertion that self-reference is neither necessary
nor sufficient for liar-like paradoxes, drawing on the now famous example of an
infinite sequence of sentences each of which says that all the sentences appearing
later in the sequence are not true.

In 1970, about two decades before Yablo’s discovery, Hans Herzberger [24]
already argued that there are referential patterns other than circularity that
should be counted as pathological. According to his approach, any sentence has
a domain, the set of objects it is about. Herzberger concedes that ‘the general
notion of a domain is more readily indicated than explicated’. However, he gives
the following rules of thumb. A sentence of the form ‘A is (not) true’ is about
A; a sentence of the form ‘All φs are (not) true’ is about all the φs. Of course,
some objects in the domain of a sentence may be sentences themselves. Those
sentences, too, have their own domain that may include sentences, and so forth.
Let D(φ) be the domain of the sentence φ and D2(φ) the union of the domains
of all sentences in D(φ). In this way, Dk(φ) can be defined for all natural
numbers k. (This hinges of course on the assumption that we have a definition
of ‘domain’.) Herzberger calls a sentence φ groundless iff for all k, Dk(φ) is
not empty. According to this picture, both the liar and Yablo’s paradox are
groundless; but while the liar is about itself, hence circular, no member of the
Yablo sequence refers (directly or indirectly) to itself. Not all groundless sen-
tences give rise to actual antinomies (the non-paradoxical truth-teller sentence
is clearly groundless, for example), but they all suffer from ‘vicious semantic
regress’, a form of ‘semantic pathology’ more general than merely involving a
vicious circle, which, according to Herzberger, is responsible for the fact that
groundless sentences ‘lose their comprehensibility’. Thus, actual contradiction

6

is ‘but the extreme symptom of semantic pathology’ ([24, pp. 149-150]).
Yablo did not answer the question ‘Why are some sentences paradoxical

while others are not?’; but the idea that each sentence has a domain invites the
following crude answer:

Some sentences are paradoxical because of their position in the refer-
ence graph of our language, i.e., in the directed graph whose vertices
are the sentences of the language, where two sentences φ,ψ are con-
nected by an arc from φ to ψ iff φ is about (refers to, depends on)
ψ.

Let us have a look at some informal examples.

Example 1.1.1. The paradigms of a self-referential statement are the liar and
the truth-teller and it is plausible to represent their reference patterns by simple
loops.

L: (L) is false T : (T) is true

L T

The sentence L is paradoxical in the following sense. Its truth value depends on
its own truth value in a fashion that if we assign any truth value (true or false)
to L and then evaluate L relative to this assigned truth value, then the value
obtained by the evaluation turns out to be the opposite of the assigned value. In
other words, whatever truth-value is assigned to L is rejected by the evaluation.
The hypothesis that L is true implies that L is false and the hypothesis that L
is false implies that L is true.

When it comes to the truth-teller sentence T we are confronted with a related
but different phenomenon. Its truth value also depends on its own truth value
but in a different way. Whatever truth-value is assigned to T is confirmed by
the evaluation. The hypothesis that T is true implies that T is true and the
hypothesis that T is false implies that T is false.

What both sentences share is the same pattern of reference, but they differ
in their mode of reference.

Example 1.1.2. We can also consider pairs of sentences that, even if they are
not directly self-referential, still exhibit some kind of circularity:

L1: (T2) is false
T2: (L1) is true

L1 T2

7

Example 1.1.3. Similarly, for every natural number n, we can consider liar
cycles of length n. A slightly different example is given by a version of Curry’s
paradox:

C1: (C1) is false or (C2) is true
C2 : 1 + 1 = 3

C1 C2

It is clear that self-reference or circularity is not a sufficient condition for para-
dox. But is self-reference or circularity a necessary condition for paradox? Ac-
cording to Yablo [50] that’s not the case.

Example 1.1.4. Consider the following combination of Example 1.1.3 and Ex-
ample 1.1.1:

K1: (K1) is false or (T) is true
K2: (K2) is false or (T) is false
T : (T) is true

K1 T K2

Example 1.1.5. Consider Yablo’s paradox:

Y1: (Yn) is false for all n > 1
Y2: (Yn) is false for all n > 2
Y3: (Yn) is false for all n > 3
Y4: (Yn) is false for all n > 4
...

Informally still, we may represent the Yablo sequence by the following graph
which does not contain any cycles.

Y1 Y2 Y3 Y4
...

It is not possible to assign a truth value to every Yn: in any such assignment,
no more that two Yn’s could be declared true. Hence there exists some n0 such

8

that all Ym with m ≥ n0 are declared false. This implies that Ym is true while
being declared false.

Yablo’s paradox seems to have an infinite character in the sense that it is
essential that there are infinitely many sentences involved.

Example 1.1.6. Variations on the Yablo sequence deliver new paradoxes whose
reference graphs do not contain any loops.

Y ′
1 : (Y

′
2) is true

Y ′
2 : (Y

′
3) is false and for all even n > 2, (Y ′

n) is false
Y ′
3 : (Y

′
4) is true

Y ′
4 : (Y

′
5) is false and for all even n > 4, (Y ′

n) are false
Y ′
5 : (Y

′
6) is true

...

Y ′
1 Y ′

2 Y ′
3 Y ′

4 Y ′
5 Y ′

6

...

Example 1.1.7. Finally let us have a look at the following version of McGee’s
paradox,

M0: (Mω) is false
M1: (M0) is true
M2: (M1) is true
...
Mω: (Mn) is true for all n < ω.

M0 M1 M2 M3

...
Mω

In order to see the paradox in this construction, assume that Mω is true. Hence
for all n < ω, Mn must be true. But then M0 is true and thus claims truly that
Mω is false. Hence Mω is false. This implies that M0 is true. Which implies
that M1 is true. More generally, Mn+1 is true, given that Mn is. Hence, by
induction, we may conclude that Mω is true.

McGee’s paradox combines traits of both the liar-paradox and Yablo’s para-
dox. While it has a cyclic structure, the fact that it involves infinitely many

9

sentences seems to be essential. Is it a paradox of infinite character in the same
sense as Yablo’s paradox is?

These examples raise the question of how many types of paradox there are and
what reference patterns underlie them. What are the ‘paradoxical nodes’ of the
reference graph? And can they be characterized in graph-theoretic terms?

1.2 Graph-theoretic accounts of the semantic para-
doxes

1.2.1 What is a graph-theoretic account?

Dating back to the early 1970s, there have been various attempts to explain
why some sentences are paradoxical while others are not in terms of certain
‘pathological’ patterns of reference, which are most conveniently captured by
directed graphs. All these accounts could be characterized as being rather ‘nat-
uralistic’ (or ‘naive’ or ‘empirical’) in the sense that they seem to agree on Hans
Herzberger’s guideline that ‘[r]ather than try to eliminate those paradoxes [...]
the idea is to stand back and let the paradoxes reveal their inner principles’,
(cf. [25]). Ideally, every such approach would involve, roughly speaking, at least
the following four steps.

1. Choice of language: choose formal language L.

2. Notion of paradox : define what sets of L-sentences are paradoxical.

3. Graph assignment : assign to each set S of L-sentences a directed graph
R(S) that describes a relation of reference/semantic dependence between
the sentences of S,

4. Characterization problem: classify the (non) paradoxical sets of sentences
S in terms of R(S)!

1.2.2 The approach of Cook

As indicated in Section 1.1, the foundation for a graph-theoretic account of the
semantic paradoxes has been laid by Herzberger in his article [24]. Another
important and formally more rigorous contribution is Yablo’s work, [49] which
is thoroughly discussed in [5]. As the first rigorous and systematic attempt of
a graph-theoretic account could probably be regarded Gaifman’s approach in
[21], which is, however, rather complicated.

In the following we shall discuss Cook’s short and elegant essay [14] as
paradigmatic of graph-theoretic accounts of the semantic paradoxes.1

1Other noteworthy contributions are: [9], [28], [29] and [46]. It is also worth mentioning
that at the intersection of philosophical logic and theoretical computer science there exists a
field of called abstract argumentation frameworks or discourse logic, which is quite flourishing

10

Cook considers (1) a formal language - denoted by LF in this introduction,
‘F’ standing for ‘false’ - that consists of a set of sentence names, a falsity predi-
cate and conjunction symbols of arbitrary arity. (Strictly speaking, LF is not a
language but a family of languages, parameterized by the set of sentence names.
For the sake of simplicity we treat it as a language. This remark also applies
to LC considered in the next subsection.) A denotation function that maps
sentence names to LF -sentences gives rise to what might be called a negative
sentence system: A set of sentences S each of whose members refers to a subset
of S and claims that all the members of this subset are false. From our above
examples, {L} and {Y1, Y2, . . . } are sets of sentence names that can be thought
of as such negative sentence systems (given the denotation function indicated
in our examples by a colon), while our examples built on the sets {T}, {L1, L2}
and {Y ′

1 , Y
′
2 , . . . } cannot.

Before discussing the notion of paradox (2), let us have a look how directed
graphs are assigned to sentence systems: Cook considers a relation of dependency
between sentences names that can be characterized as follows: a sentence name
α depends on a sentence name β if and only β occurs in the sentence that is
denoted by α.2 The directed graph that corresponds to a given sentence system
(let us call it the reference graph of this system) then consists of the sentence
names (the vertices of the graph) and has an arc from α to β iff α depends on
β. Clearly, the reference graphs of the sentence systems {L} and {Y1, Y2, . . . }
are just as indicated by the drawings in the previous section: the loop and the
Yablo-graph.

Now to the notion of paradox (2) that comes with Cook’s account: a truth-
value assignment is a function that maps sentences to truth values (t and f). A
truth value assignment σ is acceptable if and only if a sentences name α receives
the value t under σ iff every sentence-name that α depends on receives the value
f under σ. A sentence system is said to be paradoxical iff it has no acceptable
truth value assignment. Again, both {L} and {Y1, Y2, . . . } are paradoxical under
this definition.

However, if we modify our example of the liar cycle {L1, L2} in such a way
that both L1 and L2 claim that the other is false (and only then this example
can be expressed in LF), then the resulting sentence system comes out as not
paradoxical: One sentence might be true and the other might be false.

Now to the characterization problem (4) that comes with this account. What
can be said about the paradoxicality of a sentence system in terms of its refer-
ence graph? Cook emphasizes the (philosophical) importance of ‘determining
what patterns of dependency between sentences generate paradox’, since in the
absence of such a classification ‘philosophical accounts of truth are constantly
in danger of being overturned by the discovery of new sorts of paradox’.

since the 1990s and which deals, at least from a formal point of view, with rather similar
questions as graph-theoretic accounts of the semantic paradoxes do. Noteworthy papers are
e.g. [18] and [20].

2In [4], [5] and in this thesis a dependency relation is understood as a relation between
sentences and sets of sentences. This is done purely for technical convenience and both version
are inter-translatable.

11

It turns out that the characterization problem can be tied straightforwardly3

to a well-known and important concept in the theory of directed graphs, that of
a kernel4: A set K of vertices of a digraph G is called independent iff there is no
arc of G between any (not necessarily distinct) pair of (not necessarily distinct)
vertices and K is called absorbent iff for all x /∈ K there exists y ∈ K such that
(x, y) is an arc of G. A kernel of G is a subset of the set of all vertices of G that
is both independent and absorbent.

The crucial observation is that the characteristic function of any kernel of the
reference graph that corresponds to a sentence system S defines an acceptable
truth value assignment for S and, on the other hand, every acceptable truth
value assignment for S can be read as the characteristic function of a kernel
of its reference graph. Let us illustrate this point with the sentence system
{Y1, Y2, . . . } and its reference graph. Notice that a function f : ω → {0, 1} is
the characteristic function of a kernel of the Yablo-graph iff the following holds.
For all n > 1: f(n) = 1 iff f(k) = 0, for all k > n, and f(n) = 0 iff there exists
k > n such that f(k) = 1. Replacing ‘f(n) = 1’ by ‘Yn is true’ and ‘f(n) = 0’ by
‘Yn is false’ generates the sentence system {Y1, Y2, . . . } of our above example.5

As a consequence, the characterization problem is tantamount to the prob-
lem of classifying the digraphs that have no kernel. Promising as this cor-
respondence might seem, it also brings to light the issue of complexity: the
characterization problem could be much too difficult to have a satisfying solu-
tion. Cook himself concedes that ‘elegant necessary and sufficient conditions for
the existence of a kernel, even in the finite irreflexive case, have so far eluded
discovery.’ Indeed, this is not surprising. The problem of determining whether
a finite digraph has a kernel or not is known to be NP-complete.6 As shown
in [8], for recursive infinite digraphs the problem is Σ1

1-complete. This makes
the corresponding versions of the characterization problem co-NP-complete and
Π1

1-complete, respectively.
This raises the question of whether there is any hope of ever formulating a

simple graph-theoretic property that is a sufficient and necessary condition for
a digraph having a kernel. Typically, graph-theoretic properties are formulated
is in terms of excluded subgraph conditions. Examples are the characterization
of the planar graphs or Hadwiger’s conjecture. (Cf. [17]). That such a char-
acterization is not possible for digraphs with (or without) kernel is due to the
fact that for any digraph that has no kernel there is a superdigraph that has a
kernel, and for any digraph that has a kernel, there is a superdigraph that has

3Cf. the appendix of [14]
4We will touch the notion of digraph kernel and its history a little more in Section1.4. A

good survey is [10]. The very readable introduction to graph theory [3] dedicates an entire
chapter to kernels.

5An important qualification must be made: Cook formulates and proves this correspon-
dence only for serial digraphs - i.e. digraphs without sinks. The reason is that the language
of his framework contains no logical constants. Even though the language of the framework of
Rabern et al. (cf. Subsection 1.2.3 does contain logical constants, they restrict some of their
results about kernel to graphs without sinks. Unnecessarily so, as will be shown in Proposition
2.3.8.

6For a discussion of complexity issues and for further references cf. [8].

12

no kernel.7

Theses considerations suggest that it is quite unlikely to ever find a satisfac-
tory graph-theoretic property that is a necessary and sufficient condition for a
digraph having a kernel.

1.2.3 The approach of Rabern et al.

Like Cook, Rabern et al. work in [41] with an infinitary propositional language,
sentence names and a denotation function. The main difference, however, is that
their language contains in addition to conjunction symbols the logical constants
⊥ and ⊤ and, in particular, a negation symbol ¬. In this introduction we denote
this language by LC (‘C’ standing for ‘complete’). Thus LF can be considered
as the negative fragment of LC . In the latter, all our above sentence systems
- including the truth teller {T} and the pair of liars {L1, L2} - are expressible.
Moreover, a dependency relation (called a reference relation) is defined between
sentence names, completely analogously to [14], which gives rise to reference
graphs for sentence systems.

Again, a sentence system is said to be paradoxical if and only if it has no
acceptable truth value assignment σ, the definition of which could be seen as an
adaption of Cook’s to the context of more complex logical formulae: for every
sentence name α, the value assigned to α by σ must must coincide with the
semantic value relative to σ of the sentence denoted by α,

The price of the gain in expressive power is that it is no longer possible to
characterize the paradoxicality of a sentence system in terms of its reference
graph: e.g. both the paradoxical liar and the non-paradoxical truth-teller have
a loop as their reference graph.

Probably for this reason, the authors shift the focus of the characteriza-
tion problem, which makes no sense in the form as it is stated under (4) in
Subsection 1.2.1. It makes no longer sense to speak of paradoxical reference
patterns, only of potentially paradoxical ones: a directed graph is said to dan-
gerous if and only if it is the reference graph of a paradoxical sentence system.
The modified version of the characterization problem (4) becomes the following.

4′. Classify the dangerous directed graphs!

One advantage of this shift is a reduction in complexity: in contrast to
(4), characterization problem (4′) seems to be a more tractable. Indeed, the
dangerous finite directed graphs are exactly those that contain a directed cycle.
Moreover, every directed graph that contains a dangerous graph is dangerous
itself. This last point opens the possibility of an excluded subgraph or an
excluded minor characterization of the dangerous directed graphs.

7In the first case just add a new vertex n to the digraph G and an arc from each vertex of
G to n; a kernel of the new digraph consists just of n. In the second case proceed as in the
first one but then add a further arc to the digraph from the n to itself. Then n cannot be in
any kernel of the new digraph G′. But this is tantamount to the claim that there is no vertex
v in any presumed kernel of of G′ such that (n, v) is an arc of G′.

13

1.2.4 The approach of Beringer and Schindler

Indeed, the following conjecture was suggested by Beringer and Schindler (in [4]
and in [5]).

Conjecture. A reference graph is dangerous if and only if it contains a directed
cycle or the Yablo-graph as finitary minor8.

However, it must be mentioned that in contrast to both of the previous ac-
counts, [4] and [5] work with the language of first-order arithmetic augmented
with a unary T-predicate. In this context, a syntactical notion of reference is
no longer possible (or at least not obvious). Reference graphs are based on a
notion of semantic dependence, first introduced by Leitgeb in [34]. For this rea-
son the above conjecture does not pertain to directed graphs simpliciter but is
relativized to reference graphs, a concept depending on the specific language of
the framework. The same holds true also for the concept of danger. Prima facie
it is not clear at all how the above conjecture relates logically to its translation
into the framework of [41].

Conjecture∗. A directed graph is dangerous∗ if and only if it contains a di-
rected cycle or the Yablo-graph as finitary minor,

where dangerous∗ is meant to be defined just as in [41].

In order to tackle the problem that the question of whether a sentence is
paradoxical cannot be answered in terms of its reference graph, a more fine
grained version of reference graphs, signed reference graphs, are introduced.
Signed reference graphs can distinguish the liar from the truth teller. In addition
to the reference relation itself, expressed by an arc between sentences, the mode
of reference is also taken into account and expressed by a label attached to
the arcs. The loop of the liar graph turns out to be negative and the loop of
the truth-teller positive. It is argued that the reference patterns that lead to
paradox are all predominantly negative.

1.3 Guiding questions

The discussion of graph-theoretic accounts in the previous section raises a couple
of questions that we partition into three groups.

1. Is there a language-independent graph-theoretic approach to the semantic
paradoxes, integrating e.g. the frameworks of [14] and [41] on the one hand
and that of [5] on the other hand? What would be the underlying depen-
dency relation of such an abstract approach? Could it be in any sense
meaningful or just an artificial construct? What is the exact relationship

8The concept of finitary minor will be introduced in Definition 2.7.10 and Definition 2.7.13

14

between the abstract framework and the particular accounts discussed in
the previous section?

2. Is it possible to assign to sentence systems (or to their language-independent
counterparts) directed graphs that capture the full information about their
status of being paradoxical or not, just as in [14], but without any restric-
tion of language? What would be the relation between these graphs, let
us call them characteristic graphs, and dependency graphs? And what
would be their relation to the signed reference graphs in [5]?

3. Is there some notion of dangerous graph in the abstract framework and how
does it relate to the respective notions in the particular frameworks? What
is a reasonable conjectured solution for the corresponding characterization
problem? Is there an analogous characterization problem for characteristic
graphs? What is a reasonable conjectured solution for this problem? How
is the second related to the first? Can any of theses conjectured solutions
be proven, at least partially?

These questions will serve as a guideline for this investigation, of which an
outline shall be given in Section 1.5. Before doing so, it seems appropriate to
provide the reader with some background in the theory of digraphs kernels,
given the important role this concept plays throughout our investigation.

1.4 Richardson’s theorem for infinite graphs

The notion of a kernel was first introduced by von Neumann and Morgenstern
in their seminal work [45], in order to describe solutions for certain cooperative
games. Kernels of directed graphs (at least of finite ones) have been studied
extensively. For a survey of some classical results cf. [10] and [1].

A rare example of a book that treats kernels of infinite graphs to some extent
is Berges Théorie des graphes et ses applications from 1958 [2].9 With hindsight,
it might seem a bit surprising that Yablo’s paradox wasn’t discovered by Berge
back then - or, more precisely, its counterpart in kernel theory. In order to
appreciate this remark, let us restate the definition of a kernel already given
in Subsection 1.2.2 and then have a look at the pages 48 to 50 of the English
translation.

A set K of vertices of a digraph G is called independent iff there is no arc of
G between any (not necessarily distinct) pair of them, and K is called absorbent
iff for all x /∈ K there exists y ∈ K such that (x, y) is an arc of G. A kernel of G
is a subset of the set of all vertices of G that is both independent and absorbent.
After having stated Richardson’s theorem (cf. [42]) Berge proceeds by proving
two generalizations of it.

9English translation from 1962: The theory of graphs and its applications, ([3]).

15

Richardson’s theorem. Every finite digraph possesses a kernel if it contains
no cycles of odd length.

Generalization 1. If a totally inductive digraph contains no cycles of odd
length, then it possesses a kernel.

Generalization 2. If a locally finite digraph contains no cycles of odd length,
then it possesses a kernel.

Here a digraph G is totally inductive iff for every infinite directed walk
x0, x1, . . . in G there exists a natural number n such that for all n < k < l,
there is a directed walk from xl to xk, and G is locally finite iff every vertex of
G has at most finitely many in-neighbors and finitely many out-neighbors.

It is hard to believe that at this point a mathematician like Berge hasn’t
given at least a moment’s thought to the now apparent question of whether
there is an infinite digraph that has no odd cycles and no kernel. Note that a
negative answer would make the hypotheses that replace the condition of being
finite in Richardson’s theorem – i.e., being totally inductive and locally finite
respectively – superfluous after all. On the other hand, if one suspects that
such a digraph exists and one knows that it can neither be well-founded, nor
totally inductive nor locally finite, the simplest example that comes to mind is
the following.

Let Y be the digraph whose vertices are the natural number and whose arcs
consist of all the ordered pairs (n,m) such that n < m. It is quite easy to
see that Y cannot have a kernel. Every independent set contains at most one
element n0. But no m > n0 has an arc leading to n0, hence no independent
set can be absorbent. As already argued in Subsection 1.2.2, this can be easily
translated into the language of Example 1.1.5, which, in turn, is Yablo’s infinite
version of the liar paradox he discovered in 1985.

The correspondence between digraphs without a kernel and paradoxes of this
kind is quite general. Every digraph can be interpreted as a sentence system
by assigning to each vertex a sentence that claims that all its out-neighbors are
false, and to every such Yablo-like sentence system, we can assign the digraph
that describes its referential structure. This fact was first mentioned in the
appendix of [14], a paper dealing with variations of Yablo’s paradox, among
others. So it contains implicitly the observation that Y is an acyclic infinite
digraph without kernel – the answer to the question that Berge didn’t ask in
his book.

A generalization of Richardson’s theorem was proved by Rabern et al. in [41]:
a sink-free directed graph G has a kernel, if the underlying undirected graph of
G is acyclic or if only finitely many vertices of G have infinite out degree.

Another generalization of Richardson’s theorem (even though the name isn’t
mentioned) is proved in [5]. If a reference graph G contains neither an odd cycle
nor an odd double path, then G has a kernel. As with all results in this paper,
as we already mentioned in Subsection 1.2.4, the qualification must be added
that strictly speaking they apply only to reference graphs and not to graphs in

16

general. We will prove the general result in Subsection 2.6.3.
In 2019, Walicki [47] stated a conjecture about digraph kernel that is related

to Conjecture 4.24 and that reads as follows: a directed graph has a kernel if
it contains neither an odd cycle nor a ray that is dominated by infinitely many
of its vertices. (This conjecture will be discussed in Section 3.4. We shall see
that the second condition is equivalent to not containing the Yablo-digraph as a
finitary minor in Section 4.4). This can be seen as conjectured generalization of
Richardson’s theorem. Walicki proved a special case of this conjecture: it holds
if the digraph has only finitely many ends (cf. [47] and Section 3.4).

In Subsection 2.8.3 we shall state a conjecture that, if true, is a maximal
strong version of Richardson’s theorem in the sense that it provides a necessary
and sufficient condition for a digraph to be strongly kernel-perfect (i.e. being
such that every subdigraph has a kernel).

1.5 Outline of the thesis

Let me conclude this introduction with a rather detailed outline of each of
the remaining chapters of this thesis. Aside from giving a first overview, this
section is intended to help the reader navigate through these occasionally rather
technical parts and can be consulted if and when the need arises.

1.5.1 Outline of Chapter 2

While Herzberger’s paper [24], as has been indicated at the very beginning of this
introduction, can be seen as perhaps the first systematic attempt to understand
semantic paradoxes in terms of referential patterns, his works [25] and [26] could
be seen as an essay on the dynamical aspect of semantics and their relevance
for the understanding of semantic paradoxes. The opening passage of [25] reads
as follows.

‘One lesson I am inclined to draw from the recent history of philo-
sophical struggles with semantic paradoxes, is that new techniques
for suppressing them are unlikely to advance our understanding of
the basic problems.[...]

Rather than try to eliminate those paradoxes, I want to consider the
experiment of positively encouraging them to arise and watching
them work their own way out. This approach, which I call naive
semantics, is a deliberately nondirective exercise. The idea is to
stand back and let the paradoxes reveal their inner principles. Naive
semantics is very much in the spirit of Charles Chihara’s recent plea
for a diagnosis of the paradoxes preceding their treatment.’

The phrase ‘reveal their inner principles’ almost certainly refers to the behavior a
paradoxical sentence shows when subjected to a revision process. Such a process
consists of the iterated semantic evaluation of a sentence system, starting from

17

some first truth-value assignment. In [25] (as well as in [26] , [22] and [23]) such
revision processes are iterated even transfinitely. We will discuss this point in
Subsection 2.4.2, but for the time being let us leave the limit step aside.

Formally, a revision sequence is a trajectory of a point in a discrete dynamical
system, which is simply a function Φ : U → U . (Cf. [43] or [48]). In our case
the points, i.e., the elements of U , are truth-value assignment, i.e., elements
of U = {0, 1}X , the set of all function of type f : X → {0, 1}. The elements
of X are sentences, the functions f ∈ {0, 1}X truth value assignments and Φ
and operator that revises the truth-value assignments. The particular structure
of the state-space U as set of all Boolean functions on a given set X makes
the dynamical system Φ a Boolean network. The iterations Φ1,Φ2, .. of Φ are
of particular interest. Applied to an initial state f ∈ {0, 1}X they produce a
sequence of states that either reaches some fixed point after finitely many steps
or goes on forever without stabilizing.

The concept of Boolean network was first introduced by Kaufman in [30] with
an intended application in a completely different domain, namely biology. Since
then the field has flourished and the concept has found its application also in
theoretical computer science, e.g., [19]. Dedicated to research at the intersection
of biology and computer science, there is the journal Artificial Life, many of
whose articles are concerned with Boolean networks, explicitly or implicitly,
e.g.[11].10 However, the Boolean networks considered in the literature I am
aware of are almost exclusively finite. (In [48] an infinite example is treated en
passant.) For sure, no attempts have been made so far for a systematic and
rigorous treatment of general (i.e., finite and infinite) Boolean networks.11

The goal of Chapter 2 is to undertake such an exposition and to develop
a language-independent graph-theoretic account of the semantic paradoxes in
terms of Boolean networks. In particular, almost all of the important concepts
and theorems of [5] shall be reformulated in this more abstract setting. In
Subsection 2.3.2 it is shown (or at least indicated how it can be shown) that
the framework of Beringer and Schindler can be conceived of as a particular
Boolean network and that their concepts and results are indeed instances of our
abstract reconstructions of them.

In Section 2.2 we start out from scratch by expounding the basic concepts
of a general theory of discrete dynamical systems that will be of importance
for our endeavor like that of an iteration graph (Subsection 2.2.1), an invariant
subset of the state space, or an attractor (Subsection 2.2.2). In Subsection 2.2.3
Boolean networks are formally introduced.12

10It should be mentioned that Boolean networks considered in biology are often (but not
always) non-deterministic. I will only discuss deterministic Boolean networks in this thesis.

11At least not under the name of Boolean networks. As we have argued above, the works
of Herzberger, Gupta and Belnap could be regarded as being about infinite Boolean net-
works. Another field that seems to be quite suitable for conceptualization in terms of Boolean
networks (and which is formally related to revision theory) it that of infinite time Turing
machines and ordinal Turing machines, cf. e.g. [35] and [13].

12Let me mention here that there is an unpublished paper by Landon Rabern and Brian
Rabern, [40], which introduces a framework that seems to be equivalent to the present one
taken at the stage of development it is in Subsection 2.3.1, although using a different termi-

18

Analogously to sentence systems, Boolean networks can be equipped with
dependency graphs.13 (Subsection 2.3.1) that capture the information on which
members of the network the ‘computation’ any given automaton is about to
perform depends on. Of course, the terms ‘computation’ and ‘automaton’ are
strictly speaking not adequate for our general setting of infinite Boolean net-
works - Boolean functions involved are not necessarily computable. However,
we shall stick to the term automaton when it comes to talking about a par-
ticular component of a Boolean network. Even if the corresponding Boolean
function is not computable, one might think of a Boolean automaton as an
oracle interacting with other members - other automata - of the network.

The notion of dependence that these graphs are based on can be seen as a
straightforward generalization of the notion of semantic dependence introduced
by Leitgeb in [34], which is a key concept of the framework of Beringer and
Schindler. (Cf. [5], [4] and Subsection 2.3.2).

From a mathematical point of view, the guiding question of our investigation
can now be formulated as follows. Given a dependency graph of a Boolean net-
work, what can be said about its behavior as a dynamical system, in particular
about its fixed points?

The main goal of Section 2.4 is to establish the aforementioned transfer of
large parts of the conceptual apparatus of [5] to Boolean networks. In order
to achieve a reconstruction of Kripke’s theory of truth some pendant to three-
valued logic is need. For this reason general function networks are introduced
in Subsection 2.4.3. They are just like Boolean networks with the difference
that each automaton can assume not just the states 0 and 1 but values from an
arbitrary set - {0, 12 , 1} for most of our purposes.

This allows us consider monotonic three-valued extension of a Boolean net-
works, called Kripke extensions in Subsection 2.4.8. In Subsection 2.4.7 the
usual types of Kripke fixed points are defined and the notion of a Kripke-
paradoxical automaton is defined in full analogy to that of a paradoxical sentence
in [32].

After having defined the notion of a subtype of the state-space of a Boolean
network we give in Subsection 2.4.9 an interpretation the Kripke fixed points,
i.e., the fixed points of the Kripke-extension as subtype of the original Boolean
network. This allows us to compare the concept of a Kripke-paradoxical au-
tomata to that of a Herzberger-paradoxical automata (already defined in Sub-
section 2.4.2) in terms of sets that are invariant with respect to the Boolean
network Φ.

At the end of Section 2.4 a theorem from [5] whose translation states that
every Boolean network has a fixed point if it has a dependency graph that is
a tree is proven in Subsection 2.4.10. Finally, in subsection Subsection 2.4.11
we can reconstruct the notion of periphery and core of a Boolean network and
show results that shall be of quite some use later in Chapter 5.

nology leaving out the dynamical aspect. I have not been aware of it until at a rather late
stage of my work on this thesis and I would like to thank Brian Rabern for the hint.

13These dependency graphs turn out to be the converse graphs of what is called a ‘graphe
de connexion’ in [43], where the concept is, however, only defined for finite graphs.

19

The goal of Section 2.5 is to introduce notions of structure preserving trans-
formations between dynamical systems in general and Boolean networks and
constrained Boolean networks (cf. Definition 2.3.1 and the following remark) in
particular. This has the purpose of preparing the conceptual ground for the
notion of a characteristic digraph (cf. Definition 3.2.5) which shall play a crucial
role throughout Chapter 3. Moreover, it allows us to formulate the concept
of dual paradox (Cf. [14] and [41]) within our abstract framework, as well as
criteria for the identity of paradoxes.

In in Subsection 2.5.2 we take a look at the concept of the dual paradox
associated to a given paradox as formulated in [14] and generalized in [41].

In Section 2.6 we will introduce three classes of digraphs, each of which is
associated to a different shade of the relation between paradox and reference
pattern and each of which gives rise to a different characterization problem:
dangerous (Subsection 2.6.1), of infinite character (Subsection 2.6.2) and not
strongly kernel-perfect (Subsection 2.6.3). Showing that these characterization
problems are interrelated and can at least be partially solved is the main goal
of this thesis.

In Subsection 2.5.1, transformations of dynamical systems have been dis-
cussed. Some of them, like weak systems embeddings, preserve a lot less infor-
mation about dynamical systems than system isomorphisms do. In Section 2.7
we introduce two types of operations on digraphs that preserve some but not all
of the digraphs structure: subdivisions and inflations. Inflations in particular
will play an important role throughout the rest of this thesis. They come in
various flavors: finitary, regular and convergent. Moreover, the parity (the prop-
erty of being even or odd) of a digraph inflation will be defined, a concept that
is key in order to formulate the conjectured solutions for the characterization
problem for strongly kernel-perfect digraphs (Problem 2.6.31).

In Section 2.8 solutions for the characterization problems given in the last
section shall be conjectured in terms of finitary digraph inflations.

• Conjecture (A) (cf. Conjecture 2.8.1): If a directed graph contains neither
a cycle nor a finitary inflation of the Yablo-graph, then it is safe.

• Conjecture (C) (cf. Conjecture 2.8.13): If an acyclic digraph contains no
odd finitary inflation of the Yablo-graph, then is has a kernel.

• Conjecture (D) (cf. Conjecture 2.8.4): If a directed graph contains no
finitary inflation of the Yablo-graph, then it is of finite character.

1.5.2 Outline of Chapter 3

When passing from the language LF (cf. Subsection 1.2.2) to the broader lan-
guage LC (Subsection 1.2.3), the price one has apparently to pay for the gain of
expressive power is the loss of the straightforward applicability of kernel theory
to the analysis of sentence systems: It is no longer the case that a sentence
system is potentially paradoxical if and only if its reference graph has no kernel.
This correspondence remains valid solely for the fragment of LC that can be

20

thought of as an embedding of LF in the more general language and that we may
call the negative fragment L−

C of LC : the reference graph of any such negative
sentence system is characteristic for the sentence system in the sense that the
reference graph has no kernel if and only if the sentence system is paradoxical.

This raises the question of whether there exists a translation from LC into
L−
C such that a sentence system S is paradoxical if and only if its translation S ′ is

paradoxical? A positive answer would extend the assignment of a characteristic
graph to every sentence system of the complete language LC .

The existence of such a translation seems not implausible. E.g., take Exam-
ple 1.1.2, the sentence system {L1, L2}, where L1 claims that L2 is false and L2

claims that L1 is true. On could add a sentence L3 that claims that L1 is false
and replace L2 with the sentence system {L′

2, L3}, while L1 remains as it is.

L1 L2

+

−

L1

L′
2

L3

− −

−

Indeed, a procedure in this spirit has been suggested [8], at page 4, where
a directed graph G(T) is associated to an arbitrary theory T (formulated in a
propositional language similar to L) such T is satisfiable if and only if G(T) has
a kernel. This method is, however, not suitable for our purposes, which is to
show that the behavior of any Boolean network and the question of whether it
has a fixed point in particular can be analyzed in terms of an associated directed
graph, called a characteristic digraph of the Boolean network, containing more
information about it than a dependency graph.

So our list of desiderata is more comprehensive than those of [8]. We start (i)
not from a theory of propositional logic but from a Boolean Φ network, which
(ii) has a dependency graph G to whose structure the characteristic graph G(Φ)
should bear some resemblance in addition to the fact that (iii) G has a kernel
if and only if G(Φ) has a fixed point.

The points (i) and (ii) are obstacles for a direct application of the method of
Bezem et al., in particular the second one. In light of the conjecture formulated
in Section 2.8, the requirement that G(Φ) ‘bear some resemblance to’ G means
in particular that (a) G(Φ) should be acyclic if and only if G is and (b) G(Φ)
should contain a finitary inflation of the Yablo-graph if and only if G does.
In particular (a) is not satisfied by the procedure of Bezem et al., since cycles
would be inserted into acyclic graphs.

The first obstacle (i) can be dealt with by defining a representation of any
Boolean network as a LC-sentence system, i.e., expressing the Boolean function
associated to each automaton of the network by a LC-formula. This will be
done in Subsection 3.5.1. A welcome byproduct of this step is the result that a

21

digraph is dangerous in the sense of Rabern et al. if and only if it is dangerous
in our senses. More generally, it even shows that the framework of Rabern et
al. can be embedded in ours and vice versa.

In a second step, in Subsection 3.5.2, the the representation of a Boolean
network is brought into a particular normal form to which then a directed graph
is associated that satisfies our requirements of a characteristic graph G(Φ). In
order to see it satisfies desideratum (ii), we introduce the concept of regular
inflation in Section 3.1, show in Section 3.3 that all regular inflations satisfy the
requirements (a) and (b). Furthermore, we show that G(Φ) is a regular inflation
of G.

Strictly speaking, even more is achieved. In Section 3.2 characteristic di-
graphs will be defined in terms of network inflations (Definition 3.2.4) of con-
strained Boolean networks. A constrained Boolean network is an ordered pair
consisting of a Boolean network Φ and a dependency graph G for Φ (which is
thought of as a constraint on Φ in the sense that it puts a limitation on the set
of all automata from which any automaton of the network can receive input.)

A network inflation of a constrained Boolean network consists of two com-
ponents, a regular digraph inflation acting on the digraph part G by inflating
it to a digraph I[G] and a dense weak system embedding (cf. Section 2.5) which
transforms Φ into a Boolean network on I[G]. This allows to describe not only
the fixed points but the complete dynamical behavior of the Boolean network
Φ in terms of its characteristic graph.

This method of describing a Boolean network in terms of its characteristic
graph is epitomized by Theorem 3.2.6, the first main result of this thesis. Two
applications of it are given in Chapter 3. One of them is a reconstruction of the
concept of signed reference graph from [5] in Section 3.6.

The other and more important one is the exploitation of results from kernel
theory for our theory of Boolean networks in Section 3.4. In particular, it allows
us to use results from [47], already outlined in Section 1.4, in order to show that
Conjecture (A) (already mentioned in Section 1.5.1) holds under the assumption
that the directed graph in question has only finitely many ends. Moreover, we
prove that Conjecture (A) follows from a conjecture by Walicki.

In Chapter 5 Theorem 3.2.6 will be used again in order to exploit another
result from [47] for the purpose of Boolean network theory.

1.5.3 Outline of Chapter 4

The main goal of Chapter 4 is to prove the converse of each of the conjectures
(A), (C) and (D). This shall be achieved with the theorems 4.3.4, 4.3.7 and
4.3.10 respectively. An important tool for this end is the concept of convergent
inflation, introduced in Section 4.1.

The major part of the work will be done Section 4.2, culminating in Theorem
4.2.11 which states the a directed graph contains a finitary inflation of the Yablo-
graph if and only if it contains a finitary convergent inflation of the Yablo-
graph and that parity is respected by this equivalence. The point is that odd
convergent inflation of the Yablo-graph cannot have kernels. The proof of this

22

claim (Theorem 4.3.1) can be seen as a generalized form of the Yablo paradox.
Sufficient conditions for digraphs without kernels have been investigated in [51],
[14], [16] and [41]. (Cf. e.g. Lemma 31 in [41]). Theorem 4.3.1 provides a sharper
result than any these.

Another application of convergent inflations is Theorem 4.4.2 in Section 4.4
which states the equivalence of a directed graphs containing a finitary inflation
of the Yablo graph and the criterion Walicki uses in [47] for his conjecture about
kernels.

1.5.4 Outline of Chapter 5

One goal of this final chapter is to show that Conjecture (A) holds under weaker
assumptions than already established in Chapter 3. Theorem 5.4.6 states that
any directed graph G is safe if and only if G is acyclic and contains no finitary
inflation of the Yablo-graph, given that G contains only normal ends and at
most countably many ends. (One direction of this equivalence has already been
established in Chapter 4). In order to do this, a method is developed in Sub-
section 5.2 that seems to be more suitable for Conjecture (A) than Walicki’s
method from[47]. It takes into account the fact that for our purpose it suffices
to focus on acyclic digraphs, and not on the larger class of digraphs without
odd cycles.

A key method that is introduced in Section 5.1 and then used throughout
this entire chapter is that of decomposing a Boolean network into subnetworks
(cf. 2.4.6), finding a fixed point for each of them and the integrating these fixed
points into a fixed point of the entire Boolean network. A precursor of this
method (which has some applications in this chapter) has been the decomposi-
tion into periphery and core (Definition 2.4.89). We will primarily be concerned
with Boolean networks – nevertheless, some results are formulated more gen-
erally for function networks. An important method of network decomposition
is that of an open exhaustion (Subsection 5.1.1), which uses the topology of its
dependency graph (defined in Subsection 2.4.6) in order produce a layer-wise
decomposition of a Boolean network.

A particular useful type of an open exhaustion is discussed in Section 5.2.
This procedure can be thought of as an inductive process, yielding a possibly
transfinite sequence of larger and larger subnetworks, all of which have a fixed
point. The bases case, the fact that the first subnetwork in this sequence has a
fixed point, is due to an application of Theorem 3.2.6 (the characteristic graph
method) to another result from [47] about digraph kernels. This inductive pro-
cess can either exhaust the dependency graph completely, in which case it yields
a fixed point for the entire Boolean network, or, stopping short of that, leave
a non-empty subdigraph of the dependency graph as residuum. This residual
digraph turns out to have a particular structure that is called prolific. Our
strategy for proving Theorem 5.4.6 is to show that under certain circumstances
every prolific directed graph contains a finitary inflation of the Yablo-graph.

The simplest case in which these circumstances are given is when the depen-
dency graph is a normal end (Section 5.3). An end of a directed graph G is,

23

roughly speaking, a subgraph H of G such that H contains a ray R (an infinite
path) and all rays contained in H are parallel to R. This concept, introduced in
this form by Walicki in [47], can be seen as an adaption of the usual concept of
end for undirected graphs (cf. [17]), with the distinction that a certain anomaly
can occur in the directed case which doesn’t exist in the undirected case. An end
of a directed graph is normal if it is free of this anomaly and behaves analogous
to an end of an undirected graph.

In Section 5.4 this result is generalized to the case where a directed graph has
only countably many ends and all ends are normal. An example of a directed
graph that has uncountable many ends is that of an infinite ever branching
binary tree (each branch of which is an end that is simply a ray). This example,
by the way, is crucial for the proof of Theorem 5.4.6.

Chapter 5 and thus our investigation concludes with Section 6.1, which is
a short reflection on the methods used in order to prove special cases of the
conjectures, and on the prospect of developing these methods further in order
to achieve sharper results in future work.

24

Chapter 2

Boolean networks and
semantic paradoxes

The goal of Chapter 2 is to develop a language-independent graph-theoretic
account of the semantic paradoxes in terms of Boolean networks. In particular,
almost all of the important concepts and theorems of [5] shall be reformulated in
this more abstract setting. In Subsection 2.3.2 it is shown (or at least indicated
how it can be shown) that the classical valuation scheme discussed in [5] can
be conceived of as a particular Boolean network and that their concepts and
results are indeed instances of our abstract reconstructions of them. For a more
detailed outline of Chapter 2 the reader is referred to Subsection 1.5.1.

2.1 Basic terminology

In this section some rather basic (mostly graph-theoretic) notions are defined.

Notational conventions and general terminology

For all x, y we denote by (x, y) the ordered pair consisting of x and y. Given
a function f : A → B and X ⊆ A, let f [X] = {y ∈ B | (∃x ∈ A)(f(x) = y)}
be the image of X under f . Let f ↾ X = {(x, y) | x ∈ X ∧ f(x) = y} be the
restriction of f to X. Thus f ↾ X : X → B. For all sets A, B let AB be the set
of all functions of type B → A.

