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ZUSAMMENFASSUNG

Technologischer Fortschritt war und ist Treiber wissenschaftlichen Fortschritts.
Zur Beantwortung schwieriger Fragen ist oft spezialisierte Technologie nötig, sowie
angepasste Strategien in der Anwendung dieser Technologie. Der bottom-up-Ansatz
der synthetischen Biologie stellt uns viele Werkzeuge bereit zur Untersuchung der
Prinzipien, welche der Organisation des Lebens zugrunde liegen. Dazu gehören
künstliche Membransysteme, Tröpfchen aus phasentrennenden Proteinen, auf Spe-
icherung undNutzung von Information programmierte Nukleinsäuren und viele an-
dere. Um die Details der zugrunde liegenden physikalischen Chemie zu erforschen,
sind oft neuartige biophysikalische Techniken nötig. Fluoreszenztechniken zeichnen
sich durch hohe Sensitivität sowie räumliche und zeitliche Auflösung aus, und sind
somit gut geeignet fur Untersuchungen der Dynamiken von Biomolekülen.

Die Anforderungen an Methoden steigt dabei stetig mit zunehmender Komplex-
ität der biomimetischen Systeme und zunehmender Bedeutung quantitativer Frage-
stellungen. Wir verbessern zeitaufgelöste Fluoreszenztechniken für die Anwendung
an diversen biomolekularen Systemen welche derzeit für bottom-up synthetische Bi-
ologie von Interesse sind. Wir entwickeln verbesserte Messvorschriften und damit
assoziierte Software inbesondere für Fluoreszenz-Korrelationsspektroskopie.

Wir untersuchen die Selbsassemblierung von DNA-Origami-Nanopartikeln im
Kontext biologischer Membranen mit Einzelmolekülmikroskopie. Wir verbinden
dabeiDNA-PAINT-Mikroskopie-basierteCharakterisierungvonMorphologiemitMo-
bilitätsanalyse mittels Einzelmolekülverfolgung und Untersuchung des zeitlichen
Verlaufs der Selfsassemblierung durch Bildkorrelationsspektroskopie. In Studien
zur Entmischung von Proteinen befassen wir uns mit experimentellen Herausforder-
ungen in konfokaler Fluoreszenz-Korrelationsspektroskopie an biomolekularenKon-
densaten. Wir etablieren experimentelle Standards und stellen Software für automa-
tisierte Korrektur häufiger Artefakte in den Daten bereit. Als nächstes widmen wir
uns filamentbildenden Proteinen und allgemeiner polydispersen Teilchenmischun-
gen. Hier stellen wir uns die Frage, wodurch Bestimmung von Partikelgrößen-Vertei-
lungen mittels Fluoreszenz-Korrelationsspektroskopie limitiert ist. Wir diskutieren
die experimentellen Herausforderungen und stellen einen allgemeinen Rahmen für
die Datenanalyse vor. Zuletzt stellen wir ein weiteres Software-Tool vor für teilau-
tomatisierteAufnahmeundAnalyse für Fluoreszenz-Korrelationsspektroskopie-Daten
mit hoher Qualität an biologischen Membranen. Dabei tragen wir publizierte Ideen
zusammen, welche sich für diese Art von Probe typischen Herausforderungen wid-
men.

Die entwickelten Messvorschriften und Hilfmittel werden der Forschung in der
synthetischenBiologie helfen,mit verschiedene erwartbaren Schwierigkeiten in zukün-
ftigen quantitativen Experimenten umzugehen. Damit eröffnen sich nun eine große
Zahl wissenschaftlicher Fragestellungen zu Selbsassemblierung und Selbstorganisa-
tion auch ausserhalb des Gleichgewichts, welche in der Folge angegangen werden
können. Während die Methoden an und für biomimetische Systeme entwickelt wur-
den, sollten die hier erzielten Erkenntnisse auch für Lebendzellstudien von interesse
sein. In diesen besteht ebenfalls ein großer Bedarf an verbesserten experimentellen
Methoden zur Bewältigung im Wesentlichen der gleichen Herausforderungen.
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ABSTRACT

Progress in technology has always been a driver of progress in science. Answer-
ing challenging questions requires bespoke technology and strategies in its use. The
expanding toolbox of bottom-up synthetic biology allows us to study the organi-
zation principles underlying life. This include artificial membrane systems, phase-
separating protein droplets, nucleic acids programmed to encode and use informa-
tion, and many others. To study the details of the underlying physical chemistry,
novel biophysical techniques are often needed. Fluorescence techniques allow study-
ing the dynamics of biomolecules with high sensitivity and at high spatial and tem-
poral resolution.

With increasing complexity of biomimetic systems and scientific questions mov-
ing towardsmore detailled quantitative characterization, the challenges encountered
by themethods employed also become greater. We adapt and improve time-resolved
fluorescence techniques for application to various biomolecular systems currently of
interest to bottom-up synthetic biology. We improve experimental protocols and de-
velop associated software tools especially for fluorescence correlation spectroscopy.

We investigate self-assembly of DNA origami nanoparticles in the context of bio-
logical membranes using single molecule imaging. DNA-PAINT microscopy-based
morphology characterization is complemented by single particle tracking and image
correlation spectroscopy to characterize particle mobility and the time-course of as-
sembly. Turning to liquid-liquid phase separation, we investigate the experimental
challenges that arise in confocal fluorescence correlation spectroscopy in protein con-
densates. We propose best practices in experiment design, and distribute software
for data processing that automates compensation of various frequent artifacts. We
then turn to filament-forming proteins, and polydisperse particlemixtures in general.
Here, we askwhat limits the performance of fluorescence correlation spectroscopy in
characterizing particle size distributions. We discuss experimental challenges, and
propose a general framework for data analysis. Finally, another software tool is devel-
oped for partial automation of high-quality acquisition and analysis of fluorescence
correlation spectroscopy on membranes, based on published ideas for dealing with
challenges characteristic for this setting.

The developed protocols and tools will be of use for the synthetic biology com-
munity to avoid pitfalls in quantitative measurements. Thus, many questions relat-
ing to self-assembly and non-equilibrium self-organization may be addressed in the
future. Of note, while the protocols and tools have been developed on and for syn-
thetic biomimetic samples, the insights gained should be just as valuable for live-cell
studies. There, experimenters face the urgent need for improved methods to tackle
essentially the same challenges.
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1
Introduction

1.1 Origin of life and synthetic biology

Many big questions that have puzzled humanity since the early days of known his-
tory could be answered once the right technology was within reach. Telescopes re-
vealed critical details about the motion of planets that led to an understanding of
the organization of the solar system, and keep revealing more and more information
about the nature of astronomical objects [9]. Microscopes allowed us understand
structure and function of organisms as emerging from the organization of individual
cells [10, 11]. X-ray diffraction and particle accelerators allow studying the structure
of matter at (sub-)atomic level [12, 13].

The question of what is the origin of life encounters a special challenge: What we
would like to study simply does not exist any more, and will not re-appear. No geo-
logical record of the origin of life is preserved. Life cannot realistically emerge again
on Earth a second time either, as existing life occupies practically every habitable
niche of the planet and would consume the prebiotic molecules as nutrients. There-
fore, the traditional empirical approach in science fails to deliver definite answers of
how and where life emerged. What is possible is to empirically study extant life on
its most fundamental level, recreate its building blocks, and understand how biolog-
ical function emerges from their interplay. That way, hypotheses about the origin of
life can be generated, whose plausibility can then be judged given reconstructions of
early Earth environments. Albert Eschenmoser rationalized this approach by stating
that ”[t]he origin of life cannot be ‘discovered’, it has to be ‘re-invented’” [14].

This reconstruction of fundamental biological functions is the topic of bottom-up
synthetic biology [15]. A typical approach in bottom-up synthetic biology is to mix
in a test tube a known set of compounds, which can be naturally derived or fully syn-
thetic, and find conditions in which they replicate, or modify, a known function in
biology, such as sorting of molecules into distinct positions, or replication of genetic
information. That way, minimal combinations of modules needed for a given func-
tion of interest can be identified. In the following, hypotheses can be found about
which molecules and environmental cues on early Earth could have played the roles
of these modules.

Bottom-up synthetic biology is closely connected to biophysics. The bottom-up
approach yields systems of limited complexity and noise. Therefore, they are more
accessible to detailled physical characterization and modelling than intact living sys-
tems. Biophysical characterization helps in understanding exactly how the interac-
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CHAPTER 1. INTRODUCTION

tion of biological or biomimetic modules leads to life-like functionality. This bring
us back to the topic of technological progress, as a driver of scientific progress: Even
though we cannot expect a definite answer about the origin of life no matter what
technologies become available, the ability to perform more and more detailled bio-
physical measurements is crucial to make progress towards developing and testing
viable hypotheses.

1.2 Self-organization in biology

A recurring theme in biophysics, especially in the context of bottom-up synthetic biol-
ogy, is self-organization. Organisms with anatomy as complex as vertebrates emerge
from a single zygote with little external instructions. Thus, life is capable of highly
complex intrinsic organizing principles [16,17]. However, as life is constrained by the
laws of chemistry and physics, it must be possible to explain these self-organization
principles physically. Self-organization occurs on many scales, frommolecules work-
ing together to perform a complex function, to the dynamics of swarms of fish or
birds. Bottom-up synthetic biology and the study of the origin of life are mostly con-
cerned with molecular self-organization, though, as it forms the basis which then
allows self-organization to occur at larger scales as well.

The keyprinciple of biological self-organization is to exploit energy takenup from
the environment to create internal order [16, 18]. Obvious examples where one can
understand easily how life uses energy to achieve organized processes on a (sub)-
cellular level are active processes involving the cytoskeleton like the contraction of
muscle fibers, cargo transport along axons, or segregation of cell content during cell
division [16, 19] These examples are only obvious realizations of the general con-
cept that living systems operate far from thermodynamic equilibrium. Symmetry of
chemical reactions is broken, with reactions preferentially proceeding in one direc-
tion and producing specific stereoisomers of the products [20]. Molecules are kept
in distinct compartments, rather than mixing homogeneously [21, 22]. Processes are
held in locked states until a suitable trigger allows them to proceed [23]. All this is
achieved by directly or indirectly coupling the processes of life on amolecular level to
the degradation of high-energy molecules, typically adenosine triphosphate (ATP).
Various proteins are optimized in evolution to perform a specific function while de-
grading ATP, thereby biasing that function to proceed in an ordered, unidirectional
manner. Regeneration of ATP in turn is couled to the degradation of nutrients.

Distinct from self-organization in the strict sense, but closely connected, is the
topic of self-assembly (Section 2.5). Many biomolecules can assemble from solu-
tion into mesoscopic complexes which possess properties that the individual macro-
molecule cannot provide. A paradigmatic example of self-assembly of proteins is the
cytoskeleton, where individually globular proteins self-assemble into long filaments
that serve as scaffold along which other processes are organized. Self-assembly is
thus often at the heart of non-equilibrium self-organization. Another related process
of interest is phase separation, i.e., the macroscopic segregation of molecules into dis-
tinct subvolumes (Section 2.4). Both self-assembly and phase separation are key tools
for synthetic biology to build complex structures from simple building blocks, and
both likely played important roles for the origin of life.

Self-organization is characterized by the emergence of system properties that are
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CHAPTER 1. INTRODUCTION

not obvious from the properties of system constituents alone. Therefore, their study
often requires investigation at the boundary between the dynamics of individual par-
ticles and macroscopic material properties. High-end microscopy is therefore a cru-
cial technology for the study of molecular self-organization processes.

1.3 From “pictures” to quantitative biophysics

Some of the earliest scientific instruments in human history were tools to aid visual
observation of nature. During ancient andmedieval times, astronomical observation
was a driver of developments in technology and mathematics. While relying on the
resolution and sensitivity of the naked eye, these studies already used instruments
to assist determination of positions or time [9]. Many authors argue that the scien-
tific revolution of the 17th and 18th century was enabled by a small number of key
inventions, of which two are instruments of visual observation: the telescope and the
microscope, complemented depending on the author by e.g., the vacuum pump and
the pendulum clock [24, 25].

In more modern times, Nobel prizes are often cited as proof of the significance of
a topic for science and technology. The very first physics Nobel prize was awarded
to Wilhelm C. Röntgen in 1901 for the discovery of X-rays, which had been immedi-
ately recognized as a means of observing structures that were previously invisible.
Recent awards went to Eric Betzig, Stefan W. Hell, and William E. Moerner in 2014
for the development of super-resolution light microscopy, and to Jacques Dubochet,
Joachim Frank and Richard Henderson in 2017 for the development of cryo-electron
microscopy. These and other Nobel prizes for development of imaging technology,
and many more awards with strong but more implicit links to scientific imaging,
make clear that progress of imaging technology continues to drive progress in sci-
ence.

Two related but distinct terms appeared in the previous two paragraphs: The
“visual observation” was used when referring to science in the 17th and 18th cen-
turies, and “scientific imaging” for more contemporary approaches. What changed?
The introduction of photographic plates/film, eventually succeeded digital cameras
and computers, drastically changed the meaning of images in science. The first im-
plication the use of detectors other than the human eye in scientific imaging is the
possibility to acquire observe outside the capabilities of human perception (sSection
2.6). Structures can be seen using types of radiation invisible to the human eye, and
equally importantly, images can be generated at speed and/or sensitivity impossible
for the human eye and brain. Further, these innovations opened opened the path for
calibration, standardization, and automation of image acquisition and analysis. Im-
ages then are no longer simply “pictures” displaying structures of interest, but can
be described in terms of quantitative brightness information. Such quantitative im-
age data can then be interpreted based on physical models and/or statistical tools
(Section 2.7).

This revolution of using images (acquired in optical microscopes) as quantita-
tive scientific data is the background of the work described in this thesis. Modern
microscopy techniques push the resolution and sensitivity of measurements to the
single-molecule regime, allowing to observe the physical chemistry through which
molecules undergo their respective functions in real time (Section 2.6). Fluorescence
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CHAPTER 1. INTRODUCTION

techniques with their superior signal to background ratio are especially useful for
measurements in the single-molecule regime (Section 2.1). Fluorescence techniques
combinedwithmodernhigh-sensitivity detection also a perfectmatch to time-resolved
microscopy and spectroscopy down to the nanosecond time scale (and in some cases
even faster), which is particularly valuable for obtaining information about physical
mechanisms underlying dynamic processes like self-organization (Section 2.7).

Thus, extremely detailled quantitative data can be generated to study the mecha-
nisms underlying self-organization. However, such studies remain technically chal-
lenging in for all but the simplest systems. Measurement protocols and data treat-
ment need to be optimized to the specific challenges of the sample of interest. In
this thesis, I describe the results of my work exploring and adapting time-resolved
(near) single-molecule fluorscence microscopy techniques for the study of multiple
self-organizing systems of interest to the bottom-up synthetic biology community.

8



2
Theoretical Background

2.1 Fluorescence and Photophysics

Figure 2.1. Jabłoński diagram of important photophysical transitions. The Jabłoński dia-
gram illustrates the different major energy levels S0, S1, and T1 and some of the transitions
between them. Some transitions that are relevant in practical fluorescence microscopy or
spectroscopy are omitted for clarity. The right panels schematically shows spectra for exci-
tation (blue), fluorescence emission (green), and phosphorescence emission (yellow). ISC:
Inter-System Crossing. See main text for details.

All studies described in this thesis use fluorescence techniques. The basis of flu-
orescence is a sequence of transitions between different energy levels, illustrated in
the Jabłoński diagram Figure 2.1. The molecules in general reside at the electronic
ground state called S0, with higher electronic states SN unoccupied. The SN states
are separated from the S0 state by discrete energy gaps. To transition into the S1 state,
themoleculemust absorb energyΔ𝐸 to match the energy gap (blue arrows). This can
correspond for example to absorption of a photon of matching wavelength 𝜆, where
Δ𝐸 = ℎ𝑐𝜆−1 (ingoring the impact of refractive index). The S1 state is instable, that

9



CHAPTER 2. THEORETICAL BACKGROUND

therefore will decay back to S0 within a short time, releasing the excess energy. This
energy release can again happen as emission of a photon, besides other pathways of
which a few will be mentioned below (green arrows). This excitation upon photon
absorption followed by emission of another photon is fluorescence. The S0 and S1
levels are split into further energy levels defined by rotational and vibrational de-
grees of freedom (back lines). Between excitation and emission, the molecule will
rapidly relax into a low vibrational energy level within the S1 electronic level (solid
grey arrows), meaning that Δ𝐸 for emission is typically smaller than for excitation.
Therefore, fluorescence emission is generally red-shifted compared to the excitation
(spectra in the right of Figure 2.1). This is known as Stokes shift, after George Gabriel
Stokes who first recognized this frequency shift [26].

The Stokes shift makes fluorescence a valuable tool for microscopy and spec-
troscopy: Excitation light (illumination) and emission (sample response) can be spec-
trally separated. A single modern spectral filter can suppress backscattered excita-
tion light by more than 106-fold with only few-% loss in the detected fluorescent
emission. Thus, fluorescence detection can be performed with very high signal to
background ratio (Figure 2.2). In addition, the fact that the energy gaps, and thus
wavelengths, of the fluorescence photocycle are specific to the fluorescent molecule
means that multiple dyes can be observed in parallel, separating their signals by
wavelengths (via sequential excitation, split detection, or both). Combination of flu-
orescence with chemical or biotechnological strategies for specific linkage of fluo-
rescent dyes to target particles can therefore be used to characterize spatial and/or
temporal relations between multiple structures of interest, with excellent sensitivity
and specificity [27–29].

Besides the photocycle mentioned above, other transitions can occur upon exci-
tation of fluorophores. For example, instead of decaying back into the S0 level, a
molecule can undergo intersystem crossing into the T1 triplet state (ISC, dashed grey
arrow in Figure 2.1). ISC is a ”forbidden”, rare transition. However, if ISC does oc-
cur, the T1 state is typically relatively long-lived for the same reason. Transition from
the T1 state back to S0 with photon emission is known as phosphorescence (yellow
arrows). The T1 state can also be quenched in triplet-triplet annihilation processes
with oxygen, which under aerobic conditions is often the dominant pathway (not
shown in Figure 2.1). A concern here is that this triplet quenching by oxygen leaves
the oxygen molecule in a chemically highly reactive excited state, which can subse-
quently chemically react with the fluorophore (or another molecule in the vicinity).
Such reactionsmean degradation of the fluorophore, which is often irreversible. This
degradation of fluorophores is referred to as photobleaching, as it is a photoinduced
loss of fluorophore molecules. Note that photobleaching can also occur via other
pathways that do not involve oxygen. Besides photobleaching, photodamage can
also be relevant as damage to the sample itself, for example toxic effects on observed
cells or photo-crosslinking of observed molecules [30].

The described fluorescence photocycle is a sequence of dicrete events. The time
delays follow characteristic rates, which for a simple fluorophore under low-intensity
conditions, where most particles reside in the ground state at any given time, can be
summarized as:

𝜕𝑁0
𝑑𝑡

= −𝜕𝑁1
𝑑𝑡

≈ −𝜙ℎ𝜈𝛼𝑁0 + (𝑘𝑟 + 𝑘𝑛𝑟)𝑁1 (2.1)
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CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.2. Specificity of fluorescence detection. Schematic illustration of how fluorescence
allows extreme specificity of detection. An excess of excitation light (blue wavy arrows) ex-
cites fluorescence from a particle to be detected (green dot). While the intensity of emitted
fluorescence is relatively low (green wavy arrows), insertion of a spectral cutoff filter (grey
bar) that rejects light at the excitation wavelength but not at the detection wavelength allows
to detect the available fluorescence signal with extremely low background.

where 𝑁0/1 are the numbers of molecules in the S0/1 states. 𝜙ℎ𝜈 is the photon flux
(photons per area and time), which is proportional to local illumination intensity. 𝛼
is the interaction cross section for absorption/excitation. It is essentially a single-
particle level description of the extinction coefficient accessible in standard absorp-
tion spectrometers. 𝛼 is a wavelength-dependent parameter whose spectral profile
corresponds to the blue line in Figure 2.1. 𝑘𝑟/𝑛𝑟 are the rate constants characteriz-
ing the radiative and nonradiative decays. Radiative and nonradiative decays are S1
→S0 decay pathways with photon emission, or with the energy being lost nonradia-
tively into other channels, respectively. These rates also determine the fluorescence
quantum yield 𝜂 as overall probability for photon emission after excitation:

𝜂 =
𝑘𝑟

𝑘𝑟 + 𝑘𝑛𝑟 = 𝑘𝑟𝜏 𝑓 𝑙 (2.2)

The product 𝛼𝜂 thus determines the intrinsic brightness of the fluorophore, at
least under non-saturating conditions. This intrinsic brightness, together with the
excitation intensity and instrumental sensitivity of the microscope or spectrometer,
yield the effectivemolecular brightness that wewill encounter again in section 2.7. In
Eq. 2.2, we introduce the excited-state lifetime 𝜏 𝑓 𝑙 = [𝑘𝑟 + 𝑘𝑛𝑟]−1 as the average time
delay between excitation and excited state decay, commonly also called fluorescence
lifetime. For many commonly-used dyes emitting at visible wavelengths, 𝜏 𝑓 𝑙 is in the
range of one or a few nanoseconds. 𝑘𝑟 , and thus 𝜏 𝑓 𝑙 , is physically linked to other
parameters characterizing the fluorophore and its immediate environment [31]:
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𝑘𝑟 = 2.880 · 10−1𝑛2

∫
𝐼 (𝜈̃) 𝑑𝜈̃∫

𝐼 (𝜈̃) 𝜈̃−3𝑑𝜈̃

∫
𝜀 (𝜈̃)
𝜈̃

𝑑𝜈̃ (2.3)

with wavenumber 𝜈̃ and refractive index 𝑛. In words, the radiative decay rate
depends on the absorption and emission spectra in position and shape, on the mag-
nitude of the absorption spectrum, and, importantly, on the surrounding refractive
index. The latter in turn depends on the chemical composition of the environment.
𝑘𝑛𝑟 characterizes for example energy transfer processes quenching the excited state,
which also depend on the chemical environment of the particle. Direct and dis-
tinct measurement of 𝑘𝑟 and 𝑘𝑛𝑟 is difficult and requires specialized approaches (e.g.,
[32,33]), but 𝜏 𝑓 𝑙 is relatively easily accessible with contemporary time-correlated sin-
gle photon counting (TCSPC) hardware (Figure 2.4 [34]).

In TCSPC, over an acquisition time of typically seconds to hours, the sample is
repeatedly excited with short laser pulses (blue in Figure 2.4). The pulsed laser is
synchronized with single-photon detection electronics for precise time tagging of
fluorescence photons (green). Laser power is kept low to detect at most one photon
per cycle (usually even less due to electronic dead time exceeding cycle duration).
This way, histograms of excitation-emission delays representing the average profile
of the excited state population decay are directly accumulated. 𝜏 𝑓 𝑙 is then extracted
by fitting to exponential decaymodels. Combining TCSPC or other lifetimemeasure-
ment methods with microscopy is called fluorescence lifetime imaging microsocpy
(FLIM, [34,35]), a robust method for characterizing heterogeneities of chemical envi-
ronment within samples.
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Figure 2.3. Time-correlated single photon counting (TCSPC). Following repeated excitation
pulses, single photons are detected and a histogram accumulated of their excitation-emission
delay. For details, see text.

Returning to Eqs. 2.1 and 2.2, among the processes neglected so far are ISC
and other rare transitions, as well as vibrational relaxations, and stimulated emis-
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sion. Stimulated emission is the inversion of absorption (i.e., photoinduced emis-
sion), which becomes relevant under high-intensity conditions. Vibrational relax-
ations within the S0/1 are much faster (typically picoseconds scale) than fluorescence
emission and therefore have a negligible impact on the overall kinetics of the pho-
tocycle. Transitions into the triplet state and photoinduced isomerizations typically
occur on much longer time scales. As a consequence, they occur rarely: Compare
Eq. 2.2 to consider the quantum yield for a very slow transision. Therefore, they
too have negligible impact on the photocycle under low excitation power conditions.
As triplet or isomerization transitions lead to intermittency of fluorescence signal at
longer time scales, these transitions are often also summarized as ”blinking”, which
will be mentioned again later. As indicated above in the explanation of the role of
oxygen in triplet state quenching, the rates of blinking processes can often be tuned
over lange ranges, which does make them usable for many different purposes if they
are controlled [36, 37].

2.2 Light Microscopy

As mentioned in the previous section, fluorescence is a powerful tool for use in light
microscopy. While light microscopes are diverse in construction and operating prin-
ciples, they have in common that they are built to visualize, and in modern times
quantitatively measure, structures that are too small to be visible to the naked eye. A
unifying construction principle is the use of an objective lens with short focal length,
which translates to high magnifying capabilities. Further lenses in the microscope’s
optical system may then further increase magnification, for example to help the hu-
man eyemake full use of the available information. However, these additional lenses
do not add further information to the image that is not captured by the objective.
Therefore, the theoretical resolution limit of a microscope is determined by the ob-
jective lens as recongized by Ernst Abbe [38], often referred to as the Abbe limit or
diffraction limit:

𝑑𝑚𝑖𝑛 =
𝜆

2𝑁𝐴
=

𝜆
2𝑛 sin 𝛼

(2.4)

where 𝑑𝑚𝑖𝑛 is the smallest distance at which two points are still distinguishable.
𝑁𝐴 is the numerical aperture of the objective, ameasure of its light collection capabil-
ities given by the opening half-angle 𝛼 and the immersionmedium refractive index 𝑛
between objective and sample. 𝜆 is thewavelength used in observation. Wavelengths
visible to the human eye, as well as the spectra of most commonly-used fluorophores,
are restricted to𝜆 ≳ 400 𝑛𝑚 (shorter-wavelength fluorophores often having relatively
poor photophysical properties). Obviously, sin 𝛼 ≤ 1, and practically useful refrac-
tive indices do not far exceed that of water (𝑛 ≈ 1.34). 𝑛 ≳ 1.45 is typically restricted
to imaging of immobilized and polymer-embedded samples, or specialized applica-
tions. Therefore, in practice, features at scales much smaller than 𝑑𝑚𝑖𝑛 ≈ 200 𝑛𝑚
usually remain unresolved.

In more detail, the resolution of a microscope is described by its point spread
function (PSF). The PSF describes the blurred image that the microscope produces
of an infinitesmally small point (individual emitter/scatterer particle) in the sample.
An entire image then is a convolution of the spatial emitter distribution with the PSF.
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Camera

Light source

Filter(s)

Objective

Sample

Figure 2.4. Simple fluorescence microscope. The schematic shows a simple fluorescence
microscope setup. Light from the excitation light source is focused into the back focal plane
of the objective to obtain even illumination within the sample. Fluorescence light is collected
through the same objective, separated from back-scattered excitation light using spectral fil-
ters, and imaged onto a camera. The example image shows 3-color image acquired at a Zeiss
Elyra7 microscope equipped with an 63x NA 1.46 oil immersion objective. Sample: Fixed
adherent cells(FluoCells, Invitrogen) with fluorescently stained nuclei (cyan), actin (yellow),
and mitochondria (magenta).

For a diffraction-limited microscope, the two-dimensional section through the point
spread function in the focal plane is given by:

𝐼 (𝑟) = 𝐼 (0)
[
2𝐽1

( 2𝜋𝑟𝑁𝐴
𝜆

)
2𝜋𝑟𝑁𝐴

𝜆

]2

(2.5)

where 𝑟 is the distance from the actual emitter position and 𝐽1 (𝑥) is a zero-order
Bessel function of the first kind. This profile, known as an Airy pattern, consists of
a pronounced central maximum, and a series of surrounding concentric rings (solid
lines in Figure 2.5). For practical purposes, the Airy pattern is often approximated by
a Gaussian profile, which is sufficiently accurate for many applications (red dashed
lines in Figure 2.5). The Abbe resolution limit (Eq. 2.4) then approximately equals
the full width at half maximum of the central maximum of the PSF.

The three-dimensional profile of the PSF is more complex, and different descrip-
tions are used depending on the application. An approximation that will be used
in later chapters is a simple three-dimensional Gaussian ellipsoid (see Section 2.7,
Eq. 2.23). The 3D-Gaussian model is a rather crude approximation, but convenient
and sufficient for many purposes like those described in Section 2.7. An alternative,
slightly more accurate, model is the Gaussian beam propagation model, also some-
times called Gauss-Lorentzian model. In this model, the intensity distribution in the
plane perpendicular to the optical axis is described by a Gaussian profile, while the
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Figure 2.5. Airy pattern. Shown are Airy patterns calculated according to Eq. 2.5 for differ-
ent numerical apertures: A typical dry objective with 𝑁𝐴 = 0.7, a typical water immersion
objective with 𝑁𝐴 = 1.2 used frequently in Fluorescence Correlation Spectroscopy (Section
2.7), and an oil immersion objective as used in TIRFMwith𝑁𝐴 = 1.49. Overlayed are fitswith
Gaussian profiles to highlight the accurary with which the central maximum is described by
this approximation.

width and amplitude of the Gaussian profile change along the optical axis to yield
an hourglass shape [39]. This model will be discussed in more detail in Section 8.2,
where it becomes relevant. More accurate models tend to involve numeric integra-
tion schemes [40, 41].

In practice, the resolution is often even lower than predicted by Eq. 2.4 if the mi-
croscope suffers from aberrations. A frequent concern in the techniques used in this
work is spherical abberation. Spherical aberration occurs if not the entire wavefront
is focused into the same plane. For spherical lenses, the periphery of a typical lens
focuses the beam more strongly than central parts of the lens. Spherical aberration
always increases the overall size of the PSF, and distorts its shape. Modern objectives
are lens combinations compensating this effect. However, the correction only works
for a specific beam path between objective and sample, for example only water and
a standard thickness glass coverslip. Deviations from this configuration will induce
spherical aberration even with an otherwise aberration-corrected objective. Various
other aberrations exist, and will not be discussed here in detail [42].

Two specialized designs of microscopes that will be of particular interest to this
work are the total internal reflection fluorescence (TIRF)microscope, and the confocal
laser scanning microscope (CLSM, often simply called confocal microscope). Both
often use fluorescence. First, the confocal microscope will be discussed.

In a confocal microscope, the field of view is not illuminated in its entirety at
once. Rather, the illumination is focused into an hourglass shape, yielding a single
diffraction-limited spot in the focal plane within the sample (Figure 2.6). The size
of that spot is given approximately by Eq. 2.4. Laser illumination is the most con-
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Objective
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Laser Filter(s)

L1 L2 L3Pinhole

Wide�eld image (NA = 1.46) Confocal image (NA = 0.95)

Figure 2.6. Confocal microscope. The schematic drawing shows the key components of
a confocal microscope: The objective focuses the excitation laser (blue) into an hourglass
shape, with ideally diffraction-limited beam waist diameter. Filters separate backscattered
excitation light from the fluorescence emission (green). Lenses L1 and L2 then focus the
light through the confocal pinhole to eliminate out-of-focus light (illustrated by solid and
dashed black lines representing marginal rays for emitters above and below the focal plane,
respectively) and permit only emitted light from a small three-dimensionally confined region
on the detector. Scan mirrors are omitted from schematic. The two images were acquired on
the same sample, but on different microscopes and with different objectives. Note how the
confocal image includes more details in spike structures and lower background, at the cost
of lower signal to noise ratio, despite being acquired with an objective of much smaller NA.
The widefield image was acquired at a Zeiss Elyra7 microscope equipped with an 63x NA
1.46 oil immersion objective. The confocal image was obtained on an Evident FluoView4000
confocalmicroscope equippedwith 40xNA0.95 dry objective. In both cases the image shown
is a maximum intensity projection (MIP) of a stack of images through the sample. Sample:
Section through Bellis flower (As651d, JOHANNES LIEDER GmbH & Co. KG).

venient option to achieve the coherence required for such a diffraction-limited spot.
This spot is optically conjugated with a single-point detector, typically a photomul-
tiplier tube, an avalanche photodiode, or similar. Thus, fluorescence is excited in a
diffraction-limited spot, and fluorescence emission (as well as backscattered excita-
tion light) is collected by the same objective. Excitation and emission are spectrally
separated, and the detector measures the signal that is proportional to the local fluo-
rophore concentration within the observation volume. Image formation is achieved
by scanning either the sample through the beam [43], or, nowadays more frequently,
scanning the beam through the sample [44]. The former is achieved with the help of
a motorized stage, the latter using fast-tilting scan mirrors.

The defining feature that turns the laser scanningmicroscope described so far into
a confocal microscope is a small aperture, called pinhole, that is optically conjugated
to observation spot and detector in an intermediate image plane (therefore ”confo-
cal”) [43, 45]. The confocal pinhole discards light that stems from planes within that
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Beam stop
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Wide�eld microscopy TIRF microscopy

Figure 2.7. TIRF microscopy. Compared to widefield microscopy, in TIRF microscopy, only
fluorophores immediately adjacent to the coverslip surface are excited by the evanescent field
at the glass-water interface. Total internal reflection illumination is achieved by coupling
in the light off-center, so that the objective illuminates the sample at a shallow angle. The
immersion oil is omitted from the figure for simplicity. This leads to extreme reduction in
background. Note the improved contrast in the TIRF image in the right. Sample: Cy3B-
labelled RNA produced in situ by RNA polymerase tethered to a supported lipid bilayer
membrane (sample by Adam Mamot, MPI for Biochemistry, Martinsried), imaged on a Zeiss
Elyra7 microscope using a 63x NA 1.46 oil immersion objective.

sample that are above or below the focal plane of interest, as such light is out-of-focus
in the pinhole plane and hits the aperture. That way, a confocal microscope creates a
three-dimensionally confined observation volume. The suppression of out-of-focus
signal during imaging allows for sharp images even in thick samples.

Besides the option to image in thick samples, the small observation volume is
of particular interest to single molecule detection, as signal within the region of in-
terest can be detected with high signal to noise ratio while out-of-focus background
is efficiently suppressed. In addition, in modern confocal microscopes, the detec-
tor can usually be read out at with repetition rates in the microsecond or even sub-
microsecond time range. Thismakes the confocalmicroscope attractive for observing
sub-millisecond dynamics at small scales. Acquiring images of larger fields of view
is relatively slow though, often requiring seconds or even minutes.

In constrast, the TIRF microscope is a design in which the full field of view is il-
luminated at once. The coverslip-sample interface is illuminated with the excitation
laser at a shallow angle. Total internal reflection occurs at the interface between glass
and (typically aqueous) sample. Upon total internal reflection, the illuminating light
is reflected back into the objective and discarded, but an evanescent field allows fluo-
rophores just beyond the interface to be excited. The excitation probability decreases
exponentially with distance from the surface. That way, excitation is restricted to a
layer of thickness in the order of 100 nanometers [46,47]. Note that this is only possi-
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blewith oil immersion objectives, or illumination schemes that use other components
than the objective for illumination such as prisms [46] or waveguides [48].

Detection of fluorescence emission in a TIRF microscope can be performed with
a conventional beam path creating the image on a camera chip, without a pinhole
discarding a fraction of the light. Together with the high numerical aperture, this
means that a TIRF microscope usually has a higher light collection efficiency than a
confocal microscope. Therefore, TIRF microscopy is the method of choice for sensi-
tive observation of processes confined to a thin layer that can be positioned adjacent
to the coverslip surface - conveniently matching the requirements for imaging cell
membranes of adherent cells [46]. Of note, the fact that in TIRF microscopy the op-
tical sectioning is achieved in excitation, rather than in detection as in the confocal
microscope, means that photodamage is also confined to a smaller volume. Among
systems widespread in synthetic biology, TIRF microscopy is an especially good
match for,e.g., supported lipid bilayers or surface-immobilized nanoparticles. TIRF
microscopy is also used frequently for single-molecule imaging approaches due to
its extreme suppression of out-of-focus background that surpasses even the confocal
microscope. However, in observations of very small fields of view, TIRF microscopy
is typically restricted to observation at time scales slower than those accessible in
confocal microscopy, typically not faster than the millisecond or upper microsecond
regime. The acquisition speed in TIRF microscopy scales favorably for larger fields
of view compared to the confocal microscope, though.

With typical biological cells being a few (often tens of) micrometers large, it is
generally not difficult to achieve resolution with light microscopy that is sufficient
to resolve and, e.g., localize and count individual cells. However, cells possess sub-
structures down to scales of tens of nanometers (for example, small vesicles). Indi-
vidual macromolecules like proteins are as small as a few nanometers. Therefore,
while conventional light microscopy can reveal a lot about the structure and dynam-
ics of life, there are plenty of features that require resolution beyond the diffraction
limit. Super-resolution microscopy [49] makes such structures accessible, with some
super-resolution microscopy approaches achieving resolution down to the size of
an individual macromolecule, or even its substructure [50, 51]. However, much can
be learned by combining diffraction-limited microscopy with information that goes
beyond spatial distributions, such as evolution of the signal in time or spectral infor-
mation. The evolution of the signal with time can for example reveal information
about diffusion or binding processes. Such time-resolved microscopy techniques, in
particular fluorescence correlation spectroscopy which will be explained in Section
2.7, are the topic of this work.

2.3 Diffusion and Binding

Living systems are never static. Particles move sometimes randomly, and sometimes
directed. Both directed and random motion can be the source of self-organization
phenomena. To understand how mobility is linked to self-orgaization in biology, we
will first introduce the concept of molecular self-diffusion. Reports by Robert Brown
about spontaneous motion of pollen grains in unperturbed solution [52] eventually
led to an understanding of this thermal motion based on an understanding that all
matter consists of finite-sized particles. Smoluchoswki summarizes the following
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observations by Brown and other experimenters who studied ”Brownian motion”
[53]:

Figure 2.8. Illustration of random walk. Shown is a small ensemble of particles at subse-
quent time steps. In each time step, the black particle and only one of the grey particles are
moved, with each time point showing the black particle just before the next collision. Note
how the box is expanding, illustrating how a series of collisions causes the ensemble to drift
apart.

• Brownian motion is an undirected dithering motion that occurs ubiquitously,
not restricted to specific kinds of particles.

• Brownian motion is faster with smaller particle size, lower solvent viscosity,
and higher temperature.

• Mobility does not cease unless particles sediment or get stuck at obstacles, even
over months. It is extremely robust against external perturbations, unless these
cause a change in the above-mentioned variables.

• Brownianmotion does not cease under conditions that prohibit significant ther-
mal convection.

• Reports on whether or not the chemical nature of the particle matters were con-
tradictory: In some reports for example, colloidal silver particles were reported
to bemoremobile than colloidal iron particles; other reports find no systematic
dependence.

If particles of finite size aremobile, i.e., in solution or gas phase, theywill necessar-
ily undergo collisions. Einstein [54] and Smoluchowski [53] independently realized
that a large number of such collisions from random directions will not cancel out to
zero net displacement. Instead, even if the center of mass of an ensemble of uncon-
strained particles remains the same, each individual particle will tend to drift away
from its initial position in what is now called a random walk. This is illustrated in
Figure 2.8. In a random walk, a particle performs a large number of short, indepen-
dent, ballistic movements within a short time. Therefore, a Gaussian distribution
describes the probability distribution of the net displacements well:

𝑃 (𝑥) = 1√
4𝜋𝐷𝜏

exp
(
− 𝑥2

4𝐷𝜏

)
(2.6)

The net mobility in Brownian motion, or self-diffusion, is characterized by a dif-
fusion coefficient 𝐷 in units of 𝑚2/𝑠, which can be understood as a scaling factor
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of position variance over time. This scaling is concisely described by the Einstein-
Smoluchowski relation:

〈Δ®𝑟2 (𝜏)〉 = 2𝑀𝐷𝜏 (2.7)

where 〈Δ®𝑟2 (𝜏)〉 is the mean squared displacement (MSD) from the position at
time point 𝜏 = 0 expected for a particle of diffusion coefficient 𝐷 moving in 𝑀 di-
mensions over lag time 𝜏.

On a macroscopic (ensemble) level, the Einstein-Smoluchoski relation is of lim-
ited direct use. Here, one rather refers to Fick’s laws (Figure 2.9). Consider particles
moving accordidng to Eq.2.7 through a layer of area 𝐴 and thickness Δ𝑥 with a con-
centration gradient Δ𝑐 (𝑡). Inspecting the mass balance of this motion yields Fick’s
first law, describing the diffusion-mediated net flux of particles 𝐽𝑥 at a concentration
gradient 𝜕𝑐 (𝑥, 𝑡) /𝜕𝑥 ≈ Δ𝑐 (𝑡) /Δ𝑥:

𝐽𝑥 = −𝐷𝐴𝜕𝑐 (𝑥, 𝑡)
𝜕𝑥

(2.8)
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Figure 2.9. Fick’s laws of diffusion. Left: Area 𝐴 separates two volumes with differnt par-
ticle concentrations. Fick’s first law describes the net particle flux through 𝐴. Right: A con-
tinuous concentration gradient over x is shown in this case. Fick’s second law describes the
diffusion-mediated change in local concentration over time (change from black to grey pro-
file), which is proportional to the local inbalance between influx and outflux, i.e., the local
curvature.

Fick’s second law, also known as the diffusion equation, deals with the time-
dependence of concentration profiles. The fastest decrease in concentration will be
observed at a sharp egde of concentration between two plateaus of different concen-
trations. On the other hand, if the gradient is smooth over long disntances, even a
steep concentration gradient will not yield significant changes in local concentration
over time. Thus, Fick’s second law relates the rate of change of local concentration
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to the local curvature of the concentration profile in space. The one-dimensional ex-
pression reads:

𝜕𝑐 (𝑥, 𝑡)
𝜕𝑡

= 𝐷
𝜕2𝑐 (𝑥, 𝑡)

𝜕2𝑥
(2.9)

The quantitative scaling of 𝐷 with the above-mentioned variables for a spherical
particles in solution is known as the Stokes-Einstein equation:

𝐷 =
𝑘𝐵𝑇
𝑓

=
𝑘𝐵𝑇

6𝜋𝜂𝑟𝐻
(2.10)

with Boltzmann constant 𝑘𝐵 ≈ 1.38 ·10−23𝐽𝐾−1, absolute temperature𝑇, friction 𝑓 ,
solvent viscosity 𝜂 and particle hydrodynamic radius 𝑟𝐻 . The hydrodynamic radius
characterizes the effective particle radius including not only the particle itself, but
also its bound hydration shell which diffuses with the particle. Of note, the mass of
the particle does not directly affect the diffusion coefficient.

The friction term 𝑓 takes different forms for other particle shapes. For example,
for stiff rods, the following term has been proposed [55–57]:

𝑓 =
6𝜋𝜂𝐿

2𝑙𝑛
(
𝜌
) + 0.632 + 1.165𝜌−1 + 0.1𝜌−2

(2.11)

where 𝐿 is the length of the filament, and 𝜌 is the ”axial ratio”, the ratio of length
and thickness of the rod. As another example, for 2-dimensional mobility in mem-
branes, an entirely different scaling is observed, described by the theory of Saffman
and Delbrück that explicitly considers both the viscosity within the membrane 𝜂2𝐷
and of the surrounding medium 𝜂3𝐷 [58–60]:

𝑓 = 4𝜋𝜂2𝐷ℎ

[
𝑙𝑛

(
𝜂2𝐷ℎ
𝜂3𝐷𝑎

)
− 𝛾

]−1

(2.12)

with membrane thickness ℎ, in-plane particle radius 𝑎, and Euler’s constant 𝛾 ≈
0.5772.

Of course, particles do not always move randomly (Figure 2.10). Convection or
active transport mechanisms can yield a linear mobility characterized by a velocity 𝑢,
in which case 〈Δ®𝑟2 (𝜏)〉 = 𝑢2𝜏2. Alternatively, hindered mobility of particles can lead
to sub-linear scaling of the MSD with time, so-called sub-diffusion. Such hindered
motion can be due to confinement to finite-sized domains, or transient trapping at
immobile or low-mobile sites. Detailled theoretical models exist, although it remains
challenging to match them to experimental data. A challenge is that in real systems,
such anomalous sub-diffusion usually occurs only transiently over limited time and
length scales, before transitioning into seemingly free diffusion [61]. In constrast, ide-
alized physical models of anomalous diffusion show anomalous behavior at all time
scales [62]. Experimentally, anomalous diffusion is often characterized by a general-
ized Einstein-Smoluchoski equation:

〈Δ®𝑟2 (𝜏)〉 = 2𝑀Γ𝜏𝛼 (2.13)

where the transport coefficient Γ replaces the diffusion coefficient, and the coeffi-
cient 𝛼 quantifies the deviation from normal Brownian motion. The factors 2𝑀 have
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Figure 2.10. Different types of molecular mobility. Freely diffusing particles move inde-
pendently, unconstrained, and in an undirected manner. Directed transport leads to mobil-
ity with greater presistence in direction, for example due to transport along a cytoskeleton
filament. Depending on themechanism of the directedmotion, mobility can be correlated be-
tween particles (convection) or independent (cytoskeletal transport). Confined motion can
for example occur if particles are confined in a boundary that they cannot easily cross. In
the right, idealized mean-square displacements are shown for the different modes of motion,
varying 𝛼 with fixed numeric value of Γ = 1𝜇𝑚2𝑠−𝛼.

been included for consistencywith Eq. 2.7, such that for 𝛼 = 1 (i.e., normal diffusion),
Γ = 𝐷, although sometimes these are omitted in the literature. For linear transport,
𝛼 = 2, for anomalous subdiffusion, 𝛼 < 1.

Diffusing particles do not always elastically repel each other upon collision. As
indicated by the above-mentioned discrepancies in early observations regarding the
significance of the chemical nature of particles for Brownian motion, chemical inter-
actions can accelerate or inhibit mobility. Acceleration for example of metal nanopar-
ticles can stem from catalytic activity [63], although for individual enzymes the plau-
sibility of such effects is debatable [64]. A simple example of non-Brownian-motion
dynamics slowing down overall mobility is binding of particles, in the simplest case
due to electrostatic attraction of opposite charges. If two particles form a complex,
the resulting particle will normally be larger, and thus, as mentioned above, slower.
Therefore, analysis of particle mobility is a frequently used method for characteri-
zation of particle size, and indirectly binding of particles. Chapter 6 discusses such
approaches.

Binding kinetics are in the simplest case characterized by two rate constants (Fig-
ure 2.11): Association is goverenedby the on-rate 𝑘𝑜𝑛 for the transition frommonomers
L and R to complex RL, which depends on the mobility of particles, and on the prob-
ability that a collision will be ”productive” in the sense of leading to a longer-lived
bound state. This probability is for example lower if the encounter has to occur from
a narrowly defined angle. The observable ”effective” on-rate depends on the con-
centrations of both A and B, as both species need to encounter each other in the first
place for association to happen. In contrast, the off-rate 𝑘𝑜 𝑓 𝑓 characterizing the decay
of RL into L and R is typically unrelated to molecular mobility, and instead reflects
the forces holding the complex together. The balance of particle flux between these
species can be described as:
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Figure 2.11. Receptor-ligand binding kinetics. The receptor R is surrounded by an excess of
ligand L, meaning that the binding reaction introduces relatively small changes to the ligand
concentration. Under these conditions, 2.15 describes the fraction of occupied R as function
of ligand concentration. The resulting profile is shown for a few 𝐾𝐷 values as example.

𝜕[𝐿]
𝜕𝑡

= −𝑘𝑜𝑛[𝐿][𝑅] + 𝑘𝑜 𝑓 𝑓 [𝑅𝐿]
𝜕[𝐿]
𝜕𝑡

=
𝜕[𝑅]
𝜕𝑡

= −𝜕[𝑅𝐿]
𝜕𝑡

(2.14)

where square brackets denote concentration of the respective species. Often in
biology, an interesting scenario is to consider a ligand L associating with a target
site (”receptor”) R, where L is present in excess over R (Figure 2.11). In this case, [𝐿]
does not significantly change during equilibration of the binding process, andwe can
describe the concentrations in steady-state (𝜕[𝐿]/𝜕𝑡 ≈ 0) as:

[𝑅𝐿]
[𝑅] =

[𝐿]
𝑘𝑜 𝑓 𝑓
𝑘𝑜𝑛

+ [𝐿]
=

[𝐿]
𝐾𝐷 + [𝐿] (2.15)

Here, the dissociation constant 𝐾𝐷 was introduced as measure for the affinity of
binding. 𝐾𝐷 is related to the free energy of binding as Δ𝐺 = 𝑅𝑙𝑛(𝐾𝐷). 𝐾𝐷 can also
be interpreted as the ligand concentration that yields half-saturated binding.

