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the TPI chain in Fig. 5.5. The warm-up phase is omitted, and samples are
thinned by a factor of 100 for clarity. Grey vertical bands mark scales beyond
the cutoff kmax = 0.1hMpc−1. (Top) Histogram of ŝ− ŝtrue. (Middle) Square
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Zusammenfassung

Die großräumige Galaxienverteilung enthält grundlegende physikalische Informationen, die
sich durch kosmologische Inferenz erschließen lassen. Parameter wie die Amplitude der
Materiedichtefluktuationen σ8 ermöglichen Einblicke in die Dunkle Energie und testen die
Allgemeine Relativitätstheorie. In dieser Arbeit entwickeln wir neue Inferenzmethoden,
um aus spektroskopischen Galaxienvermessungen mehr Information zu extrahieren und
robustere kosmologische Aussagen zu treffen.

Im Zentrum steht die Anwendung von Simulationsbasierter Inferenz (SBI), ein Deep-
Learning-Ansatz zur Parameterschätzung ohne angenäherte Likelihoods oder Kovarianz-
matrizen. Durch das direkte Lernen der Posteriorverteilung aus Simulationen umgeht
SBI typische Schwächen klassischer Verfahren, etwa die systematische Unterschätzung von
Unsicherheiten, und bietet ein leistungsfähiges Rahmenwerk für die Analyse von Galaxien-
verteilungen.

Die zugrunde liegenden Simulationen werden mit LEFTfield erzeugt – einem schnellen
Lagrangeschen Vorwärtsmodell, das auf der Effektiven Feldtheorie großräumiger Struk-
turen (EFTofLSS) und der Bias-Expansion basiert und dadurch eine konsistente und kon-
trollierte Inferenz ermöglicht. Als primäre Zusammenfassungsgrößen verwenden wir n-
Punkt-Funktionen der Galaxienverteilung, wie sie aus perturbativen Ansätzen zur Struk-
turbildung motiviert sind. Darüber hinaus erlaubt LEFTfield eine Feld-basierte Inferenz,
bei der das vollständige dreidimensionale Galaxienfeld direkt ausgewertet wird, anstatt auf
komprimierte Statistiken zurückzugreifen.

Zunächst demonstrieren wir die Anwendung von SBI mit LEFTfield anhand von Mock-
Daten, indem wir kosmologische Parameter aus dem Galaxienleistungs- und Bispektrum
ableiten und die Methode anschließend an Haloverteilungen testen. Dabei zeigen wir, dass
das Galaxienfeld bis zu fünfmal mehr Information über σ8 enthält als das Leistungs- und
Bispektrum allein.

Abschließend widmen wir uns der Analyse des Galaxientrispektrums – einer Aufgabe,
die mit klassischen Methoden aufgrund der hohen Dimensionalität bisher nicht praktisch
umsetzbar ist. Wir zeigen, wie SBI eine gemeinsame Auswertung von Leistungs-, Bis-
und Trispektrum ermöglicht und so den Zugang zu bislang unerschlossener kosmologischer
Information eröffnet. Diese Ergebnisse unterstreichen das Potenzial simulationsbasierter
Inferenzverfahren, den wissenschaftlichen Ertrag zukünftiger Galaxiendurchmusterungen
erheblich zu steigern und unser Verständnis fundamentaler Physik zu vertiefen.
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Abstract

The large-scale distribution of galaxies encodes valuable information about fundamental
physics, which can be accessed by means of cosmological inference. The cosmological
parameters such as the amplitude of matter fluctuations σ8 offer a unique window to test
the nature of dark energy and the validity of General Relativity. In this thesis, we build on
novel inference methods to enable the extraction of more information from spectroscopic
galaxy surveys, leading to tighter and more reliable cosmological constraints.

In particular, we employ simulation-based inference (SBI), a deep-learning framework
that allows for robust parameter estimation without relying on approximate analytical
likelihoods or covariance matrices. By directly learning the posterior distribution from
simulations, SBI avoids common problems of traditional methods, such as underestimation
of errors, and represents a powerful framework for galaxy clustering analysis.

The simulations are generated using LEFTfield, a fast Lagrangian forward model based
on the Effective Field Theory of Large-Scale Structure (EFTofLSS) and the bias expansion,
ensuring robustness in the inference process. We adopt galaxy n-point functions as our
primary summary statistics, motivated by perturbative approaches to LSS. Furthermore,
LEFTfield enables field-level inference, where we directly analyze the three-dimensional
galaxy density field instead of compressed summary statistics.

We first demonstrate SBI with LEFTfield using mock data, performing cosmological
inference with the galaxy power spectrum and bispectrum, and subsequently validating
the method on dark matter halos. We use SBI to demonstrate that the galaxy density field
contains up to five times more information on σ8 when compared to the power spectrum
and bispectrum.

Finally, we tackle the analysis of the galaxy trispectrum, a task that remains compu-
tationally infeasible with traditional methods due to its high dimensionality. We show
how to use SBI to perform a joint analysis of the galaxy power-spectrum, bispectrum and
trispectrum to reveal the cosmological information in the trispectrum. Together, these
results demonstrate the promise of simulation-based inference methods for maximizing the
scientific return of future galaxy surveys and advancing our understanding of fundamental
physics.
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Chapter 1

Introduction

There are still many unresolved questions in physics, such as the ultimate theory of grav-
ity, the nature of dark matter and dark energy, the hierarchy of neutrino masses, and the
physics of the early Universe – all of which shape the distribution of galaxies in the sky. In
this thesis, we explore how to tackle the challenge of maximizing the information extracted
from observations of the large-scale distribution of galaxies, while ensuring a robust anal-
ysis. Our ultimate goal is to provide a trustworthy framework capable of revealing, and
reliably interpreting, potential signatures of new physics.

We believe that the initial conditions for structure formation were set by a period of
accelerated expansion in the first ∼ 10−32 seconds in the Universe, known as inflation. After
inflation, the Universe underwent a phase of reheating and became nearly homogeneous,
filled with particles described by the Standard Model of particle physics, as well as dark
matter. Inflation generated small density fluctuations, which, in the absence of primordial
non-Gaussianities (PNGs), are statistically described by a Gaussian random field. The
peaks of this field mark regions of higher density, which grow over time as matter flows in
under the influence of gravity, forming increasingly deep potential wells. When the density
in such a region crosses a critical threshold, it decouples from the overall expansion and
collapses to form a gravitationally bound object known as a dark matter halo. These halos
emerge early in the history of the Universe from the dark matter component, while baryons
are still tightly coupled to photons. Only after recombination, roughly 400,000 years after
the end inflation, do baryons decouple from photons and begin to fall into the gravitational
wells seeded by dark matter, allowing gas to cool and the first galaxies to form.

A key feature imprinted in the matter and galaxy distribution is the baryon acous-
tic oscillation (BAO) scale. In the early Universe, sound waves propagated through the
photon-baryon fluid, generating a characteristic scale in the distribution of matter after
recombination. This leads to a subtle, yet measurable, excess in the clustering of galaxies
at a preferred separation of about 150 Mpc. The BAO feature appears as a distinct bump
in the correlation function and a series of oscillations (“wiggles”) in the power spectrum.
It serves as a standard ruler for measuring distances and provides a useful observational
tool for probing the expansion history of the Universe.

In the coming years, a vast amount of data will be collected by a new generation of
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surveys that aim to map the large-scale structure (LSS) of the Universe with unprece-
dented precision. The LSS refers to the distribution of galaxies and other extragalactic
objects over distances larger than ∼ 102 Mpc, forming a “cosmic web” pattern that encodes
valuable information about the underlying physics that influenced its formation. Among
these efforts, spectroscopic surveys will play a particularly central role and are the focus
of this thesis. By measuring the redshift of galaxies through their spectra, spectroscopic
surveys reconstruct their three-dimensional positions, enabling precise maps of the galaxy
distribution. The analysis of such data falls under the domain of galaxy clustering. Upcom-
ing spectroscopic experiments include DESI [8, 82], Euclid [40, 43], and PFS [209], which
have improved spectral resolution, wider sky coverage, and significantly larger sample size
compared to its predecessor BOSS [63]. Together, these surveys promise to enhance our
understanding of fundamental physics by placing tighther constraints on the cosmological
parameters.

The standard model of cosmology, known as ΛCDM, describes the Universe using six
cosmological parameters that characterize its composition and evolution. These include
the densities of baryons and cold dark matter, for example. The model also assumes a
spatially flat Universe dominated at late times by a cosmological constant Λ, which drives
accelerated expansion. While ΛCDM successfully explains a wide range of observations,
several of its components point to unresolved questions in fundamental physics. The na-
ture of dark matter and dark energy remains unknown, the small observed value of Λ
poses a fine-tuning problem, and tensions between independent measurements of cosmo-
logical parameters suggest either new physics or unknown systematics. Thus, precision
measurements of these parameters not only test the consistency of the model but also offer
a window into possible extensions beyond ΛCDM.

One key cosmological parameter is σ8, the root-mean-square amplitude of linear matter
fluctuations on 8h−1Mpc scales. Accurate measurements of σ8 are essential for understand-
ing the growth of structure, the properties of dark energy, and possible deviations from
General Relativity. Currently, a notable tension has emerged between measurements of σ8
from different cosmological probes within the standard ΛCDM framework.

The cosmic microwave background (CMB), the photos we detect today from the last-
scattering surface, provides a precise measurement of the initial conditions for structure
formation. High-resolution observations from missions such as Planck [9], ACT [10, 139],
and SPT [26] infer the value of σ8 by modeling how these initial perturbations evolve
under gravity. On the other hand, weak gravitational lensing (the distortion of the shapes
of background galaxies due to the gravitational influence of foreground mass) offers a direct
probe of the matter distribution at late times. Recent lensing measurements from surveys
such as KiDS [97], DES [1], and HSC [2, 119, 208] yield consistently lower values of σ8
compared to those inferred from the CMB.

This discrepancy has sparked considerable interest, as it could hint at new physics
beyond ΛCDM. It remains an open question whether the tension originates from a genuine
mismatch between early- and late-time cosmology [132, 155, 176] or from scale-dependent
systematic effects [19, 178, 184]. Independent constraints on σ8 from galaxy clustering
provide a crucial complementary probe to help disentangle these possibilities, and thereby
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Figure 1.1: Schematic visualization of galaxy n-point functions (power-spectrum, bispec-
trum and trispectrum) on Hubble Ultra Deep Field (UDF). Note that galaxies are po-
sitioned on the vertices of each n-point function, although stars could be located at the
vertices in this image instead. Furthermore, galaxy clustering analysis are focused on spec-
troscopic galaxy surveys instead of Hubble UDF. These surveys typically map the positions
of millions of galaxies over 3D volumes extending billions of light years. Credit for Hubble
UDF: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team.

play a crucial role in testing the consistency of the current cosmological model.
Furthermore, the LSS encodes the growth history of matter perturbations during the

epoch when dark energy begins to dominate the energy budget of the Universe, providing
a unique opportunity to investigate the physics behind the observed accelerated expansion.
This is intimately connected to the long-standing cosmological constant problem [6], the
enormous discrepancy between the theoretically predicted and observed values of vacuum
energy, which is considered by many to be one of the greatest unsolved problems in theo-
retical physics. While it is unlikely that cosmological observations alone will fully resolve
this problem, obtaining a precise and robust characterization of the accelerated expansion
remains essential to guide theoretical progress.

Galaxy n-point functions. Focusing on the case of a galaxy catalog from a certain
cosmological survey, it is standard to compress the information contained in this catalog
and infer the cosmological parameters using summary statistics as the data vector, such as
only the BAO “wiggles” in the galaxy power spectrum or its “full-shape” [4,5]. LSS contains
rich 3D information, offering greater constraining power on cosmological parameters than
the CMB. While the power-spectrum is sufficient for most of CMB analysis due to its
predominately Gaussian nature, LSS is inherently more non-Gaussian due to gravitational
evolution, which requires going beyond traditional analyses based on the power spectrum.

The first natural question then is how to perform the galaxy field compression, in order
to maximize the amount of information extracted. Many alternatives have been proposed
in the literature to go beyond two-point statistics, such as higher n-point functions (bispec-

http://www.nasa.gov/
http://www.esa.int/
http://www.stsci.edu/
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trum and trispectrum – see Fig. 1.1), Minkowski functionals, wavelets, k-nearest neighbor
cumulative distribution functions, peak counts, void statistics, among many others (see,
e.g., [74, 166, 171]). Of course, a given cosmological parameter, such as σ8 or dark energy
equation of state w, affects observables differently, so that the optimal compression choice
is highly dependent on the parameter to be inferred.

Throughout this thesis, we defer the difficult question of optimal compression, and in-
stead focus on the galaxy n-point functions, namely the galaxy power spectrum, bispectrum
and trispectrum. These summaries are well motivated on quasilinear scales by perturba-
tive approaches to LSS and have been extensively investigated in the literature. They
offer a systematic approach to probing the information content in galaxy clustering, with
higher-order statistics expected to progressively capture more cosmological information.

Simulation-based inference. Having fixed the definition of the data vector, the next
problem consists in predicting the distribution of each of the summary statistics. The
current standard cosmological inference procedure consists in providing an analytical like-
lihood for the data vector considered, which together with parameter priors and sampling
methods such as Monte-Carlo Markov Chain (MCMC) yields the posteriors of the param-
eters of interest given the observed data [215, 220] (see details in Sec. 3.1 and Sec. 3.2).
For essentially all relevant LSS observables, only approximate expressions for these distri-
butions are known. Even if an exact likelihood expression could be written down and used
for inference, there would remain additional issues with this standard explicit-likelihood
approach which we discuss in Sec. 3.3.

These issues become progressively more challenging as we move to higher-order statis-
tics. For example, obtaining cosmological constraints using the full-shape of the galaxy
trispectrum has never been achieved due to the complexities inherent in traditional analy-
sis. Although modeling, analyzing, and combining these complex statistics is challenging,
in this thesis I demonstrate how to tackle these obstacles using simulation-based inference
(SBI) [57,137]. SBI is a deep learning approach that learns the full distribution of data vec-
tors from simulations, bypassing the need for conventional analytical likelihoods or covari-
ance matrices. We explain in detail how this algorithm works in Sec. 3.4. In essence, SBI
fits the posterior distribution by transforming complexly distributed data into a tractable
form, enabling efficient sampling and accurate estimation of the cosmological parameters.

Using the true distribution of data vectors is critical for robust analysis, as traditional
likelihoods often serve as mere approximations of the true data distribution, which can
introduce bias and inaccuracies in cosmological inference. When evaluating discoveries
of new physics, it is essential that our error bars are well-calibrated to avoid drawing
misleading conclusions. For instance, miscalculated covariance can result in overly tight
error bars, potentially leading to false claims of new physics. By eliminating the need
for an explicit likelihood and instead focusing on the generative processes of physics to
create simulations, we can move away from the analytical approximations that accompany
likelihoods of data vectors. Therefore, SBI offers a direct pathway to achieve more reliable
cosmological constraints.
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Outline of the results
Perturbative techniques for galaxy clustering. The large-scale distribution of galax-
ies, dark matter halos, and quasars traces the underlying matter density field, but not in
a one-to-one manner. These objects are referred to as biased tracers of large-scale struc-
ture, meaning their spatial distribution is a biased reflection of the total matter field [110].
The statistical relationship between tracers and the matter field is described by the bias
expansion, which can be applied to any tracer population. Throughout this thesis, we use
the term “galaxy” generically to refer to any biased tracer, including dark matter halos,
unless otherwise stated.

In Chapter 2, we introduce the perturbative techniques developed over the past decades
that will be used throughout this thesis. Given the complexities and uncertainties of
galaxy formation on small scales, we adopt the galaxy bias expansion, an effective field
theory (EFT) approach to model its impact on galaxy clustering without requiring full
modeling of the unknown physics. By parametrizing our ignorance of small-scale physics
through a controlled set of free coefficients, the bias expansion offers a robust and flexible
foundation for cosmological inference. For a comprehensive review, we refer the reader to
[66]. This framework provides a theoretically robust connection between galaxy clustering
observables, such as the n-point functions, and the cosmological parameters.

In particular, in Sec. 2.5, we conclude with a detailed explanation of how to use these
perturbative tools to build LEFTfield, a heavily parallelized forward model that evolves
possible initial conditions of the Universe into the late-time 3D distribution of galaxies
within seconds. Part of my work has been devoted to co-developing LEFTfield, such
as the implementation of the galaxy bispectrum and trispectrum estimators to enable
cosmological inference using SBI. Since it is entirely based on the bias expansion, it provides
a robust theoretical foundation for modeling the large-scale distribution of galaxies, while
being orders of magnitude faster to evaluate than traditional N-body simulations. It is
worthy noting here that, although galaxies are observed in redshift space, in this work
we restrict our analysis to restframe and do not incorporate observational systematics or
survey masks.

Cosmological inference. In Chapter 3, review Bayesian inference and standard tech-
niques used in cosmological inference. We then motivate the use of SBI for galaxy clustering
and explain in detail the novel inference methods that will be used throughout this thesis:
simulation-based inference (SBI) and field-level inference (see below). We also review data
compression schemes for optimizing SBI, which will be employed in Appendix C.