For all sets X, we denote the identity map on X by idX , i.e., idX(y) = y,
for all y ∈ X.

For functions f : X → Y and g : Y → Z let f ◦ g : X → Z be defined by
(f ◦ g)(x) = f(g(x)), for all x ∈ X.

25

Digraphs, sub- and superdigraphs

A directed graph or digraph G is an ordered pair, consisting of a (possibly
infinite) set V (G), the vertices of G, and a set A(G) of ordered pairs of elements
of V (G), called the arcs of G. This means that the set A(G) is a binary relation
with field V (G). On the other hand, every binary relation can be conceived as
a digraph. Note that in particular (∅,∅) is a digraph.

We call the first vertex x of an arc (x, y) the tail of (x, y) (also denoted by
tail(x, y)) and the second vertex y the head of (x, y) (also denoted by head(x, y)).

A digraph H is a subdigraph of G iff V (H) ⊆ V (G) and A(H) ⊆ A(G). In
this case we also say that G contains H and write H ⊆ G. A digraph H is said
to be a superdigraph of G iff G is a subdigraph ofH. A subdigraphH ⊆ G is said
to be induced iff for all x, y ∈ V (H), (x, y) ∈ A(G) implies (x, y) ∈ A(H). For
X ⊆ V (G) we denote by G[X] the unique induced subdigraph H ⊆ G such that
V (H) = X. A subdigraph H ⊆ G is said to be spanning iff V (H) = V (G), and
G is called a spanning superdigraph of H iff H is a spanning subdigraph of G.
For digraphs G and H let us define the following operations: G∪H = (V (G)∪
V (H), A(G) ∪ A(H)), G ∩H = (V (G) ∩ V (H), A(G) ∩ A(H)). For X ⊆ V (G)
let G \X = G[V (G) \X] and for A ⊆ A(G) let G \A = (V (G), A(G) \A).

Neighbors and degrees

For any vertex x ∈ V (G), we call y ∈ V (G) an out-neighbor of x (in G) iff
(x, y) ∈ A(G), and an in-neighbor of x (in G) iff (y, x) ∈ A(G). Let outG(x) be
the set of all out-neighbors of x in G and inG(x) be the set of all in-neighbors of
x in G. We write d+G(x) (the out-degree of x in G) for the cardinality of outG(x)
and d−G(x) (the in-degree of x in G) for the cardinality of inG(x).

A digraph G is said to be finitely out-branching iff d+G(x) is finite for all
x ∈ V (G); it is said to be finitely in-branching iff d−G(x) is finite for all x ∈ V (G).
A vertex x ∈ V (G) is said to be a sink of G iff outG(x) = ∅, and a source of G
iff inG(x) = ∅. We denote the set of all sinks of G by snk(G) and the set of all
sources of G by src(G). A digraph G is said to be sink-less iff snk(G) = ∅ and
source-less iff src(G) = ∅.

Paths, rays, walks, cycles and well-founded digraphs

A non-empty digraph P (i.e., a digraph with at least one vertex) is called a (di-
rected) path (from x to y, of length n) iff there is an enumeration (v0, v1, . . . , vn)
of V (P) such that for all 0 ≤ i, j ≤ n, (vi, vj) ∈ A(P) iff j = i+ 1 with x = v0
and y = vn. Note that a digraph with one vertex and no arcs is a path of length
0. We call such a path trivial.

Let D be a digraph x ̸= y ∈ V (D). Then D is said to be a double path
(from x to y) iff there are non-trivial paths P1 ̸= P2 from x to y such that
V (P1)∩V (P2) = {x, y} and V (D) = V (P1)∪V (P2) and A(D) = A(P1)∪A(P2).
Note that it is necessary to stipulate that P1 ̸= P2 in order to excluded an arc

26

from being a double path.1

For any digraph G, call an infinite sequence of vertices (v0, v1, . . .) of V (G)
an infinite walk in G iff for all i ∈ ω, (vi, vi+1) ∈ A(G). Analogously, finite walk
is finite but non-empty sequence of vertices (v0, . . . , vn) of V (G) such that for
all 0 ≤ i < n, (vi, vi+1) ∈ A(G). We say that a walk (finite or infinite) in G
visits a vertex x of G iff x = vi, for all some index i of w. We say that a walk
in G visits an arc (x, y) ∈ A(G) iff x = vi and y = vi+1 for some index i of w.
We say that a walk (finite or infinite) is straight iff it visits no vertex twice.

The difference between a path and a finite walk is that a path is a digraph
while a walk is a sequence of vertices in a digraph. Note that a digraph G is a
path iff there is a finite walk in G that visits every vertex of G and every arc of
G exactly once.

A digraph C is called a cycle (of length n) iff there is a finite walk (v0, . . . , vn)
in C that visits every arc of C exactly once and every vertex exactly exactly
once, except for one, namely the vertex v0 = vn, which it visits twice. There
may be many such walks, but all have the same length. A cycle of length 1 is
called a loop. A cycle is said to be odd iff it has odd length and even iff it has
even length. A digraph is said to be acyclic iff it contains no cycle.

A digraph R is said to be a ray iff there is an infinite walk in R that visits
every vertex and every arc of R exactly once. Any subdigraph of a ray R that
is itself a ray is called a tail of R. Hence every ray has infinitely many tails.

A digraph G is said to be well-founded iff there is no infinite walk in G. A
digraph G is said to be conversely well-founded iff the converse digraph Gc of
G is well-founded, where Gc is defined by V (Gc) = V (G) and (x, y) ∈ A(Gc) iff
(y, x) ∈ A(G).

The notion of a tail of a ray can be generalized as follows. A tail of a
digraph G is a subdigraph of G that is induced by some X ⊆ V (G) such that
G[V (G) \ X] contains no rays. Since an arc can be conceived as a digraph,
danger of confusion between the notions tail of an arc and tail of a digraph
could arise in principle . However, the meaning will be always clear from the
context.2

Undirected graphs and connectivity

For any digraph G let Gsym be the digraph with V (Gsym) = V (G) such that
(x, y) ∈ A(Gsym) and (y, x) ∈ A(Gsym) iff (x, y) ∈ A(G) or (y, x) ∈ A(G). The
digraph Gsym is always symmetric. We may identify symmetric digraphs with
undirected graphs. (Cf. [3]).

A digraph G is said to be an orientation of an undirected graph H iff H =
Gsym and for all x, y ∈ V (G) = V (H), either (x, y) ∈ A(G) or (y, x) ∈ A(G)
but not both.

A digraph G is said to be an undirected path iff Gsym has an orientation that
is a directed path.

1This condition is erroneously omitted in [5].
2Both ways to use the term are customary in the literature on digraphs, so we refrain from

introducing new terminology.

27

We call G weakly connected if Gsym is connected (as an undirected graph),
which is the case iff Gsym is strongly connected as a digraph, i.e., if for all
x, y ∈ V (Gsym) there is a path from x to y in G and a path from y to x in G.

A subdigraph H of G is said to be a weak component of G iff H is weakly
connected and no proper superdigraph of H that is a subdigraph of G is weakly
connected. Analogously a strong component can be defined. A digraph G is
said to be totally disconnected iff A(G) = ∅.

Reachability, apgs and trees

A vertex y ∈ V (G) is said to be reachable (in G) from x ∈ V (G) iff there is a
walk in G from x to y. For all digraphs G and all x ∈ V (G) let G{x} be the
subdigraph of G that is induced by the set all vertices y of G such that y is
reachable from x in G.

An accessible pointed graph (apg) is an ordered pair (G, x) where G is a
digraph and x ∈ V (G) such that every y ∈ V (G) is reachable from x. We call
x the root of the apg (G, x). By abuses of terminology we may sometimes call
a digraph G an apg if there exists x ∈ V (G) such that (G, x) is an apg. Notice
that G = G{x} whenever (G, x) is an apg.

For all digraphs G and all X ⊆ V (G), let ClG(X) be the set of all y ∈ V (G)
such that there exists some x ∈ X that is reachable in G from y. For H ⊆ G,
let ClG(H) = ClG(V (H)). A set X ⊆ V (G) is said to be closed in G iff
ClG(X) = X. In Subsection 2.4.6 we will see that the closed subsets of V (G)
are indeed closed with respect to a certain topology.

An out-branching tree is a digraph T such that there exists r ∈ V (T) from
which every y ∈ V (T) is reachable in a unique walk. This makes (T, r) an apg
and for no r ̸= y ∈ V (T), (T, y) is an apg, i.e, r is the unique root of T . A
digraph G is said to be an in-branching tree iff its converse digraph T c is an
out-branching tree. Hence, a finite out-branching tree has a unique source (its
root) and at least one but typically many sinks (its leaves), while a finite in-
branching tree has a unique sink and at least one but typically many sources.
For any out-branching tree (T, r) and any x ∈ V (T), let htT (x), the height of x
in T , be the length of the unique path from r to x. For any in-branching tree
(T, r) and any x ∈ V (T), let htT (x), the height of x in T , be the length of the
unique path from x to r.

Note that every tree (out-branching or in-branching) is acyclic and contains
no double-path.

A digraph G is said to be a(n) (in-branching, out-branching) forest iff every
weak component of G is a(n) (in-branching, out-branching) tree.

Kernels

A set K of vertices of a digraph G is called independent iff there is no arc of
G between any pair of (not necessarily distinct) elements of K; K is called
absorbent iff for all x /∈ K there exists y ∈ K such that (x, y) is an arc of G. A
kernel of G is a subset of the set of all vertices of G that is both independent

28

and absorbent. Note that ∅ is a kernel of the digraph (∅,∅). -A digraph is
said to be strongly kernel-perfect iff every of its subdigraphs has a kernel. It is
said to be kernel-perfect iff every of its induced subdigraphs has a kernel.

Ends

The following definition from [47] is a (not totally straightforward) adaption of
a concept well-known from the theory of infinite undirected graphs (cf. [17]) to
infinite directed graphs. A digraph H ⊆ G is said to be an end in G iff there
exists some ray R ⊆ G such that V (H) = ClG(R). A digraph G is said to be
an end iff G is an end in G.

The Yablo-graph

As usual we denote the set of all finite ordinals by ω. Let Y be the digraph with
V (Y) = ω and A(Y) = {(m,n) | m,n ∈ ω∧m < n}. We call Y the Yablo-graph.
It is clearly isomorphic (but not identical) to the digraph from Example 1.1.5.
Digraph isomorphisms will be defined in Subsection 2.5.1. Of course the choice
of ω as vertex set is arbitrary. At times we may identify Y with the graph from
Example 1.1.5 (or any other isomorphic digraph) and call both, by abuse of
terminology, the Yablo-graph.

2.2 Discrete dynamical systems

2.2.1 Dynamical systems and iteration graphs

Maybe one of the most ubiquitous type of problems in all mathematics (theo-
retical physics, theoretical computer science etc.) is the question of whether a
given map f : U → U has a fixed point, i.e. some x ∈ U such that f(x) = x.
(Cf. e.g. [44]). A more general question is how any given point x ∈ U behaves
with respect to iterations on f .

Definition 2.2.1. For all f : U → U we define f0 = idU (the identity map on
U) and fn+1 = f ◦ fn, for all n ∈ ω. We call fn the n-th iteration of f .

Definition 2.2.2. Let U ̸= ∅ be a set.

1. A map f : U → U is called a discrete dynamical system or short a dynam-
ical system.

2. For all x ∈ U , the trajectory of x (under f) is the sequence τf (x) =
(fn(x))n∈ω.

3. We say that a trajectory τf (x) = (fn(x))n∈ω intersects another trajectory
τf (y) = (fn(y))n∈ω (or some set X) iff {fn(x)) | n ∈ ω} ∩ {fn(y)) |
n ∈ ω} ≠ ∅ (or {fn(x)) | n ∈ ω} ∩X ̸= ∅ respectively).

29

4. For all x, y ∈ U , we say that x and y are f -equivalent (written x ≡f y) iff
their trajectories have a non-empty intersection.

5. We call the equivalence classes of the ≡f -relation the components of the
dynamical system f : U → U . A system with exactly one component is
said to be connected.

The fact that ≡f is transitive (and thus an equivalence relation indeed) is
implied by the following observation.

Proposition 2.2.3. Let f : U → U and x, y ∈ U . If there are m,n ∈ ω such
that fm(x) = fn(y), then fm+k(x) = fn+k(y) for all k ∈ ω.

An interesting question about a given trajectory is whether or not it shows
periodic behavior.

Definition 2.2.4. We say that a sequence (an)n∈ω of elements of a set A is

1. periodic iff there exists k ∈ ω such that for all n ∈ ω, an = an+k,

2. p-periodic iff it is periodic and p ∈ ω is the least k ≥ 1 such that an = an+k,
for all n ∈ ω,

3. finally periodic iff there exists m ∈ ω such that (an)n≥m is periodic,

4. finally p-periodic iff there exists m ∈ ω such that (an)n≥m is p-periodic,

5. aperiodic iff it is not finally periodic.

Dynamical systems can be visualized as iteration graphs. (Cf [43]).

Definition 2.2.5. The iteration (di)graph of the dynamical system f : U → U
consists of U as the set of its vertices; moreover, for all x, y ∈ U , (x, y) is an arc
of the iteration graph of f iff y = f(x).

Notice that any trajectory τf (x) corresponds to a walk in the iteration graph
of f and vice versa.

Proposition 2.2.6. A digraph G is the iteration graph of some dynamical sys-
tem iff every vertex of G has exactly one out-neighbor.

Since this proposition establishes a canonical correspondence between dy-
namical systems and iteration digraphs of dynamical systems, we will call a
digraph in which every vertex has a unique out-neighbor an iteration digraph
(simpliciter). A weak component of an iteration digraph I is also called a basin
of I. (Cf. [43]).

Call a digraph G convergent iff for all x, y ∈ V (G) there exists z ∈ V (G)
and (maybe trivial) paths Px, Py ⊆ G such that Px leads from x to z and Py

leads from y to z.

Proposition 2.2.7. Let I be an iteration digraph and B a basin of I. Then

30

1. B contains at most one cycle.

2. If C ⊆ B is a cycle, then B \ A(C) is either empty or consists a forest
of in-branching trees, each of which has a vertex of C as its unique sink,
i.e., its root.

3. If B contains no cycle, then B is a sink-less in-branching tree,

4. B is convergent.

The following proposition states a useful criterion for the periodic behavior
of a trajectory: if a trajectory repeats itself once, then it repeats itself forever.

Proposition 2.2.8. Let f : U → U be a dynamical system and I its iteration
graph. Let x ∈ U .

1. Then I[{fk(x) | k ∈ ω}] is either a ray (if {fk(x) | k ∈ ω} is infinite)
or there exists some n ∈ ω such that I[{fk(x) | k ≥ n}] is a cycle (if
{fk(x) | k ∈ ω} is finite). In the former case τf (x) is aperiodic while in
the latter case τf (x) is finally p-periodic, where p is the length of the cycle
I[{fk(x) | k ≥ n}].

2. A trajectory τf (x) is

(a) periodic iff there exists k ≥ 1 such that fk(x) = x,

(b) finally periodic iff there exists n ∈ ω and k ≥ 1 such that fn+k(x) =
fn(x).

3. If x ≡f y, then both τf (x) and τf (y) are either aperiodic or finally p-
periodic for some p ≥ 1.

Definition 2.2.9. Let f : U → U be a dynamical system Let Πf : U →
(ω + 1) \ {0} be defined by

Πf (x) =

{
p, if τf (x) is finally p-periodic,

ω, if τf (x) is aperiodic.

Definition 2.2.10. f : U → U be a dynamical system and B ⊆ U a component
if f . We say that B is aperiodic Πf (x) = ω for some (and then all) x ∈ B and
that B is p-periodic iff Πf (x) = p or some (and then all) x ∈ B.

2.2.2 Invariant sets and attractors

This section is dedicated to a short discussion of the f -invariant subsets of the
set of all states U a dynamical system f : U → U can assume. This concept
will play a crucial role in Section 2.4 where notions of sentence-paradoxicality
shall be considered.

31

Definition 2.2.11. Let f : U → U be a dynamical system. A set X ⊆ U is
said to be

1. invariant under f (or f -invariant) iff f [X] ⊆ X,

2. strictly invariant under f (or strictly f -invariant) iff f [X] = X.

Proposition 2.2.12. For all f : U → U and X ⊆ U , if X is f -invariant, then
f [X] is f -invariant.

Proof. Let y ∈ f [X]. Then y = f(x) for some x ∈ X. Since X is f -invariant,
y ∈ X and so is f(y).

Definition 2.2.13. A set A ⊆ U is said to be an attractor of f : U → U iff A is
non-empty, strictly f -invariant and no proper subset of A is strictly f -invariant.

Definition 2.2.14. The basin of the an attractor A is the set of all x ∈ U such
that there exists n ∈ ω with fn(x) ∈ A.

Note that in the iteration graph attractors correspond to cycles and double-
rays. A double-ray is a digraph G such that for all x ∈ V (G), G{x} and the
converse digraph (G{x})c are rays. This definition is in keeping with that of
[43] and [48], where attractors are defined (only for finite dynamical systems) as
a cycle of the iteration graph. Intuitively speaking, a dynamical system evolves
by moving toward its attractors.

2.2.3 Boolean networks and Boolean automata

A finite Boolean network is usually defined as an n-tupel (f1, . . . , fn) of functions
fi : {0, 1}n → {0, 1} (cf. [43], [48]). For our purpose, we are interested in
networks of arbitrary and in particular infinite cardinality.

Definition 2.2.15. For all x ∈ X let πx : {0, 1}X → {0, 1}, the projection of
the function space {0, 1}X to the x-th coordinate, be defined by πx(f) = f(x).

Definition 2.2.16. For all non-empty sets X,

1. a map Φ : {0, 1}X → {0, 1}X is called a Boolean network on X.

2. For any Boolean network Φ on X and any x ∈ X, the Boolean automaton
at x induced by Φ is the map Φx : {0, 1}X → {0, 1} given by πx ◦ Φ.

Note that every Boolean network is a dynamical system.

Definition 2.2.17. Let X be a set.

1. Let Φ : {0, 1}X → {0, 1}X be a Boolean network. Then we call {πx ◦ Φ |
x ∈ X} the family of Boolean automata associated with Φ.

32

2. Let {Φx | x ∈ X} be a family of Boolean automata on X, i.e., a family of
functions of type {0, 1}X → {0, 1}. Then we call Φ : {0, 1}X → {0, 1}X
defined by Φ(f) = {(x,Φx(f, x)) | x ∈ X} the Boolean network associated
with {Φx | x ∈ X}.

Obviously, Boolean networks and families of Boolean automata are just dif-
ferent representations of the same concept. In particular, f is a fixed point of
a Boolean network Φ iff πx ◦ Φ(f) = f(x) for all x ∈ X. We shall also conceive
families of Boolean automata as functions of type {0, 1}X × X → {0, 1}, with
the convention that Φ(f, x) = πx ◦ Φ(f), for all x ∈ X.

We also may make no terminological distinction between Boolean networks
and families of Boolean automata and may call a function Φ : {0, 1}X ×X →
{0, 1} a Boolean network (on X).

The additional structure that comes into play when considering Boolean net-
works instead of mere dynamical systems can, in a certain sense, be thought of
as a ‘ ‘coordinate system’. Note that the elements of the function space {0, 1}X
can be considered as vertices of a κ-dimensional cube, where κ = |X|. Focusing
on a single Boolean automaton at some x ∈ X is tantamount to projecting the
network to the ‘x-coordinate’. Shortly we shall analyze trajectories in terms of
their projections to single coordinates. It would indeed make sense to call |X|
the dimension of a Boolean network on X. (Cf. Example 2.4.24).

Example 2.2.18. Let X be a set.

1. For all f ∈ {0, 1}X and x ∈ X let IdX(f, x) = f(x). Then IdX is a Boolean
network on X. Every f ∈ {0, 1}X is a fixed point of IdX . Hence the
iteration graph of IdX has 2|X| components each of which has cardinality
1 and consists entirely of its attractor, a loop.

2. Let 1X(f, x) = 1, for all f ∈ {0, 1}X and x ∈ X. Then 1X is also a
Boolean network on X. A function f ∈ {0, 1}X is a fixed point of 1X iff
f(x) = 1 for all x ∈ X, i.e., 1X has a unique fixed point. On the other
hand, each f ∈ {0, 1}X is mapped by 1X to the function that maps every
x ∈ X to 1. This means that 1X has a single component whose attractor
is a loop.

3. Likewise a Boolean network 0X can be defined.

2.3 Dependency graphs

2.3.1 Automata dependency and dependency graphs

The first item of the following definition is an adaption from [34] and the second
item is an adaption from [4] and [5].

Definition 2.3.1. Let X be a set and Φ be a Boolean network on X.

1. We say that x ∈ X depends on Y ⊆ X with respect to Φ iff for all f, g ∈
{0, 1}X , if f ↾ Y = g ↾ Y , then Φ(f, x) = Φ(g, x).

33

2. Let G be a digraph with V (G) = X. Then Φ is said to be a Boolean
network on G and G is said to be a dependency graph for Φ iff every
x ∈ V (G) depends on outG(x) with respect to Φ.

3. An ordered pair (G,Φ) of a digraph G and a Boolean network Φ is said
to be a constrained Boolean network iff Φ is a Boolean network on G.

Formally, this definition establishes a dependency relation between elements
of the domain of the function space (in the above case the set X) and subsets
of it. We may identify any x ∈ X with the Boolean automaton Φx, i.e., with
πx ◦ Φx or may think of x as a name for Φx.

In computational terms, the meaning of an automaton Φx depending on a set
Y ⊆ X can be explained as follows: given an input f , the output Φx(f) depends
only on the restriction of f to Y . This means that Y can be thought of as the
input layer (cf. [19]) of the automaton Φx, i.e., the space where the information
to be processed by Φx is being stored. The output layer of Φx consists of the
single cell x. In this picture, ‘x depends on Y ’ means that Φx ignores everything
that happens in the network outside of Y , i.e., it observes only changes in the
cells y ∈ Y , each of which happens to be the output layer of an automaton
Φy. Thus ‘x depends on Y ’ can be read as ‘the behavior of the automaton Φx

depends only on the behavior of the automata family {Φy | y ∈ Y }, i.e., the
family of those automata whose output cell happens to lie in the input layer of
Φx’.

By abuse of terminology we may sometimes call a constrained Boolean net-
work (G,Φ) simply a Boolean network. But strictly speaking, the former be-
long to a different category than the latter. This difference becomes relevant
in Section 2.5 where structure-preserving transformations (e.g. isomorphisms)
are discussed, between Boolean networks on the one hand and between con-
strained Boolean networks on the other hand. For example, two constrained
Boolean networks may not be isomorphic although their Boolean network parts
are. (Cf. Example 2.5.23).

The following proposition is adopted from [34].

Proposition 2.3.2. Let X be a set and Φ a Boolean network on X. Then

1. every x ∈ X depends on X with respect to Φ,

2. if x depends on Y ⊆ X with respect to Φ and if Y ⊆ Z ⊆ X, then x
depends on Z with respect to Φ,

3. if x depends on Y ⊆ X with respect to Φ and x depends on Z ⊆ X with
respect to Φ, then x depends on Y ∩ Z,

4. x depends on ∅ with respect to Φ iff Φ is constant at x, i.e., Φ(f, x) =
Φ(g, x) for all f, g ∈ {0, 1}X .

Consequently a Boolean network on G is also a Boolean network on every
spanning superdigraph of G. Proposition 2.3.2 further implies that if X is fi-
nite, then there exists a digraph G with V (G) = X such that G is a dependency

34

graph for Φ and no proper spanning subdigraph of G is a dependency graph for
Φ. We say then that G is a minimal dependency graph for Φ and that for all
x ∈ V (G), x depends essentially on outG(x) with respect to Φ. (Cf. [5]).

There are Boolean networks that have no minimal dependency graph.

Example 2.3.3. Define Φ : {0, 1}ω × ω → {0, 1} by

Φ(f, n) =

{
1, if (∃m ≥ n)(∀k > m)(f(k) = 0)

0, else.

Then Y is a dependency graph for Φ. However, it is not a minimal. Every
digraph G with V (G) = ω is a dependency graph for Φ, as long as for all n ∈ ω
there exists ω ∋ m ≥ n such that for all k > m, (m, k) ∈ A(G). (Cf. the example
in Section 2.3 of [5]).

However, it is not difficult to check that for any given digraph G (finite or
infinite), the Examples of Boolean networks discussed in Subsection 2.3.4 below
all have G as their minimal dependency graph.

The following will be the guiding question for the remainder of this thesis.

Question 2.3.4. Given a dependency graph of a Boolean network, what can be
said about its behavior as a dynamical system and what about its fixed points in
particular?

In other words our goal is to understand the dynamical properties of a
Boolean network in terms of its structural properties, an endeavor that could
be seen as an attempt to unify two strands of thought in Herzberger’s work
- epitomized by [24] and [25] respectively. (Cf. the remark at the beginning
of Subsection 1.5.1). Question 2.3.4 will be investigated systematically from
Section 2.6 onward.

2.3.2 Reconstruction of FOL frameworks

Consider the first-order language of Peano arithmetic augmented with a primi-
tive unary predicate symbol T . We denote the set of its sentences by LT . We fix
some coding of LT into ω; for technical simplicity, we assume it is a bijection.
The language of LT contains a name for each sentence φ—i.e., the numeral of
(the code of) φ—that we shall denote by ⌜φ⌝. Let N be the standard model of
arithmetic and S the extension (interpretation) of the truth predicate T . We
write (N, S) ⊨ φ to indicate that φ is true in the model (N, S).

For f ∈ {0, 1}ω, let f+ = {n ∈ ω | f(n) = 1}. Let V : {0, 1}ω × ω → {0, 1}
be defined by

V (f, n) =

{
1, if n = ⌜φ⌝ ∧ (N, f+) ⊨ φ
0, if n = ⌜φ⌝ ∧ (N, f+) ⊭ φ.

35

Then V is a Boolean network.

Then n ∈ ω depends on X ⊆ ω with respect to V iff for all f, g ∈ {0, 1}ω,
f ↾ X = g ↾ X implies V (f, n) = V (g, n). Given that n = ⌜φ⌝, this is equivalent
to the following claim: for all Y ⊆ ω, (N, Y) ⊨ φ iff (N, Y ∩X) ⊨ φ. Hence ⌜φ⌝
depends on X with respect to V iff φ depends on X in the sense of [34].

Let G be a dependency graph for V . Let φ be an LT -sentence. Then G{⌜φ⌝}
is reference graph in the sense of [4] and [5].

In the course of this thesis, we will encounter the abstract counterparts
of various concepts and results that are discussed in [5], e.g. the theory of
Kripke fixed points, (cf. Subsection 2.4.7) the notion of a standard extension of
a Boolean network3 (cf. Subsection 2.4.8) the concepts of periphery and core of a
Boolean network (cf. Subsection 2.4.11) and the notion of a signed dependency
graph (cf. Section 3.6.3). All these concepts have their counterparts in [5].
More precisely, their counterparts in [5] are instances of them. In this way the
framework of [5] can be reconstructed from the more general Boolean network
approach.

2.3.3 Constructing Boolean networks on digraphs

Instead of starting from a given Boolean network and trying to determine its
dependency graph, we shall proceed the other way around in this subsection:
take a given digraph G and consider some basic types of Boolean networks on
G.

Definition 2.3.5. For A ⊆ {0, 1} define

• sup2(A) =

{
0, if A = ∅
max(A), else

• inf2(A) =

{
1, if A = ∅
min(A), else.

Definition 2.3.6. Let G be a digraph and X = V (G). Let x ∈ X. We define
several functions of type {0, 1}X → {0, 1} as follows:

1. ΦG
⊤(f, x) = 1,

2. ΦG
⊥(f, x) = 0,

3. ΦG∨(f, x) = sup2{f(x) | x ∈ outG(x)},

4. ΦG∧(f, x) = inf2{f(x) | x ∈ outG(x)},

5. ΦG
↓ (f, x) = 1− ΦG∨(f, x),

3This corresponds to a standard valuation scheme in [5].

36

6. ΦG
↑ (f, x) = 1− ΦG∧(f, x).4

Proposition 2.3.7. Let G be a digraph. Then ΦG
⊤(·, ·) ΦG

⊥(·, ·), ΦG∨(·, ·), ΦG∧(·, ·),
ΦG

↓ (·, ·) and ΦG
↑ (·, ·) are Boolean networks on G.

Using Definition 2.3.6 as a toolbox, we can design on any given digraph
G a Boolean network by assigning to each vertex a Boolean automaton of the
above variety. We can do this in a homogeneous way, e.g. by considering
ΦG∧ : {0, 1}V (G) × X → {0, 1}, (f, x) 7→ ΦG∧(f, x). Or, by mixing automata

families up, e.g., by defining for a given partition {A,B} of V (G) a Boolean
network ΦA,B : {0, 1}V (G) ×X → {0, 1} on G by

ΦA,B(f, x) =

{
ΦG∧(f, x), if x ∈ A

ΦG∨(f, x), if x ∈ B.

The following can be seen as a reconstruction of Theorem 5.15 from [5] and
a generalization of Cook’s result (cf. [14]) that has been discussed in Subsection
1.2.2.

Proposition 2.3.8. For all digraphs G, there exists a bijection between the set
of all kernels of G and the set of all fixed points of ΦG

↓ . In particular G has a

kernel iff ΦG
↓ has a fixed point.

Notice that in Proposition 2.3.8, no conditions are stipulated for the digraph
G, in particular not that G be sink-less - in contrast to [14], [16] and [41]. (Cf.
also Subsection 1.2.2.)

Example 2.3.9. Let V (G) = Z and (x, y) ∈ A(G) iff y = x+1 or y = x−1. Let
Φ(f, x) = xor(f ↾ outG(x)), where xor(b1, b2) = 1 iff either b1 = 1 or b2 = 1 but
not both. Then Φ is a special case of a Boolean network, a cellular automaton
(of dimension 1) which is discussed in [7].

Example 2.3.10. Another case of a Boolean network that is cellular automa-
ton, this time in dimension 2, is Conway’s Game of Life. Instead of presenting
it here, we refer the reader again to [7]. Game of Life is a quite interesting
(family of) Boolean network(s), in in particular from a computational point of
view. It is discussed thoroughly in [6].

2.3.4 Trajectories of automata

For the following recall Definition 2.2.2.

Definition 2.3.11. Let Φ be a Boolean network on X, f ∈ {0, 1}X and x ∈ X.
The trajectory of f (under Φ) at x (or the projection of τΦ(f) to x) is the
sequence τΦ(f, x) = (πx ◦ Φn(f))n∈ω.

4The use of ‘↓’ alludes to its meaning as a logical connective and follows the convention
that ‘p ↓ q’ stands for ‘¬(p ∨ q)’.The problem of representing Boolean networks in terms of
Boolean expressions is investigated in Section 3.5.1

37

Note that the proposition that a trajectory repeats itself forever if it re-
peats itself once (cf. Proposition 2.2.8) doesn’t hold necessarily for any of its
projections. However, we have the following.

Proposition 2.3.12. Let Φ be Boolean network on X, Then f ∈ {0, 1}X is a
fixed point of Φ iff τΦ(f, x) is 1-periodic for all x ∈ X.

The following observations illustrates that dependency graphs can be quite
helpful when it comes to determining trajectories. The first claims that any
trajectory can be reconstructed from the projections to its coordinates.

Proposition 2.3.13. Let Φ be Boolean network on X and f ∈ {0, 1}X . Then
τΦ(f) = ({(x, πx ◦ Φn(f, x)) | x ∈ X})n∈ω.

The second observation claims that, in order to determine the projection of
a trajectory of f to x, we can focus only on the restriction of f to a set that x
depends on.

Proposition 2.3.14. Let Φ be Boolean network on X, x ∈ X and Y ⊆ X.
Then the following claims are equivalent.

1. x depends on Y with respect to Φ,

2. for all f, g ∈ {0, 1}X , if f ↾ Y = g ↾ Y , then τΦ(f, x) = τΦ(g, x).

Let us have a look how the examples from Section 1.1 can be modeled as
Boolean networks. Since the examples are given in an informal manner we
have to rely on our intuition. Later in Section 3.5.1 a formal language will be
provided, so that process of assigning Boolean networks to sentence systems can
be ‘automatized’.

Example 2.3.15. Recall our informal presentation of the liar sentence from
Example 1.1.1.

L: (L) is false.

Consider the following digraph: let V (GL) = {L} and A(GL) = {(L,L)}. De-
fine a Boolean automaton ΦL on GL by setting ΦL(f, L) = ΦG

↓ (f, L), for all

f ∈ {0, 1}V (GL). Then ΦL is a Boolean network consisting of a single automa-
ton. If we identify ‘0’ with ‘false’ and ‘1’ with ‘true’, then any f ∈ {0, 1}V (GL)

can be looked at as a truth-value assignment for the sentence L. Moreover,
ΦL(f) corresponds to the intended classical evaluation of the liar sentence rela-
tive to the truth-value assignment f . As dynamical system the Boolean network
ΦL is connected and its unique component is a 2-periodic attractor.

In order to do the same analysis for the truth-teller sentence

T : (T) is true

38

we choose an isomorphic digraph GT with V (GT) = {T} and A(GL) =
{(T, T)}. This time we define ΦT (f, T) = ΦG∧(f, T), for all f ∈ {0, 1}V (GL). The
resulting dynamical system has two components, each of which is a 1-periodic
attractor.

Example 2.3.16. Consider again Jourdain’s paradox from Example 1.1.2.

L1: (T2) is false
T2: (L1) is true.

Let V (G) = {L1, T2} and A(G) = {(L2, T1), (T1, L2)}. Define

Φ(f, x) =

{
ΦG

↓ (f, x), if x = L1

ΦG∧(f, x), if x = T2.

The iteration-digraph of Φ is a cycle of length 4, a walk through which can
be illustrated as follows, coding an assignment of 1 to a vertex by coloring it
blue and an assignment of 0 by coloring it red.

L1 T2

L1 T2

L1 T2

L1 T2

L1 T2

Hence Φ has a single component which is a 4-periodic attractor, i.e, every
trajectory (and every f ∈ {0, 1}V (G)) is 4-periodic and the projections of it to
L1 and T2 are both 2-periodic, but with a non-trivial phase-shift (by ‘180◦’,
figuratively speaking).

Example 2.3.17. Yablo’s paradox from Example 1.1.5:

Y1: (Yn) is false for all n > 1
Y2: (Yn) is false for all n > 2
Y3: (Yn) is false for all n > 3
Y4: (Yn) is false for all n > 4
...

Let V (G) = {Yn | 1 ≤ n ∈ ω} and (Yn, Ym) ∈ A(G) iff n < m. Let Φ(f, x) =
ΦG

↓ (f, x), for all f ∈ {0, 1}V (GL) and x ∈ V (G). The following is an illustration

of the trajectory of f3 ∈ {0, 1}V (G) defined by

39

f3(x) =

{
1, if x = Yn ∧ n ≤ 3,

0, if x = Yn ∧ n > 3.

Y1 Y2 Y3 Y4 ...

Y1 Y2 Y3 Y4 ...

Y1 Y2 Y3 Y4 ...

Y1 Y2 Y3 Y4 ...

The trajectory τΦ(f3) enters its attractor, which is a cycle of length 2 at step
Φ2(f3). It is not difficult to see that every trajectory enters this cycle (after
at most 2 or 3 steps). Hence Φ is connected and has a 2-periodic attractor.
Every projection of every trajectory is also finally 2-periodic and they are all
synchronized i.e., there is no phase-shift.

Let us conclude this subsection with an observation that relates the period-
icity of trajectories to the periodicity of their projections.

Proposition 2.3.18. Let Φ be Boolean network on X, f ∈ {0, 1}X and 1 ≤
p < ω. If τΦ(f) is finally p-periodic, then for all x ∈ X there exists qx ≤ p such
that τΦ(f, x) is finally qx periodic.

The converse does not hold, as it will be illustrated by an Example 2.4.8 in
the following section.

40

2.4 Paradoxical sentences and automata

Having discussed the periodic behavior of individual automata, a natural ques-
tion is whether the fact that a Boolean network has a fixed point or not can be
understood in terms of the behavior of all its single automata. In this context,
an automaton whose behavior makes it impossible for a Boolean network to
have a fixed point could be called paradoxical.

Since Boolean automata correspond to sentences (if a Boolean network is
interpreted as a sentence system), this raises the question how existing accounts
of sentence-paradoxicality can be reformulated for Boolean networks.

Well known formal accounts of sentence-paradoxicality are first and foremost
those of Kripke ([32]) on the one hand (the inductive account) and of Herzberger
([26] and [25]) and Gupta ([22]) and Gupta and Belnap ([23]) on the other hand
(the semi-inductive account).

In the existing graph-theoretic frameworks sentence-paradoxicality often does
not play a central role. Neither Cook ([14],[16]) nor Rabern et al. ([41], [40]) give
a definition of a paradoxical sentence, only of a paradoxical sentence system. In
[46], the phenomenon of sentence-paradoxicality is mentioned but given a rather
perfunctory treatment. Beringer and Schindler ([4], [5]) on the other hand put
much emphasis on treating paradoxical sentences within their graph-theoretic
framework and on investigating relations to Kripke’s fixed point theory.

In this section, we will reformulate the inductive (Kripke), the semi-inductive
(Herzberger) and the reference-based (Beringer and Schindler) accounts of sen-
tence paradoxicality for Boolean networks. It will be shown that all these ap-
proaches can be understood and reformulated in terms of invariant subsets of
the network’s function space. In order to formulate Kripke’s theory of fixed
points and accommodate a three-valued logic, the notion of a general function
network shall be introduced in Subsection 2.4.3.

2.4.1 Notions of paradoxical automata

Given a Boolean network Φ on a set X, what could a reasonable definition of
x being paradoxical look like? The following first attempt could be seen as a
conceptual precursor to Herzberger’s approach which will be discussed in the
next subsection.

Definition 2.4.1. Let Φ be a Boolean network on a set X. Then x ∈ X is said
to be

1. trajectory-paradoxical w.r.t. Φ iff there exists no f ∈ {0, 1}X such that
(Φn(f))(x) = (Φm(f))(x) for all n,m ∈ ω.

2. trajectory-hypodoxical w.r.t. Φ iff there exist f0, f1 ∈ {0, 1}X such that
(Φn(f0))(x) = (Φm(f0))(x) = 0 for all n,m ∈ ω and (Φn(f1))(x) =
(Φm(f1))(x) = 1 for all n,m ∈ ω.

41

E.g., the liar is trajectory-paradoxical and the truth-teller is trajectory-
hypodoxical.

The next definition assigns to each Boolean network a family of potential
notions of paradoxicality on automata level. In the following it will be shown
that each notion of automata-paradoxicality of the inductive (Kripke) or semi-
inductive (Herzberger) family can be expressed by an appropriate subset of
SΦ, which, in turn, corresponds to the coarsest notion of paradoxicality, i.e.,
trajectory-paradoxicality.

Definition 2.4.2. Let Φ be a Boolean network on a set X.

1. Let SΦ be the set of all ∅ ̸= Σ ⊆ {0, 1}X s.t. Σ is invariant under Φ.

2. Let Σ(x) = {v ∈ {0, 1} | ∃f ∈ Σ(f(x) = v)}, for all Σ ∈ SΦ, x ∈ X.

3. We say that Σ determines a value for x iff Σ(x) = {v} (for v ∈ {0, 1}) and
also write Σ(x) = v in this case.

4. Let ∅ ̸= M ⊆ SΦ and x ∈ X. Then

(a) x is said to be M-paradoxical iff there exists no Σ ∈ M that deter-
mines a value for x,

(b) x is said to be M-hypodoxical iff there are Σ0,Σ1 ∈ M such that
Σ0(x) = 0 and Σ1(x) = 1,

(c) x is said to be M-intrinsic iff x is neither M-paradoxical nor M-
hypodoxical.

The elements of SΦ could be interpreted as multi-decorations of X in the
sense of [5].

Proposition 2.4.3. Let Φ be a Boolean network on X and M ⊆ N ⊆ SΦ.
Then for all x ∈ X,

1. if x is N-paradoxical, then x is M-paradoxical,

2. if x is M-hypodoxical, then x is N-hypodoxical.

It could be an interesting investigation to take this definition as a basis for an
axiomatic account of sentence-paradoxicality by stipulating further requirements
on M ⊆ SΦ. For now, let us just note that the following property of M should
be certainly among the necessary requirements.

Proposition 2.4.4. Let Φ be a Boolean network on X. Then there is a bijection
between the set of all fixed points of Φ and the set {Σ ∈ SΦ | |Σ| = 1}.

Definition 2.4.5. Let Φ be a Boolean network and ∅ ̸= M ⊆ SΦ. Then

1. Σ ∈ M is said to be an atom of M iff there exists no Σ′ ∈ M such that
Σ′ ⊊ Σ.

42

2. M is said to be atomic iff for all Σ ∈ M there exists an atom Σ′ of M
such that Σ′ ⊆ Σ.

Proposition 2.4.6. Let Φ be a Boolean network on X. Then x ∈ X is
trajectory-paradoxical w.r.t. Φ iff x is SΦ-paradoxical; and x ∈ X is trajectory-
hypodoxical w.r.t. Φ iff x is SΦ-hypodoxical.

Proof. Both claims follow from the fact that the set {Φn(f) | n ∈ ω} is invariant
under Φ, for all f ∈ {0, 1}X .

Proposition 2.4.7. Let Φ be a Boolean network on X. Then Σ ⊆ {0, 1}X is
an atom of SΦ iff Σ is an attractor of Φ.

2.4.2 Transfinite trajectories

The following is an example of a Boolean network Φ such that SΦ is not atomic.
It can be seen as a motivation for prolonging trajectories transfinitely as it is
done in [26].

Example 2.4.8. Consider the following version of Example 1.1.7:

M0: (Mω) is false
M1: (M0) is true
M2: (M0) and (M1) are true
M3: (M0) and (M1) and (M2) are true
...
Mω: (Mn) is true for all n ∈ ω.

Let V (G) = {Mα | α ∈ ω + 1} and (Mα,Mβ ,) ∈ A(G) iff α > β or if α = 0
and β = ω. Let

Φ(f, x) =

{
ΦG

↓ (f, x), if x =M0

ΦG∧(f, x), if x =Mα ∧ α > 0.

Let f1 ∈ {0, 1}V (G) be the function that assumes constantly the value 1. Let
us write functions in {0, 1}V (G) as sequences of length ω + 1, e.g.,

f1 = (1, 1, ...1).

The first position of such a sequence represents the value assigned toM0 and
the last position the value assigned toMω. With this convention, the trajectory
of f1 can be written as follows.

(1, 1, ...1)
(0, 1, ...1)
(0, 0, ...0)
(1, 0, ...0)

43

(1, 1, ...0)
(1, 1, 1...0)
· · ·

This sequence is clearly aperiodic while its projection to any Mn (for n ∈ ω)
is finally 1-periodic with the value 1 repeating itself. Its projection toMω is also
finally 1-periodic, assuming the value 0. Let Σ be the set of all f ∈ {0, 1}V (G)

that occur in the trajectory of f1. Then Σ is Φ-invariant but contains no non-
empty subset that is strictly Φ-invariant. Hence SΦ is not atomic.

It is not difficult to see that every trajectory intersects with the trajectory
of f1. Hence Φ has one component, which is aperiodic in the sense of Definition
2.2.10.