In biology, especially in self-organizing systems, the picture is often more com-
plex. Multivalent binding is common, for example as a linear, in principle arbitrarily
long chain in cytoskeleton filaments, or as short-lived network-like interactions in
biological condensates (details in the following sections). Very often, multivalent
interactions are cooperative. A well-characterized and relatively simple example
is hemoglobin, a tetrameric protein that has four binding pockets for one oxygen
molecule each [65]. In hemoglobin, the oxygen affinity of all binding pockets in-
creases with oxygen loading of the tetramer, and decreases with unloading. This
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mechanism ensures that hemoglobin is fully loaded with oxygen in the lung, and
fully releases its oxygen cargo in oxygen-consuming tissue. Cooperativity is often
described by the Hill equation, an extension of Eq. 2.15 with an exponent 𝑛 that
changes the steepness of the [𝑅𝐿] ([𝐿]) curve (Figure 2.12):

Φ =
[𝐿]𝑛

𝐾𝑛𝐷 + [𝐿]𝑛 (2.16)

Figure 2.12. Cooperative binding. Compare Figure 2.11. The receptor R nowhas twodistinct
binding sites for ligand L. The binding sites are initially in a relatively low-affinity state, but
upon binding a first ligand, the second binding site also transitions to a higher affinity open
state, allowing loading with a second ligand to happen faster. This is reflected by a Hill
coefficient 𝑛 > 1, which is shown in the plot of receptor occupancy: The effective 𝐾𝐷 is kept
constant at 1𝜇𝑀, but 𝑛 is varied as indicated.

where Φ is the fraction of occupied binding sites. Here, 𝐾𝐷 has to be considered
an apparent dissociation constant that is only equivalent to the above defintion of 𝐾𝐷
for 𝑛 = 1. For 𝑛 > 1, binding is positively cooperative as in the case of hemoglobin.
Negatively cooperative binding with 𝑛 < 1 means that binding sites inhibit each
other. Life uses negative cooperativity to tune the activity of proteins to the lig-
and concentration present, for example in enzymes inhibited by their own product
molecules. In practice, expressions analogous to Eqs. 2.15 and 2.16 are often used to
describe binding, but replacing 𝐾𝐷 or Φwith and ”apparent 𝐾𝐷” or a ”50%-effective
concentration” 𝐸𝐶50. This is a more appropriate description if the experimental ob-
servable is suspected to scale nonlinearly with binding.

Cooperative binding is frequently the basis for molecular self-organization in the
sense of pattern formation, i.e. partinioning of particles into high-concentration and
low-concentration regions. An example for this are pattern-forming proteins such
as the bacterial MinDE proteins [21]. These proteins cycle between a slow moving
membrane-bound state and a fast-moving state in solution. The key to achieving pat-
tern formation, rather than spatially homogeneous binding/unbinding dynamics, in

24



CHAPTER 2. THEORETICAL BACKGROUND

this system is that both membrane recruitment and membrane detachment of the
MinD protein proceed in a cooperative manner: Membrane-bound MinD stabilizes
membrane binding of additional MinD by forming higher-order complexes. MinE,
which induces detachment of MinD from the membrane, acts in a ”persisting” man-
ner, detaching multiple MinD proteins within a short time once it gets recruited to
the membrane [17, 21].

Other examples ofmore complex physics govered by relatively simple underlying
binding kinetics are mesoscopic self-assembling systems like cytoskeletal filaments,
and the formation of phase-separated condensates. The Liquid-liquid phase sepa-
ration will be addressed in the next section (Section 2.4). Self-assembling systems
including cytoskeletal filaments and synthetic DNA nanotechnology systems will be
covered in Section 2.5.

2.4 Liquid-liquid phase separation
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Figure 2.13. Illustration of liquid-liqud phase separation. Shown in the left is the illustra-
tion of a binodal, the result of Eq. 2.17 which describes at which combinations of external
variables and concentrations a protein remains homogeneously soluble (top right), or con-
denses into droplets (bottom right).

Alexander Oparin speculated about the Origin of Life, the very first cell, in the
form of a “coacervate” ofmolecules that phase-separate from their surroundings [66].
This showcases the general opinion on the physical nature of the cell at the time, in-
spired by physics of colloids [67,68]. Displaced by the concepts of molecular biology
and largely ignored by the cell and molecular biology communities for a long time,
interest in Oparin’s and similar ideas resurged after it was discovered that, while the
cell in its entirely is not organized as a coacervate, it does contain coacervate droplets
which act as distinct functional units [69].

These coacervates are now often called condensates or membrane-less organelles,
and quickly attracted tremendous attention. Condensates in the broader sense can be
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formed by a variety of processes that are not always easy to distinguish [70]. Of par-
ticular interest to this work however are condensates formed through liquid-liquid
phase separation (LLPS, Figure 2.13). LLPS occurs when a solution of two or more
components enters a regime of concentrations (and external variables like temper-
ature) in which the free energy associated with homogeneous mixing of the com-
ponents is unfavorable compared to the demixing into two separate liquid phases,
where the mixing energy cost competes with the surface energy of the interface be-
tween the demixed phases [71]. While a familiar example is the inmiscibility of oil
andwater, in the case of biomolecules, phase separationmore commonly is driven by
associative interactions [72]. In this case of associative phase separation, one speaks
of coacervation.

Soon, a plethora of different membrane-less organelles were discovered, with
researchers reconsidering the organizing principles of many previously known or-
ganelles like the nucleolus, the nuclear pore complex, and stress granules [22]. The
biological functions that are proposed for condensates are extremely broad, and a
variety of such functions has already been demonstrated [22] (Figure 2.14). These
include sorting of molecules [69,74], physical adapter function [75], and buffering of
intracellular protein concentrations [76]. However, condensates are also suspected to
be involved in pathological processes like virus assembly [77] or formation of disease-
associated amyloid deposits [78]. Prokaryote cells, previously often thought to be
largely homogeneous in content given their lack of internal membranes (ignoring
special cases like cyanobacterical thylakoids), also contain condensates which are
thought to contribute to, e.g., chromosome organization and segregation [79–81].

Returning to the topic of the Origin of Life, the question of the physical com-
partmentalization mechanism of the first cell(s) is still unanswered. Many ideas are
being discussed with their respective strengths and weaknesses, including the seem-
ingly obvious assumption of a primitive membrane envelope, microscopic cracks
within rocks, or more unusual ideas like local up-concentration within eutectic ice
phases [82] (Figure 2.15). Another popular idea returns to Oparin’s ideas by propos-
ing condensate protocells. This idea is attractive as it allows micrometer-scale proto-
cells without depending on external geometric cues, and permits selective accumula-
tion of nutrients from the environment [83–85]. It should be noted though that coac-
ervate formation tends to require rather high concentration of the phase-separating
molecules, raising doubts about prebiotic plausibility [82]. While a condensate proto-
cell is no easyway out of the difficulties encountered by otherOrigin of Life scenarios,
there is tremendous interest in the phenomenon of biomolecular condensation mo-
tivated both by interest in understanding extent life and by trying to reconstruct the
early history of life.

Importantly, while LLPS is reminiscent of precipitation beyond a solublity limit,
in LLPS both demixed phases remain liquid. A successful model to conceptualize
the interactions involved in LLPS of many proteins, at least intrinsically disordered
ones, is the ”stickers-and-spacers” model that represents the protein sequence as
association-driving ”sticker” motifs, and inert ”spacer” sequences [86]. Multivalent
binding interactions are the key to for condensate growth to be favorable (free en-
ergy gain with volume increase), while the spacers ensure that interactions remain
short-lived to allow the coacervate to remain fluid. Nonetheless, biological conden-
sates often are not ideal liquid-phase coacervates. Rather, the droplets tend to ex-
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Figure 2.14. Functions of biological condensates. The illustration shows a range of func-
tions that condensates have been shown, or are suspected, to play within biological cells.
Some function relate to the increased local concentration of particles within droplets (acti-
vation/nucleation, inactivation, and localization), others to the dynamic exchange of droplet
material with the surroundings (concentration buffering and sensing) or to the physical prop-
erties of the condensates themselves (force generation, filtration). Reprinted from Alberti,
Gladfelter, and Mittag 2019 [73] with permission from Elsevier.

hibit viscoelastic properties, and their properties can change with age of the droplet,
which has been associated with formation of the above-mentioned amyloids [77,87].
In addition, biomolecular or biomimetic condensates have been artificially created
with highly interesting properties for use as building blocks in synthetic biology ef-
forts. Some examples are active phase-separated matter with extreme dynamics at
the phase boundary [88], multiple phases that remain associated but demixed [89],
subtructure formation within still-fluid droplets [90], or seeding of filament growth
[91].

Themostwidespread theory for describingphase separation quantitatively is that

27



CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.15. Prebiotic compartmentalization. Various models are schematically displayed
that are being discussed as candidates for compartmentalization of prebiotic molecules.
Membranous vesicles (g) are the closest to extant life, and certainly must have taken over
the role of the primary mechanism of compartmentalization in living systems at some point.
However, a number of other mechanisms are of interest for hypotheses about earlier stages
of the emergence of life as they do not require biomolecules as building blocks (a-e). Finally,
coacervates, i.e., liquid-liquid phase separation, is of interest as in this case, the biomolecules
to compartmentalize and the compartment-forming particles can be one and the same (f).
Reprinted from Gözen et al. 2022 [82] with permission from John Wiley and Sons.

by Huggins and Flory [92–94], which describes the mixing free energy 𝑓
(
𝜙
)
of a dis-

perse solution of a polymer in a bath of smaller solvent molecules as a function of
the polymer volume fraction 𝜙:

𝑓
(
𝜙
)

𝑘𝐵𝑇
=

𝜙

𝑁
𝑙𝑛𝜙 + (

1 − 𝜙
)
𝑙𝑛

(
1 − 𝜙

) + 𝜒𝜙
(
1 − 𝜙

)
(2.17)

where 𝑁 describes chain length of the polymer under study, and 𝜒 describes the
interaction energy of the mixing. Thus, while the first two terms on the righthand
side of Eq. 2.17 describe mixing entropy, the last term is the enthalpic term that
describes if interaction favors phase separation. The model can be generalized to
mixing/unmixing of more than two components [94]. Depending on the value of 𝜒,
different 𝜙 (i.e., concentration) regimes favor phase separation over mixing. This is
described in the phase diagrams by so-called binodals, which describe the threshold
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concentrations for onset of phase separation, typically as function of some parame-
ter that influences 𝜒 (Figure 2.13). Inside the binodals, the disperse solution is su-
persaturated and phase-separation is favored. Once LLPS occurs, the concentrations
in dense and dilute phases will usually be the concentrations on the right and left
arms of the binodal lines, respectively. Only the volume fractions of the phases will
changewith overall concetration. This means that studying concentations inside and
outside condensates is of key interest for understanding they physical chemistry, as
these concentrations allow to directly measure the binodal and thus characterize the
thermodynamics of the underlying interactions.

2.5 Molecular self-assembly

Actin

Tubulin FtsZ

ParM

Figure 2.16. Filament-forming proteins. Schematic illustrating structure and growth/decay
of the eukaryote cytoskeleton proteins actin and tubulin in comparison to their prokaryote ho-
mologs ParM and FtsZ. Actin often undergoes treadmilling dynamics, recruiting monomers
at one end while decaying at the other. It is also often cross-linked into thicker bundles,
and/or branched into complex networks. ParM forms double-helical filaments that are
thought to form antiparallel bundles. ParM is thought to grow and decay symmetrically, un-
less an end is capped. Tubulin forms heterodimers (alpha- and beta-tubulin), which assemble
further into hollow tubes called microtubules. Microtubule ends tend to switch between a
growing and a decaying state. FtsZ is a tubulin homolog whose protofilaments are presum-
ably crosslinked into a meshwork that forms the basis of the Z-ring in dividing bacteria.

Many molecular self-organization processes in living systems have some form of
molecular self-assembly at their core. An instructive example are filament-forming
proteins: While cytoskeleton filaments in live cells are an active material with com-
plex out-of-equilibrium dynamics, the key principle underlying all of those is assem-
bly and disassembly of protein monomers into long oligomers, often followed by
mutual binding of these oligomers into higher-order structures (Figure 2.16). The
active dynamics then emerge from an abundance of mechanisms to locally (in space
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and time) modulate the rate constants of the underlying binding processes.
As an example, actin filaments in eukaryote cells are double-helical thin protein

filaments [19,95]. The structure of an actin filament can in essence be though of as two
parallel strings of beads, the beads being globular actin proteins. Like many other
cytoskeleton filaments, filamentous actin (F-actin) exhibits “treadmilling” dynamics:
At typical concentrations of monomeric actin (G-actin) in live cells, one end of the fil-
ament tends to elongate by incorporating newG-actin while the other end retracts by
dissociation ofmonomers, thereby facilitating directed netmovement of the filament.
This non-equilibrium aspect of actin filament dynamics is due to a switching mech-
anism that allows G-actin to change the affinity with which it binds to the filament:
ATP-bound (high-energy) actin monomers bind each other with high affinity, tend-
ing to form and elongate filaments. After some time, the catalytic activity of actin
cleaves the ATP molecule, creating ADP-bound actin which binds the filament with
reduced affinity and therefore tends to dissociate. Details of the difference (asymmet-
ric) binding interfaces involved in the binding process and their response to the ATP
cleavage ensure that the treadmilling occurs in a predictable direction. Thus, actin
treadmilling shows how binding and unbindingwith an (energy-dissipating) mecha-
nism to modulate binding rates is sufficient to create directional collective dynamics,
in this case active motion of a micrometer-sized filament [96].

The average filament length 〈 𝑗〉 (in monomers) in an ensemble of protein fila-
ments in steady state is determined by the ratio of growth and decay rates:

〈 𝑗〉 = 𝑘𝑔𝑟𝑜𝑤𝑡ℎ
𝑘𝑑𝑒𝑐𝑎𝑦

(2.18)

As both growth and decay can happen at both ends, to model the growth and
decay of actin, 𝑘𝑔𝑟𝑜𝑤𝑡ℎ and 𝑘𝑑𝑒𝑐𝑎𝑦 each are the result of multiple reaction rate con-
stants: Distinct growth rates and decay rates characterize the barbed and pointed
ends. Thus, there are various options to regulate actin dynamics by differentially
tuning these rates of end growth and decay. The picture becomes even more com-
plex when considering the effect of branching and cross-linking factors.

Closely related to actin is the bacterial protein ParM. ParM is part of the bacterial
chromosome segregation machinery. While ParM monomers are structurally very
similar to G-actin and self-assembly is ATP-driven, the filaments behave different
from actin: Instead of unidirectional treadmilling, ParM filaments are thought to
grow and decay symmetrically at both ends, unless capped by other factors [97]. The
kinetics of ParM assembly and disassembly therefore remain rather ill-understood
and a topic of ongoing research.

Adistinct family of filament-formingproteins are tubulin and its homologs. Tubu-
lin inmammalian cells assembles intomicrotubules, protein tubes that consist of thir-
teen linear protofilaments held together tightly by lateral interaction. Characteristic
for microtubule dynamics is a behavior called ”dynamic instability”, which refers to
a switching of microtubule ends from a state of growth to a state of decay, although
the details of the underlying mechanism remain somewhat unclear [98]. Tubulin has
bacterial homologs such as FtsZ. FtsZ does not intrinsically form tubes like tubulin
does. However, FtsZ does assemble into a dynamic ring-like structure in living cells
that plays a key role in bacterial cell division. For this, FtsZ cooperates with a large
number of interaction that presumably cross-link FtsZ protofilaments [99].
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Besides natural systems, biomimetic molecules can also be designed to undergo
self-assembly in order to create easier-tunable self-assembling systems. These can
then serve as a platform for further bottom-up synthetic biology experiments. An
example of a chemically very different technology that also buildsmesoscopic assem-
blies from few-nanometers building blocks is DNA nanotechnology. DNA nanotech-
nology is a versatile toolbox for synthetic biology [100, 101]. The geometry of DNA
nanostructures is determined largely by Watson-Crick-Franklin base pairs: adeno-
sine bases form base pairs with thymidine, and guanidine with cytidine. Other in-
teractions such as i-motif or G-quadruplex can also play a role, but are generally of
lower importance unless enforced by design [102, 103]. Thus, the interactions gov-
erning the structure are easy to predict, making sequence-structure - and therefore
sequence-function - relations much easier to understand and design in DNA than in,
e.g., proteins [104]. Thus, DNA nanotechnology offers convenient access to designed
structure and function in synthetic biology.

Circular sca�old strand 
and short staple strands

Folded DNA origami

Higher-order assembly

Loading with other molecules
(drugs, proteins to position, ...)

Sensor reporting presence of 
molecule of interest

...

Figure 2.17. Schemtic of DNA origami nanotechnology DNA origami is assembled from a
single long scaffold strand and a large number of short staple strands. A temperature ramp is
typically used to guide the kinetics of the assembly (”folding”) into the designed target struc-
ture, here a simple rectangle. Such origami particles can then be further functionalized for
various downstream applications, of which only a few are indicated here. Of particular inter-
est to synthetic biology are the possibility to use DNA origami as a platform for positioning
of other molecules, and the higher-order assembly of DNA origami as basis for large-scale
structure.

DNA nanotechnology nowadays find applications as drug carrier [105], as ratio-
nally designed binder for detection or for sequestration of target particles (usually by
functionalizing the DNA nanostructure with other molecules [106,107]), as template
structure for the self-assembly of other molecules [108,109], as a calibration standard
with well-understood binding and conformational dynamics [110], or as a carrier on
which to position other particles in defined geometry [111–114].

A particularly versatile branch of DNA nanotechnology is DNA origami (Figure
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2.17). DNA origami was proposed in 2006 as a concept to design DNA nanostruc-
tures on the scale of tens to hundreds of nanometers, with few nanometer resolu-
tion in defining the shape [115]. DNA origami consists of two key components: The
“scaffold” is a single-stranded DNA plasmid, typically the circular M13mp18 bacte-
riophage genome (7249 base pairs long) or a derivative of that plasmid. The scaffold
is folded into a desired two- or three-dimensional shape by complementary binding
of hundreds of “staple strands”, ssDNAoligonucleotides that are a few ten base pairs
long each [116]. The highlymodular design and easy productionmakeDNAorigami
extremely popular for design of mesoscopic particles for various applications.

Self-assembly of macromolecules into higher-order structures is a phenomenon
frequently underlying biological self-organization, and a valuable tool for bottom-up
synthetic biology in building up structures of increasing complexity. Thus, charac-
terizing the physical chemistry underlying self-assembly of a macromolecule of in-
teresting is frequently of interest in order to understand poaaibilities to fine-tune and
better exploit the formed structures. For this, single-molecule methods are often of
value to resolve details that would remain obscured in ensemble-level studies.

2.6 Single-Molecule Microscopy

Figure 2.18. Concept of single-molecule microscopy. Shown are schematic illutrations of
the transition from ensemble-level observation to single-molecule observation both in time-
resolved spectroscopy and in imaging. At high concentrations of observed particles, a rel-
atively homogeneous average brightness is observed. Dilution of particles yields a regime
where local fluctations become visible that stem from single molecules, but assignment of
signal to individual molecules remains ambiguous. Statistical techniques can be used in this
regime to extract characteristics invisible in the ensemble, though. Further dilution com-
bined with highly sensitive detection finally leads to true single-molecule detection, where
signal can be unambiguously assigned to individual particles, indicated by the assignment
of dicrete duration to a signal burst in the left, and discrete positions to particles in the right.
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With improvements in laser and detector technology, in the late 1980s, direct op-
tical detection of single molecules in dense phase became feasible under favorable
conditions. While the first demonstration was based on absorption of illuminating
light [117], soon fluorescence detection was used and became the method of choice
due to its superior signal to background ratio [118], which also allowed room tem-
perature single molecule detection (SMD) experiments, first to detect molecule tran-
sits in solution [119, 120], and later also in direct imaging of molecules [121]. SMD
opened up various new opportunities for physical chemistry and related fields. The
key breakthrough is that SMDallows to see not only ensemble averages of parameters
of interest, but also distiributions broadened by particle heterogeneity. For example,
when measuring absorption of an ensemble, the observed line shape often does not
agree with theory, due to inhomogeneous broadening, i.e., the molecules in the en-
semble experiencing many different local environments. SMD allows resolving the
broadening and assigning a distinct absorption peak to each molecule [117].

Figure 2.19. Applications of single-molecule microscopy in biophysics. Stoichiometry de-
termination: Different readouts of single-particle parameters can be used to estimate the
number of subunits within a complex. For example, in simple systems, the j-mer is j times
brighter than the monomer. One can count the steps in sequential photobleaching of flu-
orophores. Alternatively, one can exploit the blinking of the particle in comparison to the
blinking of the monomer to infer the number of fluorophores. Protein dynamics: FRET and
similar approaches allow to determine time scales on which conformational changes occur
within a protein of interest. Super-resolution microscopy: By detecting only a small subset
of well-separated particles at a given time, one can precisely determine their position and
accumulate a super-resolved image. Mobility characterization: By tracking a mobile particle
over a number of image frames, one can reconstruct a trajectory of motion and infer statistics
of mobility.

More typical applications in biophysics are (Figure 2.19):

• Observing binding kinetics anddetermining stoichiometries of supramolecular
complexes, typically through analysis of brightness differences within a single-
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particle spot [122, 123], or through alternative methods such as the statistics of
blinking events [124,125].

• Observing single macromolecules execute a specific function that would be in-
visible in an ensemble, such as conformational changes by combination with
Förster Resonance Energy Transfer [126–128].

• Obtaining super-resolution spatial information through single molecule local-
ization microscopy (SMLM) [36,129–132].

• Observing mobility of molecules by tracking their position over time (single
particle tracking SPT) [133,134].

Of course, combinations of these exist, as do other applications that do not fit in
any of these categories. More detail will be given in the following about SMLM and
SPT.

In SMLM, a family of super-resolution microscopy techniques, sub-diffraction
scale information is obtained based on SMD. While two emitters separated by a dis-
tance below the diffraction limit cannot be conventionally resolved, it is relatively
easy to localize the position of a single isolated fluorophorewith sub-diffraction scale
precision via the centroid of the emitter image, fitting a Gaussian peak, or similar ap-
proaches. The super-resolved image is then reconstructed as a map of individual
emitter localizations. The challenge in SMLM is essentially threefold [135]: Firstly,
one has to maximize the signal to noise ratio of the emitter images to maximize reso-
lution. Quantitatively, the uncertainty with which an emitter can be localized scales
with the invserse square root of the number of photons that contribute to the emit-
ter image. Secondly, minimization of aberrations, linkage error (distance between
fluorophor and actual particle of interest due to linkage chemistry), and similar fac-
tors is crucial to ensure that determined emitter image centroids are representative
of the actual positions of molecules of interest. Finally, and concentually most crit-
ically, one must create conditions where the emitters in the sample can be imaged
sequentially as single particles. This is achieved by causing particles to stochastically
”blink”, i.e., switch between an ”on” state in which they can be imaged, and an invis-
ible ”off” state. At every time point throughout the acquisition, the vast majority of
particles is kept in the off-state, and only a small subset, in extreme cases only a single
particle [136,137], is imaged and localized. Typically, thousands or even tens of thou-
sands of frames are acquired in that manner to accumulate a single super-resolved
reconstruction.

Different concepts for blinking have been proposed, essentially falling into the
categories of photochemical blinking where fluorophore molecules themselves are
switched between ”bright” and ”dark” states (”PhotoactivatedLocalizationMicroscopy”
PALM [130] and ”(direct) Stochastic Optical Reconstruction Microscopy” (d)STORM
[36, 131]), and binding-based blinking where the ”on” state is bright because a flu-
orophor becomes immobilized at a target position rather than diffusing rapidly in
diffuse background (”Points Accumulation for Imaging of Nanoscale Topography”
PAINT [129]). PAINT microscopy is often implemented exploiting the hybridization
of DNA [138], making the combination DNA-PAINT especially attractive for studies
involving DNA nanotechnology. In Chapter 4, DNA-PAINT will play a prominent
role.
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Single particle tracking (SPT) is based on the same single emitter localization con-
cept as SMLM. Different from SMLM however, SPT is not primarily a technique for
image formation, but rather for continuously observing a particle over time to char-
acterize their mobility. Therefore, experiments are performed with slower blinking
than in SMLM, if any. Emitter localizations are linked between subsequent frames
into a track representing the movement of the particle. The localizations within
a track can then be analyzed further to extract information on the mobility. SPT
was first implemented in the 1980s based on the scattered light from colloidal gold
nanoparticles [139, 140], and later was transferred to the use of fluorescence-based
SMD [141]. A straightforward method to analyze particle mobility so is the direct
calculation of the mean-squared displacement (MSD) over time 〈Δ®𝑟2 (𝜏)〉 which can
be directly related to physical models of particle mobility (compare Section 2.3):

〈Δ®𝑟2 (𝜏)〉 = 〈 (®𝑟 (𝑡 + 𝜏) − ®𝑟 (𝑡))2〉 (2.19)

where 〈. . .〉 denotes averaging. The averaging can be over particles and/or over
time, depending on the application and the expected underlying physics [133]. SPT
has found widespread application in the characterization of mobility in relatively
slow-moving systems such as molecules embedded in biological membranes [122,
141]. However, it often struggles with fast-moving particles due to the unavoidable
trade-off between signal to noise ratio (which must be high for the SMD required
for SPT, see above) and acquisition speed: Shorter signal integration time would al-
low to follow faster movement, but means that less signal is available per data point,
prohibiting reliable localization.

Besides the direct observation of single molecules, there are other approaches to
capture molecular mobility in situ, of course. For example, a relatively straightfor-
ward ensemble method to measurement of diffusion coefficients is Fluorescence Re-
covery After Photobleaching (FRAP [142,143]), in which fluorescent particles within
a region of interest are bleached, and the recovery of fluorescence signal is observed
over time. Depending on the system under study, FRAP can also be used to mea-
sure binding kinetics [143]. FRAP comes with various downsides in practice though,
in particular artifacts that may result from the use of high laser power. In addition,
depending on the available prior knowledge of the sample, modelling of the recov-
ery data can be ambiguous [144]. At its conceptual basis, FRAP is a perturbation
technique that pushes the sample out of equilibrium in a defined manner, and then
observes the kinetics of system relaxation back into equilibrium. A third approach
that does not perturb the sampleand can often be performed with similar hardware
as FRAP is Fluorescence Correlation Spectroscopy (FCS) [145–147].

FCS operates at a boundary between ensemble-level observation and SMD. The
key conceptual difference between FCS and FRAP is that FCS does not actively per-
turb the sample, but rather observes spontaneous fluctuations in a steady-state signal.
Different from SPT however, FCS characterizes recurring patterns caused by under-
lying single-molecule dynamics without assigning the signal fluctuations to individ-
ual molecules. FCS plays a key role in all following chapters, and will therfore be
dicussed in more detail in the next section.
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Figure 2.20. Fluorescence correlation spectroscopy. Signal fluctuations that originate from
random single molecule dynamics observed in a dilute sample are measured typically in
confocal microscopy (upper left), but other microscope types such as a TIRF microscope (up-
per right) are viable as well. Observed fluctuating time traces are correlated in time (lower
schematic) to yield a correlation function that represents recurring patterns of signal fluctua-
tions. Amplitudes and time constants can be extracted to determine different parameters of
interest, listed in the right. In dual-color setups, dual-color cross-correlation gives access to
additional parameters.

2.7 Fluorescence Correlation Spectroscopy

In FCS, one typically acquires a high time resolution fluorescence time trace 𝐹 (𝑡)
in a diffraction limited confocal observation volume 𝑉𝑒 𝑓 𝑓 < 1 𝑓 𝑙 (Figure 2.20) [145,
148, 149]. Fluctations in 𝐹 (𝑡) are then statistically analyzed to distinguish photon
shot noise from signatures of single-molecule dynamics. Photon shot noise arises
from the discrete excitation-emission events in fluorescence, but for that reason, it
is for most widely used fluorescent labels uncorrelated beyond time scales of a new
nanoseconds. Processes typically investigated through FCS occur mostly on the time
scales of microseconds or milliseconds, so nanosecond-scale signatures of the fluo-
rescence photocycle are negligible and can be treated as random noise.

At sufficiently lowparticle concentrations, the fluctuations arising from stochastic
fluctuations in the numbers and states of individual particles within the observation
volume become significant. By analyzing amplitudes (i.e., essentially the variance)
and time-correlations of fluctuations in 𝐹 (𝑡), one can therefore extract information
about concentration of particles with spatial resolution limited by the microsocope
resultion, and about the kinetics of any process that leads to changes in fluorescence
intensity. If the observed fluorescence fluctuations are due to diffusion, the data can
be used to estimate the average residence time of the molecules in the observation
volume, and therefore the diffusion coefficient.

FCS is a versatile technique that, depending on the experiment design, can be
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used to answer a variety of different questions. Firstly, the autocorrelation function
of a diffusing particle will report on the average time that a particle spends in the
observation volume. Such diffusion time measurements can be used to probe the mi-
croenvironment within living cells via the diffusion of particles of known size. For
example, Wachsmuth and co-workers show that diffusion of a fluorescent protein
is far slower in the cytoplasm and nucleus of cells than in solution, and that diffu-
sion in the nucleus shows greater deviations from Brownian motion [150]. In other
words, both cytosol and nucleus appear quite viscous, and the nucleus also contains
barriers (or binding sites) interrupting mobility. Diffusion coefficient measurements
can also be exploited to observe changes in particle size, and therefore oligomeriza-
tion. Sarkar and co-workers demonstrated the possibility to resolve Å-scale changes
in particle size with an optimized experimental setup [151]. Closer to typical ap-
plications is the FCS-based measurement of binding/unbinding of small particles
to/from larger less mobile ones in situ [152]. FCS approaches can also be used to
measure concentrations in situ. For example, it has been used to estimate the concen-
tration of RNAcopieswithin cells [153]. Particle brightness is valuable to characterize
oligomerization states and has for example been applied to receptor oligomerization
studies [154]. The combination of concentration and brightness information can be
exploited to calibrate a confocal microscope such that a fluorescence image can be re-
calculated to an absolute concentrationmap [155]. Beyond diffusion characterization,
FCS can also characterize various other dynamics of interest such as the photophysics
of dyes [156,157], or rotational dynamics [5, 158].

Data analysis most frequently is based on the fluorescence fluctuation autocorre-
lation function (ACF) 𝐺 (𝜏) [147, 159, 160]:

𝐺 (𝜏) = 〈𝛿𝐹 (𝑡) 𝛿𝐹 (𝑡 + 𝜏)〉
〈𝐹 (𝑡)〉2 =

〈𝐹 (𝑡) 𝐹 (𝑡 + 𝜏)〉
〈𝐹 (𝑡)〉2 − 1 (2.20)

with lag time or correlation time 𝜏 and fluorescence fluctuation 𝛿𝐹 (𝑡) = 𝐹 (𝑡) −
〈𝐹 (𝑡)〉. 〈. . .〉 denotes time averaging. Both of the expressions given for 𝐺 (𝜏) are in
use, and they are equivalent, differing only by the offset. Consider detection within
an observation volume described by a point spread function profile described by a
dimensionless parameter 𝑊̂

(®𝑟) normalized such that 𝑀𝑎𝑥
[
𝑊̂

(®𝑟) ] = 1. If one as-
sumes a population of similar particles of concentration/density (in three or two
dimensions, respectively, depending on the system) 𝑐

(®𝑟, 𝑡) and brightness 𝜀, the flu-
orescence signal at a given time can be described as:

𝐹 (𝑡) = 𝜀

∫
𝑊̂

(®𝑟) 𝑐 (®𝑟, 𝑡) 𝑑®𝑟 (2.21)

where
∫
. . . 𝑑®𝑟 denotes integration over the entire sample volume. 𝜀 cancels out

after insertion into 𝐺 (𝜏), and the latter becomes:

𝐺 (𝜏) = 〈∫ 𝑊̂ (®𝑟) 𝛿𝑐 (®𝑟, 𝑡) 𝑑®𝑟 ∫ 𝑊̂ (®𝑟) 𝛿𝑐 (®𝑟, 𝑡 + 𝜏
)
𝑑®𝑟〉

〈∫ 𝑊̂ (®𝑟) 𝑐 (®𝑟, 𝑡) 𝑑®𝑟〉2
(2.22)

To solve this expression, one usually assumes ergodicity, i.e., equivalence of av-
eraging in space and averaging in time, such that 〈𝑐 (®𝑟, 𝑡)〉𝑡 = 〈𝑐 (®𝑟, 𝑡)〉𝑟 = 〈𝑐〉. Time-
dependent and time-independent terms are separated such that the time-dependence
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in 𝐺 (𝜏) is expressed through the particle concentration correlation function. For the
detection volume profile 𝑊̂

(®𝑟) , the most typical model is a 3-dimensional Gaussian
with 𝑒−2 width 𝑤0 perpendicular to the optical axis (xy plane) and with 𝑧0 = 𝑆𝑤0
along the optical axis (z):

𝑊̂
(®𝑟) = exp

[
−2

(
𝑥2 + 𝑦2

𝑤2
0

+ 𝑧2

𝑆2𝑤2
0

)]
(2.23)

The concentration correlation function 〈𝛿𝑐 (®𝑟, 𝑡) 𝛿𝑐 (®𝑟 + ®𝜌, 𝑡 + 𝜏
)〉 (with spatial shift

variable ®𝜌) can be evaluated through a Gaussian solution of the diffusion equation
to obtain an expected distribution of displacements for many particles, each starting
at position ®𝑟:

𝛿𝑐
(®𝑟 + ®𝜌, 𝜏) = 𝛿𝑐

(®𝑟, 0)
(2𝜋𝐷𝜏)3/2 exp

(
− | ®𝜌|2

4𝐷𝜏

)
(2.24)

with diffusion coefficient 𝐷. Lastly, the initial condition for interpretation of
𝛿𝑐

(®𝑟, 0) in Eq. 2.24 comes from the assumption that the obeserved molecules are
dilute and non-interacting. In that case, (spatial) cross-correlations between distinct
molecules vanish, and Poisson statistics govern the amplitude of observed fluctua-
tions:

〈𝛿𝑐 (®𝑟, 0) 𝛿𝑐 (®𝑟 + ®𝜌, 0)〉 = {〈𝑐〉, | ®𝜌| = 0
0, | ®𝜌| > 0 (2.25)

With these assumptions in place, and the additional definition for the average
particle number in the observation volume 〈𝑁〉 = 〈𝐶〉 ∫ 𝑊̂ (®𝑟) 𝑑®𝑟, Eq. 2.22 can be
solved to obtain:

𝐺 (𝜏) = 𝛾

〈𝑁〉
1

1 + 4𝐷𝜏
𝑤2

0

√
1

1 + 4𝐷𝜏
𝑆2𝑤2

0

= 𝐺0
1

1 + 𝜏
𝜏𝑑𝑖 𝑓 𝑓

√
1

1 + 𝜏
𝑆2𝜏𝑑𝑖 𝑓 𝑓

(2.26)

with the diffusion time 𝜏𝑑𝑖 𝑓 𝑓 = 𝑤2
0/4𝐷, based on the Einstein-Smoluchowski

equation (Eq. 2.7) for diffusion over the squared distance 𝑤2
0. In other words, the

diffusion time can be interpreted as an average residence time of a single molecule
within the observation volume. 𝛾 is a shape factor that depends on the definition
of the observation volume. Many authors define the observation volume such that
𝛾 = 1, but throughout this thesis 𝛾 will be defined as:

𝛾 =

∫
𝑊̂2 (®𝑟) 𝑑®𝑟(∫
𝑊̂

(®𝑟) 𝑑®𝑟)2 (2.27)

for the three-dimensional Gaussian model of 𝑊̂
(®𝑟) , 𝛾 = 2−3/2 ≈ 0.35. In practice,

one usually determines 𝜏𝑑𝑖 𝑓 𝑓 and 𝐺0 via nonlinear least-squares fitting of this model
or analogous expressions to experimental ACFs. Determination of these time scale
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and amplitude parameters requires little a priori knowledge about the experimental
system: 𝑆 is the only other parameter, and has a relatively small impact on the former
two (Figure 2.21). 𝐺0 and 𝜏𝑑𝑖 𝑓 𝑓 can then be interpreted in terms of concentrations and
diffusion coefficients with knowledge about the shape and size of 𝑊̂

(®𝑟) , expressed
through 𝑤0 and 𝑆. Thus, an experimental workflow for FCS usually begins with
calibration measurements of dyes with known diffusion coefficient to characterize
𝑤0 and 𝑆.

Figure 2.21. Effect of S on ACF Fitting. Shown is an experimental ACF measured from
Alexa Fluor 488 carboxylate (Thermo Fisher) in aqueous buffer at 23°C with a series of fits
in which 𝑆 was fixed at different values. Based on other calibration data, 𝑆 ≈ 5 is found to
be the correct value, a typical value for the microscope used (Picoquant MicroTime 200 with
Olympus 60x NA1.2 UPlanApowater immersion objective and 30𝜇𝑚 pinhole diameter). The
slight deviation at short lag times is likely due to blinking dynamics (the detector afterpulse
pattern has been removed using Fluorescence Lifetime Correlation Spectroscopy FLCS, see
section 8.1.3).

Besides the describedmodel for three-dimensional diffusion, many other models
have been derived for frequently observed dynamics in FCS. Here, we enumerate
some of the most important ones. Application-specific adaptations of these models
are presented in later sections where needed.

• Two-dimensional diffusion (in the xy plane). This is effectively the limit case of
Eq. 2.26 for 𝑆 → ∞.
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𝐺 (𝜏) = 𝛾

〈𝑁〉
1

1 + 𝜏
𝜏𝑑𝑖 𝑓 𝑓

(2.28)

with 𝜏𝑑𝑖 𝑓 𝑓 as above. Here, 𝛾 = 0.5.

• Blinking of fluorescent dye molecules. Blinking typically follows exponential
kinetics, and is thus described by an off-state fraction 𝐹𝑏𝑙𝑖𝑛𝑘 and a relaxation
time 𝜏𝑏𝑙𝑖𝑛𝑘 .

𝐺 (𝜏) = 𝐺0𝑔𝑑𝑖 𝑓 𝑓

[
1 + 𝐹𝑏𝑙𝑖𝑛𝑘

1 − 𝐹𝑏𝑙𝑖𝑛𝑘 exp
(
− 𝜏
𝜏𝑏𝑙𝑖𝑛𝑘

)]
(2.29)

where 𝐺0𝑔𝑑𝑖 𝑓 𝑓 corresponds to the righthand sides of Eqs. 2.27 or 2.28, depend-
ing on whether motion is in two or three dimensions.

• Multi-species mixtures. In the simple case of multiple noninteracting species,
the measured ACF is a sum of the ACFs of the different species. However, the
molecular brightness 𝜀 does not cancel out from the expression as before, and
instead must be considered as a weighting factor for the summation of species
ACFs. In this case, every species 𝑖 is characterized by its own diffusion time
𝜏𝑑𝑖 𝑓 𝑓 ,𝑖 , brightness 𝜀𝑖 , and particle number 〈𝑁𝑖〉. In the case of 2D/3D mixtures,
different species-wise 𝛾𝑖 also have to be considered:

𝐺 (𝜏) =
∑
𝑖 𝛾𝑖〈𝑁𝑖〉𝜀2

𝑖 𝑔𝑑𝑖 𝑓 𝑓 ,𝑖 (𝜏)
[∑𝑖〈𝑁𝑖〉𝜀𝑖]2

(2.30)

Note that the molecular brightness 𝜀 and particle number 〈𝑁〉 appear only
as products and therefore cannot be distinguished in multi-species mixtures
based on the ACF alone.

Besides the single-spot confocal FCS based on autocorrelation analysis, many re-
lated techniques have been developed in acquisition and data analysis.

An important extension of the FCS concept is cross-correlation analysis. Dual-
color fluorescence cross-correlation spectroscopy (FCCS [161,162]) exploits the spec-
tral specificity of fluorescence to distinguish signal from multiple fluorophores ac-
quired in parallel. Cross-correlation of the signals from the distinct species then
yields information about their interaction: Particles from non-interacting molecule
specieswill show independent fluorescent fluctuations, with negligible cross-correlation
function. If the particles interact, the cross-correlation function will show a signifi-
cant amplitude as fluctuations in the two signal traceswill occur simultaneously. The
FCCS concept can also be generalized to other signatures that allow to distinguish
labelled particle species, such as fluorescence lifetime and anisotropy decay charac-
teristics [163,164].

Optically, FCS has been extended to the use of observation volumes other than the
conventional confocal observation volume [165]. The use of total internal reflection
excitation [166–171], or its inverse, supercritical angle fluorescence emission [172], al-
lows extreme background suppression when observing processes adjacent to a glass
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surface, for example diffusion on a supported lipid bilayer or in the membrane of ad-
herent cells, or binding to surface-confined particles. Stimulated emission depletion
(STED)-FCS [173,174] exploits the super-resolution information revealed by STEDmi-
croscopy [175,176] to reveal diffusion information on length scales below the diffrac-
tion limit, for example to probe lengthscale-dependent mobility, i.e., anomalous dif-
fusion. Different kinds of nanophotonic devices have been used for purposes similar
to STED-FCS, as well as for enhancement of signal to background ratio and/or signal
to noise ratio, at the cost of more complex sample preparation [177–179].

FCS acquisition strategies have also been has been extended to observation ofmul-
tiple positions in parallel. This can be achieved through differentmeans. Firstly, dual-
focus techniques based on parallel data acquisition in two distinct diffraction-limited
observation volumes allow acquiring data that is similar to single-spot FCS, but in-
cluding auto- and cross-correlation functions of two distinct positions [151,180,181].
The cross-correlation functions reveal diffusion coefficients via the timescale of dis-
placement over the distance between observation spots, which is more robust against
optical aberrations than the diffusion time of the single-spot ACF. The concept has
been generalized to more than two positions, with particular emphasis on detect-
ing unidirectional motion or obstacles [182,183]. Modern scientific camera chips can
be exploited for massive parallelization [170, 184, 185]. Scanning FCS techniques ac-
quire data with non-stationary observation volume. This can be exploited to paral-
lelize data acquisition in many positions, or to introduce a defined pattern in space
and time into the data which again can robustify diffusion coefficient quantifica-
tion [186–189].

Alternative statistical frameworks have been developed to use the same fluores-
cence fluctuation data in a different, complementary analyses. This can be useful to
avoid some of the ambiguities of the ACF, in particular that of 〈𝑁〉 and 𝜀 in multi-
species mixtures. Among the earliest ideas to achieve this was the use of higher-
order correlation functions using two-point correlations with individual data points
raised to higher powers, which responds differently to differences in 𝜀 compared to
differences in 〈𝑁〉 [190, 191]. This noise-prone approach never became very widely
adopted, and the same is true for the analysis of highermoments, which is equivalent
to the analysis of the amplitudes of higher-order correlation functions. A more pop-
ular framework that emerged from these ideas is the Photon Counting Histogram
(PCH [192, 193]), which essentially predicts the probability mass distribution for ob-
serving 𝑛𝑛𝜈 photons within a given time given 〈𝑁〉 particles with brightness 𝜀. As
many dim particles will yield a different PCH than few bright particles, PCH anal-
ysis allows simultaneous estimation of 〈𝑁〉 and 𝜀, even in multi-species mixtures
in which these parameters remain ambiguous in FCS. PCH has been extended to
analysis with variable bin time, explicitly considering the effect that diffusion and
blinking have [194]. This in turn allowed this so-called Photon Counting Multiple
Histograms (PCMH) approach to be combined with ACF analysis in a single global
analysis framework [195].

FCS is a family of techniques suitable for the study of many parameters of inter-
est for studying self-organization, self-assembly, phase-separation, and other related
phenomena. In the work described in this thesis, FCS was used and developed fur-
ther in various contexts.
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Progress in bottom-up synthetic biology creates more andmore sophisticated model
systems that allow us to study the physical principles underlying the organisation of
living system in increasing detail. Time-resolved (near-)single-molecule techniques
like fluorescence correlation spectroscopy and single-molecule imaging allow de-
tailled study of the dynamics of the involved biomacromolecules. However, these
synthetic systems exhibit intermediate complexity between the frequently studied
extremes of intact living organisms on the one hand, and purifiedmolecules in homo-
geneous solution on the other. Thus, to make the full use of the information content
offered by single-molecule studies in biomimetic systems, bespokemeasurement pro-
tocols often need to be developed, as non-trivial experimental challenges arise when
using these complex methods methods. I collaborated with colleagues developing
and studying different protein- and/or DNA nanotechnology-based biomimetic sys-
tems to develop experimental workflows to address their questions:

• Jointly with Yusuf Qutbuddin, Gereon Brüggenthies, and others, I studied the
higher-order self-assembly of DNA origami nanoparticles (Chapter 4). Here,
the focus was on the one hand on the use of SMLM to characterize assembly
morphologies, and on the other hand to characterize assembly kinetics using
techniques based on time-resolved image analysis.

• With Leon Babl and Lise Isnel I studied liquid-liquid phase separation (LLPS)
(Chapter 5). Fluorescence correlation spectroscopy (FCS) is an attractive tech-
nique for studying the physical chemistry of LLPS that gives access to many
relevant parameters. However, there are specific technical difficulties in FCS
in condensates that are often overlooked or ignored. We explored these chal-
lenges and propose best practices to circumvent them.

• With Adrián Merino-Salomón, Nastasja Kaletta, Adam Mamot, and others, I
studied the self-assembly of bacterial cytoskeleton filaments. First, we per-
formed FCS studies on the self-assembly of the E. coli FtsZ protein, in partic-
ular to study its interaction with the cross-linking protein ZapD (Chapter 7).
This was followed by studies of other filament-forming proteins, and led to the
more general question of how to optimally deal with polydisperse systems in
FCS (Chapter 6).
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• All the aforementioned projects, and other side projects not included in this
dissertation, required custom software solutions for data analysis, simulation,
and/or acquisition. I newly developed or adapted a number of software tools
for fluorescence correlation spectroscopy and single-molecule imaging, with
contributions fromYusufQutbuddin and others. Someof these tools arewidely
applicable and are expected to continue to be useful beyond the projects that
motivated their development. The theoretical basis and technical implementa-
tion of these tools are described in Chapter 8.

The investigations described here mostly deal with the question of how measure-
ments could be done, and less what those measurements taught about biochemistry
and physics of life. The work described in this thesis forms a basis for performing
robust measurements to answer various questions of current interest within the re-
search program of the Department of Cellular and Molecular Biophysics of the Max
Planck Institute of Biochemistry, and in the synthetic biology community in general.
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Results and Discussion
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4
Design Features to Accelerate the

Higher-Order Assembly of DNA Origami
on Membranes

DNA origami is a versatile platform for construction of synthetic biomimetic molec-
ular structures (see Section 2.5). Frequently, DNA origami particles are assembled
further into higher-order structures to reach even higher structural and functional
complexity [196], or to achieve larger structures with repeating units, e.g., to cover a
certain area [197–200]. This process tends to be slow though, with incubation times
for structure assembly often reported in the range of hours, or overnight.

Built from DNA, DNA origami are a natural match for analysis via DNA-PAINT
microscopy [138,201]. InDNA-PAINTmicroscopy, reversible binding of dye-conjugated
“imager strands” to complementary “docking strands” conjugated to the structure
of interest creates a blinking effect. At suitable imager strand concentrations, only a
sparse subset of docking sites is labelled at a given time, allowing for super-resolution
image build-up following the principle of single-molecule localization microscopy
[36,130, 131].