SBI for power-spectrum and bispectrum. In Chapter 4, we demonstrate how to
perform SBI with LEFTfield, while allowing for cosmological volumes analysis, rigorous
posterior diagnostics, and convergence tests. In fact, the work presented in this thesis is
unique in the literature in performing SBI within the framework of the bias expansion.
My first work in this context (a first-author publication in JCAP [217]) used both the
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Figure 1.2: Left: Diagram showing the comparison between FBI, where the full galaxy
density field is used for inference using a field-level likelihood, and SBI, where the galaxy
power-spectrum and bispectrum (two- and three- point functions) are used. Both inference
methods are based on LEFTfield, which evolves the Universe initial conditions (ICs) to
the final 3D distribution of galaxies given cosmological parameters. Right: comparison of
constraints of the cosmological parameter σ8 for one particular dark-matter halo and scale
cut considered in the analysis, where the galaxy density field shows to provide 5 times more
information than the combined two- and three-point functions. Credit for Hubble UDF:
NASA, ESA, and S. Beckwith (STScI) and the HUDF Team.

power spectrum and bispectrum on Euclid-like mock data, resulting in successful analysis
and demonstrating that we need around 105 simulations for convergence. I am currently
working to improve this number with more advanced SBI techniques, and I provide a
few examples in Appendix C. Since our forward model is based on the perturbative bias
expansion, I introduced model mismatch by analyzing dark-matter halos from N-body
simulations as the first proxy of real data, successfully recovering accurate cosmological
constraints despite the increased complexity [157]. These results are presented in Chapter 5.

Galaxy density field information content. Beyond high-order statistics, the next
frontier in cosmological analysis is field-level Bayesian inference (FBI), where we directly
analyze the galaxy density field instead of compressing it to summary statistics (a detailed
explanation of how it works is given in Sec. 3.6). FBI is extremely challenging, as it
involves working with millions of parameters corresponding to the voxels of the galaxy
density grid, besides requiring a theoretically robust model for the galaxy distribution
since FBI is a very sensitive analysis. This requires using sampling techniques suitable for
high dimensions and a sophisticated field-level likelihood (derived in Sec. 2.4.4), which can
be computationally expensive. Recently, exciting developments are being made towards
field-level inference [23,105,115,118,120,156,173,192,224].

In Chapter 5, it is discussed one key result from this work using SBI, which was to
demonstrate that the galaxy density field contains up to five times more information on σ8
than what can be extracted from the power spectrum and bispectrum [157], as illustrated in
Fig. 1.2. This finding translates into a significant increase in the effective survey volume.

http://www.nasa.gov/
http://www.esa.int/
http://www.stsci.edu/
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In fact, this was the first successful field-level inference of cosmological parameters and
initial conditions presented in the literature. The analysis directly compared the same
dark-matter halos as data, the same forward model LEFTfield, and identical scale cuts.
We utilized two dark-matter halo samples varying in number density and redshift, revealing
differences in the information gained from each sample and scale cut.

In Appendix E, we provide a discussion on the main findings of two papers I co-
authored on field-level inference of the BAO scale, highlighting the advantages of FBI
in extracting cosmological information. Since these results have already been discussed in
Ivana Babić’s dissertation thesis, the first author, I briefly discuss the main results and
my contributions here. In our first paper [23], we demonstrated that FBI can yield more
information than traditional power spectrum analysis using fixed initial conditions. In the
second paper [24], we extended our analysis to sample initial conditions in FBI, and found
that FBI provides greater information content not only compared to the power spectrum
but also the reconstructed power spectrum. Decades of cosmologists and generations of
surveys have led to the consensus that the reconstructed power spectrum is the optimal
BAO analysis; however, we were the first to show that the galaxy density field can carry
more cosmological information.

SBI for power-spectrum, bispectrum and trispectrum. In Chapter 6, the first
results from a cosmological analysis that jointly utilizes the galaxy power spectrum, bis-
pectrum, and trispectrum are presented — an approach deemed infeasible due to the
dimensionality of the trispectrum. In principle, SBI combined with LEFTfield should
provide a more straightforward route than traditional analysis, since we do not need to
explicitly estimate and invert its high dimensional covariance, and instead symply used
the trispectrum mesurements from LEFTfield to conduct cosmological inference with SBI.
In practice, SBI with the galaxy trispectrum introduces its own challenges, as discussed
in that chapter. Although this is a work in progress, we present our current results along
with future plans, given the complexity of the problem. This will allow for the first demon-
stration of the cosmological information encoded in the galaxy trispectrum on σ8, besides
demonstrating the additional information gained from the trispectrum when compared to
the galaxy density field.

We conclude in Chapter 7, providing an overview of the results obtained in this work
and outlining the next steps to be taken in this line of research. We demonstrate that
the methods used in this work offer a promising path toward achieving tighter and more
reliable constraints, potentially reducing statistical uncertainties while preserving theoret-
ical rigor. These represent important next steps toward applying these techniques to real
data. Ultimately, such developments pave the way for more precise and robust analyses of
galaxy clustering, with the potential to uncover signatures of new physics.



8 1. Introduction



Chapter 2

Galaxy clustering

The large-scale distribution of galaxies in the Universe encodes valuable information about
fundamental physics, including gravity and the expansion history. To extract this infor-
mation, it is essential to understand how the initially small density fluctuations present
after recombination evolved under gravity to form the complex large-scale structure (LSS)
we observe today. This is a central question in cosmology, as galaxy clustering arises from
a highly non-linear and complex process. Several approaches can be employed to tackle
this challenge. Hydrodynamical simulations can model galaxy formation [154, 222], but
they are dependent on specific prescriptions that we know are incomplete. Ideally, we
would marginalize over all possible models of galaxy formation, but the computational
cost of running these simulations is prohibitive, and current models do not fully repro-
duce observations. Alternatively, N-body dark-matter-only simulations are comparably
less computationally expensive [160,203], allowing galaxies to be painted into dark-matter
halos using halo occupation distribution (HOD) models [34]. However, these models rely
on highly simplified treatment of small-scale physics, for which we lack accurate theoretical
descriptions.

The most robust approach, therefore, is to abandon explicitly modeling small scales and
instead focus on the Effective Field Theory of the Large-Scale Structure (EFTofLSS). This
framework allows us to extract robust cosmological information by employing perturbative
techniques where density fluctuations are small and well understood. By applying general
principles such as the equivalence principle from General Relativity, we construct a bias
expansion that includes all operators allowed by symmetry [66], each with an associated
free bias parameter that must be constrained by data. By marginalizing over these bias
parameters, we are accounting for the marginalization over the reasonable unknown models
of galaxy formation on small scales.

This chapter develops the theoretical framework needed to model galaxy clustering in
the framework of the EFTofLSS, beginning with a review of key aspects of General Rel-
ativity (GR) that will be important for later discussions (Sec. 2.1). Building on this, we
explore how to use perturbation theory to model the nonlinear growth of structure, both
in Eulerian and Lagrangian frames, and how to construct the EFTofLSS (Sec. 2.2). We
then discuss how to construct the bias expansion to model the distribution of galaxies,
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connecting theoretical predictions to actual observations (Sec. 2.3). We also introduce
Wilson-Polchisnki renormalization scheme for galaxies (Sec. 2.4), from which we will de-
rive important results that set the foundations of LEFTfield, the forward model that will
be used throughout this thesis (Sec. 2.5). It is solely built upon the perturbative tech-
niques discussed in this chapter, and will allow us to relate observable quantities to the
cosmological parameters and initial conditions, setting the stage for cosmological inference
(Chapter 3).

2.1 Gravity
In General Relativity (GR), physical observables must be independent of coordinate choices.
This requirement implies that the only meaningful quantities are those that are invariant
under diffeomorphisms. Physical observables must be constructed from quantities that re-
main invariant under coordinate transformations xµ → x′µ(x). The metric itself transforms
as [50]

g′
µν(x′) = ∂xα

∂x′µ
∂xβ

∂x′ν gαβ(x). (2.1)

Since this transformation depends on arbitrary coordinate choices, the metric gµν itself is
not directly observable. The Christoffel symbols,

Γλµν = 1
2g

λσ (∂µgνσ + ∂νgµσ − ∂σgµν) , (2.2)

describe the connection on spacetime but are not tensorial quantities; they change in a
non-tensorial way under coordinate transformations. Therefore, they are not observable.
The first truly observable quantity constructed from the metric is the Riemann curvature
tensor,

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ. (2.3)

This tensor is invariant under coordinate transformations and contains all the information
about spacetime curvature. It depends explicitly on the second derivatives of the metric
tensor. Only the second derivatives of the metric, appearing in the Riemann tensor, provide
truly invariant information about spacetime. This explains why all physical observables in
GR, such as the Einstein tensor,

Gµν = Rµν − 1
2gµνR, (2.4)

and the Weyl tensor,

Cρ
σµν = Rρ

σµν − 1
2
(
gρµRσν − gρνRσµ + gσνR

ρ
µ − gσµR

ρ
ν

)
+ 1

6Rg
ρ
σgµν , (2.5)

are constructed from the second derivatives of the metric. All physical effects, such as
gravitational waves, tidal forces, and spacetime curvature, are described by the Riemann
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tensor and its contractions. This fundamental principle ensures that all measurements,
whether using geodesic deviation, gravitational lensing, or the detection of gravitational
waves, ultimately depend on the second derivative of the metric.

The Einstein field equations describe the relationship between the geometry of space-
time and the energy-momentum content,

Gµν = Rµν − 1
2Rgµν = 8πGTµν . (2.6)

This equation is local because it relates the Einstein tensor Gµν to the stress-energy tensor
Tµν at the same point in spacetime. That is, at any given point, the curvature is determined
solely by the energy and momentum present there.

While the Einstein equations are local, their solutions generally are not. This is be-
cause the field equations are differential equations whose solutions depend on boundary
conditions and global properties of spacetime. The classic example is the Newtonian grav-
itational potential Φ in the weak-field limit:

∇2Φ = 4πGρ. (2.7)

The solution to this equation involves ∇−2 and therefore an integral over all mass sources:

Φ(x) = −G
∫ ρ(x′)

|x− x′|
d3x′. (2.8)

This shows that the gravitational potential at a given point depends on the entire distri-
bution of matter, not just on local properties.

In General Relativity, this non-locality manifests in the full metric solution gµν , which is
influenced by the global distribution of mass-energy. A prime example is the Schwarzschild
solution, which describes the external gravitational field of a spherically symmetric mass,
but remains valid even far from the source.

While the Ricci tensor and the stress-energy tensor are related via Einstein equations,
it seems that the Weyl tensor, which is the traceless part of the Riemann tensor, should
be unconstrained. However, the components of the curvature tensor should be related by
the Bianchi identity,

∇[λRρσ]µν = 0, (2.9)
which provides a relation for the (derivatives) of the Weyl tensor and the Ricci tensor.
Since the latter can be related to Tµν via Einstein equations, we have that [50]

∇ρCρσµν = 8πG
(

∇[µTν]σ − 1
3gσ[µ∇ν]T

)
, (2.10)

where we see that the Weyl tensor is related to the stress-energy tensor via a first-oder
differential equation. This can be thought of as an analogy of Maxwell’s equations,
∇µF νµ = Jν , where on the right hand side we have a source term for the propagation
of gravitational waves. Note however that, given a energy-momentum distribution, we
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can have multiple solutions, as it should be. For example, for a spacetime where we have
vacuum everywhere, we have that Rµν = 0. Both flat Minkowski spacetime and gravita-
tional waves propagation through vacuum are a solution in this case, specified by different
boundary conditions. This implies that the Weyl tensor propagates freely, much like the
electromagnetic field in vacuum, carrying information about distant sources. In astrophys-
ical settings, anisotropic distributions of matter around an object can source nonzero Weyl
curvature, leading to observable tidal effects.

2.2 Perturbation Theory for LSS
In this section, we review the perturbative approach to describing the nonlinear gravita-
tional evolution of dark matter density and velocity fields. On sufficiently large scales,
where perturbative bias expansion is valid, vorticity as well as baryonic pressure effects
are negligible, and the nonlinear evolution of the cosmic matter density field can be accu-
rately modeled as a self-gravitating, pressureless, irrotational single fluid. We will neglect
the aforementioned effects throughout this discussion (see EFTofLSS for their treatment,
Sec. 2.2.5).

2.2.1 Gravitational fluid
Over a Hubble time, T = H−1, both matter and galaxies move distances no larger than
the non-linear scale kNL. This limited displacement is not due to strong interactions, as
would be the case in a conventional fluid, but rather because peculiar velocities are small
and the universe’s finite age constrains how far structures can evolve.

A key point in this framework is the distinction between the Hubble scale and the
non-linear scale. Gravity, by setting a finite causal horizon and a finite time, naturally
introduces a hierarchy among the multipole moments of the distribution function. This
hierarchy is essential for the emergence of a fluid description: without gravity, the system
could be arbitrarily old, no preferred scale would exist, and a coherent fluid-like approxi-
mation would break down. Thus, when we integrate out short-wavelength non-linearities
in an expanding FRW universe, the effective dynamics at large scales resemble those of a
“gravitational fluid”. This emphasizes the fundamental role of gravity not only in clustering
matter but also in enabling a controlled effective field theory description of LSS [31].

We motivate them below in Lagrangian Perturbation Theory (LPT) and Eulerian Per-
turbation Theory (EPT) before proceeding to the general bias operators construction.

2.2.2 EPT

2.2.3 The Fluid Equations
The distribution of particles in phase space is described by the distribution function
f(x,p, τ). According to Liouville’s theorem, the phase space density is conserved along
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particle trajectories. For collisionless dark matter, this leads to the collisionless Boltzmann
equation, also known as the Vlasov equation

df
dτ = ∂f

∂τ
+ dx

dτ
∂f

∂x
+ dp

dτ
∂f

∂p
= 0, (2.11)

Since solving the full seven-dimensional Vlasov equation is highly challenging, we focus
instead on moments of the distribution function, which correspond to fluid quantities
such as density ρ(x, τ), mean velocity vi(x, τ), and anisotropic stress τij(x, τ), capturing
deviations from a perfect single-stream flow.

To derive the evolution equations for the fluid quantities, we take moments of the
Vlasov equation (2.11). The zeroth moment corresponds to the continuity equation. After
integrating over momentum space and performing an integration by parts, we obtain

∂

∂τ
δ(x, τ) + ∇ · {[1 + δ(x, τ)]v(x, τ)} = 0, (2.12)

where δ = ρ/ρ̄−1 is the density contrast. Taking the first moment and using the continuity
equation, we obtain the Euler equation, or momentum conservation,

∂

∂τ
v(x, τ) + [v(x, τ) · ∇] v(x, τ) + H(τ)v(x, τ) = −∇Φ(x, τ) − 1

ρ(x, τ)∇τij(x, τ), (2.13)

where H(τ) denotes the conformal Hubble parameter and τij again captures the effects of
velocity dispersion.

The density also obeys Poisson equation from the Einstein equations,

∇2Φ(x, τ) = 3
2H2(τ)Ωm(τ)δ(x, τ), (2.14)

where Ωm(τ) is the matter density parameter. The fluid velocity can be decomposed into
a scalar and a vector part as v = vk + v⊥, where ∇ × vk = 0 and ∇ · v⊥ = 0. Thus, the
velocity field can be fully described by its vorticity w = ∇×v and its divergence θ = ∇·v.