However, one might argue that this example shows a form of transfinite
periodicity, based on the intuition that the trajectory converges to the function
fω that assumes constantly the value 1 except atMω where it assumes the value
0. Moreover, Φ(fω) = f1. This last step could be regarded as closing a cycle of
length ω.

Let us conclude this discussion with the remark that the Boolean network Φ
constitutes some kind of anomaly for the SΦ-account of sentence paradoxicality:
No x ∈ V (G) is SΦ-paradoxical (i.e., trajectory-paradoxical) but nevertheless
Φ has no fixed point. This particular class of anomalies (stemming from infinite
liar cycles) can be treated by further refinements of the notion of sentence
paradoxicality, i.e., the accounts of Herzberger and Kripke. However, none of
these accounts is free from anomalies. (Cf. Example 2.4.75 below.)

Transfinite trajectories (or revision sequences) were first studied by Herzberger
in [25] and [26] and by Gupta in [22]. The crucial point is the definition of a limit
rule. In the following we shall adapt Herzberger’s framework to the context of
Boolean networks.

Definition 2.4.9. Let Φ be a Boolean network on X. We define recursively for
all ordinals α the α-th iteration Φα of Φ as follows.

• Let Φ0 = IdX (cf. Example 2.2.18).

• For all ordinals α let Φα+1 = Φ ◦ Φα.

• Let λ be a limit-ordinal. For all f ∈ {0, 1}X and x ∈ X define

(Φλ(f))(x) =


1, if ∃α < λ : ∀β(α ≤ β < λ : (Φβ(f))(x) = 1

0, if ∃α < λ : ∀β(α ≤ β < λ : (Φβ(f))(x) = 0

0, else.

Note that Φλ is a well-defined function of type {0, 1}X → {0, 1}X . For the
following definition also cf. [26].

Definition 2.4.10. Let Φ be a Boolean network on X, x ∈ X and f ∈ {0, 1}X .

44

• Say that x is stable at α ∈ On relative to f w.r.t. Φ iff for all β ≥ α :
(Φβ(f))(x) = (Φα(f))(x).

• Say that x finally assumes the value v ∈ {0, 1} relative to f w.r.t. Φ iff x
is stable at some α ∈ On relative to f w.r.t. Φ and (Φα(f))(x) = v.

• Call x, somewhere stable w.r.t. Φ iff there is some f ∈ {0, 1}X and α ∈ On
such that x is stable at α relative to f w.r.t. Φ.

• Call x nowhere stable iff y is not somewhere stable w.r.t. Φ.

Definition 2.4.11. Let Φ be a Boolean network on X. A Boolean automaton
x ∈ X is said to be

1. Herzberger-paradoxical w.r.t. Φ iff x is nowhere stable w.r.t. Φ,

2. Herzberger-hypodoxical w.r.t. Φ iff there are f0, f1 ∈ {0, 1}X such that x
finally assumes the value 0 relative to f0 w.r.t. Φ and x finally assumes
the value 1 relative to f1 w.r.t. Φ.

Definition 2.4.12. Let Φ be a Boolean network onX. We say that F ⊆ {0, 1}X
is

1. λ-invariant under Φ iff Φα[F] ⊆ F , for all α ∈ On.

2. strictly λ-invariant under Φ iff F is λ-invariant under Φ and for all f ∈ F
there exist g ∈ F and α ∈ On such that Φα(g) = f ,

3. a λ-attractor of Φ iff F ̸= ∅, F is strictly λ-invariant under Φ and no
proper subset of F has these properties.

Note Φ0[F] = F ⊆ F and that by Proposition 2.2.12 Φ[F] ⊆ F implies that
Φn[F] ⊆ F for all n ∈ ω.

Clearly, the union of the elements of every revision sequence (Φα(f))α∈On

(or transfinite trajectory) is λ-invariant under Φ.

Now we can reformulate an important result from [26].

Proposition 2.4.13. (Herzberger) Let Φ be a Boolean network on X and F ⊆
{0, 1}X .

1. Then there exists some ξ(F) ∈ On such that
⋃

ξ(F)≤α∈On Φ
α[F] is strictly

λ-invariant under Φ.

2. If F ̸= ∅ and λ-invariant under Φ, then F ⊇ (
⋃

ξ(F)≤α∈On Φ
α[F]) ̸= ∅.

Corollary 2.4.14. Let Φ be a Boolean network on X and ∅ ̸= F ⊆ {0, 1}X be
λ-invariant under Φ. Then there exists a unique ∅ ̸= F ′ ⊆ F such that F ′ is
strictly λ-invariant under Φ and no F ′ ⊊ G ⊆ F is strictly λ-invariant under
Φ.

45

This corollary has a counterpart in Kripke’s theory of fixed points that will
be discussed later: every sound set can be extended to a maximal fixed point.
(cf. Theorem 2.4.55).

Definition 2.4.15. Let Φ be a Boolean network on X. Let LΦ be the set of
all F ⊆ {0, 1}X such that F is λ-invariant under Φ.

Proposition 2.4.16. For all Boolean networks Φ, LΦ ⊆ SΦ.

Corollary 2.4.17. Let Φ be a Boolean network on X and x ∈ X. Then

1. x is Herzberger-paradoxical w.r.t. Φ iff x is LΦ-paradoxical,

2. x is Herzberger-hypodoxical w.r.t. Φ iff x is LΦ-hypodoxical.

Proposition 2.4.18. Let Φ be a Boolean network on X. Then there is a bijec-
tion between the set of all fixed points of Φ and the set {Σ ∈ LΦ | |Σ| = 1}.

Corollary 2.4.19. For every Boolean network Φ on any set X,

1. LΦ is atomic,

2. Σ ∈ {0, 1}X is an atom of SΦ iff Σ is a λ-attractor of Φ.

This implies that anomalies of the type of Example 2.4.8 are avoided by
Herzberger’s approach. The price for this, in comparison with the SΦ-account,
is a certain arbitrariness in the choice of the limit rule.

2.4.3 General function networks

This and the next subsections introduce concepts and tools that all shall play
their role in later parts of this thesis, in particular in the formulation of Kripke’s
fixed point theory for Boolean networks in Subsection 2.4.7.

Definition 2.4.20. Let X be a set.

1. Let (Sx)x∈X be a family of non-empty classes. We call Σ =×x∈X
Sx a

type on X, where×x∈X
Sx is the set of all functions f with dom(f) = X

such that f(x) ∈ Sx. In other words, all f ∈ Σ are functions of type
Πx:XSx.

2. A function network of type Σ on X is a map Φ : Σ → Σ, where Σ is a
type on X.

3. To every type Σ =×x∈X
Sx on X and every x ∈ X we associate a map

πx : Σ → Sx defined by πx(f) = f(x) which we call the projection of Σ
to x.

4. For all x ∈ X define Φx : Σ → Sx by Φx(f) = πx ◦Φ(f), the projection of
Φ to x.

46

Clearly, every Boolean network is a function network.

Definition 2.4.21. Let X be a set and Σ =×x∈X
Sx a type on X.

1. A function network of type Σ is said to be a Boolean (function) network
iff Σ = {0, 1}X .

2. A function network of type Σ is said to be a finitary iff Sx is finite for all
x ∈ X.

Most of what has been said about Boolean networks so far also applies
to function networks in general. In analogy to the correspondence between
Boolean networks and families of Boolean automata in Subsection 2.2.3, func-
tion networks can be conceived as families of functions or as functions of type
Π((f,x):Σ×X)Sx, i.e., as functions Φ that assign to each (f, x) ∈ Σ × X some
Φ(f, x) ∈ Sx.

Definition 2.4.22. Let X be a set and Φ a function network of type Σ =

×x∈X
Sx.

1. We say that x depends on Y ⊆ X with respect to Φ iff for all f, g ∈ Σ, if
f ↾ Y = g ↾ Y , then Φ(f, x) = Φ(g, x).

2. Let G be a digraph with V (G) = X. Then Φ is said to be a function
network on G and G is said to be a dependency graph for Φ iff and every
x ∈ V (G) depends on outG(x) with respect to Φ.

Proposition 2.4.23. Let X be a set and Φ be a function network of type Σ =

×x∈X
Sx. Then

1. every x ∈ X depends on X with respect to Φ,

2. if x depends on Y with respect to Φ and if Y ⊆ Z, then x depends on Z
with respect to Φ,

3. if x depends on Y with respect to Φ and x depends on Z with respect to
Φ, then x depends on Y ∩ Z,

4. x depends on ∅ with respect to Φ iff Φ is constant at x.

Example 2.4.24. This is an example from calculus. Its main purpose is to
illustrate the claim that the additional structure that a function network (or
a Boolean network for that matter) has over mere dynamical systems can be
looked at as ‘coordinate system’ indeed. Another purpose is to hint at how con-
tinuous dynamical systems can be approximated by discrete dynamical systems.

Let B = {x1, x2} be a orthonormal basis of R2 and π1, π2 the projections of
R2 to the subspaces of R2 spanned by x1 and x2 respectively. Let v : R2 → R2

be a continuous vector field and v1, v2 : R2 → R defined by π1 ◦ v and π2 ◦ v
respectively. For all k ∈ ω define Φv,k : RB ×B → R by

Φv,k(s, y) =

{
s(x1) +

1
kv1(s(x1), s(x2)), if y = x1

s(x2) +
1
kv2(s(x1), s(x2)), if y = x2.

47

Clearly Φv,k is a function network on B. Note that elements of RB can be
conceived as points in R2 represented through the basis (or coordinate system)
B. An interpretation of Φv,k and the significance of k will be discussed below.

First let us consider the question of dependency. If v is constant, then x1
depends on ∅ and x2 depends on ∅ with respect Φv,k. If v is the identity map
i.e., v(x, y) = (x, y) then x1 depends essentially on {x1, x2} and x2 depends
essentially on {x1, x2}, i.e., the complete digraph on {x1, x2} is the only depen-
dency graph for Φv,k. Can every digraph with vertices {x1, x2} be realized by
some v as essential dependency graph of Φv,k?

Now to the interpretation. A function φ : R+
0 → R2 is said to be a solution

of initial value problem

z′(t) = v(x, y) (1a)
z(0) = (x0, y0) (1b)

(associated to the autonomous first order differential equation (1a)) if and
only if φ′(t) = v(x, y) and φ(0) = (x0, y0). Physically φ could be interpreted as
the trajectory of a particle that is at time t = 0 at (x0, y0) an moves through the
plane with velocity v(x, y) whenever it is at (x, y). In the discrete dynamical
system Φv,k the particle doesn’t move continuously but jumps from place to
place. The value 1

k can be seen a the length of the time interval between two
such jumps: the shorter this interval, the smaller is the displacement, given a
fixed velocity field. The use of a coordinate system B helps to describe and
analyze the problem in the usual manner. Clearly, the fixed points of Φv,k are
exactly the points of R2 where v vanishes. (E.g. in the case where v is the
identity (0, 0) is the unique fixed point). The trajectory τv,k(s0) of s0 under
Φv,k can be seen as an infinite polygon chain P v

k (s0) that converges (in a sense
that can be made precise, at least under favorable circumstances - e.g., if v has
only finitely many zeros) to a solution of (1) (at least locally), when k → ∞.

Example 2.4.25. Function networks can serve as models for neural networks.
For details the reader is referred to Chapter 12 of [43], where, among other
things, a discussion of the famous Hopfield-model can be found. English-
language sources on the Hopfield-model are e.g., [27] and [48].

2.4.4 Subtypes

Definition 2.4.26. Let X be a set, Σ =×x∈X
Sx and Σ′ =×x∈X

S′
x be types

on X. Then Σ′ is said to be a subtype of Σ (written Σ′ ⊑ Σ) iff S′
x ⊆ Sx, for all

x ∈ X.

Proposition 2.4.27. Let Φ : Σ → Σ be a function network on X and Σ′ ⊑ Σ.
If Σ′ is Φ-invariant i.e., Φ[Σ′] ⊆ Σ′, then Φ ↾ Σ′ is a function network on X of
type Σ′.

Definition 2.4.28. Let Φ : Σ → Σ and Φ′ : Σ′ → Σ′ be function networks on
a set X and Σ′ ⊑ Σ. We say that Φ is an extension of Φ′ iff Σ′ is Φ invariant
and Φ′ = Φ ↾ Σ′.

48

Definition 2.4.29. Let X be a set. A type Σ =×x∈X
Sx is said to be

1. trivial iff |Sx| = 1 for all x ∈ X,

2. finitary iff |Sx| < ω for all x ∈ X,

3. sub-boolean iff Sx ⊆ {0, 1} for all x ∈ X.

Definition 2.4.30. Let Φ be a function network of type Σ. A subtype Γ ⊑ Σ
is said to be Φ-irreducible iff there is no proper subtype Γ′ ⊑ Γ that is invariant
under Φ.

2.4.5 A topology for the state space

The goal of this subsection is to define a topology on the state space (or function
space) of a finitary function network. For this aim, a recapitulation of some basic
topological concepts is needed. (The reader can find this material also in any
introductory text, e.g., in [31].)

Recall that for any set X a set T of subsets of X is said to be a topology
for X iff (i) for all finite I ⊆ T ,

⋂
I ∈ T , (ii) for all I ⊆ T ,

⋃
I ∈ T and

(iii), X,∅ ∈ T . If T is a topology for X, then the pair (X, T) is said to be a
topological space. A set Y ⊆ X is said to be open (w.r.t. T) iff Y ∈ T ; it is said
to be closed (w.r.t. T) iff X \ Y ∈ T . A set B ⊆ T is said to be a basis for T
iff for all Y ∈ T there exists I ⊆ B such that Y =

⋃
I.

Given any set B of subsets of X that is closed under finite intersections, we
say that the set {

⋃
I | I ⊆ B} is the topology generated by B. In this case B is

a basis for the topology generated by B.

Example 2.4.31. Let X be a set.

• Then ℘(X) is a topology for X, the so called discrete topology. The set of
all singleton subsets of X is a basis for ℘(X).

• For S ⊆ X, the set {Y ∩ S | Y ∈ T } is a topology for S, the so called
subspace topology.

Definition 2.4.32. Given any family (Sx, Tx)x∈X of topological spaces, let the
product topology for×x∈X

Sx be the topology generated by the set

{
⋂

x∈Y π
−1
x (Ux) | Ux ∈ Tx ∧ Y ⊆ X ∧ |Y | < ω},

where πx :×y∈X
Sy → Sx is given by πx(f) = f(x).

Now we define a topology on finitary types as follows.

Definition 2.4.33. For any finitary Σ =×x∈X
Sx let T (Σ) be the product

topology for×x∈X
Sx given the family (Sx, ℘(Sx))x∈X .

49

A topological space (X, T) is said to be compact iff for all I ⊆ T , if X =
⋃

I,
then there exists some finite F ⊆ I such that X =

⋃
F - in other words iff every

open cover has a finite subcover. The following is an immediate consequence
of Tychonov’s theorem (cf. [31]) which claims that a product space is compact
given that each of its factors is compact.

Proposition 2.4.34. Let Σ =×x∈X
Sx be finitary. Then

1. (Σ, T (Σ)) is a compact topological space,

2. for all finite sets Y ⊆ X and all A ⊆×x∈Y
Sx, {f ∈ Σ | f ↾ Y ∈ A} is

both open and closed in T (Σ).

Proof. The first claim follows from Tychonoff’s theorem, since every (Sx, ℘(sx))
is compact (since it is finite). The second claim follows from the definition of
the product topology (Definition 2.4.32) and the fact that every Sx is finite.

For the following definition and proposition also cf. [31] p. 135.

Definition 2.4.35. A family (Xi)i∈I of sets is said to have the finite intersec-
tion property iff ∅ ̸=

⋂
i∈F Xi, for all finite F ⊆ I.

Proposition 2.4.36. A topological space is compact iff every family of closed
sets that has the finite intersection property has a non-empty intersection.

Proof. Cf. [31], Chapter 5, Theorem 1.

This has the following consequence.

Proposition 2.4.37. Let (X, T) be a compact topological space. Let ξ be an
ordinal and (Aα)α<ξ be a sequence of nonempty closed subsets of X that is
⊆-descending. Then

⋂
α<ξ Aα is nonempty and closed.

Proof. Let Aα0 ⊇ ⊇ Aαn be a finite subsequence of (Aα)α<ξ. Then Aα0 ∩
.... ∩ Aαn = Aαn ̸= ∅ by premise. Hence (Aα)α<ξ has the finite intersection
property. Hence, by the previous proposition

⋂
α<ξ Aα is nonempty.

When it comes to finitary types we get the following application.

Proposition 2.4.38. Let Σ =×x∈X
Sx be finitary and (Γn)n∈ω a sequence of

subsets of Σ such that Γm ⊇ Γn whenever m < n. Then

1.
⋂

n∈ω Γn is nonempty and closed, if every Γn is closed.

2. If for all m < n, Γm ⊒ Γn then
⋂

n∈ω Γn =×x∈X
(
⋂

k∈ω πx[Γk]).

In particular, the intersection of a descending sequence of types is a type.

Let us conclude this subsection with a brief summary of how the account
of Herzberger can be described in topological terminology. (Definitions of the

50

topological notions used in the following can be found in any textbook, e.g. in
[31]).

For every finitary type Σ the topological space (Σ, T (Σ)) is a compact
Hausdorff-space. (It is not necessarily sequence-compact). A sequence con-
verges iff it converges pointwise. If a trajectory converges in T (Σ), then it
converges to its Herzberger-limit (cf. Definition 2.4.9). A network contains no
trajectory-paradoxical automaton iff the limit of every trajectory coincides with
its Herzberger limit. If X is countable, then the Herzberger-limit of any trajec-
tory is an accumulation point of this trajectory. Every trajectory has at least
one accumulation point. It has more than one iff it does not converge.

2.4.6 Subnetworks and digraph topology

This subsection introduces a concept that shall be of crucial importance for the
remainder of this thesis, in particular for the Chapters 3 and 5. While subsets of
the state space of a function network have been the topic of Subsection 2.4.4, in
the following we shall be concerned with subdigraphs of the dependency graph.
First let us see how a digraph can be considered as a topological space.

Definition 2.4.39. Let G be a digraph. A set X ⊆ V (G) is said to be open
in G iff there are no x ∈ X and y ∈ V (G) \X such that (x, y) ∈ A(G). A set
X ⊆ V (G) is said to be closed in G iff V (G) \X is open in G.

Proposition 2.4.40. Let G be a digraph and X ⊆ V (G). Then X is open in
G iff for all x ∈ X, G{x} ⊆ G[X].

The open sets of a digraph G form indeed a topology on V (G), a rather
special one, where even arbitrary intersections of open sets are open.

Proposition 2.4.41. Let G be a digraph. Let O be the set of all subsets of
V (G) that are open in G. Then

1. ∅ ∈ O,

2. V (G) ∈ O,

3. if A ⊆ O, then
⋃
A ∈ O,

4. if A ⊆ O, then
⋂
A ∈ O.

Definition 2.4.42. Let G be a digraph and Y ⊆ V (G). Let Bd+G(Y) =⋃
{outG(x) | x ∈ Y } \ Y be the outward boundary of Y in G.

Proposition 2.4.43. Let G be a digraph and Y ⊆ V (G). Then the following
are equivalent:

1. Y is open in G,

2. Bd+G(Y) = ∅,

3. for all x ∈ Y , V (G{x}) ⊆ Y .

51

Subnetworks

Definition 2.4.44. Let G be a digraph, X = V (G), Σ =×x∈X
Sx a type on

X and Φ : Σ → Σ a function network on G. Let Y ⊆ V (G) and V (G) \ Y ⊇
Z ⊇ Bd+G(Y). For any h ∈×x∈Z

Sx define

Φh[Y] :×x∈Y
Sx →×x∈Y

Sx

by (Φh[Y])(f) = Φ(g ∪ h ∪ f),

where g ∈×x∈X\(Y ∪Z)
Sx is arbitrary.

Since G is a dependency graph for Φ, the above definition does not depend on
the choice of the function g.

Proposition 2.4.45. Let G be a digraph, X = V (G), Σ =×x∈X
Sx a type on

X and Φ : Σ → Σ a function network on G. Let Y ⊆ V (G) and V (G) \ Y ⊇
Z ⊇ Bd+G(Y). Let h ∈×x∈Z

Sx. Then

1. Φh[Y] is a function network on G[Y],

2. Φh[Y](f ↾ Y, y) = Φ(f, y), for all y ∈ Y and f ∈ Σ such that f ↾ Z = h,

3. if f is a fixed point of Φ and h = f ↾ Z, then f ↾ Y is a fixed point of
Φh[Y].

Following [19] we may call for any X ⊆ V (G) and the set Bd+G(X) the input
layer of the Boolean network Φ(·)[X]. The idea is to imagine Φ(·)[X] as a (pos-
sibly nondeterministic and infinite) automaton, which, after being fed with an

input h ∈ {0, 1}Bd+
G(X) then comes up with a fixed point f ∈ {0, 1}X (or not),

which, if it exists, must satisfy f ↾ Y = h. If G[X] is well-founded, then there
is always a unique fixed point, i.e., Φh[X] terminates for each input and is de-
terministic.

The following definition will play a crucial role in Subsection 5.1.1, e.g. in
Theorem 5.1.3.

Definition 2.4.46. Let G be a digraph, X = V (G), Σ =×x∈X
Sx a type on

X and Φ : Σ → Σ a function network on G. Let Y ⊆ V (G), V (G) \ Y ⊇ Z ⊇
Bd+G(Y) and h ∈×x∈Z

Sx.

1. Call Φh[Y] the subnetwork of Φ induced by X relative to h.

2. If Y is open in G, i.e., if Bd+G(Y) = ∅, then domh = ∅ and we also write
Φ[X] instead of Φh[X] and call it the subnetwork of Φ induced by X.

3. We say that Φ is

(a) absolutely solvable relative to Y iff for all h ∈×x∈Z
Sx, Φ

h[Y] has a
fixed point,

52

(b) perfectly solvable relative to Y iff for all ∅ ̸= Z ⊆ Y , Φ is absolutely
solvable relative to Z,

(c) relatively solvable relative to Y iff there exists h ∈×x∈Z
Sx such that

Φh[Y] has a fixed point,

(d) absolutely unsolvable relative to Y iff it is not relatively solvable rel-
ative to Y .

The following two results are a first and rather trivial version of what could
be called decomposition theorems. More sophisticated decomposition results
shall be treated in Chapter 5.

Proposition 2.4.47. Let G be a digraph and P a partition of V (G) such that
for all X ∈ P, X is open in G. Let Φ be a function network on G. Then Φ has
a fixed point if for all X ∈ P, Φ[X] has a fixed point.

Proof. The union of a set of fixed points of Φ[X] (for X ∈ P) is a fixed point of
Φ.

Lemma 2.4.48. Let G be a digraph, X = V (G) and Φ a function network on
G. Let Y ⊆ X be open in G. If f is a fixed point of Φ[Y] and g is a fixed point
of Φf [X \ Y], then f ∪ g is a fixed point of Φ.

Proof. Straightforward by Proposition 2.4.45.

2.4.7 Kripke fixed points

In the following we shall sketch how Kripke’s work [32] can be adapted to
the context of Boolean networks. The discussion of various standard valuation
schemes in [5] will find its reflection in Subsection2.4.8.

Definition 2.4.49. For any set X and all f, g ∈ {0, 12 , 1}
X

1. define f ⊆ g (and say that g is an extension of f) iff for all x ∈ X, f(x) = 0
implies g(x) = 0 and f(x) = 1 implies g(x) = 1.

2. For all ∅ ̸= F ⊆ {0, 12 , 1}
X let

⋂
F : {0, 12 , 1}

X → {0, 12 , 1}
X be defined

by

(
⋂
F)(x) =

{
v, if v ∈ {0, 1} ∧ ∀f ∈ F : f(x) = v
1
2 , else.

3. For all ∅ ̸= F ⊆ {0, 12 , 1}
X let

⋃
F : {0, 12 , 1}

X → {0, 12 , 1}
X be defined

by

(
⋃
F)(x) =


v, if v ∈ {0, 1} ∧ ∀f ∈ F : f(x) = v

v, if v ∈ {0, 1} ∧ ∀f ∈ F : f(x) ∈ {v, 12} ∧ ∃f ∈ F : f(x) = v
1
2 , else.

If F = {f, g} we also write f ∪ g for
⋃
F .

53

4. A set ∅ ̸= F ⊆ {0, 12 , 1}
X is said to be compatible iff there are no f, g ∈ F

such that f(x) ̸= g(x) and f(x), g(x) ∈ {0, 1} for some x ∈ X.

5. Let sdm(f) = {x ∈ X | f(x) ∈ {0, 1}} be the substantial domain of f .

Proposition 2.4.50. Let ∅ ̸= F ⊆ {0, 12 , 1}
X . If F is compatible, then

1. sdm(
⋃
F) =

⋃
{sdm(f) | f ∈ F} and

2. for all f ∈ F and all x ∈ sdm(f), f(x) = (
⋃
F)(x).

Definition 2.4.51. Let Ψ : {0, 12 , 1}
X → {0, 12 , 1}

X .

1. Then Ψ is said to be monotonic iff f ⊆ g implies Ψ(f) ⊆ Ψ(g), for all
f, g ∈ {0, 12 , 1}

X .

2. A function f ∈ {0, 12 , 1}
X is said to be sound with respect to Ψ iff f ⊆

Ψ(f),

3. and maximally sound with respect to Ψ iff f is sound with respect to Ψ
and no proper extension of f is sound with respect to Ψ.

Definition 2.4.52. Let Ψ : {0, 12 , 1}
X → {0, 12 , 1}

X be monotonic. A fixed
point f of Ψ is said to be intrinsic iff for all fixed points g of Ψ, {f, g} is
compatible.

Proposition 2.4.53. Let Ψ : {0, 12 , 1}
X → {0, 12 , 1}

X be monotonic and ∅ ̸=
F ⊆ {0, 12 , 1}

X be a set of fixed points of Ψ. Then

1.
⋂
F is a fixed point of Ψ. If F is the set of all fixed points of Ψ, we call⋂
F the least fixed point of Ψ.

2. If F is compatible, then
⋃
F is a fixed point of Ψ. If F is the set of

all intrinsic fixed points of Ψ, then F is compatible and we call
⋃

F the
largest intrinsic fixed point of Ψ.

Proposition 2.4.54. Let Ψ : {0, 12 , 1}
X → {0, 12 , 1}

X be monotonic. Then for
every sound f ∈ {0, 12 , 1}

X there exists some maximally sound g ⊇ f .

Proof. Consider the set S(f) of all sound g ∈ {0, 12 , 1}
X extending f . Then

f ∈ S(f) and since Ψ is monotonic, the union of every ⊆- chain in S(f) is also
an element of S(f). Hence the claim follows by Zorn’s Lemma.

Together with the observations that very function that assumes everywhere
the value 1

2 is sound and that soundness of f implies soundness of Φ(f), these
last two propositions imply the following.

Theorem 2.4.55. Let Ψ : {0, 12 , 1}
X → {0, 12 , 1}

X be monotonic. Then

1. Ψ has a fixed point,

2. every sound f ∈ {0, 12 , 1}
X can be extended to a maximal fixed point of Ψ,

3. there exists a unique fixed point f0 of Ψ that is the least fixed point of Ψ
in the senses that every fixed point of Ψ is an extension of f0.

54

2.4.8 Kripke-extensions of Boolean networks

Next we will study various ways in which a given Boolean network on X can be
extended to a monotonic network of type {0, 12 , 1}

X → {0, 12 , 1}
X .

Definition 2.4.56. Let Φ be a Boolean network and G a digraph. Let X =
V (G). For all f ∈ {0, 12 , 1}

X define f01
2

∈ {0, 1}X by

f01
2

(y) =

{
f(y), if f(y) ∈ {0, 1}
0, else.

The operation f 7→ f01
2

corresponds to closing off partial models.

Definition 2.4.57. Let Φ be a Boolean network and a digraph G. Let X =
V (G). We associate a three-valued function network Φ′

WK [G] : {0, 12 , 1}
X×X →

{0, 12 , 1} to Φ as follows.

Φ′
WK [G](f, x) =

{
Φ(f01

2

, x), if outG(x) ⊆ sdm(f)
1
2 , else.

The index WK is intended to stand for ‘Weak Kleene’. The relation of
Φ′

WK [G] to the weak Kleene valuation-scheme (cf. [32] and also [5]) is a rather
loose one when the vertices of G are non-linguistic entities. However, when
the Boolean network Φ is represented as a sentence system formulated in an
infinitary propositional language as in Subsection 3.5.1, then the vertices of G
are sentence names and (α, β) ∈ A(G) means that β is a syntactic constituent
of the sentence that is denoted by α in the sentence systems that represents the
Boolean network. In this context, the relation to the weak Kleene valuation-
scheme becomes apparent.

Analogously, it is possible to define a Strong-Kleene extension Φ′
SK [G] of a

Boolean network Φ, given that each automaton of Φ behaves like the evaluation
function of a sentence. E.g., if x computes the evaluation function of a conjunc-
tion, then Φ′

SK [G] would be defined at x as follows.

Φ′
SK [G](f, x) =


Φ(f01

2

, x), if outG(x) ⊆ sdm(f)

0, if outG(x) ̸⊆ sdm(f) ∧ ∃y ∈ outG(x)(f(y) = 0)
1
2 , else.

Proposition 2.4.58. Let Φ be a Boolean network and G a digraph. Then

1. Φ′
WK [G] is a function network on G,

2. Φ′
WK [G] is an extension of Φ and monotonic.

Proposition 2.4.59. Let Φ be a Boolean network and G a digraph. Then
x ∈ V (G) is in the substantial domain of the least fixed point of Φ′

WK [G] iff x
is in the well-founded part of G.

Proof. By induction of G.

55

Definition 2.4.60. A function f ∈ {0, 12 , 1}
X is said to be complete iff sdm(f) =

X.

Corollary 2.4.61. Let Φ be a Boolean network on G. If G is well-founded,
then the least fixed point of Φ′

WK [G] is complete and the unique fixed point of
Φ.

Definition 2.4.62. Let Φ be a Boolean network on X. We associate a three-
valued function network Φ′

L : {0, 12 , 1}
X ×X → {0, 12 , 1} to Φ as follows.

Φ′
L(f, x) =

{
Φ(f01

2

, x), if x depends on sdm(f) w.r.t. Φ
1
2 , else.

Φ′
L is the direct counterpart of what is called the Leitgeb valuation-scheme

VL in [4] and [5]. Notice that the main difference between Φ′
L and Φ′

WK [G] is
that Φ′

WK [G] requires a graph parameter.

Definition 2.4.63. For all Ψ1,Ψ2 : {0, 12 , 1}
X → {0, 12 , 1}

X , we say that

1. Ψ2 is stronger than Ψ1 and write Ψ2 ≥ Ψ1 iff Φ1(f) ⊆ Φ2(f), for all
f ∈ {0, 12 , 1}

X ,

2. Ψ2 is strictly stronger than Ψ1 and write Ψ2 > Ψ1 iff Ψ2 ≥ Ψ1 and there
exists f ∈ {0, 12 , 1}

V (G) such that Φ1(f) ⊊ Φ2(f),

3. Ψ2 is equivalent to Ψ1 and write Ψ2 ≡ Ψ1 iff Ψ1 ≤ Ψ2 and Ψ1 ≥ Ψ2.

Proposition 2.4.64. Let (G,Φ) be a Boolean network. Then

1. Φ′
L is a function network on G,

2. Φ′
L is an extension of Φ and monotonic,

3. Φ′
L ≥ Φ′

WK [G],

4. Φ′
L ≡ Φ′

WK [G] iff G is a minimal dependency graph for Φ.

The following notion of an r-paradoxical Boolean automaton is analogous
to that of a referentially paradoxical (or r-paradoxical) sentence in [5]. Notice
that there is no arbitrary choice involved in this notion – neither a particular
Kripke-extension nor a particular limit rule.

Definition 2.4.65. Let Φ be a Boolean network on X. A Boolean automaton
x ∈ X is said to be r-paradoxical relative to Φ iff there is no dependency digraph
G for Φ such that Φ[V (G{x})] has a fixed point. (Recall Definition 2.4.46 and
observe that V (G{x}) is open in G.)

The following theorem is an adaptation from [5]. The proof carries over
straightforwardly.

56

Theorem 2.4.66. Let Φ be a Boolean network on X. Then x ∈ V (G) is
r-paradoxical relative to Φ iff it is Kripke-paradoxical w.r.t. Φ′

L.

Definition 2.4.67. Let Φ be a Boolean network on X. We associate a three-
valued function network Φ′

FV : {0, 12 , 1}
X ×X → {0, 12 , 1} to Φ as follows:

Φ′
FV (f, x) =


1, (∀ g ∈ {0, 1}X)(g ⊇ f ⇒ Φ(g, x) = 1)

0, (∀ g ∈ {0, 1}X)(g ⊇ f ⇒ Φ(g, x) = 0)
1
2 , else.

If the valuation scheme that is denoted in [5] by VFV (which was introduced
by Cantini in [12]) were to be transferred to the present context, it would be
formulated as in the following proposition. However, for reasons of technical
convenience, we stick to the formulation of Definition 2.4.67.

Proposition 2.4.68. Let Φ be a Boolean network on X. Then for all x ∈ X
and all f ∈ {0, 12 , 1}

X

Φ′
FV (f, x) =


1, (∀ g ∈ {0, 12 , 1}

X)(g ⊇ f ⇒ Φ(g01
2

, x) = 1)

0, (∀ g ∈ {0, 12 , 1}
X)(g ⊇ f ⇒ Φ(g01

2

, x) = 0)
1
2 , else.

Proposition 2.4.69. Let Φ be a Boolean network on a digraph G. Then

1. Φ′
FV is a function network on G,

2. Φ′
FV is an extension of Φ and monotonic,

3. Φ′
FV ≥ Φ′

L.

Definition 2.4.70. Let (G,Φ) be a Boolean network and X = V (G). A func-
tion network Ψ : {0, 12 , 1}

X → {0, 12 , 1}
X is said to be a Kripke-extension of Φ

iff Ψ is a extension of Φ and monotonic.

Notice that in difference to [5] we do not require Ψ ≥ Φ′
WK , since the latter

is only defined relative to a given graph.

Proposition 2.4.71. Let Φ be a Boolean network on a digraph G. Then

1. every Kripke-extension of Φ is a function network on G,

2. Φ′
FV is the greatest Kripke-extension of Φ, i.e., Φ′

FV ≥ Ψ, for all Kripke-
extensions Ψ of Φ.

Proof. (1) is clear and (2) is analogous to the proof of Theorem 4.6 and Corollary
4.7. in [5].

Proposition 2.4.72. Let Φ be a Boolean network on X and Ψ a Kripke-
extension of Φ. Then

57

1. every fixed point of Φ is a complete fixed point of Ψ and

2. every complete fixed point of Ψ is a fixed point of Φ.

Definition 2.4.73. Let (G,Φ) be a Boolean network and Ψ be a Kripke-
extension of Φ. We say that x ∈ V (G) is

1. Kripke-paradoxical w.r.t. Ψ iff there is no fixed point f of Ψ such that
f(x) ∈ {0, 1},

2. Kripke-hypodoxical w.r.t. Ψ iff there are fixed points f, g of Ψ such that
f(x) = 1 and g(x) = 0.

3. intrinsic w.r.t. Ψ iff there is some intrinsic fixed point f of Ψ such that
f(x) ∈ {0, 1}.

Proposition 2.4.74 (Kripke). Let (G,Φ) be a Boolean network and Ψ a Kripke-
extension of Φ. Then x ∈ V (G) is in the largest intrinsic fixed point of Ψ iff it
is neither paradoxical nor hypodoxical w.r.t. Ψ.

Example 2.4.75. The fact that a Boolean network Φ contains no paradoxical
automata doesn’t necessarily imply that it has a fixed point. (Cf. [32]). Recall
Example 1.1.4:

K1: (K1) is false or (T) is true
K2: (K2) is false or (T) is false
T : (T) is true

The straightforward representation of these sentences as Boolean automata
along the lines of the previous examples yields a Boolean network Φ on X =
{K1,K2, T} none of whose automata is Kripke paradoxical (or Herzberger-
paradoxical) but that nevertheless has no fixed point: For any given f ∈ {0, 1}X ,
T has period 1 while K1 has period 1 iff f(T) = 1 and period 2 iff f(T) = 0.
On the other hand, K2 has period 1 iff f(T) = 0 and period 2 iff f(T) = 1.

Hence, Φ is an anomaly for any notion of paradoxicality of the Kripke or
Herzberger family in the sense of the remark at the end of Example 2.4.8.

2.4.9 Kripke-paradoxicality in terms of subspace invari-
ance

The goal of this subsection is to establish an interpretation of the fixed points of
Φ′

FV as strictly Φ-invariant subtypes. In addition to Proposition 2.4.71 (cf. also
the discussion in [5]) this result might be seen as further support for the claim
that Φ′

FV is the most natural of all Kripke-extensions (valuation schemes).

Definition 2.4.76. Let X be a set. We denote ℘({0, 1}X)\{∅} by ({0, 1}X)∗.
Let us define maps

58

1. t : {0, 12 , 1}
X → ({0, 1}X)∗ by t(f ′) = {g ∈ {0, 1}X | g ⊇ f ′},

2. r : ({0, 1}X)∗ → {0, 12 , 1}
X by r(F) =

⋂
F (cf. Definition 2.4.49).

Lemma 2.4.77. Let Φ be a Boolean network on X. Then for all f ′, g′ ∈
{0, 12 , 1}

X , f, g ∈ {0, 1}X and all F ,G ∈ ({0, 1}X)∗ the following claims hold.

1. r ◦ t = id{0, 12 ,1}X ,

2. t ◦ r(F) = {g ∈ {0, 1}X | (∀x ∈ X)(∃f ∈ F)(g(x) = f(x))},

3. F = (t ◦ r)(F) iff F is a type,

4. f ∈ F iff f ⊇ r(F),

5. f ∈ t(f ′) iff f ⊇ f ′,

6. f ′ ⊆ g′ implies t(f ′) ⊇ t(g′),

7. F ⊆ G implies r(F) ⊇ r(G),

8. g ⊇ Φ′
FV (f

′) ⇔ (∀x ∈ X)(∃h ∈ {0, 1}X)(h ⊇ f ′ ∧ g(x) = Φ(h, x)).

Proof. All claims are clear except (8).

Ad (8): First recall that by Definition 2.4.67 we have

(a) (Φ′
FV (f

′))(x) = 1 ⇔ (∀h ∈ {0, 1}X ∧ h ⊇ f)(Φ(h, x) = 1),

(b) (Φ′
FV (f

′))(x) = 0 ⇔ (∀h ∈ {0, 1}X ∧ h ⊇ f)(Φ(h, x) = 0),

(c) (Φ′
FV (f

′))(x) = 1
2 ⇔ (∃h1 ∈ {0, 1}X ∧ h1 ⊇ f ′) (Φ(h1, x) = 1)

∧(∃h0 ∈ {0, 1}X ∧ h0 ⊇ f ′)(Φ(h1, x) = 0).

⇒: Let g ⊇ Φ′
FV (f

′) and x ∈ X. Suppose g(x) = 1. Then (Φ′
FV (f

′))(x) ∈
{1, 12}. In any case (either by (a) or by (c)) we get (∃h ∈ {0, 1}X)(h ⊇ f ′∧g(x) =
Φ(h, x)). If g(x) = 0 the argument goes analogously.

⇐: Suppose that (∀x ∈ X)(∃h ∈ {0, 1}X)(h ⊇ f ′ ∧ g(x) = Φ(h, x)). We have
to show that for all x ∈ X, g(x) = (Φ′

FV (f
′))(x) or (Φ′

FV (f
′))(x) = 1

2 .
So let x ∈ X and suppose that (Φ′

FV (f
′))(x) ̸= 1

2 . Then (Φ′
FV (f

′))(x) = 1
or (Φ′

FV (f
′))(x) = 0. Suppose the first case. Then (∀h ∈ {0, 1}X ∧ h ⊇

f ′)(Φ(h, x) = 1). This implies together with the hypothesis that g(x) = 1.
Hence g(x) = (Φ′

FV (f
′))(x). In the second case we get g(x) = 0 and g(x) =

(Φ′
FV (f

′))(x) analogously.

Theorem 2.4.78. Let Φ be a Boolean network on X. Then for all f ′ ∈
{0, 12 , 1}

X ,

1. r(Φ[t(f ′)]) = Φ′
FV (f

′),

59

2. f ′ is Φ′
FV -sound iff t(f ′) is invariant under Φ,

3. f ′ is a Φ′
FV -fixed point iff t(f ′) is strictly invariant under Φ,

4. f is a maximal fixed point of Φ′
FV iff t(f) is Φ-irreducible.

Proof. Ad 1: Let f ′ ∈ {0, 12 , 1}
X and g ∈ {0, 1}X . Then

g ⊇ Φ′
FV (f

′))
(8)⇔ (∀x ∈ X) (∃h ∈ {0, 1}X) (h ⊇ f ′ and g(x) = Φ(h, x))

(5)⇔ (∀x ∈ X) (∃h ∈ t(f ′)) (g(x) = Φ(h, x))
(2)⇔ g ∈ (t ◦ r ◦ Φ)[t(f ′)]
(4)⇔ g ⊇ (r ◦ Φ ◦ t)(f ′)),

where the numbers indicate the items of Lemma 2.4.77. Hence we can conclude
by Lemma 2.4.77(1) that (r ◦ Φ ◦ t)(f ′) = Φ′

FV (f
′).

Ad 2 and 3: Both claims follow straightforwardly from (1) and Lemma 2.4.77.

Hence maximal fixed points of Φ′
FV correspond to Boolean subtypes that

are strictly invariant under Φ and such that they have no proper subtype that
is invariant under Φ. This makes them analogous to attractors in some sense
(cf. Definition 2.2.13). But observe that they may have still a proper strictly
invariant subset.

In Section 2.5 we will interpret the relation between Φ and Φ′
FV from a more

abstract point of view. (Cf. Theorem 2.5.13).

Corollary 2.4.79. Let Φ be a Boolean network on X and Ψ a Kripke-extension
of Φ. Let f ∈ {0, 12 , 1}

X . Then

1. t(Ψ(f)) ⊇ t(Φ′
FV (f)),

2. if f is a fixed point of Ψ then t(f) ⊇ t(g), for some g that is a fixed point
of Φ′

FV .

Hence fixed points of Kripke-extensions correspond to subtypes of the types
that correspond to fixed points of Φ′

FV .

Definition 2.4.80. Let Φ be a Boolean network on X. Let TΦ be the set of
all Σ ⊑ {0, 1}X (i.e., all subtypes of {0, 1}X) that are invariant under Φ.

Corollary 2.4.81. Let Φ be a Boolean network on X and x ∈ X. Then

1. x is TΦ-paradoxical iff x is Kripke-paradoxical w.r.t. Φ′
FV ,

2. x is TΦ-hypodoxical iff x is Kripke-hypodoxical w.r.t. Φ′
FV ,

3. x is TΦ-intrinsic iff x is Kripke-intrinsic w.r.t. Φ′
FV .

60

This implies that Φ′
FV (in contrast to other Kripke-extensions of Φ) is natu-

ral in the sense that it involves no arbitrary choice, except for focussing on the
rather natural concept of subtype.

For the following recall Definition 2.4.30.

Proposition 2.4.82. Let Φ be a Boolean network on X and Σ ⊆ {0, 1}X . Then
the following are equivalent.