In early implementations, DNA-PAINT originally was very time-comsuming in
acquisition [138]. More recent advances systematically accelerated the acquisition
through optimization of buffer conditions and optimizedDNA sequence design [202,
203]. In particular, a tremendous speed gain could be achieved by combining the
use of short imager strand sequences with high off-rates of binding with repetitive,
low-complexity, sequences. The use of repetitive sequences has the effect of creating
effectively multiple binding sites within a single docking site DNA overhang, thus
increasing the on-rate strongly. That way, both on-rate and off-rate, and thus the
overall binding turnover and acquisition speed, were increased [203].

The research project described in the following section was motivated by the suc-
cess in accelerating DNA-PAINT microscopy in two ways: Firstly, the acceleration
of DNA-PAINT microscopy should make feasible the imaging of structures that un-
der more traditional protocols would have been too dynamic for high-quality im-
age acquisition. Secondly, we reasoned that the same concepts used to accelerate
DNA-PAINT microscopy could be used to accelerate the higher-order self-assembly
of DNA origami nanoparticles diffusing on lipid membranes.

We designed DNA origami structures capable of diffusing on supported lipid bi-
layer membranes, and suitable for imaging using DNA-PAINT microscopy for struc-
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tural characterization, or for bright continuous labelling formobility characterization.
We confirmed thatwhen theDNAorigami particles diffuse, DNA-PAINT is incapable
of acquiring distinctive images of DNA origami particles. After addition of cross-
linking DNA strands, DNA origami “monomers” assembled into higher-order struc-
tures, which were greatly reduced in mobility and could be resolved by accelerated
DNA-PAINT with acquisition times of ca. 5-8 min. We compared structures formed
by different cross-linkers and found small but reproducible differences, with too-
short linkers insufficient for formation of stable higher-order structures, and too-long
linkers increasing propensity for cross-linking in unintended geometries. Finally,
and importantly, we find that using low sequence-complexity cross-linking oligonu-
cleotides accelerate the cross-linking process dramatically. In fact, DNA-PAINT no
longer offered sufficient time resolution to observe the kinetics of the process under
our conditions. Thus, we opted for a faster temporal image correlation spectroscopy
approach which could observe self-assembly kinetics with an effective time resolu-
tion in the order of 10 s, as verified by simulations. Using these analysis tools, we con-
firmed an order of magnitude acceleration of DNA origami self-assembly through
low sequence complexity cross-linkers, as compared to conventional cross-linking
strategies via binding to specific positions on the scaffold strand.

The insights we gained in this study using single-molecule imaging approaches
help in further studies of self-assembly phenomena on membranes. Further studies
in the same lab continued to successfully use the same strategies [198,204].
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ABSTRACT: Nanotechnology often exploits DNA origami nano-
structures assembled into even larger superstructures up to micro-
meter sizes with nanometer shape precision. However, large-scale
assembly of such structures is very time-consuming. Here, we
investigated the efficiency of superstructure assembly on surfaces
using indirect cross-linking through low-complexity connector strands
binding staple strand extensions, instead of connector strands binding
to scaffold loops. Using single-molecule imaging techniques, including
fluorescence microscopy and atomic force microscopy, we show that
low sequence complexity connector strands allow formation of DNA
origami superstructures on lipid membranes, with an order-of-
magnitude enhancement in the assembly speed of superstructures.
A number of effects, including suppression of DNA hairpin formation, high local effective binding site concentration, and
multivalency are proposed to contribute to the acceleration. Thus, the use of low-complexity sequences for DNA origami higher-
order assembly offers a very simple but efficient way of improving throughput in DNA origami design.

■ INTRODUCTION

Over the past 15 years, the development of DNA origami
technology led to huge advances in the field of structural DNA
nanotechnology, as it allows straightforward construction of
large and complex nanostructures.1 This is obtained by forcing
long single-stranded DNA (ssDNA) “scaffold” strands into
programmed conformations using many short “staple” strands.
Diverse structures are possible, and multiple site-specific
functionalizations can be introduced into a single structure
with few-nanometer resolution.2,3 Applications include single-
molecule observation of chemical reactions,4 positioning of
nanoparticles for nanophotonics,5 design of sensitive and
specific biosensors,6 and many others. Recent examples of
DNA origami nanostructures designed in our lab include
benchmark targets for single-molecule method development,7

curved nanostructures to deform membranes,8 or nanostruc-
tures serving as passive cargo to study transport processes in
reaction−diffusion systems.9

The structural complexity allowed by the DNA origami
technology is essentially limited by the length of the scaffold
strand, typically 7−8 kb bacteriophage genomes. Even with
cutting-edge strategies to increase the scaffold length up to 10 kb
and modify it for different applications,10,11 it is still challenging
to produce DNA origami in sizes above 100 nm with high yield.
To arrive at larger structures, the very first publication of the

DNA origami technology already introduced the idea of cross-
linking origami “monomer” particles into higher-order struc-
tures.1 Nowadays, quite large and complex higher-order DNA
origami structures (“superstructures”) are being used for
nanometer-precise positioning of structures over micrometer
scales,12,13 molecular “tubing” systems for linear transport of
cargo,14 or the encapsulation of cargo that itself is tens of
nanometers in diameter.15

There are multiple strategies for assembling DNA origami
superstructures. The most common ones exploit direct DNA−
DNA binding, either sticky-end hybridization16 or blunt-end
stacking.17We focus on sticky-end hybridization strategies in the
present manuscript: First, as sticky-end hybridization exploits
Watson−Crick base pairing, the association is specific and
programmable.12 Second, sticky-end hybridization can be
induced in a time-controlled manner by first preparing samples
from DNA origami monomers and then cross-linking them by
adding “connector strands”.18 Notably, programmability and
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time control are in principle also possible with blunt-end
stacking but are more restricted.17,19 Sticky-end hybridization is
typically performed by two alternative approaches: One option
is to directly prepare one origami species with staple strands that
are extended with sticky ends binding to sequences in another
origami, either directly in the scaffold, or in staple
extensions.12,20 Alternatively, to control the timing of associa-
tion, one can prepare ssDNA stretches on the origami
nanostructures and later add separate connector strands to
bind and cross-link those ssDNA stretches in situ.16,18 Here we
will address the latter strategy (Figure 2), as DNA superstructure
assembly with time-controlled onset is valuable for synthetic
biology applications, such as mimicking cytoskeleton assembly
in order to probe the response of in vitro reconstituted proteins
to changes in their environment. Time control is also accessible
through photoactivation schemes,21 but this requires additional
functionalization of oligomers. We aimed for a radically simple
design for time-controlled DNA origami superstructure
assembly, avoiding multistep assemblies,12,14 special buffer
requirements,19 or non-DNA functionalizations.21

To allow time-controlled formation of DNA origami
superstructures, the effective association rates after reaction
initiation should be as high as possible. Past studies of DNA
origami superstructures were often quite unsatisfactory in this
regard, usually requiring incubation times in the order of 1 h or
more,22 up to overnight incubation.16,23 Several ways to
accelerate association have been identified. One option is
multivalent binding between origami monomers to facilitate
nucleation.20,24 Specifically, for origami in 2D systems,
increasing DNA origami monomer diffusion coefficients by
addingmonovalent cations and/or depositing particles on a fluid
lipid bilayer rather than on a solid support accelerates
assembly.18,19,23 Additional acceleration comes from precisely
matched and rigid geometries of the associating staple
extensions to accelerate transition from monovalent binding
nucleation to multivalent full binding.20 Importantly, at least in
solution, association rates for DNA origami dimerization reach
values comparable to typical association rates for free DNA

oligonucleotides.20 This indicates that increasing effective
association rates of the hybridization reaction itself may yield
an additional gain in DNA origami superstructure assembly
speed. With this idea in mind, we reasoned that recent
developments toward increasing hybridization on-rates in
DNA point accumulation for imaging in nanoscale topography
(DNA-PAINT) microscopy could be transferred to accelerate
DNA origami superstructure assembly.25

DNA-PAINT (Figure 1b) super-resolution microscopy is an
implementation of single-molecule localization microscopy
(SMLM) in which fluorophore-conjugated “imager strand”
oligonucleotides reversibly bind to “docking sites” on the
structure of interest. With low concentrations of imager strands,
only a sparse random subset of docking sites is labeled at each
time point, allowing their imaging in the single-molecule regime.
Acquisition of thousands of frames and subsequent emitter point
spread function fitting allows reconstruction of a super-resolved
map of docking site coordinates.26−28 Recent improvements in
DNA-PAINT acquisition speed focus on improved docking site
design. Specifically, docking sites with low-complexity sequen-
ces, i.e., repeats of a short sequence motif such as [CTC]N, were
found to be superior: These offer a large number of overlapping
imager strand binding sites and thus increase the effective
association rates for imager strand binding.25 The same strategy
can also be used in single-particle tracking (SPT) of sparse sets
of DNA origami particles.28 In this case, a long docking strand
and a high concentration of imager strands yield unusually long
tracks due to continuous replacement of bleached imager
strands, circumventing photobleaching limitations to track
duration.29

We thus set out to characterize two different sticky-end-based
DNA origami superstructure assembly approaches in a lipid
membrane-anchored 2D system. We use fluorescence techni-
ques including single-particle tracking (SPT), DNA-PAINT,
and image correlation analysis, complemented by atomic force
microscopy (AFM), to characterize the assembly kinetics and
the resulting structures. To this end, we employ a simple,
stochastically assembling DNA origami superstructure based on

Figure 1. Design of DNA origami nanostructure used in this study. (a) Design schematic (elements not to scale). A 24-helix bundle is functionalized
with a 36 docking sites for imager strands. Only a subset of these is shown for clarity, the Picasso Design26 schematic in the corner shows the true
arrangement. Additionally, the particle is functionalized for membrane binding (orange extensions binding dark-blue “anchor” sequences) and lateral
extensions for linear cross-linking (light-blue). (b) DNA-PAINT super-resolution imaging. Imager strands reversibly bind to the docking sites on the
particle, successively highlighting them and allowing their super-resolved position determination. (c) Experimental DNA-PAINT data from surface-
immobilized DNA origami particles, with arrows shapes clearly resolved on many particles. Inset shows an average image from 32 901 particles.
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rectangular monomers.1,26 We functionalized this DNA origami
with staple extensions for cross-linking using low-complexity
sequence connector strands to assemble superstructures in situ
rather than preforming them in solution. We demonstrate
assembly kinetics that are 1 order of magnitude faster than more
traditional approaches by using low-complexity sequence
connector strands. We discuss effects contributing to the
acceleration, in particular the influence of length of the used
sticky end. Our results provide useful insights for future
experiments that require rapid cross-linking of DNA origami
superstructures.

■ MATERIALS AND METHODS

Unless specified otherwise, chemicals were purchased from
Sigma-Aldrich/Merck. DNA oligonucleotide sequences can be
found in the Supporting Information.
Buffer Compositions. DNA origami folding buffer: 12.5

mM MgCl2, 10 mM tris, 1 mM EDTA, pH 8.0. Buffer A: 100
mM NaCl, 10 mM tris, pH 8.0. Buffer B: 10 mMMgCl2, 5 mM
tris, 1 mM EDTA, pH 8.0. Buffer D: 140 mM NaCl, 7.5 mM
MgCl2, 20 mM tris, 0.75 mM EGTA, pH 7.6. SLB formation
buffer: 150 mM KCl, 5 mM MgCl2, 25 mM tris, pH 7.5. SLB
washing buffer: 150 mMKCl, 25 mM tris, pH 7.5. AFM imaging
buffer: 40 mM MgCl2, 5 mM tris, pH 7.5.
Origami Folding and Purification. DNA origami were

designed using Picasso Design software,26 and modified using
caDNAno.30 Scaffold DNA (p7249, tilibit nanosystems, 10 nM
in folding buffer) was mixed with a 10-fold molar excess of
unmodified staple strands or staple strands with extensions for
tetraethyleneglycol−cholesterol (TEG-chol)-anchoring to
membranes. Staple strands with DNA-PAINT docking site
extensions, the adapter sequence for the “tracking handle”, or A7
cross-linking extensions were added in a 100-fold molar excess.
The folding reaction was performed via melting for 5 min at 80
°C and temperature ramping from 60 to 4 °C over 3 h. The
folded origami were PEG-purified by two cycles of dilution (1:1
in folding buffer containing additional 15% w/v PEG-8000
(89510) and 250mMNaCl), centrifugation (30min, 17 900 rcf,
4 °C), and resuspension (in folding buffer, 30 min, shaking at 30
°C). DNA origami solutions were stored at −20 °C until use.
Before use, DNA origami solutions were diluted with dilution
factors adjusted differently for different sample types, typically
on the order of 1:20 relative to the concentration obtained after
PEG purification.
Surface-Immobilization of DNA Origami. Liquid cham-

bers were assembled from coverslips (22 × 22 mm2, no. 1.5,
Marienfeld) and microscopy slides (Menzel-Glas̈er) using
double-sided sticky tape (Scotch Transparent 665, Conrad) as
a spacer. Chambers (ca. 20 μL volume) were passivated with
biotinylated BSA (A8549; 1 mg/mL in buffer A, 3 min), washed
with 40 μL of buffer A, and functionalized with streptavidin
(S888, Thermo Fisher, 0.5 mg/mL in buffer A, 3 min). After
washing with 40 μL buffer A and 40 μL buffer B, DNA origami
were washed in (20 μL, in buffer B, 6 min). After incubation,
unbound origami were washed out with 80 μL of buffer B.
Finally, samples were washed with 40 μL of imaging solution
(buffer Dwith imager strands and POCT oxygen scavenger) and
sealed in an air-tight container with two-component epoxy glue
(Toolcraft Epoxy Transparent, Conrad). The POCT oxygen
scavenger consisted of 20 μg/μL catalase (P4234), 0.26 μg/μL
pyranose oxidase (C40), 1 μg/μL trolox (238813), and 0.8% w/
w glucose.

Supported Lipid Bilayer (SLB) Preparation and
Membrane-Tethering of DNA Origami. SLBs were formed
via vesicle fusion. Lipids dissolved in chloroform were mixed in
glass vials, and after solvent evaporation under N2 flow, the lipids
were resuspended in SLB formation buffer to 4 μg/μL. The
obtained large multilamellar vesicle suspensions were then
sonicated (Bransonic 1510, Branson) until the solutions were
clear. These small unilamellar vesicle (SUV) solutions were
either used immediately or stored at −20 °C and re-sonicated
before use. For fluorescence imaging of SLBs, sample chambers
were assembled from cut 0.5 mL reaction tubes glued (NOA 68,
Norland) onto ethanol- and water-rinsed coverslips and cured
under 365 nmUV light exposure for 20min. Immediately before
use, chambers were surface-etched with oxygen plasma (30 s, 0.3
mbar, Zepto, Diener Electronics). Next, 75 μL of diluted SUV
suspension (ca. 0.5 μg/μL in SLB formation buffer) were added
into prewarmed (37 °C) chambers and incubated for 5 min,
during which SLBs formed. After formation, SLBs were washed
with 2mL of SLBwashing buffer, followed by 600 μL of buffer B.
After the sample cooled to room temperature, the supernatant
was replaced with 100 μL of 10 nM TEG-chol anchor
oligonucleotide solution (buffer B, 3 min), followed by washing
with 200 μL buffer B. Next, 100 μL of DNA origami solution was
added (buffer B, 6 min), and the sample was washed with 200 μL
of buffer B, followed by 200 μL of buffer D, and finally flushed
twice with 200 μL of each imaging solution in buffer D with
POCT. SLBs used in fluorescence experiments consisted of
DOPC with 1 mol % biotinyl-cap-DOPE (both Avanti Polar
Lipids) and 0.01 mol % Atto655-DOPE (ATTO-TEC). The
biotin functionalization was not exploited in generating the data
shown in this manuscript. SLBs for AFM imaging consisted of
DOPC with 0.1 mol % Atto655-DOPE and were prepared on
coverslips (22 mm diameter, no. 1, Marienfeld) in dedicated
sample chambers for liquid-phase AFM (JPK). Atto655-DOPE
was used to locate and quality-check membranes but not for
generation of the data shown here. For preparation of SLBs for
AFM, the same protocol was followed with the reagent volumes
scaled up 2- to 3-fold compared to the chambers used for
fluorescence imaging.

Total Internal Reflection Fluorescence Microscopy.
Fluorescence microscopy was performed at a custom inverted
microscope described in detail in a previous publication.31 Light
from a solid-state laser (561 nm, DPSS-System, MPB) was
intensity-adjusted using a half-wave plate and a polarizing beam
splitter (WPH05M-561 and PBS101, THORLABS). The beam
passed through a refractive beam-shaping device (piShaper
6_6_VIS, AdlOptica) to create a flat illumination profile. To
achieve evanescent-field illumination, the beam excentrically
entered the oil immersion objective lens (100× NA 1.49
UAPON, Olympus). Fluorescence emission was collected by
the same objective and filtered through suitable band-pass filters
(605/64, AHF Analsentechnik) before detection on a CMOS
camera (Zyla 4.2, Andor). During acquisitions, the temperature
was stabilized at 23 °C (H101-CRYO-BL, Okolab), and z-
positioning of the sample was stabilized via a piezo stage (Z-
INSERT100, Piezoconcept and CRISP, ASI). The camera was
operated with the open source acquisition software μManager32

and images were acquired with 2 × 2 pixel2 binning and field of
view cropping to the central 700 × 700 (prebinned) pixels to
achieve an effective pixel width of 130 nm and a field of view
matching the circular flat illumination profile ca. 130 μm in
diameter.
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Details for Different Acquisition Strategies. DNA-PAINT
Microscopy. DNA origami nanostructures were functionalized
with 5xR1 docking sites.25 The imaging solution contained 1.25
nM R16nt-Cy3B imager strands. Illumination intensity was set to
ca. 30 μW μm−2. A total of 10 000 images per data set were
acquired at a frame rate of 20 Hz.
Single Particle Tracking. DNA origami with a 20 nucleotide

(nt) adapter sequence were deposited on membranes. A
[TCT]38 “tracking handle” docking site analogous to that
described by Stehr et al.29 was quasi-irreversibly recruited to the
origami via the adapter complement: During DNA origami
deposition, 10 nM tracking-handle−adapter conjugate were
additionally present. To ensure a sparse subset of labeled DNA
origami nanostructures suitable for SPT, a low density of
tracking-handle-coupled particles was diluted in a 20-fold excess
of unlabeled DNA origami particles, i.e., the same DNA origami,
except without the adapter sequence. The imaging solution
contained 10 nM R5_S28nt-Cy3B imager strands. Illumination

intensity was set to ca. 20 μW μm−2. A total of 10 000 images per
data set were acquired at a frame rate of 20 Hz.

Imaging for Correlation Analysis. DNA origami nanostruc-
tures were functionalized with 5xR1 docking sites,25 which were
quasi-irreversibly labeled through 4 min incubation with 10 nM
R118nt-Cy3B. The imaging solution did not contain imager
strands. Connector strands were added at 250 nM immediately
before start of acquisition (ca. 10 s delay, limited by speed of
pipetting and closing of microscope stage incubation chamber).
A total of 300 images were acquired at a frame rate of 30 Hz at
each time point along the cross-linking observation. The laser
was shuttered between observation time points. Illumination
intensity was set to ca. 2 μW μm−2.

Fluorescence Image Analysis. Processing parameters for
all fluorescence experiments are listed in Table S1.

DNA-PAINT Microscopy. Image stacks were processed using
Picasso software.26 Picasso Addon7 was used for automation.
The Python software can be found on Github (https://github.
com/schwille-paint). The general pipeline started with Picasso

Figure 2. Schematic of DNA origami cross-linking kinetics onmembranes. (a) Cross-linking geometry. Cross-linking sites are distributed on the DNA
origami such that linear assemblies are expected, but with repeat connectors branching is also possible. (b) Scaffold connectors directly bind scaffold
loops of two DNA origami particle, yielding highly site-specific assembly. (c) Repeat connectors bind the DNA origami indirectly via A7 staple
extensions. Depending on the design of the connector strand, many binding reading frames are available for the A7.
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Localize to pick and localize emitters, followed by Picasso
Render for drift correction (RCC). In the case of biotin/
streptavidin-immobilized origami, particles were manually
picked in Picasso Render, followed by automated picking of
similar particles and drift correction from picked particles. The
average image from many immobilized DNA origami nano-
structures was created using Picasso’s Average3 module.
Single-Particle Tracking. The analysis pipeline started with

localization in Picasso Localize as in the case of SMLM.
Subsequent steps used the “SPT” package, which is also available
via the above-mentioned GitHub page, for linking of local-
izations into tracks and mean-squared displacement analysis.
Correlation Analysis of Cross-Linking Kinetics. Image stacks

were analyzed using a custom Python script, which is included in
the Supporting Information. A detailed explanation of the
analysis can be found in the Supporting Information, including a
description of the simulations performed to test the accuracy of
the analysis.
Atomic ForceMicroscopy.Measurements were performed

on a JPK Nanowizard 3. The AFM images were taken in QI
(quantitative imaging) mode using BioLever Mini BL-AC40TS-
C2 cantilevers (Olympus). The set point force was 0.25−0.35
nN, acquisition speed 66.2 μm s−1, Z-range 106 nm; 10 × 10
μm2

fields of view were acquired with a 15 nm pixel size. Images
were first processed in JPKSPM Data Processing (JPK,
v6.1.142) performing a line-wise second-degree polynomial
leveling followed by another second-degree polynomial leveling
with limited data range (0% lower limit, 70% upper limit).

Subsequent plane leveling, third-degree polynomial row align-
ment and scar correction were performed in Gwyddion (v2.58,
http://gwyddion.net/).

■ RESULTS AND DISCUSSION
Simple DNA Origami Design for Cross-Linking

Studies. To study DNA origami cross-linking, we first designed
a suitable monomer structure. We reasoned that the use of a
well-characterized modular structure would be most convenient
and thus opted for a flat rectangular grid origami used in a
number of previous single-molecule fluorescence stud-
ies.7,25,29,33,34 On this monomer structure, we arranged 36
DNA-PAINT docking sites in the shape of an arrow. This design
challenges the resolution in DNA-PAINT imaging and allows
reading out the orientation of the origami on the surface (Figure
1). DNA-PAINT imaging of individual DNA origami particles
immobilized on a glass surface via biotin−streptavidin anchoring
indeed revealed the expected arrow pattern with high yield
(Figure 1c).
We then functionalized the “bottom” side of the origami

structure with staple extensions to bind it to supported lipid
bilayer membranes (SLBs) via complementary TEG-chol-
coupled oligonucleotides. Only two opposing lateral edges of
the DNA origami were further functionalized for cross-linking
into higher-order assemblies, aiming for linear chains rather than
tilings, as the latter might be more difficult to distinuish from
unspecific clustering (Figure 2a). In all cross-linking experi-
ments described in this manuscript, each DNA origami edge

Figure 3. AFM characterization of DNA origami superstructures, showing conditions which yielded high-quality images. Additional conditions are
shown in Figure S3. All images were acquired after 2 h incubation with 250 nM of the specified connector strand. The TN mix is 50 nM each T14, T20,
T40, T60, and T80. The color-coded height scale in all panels is 6 nm.
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participating in the association was designed to bind four
connector strands. The DNA origami design exposes no blunt
ends of DNA duplexes to avoid uncontrolled association via base
stacking. Figure 2 gives a schematic summary of the DNA
origami cross-linking strategies. One strategy that we employed
has been frequently reported before.16,18,23 Here, DNA origami
nanostructures are cross-linked via connector strands that are
essentially staple strands which incorporate into bothmonomers
simultaneously (Figure 2b). For concision, we will call these
“scaffold connectors”. The other strategy is to incorporate
modified staples into the DNA origami that carry extensions for
indirect binding of connector strands to the DNA origami. We
reasoned that DNA origami superstructure assembly could be
accelerated through a connector strand design analogous to the
above-mentioned high-on-rate docking site design25,29,33 used
for example in DNA-PAINT, i.e., the use of low-complexity
sequences to increase the effective association rate (Figure 2c).
We opted for short stretches of a single nucleotide species,
specifically A7 as an extreme case of such a low-complexity
sequence. The connector strands were simply oligo-T
sequences. These connector strands will be referred to as
“repeat connectors”. We note that we did not optimize our
structure for highly specific assembly geometries. Instead, we

aimed for a simple system that would serve as a model system for
characterizing the assembly process itself. Thus, a stochastically
assembling design was chosen in which also the shape of the
formed structures would reveal the action of the connector
strands in super-resolution imaging. With the basic origami
design and cross-linking strategies at hand, we proceeded to
create higher-order DNA origami assemblies on fluid mem-
branes.

Repeat Connectors Are a Viable Option for Super-
structure Assembly. We first characterized the structures of
our cross-linked DNA origami structures using AFM to confirm
the possibility of forming superstructures with desired geometry
using repeat connectors. For AFM imaging, we prepared DNA
origami samples on fluid SLBs and cross-linked them for 2 h
using all-T repeat connectors of different lengths (T14, T20, T40,
T60, T80, or a mixture of all of these referred to as TNmix). Before
imaging, we exchanged the buffer, increasing the Mg2+

concentration from 7.5 to 40 mM to decrease mobility of the
preformed structures for better AFM image quality. When using
repeat connectors, ≥40 nt in length, high-quality images
showing the expected formation of extended filaments were
obtained which agree with the linear assembly geometry dictated
by design (compare Figures 3 and 2). However, we saw hardly

Figure 4. DNA-PAINT characterization of DNA origami superstructures cross-linked with different connector strands. (a) TN repeat connector mix
containing T14, T20, T40, T60, and T80 at 50 nM each (30 min incubation). (b) Scaffold connectors (250 nM total concentration, 20 h). (c) Individual
repeat connectors (250 nM, 30 min).
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any differences between different lengths ≥ 40 nt. Small
oligomers formed by shorter repeat connector strands yielded
lower quality images, suggesting that these led to hardly any
superstructure formation within 2 h. In fact, the structures that
we obtained with repeat connectors rather looked like unspecific
association due to the high Mg2+ concentration (Figure S3). We
did see some lateral assembly as well: As all cross-linking staple
extensions have the same A7 sequence and only differ by
orientation of 3′- or 5′-ends, there is no strict specificity
regarding the orientation of neighboring DNA origami
monomers within the superstructure. This allows branching of
linear assemblies, which leads to the formation of the observed
2-dimensional superstructures. We observed this branching
somewhat less frequently when using scaffold connectors, which
are site-specific in their binding to DNA origami and thus
suppress branching (Figure S3). The presence of some
branching even in this setting suggests Mg2+ unspecific
association. Overall, the AFM data suggests that using long
repeat connectors allows to cross-link DNA origami super-
structures efficiently, albeit with trade-offs in specificity.
However, there was no obvious difference between the different
repeat connectors that efficiently cross-linked the DNA origami
structures. In our AFM experiments, pushing of DNA origami
structures by the AFM tip forced us to strongly increase the
Mg2+ concentration, which led to unspecific association. Thus, at
least with lengths ≥40 nt, repeat connectors do facilitate
formation of DNA origami superstructures. To characterize the
structures in more detail under origami-typical buffer con-
ditions, we employed single-molecule fluorescence imaging.
Repeat Connectors Form Stable Superstructures

Faster than Scaffold Connectors. Before acquiring super-
resolution images of our samples, we used SPT to characterize
particle mobility prior to cross-linking in the imaging buffer used
for all following fluorescence microscopy experiments, contain-
ing 7.5 mMMg2+ and 140 mMNa+. SPT showed that our TEG-
chol-anchored DNA origami particles diffused freely on the
SLBs with a diffusion coefficient of ca. 0.2 μm2 s−1 (Figure S4).
However, upon addition of connector strands, we observed a
strong decrease in mobility, indicating superstructure formation.
A large fraction of particles was practically immobilized 30 min
after addition of a mixture of oligo-T connector strands to A7-
functionalized origami (Figure S5). We reasoned that these may
in fact be sufficiently immobilized for DNA-PAINT-based
structural characterization using an accelerated acquisition
protocol following Strauss and Jungmann,25 which reduces the
acquisition time to ca. 8 min. SMLM has been successfully
applied to samples with slow but non-negligible motion such as
live cells before, albeit with trade-offs between acquisition time
and resolution.35,36

Even with that accelerated acquisition, we were unable to
resolve any structures in DNA-PAINT imaging without cross-
linking (Figure S6a). However, we were able to resolve large
DNA origami superstructures on the membrane after cross-
linking for only 30 min with the TN repeat connector mixture
(Figure 4a). Notably, in all our AFM and DNA-PAINT
experiments, the connector strand solution had been replaced
with connector strand-free imaging buffer before acquisition.
This means that the observed assemblies were rather stable and
did not undergo rapid dissociation/reassociation dynamics and,
in particular, that the assemblies were not dependent on
stabilization by the high Mg2+ concentration in the AFM
imaging buffer. This confirms that the use of short A7 sticker
sequences combined with multivalent cooperative binding is

sufficient for association of stable superstructures. In fact, the
branching of oligomers seen in AFM and confirmed by SMLM
suggests that our A7 cross-linking extensions are too long for
efficient “self-healing” of association sites into “ideal” association
geometries.12,37 We saw similar results when using scaffold
connectors, but much longer incubation times were needed
before high-quality imaging was possible: Compare Figure 4b
acquired after 20 h to Figure S7 acquired after 2 h. This is in line
with previous publications using scaffold connectors to cross-
link DNA origami into 2D systems.18,23 Each scaffold connector
first needs to bind to its unique binding site on a DNA origami
nanoparticle and then to the appropriate binding site on a
second particle, requiring theDNAorigamimonomers to collide
in the correct mutual orientation. Even after 20 h, only rather
small assemblies were found. Thus, repeat connectors allowed
assembly within less than 1 h, while scaffold connectors seemed
quite unsatisfying regarding throughput of the experiment.
Although the image resolution in DNA-PAINT on mem-

branes was lower than that in the image of origami directly
immobilized on glass, we achieved resolution down to the 10 nm
scale even onmembranes. The resolution was limited by residual
motion on the time scale of the acquisition, as demonstrated by
the blurred clouds of localizations in various positions of the
image. The orientation of some DNA origami monomers within
the context of the superstructures was visible in the SMLM
images, giving access to some information about the geometry in
association. When repeat connectors are used, both parallel and
antiparallel arrow orientations in neighboring particles are seen,
which is obviously another consequence of the lack of site
specificity in repeat connector binding. This is in stark contrast
to the images obtained using scaffold connectors, which yield
assemblies specifically with parallel orientation (Figure 4b).
Notably, DNA-PAINT imaging of DNA origami deposited in a
3-fold higher density, but not exposed to connector strands,
yielded low-resolution images of very different structures
(Figure S6b). This confirms that despite the compromises in
association geometry specificity when using repeat connectors,
the retrieved superstructures are products of hybridization-
based, connector strand-dependent association.
Finally, we compared superstructures formed by different

lengths of all-T connector strands using DNA-PAINT imaging
(Figure 4c). T14 (not shown) or T20 repeat connectors showed
almost no cross-linking within 30 min, supporting the idea that
assembly seen with AFM was mostly unspecific due to the high
Mg2+ concentration. As in AFM, we saw little difference between
the different all-T connectors of lengths ≥ 40 nt. From our
DNA-PAINT experiments, we could thus confirm the connector
strand-driven association of our DNA origami superstructures,
and that long repeat connectors yield faster assembly than
scaffold connectors. Motivated by these findings, we decided to
characterize more quantitatively the differences between
assembly kinetics of scaffold and repeat connectors, in order
to obtain a mechanistic understanding of these differences.

Quantification and Mechanisms of Assembly Accel-
eration. In the next experiments, we set out to determine
characteristic time scales for DNA origami higher-order
assembly under different conditions. We opted for an image
correlation analysis-based read-out of oligomerization (see
Supplementary Note and Figure S1). The calculated correlation
parameter, reporting the amplitude of temporal fluorescence
fluctuations, increases as the particles associate into higher-order
assemblies: Fluorescence fluctuations are larger when few bright
particles diffuse through a pixel than many dim ones do. Later,
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the correlation parameter falls to zero or a low baseline value, as
the assemblies become so large that they are essentially
immobile during the 10 s observation: Immobile particles
yield an approximately constant signal over time (Figure 5a).
The correlation analysis was found to be sensitive to
oligomerization and immobilization in simulations of different
ratios of mono- and oligomers (Figure S2). Additional
advantages for long-term observation of the overall evolution
of the sample are lower illumination intensities and the fact that
in contrast to SMLM and AFM, this analysis captures the entire
ensemble of particles rather than selectively showing immobile
assemblies. Thus, image correlation analysis provided a
convenient aggregate readout for higher-order assembly
kinetics, from which we derived characteristic time scales of
immobilization as a surrogate for assembly of DNA origami
superstructures (Figure 5b). For these experiments, the spatial
arrangement of docking sites previously used for DNA-PAINT
plays no role (ca. 50 nm pattern width vs ca. 200 nm spatial
resolution). Instead, we created bright particles through quasi-
irreversible binding of multiple long R118nt-Cy3B imager strands
to the full length of the docking site.38 We systematically
compared cross-linking by a variety of connector strands under
otherwise constant conditions. These included the previously
used scaffold connectors with and without short flexible linkers
between the binding sites and all-T repeat connectors of lengths
14, 20, 40, 60, and 80 nt. In addition, we included mixtures of
repeat connectors of all lengths, but with inserted oligo-C
spacers that do not bind the oligo-A extensions, thus tuning the
“sticker” length (i.e., number of binding reading frames) without
changing the overall length of the connector strands (Figure 2c).
The results are compiled in Figure 5b for comparison, but they
will now be discussed sequentially.
Assembly kinetics were observed following addition of

connector strands for either 24 h (scaffold connectors and
negative controls) or 2 h (repeat connectors). Confirming the

findings from DNA-PAINT imaging, very long incubation times
in the order of 10 h were needed to create fully assembled
structures using scaffold connectors. Adding a short flexible
linker sequence to the scaffold connectors did not strongly affect
the association kinetics. If anything, it slowed down association,
which may be explained by the findings of Zenk et al.20 that
larger flexibility of connector binding sites can be detrimental to
association.
We then characterized the repeat connectors with total

lengths of 14, 20, 40, 60, and 80 nt. First, we looked at cross-
linking kinetics for mixtures of repeat connectors with internal
oligo-C stretches and terminal oligo-T stickers. Oligo-T sticker
lengths varied from 6 nt (shorter than the A7 docking site) to 9 nt
(three binding reading frames). Using repeat connector
mixtures for cross-linking, we saw a strong acceleration in
association kinetics for sticker lengths of ≥7 nt. Within the 2 h
acquisition time, we did not see any notable changes in the
fluctuation data for 6 nt stickers, and for 7 nt stickers, only one
out of three samples showed immobilization. Increasing the
oligo-T sticker length at the end of the repeat connectors to 8 or
9 nt yielded robust assembly within <2 h, demonstrating the
desired acceleration. These sticker lengths offer 2 or 3 reading
frames for the A7 binding partner, respectively, meaning that the
data is entirely consistent with our idea of multiple reading
frames accelerating binding. Another cause for acceleration is
the same effect that is the cause for the reduced orientation
specificity observed by nanoscale imaging: Repeat connectors
can bind various positions on DNA origami nanoparticles,
reproducing the effect of multivalent binding previously
reported.20,24 Time-resolved analysis of cross-linking kinetics
thus confirms an order-of-magnitude acceleration in assembly
dynamics by using our repeat connector strategy, as compared to
our scaffold connector strategy.
Interestingly, no further acceleration of superstructure

assembly was seen by using a mixture of all-T connector strands

Figure 5. Correlation analysis of cross-linking kinetics. (a) Illustration and example data of correlation analysis. At the beginning of the experiments,
monomers diffuse rapidly, creating moderate fluorescence fluctuations (red image and fluorescence intensity trace). As oligomerization begins,
effectively fewer brighter particles are observed, increasing fluctuation amplitudes at unchanged average intensity (blue). As oligomerization
progresses, yielding large, immobile particles, fluctuations become negligible (brown). The time traces of correlation parameter change show two
examples of traces quite clearly undergoing these phases within observation time, and a buffer-treated negative control. (b) Kinetics of DNA origami
higher-order assembly measured through image correlation analysis (mean ± s.d.). See the main text for details about the different conditions.
Numbers in parentheses refer to the number of data sets for which an assembly time scale could be fitted compared to the number of data sets acquired
for this condition. One of the mock-treated samples did show clear immobilization, which we attribute to unspecific sample degradation.
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of different lenths (“TN mix” in Figure 5b) compared to those
with 8 or 9 nt stickers. We hoped to find an explanation for this
effect by comparing different lengths of all-T connector strands.
The longer all-T repeat connectors accelerated assembly
compared to shorter ones. While Zenk et al.20 argued that
increasing connector strand flexibility (i.e., length) can be
detrimental to binding, here the increased length comes with an
increase in the number of binding sites. We did not see
immobilization within 2 h using T14 or T20 connectors. This
suggests an explanation for the fact that using a mix of different
all-T connectors did not further accelerate assembly relative to
connectors with 9 nt stickers: The inefficient T14,20 connectors
likely competed with the more efficient T40,60,80 connectors. The
low efficiency of T14,20 connectors may be explained by the fact
that their short sequences cause A7 docking sites to compete for
overlapping binding sites on the same connector strand, which is
clearly detrimental for cross-linking. This competition is
suppressed in repeat connectors with internal oligo-C stretches
and less relevant in long all-T ones.
Obviously, by comparing scaffold connectors to repeat

connectors only consisting of oligo-T stretches, we looked at
two extremes in a broad spectrum of thinkable cross-linker
designs: one entirely optimized for assembly speed and the other
entirely for specificity. Intermediate strategies would allow
different trade-offs between these parameters. For example, one
could combine oligo-A staple strand extensions with oligo-G
staple extensions, creating two orthogonal cross-linking systems.
These could also be combined through connectors concatenat-
ing oligo-T stretches and oligo-C stretches to link an oligo-A
functionalized DNA origami face to an oligo-G functionalized
one. This would increase specificity in assembly geometry,
unlikely to result in antiparallel association of our DNA origami
monomers. Repeats of 2 or 3 nt sequence motifs further increase
the number of orthogonal motifs available for cross-linking,25

but the number of binding reading frames will decrease rapidly
with increasing motif length. Notably, such 2 nt motifs, albeit
without repeats, were used previously to create very large DNA
origami superstructures12 with high specificity in assembly
geometry. However, this specific formation of large structures
required a multistep assembly that is slow and is not easily
transferred to the in situ assembly in which we were interested.
Finally, an additional mechanism that likely contributes to the

acceleration of binding using low-complexity sequences is the
absence of internal hairpins from oligo-T or A7 sequences.
Hairpin formation can strongly reduce effective on-rates.33,34

Due to sequence constraints from direct binding to the scaffold
strand, hairpin formation could not be abolished completely in
the design of the scaffold connectors used in this study according
to the prediction by NUPACK.39 Onemight thus consider high-
complexity, yet hairpin-free, docking site extensions. While
sequence design will become very challenging with increasing
numbers of desired orthogonal sequences and the speed gain
will likely remain modest compared to what our work
demonstrates, such an approach remains highly attractive
regarding specificity. In any case, our recommendation for
designing rapidly cross-linking sequences for DNA origami
superstructures is to avoid direct binding of connector strands to
the scaffold and instead use staple extensions, designed with the
lowest possible sequence complexity sufficient to ensure the
required specificity.

■ CONCLUSIONS

In this work, we compared different design features to optimize
assembly kinetics of higher-order DNA origami structures. A
significant acceleration was achieved by cross-linking DNA
origami indirectly via low sequence complexity connector
strands binding to staple strand extensions, instead of direct
binding of high-complexity sequences to loops in the scaffold
DNA. We postulate two effects to contribute to the increased
speed: The presence of multiple binding reading frames
increases the effective local concentration of binding sites, and
thus the effective association rate, and the used low-complexity
sequences prevent the formation of hairpins. Using modifica-
tions of the strategy will allow multiple orthogonal sequences,
increasing association specificity, with some trade-off in
experimental throughput. This quite simple and generic
approach to accelerate DNA origami superstructure assembly
should prove useful to increase throughput of experiments in the
field and to benefit experiments that require time-controlled
assembly.
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5
Measuring Partition Coefficients of In Vitro

Biomolecular Condensates Using
Fluorescence Correlation Spectroscopy

Liquid-liquid phase separation is of interest as a widespread organizing principle
for compartmentalization and regulation in extant life, as a tool for synthetic biology,
and as a candidate mechanism for protocell formation at the origin of life. Many
physical parameters of condensates are of interest to understanding the properties
of these structures, and how to engineer them for different applications (Figure 5.1).

Figure 5.1. Parameters of interest in studying LLPS. The schematic illustrates some of the
physicochemical parameters and processes of interest in studying liquid-liquid phase sepa-
ration that are at least in principle accesible using Fluorescence Correlation Spectroscopy.

FCS gives access to many parameters of interest in the context of studying liquid-
liquid phase separation (see Section 2.4): Diffusion coefficients as a readout of vis-
cosity and polymer entanglement, concentrations in dense and dilute phases and
thus binodals and partition coefficients, conformational kinetics of involved poly-
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mers, and binding kinetics, to name a few [147,149,160,206]. Besides standard single-
spot FCS [207–212], FCS techniques employed to study condensates cover STED-FCS
to probe mobility over short length scales [213], and various scanning FCS schemes
such as circle-scanning FCS [214] and ultrafast axial scanning FCS [215]. Scanning
FCS techniques have two important advantages over standard single-spot confocal
FCS that are relevant in studying liquid-liquid phase separation:

Firstly, scanning the beam means that bleaching and triplet-state build-up are
reduced by illuminating each spot repeatedly for short times [216]. Particles in con-
densates typically diffuse slowly within the environment that is densely packedwith
polymer chains. Thus, statically illuminating the same spot for a long time in single
spot FCS leads to pronounced build-up of dark-state populations like triplet-state
or nonfluorescent isomers. This happens less in scanning FCS as the molecules are
given time to relax into the ground state in the “stroboscopic” illumination scheme.
Triplet-state transitions often precede bleaching [217], which is why scanning FCS
can be favorable in samples prone to bleaching.

Secondly, the scan pattern introduces fixed and known length and time scales into
the FCS acquisition which are less affected by spherical aberration than the shape of
the PSF. Therefore, scanning FCS techniques are more robust in estimating diffusion
coefficients in environments of nonideal refractive index, where spherical aberration
is hard to avoid [214, 218]. Condensate droplets are such an environment, with the
high polymer density increasing the refractive index [219]. Structured Illumination
Microscopy (SIM), an imaging technique that notoriously sensitive to optical aber-
rations [220], highlights the effect as seen in Figure 5.2: SIM tends to amplify high-
frequency noise in featureless areas like the inside of condensate droplets, but in the
example, the refraction at the droplet boundary added an imprint from the illumi-
nation pattern into the image (appearing as stripes). Such refractive index mismatch
also distorts FCS data heavily [221, 222], which in past FCS studies of particle mo-
bility in crowded environments – similar to those within condensate droplets – has
been misinterpreted as anomalous diffusion [222,223].

With these issues in mind, single spot FCS seems nonideal for studying physical
chemistry of liquid-liquid phase separation. However, it also remains the simplest
and often most accessible FCS technique, that is best-known in the user community.
Thus, we believed that a study to establish best practices for performing single-spot
FCS on condensates would be help of value.

Weused simple andwell-characterizedmodel condensates prepared frompoly-L-
lysine and uridine triphosphate (UTP) [224] to explore protocols for performing FCS
experiments. We realized that the issue of condensates acting as micro-lenses can
be circumvented via centrifugation protocols that merge microscopic droplets into
macroscopic condensate mass that forms a dome on a coverslip, or even fully spans
a coverslip sandwich. When this is combined with careful surface passivation of the
coverslip to avoid unwanted interactions of the condensate constituents with the sur-
face [225,226], this approach yields rather robust experimental conditions. Even then,
the dense phase of a condensate still has an increased refractive index compared to
water [219]. Here, we find that correct adjustment of the correction collar is critical,
and the experimenter should be careful to double-check for deviations between the
dense and dilute phase. Figure 6.1 illustrates the effect that the correction collar has
on FCS data with a typical high-performance water immersion objective (60x NA 1.2
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Figure 5.2. Refractive index mismatch. A: Schematic of a phase-separated sample on a mi-
croscope, with marginal rays of the illumination illustrated in red. The dense phase droplet
has an increased refractive index, creating one more refracting interface in th beam path that
must be corrected, or avoided altogether. B: Experimental data of Lattice Structured Illu-
mination Microscopy on phase separated droplets formed from poly-L-lysine (100-mer) and
UTP containing fluorescently labelled oligonucleotides (GAGGAGGA-3’-Atto655), highlight-
ing artifacts from refraction at the condensates.

UPlanApo water immersion, Olympus) [227–230]. While the refractive index incre-
ment between dilute solution and dense condensate does not usually require a large
adjustment of the correction collar, the figure illustrate that deviations (and sample-
to-sample heterogeneity) can be signifcant.

Regarding data analysis, we found that a number of artifacts that commonly occur
when performing single-spot FCS measurements in condensates can be recognized
and at least partially corrected in the data. This somewhat relaxes the experimental
challenge if suitable software is available. Thus, we developed a software tool for
exactly this purpose, that also covers a few other artifacts beyond those typically
relevant in condensates. The artifacts themselves and the software are discussed in
the context of liquid-liquid phase separation in the following, and more generally
and in more technical detail in section 8.1.

We compiled our insights into a protocol chapter covering best practices for sam-
ple preparation, for measurements, and for data analysis, which is presented in the
following. Of note, not long before publication, another protocol chapter with simi-
lar aims but different emphasis was published by other authors [212]. As an applica-
tion example for detailled discussion, we focused on the determination of partition
coefficients, a parameter commonly of interest in characterizing liquid-liquid phase-
separationdue to its direct connection to the thermodynamics of the phase separation
process and the recruitment of ”guest” particles into the condensate.
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A B

Figure 5.3. Correction Collar in FCS. Shown are apparent normalized diffusion coefficients
(inverse of diffusion time, A) and normalizedmolecular brightness (B) as a function of correc-
tion collar setting in six different condensate samples containing a few different fluorescent
labels. Lines are fits with Lorentzian profiles and are meant as a guide to the eye.
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Chapter 21 

Measuring Partition Coefficients of In Vitro Biomolecular 
Condensates Using Fluorescence Correlation Spectroscopy 

Jan-Hagen Krohn , Leon Babl, Lise Isnel, Yusuf Qutbuddin, 
and Petra Schwille 

Abstract 

Liquid–liquid phase separation is a widespread organizing principle of live cells, including, for example, the 
spatiotemporal organization of bacterial chromatin. The biophysics of phase-separating systems is often 
studied in vitro to avoid the complexity of the live-cell environment and facilitate application of advanced 
biophysical methods. One attractive method for measuring, e.g., partition coefficients, in such systems is 
fluorescence correlation spectroscopy (FCS). FCS circumvents some of the limitations of the widespread 
confocal laser scanning microscopy image-based measurements. Here, we describe how to perform parti-
tion coefficient measurements in biological phase-separating systems. Our protocol details typical work-
flows for the preparation of in vitro reconstituted condensates, FCS data acquisition, and subsequent data 
analysis, including corrections of some common artifacts. Our recommendations should help avoid many 
pitfalls of partition coefficient determination in these challenging systems. 