2.2.4 SPT
To truncate this hierarchy, we assume that all moments beyond the velocity dispersion
vanish, an approximation known as the pressureless perfect fluid assumption. In essence,
in this approximation we will assume that the anisotropic stress vanishes. In Fourier space,
one can eliminate the gravitational potential Φ and describe the dynamics in terms of the
velocity divergence θ = ∇ · v. At linear order, the vorticity can be neglected (although it
can be generated at higher orders), and the continuity equation (Eq. 2.12) becomes

∂

∂τ
δ(1)(x, τ) + θ(1)(x, τ) = 0, (2.15)
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while the Euler equation (Eq. 2.13) reads

∂

∂τ
θ(1)(x, τ) + H(τ)θ(1)(x, τ) = −∇2Φ(1)(x, τ) = −3

2H2(τ)Ωm(τ)δ(1)(x, τ), (2.16)

where we used the Poisson equation (Eq. 2.14). Taking the time derivative of Eq. 2.15 and
using Eq. 2.16, we obtain

∂2

∂τ 2 δ
(1)(k, τ) − H(τ)θ(1)(x, τ) − 3

2H2(τ)Ωm(τ)δ(1)(x, τ) = 0, (2.17)

where we can use Eq. 2.15 to obtain

∂2

∂τ 2 δ
(1)(k, τ) + H(τ) ∂

∂τ
δ(1)(k, τ) − 3

2Ωm(τ)H2(τ)δ(1)(k, τ) = 0. (2.18)

The growth factor D(τ) can be introduced by expressing the linear density contrast as

δ(1)(k, τ) =
[
D(τ)
D(τ0)

]
δ(1)(k, τ0), (2.19)

where τ0 is a reference time and D(τ) satisfies the differential equation

d2D(τ)
dτ 2 + HdD(τ)

dτ
− 3

2Ωm(τ)H2(τ)D(τ) = 0, (2.20)

where initial conditions are chosen so that D(τ) follows the growing mode, typically scaling
as D(τ) ∝ a(τ) during matter domination. To move to a general solution, we note that in
Fourier space

v(k) = −i k
k2 θ(k), (2.21)

to write the non-linear terms in Eq. (2.12) and Eq. (2.13) in the right-hand side of

∂δ(k, τ)
∂τ

+ θ(k, τ) = −
∫
k1,k2

(2π)3δD(k − k12)α(k1,k2)θ(k1, τ)δ(k2, τ), (2.22)

∂θ(k, τ)
∂τ

+ H(τ)θ(k, τ) + 3
2H2(τ)Ωm(τ)δ(k, τ) =

−
∫
k1,k2

(2π)3δD(k − k12)β(k1,k2)θ(k1, τ)θ(k2, τ),
(2.23)

where we have introduced the shorthand k12 = k1 + k2 and the mode-coupling kernels

α(k1,k2) = k12 · k1

k2
1

, (2.24)

β(k1,k2) = k2
12(k1 · k2)

2k2
1k

2
2

. (2.25)
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In standard perturbation theory (SPT), the fields δ and θ are expanded perturbatively
in powers of the linear density contrast δ(1):

δ(k, τ) =
∞∑
n=1

δ(n)(k, τ), (2.26)

θ(k, τ) =
∞∑
n=1

θ(n)(k, τ), (2.27)

where δ(n) and θ(n) represent contributions of order n in δ(1). The linear-theory velocity
divergence field can then be obtained from the linearized continuity equation [Eq. (B.4)]:

θ(1)(k, τ) = −d lnD(τ)
dτ

δ(1)(k, τ) = −Hf(τ)δ(1)(k, τ), (2.28)

where the logarithmic growth rate is defined as f(τ) ≡ d lnD/d ln a. By looking at the
structure of Eq. (2.22) and Eq. (2.23), we can infer a structure for the n-th order solutions,

δ(n)(k, τ) =
∫
k1

· · ·
∫
kn

(2π)3δD(k − k12···n)Fn(k1, · · · ,kn; )δ(1)(k1, τ) · · · δ(1)(kn, τ), (2.29)

θ(n)(k, τ) = −H(τ)f(τ)
∫
k1,··· ,kn

(2π)3δD(k − k12···n)Gn(k1, · · · ,kn)δ(1)(k1, τ) · · · δ(1)(kn, τ),

(2.30)

where Fn and Gn are symmetrized kernels associated with the density and velocity di-
vergence fields, respectively. From the linear solutions, F1 = G1 = 1. We have assumed
an Einstein-de Sitter (EdS) universe (Ωm = f = 1), where the kernels become time-
independent, simplifying the calculations. To find the second order kernels, we rewrite.
Using the power law ansatz and comparing to Eq. 2.30, we obtain

F2(k1,k2) = 5
7 + 2

7
(k1 · k2)2

k2
1k

2
2

+ 1
2
k1 · k2

k2
1

(
k1

k2
+ k2

k1

)
, (2.31)

G2(k1,k2) = 3
7 + 4

7
(k1 · k2)2

k2
1k

2
2

+ 1
2
k1 · k2

k2
1

(
k1

k2
+ k2

k1

)
. (2.32)

Rewriting F2 as

F2(k1,k2) = 17
21 + 2

7

[
(k1 · k2)2

k2
1k

2
2

− 1
3

]
+ 1

2
k1 · k2

k2
1

(
k1

k2
+ k2

k1

)
, (2.33)

it becomes clear that the second-order density can also be written in real space as

δ(2)(x, τ) = 17
21[δ(1)(x, τ)]2 + 2

7[K(1)
ij (x, τ)]2 − s

(1)
i (x, τ)∂iδ(1)(x, τ). (2.34)

where K(1)
ij is the tidal tensor constructed from the first-order density field, and s(1)

i denotes
the displacement field (see Sec. 2.2.6),

s(1)(q, τ) = x
(1)
fl (q, τ) − q, (2.35)
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where xfl(τ) denotes the Eulerian coordinate of the fluid trajectory corresponding to a
fixed Lagrangian position q = xfl(τ = 0).

We can use the solutions that we obtained to calculate the prediction for the matter
power-spectrum. The non-trivial components are given by

PSPT(k) = ⟨δ(2)(k)δ(2)(k′)⟩′ + ⟨δ(1)(k)δ(3)(k′)⟩′ = P (22)(k) + P (13)(k), (2.36)

where

P (22)(k) = 2
∫
p

[F2(p,k − p)]2 PL(p)PL(|k − p|) (2.37)

P (13)(k) = 3PL(k)
∫
p
F3(p,−p,k)PL(p) (2.38)

and F3(p,−p,k) is one of the third-order kernels.

2.2.5 EFTofLSS
In Sec. 2.2.4, we assumed that dark matter behaves as a perfect, pressureless fluid. While
this is a valid approximation on large scales, it breaks down on small scales, where pressure
and anisotropic stress become non-negligible. In particular, the single-stream approxima-
tion and negligible velocity dispersion assumed in SPT fail in the nonlinear regime. As a
result, one-loop integrals in SPT receive contributions from arbitrarily high wavenumbers
k, where the fluid description is no longer valid.

Although imposing a sharp cutoff k < Λ can regulate these integrals, the results become
sensitive to the arbitrary choice of cutoff, introducing unphysical dependence. Moreover,
nonlinear phenomena such as baryonic feedback, galaxy formation, and exotic short-scale
dynamics further complicate the modeling of small-scale physics.

This motivates the Effective Field Theory of Large-Scale Structure (EFTofLSS), which
systematically incorporates the impact of small-scale nonlinear physics on large-scale ob-
servables. The central idea is to filter out the small scales and work instead with smoothed
fields X = {δΛ,vΛ,ΦΛ},

XΛ(k, τ) = WΛ(k)X(k, τ), (2.39)

where WΛ is a smoothing kernel that filters out modes above a scale Λ.
Even though short-scale modes are integrated out, they influence the evolution of large-

scale structures through an effective stress tensor τ ij that appears in the Euler equation,
where now we have modified the structure of Eq. 2.13,

∂

∂τ
v(x, τ) + [v(x, τ) · ∇] v(x, τ) + H(τ)v(x, τ) = −∇Φ(x, τ) − 1

ρ(x, τ)∇τ ijΛ (x, τ), (2.40)

where τ ijΛ encodes the backreaction of short-scale physics on the long-wavelength flow.
We can make progress by expanding the effective stress tensor [τ ij]Λ in terms of a basis

of counter-terms, that are constructed out from the leading gravitational observables along
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the fluid trajectory. In fact, these are the same type as those employed in the general
Eulerian bias expansion in Sec. 2.3.5 (Π[n] there). The counter-terms are free coefficients
which are left to be determined by data or simulations, and which encode small-scale
physics processes that we do not know how to model. By leaving them as effective free
coefficients, we are parametrizing our ignorance about the complicated small-scale physics.

At one-loop order, it is sufficient to retain only the linear term [25],

1
ρ(x, τ)∇τ ijΛ (x, τ) = c2

s(τ) ∂iδ(1)(x, τ), (2.41)

where c2
s(τ) is a time-dependent counter-term. In practice, by introducing this counterterm

structure, we are absorbing ultraviolet-sensitive contributions from the small-scale power
that is integrated in the SPT power spectrum in Eq. (2.38). Schematically, the leading
one-loop EFT correction to the matter power spectrum in the limit of Λ−1 → 0 at fixed
time looks like

PEFT(k) = PSPT(k, ) − 2c2
sk

2PL(k, ), (2.42)
PL(k) is the linear power spectrum. Overall, EFTofLSS provides a renormalized and sys-
tematic framework that extends the validity of perturbation theory, considerably improv-
ing agreement with N -body simulations. In the galaxy bias section, the concepts of the
EFTofLSS presented here will be applied in a similar manner and explained in greater
detail.

2.2.6 LPT
In order to study the dynamics of matter, we can write the geodesic equation for the
Eulerian comoving position x(τ) of a Newtonian pressureless fluid element and relate it to
the gravitational potential Φ(x, τ). If we denote the Lagrangian position of this fluid at
τ = 0 as q, we obtain the advection equation

xfl(q, τ) = q + s(q, τ), (2.43)

where s(q, τ) is the Lagrangian displacement along the fluid trajectory (see Fig. 2.1).
In the Lagrangian picture, the displacement s(q, τ) is our dynamic variable. We can

then write the geodesic equation for the displacement and relate it to the gravitational
potential Φ(x, τ), which in turn is connected to the matter density contrast δ(x, τ) via the
Poisson equation. The continuity equation for matter,

[1 + δ(xfl)]dx = dq, (2.44)

can be written as
1 + δ(x, τ) =

∣∣∣∣∣dxdq
∣∣∣∣∣
−1

x=xfl

= |1 +M (q, τ)|−1, (2.45)

where we defined the Lagrangian deformation tensor Mij ≡ ∂sj/∂qi, allowing us to write
the equation of motion of the displacement in terms of q only [143].
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Lagrangian Perturbation Theory (LPT) then proceeds by expanding the displacement
as [44]

s(q, τ) =
∞∑
n=1
s(n)(q, τ), (2.46)

and equivalently for the deformation tensor to obtain the LPT recursive relations [143,180,
231]. It is also convenient to separate the displacement into a longitudinal σ ≡ ∇ · s and
a transverse component t ≡ ∇ × s,

s = ∇
∇2σ − 1

∇2∇ × t, (2.47)

where the resulting evolution equations show that the transverse contribution t only be-
comes relevant at third order [181,190]. The time component can be factorized out, which
allows for writing evolution equations for σ and t order by order as a function of their initial
conditions, and also for the construction of a closed bias expansion (see below). Although
this factorization is mostly used in the context of an Einstein-de Sitter (EdS) Universe, it
is also possible for a general expansion history [71].

Equation of motion. We can write the equation of motion governing the fluid trajectory
as [68] (

∂2

∂τ 2 + H ∂

∂τ

)
s(q, τ) = −∇Φ (q + s(q, τ), τ) . (2.48)

We take the divergence

∇x ·
(
∂2

∂τ 2 + H ∂

∂τ

)
s(q, τ) = −3

2Ωm(τ)H2(τ)δ(q, τ), (2.49)

with initial condition s(q, τ = 0) = 0. We want to compute the Eulerian divergence of the
displacement field s in matrix notation:

∇x · s = ∂sj
∂xj

. (2.50)

Using the chain rule, we relate derivatives with respect to Eulerian and Lagrangian
coordinates via

∂

∂qi
=
(
δKij +Mij

) ∂

∂xj
, (2.51)

where we define the displacement gradient as

Mij ≡ ∂sj
∂qi

. (2.52)

Inverting the Jacobian, we obtain:

∂

∂xj
=
[
(δK +M)−1

]
ji

∂

∂qi
. (2.53)
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Applying this to the divergence:

∂sj
∂xj

=
[
(δK +M)−1

]
ji

∂sj
∂qi

(2.54)

=
[
(δK +M)−1 ·M

]
ii

(2.55)

= Tr
[
(1 +M )−1M

]
. (2.56)

We can then write

Tr
[
(1 +M)−1

(
∂2

∂τ 2 + H ∂

∂τ

)
M

]
= 3

2Ωm(τ)H2(τ)(|1 +M (q, τ)|−1 − 1), (2.57)

which gives us the equation of motion in LPT.

Zel’dovich approximation. Eq. (2.49), which looks very similar to Eq. 2.18 and Eq. 2.20,
has the first order solution

s(1)(q, τ) = − ∇
∇2 δ

(1)(q, τ). (2.58)

This is known as Zel’dovich approximation, which tells us that, at first order in the dis-
placement, the particles follow a straight line.

2.3 Galaxy bias
In this section, we discuss how to construct the bias expansion. A comprehensive discussion
of galaxy bias models can be found in [66].

2.3.1 The leading local gravitational observable
The equivalence principle posits that in a free-falling reference frame, such as one that is
commoving with the trajectory of the galaxy1, the leading locally observable gravitational
effects are governed by the second derivatives of the metric tensor. Since galaxies are non-
relativistic, the only relevant component of the metric tensor is the time-time component
g00 ∼ R0i0j, since the motion of such tracers can be approximated by geodesics where
the relativistic effects are negligible. Furthermore, on sub-horizon scales, which refers to
scales smaller than the cosmological horizon where gravitational effects are felt over short
distances, we have in conformal-Newtonian gauge that

ds2 = −(1 + 2Φ)dτ 2 + (1 − 2Ψ)δijdxidxj, (2.59)

where Φ and Ψ are the gravitational potentials. In the absence of anisotropic stress, the
Einstein equations dictate Φ = Ψ. We conclude that the leading observable that can

1we will be using the term galaxy as a general term for any cosmological tracer, as the galaxy bias
expansion is valid for any tracer.
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influence the formation of galaxies are the second derivatives of the gravitational potential
along the fluid trajectory of the galaxy, denoted as ∂i∂jΦ(xfl(τ), τ) at fixed time τ , and its
time derivatives. This object can be decomposed into its trace and trace-free components,

∂i∂jΦ = 1
3δijδ +Kij, (2.60)

where δ is the gravitational potential, which satisfies the Poisson equation in Newtonian
gravity, Kij can be expressed in terms of δ as

Kij =
(
∂i∂j
∇2 − 1

3δ
K
ij

)
δ. (2.61)

2.3.2 EFT description
Early attempts to model galaxy bias focused on relating the galaxy distribution directly
to the initial conditions, specifically by modeling the galaxy overdensity field δg(x, τ) in
terms of the initial matter density field [28, 110]. These approaches primarily considered
correlations at early times, neglecting the complex processes involved in the subsequent
gravitational evolution of structures.

A more general and physically motivated approach is to track the formation and evo-
lution of galaxies over time, recognizing that we lack detailed knowledge of the small-scale
physics governing galaxy formation. Instead of modeling these complicated microphysical
processes explicitly, we parametrize their effects through a set of bias parameters. This
effective description treats galaxies statistically as a fluid in phase space, following the
same geodesic equations as dark matter.

Because typically kNL < H−1, galaxy formation occurs over long time scales but small
spatial scales, resulting in a “spaghetti”-like structure (see Fig. 2.1). The characteristic
spatial scale is usually set by R⋆. For halos and galaxies, R⋆ corresponds approximately
to the Lagrangian radius of the (host) halo. However, for other tracers, such as line
emitters, this characteristic scale can differ significantly due to the influence of long-range
electromagnetic effects.

In the framework of effective field theory of LSS (EFTofLSS), we construct the theory
by writing down all operators that are consistent with the symmetries of the system. In the
case of LSS, the fundamental symmetry is general covariance, reflecting the diffeomorphism
invariance of gravity, where the galaxy number density corresponds to the time component
of the four-vector momentum density.

As we saw in Sec. 2.1, equivalence principle guarantees that the leading observable
for non-relativistic observers is ∂i∂jΦ(xfl(τ), τ) and its time derivatives along the fluid
trajectory. In the EFTofLSS context [11, 31, 51, 175, 199], we aim to describe the number
density of galaxies by including all possible dependencies on this quantity at a given fixed
order in perturbation theory. By doing so, we refrain ourselves from modeling all unknown
small-scale physics, as they can be absorbed into EFT parameters to be determined from
data. The ultraviolet (or small-scale) cutoff Λ should be seen as a computational tool
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Figure 2.1: Galaxy formation picture, happening on large time scales and small spatial
scales. Adapted from [66].

that guarantees loop integrals remain finite, as any observable has to be independent of its
choice.

The contributions to the bias expansion are organized according to their perturbative
order and the number of spatial derivatives, following a gradient expansion. Operators
with higher numbers of derivatives are suppressed at large scales. Importantly, fields such
as the gravitational potential ϕ, its gradient ∇ϕ, and the peculiar velocity v cannot appear
directly in the bias expansion. This is because it is always possible to choose a local
coordinate frame in which these quantities vanish (by a suitable choice of gauge or frame),
making them unphysical for the purpose of constructing a covariant expansion.

Furthermore, since we are considering operators that can appear during the entire
time evolution of a galaxy along its fluid trajectory, certain quantities are redundant. For
example, the velocity divergence θ = ∇·v and the shear tensor ∂iuj can be eliminated using
the equations of motion. Thus, such quantities do not need to be included as independent
operators in the bias basis.

