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1. Introduction 

The integrated defense mechanisms of biological organisms comprise sophisticated 

networks, encompassing both innate and adaptive immune responses.(1-3). Acting 

as the body's primary protective barrier, the innate immune components against path-

ogens, providing a rapid but non-specific response to infections. Key players in this 

system include neutrophils, macrophages, monocytes, and others, which work to-

gether to initiate an inflammatory response (4). In contrast, the adaptive immune sys-

tem is distinguished by its capacity to recognize specific antigens and develop immu-

nological memory (5, 6). This system is facilitated by T and B lymphocytes, which 

mediate cellular and humoral immunity, respectively (3, 7). Central to both immune 

branches are cytokines (8, 9). These molecules regulate communication across im-

mune cells, modulating the intensity and duration of immune activity to ensure an ef-

fective and coordinated defense (7, 10). One of these cytokines, macrophage migra-

tion inhibitory factor (MIF), has been identified as a crucial regulator within this network 

(11, 12). However, the precise function of MIF in T cells, particularly CD4+ T cells, 

remains largely unexplored. This thesis seeks to elucidate the MIF/receptor signaling 

network in activated T cells, with a specific emphasis on its functions and implications 

in CD4+ T cells.  

1.1. CD4+ T cells  

CD4+ T cells, also known as helper T cells, are  fundamental elements of the adaptive 

immune system, coordinating the activities of various immune cells and driving diverse 

immune responses (13). Their defining characteristic lies in the presence of the T cell 

receptor (TCR), which engages with major histocompatibility complex class II (MHC-

II) molecules on antigen-presenting cells (APCs) (14). Upon recognizing a specific an-

tigen, CD4+ T cells activate and subsequently differentiate into various functional cat-

egories that shape the immunological responses (13, 15). The profound impact of 

CD4+ T cells on both protective immunity and immunopathology makes them an es-

sential focus of study, particularly in understanding immune-related diseases and po-

tential therapeutic interventions(16) . 
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1.1.1 CD4+ T-cell development 

T lymphocytes originally derived from hematopoietic stem cells located in the bone 

marrow and subsequently migrate to the thymus (17). In the initial stages of develop-

ment, T cells within the thymus do not express the TCR or co-receptors CD4 and CD8, 

termed double-negative (DN) thymocytes. During multiple DN stages, thymocytes 

begin to express pre-TCR complex. Successful expression of the pre-TCR induces 

substantial proliferation of thymocytes, facilitating the transition toward the double-

positive (DP) stage(CD4+CD8+) (18). The fate of DP thymocytes is determined by their 

interaction with cortical epithelial cells presenting MHC I and II molecules complexed 

with self-peptides (19). Only appropriate TCR signaling promotes positive selection, 

enabling thymocytes to mature (18, 20). Thymocytes binding self-peptide-MHC I mol-

ecules differentiate into CD8+ T cells, whereas those binding self-peptide-MHC II mol-

ecules develop into CD4+ T cells. Subsequently, negative selection in the thymic me-

dulla eradicates thymocytes that demonstrate excessively strong affinities for self-an-

tigens, ensuring the development of self-tolerance (21). Following this selection pro-

cess, the surviving thymocytes are matured and prepared for export to peripheral lym-

phoid tissues, in which they are termed naive T cells.  

1.1.2 CD4+ T-cell activation and differentiation 

Naive CD4+ T cells remain quiescent within secondary lymphoid structures until they 

engage with their specific antigen presented by APCs. Major APC types of categories 

encompass B lymphocytes, macrophages, and dendritic cells (DCs), all of which can 

present antigens using MHC I or MHC II pathways (22, 23). The recognition of MHC 

class II-bound antigens by CD4+ T lymphocytes occurs through their TCRs. This initial 

recognition event triggers the onset of lymphocyte activation (24). Nevertheless, TCR 

engagement alone is insufficient to trigger complete CD4+ T cell activation. The acti-

vation process also needs co-stimulatory signals provided by stimulatory mole-

cules. Without these essential accessory molecule-coreceptor interactions providing 

critical signals, this engagement may lead to unresponsiveness in naive lymphocytes 

(25). Among these interactions, the binding across T cell-expressed CD28 and APC-

displayed B7 proteins (CD80/CD86) represents a crucial co-stimulatory pathway (26, 

27). Upon activation, the T cell expresses various proteins that help sustain or modu-
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late the co-stimulatory signals necessary for driving clonal expansion and differentia-

tion. The CD40 ligand represents one such protein, which interacts with APC-ex-

pressed CD40 (28). This molecular partnership enhances T cell responses while pro-

moting B7 expression on APCs. Additional pathways supporting T cell activation in-

clude the 4-1BB/4-1BBL axis and ICOS/LICOS interactions (29-32). However, cyto-

toxic T-lymphocyte associated protein 4 (CTLA-4) functions as a regulatory mecha-

nism by competing for B7 molecules with an affinity 20 times stronger than that of 

CD28, delivering inhibitory signals that help maintain immunologic homeostasis (33, 

34). Furthermore, T cell function and activation are also modulated by various mem-

brane proteins, along with genetic and epigenetic mechanisms (35, 36). Upon achiev-

ing full activation status, T cells exhibit alterations in their surface protein expression 

profile. Several molecules serve as indicators of T-cell activation, including CD69, 

HLA-DR and CD25 (37-39) (Table 1). 

Table 1. Main characteristics of T-cell activation markers. This table compiles data from 

various studies, presenting a detailed overview of key T-cell activation markers, their peak 

expression times, and functional roles (40-43). 

Activation maker Optimal expression time Function 

CD69 Peaks ~ 24 hours Early activation marker; modulation 

retention in lymphoid tissues 

CD25 Peaks ~ 96 hours High-affinity IL-2 receptor; T-cell 

proliferation and survival; a marker 

for Treg cells 

HLA-DR Peaks ~ 120 hours T-cell recognition and activation 

The differentiation trajectory of activated helper T cells is orchestrated through an 

intricate interplay of multiple signaling cascades, encompassing TCR activation, cyto-

kine signaling networks, costimulatory pathways, chemokine gradients, integrin-medi-

ated adhesion, and metabolic cues (44). These signals collectively direct the develop-

ment of distinct effector populations, including the canonical Th (T helper) 1 and Th2 

subsets, along with more recently characterized lineages such as Th17, regulatory T 

cells (Tregs), follicular helper T cells (Tfh), Th9, and Th22 populations (44-47) (See 

Figure 1). 