Key words Phase separation, Concentration, Reconstitution, Confocal microscopy 

Abbreviations 

ACF Autocorrelation function 
CLSM Confocal laser scanning microscopy 
FCS Fluorescence correlation spectroscopy 
FLCS Fluorescence lifetime correlation spectroscopy 
LLPS Liquid–liquid phase separation 
PLL Poly-L-lysine 
SNR Signal-to-noise ratio 
SPAD Single-photon avalanche photodiode 
TCSPC Time-correlated single-photon counting 
UTP Uridine triphosphate 
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1 Introduction 

A variety of membraneless organelles form through liquid–liquid 
phase separation (LLPS). The growing awareness of LLPS in cell 
biology has led to significant interest into the formation, regula-
tion, and biophysics of these cellular substructures [1]. The 
biological functions of such membraneless organelles are tightly 
linked to the material properties of, and partitioning of molecules 
into, dense droplets [2, 3]. Liquid-like condensates often emerge 
from the interaction of proteins with nucleic acids, prominent 
examples being the eucaryotic nucleolus [4], stress granules [5], 
or the bacterial partition complex [6, 7]. While most previous 
studies of membraneless organelles have focused on eukaryotes, 
evidence is accumulating for LLPS in bacterial cytoplasm as well 
[8]. Many bacterial condensates form within, or close to, the nucle-
oid [7, 9–11]. However, bacterial cells are much smaller in size than 
eukaryotes, making in vivo characterization of these condensates 
challenging. Combinations of in vitro reconstitution and super-
resolution microscopy methods have begun to reveal the underly-
ing principles of bacterial phase separation. Similar to eukaryotic 
condensates, bacterial membraneless organelles are highly dynamic 
and tightly regulated [6, 7, 10]. These cellular substructures can 
dissolve and reform upon environmental stress or cellular signals, 
allowing spatiotemporal control of various cellular processes. 

In vitro reconstitution studies of biomolecular condensates 
have highlighted two aspects of condensate formation as particu-
larly important for their functionality: the difference in molecular 
mobility inside vs. outside of the condensate, and the partitioning, 
i.e., up-concentration or exclusion, of molecules between the dense 
phase and the surrounding dilute phase [12, 13]. The key descrip-
tor of partitioning is the ratio of a solute’s concentration inside the 
condensate droplet over the concentration in the surrounding 
dilute phase, known as the partition coefficient P. Partitioning of 
nucleic acids, proteins, or small molecules can be highly selective, 
allowing for rigorous control of the condensate composition 
[13]. Up-concentration of proteins and their substrates inside con-
densates can enhance reaction rates, nucleate the formation of 
mesoscopic assemblies, and even build hierarchical structures ful-
filling complex biochemical tasks [4, 12, 14]. 

The partition coefficient is most frequently measured using 
confocal laser scanning microscopy (CLSM) images, simply using 
image grayscale ratios as estimates of concentration ratios. How-
ever, besides possible bias from optical aberrations, this assay can be 
distorted by changes in dark-state fractions and fluorescence quan-
tum yields between the dense and dilute phases. 

A complementary approach is fluorescence correlation spec-
troscopy (FCS) [15–17]. In a typical FCS measurement, a confocal
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microscope is used to record fluorescence fluctuations in steady 
state with high time resolution. These fluorescence fluctuations 
over time are then statistically analyzed via their so-called autocor-
relation function (ACF). The ACF G(τ) is calculated as 
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GðτÞ= 
hδF ðtÞδF ðt þ τÞit 

hF ðtÞi2 ð1Þ 

with measured intensity data over time F(t), time average h. . .i, 
fluorescence fluctuation δF(t) = F(t) - hF(t)i, and lag time τ. The 
ACF is closely related to the signal variance, but while the variance 
is a single number reporting only the strength of signal fluctuations, 
the ACF represents their shape over time. Thus, the shape of the 
ACF can be used to retrieve kinetics of processes such as diffusion 
or fluorophore blinking. In addition to kinetics, particle concentra-
tions can be determined from the amplitude of the ACF: small 
concentration fluctuations yield stronger signal fluctuations at low 
average concentration than at high average concentration. Measur-
ing concentrations from the ACF amplitude is independent of the 
dye’s quantum yield and thus allows true particle number counting. 
In addition, fluorophore blinking, which can also change the appar-
ent concentration measured by CLSM, can often be directly cor-
rected in FCS by fitting the ACF shape. Using the sample’s 
fluorescence signal in a very different manner than CLSM, 
FCS-based concentration measurements are therefore complemen-
tary to ones based on CLSM and circumvent some of their limita-
tions. Nonetheless, both CLSM and FCS are often possible on the 
same instrument. Thus, FCS is highly attractive for measuring 
concentrations, i.e., partition coefficients, in regions of interest in 
which dye photophysics may be altered—such as the distinct phases 
of a phase-separating sample. However, FCS is strongly influenced 
by signal drift, for example, due to photobleaching [18], and 
optical artifacts such as spherical aberration due to refractive index 
mismatch, which can inflate the size of the observation volume and 
thus lead to overestimation of concentrations [19]. These require 
special attention when measuring in biomolecular condensates. 

In this chapter, we explain a workflow for confocal FCS-based 
measurement of partition coefficients in LLPS systems under con-
trolled in vitro conditions. Note that in this chapter, we keep the 
explanations focused on a single well-defined target readout by 
restricting ourselves to the determination of partition coefficients 
using FCS, ignoring the characterization of particle dynamics. 
However, the very same data acquired following the protocol 
described here can also be used, e.g., for the determination of 
diffusion coefficients. While we describe measurements on simple 
model coacervates formed from poly-L-lysine (PLL) and uridine 
triphosphate (UTP) [20], the same protocols apply for other LLPS 
systems. Transferring these protocols for condensates formed from
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DNA-binding proteins is straightforward, except for the specific 
idiosyncrasies of one’s protein of interest regarding, for example, 
protein stability or condensate ageing. We begin by giving recom-
mendations on sample preparation for in vitro LLPS studies, 
including coverslip passivation and condensate formation. Next, 
we describe the acquisition and analysis of confocal FCS data for 
partition coefficient measurements in condensates. Finally, we com-
ment on a few more advanced data analysis techniques that we find 
helpful for addressing the specific challenges of FCS in LLPS 
systems. 
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2 Materials 

One should aim for the highest possible purity in all chemicals, 
especially the condensate constituents and fluorescent dyes, as FCS 
is a highly sensitive near single-molecule technique and can be 
significantly compromised by background from impurities. 

1. Coverslips (e.g., 22 mm × 22 mm, 170 μm thickness, high 
precision). 

2. PTFE racks and sharp tweezers for coverslip handling. 

3. Glass Petri dishes. 

4. Oven (90 °C). 

5. Sonication bath. 

6. N2 gas line. 

7. Plasma chamber equipped with O2 gas supply. 

8. Ethanol (absolute). 

9. Deionized water. 

10. 0.5 M NaOH solution . 

11. Acetone (water-free). 

12. mPEG-5kDa-triethoxysilane. 

13. DMSO (water-free). 

14. Spacers for coverslip sandwich-based sample chamber assembly 
(e.g., Grace BioLabs SecureSeal Imaging spacers). 

15. Condensate constituents. Used here: PLL 100-mer (e.g., from 
Alamanda Polymers) and UTP (e.g., from Jena Bioscience). 

16. 1 M Tris–HCl stock solution, pH 7.5. 

17. MilliQ water (or higher purity). 

18. Fluorescently labelled particles: To be chosen to suit your 
biochemical system and microscope. Used here: Atto655-
carboxylate and Alexa Fluor 647-carboxylate as simple model 
compounds.
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19. FCS-compatible microscope: FCS requires a confocal fluores-
cence microscope capable of recording fluorescence intensity 
time traces with high time resolution and single-molecule sen-
sitivity. There are many options for (commercial or home built) 
FCS-compatible systems. This manuscript is based on experi-
ments performed at a PicoQuant MicroTime200 microscope 
with minor customizations. For reference, we describe the key 
components of our system and the rationale of their use. We 
typically excite fluorescence using laser pulse trains with a 
repetition rate of 40 MHz. Lower repetition rates allow higher 
information content for fluorescence lifetime-based analysis 
[21], while higher repetition rates or continuous-wave excita-
tion improves signal-to-noise ratio and reduces excitation sat-
uration effects. The objective is crucial for FCS: A high 
numerical aperture, preferably >1, is required. The lens 
immersion medium should be matched to the sample refractive 
index to minimize spherical aberration from refractive index 
mismatch. Water and aqueous buffers, including the dilute 
phase of many LLPS systems, have refractive indices close to 
1.34. Condensate dense phase has a higher refractive index. 
Finally, the objective must offer good aberration correction 
including an adjustable correction collar (see Note 1). We 
typically use either Olympus 60× NA 1.2 UPlanApo water 
immersion or Olympus 40× NA 1.25 UPlanSApo silicon oil 
immersion objectives. In the detection path, besides spectral 
filtering using suitable dichroic mirrors and bandpass filters, 
the fluorescence emission is spatially filtered through a suitably 
sized confocal pinhole. We use a panel of exchangeable pin-
holes, picking for each experiment one with radius close to 
5λM 
2πNA  with peak emission wavelength λ, objective magnification 

M, and objective numerical aperture NA [22]. Finally, photons 
are detected by single-photon avalanche photodiodes (SPADs) 
and subsequently time tagged and digitized using a TCSPC 
card with 80-ns digitization time. Depending on the experi-
ment, we sometimes use only one SPAD, but, if possible, we 
prefer to use a 50/50 neutral beam splitter to split the signal 
onto two SPADs (see Note 2). Our combination of lasers, 
detectors, and time-tagging electronics yields an overall time 
resolution in the order of 500 ps, which is sufficient for analyz-
ing fluorescence lifetimes of many widespread dyes. The 
TCSPC capability together with pulsed excitation allows for 
fluorescence lifetime correlation spectroscopy (FLCS, see Note 
3) unmixing of data. A three-axis piezo scanner allows precise 
positioning of the sample and scanning for image acquisition. 
Neither TCSPC nor imaging capabilities are strictly required 
for FCS analysis of condensates, but both are extremely help-
ful. If no fluorescence lifetime information is desired, a time 
resolution close to 1 μs is enough for most FCS applications.
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3 Methods 

3.1 Coverslip 

Passivation 

Dense-phase droplets of LLPS systems tend to wet coverslip sur-
faces, which can cause problems for microscopy-based in vitro 
studies of condensates. FCS analysis usually assumes that there are 
no barriers to molecular motion close to the observation volume. If 
coverslip surface wetting flattens the droplet to an extent not much 
larger than the observation volume, this will distort measured 
correlation functions and bias estimated parameters. Even more 
importantly, depletion of molecules due to binding at the coverslip 
surface will reduce concentrations, introducing additional errors. 
Thus, we recommend thorough passivation of coverslips, for which 
we prefer polyethylene glycol (PEG) functionalization. PEGylation 
of coverslips is performed following this protocol based on [23] (see 
Note 4). 

1. Place coverslips in a PTFE rack and rinse them twice with 
absolute ethanol and then twice with deionized water. 

2. Blow-dry using pressurized air or N2. 

3. Place clean and dry coverslips in plasma chamber and etch with 
oxygen plasma (see Note 5). 

4. Sonicate coverslips in 0.5 M NaOH solution for 30 min. 

5. Rinse coverslips in deionized water at least twice. 

6. Sonicate coverslips in deionized water for 5 min. 

7. Rinse coverslips twice in acetone. 

8. Sonicate coverslips in acetone for 5 min. 

9. To prepare PEGylation solution, dissolve ca. 10 mg of mPEG-
triethoxysilane in 30 μL DMSO per two coverslips. Brief soni-
cation of the solution helps dissolve mPEG-triethoxysilane 
clumps. 

10. Blow-dry coverslips. 

11. Sandwich 30 μL drops of PEGylation solution between two 
coverslips each and place in a Petri dish. 

12. Incubate for 15 min at 90 °C in an oven. 

13. Wash with large amounts of deionized water. 

14. Blow-dry and store dry until use. 

3.2 Condensate 

Production and 

Sealing 

Typically, the phase-separating solution will form droplets within 
seconds after mixing of components. To ensure homogeneity of 
concentrations throughout the sample, we prefer to mix the con-
stituents in two non-phase-separating solutions at doubled concen-
tration and then mix those at equal volumes. If large volumes of 
condensate solution can be produced, FCS experiments can be 
made much more reproducible by centrifuging the phase-separated
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solution to fuse all dense-phase droplets into a single macroscopic 
drop (see Note 6). The steps of condensate production and the 
resulting sample morphologies are illustrated in Fig. 1. 
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Fig. 1 Overview over the sample preparation workflow. (a) Schematic two- or three-step preparation of phase-
separated solution. (b) Macroscopic images of samples prepared in two ways. (c) Spinning-disk confocal 
microscopy 3D images of phase separation in the two types of samples. “Conventionally” prepared samples 
contain rather small droplets in a macroscopically homogeneous suspension. Centrifugation yields macro-
scopic phase separation with structures that are homogeneous on a scale of many micrometers 

1. Mix condensate constituents, buffer, and fluorescent com-
pound at twice the desired final concentrations. As an example, 
to get a condensate formed from 60 μM PLL and 1.5 mM UTP 
in 20 mM Tris–HCl buffer, containing 5 nM of the fluorescent 
compound, mix (see Note 7):
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Solution 1: 120 μM PLL 100-mer, 20 mM Tris–HCl, pH 7.5. 

Solution 2: 3 mM UTP, 10 nM fluorescent compound, 20 mM 
Tris–HCl, pH 7.5 

2. Transfer equal volumes of solutions 1 and 2 to a protein 
low-binding tube and mix quickly and thoroughly. 

3. Pipet the droplet suspension (or a dense-phase pellet obtained 
from centrifugation, see Note 6) into a suitable sample chamber 
and seal. We recommended a coverslip sandwich-based cham-
ber with spacers that create a cavity enclosing ca. 10 μL o
solution. 

3.3 Optical 

Alignment and 

Calibration for FCS 

Before performing any FCS measurements on the sample of inter-
est, it is strongly recommended to adjust, or at least check, the 
optical alignment of the system in the beginning of every experi-
ment day. Thus, we begin the description of FCS data acquisition 
with the adjustment and calibration procedure, before proceeding 
to the data acquisition itself. 

1. Dilute a fluorescent dye to ca. 1–10 nM in water or aqueous 
buffer (see Note 8), and place the sample on the microscope. 

2. Use fluorescence signal from the dye solution to align the 
optics, in particular, the pinhole, of the FCS-capable micro-
scope, following system-specific procedures (see Note 9). 

3. Acquire calibration FCS data using the dye solution under 
conditions as close as possible to the conditions of the actual 
measurement (see Note 10). 

4. Fit the correlation function derived from the calibration data 
using a model for single-component three-dimensional diffu-
sion (Eq. 2, possibly Eq. 3, see below) to judge alignment 
quality. Follow steps 1 and 2 in Subheading 3.5, which many 
FCS data acquisition programs offer directly at the microscope. 
Use the fit parameters to judge the quality of the system 
alignment, and if needed repeat steps 2–4 (see Note 11). 

3.4 FCS Data 

Acquisition 

Data acquisition for confocal FCS in essence means positioning a 
static diffraction-limited confocal observation volume in a region of 
interest within your sample and measuring the fluctuating fluores-
cence signal over time. Thus, we emphasize details that we found 
important when doing measurements on LLPS samples. The exper-
imental setup is illustrated in Fig. 2. 

1. Mount the condensate sample onto the microscope. 

2. If the sample has not been centrifuged and contains micro-
scopic droplets, wait a few minutes to allow droplets to settle. 

3. If possible, acquire one or multiple fluorescence images to 
inspect the brightness and spatial organization of the sample, 
and identify suitable positions for FCS acquisition (see Note 1).
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Fig. 2 Overview of experimental setup. Schematically shown is an FCS-capable microscope on which a 
phase-separated sample is mounted. Confocal imaging of that sample reveals a strong contrast between 
dense- and dilute-phase samples in intensity, a clear sign of partitioning of the molecule between the two 
phases. Performing FCS acquisitions at different spots immediately reveals the transition between the two 
phases 

4. If you are not yet familiar with the sample composition, per-
form test measurements in both the dilute phase and the dense 
phase to (1) confirm that both phases have fluorophore con-
centrations suitable for FCS (as a rough orientation, look for 
ACF amplitude G0 ≥ 0.01 see Eq. 2, although measurements 
outside that regime can also be possible), but fluorescence 
signal clearly above background level, and (2) find an excitation 
power level that yields sufficient signal-to-noise ratio (SNR) for 
stable data fitting within an acceptable acquisition time while 
keeping bleaching levels low, ideally not noticeable (see 
Note 10). 

5. Acquire FCS data in the dilute phase. As fluorescent particle 
concentrations often are low in the dilute phase, long measure-
ment times may be needed to compensate low signal levels, and 
background characterization is particularly important. 

6. Acquire FCS data in the dense phase. Check if readjusting the 
correction collar to the higher refractive index in the conden-
sate dense phase is necessary by maximizing the molecular 
brightness (see Note 1). Observe the measurement closely, as 
especially small droplets can move away during the 
measurement.
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7. Repeat steps 3, 5, and 6 in multiple regions of interest. 

8. Repeat steps 1–7 in all relevant samples. Make sure to include a 
blank sample without any fluorescent dye to characterize back-
ground signal (see Subheading 3.6). 

3.5 Basic FCS Data 

Analysis for Partition 

Coefficient 

Determination 

There are many tools available for data analysis in FCS, but they 
generally follow the same principles. FCS-capable commercial 
microscope systems usually come with software capable of 
performing steps 1 and 2, and various free software tools do the 
same. Steps 3 and 4 can be performed with any spreadsheet calcu-
lation program. We will not be specific about any particular soft-
ware here, but we will instead describe the general steps that should 
be easy to perform in any FCS software and the standard fit models. 
Some useful data corrections will be described in the following 
sections. The steps of the general data analysis are illustrated in 
Fig. 3. 

1. Calculate ACF of the data according to Eq. 1, possibly applying 
suitable corrections (see Subheadings 3.6, 3.7, and 3.8). The 
correlation function calculation should include an estimation 
of the uncertainty of the experimental correlation function (see 
Note 12). 

2. Fit the data with an appropriate model using nonlinear least 
squares fitting routines such as the Levenberg–Marquardt 
method. The uncertainties of the experimental correlation 
function should be used for weighted fitting. The typical fit 
model for a single molecule species diffusing in three dimen-
sions is [17] 

GðτÞ=G0 
1 

1 þ τ 
τD 

1 

1þ τ 

S2 τD 

þ G1 

G0 = 
γ 

hN i 

ð2Þ 

hNi is the average molecule number in the observation volume 
and thus proportional to the concentration. It is the key param-
eter of interest when measuring partition coefficients and can 
be retrieved directly from the ACF amplitude G0. γ is a factor 
relating to observation volume shape but not size. In practice, 
it rarely matters as long as it is kept constant, typically at 1 

8
p ,  or  

1, depending on the definition of the observation volume used 
to interpret hNi. The diffusion time τD = r

2 

4D reports on the 
molecular mobility via the diffusion coefficient D and the 
lateral observation volume width r. S is the ratio of observation 
volume size along the optical axis over r. S should be deter-
mined from calibration ACFs and subsequently fixed in fitting. 
G1 is the offset at long τ and should ideally be 0. However, as,
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Fig. 3 Overview of data analysis. (a) Schematic of the sample composition. Typically, the dense phase 
contains a high concentration of slow-moving particles, while the dilute phase contains a low concentration of 
highly mobile particles. (b) The raw data is fluctuating fluorescence signal traces, with different properties in 
dense and dilute phases. (c) Autocorrelating the fluorescence traces reveals different decay times and 
concentrations. (d) Performing multiple measurements and calculating a ratio of mean correlation amplitudes 
yields a single partition coefficient per sample. Shown are results from multiple samples, including both the 
results from FCS analysis and those from the raw fluorescence traces mimicking CLSM image-based 
estimates. These results somewhat differ as both techniques are biased by different processes in the sample 
in different ways 

in real experimental data, it rarely is precisely 0, fit quality can 
improve significantly by fitting G1 freely. G1 should remain 
small compared to G0, though. Often, the fluorophore will 
exhibit significant blinking at short timescales. This blinking 
can affect correlation amplitudes and should be taken into 
account during fitting by modifying the above expression: 

GðτÞ=G0 

1-FB þ FB . expð- τ 
τB 
Þ 

1-FB 

1 
1þ τ τD 

1 
1þ τ 

S2 τD 

þ G1 ð3Þ 

with dark-state fraction FB and characteristic blinking time τB. 
The other parameters have the same meaning as above. Some-
times the data is not adequately described by free motion with a
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single diffusion coefficient. In that case one can consider 
extending these simple models to two-species mixture models 
or anomalous motion models [17]. However, the need to use 
multicomponent or anomalous motion models indicates rather 
complex behavior of the sample or even experimental artifacts. 
Unless such behavior is expected from your system, the results 
from these fits should be interpreted with caution. 
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3. Discard outliers. Cutoff values can be defined based on differ-
ent criteria. What cutoff values to use depends on the overall 
signal quality. Our typical criteria are as follows: (1) The good-
ness of fit achieved with physically plausible fit models, where 
we often define a simple cutoff value for the reduced χ2 of the 
weighted fit. However, we also visually inspect the fit residuals 
for systematic trends, where we do not rely on automation and 
cutoffs on a single number. (2) The values of hNi and τD 

compared to the respective median value of all measurements 
on the same sample. If an ACF looks like an outlier toward 
unusually high values in both of these parameters simulta-
neously, this is a typical sign of optical aberrations, for example, 
from an ill-adjusted correction collar or from refraction at a 
dense-dilute phase boundary. (3) The absolute value of the 
ratio G1/G0. G1 values far from 0 typically result from bleach-
ing or sample signal drift during the measurement. 

4. Due to the relation of correlation amplitudes to concentra-
tions, the partition coefficient in a given sample is calculated 
as a simple ratio of ACF amplitudes: 

P = 
cdense 
cdilute 

= 
hNdensei 
hNdilutei = 

G0,dilute 

G0,dense 
ð4Þ 

We prefer to first average over all fit values obtained in the 
same sample for G0, dilute and G0, dense, respectively, and then 
recalculate a single P for that sample as a ratio of means. 
However, if there is significant spatial heterogeneity or evolu-
tion of the sample over time, other averaging schemes make 
more sense. Note that as only ratios of ACF amplitudes are 
needed to calculate P, this measurement is more robust than 
the measurement of absolute concentrations using FCS, which 
requires accurate knowledge of the absolute observation 
volume size. 

3.6 Background 

Correction 

In the following Subheading 3.6, 3.7, and 3.8, we will describe a 
few data corrections that that we find particularly useful for FCS in 
LLPS systems. Here we assume the use of an FCS system 
performing single-photon counting data acquisition and allowing 
software correlation, rather than the use of a hardware correlator. If 
a hardware correlator is used, some steps as described here have to 
be modified or may even be impossible. At https://github.com/ 
Janhagenkrohn/FCS_Fixer, we provide software for automated
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FCS data processing using, among others, the corrections 
described here. Firstly, every measurement contains some level of 
background signal originating, for example, from detector dark 
current or sample autofluorescence. In FCS, the presence of back-
ground unrelated to the signal of interest reduces the ACF ampli-
tude G0. However, when measuring partition coefficients, G0 is the 
key parameter. Thus, it is important to know and correct the impact 
of background. There are two options for this. 
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1. A simple method for background removal in FCS is to acquire 
background data from an unlabeled control sample and correct 
the correlation via: 

GðτÞcorrected =GðτÞmeasured 

hF ðtÞimeasured 

hF ðtÞimeasured - hF ðtÞibackground 

2 

ð5Þ 

This correction can be implemented either by multiplying 
the ACF itself, as a part of the fit model, or as a post-processing 
correction of the fitted G0 values. An example for the effect of 
background and the impact of its correction using this strategy 
is shown in Fig. 4a. 

2. FLCS (see Note 3) is powerful for subtracting background that 
is detected with random (“flat”) TCSPC pattern, which 
includes, for example, detector dark counts, ambient light, 
and afterpulses (see below). FLCS can even correct background 
from sample autofluorescence or scattered light, which come 
with their own characteristic TCSPC patterns. This requires 
reference measurements to characterize the background 
TCSPC pattern(s), which must be quite distinct from the 
fluorescence signal of interest. Different from the ACF ampli-
tude correction described above, FLCS can correct not only 
static but also fluctuating background. The practical workflow 
depends in detail on the software used, for which multiple 
options are available. 

(a) Acquire, if possible, high SNR reference TCSPC data 
from the fluorophore of interest within the condensate 
environment. Keep in mind that both conjugation of the 
dye to another molecule and the environment (e.g., dense 
phase vs. dilute phase) are likely to alter the photophysics, 
i.e., the TCSPC pattern, of the fluorophore. This step is 
not required if only correction of flat background is 
desired. 

(b) Perform a pattern-matching fit of the reference pattern to 
the data to determine the contribution of the TCSPC 
pattern of interest to the total signal. For correcting flat 
background alone, it will suffice to perform a reference-
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Fig. 4 Helpful data corrections. Shown are comparisons of artifact-corrupted and corrected ACFs. (a) 
Background can severely change the amplitude, which can occur especially in the dilute phase. (b) Bleaching 
creates distortions at long lag times, which also distort amplitude fitting. The shown example data was 
acquired at quite high laser power, but with slower-moving particles, this can become significant already at 
much lower laser powers. (c) Afterpulsing distorts short timescales and is most important when analyzing 
strongly blinking dyes. It is more severe for low correlation amplitudes and low fluorescence count rates. Due 
to the limited signal-to-noise ratio in the shown example for afterpulsing, fits curves have been added as a 
guide to the eye 

free fit to determine what fraction of the data belongs to 
an exponentially decaying fluorescence signal and which 
fraction to a flat background. 

(c) From the fit, recalculate the FLCS filter functions (photon 
weights) and use these filter functions to calculate a 
background-free ACF. 

(d) Fit the FLCS ACF as described above. Usually, no 
specialized fit models are needed. 

3.7 Bleaching 

Correction 

Bleaching is often significant in dense-phase droplets. Some con-
densates are not truly liquid and have a significant immobile frac-
tion of molecules that will be bleached away during the FCS 
acquisition. If the condensate droplet in which one measures is 
small, and exchange with the surrounding dilute phase is slow, 
even a fully mobile particle pool can be slowly depleted. Bleaching
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should be experimentally minimized as much as possible, as the 
bleaching correction of an ACF will always remain imperfect. Nev-
ertheless, bleaching correction can help make sense of otherwise 
unusable data. We use a method that uses the same photon weights 
used for FLCS. In this case, rather than unmixing different con-
tributions to the signal, time-dependent weights w(t) are used to 
correct the fluorescence intensity F(t)bleachcorr = F(t)measured w(t) 
such that while F(t)measured shows both fast fluctuations of interest 
and a slower trend representing the bleaching depletion, F-
(t)bleachcorr contains only the fast fluctuations. Figure 4b shows 
ACFs corrupted by bleaching to varying degrees and the correction 
using the photon weighting method. 
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1. Fit a coarsely binned representation of F(t)measured with an 
exponential or polynomial bleaching model b(t). We usually 
use a polynomial fit, choosing the degree of the polynomial 
model automatically based on the F-test for goodness of fit 
improvement with increasing degree. 

2. The weighting function w(t) is obtained from b(t) as  

wðtÞ= 
bð0Þ 
bðtÞ þ 1-

bðtÞ 
bð0Þ ð6Þ 

with b(0) as a signal level at the beginning of the measurement. 
This expression ensures that not only the fluorescence intensity 
but also its variance is flattened on long timescales [18]. 

3. Calculate the ACF with an FLCS correlation algorithm, 
weighting the photons with w(t). For combination with 
FLCS-based background correction, simply multiply each 
photon’s weight from background correction with that from 
bleaching correction. 

4. Fit the FLCS ACF as described above. Usually, no specialized 
fit models are needed. 

3.8 Afterpulsing 

Correction 

If measurements are performed using a single detector rather than a 
“pseudo-cross-correlation” setup (see Note 2), afterpulsing may 
appear as a significant ACF distortion at short timescales. It may 
be possible to fit the data only at longer lag times that are unaf-
fected by afterpulsing, but this depends on both instrument and 
sample. Especially if blinking is to be analyzed, afterpulsing often 
cannot be ignored, and different data correction strategies exist. 

1. FLCS (see above and Note 3) can eliminate afterpulsing effi-
ciently, as afterpulses usually contribute to the flat background 
in the TCSPC data. The protocol is exactly as described above 
for removal of “flat” background. In fact, both are done simul-
taneously. Examples of afterpulsing-corrupted ACFs and their 
correction using calibrated subtraction are shown in Fig. 4c.
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2. Applicable in every FCS system, even without TCSPC detec-
tion, is calibrated subtraction of afterpulsing. Afterpulsing fol-
lows quite reproducible patterns, which can be calibrated, 
predicted, and subtracted. 

(a) Perform an FCS measurement of a static signal such as 
backscattered light from a glass–air interface. Be careful 
about appropriate choices of filter and laser power to 
achieve sufficient counts without risking damage to the 
detector. 

(b) Calculate the ACF of that static signal. This ACF should 
show only the correlation arising from the afterpulses. 

(c) Fit an afterpulsing model to the calibration data. In our 
experience, the afterpulsing characteristic in the ACF can 
be approximated with this expression: 

GAPðτÞ= 
A1expð- τ 

τAP ,1 
Þ þ  A2expð- τ 

τAP ,2 
Þ 

ð1þ A1τAP ,1 þ A2τAP ,2ÞhF ðtÞimeasured 

ð7Þ 

Determine the time constants τAP, 1/2 and the ampli-
tudes A1/2 from the afterpulse calibration data. Note that 
for every detector, an independent set of these four para-
meters must be calibrated. hF(t)imeasured is the measured 
count rate containing both fluorescence and afterpulsing. 
A1/2 are in frequency units, so keep track of the units in 
calculations. 

(d) Use Eq. 9 with the calibration parameters and the average 
count rate hF(t)imeasured of the measurement as input to 
predict the afterpulsing pattern of the ACF of any mea-
surement at that detector. In our experience, in a stable 
lab environment, the same calibration of the afterpulsing 
parameters can be used for data correction for months. 

4 Notes 

1. The correction collar of a microscope objective is a means of 
correcting spherical aberration. It allows adapting the optical 
path to deviations in coverslip thickness and in refractive index, 
such as the increased refractive index of condensate dense 
phase. We prefer to readjust the correction collar between 
measurements in the dense phase and in the dilute phase 
based on the molecular brightness measured in the region of 
interest or at least confirm that the deviation is negligible. 

2. FCS acquisitions can be performed in different detector con-
figurations. Regarding detector type, SPADs are most com-
mon, and their use is assumed throughout this chapter. 
Further, one can use a single detector or a beam splitter
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followed by a pair of detectors. Following photon detection, 
SPADs occasionally produce spurious signals known as after-
pulses. As this follows very characteristic patterns, afterpulsing 
tends to appear as a strong distortion in the ACF of the fluo-
rescence signal of a single SPADs. Using two detectors offers a 
solution: As afterpulses are uncorrelated between two detec-
tors, they do not appear in a cross-correlation function from 
the same signal split onto two detectors. Otherwise, such a 
“pseudo-cross-correlation” function is equivalent to the ACF. 
The disadvantage of such a setup is the need for two redundant 
detectors, making the instrument more complex and/or 
reducing spectral multiplexing capabilities. 

3. Fluorescence lifetime correlation spectroscopy (FLCS) uses 
TCSPC information to assign a probability for each photon 
to belong to each out of a set of signal species, such as the 
desired fluorescence signal, which arrives with a certain pattern 
on the nanosecond time scale, or the background arriving at a 
random time point on the nanosecond scale. These probabil-
ities are then used to assign statistical weights to the photons 
during the ACF calculation that allows calculation of “species 
ACFs.” The downside is that FLCS requires dedicated software 
as well as a fluorescence lifetime measurement-capable FCS 
system, which may not be available to every lab. The theory 
of FLCS is somewhat more complex than that of conventional 
FCS, and for further information we refer the reader to expla-
nations given by other authors [24, 25]. 

4. The described PEGylation protocol is based on alkoxysilane 
chemistry used in many contexts for coverslip functionaliza-
tion. There are many partially exchangeable alkoxysilane func-
tionalization protocols in the literature, which may work 
equally well for the purpose described here. The protocol 
should cover the basic steps of (1) cleaning the coverslip sur-
face, (2) chemically activating it by creating exposed Si–OH 
moieties, (3) removing residual water, (4) immersing the sur-
face in low-water alkoxysilane solution, usually at elevated tem-
perature, and (5) washing with water to hydrolyze unreacted 
alkoxysilane moieties. 

5. We typically perform plasma treatment in 0.1–0.3 mbar O2 

atmosphere for 30 s, at ca. 50% power setting in a Diener 
electronic Zepto plasma chamber, but this will depend on the 
equipment available. Make sure that the coverslips are truly dry 
before inserting them into the plasma chamber, otherwise 
water vapor will perturb the plasma treatment. 

6. We frequently centrifuge our samples to enrich the dense phase 
for easier FCS experiments. Centrifugation of the phase-
separated sample will collapse the dense-phase droplets into a
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single larger dense-phase portion, which can be a few micro-
liters in volume. This can be pipetted into the sample chamber 
to create a single large dense-phase domain rather than many 
small droplets. Centrifugation can be performed, for example, 
for 15 min at 17900 rcf, at a temperature at, or slightly above, 
room temperature to avoid dissolution of the dense-phase 
pellet after centrifugation. While requiring a lot of condensate 
constituent material, measurements in such macroscopic por-
tions have a few advantages: (1) Positioning of the confocal 
observation volume for FCS acquisition in a macroscopic dense 
phase drop is trivial, even without a CLSM reference image. 
Generally, out of centrifugation or reference image acquisition, 
at least one is required for reproducible FCS experiments. 
(2) There are no artifacts from thermal motion of the droplet 
itself. (3) Molecular dynamics are not altered by proximity to 
the condensate phase boundary. (4) While microscopic dense-
phase droplets themselves can act as micro-lenses and distort 
the confocal observation volume, the macroscopic drop 
adheres directly to the coverslip and thus circumvents the 
additional optical interfaces at phase boundaries. 

7. The PLL and UTP concentrations given are chosen to maxi-
mize the yield of dense-phase volume under our conditions. 
Assuming UTP to be on average fourfold negatively charged at 
pH 7.5, and PLL 100-mer approximately 100-fold positively 
charged, 25 UTP molecules charge-neutralize one PLL mole-
cule and hence their concentration ratio. Given the concentra-
tion ratio, the absolute concentration was chosen based on an 
empirical concentration screen read out via optical density 
measured in a photometer and visual inspection in 
transmitted-light microscopy. 

8. The calibration dye must be spectrally similar to the dye to be 
measured in the phase-separating system. Further desirable 
properties for the calibration dye are high brightness, photo-
stability, and low blinking. Knowing the dye diffusion coeffi-
cient is essential for calibration of the absolute observation 
volume size. The latter is needed for measuring absolute con-
centrations or diffusion coefficients in FCS, and recommended 
in general to ensure reproducibility, but not strictly required for 
the partition coefficient measurements described here. 

9. The daily optical alignment routine should at least include 
alignment of the confocal pinhole and objective correction 
collar, if only to experimentally confirm that the performance 
has not deteriorated since the last use. 

10. Fluorescence excitation saturation effects can have a strong 
influence on effective observation volume size [26]. Staying 
at low power levels also reduces dye blinking, allowing simpler,
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more robust, fit models in data analysis (Eq. 2 rather than 
Eq. 3). Thus, if possible, calibrations and measurements should 
be performed at low laser power. In an equilibrium sample like 
a simple dye solution, increasing signal-to-noise ratio by 
increasing measurement time is usually to be preferred over 
increasing laser power. We usually use powers in the order of 
1–2 μW at the objective back pupil. Scaling of signal-to-noise 
ratio (SNR) in FCS with acquisition parameters is somewhat 
complex in detail but follows simple trends. When setting up 
an experiment, we use the following three rules of thumb for 
orientation [27]: 

1. Independent of the other parameters, SNR increases with 
the square root of acquisition time. 

2. At very low fluorophore concentrations (G0 ≫ 1), the 
signal-to-noise ratio scales approximately with the square 
root of particle concentration, but for G0 ≲ 1, further 
increase in concentration will have no noticeable effect 
on SNR. 

3. The ACF consists essentially of two regimes of lag times, 
defined loosely by the molecular brightness ε = G0hF(t)it. 
At short lag times τ ≪ ε-1 , typical for the time scales of 
blinking effects and diffusion of small particles in the dilute 
phase, SNR will increase linearly with ε. Here, increasing the 
laser power to increase molecular brightness can increase 
SNR dramatically, at the cost of saturation and bleaching. 
For long lag times τ ≫ ε-1 , typical for the slow diffusion 
kinetics in the dense phase of condensates even at moderate 
laser powers, increasing ε further has no notable effect on 
SNR, making further increase in laser power useless. 

11. There are different ways to judge the alignment quality from 
the ACF fit. First and foremost, the fit quality should be high, 
with the reduced χ2 of a weighted fit close to 1 and no system-
atic trend in the fit residuals. If this is not the case, make sure 
that you understand the reason for the mismatch and, if possi-
ble, fix the issue. Once you do obtain good fits, inspect the fit 
parameters: The diffusion time τD is proportional to the 
squared width of the observation volume in the xy plane, and 
generally, the shorter the diffusion time, the better the align-
ment is. The observation volume aspect ratio S will also 
decrease with improved alignment and in our experience 
tends to be a more sensitive indicator than τD. When 
performing FCS using typical objectives with numerical aper-
ture around 1.2, we generally consider S ≤ 6 a threshold for 
acceptable alignment. Note that with poor alignment or low 
signal-to-noise ratio in the calibration data, the fit will usually 
return high, practically random, numbers for S. The molecular
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brightness ε = G0hF(t)it is another quite sensitive indicator of 
alignment quality and will increase for better alignment. We 
mostly rely on ε as a real-time readout while performing the 
alignment and on S to confirm alignment quality when analyz-
ing higher signal-to-noise ratio calibration data. 

12. There are different methods of calculating the uncertainty of 
the ACF. The first method is to theoretically estimate it from 
the ACF itself [28]. The second, more empirical, option is to 
estimate it from multiple shorter measurement or to cut a 
single long measurement into pieces [29]. The latter option 
is to be preferred for sufficient measurement times. If the 
measurement time is short, bootstrapping of photon time 
tags also yields a good empirical estimate for uncertainty at 
short lag times but does not perform well at long lag times. 
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6
Fluorescence correlation spectroscopy for

particle sizing: A notorious challenge
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Figure 6.1. Particle sizing using FCS. Diffusion coefficients of particles depend on particle
size. Therefore, an average particle size can be estimated from the correlation time approxi-
mating the average residence time of particles in the observation volume (small particles in
light grey, larger particles in dark grey). However, for a mixture of particle sizes, the shape
of the correlation function changes (black), which should allow to estimate a distribution of
particle sizes, rather than just an average.

To understand biomolecular self-organization, studying binding kinetics of the
underlying self-assembly processes is critical. For example, cytoskeleton filaments
and their bacterial homologs often participate in the spatio-temporal organisation
of functional protein machineries, like FtsZ as a central factor in the organization
of the bacterial cell division machinery [99]. However, often, the protein filaments
themselves are no passive scaffold. Instead, their dynamic reorganization is part of
the self-organization process.

Yet, quantitatively characterizing self-assembly is a challenging task inmany cases:
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CHAPTER 6. FLUORESCENCE CORRELATION SPECTROSCOPY FOR PARTICLE SIZING: A
NOTORIOUS CHALLENGE

Many self-assembly processes, including the above-mentioned filament-forming pro-
teins, are stochastic in the sense that there is no fixed monomer number up to which
the self-assembly proceed. Instead, a broad distribution of oligomer sizes is observed.
The mean, width, and/or shape of the distribution may then change in response to
the conditions under which the self-assembly happens.

Characterizing the distribution of oligomer sizes in a self-assembling system is
a challenging task for which many methods exist, but no general method of choice
[231–233]. Fluorescence correlation spectroscopy in principle is expected be a power-
fulmethod for the purpose: The diffusion timedepends onparticle size, with the rela-
tion given by the Stokes-Einstein equation (Eq. 2.10) or other equations linking parti-
cle size and diffusion coefficient (e.g., Eq. 2.11). At least for well-behaved systems, the
shape of the ACF is predictable given knowledge of the point spread function geom-
etry, with amplitude and diffusion time as the only free parameters which affect the
ACF entirely indepedently. Given these facts, one should be able to fit amulti-species
mixture model where the relative amplitude of each species corresponds to the rela-
tive concentration. However, in practice, the power of FCS as usually performed is
rather limited for characterizing multi-species mixtures, for multiple reasons.

In the following chapter, we reviewed various aspects of FCS methodology that
are relevant to characterization of polydisperse systems, such as self-assembling pro-
teins. We aimed to understand why FCS remains underused for this purpose, dis-
cussing from a historical perspective of FCS emerging from the concept of Dynamic
Light Scattering (DLS) [234–236], the limitations that were encountered, and the (par-
tial) solutions that have been proposed to tackle those. We brought together various
relevant insights that are otherwise scattered in the literature with the two-fold aim
of helping prospective users understand what to keep in mind when trying to use
FCS to characterize self-assembling proteins or similar systems, and to give develop-
ers an overview of the different ideas that have been established and are waiting to
be implemented into a joint user-friendly framework.
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Fluorescence correlation spectroscopy for particle
sizing: A notorious challenge
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ABSTRACT In many quantitative investigations of biological systems, including, e.g., the study of biomolecular interactions,
assembly and disassembly, aggregation, micelle and vesicle formation, or drug encapsulation, accurate determination of par-
ticle sizes is of key interest. Fluorescence correlation spectroscopy (FCS), with its exceptional sensitivity for molecular diffusion
properties, has long been proposed as a valuable method to size small, freely diffusible particles with superior precision. It is
conceptually related to the more widespread particle sizing technique dynamic light scattering (DLS) but offers greater selectivity
and sensitivity due to the use of fluorescence rather than scattered light. However, in spite of these apparent advantages, FCS
has never become established as a biophysical routine for particle sizing. This is due to the fact that sensitivity can, under certain
conditions, indeed be disadvantageous, as it renders the technique error prone and overly susceptible to signal disturbances.
Here, we discuss the systematic challenges, as well as the advances made over the past decades, to employing FCS in poly-
disperse samples. The problematic role of large particles, a common issue in DLS and FCS, and the effect of fluorescent labeling
are discussed in detail, along with strategies for respective error mitigation in experiments and data analysis. We expect this
overview to guide future users in successfully applying FCS to their particle sizing problems in the hope of fostering a more wide-
spread and routine use of FCS-based technology.

CORRELATION SPECTROSCOPY USING
SCATTERED LIGHT AND FLUORESCENCE

Particle sizing is an extremely common challenge in (bio)
physical chemistry. In polymer science, the size of a particle
is a key parameter for understanding both the properties of
the polymer and its interaction with other particles (1–4).
Changes in particle size are a convenient readout for com-
plex formation of two or more molecules in biochemistry,
e.g., ligand binding or protein-protein association/aggrega-
tion (5–9). For nanoparticle-based drug carriers, monitoring
the carrier size is considered important for targeting drug
distribution in the body and for their uptake by target
cells (10,11).

As for any other problem, there is no universal method of
choice for all particle sizing applications. Many methods are
available, with their specific strengths and weaknesses
(12,13). One approach is to physically fractionate particles
by size, followed by a secondary readout such as UVabsor-

bance. Analytical ultracentrifugation is a powerful approach
to fractionate particles based on sedimentation in solution,
which can be interpreted based on well-established theories
of hydrodynamics (11). (Micro)fluidic approaches like
asymmetric flow field fractionation separate particles by ex-
ploiting predictable relations between flow velocity profiles,
particle diffusion coefficients, and resulting distributions of
particles within the channel (14,15). Among the more direct
approaches, nanoscale imaging, e.g., by electron micro-
scopy, is an obvious choice for image-based characteriza-
tion of particle size and shape but generally suffers from
low throughput (14,16). Other single-particle approaches
include tunable resistive pulse sensing, in which particles
passing through a microscopic pore transiently reduce
electrolyte currents, which are converted into particle vol-
ume estimates (17), or nanoparticle tracking analysis,
another image-based technique in which diffusing particles
are imaged with high time resolution to extract particle sizes
from particle mobility (13).

Perhaps the most widespread technique, particularly
popular for combining simple and fast measurements with
typically high signal/noise ratios, is dynamic light scattering
(DLS) (18–20). In DLS, laser light elastically scattered at
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moving particles is statistically analyzed in time through the
intensity autocorrelation function (ACF):

GðtÞ ¼ CIðtÞIðt þ tÞDt
CIðtÞDt2

: (1)

The temporal profile of the ACF represents the charac-
teristic profiles of all processes that change the detected
intensity. In essence, it reflects on the probability for a
signal fluctuation that had been observed at an arbitrary
time point t to persist until a later time point tþ t. For
homodisperse systems and at low noise levels, the ACF
reveals the diffusion coefficient D of the particles via
the time constant of an exponential decay. Similar to the
other diffusion-based techniques mentioned above, DLS
exploits the fact that D depends on the particle size, where
the Stokes-Einstein equation describes the relation for
(approximately) spherical particles with hydrodynamic
radius rH:

D ¼ kBT

6phrH
; (2)

with solvent viscosity h. Obviously, not every particle is
spherical, and nonspherical particles of the same volume
have different diffusion coefficients than spherical ones
(21). Alternative models exist to replace Eq. 2 for other par-
ticle shapes, for example, that of elongated cylinders
(22,23). By extending the models used in the analysis of
DLS data to describe a multi-species mixture with a range
of diffusion coefficients Dj, one can also characterize a dis-
tribution of particle sizes. This allows using DLS to quantify
not only particle suspensions of a single particle size, but
also polydisperse ones that display a range of particle sizes,
at least in principle.

The time-correlation concept underlying DLS is generic
and has been successfully used using other contrast
methods besides scattered light, including, but not limited
to, fluorescence emission (24,25). The latter approach,
known as fluorescence correlation spectroscopy (FCS),
is the focus of this article. Here, laser light is used to
excite fluorescent dyes attached to a particle of interest,
and the fluorescence emission is correlated and analyzed
in time analogous to the scattered laser light intensity in
DLS. ACFs recorded in FCS from suitable samples also
primarily report on diffusion dynamics, like those in
DLS. Also, similarly to DLS, the FCS ACF for a multi-
species mixture containing a range of diffusion coeffi-
cients for the respective species j in FCS is generally
described by three key parameters: the species-wise diffu-
sion time tD;j, the particle number CNjD, and the molecular
brightness εj:

GðtÞ ¼ g
Xjmax
j ¼ 1

G0;jgD;jðtÞ; (3a)

G0;j ¼ CNjDεj2 Pjmax
j ¼ 1

CNjDεj

!2
; and (3b)

gD;jðtÞ ¼ 1

1þ t

tD;j

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t

S2tD;j

r ; (3c)

where the usually confocal observation volume is described
by its width in the xy plane wxy, by the aspect ratio S ¼
wz=wxy, and by the shape factor g ¼ const:z0:354. wxy en-

ters the model implicitly through tD;j via the mean-squared

displacement CDj
2D in the Einstein-Smoluchowski equation:

wxy
2 ¼ CDj

2D ¼ 4DjtD;j.

The overall correlation amplitude is proportional to the
inverse of the total particle number, meaning that FCS
also probes absolute particle concentrations, as long as the
size of the observation volume is known. If background
levels are significant even in confocal detection, then the
evaluation of absolute concentrations requires correction
of the background, which distorts the correlation amplitude
(26). Depending on the hardware and software available,
one can either employ techniques like fluorescence lifetime
correlation spectroscopy (27) or explicitly correct for the
amplitude if the background level if known (25,26,28). Of
note, for especially low signal/background ratios, the corre-
lation amplitude increases with increasing total particle
number rather than being inversely related. Thus, without
appropriate correction, this relation is not always trivial.