2.3.3 Time factorization and finite basis
All that we are going to assume is that galaxy formation is local, and therefore should only
depend on the local observables along the fluid flow, which is the leading gravitational
observable ∂i∂jϕ. Ignoring time evolution for now, we can write a local bias relation

δg(x, τ) = Fg(∂i∂jϕ(x, τ), τ), (2.62)
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so it is easy to expand in ∂i∂jϕ(x, τ) and write all the possible scalar contractions of this
functional as

δg =
∑
O

bOO, (2.63)

where bO are the functional terms which are left to be constrained to data. We know
however that we need to integrate over the fluid trajectory, so we need to promote the
function to a nonlocal-in-time functional

δg(x, τ) = Fg(∂i∂jϕ(xfl(τ ′), τ ′). (2.64)

It does not seem possible to Taylor expand this function, since ϕ will evolve significantly
over the time evolution of the galaxy. For example, let us say we have an operator con-
structed out of ∂i∂jϕ(xfl(τ ′), τ ′). If we try to do the expansion

δg(x, τ) ⊃
∫ τ

dτ ′fO(τ, τ ′)O(xfl(τ ′), τ ′) (2.65)

=
[∫ τ

dτ ′fO(τ, τ ′)
]
O(x, τ) +

[∫ τ

dτ ′(τ ′ − τ)fO(τ, τ ′)
] D

Dτ O(x, τ) + · · · , (2.66)

the higher-oder terms are not necessarily small. However, we can invoke the scale-free
nature of gravity. Suppose we have a linear functional, the functional can be written as∫ τ

0
dτ ′fg,δ(τ, τ ′)δ(xfl(τ ′), τ ′). (2.67)

In perturbation theory, this can be writen as a sale-invariant function where we separate
time and space dependencies,

δ(xfl(τ ′), τ ′) = D(τ ′)δ(1)(x, τ0). (2.68)

Now, we can clearly see that δ(1)(x, τ0) is independent of time, so it comes out of the
integral and we parametrize the time dependent integral as a linear bias term which we
just have to fit to data and we don’t care about its specific form. In fact, b1(τ)δ(1)(x, τ) is
the linear term appearing in the bias expansion. We can continue at higher orders and see
we will always obtain a similar structure, with the same operators appearing or additional
ones with new free bias coefficients.

2.3.4 Lagrangian Bias
Let us now explicitly construct a Lagrangian basis of bias operators. Since at leading
order in spatial derivatives all the allowed terms by EFTofLSS are contained in M(q, τ)
and its time derivatives [148], the deterministic part of the galaxy overdensity field in the
Lagrangian picture can be written as

δLg,det(q, τ) =
∫ τ

0
dτ ′Fg [M (q, τ ′), τ ′, τ ] , (2.69)
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where Fg is a nonlocal in time functional. By expanding Fg in M , we obtain all the
rotational invariants of M , and the time integral can be performed thanks to the afore-
mentioned time factorization. We can construct the Lagrangian bias expansion as

δLg,det(q, τ) =
∑
OL

bOL(τ)OL(q, τ), (2.70)

where bOL denote the Lagrangian bias parameters that encode all complex and non-linear
physics of galaxy formation from Fg. The Lagrangian operators OL are determined by
taking all scalar invariants of the symmetric part of M (n) and their independent products.
It is not necessary to include tr[M (n)] for n > 1 nor the antisymmetric contributions,
since they can be expressed in terms of lower-order symmetric ones via the equations of
motion [143,231].

At linear order, M (1)
ij is directly proportional to ∂q,i∂q,jΦ(1). Since time derivatives can

always be rewritten as a sum of higher-order operators, we only need to consider all possible
scalar contractions of the contributions M (n)

ij at each perturbative order.
The local basis of the deterministic Lagrangian operators up to fourth order is then

given by [148]

1st tr[M (1)]
2nd tr[(M (1))2], (tr[M (1)])2

3rd tr[(M (1))3], tr[(M (1))2]tr[M (1)], (tr[M (1)])3, tr[M (1)M (2)]
4th tr[(M (1))4], tr[(M (1))3]tr[M (1)], (tr[(M (1))2])2, (tr[M (1)])4,

tr[M (1)]tr[M (1)M (2)], tr[M (1)M (1)M (2)], tr[M (1)M (3)], tr[M (2)M (2)]

(2.71)

At fourth order, we utilize the fact that M (1)
ij is a symmetric 3 × 3 matrix and is

characterized by three independent rotational invariants. This allows us to eliminate
tr[(M (1))2](tr[M (1)])2. From third order onwards, Mij is no longer necessarily symmetric,
meaning that the displacement vector can also include a curl component. However, at each
perturbative order, the antisymmetric part of Mij can be rewritten in terms of lower-order
contributions to the symmetric part, defined as

M(ij) ≡ Mij +Mji

2 , (2.72)

through the equations of motion. Consequently, the bias expansion can be written purely
in terms of contributions to the symmetric part M (n)

(ij) [66].

2.3.5 Eulerian Bias
Following [66,148], we define

Π[1]
ij (x, τ) = 2

3ΩmaH2∂xi
∂xj

Φ(x, τ) = Kij(x, τ) + 1
3δ

K
ij δ(x, τ), (2.73)
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where k ≡ ∇δ is the tidal field tensor, and δK denotes the Kronecker delta. The superscript
[1] indicates that the lowest-order contribution appears at n = 1 in perturbation theory.
The operator Π[n] follows the recursion relation

Π[n]
ij = 1

(n− 1)!

[
(aHf)−1 D

DτΠ[n−1]
ij − (n− 1)Π[n−1]

ij

]
, (2.74)

where D/Dτ ≡ ∂τ + vi∂x is the convective derivative with respect to τ . The complete set
of operators in Eulerian space up to fourth order is

1st tr[Π[1]]
2nd tr[(Π[1])2], (tr[Π[1]])2

3rd tr[(Π[1])3], tr[(Π[1])2] tr[Π[1]], (tr[Π[1]])3, tr[Π[1]Π[2]]
4th tr[(Π[1])4], tr[(Π[1])3] tr[Π[1]], (tr[(Π[1])2])2, (tr[Π[1]])4,

tr[Π[1]] tr[Π[1]Π[2]], tr[Π[1]Π[1]Π[2]], tr[Π[1]Π[3]], tr[Π[2]Π[2]]

(2.75)

Different equivalent linear combinations exist in the literature, as discussed in [22,144];
further details can be found in Appendix C.2 of [66]. The complete set of EFT bias
operators up to third order, following the conventions of [66,148], is

O ∈
[
δ, δ2, K2, δ3, K3, δK2, Otd

]
, (2.76)

where Km denote scalar contractions of m instances of Kij and Otd is written as

Otd ≡ 8
21K

(1)
ij Dij

[
(δ(1))2 − 3

2(K(1)
ij )2

]
, (2.77)

and we defined
Dij ≡ ∂i∂j

∇2 − 1
3δ

K
ij . (2.78)

2.3.6 Gravity and non-locality
As we have just seen, the operator Otd has a non-local structure ∂i∂j/∇2 appearing in
Dij. Moreover, note that this has order zero in spatial derivatives, so it does not count
as a higher-derivative operator (see below). This is because we count the order in the
derivative expansion as powers of ∂i∂j acting on ∂i∂jϕ; Otd has two powers of derivatives
in the numerator and denominator, so the net order in spatial derivatives is zero. At first
glance, this appears to be a contradiction with our supposition that galaxy formation is a
local process. However, it turns out that it is a local observable. It can be shown [66] that
this operator can be rewritten in terms of convective time derivatives of Kij. Since time
derivatives of observable quantities should be also observables, it follows that Otd is also a
local observable.

This can be understood by thinking of non-locality of gravity due to its long-range
nature, which produces local observables that have to be taken into account in the bias
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expansion. For instance, Kij contains non-local information about δ, similarly to how
gravitational waves propagates through spacetime carrying information on distant sources,
due to the long-range gravity. In particular, it can be shown that Kij is a projection of the
Weyl tensor [100], which is non-locally related to Tµν , or the density, as is clear from ∇−2

appearing in Eq. (2.61). Since the Weyl tensor is not directly determined by local sources,
this means that tidal effects at a given point can be influenced by distant masses. Otd in
turn is non-local in ∂i∂jϕ, arising due to the gravitational evolution of Kij. Assuming a
local bias expansion means that galaxy formation should only depend on local gravitational
observables and its convective time derivatives, including the ones non-local in δ or ∂i∂jϕ
generated by gravity.

2.3.7 Advection of operators
The observed galaxy density field is in Eulerian space, while the Lagranian operators listed
in Eq. (2.71) are expresed in Lagrangian space. We use Eq. (2.43) to advect the Lagrangian
operators to Eulerian space. The continuity equation for galaxies gives the relation between
the galaxy overdensity in Eulerian and Lagrangian coordinates, i.e.,

δg,det(k, τ) =
∫ dq

(2π)3 e
ik·[q+s(q,τ)]

[
1 + δLg (q, τ)

]
. (2.79)

By expanding the displacement as in Eq. (2.46) and the exponential in Eq. (2.79), it
is possible to obtain the relation between the Lagrangian and Eulerian basis order by
order [3]. It is worth emphasizing that Lagrangian and Eulerian descriptions correspond
merely to different coordinate choices, that is, one does not assume a conserved galaxy
number.

2.3.8 Higher-order derivative terms
So far, we have assumed that the galaxy formation process is perfectly local in space.
Going beyond this approximation requires local operators O(x, τ) with functionals. For
example, the linear-order operator in the Eulerian basis, O = δ, becomes

bδ(τ)δ(x, τ) →
∫
d3y Fδ(y, τ)δ(x+ y, τ) , (2.80)

where Fδ(y, τ) is a time dependent independent of x due to homogeneity of the Universe.
We can now perform a formal series expansion of δ around x, leading to

bδ(τ)δ(x, τ) →
[∫

d3y Fδ(y, τ)
]
δ(x, τ) +

[1
6

∫
d3y |y|2Fδ(y, τ)

]
∇2
xδ(x, τ) + · · · (2.81)

= bδ(τ)δ(x, τ) + b∇2δ(τ)∇2
xδ(x, τ) + · · · , (2.82)

where statistical isotropy demands the absence of any preferred directions with which the
derivative operators could be contracted.
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This introduces of higher-(spatial-)derivative contributions, the leading of which is ∇2δ.
By dimensional analysis, these contributions are associated with a spatial length scale R∗.
We therefore need to introduce a new scale in the problem, in analogy to the speed of
sound arising from pressure terms in the EFTofLSS for dark matter [32]. Supposing that
R∗ is of the same order as the nonlinearity scale, then within the perturbative regime it is
sufficient to keep the leading order high-derivative term b∇2δ∇2δ(x, τ), as the higher-order
ones are suppressed by more powers of (R∗k)2. The higher-derivative bias are naturally
introduced when imposing that the observables should not depend on the EFT cutoff [66],
where it is important to stress that the nonlocality scale R∗ differs from the cutoff scale
Λ−1. In particular, all the counterterms needed to renormalize the operators of Eq. (2.71)
are the ones already listed there, together with their associated higher-order derivatives
terms [148].

2.3.9 Stochasticity
So far we have discussed the deterministic operators, as in the form of Eq. (2.70), but
the complete basis in the bias expansion should also account for the stochastic effect of
small scales on galaxy formation. Although we are working on the context of the EFT and
essentially integrating out the small-scale physics, it can happen that UV modes couple
to produce a large-scale wavelength fluctuations. While we can’t predict its value, it is
completely described by their n-point functions, so its statistical effect can be captured by
the stochastic amplitudes as free coefficients. For the two- and three- point functions, we
have that, at leading order and at a fixed time slice,〈

δg(k1)δg(k2)
〉′
∣∣∣∣LO

stoch.
= Pε,〈

δg(k1)δg(k2)δg(k3)
〉′
∣∣∣∣LO

stoch.
= Bε + 2 b1Pεεδ

(
Pm(k1) + 2 perm.

)
,

(2.83)

where the prime denotes that the momentum-conserving Dirac delta function is dropped, b1
is the Eulerian bias associated to δ(x, τ) and Pm is the non-linear matter power spectrum.
The noise parameters Pε, Bε and Pεεδ

are to be determined together with the bias parame-
ters, where the posterior of the cosmological parameters can be obtained by marginalizing
over them. From central limit theorem, we expect the stochasticity to be approximately
Gaussian distributed [192].

Just like for large-scale perturbations, galaxy formation also depends nonlocally on
small-scale perturbations inside the region characterized by R∗, such that we also have to
take into account higher-derivative contributions for the stochastic fields,

⟨ε(k)ε(k′)⟩ = P {0}
ε +R2

⋆k
2P {2}

ε + . . . . (2.84)

In the following, we usually refer to P {0}
ε as simply Pε. In the case of galaxies, there is no

mass and momentum conservation, so it appears already as a constant at k → 0.
The galaxy stochasticity can be interpreted due to the discrete nature of tracers, since

there is a stochasticity in the fact of whether we find or not a galaxy in within a certain
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cell, commonly referred to as the “shot-noise”. This is often assumed to be close to its
Poisson expected value, where its two-point amplitude goes as 1/ng. While this is not
exactly true, usually Pε is of this order.

Another interpretation is that it arises to renormalize P22, absorbing the UV depen-
dencies that appear in

P22(k) = ⟨δ2(k)δ2(k′)⟩′ = 2
∫
q
P (q)P (|k − q|)δD(k + k′), (2.85)

which also goes to a constant as k → 0.

2.4 Wilson-Polchinski for galaxies

2.4.1 Wilson-Polchinski RG
The partition function (or generating functional) plays a central role in quantum field
theory (QFT). It is defined as the path integral over all field configurations ϕ(x), weighted
by the exponential of the action [167],

Z[J ] =
∫

Dϕ eiS[ϕ]+i
∫
d4x J(x)ϕ(x), (2.86)

where S[ϕ] is the action and J(x) is an external source. The functional Z[J ] encodes all
correlation functions via functional derivatives with respect to J .

In statistical or Euclidean field theory, one often works with the Wick-rotated version,

Z[J ] =
∫

Dϕ e−SE [ϕ]+
∫
d4x J(x)ϕ(x), (2.87)

where SE is the Euclidean action. In contrast to the Minkowski formulation, where the
integrand involves an oscillatory phase eiS, the Euclidean weight e−SE is real and positive,
suggesting an interpretation as a probability density over field configurations. In the clas-
sical or semiclassical limit, where quantum fluctuations are suppressed, the path integral is
dominated by configurations that extremize the action, corresponding to classical solutions
ϕcl. In this limit, e−SE becomes sharply peaked around the classical configuration, further
supporting its interpretation as a probability density function (PDF).

Moreover, the Euclidean path integral closely resembles the partition function of a
statistical mechanical system, where the role of the Boltzmann factor e−βH is played by
e−SE , withH being the Hamiltonian and β the inverse temperature. This analogy reinforces
the idea that in Euclidean signature, the path integral defines a statistical ensemble over
field configurations. It should be noted, however, that in the full quantum theory e−SE

generates quantum correlations rather than probabilities in a classical sense, and thus the
PDF interpretation is strictly valid only in the classical or semiclassical limit.

To regularize the theory, a momentum cutoff Λ is introduced, making the theory ex-
plicitly cutoff-dependent. Physical observables at energies E ≪ Λ must, however, remain
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independent of Λ. This requirement leads to renormalization group (RG) flow equations,
encapsulated in the condition:

d

dΛZ[J ; Λ] = 0. (2.88)

To understand the evolution of the theory with scale, we introduce the effective action
SΛ[ϕ], defined by integrating out high-momentum modes above the scale Λ. The operators
Oi appearing in the effective action are accompanied by scale-dependent Wilson coefficients
gi(Λ), encoding the imprint of high-energy physics on the low-energy theory. For a general
bare action with gi(Λ),

SΛ[ϕ] =
∫
d4x

[
1
2(∂ϕ)2 +

∑
i

gi(Λ)Oi(ϕ)
]
, (2.89)

the requirement of cutoff independence implies the couplings must run with Λ,

Λdgi
dΛ = βi(g1, g2, . . .), (2.90)

where the βi functions characterize how couplings evolve with energy scale.
This framework underlies Wilsonian renormalization [226]: high-energy modes are in-

tegrated out incrementally, modifying the couplings so that low-energy physics remains
unchanged. Polchinski later formulated this RG procedure more precisely using a differen-
tial flow equation in the path integral formalism [172], leading to what is now called the
Wilson-Polchinski RG. This formalism integrates out momentum shells infinitesimally, and
describes how the effective action SΛ[ϕ] evolves continuously with Λ, making the RG flow
manifest.

Crucially, for the theory to be renormalizable, the set of operators {Oi} must be closed
under RG flow [204]. That is, the RG evolution should not generate new operators beyond
those included in the original effective action (or at least, all new terms should be accounted
for systematically in an effective field theory expansion). This closure ensures that the
theory remains predictive at each scale.

2.4.2 The partition function of galaxies
Similarly to quantum field theory, we can write a partition function for galaxies. Here, the
arbitrary cutoff has to be chosen such that Λ < kNL, where perturbation theory breaks
down (see Fig. (2.2)). We emphasize here that all modes k < Λ are kept explicitly in the
calculations.

The path integral approach was first applied to LSS in the context of the matter den-
sity field [51], where the interaction action is given by the solution to the equations of
motion for the matter density field, essentially the Euler and continuity equations. In-
stead of smoothing the equations of motion as is commonly done in the context of the
EFTofLSS [32], [51] demands that the coefficients in the effective action are closed under
renormalization group flow, where the counterterms with structure c∇2δ(Λ)∇2δ absorb the
cutoff dependence introduced by integrating out high-energy modes.
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Figure 2.2: Normalized linear power spectrum at different redshifts and corresponding
non-linear scale kNL, which increases with redshift due to non-linear clustering. The cutoff
scale Λ is also indicated, where the blue shaded region correspond to the small-scales that
are integrated over in the EFTofLSS. Adapted from [69].