  Introduction 

14 

 

The initial classification of CD4 T+ cells was established in mice built on patterns of 

lymphokine activity production, dividing them into two populations: Th1 and Th2. Th1 

generated IFN-γ, IL-2, IL3 and GM-CSF, whereas Th2 cells produce IL-3, BSF-1 and 

mast cell growth factor 2 (MCGF2) (48). Subsequent research established the instru-

mental role of specific cytokines in directing lineage commitment. The presence of IL-

4 alongside IL-2 emerged as crucial determinants in effector subset specification (49, 

50). IL-4 is crucial for developing Th2-like effectors that produce IL-4 and IL-5. In con-

trast, IL-2 fosters Th1-like effector development, maintaining the secretion of IL-2 and 

IFN-γ (49). Moreover, heat-killed Listeria monocytogenes could induce Th1 differenti-

ation in vitro through macrophage-derived interleukin-12 (IL-12), correlating with in 

vivo observations of Th1-predominant responses to Listeria monocytogenes (51). 

These findings underscore how innate immune responses to microbial challenges 

guide appropriate T helper cell polarization. Whether the Th1 and Th2 phenotypes 

also exist in humans has generated considerable scientific interest. In 1991, a study 

showed that T cells isolated from human peripheral blood could also develop into Th1 

or Th2 in different infectious agents, and consistency maintains the functional pheno-

type in vitro (52). Moreover, in allergic respiratory disorder patients, inhaling grass 

pollen allergens leads to the activation of Th2  within the respiratory mucosa, which 

is verified that Th2 can be found in vivo in humans (53). The molecular control of these 

lineages involves specific transcriptional regulators. T-bet / Eomes directs Th1 devel-

opment, while GATA3 regulates Th2 differentiation (54, 55). With the T-bet gene 

knocked out, Th1 differentiation is significantly compromised (56). Similarly, GATA3 

absence completely abolishes Th2 differentiation (57-60). Moreover, GATA3 drives 

Th2 differentiation by directing Th2 lineage commitment, selectively stimulating Th2 

cell growth, and simultaneously suppressing Th1 differentiation (61). 

Th17 cells as a distinct CD4+ T lymphocyte expanded the classical Th1/Th2 dichot-

omy (62, 63). Furthermore, Th17 cells release IL-21, enhancing interaction with other 

immune cells (64, 65). Additionally, in Th17 cell differentiation, cytokines play a se-

quential and multilayered role, with early signals from transforming growth factor β 

(TGF-β) and IL-6 initiating this process, followed by contributions of IL-21 and IL-23 at 

later stages to further facilitate and maintain the Th17 phenotype(13). The transcrip-

tional regulation of Th17 differentiation centers on retinoid-related orphan receptor-
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γt (RORγt), whose expression sufficiently induces IL-17 production in naive CD4+ pop-

ulations (66). The functional significance of RORγt is evidenced by marked IL-17 re-

duction in RORγt-deficient lymphocytes (66, 67). The cooperative activity of RORγt 

and RORα in driving IL-17 expression becomes apparent through their concurrent de-

letion, which completely abrogates IL-17 production (67, 68). Th17 cells demonstrate 

significant involvement across diverse pathological conditions, spanning autoimmune 

disorders, neuroinflammation, oncological processes, and allograft rejection (69, 70). 

    Tregs were found as the fourth lineage of CD4+ T cells (71). Foxp3 positive Tregs 

can be produced in multiple locations: primarily in the thymus as thymic Tregs (tTregs), 

extrathymically at peripheral sites as peripheral Tregs (pTregs), or induced in vitro 

(iTregs) under the influence of TGFβ (72). A distinct regulatory population, type 1 reg-

ulatory T cells (Tr1 cells), lacks FOXP3 expression but maintains immunosuppressive 

function through IL-10 and TGF-β secretion (73). Their regulatory mechanism oper-

ates through direct suppression of effector responses and modulation of APC function 

(74). These regulatory populations maintain immune homeostasis and self-tolerance 

(47, 75). 

    The other three new CD4 T lineages are Tfh, Th9 and Th22.  Tfh cells, distinguished 

by C-X-C motif chemokine receptor 5 (CXCR5) expression, localize within lymphoid 

follicles where they coordinate B cell responses and germinal center formation (76). 

Their developmental program requires IL-6 and IL-21, with Bcl6 serving as the master 

transcriptional regulator (75). Th9 cells, characterized by predominant IL-9 production, 

develop under combined TGF-β, IL-4, and IL-2 signals (44).  Their transcriptional pro-

gram depends on IFN regulatory factor 4 (IRF4) and PU.1 (77). Functionally, Th9 cells 

contribute to promoting antitumor immune activities, such as those against melanoma, 

and facilitating immune defenses against intestinal parasites (78-80). Meanwhile, they 

also contribute to allergic and autoimmune pathologies(81). Th22 cells are primarily 

recognized for producing IL-22 and TNF-α, without concurrent IFN-γ or IL-17 expres-

sion (82-84). Their differentiation requires TNF-α, IL-6, and IL-21 signals, coordinated 

by signal transducer and activator of transcription 3 (STAT3), aryl hydrocarbon recep-

tor (AhR) and RORγt transcriptional activity (83, 85). In influenza and acquired immu-

nodeficiency syndrome (AIDS), Th22 cells exhibit protective effects, whereas in hep-

atitis B infections, they play a pro-inflammatory role (86-88).  
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Figure 1. Main characteristics of T helper cell lineages. This figure integrates data from 

multiple studies, providing a comprehensive overview of T helper-cell subsets and their func-

tions in the immune system(44, 89, 90). This graph was edited with BioRender (Created in 

BioRender. Bernhagen, L. (2025) https://BioRender.com/h51e818) and modified from Koh et 

al, Exp Mol Med 2023 (91). 

    After the initial immune response, most effector T lymphocytes undergo pro-

grammed cell death. In contrast, approximately 5-10% of activated CD4+ T cells dif-

ferentiate into memory T cells(92-94). The distinction between naive and memory pop-

ulations can be characterized by differential expression of CD45 isoforms, which fluc-

tuate throughout cellular development (95). The CD45RA isoform predominates ex-

pression in naive populations, while activated subsets (effector and memory T cells) 

preferentially express CD45RO (96, 97). Age influences the expression of CD45RA 

and CD45RO. In newborns, the T cell population predominantly expresses CD45RA, 

and aged individuals shift towards a higher expression of CD45RO (97, 98). 

    Memory CD4+ T cells are pivotal in mounting a robust secondary response upon 

antigenic rechallenge, surpassing magnitude and speed of the primary response, and 
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thereby contributing significantly to long-term protective immunity (99, 100). This com-

partment comprises two principal subsets: central memory T cells (TCM) and effector 

memory T cells (TEM) (101). TCM cells, primarily located in lymphoid tissues, exhibit 

a high proliferative capacity, allowing them to respond efficiently upon re-encounter 

with the antigen (94). They function as a reservoir capable of generating new effector 

cells, thus contributing to sustained immune surveillance and response (102). In con-

trast, TEM cells are predominantly found in peripheral tissues like lungs, skin and bone 

marrow, where they provide immediate protection through rapid effector functions (94, 

103-105). The functional heterogeneity between these populations manifests through 

distinct cytokine profiles: TCM cells characteristically produce IL-2, supporting their 

proliferative capacity, while TEM cells generate IFN-γ, IL-4, and IL-17 (101) (106). 