1. Σ is an atom of TΦ,

2. Σ ⊑ {0, 1}X is Φ-irreducible,

3. r(Σ) is a maximal fixed point of Φ′
FV .

This means that in the context of TΦ, Φ-irreducible subtypes play the role
that attractors play in SΦ and λ-attractors play in LΦ.

Proposition 2.4.83. For all Boolean networks Φ, every Σ ∈ TΦ is λ-invariant
with respect to Φ (cf. Definition 2.4.12).

Corollary 2.4.84. For all Boolean networks Φ, TΦ ⊆ LΦ.

2.4.10 Fixed points by type reduction

Let us conclude this section with two applications of the Kripkean fixed point
theory, demonstrating how fixed points of Φ′

FV (and thus of Φ) can actually be
found.

Definition 2.4.85. Let Φ be a Boolean network on X and Σ ⊑ {0, 1}X . Then

1. for x ∈ X, v ∈ Σ(x) is said to be Φ-realizable in Σ iff there exists f ∈ Σ
with Φ(f, x) = v,

2. Σ is said to be pruned with respect to Φ iff for all x ∈ X and all v ∈ Σ(x),
v is Φ-realizable in Σ.

Proposition 2.4.86. Let Φ be a Boolean network on X and Σ ⊑ {0, 1}X .
Then Σ is strictly Φ-invariant iff Σ is Φ-invariant and pruned with respect to
Φ.

The following results are related to Lemma 4.11. and Corollary 4.12. in [5].

Lemma 2.4.87. Let T be a tree and Φ a Boolean network on T . Let X = V (T).
Let Σ ⊑ {0, 1}X be Φ-invariant. If Σ is pruned with respect to Φ and not trivial,
then there exists a proper subtype Σ′ of Σ that is Φ-invariant.

Proof. Since Σ is not trivial there, exists r ∈ X such that Σ(r) = {0, 1}. Let
(yα)α<ξ be an enumeration of V (T{r}) such that α < β implies htT (yα) ≤
htT (yβ), for all α, β < ξ. Then there is a sequence (xα)α∈(ξ∩S0) (where S0 is

61

the class of all non-limit ordinals) that is also an enumeration of V (T) (i.e., it
induces a bijection between ξ ∩ S0 an V (T{r})) and such that α < β implies
htT (xα) ≤ htT (xβ), for all α, β < ξ. In particular x0 = r.

We shall define recursively a sequence (Σα)α≤ξ such that

1. Σ0 ⊑ Σ,

2. Σβ ⊑ Σα, for all α ≤ β ≤ ξ,

3. for all v ∈ Σα(xα) and all f ∈ Σα, v = Φ(f, xα), for α ∈ S0 ∩ ξ,

4. Σα is pruned for all α ≤ ξ,

5. Σλ =
⋂

α<λ Σα, for all limits λ ≤ ξ,

6. Σξ is Φ-invariant and a proper subtype of Σ.

• Let α = 0. Choose some v0 ∈ Σ(x0). Since Σ is pruned, v0 is Φ-realizable
in Σ, i.e., there exists f0 ∈ Σ such that v0 = Φ(f0, x0). Let Σ0 = {g ∈
Σ | g(x0) = v0 ∧ (g ↾ outT (x0)) = (f0 ↾ outT (x0))}. Then (1) holds, i.e.,
Σ0 ⊑ Σ. Moreover, since x0 depends on outT (x0) w.r.t. Φ, we have (3),
i.e., for all f ∈ Σ0, v0 = Φ(f, x0).

Finally, Σ0 is pruned (4): Let x ∈ V (T). If x = x0, then (3) implies that v0
is Φ-realizable in Σ0. If x ∈ V (T)\{x0}, then outT (x)∩({x0}∪outT (x0)) =
∅. Since x depends on outT (x) w.r.t. Φ, the fact that Σ is pruned implies
that for all v ∈ Σ0(x), v is Φ-realizable in Σ0.

• Let α = β + 1, for some β < ξ. Choose some vα ∈ Σ(xα). Since Σβ

is pruned by induction hypothesis, there exists fα ∈ Σβ such that vα =
Φ(fα, xα). Let Σα = {g ∈ Σ | g(xα) = vα ∧ (g ↾ outT (xα)) = (fα ↾
outT (xα))}.
Then (2) Σα ⊑ Σγ , for all γ ≤ α. Moreover, since xα depends on outT (xα)
w.r.t. Φ it follows from induction hypothesis (3) that for all f ∈ Σγ ,
vγ = Φ(fγ , xγ), for all γ ∈ S0 ∩ α+ 1.

Furthermore, Σα is pruned (4): If x = xβ , for some β ≤ α, then the claim
that x is Φ-realizable in Σα follows from (3).

So let x ∈ V (T) \ {y ∈ V (T) | (∃β ≤ α)(y = xβ)}. Then, since T is
a tree and by definition of the enumeration (xα)α∈(ξ∩S0) we obtain that
outT (x)∩({y ∈ V (T) | (∃β ≤ α)(y = xβ)}∪

⋃
{outT (y) | y ∈ V (T)∧(∃β ≤

α)(y = xβ)}) = ∅. Then, since x depends on outT (x) w.r.t. Φ, the fact
that Σβ is pruned implies that for all v ∈ Σβ(x), v is Φ-realizable in Σβ .

• Let α be a limit. Let Σα =
⋂

β<α Σβ , for all limits β < α. Then by
Proposition 2.4.38 Σα =

⋂
β<α Σβ is a type. The rest of the claims follow

straightforwardly.

62

It remains to be shown that Σξ is Φ-invariant. (This, setting Σ′ = Σξ, yields
the claim of the lemma.) So let f ∈ Σξ and x ∈ V (T). We have to show that
Φ(f, x) ∈ Σξ(x). If x ∈ V (T{r}) then there exists α < ξ such that x = xα
and the claim follows from (3). Otherwise the claim follows from the hypothesis
that Σ is Φ-invariant.

This leads to the following result which has already been proven in [41] (in
a very different manner) and in [5] (in a somewhat analogous manner).

Theorem 2.4.88. If G is a tree, then every Boolean network on G has a fixed
point.

Proof. Let Φ be a Boolean network on X = V (G). Let f be a maximal fixed
point of Φ′(FV) and Σ = t(f). Then Σ ⊑ {0, 1}X is Φ-invariant and pruned
with respect to Φ. Moreover, Σ is Φ-irreducible. Hence it must be trivial by
the previous lemma.

2.4.11 Core, periphery and kernel-perfect digraphs

Definition 2.4.89. Let Φ be a Boolean network on X and fl the least fixed
point of Φ′

FV . Then

1. the set sdm(fl) = {x ∈ X | fl(x) ∈ {0, 1}} is said to be the periphery of
Φ,

2. the set X \ sdm(fl) is said to be the core of Φ.

These concepts are analogous to those of Definition 4.1 in [5], although this
might not be obvious at a first glance.

Proposition 2.4.90. Let G a digraph, Φ a Boolean network on G and C the
core of Φ. Then G[C] is sink-less.

Proposition 2.4.91. Let (G,Φ) be a Boolean network. Then there exists a
spanning subdigraph G′ ⊆ G such that G′ is a dependency graph for Φ and the
periphery of Φ is open in G′.

Proof. The proof is straightforward by induction on the ordinal number of steps
it takes Φ′

FV to reach fl.

Proposition 2.4.92. Let (G,Φ) be a Boolean network and P ⊆ V (G) the
periphery of Φ. Suppose that P is open in G. Let fl be the least fixed point of
Φ′

FV . Then

1. (fl ↾ P) ∈ {0, 1}P is the unique fixed point of Φ[P],

2. for all f ⊆ {0, 1}V (G), if f is a fixed point of Φ, then then set {fl, f} is
compatible.

63

Lemma 2.4.93. Let G be a digraph and Φ = ΦG
↓ . Let X ⊆ V (G), X+ =

Bd+G(X) and h ∈ {0, 1}X+

. Let C ⊆ X be the core of Φh[X], P = X \ C the
periphery of Φh[X] and fl ∈ {0, 12 , 1}

X the least fixed point of (Φh[X])′FV . Then
for all x ∈ C and all y ∈ outG(x) ∩ P , fl(y) = 0.

Proof. Let X∗ = X ∪X+. Assume that there exists x ∈ C and y ∈ outG(x)∩P
such that fl(y) = 1. Then for all g ∈ {0, 1}X such that g ⊇ fl, (Φ

h[X])(g, x) =

1−Φ
G[X∗]∨ (h∪g, x) = 1−sup2{g(z) | z ∈ outG(x)} = 0. Hence (Φh[X])′FV (fl, x) =

0. But this contradicts the hypothesis that x ∈ C which, since fl is a fixed point
of (Φh[X])′FV , implies that 1

2 = fl(x) = ((Φh[X])′FV (fl))(x) = (Φh[X])′FV (fl, x) ̸=
0.

Recall that a digraph G is kernel-perfect iff every induced subdigraph of G
has a kernel. Also recall Definition 2.4.46. The following theorem can be seen
as a more elaborate version of Proposition 2.3.8.

Lemma 2.4.94. Let G be a digraph and ∅ ̸= X ⊆ V (G), X+ = Bd+G(X) and

h ∈ {0, 1}X+

. Let C be the core of Φh[X], where Φ = ΦG
↓ [X]. Then Φh[X] has

a fixed point, if C has a kernel.

Proof. Let P = X \ C be the periphery of Φh[X] and fl ∈ {0, 12 , 1}
X be the

least fixed point of (Φh[X])′FV . If C = ∅, then fl ∈ {0, 1}X is a fixed point of
Φh[X] and we are done. Let C ̸= ∅ and g be the characteristic function of a
kernel of G[C]. We will show that f = fl ∪ g is a fixed point of Φh[X]. So let
x ∈ X.
Case 1: x ∈ P . Then it follows by Definition 2.4.67 that Φh[X](f, x) =
Φh[P](f ↾ P, x) = fl(x) = f(x).
Case 2: x ∈ C. Then f(x) = g(x).

Case 2a: f(x) = 0 = g(x). Since g is the characteristic function of a kernel
of G[C], there exits y ∈ outG(x)∩C such that f(y) = g(y) = 1. Observing that
(Φh[X])(f, x) = 1 − sup2{f(y) | y ∈ outG(x)} and f ↾ C = g, this implies that
Φh[X](f, x) = 0.

Case 2b: f(x) = 1 = g(x). This implies that for all y ∈ outG(x) ∩ C,
g(y) = 0. By Lemma 2.4.93 we have that for all y ∈ outG(x) ∩ P , fl(y) = 0.
Hence Φh[X](f, x) = 1.

Theorem 2.4.95. A digraph G has a kernel iff the subdigraph of G induced by
the core of ΦG

↓ has a kernel.

Proof. ⇒: Let K be a kernel of G and C the core of ΦG
↓ . It follows from Lemma

2.4.93 that K ∩ C is a kernel of G[C].
⇐: Apply Lemma 2.4.94 to X = V (G) and Φ = ΦG

↓ .

Theorem 2.4.96. A digraph G is kernel-perfect iff for all ∅ ̸= X ⊆ V (G), ΦG
↓

is perfectly solvable relative to X.

64

Proof. ⇒: Let Φ = ΦG
↓ . Suppose that G is kernel-perfect. Let ∅ ̸= X ⊆ V (G).

Let X+ = Bd+G(X) and h ∈ {0, 1}X+

. We have to show that Φh[X] has a fixed
point. (Observe that the claim that for all ∅ ̸= X ⊆ V (G), ΦG

↓ is absolutely
solvable relative to X is equivalent to the claim that for all ∅ ̸= X ⊆ V (G),
ΦG

↓ is perfectly solvable relative to X.) Let C ⊆ X be the core of Φh[X] Then

G[C] has a kernel, since G is kernel-perfect. Then by Lemma 2.4.94 Φh[X] has
a fixed point.
⇐: Let ∅ ̸= X ⊆ V (G), X+ = Bd+G(X) and h ∈ {0, 1}X+

be such that h(x) = 0,
for all x ∈ X+. Let f be a fixed point of Φh[X], which exists by hypothesis. It
is straightforward to check that f is the characteristic function of a kernel.

An application of Theorem 2.4.96 will be Corollary 5.1.11.

2.5 System- and network transformations

The goal of this section is to introduce notions of structure-preserving trans-
formations between dynamical systems in general and Boolean networks and
constrained Boolean networks (cf. Definition 2.3.1 and the remark following it)
in particular. The purpose is to prepare the conceptual ground for the notion
of a characteristic digraph (Definition 3.2.5) which shall play a crucial role in
Chapter 3. Moreover, we can formulate the concept of dual paradoxes (cf. [14]
and [41]) within our abstract framework, as well as criteria for the identity of
paradoxes.

2.5.1 System transformations

The basic concepts of this section - retraction, section and system map are all
well-know in the literature on category theory, cf. e.g., [33].

Definition 2.5.1. Let X and Y be sets, i : X → Y and j : Y → X. We say
that

1. j is a retraction for i iff j ◦ i = idX ,

2. j is a section for i iff i ◦ j = idY .

Proposition 2.5.2. Let X and Y be sets, i : X → Y and j : Y → X. Then j
is a retraction for i iff i is a section for j.

The following simple observation allows us to express the concept of set
isomorphism, i.e., that of a bijective map in terms of retraction and section.

Proposition 2.5.3. Let X and Y be sets. A map i : X → Y is

1. injective iff there exists a retraction j : Y → X for i,

2. surjective iff there exists a section j : Y → X for i,

65

3. bijective iff there exists a map j : Y → X that is a retraction and a section
for i. If such a map j exists, then it is unique and j = i−1.

Further constraints lead to the following notions of dynamical system trans-
formations.

Definition 2.5.4. Let f : U → U and g : V → V be dynamical systems. Let
i : U → V and j : V → U . Then we say that

1. i is a system map iff i ◦ f = g ◦ i,
2. i is a system isomorphism iff i is a system map and there exists a system

map k : V → U that is a retraction and a section for i,

3. i is a system automorphism iff it is a system isomorphisms and f = g,

4. i is a strong system embedding (of f into g) iff

(a) i is a system map and

(b) there exists a system map r : V → U that is a retraction for i,

5. i is a system embedding (of f into g) iff

(a) i is a system map and

(b) there exists a map r : V → U that is a retraction for i,

6. i is a weak system embedding (of f into g) iff there exists a map r : V → U
that is a retraction for i that is such that

(a) f = r ◦ g ◦ i and
(b) f(x) = x implies i(x) = (g ◦ i)(x), for all x ∈ U ,

7. i is a dense (weak, strong) system embedding (of f into g) iff i is a (weak,
strong) system embedding and every fixed point of g is in i[U].

8. a closed (weak, strong) system embedding (of f into g) iff i is a (weak,
strong) system embedding and i[U] is invariant under g.

Proposition 2.5.5. Every system embedding of f into g is a weak system sys-
tem embedding of f into g.

The concept of a dense weak system embedding shall play an important role
in the definition of a characteristic digraph of a Boolean network (cf. Definition
3.2.5 and Chapter 3, Another application is Theorem 2.5.13 below.

Let us illustrate the above definitions with some examples. Each of the fol-
lowing diagrams A, B, C and D represents the iteration graphs of two dynamical
systems f : U → U (in the lower part of the diagram) and g : V → V (in the
upper part of the diagram). From each vertex of U , (i.e., from each state of the
dynamical system f : U → U) an arrow labeled ‘i’ leads to exactly one vertex
of U . Together, theses arrows represent a map i : U → V . From each vertex of
V , an arrow labeled ‘r’ leads to exactly one vertex of U . Together, these arrows
represent a map r : V → U . In all diagrams r is a retraction for i. But with
respect to its status as system embedding the quality of i differs from example

66

to example.

...

...

g g g g

f f f f

ir ir ir ir

A: i is a strong system embedding of f into g with retraction r.

...

...

g g g g g

f f f f

r
ir ir ir ir

B: i is a system embedding of f into g, but not strong.

g g g g g g

g

f f f

f

ir
r

ir
r

ir
r

ir

C: i is a dense weak system embedding of f into g, but no system embedding.

67

g

g g g
g

g g

g

f f f

f

ir
r

ir
r

r

ir
r

ir

D: i is a weak system embedding of f into g, but not dense.

The following proposition ascertains that under a system embedding i of f
into g trajectories of f are mapped to trajectories of g.

Proposition 2.5.6. Let f : U → U and g : V → V be dynamical systems and
i : U → V a system embedding of f into g. Then for all n ∈ ω, i ◦ fn = gn ◦ i.

For the following corollary recall Definition 2.2.9. It expresses the fact that
the period of trajectories remains unaltered under system embeddings.

Corollary 2.5.7. Let f : U → U and g : V → V be dynamical systems and
i : U → V a system embedding of f into g. Then Πf (x) = Πg(i(x)), for all
x ∈ U .

Proposition 2.5.8. Let f : U → U and g : V → V be dynamical systems and
i : U → V a system embedding of f into g. Let r : V → U be a system map that
is a retraction for i. Let x ∈ U and y ∈ V . Then

1. x is a fixed point of f iff i(x) is a fixed point of g,

2. y is a fixed point of g iff r(y) is a fixed point of f .

In general, Proposition 2.5.6 does not hold for weak system embeddings.
However, there is a weak counterpart of it that implies that every trajectory
under f can be expressed in terms of g, i and r.

Proposition 2.5.9. Let f : U → U and g : V → V be dynamical systems and
i : U → V a weak system embedding of f into g with retraction r. Then for all
n ∈ ω, fn = (r ◦ g ◦ i)n.

Theorem 2.5.10. Let f : U → U and g : V → V be dynamical systems and
i : U → V a dense weak system embedding of f into g. Then there exists a
bijection between the fixed points of f and the fixed points of g.

68

Power-systems and Kripke-extensions

Definition 2.5.11. Let f : U → U be a dynamical system. Define the power
system f∗ : U∗ → U∗ of f by

1. U∗ = ℘(U) \∅,

2. f∗(X) = f [X].

Proposition 2.5.12. Let f : U → U be a dynamical system. Then X ⊆ U is

1. a fixed point of f∗ iff X is strictly invariant under f ,

2. a minimal fixed point of f∗ with respect to set inclusion iff X is an attractor
of f .

Notice that f∗ is in general not monotonic with respect to set inclusion.

Recall that in Definition 2.4.76 we defined maps t : {0, 12 , 1}
X → ({0, 1}X)∗

by t(f ′) = {g ∈ {0, 1}X | g ⊇ f ′} and r : ({0, 1}X)∗ → {0, 12 , 1}
X by r(F) =⋂

F . Clearly, r is a retraction for t. Moreover, Theorem 2.4.78 implies the
following.

Theorem 2.5.13. Let Φ be a Boolean network on some set X. Then t is a
weak system embedding of Φ′

FV : {0, 12 , 1}
X → {0, 12 , 1}

X into Φ∗ : ({0, 1}X)∗ →
({0, 1}X)∗ with retraction r.

Transformations of iteration graphs

Just as iteration graphs (cf. Definition 2.2.5) provided a way of visualizing dy-
namical systems, transformations of dynamical systems can be captured by
transformations of digraphs i.e., digraph morphisms.

Definition 2.5.14. Let G,H be directed graphs. A map h : V (G) → V (H) is
said to be

1. a digraph homomorphism (from G to H) iff for all x, y ∈ V (G), (x, y) ∈
A(G) implies (h(x), h(y)) ∈ A(H),

2. a digraph isomorphism iff it is a digraph homomorphism and there is a
digraph homomorphism g : V (H) → V (G) that is a retraction and a
section for h,

3. a strong digraph embedding iff it is a digraph homomorphism and has a
retraction that is a digraph homomorphism.

Proposition 2.5.15. Let G,H be digraphs. A map h : V (G) → V (H) is a
digraph isomorphism iff the following conditions are satisfied.

1. h is a digraph homomorphism,

69

2. h is bijective and

3. h−1 is a digraph homomorphism.

Proposition 2.5.16. Let f : U → U and g : V → V be dynamical systems. Let
I and J be their iteration graphs respectively. Let k : U → V . Then

1. k is a system map from f to g iff k is a digraph homomorphism from I
and J ,

2. k is a system isomorphism from f to g iff k is a digraph isomorphism from
I and J .

3. k is a strong system embedding from f to g iff k is a strong digraph em-
bedding from I and J .

2.5.2 Network isomorphisms

Recall that a constrained Boolean network (Definition 2.3.1) has a digraph com-
ponent as well as a dynamical system component. After having formulated
transformations for each of these categories in the previous subsection, we shall
tackle in this subsection the compound category of constrained (Boolean) net-
works.

Definition 2.5.17. A Boolean network Φ is said to be a representation of a
dynamical system f : U → U iff there exists a system isomorphism i : U →
{0, 1}V (G) from f to Φ.

Of course the notion of representation could be defined analogously for ar-
bitrary function networks.

Question 2.5.18. Has every dynamical system a representation as a Boolean
network?

Given the following proposition a positive answer seems plausible.

Proposition 2.5.19. Let f : U → U be a dynamical system. If there exists
a cardinal κ such that |U | = 2κ, then there exists a Boolean network that is a
representation of f .

Proof. Let i : U → 2κ be bijective. Define Φ : {0, 1}κ → {0, 1}κ by Φ = i◦f◦i−1.
Then Φ ◦ i = (i ◦ f ◦ i−1) ◦ i = i ◦ f . Hence i is a system map and so is i−1 by
analogous reasoning. Since i is bijective, i−1 is both a retraction and a section
for i.

Although its proof is almost trivial, Proposition 2.5.19 may seem surprising
from a certain point of view. In light of examples like Example 2.4.24 it may
even seem intriguing. However, if a dynamical system has a representation, it
usually has many of them and the dependency graphs of these Boolean networks
may differ greatly.

70

Definition 2.5.20. Two Boolean networks Φ and Ψ are said to be isomorphic
iff there exists a system isomorphism between them.

So any two representation of a dynamical system are isomorphic Boolean
networks. If we want to preserve the dependency structure of a Boolean network,
we need to formulate a more fine grained notion of isomorphism for the category
of constrained Boolean networks. We call this kind of isomorphism network
isomorphism in order to emphasize the dependency component.

Definition 2.5.21. Let (G,Φ) and (H,Ψ) be constrained Boolean networks. A
network isomorphism from (G,Φ) to (H,Ψ) is an ordered pair (φ, i) such that

1. φ is a digraph isomorphism from G to H,

2. i : {0, 1}X → {0, 1}Y is a system isomorphism.

We write (G,Φ) ≃ (H,Ψ) and say that (G,Φ) and (H,Ψ) are isomorphic iff
there exists a network isomorphism (φ, i) : (G,Φ) → (H,Ψ).

Definition 2.5.22. A network isomorphism from (G,Φ) to (H,Ψ) is said to be a
network automorphism iff G = H and Φ = Ψ and a network semi-automorphism
iff G = H.

Example 2.5.23. In order to illustrate the difference between network- and
system isomorphisms, let us construct a Boolean network Φ that performs some
very simple computation. (For models of computation based on Boolean net-
works cf. [19]). The task of Φ is to decide whether for a given number 0 ≤ n ≤ 3
the claim that n < 2 is true or false. Our network Φ consists of three au-
tomata, I0, I1 and U . The set {I0, I1} is thought of as the input layer of Φ,
whereas the output layer consists of the single automaton U . Before we specify
the functions of the automata we need a to choose a coding of the numbers
0 ≤ n ≤ 3 in terms of of 0’s and 1’s. First let us stick to the standard coding
0 7→ 00, 1 7→ 01, 2 7→ 10, 3 7→ 11. If n < 2, then the output automaton is
expected to produce the value 1; if n ≥ 2, the output value is expected to be 0.

Let us define the Boolean network Φ as follows. Φ(f, U) = f(I0), Φ(f, I0) =
f(I0) and Φ(f, I1) = f(I1), for all f ∈ {0, 1}A, where A = {I0, I1, U}. Then
Φ performs the assigned task while leaving the input layer unchanged. The
following set of arcs constitutes the minimal dependency graph for Φ:

A(G) = {(I0, I0), (I1, I1), (U, I0)}.

Now let us change the coding as follows: 0 7→ 10, 1 7→ 01, 2 7→ 00, 3 7→ 11.
With respect to the new coding the network Φ does not solve the problem cor-
rectly anymore. For an amendment, the functions of the automata of the input
layer can remain unchanged, but the function of the output-automaton has to
be modified as follows.

Φ′(f, U) =

{
1, if (f(I0) = 1 ∧ f(I1) = 0) ∨ (f(I1) = 0 ∧ f(I1) = 1)

0, else.

71

Notice that G is not a dependency graph for Φ′. An arc must be added to
G in order to come up with the minimal dependency graph G′ for Φ′:

A(G′) = {(I0, I0), (I1, I1), (U, I0), (U, I1)}.

It is straightforward to find a system automorphism i from Φ to Φ′. Hence
each of the Boolean networks Φ and Φ′ can be expressed as a simulation of the
other via i, e.g. Φ′ = i ◦ Φ ◦ i−1. But since G and G′ are not isomorphic, there
is no network semi-automorphism between (G,Φ) and (G′,Φ′).

In [14] Cook defines for a certain class of sentence systems their dual sentence
system and then discusses dual versions of various paradoxes. Rabern et al. give
a generalized version of Cook’s definition (cf. [41], Definition 6). The following
is an adaption of the latter for Boolean networks.

Definition 2.5.24. Let Φ be a Boolean network on some set X.

1. Let ivX : {0, 1}X → {0, 1}X be defined by ivX(f) = {(x, v̄) | (x, v) ∈ f},
where v̄ = 1 if v = 0 and v̄ = 0 if v = 1, for v ∈ {0, 1}.

2. Define Φ̄ : {0, 1}X → {0, 1}X by Φ̄ = ivX ◦ Φ◦ivX . We call Φ̄ the Boolean
network dual to Φ.

Proposition 2.5.25. Let Φ be a Boolean network on G and X = V (G). Then

1. Φ̄ is a Boolean network on G,

2. (idG, ivX) is a network semi-automorphism from (G,Φ) to (G, Φ̄) with
(idG, ivX)−1 = (idG, ivX),

3. For all f ∈ {0, 1}X , f is a fixed point of Φ iff ivX(f) is a fixed point of Φ̄.

For the following proposition and examples recall Definition 2.3.6.

Proposition 2.5.26. Let G be a digraph. Then

1. Φ̄G
⊤(f, x) = ΦG

⊥(f, x).

2. Φ̄G∨(f, x) = ΦG∧(f, x),

3. Φ̄G
↓ (f, x) = ΦG

↑ (f, x).

Definition 2.5.27. Call a Boolean network Φ self-dual iff Φ̄ = Φ.

Example 2.5.28. The Boolean network from Example 2.3.15 that models the
liar sentence is self-dual. Then same holds for the Boolean network from Ex-
ample 2.3.15 that models the truth-teller sentence and for the Boolean network
of Example 2.3.16 that models the sentence system of Jourdain’s paradox.

Duality is not the only kind of symmetry a constrained Boolean network
might show. (We would like to think of any non-trivial member of the semi-
automorphism group of a constrained Boolean network (G,Φ) as a symmetry of
(G,Φ)).

72

Definition 2.5.29. Let (G,Ψ) be a Boolean network and φ : V (G) → V (G) a
digraph automorphism.

1. Let iφ : {0, 1}V (G) → {0, 1}V (G) be defined by iφ(f) = {(x, f(φ(x))) | x ∈
V (G)},

2. and define Ψφ : {0, 1}V (G) → {0, 1}V (G) by Ψφ = iφ−1 ◦ Ψ ◦ iφ. We call
(G,Ψφ) the φ-shift of (G,Ψ).

Proposition 2.5.30. Let (G,Ψ) be a constrained Boolean network and φ :
V (G) → V (G) a digraph automorphism. Then

1. (G,Ψφ) is a constrained Boolean network,

2. (φ, iφ) is a network semi-automorphism from (G,Ψ) to (G,Ψφ) with (φ, iφ)
−1 =

(φ−1, iφ−1),

3. for all f ∈ {0, 1}V (G), f is a fixed point of Ψ iff iφ(f) is a fixed point of
Ψφ.

Example 2.5.31. Let C be a directed cycle and x, y ∈ V (C). Then there is
a unique digraph automorphism φx,y such that φx,y(x) = y and every digraph
automorphism on C can be represented in this way. If C is a cycle of liars, then
we might think of the resulting Boolean network as the same cycle of liars. More
precisely, (φ, iφ) is an automorphism on (C,ΦC

↓). (It is non-trivial iff x ̸= y).
On the other hand, consider Jourdain’s paradox from Examples 1.1.2 and

2.3.16. Applying φL1,T2
to Φ swaps the roles of the liar and the truth-teller and

yields a Boolean network that is different from (but isomorphic to) Φ, which
happens to be Φ̄, the dual network of Φ.

2.5.3 Function network products

The purpose of this short subsection is to have a quick look at what might hap-
pen to dependency graphs if function networks are iterated.

The following notion is well-known under the name of ‘relation product’.

Definition 2.5.32. Let S be a set and G1, G2 digraphs with V (G1) = V (G2) =
S. Define V (G1 ◦G2) = S and A(G1 ◦G2) = {(x, z) | ∃y ∈ S, (x, y) ∈ A(G1) ∧
(y, z) ∈ A(G2)}.

Theorem 2.5.33. Let G1, G2 be digraphs with V (G1) = V (G2) and Φ1,Φ2

function networks on G1 and G2 respectively. Then Φ1◦Φ2 is a function network
on G1 ◦G2.

Definition 2.5.34. Let (G,Φ) a function network of type Σ.

• Let Φ0 = IdΣ and Φn = Φ ◦ Φn−1, for all n > 0.

• Let G0 = {(x, x) | x ∈ V (G)} and Gn = G ◦Gn−1, for all n > 0.

73

Proposition 2.5.35. Let G be a digraph and x, y ∈ V (G) and n ∈ ω. Then
there is a non-trivial walk from x to y in G of length n iff (x, y) ∈ A(Gn).

Proposition 2.5.36. Let G be an acyclic digraph such that there exists some
n ∈ ω such that every path in G has length ≤ n. Then Gn+1 is totally discon-
nected.

Example 2.5.37. Let G and G′ be the digraphs from Example 2.5.23. Then
Gn = G and (G′)n = G′, for all n ∈ ω.

2.5.4 What is a reference pattern?

Question 2.5.38. How many network semi-automorphisms does any given con-
strained Boolean network have?

This question is of interest in order to determine how many version of a given
paradox there are. The semi-automorphisms of a constrained Boolean network
form a group, each of whose members i gives rise to a constrained Boolean net-
work (G, i−1 ◦ Φ ◦ i) which can be thought of as some kind of mirror image of
(G,Φ). The semi-automorphism group contains always the identity-map and
the involution ivX (cf. Definition 2.5.24), i.e., it is at least of order two for every
digraph whatsoever. A more specific version of the above question is under what
circumstances the set of all φ-shifts together with the involution forms already
a set of generators of the semi-automorphism group of (G,Φ)?

Question 2.5.38 leads to a deeper one.

Question 2.5.39. Should two constrained Boolean networks be considered iden-
tical if they are isomorphic? Given that they have no fixed points and can be
interpreted as sentence systems, is the paradox that arises from one of them
identical to that arising from the other?

There are well-known arguments that suggest a negative answer to the sec-
ond part of Question 2.5.39, e.g.[15]. They imply that the concept of reference
cannot be reduced to the concept dependency (in the sense of Definition 2.3.1)
but that the way a reference is established is rather essential.

In any case, the framework suggested in this thesis is meant to capture only
extensional aspects of semantic paradoxes and cannot help provide answers to
questions like 2.5.39. On the other hand, it seems reasonable to assert that a
reference-pattern is extensional, can be characterized in terms of dependency
and is invariant under network isomorphisms.

But what exactly is a reference pattern? Supposing that a Boolean Φ de-
scribes some sentence systems (and in Section 3.5.1 we will show that every
Boolean network can be thought of doing so) it would make sense say that a
reference pattern of Φ is the isomorphism type (w.r.t. digraph isomorphisms, cf.
Definition 2.5.14) of some dependency graph G of Φ. (The isomorphism type
of a digraph G can be conceived as the class of all digraphs isomorphic to G).

74

This definition is too coarse in the sense that it cannot distinguish e.g.,
the liar sentence from the truth-teller. In [5] this problem is addressed by the
introduction of so called signed reference graphs, i.e., labels are assigned to the
arcs of a digraph in order to capture the mode of reference.

In Chapter 3 a more encompassing approach is chosen in order to model
these more fine-grained reference patterns: that of a characteristic digraph of a
constrained Boolean network. Indeed, it is shown in Section 3.6 that the concept
of signed dependency graph can be reconstructed from that of a characteristic
digraph.

2.6 Three related characterization problems

In this section we shall introduce three classes of digraphs, each of which is
associated with a different aspect of the relation between paradoxes and ref-
erence patterns, and each of which gives rise to a different characterization
problem: dangerous digraphs, digraphs of infinite character and not strongly
kernel-perfect digraphs. To show that the corresponding characterization prob-
lems are interrelated and can, at least partially, be solved, is one of the main
goals of this thesis.

2.6.1 Dangerous and safe digraphs

The notion of a dangerous digraph was originally introduced in [41] in a some-
what different setting. We will prove in Section 3.5.1 that a digraph is dangerous
in our sense if and only if it is dangerous in the sense of Rabern et al. [41]. (Also
cf. [40]). Observe that the empty digraph (∅,∅) is trivially safe. All results in
this subsections are already known from [41].

Definition 2.6.1. A digraph G is said to be safe5 iff every Boolean network
on G has a fixed point; it is said to be dangerous iff it is not safe.

Definition 2.6.2. G and H are equi-dangerous iff both G and H are dangerous
or both are safe.

Proposition 2.6.3. Every cycle is dangerous.

Proposition 2.6.4. A digraph is safe iff every subdigraph of it is safe.

Proof. The proof follows that in [41]. Let H be a digraph and G ⊆ H. Suppose
G is dangerous. Let Φ be a Boolean network on G such that Φ has no fixed
point. Let X = V (H) \ V (G). Let Φ0 be defined on X such that Φ0(f, x) = 0

for all f ∈ {0, 1}X and x ∈ X. Let Ψ : {0, 1}V (H) × V (H) → {0, 1} be defined

5Rabern et al. have no name for the digraphs that are not dangerous. Our choice seems
to be the most suitable English word. However, notice that in [47] the term safe is used quite
differently, in order to denote the class of digraphs that have a certain pattern that gives rise
to Yablo-like paradoxes. This could be a particular awkward source of confusion, since we
shall later state a conjecture that implies that an acyclic digraph is safe in Walicki’s sense if
and only if it is safe in our sense.

75

by Ψ(f, x) = Φ(f ↾ V (G), x) if x ∈ V (G) and Ψ(f, x) = Φ0(f ↾ X,x) if x ∈ X.
Then Ψ is a Boolean network on G ∪ (X,∅). Hence it is a Boolean network on
H. Moreover, the restriction of every fixed point of Ψ to V (G) is a fixed point
of Φ. Hence H is dangerous. The other direction is trivial.

Corollary 2.6.5. Every digraph that contains a cycle is dangerous.

Proposition 2.6.6. Every well-founded digraph is safe.

Proof. By Proposition 2.4.61.

Proposition 2.6.7. Every tree is safe.

Proof. By theorem 2.4.88

Proposition 2.6.8. A finite digraph is safe iff it is acyclic.

Proof. Every finite and acyclic digraph is well-founded.

Problem 2.6.9 (Rabern et al.). Characterize the dangerous digraphs!

2.6.2 Compactness and digraphs of finite character

Corollary 2.6.5 implies that the concept of danger cannot distinguish between
finitary (liar-like) and infinitary (Yablo-like or McGee-like) paradoxes: An infi-
nite digraph may contain a cycle (and thus be dangerous) but nevertheless be
not the reference pattern of any truly infinitary paradox. In order to fill this
lacuna, we shall introduce the dichotomy of digraphs of finite character and di-
graphs of infinite character, which is based on the concept of a compact Boolean
network.

Compact Boolean networks

The definitions and claims in this subsection can be formulated and proven for
arbitrary finitary function networks, but for reasons of simplicity we present
them only for Boolean networks.

The following definition and the next lemma are, mutatis mutandis, well-
known from the literature. (Cf. e.g.,[17].) Recall the definitions in Subsection
2.4.6.

Definition 2.6.10. Let Φ be a Boolean network on a set X.

• For all Y ⊆ X, let S(Y) be the set of all f ∈ {0, 1}Y ∪Bd+
G(Y) such that

f ↾ Y is a fixed point of Φf↾Bd+
G(Y)[Y].

• Call F ⊆ ℘(X) compatible w.r.t. Φ iff for all Y ∈ F , there exists f ∈
{0, 1}X such that for all Y ∈ F , f ↾ (Y ∪ Bd+G(Y)) ∈ S(Y).

Lemma 2.6.11 (Compactness principle). Let Φ be a Boolean network on a set
X and F a set of finite subsets of X. Then F is compatible w.r.t. Φ if every
finite G ⊆ F is compatible w.r.t. Φ.

76

Proof. Let Σ = {0, 1}X and T (Σ) the product topology for Σ as in Definition
2.4.33. Then (Σ, T (Σ)) is compact by Proposition 2.4.34 and for every finite
Y ⊆ X, the set S∗(Y) = {f ∈ Σ | f ↾ (Y ∪ Bd+G(Y)) ∈ S(Y)} is closed in T (Σ).

Notice that for all F ⊆ ℘(X) the claim that F is compatible w.r.t. Φ is equiv-
alent to the claims that the family (S∗(Y))Y ∈F has a non-empty intersection.
Hence it follows from the hypothesis that for all finite G ⊆ F , (S∗(Y))Y ∈G has a
non-empty intersection. Since Σ is compact, this implies by Proposition 2.4.36
that (S∗(Y))Y ∈F has a non-empty intersection and thus that F is compatible
w.r.t. Φ.

Definition 2.6.12. A Boolean network Φ on a set X is said to be

1. compact iff Φ has a fixed point, given that for all finite ∅ ̸= Y ⊆ V (G), Φ
is absolutely solvable relative to Y .

2. strongly compact iff Φ has a fixed point, given that for all finite ∅ ̸= Y ⊆
V (G), Φ is relatively solvable relative to Y .

Clearly, every strongly compact Boolean network is compact.

Digraphs of finite- and infinite character

Definition 2.6.13. Let Φ be a Boolean network (on a set X) that has no fixed
point. Then Φ is said to be

1. paradoxical of finite character iff there exits some finite ∅ ̸= Y ⊆ X such
that Φ is absolutely unsolvable relative to Y ,

2. paradoxical of quasi finite character iff there exits some finite ∅ ̸= Y ⊆ X
such that Φ is relatively unsolvable relative to Y , but there exists no finite
∅ ̸= Y ⊆ X such that Φ is absolutely unsolvable relative to Y ,

3. paradoxical of infinite character iff every finite ∅ ̸= Y ⊆ X is absolutely
solvable relative to Y .

The idea of this trichotomy is that in the first two cases there exists some
finite ‘paradoxical’ Boolean subnetwork (in a stronger sense in the first cases
and in a weaker sense in the second) that is ‘liable for’ Φ not having a fixed
point, whereas in the third case no finite paradoxical subnetwork is present.
Paradoxes of infinite character are paradoxes of non-compactness in the sense
that they are due to the non-applicability of the Compactness Principle 2.6.11,
i.e., arguments as in the proof of Proposition 2.6.23 do not hold, because the
digraph cannot be decomposed into suitable finite subdigraphs.

Proposition 2.6.14. Let Φ be a Boolean network on a set X that has no fixed
point. Then Φ is

1. paradoxical of finite character iff Φ is strongly compact,

2. paradoxical of quasi finite character iff is not strongly compact but compact,

77

3. paradoxical of infinite character iff not Φ compact.

Definition 2.6.15. A digraph G is said to be of finite character iff every
Boolean network on G is compact; it is said to be of infinite character iff it
is not of finite character.

Example 2.6.16. Let us classify some previously discussed paradoxes.

1. Every liar cycle gives rise to a paradox of finite character. But there
are also infinite Boolean networks that are paradoxical of finite character.
By Proposition 2.6.23 (and Corollary 5.1.6) respectively), every Boolean
network that has a finitely out-branching dependency graph but no fixed
point is such a case. By Proposition 2.6.19, every dependency graph of
such a network must contain a cycle.

2. McGee’s paradox (cf. Example 2.4.8) is a paradox of quasi finite charac-
ter. The subnetwork induced by {M0,Mω} is relatively unsolvable to the
function h that assigns to each 0 < n < ω the value 1: Φh[{M0,Mω}] has
no fixed point, it’s iteration digraph is isomorphic to that of Jourdain’s
paradox (cf. Example 2.3.16). Hence Φ is compact. It is not strongly
compact, however: let g be the function that assigns to each 0 < n < ω
the value 0. Then Φg[{M0,Mω}] has the fixed point f , with f(M0) = 1
and f(Mω) = 0. (Observe G[X] is acyclic if X does not contain both M0

and Mω).

Moreover, it can be show that the minimal dependency graph for Φ is of
finite character.

3. Yablo’s paradox is a paradox of infinite character. ΦY
↓ is not compact.

Hence Y is of infinite character.

This analysis seems to suggest that McGee’s paradox is indeed closer to the
paradoxes of finite character than to Yablo’s paradox. In consideration of its
dependency graph, this shouldn’t come as a surprise.6

Proposition 2.6.17. Every finite digraph is of finite character.

Digraphs of finite character are closely related to safe digraphs.

Proposition 2.6.18. Every safe digraph is of finite character.

Proposition 2.6.19. Every acyclic digraph of finite character is safe.

Proof. By Proposition 2.6.8.

6However, it may be surprising with regard to the fact that in frameworks that work with
first order logic such as [5] [4] and [28] Yablo’s paradox and McGee’s paradox are similar in
the sense that they both give rise to consistent first-order theories that are ω-inconsistent.
This commonality can be explained be the fact that both Boolean networks are not strongly
compact.

78

This leads to following theorem which, simple as it is, epitomizes the fact
that there are two kinds of semantic paradoxes: finite paradoxes whose reference
pattern is cyclic, and infinite paradoxes, the underlying mechanism of which is
the phenomenon of non-compactness.

Theorem 2.6.20. A digraph is dangerous iff it contains a cycle or if it is of
infinite character.

A consequence of this is a generalization of Proposition 2.6.8 to digraphs of
finite character.

Corollary 2.6.21. A digraph of finite character is safe iff it is acyclic.

The question of how the reference patterns of infinitary paradoxes can be
characterized is in the focus of this investigation.

Problem 2.6.22. Characterize the digraphs that are of infinite character!

The following proposition is essentially a well-known result - at least its
version for safe digraphs (cf. [41] and [40]). Our proof employs the compactness
principle and intends to exemplify how constraints on a given dependency graph
can be used to obtain information about the dynamical behavior of a Boolean
network.

Proposition 2.6.23. Every finitely out-branching apg is of finite character.