For galaxies, the bias coefficients are Wilson coefficients of our theory, where they
depend on Λ while the cosmological parameters should independent of the cutoff. An
interaction action in this case Sint[δ(1)

Λ , JΛ] is “reverse-engineered” to give us the bias ex-
pansion we derived in the previous sections based on symmetry arguments, together with
the free propagator for the linear density field PΛ

L (k) = ⟨δ(1)
Λ (k)δ(1)

Λ (k′⟩′. This allows us to
write the galaxy partition function [46,186]

Z[JΛ] =
∫

Dδ(1)
Λ P [δ(1)

Λ ] exp
(
Sint[δ(1)

Λ , JΛ]
)

=
∫

Dδ(1)
Λ P [δ(1)

Λ ] exp
∫

k
JΛ(k)

[∑
O

bΛ
OO[δ(1)

Λ ](−k)
]

+
∑
m=2

C
(m)
1 (Λ)
m!

∫
x
[JΛ(x)]m +

∑
m=2

∑
O

C
(m)
O (Λ)
m!

∫
x
[JΛ(x)]mO[δ(1)

Λ ](x)
,

(2.91)

where the current JΛ has support up to Λ. The introduction of a finite cutoff guarantees
that all observables derived from Z remain finite. However, their accuracy is limited to
energy scales below Λ, which is why the source current is truncated at Λ. The integration
is done over the initial conditions δ(1)

Λ , where we suppress all modes k > Λ, which in the
absence of primordial non-Gaussianties follows

P [δ(1)
Λ ] =

 Λ∏
k

2πPΛ
L (k)

−1/2

exp
−1

2

∫ Λ

k

|δ(1)
Λ |2

PΛ
L (k)

 . (2.92)

The terms linear in JΛ correspond to the deterministic part of the bias expansion, while
the terms in the second line of Eq. (2.91) correspond to the stochastic contributions. On
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Figure 2.3: Schematic representation of δ(1)
Λ′ : the shell is given by the part in between Λ

and Λ′.

the left hand side, we have the purely stochastic terms of order O[JmΛ ] for m ≥ 2. For
instance, the two-point amplitude Pε = C

(2)
1 and three-point amplitude Bε = C

(3)
1 (where

1 corresponds to the “unity” operator O(x) = 1). On the right hand side, we have the
coupling of stochastic and deterministic contributions of order O[JmΛ δ

(1)
Λ ] (for m ≥ 2),

encoding terms such as the density dependent noise amplitude Pεδ = C
(2)
δ .

We can use this partition function to generate all n-point functions via functional
derivatives of Z with respect to the current. For example,

⟨δg(k)δg(k′)⟩′ =

∂2 ln(Z[JΛ]/Z[0])
∂JΛ(k)∂JΛ(k′)

∣∣∣∣∣∣
JΛ=0


′

=
∑
O,O′

bObO′⟨O(k)O′(k′)⟩′ + Pε(k)
(2.93)

Remarkably, the generating function is able to predict the galaxy n-point functions struc-
ture at any order in perturbation theory. At leading order, we obtain the well-known
expression

⟨δg(k)δg(k′)⟩′ = b2
1PL(k) + Pε(k). (2.94)

2.4.3 Galaxy bias RG equations
The Wilson-Polchinski approach to renormalization proceeds by integrating out modes in
the free field above a momentum cutoff Λ. In the LSS case, this corresponds to integrating
modes above the cutoff in the linear density field. This is in contrast to the n-point-
function-based renormalization approach of [22], since here all linear modes below the
cutoff are kept explicitly, whereas the n-point-function approach integrates over all modes,
including those on large scales.
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The partition function at some scale Λ′ will predict the running of the bias parameters
at a lower scale Λ. Since we need to integrate out the high-energy modes step by step, we
separate the modes of the linear density field in a thin shell δ(1)

shell(k) for k ∈ (Λ,Λ′] (see
Fig. 2.3), such that

δ
(1)
Λ′ (k) = δ

(1)
Λ (k) + δ

(1)
shell(k). (2.95)

Thanks to the Gaussianity of the initial conditions, the free action factorizes as

Zeff[JΛ] =
∫

Dδ(1)
Λ P [δ(1)

Λ ]
∫

Dδ(1)
shellP

[
δ

(1)
shell

]
exp

(∫
k
JΛ(k)

[∑
O

bΛ′

OO[δ(1)
Λ + δ

(1)
shell](−k)

])
,

(2.96)
where we discard stochastic terms, which do not contribute to the flow of deterministic
bias parameters [187].

We proceed by considering an infinitesimally thin shell to expand Eq. (2.96) in δ
(1)
shell.

Keeping only the non-trivial terms linear in δ
(1)
shell, we obtain

Z[JΛ] =
∫

Dδ(1)
Λ P [δ(1)

Λ ] exp
∫

k
JΛ(k)

[∑
O

bΛ′

O

(
O[δ(1)

Λ ](−k) + S2
O[δ(1)

Λ ](−k)
)], (2.97)

where we defined the operator expectation value over the shell

S2
O[δ(1)

Λ ] =
∑
n≥2

∫
Dδ(1)

shell P [δ(1)
shell]O(n),(2),shell[δ(1)

Λ , δ
(1)
shell](k) (2.98)

and O(n),(2),shell[δ(1)
Λ , δ

(1)
shell] involves 2 powers of δ(1)

shell and n− 2 powers of δ(1)
Λ . By comparing

Eq. (2.97) to Eq. (2.91), imposing no dependence on the cutoff gives us∑
O

bΛ
OO[δ(1)

Λ ] =
∑
O

bΛ′

O

(
O[δ(1)

Λ ] + S2
O[δ(1)

Λ ]
)
. (2.99)

If (and only if) the bias expansion is closed under the renormalization group flow, the effect
of integrating out the modes in δ(1)

shell(k) are absorbed into the bias coefficients, i.e., S2
O[δ(1)

Λ ]
can only depend on δ

(1)
Λ through the bias operators. This allows us to derive the RG

equations for galaxy bias in the form of dbO/dΛ that depends on the bias coefficients, the
equivalent of the β functions in QFT describing how the Wilson coefficients of the theory
run with scale. We can also study flow in bias parameter space and draw trajectories of
their running in theory space by integrating the differential equations.

Most importantly, this framework allows us to make the connection of bias parameters
measured at some scale Λ, such as with the EFT forward model LEFTfield (see Sec. 2.5),
to the ones measured at the large-scale limit Λ → 0, such as through the separate uni-
verse technique [123]. The RG flow equations can be useful for introducing priors on bias
parameters derived from the large-scale limit to bias parameters from the EFT forward
model.

Although we focused our derivation on deterministic bias parameters, the path integral
formalism has also been extended to predict the RG flow of stochastic parameters [187]
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(those arising from the terms of order O[JmΛ δ
(1)
Λ , JmΛ ] for m ≥ 2 in Eq. (2.91)) and for

the bias parameters arising from PNGs [158], where the measure in Eq. (2.91) has to be
modified to account for non-Gaussian initial conditions.

2.4.4 The field-level galaxy likelihood
Unlike QFT, in the context of galaxy clustering the galaxy density field is a direct observ-
able. Therefore, one might ask whether we can make use of the entire galaxy density field
for cosmological inference instead of relying on compressions such as the galaxy n-point
functions, with the hope of obtaining more cosmological information. The first ingredient
for such an analysis is writing a field-level likelihood, or EFT likelihood [45–47] P [δobs

g |θ],
which describes the probability of the galaxy density field given the parameters of the
model,such as the cosmological and bias parameters. This object can be later used to
obtain the posterior of cosmological parameters given the entire galaxy density field. In
the following, we describe how to make use of the galaxy partition function defined in
Eq. (2.91) to obtain an expression for the field-level galaxy likelihood.

Let us suppose that we have a model for the galaxy density field δg[θ, δ(1)
Λ ] that depends

on our parameters of interest. Since the output of this model will depend on the particular
initial conditions realization, we want to average out our probability in δ

(1)
Λ to obtain

P [δobs
g |θ] =

〈
δ

(∞)
D

[
δobs
g − δg[θ, δ(1)

Λ ]
]〉
δ

(1)
Λ
, (2.100)

where we used the notation 〈
·
〉
δ

(1)
Λ

≡
∫

Dδ(1)
Λ P [δ(1)

Λ ]. (2.101)

Introducing an auxiliary field X, we can rewrite Eq. (2.100) as

P [δobs
g |θ] =

∫
DX

〈
eiX(δobs

g −δg [θ,δ(1)
Λ ])

〉
δ

(1)
Λ

=
∫

DXeiXδobs
g

〈
e−iXδg [θ,δ(1)

Λ ]
〉
δ

(1)
Λ

,
(2.102)

where the last equality follows from the fact that δobs
g is independent from δ

(1)
Λ . Looking at

Eq. (2.91), we can immediately recognize that

P [δobs
g |θ] =

∫
DXeiXδobs

g Z[−iX]. (2.103)

Neglecting the terms in the partition function that are O[J2
Λδ

(1)
Λ , J3

Λ], we are left only with
terms up to O(J2

Λ), what allows us to perform a Gaussian integral over the leading order
stochastic contribution to finally obtain

ln P [δobs
g |θ] = −1

2

∫
k<Λ

∣∣∣δobs
g (k) − δΛ

g,det[θ, δ
(1)
Λ ](k)

∣∣∣2
PΛ
ε (k) + ln[2πPΛ

ε (k)], (2.104)



2.5 LEFTfield 33

where
δΛ
g,det[θ](k) =

∑
O

bΛ
OO [θ] (k). (2.105)

In practice, it is unfeasible to analytically perform the integral over initial conditions
(Eq. (2.101)). What one can do instead is develop a field-level forward model and make
use of Eq. (2.104) to numerically sample the posterior P [θ|δobs

g ]. This is a very complicated
task, since the dimensionality of the problem scales as N3

g = Λ−3, where Ng is the (cubic)
grid size. Moreover, the model δg[θ, δ(1)

Λ ] has to be extremely precise at the field-level to
avoid any complications with model mismatch; while at the level of the n-point functions
one would expect differences in the model to the observed data to be attenuated by the
averages that are taken over the field, the likelihood in Eq. (2.104) is comparing the model
and the observed data at each grid cell. In the following section, we describe how to
construct a forward model based on the galaxy bias expansion, while in Sec. 3.6, we describe
how to use it to perform field-level inference in practice.

2.5 LEFTfield
LEFTfield is a Lagrangian forward model based on the EFTofLSS, where the bias expan-

sion is implemented directly at the field level. Originally introduced in detail by [193], its
physical and numerical convergence was further investigated by [206] in restframe and [207]
in redshift space. The model serves as a robust and efficient simulator for simulation-based
inference, demonstrated in [217] using mock data (Chapter 4) and dark-matter halos (Chap-
ter 5) to infer the cosmological parameter σ8 in the restframe. Additionally, it supports
field-level inference by enabling marginalization over initial conditions, as discussed in the
previous section. Its effectiveness in this context has been shown by [118] with mock data,
by [157] and [206] for dark-matter halos (Chapter 5), by [38] for HOD galaxies in a blind
challenge, and by [205] in redshift space with dark-matter halos. Furthermore, LEFTfield
facilitates field-level inference of the BAO scale [23, 24] (Chapter E), and provides an effi-
cient method to measure bias parameters for both dark-matter halos [121] and galaxies [30]
in simulations.

Lagrangian-EFT forward model. In essence, the cell size in LEFTfieldis given by
Λ−1, where we evolve all modes up to the cutoff at the field-level. The fact that LEFTfield
is a Lagrangian forward model means that it uses LPT for the gravity evolution (instead of
an N-body solver, for example), although it allows for both Lagrangian and Eulerian bias
expansions via the mapping given in Eq. (2.43) (see below). In practice, this also means
that redshift space modeling is more straightforward, essentially by modifying Eq. (2.43)
and the bias operators accordingly [207]. However, in this thesis we will only be working
in restframe.

Bias running. The inferred bias and stochastic parameters will depend on (“run with”)
Λ [185], while inferred cosmological parameters are independent of Λ. We stress the dif-
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Figure 2.4: Diagram for the construction of Eulerian bias operators in LEFTfield.

ference between our finite, explicit cutoff Λ and the formal cutoff used in semi-analytical
loop calculations, which is usually sent to ∞ [22,51,185]. However, the running of the bias
parameters can in principle be predicted and connected to the large-scale limit by means
of the galaxy bias RG equations (see Sec. 2.4.3).

Initial conditions. LEFTfield, which is based on [190], works as follows. We start from
an initial power spectrum PL which is scaled by α2, where we define

α ≡ σ8/σ
fid
8 (2.106)

and set σfid
8 to a fiducial value, while all other cosmological parameters are fixed. For now,

only changes on α are implemented in the forward model (and the BAO scale, although it
is kept fixed throughout this thesis until Chapter E). A Gaussian random field δ

(1)
Λ of size

N3
g is generated from this scaled power spectrum as

δ
(1)
Λ (k, z) = WΛ(k)

√
α2PL(k, z) ŝ(k), (2.107)

where ŝ(k) is a Gaussian random field of zero mean and unit variance, z is the redshift and
the grid is smoothed at scale Λ with a sharp-k filter WΛ(k), guaranteeing that we are only
treating perturbative modes in the forward model [192]. This is related to the expansion
of M by expanding Eq. (2.45) to first order, yielding

σ
(1)
Λ ≡ tr[M (1)

Λ ] = −δ(1)
Λ . (2.108)

We then use this relation to set our initial conditions for σ(1)
Λ , while t is constructed in the

same grid using the evolution equations. The displacement s(k) is then evaluated from
Eq. (2.47) up to the desired order in LPT.

Lagrangian bias operators. Eq. (2.108) gives us the initial conditions for σ(1)
Λ , while

M can also be constructed in the same grid using the evolution equations. We then use
the displacement to advect the Lagrangian operators to Eulerian space. As previously
discussed, in perturbation theory this is done by both expanding the exponential and the
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displacement in Eq. (2.79). With the aim of preventing noise generation on large-scales,
instead of expanding the exponential we use a density assignment scheme, where the “mass
of the particles” corresponds to the value of the Lagrangian operators at each grid cell,
i.e., MO

assigner(q) = OL(q). Note that this introduces an extra term from the Jacobian,∣∣∣∣∣∂x∂q
∣∣∣∣∣
−1

OL(x, τ) = (1 + δ(x, τ))OL(x, τ), (2.109)

which results in the operators of interest at leading order, while δ(x, τ)OL(x, τ) is degen-
erated with higher-order terms. This approach is similar to what has been previously done
in the literature; however, while [194] uses the Zel’dovich approximation (1LPT), we ex-
pand the displacement up to n-th order and [116,228] estimate the full displacement from
N-body simulations.

After the displacement s(k) is inversely Fourier transformed to configuration space and
copied to a larger grid of dimension N3

assigner, we use Eq. (2.43) to advect the deterministic
Lagrangian operators OL listed in Eq. (2.71) up to the desired order in the bias expansion,
with the exception of tr[M (1)]. Since δ and M are nonlinearly related through Eq. (2.45),
the usual bias term b1δ(q) contributes to several terms of Eq. (2.71), so we instead displace
a field with mass M δ

assigner = 1 to obtain the Eulerian density directly. Although displacing
tr[M (1)] would equivalently lead to a complete basis of operators, this approach allows us to
work with the linear bias b1, facilitating the interpretation of our results. The deterministic
Lagranian bias expansion in Eulerian space then reads

δLg,det(x, τ) = b1(τ)δ(x, τ) + b∇2δ(τ)∇2δ(x, τ) +
∑

OL ̸=tr[M (1)]
bOL(τ)OL(x, τ). (2.110)

For example, at second order, we have the operators

OL =
{
δ,∇2δ,

(
tr
[
M (1)

])2
, tr

[
M (1)M (1)

]}
. (2.111)

Eulerian bias operators. For constructing the Eulerian bias operators (Fig. 2.4), we
again displace a field with mass M δ

assigner = 1 to obtain the Eulerian density δ[δ(1)
Λ ]. Since

here the displacement field contains only large-scale modes and is protected by the equiv-
alence principle from bias corrections, the Lagrangian basis construction is not sensitive
to small-scale effects. However, this is not the case for the evolved density field, where an
extra filtering is necessary to avoid uncontrolled aliasing from higher-order modes which
have been populated by the nonlinear displacement. Therefore, we need to apply an extra
cut before constructing the Eulerian bias operators,

δΛbias(k) = WΛbias(k)δ[δ(1)
Λ ](k), (2.112)

where Λbias ≥ Λ [206]. We proceed by constructing the bias fields O from the filtered
Eulerian density grid, O[δΛbias ], such that the Eulerian bias expansion reads

δg,det(x, τ) =
∑
O

bO(τ)O(x, τ). (2.113)
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Our choice of the Eulerian bias expansion leads to the basis, up third order,

O ∈
[
δ, δ2, K2, δ3, K3, δK2, Otd,∇2δ

]
. (2.114)

Stochasticity. The stochastic contributions are added directly in Eulerian space, such
that the final galaxy overdensity field reads

δg(x, τ) = δg,det(x, τ) + ε(x, τ) + cεδ(τ)ε(x, τ)δ(x, τ) + cε2(τ)ε2(x, τ), (2.115)

where we also omitted the mean subtraction for ε2. This expression exhibits some differ-
ences from the usual stochastic contributions in the bias expansion [66]. Since the simulated
stochastic field ε is sampled from a Gaussian distribution with zero mean and variance Pε,
non-Gaussianity of the noise, specifically the noise bispectrum Bε is generated via the ε2

term in the model. Precisely, we obtain
〈
δg(k1)δg(k2)δg(k3)

〉′
∣∣∣∣LO

stoch.
= 6 cε2P 2

ε + 2 b1cεδPε
(
Pm(k1) + 2 perm.