TEM populations further subdivide into specialized Th1, Th2, and Th17 memory sub-

sets, reflecting distinct functional capabilities (93, 101, 107, 108). A novel subset of 

TEM, known as T effector memory cells re-expressing CD45RA (TEMRA), has been 

identified (109). These cells atypically re-express CD45RA. They exhibit unique phe-

notypic and functional properties, distinguishing them from TCM and TEM (110, 111). 

CD8+ TEMRA were found in blood, spleen and lung, whereas CD4+ TEMRA cells are 

rare (110). TEMRA is mainly studied on CD8+ T cells, and CD8+ TEMRA exhibits fea-

tures of senescence or exhaustion, often associated with reduced telomere length and 

limited proliferative capacity (112, 113). 

1.2 Macrophage migration inhibitory factor and MIF family proteins 

MIF is a pleiotropic cytokine with extensive function in various pathological states (11). 

D-dopachrome tautomerase (D-DT), alternatively designated as MIF-2, exhibits signif-

icant structural and sequence homology to MIF, resulting in overlapping functional role 

(114). MIF and MIF/D-DT-like (MDL) proteins are evidenced by their conservation 

across diverse organisms, ranging from unicellular life forms to multicellular parasites, 

fungal species, and plant systems (100). The research in this PhD thesis primarily 

focused on elucidating the mechanisms and functions of MIF and MDL proteins in 

CD4+ T cells and neutrophils. 
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1.2.1 Macrophage migration inhibitory factor  

MIF was initially identified during studies on delayed-type hypersensitivity reactions, 

where it was noted to inhibit macrophage migration (115). The field experienced sig-

nificant advancement in the late 1980s and 1990s through human MIF cDNA isolation 

and its identification as a pituitary-derived inflammatory mediator (116). Subsequently, 

the generation of a Mif-knockout mouse model has significantly contributed to advanc-

ing research on this protein (117).  

The human MIF gene is encoded on chromosome 22q11.2. It comprises three ex-

ons (107, 172, and 66 base pairs) separated by two introns (188 and 94 base pairs) 

(11). MIF gene expression is regulated not only by transcription factors but also by 

genetic polymorphisms within its promoter region. Notably, two polymorphisms signif-

icantly affect its expression: a -173 single nucleotide polymorphism (SNP) and a -794 

CATT tetranucleotide repeat (114). These genetic variations impact the MIF transcrip-

tional activity, thereby influencing MIF protein levels and impacting its biological func-

tions. For instance, studies have linked the MIF -173 G/C polymorphism to enhanced 

risk of systemic-onset juvenile idiopathic arthritis risk (118). A comparable association 

has been mentioned with inflammatory bowel disease (119). Furthermore, a compre-

hensive analysis of 1171 COVID-19 cases revealed that the -794 CATT7 allele corre-

lates with reduced symptomatic SARS-CoV-2 infection susceptibility but an elevated 

risk of disease severity in affected individuals (120). Additionally, the MIF-794 CATT5 

allele has been identified as a genetic variant associated with enhanced diffusion ca-

pacity in Chronic Obstructive Pulmonary Disease individuals (121). Together, these 

findings highlight the significant impact of MIF gene polymorphisms on various disease 

conditions, emphasizing their potential as genetic markers for assessing disease risk 

and progression. 

    MIF exists as a 12.5 kDa non-glycosylated protein consisting of 114 amino acids, 

with a unique structure that includes a conserved tautomerase catalytic site (116, 122). 

The remarkable evolutionary conservation of MIF is demonstrated by the extensive 

homology between mouse and human variants, which exhibit 90% sequence identity 

at the amino acid level (123). Crystallographic analysis of human MIF demonstrates 

that the protein assembles into a homotrimer, comprising three identical subunits. In 
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its active conformation, this homotrimeric structure facilitates binding to MIF’s cell sur-

face receptor CD74, thereby initiating signaling cascades critical for its biological func-

tions (124). 

    While initially identified in activated T lymphocytes, MIF expression extends across 

diverse cell populations, including monocytes, neutrophils, B lymphocytes, and others 

(115, 125-127). Additionally, MIF is also distributed differently across various tissues, 

including the lung, liver, kidney, and colon, highlighting its widespread physiological 

relevance (11, 12, 126). MIF production occurs through a non-classical pathway, un-

like most cytokines that follow the conventional endoplasmic reticulum (ER)-Golgi 

route (128). MIF is continuously generated and stored in intracellular reservoirs, allow-

ing for fast mobilization and release in response to stimulation, ensuring a quick re-

sponse to reaction.  Research indicates that ATP-binding cassette (ABC) transporters 

facilitate the direct transport of MIF from the cytosol to the extracellular environment, 

bypassing the ER-Golgi system (128). Additionally, recent studies suggest that MIF 

can be secreted via extracellular vesicles such as exosomes or microvesicles (129). 

This vesicular transport enables the targeted and concentrated delivery of MIF to re-

cipient cells, enhancing its functional effectiveness. Various stimuli, including stress 

signals, mitogenic, hormonal and inflammatory mediators regulate MIF secretion pro-

cess (130). 

1.2.2 MIF receptors 

MIF signals through several receptors, including CD74/invariant chain (Ii) and CXCR2, 

CXCR4 and atypical chemokine receptor 3 (ACKR3)/CXCR7, to regulate various im-

mune cell functions, including proliferation, survival, and migration (131). Understand-

ing the specific roles and mechanisms of MIF and its receptors provides valuable in-

sights into therapeutic opportunities across numerous pathological conditions, includ-

ing cancer, autoimmune and cardiovascular diseases and inflammatory disorders 

(132). 

1.2.2.1 CD74  

CD74, initially characterized as a protein co-immunoprecipitating with MHC class II 

molecules (133). CD74 exhibits expression patterns beyond conventional class II-ex-

pressing immune cells to include endothelial populations and cardiac myocytes under 
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inflammatory conditions (134). CD74 contains three domains: a cytoplasmic N-termi-

nus, a single transmembrane domain, and a luminal region (135, 136) (shown in Fig-

ure 2). In mice, two isoforms of CD74 (p31 and p41) generate from alternative splicing 

(137). In humans, CD74 gives rise to four isoforms: p33 and p41, similar to the mouse 

counterparts, and two additional isoforms, p35 and p43, which are generated through 

an alternative start codon that extends the N-terminus by 16 amino acids (138, 139). 

These isoforms contribute to the functional diversity of CD74, enhancing its regulatory 

capacity in immune responses.  

 

Figure 2. Structure and domains of CD74. The architecture of the murine isoforms and 

the human isoforms is illustrated, highlighting key functional regions. The positions of the 

CLIP segment, intracellular domain (ICD), MIF-binding region, trimerization domain, and 

thyroglobulin type I domain are marked. Taken from Li et al, Front Cardiovasc Med 2022 

(140). 