Proof. Let Φ be a Boolean network on G. Let r be the root of G. Let X0 = {r}
and define Xn+1 = Xn ∪ Bd+G(Xn) for all n ∈ ω. Then every Xn is finite.
Let F = {Xn | n ∈ ω}. Then V (G) =

⋃
F . Since unions of finite subsets

of F are finite, it follows from the hypothesis that Φ is absolutely solvable
relative to every non-empty finite subset of V (G), that every finite subset of
F is compatible w.r.t. Φ. Hence F is is compatible w.r.t. Φ by Lemma 2.6.11.
Let f ∈ {0, 1}V (G) be a witness to this claim. Then f is a fixed point of
Φ. In order to see this, let x ∈ V (G). Then x ∈ Xn for some n ∈ ω. Let
fn = f ↾ Xn ∪ Bd+G(Xn). Then fn ∈ S(Xn). Hence Φ(fn, x) = fn(x) = f(x).
On the other hand, Φ(fn, x) = Φ(f, x), since x depends on Xn ∪ Bd+G(Xn).
Hence Φ(f, x) = f(x).

The previous proposition shall later be generalized for finitely out-branching
digraphs simpliciter (cf. Corollary 5.1.6). As a consequence, every acyclic and
finitely out-branching digraph is safe.

Proposition 2.6.24. A digraph is of finite character iff all of its subdigraphs
are.

Proof. If G ⊆ H is not of finite character, then there exists a Boolean network
Φ on G that is not compact, i.e., Φ has no fixed point but for all finite ∅ ̸=
Y ⊆ V (G), Φ is absolutely solvable relative to Y . Now we extend Φ to a
Boolean network Ψ on H analogously to the proof of Proposition 2.6.4. The
other direction is trivial.

79

Skeletons

Let us conclude this subsection on digraphs of infinite character by having a
quick look at a concept whose purpose it is to shed some more light on the
distinction between cyclic and acyclic paradoxes.

Definition 2.6.25. Let G be a digraph. A skeleton of G is an acyclic spanning
subdigraph of G that has no proper superdigraph that is an acyclic spanning
subdigraph of G.

Clearly, every acyclic digraph is its own unique skeleton.

Proposition 2.6.26. Every digraph has a skeleton.

Proof. Let G be a digraph. Then G has an acyclic spanning subdigraph - the
digraph (V (G),∅). Moreover, the union of every chain of acyclic spanning
subdigraphs of G is an acyclic spanning subdigraph of G. Hence by Zorn’s
lemma there exists a maximal acyclic spanning subdigraph of G. This is a
skeleton of G.

Question 2.6.27. Is there a digraph of infinite character that has a skeleton of
finite character?

A positive answer would imply the existence of some interesting kind of
paradox. It would mean that, on the one hand, there is a Boolean network Φ
on a digraph G (of infinite character) such that Φ has no fixed point, but for
every non-empty finite Y ⊆ V (G), Φ is absolutely solvable relative to Y . Hence
the paradoxicality of Φ cannot be localized in any finite part of Φ, just as it is
the case with Yablo’s paradox. In particular, there is no specific finite struc-
ture of cycles that is responsible for Φ being paradoxical. On the other hand,
there exists a skeleton H of G that is of finite character. Hence H is safe. This
means that the cyclic structure of G is essential for Φ being paradoxical, but
on a global rather than on a local scale. Φ would be a paradox that couldn’t
be explained in terms of danger. G would be dangerous because it contains a
cycle, but that misses the point. Φ would be a cyclic paradox of truly infinite
character and not just of quasi finite character as McGee’s paradox is.

In Section 2.8 we shall briefly discuss which answer to Question 2.6.27 seems
to be the plausible one and whether any result or conjecture could help to
establish it.

2.6.3 Strongly kernel-perfect digraphs

The third class of digraphs to be considered is in some sense a more fine grained
counterpart to dangerous digraphs. Proposition 2.6.28 can be seen as a first
hint at this fact, Proposition 2.6.29 as another.

Recall that a digraph is said to strongly kernel-perfect iff every of its subdi-
graphs has a kernel.

80

Proposition 2.6.28 (Richardson). A finite digraph is strongly kernel-perfect
iff it contains no odd cycle.

Proof. Proofs can be found in [1], [3] or [42].

Proposition 2.6.29. Every safe digraph is strongly kernel-perfect.

Proof. By Propositions 2.6.4 and Proposition 2.3.8.

A version of this proposition has already been formulated in [41]. 7

In analogy to Corollary 2.6.21, Richardson’s theorem can be generalized to
digraphs of finite character.

Theorem 2.6.30. A digraph of finite character is strongly kernel-perfect iff it
contains no odd cycle.

Proof. Let G be a digraph of finite character. For the non-trivial direction
suppose that G contains no odd cycle. Let H ⊆ G. Then H is also of finite
character. Hence ΦH

↓ is compact. But then ΦH
↓ must have a fixed point (which

then corresponds to a kernel of H): Assuming otherwise implies by hypothesis

the existence of a finite and non-empty set Y ⊆ V (H) and h ∈ {0, 1}Bd+
H(Y)

such that Ψh[Y] has no fixed point, where Ψ = ΦH
↓ . Let C be the core of

Ψh[Y] (cf. Definition 2.4.89). Then by Lemma 2.4.94 G[C] has no kernel, which
contradicts Richardson’s theorem.

Problem 2.6.31. Characterize the strongly kernel-perfect digraphs!

Bipartite digraphs

The goal of this subsection is to prove Theorem 2.6.41, which also has a coun-
terpart in [5].

Definition 2.6.32. A digraph G is said to be bipartite iff there exists a partition
of V (G) into two components X and Y such that A(G[X]) = A(G[Y]) = ∅.

For the following proposition cf. also Theorem 2.2.1 in [1].

Proposition 2.6.33. Every bipartite digraph is strongly kernel-perfect.

Proof. Let G be a bipartite digraph and H ⊆ G. Let X ⊆ V (H) be the core
(cf. Definition 2.4.89) of ΦH

↓ . By Theorem 2.4.95 it suffices to show that H[X]
has a kernel. By Proposition 2.4.90 H[X] is sink-less. Moreover, it is bipartite,
since it is a subdigraph of a bipartite digraph. Let {X0, X1} be a bipartition
of H[X]. Then X0 (as well as X1) is a kernel of H[X]: X0 is independent in
H and for all x ∈ X0, there must be some y ∈ X1 such that (x, y) ∈ A(H[X])
(otherwise x would be a sink of H[X]).

7Let me remark that in Appendix D of [41] the authors seem to be unaware of the fact that
every safe digraph has a kernel: Corollary 32 and Corollary 33 are unnecessarily relativized
to digraphs that have no sinks. Cf. also the remark in a footnote of Subsection 1.2.2.

81

Lemma 2.6.34. Let G be a digraph and w a walk from x to y in G, for any
x, y ∈ V (G). Then there exists a straight walk from x to y in G.

Proof. By avoiding every cycle of H, we find a straight walk w′ from x to y in
H. Notice that in the case of x = y, the trivial walk can be chosen.

Let us restate the definition of a double-path from Section 2.1.

Definition 2.6.35. Let D be a digraph and x ̸= y ∈ V (D). Then D is said
to be a double path (from x to y) iff there are non-trivial paths P1 ̸= P2 from
x to x such that V (P1) ∩ V (P2) = {x, y} and V (D) = V (P1) ∪ V (P2) and
A(D) = A(P1) ∪A(P2).

Definition 2.6.36. Let G be a finite digraph. The parity of G is the parity of
the set A(G). In particular, we say that G is even iff A(G) has even cardinality
and that G is odd iff A(G) has odd cardinality.

Proposition 2.6.37. Every apg that contains neither an odd cycle nor an odd
double path is bipartite.

Proof. Let G be an apg with root r. Let X0 be the set of all x ∈ V (G) such
that x is reachable from r in a straight walk of even length in G and X1 the set
of all x ∈ V (G) such that x is reachable from r in a straight walk of odd length
in G. Then, by Lemma 2.6.34, V (G) = X0 ∪X1.

Next we show that. X0∩X1 = ∅. Assume that there exists some y ∈ X0∩X1.
Since G contains no odd cycle, y ̸= r.

Let w0 be an even straight walk from r to x in G and w1 an odd straight
walk from r to x in G. Since y ̸= r, each wi constitutes (in the obvious manner)
a non-trivial path Pi. Then there exists some y1 ∈ (V (P0) ∩ V (P1) \ {r, y}).
(Otherwise P0∪P1 would be an odd double path). Then there are paths Q0 and
Q1 (both from y1 to y) and R0 and R1 (both from r to y1) such that P0 = Q0◦R0

and P1 = Q1 ◦R1. We may assume that we have chosen y1 in such a way that
Q0 ∪Q1 is a double path. Hence V (Q0 ∪Q1) is even, i.e., Q0 and Q1 have the
same parity. Then R0 and R1 must have different parities, otherwise P0 and
P1 couldn’t have different parities. Now we can apply the same argument as
above and come up with some y2 ∈ (V (R0) ∩ V (R1) \ {r, y1}). This procedure
leads to the contradictory conclusion that the set V (P0 ∩ P1) is infinite. Hence
X0 ∩X1 = ∅.

Now let us show that {X0, X1} is bipartition of G. Assume that there exists
i ∈ {0, 1} and x, y ∈ Xi such that (x, y) ∈ A(G). Since G contains no odd cycle,
x ̸= y. There exists a straight walk wx = (r, . . . , x) of parity i from r to x and
a straight walk wy = (r, . . . , y) of parity i from r to y.

Case 1: y does not occur in wx. Then (r, . . . , x, y) is a straight walk from r
to y of different parity than i, which is a contradiction.

Case 2: y does occur in wx, i.e, wx = (r, . . . y, . . . , x). Then the walk
(r, . . . , y) is straight and thus of parity i (since X0 ∩ X1 = ∅). Hence the
walk (y, . . . , x) (which is also straight) is even. Since x ̸= y, we obtain the
contradiction that G contains an odd cycle.

82

For the following definition cf. [36].

Definition 2.6.38. Let G be a digraph. A setX ⊆ G is said to be a semi-kernel
iff the following conditions are satisfied.

1. X is independent in G,

2. for all (v, w) ∈ A(G), if v ∈ X and w ∈ V (G) \X, then there exists some
v′ ∈ X such that (w, v′) ∈ A(G).

Note that every kernel of a digraph G is a semi-kernel of G. Moreover, ∅
is always a semi-kernel of any digraph whatsoever, whereas ∅ is a kernel of a
digraph G iff G = (∅,∅).

Proposition 2.6.39. Let G be a digraph and x ∈ V (G). Then every kernel of
G{x} is a semi-kernel of G.

Proof. The claim follows from the fact that G{x} is open in G.

The following is taken from [36].

Lemma 2.6.40. Let G be a digraph such that every non-empty induced subdi-
graph of G possess a non-empty semi-kernel. Then G possess a kernel.

Proof. Cf. Theorem 2 in [36].

Now we can prove a result from which Corollary 5.12. of [5] follows straight-
forwardly.

Theorem 2.6.41. Every digraph that contains neither an odd cycle nor an odd
double path is strongly kernel-perfect.

Proof. Let G be a digraph that contains neither an odd cycle nor an odd double
path. Let H ⊆ G. Assume H has no kernel. Then by Lemma 2.6.40 there
exists some ∅ ̸= X ⊆ V (H) such that H[X] has no non-empty semi-kernel.
Let x ∈ X. Then H{x} has no kernel by Proposition 2.6.39. But H{x} ⊆ G,
hence H{x} contains neither an odd cycle nor an odd double path. Hence
H{x} is bipartite by Proposition 2.6.37 and thus is strongly kernel-perfect by
Proposition 2.6.33. By Proposition 2.6.39 this leads to the contradiction that
H[X] has a non-empty semi-kernel.

2.7 Digraph transformations

In Subsection 2.5.1 transformations of dynamical systems have been discussed.
Some of them, like weak systems embeddings, preserve considerably less infor-
mation than system isomorphisms do. In this section we introduce two types of
operations on digraphs that preserve some but not all of the digraph’s structure:
subdivisions and inflations. Inflations in particular will play an important role
throughout the remainder of this thesis. They come in various flavors: finitary,
regular and convergent. In Chapter 3 regular inflations are used in order to

83

formulate the notion of a network inflation which has a digraph component (a
regular digraph inflation) and a dynamical systems component (a weak system
embedding).

In Section 2.8 solutions for the characterization problems presented in the
last section shall be conjectured in terms of finitary digraph inflations. The
parity (the property of being even or odd) of a digraph inflation will be defined,
a concept that is key in order to formulate the conjectured solution for the
characterization problem for strongly kernel-perfect digraphs (Problem 2.6.31).

2.7.1 Subdivisions

Subdivisions and their relevance for the analysis of dangerous digraphs have
been discussed in [41].

Definition 2.7.1 (Rabern et al.). A subdivision of a digraph G is a digraph
that is formed by replacing each arc (x, y) ∈ A(G) by a path of length ≥ 1 from
x to y.

Note that replacing an arc by a path of length = 1 means leaving the arc as
it is. In particular, every digraph is a subdivision of itself.

Definition 2.7.2 (Rabern et al.). A digraph G is said to be homeomorphic to
a digraph H iff G has a subdivision that is isomorphic to some subdivision of
H.

Proposition 2.7.3 (Rabern et al.). A digraph is dangerous iff every subdivision
of it is dangerous.

Corollary 2.7.4. Homeomorphic digraphs are equi-dangerous.

Let us note the following trivial observation for cycles, whose non-trivial
counterpart for finitary inflations of Y we will shown below (Theorem 4.3.2).

Proposition 2.7.5. If C is a cycle, then some subdivision of C has no kernel.

The following definition introduces a rather specific operation on digraphs
that in general cannot be conceived as a subdivision.

Definition 2.7.6. Let G be a digraph. Define G→ as follows: for each x ∈ V (G)
let x′ = {x}. Let V (G→) = V (G) ∪ {x′ | x ∈ V (G)}. For all u, v ∈ V (G→) let
(u, v) ∈ A(G→) iff u = x′ and v = x for some x ∈ V (G) or if for x, y ∈ V (G):
v = x and u = y′ and (x, y) ∈ A(G).

Is every acyclic digraph that contains no subdivision of Y safe? The an-
swer is negative as Rabern et al. show in Appendix B of [41]. They give a
counterexample which can be formulated in terms of of Definition 2.7.6.

Example 2.7.7. There is a dangerous digraph G that is acyclic and contains
no subdivision of Y, namely G = Y→.

84

0 1 2 3 ...

0′ 0 1′ 1 2′ 2 ...

Then no subdigraph of G is a subdivision of Y, i.e., G is not homeomorphic
to Y. In order to see this, first observe that d−G(n) = 1 (since n′ is the unique
in-neighbor of n) for all n ∈ ω. On the other hand, for every n ∈ ω, d−Y (n) = n.
Since subdividing arcs does not alter the degree of any vertex of the original
digraph, no subdivision of Y is contained in G.

Since G is clearly bipartite, G is strongly kernel-perfect by Proposition
2.6.33. However, it is dangerous. One can either apply Corollary 4.3.4 or find a
Boolean network on G that has no fixed point - which is left to the reader.

2.7.2 Inflations and minors

There is a more general concept underlying the operation formulated in Defini-
tion 2.7.6, which shall be outlined in this subsection.

Definition 2.7.8. Let X,Y be sets. A partition of Y with index set X is a
function P : X → ℘(Y) such that for all x, y ∈ X,

1. P(x) ̸= ∅,

2. P(x) ∩ P(y) = ∅,

3. Y =
⋃
{P(x) | x ∈ X}.

P is said to be finitary iff P(x) is finite for all x ∈ X.

Notice that, as a function, every partition P is injective. As usually, we
denote the inverse of P by P−1. We may conceive a partition P of Y with
index-set X as a set of indexed subsets of Y and write P = {P(x) | x ∈ X}.

In the literature (e.g., in [17]), the inflation of an undirected graphH onto an
undirected graph G is usually defined as a partition P = {P(x) | x ∈ V (H)} of
V (G) such that (1) for all x ̸= y ∈ V (H), {x, y} ∈ E(H) iff there is some
{vx, vy} ∈ E(G) such that vx ∈ P(x) and vy ∈ P(y) and (2) and for all
x ∈ V (H), G[P(x)] is connected. (E(H)) denotes the set of all edges od H.)
An undirected graph H is said to be a minor of a graph G iff there exists an
inflation of H onto some subgraph of G.

Now, let us generalize these notions for directed graphs. In order to do so,
first consider the following notion of a boundary.

85

Definition 2.7.9. Let G,H be digraphs and I a partition of V (G) with index
set V (H). For all x ∈ V (H) let

1. the inward-boundary ∂−GI(x) of I(x) be

(a) the set of all sources of G[I(x)], if x ∈ src(H),

(b) the set of all z ∈ I(x) such that there exists y ∈ V (G) \ I(x) with
(y, z) ∈ A(G), if x /∈ src(H),

2. the outward-boundary ∂+GI(x) of I(x) be

(a) the set of all sinks of G[I(x)], if x ∈ snk(H),

(b) the set of all z ∈ I(x) such that there exists y ∈ V (G) \ I(x) with
(z, y) ∈ A(G), if x /∈ snk(H).

3. The boundary ∂GI(x) of I(x) be defined as ∂GI(x) = ∂−GI(x) ∪ ∂+GI(x).

The following definition of an inflation is a modified version of the definition
of finitary inflation given in the appendix of [5]. The differences are that we
drop the requirement that I(x) is finite (we will treat this special case still
under the name of finitary inflation); that we are more liberal when it comes
to loops (here in clause (1) we just ignore them, whereas in [5] we didn’t allow
a digraph with loops to be inflated at all). Moreover, the notions of inward-
and outward-boundary ∂−G(I) and and ∂+G(I) have been modified in order to
accommodate sinks and sources. Finally, we added the last clause, that G[I(x)]
is always weakly connected, because we want to exclude some degenerate cases
and make sure that the notion of inflation for directed graphs coincides with
that for undirected graphs, if a directed graph is symmetric.

Definition 2.7.10. Let G and H be digraphs and I : V (H) → ℘(V (G)) a
partition of V (G). We call I an inflation of H onto G iff the following conditions
hold.

1. For all x ̸= y ∈ V (H), (x, y) ∈ A(H) iff there is some (vx, vy) ∈ A(G)
with vx ∈ I(x) and vy ∈ I(y).

2. For all x ∈ V (H) and all y, z ∈ I(x), if y ∈ ∂−G(I(x)) and z ∈ ∂+G(I(x)),
then there is a path in G[I(x)] from y to z.

3. For all x ∈ V (H), G[I(x)] is weakly connected.

Example 2.7.11. Recall Definition 2.7.6. Let G be any non-empty digraph.
Then I = {{x, x′} | x ∈ V (G)} is an inflation of G onto G→.

Definition 2.7.12. Let G and H be digraphs.

1. A surjective function f : V (G) → V (H) is said to be a contraction of
G onto H iff the partition P : V (H) → ℘(V (G)) given by x 7→ P(x) =
f−1(x) is an inflation of H onto G.

86

2. By abuse of notation, we denote for any partition P : V (H) → ℘(V (G))
of V (G) by P−1 the unique function f : V (G) → V (H) such that P(x) =
f−1(x), for all x ∈ V (H).

Definition 2.7.13. Let G,H be digraphs.

1. Then G is said to be a(n) (finitary) inflation of H iff there exists a (fini-
tary) inflation of H onto G.

2. Likewise, we say that H is a (finitary) contraction of G iff there exists a
finitary contraction of G onto H.

3. If G is an inflation of H we also say that G is an I[H]; G is also called an
an If [H] if G is a finitary inflation of H.

So, for a digraph H, the term ‘an inflation of H’ is ambiguous in the sense
that it might denote a function (referring to Definition 2.7.10) as well as a di-
graph (referring to Definition 2.7.13). As long as we distinguish digraphs nota-
tionally from functions, the danger of conflation shouldn’t be too high. Anyway,
when talking about a digraph G, we will usually write ‘G is an I[H]’ instead of
‘G is an inflation of H’. This convention will be particularly convenient when
in the next subsection the notion of parity is introduce for inflations as func-
tions (Definition 2.7.18) on the one hand, and inflations as digraphs (Definition
2.7.19) on the other hand.

Let us illustrate Definition 2.7.10 with another example. Let H be a path
of length 2.

x1 x2 x3

Consider the following digraphs G1, G2, G3 and G4

+

-

x3

x1

+

-

x3

x1

-

-+

x1 x3

-+

x1 x3

and their partitions I1, I2, I3 and I4 whose respective non-trivial parts
are indicated by the shaded areas, each of which corresponds to the vertex x2

87

of H. All of them actually are inflations. Vertices belonging to the inward-
boundary ∂−Gi

Ii(x2) of Ii(x2) are labeled with ‘-’, while those belonging to the

outward-boundary ∂+Gi
Ii(x2) are labeled with ‘+’.

Observe that ∂+Gi
Ii(x2) does not necessarily coincide with snk(Gi[I(x)]).

Whenever some sink y of Gi[I(x)] is not in the outward-boundary (as it is the
case for i = 1), then it is the end of a blind-alley. The purpose of Condition 2
of Definition 2.7.10, which states that every vertex of the outward-boundary is
reachable from every vertex of the inward-boundary, is to ensure that no walk
entering a subdigraph G[I(x)] ⊆ G from the outside is ever forced to run into
such a blind alley. Notice that loops of H are just ignored by Definition 2.7.10,
which will be illustrated in the next examples.

Example 2.7.14. 1. Let G be a digraph and 1G = {{x} | x ∈ V (G)} be the
trivial partition of V (G). Then 1G is an inflation of G onto G.

2. Let G = ({0},∅) and H = ({0}, (0, 0)). Consider again the trivial par-
tition 1G of V (G) = V (H), i.e., the map 0 7→ {0}. With respect to the
digraphs G and H, 1G can be interpreted in different ways: as an inflation
of G onto G, an inflation of H onto H, an inflation of G onto H, and as
an inflation of H onto G.

3. Let G and H be as in the previous example and let F = ({1, 2}, {(1, 2)}).
Then the partition I(0) = {1, 2} is an inflation of H onto F , as well as
an inflation of G onto F . Note that Condition (1) of Definition 2.7.10 is
vacuously satisfied.

The previous examples show that an inflated digraph can be acyclic, even
if the original digraph is not, given that the original digraph contains a loop.
This is not the case if the original digraph is loop-free (cf. Lemma 3.3.1).

Definition 2.7.15. A digraph H is said to be a (finitary) minor of G iff there
is some (finitary) inflation of H onto some subdigraph of G. We write H ⪯ G
(H ⪯f G), if H is a (finitary) minor of G, and H ̸⪯ G (H ̸⪯f G), if H is not a
(finitary) minor of G.

Proposition 2.7.16. Let G,H and D be digraphs. Then the following claims
hold.

1. If H ⊆ G then H ⪯f G.

2. G ⪯f G.

3. If D ⪯f G and G ⪯f H then D ⪯f H.

4. If G and H are symmetric then H ⪯ G iff H is a graph minor of G.

Let us conclude this subsection with a notational convention that will be
used throughout this investigation.

Definition 2.7.17. Let G,H be digraphs and P be a partition of G with index
set V (H).

88

1. For X ⊆ V (H), let P[X] =
⋃
{P(x) | x ∈ X}.

2. For any subdigraph H ′ ⊆ V (H), let P[H ′] = G[P[V (H ′)]].

3. For Y ⊆ V (G), let P−1[Y] = {P−1(y) | y ∈ Y }.
4. For any subdigraph G′ ⊆ G, let P−1[G′] = H[P−1[V (G′)].

2.7.3 The parity of an inflated Yablo-graph

In Definition 2.6.36 we have defined the parity of a finite digraph. Is there such
a thing as the parity of an infinite digraph? Such a notion seems to make no
sense. The goal of this subsection is to show that in certain cases it does.

Definition 2.7.18. Let I be an inflation of H onto G. Then I is said to be

1. even iff for all x ∈ V (H), y ∈ ∂−GI(x) and z ∈ ∂+GI(x), every path in
G[I(x)] from y to z is even,

2. odd iff for all x ∈ V (H), y ∈ ∂−GI(x) and z ∈ ∂+GI(x), every path in
G[I(x)] from y to z is odd,

3. determined iff it is even or odd; and undetermined iff it is not determined.

Recall Definition 2.7.13 and Definition 2.6.36.

Definition 2.7.19. Let G and H be digraphs. Then G is said to be

1. an even If [H] iff there exists an odd finitary inflation of H onto G,

2. an odd If [H] iff there exists an even finitary inflation of H onto G,

3. a determined If [H] iff it is an even If [H] or an odd If [H].

In order to appreciate the unexpected inversion of ‘even’ and ‘odd’ in the
above definition, consider a cycle C and its inflation C→ (cf. Definition 2.7.6).
As an operation, the inflation I that maps C onto C→ is best conceived being
odd, since each C[I(x)] is just an arc, i.e., a path of length = 1. But the result
C→ is an even cycle, regardless of the parity of C. On the other hand, if one
were to define C2→ analogously to C→ (i.e., inflating each vertex to a path of
length = 2 instead of 1) this would be an even inflation (as an operation) but
the result would be odd cycle C2→ iff C is odd and an even cycle iff C is even.
More generally, every even cycle can be constructed as and odd finitary inflation
of the loop ({x}, {(x, x)}) and every odd cycle as an even finitary inflation of it.

The following example shows that being an even If [G] doesn’t prevent a
digraph from being also and odd If [G] when it comes to infinite digraphs.

Example 2.7.20. Let Q and R be rays. Then Q is an even If [R] and an odd
If [R].

89

The goal of the remainder of this section is to show that if a digraph G is
a determined If [Y], then it is not both, an even If [Y] and an odd If [Y]. In
contrast to the class of all cycles, not all members of the class of all digraphs
that are finitary inflations of the Yablo-graph have a determined parity, but
those member that do, have, in analogy to the class of all cycles, a unique one.
This seems to be the most basic requirement for any meaningful theory of parity.
Another reasonable requirement (stopping short of stipulating that every If [Y]
be determined) is that every If [Y] contain a subdigraph that is a determined
If [Y]. This will be ascertained by Theorem 4.2.13.

Definition 2.7.21. Let G be a digraph and P a partition of V (G). Then G is
said to be convex iff for all X ∈ P, all y, z ∈ X and all paths P ⊆ G: if P leads
from x to y, then P ⊆ G[X].

Proposition 2.7.22. Let I be an inflation from H onto G. If H is acyclic,
then I is convex.

For the following recall Definition 2.7.17.

Definition 2.7.23. Let G, H be digraphs and I an inflation of H onto G.

1. Let I+
⊥(G) be the set of all x ∈ V (G) such that there exists no y ∈

∂+GI(I−1(x)) such that there exists a path from x to y in G.

2. Let I−
⊥ (G) be the set of all x ∈ V (G) such that there exists no z ∈

∂−GI(I−1(x)) such that there exists a path P from z to x in G.

3. Let I⊥(G) = I+
⊥(G) ∪ I−

⊥ (G).

4. Let I→(G) = V (G) \ I⊥(G).

Definition 2.7.24. Let G, H be digraphs and I an inflation of H onto G. Let
I→ : V (H) → ℘(V (G)) be defined by I→(y) = I(y) ∩ I→(G) .

Proposition 2.7.25. Let G, H be digraphs and I a(n) (even, odd) finitary
inflation of H onto G. Then I→ is a(n) (even, odd) finitary inflation of H onto
G[I→(G)].

Proposition 2.7.26. Let G, H be digraphs and I a finitary inflation of H onto
G. Then

1. {I→(G), I−
⊥ (G), I+

⊥(G)} is a partition of V (G).

2. I+
⊥(G) is open in G and each weak component of G[I+

⊥(G)] is finite,

3. I−
⊥ (G) is closed in G, and each weak component of G[I−

⊥ (G)] is finite.

Lemma 2.7.27. Let G,H be digraphs and I an odd and convex inflation of H
onto G, such that for all x ∈ V (G), there exists y+ ∈ ∂+GI(I−1(x)) such that
there is a path from x to y+ in G and there exists y− ∈ ∂−GI(I−1(x)) such that
there is a path from y− to x in G. Then every double-path in G is even.

90

Proof. Let D be a double-path in G, P1 and P2 be the two branches of D, x be
the starting point of both P1 and P2 and y be their endpoint. Let S = {I(x) |
x ∈ V (H) ∧ I(x) ∩ V (D) ̸= ∅}. We call (u, v) ∈ A(D) an inner arc if there
exists X ∈ S such that u, v ∈ X; otherwise we call (u, v) an outer arc.

Suppose that |S| = 1. Assume that D is odd. Let X be the single component
of S. Since there exists y+ ∈ ∂+GI(X) and x− ∈ ∂−GI(X), there must be
two paths of different parity from ∂−GI(X) to ∂+GI(X), which contradicts the
hypothesis that I is odd. Hence D is even.

Now suppose that |S| > 1. Since I is convex X = I(x) ̸= I(y) = Y . Let
S1 be the set of all U ∈ S \ {X,Y } such that G[U] contains only inner arcs of
either P1 or P2, but not of both.

Clearly, |S1| = No mod 2. (The argument is basically that the number of
arcs of any double path equals the number of its vertices. So the parities of
both are the same and that is not changed by subtracting two vertices.)

Now we show that D is even. First note that the number of inner arcs
contained in G[X] is even. Otherwise we could find two paths of different parity
from ∂−GI(X) to ∂+GI(X), just as above, contradicting that I is odd. By the
same argument, the the number of inner arcs contained in G[Y] is also even.

Case 1: No is odd. Then total number of inner arcs contained in some G[U],
where U ∈ S \ (S1 ∪ {X,Y }) is even, because each such component contains an
odd number of arcs of each path P1 and P2.

This leaves us with the outer arcs (an odd number by hypothesis) plus the
inner arcs contained in S1. Since |S1| is odd and I is an odd inflation, this last
number is even. (Here we actually need the hypothesis that I is convex - so for
all U ∈ S1, G[U] contains an odd number of arcs of D, since neither P1 nor P2

can enter G[U] multiple times.) Summing all arcs up, we conclude that D is
even.

Case 2: No is even. The proof is analogous to the first case. The difference
is that now we have an even number of the inner arcs contained in S1, because
|S1| even. Together with No being even, this yields an even number of arcs of
D.

Theorem 2.7.28. Let G be an even If [Y] that contains no odd cycle. Then G
possess as kernel.

Proof. Let I be odd finitary inflation of Y onto G. Let J = I→. Then J is an
odd inflation of Y onto G[I→(G)]. By Proposition 2.7.22 J is convex. Notice
that G[I+

⊥(G)] has a partition into finite components, each of which is open
in G[I+

⊥(G)]. Hence, by Proposition 2.6.28 and Proposition 2.4.47 the digraph
G[I+

⊥(G)] is strongly kernel-perfect. So let f+ be a fixed point of ΦG
↓ [I

+
⊥(G)]].

Next we show that G′ = G[I→(G)] is strongly kernel-perfect. By Theorem
2.6.41 it suffices to show that G′ contains no odd double-path. Let D ⊆ G′

be a double-path. Since J satisfies the requirements of Lemma 2.7.27, we can
conclude that D is even. Hence G′ is strongly kernel-perfect.

91

Observe that the Boolean network (ΦG
↓)

f+ [I→(G)] is well-defined since the

set I→(G) ∪ I+
+ (G) is open in G by Proposition 2.7.26. Let C be the core of

(ΦG
↓)

f+ [I→(G)]. Since C has a kernel, (ΦG
↓)

f+ [I→(G)] has a fixed point f→ by

Lemma 2.4.94. Since I+
⊥(G) is open in G[I→(G) ∪ I+⊥ (G)], f = f→ ∪ f+ is a

fixed point ΦG
↓ [V (G) \ I−

⊥ (G)] by Lemma 2.4.48.

Analogous to G[I+
⊥(G)], also G[I−

⊥ (G)] has a partition into finite, open
components. Thus by Proposition 2.6.28 and Proposition 2.4.47 the digraph
G[I−

⊥ (G)] is strongly kernel-perfect. Hence by Lemma 2.4.94 it follows that
(ΦG

↓)
f [I−

⊥ (G)] has a fixed point f−. Since I→(G) ∪ I+⊥ (G) is open in G, f ∪ f−
is a fixed point ΦG

↓ [V (G)] = ΦG
↓ by Lemma 2.4.48, and thus the characteristic

function of a kernel of G.

Proposition 2.7.29. Let X ⊆ ω. Then Y[X] is isomorphic to Y iff X is
infinite.

Corollary 2.7.30. Let G be a determined If [Y] that contains no odd cycles.
Then G is strongly kernel-perfect iff G is an even If [Y].

Proof. If G is not an even If [Y], then it is an odd If [Y], since it is determined.
Then by Theorem 4.3.7 G is not strongly kernel-perfect.

Now suppose that G is an even If [Y]. LetH ⊆ G. LetX = I−1[V (H)]. IfX
is finite, then H is finite and then strongly kernel-perfect by Proposition2.6.28.
Hence we can assume that X is infinite. Then Y[X] is isomorphic to Y via some
isomorphism φ. Hence J defined by J (x) = I(φ(x))∩V (H)) a finitary inflation
of Y onto H. Moreover it is odd, since I is odd. Hence H is an even If [Y] and
has a kernel by Theorem 2.7.28. Hence G is strongly kernel-perfect.

Corollary 2.7.31. Let G be a determined If [Y]. Then G is either an even
If [Y] or and odd If [Y] but not both.

Proof. By Proposition 4.3.9 there exists some acyclic H ⊆ G such that H is an
even If [Y] if G is and an odd If [Y] if G is. Assuming that G is both an even and
an odd If [Y] implies that H is both. Since H is acyclic it follows by Corollary
2.7.30 thatH is both strongly kernel-perfect and not strongly kernel-perfect.

2.8 Conjectured solutions for the characteriza-
tion problems

In this final section of Chapter 2 we will conjecture a solution for each of the
three characterization problems formulated in Section 2.6.

2.8.1 The characterization problem for safe digraphs

The following is a reformulation of one direction of Conjecture 4.24 from [5] (cf.
Conjecture 2.8.2 below), which, in turn, had already been formulated earlier in
[4] as Conjecture 1.

92

Conjecture 2.8.1 (Conjecture A). If a digraph contains neither a cycle nor
an If [Y], then it is safe.

In Chapter 4 we shall prove the converse of Conjecture (A)(Theorem 4.3.4),
which implies one direction of the following.

Conjecture 2.8.2 (Beringer and Schindler 2015). A reference graph is danger-
ous iff it contains a subdivision of the liar-graph as a subgraph or the Yablo-graph
as a finitary minor.

There are two differences between Conjecture (A) and Conjecture 2.8.2. The
first is that in [5] the definition of a digraph inflation is formulated differently.
This difference, however, is of no significance, since it is not difficult to show
that a digraph contains a finitary inflation of Y in one sense if and only if it
contains a finitary inflation of Y in the other. The second and major difference
is that Conjecture 2.8.2 is not formulated in terms of digraphs simpliciter but in
terms of reference graphs (of sentences). Apparently, this restriction is simply
due to the context in which the framework of [5] is formulated (first order logic
and arithmetic) and not to any skepticism with respect to a broader validity of
the conjecture. Thus Conjecture (A) can be regarded as a simple reformulation
of one direction of Conjecture 2.8.2. Clearly, Conjecture (A) implies Conjecture
2.8.2. In Chapter 5 a special case of Conjecture (A) (Theorem 5.4.6) will be
shown.

A natural question is why in Conjecture (A) an If [Y] is required and not just
an I[Y]? The answer is that otherwise the converse of Conjecture (A) would
not hold. Consider the following example of a digraph that is an I[Y] but safe
nevertheless.

Example 2.8.3. For all n ∈ ω let Sn be the set of all sequences s such that
s = n or s = n ◦ t ◦ 0 or s = n ◦ t ◦ 1, where t is a sequence of arbitrary length
each of whose members is the number 1.

Let V (G) =
⋃

n∈ω Sn and let for all x, y ∈ V (G), (x, y) ∈ A(G) if one of
the following conditions holds: (1) The sequences x and y have the same first
member and the length of y is the length of x plus 1, or (2) if the last member
of the sequence x is 0, the length of x is greater than 1 and y = m > n, where
n is the first member of x.

Then G is safe by Proposition 2.6.23 and Corollary 2.6.21. However, {Sn |
n ∈ ω} is clearly an inflation on Y onto G.

2.8.2 The characterization problem for digraphs of finite
character

Conjecture 2.8.4 (Conjecture D). If a digraph contains no If [Y], then it is
of finite character.

In Chapter 4 we shall prove the converse of Conjecture (D) (Theorem 4.3.10).

Proposition 2.8.5. Conjecture (D) implies Conjecture (A).

93

Proof. By Theorem 2.6.20.

Now let us return to Question 2.6.27. Conjecture (D) takes a step towards
an answer.

Proposition 2.8.6. Conjecture (D) implies that every digraph of infinite char-
acter has a skeleton of infinite character.

Proof. Let G be a digraph of infinite character, By Conjecture D, G contains
some If [Y]. Then G contains some acyclic If [Y] by Corollary 4.3.9, let us call
it I. We can extend I to a skeleton H of G. By Theorem 4.3.10 I is of infinite
character. Hence H is of infinite character.

Can a digraph of infinite character have a skeleton of finite character and a
skeleton of infinite character? This seems implausible, but how can it be ruled
out?

Theorem 2.8.7. If every digraph of infinite character has a skeleton of infinite
character, then Conjecture (A) implies Conjecture (D).

Proof. Assume Conjecture (D) fails. Then there exists a digraph of infinite
character G that contains no If [Y]. Let H be a skeleton of G that is of infinite
character. Then H is dangerous. But H contains no If [Y], since G does not.
And H is acyclic since H is a skeleton. This contradicts Conjecture (A).

2.8.3 The characterization problem for strongly kernel-
perfect digraphs

The following conjecture describes how safety digraph safety can be expressed
in terms of strong kernel-perfectness.

Conjecture 2.8.8 (Conjecture B). If every subdivision of a digraph G is strongly
kernel-perfect, then G is safe.

It is easy to see that the converse of Conjecture (B) holds.

Proposition 2.8.9. If some subdivision of a digraph G has no kernel, then G
is dangerous.

In Chapter 4 we shall prove that Conjecture (A) implies Conjecture (B)(Proposition
4.3.6).

Theorem 2.8.10. Suppose that Conjecture (A) holds. Then for all digraphs G
the following claims are equivalent.

1. G is safe,

2. every subdivision of G is strongly kernel-perfect,

3. G contains neither a cycle nor an If [Y].

94

The following is a reformulation of a conjecture by Walicki (cf. [47]) which
shall be discussed in Chapter 3 (Conjecture 3.4.1).

Conjecture 2.8.11 (Conjecture W). If a digraph contains no odd cycle and
no If [Y], then is has a kernel.

The equivalence of Conjecture (W) and Conjecture 3.4.1 follows from The-
orem 4.4.2.

Proposition 2.8.12. Conjecture (D) implies Conjecture (W).

Proof. Suppose G contains no If [Y]. Then it is of finite character by Conjecture
(D). If it also contains no odd cycle, then it has a kernel by Theorem 2.6.30.

A special case of Conjecture (W) was proved in [47].

In Chapter 3 we shall prove that Conjecture (W) implies Conjecture (A)
(Theorem 3.4.2). The following seems to be a reasonable strengthening of Con-
jecture (W).

Conjecture 2.8.13 (Conjecture C). If a digraph contains no odd cycle and no
odd If [Y], then is has a kernel.

The converse of Conjecture (C) does not hold. However, in Chapter 4 we
shall prove Theorem 4.3.7.

Since Conjecture (C) implies Conjecture (W), we also get the following.

Proposition 2.8.14. Conjecture (C) implies Conjecture (A).

Theorem 2.8.15. Conjecture (C) implies that a digraph G is strongly kernel-
perfect iff G contains no odd cycle and no odd If [Y].

Proof. Suppose that G contains no odd cycle and no odd If [Y]. Let H ⊆ G.
Then H contains no odd cycle and and no odd If [Y]. Hence H has a kernel
by Conjecture (C). For the other direction suppose that G is strongly kernel-
perfect. Clearly, G cannot contain an odd cycle. By Theorem 4.3.1, G cannot
contain an odd If [Y].

Hence, Conjecture (C) can be seen as a generalization of Richardson’s the-
orem that is maximally strong in the following sense: Just as the Richardson’s
theorem (Theorem 2.6.28) provides a necessary and sufficient condition for fi-
nite digraphs to be strongly kernel-perfect, Conjecture (C) does so for digraphs
simpliciter.

Clearly, the converse of Conjecture (C) does not hold. However, in Chapter
4 we shall prove Theorem 4.3.7.

95

Chapter 3

Characteristic digraphs of
constrained Boolean
networks

The goal of Chapter 3 is to show that any Boolean network (and the question
of whether it has a fixed point in particular) can be analyzed in terms of an
associated directed graph. Such a graph is called a characteristic digraph of
the Boolean network and contains more information about it than a reference
graph. This reduces the question of whether a sentence system is paradoxical
to a purely graph theoretic one. For a more detailed outline of Chapter 3 the
reader is referred to Subsection 1.5.2.

3.1 Regular inflations

Definition 3.1.1. An inflation I of H onto G is said to be regular iff for all
x ∈ V (H),

1. G[I(x)] is well-founded,
2. there exists rx ∈ I(x), called the root of I(x), such that

(a) every y ∈ I(x) is reachable from rx in G[I(x)],
(b) ∂−GI(x) = {rx}.

Note that the rx is unique, since G[I(x)] is acyclic.

Example 3.1.2. Recall Definition 2.7.6. For all digraphs G, there exists a
regular inflation of G onto G→.

Definition 3.1.3. Let G and H be digraphs. If there is a regular inflation of
H onto G, we say that G is an Ir[H].

96

Regular inflations behave in many respects like finitary inflations. E.g., there
is a counterpart to Theorem 2.7.28 for regular inflations.

Theorem 3.1.4. Let G be an even Ir[Y] that contains no odd cycle. Then G
possess as kernel.

Proof. By Proposition 2.6.18 every well-founded digraph is of finite character.
So the proof can proceed in analogy to that Theorem 2.7.28, invoking Theorem
2.6.30 instead of Richardson’s original theorem.

Analogous to Corollary 2.7.30 we obtain the following.

Corollary 3.1.5. Let G be a determined Ir[Y] that contains no odd cycles.
Then G is strongly kernel-perfect iff it is an even Ir[Y].

3.2 Characteristic digraphs

We have previously discussed the ambiguous status of loops with respect to
inflations. Now a method shall be introduced how loops can be replaced by
cycles of length 3 (an odd number in order to preserve the parity) without
altering the dynamical behavior of the system in a significant way. The technical
reason for eliminating loops is to ensure that a digraph can always be inflated
regularly (cf. Definition 3.2.4).

Definition 3.2.1. Let (G,Φ) be a constrained Boolean network. Define the
loop-cleansed form (G′,Φ′) of (G,Φ) as follows.

• Let G′ be the result of subdividing each loop of G twice.

• For all x in V (G′), let

– x∗ = x, if x ∈ V (G) and such that (x, x) /∈ A(G),

– x∗ be the unique out-neighbor of x in V (G′)\V (G), if x ∈ V (G) and
(x, x) ∈ A(G),

– x∗ be the unique out-neighbor of x, if x ∈ V (G′) \ V (G).

• For all f ′ ∈ {0, 1}V (G′) define r(f ′) ∈ {0, 1}V (G) by r(f ′) = f ′ ↾ V (G).

• Define Φ′ : {0, 1}V (G′) × V (G′) → {0, 1} by

Φ′(f ′, x) =

{
Φ(r(f ′), x), if x ∈ V (G)

f ′(x∗), if x ∈ V (G′) \ V (G).

Notice that (G′,Φ′) = (G,Φ), if G is loop-free.

For the following recall Definition 2.5.4.