In spite of the obvious conceptual similarities and a supe-
rior signal to the background level, FCS remains less
routinely used for particle sizing than DLS. The purpose
of this article is first to discuss the key limitations, i.e., the
particular challenges FCS faces for particle sizing applica-
tions. We also highlight what advances have been made
and offer an overview of various considerations to make
in such experiments. We will focus on the analysis of poly-
disperse samples, i.e., samples that are not adequately
described by a single particle size. As both FCS and DLS
generally determine particle sizes indirectly via the diffu-
sion coefficients using Eq. 2 or similar relations, we will
not strictly distinguish between particle size measurements
and diffusion coefficient measurements. We start by discus-
sing some practical reasons why one would be interested in
using FCS as an alternative to DLS in the first place. We
then emphasize challenges that are specific to FCS. In the
remaining sections, we address how fluorescent labeling
affects the interpretation of FCS data acquired for particle
sizing, followed by a short treatise on advances in
experiments and data processing. While the technical
considerations are generic in nature, we will focus on
(self-assembling) proteins and other biomolecules.
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What advantages do we expect from FCS over
DLS?

While built on the same conceptual basis, FCS and DLS
have different strengths and weaknesses in practice. The
first obvious differences is the use of fluorescent labeling
in FCS. Fluorescent labeling has the advantage of a very
high signal/background ratio. With contemporary high-per-
formance fluorescent dyes and modern detector technology,
discriminating a single fluorescent molecule’s signal over
the (usually solute) background from ca. 1010 molecules
within a 1 fL observation volume has become possible on
systems of all major commercial manufacturers of confocal
microscopes. This specificity allows performing FCS
routinely in complex environments that would hardly allow
meaningful DLS measurements, such as intact cells (29,30)
or even organisms (31).

Further, the single-molecule sensitivity also allows FCS to
be performed with very low sample concentrations and vol-
umes (29). Another obvious advantage of using fluorescent
labeling lies inmulti-color experiments, namely fluorescence
cross correlation spectroscopy (FCCS) (32). FCCS distin-
guishes signal fluctuations that are (cross) correlated between
two signal channels from single-channel fluctuations. The
former indicate molecular complex formation, the latter un-
bound particles. While not typically used as a particle sizing
technique, FCCS is a valuable extension for studying exactly
what components interact to form a particle.

Besides these obvious strengths of fluorescence as a
readout, there are more subtle advantages to FCS. FCS is
applicable to practically any particle that is large enough
to attach a fluorescent dye without significantly altering
the particle dynamics. What constitutes a ‘‘significant alter-
ation’’ has to be decided and checked in suitable control ex-
periments on a case-by-case basis. Typically, attaching a
synthetic dye to a protein of interest adds ca. 1 kDa molec-
ular mass, a fluorescent protein tag, or a self-labeling protein
tag ca. 10–30 kDa (33). If labeling limitations are a serious
concern, then DLS may be preferred. However, DLS may
struggle to detect small particles over the background, espe-
cially if the particles are not dissolved in simple buffers: the
contrast from scattered light scales sharply with the particle
volume. However, the limit of detection in DLS depends on
multiple factors (18). Thus, although the required attach-
ment of a fluorophore seems to be a conceptual limitation,
FCS is a particularly attractive technique for studying small
particles or complex environments but also to add specificity
in samples of unknown composition.

What keeps us from routinely using FCS for
dispersity characterization?

In spite of these obvious methodological advantages, FCS is
not used very frequently for particle sizing. A first, trivial
reason is perhaps found in history: DLS is significantly older

than FCS. While the concept of FCS was proposed in the
1970s (24), the technique reached maturity only in the
1990s following technical breakthroughs in confocal micro-
scopy (5,34) and is still marketed mostly as an optional add-
on to confocal imaging platforms. In contrast, DLS has been
commercialized since the late 70s and is nowadays per-
formed in affordable benchtop systems (an outline of the
early history of DLS can be found, for example, in (20)
and for FCS in (35,36)). Thus, FCS is lagging behind in
endorsement by the community and by instrument manufac-
turers by about two decades.

Furthermore, the required use of fluorophores creates
complications beyond the added effort of attaching fluoro-
phores to the particles of interest. While the specificity of
fluorescence is an enormous advantage, one should not
confuse the high signal/background ratio with a high
signal/noise ratio. In contrast to elastic scattering, the exci-
tation/emission photocycle of fluorescence is a saturable
process under realistic measurement conditions. Therefore,
one cannot arbitrarily increase the signal/noise ratio in any
fluorescence technique by increasing the laser power. In
addition, saturation tends to introduce artifacts: in FCS in
particular, saturating the photocycle can lead to an overesti-
mation of particle sizes (37,38).

Photochemical side processes of the photocycle can
lead to off switching of the fluorophore. Reversible off
switching (‘‘blinking’’) mostly makes data interpretation
more complicated (39). Irreversible off switching (‘‘photo-
bleaching’’) has rather complex consequences: photobleach-
ing leads to a compromised signal/noise ratio, introduces
artificial additional slow-diffusing kinetics into the ACF,
and/or leads to an overestimation of diffusion coefficients,
i.e., underestimation of particle sizes (28,40). While the first
two effects of photobleaching can be controlled or compen-
sated rather easily, the underestimation of particle sizes due
to photobleaching often remains cryptic unless controlled
via an experimental laser power series and is especially se-
vere for large, slow-moving particles.

In principle, particle size overestimation due to fluores-
cence saturation and particle size underestimation due to
photobleaching always counteract each other. In practice,
their balance is system specific and hard to predict, and
the safe option is to perform experiments at low laser power
where both effects remain negligible, albeit at the cost of
reduced signal/noise ratio.

Fluorescence emission can also change in response to the
local environment of the particle, and one should be careful
about photophysical processes possibly affecting the
measured diffusion dynamics. The increasingly widespread
combination of FCS with time-correlated single-photon
counting helps to detect and correct such effects through the
measurement of accompanying changes in fluorescence life-
time (41).

As none of these limitations apply to the scattered light
used in DLS, interpretation of DLS data seems more robust.

FCS for particle sizing
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However, caveats about similar effects resulting from local
heating effects and internal dynamics within particles have
been raised for DLS (19).

Besides these rather practical issues, there are further
challenges that are specific to the use of FCS for the charac-
terization of polydisperse samples and are of a more concep-
tual nature. Here, progress can be made by improving the
strategy of FCS data acquisition and analysis as described
in further sections.

Why are large particles such a problem and how
can they be dealt with?

A challenge that is common to both FCS and DLS and de-
serves explicit mention is an overrepresentation of large par-
ticles in the data. In DLS, the amplitude of a particle species
in the intensity correlation function scales with the square of
the particle mass. Similarly, in FCS, the species amplitude
usually scales with the square of the particle brightness
(Eqs. 3a, 3b, and 3c). While this scaling is predictable, it
is unfavorable for many applications for two reasons: firstly,
the bias of the correlation function toward large particles
makes it hard to capture the particle number distribution
of polydisperse samples. It also strongly biases analysis stra-
tegies based on single-species approximations toward larger
species. Secondly, these large particles are often rare and,
therefore, weakly sampled in the experimental data. This
obscures the dynamics of interest below high noise levels.

Different, to some degree complementary approaches can
be taken to obtain data that are more representative of the
large number of smaller particles in the sample. A first,
obvious, and widespread approach is to discard data that
show signal ‘‘bursts’’ from especially bright particles. This

approach is very established and powerful, and different
partially or fully automated strategies are available
(42–44). Such ‘‘burst removal’’ performs well for the char-
acterization of low-disperse systems with the occasional for-
mation of unwanted aggregates. However, for intrinsically
polydisperse systems, the decision of what is a desired
signal and what is undesired remains somewhat arbitrary,
posing a severe risk of distorting the results and rendering
them useless.

A strategy frequently applied by FCS experimenters
when working with disperse self-assembling systems is to
dilute fluorescently labeled monomers in an excess of unla-
beled ones (8,45,46). This incomplete labeling reduces the
average brightness of large particles and the noise they
introduce into the data. While this strategy is successful, it
has an often-overlooked side effect (47). Consider a system
in which the number of fluorophore moieties within a parti-
cle scales linearly with particle mass, which is realistic for
many self-assembling systems. If we assume that the fluo-
rescence quantum yield of fluorophores is independent of
particle size and that every monomer has a stoichiometry-in-
dependent probability p to carry a fluorophore moiety, the
normalized (to εmonomer) brightness of a j-mer oligomer
species is characterized by a binomial distribution with
average relative brightness jp (Fig. 1 A) but also, and easily
overlooked, variance jpð1 � pÞ. Inserting this into Eq. 3b
and following the calculations in (47) yields

G0;j;p ¼
CNjDj2

�
1þ 1 � p

jp

�
 Pjmax

j ¼ 1

CNjDj

!2
: (4)

A B C

D E

FIGURE 1 Effect of fluorescent labeling effi-

ciency on FCS signal. (A–C) Theoretical curves

illustrating effects of changing labeling efficiency.

(A) Simulated lognormal particle concentration

and relative fluorescence signal over particle size.

(B) Resulting species-wise correlation function

amplitudes. (C) Obtained correlation functions

with fits with Eqs. 3a, 3b, and 3c. Vertical lines

in (A)–(C) indicate fitted diffusion times. (D and

E) Experimental results from broad distributions

of single-stranded RNA (ssRNA) fragment lengths

with similar size distributions but different stochas-

tic labeling efficiencies (compare also Fig. S2). (D)

Experimental ACFs. (E) Reconstructed concentra-

tion profiles over particle size. Analysis was

repeated with and without correction of labeling

effect. Irregular distribution shape features at low

fragment lengths are discretization artifacts. The

smaller overall size in the 3% labeled sample

compared to the others is consistent with gel elec-

trophoresis (compare Fig. S2).
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For p � 1
jþ1

, the numerator is proportional to j rather

than j2 as implied by Eq. 3b. In other words, the limited la-
beling efficiency not only reduces the noise caused by rare
large particles but also shifts the weights with which
different complex sizes are measured in FCS altogether
(Fig. 1, B and C). While Eq. 4 is based on strong assump-
tions, it will often serve as a reasonable approximation
(Fig. 1 E). Related effects of concentrations and brightness
have been investigated in some detail in experiments on
micelles (46). In that study, the concentrations of both the
micelle constituent and the fluorescent label were systemat-
ically varied. This allowed to understand both the self-as-
sembly kinetics of the micelles and the impact of labeling
in the system. The experimental data from sparsely labeled
detergent micelles supported analysis using assumptions
analogous to those underlying Eq. 4. However, this work
also presents considerations about the case of changing
quantum yields with label density.

Another issue that arises with increasing particle sizes is
that Eqs. 3a, 3b, 3c, and 4 implicitly assume that particles
are small compared to the observation volume. Simply
speaking, Eqs. 3a, 3b, and 3c only consider center-of-mass
movement of particles, but for bigger particles, the center
of mass leaving the observation volume does not mean
that the entire particle left the observation volume. Particle
sizes significantly exceeding ca. wxy=5 lead to significant
distortions of the effective diffusion time and particle num-
ber (48,49). A simple correction for particles of moderate
size is to scale the effective beam waist parameter as
w2
xy;eff ¼ 1þ r2 with particle radius r. tD;j and CNjD then

both increase by the same factor (48,49). Note that r, strictly
speaking, refers to the spatial distribution of fluorophores in
the particle, for which the hydrodynamic radius rH may or
may not be a good approximation. (49) contains more
accurate expressions for the large-particle correction,
considering different particle shapes.

Experimental avenues beyond single-spot
confocal FCS

Nowadays, FCS ismostly performed on confocalmicroscopes
due to the convenience of its implementation in commercial
instruments, with small and relatively well-defined detection
volumes. As mentioned above, confocal microscopes from
all major manufacturers offer adequate platforms for tradi-
tional single-spot confocal FCS measurements. However, be-
sides the single-spot FCS acquisition that most of our
discussion focuses on, other FCS concepts exist that promise
to be especially attractive for particle sizing applications.

In single-spot FCS, deviations from the assumed
Gaussian detection volume will lead to stretched decay pat-
terns in the ACF that are easily confused with polydispersity
(50). To increase the robustness of analysis, it is desirable to
observe diffusion over fixed length scales that are robust

against detection volume shape deviations. This has been
part of the motivation behind the development of multifocus
FCS approaches like dual-focus FCS (51,52). Dual-focus
FCS was the method of choice in a study pushing the limits
of sensitivity to mass changes upon protein-ligand binding
in FCS (6).

A further extension of this concept is scanning FCS,
which also increases particle throughput by sampling a
larger volume without a large increase in the confocal
detection volume (47,53). The concept of scanning FCS
allows many different scanning modes regarding geometry
and timescales. Raster image correlation spectroscopy
(RICS) is very attractive for the analysis of polydisperse
samples, as it samples a range of spatial and temporal
scales in a single dataset (54–56). Given that the scan pa-
rameters in RICS are generally adaptable to the diffusion
coefficients of the sample, an experimental approach glob-
ally analyzing RICS data from multiple scan speeds is
likely to be of particular value for the analysis of disperse
mixtures (57).

In addition, one may wonder whether the regular pixel
grid usually employed in RICS and similar approaches is
the most efficient grid for spatiotemporal diffusion analysis
(55). Following the principles of pair correlation function
analysis (35,58,59), a set of observation volumes could be
engineered for optimal information content given the
question at hand. Besides established implementations in
scanning confocal systems and more recent advances ex-
ploiting array detectors (58,59), it will be interesting to
explore what developments toward ultrafast laser scanning
microscopes can contribute here (60–62).

Besides these ideas toward increased precision of FCS-
based particle sizing, another interesting aspect is that of
FCS automation. Another reason why FCS applications
lag behind DLS is that nowadays, DLS is routinely and
quickly performed with compact cuvette spectrometers or
even plate reader systems. In contrast, the performance
of FCS in confocal microscopes requires instrumentation
that is expensive, physically large, and relatively complex
in operation. This need not be the case. Using concepts that
are widespread in automated high-throughput/high-content
image acquisition, workflows and dedicated devices suit-
able for automated FCS acquisition have been developed,
which effectively operate as plate readers and even auto-
matically recognize cells as regions of interest for mea-
surements (63–66). Alternatively, a cuvette-based FCS
spectrometer was reported that exploits advances in objec-
tive lens design to go beyond measurements through stan-
dard-thickness coverslips (67). FCS hardware has reached
technical maturity to the point of allowing highly auto-
mated apparatuses that strip away most of the complexity
of standard confocal microscopy. Further efforts, also by
commercial manufacturers, to implement and spread
turn-key apparatuses for a nonexpert user community
would be of great value.
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How to make the most of available data?

For the analysis of a polydisperse system, a naive
approach would be to evaluate Eqs. 3a, 3b, and 3c or 4,
with many j-mer species up to a cutoff stoichiometry
jmax. This would, however, require estimating a parameter
number reaching or even surpassing the number of data
points in an experimentally determined ACF. That is
impossible in practice, especially given that successive
data points in the ACF are strongly correlated and show
few distinctive features. In this section, we will briefly
discuss strategies for dealing with FCS data from disperse
samples.

The first obvious solution is to determine only a single
average value. However, the interpretation of this average
is nontrivial due to the brightness dependence of ampli-
tudes. The vertical lines in Fig. 1, A–C, illustrate the
average diffusion time estimated by the single-component
fits in comparison to the ground-truth distributions. The
estimated diffusion time changes with labeling efficiency
but under no circumstances is representative of the particle
number distribution (Fig. 1 A) or particle mass distribution
(equals fluorescence intensity distribution in Fig. 1 A).
Fig. 1 D shows single-component FCS model fits (Eqs.
3a, 3b, and 3c with jmax ¼ 1), which display visible
mismatch for some curves. An alternative is to modify
Eq. 3c with an anomalous diffusion model (CD2D ¼
4Gta) such that

GanomðtÞ ¼ G0

1

1þ
�
t

tD

�a

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

S2

�
t

tD

�a
s and (5a)

tD ¼
�
w0

2

4G

�1
a

; (5b)

with transport coefficient G, anomalous diffusion coefficient
a, and amplitude G0. Originally intended to describe FCS
data for non-Brownian motion inside living cells, the model
allows the fit to adapt to deviations from the assumption of
‘‘random walk characterized by a single diffusion coeffi-
cient in an open Gaussian-shaped detection volume’’
(29,50,68). Obviously, a polydisperse sample violates this
assumption. Analyzing the example in Fig. 1 C with Eqs.
5a and 5b with a< 1 improves the fits, but the change in
tD compared to fitting with Eqs. 3a, 3b, and 3c was negli-
gible (below 1% difference; Fig. 2 C). Note that for real
data including noise, Eqs. 3a, 3b, 3c, 5a, and 5b can return
significantly different diffusion times. Considering other
factors besides dispersity affect a (50,68), anomalous mo-
tion models should generally only be used as an empirical
approximation if no better model is available.

Two-component approximations are another popular
analysis strategy. Here, the diffusion coefficient of one spe-
cies, for example, the monomer, should be known and fixed

A

B

C

D

E

FIGURE 2 Analysis strategies for FCS of polydisperse samples. (A) Illustration of conventional two-component FCS fitting that attempts to find amplitude

and diffusion time for each component. (B) Illustration of method of histograms fitting, with fixed array of diffusion times and optimization of associated

amplitudes. (C) Same theoretical ACFs as in Fig. 1 C but fitted with Eqs. 5a and 5b. Vertical lines are fitted diffusion times. (D) Same as Fig. 1 E but

comparing resulting particle size distributions between fits using the maximum entropy method (MEM) and a stretched-exponential model (based on

Eq. 4) of concentration over particle size. (E) Fit residuals for the fits that (B) is based on, as well as fits with Eqs. 3a, 3b, and 3c with a single component

and with Eqs. 5a and 5b.
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in the fitting. Two-component models (Eqs. 3a, 3b, and 3c
with jmax ¼ 2) have the same, or even greater, difficulties
in interpretation as single-component approximations.
Thus, while single- or two-component diffusion or anoma-
lous diffusion models can be used to quantify trends in
data from polydisperse samples, one should be cautious
about what the average represents.

When going beyond single-component approximations,
one encounters the issue that the ACF alone is not sufficient
to distinguish differences in CNjD from differences in εj (Eqs.
3a, 3b, and 3c). Some assumption must generally be made
about these two parameters. One possible assumption is
that all particles are of equal brightness, a trivial case in
which εj disappears from the calculation.While for some sys-
tems, this is justified, for many, this assumption is unphysical.
A better approach is often that described in the previous sec-
tion, considering labeled monomer units within the oligomer
particle (Eq. 4). When combining this with assumptions
about the link of particle size (td;j as a function of j) and
brightness εj as mentioned before, this drastically reduces
the number of model parameters. For example, one can
combine the before-discussed impact of labeling (Eq. 4)
with models of particle mobility, such as Eq. 2, to arrive at

td;j
td;monomer

¼
�

εj

εmonomer

�1
3

¼ j
1
3: (6)

This scaling is different for other models of particle
shape, of course (22,23). In that case, by determining
td;monomer from control measurements, one can reduce the

model to CNjD, being the only remaining parameter to

determine for each species. One can then fit CNjD using the

‘‘method of histograms’’ (69): this approach uses a regu-
lar-spaced array of td;j (considering associated bin widths)

and optimizes an array of associated amplitudes as opposed
to diffusion times and amplitudes (Fig. 2, A and B). That

way, one only needs to estimate CNjD for a relatively

modest-sized subset of particle sizes. For robust results,
this is combined with suitable fit constraints, e.g., non-nega-
tivity of amplitudes, and with methods to exploit the fact
that for most polydisperse systems, no sharp jumps in the
profile of concentration over particle size are expected.
There are at least two different techniques to ensure a
smooth profile of G0;j. Firstly, one can regularize the fit

without specific assumptions about the underlying distribu-
tion via a modified cost function that penalizes unphysically

spiky profiles of CNjD using, for example, the maximum en-

tropy method (70) or minimization of the squared second
derivative (71). These and similar approaches have been
successfully introduced into FCS (68,69,72–75). A down-
side is that these methods require very high signal/noise
ratios (Figs. 2 D and 1 D, note the skewed distributions at
low labeling efficiency). Also, secondary analysis of the ob-
tained particle size distribution is required for quantitative
interpretation. As a simpler alternative, we can force the

distribution of CNjD to follow a predefined profile over stoi-

chiometry with tuneable parameters, such as Gaussian,
lognormal, or stretched-exponential functions. This allows
us to describe the entire distribution with a small number
of parameters (three for the mentioned functions). In some
cases, such fits can offer a direct link to physical models
of self-assembly (2). In our experience, the use of regulari-
zation techniques offered no notable advantage over the use
of parameterized models (Fig. 2 D), in agreement with
previous reports (72,76). Suitable parameterized models
and the maximum entropy method or minimization of the
squared second derivative fits typically yield similar quality
of fit and overall similar distributions, and parameterized
models handle data of limited signal/noise ratio more
robustly (Fig. 2, D and E).

Another option is the use of alternative data analysis
frameworks besides ACF fitting, such as photon counting his-
tograms and related approaches (36,77,78). These methods
use other representations of the fluctuation signal besides
the ACF. Their key advantage over ACF fitting is that they
can discriminate changes in CNjD or εj, thus removing ambigu-
ity in the fitting. While these methods have proven their
value, they generally come with increased computational
cost compared to ACF fitting, especially when many species
must be evaluated. Thus, they tend to encounter practical lim-
itations in use on data from polydisperse systems.

Outlook: From ACF fitting to neural networks?

Particle sizing of polydisperse samples is a challenging
problem and probably will remain one for the foreseeable
future. Nonetheless, since the inception of FCS in the
1970s, the FCS community has introduced many concepts
into experiments and analysis that are tremendously useful
for the task. An exciting avenue for such a challenge is obvi-
ously the recent progress in machine learning, especially
convolutional neural networks (CNNs). A few recent papers
explored the capabilities that machine learning brings into
FCS (43,79,80). Besides applications for artifact removal,
specifically for the above-mentioned burst removal problem
(43), of key interest are papers that report the use of machine
learning for parameter estimation in FCS (79,80). The good
understanding of the physical basis of FCS was exploited to
generate large amounts of realistic training data in silico
based on random walk simulations. Different models were
trained to analyze ACFs previously calculated using tradi-
tional approaches (CNN in (79) or gradient boosting models
in (80)) or to analyze the raw data directly (CNN in (79)).
Good results could be obtained from significantly shortened
acquisition times. Remarkably, the CNN utilizing raw data
compensated experimental artifacts that it was not explicitly
trained to deal with (79). ACF-based analysis and
related frameworks are essentially data compressions that
emphasize patterns of interest but also discard a lot of
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information. Machine learning techniques utilizing the raw
data can retrieve and exploit information that is lost in the
ACF calculation. Similar ideas of exploiting uncompressed
raw data have been developed in Bayesian statistics frame-
works (81,82). Analysis of uncompressed data promises to
overcome many of the difficulties of ACF-based analysis,
as discussed above. Fortunately, simulations incorporating
various aspects of the physics of FCS allow us to generate
a large body of training data for such models (83,84).

To conclude, while FCS is, for many practical reasons, still
not the primary method of choice for routine particle sizing, it
performs quite well when some of the major error sources can
be routinely dealt with, as demonstrated by a number of refer-
enced studies. That these improvements have not yet been
widely implemented and standardized in FCS routines is
regrettable but understandable due to the persistent lack of
affordable turnkey instrumentation. We argue that, particu-
larly with respect to the immense potential of implementing
machine learning in FCS data analysis, the time has come for
instrument developers to revisit FCS as an easily accessible
technology that opens fully new perspectives on a fast and
widely applicable large-scale analysis of molecular sizes.
With respect to the omics era, particle sizes and diffusion co-
efficients are highly valuable complementary parameters to
map the dynamic proteome and interactome on a cell-wide
scale—comprehensive dynamic information being the next
big challenge in our holistic understanding of living systems.
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7
FCS-based Characterization of FtsZ-ZapD

Interaction

This chapterwill describemy contributions to a study led byAdriánMerino-Salomón,
published as a reviewed preprint in eLife [4].

Figure 7.1. Effect of ZapD on FtsZ assembly in vitro. The schematic and representative elec-
tron micrographs illustrate how with increasing concentration of ZapD protein compared to
FtsZ, the FtsZ protofilaments assemble into differently-shaped structures. Scale bars: 100 nm.
Reprinted from Merino-Salomón et al. eLife 2025 [4] under Creative Commons Attribution
License.

The protein FtsZ is a filament-forming protein and one of the key players in bacte-
rial cell division. It is homologous to eukaryote tubulin proteins, and self-assembles
into linear filaments in the presence of guanidine triphosphate (GTP). In the absence
of GTP, FtsZ is thought to form only small oligomers. Preceding cell division for ex-
ample in E. coli cells, FtsZ forms a ring-like structure in mid-cell known as the Z ring,
which contracts during scission. The exact role of FtsZ in this process, and how the
protein executes its function, remains poorly understood. The importance of FtsZ is
emphasized by its long list of interaction partners. At the same time, the complex,
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often functionally redundant, interactions also make the study of FtsZ function dif-
ficult. Among the proteins interacting with FtsZ are membrane-anchored proteins
like FtsA and ZipA, but also proteins binding to FtsZ multivalently which thereby
cross-link FtsZ filaments into larger assemblies [99]. Presumably, these interactions,
together with the suppression of FtsZ assembly away from midcell by the MinCDE
system and SlmA, ensure a densely packed ring-shaped functional Z ring assembly.

In this study, we were interested in studying molecular details of the interaction
of FtsZ with the cross-linking protein ZapD. ZapD forms symmetic homodimers.
Such a dimer can then bind two FtsZ protofilaments, cross-linking them into a bun-
dle. Cryo-electron microscopy and tomography were used to study the structure
of superstructures resulting from this higher-order assembly. Consistent with pre-
vious work, FtsZ itself formed relatively short filaments, which were cross-linked
into higher-order assemblies. The morphology of these superstructures varied de-
pending on the concentration of ZapD (Figure 7.1). Of particular interest are the ob-
served toroids, which may relate to the native Z ring structure. Fluorescence correla-
tion spectroscopy, among other techniques, was used to gain insight into biophysical
properties of the interaction. The results will be summarized in the following.

7.1 Materials and Methods

Protein purification and labelling were carried out by A. Merino-Salomón following
the methods described in reference [4]. Samples for FCS measurements were freshly
prepared ca. 2 min before the start of the measurement. Each sample contained
FtsZ and/or ZapD at varying concentrations, with one of the proteins doped with
100𝑛𝑀 labelled protein (FtsZ-Atto488 or ZapD-Atto647N, respectively). Beta-casein-
passivated coverslips were used to enclose the solution in coverslip sandwiches like
those described in the protocol of Chapter 5.

FCS measurements were carried out on a PicoQuant MicroTime 200 confocal
microscope equipped with a water immersion objective with correction collar (UP-
lanApo 60x NA 1.2, Olympus). Fluorescence from FtsZ-Atto488 or ZapD-Atto647N
were excited with picosecond pulsed diode lasers operated at 483 nm or 636 nm,
respectively. Laser pulse repetition rates were 20 MHz or 26.7 MHz, with average
power in the order of 1 − 2𝜇𝑊 at the objective back pupil. Detected photons were
collected though suitable bandpass filters with transmission bands 520/35 or 670/90
and split onto two avalanche photodiodes (Excelitas SPCM-AQRH-14-TR) using ei-
ther neutral 50/50 beam splitter or a polarizing beam splitter. Photon signals were
digitized and time-tagged using a TimeHarp 260Nano TCSPC module (PicoQuant).
Information on fluorescence lifetime obtained that way was used for data quality
monitoring duringmeasurement, and for automated background removal in compu-
tational post-processing (see Section 8.1.3). For some analyses, fluorescent bursts and
other transient deviations in the ACF were automatically detected and removed us-
ing the tools described in Section 8.1.3, for other measurements this could be ignored.
Exported ACFs are technically cross-correlation functions between the two channels
(average of forward and backward cross-correlation). Fits were performed using the
software tool described in Section 8.3, typically using a single discrete species ap-
proximation. Data shown in the publication [4] are based on earlier stages of devel-
opment of these software tools, this section reports results obtained from re-analysis
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with later software version, although the differences are small.
Time-resolvedfluorescence anisotropy information concurrently acquired in some

measurements did not reveal useful information beyond what was revealed by plate-
reader based steady-state anisotropy assays with higher signal-to-noise ratio [4] and
was therefore ignored in further analysis.

7.2 Results and Discussion

A B

DC

Figure 7.2. ZapD diffusion in presence of active and inactive FtsZ. 5𝜇𝑀 FtsZ were mixed
with varying concentrations of ZapD protein and 50𝜇𝑀 of either GDP or GTP. A: Fluores-
cence time traces. Note the shift in mean intensity for ZapD concentration ≥ 5𝜇𝑀 in pres-
ence of GTP, although the amount of added protein was kept constant. B: ACFs with single-
component fits. C: Fitted average diffusion times. D: Same as C, but from data subjected to
removal of fluorescent bursts.

For the insights of this study based on cryo electron microscopy, cryo electron
tomography, and a few other complementary techniques, the reader is referred to
the publication [4]. To complement the electronmicroscopy results, FtsZ protein and
ZapD protein were mixed in vitro and diffusion kinetics were observed to confirm
cross-linking. Cross-linking is expected to lead to an increase in effective particle
size, and therefore diffusion time. An increase in average molecular brightness is
also expected in pricinple, although the change may remain below noise levels given
practical considerations (see below).

We first observed the dynamics of labelled ZapD protein in presence of FtsZ. La-
belled ZapD should undergo a strong change in diffusion timewhen the ZapD dimer
binds an FtsZ oligomer. 5𝜇𝑀 FtsZ were mixed with ZapD at varying concentrations.
Atto647N-conjugated protein was diluted in an excess of unlabelled ZapD, primarily
to achieve correlation amplitudes suitable for high-quality FCS acquisition. The re-
sults are shown in Figure 7.2, with measurements performed both in the presence of
GDP, and in the presence of GTP. Focusing on the fluorescence time traces in panel
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A, two observations are made: Firstly, in presence of GTP and ZapD concentration
≥ 5𝜇𝑀, fluorescent bursts are visible, confirming that the labelled ZapD gets incor-
porated into large particles which are absent without GTP and also at low ZapD con-
centration. This is also confirmed by an obvious shift in diffusion time in presence
of ZapD and GTP visible in the ACFs shown in panel B.

A B C

Figure 7.3. FtsZ diffusion kinetics with changing ZapD concentration. 5𝜇𝑀 FtsZ were
mixed with varying concentrations of ZapD protein and 50𝜇𝑀 GDP. A: ACFs with single-
component fits. B: Fitted average diffusion times. The diffusion time of the FtsZ monomer
was measured in an independent batch, explaining the difference of the reference line from
themean at 0𝜇𝑀 ZapD. The red line is an (unweighted, unconstrained) linear fit. C: Apparent
molecular brightness over ZapD concentration with linear fit.

However, the ZapD concentration dependence of the diffusion time shift seems
counterintuitive, with increasing ZapD concentration leading first to longer, then to
shorter diffusion times (Figure 7.2 C). According to the assumed function of ZapD,
one would expect higher ZapD concentration to lead to more cross-linking of FtsZ,
and therefore monotonously longer diffusion time. This is explained by the second
observation in panel A: The average count rate decreases in the presence of GTP and
high ZapD concentrations. The reason is probably that while large cross-linked fila-
ment bundles did form, they rapidly grew to a size at which they precipitated. Thus,
the measurement was strongly biased towards the still-mobile small particles, and
this bias increasedwith increasing ZapD concentration. This is confirmed by an anal-
ysis inwhich bright bursts from large particles have been removed before autocorrela-
tion function calculation. In that case, the fitted diffusion times, and hence apparent
particle sizes, decrease practically monotonously with increasing ZapD concentra-
tion (Figure 7.2 D). This observation discouraged us from continuing measurements
under GTP-containing conditions where FtsZ filaments were formed.

Turning to measurements performed with labelling of FtsZ itself, we found that
when titrating ZapD into amixture of labelled and unlabelled FtsZ (5𝜇𝑀 total), there
was indeed a slight but visible ZapD-dependent increase in diffusion time (Figure

104



CHAPTER 7. FCS-BASED CHARACTERIZATION OF FTSZ-ZAPD INTERACTION

7.3). This may be surprising given that these measurements were performed in pres-
ence of GDP, not GTP. This demonstrates that binding of FtsZ and ZapD is not strictly
dependent on FtsZ activation. However, as can be seen clearly in Figure 7.3, the sig-
nal to noise ratio of the results remained low, and diffusion time shifts small. We
could not detect any notable shift in apparent molecular brightness either (Figure 7.3
C). This is due to the fact that labelled FtsZ-Atto488 was diluted in a 50-fold excess of
unlabelled FtsZ. Considering that FtsZ did not form filaments under the conditions
of the experiment, multivalently labelled oligomers made up only a negligible frac-
tion of the particles observed, and thus average molecular brightness did not reveal
any useful information.

Figure 7.4. ACFs of ZapD in presence of FtsZ. 5𝜇𝑀 ZapD were mixed with varying con-
centrations of FtsZ protein without additional nucleotide. ACFs were calculated without
removal of fluorescent bursts, and fitted with single-component diffusion models. Blinking
was ignored in these fits.

In the last set of experiments, we returned to observation of fluorescent signal
fromZapD-Atto655. Weobserved the dynamicswithout addition of nucleotide, which
due to the protein purification strategy corresponds tomeasurements in the presence
of low GDP levels. When adding different amounts of FtsZ protein, we were able to
obtain data of high signal to noise ratio that could easily be interpreted quantitatively
(Figure 7.4). Fitting the datawith a simple one-componentmodel, we saw an increase
in diffusion time thatwaswell-described by a typical expression for steady-state bind-
ing kinetics (Eq. 2.15). We found an 𝐸𝐶50 of 43.8 ± 6.0𝜇𝑀 for the binding of ZapD
to FtsZ, although these values should be taken with caution as no clear saturation of
binding at high concentrations is visible in the obtained data (Figure 7.5 A).

While the extrapolated diffusion time saturation of 1.6 ± 0.1𝑚𝑠 is quantitatively
unreliable, the longest experimentally observed diffusion time at the higest FtsZ con-
centration of 128𝜇𝑀 was 1.32 ± 0.04𝑚𝑠 (mean ± SD from 5 samples), three times
longer than that of the ZapD dimer. In the approximation of a spherical particle
following the Stokes-Einstein equation (Eq. 2.10), this would imply a ca. 80-fold dif-
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ference in particle mass. As the other extreme, in a linear filament model (Eq. 2.11)
one obtains an approximately 7-fold mass increase. It should be kept in mind that
these numbers are firstly inaccurate as they are based on unrealistic particle shape
descriptions and ignore the hetero-oligomer character of the FtsZ-ZapD assembly,
and secondly biased towards large particles as they are derived from singles-species
approximations (see Section 6). Nonetheless, they emphasize the formation of com-
plexes that are far larger than the ternary complex of a ZapD dimer and an FtsZ
monomer.

A B

Figure 7.5. ZapD dynamics in presence of varying FtsZ concentration. 5𝜇𝑀 ZapD were
mixed with varying concentrations of FtsZ protein without additional nucleotide. Shown
are (A) average diffusion times and (B) apparent molecular brightness determined from FCS
analysis without removal of bright bursts. Fits in A are with an expression analogous to
Eq. 2.15, with minimum diffusion time in absence of FtsZ fixed at 428𝜇𝑠, and extrapolated
maximum diffusion time fitted globally for both wt ZapD and ZapD mutant at 1.6 ± 0.1𝑚𝑠.
For wt ZapD, the fit estimated an 𝐸𝐶50 of 43.8 ± 6.0𝜇𝑀 and for ZapD mutant 138 ± 17𝜇𝑀.

In the same experiment, we also looked at a mutated variant of ZapD (Figure 7.5).
This variant shows a partial defect in dimer formation due to a triple mutant in the
homodimerization interface (R20A, R113A, H140A). As ZapD dimers are thought to
cross-link FtsZ filaments by binding of each ZapD subunit to one FtsZ filament, the
mutant is expected to be deficient in FtsZ cross-linking. Partial defects in this function
were confirmed through various techniques such as turbidity measurements and an-
alytical ultracentrifugation [4]. FCS analysis of this mutant showed a clear reduction
in FtsZ binding, with an estimated 𝐸𝐶50 of 138 ± 17𝜇𝑀 and an observed diffusion
time of 972 ± 11𝜇𝑠 at 128𝜇𝑀 FtsZ (mean ± SD from 3 samples). This more than 2-
fold increase over the ZapD dimer diffusion time of 428𝜇𝑠 still indicates higher-order
complex formation, albeit with reduced efficiency.
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7.3 Summary

We studied the self-assembly of FtsZ filaments and the effect of ZapD using fluores-
cence correlation spectroscopy and other techniques. Biochemically, the FCS results
confirm the results of other techniques: ZapD binds directly to FtsZ, with increasing
ZapD concentration leading to larger assemblies, far larger than what would be ex-
pected for a hypothetical oligomer of one ZapD dimer binding one FtsZ monomer.
This remains true for the partially dimerization-deficiant mutant, but the apparent
particle sizes are reduced. Notable here is the finding that the FtsZ-ZapD interac-
tion does not require GTP. If ZapD can cross-link FtsZ proteins irrespective of their
nucleotide state, this raises the question of how ZapD influences FtsZ treadmilling
dynamics: Can it stabilize the GDP-bound decaying end? Can it prevent a GDP-
bound monomer from diffusing away after release from a filament? Of course, due
to the experimental challenges we did not quantify the affinity in to GTP-bound FtsZ,
so the possibility remains that while the interaction with FtsZ-GDP is detectable, it
is weak overall.

From a technical point of view, we compare results from different experiment de-
signs that give some insight complementary to what is described in Chapter 6: We
obtained more robust results if we labelled not FtsZ itself, but ZapD. Labelling the
filament-associated protein rather than the filament-forming protein, and increasing
the concentration of the latter, we created a contrast between a condition in which
ZapD dimers were present to one in which the majority of the ZapD protein was
recruited to FtsZ oligomers, possibly forming cross-linked higher-order assemblies.
In contrast, when labelling FtsZ and titrating ZapD, we likely saturated the loading
of FtsZ with ZapD, possibly even suppressing oligomerization. While ultimately
both strategies of observation are viable, our experiments suggest that to obtain a
yes/no answer to confirm or refute interaction, labelling the filament-associated pro-
tein is the better option for systems like the one studied here. Alternatively, one
can of course label both and perform fluorescence cross-correlation spectroscopy, al-
though the balance between higher-order structure formation and labelling efficiency
is likely to complicate interpretation of such data.
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8
Scientific software

While performing the work that has been described in the previous chapters, I de-
veloped or modified a number of software tools for scientific image analysis and
time-resolved spectroscopy. The following sections describe the conceptual basis
and some technical and applicative details of some of the more generic tools that
are likely to be useful beyond the described projects. The tools described here are all
available via GitHub.

8.1 Automated artifact correction in FCS

Fluorescence correlation spectroscopy (FCS) is a technique that can be used to mea-
sure many parameters that are of interest in biophysics, as discussed in previous
chapters (see Section 2.7 and preceding Results and Discussion chapters). However,
as was also mentioned in previous chapters, FCS is also notoriously sensitive to a
number of different artifacts. These stem from a variety of different sources, some
sample-related, some instrument-derived. Besides stemming from different sources,
the artifacts common in FCS also differ in whether or not they can be detected and
corrected based on the data alone, or not. A number of authors have contributed
valuable ideas for automated suppression of specific artifacts whose presence can
be determined from the raw data. This chapter reviews a non-exhaustive list of such
artifacts, and describes the algorithms for highly automated suppression of these arti-
facts combined in the Python software tool “FCS_Fixer”. The example figures shown
throughout the chapter show plots automatically generated by the FCS_Fixer soft-
ware during data processing, documenting the intermediate results of various pro-
cessing steps. The dataset used is an example dataset from the experiments of FtsZ
and ZapD binding described in Section 7. Figure 8.1 shows the example datawithout
application of any filters. FCS_Fixer is now in routine use for FCS applications in the
Department of Cellular and Molecular Biophysics at the MPI for Biochemistry, and
is available via GitHub under https://github.com/Janhagenkrohn/FCS_Fixer.

8.1.1 Contributions

JHK conceived the software. JHK wrote the software with input from Yusuf Qut-
buddin and Lise Isnel (LI). JHK and LI tested software on experimental data.

109

https://github.com/Janhagenkrohn/FCS_Fixer


CHAPTER 8. SCIENTIFIC SOFTWARE

A C

B D

Channel 1

Channel 2

10x 18s segments

Full-length CCF

Figure 8.1. Correlation without data corrections applied. A, B: Rawfluorescence time traces
for two channels in onemeasurement. The channels are largely equivalent for the purpose of
the experiment, with signal being splitted bypolarization. The binwidth of 282𝜇𝑠was chosen
automatically by the software. C: The three-minutesmeasurement is split into 10 segments of
equal length, which are then individually cross-correlated between the channels to calculate
the uncertainty (envelope in D) [237]. The segments also highlight the heterogeneity of the
signal throughout the acquisition time. D: Cross-correlation function calculated from the
full-length data. The large uncertainty and the seemingly biphasic decay again confirm the
heterogeneity of the data that complicates analysis.

8.1.2 Software Concept

The overall design of the software is guided by the following principles:

• Automation: A number of data correction algorithms are provided to be usable
with little user interaction beyond specifying the raw data to use. All correc-
tion methods are based on statistical criteria to adapt the processing parame-
ters to the data, with hyperparameters chosen empirically to work satisfyingly
on many datasets. Overriding the statistical methods for parameter choice is
possible in many cases, although this will often require custom scripts. In addi-
tion, the tool is written for batch processing of many input files with the same
parameters.

• Modularity: These different data corrections are implemented into a single
common framework to allowusing them in arbitrary combinations and sequence.
For this reason, the software is built around the open-source package tttrlib
[238] which offers many routines useful for this purpose. tttrlib also ensures
compatibility with many formats of time-tagged time-resolved photon count-
ing data (e.g., PicoQuant .ptu format, Becker-Hickl .spc format, and others).

• Transparency: Results are automatically written into files at many intermedi-
ate steps of the processing in a manner that makes transparent for the human
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user how the correction algorithms interacted with the data. The intermediate
results are generally written in pairs of a figure in Portable Network Graphics
(.png) format for visual inspection and corresponding numeric data in Comma-
Separated Value (.csv) format for detailed inspection and further processing for
example in spreadsheet calculation programs.

8.1.3 Artifacts and Correction strategies

BACKGROUND

Besides the fluorescence signal of interest, various kinds of background can corrupt
the data. Some of these will exhibit their own characteristic time correlations, oth-
ers appear uncorrelated in time. In general, the effect of background on the ACF is
understood by revisiting the defition of the FCS ACF, decomposing the measured
signal 𝐹 (𝑡) into desired signal 𝐹𝑡𝑟𝑢𝑒 (𝑡) and background 𝐵 (𝑡):

𝐺(𝜏) = 〈𝐹𝑡𝑟𝑢𝑒 (𝑡) 𝐹𝑡𝑟𝑢𝑒 (𝑡 + 𝜏)〉
〈𝐹𝑡𝑟𝑢𝑒 (𝑡) + 𝐵 (𝑡)〉2 + 〈𝐵 (𝑡) 𝐵 (𝑡 + 𝜏)〉

〈𝐹𝑡𝑟𝑢𝑒 (𝑡) + 𝐵 (𝑡)〉2 (8.1)

Uncorrelated background with negligible 〈𝐵(𝑡)𝐵(𝑡 + 𝜏)〉 may originate for exam-
ple from scattered laser light bleeding through the filters, or thermal dark counts
of the detector. If the background fluctuates with characteristic time scales within
the measurement window, 〈𝐵(𝑡)𝐵(𝑡 + 𝜏)〉 may be significant. Such a situation can
originate from various sources. In live cells, autofluorescence from flavins and other
molecules can be significant [239]. In multi-color experiments like FCCS, spectral
cross-talk between different fluorescent dyes is a frequent issue [162]. On the instru-
mental side, depending on the detector technology chosen, afterpulses can follow
true photon detections with characteristic time delays [240].

Besides experimental optimization to suppress these andother background sources,
correctionmethods for someof thesetypes of background are available in post-processing
of the data. Different types of background require, and allow, different treatments.

For background that is uncorrelated on the time scales of interest, the second
term of the righthand side of Eq. 8.1 is close to zero. In that case, the only distortion
introduced by the presence of background is a reduction in the correlation amplitude
(increased denominator in the 𝐹𝑡𝑟𝑢𝑒 (𝑡) correlation term). In that case, one obtains
[241]:

𝐺 (𝜏) = 〈𝐹𝑡𝑟𝑢𝑒 (𝑡) 𝐹𝑡𝑟𝑢𝑒 (𝑡 + 𝜏)〉
〈𝐹𝑡𝑟𝑢𝑒 (𝑡)〉2 +

(
1 + 〈𝐵 (𝑡)〉2

〈𝐹𝑡𝑟𝑢𝑒 (𝑡)〉2

)−1

(8.2)

Thus, one can correct the data to obtain the desired 𝐺𝑡𝑟𝑢𝑒 (𝜏) with known 〈𝐵 (𝑡)〉
and with 𝐹 (𝑡) = 𝐹𝑡𝑟𝑢𝑒 (𝑡) + 𝐵 (𝑡):

𝐺𝑡𝑟𝑢𝑒 (𝜏) = 〈𝐹 (𝑡) 𝐹 (𝑡 + 𝜏)〉
〈𝐹 (𝑡)〉2

(
1 + 〈𝐵 (𝑡)〉2

(〈𝐹 (𝑡)〉 − 〈𝐵 (𝑡)〉)2
)

(8.3)

This background correction strategy works with measurement of 〈𝐵 (𝑡)〉 through
a control measurement without the fluorophore label of interest. However, it works
well if and only if the background counts are uncorrelated on the time scales of inter-
est, and it requires a reference for the background level. Therefore, it is not trivial to
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perform in a fully automated manner, but it is simple to perform later on as it is only
a correction to the correlation amplitude. Thus, it is not part of FCS_Fixer.

The is no general method to deal with fluctuating autofluorescence background,
and onemay have to analyze the ACFs based on explicit multi-componentmodels us-
ing Eq. 8.1 with both 〈𝐵 (𝑡)〉 and 〈𝐵 (𝑡) 𝐵 (𝑡 + 𝜏)〉 determined from reference measure-
ments. However, often, autofluorescence stems from many dim particles rather than
few bright ones, meaning that the amplitude of the background term in Eq. 8.1 may
be small enough to allow a static-background approximation. Depending on what
reference measurements are permitted by the experimental setup, such background
may also be removed by fluorescence lifetime correlation spectroscopy (FLCS) un-
mixing, which is explained below.

Spectral cross-talk is another possible source of fluctuating background especially
inmulti-color experiments. It can beminimized via so-called Pulsed Interleaved Exci-
tation (PIE) [242]. In the PIE scheme, picosecond- or nanosecond-scale pulsed lasers
fire in an interleaved manner with fixed time delays, which is typically combined
with the use ofmultiple detection channels. This allows extreme suppression of cross-
talk by gating photons to be used in analysis in time and detection channel. All tools
implemented in FCS_Fixer fully support the use of arbitrary user-defined PIE gating
strategies. Weighting factors in some calculations that depend on fluorescence count
rate or on duty cycle of observation are automatically adapted to the gating strategy
used.