    CD74 proteins undergo several post-translational modifications. Glycosylation is 

one of these crucial modifications (141). Chondroitin sulphate modification, a specific 

form of glycosylation, has been shown to enable CD74 to function in T-cell stimulation 

by facilitating its interaction with CD44 (142). However, the exact role and mechanism 

of this modification, particularly in CD4+ T cells, remain unclear and warrant further 
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study. Phosphorylation is another important post-translational modification, occurring 

primarily in the cytoplasmic tail of CD74 (143). This modification is crucial for regulating 

signaling pathways and is essential for controlling CD74-mediated cell survival (144, 

145). Furthermore, palmitoylation is a potential modification of CD74. Although it can 

influence the levels of the N-terminal fragment and modulate CD74 processing, it is 

not essential for intramembrane proteolysis (146). 

CD74 serves as a critical molecular chaperone for MHC II molecules, ensuring 

their stability, proper folding, trafficking, and peptide loading in antigen-presenting cells 

(147, 148) (Figure 3). MHC class II molecules are heterodimers composed of two non-

covalently associated transmembrane glycoproteins: the 34-kDa α chain and the 28-

kDa β chain (149). In the ER, CD74 trimerizes and associates with MHC class II α/β 

heterodimers, forming nonameric structures that facilitate proper protein folding and 

stabilization (147). CD74 and MHC class II interaction occurs through the class II-

associated invariant chain peptide (CLIP) segment, that binds to the peptide-binding 

groove of the MHC II complex (150). By occupying this groove, CD74 avoids prema-

ture peptide loading and protects the MHC II molecules from aggregation (151). Fur-

thermore, CD74 facilitates the transport of the MHC II complex from the ER and guides 

it to the endosomal/lysosomal compartments via sorting signals in its cytoplasmic tail 

(152, 153). Within these compartments, CD74 undergoes proteolytic degradation, 

leaving behind the CLIP fragment (154). The chaperone human leukocyte antigen DM 

(HLA-DM), together with PH, subsequently facilitates CLIP release, allowing high-af-

finity, processed antigenic peptides to bind to MHC class II molecules(155). Finally, 

the peptide-loaded MHC class II complexes translocate to the cell surface, presenting 

the antigen to CD4+ T lymphocytes and initiating an immune response. Through these 

functions, CD74 ensures the effective presentation of pathogen-derived peptides by 

MHC II, contributing to adaptive immune surveillance and activation. Notably, CD74 

can also participate in cross-presentation through the MHC class I pathway on DCs, 

contributing to MHC class I-induced cytolytic T lymphocyte (CTL) responses (156).  

Beyond the chaperone function of CD74, the intracellular domain of CD74 (CD74-

ICD) was discovered to be involved in various cellular processes, particularly in tran-

scriptional regulation. The CD74-ICD is generated through a process called regulated 

intramembrane proteolysis (RIP), involving sequential proteolytic events (157). In an-

tigen-processing compartments, CD74 undergoes cleavage by different proteases like 
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cathepsins, removing most of the luminal domain and creating a truncated, mem-

brane-bound fragment (154, 158, 159). This fragment is further cleaved by intramem-

brane proteases (IMPs) within the transmembrane region, releasing the CD74-ICD 

into the cytoplasm (160). A specific member of the IMP family, known as signal-pep-

tide-peptidase-like 2a (SPPL2a), has been demonstrated to be essential for executing 

this proteolytic event (161, 162). This liberated domain translocates to nuclear regions, 

engaging with transcription factors, including nuclear factor kappa B(NF-κB), to mod-

ulate gene expression and promote cellular survival (157, 163, 164)This proteolytic 

processing highlights the function of CD74 in antigen presentation and intracellular 

signaling, linking its chaperone activity to more extensive cellular roles.  

 

 

Figure 3. The role of CD74 in MHC II-antigen presentation. CD74 associates with MHC 

II α and β chains in the ER, aiding in their folding and dimer formation. Sorting signals in the 

N-terminus of CD74 facilitate its trafficking, either directly or via the plasma membrane. In 

the endosomal compartments, CD74 undergoes degradation, enabling MHC II to bind anti-

gen-derived peptides for presentation. This graph was generated using BioRender (Created 

in BioRender. Bernhagen, L. (2025) https://BioRender.com/u47x538) and kindly provided by 

Dr. med. Adrian Hoffmann. 

    In 2003, CD74 was identified as the first receptor to exhibit high affinity for MIF 

(143). Upon binding to MIF, CD74 forms a complex with CD44, initiating downstream 

pathways, including NF-κB, mitogen-activated protein kinase/ERK (MAPK/ERK), and 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/antigen-presentation
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phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) (165, 166). The 

CD74/CD44 complex has an essential role in various disease conditions. In rheuma-

toid arthritis, CD74 acts as a co-receptor with CD44 for MIF binding, promoting syno-

vial fibroblast adhesion and migration. This interaction triggers inflammatory signaling 

pathways, contributing to joint inflammation and progressive damage (167, 168).  In 

ischemic heart disease, the infarct region showed marked elevation of both MIF and 

the CD74/CD44 complex expression (169). Cardiomyocytes secrete MIF, which trig-

gers cardioprotective effects through CD74/CD44-dependent AMPK (adenosine 

monophosphate-activated protein kinase) pathway activation, reducing both ischemic 

damage and apoptosis (170, 171). In atherosclerosis, the interaction of MIF to 

CD74/CD44 on macrophages facilitates the recruitment of inflammatory cells to the 

atherosclerotic plaques and enhances macrophage survival (165, 172, 173). Addition-

ally, elevated serum levels of soluble CD74 (sCD74) have elevated during active dis-

ease phases compared to remission, indicating its role in RA activity (167). Similarly, 

plasma sCD74 also increases in COVID-19 patients (174). Furthermore, CD74 

demonstrates increased expression across multiple tumor types, suggesting thera-

peutic potential (175). In addition, it has been speculated that MIF may facilitate the 

translocation of CD74-ICD to the nucleus, although this has not been conclusively 

demonstrated (164, 176). Moreover, extracellular MIF also binds to CD74 and forms 

a heterocomplex with co-receptors such as CXCR2, CXCR4, or CXCR7, facilitating its 

functional activity (126, 172, 177) . Further details will be discussed in Chapters 1.2.2.2 

and 1.2.2.3. 