97

Proposition 3.2.2. Let (G,Φ) be a constrained Boolean network and (G′,Φ′)
its loop-cleansed form. Then there exists a dense weak system-embedding of Φ
into Φ′.

Proof. Define i : {0, 1}V (G) → {0, 1}V (G′) as follows:

(i(f))(x) =


f(x), if x ∈ V (G)

f(x∗), if x /∈ V (G) ∧ x∗ ∈ V (G)

f(x∗∗), if x /∈ V (G′) ∧ x∗∗ ∈ V (G).

Then i is a dense weak system embedding of Φ into Φ′ with retraction r.

Example 3.2.3. The dependency graph of the liar sentence

L

and its loop-cleansed form.

L L∗

L∗∗

A further example for a loop-cleansed form of a digraph is discussed in
Example 3.5.24 below.

Definition 3.2.4. Let (G,Φ) and (H,Ψ) be constrained Boolean networks. A
network inflation of (H,Ψ) onto (G,Φ) is an ordered pair (I, i) such that

1. I is a regular inflation of H onto G,

2. i : {0, 1}V (H) → {0, 1}V (G) is a dense weak system embedding of Ψ into
Φ.

Definition 3.2.5. Let Ψ be a Boolean network on H. Then a digraph G is
said to be a characteristic digraph of the constrained Boolean network (H,Ψ)
iff there exists a network inflation of (H ′,Ψ′) into (G,ΦG

↓), where (H
′,Ψ′) is the

loop-cleansed form of (H,Ψ).

The following theorem is the main result of this Chapter. We shall prove it
at the end of Subsection 3.5.2.

Theorem 3.2.6. Every constrained Boolean network has a characteristic di-
graph.

98

Proposition 3.2.7. Let (H,Ψ) be a constrained Boolean network and G a
characteristic digraph of (H,Ψ). Then there exists a bijection between the fixed
points of (H,Ψ) and the kernels of G.

Proof. By Theorem 2.5.10.

Definition 3.2.8. A class C of digraphs is said to closed under regular inflation
and under twofold subdivision of loops iff for all G ∈ C, G′ ∈ C, given that G′ is
a regular inflations of G or arises from G by subdividing each loop of G twice.

Corollary 3.2.9. Let C be a class of digraphs that is closed under regular infla-
tion and under twofold subdivision of loops. If every element of C has a kernel,
then every element of C is safe.

Proof. Let H ∈ C, Ψ a Boolean network on H and G a characteristic digraph
of (H,Ψ). Then G ∈ C, since C is closed under regular inflation and under
twofold subdivision of loops. Hence G has a kernel. Hence Ψ has a fixed point
by Proposition 3.2.7. Hence H is safe.

Proposition 3.2.10. Let E be the class of digraphs that contain no odd cycles
and O the class of all digraphs that contain no even cycles. Then both E and O
are closed under regular inflation and under twofold subdivision of loops.

3.3 Danger preserving digraph transformations

This section deals with subdigraphs and minors that are preserved by contrac-
tions and provides tools for the following sections. The main result is Theorem
3.3.10 which states that finitary Y-minors are preserved when loop-free digraphs
undergo a finitary or a regular contraction.

For the following Lemma and the rest of this section recall Definition 2.7.17.

Lemma 3.3.1. Let G and H be digraphs and let I an inflation of H onto G.
Then the following claims hold.

1. If H is loop-free and G is acyclic, then H is acyclic.

2. Let P ⊆ H be a path from x to y. Then there exists a path P ′ ⊆ I[P] ⊆ G
from some x′ ∈ I(x) to some y′ ∈ I(y). If x ̸= y and ∂+GI(x) ̸= ∅ then
we can assume that y′ ∈ ∂+GI(y). Moreover, if ∂−GI(x) ̸= ∅, then we can
assume that x′ ∈ ∂−GI(x).

3. Let R ⊆ H be a ray and x = src(R). Then there exists a ray R′ ⊆ I[R] ⊆
G such that R = I−1[R′]. Moreover, if ∂−GI(x) ̸= ∅, then we can assume
that src(R′) ∈ ∂−GI(x).

4. Let P ⊆ G be a path from x to y. Then I−1[P] is such that there exists a
walk from I−1(x) to I−1(y) in I−1[P].

99

Proof. Ad 1: Suppose that H is loop-free and assume that C is a cycle in H.
Then C must have length ≥ 2. Let x0, . . . , xn be an enumeration of the vertices
of C such that (xi, xi+1) ∈ A(C), for all 0 ≤ i ≤ n.

Let Xi = I(xi), for all 0 ≤ i ≤ n. By Definition 2.7.10(1) there exist
a0, . . . , an ∈ A(G) such that tail(ai) ∈ Xi and head(ai) ∈ Xi+1. Hence by
Definition 2.7.10(2) there are paths Pi from head(ai) to tail(ai+1). Thus a
cycle a0 ◦ P0, . . . , an ◦ Pn+1 can be constructed in G, which is a contradiction.

Ad 2: Let x0, . . . , xn be the order-preserving enumeration of V (P), where
x0 = x and xn = y. Then for all 0 ≤ k < n, there exists ak ∈ A(G) from some
x′k ∈ I(xk) to some x∗k ∈ I(xk+1), by Definition 2.7.10(1). Then for all 0 ≤ k <
n, x∗k ∈ ∂−G(I(xk+1)) and x′k+1 ∈ ∂+G(I(xk+1)). Hence, by Definition 2.7.10(2)
there exists a path Pk+1 ⊆ G[(I(xk+1)] from x∗k to x′k+1 (which is trivial iff
x∗k = x′k+1). Let P

′ = a0 ◦P1 ◦ · · · ◦Pn−1 ◦an−1. Then P
′ ⊆ I[P] is a path with

src(P ′) = tail(a0) = x′0 ∈ I(x0) and snk(P ′) = head(an−1) = x∗n−1 ∈ I(xn).
By setting x′ = x′0 and y′ = x∗n−1, this proves the first part of the claim.

If x′ ∈ ∂−G(I(x)), then there is by Definition 2.7.10(2) a path Qx from x′ to
x′0 (x′0 defined as above). So Qx ◦ P ′ is as desired. Likewise we obtain a path
P ′ ◦Qy with an appropriate sink.

Ad 3: Analogous to (2).
Ad 4: By By 2.7.10(1).

Lemma 3.3.2. Let G and H be digraphs and I an inflation of H onto G. Let
R ⊆ G be a ray.

1. If I(x′) ∩ V (R) is infinite for some x′ ∈ V (H), then one of the following
is the case.

(a) For some x′ ∈ V (H), I[x′] contains a tail of R,

(b) for some x′ ∈ V (H), ∂−GI(x′) is infinite and I−1[R] contains a cycle.

2. If I(x′) ∩ V (R) is finite for all x′ ∈ V (H), then I−1[R] contains a ray.

Proof. Let (xn)n∈ω be the order-preserving enumeration of the vertices of R.
Ad 1: Suppose that for no x′ ∈ V (H), I[x′] contains a tail of R. Let

R′ = I−1[R].
Then clearly for some x′ ∈ V (H), ∂−GI(x′) is infinite. Moreover, there exist

x′ ∈ V (R′) and i < j < k such that xi, xk ∈ I(x′)∩V (R) and xj /∈ I(x′)∩V (R).
Since xj /∈ I(x′) ∩ V (R), then xj ∈ V (R) \ I(x′) and thus xj ∈ I(y′) for some
x′ ̸= y′ ∈ V (R′). Hence, by Lemma 3.3.1, there is a walk from I(x′) to I(y′) in
R′ and a walk from I(y′) to I(x′) in R′. Hence R′ contains a cycle.

Ad 2: Let Xn = I(I−1(xn)), for all n ∈ ω. Since all Xn are finite, it is
straightforward to construct a sequence (ni)i∈ω such that (Xni

)i∈ω is an order-
preserving enumeration of the vertices of a ray in H.

The following definition is due to [47].

Definition 3.3.3. Let G be a digraph, x ∈ V (G) and R ⊆ G a ray. We say
that x dominates R in G iff there are infinitely many paths from x to R in G
that are pairwise disjoint except at x.

100

Definition 3.3.4. Call a contraction I−1 from G onto H

1. ray-preserving iff for all rays R ⊆ G, I−1[R] contains a ray,

2. cycle-preserving iff for all cycles C ⊆ G, I−1[C] contains a cycle,

3. dominance-preserving iff it is ray-preserving and for all rays R ⊆ G and
all x ∈ V (G): if x dominates R in G, then I−1(x) dominates every ray
R′ ⊆ I−1[R] in H.

Lemma 3.3.5. Let G and H be digraphs and I an inflation of H onto G such
that ∂−GI(x) is finite for all x ∈ V (H). Let R ⊆ G be a ray and v ∈ V (G) be
such that v dominates R in G. If R′ ⊆ I−1[R] is a ray, then I−1(v) dominates
R′ in H.

Proof. Let (Pn)n∈ω be a family of paths in G, joining v to R, being pairwise
disjoint except at v.

First, assume that for all x ∈ V (H) there are only finitely many n ∈ ω such
that Pn ∩ (I(x) \ {v}) ̸= ∅. Then there exists an infinite subfamily (Pni

)i∈ω

of (Pn)n∈ω such that I−1[Pni] and I−1[Pnj] are disjoint for i ̸= j, except at
I−1(v). Let P ′

ni
= I−1[Pnj] if I−1[Pnj] is a path and otherwise let it be a

maximal subdigraph of I−1[Pnj
] that is a path and starts at I−1(v). Hence the

collection of all P ′
ni

witnesses to I−1(v) dominating R′ in H.
Now, assume that there exists x ∈ V (H) such that Pni

∩ (I(x) \ {v}) ̸= ∅
for infinitely many i. Then for each i ∈ ω there exists pi ∈ V (Pni) such that
pi ∈ ∂−GI(x) or pi = v. Since ∂−GI(x) is finite, this means that v ∈ I(x). On the
other hand, ∂+GI(x) must contain infinitely many qi with qi ∈ V (Pni

) such that
all qi are pairwise disjoint. Let Qi be the maximal subpath of Pni

with initial
vertex qi. Then for all x ̸= y ∈ V (H): Qi ∩ I(y) ̸= ∅ for only finitely many
i ∈ ω (otherwise we would have v ∈ I(y) by the above argument). Hence there
exists a subfamily (Qik)k∈ω of (Qi)i∈ω such that I[Qik] and I[Qil] are disjoint
for all k ̸= l ∈ ω (with the possible exception of I−1(v)). As above, we may
choose a path Q′ ⊆ I[Qik] if necessary. Thus we obtain that I−1(v) dominates
R′.

Proposition 3.3.6. Let I−1 be a dominance-preserving contraction of G onto
H, where H is acyclic. Then Y ⪯f H, if Y ⪯f G.

Proof. Suppose Y ⪯f G. Then by Theorem 4.4.2 G contains a ray R such that
there are infinitely many vertices in V (R) dominating R in G. Then there exists
a ray R′ ⊆ I−1[R], because I−1 being dominance-preserving implies that I−1 is
ray-preserving. Let (xn)n∈ω be the order-preserving enumeration of V (R) and
let (x′n)n∈ω the order-preserving enumeration of V (R′).

Then I(x′n)∩V (R) is finite for all n ∈ ω.(The assumption that I(x′n)∩V (R)
is infinite would imply that every infinite walk in I−1[R] visits I(x′n) infinitely
many times. Hence I−1[R] cannot contain a ray.) This implies that there are
infinitely many n ∈ ω such that I(x′n) contains some x ∈ V (R) such that x
dominates R in G. Since I−1 is dominance-preserving, R′ contains infinitely
many vertices dominating R′ in H. Since H is acyclic, Theorem 4.4.2 implies
that Y ⪯f H.

101

Proposition 3.3.7. Let G be acyclic and I an inflation of H onto G. Then
Y ⪯f G, if Y ⪯f H.

Proof. Suppose Y ⪯f H. Then, by Theorem 4.4.2, there is a ray R ⊆ H
such that there are infinitely many vertices in V (R) dominating R in H. Let
r = src(R). We can assume w.l.o.g. that ∂−GI(r) ̸= ∅. Let r′ ∈ ∂−GI(r) and let
R′ ⊆ I[R] be a ray with src(R′) = r′ by Lemma 3.3.1(3).

If a vertex x ∈ V (R) dominates R in H, then there exists x′ ∈ I(x)∩ V (R′)
such that x′ dominates R′ in G.

In order to see this, let x′ ∈ ∂−GI(x) ∩ V (R′). (Such an x′ exists, because
∂−GI(x) ̸= ∅, for all x ∈ V (R)). Let P be an infinite set of paths from x to R
that are pairwise disjoint except at x. For each P ∈ P (leading from x to some
y ∈ V (R)) let P ′ ⊆ I[P] be a path from x′ to some y′ ∈ ∂−GI(y), according
to Lemma 3.3.1(2). Since there is some z′ ∈ V (R′) ∩ ∂+G(I(y)) – note that
y ∈ V (R) and that R′ must leave I(y)– we can, by Definition 2.7.10(2), choose
a path from y′ to z′ and thus obtain a path P ∗, leading from x′ to z′ ∈ V (R′).
Then the set P∗ of all path constructed in this way (they are disjoint except
at x′, since those of P are disjoint except at x) witnesses the claim that x′

dominates R′ in G.
Hence, there are infinitely many vertices in V (R′) dominating R′ in G. Since

G is acyclic we can apply Theorem 4.4.2 and obtain Y ⪯f G.

Proposition 3.3.8. Let I be an inflation of H onto G. If I is regular, then
I−1 is cycle-preserving.

Proof. Let C ⊆ G be a cycle and and let x0, . . . , xn be an order-preserving
enumeration of its vertices. Let C ′ = I−1[C]. Since I is regular, there exists no
x′ ∈ V (H) such that V (C ′) ⊆ I(x′). Hence I−1(V (C)) contains at least two
elements.

If there exist x′ ∈ V (C ′) and i < j < k such that xi, xk ∈ I(x′) ∩ V (C)
and xj /∈ I(x′) ∩ V (C), then we obtain a cycle C ′′ ⊆ C ′ by the same ar-
gument as in Lemma 3.3.2. So assume that this is not the case. Then we
have an order-preserving enumeration x′0, . . . , x

′
m of the vertices of C ′ such that

{xi0 , . . . , xj0} ⊆ I(x′0), . . . , {xim , . . . , xjm} ⊆ I(x′m), where 0 = i0 ≤ j0 < · · · <
im ≤ jm = n. Hence C ′ is a cycle.

Proposition 3.3.9. Let H be acyclic and I−1 a contraction of G onto H that
is finitary or regular. Then I−1 is dominance preserving. In particular, I−1 is
ray-preserving.

Proof. In any case, we have that ∂−GI(x) is finite for all x ∈ V (H). First we
show that I−1 is ray-preserving. Let R ⊆ G be a ray. Then for all x ∈ V (H),
I(x)∩V (R) must be finite by Lemma 3.3.2(1). We conclude by Lemma 3.3.2(2)
that I[R] contains a ray.

In order to show that I−1 is dominance-preserving, let x ∈ V (G) such that
x dominates R ⊆ G. We apply Lemma 3.3.5 and obtain that I−1[x] dominates
R′.

102

Theorem 3.3.10. Let H be loop-free, G acyclic and I an inflation of H onto
G that is finitary or regular. Then Y ⪯f H iff Y ⪯f G.

Proof. ⇒: Since G is acyclic Proposition 3.3.7 yields the claim.
⇐: By Lemma 3.3.1(1) we conclude that H is acyclic. Then we apply

Proposition 3.3.9 and Proposition 3.3.6.

3.4 Walicki’s conjecture

In this section we shall use Corollary 3.2.9 in order to transfer some results from
[47], concerning sufficient conditions for a digraph having a kernel, to results on
sufficient conditions for a digraph being safe. In particular, we show that Con-
jecture (W) (2.8.11) implies Conjecture (A) (2.8.1.)

Recall Definition 3.3.3. The following was conjectured in [47].

Conjecture 3.4.1 (Walicki’s Conjecture). A digraph G has a kernel if it con-
tains neither an odd cycle nor a ray that is dominated by infinitely many of its
vertices.

We will later show (Theorem 4.4.2) that Y ⪯f G iff G contains a ray R such
that there are infinitely many vertices in V (R) dominating R in G. Hence the
above conjecture is indeed equivalent to our reformulation as Conjecture (W)
(2.8.11).

Theorem 3.4.2. Conjecture (W) implies Conjecture (A).

Proof. Let C be the class of all acyclic digraphs G such that Y ̸⪯f G. By
Theorem 3.3.10 C is closed under regular inflation. Since every element of C is
acyclic, C is also closed under twofold subdivision of loops. Then Conjecture
(W) implies that that every element of C is has a kernel. It follows by Theorem
3.2.9 that every element of C is safe.

Let us restate the following definition of an end. A subdigraph H ⊆ G is
called an end of G iff there is a ray R ⊆ G such that for all x ∈ V (H) there ex-
ists a path from x to some vertex of R in G. Ends of digraphs will be discussed
in Section 5.3.

The following was proved in [47].

Theorem 3.4.3 (Walicki). A digraph G has a kernel if it has only finitely
many ends and contains neither an odd a cycle nor a ray that is dominated by
infinitely many of its vertices.

It is not difficult to prove the following proposition, employing various results
from Section 3.3.

Proposition 3.4.4. If a digraph has only finitely many ends, then every regular
inflation of it has only finitely many ends.

103

Corollary 3.4.5. Let G be an acyclic digraph that has only finitely many ends
and such that Y ̸⪯f G. Then G is safe.

Proof. Let C be the class of all acyclic digraphs G such that Y ̸⪯f G and G has
only finitely many ends. Then by Theorem 3.3.10 and Proposition 3.4.4, C is
closed under regular inflation. It is trivially closed under twofold subdivision of
loops. By Theorem 3.4.3, every element of C has a kernel. Hence every element
of C is safe by Corollary 3.2.9.

3.5 Existence of characteristic digraphs

Now that we have discussed some of its applications, we shall proceed to the
proof of Theorem 3.2.6. A first step towards this aim is a description of Boolean
networks in terms of an infinitary propositional logic.

3.5.1 Representation of Boolean networks as sentence sys-
tems

The goal of this subsection, aside from an exposition of the framework of Rabern
et al., is to show that every Boolean network can be represented as a sentence
system. Many of the definitions and results of this subsection are from [41]. Cf.
also [40].

Given a set (of arbitrary cardinality) S, the elements of which are called
sentence names, the language LS consists of the elements of S, the nullary op-
erators ⊤ and ⊥, the unary operator ¬, the binary operator ∧ and the infinitary
operator

∧
.

Definition 3.5.1. Let S be a set of sentence names. Define the set of sentences
S+ over S recursively as follows.

1. α ∈ S+, for all α ∈ S,
2. ⊤,⊥ ∈ S+,

3. if φ ∈ S+ then ¬φ ∈ S+,

4. if φ ∈ S+ and ψ ∈ S+, then φ ∧ ψ ∈ S+,

5. if {φi | i ∈ I} is a non-empty set of cardinality less than or equal the
cardinality of S,1 and if {φi | i ∈ I} ⊆ S+, then

∧
i∈I φi ∈ S+.

We call sentences that are formed according to rule (1) primitive LS -sentences
and sentences that are formed according to the rules (2) - (5) complex LS -
sentences (even thought ⊤ and ⊥ might not be considered complex in the or-
dinary sense). In the following we always assume that the set of all primitive

1Without this cardinality restriction we would obtain a proper class of sentences. Note
that the cardinality of the set of all LS -sentences is strictly greater than that of S.

104

LS -sentences and the set of all complex LS -sentences are disjoint, i.e., we ex-
clude degenerate sets of sentences names like e.g., S = {α,¬α}, where ¬α would
be both, primitive and complex. If S is a non-degenerate sets of sentences, then
the set of all complex LS -sentences is S+ \ S.

Definition 3.5.2. We say that a sentence name α occurs in ψ ∈ S+ iff α is a
syntactic constituent of ψ.

Definition 3.5.3. Let v be a truth-value assignment, i.e., a function from S
to {0, 1}. Given v, we recursively define the evaluation function on S, ∥ · ∥(·) :
S+ × {0, 1}S → {0, 1} as follows.

1. ∥⊤∥(v) = 1,

2. ∥⊥∥(v) = 0,

3. ∥α∥(v) = v(α),

4. ∥¬φ∥(v) = 1− ∥φ∥(v),
5. ∥φ ∧ ψ∥(v) = min{∥φ∥(v), ∥ψ∥(v)},
6. ∥

∧
i∈I φi∥(v) = min{∥φi∥(v) | i ∈ I}.

A sentence system is an ordered pair (S, d), where S is a set and d is a func-
tion from S to S+. A truth-value assignment v : S → {0, 1} is an interpretation
of (S, d) iff for all α ∈ S, ∥α∥(v) = ∥d(α)∥(v); and v is an interpretation of
a set of LS-sentences T iff for all φ ∈ T : ∥φ∥(v) = 1. Furthermore, we say
that T is satisfiable iff there exists an interpretation of T . For any sentence
system (S, d) we call the set T (S, d) = {α ↔ d(α) | α ∈ S} ⊆ S+ the set of
T -schemes associated with (S, d). A paradoxical sentence system is one that has
no interpretation. Clearly, v : S → {0, 1} is an interpretation of (S, d) iff it is
an interpretation of T (S, d).

Definition 3.5.4. The reference graph GS,d of a sentence system (S, d) is the
digraph G with V (G) = S and such that A(G) is the set of all (α, β) such that
β occurs in d(α).

Note that, in contrast to a dependency graph of a Boolean network, there is
only one reference graph of a sentence system.

For example, if S0 = {α0} and d0(α0) = ⊥, then (S0, d0) is a sentence system
whose reference graph consists of a single vertex α0 with no arcs. For Sλ = {λ}
and dλ(λ) = ¬λ, the corresponding reference graph consists of a single vertex
λ and an arc (a loop) from λ to λ. The reference graph of ({τ}, dτ (τ) = τ) is
isomorphic to that of (Sλ, dλ), even though (Sλ, dλ) is paradoxical while (Sτ , dτ)
is satisfiable. Finally, for n ∈ ω, let dY(n) =

∧
m>n ¬m. Then (ω, dY) is a para-

doxical sentence system whose reference graph is Y.

The following construction up to Corollary 3.5.12 is, in some coarser form,
already indicated in Appendix A of [41].

105

Definition 3.5.5. Let (S, d) be a sentence system. For all x ∈ V (GS,d) = S
and all f : V (GS,d) → {0, 1} define Vd(f, x) = ∥d(x)∥(f).

Proposition 3.5.6. Let G be the reference graph of a sentence system (S, d).
Then Vd : {0, 1}V (G) × V (G) → {0, 1} is a Boolean network on G.

Proof. Let X = V (G). Let f, g ∈ {0, 1}X . Let x ∈ X and suppose f ↾
outG(x) = g ↾ outG(x). Then Vd(f, x) = ∥d(x)∥(f), where d(x) ∈ S+ is
such that outG(x) is the set of all sentence names occurring in d(x). By in-
duction on the complexity of x one shows that ∥d(x)∥(f) = ∥d(x)∥(g). Hence
Vd(f, x) = Vd(g, x).

Definition 3.5.7. Let (G,Φ) be a constrained Boolean network. A sentence
system (S, d) is said to be a representation of (G,Φ) iff G = GS,d and Φ = Vd.

Observe that in particular V (G) = S, if (S, d) is a representation of (G,Φ).
The vertices of G are simply used as sentence names.

Proposition 3.5.8. Let Φ be a Boolean network and (S, d) a representation of
Φ. Then f : S → {0, 1} is a fixed point of Φ iff f is an interpretation of (S, d).

Every Boolean network on G has a representation. In order to show this, we
need the following lemma from [41].

Lemma 3.5.9. For all sets S of sentence names and all f : {0, 1}S → {0, 1},
there exists a sentence ζf ∈ S+ such that ∥ζf∥ = f .

Proof. Then sentence ζf will be the representation of f in disjunctive normal
form (DNF), generalized to infinitary propositional logic. In the following, read∨

i∈I φi as an abbreviation of ¬
∧

i∈I ¬φi.

If f(v) = 0 for all v ∈ {0, 1}S , then let ζf = ⊥. Otherwise let

ζf =
∨

v∈C

∧
α∈S h(v, α),

where C = {v ∈ {0, 1}S | f(v) = 1} and h(v, α) =

{
α, if v(α) = 1

¬α, if v(α) = 0.

Theorem 3.5.10. For all digraphs G, there is a map Φ 7→ dΦ from the set of
all Boolean networks on G into the set of all sentence systems over S = V (G)
such that GS,dΦ

= G and VdΦ
= Φ.

Proof. Let Φ be a Boolean networks on G. For every x ∈ S let Sx = S∩outG(x).
For x ∈ S and f : S → {0, 1} let Φx(f) = Φ(f, x). Thus Φx : {0, 1}S → {0, 1}.
By Lemma 3.5.9 there exists a sentence ζΦx ∈ S+

x such that ∥ζΦx∥ = Φx. Since
Sx ⊆ S, ζΦx

∈ S+. Let dΦ(x) = ζΦx
. Then (S, dΦ) is a sentence system and

G = GS,dΦ
. Moreover, for all f : V (X) → {0, 1} and x ∈ V (G): VdΦ

(f, x) =
∥dΦ(x)∥(f) = Φ(f, x) by definition of dΦ.

Corollary 3.5.11. Every constrained Boolean network has a representation.

106

Corollary 3.5.12. A digraph G is dangerous iff there exists a paradoxical sen-
tence system (S, d) such that G = GS,d.

In other words, a digraph is dangerous in the sense of [41] iff it is dangerous
in the sense of Definition 2.6.1.

Observe that representations are only defined for constrained Boolean net-
works and not for Boolean networks simpliciter. The reason for this can be
found in the crucial role the dependency graph plays in defining the denotation
function of the sentence system in the proof of Theorem 3.5.10. This point
becomes particularly apparent when Boolean networks with no minimal depen-
dency graphs as in Example 2.3.3 are considered. Such Boolean networks cannot
be fully captured by any sentence system without prior interpretation of their
dependency structure.

Definition 3.5.13. Let (G,Ψ) be a constrained Boolean network. We call the
sentence system assigned to (G,Ψ) in the proof of Theorem 3.5.10 the standard
representation of (G,Ψ) in DNF.

3.5.2 Construction of a characteristic digraph

The goal of this subsection is to prove Theorem 3.2.6.

Definition 3.5.14. Let S be a set of sentence names. An S-sentence φ is said
to be in F -normal form (FNF) iff one of the following holds.

1. φ = ⊤,

2. φ = ¬α0, for some α0 ∈ S,
3. φ = ν1 ∧ ν2, where νi = ⊤ or νi = ¬αi, for i ∈ {0, 1} and αi ∈ S,
4. φ =

∧
i∈I νi, where νi = ⊤ or νi = ¬αi, for i ∈ I and αi ∈ S.

A sentence system (S, d) is said to be in F -normal form iff for all α ∈ S,
d(α) is in F -normal form.

The ‘F’ in ‘F-normal form’ stands for ‘false’. Also cf. ‘F-system’ in [41].

Proposition 3.5.15. Let (S, d) be a sentence system in F -normal form. Then

∥d(x)∥(v) = Φ
GS,d

↓ (v, x), for all x ∈ S, v ∈ {0, 1}S . In particular, GS,d has a
kernel iff (S, d) is satisfiable.

In a certain sense, the goal of the remainder of this section is to establish a
more elaborate version of a result from [8]. In the following, we shall define for
every sentence system (S, d) an equi-satisfiable sentence system (SF , F (d)) in
F -normal form. One advantage that this procedure has over that suggested in
[8] is that no artificial loops are created when passing from the original reference
graph to the new one, which, given that the original one is loop-free, will be a
regular inflation of it.

107

For this purpose, let S be a non-degenerate set of sentence names that shall
be fixed in the following. For every sentence φ (of every language whatsoever,
i.e., for every object in the set-theoretic universe) and every β ∈ S, let

⌜φ⌝β =

{
α, if φ = α, for some α ∈ S
(φ, β), if φ /∈ S.

Definition 3.5.16. We define by simultaneous recursion a set of sentence names
SF and a set of sentences S+

F over SF as follows.

1. If α ∈ S, then α ∈ SF ,

2. if φ ∈ (SF)
+, then φ ∈ S+

F ,

3. if φ ∈ S+
F and β ∈ S, then ⌜φ⌝β ∈ SF .

Then SF is a non-degenerate set of sentence names, S ⊆ SF , and S+ ⊆
S+
F = (S+

F)+. Note that ⌜φ⌝β ∈ S+
F , for all φ ∈ S+

F and β ∈ S.

The basic idea behind the following translation of LS -sentences into LSF
-

sentences is to replace unnegated sentences by doubly negated sentences and,
if necessary, substituting sentences names from S+

F for sub-sentences in order
to obtain sentences in F -normal form. The role of the set SF is to ensure that
occurrences of identical sub-sentences in different contexts (i.e., in d(α) and
d(β), where d is some denotation function for S and α ̸= β) are replaced by
different sentence names. This is necessary if we want the reference graph of
the resulting sentence system to be a regular inflation of the reference graph of
the original one.

Definition 3.5.17. Define a maps F, F 1 : S × S+ → S+
F simultaneously by

recursion on the syntactic complexity of LS -sentences as follows.

1. Fβ(⊤) = F 1
β (⊤) = ⊤,

2. Fβ(⊥) = F 1
β (⊥) = ¬⌜⊤⌝β ,

3. Fβ(α) = ¬⌜¬α⌝β , where α ∈ S,
4. Fβ(¬α) = F 1

β (¬α) = ¬α, where α ∈ S,

5. Fβ(¬φ) = F 1
β (¬φ) = ¬⌜Fβ(φ)⌝

β
, where φ ∈ S+ \ S,

6. for all φ,ψ ∈ S+ let

(a) Fβ(φ ∧ ψ) = F 1
β (φ) ∧ F 1

β (ψ),

(b) F 1
β (φ ∧ ψ) = ¬⌜¬(F 1

β (φ) ∧ F 1
β (ψ))⌝

β ,

7. for all φi ∈ S+ let

(a) Fβ(
∧

i∈I φi) =
∧

i∈I F
1
β (φi),

(b) F 1
β (
∧

i∈I φi) = ¬⌜¬(
∧

i∈I F
1
β (φi))⌝β .

108

The reason for this nested recursion is to distinguish between occurrences
within conjunctions and outside of conjunctions.

It will be shown below (cf. Lemma3.5.20) that these functions are indeed
well-defined and behave as intended. For an illustration cf. Example 3.5.24.

In order to associate a truth-value assignment vF on SF to any given truth-
value assignment v on S, let us first extend the evaluation function ∥ · ∥(v) :
S+ → {0, 1} to the extended language S+

F .

Definition 3.5.18. For v : S → {0, 1} define ∥ · ∥∗(v) : S+
F → {0, 1} recursively

as follows.

1. ∥⊤∥∗(v) = 1,

2. ∥⊥∥∗(v) = 0,

3. ∥α∥∗(v) = v(α), if α ∈ S,
4. ∥⌜φ⌝β∥∗(v) = ∥φ∥∗(v), if φ ∈ S+

F \ S and β ∈ S,
5. ∥¬φ∥∗(v) = 1− ∥φ∥∗(v),
6. ∥φ ∧ ψ∥∗(v) = min{∥φ∥∗(v), ∥ψ∥∗(v)},
7. ∥

∧
i∈I φi∥∗(v) = min{∥φi∥∗(v) | i ∈ I}.

The crucial clause of Definition 3.5.18 is, of course, (4).

Definition 3.5.19. Let v : S → {0, 1}. Define vF : SF → {0, 1} by vF (ν) =
∥ν∥∗(v), for all ν ∈ SF .

Lemma 3.5.20. Let (S, d) be a sentence system, φ ∈ S+, β ∈ S and v ∈
{0, 1}S . Then

1. v = vF ↾ S,
2. Fβ(φ) is an SF -sentence in FNF,

3. ∥Fβ(φ)∥(vF) = ∥Fβ(φ)∥∗(v) = ∥F 1
β (φ)∥∗(v) = ∥φ∥(v).

4. Let α ∈ S. If α occurs in Fβ(φ), then α occurs in φ.

5. If φ is in F -normal form, then Fβ(φ) = φ.

Proof. Ad 1: vF (α) = ∥α∥∗(v) = v(α) by Definitions 3.5.19 and 3.5.18.
Ad 2 and 3: We prove the claims simultaneous by induction on the syntactic
complexity of φ.

• Suppose φ ∈ {⊤,⊥, α,¬α}, (α ∈ S). Then Fβ(φ) ∈ {⊤,¬⌜⊤⌝β ,¬⌜¬α⌝β ¬α}.
This proves (2). Claim (3) is straightforward by computation, e.g., ∥¬⌜¬α⌝β∥(vF)
= ∥¬⌜¬α⌝β∥∗(v) = 1− (1− v(α)) = ∥α∥(v).

109

• Now let φ = ¬ψ, for ψ ∈ S+\S. Then Fβ(φ) = ¬⌜Fβ(ψ)⌝
β
, where Fβ(ψ) ∈

S+
F by induction hypothesis (2). Hence ⌜Fβ(ψ)⌝

β ∈ SF by Definition
3.5.16, which proves claim (2).

Ad 3: ∥¬⌜Fβ(ψ)⌝
β∥(vF)

i.h.
= 1 − ∥⌜Fβ(ψ)⌝

β∥∗(v) = 1 − ∥Fβ(ψ)∥∗(v)
i.h.
=

1− ∥ψ∥(v) = ∥¬ψ∥(v).
• Now let ψ1, ψ2 ∈ S+ and φ = ψ1∧ψ2. Then Fβ(φ) = F 1

β (ψ1)∧F 1
β (ψ2). Ad

(2): We have to show that F 1
β (ψ1) ∈ {⊤,¬ν1} and F 1

β (ψ2) ∈ {⊤,¬ν2}, for
ν1, ν2 ∈ SF . This is done by side induction on the syntactic complexities of
ψ1 and ψ2. We only show the computation for ν1, that for ν2 is completely
analogous.

– Suppose ψ1 ∈ {⊤,⊥, α,¬α}, (α ∈ S). Then F 1
β (ψ1) ∈ {⊤,¬⌜⊤⌝β ,¬⌜¬α⌝β ¬α},

whicb proves the claim.

– Now let ψ1 = ¬χ, for χ ∈ S+ \ S. Then F 1
β (ψ1) = ¬⌜Fβ(χ)⌝

β
, where

Fβ(χ) ∈ S+
F by induction hypothesis (2). Hence ν1 = ⌜Fβ(χ)⌝

β ∈ SF .

– Now let ψ1 = χ ∧ ξ, for χ, ξ ∈ S+. Then F 1
β (ψ1) = F 1

β (χ ∧ ξ) =

¬⌜¬(F 1
β (χ) ∧ F 1

β (ξ))⌝
β , where F 1

β (χ), F
1
β (ξ) ∈ S+

F by side induction

hypothesis (2). Hence ν1 = ⌜¬(F 1
β (χ) ∧ F 1

β (ξ))⌝
β ∈ SF .

– Suppose ψ1 =
∧

i∈I χi. The argument is completely analogous to the
previous case.

Ad 3: By induction hypothesis (3) we have ∥Fβ(φ)∥(vF) = ∥F 1
β (ψ1) ∧

F 1
β (ψ2)∥(vF)

i.h.
= min{∥F 1

β (ψ1)∥∗(v), ∥F 1
β (ψ2)∥∗(v)} = ∥F 1

β (ψ1)∧F 1
β (ψ2)∥∗(v) =

∥Fβ(φ)∥∗(v).
Moreover, ∥F 1

β (ψ1)∥∗(v) = ∥Fβ(ψ1)∥∗(v) = ∥ψ1∥(v) and ∥F 1
β (ψ2)∥∗(v) =

∥Fβ(ψ2)∥∗(v) = ∥ψ2∥(v) by induction hypothesis (3).

– Suppose ψ1 = ⊤. Then F 1
β (ψ1) = ⊤. Hence ∥Fβ(φ)∥(vF) =

∥F 1
β (ψ2)∥∗(v) = ∥Fβ(ψ2)∥∗(v) = ∥ψ2∥(v) = ∥ψ1 ∧ ψ2∥(v) = ∥φ∥(v).

– Suppose ψ1 = ⊥. Then F 1
β (ψ1) = ¬⌜⊤⌝β . Hence ∥Fβ(φ)∥(vF) =

min{∥F 1
β (ψ1)∥∗(v), ∥F 1

β (ψ2)∥∗(v)} = 0 = ∥ψ1 ∧ ψ2∥(v) = ∥φ∥(v).

– Suppose ψ1 = α, for α ∈ S. Then F 1
β (ψ1) = ¬⌜¬α⌝β . Hence

∥Fβ(φ)∥(vF) = min{∥F 1
β (ψ1)∥∗(v), ∥F 1

β (ψ2)∥∗(v)} =min{v(α), ∥F 1
β (ψ2)∥∗(v)}

= min{v(α), ∥ψ2)∥(v)} = ∥ψ1 ∧ ψ2∥(v) = ∥φ∥(v).
– Suppose ψ1 = ¬χ. Then F 1

β (ψ1) = ¬⌜Fβ(χ)⌝β . Hence ∥Fβ(φ)∥(vF) =
min{∥F 1

β (ψ1)∥∗(v), ∥F 1
β (ψ2)∥∗(v)} =min{∥¬⌜Fβ(χ)⌝β∥∗(v), ∥F 1

β (ψ2)∥∗(v)}
= min{1− ∥Fβ(χ)∥(v), ∥ψ2)∥(v)} = ∥ψ1 ∧ ψ2∥(v) = ∥φ∥(v).

– Suppose ψ1 = χ ∧ ξ. Then F 1
β (ψ1) = F 1

β (χ ∧ ξ) = ¬⌜¬(F 1
β (χ) ∧

F 1
β (ξ))⌝

β . Hence ∥Fβ(φ)∥(vF) =
min{∥¬⌜¬(F 1

β (χ)∧F 1
β (ξ))⌝

β∥∗(v), ∥F 1
β (ψ2)∥∗(v)}= min{b1, ∥ψ2)∥(v)}

= ∥ψ1∧ψ2∥(v) = ∥φ∥(v), where b1 = 1−(1−min{∥χ∥∗(v), ∥ξ∥∗(v)}).

110

– Suppose ψ1 =
∧

i∈I χi. The argument is completely analogous to the
previous case.

• The
∧
-case is analogous to the ∧-case.

Ad 4 and 5: Straightforward by induction on the syntactic complexity of φ.

Definition 3.5.21. For all φ ∈ S+
F define

1. the set D∗(φ) of all direct proper transparent subsentences of φ as follows.

(a) If φ = ⊥ or φ = ⊤ or φ = α, for some α ∈ S, then D∗(φ) = ∅,

(b) if φ = ⌜ψ⌝β , where ψ ∈ S+
F \ S and β ∈ S, then D∗(φ) = {ψ},

(observe that the case that ψ ∈ S cannot occur),

(c) if φ = ¬ψ, then D∗(φ) = {ψ},
(d) if φ = ψ1 ∧ ψ2, then D

∗(φ) = {ψ1, ψ2},
(e) if φ =

∧
i∈I ψi, for some non-empty set I, then D∗(φ) = {ψi | i ∈ I},

2. the set P ∗(φ) of all proper transparent subsentences of φ recursively by
P ∗(φ) = D∗(φ) ∪

⋃
{P ∗(ψ) | ψ ∈ D∗(φ)}.

3. We say that ψ ∈ S+
F occurs transparently in φ iff ψ ∈ P ∗(φ) or ψ = φ.

Definition 3.5.22. Let (S, d) be a sentence system.

1. Define F (d) : SF → S+
F by

(F (d))(ν) =

{
Fα(d(α)), if ν = α, for some α ∈ S
φ, if ν = ⌜φ⌝β , for φ ∈ S+

F \ S and β ∈ S.

2. Let Fd(α) (for α ∈ S) be the union of {α} and the set of all ν ∈ SF \ S
such that ν occurs transparently in (F (d))(α).

3. Let Sf =
⋃

α∈S Fd(α) and df = (F (d)) ↾ Sf .

4. For all v : S → {0, 1} define vf = vF ↾ Sf . (Cf. Definition 3.5.19).

Lemma 3.5.23. Let (S, d) be a sentence system and α ∈ S. Then the following
hold.

1. (Sf , df) is a sentence system in F -normal form.

2. Fd = {Fd(α) | α ∈ S} is a partition of Sf .

3. α is the root of Fd(α), i.e., every ν ∈ Fd(α) is reachable from α in
GSf ,df

[Fd(α)].

4. If GS,d is loop-free, then GSf ,df
[Fd(α)] is a well-founded digraph.

5. ∂−GSf ,df
Fd(α) = {α}.

6. If v is an interpretation of (S, d), then vf is an interpretation of (Sf , df).

7. For every interpretation u of (Sf , df), there exists an interpretation v of
(S, d) such that u = vf .

111

8. Fd is a regular inflation of GS,d onto GSf ,df
, if GS,d is loop-free.

Proof. For better readability, let G = GS,d and G′ = GSf ,df
throughout the

proof.
Ad 1: This is a consequence of Lemma 3.5.20(2).
Ad 2: It suffices to show that Fd(α) ∩ Fd(β) = ∅, for α ̸= β ∈ S. But this

is a consequence of the definitions of ⌜φ⌝α and Fd(α), since for all γ ∈ S, every
ν ∈ Fd(γ) is of the form ⌜φ⌝γ for some φ ∈ S+

F .
Ad 3: Observe that for all α ̸= ν ∈ Fd(α), either ν is a direct proper

subsentence of df (α) or there exists a unique ν′ ∈ Fd(α) such that ν is a proper
direct subsentence of ν′. Hence there is a sequence ν0, · · · , νn in Fd(α) with
ν0 = α and νn = ν such that νi+1 occurs in df (νi).

Ad 4: Assuming otherwise implies the contradiction that the realtion {(φ,ψ) |
ψ ∈ D∗(φ)} is not well-founded.

Ad 5: Let ν ∈ ∂−G′Fd(α). If ν ∈ S, then ν = α. Hence we can assume that
ν = ⌜φ⌝α, for some φ ∈ S+

F \ S. Clearly ⌜φ⌝α does not occur transparently in
any (F (d))(β), for β ̸= α. This leads to the contradiction that ν /∈ ∂−G′Fd(α).

Ad 6 and 7: By induction on the syntactic complexity.
Ad 8: By (2) - (5).

Proof of Theorem 3.2.6. Let (H,Ψ) be a constrained Boolean network.
We have to show that (H,Ψ) has a characteristic digraph, i.e., a digraph G such
that there exists a network inflation (cf. Definition 3.2.4) (I, i) of (H ′,Ψ′) onto
(G,ΦG

↓), where (H
′,Ψ′) is the loop-cleansed form of (H,Ψ) (cf. Definition 3.2.1).

Let us assume for simplicity of notation that (H,Ψ) = (H ′,Ψ′). (Because of
Proposition 3.2.2 we can assume this without loss of generality). So, we must
find a digraph G and a regular inflation I of H onto G and a dense weak
system-embedding i of Ψ into ΦG

↓ .

• Let (S, d) be the standard representation of (H,Ψ) in DNF. (cf. Definition
3.5.13).

• Let Sf be as in Definition 3.5.22.

• Let G = GSf ,df
.

• Let I = Fd be the partition of Sf from Definition 3.5.22.