)
, (2.116)

which thus captures both the Bε and Pεεδ
terms in Eq. (2.83) via c2

ε and cεδ, as derived in
Appendix A. In the Poisson limit, i.e., when the stochasticity of galaxies perfectly follows
Poisson statistics, determined by their mean comoving density n̄g, we expect that cε2 = 1/6
and cεδ = b1/2 (Appendix A). In general, one can go to the desired perturbative order in
the stochastic field to reproduce the desired order of the stochastic n-point amplitudes.

Assignment schemes. There are a few options for the assignment scheme. In ascending
order of complexity and precision, we have nearest-grid-point (NGP), cloud-in-cell (CIC)
and non-uniform Fast Fourier Transform (NUFFT) [29]. NUFFT performs a nonuniform-
to-uniform discrete Fourier transform f(x⃗) → f̃(k⃗) by mapping pseudoparticles at positions
x⃗i with weights f(x⃗i) to a supersampled grid of size (NNUFFT

grid )3 (typically NNUFFT
grid =

1.2 − 2NEul
grid), using an assignment kernel with compact support (typically spanning 4-16

grid cells). The algorithm then executes an FFT on the supersampled grid, deconvolves
the assignment kernel, and resizes the Fourier space grid to yield the final uniform discrete
Fourier transform f̃(k⃗). Although approximate, this method achieves accuracy close to
machine precision with reasonable computational cost [29].



Chapter 3

Cosmological inference

3.1 Bayesian inference
Bayesian inference provides a powerful and coherent framework for reasoning under un-
certainty. It is widely used across fields such as cosmology, statistics, machine learning,
and particle physics. At its core lies Bayes’ theorem, which updates prior knowledge about
unknown parameters based on observed data.

Bayes’ Theorem Let θ be a set of parameters describing a model, and let xo denote
observed data. Bayes’ theorem relates the posterior probability of the parameters given
the data to the prior belief and the likelihood of the data,

p(θ|xo) = p(xo|θ) p(θ)
p(xo)

. (3.1)

Here, p(θ|xo) is the posterior, our updated belief about θ after observing xo. p(xo|θ) is
the likelihood, the probability of observing the data xo assuming parameters θ, and p(θ) is
the prior, our knowledge or assumptions about θ before seeing the data. The prior reflects
our initial beliefs or theoretical assumptions about the parameters. It can encode previous
measurements, theoretical constraints, or domain knowledge. Lastly, p(xo) is the evidence
or marginal likelihood,

p(xo) =
∫
p(xo|θ) p(θ) dθ, (3.2)

ensuring normalization of the posterior.
In practice, posteriors are often intractable to compute analytically. Common sampling-

based methods include Markov Chain Monte Carlo (MCMC), e.g., Metropolis-Hastings and
Hamiltonian Monte Carlo.

Marginalization and Nuisance Parameters. In Bayesian inference, we marginalize
(i.e., integrate out) nuisance parameters to focus on the variables of interest. Suppose
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θ = (ϕ, ψ), where ψ is a nuisance parameter. Then the marginal posterior for ϕ is

p(ϕ|xo) =
∫
p(ϕ, ψ|xo) dψ. (3.3)

3.2 Standard cosmological inference
Cosmological analyses have traditionally focused on extracting information primarily from
the Baryon Acoustic Oscillation (BAO) “wiggles” in the galaxy two-point function. Re-
cently, it has become possible to perform “full-shape” analyses of the galaxy power spec-
trum, allowing for the inclusion of information beyond the BAO scale.

The standard approach to cosmological inference from spectroscopic surveys involves a
likelihood-based analysis, typically assuming a Gaussian likelihood for the galaxy n-point
functions,

−2 ln L(D | θ) = (D − T(θ))⊤C−1(D − T(θ)), (3.4)
where D is the observed data vector, T(θ) is the theoretical prediction depending on
cosmological and bias parameters, and C is the covariance matrix. Note that only the
mean of the data vector is modeled as a function of parameters, while the covariance is
typically computed analytically or estimated from mocks at fixed fiducial values.

Using BOSS data, this methodology has been applied to a series of increasingly sophisti-
cated analyses in the context of the EFTofLSS: first to the galaxy power spectrum [60,104],
then combining pre- and post-reconstructed power spectra [170], including the bispectrum
monopole [168], bispectrum multipoles [102], the one-loop bispectrum [59,169], and finally
to the correlation function [229].

While this program has been highly successful, it also faces significant conceptual
and practical challenges. Below, we highlight some of the key advantages of adopting
Simulation-Based Inference (SBI) techniques for galaxy clustering analysis as a promising
next step.

3.3 Why SBI for galaxy clustering?
Simulation-based inference (SBI) [57,137], also known as likelihood-free inference (LFI) or
implicit-likelihood inference, arises as an alternative to this approach. SBI makes use of a
simulator model that specifies a process to generate “mock” data; that is, for a given set
of parameters θ, the model generates (or forward-models) independent samples of p(x|θ),
where x is the data vector (of summary statistics, in our case). The inference makes use
of the simulated dataset to obtain the posterior and, since it does not require a direct
evaluation of the conditional density, is therefore in contrast to density models, or explicit-
likelihood models, where p(x|θ) has to be specified to obtain the posterior via Bayes’ rule.
This latter class of models is currently the standard in cosmology inference.

Simulator models, by virtue of their construction, operate as dynamic representations of
the actual mechanisms at work based on our well-established scientific knowledge, providing
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a direct and intuitive link between theoretical models and observable phenomena. They are
therefore more natural and interpretable than density models, where the density function
specification depends on a more abstract understanding of real-world phenomena and often
requires analytical approximations [161].

Although we work with n-point functions throughout this thesis, it is important to
stress that the SBI approach generalizes straightforwardly to any general data compression
scheme, as long as the simulator still provides accurate predictions and the data vector
is not extremely large. One can therefore study different summary statistics and their
combinations with no concerns on finding an analytical expression for their distribution.
This facilitates the use of more informative summary statistics, in particular those learned
by neural networks [75, 109], which can be flexibly optimized according to each particular
inference problem. In the context of galaxy clustering, recent progress has been made
by using graphs networks to capture the map information from the galaxy distribution
[141,223].

SBI has been widely used in the cosmological inference context, including weak-lensing
[15,16,106,131], type IA supernovae [15–17,36,52,111,124], standard sirens [79,80], CMB
[55, 128], galaxy cluster abundance [183], Gaussian and lognormal fields [13, 58, 125, 140],
dark-matter overdensity fields [58,150], voids [212], dark-matter halos [141,200] and galax-
ies [64, 90,91,149].

Nonetheless, only the results presented in this thesis uses SBI in the specific context of
the EFTofLSS and the bias expansion [66], which together provide a rigorous framework
for modeling galaxy clustering as described in Section 2.2.6. Below, we motivate some of
the main advantages of using SBI for galaxy clustering analysis.

Likelihood approximation. Focusing on the cosmological inference procedure for galaxy
clustering, the use of an analytical approximation for the likelihood becomes already in-
adequate for the galaxy power spectrum, the “simplest” summary statistic. It is well
known that the Gaussian approximation for cosmological two-point functions fails at low
wavenumbers k, since they are estimated as a sum of field amplitudes squared, and cosmic
variance breaks the central limit theorem due to the small number of modes [197,198] (see
Appendix D for an illustration). This issue is investigated in [198] for weak lensing power
spectra, in [89] for the 3D galaxy power spectrum, and in [126] for a log-normal density
field. The Gaussian likelihood approximation particularly affects the posterior of parame-
ters that are sensitive to low-k modes, such as in the case of fNL [117], which expresses the
effect of primordial non-Gaussianities (PNGs), i.e., deviations from Gaussianity in the per-
turbations generated during the inflation epoch. In addition, by coupling different Fourier
modes, nonlinear evolution also breaks the Gaussian assumption for the likelihood on small
scales, not only for the power spectrum but also for many other summary statistics.

Covariance estimation. Even if the Gaussian likelihood assumption is accurate, we
need to determine the covariance of the data vector. The usual procedure is to either
assume an analytical approximation, or to estimate the covariance from simulated mock
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catalogs with fixed cosmology. Analytical approximations are not always sufficient, and
estimation from mocks might be cumbersome and unpractical depending on the summary
statistics chosen. It is worth noting in this context that existing EFT-based analyses of
galaxy clustering make use of covariances estimated from mocks, while the mean of the
data vector is based on the EFT, which is strictly speaking inconsistent. In addition, there
is the issue of at which (fixed or varying) point in parameter space the covariance of the
data vector should be computed. SBI circumvents these issues and provides a means to
use a consistent prediction of the entire distribution of the data vector and its dependence
on the parameters θ, including correlations between different elements of the data vector
and higher-order moments. All of this is of great importance for scientific reasoning and
the assurance that the errors are not underestimated via a poor covariance estimation;
however, specific testing methods have to be applied to the SBI posterior for an evaluation
of whether it itself is underestimating the errors [96].

Binning effects. In standard explicit-likelihood approaches, it is necessary to bin-average
the theory prediction for the data vector in accordance with the binning used for the data.
This is know to be important in the bispectrum case, see for example [35]. For the bis-
pectrum, there is also the distinction between “open” and “closed” triangles, which arises
from the fact that “open” triangle bins (i.e., those which do not satisfy the closed triangle
condition) contain individual “closed” triangle modes [103]. These concerns are not present
in the SBI approach, as the data vector can be freely chosen, as long as the same procedure
is applied to observed and simulated data.

Forward modeling. As already mentioned, SBI makes use of simulator models to obtain
the simulated dataset and therefore is an application of forward modeling, where a prescrip-
tion of the generative process for the data vector as a function of the model parameters is
given. Although not particular to SBI, forward modeling presents several advantages over
other methods, such as the straightforward inclusion of observational effects, including win-
dow functions, redshift-space distortions and systematic effects [91,174,197,205,216,227].
In the context of the EFT forward model employed here, LEFTfield, forward modeling at
the field-level allows us to reach essentially arbitrary perturbative (loop) order [190].

To sum up, galaxy clustering for cosmological precision analysis is inevitably moving
towards the need of higher n-point functions, combining different summary statistics and
expanding the range of scales probed. It is evident how the covariance computation com-
plexity scales with higher n-point functions, and how the need of an analytical approxima-
tion for the likelihood limits the summary statistics which can be used for analysis. Given
a trustable simulator model, SBI therefore provides a flexible and rigorous framework for
statistical inference in the context of galaxy clustering, provided that the following points
are addressed: model misspecification, or how accurate is the simulator, convergence, or
how many simulations are needed for a reliable posterior estimation, and diagnostics, or
how reliable is the estimated posterior. In particular, we are interested in determining the
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calibration of the posterior [96,210] to check whether the uncertainties of the posterior are
at least not underestimated.

3.4 Simulation-based inference
We describe in detail how simulation-based algorithms work in this section. Its fundamental
requirement is to have a simulator model, such as LEFTfield. Let θ be the vector of
parameters of interest of dimension Nθ (e.g., cosmological, bias and noise parameters) and
x be the data vector of dimension D (e.g., power-spectrum bins). Assuming that we have a
proposal distribution over the parameters p̃(θ) (not necessarily the prior) and a simulator
that generates x given θ, it is possible to generate a simulated dataset of Nsim samples
{(θn,xn)}Nsim

n=1 , where (θn,xn) is a joint sample from p(θ,x) = p(x|θ)p̃(θ). We describe
below how the methods which will be used throughout this paper estimate the parameters
posterior from this dataset given the observed data xo.

3.4.1 Approximate Bayesian Computation
The first approach to perform SBI goes back to the idea of Approximate Bayesian Com-
putation (ABC). In its simplest form, rejection ABC [179], one defines a distance metric
ρ(x,xo) between the simulated samples x and the observed data xo, and it is possible to
obtain samples from an approximate posterior p(θ|ρ(x,xo) < ϵ) by accepting the parame-
ters θn for which the corresponding metric ρ(xn,xo) lies below a given threshold ϵ. In other
words, the posterior is obtained by the histogram of parameters for which the simulated
samples most closely resembles the observed data. In the limit ϵ → 0 and under suitable
regularity conditions, the approximated posterior recovers the true posterior [177].

In practice, however, the value of ϵ controls the sample acceptance rate and the required
simulation budget Nsim, so due to computational efficiency reasons it can’t be chosen to
be arbitrarily small. This is in tension with the aim for the smallest possible threshold to
obtain a better approximation of the posterior. Extensions of this method were proposed
to improve its efficiency such as Population Monte Carlo (PMC) [12], where a sequential
approach is used and the approximated posterior is used as proposal distribution p̃(θ)
for the next round until it has converged. These methods however still discard all the
simulations which were rejected. Below, we discuss more efficient algorithms in which the
entire dataset is used for the posterior estimation.

3.4.2 Neural density estimators
One of the biggest problems related to rejection-based algortihms such as ABC and PMC
concerns the fact that these inherently have to throw away all the simulations which lie
below a certain threshold. Neural Density Estimators (NDEs) come as a rescue, since they
use all available simulations to estimate the target distribution. The dataset of parameters
and simulated summaries {(θn,xn)}Nsim

n=1 is used to find a certain probability distribution.
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Figure 3.1: Different neural density estimation algorithms and their sequential versions.
From [137].

Neural Posterior Estimation (NPE) [85] and Neural Likelihood Estimation (NLE) [165] can
use normalizing flows [163] to fit the posterior or the likelihood, respectively. We give a
detailed explanation of normalizing flows in Sec. 3.4.3. There are also methods to learn the
likelihood-to-evidence ratio which use classifiers instead, such as Neural Ratio Estimation
(NRE) [95] (see Fig. 3.1).

Neural Likelihood Estimator. Suppose that we aim to approximate the unknown tar-
get distribution p(x|θ) as the conditional of the data x on the parameters θ. The idea is
to fit a flow-based model qϕ(x|θ) parametrized by ϕ to the dataset {(θn,xn)}Nsim

n=1 by im-
posing that the model approximates the target distribution, where p̃(θ,x) = p(x|θ)p̃(θ).
Evidently we do not know the target, but we can proceed by using the maximum likeli-
hood estimation method which minimizes the forward KL divergence in the support of the
proposals,

Ep̃(θ)
[
DKL [ p(x|θ) || qϕ(x|θ) ]

]
=
∫
dθ p̃(θ)

∫
dx p(x|θ) log

(
p(x|θ)
qϕ(x|θ)

)

=
∫
dθ dx p̃(θ,x) log

(
p(x|θ)
qϕ(x|θ)

)
= −Ep̃(θ,x)[ log qϕ(x|θ) ] + const.

≈ − 1
Nsim

Nsim∑
n=1

log qϕ(xn|θn) + const. ,

(3.5)

where on the third line we identified the part which is independent of ϕ as a constant
and on the last line we approximated the expectation over p̃(θ,x) with Monte Carlo. The
resulting Monte Carlo estimate of the KL divergence we wish to minimize is therefore
independent of the explicit form of the target distribution and equivalent to the sum over
the negative log-likelihood of the simulated datasets batches under the flow-based model.

The estimation of conditionals is a natural extension of Masked Autorregressive Flows
(MAF) [164], where only the conditionals corresponding to x are modelled by augmenting
the set of input variables with θ, i.e., zt = ft(zt−1,θ) (see Sec. 3.4.3). The only requirement
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is that x appears before θ for any order used, and no connections have to be masked out
from θ to the rest of the network. Therefore, the Neural Likelihood Estimator (NLE)
builds the flow-based model with MAF as [165]

qϕ(x|θ) = N (z0|0, I)
T∏
t=1

∣∣∣∣∣det
(
∂ft
∂zt−1

)∣∣∣∣∣
−1

, (3.6)

where the network parameters are trained with the loss given by Eq. (3.5).
Note that here the model is trained for any given data x, where for inference we are

interested in a specific observed data xo. The procedure is then to use the likelihood as
the estimated conditional evaluated at the observed data, and then use MCMC (which is
very cheap since only the learned model has to be evaluated) together with a prior p(θ) to
obtain the estimated posterior p̂(θ|xo) ∝ qϕ(xo|θ)p(θ).