1.2.2.2 CXCR2 

CXCR2, a G protein-coupled receptor (GPCR), is encoded on chromosome 2. CXCR2 

demonstrates broad cellular distribution across granulocyte and macrophage progen-

itors, tumor cells, and retinal glial cells (178-180). CXCR2 primarily binds to CXC 

chemokines such as CXCL8 (IL-8), along with other CXC motif chemokines like 

CXCL1-3 and CXCL5-7 (181). The binding of the ligand CXCL8 to CXCR2 involves 

the glutamic acid-leucine-arginine (ELR) motif and N loop (182). Furthermore, the in-

teraction between CXCR2 and MIF has been confirmed through receptor binding and 

internalization assays, with a dissociation constant of 1.4 nanomolar (172). Similar to 
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CXCL8, MIF interacts with CXCR2 through a pseudo-(E) LR motif, formed by the res-

idues R12 and D45, which together establish a three-dimensional ELR-like structure 

(183). Additionally, an N-like loop within the sequence spanning residues 47–56 fur-

ther contributes to the functional MIF/CXCR2 binding (182). 

The MIF/CXCR2 axis regulates crucial immunological processes, influencing cell 

adhesion, survival, and migration (172, 184, 185) . Surface-associated MIF promotes 

monocyte arrest through CXCR2, which is further facilitated by CD74 (172, 186). This 

interaction contributes to inflammatory responses and the development of atherogen-

esis. Furthermore, blocking the MIF-CXCR2 interaction reduces monocyte adhesion 

and plaque formation in models of atherosclerosis (182). Additionally, CXCR2 sup-

ports MIF-induced arrest in Jurkat T cells, indicating its role in enhancing leukocyte 

sensitivity to MIF(185). In a PBMC-neutrophil coculture system, blocking CXCR2 on 

neutrophils prevented their survival when exposed to MIF-conditioned PBMC super-

natants, while blocking CXCR2 on PBMCs abolished the inhibitory effect of their su-

pernatants on neutrophil apoptosis (185). Moreover, the MIF/CXCR2 axis is also crit-

ical for the chemotactic migration of neutrophils towards inflammatory areas and tumor 

sites (185, 187).  

1.2.2.3 CXCR4 

CXCR4 is also a member of the seven-span transmembrane GPCR family. It shows 

extensive distribution across Tfh cells, central memory CD4 T cells, memory B cells, 

hematopoietic progenitor cells, neurons, and cancer cells (188-192). This receptor 

regulates diverse physiological processes, including cancer progression, immune 

system regulation, and stem cell trafficking (193, 194). The CXCR4-CXCL12 axis is 

crucial as it influences cell migration, proliferation, and survival, making it a key 

therapeutic target (193). MIF engages CXCR4 distinctly from CXCL12, it does not 

interact with the transmembrane cavity of CXCR4; instead, it binds to the extracellular 

loops (EL1 and EL2) and the N-terminal region, functioning as a partial allosteric 

agonist (195). This distinct mode of engagement results in partial receptor activation, 

leading to different signaling outcomes compared to the CXCL12-CXCR4 interaction. 

For instance, MIF-CXCR4 binding promotes pro-atherogenic processes, such as 

atherosclerosis, whereas the CXCL12-CXCR4 axis is known to exert athero-protective 

effects (172, 196, 197). A novel strategy for targeting the MIF-CXCR4 axis in 
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atherosclerosis uses engineered peptides called msR4Ms, which are designed to 

effectively block the MIF-CXCR4 interaction without disrupting the beneficial or 

dichotomous signaling pathways elicited by CXCL12-CXCR4 and MIF-CD74 (198). A 

study using a mouse model of early atherosclerosis applied msR4M-L1, the current 

lead peptide of the msR4M class, which was found to be targeted to atherosclerotic 

plaques, effectively reducing arterial leukocyte adhesion and mitigating 

atherosclerosis (198). This offers a promising chemokine-targeted therapeutic 

intervention for atherosclerosis and possibly other inflammatory conditions. Moreover, 

CXCR4 serves as the dominant MIF receptor, driving mesenchymal stem cell 

migration and invasion via the MAPK pathway (199). Furthermore, CXCR4, in 

conjunction with CD74, facilitates MIF-induced migration of B cells via the ZAP-70 

signaling (177). Additionally, CXCR4 forms a complex with CD74, as observed in 

HEK293 cells and monocytes. The CXCR4-CD74 complex functionally mediates MIF-

induced Akt activation in T lymphocytes (200). 

1.2.2.4 CXCR7/ACKR3 

CXCR7(ACKR3) is another member of the GPCR family. CXCR7 expression spans 

cardiac, neural, and immune tissues, influencing cardiovascular development, tumor 

progression, immune cell trafficking, and inflammation (201-204). CXCR7 serves as a 

receptor primarily for the chemokines CXCL11 and CXCL12 (205). Unlike classical 

chemokine receptors, CXCR7 does not engage G proteins to trigger typical intracellu-

lar signaling pathways. Instead, it functions mainly as a scavenger or decoy receptor 

for CXCL11 and CXCL12, modulating the activity of other chemokine receptors, such 

as CXCR4 (205-208).Furthermore, studies have identified CXCR7 as a novel receptor 

for MIF (209). Contrary to earlier findings, evidence indicates that MIF can directly 

interact with CXCR7. It has been demonstrated that MIF can induce the internalization 

of human CXCR7 independently of CXCR4. Furthermore, inhibition of CXCR7 resulted 

in the suppression of MIF-induced migration of mouse B cells (209). In platelets, MIF 

exerts a pro-survival function through binding with CXCR7, which activates the AKT 

signaling (202). In rhabdomyosarcoma, MIF secreted by tumor cells binds to CXCR7, 

enhancing cell adhesion and tumor vascularization while inhibiting the recruitment of 

cancer-associated fibroblasts (201). Moreover, CXCR7 was verified form complexes 
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with CXCR4 and CD74 (209). This dual role suggests that MIF-CXCR7 interaction is 

significant in tumor microenvironment modulation. 

1.2.3 Non-mammalian MIF family proteins 

The MDL protein family exhibits remarkable evolutionary conservation across diverse 

species. Beyond mammals, these proteins appear in numerous organisms, including 

fish, parasites, and even plants (210-212). In the plant kingdom, MDL expression has 

been observed in Arabidopsis thaliana, which is the focus of my thesis. MIF is a highly 

conserved protein, and recombinant Arabidopsis MDLs (AtMDLs) share 28-33% se-

quence identity and similar secondary structure with human MIF (HsMIF). In Arabidop-

sis, three MDL genes produce the proteins AtMDL1, AtMDL2, and AtMDL3, which 

retain minimal residual tautomerase activity compared to MIF (213, 214). AtMDL1 and 

AtMDL2 are localized in cytoplasmic regions, while AtMDL3 is found in peroxisomal 

spaces (215). AtMDLs not only bind to CD74, a known receptor for MIF, but also in-

teract with CXCR4, triggering PI3K/Akt signaling cascades. Additionally, AtMDLs 

prompted human monocytes and T cells chemotaxis in a dose-dependent manner, 

further highlighting their functional similarities to human MIF (214). However, the un-

derlying mechanisms of these interactions and their function on neutrophils remained 

unclear. It is also unknown whether AtMDLs interact with other known MIF receptors, 

and further research is necessary to clarify these interactions and their potential bio-

logical significance. Additionally, there is growing interest in understanding how MDL 

and hsMIF interact and exploring the functional roles of the MDL/hsMIF complex. 