CORRELATED BACKGROUND FROM DETECTOR AFTERPULSES

Background from afterpulsing can be corrected using two strategies that are both
implemented in FCS_Fixer. The first strategy solves Eq. 8.1 for the expression of
afterpulsing [240,243]. The occurrence of afterpulses is a stochastic process, and gen-
erally, the probability for an afterpulse decreases with increasing lag time 𝜏 after the
initial photon (if one ignores dead time effects). The lag time-dependent afterpulsing
probability 𝛼 (𝜏) usually is described simply as a sum of exponentials:

𝛼 (𝜏) =
∑
𝑖

𝐴𝑖 exp
(
− 𝜏
𝜏𝐴𝑃,𝑖

)
(8.4)

Note that here, 𝛼 (𝜏) is not defined as a normalized probability density function.
Instead, the time integral yields the conditional probability 𝑃𝐴𝑃 ≤ 1 of detecting an
afterpulse at some time point after detection of a photon:

𝑃𝐴𝑃 =
∫ ∞

0
𝛼 (𝜏) 𝑑𝜏

=
∑
𝑖

𝐴𝑖𝜏𝐴𝑃,𝑖
(8.5)

The ACF 𝐺 (𝜏) in general is proportional to the number of correlated pulse pairs
detected at a given 𝜏. For afterpulsing, this number is just 〈𝐵 (𝑡) 𝐵 (𝑡 + 𝜏)〉 = 〈𝐹𝑡𝑟𝑢𝑒 (𝑡)〉𝛼 (𝜏):

𝐺 (𝜏) = 〈𝐹𝑡𝑟𝑢𝑒 (𝑡) 𝐹𝑡𝑟𝑢𝑒 (𝑡 + 𝜏)〉
〈𝐹 (𝑡)〉2 + 〈𝐹𝑡𝑟𝑢𝑒 (𝑡)〉𝛼 (𝜏)

〈𝐹 (𝑡)〉2 (8.6)
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Considering 〈𝐹 (𝑡)〉 = 〈𝐹𝑡𝑟𝑢𝑒 (𝑡)〉 + 〈𝐹𝑡𝑟𝑢𝑒 (𝑡)〉𝑃𝐴𝑃 , this becomes:

𝐺 (𝜏) = 〈𝐹𝑡𝑟𝑢𝑒 (𝑡) 𝐹𝑡𝑟𝑢𝑒 (𝑡 + 𝜏)〉
〈𝐹 (𝑡)〉2 + 𝛼 (𝜏)

〈𝐹 (𝑡)〉 (1 + 𝑃𝐴𝑃) (8.7)

Note that Eq. 8.4 defining 𝛼 (𝜏) contains all parameters in this model apart from
the count rate 〈𝐹 (𝑡)〉, which can obviously be determined automatically from the
data. The parameters characterizing 𝛼 (𝜏) are fairly stable for a given detector if the
conditions of operation remain stable. Therefore, 𝛼 (𝜏) be determined from calibra-
tion measurements that exhibit negligible fluorescence fluctuations on the time scale
of afterpulsing and then repeatedly used for data correction for an extended period
of time. Suitable for calirbation in practice are for example laser light backscattered
or reflected at static structures, or fluorescence from slow-diffusing particles labelled
with a negligibly blinking dye like lipid vesicles labelled with ATTO655.

FCS_Fixer performs afterpulsing correction based on Eqs. 8.4, 8.5, and 8.7 given
a set of calibrated detector parameters for a biexponential approximation to Eq. 8.4,
i.e., four calibration parameters per detector. Figure 4C in Chapter 5 shows example
measurements acquired at vastly different count rates before and after application
of the afterpulsing calibration. At the lowest count rate (highest amplitude of the
afterpulsing artifact, compare Eq. 8.7), the correction is not perfect, but clearly, under
all conditions it strongly reduces the artifacts. Note that the detector parameters used
in correction had been calibrated ca. two years before the measurement, confirming
the stability of the calibration, at least for the detector model used here (Excelitas
Technologies SPCM-AQRH series).

CORRECTION OF FLUCTUATING BACKGROUND USING FLUORESCENCE LIFETIME CORRELATION
SPECTROSCOPY

Afterpulse correction can also be performed using fluorescence lifetime correlation
spectroscopy (FLCS) [244–246]. This strategy works for many kinds of uncorrelated
background, and also for correlated background fromambient light and other sources
that are unrelated to the (pulsed) excitation laser. When using TCSPCdetection, such
background appears as a flat pattern on the nanosecond time scale. Afterpulsing
follows photon detection with a characteristic time delay and therefore is not truly
independent from the excitation laser. However, the finite detection electronics dead
time (usually tens of nanoseconds for classical TCSPC acquisition schemes) and the
relatively long time scales of afterpulsing (up to microseconds) mean that on the
nanosecond time scales inspected in TCSPC, it does mostly appear as a flat pattern
independent from the laser. Thus, assuming that 𝐹𝑡𝑟𝑢𝑒

(
𝑡 , 𝑖𝜇

)
stems from an excited

state population that decays over nanosecond-scale (discrete) micro time 𝑖𝜇 with nor-
malized pattern 𝑝𝐹

(
𝑖𝜇

)
while the corresponding background pattern 𝑝𝐵

(
𝑖𝜇

)
is flat

over micro time, one can decompose 𝐹
(
𝑡 , 𝑖𝜇

)
as:

𝐹
(
𝑡 , 𝑖𝜇

)
= 𝐹𝑡𝑟𝑢𝑒 (𝑡) 𝑝𝐹

(
𝑖𝜇

) + 𝐵 (𝑡) 𝑝𝐵
(
𝑖𝜇

)
= 𝐹𝑡𝑟𝑢𝑒 (𝑡) 𝑝𝐹 (

𝑖𝜇
) + 𝐵 (𝑡) 𝑡𝜇𝑏𝑖𝑛

𝑡𝑟𝑒𝑝

(8.8)

with TCSPC bin time 𝑡𝜇𝑏𝑖𝑛 and laser repetition time 𝑡𝑟𝑒𝑝 . Decomposing a mea-
sured 𝐹

(
𝑖𝜇

)
TCSPC dataset according to Eq. 8.8 is a simple task that can be per-
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G

H

A B

C D

E F

Channel 1 Channel 2

Figure 8.2. Background removal using FLCS. A, B: Raw channel-wise TCSPC histograms.
The secondary peak at approx. 30𝑛𝑠 stems from early afterpulses detected directly after the
electronic dead time of the time tagging electronics. C, D: Tail fits approximate the backgroud
level. In this case, the fit is slightly misled by the afterpulses, but suffices as a close approxi-
mation. E, F: Normalized signal patterns and FLCS filter functions calculated for signal and
background, respectively. G, H: As background levels are relatively low in this example, the
change in the correlation function is small. These figures are automatically generated by the
software when running FLCS background correction.

formed for example via (Poisson-)weighted nonlinear regression. Technically, the
TCSPC histogram is an integral of Eq. 8.8 over 𝑡, but assuming a stationary system
to treat 𝐹

(
𝑡 , 𝑖𝜇

)
and 𝐹

(
𝑖𝜇

)
equivalently is generally not an issue.

For automated FLCS-based background removal in FCS_Fixer, a tail fit with a
monoexponential model for 𝑝𝐹

(
𝑖𝜇

)
is performed, by default using all data ≥ 2 𝑛𝑠

after the peak of the TCSPC data. This tail fit is used to estimate 𝐵 (𝑡). 𝐹𝑡𝑟𝑢𝑒 (𝑡) and
𝑝𝐹

(
𝑖𝜇

)
are then recalculated from the data by subtracting the determined 𝐵 (𝑡).

Decomposing the data using Eq. 8.8 is in principle enough to perform a correc-
tion of uncorrelated background as mentioned above. However, FLCS goes one step
further in use the knowledge of the all terms in Eq. 8.8 to resolve even fluctuating, cor-
related background, as encountered with afterpulsing. To this end, filter functions
𝑓𝐹

(
𝑖𝜇

)
and 𝑓𝐵

(
𝑖𝜇

)
are constructed such that:

𝐹𝑡𝑟𝑢𝑒 (𝑡) =
∑
𝑖𝜇

𝐹
(
𝑡 , 𝑖𝜇

)
𝑓𝐹

(
𝑖𝜇

)
𝐵 (𝑡) =

∑
𝑖𝜇

𝐹
(
𝑡 , 𝑖𝜇

)
𝑓𝐵

(
𝑖𝜇

) (8.9)

For calculating 𝑓𝐹
(
𝑖𝜇

)
and 𝑓𝐵

(
𝑖𝜇

)
based on Eqs. 8.8 and 8.9, a convenient method

based on matrix manipulations has been proposed by Enderlein and co-workers for
photon counting data [247]:
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𝑓𝑘
(
𝑖𝜇

)
=

( [
𝑀̂ · 𝑑𝑖𝑎𝑔

(
𝐹

(
𝑖𝜇

)−1
)
· 𝑀̂𝑇

]
· 𝑀̂ · 𝑑𝑖𝑎𝑔

(
𝐹

(
𝑖𝜇

)−1
))
𝑖𝜇,𝑘

(8.10)

with index 𝑘 iterating over signal contributions (true signal 𝐹 or background 𝐵),
matrix 𝑀̂ containing the normalizedTCSPCpatterns 𝑀̂𝑖𝜇 ,𝑘 = 𝑝𝑘

(
𝑖𝜇

)
, and 𝑑𝑖𝑎𝑔

(
𝐹

(
𝑖𝜇

)−1
)

as diagonal matrix containing the inverse of the elements of the TCSPC histogram.
When the “true fluorescence signal” filter function 𝑓𝐹

(
𝑖𝜇

)
is used for a weighted cor-

relation function calculation, 𝐺𝑡𝑟𝑢𝑒 (𝜏) is obtained:

𝐺𝑡𝑟𝑢𝑒 (𝜏) =
∑
𝑖𝜇

∑
𝑗𝜇〈𝐹

(
𝑡 , 𝑖𝜇

)
𝑓𝐹

(
𝑖𝜇

)
𝐹

(
𝑡 + 𝜏, 𝑗𝜇

)
𝑓𝐹

(
𝑗𝜇
)〉[∑

𝑖𝜇〈𝐹
(
𝑡 , 𝑖𝜇

)
𝑓𝐹

(
𝑖𝜇

)〉]2 (8.11)

In FCS_Fixer, FLCS is available in two ways. Firstly, the above-mentioned auto-
mated background estimation from TCSPC data is combined with calculation (Eq.
8.10) and application (Eq. 8.11) of FLCS filters to automatically correct background
with flat TCSPC pattern. Note the use of this correction overwrites and replaces the
use of calibration-based afterpulsing correction as explained above, to avoid over-
compensation. Secondly, the user can supply the built-in functions with TCSPC pat-
terns for signal and background for example from reference measurements or from
multi-component analysis in other software tools, to determine species filters and
use these to calculated cleaned-up ACFs corrected also for fluctuating background
with non-flat TCSPC patterns. The latter is not automated and requires some custom
high-level code, though.

SIGNAL BURSTS

Another common artifact in FCS are high-intensity “bursts” from large aggregates
etc. [248–250]. Such bursts are a frequent observation in intrinsically polydisperse
systems. Chapter 6 contains a rather detailed discussion of the phenomenon, and
why it is an issue in FCS, whichwill not be repeated here. Asmentioned in Chapter 6,
multiple strategies for automated correction are available, including Deep Learning-
based tools [250]. FCS_Fixer uses a relatively simple strategy which is based on
heuristic traditional statistics, but that we found to yield useful results on a broad
variety of input data.

For this data correction, a fluorescence time trace needs to be constructed. In
FCS_Fixer, the bin width of the time trace is automatically chosen in an attempt to
represent data from vastly different fluorescence count rates meaningfully without
user intervention (Figure 8.3 A). To this end, first, an ACF is calculated from the un-
corrected photon counts, and force-fitted with a two-component three-dimensional
diffusion model (see Eqs. 2.26 and 2.30, nelgecting the impact of particle brightness
brightness 𝜀). If the two component fit fails for some reason, a single-component
model is used instead. A (discrete) fluorescence time trace 𝐹 (𝑖) is then constructed
from the data with the smallest bin width 𝑡𝑏𝑖𝑛 that fulfils three criteria:

• 𝑡𝑏𝑖𝑛 ≥ 𝜏𝑑𝑖 𝑓 𝑓 with 𝜏𝑑𝑖 𝑓 𝑓 from the diffusion fit (in the case of a two-component
model, the shorter of the two 𝜏𝑑𝑖 𝑓 𝑓 is used)
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A
B

C

Figure 8.3. Removal of fluorescent bursts. Compare Figure 8.1. A: Fluorescence time traces
with annotation of fluorescent bursts (diamond symbols). For cross-correlation function cal-
culation, a logical OR operation is applied to discerd time points in which either of the two
fluorescence channels was annotated as ”burst”. B: The segment correlation functions now
exhibit much smaller, albeit still significant, distortions. C: The full-length cross-correlation
function looks almost like that of a single species, except for a slight additional conpoment on
the scale of tens of milliseconds. These figures are automatically generated by the software
when running burst removal.

• 𝑡𝑏𝑖𝑛 is long enough such that 〈𝐹 (𝑖)〉 ≥ 10photons or another, user-defined lower
bound

• 𝑡𝑏𝑖𝑛 ≥ 100 𝜇𝑠 or another, user-defined lower bound

The use of criterion 1 can also be switched off by the user in case it does not per-
form robustly on the data at hand. In the next step, the fluorescence time trace needs
to be binarized into “burst” and “non-burst”. To this end, a simple cutoff number of
photons 𝑇𝐹 per bin is applied:

𝐹 (𝑖) > 𝑇𝐹 : 𝑏𝑖𝑛 𝑖 𝑖𝑠 𝑏𝑢𝑟𝑠𝑡
𝐹 (𝑖) ≤ 𝑇𝐹 : 𝑏𝑖𝑛 𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑏𝑢𝑟𝑠𝑡

(8.12)

𝑇𝐹 could in principle be chosen by the user, but we opted for a strategy that choses
the threshold based on a statistical criterion inspired by statistical hypothesis testing.
The reasoning here is to consider the data as essentially a two-speciesmixture consist-
ing of a baseline fluctuating at a relatively low intensity, which contains the signal of
interest, and of occasional unwanted high-intensity bursts. Then, given an approxi-
mate description of the distributions of photon counts per bin (effectively the photon
counting histogram PCH [192]) in the baseline, one can calculate a confidence inter-
val for deciding whether or not a given photon count stemming from the baseline
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signal is plausible. The challenge here is to construct such a description of the base-
line PCH without contributions from the high-intensity bursts.

Weopted to combinemoment statistics-baseddescriptionwith a quantile statistics-
based description. Specifically, we assume an approximately Gaussian distribution
in the baseline PCH. The Gaussian distribution is clearly inaccurate, especially at low
numbers of bright particles, but works well enough for the intended purpose. The
Gaussian distribution has two parameters of interest: The mean 𝜇𝐺 and the standard
deviation 𝜎𝐺. These are then obtained by assuming that the observed median of
the time trace approximates 𝜇𝐺, and the 84th percentile of the time trace approxi-
mates 𝜇𝐺 + 𝜎𝐺, as would be the case for a truly Gaussian distribution. That way, the
brightest 16 % of 𝐹 (𝑖) are ignored, making this approach outlier-resistant while still
considering the majority of the data.

Next, to obtain 𝑇𝐹 from the Gaussian approximation, a false-positive burst detec-
tion probability 𝛼𝑇 is considered. 𝛼𝑇 is adjusted from the set target 𝛼𝑇,𝑠𝑒𝑡 for the
number of bins 𝑛𝑏𝑖𝑛𝑠 in trace 𝐹 (𝑖) to attenuate effects from different bin sizes (bin
numbers, equivalently) using Šidák’s method:

𝛼𝑇 = 1 − (1 − 𝛼𝑇,𝑠𝑒𝑡)
1

𝑛𝑛𝑏𝑖𝑛𝑠 (8.13)

Note that the actual false-positive burst detection probability is much higher than
𝛼𝑇 , even with Šidák’s correction, as the PCH has a more pronounced tail towards
high photon counts than the Gaussian approximation. Thus, the algorithmwill over-
threshold most datasets and annotate more bursts than required. Some degree of
over-thresholding is intended, as false-positively discarding a handful modest fluc-
tuations leads to smaller distortions of the ACF than false-negatively ignoring a burst
does. The default is 𝛼𝑇,𝑠𝑒𝑡 = 0.02, but this value can be adapted by the user, where
a higher value means higher sensitivity in burst detection, but also increased signal
loss due to false-positive thresholding.

With the Gaussian described by 𝜇𝐺 and 𝜎𝐺 and the corrected false-positive burst
detection probability 𝛼𝑇 determined, 𝑇𝐹 can now be calculated by inverting the com-
plementary error function of a standard normal distribution 𝑒𝑟 𝑓 𝑐−1:

𝑇𝐹 = 𝜇𝐺 + 𝜎𝐺 𝑒𝑟 𝑓 𝑐−1 (𝛼𝑇) (8.14)

After thresholding and burst annotation, the bursts are excised and updated pho-
ton arrival times are calculated to close the gaps left by excision to avoid artifacts from
sudden intensity drops. Figure 8.3 B and C in comparison to Figure 8.1 C andD show
the impact. Note that “excising” bursts does not refer to discarding of photons, but
rather creation of a Boolean mask of which photons to keep and which not, meaning
that the process is reversible in calculation, should that be required. Similarly, the
updated time tags are a corrected copy, while the original data remains unaltered, fa-
cilitating for example multiple subsequent analysis runs on the same data. This may
for example be of interest for FCCS applications where only one channel is prone to
exhibiting bursts, in which case different burst removal masks may be used for the
channel-wise ACFs and the cross-correlation function.

117



CHAPTER 8. SCIENTIFIC SOFTWARE

A
Channel 1

B
Channel 2

C

D

Figure 8.4. Correction of bleaching (insignificantly affected dataset) Compare Figures 8.1
and 8.3. Note that the example dataset does not show significant bleaching dynamics. A
more severly impacted dataset is found in Figure 4 of Section 5. A, B: Fluorescence time
traces with polynomial fits, and after correction. Due to the absence of bleaching, the change
is small. C, D: The segment correlation functions and full-length cross-correlation function
show no added distortions despite use of an unnecessary ”overcorrection”. These figures are
automatically generated by the software when running bleaching correction.

BLEACHING

Photobleaching can distort FCS data in twoways, as discussed inmore detail Chapter
5 and in Section 8.2. Here, we are interested in the continuous decrease of fluores-
cence intensity due to depletion of molecules. This effect is especially pronounced
when measuring in confined volumes like cells or giant unilamellar vesicles, when
observing slow-diffusing particles, and when using high-power excitation. Under
such conditions, the average fluorescence intensity drops over time. The process un-
der study is then no longer stationary, and the ACF is distorted especially at long
time scales. It should be noted that when dealing with such bleaching artifacts, the
brightness of individual molecules remains the same, only the number of molecules
is no longer stationary. Figure 8.4 shows an example of the automatically generated
figures of the bleaching correction performed by FCS_Fixer on a dataset weakly af-
fected by bleaching. Figure 4 B in Chapter 5 shows correction results ofmore severely
affected ACF examples.

As a first step of the practical implementation of bleaching correction in FCS_Fixer
(based on [189]), a fluorescence time trace 𝐹 (𝑖) is constructed using the same strategy
as described above for the burst removal, including the same automatic bin width
choice. This trace is subsequently fitted with a series of simple polynomial models:

𝐹(𝑘)𝑚𝑜𝑑𝑒𝑙 (𝑖) = 𝑎0 +
𝑘∑

𝑚=1
𝑎𝑚𝑡𝑚𝑖 (8.15)
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with polynomial degree 𝑘 ≤ 10, discrete time 𝑡𝑖 , and polynomial coefficients 𝑎𝑚 .
Each fit is perfomed as a weighted least-squares minimization with weights based
on an assumed Poisson distribution of photon counts per bin. 𝑘 is incrementally
increased up to the maximum of 10, or until two consecutive increments in 𝑘 did not
increase the goodness of fit as judged based on F-tests with significance threshold
𝛼𝐹−𝑡𝑒𝑠𝑡 = 0.05. This procedure allows the model for 𝐹(𝑘)𝑚𝑜𝑑𝑒𝑙 (𝑖) to adapt flexibly to
data with arbitrary bleaching kinetics by using relatively high 𝑘 where needed, while
generally avoiding overfitting by limiting 𝑘 to what is statistically justified. Note that
the example shown in Figure 8.4 is fittedwith a relatively high-degree (8) polynomial,
which did not introduce notable distortions either.

Other approaches for generating 𝐹(𝑘)𝑚𝑜𝑑𝑒𝑙 (𝑖) not implemented in FCS_Fixer include
models using (multi-)exponential decays or smoothing operations using for exam-
ple Gaussian kernel filters. Exponential models are physically better justified than a
polynomial model, but less generic in adapting to arbitrary date. We decided to pri-
oritize a generic nature of the model. Kernel filter smoothing has the disadvantage
that the filter acts locally over a characteristic user-defined time scale, and therefore
may distort the ACF at those time scales.

With the fitted model 𝐹(𝑘)𝑚𝑜𝑑𝑒𝑙 (𝑖) at hand, the bleaching kinetics in the time trace
𝐹 (𝑖) can be compensated. In FCS_Fixer, this is done on a single photon basis. The
expression for that is:

𝑓𝑏𝑙𝑒𝑎𝑐ℎ𝑐𝑜𝑟𝑟 (𝑡) =
√√√
𝐹(𝑘)𝑚𝑜𝑑𝑒𝑙 (0)
𝐹(𝑘)𝑚𝑜𝑑𝑒𝑙 (𝑡)

+ ©­«1 −
√√√
𝐹(𝑘)𝑚𝑜𝑑𝑒𝑙 (𝑡)
𝐹(𝑘)𝑚𝑜𝑑𝑒𝑙 (0)

ª®¬ (8.16)

where 𝑓𝑏𝑙𝑒𝑎𝑐ℎ𝑐𝑜𝑟𝑟 (𝑡) are photon-wise weights calculated based on analogous to
those obtained through Eq. 8.10. They can be used to calculate corrected ACFs like
in the same manner as those of FLCS (Eq. 8.11).

Using FLCS and bleaching correction simultaneously is also possible by following
a pipeline of:

1. Calculate a bleaching correction

2. Construct a bleaching-correctedTCSPChistogramby summing 𝑓𝑏𝑙𝑒𝑎𝑐ℎ𝑐𝑜𝑟𝑟 rather
than counting photons

3. Calculate FLCS filter functions from the bleaching-corrected TCSPC histogram

4. Calculate ACF using Eq. 8.11, using the product of FLCSweights and bleaching
correction weights as effective photon weights

This pipeline is automatically performed as part of the default pipeline in FCS_Fixer
processing if both bleaching correction and FLCS correction are activated at the same
time.

FOCUS DRIFT AND MEMBRANE UNDULATIONS

A different experimental scenario that can yield non-stationary 𝐹 (𝑡) very similar to
the effect of bleaching occurs if tries to measure on a membrane that is not static dur-
ing the measurement time [251]. Membrane undulations will also lead to changes in
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average fluorescence intensity over time, and these will distort the ACF in hard-to-
predict ways. This effect is particularly strong in live cells that often actively move
their plasma membrane as part of normal cell mobility. However, it is also often
an issue even when measuring on stable membranes without active dynamics as
thermal drift in the microscope hardware and the sample can move the focus in un-
wanted ways. The strategy used for bleaching correction in FCS_Fixer also works
well for straightening out such drift dynamics and suppressing the resulting arti-
facts in the ACF. It should be kept in mind though that the correction is not entirely
accurate as it makes the assumption met by bleaching dynamics that the number of
molecules changes while the molecular brightness does not. Thus, in this case the
correction can often be used to correct fitted correlation times (although some bias
will remain [252]), but should be used with a lot of caution when it comes to analysis
of correlation amplitudes.

OTHER NON-STATIONARY DYNAMICS

FCS_Fixer contains another correction algorithm that is designed to generically deal
with temporary anomalies in the observeddynamics, proposed byRies and co-workers
[249] and implemented in FCS_Fixer with minor adaptations. The algorithm splits
the photon data into a number of segments and calculates a segment ACF 𝐺𝑖 (𝜏𝑘) for
each segment 𝑖 (with discrete lag times 𝜏𝑘). The default segment length is 1/10 of the
total acquisition time, or 5 times the longest queried correlation time, whichever is
longer. The shortest correlation time queried in this correlation operation is 100 𝜇𝑠
by default, to avoid noisy short lag times that would distort the results.

Then, the algorithm iteratively determines how consistent the segment ACFs are
with each other:

1. Iterating over 𝑖, compare each𝐺𝑖 (𝜏𝑘) to the average of all other segments 𝐺̄ (𝜏𝑘) =
1

𝑖𝑚𝑎𝑥−1
∑𝑖𝑚𝑎𝑥
𝑗=1 𝐺 𝑗≠𝑖 (𝜏𝑘)

(a) Optional, used by default: Find a linear scaling factor a to minimize the
sum of squared deviations

∑𝑘𝑚𝑎𝑥
𝑘=1

(
𝑎𝐺𝑖 (𝜏𝑘) − 𝐺̄ (𝜏𝑘)

)2. The purpose of this
step is to emphasize ACF shape deviations rather than amplitude changes.

(b) For each𝐺𝑖 (𝜏𝑘), storemean-square error𝑀𝑆𝐸𝑖 = 1
𝑘𝑚𝑎𝑥

∑𝑘𝑚𝑎𝑥
𝑘=1

(
𝑎𝐺𝑖 (𝜏𝑘) − 𝐺̄ (𝜏𝑘)

)2

2. Discard the segment with the highest 𝑀𝑆𝐸𝑖 , storing information about 𝑖 and
𝑀𝑆𝐸𝑖

3. Repeat steps 1 and 2 with the remaining segments, until only two segments are
left

4. Find the smallest 𝑀𝑆𝐸𝑚𝑖𝑛 at which a segment was discarded at step 2, obtain
a threshold mean-square error 𝑀𝑆𝐸𝑇 = 2.5 𝑀𝑆𝐸𝑚𝑖𝑛 where the scaling factor
can be changed by the user

5. Identify the last-discarded segment that was discarded with 𝑀𝑆𝐸𝑖 ≥ 𝑀𝑆𝐸𝑇 ,
label this and all earlier-discarded segments as segments to excise

6. Excise segments and collapse the gaps analogously to the excision of signal
bursts described above
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A
B

C

Figure 8.5. Removal of other artifacts affecting the correlation function. Compare Figure
8.1 to 8.4. A: Segment correlation functions are overlaid and color-coded to indicated which
segments passed the filter, and which were discarded. B: The segment correlation functions
recalculated after removal seem essentially stationary now. Note that the total duration of the
measurement is shortened after discarding 4 out of 10 segments, and thus the 10 segments are
now 6 seconds long each. Therefore, correlation function distortions at long lag times appear
more pronounced than before that stem from the correlation function calculation itself [253].
C: The artifact that was still seen on the 100𝑚𝑠 time scale in Figure 8.3 C is now gone. As
the full-length correlation function is calculated from a concatenated long time trace, rather
than as the average of the curves in panel B, it does not show significant artifacts from the
shortening. These figures are automatically generated by the softwarewhen running removal
of segments with anomalous correlation function.

This routine can be used towards the end of a processing pipeline as one more
method to identify and remove artifacts that the other algorithms that are based on
inspection of the fluorescence time trace and TCSPC histogram representations of
the data did not pick up.

8.1.4 Summary

FCS_Fixer is a tool that allows extracting high-quality FCS data from raw data of
varying quality. It automates correction of background, afterpulse correlation, signal
bursts, bleaching, and other temporary distortions of the correlation function, inmost
cases performing well without any user input. In addition, the software leaves open
interfaces for custom scripts that modifiy the data pipeline. It serves as a routine
tool for relaxing the data quality requirements on the experiment side, in order to
facilitate analysis of experimentally challenging systems.
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8.2 Automated FCS at lipid membranes using z-scan FCS

As mentioned in section 8.1 about artifacts in FCS and their software-based correc-
tion, membrane undulations or focus drift are a serious concern when performing
FCS measurements on lipid membranes such as supported lipid bilayers or giant
unilamellar vesicles. FCS is a frequently-used technique to characterize molecular
mobility or concentrations within membranes. However, motion of the membrane
relative to the observation volume introduces a change in overall fluorescence in-
tensity. This change in intensity has a number of effects that impact essentially all
parameters to be estimated in FCS, and it introduces an additional slow time scale
into the observed ACF [251,252].

In fact, when performing FCS on membranes, another issue complicates the mea-
surements, even if the relative positions of membrane and observation volume are
stable: The point spread function, and thus the observation volume, is not actually
the three-dimensional Gaussian ellipsoid that is frequently used as approximation in
calculations (Figure 8.6). It is rather hourglass-shaped. Displacing a membrane that
is oriented in the xy plane away from the waist of the observation volume along the
optical axis (z) will therefore lead not only to decreased molecular brightness, but
also increase the membrane area probed by the measurement. In the approximation
of Gaussian beam propagation, the change in the observation area over z position,
proportional to the square of the local beam radius 𝑤 (𝑧), is a parabola [39]:

𝐼 (𝑟, 𝑧) = 𝐼0
𝑤2

0

𝑤 (𝑧)2 exp
(
− 2𝑟2

𝑤 (𝑧)2
)

𝑤 (𝑧)2 = 𝑤2
0

(
1 +

(
𝜆𝑙𝑎𝑠𝑒𝑟𝑧
𝜋𝑛𝑤2

0

)2
) (8.17)

where 𝑟2 = 𝑥2+𝑦2 characterizes the displacement from the beam axis. Even small
displacements of the observation volume from the beamwaist can lead to significant
distortions of the data, and due to the symmetry of the parabola along z, this artifact
not only is an added source of random noise, but it biases the data towards appar-
ently reduced molecular brightness, increased concentration, and reduced diffusion
coefficients [252,254].

A few strategies have been proposed to deal with this issue. These strategies have
in common that they introduce an additional length scale besides the point spread
function size into the measurement. Examples are dual-focus FCS where two obser-
vation volumes are placed at a known distance [180, 181], pair correlation function
analysis as a generalization of the dual-focus FCS concept [182], and scanning FCS
techniques that move the observation volume in a known scan pattern [218]. All
these have intrinsic length scales that negligibly change with defocus from the mem-
brane. Therefore, by concentrating on motion over these known scales in analysis,
these techniques allow suppressing the effect of defocus on membrane FCS.

Another powerful but simple strategy is z-scan FCS [252,257,258] (Figure 8.7). In
z-scan FCS, a series of conventional single-spot FCS measurements is performed at
the same positionwithin the xy plane perpendicular to the optical axis, but at varying
z positions. The reasoning is that when using a suitable model describing the change
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Figure 8.6. Point Spread Function Models. Shown are calculations of theoretical Point
Spread Functions for a 488 nm laser and an objective with 𝑁𝐴 = 1.2 in water (𝑛 = 1.34)
using either a Gaussian beam model (left, Eq. 8.17), or a numeric integration scheme suited
for simulation of high-NA illumination (middle, [40,41]). The numeric simulation was calcu-
lated using MATLAB code written by Kareem Elsayad, modified by Hannah S. Heil and by
me (Katrin G. Heinze lab, IMP Vienna and University of Würzburg) [255, 256]. In the right,
an overlay is shown to highlight differences.

of the observation area over z position, such as the above-mentioned Gaussian beam
propagation approximation, one can link the subsequent measurements over z to
essentially interpolate the “true” values at optimal focus positioning from a fit.

Strengths of z-scan FCS are the high signal to noise ratio that can be achieved even
at low laser powers in contrast to scanning FCS approaches that suffer from a rela-
tively low duty cycle of observation, and the relatively simple execution atmany FCS-
ready confocal microscopes. Additionally, at least in theory, z-scan FCS with data
analysis using the Gaussian beam propagation model allows calibration-free analy-
sis, as the beam divergence determines the beam waist diameter 𝑤0 (see Eq. 8.17).
As the beam divergence can be estimated from z-scan FCS data (from the changes
of apparent diffusion time and particle number over z), so can 𝑤0. Therefore, the
data can be directly interpreted in terms of the diffusion coefficient 𝐷 = 4𝑤2

0/𝜏𝑑𝑖 𝑓 𝑓 ,0
with diffusion time at the beam waist 𝜏𝑑𝑖 𝑓 𝑓 ,0. In practice, due to possible mismatch
between theory and experiment, for example due to spherical aberration, it may be
better to interpret 𝜏𝑑𝑖 𝑓 𝑓 ,0 in terms of a previously calibrated 𝑤0. In that case, z-scan
FCS still helps avoid artifacts from defocus.

8.2.1 Contributions

JHK and Yusuf Qutbuddin (YQ) conceived the workflow and software. JHK estab-
lished the experimental workflow. JHK wrote the software with contributions from
YQ.
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Figure 8.7. z-Scan FCS. A Schematic illustration of z-scan acquisition concept. A series of
single-spot FCS acquisitions is performed at different focus depth around the membrane. B
Each single-spot measurement is correlated and the resulting ACF fitted with a 2D diffusion
model (Eq. 8.18). Example data is from a GUV (lipid mole fractions 7 DOPC : 3 DOPG : 10-4
Atto565-DOPE; prepared via swelling on PVA [259]). ACFs are shown with added offsets
for clarity. C Re-fitting of parameters determined from individual fits to Eqs. 8.19 where
Δ𝑧 = 𝑧 − 𝑧0. In this example, the fitted key parameters were 𝑤0 = 0.283± 0.018 𝜇𝑚, 𝜏𝑑𝑖 𝑓 𝑓 ,0 =
1.32 ± 0.29 𝜇𝑚𝑠, 〈𝑁0〉 = 2.60 ± 0.19, and 𝜀 = 〈𝐹𝑚𝑎𝑥〉/〈𝑁0〉 = 16.8 ± 1.6 𝑘𝐻𝑧.

8.2.2 Software Concept

We developed a robust workflow for z-scan FCS for use at the Zeiss LSM980 con-
focal microscopy platform that is currently frequently used for FCS in the Depart-
ment of Cellular and Molecular Biophysics at Max Planck Institute of Biochemistry.
Some steps in the workflow use custom software, which is publicly available under
https://github.com/Janhagenkrohn/z_Scan_FCS. The software consists of four sep-
arate scripts of which in principle at least three could be joined into a single one.
While this may seem inconvenient, it was a conscious design choice to keep the soft-
ware modular and interoperable with other tools used in our and other labs for re-
lated applications through writing of intermediate files in common formats (in par-
ticular, exporting ACFs into, and importing them from, csv files in the format for
”Krisine” software [163, 260] also used by the other tools described in this Chapter).
The software is built to strip awaymost of the complexmanual interventions in z-scan
FCS acquisition and analysis, allowing the experimenter to focus on the dynamics to
be measured rather than the details of the experimental process.
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8.2.3 Workflow and Software

ACQUISITION

The first step after localizing the sample is the acquisition of a single reference image
of the region of interest in conventional confocalmicroscopy. This is no different from
common workflows for performing conventional single-spot FCS in samples where
positioning of the observation volume is critical, such as live cells or giant unilamellar
vesicles [8, 261].

The second step uses the tool for definition of points of interest that is built into
the ZEISS ZEN software for operating the microscope is then used to select one or
multiple points in the xy plane to measure. The user then targets all previously de-
fined positions and updates the z-position associated with each xy position as close
as possible to the intensity maximum. This is most conveniently done using the “Ver-
ify” tool in the ZEN graphical user interface.

A custom Python script written for use as macro in ZEN software is used next.
The macro defines a series of z positions around each specified point of interest,
where the previously defined reference point becomes the center point of the z-scan.
The user can choose three parameters: The z spacing between points within a z-scan
is typically set in the range of 200 nm to 300 nm. Denser sampling increases robust-
ness of the analysis, but also increases measurement time and photodamage to the
sample. The range of the z-scan, typically 1.5 µm to 3 µm, is a trade-off between on
the one hand the capture range over which the z-scan re-analysis will find the beam
waist, and on the other hand measurement time. Using a large z-scan range, and
therefore capture range, is particularly useful if many xy positions are to be targeted
in a single automated measurement run. In that case, using a large z-scan range in-
creases robustness against slow thermal drift. Finally, the user can choose the scan
pattern, where they have a choice between scans from the bottom upward or from
the top downward, as well as more unusual scan patterns that are rarely used. The
macro also writes a csv file that records metadata about each single measurement
(i.e., every xyz position) that is needed for analysis later.

Once all positions have been defined, automated execution all the full set of mea-
surements can be started. The workflow allows in principle an arbitrary number of
xy positions to be targeted in a single automatedmeasurement run, and the positions
need not strictly be within a single confocal scan field of view. For practical purposes,
we find that usually up to ca. 10 xy positions can be measured in a single measure-
ment run under typical conditions, limited typically by evaporation of immersion
water.

DATA ANALYSIS

ACFs are calculated from raw photon arrival time data using custom software writ-
ten in MATLAB. The correlation script is conceptually similar to the automated ar-
tifact correction software (“FCS_Fixer”) described in section 8.1, but adapted to the
raw data format of the LSM980 platform. Out of the corrections implemented in
FCS_Fixer, only calibration-based afterpulsing correction and bleaching/drift correc-
tion are implemented as the ones that we found to be most significant for our z-scan
FCS applications. There is no link between successive measurements in a z-scan at
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this point of data analysis. Otherwise, the calculations underlying data correction
and ACF calculation are comparable to those described in the corresponding subsec-
tions of Section 8.1.

After calculation and export of ACFs, a custom Python script is used to fit the
ACFs individually. A few models are available. The most useful one in many appli-
cations is the model for two-dimensional diffusion in a Gaussian observation area,
with an arbitrary offset 𝐺∞ to the ACF:

𝐺 (𝜏) = 𝛾

〈𝑁〉
1

1 + 𝜏
𝜏𝑑𝑖 𝑓 𝑓

+ 𝐺∞ (8.18)

with shape factor 𝛾 = 0.5. The script is written to recognize, and iterate over, all
ACFs within one measurement series with little user input beyond one or multiple
directories to search for ACFs, and a naming pattern by which to recognize the files
to use. The fit results from all individual ACFs are compiled into a single table for
further analysis and written into a csv file.

In the final step of the analysis, the z-scan data is re-analyzed to exploit the added
information provided by the z-scan. To this end, another custom Python script is
used that uses the metadata file written earlier together with the ACF fit results to
first sort all data as required, separating the data associated with different z-scans
within one acquisition series. If the measurement consisted of multiple z-scan FCS
acquisitions performed at different positions, the software will analyze all of them
sequentially. For each z-scan, a global fit of three parameters over z position is per-
formed:

〈𝑁 (𝑧)〉 = 〈𝑁0〉
(
1 + 𝐴𝑃 (𝑧 − 𝑧0)2

)
𝜏𝑑𝑖 𝑓 𝑓 (𝑧) = 𝜏𝑑𝑖 𝑓 𝑓 ,0

(
1 + 𝐴𝑃 (𝑧 − 𝑧0)2

)
〈𝐹 (𝑧)〉 = 〈𝐹𝑚𝑖𝑛〉 + (〈𝐹𝑚𝑎𝑥〉 − 〈𝐹𝑚𝑖𝑛〉)𝐴𝐿

(𝑧 − 𝑧0)2 + 𝐴𝐿

(8.19)

where 〈𝑁 (𝑧)〉 and 𝜏𝑑𝑖 𝑓 𝑓 (𝑧) are taken from the fits with Eq. 8.18, while 〈𝐹 (𝑧)〉
is the average fluorescence count rate in each measurement. 𝐴𝑃 is a scaling factor
for the parabolas which is expressed through, and initialized at, a theoretical value
combining the Abbe resolution limit as estimate for the beamwaist diameter𝑤0 with
a Gaussian beam propagation (compare Eq. 8.17):

𝐴𝑃,𝑡ℎ𝑒𝑜𝑟𝑦 =

(
𝜆𝑙𝑎𝑠𝑒𝑟
𝜋𝑛𝑤2

0

)2

=

(
4𝑁𝐴2

𝜋𝑛𝜆2
𝑙𝑎𝑠𝑒𝑟

)2 (8.20)

with refractive index 𝑛 ≈ 1.34 and objective numerical aperture 𝑁𝐴. 𝑤0, and
through it 𝐴𝑃 , is fitted to the data rather than fixed at the theoretical value to accom-
modate deviations between theory and experiment, such as deviation fromGaussian
beam propagation (Figure 8.6) and aberrations. 𝐴𝐿 is a similar to 𝐴𝑃 , but serves as
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half-width parameter for the Lorentzian peak function used for 〈𝐹 (𝑧)〉, and is also
fitted freely (initialized at 1 𝜇𝑚2).

The parameters 〈𝑁0〉, 〈𝐹𝑚𝑖𝑛〉, 〈𝐹𝑚𝑎𝑥〉, 𝑧0, 𝐴𝑃 , 𝑤0, and 𝐷 are optimized by a global
fit of all three observables to minimize:

𝐶𝑂𝑆𝑇 =
∑
𝑖

( 〈𝑁𝑚𝑜𝑑𝑒𝑙 (𝑧𝑖)〉 − 〈𝑁𝑑𝑎𝑡𝑎 (𝑧𝑖)〉
𝜎𝑁,𝑖

)2

+
(
𝜏𝑑𝑖 𝑓 𝑓 ,𝑚𝑜𝑑𝑒𝑙 (𝑧𝑖) − 𝜏𝑑𝑖 𝑓 𝑓 ,𝑑𝑎𝑡𝑎 (𝑧𝑖)

𝜎𝜏,𝑖

)2

+
( 〈𝐹𝑚𝑜𝑑𝑒𝑙 (𝑧𝑖)〉 − 〈𝐹𝑑𝑎𝑡𝑎 (𝑧𝑖)〉

𝜎𝐹,𝑖

)2

(8.21)

where uncertainties 𝜎𝑁,𝑖 and 𝜎𝜏,𝑖 are, if possible, directly retrieved from uncer-
tainties in the fits of individual ACFs. In case this information is not available, as a
backup the software will assume 𝜎𝑁,𝑖 = 〈𝑁𝑑𝑎𝑡𝑎 (𝑧𝑖)〉 and 𝜎𝜏,𝑖 = 𝜏𝑑𝑖 𝑓 𝑓 ,𝑑𝑎𝑡𝑎 (𝑧𝑖). For the
fluorescence count rate, 𝜎𝐹,𝑖 =

√〈𝐹𝑑𝑎𝑡𝑎 (𝑧𝑖)〉𝑡𝑎𝑐 .
Often, the fitted parameters do not follow the model well at larger z displace-

ments from the beam waist (Figure 8.7 C), which is not surprising given the limited
accuracy of the Gaussian beammodel (Figure 8.6). Thus, the model is best applied to
a limited data range around the center position 𝑧0. For that reason, the software au-
tomatically performs a series of fits to determine an optimal data range to use. After
fitting the full set of data points, the data point that is furthest away from the current
estimate for 𝑧0 is discarded. Then, the remaining data points are used for a new fit,
another data point far from 𝑧0 is discarded, and the procedure is repeated until only
five z positions are left, which is treated as the minimum data range. For each of
these fits, the sum of relative uncertainties𝑈 of all fitted parameters is calculated:

𝑈 =
𝜎〈𝑁0〉
〈𝑁0〉 + 𝜎𝐷

𝐷
+ 𝜎〈𝐹𝑚𝑖𝑛〉

〈𝐹𝑚𝑖𝑛〉 + 𝜎〈𝐹𝑚𝑎𝑥〉
〈𝐹𝑚𝑎𝑥〉 + 𝜎𝐴𝐿

𝐴𝐿
+ 𝜎𝑤0

𝑤0
+ 𝜎𝑧0

𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛 (8.22)

where 𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛 is the scan range of the z-scan acquisition. 𝑈 is used as a
goodness of fit parameter. Out of the series of fits performed with different data
ranges, the one with the smallest 𝑈 is used as the result to report. This fit is then
exported to csv files for further processing, and to a png graphic showing the fit with
Eq. 8.19.

8.2.4 Summary

The established workflow offers a convenient implementation of z-scan FCS at a cur-
rent generation commercial confocal microscope platform as ameans of acquiring ro-
bustmembrane FCS datawithout concerns about limited accurary of observation vol-
ume positioning. The workflow combines built-in features of the commercial system
with custom software extensions for z-scan FCS-specific features. With the current
MATLAB dependence, the software cannot be considered fully open-source. How-
ever, the MATLAB-dependent code is in principle easily exchanged with other tools
that perform similar functions. Formany labs, the tool should offer convenient access
to z-scan FCS as-is.
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8.3 Fitting of FCS data from polydisperse systems

FCS responds to different parameters that correlate with the size of a particle. Firstly,
there is obviously the diffusion time, i.e., diffusion coefficient, which depends on
particle size and shape (Eqs. 2.10, 2.11, and others). Additionally, there is the de-
pendence of particle brightness on the stoichiometry of the particle. These relations
are discussed in more detail in chapter 6. In this section, a software tool for fitting
FCS data pre-processed for example with FCS_Fixer software (see Section 8.1) with
models for polydisperse systems is described. This software was used in exploratory
studies that formed the basis of parts of Chapter 6.

8.3.1 Contributions

JHKdesigned andwrote software. The algorithms for regularizionfitting (Maximum-
EntropyMethod, CONTIN, see below) are extensions of code that had originally been
drafted by Yusuf Qutbuddin.

8.3.2 Software Concept

The Python software was designed with the intention to modularly embed many
tools expected to be useful for FCS analysis of polydispere systems into a common
framework, in amanner that would allow the user to exchange and/or combinemod-
ules of the analysiswith fewkeywords in code. The key to achieving thiswas to exten-
sively use the ”lmfit” Python package [262] to define constraints and links between
model parameters, and build model evaluation and cost function as a hierarchical
model with easily exchangeable functions.

8.3.3 Software: Model

PARAMETERS

The model always evaluates one or multiple discrete species, defined as described in
Chapter 6. The parameters describing each species are:

• The diffusion time 𝜏𝑑𝑖 𝑓 𝑓 .

• The average particle number 〈𝑁〉.
• The molecular brightness 𝜀.

• The oligomer stoichiometry 𝑗. The molecular brightness of oligomer species 𝑗
is always 𝜀𝑗 = 𝑗𝜀1.

• The labelling efficiency 𝑝𝑙𝑎𝑏𝑒𝑙 , i.e., the probability that a given monomer carries
a fluorophor. If no explicit consideration of labelling efficiency is desired, this
is left at 𝑝𝑙𝑎𝑏𝑒𝑙 = 1. This value usually is supplied by the user and fixed at the
same value for all species. Figure 8.8 illustrates the impact.

• A more technical species-wise parameter is the stoichiometry binwidth param-
eter 𝑑 𝑗 , which is used to evaluate an arbitrarily (for example logarithmically)
spaced subset of oligomer species 𝑗 ∈ 𝐽𝑒 as representative for the entire ensem-
ble of species.
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• 〈𝑁〉 and 𝑝𝑙𝑎𝑏𝑒𝑙 are present twice for each species, once as ”population-level”
parameter and once as ”observation-level” parameter. This is relevant for the
”incomplete-sampling” fitting strategy, which is explained below. For conven-
tional fitting, without treatment of incomplete sampling, ”population-level” pa-
rameter and ”observation-level” parameters are constrained to have the same
value and their distinction does not matter.
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Figure 8.8. Effect of labelling efficiency on the ACF. The labelling efficiency here is called
𝛼, different from the main text. Shows are relative species-wise correlation function weights
(relative to themonomer, without concentration profile effects). Curves have been fitted (grey
dots) to approximately determine effective scaling exponents at small and high 𝑗. In the right,
an example is shown of how the ACF of a given concentration profile changes with labelling
efficiency.

Next, there are a number of parameters that characterize the ensemble as a whole.
Firstly, there are categorical parameters to choose between different model assump-
tions. The ”oligomer type” specifies the model to describe the scaling of 𝜏𝑑𝑖 𝑓 𝑓 with 𝑗.
This means that by querying a discrete set of stoichiometries 𝐽𝑒 , the set of 𝜏𝑑𝑖 𝑓 𝑓 values
to evaluate is also defined if only the monomer diffusion time 𝜏𝑑𝑖 𝑓 𝑓 ,1 is given. Some
examples are (Figure 8.9):

• Spherical empty shell or random coil polymer in good solvent (Stokes-Einstein
equation with particle surface area proportional to particle mass):

𝜏𝑑𝑖 𝑓 𝑓 , 𝑗 = 𝜏𝑑𝑖 𝑓 𝑓 ,1 𝑗1/2 (8.23)

• Spherical dense particle or collapsed polymer in poor solvent (Stokes-Einstein
equation with particle volume proportional to particle mass):

𝜏𝑑𝑖 𝑓 𝑓 , 𝑗 = 𝜏𝑑𝑖 𝑓 𝑓 ,1 𝑗1/3 (8.24)

• Simple stiff filament [55–57]:

𝜏𝑑𝑖 𝑓 𝑓 , 𝑗 = 𝜏𝑑𝑖 𝑓 𝑓 ,1
2𝑗

2𝑙𝑛(𝑗) + 0.632 + 1.165𝑗−1 + 0.1𝑗−2 (8.25)
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Figure 8.9. Diffusion time scaling for different particle types. The plots correspond to the
expressions for diffusion time change over stoichiometry enumerated in the main text (Eqs.
8.23 to 8.25).