When simulating the data is expensive, it is often desirable to use sequential approaches
such as in Sequential Neural Likelihood Estimator (SNLE) [165], where the density esti-
mation is done over multiple rounds focusing on a given observation x̄. The first proposal
p̃(θ) is often chosen to be the prior, while the subsequent proposals are set as the estimated
posterior p̂(θ|x̄) from the previous round. This of course limits the density estimation to a
single observation and is therefore non-amortized, but has the advantage of requiring less
simulations to obtain an accurate posterior estimation focused on xo, as the regions where
the proposal density is high tend to be better approximated by the model. However, the
cost of calibrating non-amortized methods is huge, as discussed below.

Neural Posterior Estimator. An advantage of the SNLE method is that the prior can
be changed and tested, but it has the MCMC as an extra computational step. This can be
avoided by estimating the posterior directly, as in the case of Sequential Neural Posterior
Estimator (SNPE) [85,138,162]. The estimated posterior has the form

p̂(θ|x) = p(θ|x) p̃(θ)p(x)
p(θ)p̃(x) , (3.7)

where p̃(x) =
∫
θ p̃(θ)p̃(x|θ). Note that the proposal posterior p̂(θ|x) is equal to the target

posterior if the proposal p̃(θ) equals the prior p(θ).
In its first implementation [162], the undesired dependence on the proposal p̃(θ) was

adjusted by multiplying the estimated posterior p̂(θ|x) by p(θ)/p̃(θ). This restricts qϕ(θ|x)
to be a Mixture Gaussian Density [39] and p̃(θ) to be a Gaussian, so that the division can
be done analytically; additionally, p(θ) can only be Gaussian or uniform. Besides these
strong requirements, a drawback of this model is the fact that the division can lead to
non-positive covariance matrices if p̃(θ) has smaller variance than any of the components
of qϕ(θ|x).

A further extension to this method was presented in [138], where the aforementioned
requirements are no longer needed and the method no longer yields negative covariances.
This is achieved by weighting the samples with wn = p(θn)/p̃(θn), such that the loss is
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modified to −∑
nwn log qϕ(xn|θn). However, the weights can have high variance, leading

to instability during the training process and inaccurate predictions in some cases [85].
The algorithm developed in [85] circumvents all these issues with the idea of “atomic”
proposals, that essentially replaces integrals by sums and allows for the usage of arbitrary
density estimators, especially those based on normalizing flows such as MAFs.

Neural Ratio Estimator. In Neural Ratio Estimator (NRE) [65, 70, 95, 145, 146], a
classifier is used instead of a normalizing flow. In principle, classifier is easier to train than
a flow. To extract a likelihood-to-evidence ratio, we train a classifier to distinguish between
samples drawn jointly vs marginally,

p(x,θ | y) =
p(x,θ) if y = 1
p(x)p(θ) if y = 0

(3.8)

The posterior for the “switching” variable y is

p(y = 1 | x,θ) = p(x,θ | y = 1)
p(x,θ | y = 0) + p(x,θ | y = 1) = p(x,θ)

p(x)p(θ) + p(x,θ) . (3.9)

If the likelihood to evidence ratio is

r(x,θ) = p(x,θ | y = 1)
p(x,θ | y = 0) = p(x,θ)

p(x)p(θ) = p(x | θ)
p(x) , (3.10)

we have that
p(y = 1 | x,θ) = r(x,θ)

r(x,θ) + 1 = σ(log r(x,θ)). (3.11)

The training of the classifier dψ(x,θ) proceeds by minimizing the binary cross-entropy
loss (BCE) and it can be used in MCMC to obtain samples from the posterior by using
the density ratio [95].

3.4.3 Normalizing flows
Statistical inference has gained power with the advent of normalizing flows, a class of gen-
erative models that allows one to model complex probabilistic distributions. The key idea
behind this method is to learn a map that transforms a simple, well-understood density
such as a Gaussian to the target probability distribution through successive transforma-
tions. Let x be a D-dimensional real vector and p(x) its joint distribution we wish to
estimate. We proceed by defining a transformation f from a base distribution π(u) such
that

x = f(u), u ∼ π(u). (3.12)

We further require that f is a diffeomorphism, i.e., that f invertible and that f and f−1

are differentiable, which restricts u to be D-dimensional as well [147]. The distribution
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over x can therefore be obtained by the change of variables [42,188]

p(x) = π
(
f−1(x)

) ∣∣∣∣∣det
(
∂f−1

∂x

)∣∣∣∣∣ . (3.13)

The composable property of diffeomorphisms, i.e., the fact that for any two diffeomor-
phisms f1 and f2 the composition f1 ◦ f2 is also diffeomorphic, guarantees that Eq. (3.13)
is still valid if we build a complex transformation from a series of simple transformations
f = fT ◦ · · · ◦ f1, where ft transforms zt−1 into zt, and setting z0 = u and zT = x. Flow
therefore refers to these successive transformations applied on the samples from π(u) to
progressively deform them into the ones of p(x), while normalizing refers to the inverse
flow f−1

T ◦ · · · ◦f−1
1 that maps the samples from the distribution p(x) into the ones of π(u),

which is often chosen to be a multivariate normal [163].
The fact that normalizing flows provide explicit densities (via Eq. 3.13) in addition

to sampling (via Eq. 3.12) is in contrast to other generative models like Variational Au-
toencoders (VAEs) [114] and Generative Adversarial Networks (GANs) [84], where usually
only sampling is possible. In practice, f (or f−1) is implemented as a neural network
parametrized by ϕ (e.g., its weights and biases), which is optimized to learn the mapping
between the distribution parameters and a given simulated dataset. The model should
have tractable inverse and Jacobian determinant; in other words, it is often required that
the inverse is efficient to calculate and that the Jacobian determinant time cost should be
at most O(D).

Masked Autoregressive Flows. A simple way to achieve the desirable properties of
the model is to use autoregressive flows, which restrict ft to be of the form [99]

z′
i = τ(zi; hi), hi = ci(z<i). (3.14)

Here, the output z′
i is the i-th component of a vector zt ∈ RD for which zt = ft(zt−1),

while zi is the i-th component of zt−1 ∈ RD. The transformer τ is required to be a strictly
monotonic function of zi, so that the model is invertible. Since τ is parametrized by hi, the
output z′

i does not depend on z≥i due to the autoregressive structure of the i-th conditioner
ci. As a consequence, the Jacobian is triangular and its determinant can be calculated as
the product of its diagonal elements, leading to an O(D) evaluation of the logarithm of
the determinant [163]:

log
∣∣∣∣∣det

(
∂f

∂x

)∣∣∣∣∣ = log
∣∣∣∣∣
D∏
i=1

∂τ

∂zi
(zi; hi)

∣∣∣∣∣ =
D∑
i=1

log
∣∣∣∣∣ ∂τ∂zi

(zi; hi)
∣∣∣∣∣ . (3.15)

The implementation of an autoregressive flow then follows by choosing an appropriate
transformer τ and conditioner ci. A common choice for the transformer is to use affine
functions, i.e.,

τ(zi; hi) = zi expαi + βi, hi = {αi, βi}, (3.16)
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Figure 3.2: Diagram of how normalizing flows work, with the specific example of Masked
Autoregressive Flows. The samples from the vector z0 = u, sampled from the simple
distribution π(u), are deformed through the sequence of transformations f = fT ◦ · · · ◦ f1
into those of zT = x, which follow a more complex distribution p(x). In the lower panel,
we illustrate the conditioner that “masks out” the connections between zi and h<i, as well
as the affine functions applied to the vector components.
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where we choose to parametrize the scale parameter of this location-scale transformation
as expαi to guarantee its invertibility. The determinant of the Jacobian is then simply∣∣∣∣∣det

(
∂f−1

∂x

)∣∣∣∣∣ = exp
(

−
D∑
i=1

αi

)
. (3.17)

We focus on Masked Autoregressive Flows (MAFs) [164] (see the flowchart Fig. 3.2), a
particular case of autoregressive flows which will be used throughout this paper for density
estimation, but other alternatives exist such as Inverse Autoregressive Flow (IAF) [113]
and Real NVP [67]. MAFs are a special case of autoregressive models [218], which use the
product rule of probability to decompose densities into 1-dimensional ones as

p(x) =
D∏
i=1

p(xi|x<i). (3.18)

In MAFs, the conditionals are parametrized by Gaussians,

p(xi|x<i) = N (xi;µi, (expαi)2), hi = {αi, µi}, (3.19)

which can be equivalently written as an affine function (Eq. 3.16)

xi = ui expαi + µi, ui = N (0, 1), (3.20)

where the base distribution is normal. Given that the model is easily invertible, with
ui = (xi − µi) exp(−αi), and it has a triangular Jacobian of the form of Eq. (3.17),
autoregressive models can also be interpreted as a normalizing flow [113], as Eqs. (3.12)
and (3.13) can be evaluated.

The MAF conditioner ci in turn is implemented with masked conditioners as in Masked
Autoencoder for Distribution Estimation (MADE) [81], where a single feedforward network
outputs h in one pass given the input z. To preserve the autoregressive property of the
conditioner, each weight matrix element is multiplied by a binary mask, where the connec-
tions between zi and h<i are “masked out” by essentially multiplying their corresponding
weights by zero.

The interpretation of autoregressive models as normalizing flows enables MAF to stack
multiple layers of MADEs with Gaussian conditionals into a deeper flow, where the output
of each layer, αi and µi for all i, are used as input for the next one. In the language of the
previous section, we will have that a MAF transforms the basis function π(u) = N (0, I) to
the target density p(x) through the composition of transformations f = fT ◦ ... ◦ f1, where
each ft is implemented by a MADE for z0 = u, zt = ft(zt−1) and zT = x.

As a result of the stacking, the model is still tractable, but more expressive and flexible.
For example, it has been shown that a MAF with 5 autoregressive unimodal conditional
layers is able to approximate multimodal posteriors [164]. Another subtlety is that the
estimated densities can depend on the order of the inputs, so MAF avoids this issue by
using different input orders for each layer.
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3.4.4 Simulation-based calibration

When using approximated methods for Bayesian inference, a lot of effort has to be made
to analyse whether the obtained posterior is correct. For example, for MCMC one has
to check whether the chains have converged, and to this date there exists no method to
assure convergence with complete confidence [96]. Regarding SBI algorithms, an important
diagnostic is to check whether the posterior is calibrated, i.e., not over- or under-estimating
the parameter uncertainties. For scientific reasoning, we are mostly concerned with assuring
that the posterior is not superconfident. Simulation-based calibration (SBC) [210] arises
as a useful tool for this analysis, where it is important to stress that passing this test is
only a sufficient condition; that is, if it fails, it is an indication that the training was not
successful (for example, if not enough simulations were used), while if it passes there is no
guarantee that the posterior is correct. Providing reliable tests for SBI algorithms is an
active area of research [96,127,136,230].

Here, we use SBC to analyse the estimated posteriors, and its results can tell us if the
posterior is not well-calibrated and indicate possible systematic biases on the inference.
The idea behind SBC is that, if we draw samples θ ∼ p(θ) from the prior and then
generate a data vector x ∼ p(x|θ) with the simulator, by drawing samples θ̂ ∼ p̂(θ̂|x) from
the estimated posterior approximated by the model qϕ(θ̂|x), we obtain joint distribution
µ(θ,x, θ̂) = p(θ)p(x|θ)p̂(θ̂|x). The marginal distribution of θ̂,

µ(θ̂) =
∫
dx
∫
dθ p(θ)p(x|θ)p̂(θ̂|x)

=
∫
dx
∫
dθ p(x,θ)p̂(θ̂|x)

=
∫
dx p(x)p̂(θ̂|x),

(3.21)

should be distributed according to the prior if the estimated posterior equals the target
distribution; that is, if p̂(θ̂|x) = p(θ̂|x), then

µ(θ̂) =
∫
dx p(x, θ̂) = p(θ̂). (3.22)

Analysing the distribution of θ̂ can therefore be used as a posterior calibration test. In
practice, we generate a set of “observed” data xio, where xio ∼ p(x|θi) is simulated given
a particular θi ∼ p(θ) drawn from the prior, and then estimate the posterior p̂(θ|xio) for
each of these observations. We then draw a set of posterior samples {θ̂}i for each of the
estimated posteriors and compute the rank of the observed data under this set by counting
how many of the posterior samples {θ̂}i fall below the corresponding observed data xio. If
the rank statistics is not uniformly distributed, then the estimated posterior is not well
calibrated.
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3.5 Data compression techniques
Since normalizing flows suffer from the curse of dimensionality, it is often desirable to com-
press the data x to a lower-dimensional summary statistic z. Then the density estimation
is performed in the joint space {z,θ}, rather than in the high-dimensional space {x,θ}.
While sub-optimal compression may increase the scatter in the {z,θ} space, leading to
broader posterior constraints, it does not result in biased inference. As a rule of thumb, it
is usually required that z has at least the same dimensionality as θ. We will review below
a few techniques for performing data compression, following [106]. In App. C, we show
how these compression techniques can be used for cosmological inference.

3.5.1 MOPED

Let us denote our parameters of interest as θ = {θi}Nθ
i=1 and the data vector we want to

compress as x = {xj}Dj=1. The MOPED algorithm [93,182] is a data compression technique
that reduces the dimensionality of a dataset from D to the number of parameters being
constrained, Nθ. This is achieved by projecting the data vector onto a set of carefully
constructed basis vectors, known as MOPED basis vectors Mi. These vectors are optimized
to maximize the sensitivity of the likelihood function to each of the parameters.

To construct the compression vectors, the derivative of the data vector with respect
to the model parameters is weighted by the inverse of the data covariance matrix. The
resulting vectors are then orthonormalized using the Gram-Schmidt procedure. The com-
pression matrix M(Nθ×D) has Nθ rows and D columns, with elements given by Mij. We
can define its rows (the MOPED basis vectors) as

Mi =



C−1x,i√
xT,iC−1x,i

if i = 1,

C−1x,i −∑i−1
k=1(xT,iMk)Mk√

xT,iC−1x,i −∑i−1
k=1(xT,iMk)2

if 1 < i ≤ Nθ,

(3.23)

where C is the covariance matrix of the data vector and x,i denotes the derivative of the
data vector with respect to the parameter θi. The Gram-Schmidt process is applied to
ensure the vectors {Mi} are orthonormal. As demonstrated in [93] and further supported
by [94], MOPED provides an optimal and lossless compression for Gaussian-distributed
data, provided the covariance matrix is independent of the parameters.

3.5.2 MSE
There are multiple strategies for training the neural compressor to produce informative
summary statistics. A straightforward method involves training the network as a regressor
for the parameters, optimizing either an ℓ2 (mean squared error, MSE) or an ℓ1 loss. These
loss functions correspond to learning the posterior mean and median, respectively. Previous
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work by [17] demonstrated that for a known likelihood, optimal compression is lossless at
a fiducial value of the parameter θ. In cases where the likelihood is Gaussian and the
covariance is independent of θ, the optimal score compression becomes linear, equivalent
to MOPED compression. Generally, optimal score compression yields summary statistics
equivalent in constraining power to the maximum likelihood estimate under the assumed
likelihood, i.e., z = F (x) = θMLE.

Rather than relying on an explicit likelihood, one can use a neural network-based
compressor z = Fφ(x), where the function Fφ is trained on a dataset {xn,θn}. The
network is optimized to minimize the following loss function with respect to the network
parameters φ:

Lℓ2(φ) = ∥Fφ(xn) − [Aθn + b]∥2
2 , (3.24)

where A and b are fixed scaling and shift parameters applied to normalize the targets for
efficient training, depending on the neural network architecture.

While score compression is equivalent to maximum likelihood estimation for an assumed
likelihood, the training objective corresponds to a mean posterior estimate, but without
assuming a specific likelihood and using an implicit prior derived from the training labels
θn. An alternative loss function that is commonly used is the ℓ1 norm,

Lℓ1(φ) = ∥Fφ(xn) − [Aθn + b]∥1 , (3.25)

which minimizes the least absolute deviation (LAD) or mean absolute error (MAE), and
is theoretically equivalent to estimating the posterior median. However, it tends to yield
a more lossy compression [106].

3.5.3 VMIM

The regression-based approaches mentioned in the previous section do not necessarily guar-
antee that the resulting summary statistics are maximally informative. Under specific con-
ditions, such as fixed fiducial parameter values and the assumption of Gaussianity, this
might hold true, but it does not apply in the general case.

An alternative and more principled method is to train the deep compressor by directly
maximizing the mutual information I(z,θ) between the summary statistics z and the pa-
rameters θ. Mutual information serves as a measure of the amount of information gained
about θ from observing z, thereby providing a more robust objective for learning informa-



3.5 Data compression techniques 51

tive statistics. We can define the mutual information formally with the KL divergence,

I(z,θ) = DKL [p(z,θ) ∥ p(z)p(θ)]

=
∫
dθ dz p(z,θ) log

(
p(z,θ)
p(z)p(θ)

)

=
∫
dθ dz p(z,θ) log

(
p(θ|z)
p(θ)

)

=
∫
dθ dz p(z,θ) log p(θ|z) −

∫
dθ p(θ) log p(θ)

= Ep(z,θ)[log p(θ|z)] − Ep(θ)[log p(θ)]
= Ep(z,θ)[log p(θ|z)] −H(θ).