1.3 MIF family proteins in CD4+ T cells  

Initially discovered as a factor released by activated T lymphocytes, MIF expression 

occurs across Th0, Th1 and Th2 cells (11, 115, 125, 216). A research from 1996 using 

antibodies that neutralize MIF has demonstrated its crucial role in T-cell activation pro-

cesses(216). Effective T-cell activation relies on three signals: antigen recognition via 

the TCR, co-stimulatory input from APCs, and cytokines that guide differentiation and 

promote cell expansion (127). APCs enhance CD4+ T-cell responses by presenting 

antigens via MHC class II. MIF exhibits dual regulatory functions in CD4+ T-cell acti-

vation during different conditions. In vitro studies show that MIF downregulates MHC 
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II levels in endothelial cells and macrophages, while upregulating co-stimulatory mol-

ecules (B7-2, CD40L and CD40) on astrocytoma cells and B cells (217). In Schisto-

soma mansoni-infected mice, MIF upregulated B7-1 on B cells alongside CD40L on T 

cells in the spleen (217). Conversely, MIF-deficient models of type 1 diabetes mellitus 

showed reduced levels of co-stimulatory molecules (CD80, CD86, and CD40) and 

MHC II on splenic macrophages and DCs, as along with decreased expression of 

TLR2 and TLR4 (218). Additionally, further research has shown that MIF enables 

CD4+ T lymphocytes to mediate activation via TLR4 signaling (219).  

    Beyond activation, MIF influences CD4+ T-cell differentiation. MIF can enhance Th1 

and Th2 cytokine production (220-222). Moreover, in MIF-deficient colon carcinoma 

mice, there are fewer Tregs (both CD4+ Tregs and CD8+ Tregs) in the spleen, as MIF 

facilitates Treg development by modulating IL-2 production (223). On the contrary, 

the absence of MIF facilitated Treg accumulation in visceral adipose tissue (224). In 

healthy subjects, MIF-treated PBMCs induced a clear increase in the Th17 cytokine 

profile, which are IL-17A, IL-17F and IL-21 (225). In patients suffering from HIV infec-

tion, MIF-CD74 interactions in monocyte-derived macrophages impact CD4+ T-cell 

populations, leading to an increase in Th17-like cells and thereby continuing to shape 

immune responses (226). In Hashimoto’s thyroiditis, MIF promotes Th17 cell differen-

tiation via the NF-κB pathway and enhances herpes virus entry mediator (HVEM) ex-

pression (227). In cancer, particularly nasopharyngeal carcinoma, MIF drives both the 

development and mobility of Th17 lymphocytes through mechanisms dependent on 

MIF-CXCR4 axis and reliant on the mammalian target of rapamycin (mTOR) pathway 

(228). Taken together, these findings highlight MIF’s multifaceted regulatory functions 

in CD4+ T cell activation, differentiation, and immune response modulation across a 

range of physiological and pathological conditions.  

    Naive and memory CD4+ T lymphocytes both display the MIF receptor CXCR4 (229, 

230). CD4+ T-cell activation lead to a downregulation in surface CXCR4, partly due to 

receptor internalization (230). Functionally, CXCR4 facilitates HIV-1 entry, and its 

downregulation upon activation helps restrict the spread of X4 HIV by limiting viral 

access to CD4+ T cells (230-232). Additionally, CXCR4 mediates T-cell migration 

through ZAP-70 signaling (233). On the contrary, CD74 was only descriptively de-

scribed as expressing on CD4+ and CD8+ T cells, and its function as a MIF receptor in 



  Introduction 

28 

 

T cells has remained poorly defined (174, 234, 235).  The underlying receptor-related 

mechanisms activated by MIF in human T cells are still inadequately understood, high-

lighting a gap in current knowledge that requires further investigation.  

1.4 MIF in acute respiratory distress syndrome (ARDS) 

ARDS can cause severe pulmonary inflammation, leading to considerable morbidity, 

mortality, and substantial healthcare expenditures (236). The LUNG-SAFE study re-

ports that ARDS affects 10% of intensive care unit (ICU) patients, and 23% of them 

require mechanical ventilation (237). The COVID-19 pandemic has highlighted the 

critical necessity for effective treatments for ARDS, as severe cases of COVID-19 fre-

quently lead to ARDS development. As of October 27, 2024, there have been 

776,754,317 confirmed global cases of COVID-19, including 7,073,466 fatalities, with 

infection cases continuing to escalate. In a study of 201 patients with SARS-CoV-2 

infection, 41.8% developed ARDS, and 26.4% required intensive care (238). COVID-

19 patients exhibit a sustained reduction in CD4+ and CD8+ T cells, with CD8+ T cell 

counts gradually increasing after six weeks of hospitalization (238-241). Additionally, 

T-helper cell subsets exhibit shifts in proportion, with a reduced ratio of Th1 cells, an 

elevated ratio in Th2 cells, and no significant change in Th17 cells compared to healthy 

individuals (239). Neutrophils are strongly related to the development and progression 

of ARDS (242). In patients with COVID-19, raised levels of neutrophils and a higher 

neutrophil/lymphocyte ratio in the blood linked to increased mortality (238, 243, 244).  

Accumulating evidence has identified MIF as a crucial mediator in the pathogenesis 

of both ARDS and COVID-19 (120, 245-247). However, MIF receptors expression pro-

files on immune cells, particularly on CD4+ T cells and neutrophils, remain inade-

quately characterized in the context of ARDS. Importantly, the precise functional roles 

and mechanistic actions of MIF and its receptors on CD4+ T cells and neutrophils dur-

ing ARDS pathogenesis require further elucidation. 
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2. Own contribution to the publications 

This cumulative thesis is built on two publications that investigate different aspects of 

the interactions between MIF-family proteins and the CD4+ T cell network. In this chap-

ter, a comprehensive overview of my contributions to these studies will be presented. 

2.1 Publication I: Zhang, L. et al, 2024 

 
CD74 is a functional MIF receptor on activated CD4+ T cells 

 
Zhang, L.*, Woltering, I.*, Holzner, M., Brandhofer, M., Schaefer, C. C., Bushati, G., 

Ebert, S., Yang, B., Muenchhoff, M., Hellmuth, J. C., Scherer, C., Wichmann, C., 

Effinger, D., Hübner, M., El Bounkari, O., Scheiermann, P., Bernhagen, J., and 

Hoffmann, A. (2024) CD74 is a functional MIF receptor on activated CD4(+) T cells. 

Cell Mol Life Sci 81, 296 

(*: Lin Zhang and Iris Woltering are credited as co-first authors due to their equal 
contributions.) 