• There is also a ”naive” model which uses no physically plausible scaling. It is
mostly intended for fitting of one or a fewdiscrete species, without constraining
assumptions about the relations of 𝜀, and 𝜏𝑑𝑖 𝑓 𝑓 .

Using thesemodels togetherwith the above-mentioned link of 𝜀𝑗 to 𝑗 dramatically
reduces the complexity of the optimization to that of determining 𝜀1, 𝜏𝑑𝑖 𝑓 𝑓 ,1, and the
concentration profile 〈𝑁𝑗〉. There are different functions to choose from that specify
a general shape for 〈𝑁𝑗〉. The implemented examples are different three-parameter
functions with amplitude 𝐴, position parameter 𝑎, and shape parameter 𝑏:

• Gaussian peak:

〈𝑁𝑗〉 = 𝐴𝑥 𝑗𝑑 𝑗 exp

(
−1

2

(
𝑗 − 𝑎
𝑏

)2
)

(8.26)

• Lognormal peak:

〈𝑁𝑗〉 =
𝐴𝑥 𝑗𝑑 𝑗
𝑗

exp

(
−1

2

(
𝑙𝑛(𝑗) − 𝑙𝑛(𝑎)

𝑙𝑛(𝑏)
)2

)
(8.27)

• Stretched-exponential decay profile:

〈𝑁𝑗〉 = 𝐴𝑥 𝑗𝑑 𝑗 exp
(
− (
𝑗𝑎

)𝑏) (8.28)

• Gamma distribution:

〈𝑁𝑗〉 = 𝐴𝑥 𝑗𝑑 𝑗 𝑗(𝑎−1) exp
(−𝑏 𝑗) (8.29)
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where 𝑥 𝑗 is an additional variable that ensures that, while Eqs. 8.26-8.29 always
refers to the oligomer particle concentrations 〈𝑁𝑗〉, the distribution function can de-
pending on user choice refer to:

• the oligomer particle number distribution (𝑥 𝑗 = 1). This is also always used
when the ”naive” particle size scaling model is selected.

• to themonomer fraction in each species 𝑗 (𝑥 𝑗 = 𝑗−1), which is equivalent tomass
fraction distribution over 𝑗.

• or to the amplitude distribution (𝑥 𝑗 = 𝑗−2 without consideration of incomplete

labelling, or 𝑥 𝑗 = 𝑗−2
(
1 + 1−𝑝𝑙𝑎𝑏𝑒𝑙

𝑗𝑝𝑙𝑎𝑏𝑒𝑙

)−1
with consideration of labelled-particle frac-

tion).

In addition to the above-mentioned parameters characterizing particles within a
distribution of oligomer sizes, it is also possible to add further discrete species to
the model, with flexible choice of which parameters to fix or fit. This can for exam-
ple be used to describe the background signature of freely diffusing unconjugated
fluorescent dye.

Additional, miscellaneous parameters:

• Blinking in the ACF is treated through a stretched-exponetial model similar
to Eq. 8.28 with off-state fraction 𝐹𝑏𝑙𝑖𝑛𝑘 , blinking time scale 𝜏𝑏𝑙𝑖𝑛𝑘 and stretch
factor 𝛽𝑏𝑙𝑖𝑛𝑘 . The user can choose whether to fit the blinking term, or assume
no blinking. In that case 𝐹𝑏𝑙𝑖𝑛𝑘 = 0, while 𝜏𝑏𝑙𝑖𝑛𝑘 and 𝛽𝑏𝑙𝑖𝑛𝑘 are fixed at dummy
values. Blinking kinetics are assumed to be the same for all species.

• A constant offset in the ACF 𝐺∞ can be fitted. For certain settings, this is auto-
matically fixed to 0 though, as otherwise the fitting would become numerically
instable.

• The detection volume aspect ratio 𝑆 = 𝑤0
𝑧0

, which is a fixed, user-supplied meta-
data parameter.

• If PCH data is to be included in fitting, a parameter 𝐹 with 0 ≤ 𝐹 ≤ 1 buffers
deviations between the real data and the assumption of an ideal Gaussian point
spread function [263]. Additionally, a parameter 𝑄 fixed by the user is intro-
duced that characterizes the size of the reference volume for PCH evaluation
such that 𝑉𝑟𝑒 𝑓 = 𝑄𝑉𝑒 𝑓 𝑓 with effective observation volume 𝑉𝑒 𝑓 𝑓 = 𝜋3/2𝑤2

0𝑧0
[263].

EVALUATION

The same parameters can be evaluated in different ways: Given a set of parameters,
one can calculate an FCS ACF, Photon Counting (Multiple) Histograms (PC(M)H
[194,195]), and/or the average count rate.

Themodel evaluation for FCS is rather simple and based on standard expressions
for FCS, adapted to consider the effect of distribution bin width and labelling effi-
ciency. Figure 8.10 shows a simplified scheme of the concept underlying the model
evaluation.
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Model 

Figure 8.10. Basic model hierarchy. At the lowest level, the model considers a distribution of
particle numbers over stoichiometries. The molecular brightness 𝜀𝑗 ∝ 𝑗 is then condsidered
to determine the species-wise signal level for evaluation of average count rates and PCH if
needed. Species binning and labelling efficiency are also considered at this step, but omitted
from the figure. The same information is also sufficient to predict the species-wise correla-
tion amplitudes. Finally, considering links between stoichiometry and diffusion coefficient,
the species-wise diffusion times are calculated and the ACF evaluated. For brevity, the two-
dimensional expression of the ACF time-dependence is shown.

𝐺 (𝜏) = 𝛾𝐺𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦𝐺𝑏𝑙𝑖𝑛𝑘𝑖𝑛𝑔 + 𝐺∞

𝐺𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 =

∑
𝑗∈𝐽𝑒 𝑔𝑑𝑖 𝑓 𝑓 , 𝑗 (𝜏) 〈𝑁𝑗〉𝑑 𝑗𝜀2

𝑗

(
1 + 1−𝑝𝑙𝑎𝑏𝑒𝑙

𝑗𝑝𝑙𝑎𝑏𝑒𝑙

)
[∑

𝑗∈𝐽𝑒 〈𝑁𝑗〉𝑑 𝑗𝜀𝑗
]2

𝑔𝑑𝑖 𝑓 𝑓 , 𝑗 (𝜏) = 1
1 + 𝜏

𝜏𝑑𝑖 𝑓 𝑓 , 𝑗

√
1

1 + 𝜏
𝜏𝑑𝑖 𝑓 𝑓 , 𝑗𝑆2

𝐺𝑏𝑙𝑖𝑛𝑘𝑖𝑛𝑔 = 1 + 𝐹𝑏𝑙𝑖𝑛𝑘
1 − 𝐹𝑏𝑙𝑖𝑛𝑘 exp

(
−

(
𝜏

𝜏𝑏𝑙𝑖𝑛𝑘

)𝛽𝑏𝑙𝑖𝑛𝑘 )
(8.30)

with 𝛾 = 2−3/2 for 3D diffusion.
PC(M)Hmodel evaluation is a multi-step procedure [263]. Firstly, the probability

for 𝑛ℎ𝜈 photon counts within bin time 𝑡𝑏𝑖𝑛 is evaluated for a single particle residing
at a random position within the observation volume, given molecular brightness 𝜀.
The range of queried 𝑛ℎ𝜈 is matched to the range of experimentally observed photon
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counts. Using the 3DGaussian approximation for the observation volume shape that
is commonly used in FCS, this becomes:

𝑝(1)𝑗 (𝑛ℎ𝜈) = 1
𝑛ℎ𝜈!𝑄

√
𝜋

∫ ∞

0
𝛾

(
𝑛ℎ𝜈 , 𝑡𝑏𝑖𝑛𝜀𝑗 exp

(−2𝑥2) ) 𝑑𝑥 (8.31)

where the integral over the incomplete gamma function 𝛾 (. . .) is evaluated nu-
merically. However, it was pointed out that the 3DGaussian approximation does not
work well for PCH [263]. Instead, a simple correction has been proposed that sum-
marizes the non-Gaussian PSF shape features through an additional fit parameter
𝐹:

𝑝(1)𝑗,𝑐𝑜𝑟𝑟 (𝑛ℎ𝜈) =
𝑝(1)𝑗 (𝑛ℎ𝜈)
(1 + 𝐹)2 +

{
2− 3

2𝑄−1𝑡𝑏𝑖𝑛𝜀𝑗𝐹 𝑛ℎ𝜈 = 1
0 𝑛ℎ𝜈 > 1 (8.32)

In practice, 𝑝(1)𝑗 ,𝑐𝑜𝑟𝑟 (0) is calculated as 𝑝(1)𝑗 ,𝑐𝑜𝑟𝑟 (0) = 1−∑
𝑛ℎ𝜈>0 𝑝

(1)
𝑗 ,𝑐𝑜𝑟𝑟 (𝑛ℎ𝜈)Next, given

the current estimate of particle number 〈𝑁𝑗〉 (considering stoichiometry binwidth 𝑑 𝑗),
a probability mass distribution 𝑝 (𝑁) of 𝑁𝑡𝑟𝑖𝑎𝑙 particles being in the reference volume
at any given time is calculated based on a Poisson distributionwith expectation value
𝜆 = 〈𝑁𝑗,𝑃𝐶𝐻〉 = 2 3

2𝑄𝑑 𝑗〈𝑁𝑗〉.

𝑝 (𝑁𝑡𝑟𝑖𝑎𝑙) = Poisson
(
𝑘 = 𝑁𝑡𝑟𝑖𝑎𝑙 ,𝜆 = 〈𝑁𝑗,𝑃𝐶𝐻〉) (8.33)

The highest𝑁𝑡𝑟𝑖𝑎𝑙 to evaluate is chosen such that𝑁𝑡𝑟𝑖𝑎𝑙,𝑚𝑎𝑥 ≥ 2 and
∑
𝑁𝑡𝑟𝑖𝑎𝑙 𝑝 (𝑁𝑡𝑟𝑖𝑎𝑙) >

1 − 𝑇𝑃 with precision cutoff 𝑇𝑃 . The same range of relevant 𝑁𝑡𝑟𝑖𝑎𝑙 is now also used
to extend the single-particle PCH (Eq. 8.32 to 𝑁𝑡𝑟𝑖𝑎𝑙-particle PCHs though repeated
self-convolutions:

𝑝(𝑁𝑡𝑟𝑖𝑎𝑙)𝑗,𝑐𝑜𝑟𝑟 (𝑛ℎ𝜈) =


𝛿𝑛ℎ𝜈 , 𝑁𝑡𝑟𝑖𝑎𝑙 = 0
𝑝(1)𝑗,𝑐𝑜𝑟𝑟 (𝑛ℎ𝜈) , 𝑁𝑡𝑟𝑖𝑎𝑙 = 1

𝑝(1)𝑗 ,𝑐𝑜𝑟𝑟 (𝑛ℎ𝜈) ⊗ ...
𝑁𝑡𝑟𝑖𝑎𝑙 𝑡𝑒𝑟𝑚𝑠 𝑡𝑜𝑡𝑎𝑙

⊗ 𝑝(1)𝑗 ,𝑐𝑜𝑟𝑟 (𝑛ℎ𝜈) , 𝑁𝑡𝑟𝑖𝑎𝑙 > 1
(8.34)

where Kroneker delta 𝛿𝑛ℎ𝜈 expresses the fact that if 𝑁𝑡𝑟𝑖𝑎𝑙 = 0, no photons can be
detected:

𝛿𝑛ℎ𝜈 =

{
1, 𝑛ℎ𝜈 = 0ť
0, 𝑛ℎ𝜈 > 0 (8.35)

The actual PCH for species 𝑗 Π𝑗 (𝑛ℎ𝜈) is then a weighted sum over all the 𝑁𝑡𝑟𝑖𝑎𝑙-
particle PCHs:

Π𝑗 (𝑛ℎ𝜈) =
∑
𝑁𝑡𝑟𝑖𝑎𝑙

𝑝 (𝑁𝑡𝑟𝑖𝑎𝑙) 𝑝(𝑁𝑡𝑟𝑖𝑎𝑙)𝑗,𝑐𝑜𝑟𝑟 (𝑛ℎ𝜈) (8.36)

When there is mixture of different species to evaluate 𝐽𝑒 = { 𝑗1 , . . . , 𝑗𝑚𝑎𝑥}, the
overall PCH Π (𝑛ℎ𝜈) is the convolution of the independently evaluated species-wise
PCHs.

Π (𝑛ℎ𝜈) = Π𝑗1 (𝑛ℎ𝜈) ⊗ . . . ⊗ Π𝑗𝑚𝑎𝑥 (𝑛ℎ𝜈) (8.37)

The calculation described so far assumes that the bin time 𝑡𝑏𝑖𝑛 is much shorter
than the time scale of diffusion, and neglects blinking. For PCMH analysis, i.e., PCH
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analysis with varied bin time 𝑡𝑏𝑖𝑛 , these are explicitly corrected considered through
𝑡𝑏𝑖𝑛-dependent corrections to 𝜀𝑗 and 〈𝑁𝑗〉 based on [194,195]:

〈𝑁𝑗 ,𝑎𝑝𝑝〉 (𝑡𝑏𝑖𝑛) =
〈𝑁𝑗〉

Λ𝑑𝑖 𝑓 𝑓 (𝑡𝑏𝑖𝑛)Λ𝑏𝑙𝑖𝑛𝑘 (𝑡𝑏𝑖𝑛)
𝜀𝑗,𝑎𝑝𝑝 (𝑡𝑏𝑖𝑛) = 𝜀𝑗,𝑎𝑝𝑝Λ𝑑𝑖 𝑓 𝑓 (𝑡𝑏𝑖𝑛)Λ𝑏𝑙𝑖𝑛𝑘 (𝑡𝑏𝑖𝑛)

(8.38)

with diffusion correction term:

Λ𝑑𝑖 𝑓 𝑓 (𝑡𝑏𝑖𝑛) =
4𝑆𝜏𝑑𝑖 𝑓 𝑓 , 𝑗
𝑡2𝑏𝑖𝑛𝑎1

[
𝑎3

(
𝜏𝑑𝑖 𝑓 𝑓 , 𝑗 + 𝑡𝑏𝑖𝑛

) + 𝑎1𝜏𝑑𝑖 𝑓 𝑓 , 𝑗 (𝑆 − 𝑎2)
]

𝑎1 =
√
𝑆2 − 1

𝑎2 =

√
𝑆2 + 𝑡𝑏𝑖𝑛

𝜏𝑑𝑖 𝑓 𝑓 , 𝑗

𝑎3 = 𝑡𝑎𝑛ℎ−1
(
𝑎1

𝑎2 − 𝑆
1 + 𝑆 (𝑎2 − 1)

)
(8.39)

and blinking correction term:

Λ𝑏𝑙𝑖𝑛𝑘 (𝑡𝑏𝑖𝑛) = 1+
2𝐹𝑏𝑙𝑖𝑛𝑘𝜏𝑏𝑙𝑖𝑛𝑘,𝑒 𝑓 𝑓
𝑡𝑏𝑖𝑛 (1 − 𝐹𝑏𝑙𝑖𝑛𝑘)

(
1 − 𝜏𝑏𝑙𝑖𝑛𝑘,𝑒 𝑓 𝑓

𝑡𝑏𝑖𝑛

(
1 − exp

(
− 𝑡𝑏𝑖𝑛
𝜏𝑏𝑙𝑖𝑛𝑘,𝑒 𝑓 𝑓

)))
𝜏𝑏𝑙𝑖𝑛𝑘,𝑒 𝑓 𝑓 = 𝜏𝑏𝑙𝑖𝑛𝑘Γ

(
1 + 1

𝛽𝑏𝑙𝑖𝑛𝑘

) (8.40)

where average blinking time 𝜏𝑏𝑙𝑖𝑛𝑘,𝑒 𝑓 𝑓 of the stretched exponential profile is used
for simplicity.

Incomplete labelling in PCH is evaluated by iteration over all possible number
of labels (i.e., 𝜀 = {𝜀1 , 2𝜀1 , · · · , 𝑗𝜀1}) for each 𝑗-mer species. Here, the monomer la-
belling probability 𝑝𝑙𝑎𝑏𝑒𝑙 is used to predict the average particle numbers of different
brightnesses via a binomial distribution:

〈𝑁𝑗 ,𝜀=𝑘𝜀1〉 = 〈𝑁𝑗〉
(
𝑘
𝑗

)
𝑝𝑘𝑙𝑎𝑏𝑒𝑙

(
1 − 𝑝𝑙𝑎𝑏𝑒𝑙

) 𝑗−𝑘 (8.41)

Finally, in addition to ACF and PCH, the average count rate 〈𝐹𝑚𝑜𝑑𝑒𝑙〉 is evalu-
ated by considering concentrations, molecular brightnesses, blinking, and labelled
monomer fractions:

〈𝐹𝑚𝑜𝑑𝑒𝑙〉 =
∑
𝑗

〈𝑁𝑗〉𝑑 𝑗𝜀𝑗𝑝𝑙𝑎𝑏𝑒𝑙 (8.42)

8.3.4 Software: Cost function and optimization

The fit is performed by minimizing a negative logarithmic likelihood function 𝑁𝐿𝐿
using the Nelder-Mead algorithm [264]. In general, the 𝑁𝐿𝐿 used consists of a num-
ber of additive terms that can be used or not, or exchanged between different likeli-
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hood models, depending on the fit settings. This choice is motivated as a generaliza-
tion of the global minimization strategy for FCS and PCH data in [195, 265], and jus-
tified as a joint probability of the different observables given a trial model (although
we recognize that the different observables are not entirely independent, and a more
rigorous treatment may require consideration of their dependencies):

𝑁𝐿𝐿 =
𝑁𝐿𝐿𝐹𝐶𝑆
𝐷𝑜𝐹𝐹𝐶𝑆

+ 𝑁𝐿𝐿𝑃𝐶𝐻
𝐷𝑜𝐹𝑃𝐶𝐻

+ 𝑁𝐿𝐿𝐴𝐶𝑅 + 𝑁𝐿𝐿𝑖𝑠 (8.43)

𝑁𝐿𝐿𝐹𝐶𝑆 is a simpleweighted sum of residual squares (WLSQ) for the comparison
of the current ACF model to the ACF data:

𝑁𝐿𝐿𝐹𝐶𝑆 =
1
2

∑
𝑖

(
𝐺𝑚𝑜𝑑𝑒𝑙 (𝜏𝑖) − 𝐺𝑑𝑎𝑡𝑎 (𝑖)

𝜎 [𝐺𝑑𝑎𝑡𝑎 (𝑖)]
)2

(8.44)

where the factor 1/2 reflects the scaling between negative logarithmic likehood and
weighted sumof residual squares for aGaussian-distributed variable, and 𝑖 describes
iteration over data points in the experimental ACF.

The likelihood function for PC(M)H fitting is available in two variants depending
on user choice, either as a weighted least-squares approximation, or as an explicit
evaluation of the binomial probability distribution (considering that the normalized
PCH is just a probability mass function for detection of 𝑛ℎ𝜈 photons per bin):

• WLSQ:

𝑁𝐿𝐿𝑃𝐶𝐻 =
1
2

∑
𝑛ℎ𝜈

[Π𝑚𝑜𝑑𝑒𝑙 (𝑛ℎ𝜈)𝑁ℎ𝜈 −Π𝑑𝑎𝑡𝑎 (𝑛ℎ𝜈)]2
Π𝑑𝑎𝑡𝑎,𝑎𝑏𝑠 (𝑛ℎ𝜈) (8.45)

• Binomial:

𝑁𝐿𝐿𝑃𝐶𝐻 =
∑
𝑛ℎ𝜈

−Π𝑑𝑎𝑡𝑎,𝑎𝑏𝑠 (𝑛ℎ𝜈) 𝑙𝑛 (Π𝑚𝑜𝑑𝑒𝑙 (𝑛ℎ𝜈))

− (
𝑁ℎ𝜈 −Π𝑑𝑎𝑡𝑎,𝑎𝑏𝑠 (𝑛ℎ𝜈)

)
𝑙𝑛 (1 −Π𝑚𝑜𝑑𝑒𝑙 (𝑛ℎ𝜈))

(8.46)

where 𝑁ℎ𝜈 =
∑
𝑛ℎ𝜈 Π𝑑𝑎𝑡𝑎,𝑎𝑏𝑠 (𝑛ℎ𝜈) is the total number of considered photons, and

Π𝑑𝑎𝑡𝑎 (𝑛ℎ𝜈) is the experimentally obtained non-normalized PCH. In the case of PCMH
analysis, the 𝑁𝐿𝐿𝑃𝐶𝐻 for all evaluated bin times are summed. The degrees of free-
dom 𝐷𝑜𝐹𝐹𝐶𝑆 and 𝐷𝑜𝐹𝑃𝐶𝐻 for normalization are obtained from counting the con-
tributing data points, and the local free parameters relevant only to the respective
function:

𝐷𝑜𝐹𝐹𝐶𝑆/𝑃𝐶𝐻 = 𝑁
[
datapoints in ACF/PCH

] − 1
− 𝑁 [

free local parameters for ACF/PCH
] (8.47)

𝑁𝐿𝐿𝐴𝐶𝑅 is an additional likehood function term that serves as a soft constraint to
match the estimated concentrations and molecular brightnesses to the average count
rate. It can be either a weighted least-squares term, or a Poisson likelihood term:

• WLSQ:

𝑁𝐿𝐿𝐴𝐶𝑅 =
𝑡𝑎𝑐
2

[〈𝐹𝑚𝑜𝑑𝑒𝑙〉 − 〈𝐹𝑑𝑎𝑡𝑎〉]2
〈𝐹𝑑𝑎𝑡𝑎〉 (8.48)
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• Poisson:
𝑁𝐿𝐿𝐴𝐶𝑅 = −𝑡𝑎𝑐

[〈𝐹𝑑𝑎𝑡𝑎〉𝑙𝑛 (〈𝐹𝑚𝑜𝑑𝑒𝑙〉𝑡𝑎𝑞 ) + 〈𝐹𝑚𝑜𝑑𝑒𝑙〉
]

(8.49)

𝑁𝐿𝐿𝑖𝑠 is an additional likelihood term describing ”incomplete sampling”, i.e., de-
viations between population-level concentrations and observation-level concentra-
tions. During measurement duration 𝑡𝑎𝑐 , the signal at any time will stem from a
number of particles that is Poisson-distributed around a population mean 〈𝑁𝑝𝑜𝑝〉.

𝑃
(
𝑁𝑜𝑏𝑠,𝑡𝑜𝑡

)
= Poisson

(
𝑘 = 𝑁𝑜𝑏𝑠,𝑡𝑜𝑡 ,𝜆 = 〈𝑁𝑝𝑜𝑝〉 𝑡𝑎𝑐

𝜏𝑑𝑖 𝑓 𝑓 , 𝑗

)
(8.50)

The total number 𝑁𝑜𝑏𝑠,𝑡𝑜𝑡 of particles with diffusion time 𝜏𝑑𝑖 𝑓 𝑓 observed during
the entire acquisition will then also be Poisson-distributed, and the observation-level
mean particle number will follow that:

〈𝑁𝑜𝑏𝑠〉 ≈ 𝑁𝑜𝑏𝑠,𝑡𝑜𝑡
𝜏𝑑𝑖 𝑓 𝑓 , 𝑗

𝑡𝑎𝑐
(8.51)

Generally, interpretation of FCS data assumes that 〈𝑁𝑜𝑏𝑠〉 = 〈𝑁𝑝𝑜𝑝〉, which is rea-
sonable for large 𝑁𝑜𝑏𝑠,𝑡𝑜𝑡 given the properties of the Poisson distribution:

𝜎 [〈𝑁𝑜𝑏𝑠〉]
〈𝑁𝑜𝑏𝑠〉 ≈ 𝜎

[
𝑁𝑜𝑏𝑠,𝑡𝑜𝑡

]
𝑁𝑜𝑏𝑠,𝑡𝑜𝑡

∝ 1√
〈𝑁𝑝𝑜𝑝〉 𝑡𝑎𝑐

𝜏𝑑𝑖 𝑓 𝑓 , 𝑗

(8.52)

But clearly, for rare events entering the data analysis with a small 𝑁𝑜𝑏𝑠,𝑡𝑜𝑡 this
uncertainty can be significant. This insufficient sampling of events with long 𝜏𝑑𝑖 𝑓 𝑓 , 𝑗
and/or small 〈𝑁𝑝𝑜𝑝〉 is one of the reasons for the failure of FCS in treating rare par-
ticle species correctly in conventional data analysis (see Chapter 6). In analysing a
multi-species mixture such as what is typically observed in self-assembling systems,
these considerations are true for each occurring species independently, meaning that
it is perfectly possible and expected for some species to be well-represented in the
data while others are not. This is what the incomplete sampling fitting strategy tries
to take into account by explicitly distinguishing population-level and observation-
level concentrations. Effectively, the model is a hierarchical model in which 〈𝑁𝑗,𝑝𝑜𝑝〉
is constrained by one of the above-mentioned distribution models while 〈𝑁𝑗,𝑜𝑏𝑠〉 is
in principle fitted freely for every evaluated 𝑗, but constrained to fluctuate within a
reasonable interval around 〈𝑁𝑗,𝑝𝑜𝑝〉 via 𝑁𝐿𝐿𝑖𝑠 :

• WLSQ:

𝑁𝐿𝐿𝑖𝑠 =
𝑡𝑎𝑐
2

∑
𝑗∈𝐽𝑒

𝑑 𝑗
𝜏𝑑𝑖 𝑓 𝑓 , 𝑗

[〈𝑁𝑗 ,𝑝𝑜𝑝〉 − 〈𝑁𝑗,𝑜𝑏𝑠〉
]2

〈𝑁𝑗,𝑝𝑜𝑝〉 (8.53)

• Poisson:

𝑁𝐿𝐿𝑖𝑠 =
∑
𝑗∈𝐽𝑒

𝑑 𝑗

[
〈𝑁𝑗,𝑜𝑏𝑠〉 𝑡𝑎𝑐

𝜏𝑑𝑖 𝑓 𝑓 , 𝑗
𝑙𝑛

(
〈𝑁𝑗 ,𝑝𝑜𝑝〉 𝑡𝑎𝑐

𝜏𝑑𝑖 𝑓 𝑓 , 𝑗

)
−〈𝑁𝑗,𝑝𝑜𝑝〉 𝑡𝑎𝑐

𝜏𝑑𝑖 𝑓 𝑓 , 𝑗
− 𝑙𝑛

(
Γ

(
〈𝑁𝑗,𝑜𝑏𝑠〉 𝑡𝑎𝑐

𝜏𝑑𝑖 𝑓 𝑓 , 𝑗

)
+ 1

)] (8.54)
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with gamma function Γ (. . .). In case incomplete sampling and incompltete la-
belling are considered, the likelihood function iterates not only over 𝐽𝑒 , but also over
all possible nonzero numbers of labels (e.g., for 𝑗 = 3, one label, two labels, and three
labels are considered), calculaing their respective frequencies based on binomial dis-
tributions. In doing so, 𝑝𝑙𝑎𝑏𝑒𝑙 is assumed to be constant and fixed, though. There is
also the option of extending𝑁𝐿𝐿with another term to allowdeviations of the species-
wise observation-level 𝑝𝑙𝑎𝑏𝑒𝑙 , fluctuating around the user-specified population-level
parameter. However, this fitting strategy is computationally prohibitively expensive
and gave no practical added value, and will therefore not be described here further.

8.3.5 Regularized fitting

Themethods described in the previous section assume the use of few-parameter func-
tions like lognormal or stretched exponential to describe a particle size distribution.
However, there are also other techniques available that make no a priori assumptions
about the shape of the distribution to be reconstructed other than the fact that the dis-
tribution is smooth. These methods, mentioned in Chapter 6, include Maximum En-
tropy Method (MEM, [266–268]), ”CONTIN” fitting [269–271], and other analogous
approaches [272]. The ”FCS_Spectrum” software also allows replacing the use of
parametric distribution models with these optimization methods, with little change
to the rest of the model structure and evaluation.

In general, to use a regularization fit in ”FCS_Spectrum”, first, a Gaussian distri-
bution fit with some simplifications to accelerate evaluation is performed to get a first
reasonable estimate of concentrations. The result of that fit is then used as the basis
for the regularization fit. The key of the regularization fit from the technical point
of view is a modified iteration scheme dueing minimization. At each iteration, the
gradient in residuals is calculated based on weighted residuals:

∇𝑄 (
𝑗
)
=

2𝛾
𝑖𝑚𝑎𝑥

∑
𝑖

𝑔𝑑𝑖 𝑓 𝑓 , 𝑗 (𝜏𝑖) 𝐺𝑚𝑜𝑑𝑒𝑙 (𝜏𝑖) − 𝐺𝑑𝑎𝑡𝑎 (𝑖)𝜎2 [𝐺𝑑𝑎𝑡𝑎 (𝑖)] (8.55)

with 𝑔𝑑𝑖 𝑓 𝑓 , 𝑗 (𝜏𝑖) as in Eq. 8.30. Note that Eq. 8.55 only works directly if the target
of regularization (see below) is the species-wise correlation amplitude, and labelling
efficiency 𝑝𝑙𝑎𝑏𝑒𝑙 = 1. In other cases, other, somewhat more cumbersome expressions
for the gradients need to be used.

In addition, the gradients for the regularization term of choice are calculated:

• MEM cost:
𝑆 = −

∑
𝑗∈𝐽𝑒

𝑎
(
𝑗
)
𝑙𝑛

(
𝑎
(
𝑗
) )

(8.56)

• MEM gradient:
∇𝑆 (

𝑗
)
= −1 − 𝑙𝑛 (

𝑎
(
𝑗
) )

(8.57)

• CONTIN cost:
𝑆 = −

∑
𝑗∈𝐽𝑒

(
2𝑎

(
𝑗
) − 𝑎 (

𝑗 − 1
) − 𝑎 (

𝑗 + 1
) )2 (8.58)
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• CONTIN gradient:

∇𝑆 (
𝑗
)
= −[12𝑎

(
𝑗
) − 8

(
𝑎
(
𝑗 − 1

) + 𝑎 (
𝑗 + 1

) )
+2

(
𝑎
(
𝑗 − 2

) + 𝑎 (
𝑗 + 2

) )] (8.59)

where 𝑎
(
𝑗
)
is the normalizedweight of the distribution onwhich the smoothness

regularization operates (
∑
𝑗∈𝐽𝑒 𝑎

(
𝑗
)
= 1). Similarly to the use of distribution function

models, 𝑎
(
𝑗
)
can be set to represent amplitude fractions, mass fractions, or particle

number fractions. 𝑆 is not explicitly evaluated in calculation, only the (directly cal-
culated) gradients ∇𝑆 (

𝑗
)
are required. From ∇𝑄 and ∇𝑆 (

𝑗
)
, the update of 𝑎

(
𝑗
)
is

calculated:

𝑎𝑛𝑒𝑤
(
𝑗
)
= 𝑎𝑜𝑙𝑑

(
𝑗
) + Δ𝑎 + 0.1Δ𝑎𝑜𝑙𝑑

Δ𝑎 = 2 · 10−4𝑎𝑜𝑙𝑑
(
𝑗
) ( |∇𝑄|

|∇𝑆|𝐿∇𝑆
(
𝑗
) − 1

2
∇𝑄 (

𝑗
) ) (8.60)

with regularization weight (Lagrange multiplier) 𝐿, which will be mentioned
again later, increment Δ𝑎, and vertical bars denoting magnitude of the respective
vector. Δ𝑎𝑜𝑙𝑑 is Δ𝑎 from the previous iteration.

After a single update of 𝑎
(
𝑗
)
based on Eqs. 8.55-8.60, the global amplitude of

the correlation function (total particle concetration) is optimized based on weighted-
least-squares minimization of Eq. 8.44. Next, if other model parameters are freely
fitted besides concentation parameters, a single iteration of Nelder-Mead optimiza-
tion of the other model parameters based on Eq. 8.43 is performed, where also PCH
and/or average count rate can be considered. Then, a single iteration round is com-
plete, and gradients in ACF residuals and regularization functions are calculated
again. This loop terminates after an iteration limit is reached, or until the test pa-
rameter described in [273] falls below the threshold:

𝑇𝐸𝑆𝑇 =
1
2

∑
𝑗∈𝐽𝑒

(∇𝑄 (
𝑗
)

|∇𝑄| − ∇𝑆 (
𝑗
)

|∇𝑆|
)2

< 0.1 (8.61)

The optimization begins with regularization weight 𝐿 = 20. The purpose of 𝐿 is
to balance the weight between goodness of fit and model smoothness (enforced by
regularization term) to achieve a parsimoneous fit within the limits allowed by the
data. The iteration strategy described so far is the inner loop of a nested iteration
strategy. The outer loop aims to update 𝐿 until a good trade-off between goodness
of fit and smoothness is found. If the goodness of fit parameter in the last iteration
was outside the range of [1; 1.3], the fit is considered either over- or underfitted. The
optimization terminates if the fit is within the plausible range, or if for 3 (outer) iter-
ations relative changes in both goodness of fit and 𝐿 were within 1%. Otherwise, 𝐿
is updated and the inner iterations resumed:

𝐿𝑛𝑒𝑤 = 𝐿𝑜𝑙𝑑
|∇𝑄𝑛𝑒𝑤 |
|∇𝑆𝑛𝑒𝑤 |

( |∇𝑄𝑜𝑙𝑑 |
|∇𝑆𝑜𝑙𝑑 |

) 1
3

(8.62)

where |∇𝑄𝑜𝑙𝑑/𝑆𝑜𝑙𝑑 | denoting themagnitudes of vectors at the time of the previous
evaluation of Eq. 8.62 (|∇𝑄𝑜𝑙𝑑/𝑆𝑜𝑙𝑑 | = 1 in first evaluation).
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8.3.6 Application example: Real-time quantification of RNA digestion

As a simple application example to discuss some aspects of the use of the model, the
analysis of data from ssRNA samples to track degradation in real time will be shown
here. ssRNA samples were produced by Adam Mamot using in vitro transcription
similar to what is described in the Appendix to Chapter 6, but following a protocol
that produced a single target length of 928 nucleotides unless specified otherwise.
FCS measurements were performed also performed as described in the Appendix.

Figure 8.11. Calibrating particle size scaling. A series of single-size ssRNAs was measured
in FCS and analyzed with conventional single-species fits. The diffusion times could be fit-
ted well with a simple model for a Gaussian-chain polymer in good solvent, with 𝜏𝑑 ∝ 𝑗0.5.
Measurements were performed at 23°C.

In a first set of measurements, a series of ssRNA fragments of different sizes were
measured to determine the scaling of diffusion time with RNA fragment length (Fig-
ure 8.11). Consistent with the common assumption that the persistence length of
single stranded nucleic acid filaments is in the order of one or a few nanometers (not
muchmore than ten nucleotides) [274], we could describe the data well with amodel
assuming 𝜏𝑑 ∝ 𝑗0.5, corresponding to a random coil polymer in good solvent. This
is not a trivial result for ssRNA due to the tendency of ssRNA to fold onto itself into
complex secondary structures. We thus found an extrapolated monomer diffusion
time of 15.6 𝜇𝑠 under the experimental conditions given. Note that this is an extrap-
olated value meant for coarse description of ssRNA fragments of length >> 1 𝑛𝑡.
Therefore, the short diffusion time that would be implausible for a free nucleotide
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(shorter than what is usually found for free fluorescent dyes) is neither surprising,
nor invalidating the model.

A B

Figure 8.12. FCS observation of ssRNA digest. ssRNA diffusion ACFs from a series of 90
seconds measurements over one hour starting with a 928 nt long fragment under digestion
with RNase R. Only five ACFs out of the time series are shown for clarity. A: ACFs with fits
using a conventional single-species model. B: ACFs with fits using a lognormal size distribu-
tion model as described in the main text. Measurements were performed at 37°C.

We thenmeasured ssRNA samples that initially had a single size, but were slowly
digested after addition of 2 𝜇𝑙 of the exonuclease RNase R solution (Ribonuclease R,
Biosearch Technologies) to a total volume 50𝜇𝑙. Using the previously calibrated parti-
cle size scaling, we estiamted fragment length distributions from FCS data acquired
during digestion. To do this, ACFs were exported using FCS_Fixer software (Section
8.1) with automated FLCS-based background removal. ACFs were then fitted as-
suming a lognormal distribution of particle number fractions over fragment length
(Figure 8.12). The fraction of labelled nucleotides was explicitly considered. Figure
8.12 also shows conventional single-component fits for comparison.

The choice of particle number distribution (as opposed to amplitude fractions or
mass fractions, see above) was empirically motivated based on which model yielded
good fit results. The use of a lognormal distribution rather than the alternatives was
based on the fact that the lognormal distribution is rather generic in nature andworks
well for many different datasets. In contrast, the Gaussian function tends to yield
too-narrow distributions with the logarithmically spaced array of diffusion times
queried, whereas the Gamma distribution is numerically instable on some datasets.
The stretched-exponential model finally is a model with very different shape that
is physically unjustified in this sample. Note that artifacts from discretization and
stoichiometry binwidth consideration distort the histograms in Figure 8.13 at short
fragment lengths. The fact that the distributions do not match the initial size of 928
nt well is likely explained by the fact that the calibration data (Figure 8.11) and the
digestion data (Figure 8.13) were acquired at different temperatures.
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Figure 8.13. Fragment length distributions during ssRNA digestion. ssRNA particle num-
ber distributions reconstructed from the fits in Figure 8.12 Grey dotted line marks the 928 nt
fragment size before digest. Yellow lines are early measurements, purple lines late measure-
ments.

Using the obtained distributions, one can now obtain the average fragment size.
Averaging can be done according to different weighting schemes: Weighting by par-
ticle number fraction, weighting by mass fraction, or weighting by ACF amplitude
fraction (”z-average” [234]). All thres averages can be recalculated from the same fit
result. Results are shown in Figure 8.14 A. Obviously, the z-average results are im-
plausible with seemingly increasing particle size over time. Such instable behavior of
the z-average statistics is often seen in this software for fitting, if the original distribu-
tion in fitting is defined on particle numbers or mass fractions. The particle number
weighted or mass weighted distribtuions yield more robust results, and decay over
time towards smaller fragments as expected. These two can then be used to recal-
culate the polydispersity index 𝑃𝐷𝐼 = 〈 𝑗〉𝑚𝑎𝑠𝑠/〈 𝑗〉𝑛𝑢𝑚𝑏𝑒𝑟 , which is shown in Figure
8.14 B. The increase in 𝑃𝐷𝐼 over time is the expected observation as not all ssRNA
particles will be digested at the same time. Rather, the digest is a stochastic process
that is expected to proceed through a phase of high dispersity before reaching a final,
fully digested state. From FCS data alone it is hard to tell whether this final state was
reached due to the low weight of monomers in the overall ACF (see Chapter 6) and
the fact that the fitting of a parametric distribution restricted to 𝑗 ≥ 1 is not ideal for
analyzing a monomers-dominated sample. The 𝑃𝐷𝐼 in the earliest measurements is
clearly > 1, although the undigested ssRNA should show 𝑃𝐷𝐼 = 1. This is a bias
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A B

Figure 8.14. Average fragment lengths over time. A: Changes in average fragment length
over time for two samples (indicated by symbols), with averages over the distributions in
Figure 8.13 calculated with weighting by particle number fraction, by mass fraction, or by
ACF amplitude fraction. B: Polydispersity index recalculated from particle number fraction
weighted and mass fraction weighted average framgent sizes.

of the model strategy as 𝑃𝐷𝐼 = 1 would indicate a delta function-like distribution,
but the lognormal distribution used is constrained to have a non-vanishing standard
deviation.

8.3.7 Summary

The described software ”FCS_Spectrum” offers a flexible and extendable framework
for complex fitting FCS data based on generic descriptions. Various different descrip-
tions of size distributions in polydisperse particle mixtures allow the user to try out
a broad range of models on a dataset, with scripts for batch processing and paral-
lel computing available for upscaling available. Overall, the software remains in an
experimental state with some parameter configurations still leading to unexpected
behavior. However, it is a starting point for development of a truly general FCS mod-
elling framework. Of note, alternative frameworks have been proposed that omit the
data crompression of ACF or PCH calculation, based for example on Baysian mod-
elling frameworks [275] or on deep learning models [276]. It will be interesting to
see which approach will become widespread in the future. Data compression-free
techniques have the advantage of being able use more information present in the raw
data, but the disadvantage of unfavorable scaling of computation time for longer ac-
quisitions. Thus, different niches may form for compression-based and compression-
less analysis techniques, depending on the signal to noise ratio and acquisition time
feasible for a given system of interest.
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9
Summary and outlook

The previous chapters described various applications and method improvements,
mostly of FCS, for the study of self-organization and related processes in bottom-up
synthetic biology.

Weused single-molecule fluorescence imaging, in particularDNA-PAINT, to char-
acterize the higher-order self-assembly of DNA origami nanoparticles upon addition
of cross-linking connector strands. Here, we found an assembly strategy that is much
faster thanwidespread strategies, at the cost of specificity. This strategy continues be-
ing used in other studies combining the DNA origami with other tools of synthetic
biology like phase separating membranes and pattern-forming proteins [198, 204].
Exciting future work here may be the combination with filament-forming proteins to
shape dynamic hydrid DNA origami/protein cortices on membranes. With DNA
origami being much larger ”monomer” particles than the monomers of filament-
forming proteins, one could imagine the DNA nanostructures serving as the rigid
structural element, while protein filaments could act as the active element with faster
turnover of binding/unbinding. The approaches described in this thesis could be
used directly for detailled characterization of structure and dynamics of such net-
works. Largely unused in the published work reprinted in Chapter 4 remained the
orientation information on origami particles. The origami particles were designed
to carry an arrow pattern in DNA-PAINT imaging (Figure 1 of Chapter 4), which
was mostly used as a resolution benchmark. However, this or other patterns (e.g.
an asymmetric three-dots pattern [277]) could also be used to detect and quantita-
tively analyze the orientation of origami particles. This may reveal interesting details
about the interaction of specific faces of the origamiwith protein filaments or pattern-
forming proteins: DNA origami typically expose DNA helix ends on some faces but
not on others, and edge functionalizations and geometry effects are expected to fur-
ther change such interactions.

We explored the feasibility of FCS in LLPS, and the issues that should be rou-
tinely considered. Optimization of sample geometry to avoid unnecessary refracting
interfaces is helpful to improve data quality - although depending on the system
of interest, it may not always be possible. With concentrations of particles of inter-
est often high in the dense phase and extremely low in the dilute phase, accurately
characterizing background especially in the dilute phase can be critical if concentra-
tions are of interest. Bleaching artifacts on the other hand need to be considered
especially in the dense phase. With these insights at hand, it will be interesting to
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study in particular phase-separating systems that are out of thermodynamic equi-
librium [278, 279]. While scanning FCS techniques can circumvent some of the is-
sues mentioned here [214], this ”self-calibrating” approach to scanning FCS sacri-
fices some spatial resolution. The optimizations described here for single-spot FCS
will also be valuable for scanning FCS schemes in which the scanning serves to par-
allelize readout at multiple positions [174]. That way, spatially resolved information
about the condensate dynamics can be retrieved. This should be of great interest
for more detailled microrheology of spatially inhomogeneous droplets [90,280]. Pre-
cisely these inhomogemeous condensates are likely to be of interest as eary protocell
candidates.

Discussing the application of FCS for particle sizing, especially in polydisperse
systems, we offer insights into a number of complementary concepts in experiment
design and data analysis. Many useful ideas exist, but remain to be integrated into a
common framework comparable to what is established in commercial DLS instru-
ments. We develop a prototype for such a general analysis framework with the
”FCS_Spectrum” Python software, and hope that the FCS community will follow our
recommendations in streamlining FCS-based particle sizing experiments in complex
settings.

Overall, we believe that the contribution of our work to the scientific community
is in bringing together a number of ideas for time-resolved fluorescence spectroscopy
and single-molecule microscopy that existed disconnected in the scientific literature.
We developed these ideas further, and standardized protocols, for application to the
specific challenges of self-organizing biomimetic systems of interest to the bottom-
up synthetic biology community. We hope that the insights we gained will be of
use to future researchers in the field who want to obtain high-quality time-resolved
fluorescence microscopy data from fascinating but challenging systems.
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Figure S1: Image correlation analysis work�ow. An acquisition consists of a series of blocks
with a few hundred frames each. From each acquisition block, a correlation image and a
thresholded mask (e.g., to remove membrane defects from the analysis) are calculated, and
from these a single average correlation parameter is calculated, which serves as an estimate
of the autocorrelation amplitude. This value is calculated independently for each bock in an
acquisition, and the (normalized) trace of correlation amplitude over time is �tted to extract
a characteristic timescale of immobilization. The right panel shows three example traces
from di�erent conditions with asymmetric Gaussian �ts.

In this section, will �rst describe the work�ow for our image correlation analysis, fol-

lowed by an explanation of the underlying concept. Our correlation analysis is based on the

following autocorrelation expression:

G(x, y) =
⟨δI(x, y, ti)δI(x, y, ti+1)⟩i

⟨I(x, y, ti)⟩i
2 (S1)

with frame-wise pixel greyscale I(x, y, ti), greyscale �uctuation δI(x, y, ti) = I(x, y, ti) −

⟨I(x, y, ti)⟩i and ⟨...⟩i as averaging over parameter i, here (discrete) time. This expression

was applied to the time-dependent greyscale of every image pixel within each 10 s acquisition

block. Further, a temporal maximum intensity projection (MIP) of the 10 s image stack

was calculated and automatically thresholded to eliminate positions in which no particles

S2
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were present throughout the acquisition block, e.g., membrane defects. Autocorrelation

values G(x, y) from pixels within the mask from MIP thresholding were averaged to yield a

single correlation value G(j) characterizing the entire acquisition block j. The correlation

values for a given experiment consisting of multiple 10 s blocks were then normalized as

Gn(j) = G(j)/G(j = 1). To extract characteristic timescales, the retrieved curves were �tted

in OriginPro (2019b, OriginLab, unweighted Levenberg-Marquardt �t) with an asymmetric

Gaussian function:

Gn(j) =


1 + A1 · e

[
−ln2(tj−t0)

2

T2
1
2 ,rise

]

for tj ≤ t0

G∞ + A2 · e
[
−ln2(tj−t0)

2

T2
1
2 ,drop

]

for tj > t0

(S2)

with A2 = 1 + A1 − G∞. A1 and G∞ characterize amplitude and asymptote of Gn(j),

respectively, and t0 is the peak position. T 1
2
,rise and T 1

2
,drop are peak half-widths for rising

and falling edge of the correlation change. Reported values in Figure 5b are t0 + T 1
2
,drop as

overall timescale of immobilization (i.e., drop in correlation). The use of a Gaussian function

is rather arbitrary, motivated by its simplicity and the fact that no other model was found

to yield notably better �ts to the shapes of the traces.

The correlation analysis used to characterize cross-linking kinetics is a simpli�ed im-

plementation of the concept of �uorescence correlation spectroscopy (FCS), in particular

temporal image correlation spectroscopy (TICS).1 We will not review that theory in detail

but only explain how the correlation parameter shown in Figure 5 relates to oligomerization

and immobilization. Details can be found in the FCS literature, e.g. refs. 2, 3, and 4.