• Let i : {0, 1}S → {0, 1}Sf be defined by i(v) = vf as in Definition 3.5.22.

• Let r : {0, 1}Sf → {0, 1}S be defined by r(v) = v ↾ S.

Then

1. V (H) = S (by definition),

2. V (G) = Sf (by definition),

3. Sf ⊇ S (by Definition 3.5.22),

112

4. (Sf , df) is in FNF (by Lemma 3.5.23),

5. Vd = Ψ (by Theorem 3.5.10),

6. Vdf
= ΦG

↓ (by Proposition 3.5.15),

7. Fd is a regular inflation of GS,d = H onto GSf ,df
= G (by Lemma

3.5.23(8)).

Hence I is a regular inflation of H onto G by (7). It remains to be shown
that i is a dense weak system embedding of Ψ into ΦG

↓ with retraction r. By
Defnition 2.5.4 this means that we have to show that

i. Ψ = r ◦ ΦG
↓ ◦ i,

ii. Ψ(v) = v implies i(v) = ΦG
↓ ◦ i(v), for all v ∈ {0, 1}S ,

iii. v = r(i(v)), for all v ∈ {0, 1}S ,

iv. if ΦG
↓ (v) = v, then v = i(r(v)), for all v ∈ {0, 1}Sf .

In order to prove (i), recall that

(F (d))(ν) =

{
Fα(d(α)), if ν = α, for some α ∈ S
φ, if ν = ⌜φ⌝β , for φ ∈ S+

F \ S and β ∈ S.

Moreover, df = (F (d)) ↾ Sf .

We have (cf. Definition 3.5.5) for all α ∈ S, Ψ(v, α) = Vd(v, α) = ∥d(α)∥(v).
On the other hand, ΦG

↓ (i(v), α) = Vdf
(i(v), α) = ∥df (α)∥(i(v)) = ∥df (α)∥(vf) =

∥(F (d))(α)∥(vF) = ∥Fα(d(α))∥(vF) = ∥Fα(d(α))∥∗(v) = ∥d(α)∥(v) = Ψ(v, α).
(The last three identifies follow by Lemma 3.5.20(3)). Hence Ψ = (ΦG

↓ ◦i(v)) ↾ S,
and thus Ψ = r ◦ ΦG

↓ ◦ i.

Moreover, (ii) follows from Lemma 3.5.20 (3), (iii) from Lemma 3.5.20 (1), and
(iv) from Lemma 3.5.23(7)). This proves Theorem3.2.6.

Let us conclude this chapter with an example.

Example 3.5.24. Let (S, d) be the sentence system such that S = {β} ∪ {αi |
i ∈ ω}, d(β) = φ =

∧
i∈ω αi, d(αi) = ¬αi.

Note that (S, d) is not in FNF. The reference graphs GS,d of (S, d) looks as
follows.

α0 α1 α2 α3

β

113

The loop-cleansed form G′
S,d of GS,d (cf. Definition 3.2.1) looks as follows.

α0

α1
0 α2

0

α1

α1
1 α2

1

α2

α1
2 α2

2

......

β

The corresponding Boolean network can be described by the following sen-
tence system (S ′, d′). This sentence system arises from (S, d) by adding new
sentences names α0

i and α1
i , for all i ∈ ω and changing d to d′ as follows. For

all i ∈ ω let

1. d′(αi) = ¬α1
i ,

2. d′(α1
i) = α2

i ,

3. d′(α2
i) = αi.

For all all other sentence names ν, let d′(ν) = d(ν).

Finally, we transform (S ′, d′) into FNF, i.e., into the sentence system (S ′
f , d

′
f).

This is done on the basis of the following computations.

• Fβ(d
′(β)) = Fβ(φ) =

∧
i∈ω F

1
β (αi) =

∧
i∈ω ¬⌜¬αi⌝β .

• Fαi
(d′(αi)) = ¬α1

i ,

• Fα1
i
(d′(α1

i)) = ¬⌜¬α2
i⌝

α1
i

• Fα2
i
(d′(α2

i)) = ¬⌜¬αi⌝α
2
i .

The reference graph GS′
f ,d

′
f
of (S ′

f , d
′
f) looks as follows.

114

α2
0 ⌜¬α0⌝α

2
0 α2

1
...

α0α1
0

⌜¬α2
0⌝

α1
i

α1α1
1

...

⌜¬α0⌝β ⌜¬α1⌝β ⌜¬α2⌝β ⌜¬α3⌝β

β

3.6 Signed dependency graphs

Definition 3.6.1. Let S be a set of sentence names. We call an LS -sentence φ

1. positive iff it is logical equivalent to an LS -sentence ψ such that the only
operator symbols that occur in ψ are ⊤, ∧, ∨,

∧
and

∨
.

2. negative iff it is logical equivalent to an LS -sentence ψ such that the only
operator symbols that occur in ψ are ⊥, ∧, ∨,

∧
and

∨
and ¬ and,

,moreover, ¬ occurs only in front of sentence names and in front of every
sentence name.

Definition 3.6.2. A sentence system (S, d) is said to be positive iff d(α) is
positive for all α ∈ S; it is said to be negative iff d(α) is negative for all α ∈ S.
A Boolean network is said to be positive iff its standard representation in DNF
is positive; it is said to be negative iff its standard representation in DNF is
negative.

The following is a (more general) reconstruction of Definition 5.1 of [5].

Definition 3.6.3. Let (H,Ψ) be a constrained Boolean network and (S, d)
the standard representation of (H,Ψ) in DNF. For all (x, y) ∈ A(H) define
SΨ(x, y) ∈ {+,−,⊥} as follows.

1. SΨ(x, y) = + iff d(x) is positive,

2. SΨ(x, y) = − iff d(x) is negative,

3. SΨ(x, y) = ⊥ iff d(x) is neither positive nor negative.

115

We call (V (H), {((a, SΨ(a))) | a ∈ A(H))}) the signed dependency graph of
the constrained Boolean network (H,Ψ).

Let us illustrate this definition with two examples.

Example 3.6.4. The following digraphs are signed dependency graphs of the
liar sentence, its loop-cleansed form and its F -normal form.

L

−

L L∗

L∗∗

−

++

L

L∗− −

−

−

−

Example 3.6.5. The following digraphs are signed dependency graphs of the
truth-teller sentence, its loop-cleansed form and its F -normal form.

T

+

T T ∗

T ∗∗

+

++

T

− −

−

−−

−

There is, of course, a deeper reason behind the fact that the characteristic
digraph of the liar is an odd cycle while that of the truth-teller is an even cycle
- and it can be understood in terms of arc-signatures. Recall Definition 2.7.18.

Theorem 3.6.6. Let (H,Ψ) be a constrained Boolean network and (S, d) the
standard representation of (H,Ψ) in DNF. Let I = Fd (cf. Definition 3.5.22)
be the regular inflation of H onto the characteristic digraph G of (H,Ψ) as in
in the proof of Theorem 3.2.6. Then or all (x, y) ∈ A(H) the following claims
hold.

1. SΨ(x, y) = + iff every path P ⊆ G that leads from x to y and is such that
(V (P) \ {y}) ⊆ I(x) is even,

2. SΨ(x, y) = − iff every path P ⊆ G that leads from x to y and is such that
(V (P) \ {y}) ⊆ I(x) is odd,

116

3. SΨ(x, y) = ⊥ iff there exists an even P0 ⊆ G that leads from x to y and is
such that (V (P0) \ {y}) ⊆ I(x) and there exists an odd P1 ⊆ G that leads
from x to y and is such that (V (P1) \ {y}) ⊆ I(x).

Notice that for (x, y) ∈ A(H), y /∈ I(x). For this reason the path P from
Definition 3.6.3 is always one arc longer than the respective path figuring in
Definition 2.7.18, that lies completely inside of I(x). In particular, for all
(x, y) ∈ A(H), SΨ(x, y) = −, if I is the trivial inflation. More generally, the
following holds.

Corollary 3.6.7. Let (H,Ψ) be a constrained Boolean network and I the regular
inflation of H onto the characteristic digraph G of (H,Ψ) as in the proof of
Theorem 3.2.6. Then

1. I is odd iff for all (x, y) ∈ A(H), SΨ(x, y) = +,

2. I is even for all (x, y) ∈ A(H), SΨ(x, y) = −.

Now we can derive Corollary 5.11 of [5].

Corollary 3.6.8. Every positive Boolean network has a fixed point.

Proof. By Theorem 3.1.5.

Example 3.6.9. Let us conclude this chapter by revisiting Example 3.5.24.
The given Boolean network is neither positive nor negative: d(β) is a positive
formula while all d(αi) are negative. Consequently, the inflation of the loop-
cleansed form onto the characteristic digraph is neither even nor odd. Every
positive arc is expanded to a path of length 2 (corresponding to an odd inflation
of a vertex), while the negative arcs (leading from αi to α

1
i) are not expanded

at all ((corresponding to the trivial and thus even inflation of a vertex).

117

Chapter 4

The parity of an inflation
and strong
kernel-perfectness

The main goal of Chapter 4 is to prove the converse of each of the conjectures
(A), (C) and (D). This is done by proving Theorems 4.3.4, 4.3.7 and 4.3.10 re-
spectively. An important tool for this end is the concept of convergent inflation,
introduced in Section 4.1. For a more detailed outline of Chapter 4 the reader
is referred to Subsection 1.5.3.

4.1 Convergent inflations

Recall the definition of an in-branching tree from Section 2.1.

Definition 4.1.1. An inflation I of H onto G is said to be convergent iff for
all x ∈ V (H),

1. G[I(x)] is an in-branching tree,

2. ∂+GI(x) ⊆ snk(G[I(x)]).

Convention. Let I be an inflation of H onto G and x ∈ V (H). For better
readability we write also I[x] for G[I(x)].

Notice that this convention is, if not entirely in the spirit of, then at least
not in conflict with Definition 2.7.17.

Proposition 4.1.2. Let I be a convergent inflation of H onto G. Then I is

1. even iff for all x ∈ V (H) and all y ∈ ∂−GI(x), htI[x](y) is even,

2. odd iff for all x ∈ V (H) and all y ∈ ∂−GI(x), htI[x](y) is odd,

118

where htI[x](y) is the height of the vertex y in the in-branching tree I[x] =
G[I(x)].

The following definition is in full analogy to Definition 2.7.19.

Definition 4.1.3. For any digraph H, a digraph G is said to be

1. an even Ifc[H] iff there exists an odd finitary convergent inflation of H
onto G,

2. an odd Ifc[H] iff there exists an even finitary convergent inflation of H
onto G.

Lemma 4.1.4. Let G be an Ifc[H]. Then there exists a subdivision G′ of G
that is an even (odd) Ifc[H].

Lemma 4.1.5. Let I be an even convergent inflation of H onto G and let K
be a kernel of G. Then for all x ∈ V (H), all y ∈ ∂+GI(x) and all z ∈ ∂−GI(x),
y ∈ K iff z ∈ K.

Proof. Let x ∈ V (H) and T = I[x]. Then for all v ∈ V (T) \ snk(T), outG(v) ⊆
outT (v) and there exists a unique v′ ∈ V (T), such that v′ ∈ outT (v). Hence

(∗) v ∈ K iff v′ /∈ K, for all v ∈ V (T) \ snk(T).

Let y ∈ ∂+GI(x) and z ∈ ∂−GI(x). Then y is the unique sink of T and htT (z)
is even by Proposition 4.1.2. Hence the unique path P in T from z to y has
even length. We can assume that y ̸= z, i.e., z is not the sink of T . Then the
claim follows from (∗), by which the vertices of P are alternately in K and not
in K or vice versa.

4.2 Construction of convergent inflations of the
Yablo-graph

Definition 4.2.1. Let G0, G1 and G2 be digraphs, I an inflation of G0 onto G1

and J an inflation of G1 onto G2. Let J ◦ I : V (G0) → ℘(V (G2)) be defined
by (J ◦ I)(x) =

⋃
{J (y) | y ∈ I(x)}.

Proposition 4.2.2. Let I be an inflation of G0 onto G1 and J an inflation of
G1 onto G2. Then

1. J ◦ I is an inflation of G0 onto G2,

2. if I and J are finitary, then J ◦ I is finitary,

3. if both I and J are determined, then J ◦ I is determined,

Proposition 4.2.3. Let I be a determined inflation of G0 onto G1 and J a
determined inflation of G1 onto G2. Then

119

1. if J ◦ I is even, iff I and J have the same parity,

2. J ◦ I is odd iff I and J have different parities.

We write H ⪯fc G (H ⪯fsc G) iff there exists some G′ ⊆ G such that G′ is
a finitary and convergent inflation of H.

Proposition 4.2.4. If D ⪯fc G and G ⪯fc H, then D ⪯fc H.

Proof. Let I0 be a finitary and convergent inflation of D onto G′ ⊆ G and I1
be a finitary and convergent inflation of G onto H ′ ⊆ H. For all x ∈ V (D) let
I be defined by I(x) =

⋃
{I1(y) | y ∈ I0(x)}. By Proposition 4.2.2, {I(x) |

x ∈ V (D)} is inflation of D onto H ′ ⊆ H. However, H ′
x = H ′[I(x)] might

not be an in-branching tree, for some x ∈ V (D). On the other hand, clearly
∂+H′I(x) ⊆ snk(H ′

x), for all x ∈ V (D). The problem can be fixed by choosing
for each x ∈ V (D) an in-branching spanning tree Tx of H ′

x and considering
the digraph H∗ with V (H∗) = V (H ′) such that (u, v) ∈ A(H∗) iff there exists
x ∈ V (D) such that (u, v) ∈ A(Tx) or there exists y ̸= z ∈ V (D) such that
u ∈ I(y) and v ∈ I(z) and (u, v) ∈ A(H). Then H∗ ⊆ H ′ is spanning, and I
is an inflation of D onto H∗, with I[x] = Tx. Since ∂+H′I(x) = ∂+H∗I(x) and
∂+(H ′

x) = snk(Tx), it follows that I is a finitary convergent inflation of D onto
H∗ ⊆ H.

Proposition 4.2.5. For all X ⊆ ω, Y[X] is isomorphic to Y iff X is infinite.

Proof. Suppose that X is infinite. Let (xn)n∈ω be the order-preserving enumer-
ation of X. Then n 7→ xn is a digraph isomorphism from Y to Y[X]. The other
direction is trivial.

Definition 4.2.6. A spanning subdigraph G ⊆ Y is said to be Yablo-like iff
n + 1 ∈ outG(n) and there are infinitely many n ∈ ω such that outG(n) is
infinite.

Definition 4.2.7. Let G be a Yablo-like digraph. We say that G is evenly
spaced iff for all n ∈ ω, all k ∈ outG(n) \ {n+ 1} are even, and that G is oddly
spaced iff for all n ∈ ω, all k ∈ outG(n) \ {n+ 1} are odd.

Example 4.2.8. The digraph Y→ from Example 2.7.7 is isomorphic to an
evenly spaced Yablo-like digraph.

Lemma 4.2.9. Every Yablo-like digraph contains

1. a subdigraph that is isomorphic to a Yablo-like digraph and is evenly spaced
and

2. a subdigraph that is isomorphic to a Yablo-like digraph and is oddly spaced.

Proof. Let G be a Yablo-like digraph. Let n ∈ ω be such that outG(n) is infinite.
Then outG(n) has an infinite subset of even numbers or an infinite subset of odd
numbers. Moreover, G has infinitely many even vertices with infinitely many

120

out-neighbors or infinitely many odd vertices with infinitely many out-neighbors.
Combining both observations yields an infinite set X ⊆ ω such that either every
n ∈ X has infinitely many even out-neighbors, or every n ∈ X has infinitely
many odd out-neighbors. Thinning out G accordingly (by deleting arcs) yields
a Yablo-like subdigraph H of G that is evenly spaced or oddly spaced.

Let H ′ = H[{n ∈ ω | n > 0}]. Then H ′ is isomorphic to the Yablo-like
digraph H∗ that arises from H ′ by renumbering every vertex of H ′ according
to the rule n 7→ n − 1. Hence H is oddly spaced iff H∗ is evenly spaced. This
proves both claims (1) ans (2).

Lemma 4.2.10. Let G be isomorphic to a Yablo-like digraph. Then

1. there exists a subdigraph of G that is an Ifc[Y],

2. if G is evenly spaced, there exists a subdigraph of G that is an odd Ifc[Y],

3. if G is oddly spaced, there exists a subdigraph of G that is an even Ifc[Y].

Proof. We can assume that G is a spanning subdigraph of Y. We shall define
recursively a sequence (kn)n∈ω of natural numbers and a sequence of spanning
subdigraphs (Gn)n∈ω of G such that

i. G0 = G and for all n ∈ ω,

(a) if n > 0 then Gn is a spanning subdigraph of Gn−1,

(b) outGn
(l) = outG(l), for all l ≥ kn,

(c) outGn
(i) = outGm

(i) and inGn(i) = inGm
(i), for all m ≤ n and

i ≤ km,

ii. kn−1 < kn and kn − kn−1 is odd, for all n > 0,

iii. for all n > 0 and all m < n there exists some kn−1 < im ≤ kn such that
(km, im) ∈ A(Gn),

iv. outGn
(kn) is infinite, for all n ∈ ω,

v. for all n ∈ ω and all i < kn, if i ̸= kl for all l ∈ ω, then outGm
(i) = {i+1}.

• Let G0 = G and k0 = 0.

• Suppose n > 0.

– Let kn be the least l > kn−1 that has the same parity as n and is
such that for all m ≤ n − 1 there is some kn−1 < im ≤ l such that
(km, im) ∈ A(Gn−1).

(Such a number exists, since by induction hypotheses (iv), for every
m ≤ n, km has infinitely many out-neighbors in Gn, and because of
induction hypothesis (i), outGn

(l) is infinite for all l ≥ kn.)

– Let V (Gn+1) = V (Gn) and A(Gn+1) = A(Gn) \ {(x, y) ∈ A(Gn) |
kn < x < kn+1 ∧ y > x+ 1}.

121

• Let Gω

⋂
n∈ω Gn.

We prove the claims (i)-(v) simultaneously by induction on n. For n = 0,
they are all trivial or clear.

Let n > 0. All claims (i)(a), (b) and (c) hold, because by definition of Gn

only arcs between kn−1 and kn are affected by the removal that takes place
when passing form Gn−1 to Gn. Claims (ii) and (iii) follow immediately from
the definition of kn (for (ii) note that the kn’s have alternating parities). Claim
(iv) follows from the fact that G is Yablo-like and from (i)(a). Claim (v) follows
from the definition of Gn.

Notice that (v) implies that for all n, Gω[{i | kn < i ≤ kn+1}] is a path.
This fact together with (iii) for all n ∈ ω and all m > n, km is reachable from
kn in Gω. Furthermore k1 = 1. This means we can define an infinite walk in
Gω as follows. We start at 2 and follow the path that leads to k2 Then we take
the step from k2 to the least m ∈ outGω (k2) such that k3 < m ≤ k4. Then we
walk from m to k4, from where we proceed in an analogous manner as from k2.
This procedure yields a ray R ⊆ Gω, such that for all n > 0, kn ∈ V (R) iff n is
even.

Let H = Gω[V (R)]. For all n > 0, let I(n) = {i ∈ V (R) | k2n+1 <
i ≤ k2n+2}. We show that I is a finitary convergent inflation of Y onto H.
First, observe that I is a partition of V (R) - in particular I(0) = {2, . . . , k2}.
By construction of H and definition of I, for all n ∈ ω, H[I(n)] is a path
which terminates in k2n+2. By (v), ∂+HI(n) = {k2n+2}. Hence I is a finitary
convergent inflation (Cf. Definition 4.1.1), provided that it is an inflation at all.

This observation clearly implies that for all n ∈ ω and all i, j ∈ I(n), if
i ∈ ∂−H(I(n)) and j ∈ ∂+G(I(n)), then there is a path in G[I(n)] from i to j.
Hence 2.7.10(2) is satisfied. Moreover,2.7.10(3) is clearly satisfied.

Next, let us show that 2.7.10(1) is satisfied, i.e., that for all m ̸= n ∈ ω,
m < n iff there is some (vm, vn) ∈ A(H) with vm ∈ I(m) and vn ∈ I(n). Since
H ⊆ Y, the direction from left to right holds. The other direction follows from
(iii). Hence I is an inflation of Y onto H.

It remains to be shown that I is an even inflation, provided that G is evenly
spaced. Let i ∈ ∂−H(I(n)). Since k2n+2 is even, every (i.e., the only) path from
i to k2n+2 is even iff i is even. But i ∈ outH(k2n), because I is an inflation of Y
onto H. On the other hand, i ̸= k2n + 1 /∈ V (H). Since k2n is even this implies
that i is even, provided that G is evenly spaced. Hence the only path from i to
k2n+2 is even. Hence I is an even finitary convergent inflation (Cf. Definition
4.1.3). Hence I[Y] is an odd convergent inflation of Y. If G is oddly spaced, we
show that I is an odd inflation completely analogously. This proves all claims
of the lemma.

Theorem 4.2.11. Let G be a digraph. Then

1. G contains an If [Y] iff G contains an Ifc[Y],

2. G contains an If [Y] of parity p iff G contains an Ifc[Y] of parity p.

122

Proof. Recall that V (Y) = ω. Let I = {I(n) | n ∈ ω} be a finitary inflation
of Y onto H ⊆ G. For better readability let Vn = I(n). Since I is finitary,
for all n ∈ ω there exists xn ∈ Vn such that d+H(xn) = ω and xn ∈ ∂+H(Vn).
Let Tn ⊆ H[Vn] be an in-branching spanning tree of the subdigraph of H[Vn]
that consists of the union of all paths in H[Vn] from some y ∈ ∂−H(Vn) to xn
such that ∂+(Tn) = {xn}. Observe that this subdigraph is non-empty because
of Definition 2.7.10.(2). Notice that if |I(n)| = 1, then Tn is simply the point
(xn,∅).

Let H0 be the subdigraph of H induced by
⋃

n∈ω V (Tn). Let H1 be the
spanning subdigraph of H0 that arises from H0 by deleting all the arcs a ∈
A(H0) such that there is no n ∈ ω with a ∈ A(Tn) or tail(a) = xn.

Let R ⊆ H1 be an ray such that for all n ∈ ω, if xn ∈ V (R) then (xn, y) ∈
A(R), where y ∈ outH1(xn) ∩ V (Tk) for some k ∈ ω such that for all l ∈ ω and
all z ∈ outH1

(xn), if z ∈ V (Tl) then k ≤ l. Let (kn)n∈ω be the sequence of
natural numbers such that xkn

is an enumeration (preserving the natural order
of R) of all vertices of R that have infinite out-degree in H. Let H2 be the
subdigraph of H1 induced by

⋃
n∈ω V (Tkn

).
For all n ∈ ω, let J (n) = V (Tkn). Then J is a partition of H2. Let

Y = J−1[H2]. Then Y is isomorphic to a Yablo-like digraph by construction
and J is a finitary convergent inflation of Y onto H2 ⊆ G. Hence Y ⪯fc G.

By Lemma 4.2.10(1) we obtain Y ⪯fc Y and thus Y ⪯fc G by Proposition
4.2.4. This proves the first claim. (The converse direction is trivial.)

When it comes to the second claim, notice that J is an inflation of parity p̄,
where p̄ is even if p is odd and vice versa. In any case, let Y ′ ⊆ Y be an evenly
spaced Yablo-like digraph by Lemma4.2.9. By Lemma 4.2.10(2) we obtain an
even inflation J ′ of Y onto some Y ∗ ⊆ Y ′ ⊆ Y . Then J ◦ J ′ is an inflation
of Y onto some subdigraph of H2. By Proposition 4.2.3, J ◦ J ′ is an inflation
of parity p̄, Hence G contains an Ifc[Y] of parity p. The converse direction is,
again, trivial.

Lemma 4.2.12. If G is an Ic[Y], then G has a subdigraph that is an even Ic[Y]
or it has a subdigraph that is an odd Ic[Y].

Proof. Let I be a convergent inflation of Y onto G. We say that (x, y) ∈ A(G)
is an inner arc of G (wiht respect to I) iff I−1(x) = I−1(y), and an outer
arc of G (wiht respect to I) iff I−1(x) ̸= I−1(y). Let H ⊆ G be spanning
such that for all outer arcs (v, w) ̸= (x, y) ∈ A(H), I−1(v) = I−1(x) implies
I−1(w) ̸= I−1(y). (Such an H can be constructed by choosing one arcs from
each set of outer arcs of G that is contracted by I−1 onto the same arc of Y).
Then I is a convergent inflation of Y onto H.

An outer arc (x, y) ∈ A(H) is said to be even iff htTy
(y) is odd and odd iff

htTy
(y) is even, where Ty = I[I−1(y)]. Let E be the set of all even outer arcs of

H and O the set of all odd outer arcs of H. Let E′ = {(n,m) | n = I−1(x)∧m =
I−1(y), (x, y) ∈ E}, and O′ = {(n,m) | n = I−1(x) ∧m = I−1(y), (x, y) ∈ O}.
Then {E′, O′} is a partition of A(Y). Hence it induces a partition {E′

U , O
′
U}

of E(Kω), because Kω is the underlying graph of Y. By Ramsey’s theorem,

123

there exists an infiniteM ⊆ ω, such that E(Kω[M]) ⊆ E′
U or E(Kω[M]) ⊆ O′

U .
Hence

(∗)A(Y[M]) ⊆ E′, or A(Y[M]) ⊆ O′.

Since Y[M] is isomorphic to Y by Proposition 4.2.5, I[Y[M]] is an Ic[Y].
Because of (∗), I[Y[M]] is an even Ic[Y] or an odd Ic[Y].

Theorem 4.2.13. Every If [Y] contains an even If [Y] or an odd If [Y].

4.3 Necessary conditions for the characteriza-
tion problems

Theorem 4.3.1. No odd Ic[Y] has a kernel.

Proof. Let G be a digraph and I be an even convergent inflation from Y onto G.
Assume that K is a kernel of G. Let ∂+G(I) =

⋃
n∈ω ∂

+
GI(n). Then K ∩ ∂+G(I)

has at most one element: Assume that x ̸= y ∈ K ∩ ∂+G(I). Then x ∈ ∂+GI(n)
and y ∈ ∂+GI(m) for n < m (since I is convergent). Then there exists an arc in
G from x to some y′ ∈ ∂−GI(m). Hence y′ /∈ K. But then Lemma 4.1.5 implies
that y /∈ K, which is a contradiction.

Now assume that there exists x ∈ ∂+G(I) ∩ K. Let y ∈ outG(x). Then
y /∈ K and y ∈ ∂−GI(n) for some n ∈ ω. Hence, by Lemma 4.1.5 , the unique
y′ ∈ ∂+GI(n) is not in K either. Hence there exists z ∈ outG(y

′) such that
z ∈ K ∩ ∂−GI(m) for some m > n. Thus, again by Lemma 4.1.5, the unique
z′ ∈ ∂+GI(m) is an element of K, which is a contradiction because we have
already shown that there can br at most one such vertex.

Hence ∂+G(I)∩K = ∅. But this implies by Lemma 4.1.5 that ∂−G(I)∩K = ∅,
where ∂−G(I) =

⋃
n∈ω ∂

−
GI(n). This is impossible, because for x ∈ ∂+G(I) we have

outG(x) ⊆ ∂−G(I).

Corollary 4.3.2. If Y ⪯f G, then there exists some H ⊆ G such that some
subdivision of H has no kernel.

Proof. By Theorem4.2.11 H = Ifc[Y] ⊆ G. By Lemma 4.1.4 there exists a
subdivision H ′ of H such that H ′ is an odd Ifc[Y]. Then by Theorem 4.3.1 H ′

has no kernel.

Corollary 4.3.3. If G contains a cycle or an If [Y], then there is a subdivision
of G that is not strongly kernel-perfect.

Corollary 4.3.4. If a digraph contains a cycle or an If [Y], then it is dangerous.

Proof. Let G be a digraph. If G contains a cycle, then it is dangerous by
Corollary 2.6.5. So, suppose Y ⪯f G. Let G′ be a subdivision of G that is not
strongly kernel-perfect by Corollary 4.3.3. Then, by Proposition 2.6.29, G′ is
dangerous. Hence G is dangerous by Proposition 2.7.3.

124

Recall Conjecture (B)2.8.8.

Proposition 4.3.5. Conjecture (B) implies that a digraph is safe iff every
subdivision of it is strongly kernel-perfect.

Proof. If some subdivision G′ of a digraph G is not strongly kernel-perfect, then
G′ is dangerous. Hence G is dangerous by Proposition 2.7.3. The other direction
follows by Conjecture (B).

Proposition 4.3.6. Conjecture (A) implies Conjecture (B).

Proof. Let G be a digraph. Suppose that G is dangerous. Then, by Conjecture
2.8.1, G contains a cycle or Y ⪯f G. Hence, by Corollary 4.3.3 there exists a
subdivision of G and that is not strongly kernel-perfect.

Theorem 4.3.7. A digraph that contains an odd cycle or an odd If [Y] is not
strongly kernel-perfect.

Recall the discussion of digraphs of (in)finite character from Subsection 2.6.2.
Moreover, recall Conjecture (D) (2.8.4), which states that if a digraph contains
no If [Y], then it is of finite character. We shall now prove the converse state-
ment.

Proposition 4.3.8. Every acyclic If [Y] is of infinite character.

Proof. By Corollary 2.6.21 and Corollary 4.3.4.

Proposition 4.3.9. Every If [Y] has an acyclic subdigraph that is an If [Y].

Proof. By Theorem 4.2.11.

Theorem 4.3.10. A digraph that contains an If [Y] is of infinite character.

Proof. By Proposition 4.3.9, Proposition 4.3.8 and Proposition 2.6.24.

4.4 Finitary inflations of the Yablo-graph

Definition 4.4.1. Let G be a digraph and R a ray in G.

1. Let x ∈ V (G). An x-R-fan is an infinite set Fx of x-R paths such that
any two distinct members of Fx have exactly the vertex x in common.
The set Fx is called an x-R-fan in G iff P ⊆ G for all P ∈ Fx.

2. A vertex x ∈ V (G) is said to be a focal point of R in G iff exists x-R-fan
in G.

Theorem 4.4.2. For all digraphs G the following are equivalent:

1. Y ⪯f G,

125

2. there exists some ray R ⊆ G such that infinitely many vertices of R are
focal points of R in G.

Proof. (1) ⇒ (2): Clear.
(2) ⇒ (1): It is not difficult to see that G contains an finitary inflation of

a Yablo-like digraph (cf. Definition 4.2.6). The claim follows then by Lemma
4.2.10.

Hence for all digraphs G, G contains a ray R such that there are infinitely
many vertices in V (R) dominating R in G (in the sense of Section 3.4) if and
only if Y ⪯f G.

126

Chapter 5

Safe digraphs

One goal of this final chapter is to show that Conjecture (A) holds under weaker
assumptions than already established in Chapter 3. Theorem 5.4.6 states that
any directed graph G is safe if and only if G is acyclic and contains no finitary
inflation of the Yablo-graph, given that G contains only normal ends and at
most countably many ends. (One direction of this equivalence has already been
established in Chapter 4).

In order to do this, a method is developed in Subsection 5.2 that seems to be
more suitable for Conjecture (A) than Walicki’s method from[47]. It takes into
account the fact that for our purpose it suffices to focus on acyclic digraphs,
and not on the larger class of digraphs without odd cycles. For a more detailed
outline of Chapter 5 the reader is referred to Subsection 1.5.4.

5.1 Partitions of function networks

A key method that shall be developed and used throughout this chapter is
that of decomposing a Boolean network into subnetworks (cf. Subsection 2.4.6),
finding a fixed point for each of them and the integrating these fixed points into a
fixed point of the entire Boolean network. A very rudimentary precursor of this
method is Proposition 2.4.47, a more sophisticated one the decomposition into
periphery and core (cf. Definition 2.4.89). We will primarily be concerned with
Boolean networks – nevertheless, some results are formulated more generally for
function networks.

5.1.1 Open exhaustions

For the following recall Definition 2.4.39.

Definition 5.1.1. Let G be a digraph, ξ an ordinal and (Xα)α<ξ a sequence of
subsets of V (G). We say that (Xα)α<ξ is an open exhaustion of G iff it satisfies
the following conditions.

127

1. Xα is open in G, for all α < ξ.

2. Xα ⊊ Xβ , for all α < β < ξ,

3. Xξ = V (G),

4. Xλ =
⋃

α<λXα, for all limits λ ≤ ξ.

Definition 5.1.2. Let (G,Φ) be a constrained function network, ξ an ordinal
and (Xα)α<ξ an open exhaustion of G. We say that Φ is absolutely solvable
relative to (Xα)α<ξ iff

1. Φ[X0] has a fixed point,

2. Φ is absolutely solvable relative to Xα+1 \Xα for all α < ξ.

Theorem 5.1.3. Let (G,Φ) be a function network, ξ an ordinal and (Xα)α<ξ

an open exhaustion of G such that Φ is absolutely solvable relative to (Xα)α<ξ.
Then Φ has a fixed point.

Proof. Let Xξ =
⋃

α<ξXα. We shall define recursively a sequence of functions
(f)α≤ξ with fα : Xα → {0, 1} such that for all α ≤ ξ the following holds.

1. fα is a fixed point of Φ[Xα],

2. fβ ⊆ fα, for all β ≤ α.

• Let α = 0. Then Φ is absolutely solvable relative to X0 by hypothesis.
Moreover Bd+G(X0) = ∅, since X0 is open in G. Hence there exists some
f0 ∈ {0, 1}X0 that is a fixed point of Φ[X0].

• For the successor step, we use the fact that Φ is absolutely solvable relative
to Xα+1 \Xα, which implies that Φfα [Xα+1 \Xα] has a fixed point f ′α+1.
Then by induction hypothesis and Lemma 2.4.48 fα+1 = fα ∪ f ′α+1 is a
fixed point of Φ[Xα+1]. Moreover, fα ⊆ fα+1. Hence fβ ⊆ fα+1, for all
β < α+ 1.

• If α is a limit, let fα =
⋃

β<α fβ . Then (2) is satisfied. In order to prove
(1), let x ∈ Xα. Then there exists some β < α such that x ∈ Xβ . By
induction hypothesis, fβ is a fixed point of Φ[Xβ]. Hence Φ[Xβ](fβ , x) =
fβ(x). Since Xβ is open in G, Xβ is also open in G[Xα] (because Xβ ⊆
Xα). Hence outG[Xα](x) ⊆ Xβ . Together with fβ ⊆ fα, this implies that
Φ[Xα](fα, x) = fα(x). Hence fα is a fixed point of Φ[Xα].

From (2) follows that fξ is a fixed point of Φ.

Corollary 5.1.4. A digraph G is safe iff G{x} is safe, for all x ∈ V (G).

Proof. For the non-trivial direction let (xα)α<ξ be an enumeration of the vertices
of G. For all α < ξ, let Xα =

⋃
β<αXβ ∪ V (G{xα}). Then (Xα)α<ξ is an open

exhaustion of G. Since G{xα} is safe for all α < ξ, it follows that every Boolean
network on G is absolutely solvable relative to (Xα)α<ξ. Hence Theorem 5.1.3
implies that G is safe.

128

Corollary 5.1.5. A digraph G is of finite character iff G{x} is of finite char-
acter, for all x ∈ V (G).

Corollary 5.1.6. Every finitely out-branching digraph is of finite character.

Proof. By Proposition 2.6.23.

As a further corollary we obtain a result from [41] (Corollary 23).

Corollary 5.1.7. If a digraph G is acyclic and has only finitely many vertices
with infinite out-degree, then G is safe.

5.1.2 Well-founded partitions

Definition 5.1.8. Let G be a digraph and P a partition of V (G). Then P is
said to a well-founded partition of G iff for all infinite walks (xn)n∈ω in G there
exist k ∈ ω and X ∈ P such that xn ∈ X, for all n ≥ k.

In other words, a partition of G is well-founded iff every ray of G has a tail
that is contained in some component of the partition and every cycle of G is
contained in some component of the partition.

For the following theorem recall Definition 2.4.46.

Theorem 5.1.9. Let (G,Φ) be a constrained function network, and P a well-
founded partition of G. If Φ is perfectly solvable relative every X ∈ P, then Φ
has a fixed point.

Proof. For all x ∈ V (G) let π(x) be the unique X ∈ P such that x ∈ X. We
define recursively an open exhaustion (Xα)α≤ξ of G such that Φ is absolutely
solvable relative to (Xα)α≤ξ. Then the claim follows from Theorem 5.1.3.

• Let X0 be the set of all x ∈ V (G) such that G{x} ⊆ π(x). Then X0 ̸= ∅.
(Assume otherwise. Then for all x ∈ V (G) there exists a path that leads
from x to some y ∈ V (G) \ π(x). Hence we can construct an infinite walk
that finally leaves every Y ∈ P after having entered it - or having started
within it. This contradicts the assumption that P is well-founded.)

• Let α be an ordinal such that Xα is already defined.

– If Xα = V (G), then let ξ = α and stop the procedure.

– We can assume that Xα ̸= V (G). Then let X ′
α+1 be the set of all

x ∈ V (G) \Xα such that G{x} \Xα ⊆ π(x). Then X ′
α+1 ̸= ∅ by the

same argument as in the base case. Let Xα+1 = X ′
α+1 ∪Xα.

• Let λ be a limit such that Xα is already defined for all α < λ. Then let
Xλ =

⋃
α<λXα.

129

Note that the procedure must terminate: V (G) is a set and not a proper
class. We show that (Xα)α≤ξ is an open exhaustion of G and that Φ is abso-
lutely solvable relative to (Xα)α≤ξ. Clauses (2), (3) and (4) of Definition 5.1.1
are clearly satisfied.

Ad 5.1.1 (1): We show by induction on α that Xα is open in G for all α < ξ.
(The cases α = ξ is trivial.) Let 0 < α < ξ and x ∈ Xα. We have to show
that V (G{x}) ⊆ Xα. So let y ∈ G{x}. Then G{y} ⊆ G{x}. We have to show
y ∈ Xα and consider the following three cases.

• α = 0. Then G{x} ⊆ π(x) by definition. Hence G{y} ⊆ π(x). But
G{y} ⊆ G{x} ⊆ π(x) also implies that π(x) = π(y). Hence G{y} ⊆ π(y)
and thus y ∈ Xα.

• α = β+1 for some ordinal β. Because of the induction hypothesis we can
assume that x ∈ Xα \ Xβ . By definition we have G{x} \ Xβ ⊆ π(x). If
y ∈ Xβ we are done, because Xβ ⊊ Xα. So we can assume y /∈ Xβ . Hence
y ∈ π(x), i.e., π(y) = π(x). Moreover, G{y} \Xβ ⊆ π(x) = π(y). Hence
y ∈ Xα.

• α is a limit ordinal. Because of Definition 5.1.1(4) there exists some β < α
such that x ∈ Xβ . Then the claims follows by induction hypothesis.

Hence (Xα)α≤ξ is an open exhaustion of G It remains to be shown that (1)
and (2) of Definition 5.1.2 are satisfied.

Ad (1): We have to show that Φ[X0] has a fixed point. Let P0 = {Y ∩X0 |
Y ∈ P}. Then P0 is a partition of X0. Moreover, for every Z ∈ P0, Z is open
in G[X0]. (Assume otherwise: then there is Y ̸= Z ∈ P such that there exists
an arc (v, w) ∈ A(G[X0]) with v ∈ Z ∩X0 and w ∈ Y ∩X0. Hence G{v} ̸⊆ π(v)
which leads to the contradiction that v /∈ X0.) Let Y ∈ P. Since Φ is perfectly
solvable relative to Y by hypothesis and Y is open in X0, Φ[Y ∩X0] has a fixed
point. By applying Lemma 2.4.47, we can paste together the solutions of these
open components of X0. Hence Φ[X0] has a fixed point.

Ad (2): Let α < ξ. Let X ′
α+1 = Xα+1 \ Xα We have to show that Φ is

absolutely solvable relative to X ′
α+1. Let Pα+1 = {Y ∩X ′

α+1 | Y ∈ P}. Then
Pα+1 is a partition of X ′

α+1. Analogously to (1) one shows that each of its
components is open in G[X ′

α+1]. We have to show that Φ is absolutely solvable

relative to X ′
α+1. Let Σ =×x∈V (G)

Sx be the type of Φ. Let Z = Bd+G(X
′
α+1)

and h ∈×x∈Z
Sx. Let Y ∈ P such that Y ∩ X ′

α+1 ̸= ∅. By hypothesis Φ is

absolutely solvable relative to Y ∩X ′
α+1. Hence Φh[Y ∩X ′

α+1] has a fixed point.
(Φh[Y ∩X ′

α+1] is indeed a function network by Proposition 2.4.45: This is so

because (Y ∩Xα+1) = ∅ and Bd+G(Y ∩X ′
α+1) ⊆ Z.) Since each Y ∈ P is open

in G[X ′
α+1], Lemma 2.4.47 yields a fixed point of Φh[X ′

α+1].

Corollary 5.1.10. Let G be a digraph an P a well-founded partition of G.
Then G is of finite character, if G[X] is of finite character, for all X ∈ P.

130

Proof. Let Φ be a Boolean network on G. We have to show that Φ is compact,
i.e, that either there exists some finite ∅ ̸= Y ⊆ V (G) such that Φ is not
absolutely solvable relative to Y or Φ has a fixed point. Suppose that Φ has
no fixed point. Then Theorem 5.1.9 implies that there exists some X ∈ P
such that Φ is not perfectly solvable relative to X. In other words, there exists
∅ ̸= Z ⊆ X such that Φ is not absolutely solvable relative to Z. Hence there

exists h ∈ {0, 1}Bd+
G(Z) such that Φh[Z] has no fixed point. Since Φh[Z] is a

Boolean network on G[Z] and G[Z] is of finite character (by hypothesis and
Proposition 2.6.24), there exists some finite ∅ ̸= Y ⊆ Z such that Φh[Y] is not

absolutely solvable relative to Y . This means that there exists g ∈ {0, 1}Bd+
G(Y)

that is compatible with h and such that (Φh[Z])g[Y] has no fixed point. But
Y ⊆ Z implies that (Φh[Z])g[Y] = Φh∪g[Y]. Hence Φ is not absolutely solvable
relative to Y .

Corollary 5.1.11. Let G be a digraph and P a well-founded partition of G.
Then G has a kernel, if for all X ∈ P, G[X] is kernel-perfect.

Proof. By Theorem 2.4.96 and Theorem 5.1.9.

Corollary 5.1.12. Let G be a digraph an P be a well-founded partition of G.
Then G is safe, if for all X ∈ P, G[X] is safe.

5.2 Prolific digraphs

5.2.1 Quasi-finitely out-branching digraphs

Definition 5.2.1. Let G be a digraph, R ⊆ G a ray and x ∈ V (G). We say
that a set X ⊆ V (G) separates x from R in G iff x /∈ X and for all tails R′ of
R one of the following is the case.

1. X has a non-empty intersection with V (R′),

2. every x-R′-path in G has a non-empty intersection with X.

Definition 5.2.2. Let G be a digraph and x ∈ V (G). Let x ∈ V (G) and R be
a set of rays in G that all have x as their root. We say that a set X ⊆ V (G)
separates x from R iff X separates r from R, for all R ∈ R.

Definition 5.2.3. Let G be a digraph.

• A vertex x ∈ V (G) is said to be quasi-grounded (in G) iff there exists some
finite Y ⊆ V (G) such that x /∈ Y and every ray in G with root x has a
non-empty intersection with Y .