 

DOI: 10.1007/s00018-024-05338-5 

 

In this article (refer to Section 5 and Subsection 7.1 for supplementary data), the MIF 

receptor network during T-cell activation is characterized. We identified CD74 func-

tions as a novel MIF receptor and activation marker without MHC II molecule depend-

ence for primary human CD4+ T cells. As a joint first author, I conducted key experi-

ments, analyzed and visualized the data, and revised the manuscript. 

Specifically, I made significant contributions to the experiments investigating the roles 

of CD74 and CXCR4 in the chemotaxis of MIF-facilitated CD4+ T-cells. Our findings 

established the functional involvement of both receptors in MIF-driven migration, as 

shown by the complete abrogation of this process when using the AMD3100 (CXCR4 

inhibitor) and LN2 (CD74-neutralizing antibody). These results indicated that MIF-in-

duced chemotaxis in activated CD4+ T cells is mediated through a coordinated mech-

anism involving CD74/CXCR4 heterocomplex formation or synergistic/converging sig-
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naling pathways. Using proximity ligation techniques, I observed CD74/CXCR4 com-

plexes in activated CD4+ T cells. The experiment demonstrated a dramatic decrease 

in proximity ligation assay (PLA) signals following MIF stimulation, indicating that MIF 

induces internalization of these receptor complexes during signal transduction, a pre-

viously undocumented phenomenon in activated T cells.  Additionally, I conducted ex-

periments that demonstrated enhanced CD74 presence on T cells (CD4+ and CD8+ T 

cells) and classical monocytes (CD14++CD16−) from severe COVID-19 patients versus 

mild cases, pointing to CD74's potential role in disease severity. In summary, I signif-

icantly contributed to Figures 5, 6, Supplementary Figures 2, 4, and 5. I was also in-

volved in experiments related to MIF receptor expression on the surface and intracel-

lular levels, verifying CD74 localization in CD4+ T cells. Thus, I also partially contrib-

uted to Figures 1, 2, and Supplementary Figure 1. Additionally, I performed revision 

experiments for the paper. 

For data analysis and interpretation, I consolidated and analyzed the data, presenting 

the results in graphical form. Regarding the manuscript, I prepared all figures, re-

viewed, and edited the final version, ensuring clarity and accuracy in the presentation 

of our findings. 

2.2 Publication II: Spiller, L. et al, 2023 

 

Plant MDL proteins synergize with the cytokine MIF at CXCR2 and CXCR4 re-

ceptors in human cells. 

 

Spiller, L., Manjula, R., Leissing, F., Basquin, J., Bourilhon, P., Sinitski, D., Brandhofer, 

M., Levecque, S., Gerra, S., Sabelleck, B., Zhang, L., Feederle, R., Flatley, A., Hoff-

mann, A., Panstruga, R., Bernhagen, J., and Lolis, E. (2023) Plant MDL proteins syn-

ergize with the cytokine MIF at CXCR2 and CXCR4 receptors in human cells. Sci 

Signal 16, eadg2621 

DOI: 10.1126/scisignal. adg2621.  

 

In this article (refer to Section 6 and Subsection 7.2 for supplementary data), I contrib-

uted to the revision phase of the manuscript. I examined the inhibitory impacts of MIF 
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and MDL1 on the chemotactic migration of human CD4+ T cells.  Results showed the 

combination of MIF and MDL1 exhibits distinct functions compared to either molecule 

alone, providing new perspectives on their impact on lymphocytes. Additionally, I fur-

ther validated the synergistic effect of MIF and MDL1 in promoting inflammation-re-

lated gene expression in A549 (human lung epithelial cells) in a dose-responsive man-

ner, offering insights into their combined role in inflammation. I also contributed to the 

establishment of the 3D neutrophil migration experimental set-up. 
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3. Summary  

The first part of this cumulative thesis (corresponding to the study by Zhang, L. et al, 

Cell Mol Life Sci 2024) examined the MIF receptors functionality in CD4+ T lympho-

cytes, with an emphasis on CD74. While traditionally recognized for its involvement in 

antigen presentation via MHC II molecules on APCs, CD74 has surprisingly been de-

tected on CD4+ T lymphocytes (174, 234, 235). The investigation in my thesis aimed 

to clarify the functional capabilities of MIF receptor CD74 on CD4+ T cells and to elu-

cidate the regulatory mechanisms governing its expression, addressing a novel and 

unanticipated aspect of T cell biology. 

Investigations uncovered distinctive patterns of MIF receptor distribution between qui-

escent and stimulated CD4+ T lymphocytes. In their resting state, these cells exhibited 

minimal extracellular expression of CXCR2, ACKR3 and CD74, while CXCR4 ap-

peared abundantly on approximately 90% of cellular surfaces. Upon activation of CD4+ 

T cells, CD74 surface expression increased significantly, whereas CXCR4 expression 

declined. Notably, the upregulation of CD74 was independent of HLA-DR, indicating 

that CD74 functioned independently of MHC class II on CD4+ T lymphocytes. Further 

investigations showed that CD74 was primarily localized intracellularly in both resting 

and activated states, mirroring the expression pattern observed on the cell surface. 

Transcriptomic and proteomic analyses supported these findings, providing the first 

comprehensive report on MIF receptor distribution on CD4+ T cells across different 

states. 

Additionally, the study revealed CD74 presence within ER and endolysosomal com-

partments, a distribution similar to that in B cells. Upon activation, CD74 underwent 

post-translational modification with CS, resulting in a new 55 kDa isoform. Previous 

studies have shown that CD74-CS rapidly translocated to the cell surface, subse-

quently undergoing immediate endocytosis, leading to its low surface detectability- a 

finding consistent with this study’s observation of minimal surface CD74 in CD4+ T 

lymphocytes. 

Moreover, the study showed CD74 form complexes with CXCR4 upon CD4+ T cells 

activation. MIF stimulation reduced surface presence of these heterocomplexes, indi-

cating MIF-induced internalization.  These complexes also enhanced the MIF-induced 
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migration of stimulated CD4+ T lymphocytes, underscoring the significance of MIF-

CD74/CXCR4 signaling in lymphocyte functions. 

Furthermore, analysis of a COVID-19 study uncovered that heightened CD74 expres-

sion on CD4+ and CD8+ T cells during severe disease progression compared to mild 

cases. Notably, CXCR4 or HLA-DR remained constant between the groups, reinforc-

ing that CD74 functions independently of MHC class II in CD4+ T cells, even under 

infection conditions. These results positioned CD74 as a potential biomarker for as-

sessing disease severity and as a promising target for therapeutic intervention in in-

flammation-driven disease. 