In FCS/TICS, �uorescence intensity time traces are analyzed through an expression closly

resembling Equation S1:

G(τ) =
⟨δF (t)δF (t+ τ)⟩t

⟨F (t)⟩t
2 (S3)

with time-resolved �uorescence signal F (t) and correlation lag time τ . The autocorrelation

parameter G(x, y) determined in our image correlation analysis serves as an estimate of the
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Figure S2: Simulations to assess sensitivity of image correlation analysis to oligomerization
and immobilization. 16-mers are immobile in these simulations, their increasing fraction
decreases the �uctuation amplitude. Symbol types and linestyles indicate acquisition block
duration, colors indicate frame rate. Black line is the prediction according to Equation S6.

correlation amplitude G0, which in simple settings directly yields the number of particles in

the observation volume:

G0 = lim
τ→0

G(τ) =
1

⟨N(t)⟩t
(S4)

which is true if one assumes the number of particles in the observation volume over time

N(t) to be Poisson-distributed and F (t) = εN(t), i.e. all particles to be described by the

same brightness parameter ε. This relation is true independent of the speci�c value of ε,

and independent of the di�usion coe�cient.

Now consider a mixture of �uorescent signals from multiple species A with distinct bright-

nesses, e.g., di�erent oligomerization states, as well as a static signal contribution from an

immobilized particle fraction S:

F (t) = εSNS +
∑
A

εANA (S5)
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Assuming a Poisson-distributed NA(t) as before and that the di�erent species do not interact,

G0 becomes:

G0 =

∑
A εS

2⟨NA(t)⟩t
[εSNS +

∑
A εA ⟨NA(t)⟩ ]2

(S6)

Fluctuations in the signal from S only originate from shot noise, which is temporally un-

correlated and thus eliminated from the analysis by estimating G0 from nonzero correlation

times (extrapolation of limτ→0G(τ) in FCS, one-frame temporal lag in our analysis). As

a consequence, immobilization of particles manifests as a drop in G0: S contributes only

to the denominator of the correlation function. Thus, increasing the number of immobile

particles (fraction S) while decreasing the number of mobile particles (fractions A) will de-

crease the numerator of G0, but leave the denominator unchanged. On the other hand, G0

increases with progress of oligomerization. To understand this, one has to remember that

producing e.g. one dimer particle consumes two monomer particles. This means that with

progress of association, the overall number of particles will decrease. Further, the di�erent

oligomer species contribute to G0 with di�erent weights given by their squared brightness

εA
2, which increases with higher oligomer stoichiometry. Therefore, a moderate number of

large oligomers will overwhelm the correlation signal from a large number of monomers or

small oligomers: The correlation amplitude will indicate a small overall particle number (i.e.,

large G0).

We employed simple Monte-Carlo simulations to test the sensitivity of this analysis for

oligomerization and immobilzation. Simulations of near-single-molecule imaging acquisitions

were performed using custom software written in MATLAB (R2020b, The MathWorks). A

strongly simpli�ed system that yields data similar to that experimentally observed was simu-

lated: A constant number of 5·105 particles were split into user-de�ned factions of monomers,

dimers, tetramers, octamers, and 16-mers. The simulated �eld of view was equal in size to

that of the experimental acquisitions expanded in each direction by 10 %. Particles were

placed with random positions and orientations in the simulated area. Then, a random walk

simulation with periodic boundary condition was performed. In each one-frame time step,
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particles were displaced by Gaussian-distributed random distances in both x and y, each

with 0 mean and standard deviation
√

2D[pixel2 · frame−1]. The di�usion coe�cient of

monomers was assumed to be 0.1 µm2 s-1, similar to the experimentally observed value

(Figure S4). Oligomer di�usion coe�cients were assumed to be the monomer di�usion coef-

�cient divided by the oligomer stoichiometry as a simple model of decreasing mobility with

increasing oligomer size. 16-mers were fully immobile, representing the immobilized fraction.

Rotational motion was neglected. After completion of the random walk simulation, localiza-

tions in the added 10 % edge were discarded to create a �eld of view equal comparable to

the experiments. From the frame-wise center of mass positions and the orientations, images

of linear oligomers were then generated with Gaussian-shaped point spread functions with

resolution similar to the experiments. Poisson-distributed photon shot noise and realistic val-

ues for Poisson-distributed �uorescent background, camera o�set and Gaussian-distributed

readout noise were applied to create image stacks comparable to the experimental ones.

Simulations were performed in blocks of 20 s, and each condition (oligomer fractions, frame

rate) was simulated three times. For simulations of shorter acquisitions times, the 20 s sim-

ulations were cropped, so that �nally for 20 s acquisitions three simulations per condition

were analyzed, for 10 s acquisitions six, and for 5 s acquisitions twelve.

Comparing the simulation results to predictions according to Equation S6 (Figure S2),

we see that with 10 Hz frame rate and 20 s observation time, we almost perfectly retrieve the

theoretical values. Lower exposure times per frame and shorter acquisitions seem to yield

data less sensitive particularly to association, presumably mainly due to signal-to-noise ratio

limitations. Binning three successive frames of the 30 Hz simulations into a single frame (i.e.,

reducing time resolution to 100 ms without otherwise changing the data content) restores

some of the sensitivity, again suggesting that signal-to-noise ratio is the main limitation. As

our experimental data had been acquired at 30 Hz frame rate with 300 frames (10 s) blocks,

we decided to post-bin our experimental data the same way.

Note that increase of the correlation amplitude due to oligomerization and its decrease

S6

APPENDIX A. APPENDIX TO CHAPTER 4

153



due to immobilization can happen at the same time, and the correlation amplitude G0 (or

G(x, y)) alone is not su�cient to dissect them. Even if one constrains the oligomer brightness

to increase linearly with stoichiometry (i.e., εA = Aε1), the system remains underde�ned for

extraction of ⟨NA(t)⟩t for any multi-species mixture. To be able to extract these values,

one would have to introduce further of assumptions about the association process to link

G(x, y) over successive observations. Alternatively, for data with high signal-to-noise ratio,

higher-order correlation analysis might be a viable option.5,6 We considered these more

advanced methods to be beyond the scope of this manuscript, especially considering that for

our experimental system we expect rather complicated dynamics including signi�cant e�ects

from non-negligible particle size compared to the optical resolution. Instead, we simply �tted

the traces with an asymmetric Gaussian to determine half-rise/half-decay times (Figure S1).
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Supporting Figures

Figure S3: More AFM results. Shown are images comparable to those in main text Figure
3, but with di�erent connector strands: Either sca�old connectors (20 h incubation, top) or
short repeat connectors (2 h incubation, bottom). All images were acquired with 250 nM of
the speci�ed connector strand. Color-coded height scale in all panels in 6 nm.
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Figure S4: Example of single particle tracking results for monomeric DNA origami particles
on DOPC SLBs. DNA origami particles are tethered to the membrane via 8 TEG-chol
anchors. Track map (left) shows a random subset of tracks for better visibility. Colors
are randomly assigned to individual tracks as a guide to the eye. The di�usion coe�cient
histogram to the right shows a minor peak at low mobility (trapped particles, a few of which
are visible in the track map) and a pronounced peak of freely di�using particles.
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Figure S5: More single particle tracking results. Track maps are shown the same way as
in Figure S4. a: Surface-immobilized (via streptavidin anchoring), tracking handle-labelled
particles to assess the lower end of di�usion coe�cients accessible via our method. b: Track-
ing handle-labelled DNA origami mixed and cross-linked (30 min, 50 nM each T14, T20, T40,
T60, and T80) with an excess of unlabelled particles (otherwise as in Figure S4). c: Same as
panel b, but using sca�old connectors (with linker sequence, 20 h incubation before acquisi-
tion).
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Figure S6: DNA-PAINT imaging of non-cross-linked DNA origami nanostructures. a:
Similar conditions as in Figure 4, except without addition of connector strands. DNA-
PAINT imaging shows a di�use background from mobile particles, and a few immobilized
particles at membrane defects (circular structures are larger holes in the supported lipid
bilayer). b: Same as a, but with 3-fold higher density of DNA origami particles. Under such
crowded conditions, particles are hindered in their motion and DNA-PAINT imaging reveals
some structure, but with very low resolution.
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Figure S7: DNA-PAINT imaging of incompletely cross-linked DNA origami superstruc-
tures. Images have been acquired after 2 h cross-linking incubation with sca�old connectors
without (a) or with (b) �exible linker sequence.
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Supporting Tables

Table S1: Image analysis parameters.

Figure Processing

1c overview Localize MNG 450 box size 5; Render RCC undrift 450

frames, manual particle picking, pick similar, undrift

from picked, export zoom 50 max density 1.7

1c average Localize MNG 450 box size 5; Render RCC undrift 450

frames, manual particle picking, pick similar, undrift

from picked, manual particle picking; Average3 Center

of mass, oversampling 65, rotate, center of mass, ro-

tate; Render export zoom 1000 max density 230

5,S1 tempVarianceAnalysis_v4.py with one frame lag,

threshold_multiplication 0.5, bin_frames 3

4a overview Localize MNG 500 box size 5; Render RCC undrift 450

frames, export zoom 7.5 max density 25

4a zoom Localize MNG 500 box size 5; Render RCC undrift 450

frames, export zoom 100 max density 0.2

4b overview Localize MNG 500 box size 5; Render RCC undrift 450

frames, export zoom 7.5 max density 30

4b zoom Localize MNG 500 box size 5; Render RCC undrift 450

frames, export zoom 250 max density 0.15

4c T20 overview Localize MNG 450 box size 5; Render RCC undrift 450

frames, export zoom 15 max density 8.33

4c T20 zoom Localize MNG 450 box size 5; Render RCC undrift 450

frames, export zoom 250 max density 0.04

Continued on next page
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Table S1

Figure Processing

4c T40 overview Localize MNG 450 box size 5; Render RCC undrift 450

frames, export zoom 15 max density 8

4c T40 zoom Localize MNG 450 box size 5; Render RCC undrift 450

frames, export zoom 150 max density 0.12

4c T60 overview Localize MNG 450 box size 5; Render RCC undrift 450

frames, export zoom 15 max density 8

4c T60 zoom Localize MNG 450 box size 5; Render RCC undrift 450

frames, export zoom 150 max density 0.12

4c T80 overview Localize MNG 450 box size 5; Render RCC undrift 450

frames, export zoom 15 max density 7.5

4c T80 zoom Localize MNG 450 box size 5; Render RCC undrift 450

frames, export zoom 250 max density 0.035

S2 tempVarianceAnalysis_v4.py with one frame lag,

threshold_multiplication 0.5, bin_frames 1 or 3

S4 Localize MNG 2500 box size 5; SPT.link_locs memory

2 search_range 3

S5a Localize MNG 2500 box size 5; SPT.link_locs memory

2 search_range 1

S5b Localize MNG 2500 box size 5; SPT.link_locs memory

2 search_range 2

S5c Localize MNG 2500 box size 5; SPT.link_locs memory

2 search_range 2

S6a overview Localize MNG 450 box size 5; Render RCC undrift 450

frames, export zoom 10 max density 5

Continued on next page
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Table S1

Figure Processing

S6a zoom Localize MNG 450 box size 5; Render RCC undrift 450

frames, export zoom 60 max density 0.6

S6b overview Localize MNG 450 box size 5; Render RCC undrift 450

frames, export zoom 10 max density 10

S6b zoom Localize MNG 450 box size 5; Render RCC undrift 450

frames, export zoom 60 max density 0.25

S7a overview Localize MNG 450 box size 5; Render RCC undrift 450

frames, export zoom 15 max density 7

S7a zoom Localize MNG 450 box size 5; Render RCC undrift 450

frames, export zoom 150 max density 0.15

S7b overview Localize MNG 450 box size 5; Render RCC undrift 450

frames, export zoom 15 max density 6

S7b zoom Localize MNG 450 box size 5; Render RCC undrift 450

frames, export zoom 150 max density 0.08
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Table S2: Unfunctionalized staple strands used in all experiments.

Name Sequence

0[47]1[31] AGAAAGGAACAACTAAAGGAATTCAAAAAAA

0[79]1[63] ACAACTTTCAACAGTTTCAGCGGATGTATCGG

0[111]1[95] TAAATGAATTTTCTGTATGGGATTAATTTCTT

0[143]1[127] TCTAAAGTTTTGTCGTCTTTCCAGCCGACAA

0[175]0[144] TCCACAGACAGCCCTCATAGTTAGCGTAACGA

0[207]1[191] TCACCAGTACAAACTACAACGCCTAGTACCAG

0[239]1[223] AGGAACCCATGTACCGTAACACTTGATATAA

0[271]1[255] CCACCCTCATTTTCAGGGATAGCAACCGTACT

1[32]3[31] AGGCTCCAGAGGCTTTGAGGACACGGGTAA

1[64]4[64] TTTATCAGGACAGCATCGGAACGACACCAACC-

TAAAACGAGGTCAATC

1[96]3[95] AAACAGCTTTTTGCGGGATCGTCAACACTAAA

1[128]4[128] TGACAACTCGCTGAGGCTTGCATTATAC-

CAAGCGCGATGATAAA

1[160]2[144] TTAGGATTGGCTGAGACTCCTCAATAACCGAT

1[192]4[192] GCGGATAACCTATTATTCTGAAACAGACGATTG-

GCCTTGAAGAGCCAC

1[224]3[223] GTATAGCAAACAGTTAATGCCCAATCCTCA

1[256]4[256] CAGGAGGTGGGGTCAGTGCCTTGAGTCTCT-

GAATTTACCGGGAACCAG

2[47]0[48] ACGGCTACAAAAGGAGCCTTTAATGTGAGAAT

2[79]0[80] CAGCGAAACTTGCTTTCGAGGTGTTGCTAA

2[111]0[112] AAGGCCGCTGATACCGATAGTTGCGACGTTAG

2[143]1[159] ATATTCGGAACCATCGCCCACGCAGAGAAGGA

Continued on next page
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Table S2

Name Sequence

2[175]0[176] TATTAAGAAGCGGGGTTTTGCTCGTAGCAT

2[207]0[208] TTTCGGAAGTGCCGTCGAGAGGGTGAGTTTCG

2[239]0[240] GCCCGTATCCGGAATAGGTGTATCAGCCCAAT

2[271]0[272] GTTTTAACTTAGTACCGCCACCCAGAGCCA

3[32]5[31] AATACGTTTGAAAGAGGACAGACTGACCTT

3[96]5[95] ACACTCATCCATGTTACTTAGCCGAAAGCTGC

3[160]4[144] TTGACAGGCCACCACCAGAGCCGCGATTTGTA

3[224]5[223] TTAAAGCCAGAGCCGCCACCCTCGACAGAA

4[47]2[48] GACCAACTAATGCCACTACGAAGGGGGTAGCA

4[79]2[80] GCGCAGACAAGAGGCAAAAGAATCCCTCAG

4[111]2[112] GACCTGCTCTTTGACCCCCAGCGAGGGAGTTA

4[143]3[159] TCATCGCCAACAAAGTACAACGGACGCCAGCA

4[175]2[176] CACCAGAAAGGTTGAGGCAGGTCATGAAAG

4[207]2[208] CCACCCTCTATTCACAAACAAATACCTGCCTA

4[239]2[240] GCCTCCCTCAGAATGGAAAGCGCAGTAACAGT

4[271]2[272] AAATCACCTTCCAGTAAGCGTCAGTAATAA

5[32]7[31] CATCAAGTAAAACGAACTAACGAGTTGAGA

5[96]7[95] TCATTCAGATGCGATTTTAAGAACAGGCATAG

5[224]7[223] TCAAGTTTCATTAAAGGTGAATATAAAAGA

6[47]4[48] TACGTTAAAGTAATCTTGACAAGAACCGAACT

6[79]4[80] TTATACCACCAAATCAACGTAACGAACGAG

6[111]4[112] ATTACCTTTGAATAAGGCTTGCCCAAATCCGC

6[175]4[176] CAGCAAAAGGAAACGTCACCAATGAGCCGC

6[207]4[208] TCACCGACGCACCGTAATCAGTAGCAGAACCG

Continued on next page
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Table S2

Name Sequence

6[239]4[240] GAAATTATTGCCTTTAGCGTCAGACCGGAACC

6[271]4[272] ACCGATTGTCGGCATTTTCGGTCATAATCA

7[32]9[31] TTTAGGACAAATGCTTTAAACAATCAGGTC

7[56]9[63] ATGCAGATACATAACGGGAATCGT-

CATAAATAAAGCAAAG

7[96]9[95] TAAGAGCAAATGTTTAGACTGGATAGGAAGCC

7[224]9[223] AACGCAAAGATAGCCGAACAAACCCTGAAC

7[248]9[255] GTTTATTTTGTCACAATCTTACCGAAGCCCTT-

TAATATCA

8[47]6[48] ATCCCCCTATACCACATTCAACTAGAAAAATC

8[79]6[80] AATACTGCCCAAAAGGAATTACGTGGCTCA

8[111]6[112] AATAGTAAACACTATCATAACCCTCATTGTGA

8[207]6[208] AAGGAAACATAAAGGTGGCAACATTATCACCG

8[239]6[240] AAGTAAGCAGACACCACGGAATAATATTGACG

8[271]6[272] AATAGCTATCAATAGAAAATTCAACATTCA

9[32]11[31] TTTACCCCAACATGTTTTAAATTTCCATAT

9[64]11[63] CGGATTGCAGAGCTTAATTGCTGAAACGAGTA

9[256]11[255] GAGAGATAGAGCGTCTTTCCAGAGGTTTTGAA

10[47]8[48] CTGTAGCTTGACTATTATAGTCAGTTCATTGA

10[79]8[80] GATGGCTTATCAAAAAGATTAAGAGCGTCC

10[111]8[112] TTGCTCCTTTCAAATATCGCGTTTGAGGGGGT

10[207]8[208] ATCCCAATGAGAATTAACTGAACAGTTACCAG

10[239]8[240] GCCAGTTAGAGGGTAATTGAGCGCTTTAAGAA

10[271]8[272] ACGCTAACACCCACAAGAATTGAAAATAGC

Continued on next page
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Table S2

Name Sequence

11[32]13[31] AACAGTTTTGTACCAAAAACATTTTATTTC

11[64]13[63] GATTTAGTCAATAAAGCCTCAGAGAACCCTCA

11[128]13[127] TTTGGGGATAGTAGTAGCATTAAAAGGCCG

11[160]12[144] CCAATAGCTCATCGTAGGAATCATGGCATCAA

11[192]13[191] TATCCGGTCTCATCGAGAACAAGCGACAAAAG

11[256]13[255] GCCTTAAACCAATCAATAATCGGCACGCGCCT

12[47]10[48] TAAATCGGGATTCCCAATTCTGCGATATAATG

12[79]10[80] AAATTAAGTTGACCATTAGATACTTTTGCG

12[143]11[159] TTCTACTACGCGAGCTGAAAAGGTTACCGCGC

12[239]10[240] CTTATCATTCCCGACTTGCGGGAGCCTAATTT

12[271]10[272] TGTAGAAATCAAGATTAGTTGCTCTTACCA

13[32]15[31] AACGCAAAATCGATGAACGGTACCGGTTGA

13[64]15[63] TATATTTTGTCATTGCCTGAGAGTGGAAGATT

13[128]15[127] GAGACAGCTAGCTGATAAATTAATTTTTGT

13[160]14[144] GTAATAAGTTAGGCAGAGGCATTTATGATATT

13[192]15[191] GTAAAGTAATCGCCATATTTAACAAAACTTTT

13[256]15[255] GTTTATCAATATGCGTTATACAAACCGACCGT

14[47]12[48] AACAAGAGGGATAAAAATTTTTAGCATAAAGC

14[143]13[159] CAACCGTTTCAAATCACCATCAATTCGAGCCA

14[175]12[176] CATGTAATAGAATATAAAGTACCAAGCCGT

14[271]12[272] TTAGTATCACAATAGATAAGTCCACGAGCA

15[32]17[31] TAATCAGCGGATTGACCGTAATCGTAACCG

15[64]18[64] GTATAAGCCAACCCGTCGGATTCTGAC-

GACAGTATCGGCCGCAAGGCG

Continued on next page
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Table S2

Name Sequence

15[96]17[95] ATATTTTGGCTTTCATCAACATTATCCAGCCA

15[128]18[128] TAAATCAAAATAATTCGCGTCTCG-

GAAACCAGGCAAAGGGAAGG

15[160]16[144] ATCGCAAGTATGTAAATGCTGATGATAGGAAC

15[192]18[192] TCAAATATAACCTCCGGCTTAGGTAA-

CAATTTCATTTGAAGGCGAATT

15[224]17[223] CCTAAATCAAAATCATAGGTCTAAACAGTA

15[256]18[256] GTGATAAAAAGACGCTGAGAAGAGATAAC-

CTTGCTTCTGTTCGGGAGA

16[47]14[48] ACAAACGGAAAAGCCCCAAAAACACTGGAGCA

16[143]15[159] GCCATCAAGCTCATTTTTTAACCACAAATCCA

16[175]14[176] TATAACTAACAAAGAACGCGAGAACGCCAA

16[271]14[272] CTTAGATTTAAGGCGTTAAATAAAGCCTGT

17[32]19[31] TGCATCTTTCCCAGTCACGACGGCCTGCAG

17[96]19[95] GCTTTCCGATTACGCCAGCTGGCGGCTGTTTC

17[160]18[144] AGAAAACAAAGAAGATGATGAAACAGGCTGCG

17[224]19[223] CATAAATCTTTGAATACCAAGTGTTAGAAC

18[47]16[48] CCAGGGTTGCCAGTTTGAGGGGACCCGTGGGA

18[79]16[80] GATGTGCTTCAGGAAGATCGCACAATGTGA

18[111]16[112] TCTTCGCTGCACCGCTTCTGGTGCGGCCTTCC

18[143]17[159] CAACTGTTGCGCCATTCGCCATTCAAACATCA

18[175]16[176] CTGAGCAAAAATTAATTACATTTTGGGTTA

18[207]16[208] CGCGCAGATTACCTTTTTTAATGGGAGAGACT

18[239]16[240] CCTGATTGCAATATATGTGAGTGATCAATAGT

Continued on next page
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Table S2

Name Sequence

18[271]16[272] CTTTTACAAAATCGTCGCTATTAGCGATAG

19[32]21[31] GTCGACTTCGGCCAACGCGCGGGGTTTTTC

19[96]21[95] CTGTGTGATTGCGTTGCGCTCACTAGAGTTGC

19[224]21[223] CTACCATAGTTTGAGTAACATTTAAAATAT

20[47]18[48] TTAATGAACTAGAGGATCCCCGGGGGGTAACG

20[79]18[80] TTCCAGTCGTAATCATGGTCATAAAAGGGG

20[111]18[112] CACATTAAAATTGTTATCCGCTCATGCGGGCC

20[175]18[176] ATTATCATTCAATATAATCCTGACAATTAC

20[207]18[208] GCGGAACATCTGAATAATGGAAGGTACAAAAT

20[239]18[240] ATTTTAAAATCAAAATTATTTGCACGGATTCG

20[271]18[272] CTCGTATTAGAAATTGCGTAGATACAGTAC

21[32]23[31] TTTTCACTCAAAGGGCGAAAAACCATCACC

21[56]23[63] AGCTGATTGCCCTTCAGAGTCCACTAT-

TAAAGGGTGCCGT

21[96]23[95] AGCAAGCGTAGGGTTGAGTGTTGTAGGGAGCC

21[120]23[127] CCCAGCAGGCGAAAAATCCCTTATAAAT-

CAAGCCGGCG

21[184]23[191] TCAACAGTTGAAAGGAGCAAATGAAAAATCTA-

GAGATAGA

21[224]23[223] CTTTAGGGCCTGCAACAGTGCCAATACGTG

21[248]23[255] AGATTAGAGCCGTCAAAAAACAGAGGTGAGGC-

CTATTAGT

22[47]20[48] CTCCAACGCAGTGAGACGGGCAACCAGCTGCA

22[79]20[80] TGGAACAACCGCCTGGCCCTGAGGCCCGCT

Continued on next page
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Table S2

Name Sequence

22[111]20[112] GCCCGAGAGTCCACGCTGGTTTGCAGCTAACT

22[207]20[208] AGCCAGCAATTGAGGAAGGTTATCATCATTTT

22[239]20[240] TTAACACCAGCACTAACAACTAATCGTTATTA

22[271]20[272] CAGAAGATTAGATAATACATTTGTCGACAA

23[32]22[48] CAAATCAAGTTTTTTGGGGTCGAAACGTGGA

23[64]22[80] AAAGCACTAAATCGGAACCCTAATCCAGTT

23[96]22[112] CCCGATTTAGAGCTTGACGGGGAAAAAGAATA

23[192]22[208] ACCCTTCTGACCTGAAAGCGTAAGACGCTGAG

23[224]22[240] GCACAGACAATATTTTTGAATGGGGTCAGTA

23[256]22[272] CTTTAATGCGCGAACTGATAGCCCCACCAG
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Table S3: Docking sites for DNA-PAINT.

Name Sequence

5[160]6[144] PAINT GCAAGGCCTCACCAGTAGCACCATGGGCTTGA

TT TCCTCCTCCTCCTCCTCCT

6[143]5[159] PAINT GATGGTTTGAACGAGTAGTAAATTTACCATTA

TT TCCTCCTCCTCCTCCTCCT

7[120]9[127] PAINT CGTTTACCAGACGACAAAGAAGTTTTGC-

CATAATTCGA TT TCCTCCTCCTCCTCCTCCT

7[160]8[144] PAINT TTATTACGAAGAACTGGCATGATTGCGAGAGG

TT TCCTCCTCCTCCTCCTCCT

7[184]9[191] PAINT CGTAGAAAATACATACCGAGGAAACGCAATAA-

GAAGCGCA TT TCCTCCTCCTCCTCCTCCT

8[143]7[159] PAINT CTTTTGCAGATAAAAACCAAAATAAAGACTCC

TT TCCTCCTCCTCCTCCTCCT

8[175]6[176] PAINT ATACCCAACAGTATGTTAGCAAATTAGAGC TT

TCCTCCTCCTCCTCCTCCT

9[96]11[95] PAINT CGAAAGACTTTGATAAGAGGTCATATTTCGCA

TT TCCTCCTCCTCCTCCTCCT

9[128]11[127] PAINT GCTTCAATCAGGATTAGAGAGTTATTTTCA TT

TCCTCCTCCTCCTCCTCCT

9[160]10[144] PAINT AGAGAGAAAAAAATGAAAATAGCAAGCAAACT

TT TCCTCCTCCTCCTCCTCCT

9[192]11[191] PAINT TTAGACGGCCAAATAAGAAACGATAGAAGGCT

TT TCCTCCTCCTCCTCCTCCT

9[224]11[223] PAINT AAAGTCACAAAATAAACAGCCAGCGTTTTA TT

TCCTCCTCCTCCTCCTCCT

Continued on next page
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Table S3

Name Sequence

10[143]9[159] PAINT CCAACAGGAGCGAACCAGACCGGAGCCTTTAC

TT TCCTCCTCCTCCTCCTCCT

10[175]8[176] PAINT TTAACGTCTAACATAAAAACAGGTAACGGA TT

TCCTCCTCCTCCTCCTCCT

11[96]13[95] PAINT AATGGTCAACAGGCAAGGCAAAGAGTAATGTG

TT TCCTCCTCCTCCTCCTCCT

11[224]13[223] PAINT GCGAACCTCCAAGAACGGGTATGACAATAA TT

TCCTCCTCCTCCTCCTCCT

12[111]10[112] PAINT TAAATCATATAACCTGTTTAGCTAACCTTTAA

TT TCCTCCTCCTCCTCCTCCT

12[207]10[208] PAINT GTACCGCAATTCTAAGAACGCGAGTATTATTT

TT TCCTCCTCCTCCTCCTCCT

13[96]15[95] PAINT TAGGTAAACTATTTTTGAGAGATCAAACGTTA

TT TCCTCCTCCTCCTCCTCCT

13[224]15[223] PAINT ACAACATGCCAACGCTCAACAGTCTTCTGA TT

TCCTCCTCCTCCTCCTCCT

14[79]12[80] PAINT GCTATCAGAAATGCAATGCCTGAATTAGCA TT

TCCTCCTCCTCCTCCTCCT

14[111]12[112 PAINT] GAGGGTAGGATTCAAAAGGGTGAGACATCCAA

TT TCCTCCTCCTCCTCCTCCT

14[207]12[208 PAINT] AATTGAGAATTCTGTCCAGACGACTAAACCAA

TT TCCTCCTCCTCCTCCTCCT

14[239]12[240] PAINT AGTATAAAGTTCAGCTAATGCAGATGTCTTTC

TT TCCTCCTCCTCCTCCTCCT

Continued on next page
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Table S3

Name Sequence

16[79]14[80] PAINT GCGAGTAAAAATATTTAAATTGTTACAAAG TT

TCCTCCTCCTCCTCCTCCT

16[111]14[112] PAINT TGTAGCCATTAAAATTCGCATTAAATGCCGGA

TT TCCTCCTCCTCCTCCTCCT

16[207]14[208] PAINT ACCTTTTTATTTTAGTTAATTTCATAGGGCTT

TT TCCTCCTCCTCCTCCTCCT

16[239]14[240] PAINT GAATTTATTTAATGGTTTGAAATATTCTTACC

TT TCCTCCTCCTCCTCCTCCT

19[160]20[144] PAINT GCAATTCACATATTCCTGATTATCAAAGTGTA

TT TCCTCCTCCTCCTCCTCCT

20[143]19[159] PAINT AAGCCTGGTACGAGCCGGAAGCATAGATGATG

TT TCCTCCTCCTCCTCCTCCT

21[160]22[144] PAINT TCAATATCGAACCTCAAATATCAATTCCGAAA

TT TCCTCCTCCTCCTCCTCCT

22[143]21[159] PAINT TCGGCAAATCCTGTTTGATGGTGGACCCTCAA

TT TCCTCCTCCTCCTCCTCCT

22[175]20[176] PAINT ACCTTGCTTGGTCAGTTGGCAAAGAGCGGA TT

TCCTCCTCCTCCTCCTCCT

23[128]23[159] PAINT AACGTGGCGAGAAAGGAAGGGAAACCAGTAA

TT TCCTCCTCCTCCTCCTCCT

23[160]22[176] PAINT TAAAAGGGACATTCTGGCCAACAAAGCATC TT

TCCTCCTCCTCCTCCTCCT

12[175]10[176] PAINT TTTTATTTAAGCAAATCAGATATTTTTTGT TT

TCCTCCTCCTCCTCCTCCT
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Table S4: Unfunctionalized staples for SPT (replacing unused DNA-PAINT
docking sites).

Name Sequence

5[160]6[144] GCAAGGCCTCACCAGTAGCACCATGGGCTTGA

6[143]5[159] GATGGTTTGAACGAGTAGTAAATTTACCATTA

7[120]9[127] CGTTTACCAGACGACAAAGAAGTTTTGC-

CATAATTCGA

7[160]8[144] TTATTACGAAGAACTGGCATGATTGCGAGAGG

7[184]9[191] CGTAGAAAATACATACCGAGGAAACGCAATAA-

GAAGCGCA

8[143]7[159] CTTTTGCAGATAAAAACCAAAATAAAGACTCC

8[175]6[176] ATACCCAACAGTATGTTAGCAAATTAGAGC

9[96]11[95] CGAAAGACTTTGATAAGAGGTCATATTTCGCA

9[128]11[127] GCTTCAATCAGGATTAGAGAGTTATTTTCA

9[160]10[144] AGAGAGAAAAAAATGAAAATAGCAAGCAAACT

9[192]11[191] TTAGACGGCCAAATAAGAAACGATAGAAGGCT

9[224]11[223] AAAGTCACAAAATAAACAGCCAGCGTTTTA

10[143]9[159] CCAACAGGAGCGAACCAGACCGGAGCCTTTAC

10[175]8[176] TTAACGTCTAACATAAAAACAGGTAACGGA

11[96]13[95] AATGGTCAACAGGCAAGGCAAAGAGTAATGTG

11[224]13[223] GCGAACCTCCAAGAACGGGTATGACAATAA

12[111]10[112] TAAATCATATAACCTGTTTAGCTAACCTTTAA

12[207]10[208] GTACCGCAATTCTAAGAACGCGAGTATTATTT

13[96]15[95] TAGGTAAACTATTTTTGAGAGATCAAACGTTA

13[224]15[223] ACAACATGCCAACGCTCAACAGTCTTCTGA

14[79]12[80] GCTATCAGAAATGCAATGCCTGAATTAGCA

Continued on next page
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Table S4

Name Sequence

14[111]12[112] GAGGGTAGGATTCAAAAGGGTGAGACATCCAA

14[207]12[208] AATTGAGAATTCTGTCCAGACGACTAAACCAA

14[239]12[240] AGTATAAAGTTCAGCTAATGCAGATGTCTTTC

16[79]14[80] GCGAGTAAAAATATTTAAATTGTTACAAAG

16[111]14[112] TGTAGCCATTAAAATTCGCATTAAATGCCGGA

16[207]14[208] ACCTTTTTATTTTAGTTAATTTCATAGGGCTT

16[239]14[240] GAATTTATTTAATGGTTTGAAATATTCTTACC

19[160]20[144] GCAATTCACATATTCCTGATTATCAAAGTGTA

20[143]19[159] AAGCCTGGTACGAGCCGGAAGCATAGATGATG

21[160]22[144] TCAATATCGAACCTCAAATATCAATTCCGAAA

22[143]21[159] TCGGCAAATCCTGTTTGATGGTGGACCCTCAA

22[175]20[176] ACCTTGCTTGGTCAGTTGGCAAAGAGCGGA

23[128]23[159] AACGTGGCGAGAAAGGAAGGGAAACCAGTAA

23[160]22[176] TAAAAGGGACATTCTGGCCAACAAAGCATC
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Table S5: Biotinylated staples for immobilization on glass.

Name Sequence

4[63]6[56] Bio [Bio]ATAAGGGAACCGGATATTCATTACGTCA-

GGACGTTGGGAA

4[127]6[120] Bio [Bio]TTGTGTCGTGACGAGAAACACCAAATT-

TCAACTTTAAT

4[191]6[184] Bio [Bio]CACCCTCAGAAACCATCGATAGCATTGA-

GCCATTTGGGAA

4[255]6[248] Bio [Bio]AGCCACCACTGTAGCGCGTTTTCAAGGG-

AGGGAAGGTAAA

18[63]20[56] Bio [Bio]ATTAAGTTTACCGAGCTCGAATTCGGGA-

AACCTGTCGTGC

18[127]20[120] Bio [Bio]GCGATCGGCAATTCCACACAACAGGTGC-

CTAATGAGTG

18[191]20[184] Bio [Bio]ATTCATTTTTGTTTGGATTATACTAAGAA-

ACCACCAGAAG

18[255]20[248] Bio [Bio]AACAATAACGTAAAACAGAAATAAAAATC-

CTTTGCCCGAA

S28

APPENDIX A. APPENDIX TO CHAPTER 4

175



Table S6: TEG-chol anchor binding staples for membrane tethering.

Name Sequence

4[63]6[56] Chol TATGAGAAGTTAGGAATGTTAATAAGGGAAC-

CGGATATTCATTACGTCAGGACGTTGGGAA

4[127]6[120] Chol TATGAGAAGTTAGGAATGTTATTGTGTCGT-

GACGAGAAACACCAAATTTCAACTTTAAT

4[191]6[184] Chol TATGAGAAGTTAGGAATGTTACACCCTCA-

GAAACCATCGATAGCATTGAGCCATTTGGGAA

4[255]6[248] Chol TATGAGAAGTTAGGAATGTTAAGCCACCACTG-

TAGCGCGTTTTCAAGGGAGGGAAGGTAAA

18[63]20[56] Chol TATGAGAAGTTAGGAATGTTAATTAAGTTTACC-

GAGCTCGAATTCGGGAAACCTGTCGTGC

18[127]20[120] Chol TATGAGAAGTTAGGAATGTTAGCGATCG-

GCAATTCCACACAACAGGTGCCTAATGAGTG

18[191]20[184] Chol TATGAGAAGTTAGGAATGT-

TAATTCATTTTTGTTTGGATTATACTAA-

GAAACCACCAGAAG

18[255]20[248] Chol TATGAGAAGTTAGGAATGTTAAACAATAACG-

TAAAACAGAAATAAAAATCCTTTGCCCGAA
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Table S7: A7 extension staples.

Name Sequence

0[303]1[295] AAAAAAACAGAACCGCCACCCTCTCAGAAC-

CGCCACCCT

1[8]0[0] TCACGTTGAAAATCTCGCGAATAATAATTTT-

TAAAAAAA

6[303]7[295] AAAAAAACAAAGACAAAAGGGCGTATGGTT-

TACCAGCGC

7[8]6[0] GGTAGAAAGATTCATCGAACAACATTATTA-

CAAAAAAAA

16[303]17[295] AAAAAAAAATCCTTGAAAACATAATTAATTTTC-

CCTTAG

17[8]16[0] GTGTAGATGGGCGCATGGGATAGGT-

CACGTTGAAAAAAA

22[303]23[295] AAAAAAAAAAAATACCGAACGAACTAAAA-

CATCGCCATT

23[8]22[0] TGGCCCACTACGTGAACCGTCTATCAGGGC-

GAAAAAAAA
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Table S8: Connector strands.

Name Sequence

T14 TTTTTTTTTTTTTT

T20 TTTTTTTTTTTTTTTTTTTT

T40 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-

TTTTTTT

T60 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-

TTTTTTTTTTTTTTTTTTTTTTTTTTT

T80 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-

TTTTTTTTTTTTTT

20nt_T6 TTTTTTCCCCCCTTTTTT

40nt_T6 TTTTTTCCCCCCCCCCCCCCCCCCCCCCCCC-

CTTTTTT

60nt_T6 TTTTTTCCCCCCCCCCCCCCCCCCCCCCCCCCC-

CCCCCCCCCCCCCCCCCCCTTTTTT

80nt_T6 TTTTTTCCCCCCCCCCCCCCCCCCCCCCCC-

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC-

CCCCCCCCCCCCTTTTTT

20nt_T7 TTTTTTTCCCCCCTTTTTTT

40nt_T7 TTTTTTTCCCCCCCCCCCCCCCCCCCCCCCCC-

CTTTTTTT

60nt_T7 TTTTTTTCCCCCCCCCCCCCCCCCCCCCCCCCC-

CCCCCCCCCCCCCCCCCCCCTTTTTTT

Continued on next page
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Table S8

Name Sequence

80nt_T7 TTTTTTTCCCCCCCCCCCCCCCCCCCCCCC-

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC-

CCCCCCCCCCCCCTTTTTTT

20nt_T8 TTTTTTTTCCCCCCTTTTTTTT

40nt_T8 TTTTTTTTCCCCCCCCCCCCCCCCCCCCCCCCC-

CTTTTTTTT

60nt_T8 TTTTTTTTCCCCCCCCCCCCCCCCCCCCCCCCC-

CCCCCCCCCCCCCCCCCCCCCTTTTTTTT

80nt_T8 TTTTTTTTCCCCCCCCCCCCCCCCCCCCCC-

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC-

CCCCCCCCCCCCCCTTTTTTTT

20nt_T9 TTTTTTTTTCCCCCCTTTTTTTTT

40nt_T9 TTTTTTTTTCCCCCCCCCCCCCCCCCCCCCCCC-

CCTTTTTTTTT

60nt_T9 TTTTTTTTTCCCCCCCCCCCCCCCCCCCCCCCC-

CCCCCCCCCCCCCCCCCCCCCCTTTTTTTTT

80nt_T9 TTTTTTTTTCCCCCCCCCCCCCCCCCCCCC-

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC-

CCCCCCCCCCCCCCCTTTTTTTTT

Sca�oldIZ1L GC GAA TAA TAA TTT TT CCCCCCC CAG AAC

CGC CAC CCT C

Sca�oldIZ2L GA ACA ACA TTA TTA CA AAAAAAA CAA AGA

CAA AAG GGC C

Continued on next page
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Table S8

Name Sequence

Sca�oldIZ3L GG GAT AGG TCA CGT TG AAAAAAA AAT CCT

TGA AAA CAT A

Sca�oldIZ4L CC GTC TAT CAG GGC GA AAAAAAA AAA AAT

ACC GAA CGA ACT A

Sca�oldIZ1 GC GAA TAA TAA TTT TT CAG AAC CGC CAC

CCT C

Sca�oldIZ2 GA ACA ACA TTA TTA CA CAA AGA CAA AAG

GGC C

Sca�oldIZ3 GG GAT AGG TCA CGT TG AAT CCT TGA AAA

CAT A

Sca�oldIZ4 CC GTC TAT CAG GGC GA AAA AAT ACC GAA

CGA ACT A
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Table S9: Miscellaneous oligonucleotides.

Name/Purpose Sequence

TEG-Chol anchor TAACATTCCTAACTTCTCATA[CHOL]

Docking site ex-

tension for SPT

(12[175]10[176] A20)

TTTTATTTAAGCAAATCAGATATTTTTTGT TT

AAGAAAGAAAAGAAGAAAAG

Tracking handle

([TCT]38-cA20)

TCT TCT TCT TCT TCT TCT TCT TCT TCT

TCT TCT TCT TCT TCT TCT TCT TCT TCT

TCT TCT TCT TCT TCT TCT TCT TCT TCT

TCT TCT TCT TCT TCT TCT TCT TCT TCT

TCT TCT CTT TTC TTC TTT TCT TTC TT

R16nt-Cy3B imager

strand

GGAGGA-Cy3B

R118nt-Cy3B imager

strand

GGAGGAGGAGGAGGAGGA-Cy3B

R5_s28nt-Cy3B im-

ager strand

AGAAGAAG-Cy3B
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Supplemental Methods for shown example data 
 

Production and gel analysis of chain-terminated ssRNA samples: 

Transcription mixtures were prepared by mixing the following components in RNase-free 1.5 ml tubes: 
transcription buffer (40 mM Tris-HCl pH 7.9, 6 mM MgCl2, 10 mM DTT, 10 mM NaCl, 2 mM spermidine, 
Thermo), mixture of NTPs (2 mM each, Thermo), mixture of 3’-dATP and 3’-dGTP (100 µM each, 
JenaBioscence), DNA template (40 ng/µl, pMLB_mGLopt_MinDE plasmid) (85), Aminoallyl-UTP-ATTO-
488 (0.2, 0.6, 2, 6, 20, or 60 µM, Jena Bioscience), Ribolock (1 U/µl, Thermo), T7 RNA polymerase HC 
(10 U/µl, Thermo) and RNase-free water (final volume of 50 µl). After 2.5 h of incubation at 37°C, 
DNAse I (0.5 µl, 1 U/µl, RNase-free, Thermo) was added, and the incubation was continued for 30 min. 
Afterwards, the RNA products were isolated with Monarch RNA clean-up kit 10 µg (NEB) and resolved 
with agarose gel electrophoresis (1% Agarose, TT buffer, 100 V) (86). The gel was stained with 
SybrGold and the bands were visualized with Amersham Gel Imager 600 (GE Healthcare).  

 

Confocal FCS data acquisition: 

Spot FCS was performed at a PicoQuant MicroTime 200 confocal microscope equipped with a high-
resolution water immersion objective (UPlanApo 60x NA 1.2, Evident). Fluorescence was excited at 
483 nm using a pulsed ps diode laser (PicoQuant) operated at 40 MHz repetition rate, and signal from 
ca. 500 to 540 nm was detected on a SPAD photon counting detector (Excelitas).  

Fluorescence signal from a solution of Alexa Fluor 488 carboxylate (20 nM, Invitrogen) diluted in 
measurement buffer (150 mM KCl, 5 mM EDTA, 25 mM Tris-HCl, pH 7.5) was used to optimize pinhole 
position and correction collar setting, and calibrate the confocal observation volume, before 
measurements. 

5 to 10 µl of purified ssRNA were diluted with 45 µl of the same measurement buffer as the calibration 
samples, heat-denatured for 5 min at 95 °C, cooled for 3 min on ice, and transferred into wells of ibidi 
µ-slide 18 Well Glass Bottom chambers. Measurements were started within 10 min after transfer of 
samples into chambers. Data was acquired for 30 min with ca. 1 µW laser power at 30 °C. 

 

FCS data analysis: 

FCS data were exported using custom Python code based on tttrlib (87) using automated Fluorescence 
Lifetime Correlation Spectroscopy-based background correction (27). The code is available under 
https://github.com/Janhagenkrohn/FCS_Fixer.  

Single component diffusion fitting with Eq. 3 and anomalous diffusion fitting with Eq. 6, and plotting 
of all ACFs and fits, were performed in Origin Pro 9.8.5.204 (OriginLab).  

Fitting with maximum entropy method (MEM) or stretched exponential profiles was performed using 
custom Python code available under https://github.com/Janhagenkrohn/FCS_Spectrum_fitting. The 
MEM fitting algorithm was based on references (70, 74, 88). In particular, previously published MEM 
analysis strategies for FCS (74, 75) were extended with the test criterion from ref. (88) to automatically 
adapt the Lagrange multiplier to the signal to noise ratio of the data. 120 logarithmically spaced 
diffusion times ranging from 1 µs to 1 s were considered in analysis. After fitting, amplitudes were 
recalculated to mass fractions based on Eq. 4 in Origin Pro 9.8.5.204 (OriginLab). 

APPENDIX B. APPENDIX TO CHAPTER 6

185



The stretched exponential model was based on Eqs. 3 and 4 with an additional bin width term. A 
histogram of 70 〈𝑁𝑁𝑗𝑗〉 values over diffusion times ranging from the an assumed monomer diffusion time 
(13.5 µs, based on a size ladder of ssRNA designs with defined length) to 1 s was fitted while forcing 
〈𝑁𝑁𝑗𝑗〉𝑗𝑗 (unbinned profile of mass fraction over 𝑗𝑗) to follow a stretched-exponential profile. Data was 
interpreted based on a relation of diffusion time and stoichiometry analogous to Eq. 6 as follows 
assuming a random coil polymer behavior: 

 
𝜏𝜏𝑑𝑑,𝑗𝑗

𝜏𝜏𝑑𝑑,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
= 𝑗𝑗

1
2 Eq. S1 

Downstream analysis and plotting was performed in Origin Pro 9.8.5.204 (OriginLab). 

 

Simulations: 

Simulations were performed using custom Python code available on 
https://github.com/Janhagenkrohn/FCS_Spectrum_fitting. Briefly, lognormal distributions of particle 
count over stoichiometry were defined. Species-wise fluorescence signal and autocorrelation function 
weights were calculated by explicitly iterating over all label counts 𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙 ≤ 𝑗𝑗 for each oligomer 𝑗𝑗 ≤
𝑗𝑗𝑚𝑚𝑙𝑙𝑚𝑚 species and considering the lognormal concentration profile, binomial labelling statistics for a 
defined labelling probability 𝑝𝑝, and logarithmically spaced bin widths. Species-wise diffusion times 
were approximated using Eq. 2 with 𝜏𝜏𝑑𝑑,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 210 µ𝑠𝑠. From these numbers, ACFs for each 𝑗𝑗 and 
𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙 were calculated and added iteratively. Note that Eq. 4 was not explicitly used in simulations. 
Further analysis and plotting was performed in Origin Pro 9.8.5.204 (OriginLab). 
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Supplemental Figures 
 

 

 
 

Figure S1: Agarose gel after SybrGold staining. Samples of the RNA products (120 ng), exhibiting 
different labelling ratio (from 1x10-4 to 3x10-2 of fluorescent UTP analog/NTPs) were diluted with 
loading buffer (48% formamide, 0.013% SDS, 0.25 mM EDTA, bromophenol blue), thermally 
denatured (5 min at 95°C, then 5 min at 4°C) and loaded onto the gel. M – riboruler high range RNA 
ladder (Thermo) was used as a size reference. 

 

 

 

  

APPENDIX B. APPENDIX TO CHAPTER 6

187



 

 

 
 
Figure S2: Size distribution of the ssRNA probes. Densitometric analysis of the agarose gel was 
performed with ImageJ to plot a lane profile for each ssRNA sample. For clarity, peaks originating 
from dust particles were removed manually from the profiles (compare Fig. S1). 
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