• A digraph G is said to be quasi-finitely out-branching iff every x ∈ V (G)
is quasi-grounded in G.

Proposition 5.2.4. Let G be a digraph. A vertex x ∈ V (G) is quasi-grounded
in G iff there exists some finite X ⊆ V (G) that separates x from the set of all
rays of G.

131

Proof. ⇒: Let X ⊆ V (G) be finite and such that x /∈ X and every ray in G has
some non-empty intersection with X. Let R ⊆ G be a ray and R′ a tail of R.
Suppose that V (R′) ∩ X = ∅. Then every x-R′ path must have a non-empty
intersection with X. Otherwise we could construct a ray in G that has an empty
intersection with X.

⇐: Let X ⊆ V (G) be finite and such that X separates x from the set of all
rays ofG. Let R ⊆ G be a ray. Assume that V (R)∩X = ∅. Let x1 be the unique
out-neighbor of x in R. Then R{x1} is a tail of R with V (R{x1}) ∩ X = ∅.
Moreover (x, x1) is an x-R{x1}-path in G that has a non-empty intersection
with X, which is a contradiction.

Proposition 5.2.5. Every ray-less digraph is quasi-finitely out-branching.

Proof. Let G be a ray-less digraph. Then the empty set separates every from
the set of all rays of G.

Hence a well-founded digraph is quasi-finitely out-branching. Any finitely
out-branching digraph is, of course, also quasi-finitely out-branching.

The following is just a rephrasing of a theorem by Walicki (Corollary 3.18
in [47]) for the present context.

Proposition 5.2.6 (Walicki). Every quasi finitely out-branching digraph is
kernel-perfect if it contains no odd cycle.

This result is obtained at the end [47] as a corollary of the main result. We
shall use it to initiated an inductive hierarchy of classes of digraphs that will
turn out to be safe.

Proposition 5.2.7. Let G be a quasi-finitely out-branching digraph. Then every
regular inflation of G is quasi-finitely out-branching.

Theorem 5.2.8. Every acyclic quasi-finitely out-branching digraph is safe.

Proof. Let C be the class of all acyclic quasi-finitely out-branching digraphs.
Then C is closed under regular inflation by Proposition 5.2.7. By Proposition
5.2.6 every element of C has a kernel. Hence every element of C is safe by
Corollary 3.2.9.

Corollary 5.2.9. No quasi-finitely out-branching digraph contains an If [Y].

5.2.2 Prolific digraphs

Definition 5.2.10. For any digraph G and X ⊆ V (G), let G(X) be the set of
all x ∈ X such that G[X]{x} is quasi-finitely out-branching.

Definition 5.2.11. For all digraphs G and all α ∈ On, define recursively G′
α =

G(V (G) \
⋃

β<α G′
β).

132

Clearly, for any digraph G there exists an ordinal ξ such that for all α ≥ ξ,
G′

α = ∅. Let ξG be the least ordinal ξ such that G′
α = ∅, for all α ≥ ξ.

Definition 5.2.12. For all digraphs G and all α < ξG define

1. Gα =
⋃

β≤α G′
β .

2. GξG =
⋃

α<ξG
Gα,

3. G∗ = GξG .

Proposition 5.2.13. Let G be a digraph. Then G[G∗] contains no If [Y].

Proposition 5.2.14. Let G be a digraph and H ⊆ G. Then H∗ ⊇ G∗ ∩V (H).

Proposition 5.2.15. Let G be a digraph G. Then

1. (Gα)α≤ξG is an open exhaustion of G[G∗].

2. G∗ is open in G.

3. Let Φ be a Boolean network on G that is absolutely solvable relative to
all X ⊆ V (G) such that G[X] is quasi-finitely out-branching. Then Φ is
absolutely solvable relative to (Gα)α≤ξG .

Proof. Ad (1): We shall check clauses (1)-(4) of Definition 5.1.1.

Clause 1: We prove that Gα is open in G for all α ≤ ξG by induction on α.
We have Gα = G′

α ∪Xα, where Xα =
⋃

β<α G′
β . Assume that Gα is not open

in G. Then there exists (x, y) ∈ A(G) such that x ∈ Gα and y ∈ V (G) \ Gα

Since Xα is open in G by induction hypothesis (as a union of open sets), x ∈
G′

α. Hence G[V (G) \ Xα]{x} is quasi-finitely out-branching. Since (x, y) ∈
A(G[V (G) \ Xα]) we have (G[V (G) \ Xα]){y} ⊆ (G[V (G) \ Xα]){x}. Hence
(G[V (G)\Xα]){y} is quasi finitely out-branching, which yields the contradiction
that y ∈ G′

α ⊆ Gα.
Clauses 2,3 and 4 are clear. Ad (2): By (1), since the union of open sets is open.

Ad (3): We have to check both conditions of Definition 5.1.2. The first i.e.,
the claim that Φ[G0] has a fixed point holds by hypothesis. As for the second,
we have to show that Φ is absolutely solvable relative to G′

α+1, for all α < ξG.
Since G′

α+1, is quasi-finitely out-branching the claim follows analogously also
from the hypothesis.

Theorem 5.2.16. Let G be a digraph.

1. If G[G∗] contains no odd cycles, then G[G∗] has a kernel.

2. If G[G∗] is acyclic, then G[G∗] is safe.

Proof. Ad 1: By Proposition 5.2.6, Proposition 5.2.15 and Theorem 5.1.3.
Ad 2: By Theorem 5.2.8, Proposition 5.2.15 and Theorem 5.1.3.

133

Definition 5.2.17. A digraph G is said to be prolifically out-branching (or
simply prolific) iff V (G) ̸= ∅ and for all x ∈ V (G) there is a walk in G from x
to some vertex that is not quasi-grounded in G.

Proposition 5.2.18. Let G be a digraph.

1. If V (G) \G∗ ̸= ∅, then G[V (G) \G∗] is prolific and contains a ray.

2. For all x ∈ G∗, G{x} is not prolific.

Proof. Ad 1: Suppose that X = V (G) \ G∗ ̸= ∅. Assume that G[X] is not
prolific. Then there exists x ∈ X such that G[X]{x} is quasi-finitely out-
branching. But this implies the contradiction that x ∈ G∗. Now assume that
G[V (G) \ G∗] contains no ray. Then for all x ∈ X, G[X]{x} is quasi-finitely
out-branching by Proposition 5.2.5, yielding the same contradiction.

Ad 2: By induction on ξG.

Theorem 5.2.19. Let G be an acyclic digraph. Then

1. G is equi-dangerous to G[V (G) \G∗].

2. G is kernel-perfect iff G[V (G) \G∗] is kernel-perfect.

Proof. Ad 1: For the non-trivial direction, it follows from Proposition 5.2.15
that G∗ is open in G. Hence the claim follows from Lemma 2.4.48.

Ad 2: Applying Theorem 2.4.96, the argument is analogous to (1).

5.3 Ends

5.3.1 Ends and end covers

Let us restate the following definitions.

Definition 5.3.1. A tail of a digraph G is a subdigraph of G that is induced
by some X ⊆ V (G) such that G[V (G) \X] contains no rays.

Definition 5.3.2. Let G be a digraph.

• A digraph H ⊆ G is said to be an end in G iff there exists some ray R ⊆ G
such that V (H) = ClG(R). We call such a ray R a principal ray of H.

• G is said to be an end iff G is an end in G.

Proposition 5.3.3. Let G be a digraph and H ⊆ G an If [Y]. Then H is
contained in some end of G.

Definition 5.3.4. Let G be a digraph and Q,R rays in G. We define the
following relations between Q and R.

134

1. Q ⪯G R iff for every tail Q′ of Q and every tail R′ of R there exists a path
from Q′ to R′ in G.

2. Q ⪯∞
G R iff there exists an infinite set P of pairwise disjoint (possibly

trivial) paths such that for every tail Q′ of Q and every tail R′ of R there
exists some P ∈ P that joins Q′ to R′ in G.

3. Q ⪯f
G R iff Q ⪯G R and there exists a finite set X ⊆ V (G) such that

Q′ ̸⪯G\X R′, for all tails Q′ of Q and R′ of R such that Q′, R′ ⊆ G \X.

4. Q ≺G R iff Q ⪯G R and R ̸⪯G Q.

5. Q ≺∞
G R iff Q ⪯∞

G R and R ̸⪯∞
G Q.

6. We say that Q and R are incomparable iff R ̸⪯G Q and Q ̸⪯G R.

7. We say that Q and R are parallel iff R ⪯G Q and Q ⪯G R.

The following two definitions are adopted from [47].

Definition 5.3.5. A digraph G is said to be flat iff for all Q,R ⊆ G either Q
and R are incomparable or parallel.

Definition 5.3.6. Let G be a digraph and Q,R ⊆ G rays. We say that

• a set X ⊆ V (G) separates Q from R iff every Q-R path has a non-empty
intersection with X,

• Q is finitely separable from R iff there exists a finite set that separates Q
from R.

Proposition 5.3.7. Let G be a digraph and Q,R ⊆ G be rays.

1. If Q ⪯∞
G R or Q ⪯f

G R, then Q ⪯G R.

2. If Q ⪯G R, then either Q ⪯f
G R or Q ⪯∞

G R, but not both.

3. If Q ⪯G R, then Q ⪯f
G R iff then Q is finitely separable from R.

4. If G is acyclic and Q ⪯G R and R ⪯G Q, then Q ⪯∞
G R and R ⪯∞

G Q.

5. If G is acyclic, then there exists no ray Q ⊆ ClG[R] such that R ⪯f
G Q.

Lemma 5.3.8. Let G a digraph, X ⊆ V (G) closed in G and R ⊆ G a ray.
Then V (R) ∩X is finite or V (R) ∩ (V (G) \X) is finite.

Proof. Assume otherwise. Let y ∈ V (R) ∩ (V (G) \ X). Then it follows from
the assumption there exists some z ∈ V (R)∩X that is reachable from y via R.
But since X is closed in G, it follows that y ∈ X, which is a contradiction.

Definition 5.3.9. Let G be a digraph. An end cover of G is a set H of ends
in G such that for all ends F in G there exists some H ∈ H with F ⊆ H.

135

Theorem 5.3.10. Let G be an acyclic digraph and H a countable end cover of
G. Then

1. G is (strongly) kernel-perfect iff all H ∈ H are (strongly) kernel-perfect,

2. G is safe is safe iff all H ∈ H are safe,

3. G is of finite character iff all H ∈ H are of finite character iff G is of
finite character.

Proof. First we construct a well-founded partition of G. Let (Hn)n∈ω be an
enumeration of the elements of H. We define recursively a sequence (Xn)n∈ω

of subsets of V (G) as follows. Let X0 = V (H0). Now let n > 0 and suppose
we have already defined Xi, for all i ≤ n. Let Xn+1 = V (Hn+1) \

⋃
i≤nXi. An

an end in G, every V (Hi) is closed in G. Hence
⋃

i≤nXi is closed in G for all
n ∈ ω. Let P = {Xn | n ∈ ω ∧Xn ̸= ∅}. Then P is a partition of V (G).

Let us show that for every ray R ⊆ G there exists some X ∈ P such R has
a tail in X. Let R ⊆ G be a ray. Then ClG[R] is an end of G. Hence there
exists some n ∈ ω such that ClG[R] ⊆ Hn. Hence ClG(R) ⊆

⋃
i≤nXi. Let Q

be a tail of R. Then there exists some k ≤ n such that Xk ∩ V (Q) is infinite.
Then for all k ̸= i ≤ n, Xi ∩ V (Q) is finite: assume otherwise and let k ̸= i ≤ n
be such that Xi ∩ V (Q) is infinite. We may assume w.l.o.g. that i < k. Since
Y =

⋃
m≤iXi is closed in G and since V (G)\Y contains infinitely many vertices

of Q, Xi contains not infinitely many vertices of Q by Lemma 5.3.8, yielding a
contradiction.

Hence Xk contains a tail of R. It follows that, given that G is acyclic, P is
a well-founded partition of G.

Now the direction from right to left of the claims follows by Corollaries
5.1.11, 5.1.12 and 5.1.10 respectively. The other directions are clear.

5.3.2 Normal ends

The last theorem raises the question under what circumstances ends themselves
are kernel-perfect, safe or of finite character.

Definition 5.3.11. An end G with principal ray R is said to be normal iff for
all rays Q ⊆ G, Q ⪯∞

G R.

If all ends of a digraph are normal and the digraph is symmetric i.e., undi-
rected, then they coincide just with the undirected ends i.e., those in the sense
of the usual definition of end in the theory of undirected graphs, cf. [17].

Proposition 5.3.12. Every acyclic and flat end is normal.

Proof. By Proposition 5.3.7 (5).

Proposition 5.3.13. Every end that is acyclic, conversely well-founded and
finitely in-branching is normal.

136

Proof. Let G be an end and R a principal ray of G. Let Q ⊆ G be a ray. Then
Q ⪯G R, i.e., for all y ∈ V (Q) there is a path from y to some vertex of R. We
have to show that Q ⪯∞

G R. By Proposition 5.3.7(2,3) it suffices to prove that
there exists no finite X ⊆ V (G) that separates Q from R.

Assume that X is such a set. For each y ∈ V (Q), let Py be a path from y
to R. Then for all y ∈ V (Q), there exists some x ∈ X such that x ∈ V (Py). By
cutting the Py’s off at x, we get for all x ∈ X a set Px of Q-x paths. For all
x ∈ X, let Tx be an in-branching spanning tree of the digraph G[

⋃
Px] (each of

whose vertices is conversely reachable from x, hence such a spanning tree exists).
Since V (Q) is infinite, one Tx must be infinite. By König’s lemma Tx contains
a vertex of infinite in-degree or a converse ray, neither of which is possible by
hypothesis.

For the following recall Definition 4.4.1.

Proposition 5.3.14. Let G be a digraph and Q,R ⊆ G rays. If x ∈ V (G) is a
focal point of Q and Q ⪯∞

G R, then x is a focal point of R.

Recall Definition 5.2.3.

Lemma 5.3.15. Let G be digraph, r ∈ V (G) and R ⊆ G a ray with root r. If
there is no finite set that separates r from R, then r is a focal point of R.

Proof. Let R ⊆ G be a ray with root r. We construct recursively a sequence
(Pn)n∈ω such that for all n ∈ ω, (i) every P ∈ Pn is an r-R path, (ii) the
members of Pn are pairwise disjoint except at r, and (iii) Pn ⊊ Pn+1.

Let x0, x1, ... be the R-order preserving enumeration of the set V (R). Since
{x1} does not separate r from R by hypothesis, there exists an r-R{x2}-path
P0 in G such that V (P0) ∩ {x1} = ∅. Let P0 = {P0}. Let k0 ∈ ω be such that
xk0

is the head of P0. Let X0 = (V (P0) ∪ ClR(xk0
) \ {r}.

Now let n > 0 and suppose that we have already constructed Pn, kn and Xn.
By induction hypothesis Xn is finite. Hence it does not separate r from R. In
particular, there exists an r-R{xkn+1}-path P in G such that Xn ∩ V (P) = ∅.
Let Pn+1 = Pn ∪ P . Then (i), (ii) and (iii) hold. Let kn+1 be such that xkn+1

is the head of P . Let Xn+1 = (
⋃
{V (P) | P ∈ Pn+1} ∪ ClR(xkn+1

)) \ {r}.
Finally, set F =

⋃
n<ω Pn. Then it follows from (i)-(iii) that F is an r-R-fan.

Hence r is a focal point of R.

Proposition 5.3.16. Let G be digraph, r ∈ V (G) and R = {R0, . . . , Rn} a
finite set of rays in G with root r. If there is no finite set that separates r from
R, then r is a focal point of Ri, for some 0 ≤ i ≤ n.

Proof. We construct recursively a sequence (Pn)n∈ω such that for all n ∈ ω, (i)
every P ∈ Pn is an r-Ri path, for some 0 ≤ i ≤ n, (ii) the members of Pn are
pairwise disjoint except at r, and (iii) Pn ⊊ Pn+1.

This can be done analogously to the procedure in the proof of Lemma 5.3.15.
Then let F =

⋃
n<ω Pn. Since F is infinite and R finite, there must exist some

0 ≤ i ≤ n such that r is a focal point of Ri.

137

Lemma 5.3.17. Let G be an end with principal ray R ⊆ G. Let r ∈ V (G). If
G is normal and r is not quasi-grounded in G, then r is a focal point of R.

Proof. Before proceeding with the proof, let us state some definitions. A star in
G with center r is a non-empty set S of rays in G such that

⋂
R∈S V (R) = {r}.

A star S is said to be infinite iff the set S is infinite; it is said to be finite iff
the set S is finite. A star S is said to be maximal (in G) iff there exists no star
T (in G) such that S ⊊ T .

Case 1: There exists an infinite star S with center r in G. We shall construct
recursively a sequence (Pn)n∈ω of r-R paths such that for all n ∈ ω, (i) Pn ⊆ P,
(ii) the members of Pn are pairwise disjoint except at r, and (iii) Pn ⊊ Pn+1.

Let (Ri)n∈ω be an enumeration of a countable subset of S. Since G is normal,
we have Ri ⪯∞

G R, for all n ∈ ω. Picking some R0-R path and prolonging it
backwards to r yields some path P0 from r to R. Let P0 = {P0}.

Now let n > 0 and suppose that we have already defined Pn. Since Xn =
V (

⋃
Pn) ⊆ V (G) \ {r} is finite and S is an infinite star, there exists some

kn+1 ∈ ω such that V (Rkn+1
) ∩Xn = ∅. Since Rkn+1

⪯∞
G R and Xn is finite,

there exists some Rkn+1-R path P with V (P) ∩ Xn = ∅. Prolonging P back-
wards to r yields a path Pkn+1 from r to R such that V (Pkn+1) ∩ V (Q) = {r},
for all Q ∈ Pn. Set Pn+1 = Pn ∪Pkn+1

. This shows that r is a focal point of R.

Case 2: There exists no infinite star with center r in G. Since G is an end
with principal ray R, here exists at least one star with center r: the one that
has R as its single ray. Moreover, the union of every ascending ⊆-chain of stars
with center r is a star with with center r. Hence, by Zorn’s lemma, there exists
a finite maximal star S with center r in G. Let S = {R0, . . . , Rn}.

Assume that for all 0 ≤ i ≤ n, there exists some finite Xi ⊆ V (G) \ {r}
that separates r from Ri. We show that this leads to a contradiction. Let
X ′

i = ClRi
(Xi) \ {r}, for all 0 ≤ i ≤ n. Then X = X ′

0 ∪ · · · ∪X ′
n is finite and X

separates r from {Ri | 0 ≤ i ≤ n}. We claim that every ray Q ⊆ G with root r
has a non-empty intersection with X. (This claim yields a contradiction to the
assumption that r is not quasi-grounded in G.) Assume V (Q) ∩X = ∅. Then
there exists r ̸= y ∈ V (Q) ∩ (

⋃
{V (Ri) | 0 ≤ i ≤ n}). (Otherwise S ∪Q would

be a star, contradicting the maximality of S.) Let k be the unique 0 ≤ i ≤ n,
such that y ∈ V (Ri). Since y /∈ X, V (Rk{y}) ∩ X = ∅. On the other hand
ClQ[y] is an r-Rk-path that has an non-empty intersection with X. This yields
the contradiction that X does not separates r from {Ri | 0 ≤ i ≤ n}.

Hence there is some 0 ≤ i ≤ n such that no finite X ⊆ V (G) \ {r} separates
r from Ri. Hence r is a focal point of Ri by Lemma 5.3.15 and, since G is
normal, also a focal point of R by Proposition 5.3.14.

Definition 5.3.18. A digraph G is said to contain only finitely many ends iff
the set of all subdigraphs H of G such that H is an end in G is finite.

Theorem 5.3.19. Let G be an acyclic end.

1. If G is normal and prolific, then G contains an If [Y].

138

2. If G contains only finitely many ends and is prolific, then G contains an
If [Y].

Proof. Ad 1: Let R be a principal ray of G. We define recursively a sequence
(xn)n∈ω of vertices of G such that for all n ∈ ω,

1. if n is even, then xn is a focal point of R,

2. if n is odd, then xn ∈ V (R),

3. there is a path in G from xn to xn+1,

as follows.

• Let x0 ∈ V (G) be such that x0 is not quasi-grounded in G. Then by
Lemma 5.3.17, x0 is a focal point of R.

• Let n > 0.

– If n is even, let xn+1 be some vertex of R that is reachable from xn.
Since xn is a focal point of R by induction hypothesis, such a vertex
must exist.

– If n is odd, let xn+1 be some vertex that is not quasi-grounded in G
and that is reachable from xn. Since G is prolific, such a vertex must
exist. Then by Lemma 5.3.17, xn+1 is a focal point of R.

Now let Q be the concatenation of the all paths from xn to xn+1 that exist
by (3). Since G is acyclic, Q is a ray. Since Q and R have infinitely many
vertices in common, R ⪯∞

G Q. Hence by Proposition 5.3.14, for all even n ∈ ω,
xn is a focal point of Q. Thus Q is a ray in G such that infinitely many ver-
tices of Q are focal points of Q. Hence G contains an If [Y] by Proposition 4.4.2.

Ad 2: Let r ∈ V (G) and {H0, . . . ,Hn} be the set of ends of G that are reach-
able from r. Let R = {R0, . . . , Rn} be a set of principal rays of {H0, . . . ,Hn}.
We may assume that r is the root of each Ri, for 0 ≤ i ≤ n.

Since every ray in G{r} is parallel to some ray in R, Proposition 5.2.4
implies that x ∈ V (G) is quasi-grounded in G{r} iff there exists a finite set
that separates x from R. Hence we can define recursively a sequence (xn)n∈ω

of vertices of G such that for all n ∈ ω,

i. if n is even, then xn is a focal point of some element of R,

ii. if n is odd, then xn is a vertex of some element of R,

iii. there is a path in G from xn to xn+1.

This is done analogously to the proof of (1), but by invoking Proposition
5.3.16 instead of Lemma 5.3.17. Then a ray Q is constructed analogously to the
proof of (1). Proposition 5.3.14 is not needed: since R is finite, Q has infinitely
many vertices in common with some member of R. Hence Q contains infinitely
many of its focal points.

139

Question 5.3.20. Is there an acyclic and prolific end that contains no finitary
inflation of Y?

The answer seems to be positive.

5.4 Digraphs with countably many ends

Definition 5.4.1. Let G be a digraph and R ⊆ G a ray. A vertex x ∈ V (R) is
said to be an exit point of R in G iff there exists y ∈ V (G) \ ClG(R) such that
y is reachable from x in G.

Lemma 5.4.2. Let G be a digraph such that G∗ = ∅ and such that no end in
G is prolific. Then every ray in G has an exit point in G.

Proof. Assume that there is a ray R ⊆ G that has no exit point in G. Since G is
prolific, H = ClG(R) is a prolific end: for each x ∈ V (R) there exists y ∈ V (G)
that is reachable from x and is not quasi-grounded in G. Since G{y} ⊆ H
(otherwise x would be an exit point), y is not quasi-grounded in H. Since for
all z ∈ V (H) there exists x ∈ V (R) such that x is reachable from z, H is
prolific.

Proposition 5.4.3. Let G be a digraph such that G∗ = ∅ and such that no
end in G is prolific. Then G contains uncountably many ends.

Proof. Let R ⊆ G be a ray. Then there exists an exit point x of R and a ray
R1 ⊆ G that originates from x and is otherwise disjoint from R. (This is so
because ends are closed.) Let R0 = R{x}. Analogously, there are exit points x0
and x1 for R0 and R1 respectively, both above x, giving rise to rays R00, R01,
R10, R11, each of which has an exist point x00, x01, x10, x11. Proceeding in this
way, we define an injection of 2ω into the set of all ends of G.

Definition 5.4.4. Call a digraph G normal iff every end of G, is normal or
contains only finitely many ends.

Theorem 5.4.5. Let G be an acyclic and normal digraph. If G contains no
If [Y], then G∗ = V (G) or G[V (G) \G∗] contains uncountably many ends.

Proof. Suppose G∗ ̸= V (G). Assume that H = G[V (G) \ G∗] contains only
countably many ends. Since H∗ = ∅ it follows from Proposition 5.4.3 that H
has some prolific end H ′. Since H ′ is normal or contains only finitely many
ends, it follows from Theorem 5.3.19 that H ′ contains an If [Y].

Theorem 5.4.6. Let G be a normal digraph with only countably many ends.
Then G is safe iff G is acyclic and contains no If [Y].

Proof. ⇒: By Corollary4.3.4. ⇐: Let G be acyclic and containing no If [Y].
Then G∗ = V (G) by Theorem 5.4.5. Hence G is safe by Theorem 5.2.16.

140

Chapter 6

Final remarks

Let us conclude this thesis with a discussion of a couple of technical and philo-
sophical questions regarding the most important results and methods, as well
as their potential for further applications.

6.1 How to make further progress?

Theorem 5.4.5 has a striking resemblance to Cantor-Bendixson’s theorem in the
sense that it claims that a closed set is either empty or very large. It could be
interesting to think about stronger versions of Theorem 5.4.5 that work with
modified definitions of G∗. Such modifications could be realized by initializing
the hierarchy of Definition 5.2.12 with a more comprehensive class of digraphs
than the quasi-finitely out-branching ones. A prerequisite for this would be to
establish a counterpart to Theorem 5.2.16.

Another even more interesting line of thought arises from the observation
that an end cover of a digraph (cf. Definition 5.3.9) tends to have a tree-like
structure. This phenomenon is illustrated in the proof of Proposition 5.4.3,
which can be read as a recipe for constructing an uncountable end cover of a
digraph G, given that G∗ = ∅ and no end in G is prolific.

Of course, systematizing this construction also requires a treatment of infi-
nite chains of ends, i.e., infinite ⪯G-chains of their principal rays R0 ⪯G R1 ⪯G

R2 · · · (cf. Definition 5.3.4). It seems plausible, however, (at least under favor-
able circumstances) that for every such infinite chain some diagonal ray Rω ⊆ G
can be found such that R0 ⪯G R1 ⪯G R2 · · · ⪯G Rω.

This observation suggests that in order to establish stronger versions of The-
orem 5.4.6, a better understanding is needed of tree-like uncountable end cov-
ers, and, in particular, of the role they play in the construction of global fixed
points of Boolean networks relative to local fixed points that are restricted to
ends. (Note that there are countable digraphs that have no countable end cover
- e.g. infinitely out-branching binary trees. Hence we cannot eliminate in The-
orem 5.4.6 the requirement that G have only countably many ends, simply by

141

focusing on countable digraphs.)
Let us recall that, with regard to the structure of a digraph G, there are

basically three classes of techniques for constructing fixed points of a Boolean
network on G: techniques based on the well-foundedness of G (treated in Sub-
section 2.4.7 and Subsection 2.4.8), techniques based on the compactness of G
(treated in Subsection 2.6.2) and techniques based on G being a tree (treated
in Subsection 2.4.10 and resulting in Theorem 2.4.88). (A combination of the
methods of well-foundedness and compactness is used in Definition 5.2.12).

Of these three methods, it seems that the one based on trees is still the
least understood - and at the same time the one with the largest potential. In
contrast with the other two, we haven’t been able to apply it in Chapter 5.
Instead, we used a different structural property of a digraph, that of having a
countable end cover - but this method is rather limited in scope.

So, progress towards a proof of Conjecture (A) seems to require a gener-
alization of Theorem 2.4.88 to digraphs that are not just trees but rather are
tree-like, or more specifically, have a tree-like end cover. Or, formulated nega-
tively, it seems that any counterexample to Conjecture (A) must be essentially
a tree. And this makes it hard to imagine that such a counterexample exists.

6.2 Are there only two semantic paradoxes?

Does any of the three main conjectures, Conjecture (A), (C) or (D) support
the claim that the Liar paradox and Yablo’s paradox are essentially the only
semantic paradoxes?

Conjecture (A) (Conjecture 2.8.1) states that the loop and the Yablo-graph
are the building blocks from which every dangerous digraph can be generated
via the process of first inflating any of these two digraphs and then adding
arbitrary vertices and arcs to the result. In this sense, (1) the loop and the
Yablo-graph are essentially the only dangerous digraphs. If one concedes that
(2) a semantic paradox is essentially captured by its dependency graph, then it
is plausible to conclude that Conjecture (A) implies that there are essentially
only two paradoxes.

Premise (2), however, is highly problematic. It runs into at least three
objections: (i) there are Boolean networks that have no canonical (i.e., minimal)
dependency graph (cf. Example 2.3.3); (ii) two isomorphic digraphs might be
dependency graphs of two different Boolean networks, each of which might be
paradoxical in a different way or not paradoxical at all; (iii) even two isomorphic
constrained Boolean networks (cf. Definition 2.5.21) can describe two different
paradoxes, since the way one automaton of a network refers to other automata
does matter - in short, reference is an intensional phenomenon and essential for
the identity of a paradox (cf. Subsection 2.5.4).

But even Premise (1) is not as evident as it may seem. As indicated at the
end of Subsection 2.6.2, a positive answer to Question 2.6.27 (‘Is there a digraph
of infinite character that has a skeleton of finite character?’) would imply the

142

existence of a paradox of infinite character whose paradoxicality nevertheless
depends on its cyclic structure. It seems fair to say that its dependency graph
would constitute a reference pattern of hybrid character that cannot be fully
captured by the either the loop or the Yablo-graph alone. (In Subsection 2.8.2
we remarked that it is not obvious how a negative answer to Question 2.6.27 can
be derived from any of the conjectures - but, of course, we could be mistaken.)

What about the other conjectures? Conjecture (C) (Conjecture 2.8.13) is
more specific than Conjecture (A) in the sense that it asserts the existence
of fixed points for the Boolean network ΦG

↓ associated to a digraph G, given
that G contains neither an even finitary inflation of the loop nor of the Yablo-
graph. Since there is a unique correspondence between Boolean networks of the
class ΦG

↓ and their dependency graph G, this makes the association between
semantic paradox and reference pattern much closer than in the previous case.
This invalidates Objections (i) and (ii) against Premise (2) - all adapted to the
context of Conjecture (C) - while Objection (iii) is just as applicable as in the
case of Conjecture (A). (And so is also the objection against Premise (1)).

However, one should keep in mind that Conjecture (C) in itself does not make
an assertion about all Boolean networks, but only about a certain subclass of
them and has to rely on a translation process in order to claim universality.
On the other hand, given the results of Chapter 3 and Theorem 3.2.6 in par-
ticular, one could argue that this translation process via regular inflation (cf.
Definition3.1.1) of the dependency graph and dense weak system embedding
(cf. Definition2.5.4) of Boolean networks into another preserves all the essential
information about the original constrained Boolean network. I would contend
that that Conjecture (C) is indeed a better candidate to support the claim that
there are essentially only two semantic paradoxes than Conjecture (A).

And a better one than Conjecture (D) (Conjecture 2.8.4), which deals with
the concept of digraphs of infinite character - which is at least as abstract as
that of danger and thus again susceptible to Objection (i) and (ii).

6.3 Application to axiomatic theories of truth

In a series of papers ([37], [38] and [39]) Picollo introduces a notions of alethic
reference for sentences of the language of first-order Peano arithmetic extended
with a truth predicate, based upon which she formulates various axiomatic the-
ories of truth which then are proved to be (ω-)consistent. The basic underlying
idea is to restrict the T-scheme to sentences that exhibit a benign alethic refer-
ence pattern, the paradigm of which is, as might be expected, well-foundedness.
But Picollo also considers a theory that allows for non-well founded reference
patterns, as long as they satisfy a propery that corresponds to our notion of a
finitely out-branching digraph (cf. Section 2.1).

It would be interesting to investigate whether even proof-theoretically stronger
axiomatic theories of truth than those in [39] can be formulated and proved con-
sistent by using results and methods from this thesis. The first idea that comes
to mind is to work with the intertwined hierarchy of finitely out-branching and

143

well-founded digraphs from Definition 5.2.12 and apply Theorem 5.2.19 to the
Boolean network discussed in Subsection 2.3.2.

More advanced question then could be, for example, whether positive and
negative reference (in the sense of Section 3.6) can also be formulated in the
vein of Picollo’s approach. And, whether an axiomatic theory of truth can be
formulated that avoids (odd) cycles and reference patterns corresponding to
(odd) finitary inflations of the Yablo-graph, and whether it can be shown to be
ω-consistent relative to Conjecture (A) and Conjecture (C), respectively.

6.4 Application to the logical paradoxes

Finally, it seems worthwhile to consider briefly the question of whether our
abstract approach to the semantic paradoxes via Boolean networks is also ap-
plicable the logical paradoxes, i.e., the class - and property-theoretic paradoxes.
Can class-theoretic paradoxes be analyzed in terms of dependency graphs?

There are probably various ways to do this. The most straightforward one is
to look at Boolean networks that have a Boolean automaton for every ordered
pair (x,y) of classes (or even class terms) that is supposed to ‘compute’ whether
or not x is an element of y, given the results of the entire network and assuming
the validity of the comprehension scheme. Without going into details, it seems
clear that the automaton that ‘computes’ whether the Russell class R is an
element of itself has a (signed) dependency graph isomorphic to that of the
liar sentence. This is so because the truth value of the proposition ‘R is an
element of R’ depends on the truth value of the proposition ‘R is an element
of R’ in the same negative way the truth value of the liar sentence depends
on itself, producing an endless alternating sequence of output values of their
automata. On the other hand, the picture for the universal class U is quite
different: For every class x whatsoever, the proposition ‘x is an element of U’ is
true by definition of U. The computation process stabilizes at step one and the
dependency graph is the trivial one, consisting of an isolated point, just as that
for a sentence like ‘snow is white’.

Investigations along these lines could provide insights into how the semantic-
and the logical paradoxes are interrelated. Are the paradoxical dependency
patterns the same as for the semantic paradoxes? In particular, is there a
class-theoretical counterpart to the Yablo-paradox? (The answer is probably
language-dependent). And, more ambitiously, can results about fixed point
existence for Boolean networks be used in order construct models for set theories
with a universal set?

144

Bibliography

[1] Bang-Jensen, J., and Gutin, G. Digraphs. Springer, Heidelberg New
York, 2009.

[2] Berge, C. Théorie des graphes et ses applications. Dunod, Paris, 1958.

[3] Berge, C. The theory of Graphs and its Applications. Wiley, New York,
1962.

[4] Beringer, T., and Schindler, T. Reference graphs and semantic para-
dox. Logica Yearbook 2015 (2015), 15.

[5] Beringer, T., and Schindler, T. A graph-theoretic analysis of the
semantic paradoxes. Bulletin of Symbolic Logic 23 (2017), 442–492.

[6] Berlekamp, E. T., Conway, J. H., and Guy, R. K. Winning ways
for your mathematical plays, volume 4. Second edition. CRC Press, Boca
Raton, London, New York, 2004.

[7] Berto, F., and Tagliabue, J. Cellular Automata. In The Stanford
Encyclopedia of Philosophy, E. N. Zalta, Ed., Spring 2022 ed. Metaphysics
Research Lab, Stanford University, 2022.

[8] Bezem, M., Grabmayer, C., and Walicki, M. Expressive power of di-
graph solvability. Annals of Pure and Applied Logic 163(3) (2012), 200–213.

[9] Bolander, T. Logical theories for agent introspection. PhD thesis, Infor-
matics and Mathematical Modelling (IMM), Technical University of Den-
mark, 2003.

[10] Boros, E., and Gurvich, V. Perfect graphs, kernels, and cores of coop-
erative games. Discrete Mathematics 306 (2006), 2336–2354.

[11] Braccini, M., Baldini, P., and Roli, A. Cell–Cell Interactions: How
Coupled Boolean Networks Tend to Criticality. Artificial Life (07 2024),
1–13.

[12] Cantini, A. A theory of formal truth arithmetically equivalent to ID1.
Journal of Symbolic Logic 55 (1990), 244–259.

145

[13] Carl, M. Ordinal Computability, An Introduction to Infinitary Machines.
De Gruyter, Berlin, Boston, 2019.

[14] Cook, R. T. Patterns of paradox. Journal of Symbolic Logic 69, 3 (2004),
767–774.

[15] Cook, R. T. There are non-circular paradoxes (but Yablo’s Isn’t One of
Them!). The Monist 89, 1 (2006), 118–149.

[16] Cook, R. T. The Yablo Paradox. Oxford University Press, Oxford, 2014.

[17] Diestel, R. Graph Theory. Springer, Heidelberg New York, 2010.

[18] Dung, P. M. On the acceptability of arguments and its fundamental
role in nonmonotonic reasoning, logic programming and n-person games.
Artificial Intelligence 77 (1995), 321–357.

[19] Dunne, P. E. The complexity of Boolean networks. Academic Press,
London, 1988.

[20] Dyrkolbotn, S., and Walicki, M. Propositional discourse logic. Syn-
these 191 (2014), 863–899.

[21] Gaifman, H. Pointers to truth. Journal of Philosophy 89 (1992), 223–261.

[22] Gupta, A. Truth and paradox. Journal of Philosphical Logic 11 (1982),
1–60.

[23] Gupta, A., and Belnap, N. D. The Revision Theory of Truth. MIT
Press, Cambridge, 1993.

[24] Herzberger, H. Paradoxes of grounding in semantics. Journal of Phi-
losophy 67 (1970), 145–167.

[25] Herzberger, H. Naive semantics and the liar paradox. Journal of Phi-
losophy 79 (1982), 479–497.

[26] Herzberger, H. Notes on naive semantics. Journal of Philosphical Logic
11 (1982), 61–102.

[27] Hopfield, J. J. Neural networks and physical systems with emergent
collective computational abilities. Proc Natl Acad Sci U S A. 79(8) (1982),
2554–2558.

[28] Hsiung, M. What paradoxes depend on. Synthese 197 (3) (2020), 887–913.

[29] Jongeling, T. B., Koetsier, T., and Wattel, E. Self-reference in
finite and infinite paradoxes. Logique et Analyse 45 (2002), 15–30.

[30] Kauffman, S. Homeostasis and differentiation in random genetic control
networks. Nature 224 (1969).

146

[31] Kelley, J. L. General Topology. Ishi Press, New York, Tokyo, 2008.

[32] Kripke, S. Outline of a theory of truth. Journal of Philosphy 72 (1975),
690–716.

[33] Lawvere, W., and Schanuel, S. Conceptual mathematics, second edi-
tion. Cambridge University Press, Cambridge, 2009.

[34] Leitgeb, H. What Truth Depends On. Journal of Philosphical Logic 34
(2005), 155–192.

[35] Löwe, B. Revision sequences and computers with an infinite amount of
time. Journal of Logic and Computation 11 (2001), 25–40.

[36] Neumann-Lara, V. Seminúcleos de una digráfica. In Anales del Instituto
de Matemáticas, Vol. 11, H. Cardenas Trigos, Ed. Universidad Nacional
Autónoma de México, Mexico City, 1971.

[37] Picollo, L. Minimalism, reference, and paradoxes. In Logica Yearbook
2015 (London, 2016), P. Arazim and M. Dancak, Eds., College Publica-
tions, pp. 163–178.

[38] Picollo, L. Alethic Reference. Journal of Philosophical Logic (2019),
https://doi.org/10.1007/s10992–019–09524–w.

[39] Picollo, L. Reference and Truth. Journal of Philosophical Logic (2019),
https://doi.org/10.1007/s10992–019–09525–9.

[40] Rabern, B., and Landon, R. Structural fixed point the-
orems. www.researchgate.net/publication/350835243structuralf ixed −
pointtheorems, 2021.

[41] Rabern, L., Rabern, B., and Macauley, M. Dangerous reference
graphs and semantic paradoxes. Journal of Philosophical Logic 42, 5 (2013),
727–765.

[42] Richardson, M. Solutions of irreflexive relations. Annals of Mathematics
58(3) (1953), 573–590.

[43] Robert, F. Les systèmes dynamiques discrets. Springer, Heidelberg New
York, 1995.

[44] Shapiro, J. H. A fixed-point farrago. Springer, 2016.

[45] von Neumann, J., and Morgenstern, O. Theory of Games and Eco-
nomic Behavior. Princeton University Press, Princeton, 1944 (1947).

[46] Walicki, M. Reference, paradoxes and truth. Synthese 171 (2009), 195–
226.

[47] Walicki, M. Kernels of digraphs with finitely many ends. Discrete Math-
ematics 342 (2019), 473–486.

147

[48] Weisbuch, G. Complex Systems Dynamics. Routledge, New York, 2018.

[49] Yablo, S. Grounding, dependence, and paradox. Journal of Philosophical
Logic 11, 1 (1982), 117–137.

[50] Yablo, S. Paradox without self-reference. Analysis 53 (1993), 251–252.

[51] Yablo, S. Circularity and paradox. In Self-Reference, Bolander, Hen-
dricks, and Pedersen, Eds. CSLI Publications, Stanford, 2006, pp. 139–157.

148

	Introduction
	Semantic paradoxes and reference patterns
	Graph-theoretic accounts of the semantic paradoxes
	What is a graph-theoretic account?
	The approach of Cook
	The approach of Rabern et al.
	The approach of Beringer and Schindler

	Guiding questions
	Richardson's theorem for infinite graphs
	Outline of the thesis
	Outline of Chapter 2
	Outline of Chapter 3
	Outline of Chapter 4
	Outline of Chapter 5

	Boolean networks and semantic paradoxes
	Basic terminology
	Discrete dynamical systems
	Dynamical systems and iteration graphs
	Invariant sets and attractors
	Boolean networks and Boolean automata

	Dependency graphs
	Automata dependency and dependency graphs
	Reconstruction of FOL frameworks
	Constructing Boolean networks on digraphs
	Trajectories of automata

	Paradoxical sentences and automata
	Notions of paradoxical automata
	Transfinite trajectories
	General function networks
	Subtypes
	A topology for the state space
	Subnetworks and digraph topology
	Kripke fixed points
	Kripke-extensions of Boolean networks
	Kripke-paradoxicality in terms of subspace invariance
	Fixed points by type reduction
	Core, periphery and kernel-perfect digraphs

	System- and network transformations
	System transformations
	Network isomorphisms
	Function network products
	What is a reference pattern?

	Three related characterization problems
	Dangerous and safe digraphs
	Compactness and digraphs of finite character
	Strongly kernel-perfect digraphs

	Digraph transformations
	Subdivisions
	Inflations and minors
	The parity of an inflated Yablo-graph

	Conjectured solutions for the characterization problems
	The characterization problem for safe digraphs
	The characterization problem for digraphs of finite character
	The characterization problem for strongly kernel-perfect digraphs

	Characteristic digraphs of constrained Boolean networks
	Regular inflations
	Characteristic digraphs
	Danger preserving digraph transformations
	Walicki's conjecture
	Existence of characteristic digraphs
	Representation of Boolean networks as sentence systems
	Construction of a characteristic digraph

	Signed dependency graphs

	The parity of an inflation and strong kernel-perfectness
	Convergent inflations
	Construction of convergent inflations of the Yablo-graph
	Necessary conditions for the characterization problems
	Finitary inflations of the Yablo-graph

	Safe digraphs
	Partitions of function networks
	Open exhaustions
	Well-founded partitions

	Prolific digraphs
	Quasi-finitely out-branching digraphs
	Prolific digraphs

	Ends
	Ends and end covers
	Normal ends

	Digraphs with countably many ends

	Final remarks
	How to make further progress?
	Are there only two semantic paradoxes?
	Application to axiomatic theories of truth
	Application to the logical paradoxes