The latter portion (corresponding to parts of the study by Spiller, L. et al, Sci Signal 

2023) examined interactions between human MIF and plant-derived MDL proteins 

from the model plant Arabidopsis thaliana. High-resolution crystallographic analysis 

elucidation of the structure of all three MDL proteins at high resolution. The research 

also demonstrated that MDLs, despite evolutionary divergence, maintained structural 

similarities to mammalian MIF, allowing them to engage with human MIF receptors, 

specifically CXCR2 and CXCR4. Experimental findings showed that MDL1 and MDL2 

from Arabidopsis bind to these receptors and could enhance immune signaling re-

sponses in human cells, particularly through hetero-oligomeric complexes with human 

MIF.  

These complexes showed synergistic effects, promoting cellular responses such as 

chemotaxis in neutrophils and inflammatory gene expression in pulmonary epithelial 

cells. The study highlighted the evolutionary conservation in MIF-like proteins and pro-

posed potential implications for human exposure to plant MDLs through dietary or en-

vironmental pathways. 
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4. Zusammenfassung 

Der erste Teil dieser kumulativen Dissertation (entsprechend der Studie von Zhang et 

al., Cell Mol Life Sci 2024) untersuchte die Rolle von MIF-Rezeptoren in CD4+-T-

Zellen mit einem Schwerpunkt auf der Charakterisierung von CD74. Historisch war 

CD74 für seine Funktion in der MHC-II-vermittelten Antigenpräsentation auf Antigen-

präsentierenden Zellen (APCs) bekannt. Neuere Studien zeigten jedoch eine 

unerwartete Expression von CD74 auf CD4+-T-Zellen (174, 234, 235). Ziel dieser 

Arbeit war es, die funktionelle Relevanz des MIF-Rezeptors CD74 in CD4+-T-Zellen 

sowie die zugrunde liegenden Regulationsmechanismen seiner Expression zu 

untersuchen und damit einen neuen, unerwarteten Aspekt der T-Zell-Biologie 

aufzuzeigen. 

Die Ergebnisse zeigten distinkte Expressionsmuster der MIF-Rezeptoren auf CD4+-T-

Zellen in nicht aktivierten und aktivierten Zuständen. In nicht aktivierten CD4+-T-Zellen 

zeigten CD74, CXCR2 und ACKR3 eine minimale Oberflächenexpression, während 

CXCR4 mit etwa 90 % stark auf der Zelloberfläche exprimiert wurde. Nach Aktivierung 

der CD4+-T-Zellen nahm die Oberflächenexpression von CD74 signifikant zu, 

während die von CXCR4 abnahm. Bemerkenswert war, dass die Hochregulation von 

CD74 unabhängig von HLA-DR erfolgte, was darauf hinweist, dass CD74 unabhängig 

von MHC-II auf CD4+-T-Zellen exprimiert wird. Weitere Untersuchungen zeigten, dass 

CD74 sowohl in nicht aktivierten als auch in aktivierten Zuständen vorwiegend 

intrazellulär lokalisiert war. Reanalysen von bereits veröffentlichten Transkriptom- und 

Proteom-Datensätzen bestätigten diese Befunde und lieferten erstmals einen 

umfassenden Überblick über die Expression von MIF-Rezeptoren auf CD4+-T-Zellen 

in unterschiedlichen Aktivierungs- und Differenzierungszuständen. Zusätzlich wurde 

CD74 an seiner typischen Lokalisation im endoplasmatischen Retikulum und in 

endolysosomalen Kompartimenten nachgewiesen. Nach Aktivierung wurde eine 

posttranslationale Modifikation mit Chondroitinsulfat (CS) identifiziert, die zu einer 

neuen 55-kDa-Isoform führte. Frühere Studien zeigten, dass CD74-CS schnell zur 

Zelloberfläche transloziert wird, gefolgt von einer sofortigen Endozytose. Diese 

Befunde stimmen mit der in dieser Arbeit beobachteten niedrigen 

Oberflächenexpression von CD74 in CD4+-T-Zellen überein. 
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Die Arbeit zeigte zudem, dass CD74 auf aktivierten CD4+-T-Zellen einen Komplex mit 

CXCR4 bilden kann. Nach Stimulation mit MIF nahm die Präsenz des CD74/CXCR4-

Heterokomplexes auf der Zelloberfläche ab, was darauf hinweist, dass MIF die 

Internalisierung des CD74/CXCR4-Komplexes vermittelt. Zudem wurde die 

funktionelle Rolle der MIF-CD74/CXCR4-Achse bei der MIF-induzierten T-Zell-

Migration nachgewiesen. 

Darüber hinaus zeigte die Analyse einer COVID-19-Patientenkohorte, dass die CD74-

Expression auf CD4+- und CD8+-T-Zellen bei Patienten mit schwerem COVID-19 im 

Vergleich zu milderen Verläufen signifikant erhöht war. Dies deutet auf einen 

Zusammenhang zwischen CD74-Expression und der Schwere der Immunantwort bei 

COVID-19 hin. Bemerkenswerterweise gab es keine Unterschiede in der Expression 

von CXCR4 oder HLA-DR zwischen den Gruppen, was erneut die MHC-II-

unabhängige Funktion von CD74 auf CD4+-T-Zellen selbst unter 

Entzündungsbedingungen bestätigt. Diese Ergebnisse positionieren CD74 als 

potenziellen Biomarker zur Bewertung der Krankheitschwere und als 

vielversprechendes Ziel für therapeutische Interventionen bei 

entzündungsgetriebenen Erkrankungen. 

Der zweite Teil dieser Dissertation (entsprechend Teilen der Studie von Spiller et 

al., Sci Signal 2023) untersuchte die Interaktionen zwischen humanem MIF und MIF-

ähnlichen Proteinen (MDL) aus der Modellpflanze Arabidopsis thaliana. Diese Arbeit 

umfasste die röntgenkristallographische Aufklärung der Struktur aller drei MDL-

Proteine und belegte, dass MDLs trotz evolutionärer Divergenz strukturelle 

Ähnlichkeiten mit humanem MIF aufweisen, was ihre Interaktion mit 

menschlichen MIF-Rezeptoren, insbesondere CXCR2 und CXCR4, ermöglicht. 

Experimentelle Befunde zeigten, dass MDL1 und MDL2 aus Arabidopsis an 

diese MIF-Rezeptoren binden und die Immunantwort in menschlichen Zellen durch 

heterooligomere Komplexe mit humanem MIF verstärken können. MIF/MDL-

Komplexe zeigten synergistische Effekte auf zelluläre Reaktionen wie Chemotaxis in 

Neutrophilen und die Expression entzündungsfördernder Gene in 

Lungenepithelzellen. Die Studie hob die evolutionäre Konservierung von MIF-

ähnlichen Proteinen hervor und diskutierte mögliche Implikationen für den 

menschlichen Kontakt mit pflanzlichen MDLs über Ernährung oder Umwelt. 
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7. Appendix 

This section contains supplementary data files from chapters 5 and 6. 

7.1 Supplementary data for Zhang, L. et al,2024 
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