(3.26)

In the context of data compression, a compressed summary z is obtained through a neural
network Fφ, z = Fφ(x), yielding

φ∗ = arg maxφI(Fφ(x),θ). (3.27)

The architecture of Fφ can be chosen freely, depending on te problem at hand. If the data
vector consists of an image, usually a 3D convolutional neural network (CNN) is used. For
one dimensional vectors, a fully connected network or 1D CNN can be employed.

The mutual information in Eq. 3.26 is generally intractable, and its estimation remains
an open challenge in both statistics and machine learning. One can instead use tractable
lower bounds on the mutual information, enabling its optimization in scenarios such as the
training of deep neural networks. One choice is the variational lower bound introduced
by [27],

I(z,θ) ≥ Ep(z,θ) [log qϕ(θ|z)] −H(θ). (3.28)
This bound relies on a variational conditional distribution qϕ(θ|z) that approximates the
true posterior p(θ|z), for example using a normalizing flow, and becomes an equality when
qϕ(θ|z) exactly matches p(θ|z). Taking into account that the entropy H(θ) is constant for
a fixed training set, the mutual information optimization objective can be stated as

arg maxφ,ϕEp(x,θ) [log qϕ(θ|Fφ(x))] . (3.29)

This approach is called Variational Mutual Information Maximization (VMIM). The opti-
mization loss is

LVMIM(φ, ϕ) = − 1
Nsim

Nsim∑
n=1

log qϕ(θn|Fφ(xn)), (3.30)

which has the same structure as the NPE loss function. One can then embed the neural
network Fφ to a normalizing flow and train with NPE loss function, where we optimize
together both the weights of the compression network φ and of the normalizing flow ϕ
by gradient descent. After training, you obtain a compressor Fφ which outputs a sum-
mary statistics which has maximum mutual information with respect to the parameters of
interest.
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Figure 3.3: Schematic representation of field-level inference through the forward model
LEFTfield. The initial conditions δ(1)

Λ are evolved with the forward model to obtain δg,det,
which is further used in the EFT likelihood together with δg,obs. New parameters are
proposed and the process is repeated to sample the posterior until convergence. Credits:
Julia Stadler.

3.6 Field-level inference
In field-level inference, the goal is to infer the underlying cosmological and bias parameters
θ together with the initial conditions directly from observed large-scale structure data, by
working at the level of the entire galaxy density field. The posterior distribution for the
parameters is given by

P [δobs
g |θ] =

∫
Dδ(1)

Λ Pprior[θ, δ(1)
Λ ]P [δobs

g |θ, δ(1)
Λ ], (3.31)

where the EFT likelihood P [δobs
g |θ, δ(1)

Λ ] was derivided in Sec. 2.4.4, which takes form for
discrete k

ln P [δobs
g |θ, δ(1)

Λ ] = −1
2

kmax∑
k ̸=0

 1
σ2
ε(k) |δg(k) − δg,det[θ, δ(1)

Λ ](k)|2 + ln[2πσ2
ε(k)]

. (3.32)

The practical steps involved in this procedure are as follows (see Fig. 3.3):

• Discretization: Discretize the density field on a grid or lattice, with the Nyquist
frequency setting the cutoff scale Λ.

• Sampling Initial Conditions: Draw realizations of the initial density field δin from
the prior distribution, assumed to be Gaussian in the absence of PNGs.

• Forward Evolution: Evolve the initial field forward in time using gravitational
evolution with LEFTfield to obtain δg,det.
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• Likelihood Evaluation: Compute the likelihood by comparing the evolved density
field to the observed galaxy field.

• Iteration: Repeat the process to sample from the posterior distribution of the cos-
mological parameters and the initial conditions until convergence is achieved.

One major challenge of field-level inference is the extremely high dimensionality of the
parameter space: even at relatively coarse grid resolutions, one must sample millions of
parameters (the values of δ(1)

Λ at each grid point).
Efficient sampling is therefore crucial. A key technique employed is Hamiltonian

Monte Carlo (HMC), which leverages gradient information to efficiently explore the high-
dimensional posterior, enabling practical inference despite the large number of parameters.
It requires the gradients of the operators with respect to the initial conditions, which is
also straightforwardly computed by LEFTfield. In the next section, we give an overview
on how this sampling algorithm works.

3.6.1 Hamiltonian Monte Carlo
Hamiltonian Dynamics. The Hamiltonian H(q, p) is a function of the d-dimensional
position q and d-dimensional momentum p of a given system. The Equations of Motion
(EoM) read

dqi
dt

= ∂H

∂pi
, (3.33)

dpi
dt

= −∂H

∂qi
, (3.34)

for i = 1, . . . , d. These define a mapping Ts from the state of the system from time t to
t+ s [153].

First, the mapping Ts is reversible, and its inverse T−s can be obtained by inverting
the signs of Eqs. 3.34. This will be important to show that MCMC updates that use the
dynamics leave the desired distribution invariant.

Hamiltonian dynamics are conserved, i.e., the Hamiltonian is invariant under the dy-
namics. We will see that acceptance probability is one if H is kept invariant, although in
MCMC we will not be able to keep it strictly invariant.

By Liouville’s Theorem, we have that volume preservation in phase space, i.e., (q,p)
space [21]. This is a huge advantage since we don’t have to account for a change of volume in
the acceptance probability for Metropolis updates. Otherwise, we would have to calculate
the Jacobian of the transformation, what might turn to be unfeasible.

Finally, we have the symplecticness of Hamiltonian dynamics. For the Jacobian J ,
defined in the analogous formulation of the EoM,

dz

dt
= J ∇H(z) , (3.35)
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where z = (q, p), we have that the symplecticness condition is such that the determinant
Bs of the mapping Ts satisfies

BT
s J

−1 Bs = J−1 , (3.36)
from which follows that det(B2)2 = 1.

The Leapfrog Method. Now we will discretize and solve the Hamiltonian equations in
each timestep ε with the Leapfrog method. We assume that

H(q, p) = U(q) +K(p), (3.37)

where U(q) is the potential energy of the system and K(p) is the kinetic energy. We can
assume that K(p) = pTM−1p, where M is a diagonal mass matrix, such that

K(p) =
d∑
i=1

p2
i

2mi

. (3.38)

The Leapfrog method constitutes in

pi(t+ ε/2) = pi(t) − (ε/2)∂U
∂qi

(q(t)), (3.39)

qi(t+ ε) = qi(t) + ε
pi(t+ ε/2)

mi

, (3.40)

pi(t+ ε) = pi(t+ ε/2) − (ε/2)∂U
∂qi

(q(t+ ε)), (3.41)

where pi/mi can be replaced by ∂K/∂pi for a generic kinetic energy K. This method
preserves volume exactly, since these are shear transformations. It is also reversible, since
we can obtain the same results once we negate p, apply the same number of steps and then
negate p again.

The Hamiltonian Monte Carlo Algorithm. If we want to use the Hamiltonian dy-
namics to sample from a distribution, we have to translate the density function for this
distribution to a potential energy function, where the original variables of interests can
now be seen as position variables, and the introduce the companion momentum variables
to go with them. Then we will be able to simulate a Markov chain where each iteration
resamples the momentum and does a Metropolis update with the proposal obtained by
using Hamiltonian dynamics.

MCMC from Hamiltonian dynamics. Since the Hamiltonian defines a energy func-
tion of the joint state of q and p, we can write a joint canonical distribution over these
states with probability density function

P (q, p) = 1
Z
e−H(q,p)/T , (3.42)
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where Z is the normalization constant and T is the temperature of the system. Since H is
invariant under Hamiltonian dynamics, we have that Hamiltonian trajectories move within
a hyper-surface of constant probability density.

We can express the posterior distribution as a canonical distribution using the following
definition of potential energy

U(q) = − log[π(q)L(q|D)] , (3.43)

where π(q) is the prior density, and L(q|D) is the likelihood function given data D.

The two steps of the HMC algorithm. We can use HMC to sample from any Rd

distribution for which the density function can be evaluated and for which the partial
derivatives of its log exists. We will assume here that the probability density is non-zero
everywhere.

We can freely choose the distribution of the momentum variables p which are indepen-
dent of q, specifying the distribution via the kinetic energy function K(p). It is usually used
a quadratic kinetic energy as in Eq. 3.38, which leads p to have a zero-mean multivariate
Gaussian distribution. Most often, the components pi are specified to be independent with
variance mi.

In the first step, the new position variables are randomly chosen from its Gaussian dis-
tribution, independently from the position ones. This leaves the canonical joint distribution
invariant, since it doesn’t change q and draws p from its conditional distribution given q (its
marginal distribution, since both variables are independent). In the second step, we use
Hamiltonian dynamics to perform a Metropolis update. See the Implementation section.

Illustration. We will now show the benefits of HMC over the usual Metropolis algorithm
to sample a given distribution. Here we will use Gaussian distributions, but usually the
highest efficiency of HMC can be seen more clearly in more complex distributions [37].

Let’s analyze the HMC sampling from a distribution for two variables that is bivariate
Gaussian, with means of zero, standard deviations of one, and correlation 0.95.

We can see from Fig. 3.4 that the trajectory of our variable of interest, the position, is
very different from a usual random walks. This avoidance of random walk motions is one of
the greatest advantages of the HMC method over the Metropolis one [153]. The consistency
of this motion, starting at the yellow dots, e.g. going above and then changing sign, is
due to the presence of the momentum variable. Since the gradient is small, the projection
of the momentum variable changes only slowly. Besides the large scale motion, there are
some small oscillations back and forth due to the correlation between the variables.

Since we have to keep this oscillations over control, the timestep used has to be also
small. A too large timestep, e.g. ε = 0.45 in this case, would make the oscillations in the
Hamiltonian to grow with no bounds. Note that if the discrete implementation was exact,
the oscillations in the Hamiltonian should be constant, as a product of energy conservation
under the Hamiltonian dynamics.
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Figure 3.4: L = 100 Leapfrog steps with size ε = 0.25. The initial state is q =
(−1.50,−1.55) and p = (−0.78, 0.94). The rejection was 0.05.

After changing the Leapfrog timestep size and number, we can turn the correlation to
0.98 and obtain the following results.

We can compare the performance of the HMC sampling over the usual random-walk
Metropolis one [62]. In Figure 3.6 we see every 20th state from 400 iterations of random-
walk Metropolis. We use a bivariate Gaussian proposal distribution with the current state
as mean, zero correlation, andthe same standard deviation for the two coordinates. We
use the same stepsize of 0.18 used for HMC proposals for the standard deviation here, so
that the change in state in these random-walk proposals is comparable to that for a single
leapfrog step for HMC.

The most prominent difference is clearly the huge difference between rejection rates
of the HMC and Metropolis algorithms; HMC had much lower rejection rates. Also,
HMC produces a larger change of states than the Metropolis algorithm does. These facts,
together with the aforementioned avoidance from random walks, illustrates the greatest
benefits of HMC.
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Figure 3.5: L = 20 Leapfrog steps with size ε = 0.18. The initial state is q =
(−1.50,−1.55). The rejection was 0.025.
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Figure 3.6: L = 100 Leapfrog steps with size ε = 0.25. The initial state is q =
(−1.50,−1.55). The rejection was 0.39.

3.6.2 Marginalization over galaxy bias

The likelihood function in Eq. (3.32) can be rewritten as:

Lexpl.
FBI

(
δobs.
g

∣∣∣∣ŝ, α, {bO}, {σϵ}
)

= N exp
−1

2

kmax∑
k>0

ln σ2
ϵ (k)


× exp

−1
2C +

∑
O

bOBO − 1
2
∑
O,O′

bObO′AOO′

 , (3.44)
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where N represents a normalization constant independent of parameters. Following [73],
we define the scalar quantity C, the vector BO, and the matrix AOO′ as

C =
kmax∑
k>0

1
σ2
ϵ (k)

∣∣∣∣∣∣δobs.
g −

∑
Ounmarg.

bOunmarg.Ounmarg.(k)
∣∣∣∣∣∣
2

,

BO =
kmax∑
k>0

[
δobs.
g (k) −∑

Ounmarg.
bOunmarg.Ounmarg.(k)

]
O∗(k)

σ2
ϵ (k) ,

AOO′ =
kmax∑
k>0

O(k)O′∗(k)
σ2
ϵ (k) . (3.45)

Eq. (3.44) effectively isolates the n galaxy bias parameters {bO} to be marginalized, leaving
the rest {bO}unmarg. unmarginalized. Assuming Gaussian priors, integrating out {bO} in
Eq. (3.44) using Gaussian integrals results in

Lexpl.
FBI

(
δobs.
g

∣∣∣∣ŝ, α, {bO}unmarg., {σϵ}
)

=
(∏
O

∫
dbO

)
P
(
δobs.
g

∣∣∣∣ŝ, {bO}
)

= N(2π)n/2
∣∣∣∣AOO′

∣∣∣∣−1/2
exp

−1
2

kmax∑
k>0

ln σ2
ϵ (k)


× exp

−1
2C({bO}) + 1

2
∑
O,O′

BO({bO})(A−1)OO′BO′({bO})
 . (3.46)

In the field-level inference approach, all bias coefficients {bO} can be analytically marginal-
ized, reducing the number of free parameters in the MCMC sampling. This enhances
sampling efficiency by lowering the dimensionality of the parameter space. The validity of
Eq. (3.46) has been tested on mock datasets, as documented in Appendix F of [118].

3.7 Inferring σ8 from galaxies
The cosmological parameter σ8 quantifies the amplitude of matter density fluctuations in
the Universe on a scale of 8 h−1 megaparsecs (Mpc), where h is the dimensionless Hubble
parameter. Specifically, it measures the root-mean-square (RMS) variation of the matter
density field when smoothed as,

σ2
8 ≡

〈(
δ

(1)
R (x)

)2
〉

=
∫ ∞

0

dk k2

2π2 PL(k, z = 0)W 2
R(k), (3.47)

where PL is the linear power spectrum and WR is a spherical window function with radius
R = 8h−1Mpc. A higher value of σ8 indicates a Universe with more pronounced clustering
of matter, meaning structures like galaxies and clusters formed more efficiently. This
parameter is critical in constraining models of cosmic structure formation and is closely
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related to the growth of large-scale structure and the nature of dark matter and dark
energy. This is evident when we look look at the equation for structure growth,

D′′ + aHD′ = 4πGρ̄D, (3.48)

as σ8 reflected on the matter density probes both the expansion history by H and gravi-
tational effects by G.

The galaxy power spectrum contains

Pg(k) = b2
1PL(k) ∝ (b1σ8)2. (3.49)

At leading order, this introduces a degeneracy between bδ and σ8, which must be broken
using nonlinear clustering or redshift-space distortions (RSD). However, RSD constraints
are limited to the combination fσ8, where f = d lnD+/d ln a is the growth rate.

Nonlinear clustering provides a means to break this degeneracy. The equivalence prin-
ciple ensures that galaxies and matter co-move on large scales [66], leading to predictable
advection contributions in nonlinear structures, thus enabling a direct inference of σ8.
Particularly, the galaxy bispectrum can be written as

BLO
g (k1, k2, k3) ≡ ⟨δh(k1)δh(k2)δh(k3)⟩′

LO (3.50)

= b3
1B

LO
m (k1, k2, k3) +B{0}

ε (3.51)

+
{
b2

1

[
b2 + 2bK2

((
k̂1 · k̂2

)2
− 1

3

)]
PL(k1)PL(k2) + 2b1P

{0}
εδ PL(k2)

}
+ 2 perm.. (3.52)

The leading-order matter bispectrum entering Eq. (3.52) is given by

BLO
m (k1, k2, k3) = 2F2(k1,k2)PL(k1)PL(k2) + 2 perm., (3.53)

where the F2 kernel is defined in Eq.(2.32). We can see then that

Btree
g (k1, k2, k3) ⊃ ⟨δ(1)(k1)δ(1)(k2)δ(2)(k3)⟩ + 2perm.

= b3
1PL(k1)PL(k2) + 2perm.

∝ (b1σ8)3σ8.

(3.54)

The first information gain comes from the fact that the linear bias b1 is unique for both
δ(1) and δ(2). Moreover, with addition of Bδ2 and BK2 , we have terms with different scale
dependencies which are proportional to b1, allowing for further degeneracy breaking.
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Chapter 4

EFTofLSS meets simulation-based
inference: σ8 from biased tracers

This chapter is an adaptation of [217] (published in JCAP). Authors: Beatriz Tucci &
Fabian Schmidt.

4.1 Introduction

In this paper, we take advantage of our understanding of galaxy clustering on large scales to
test the SBI performance based on LEFTfield. Using this tool as a first step is of crucial
importance, since we tackle model misspecification by keeping all modes under control,
cutting small scales where we should not trust our simulator and using the bias expansion
on the scales where it is known to be robust. The simulator uses Lagrangian Perturbation
Theory (LPT), which is fast to evaluate and therefore allows a detailed study of convergence
with respect to the number of simulations and also careful posterior diagnostics.

Using the bias expansion constructed in LEFTfield, we employ the combination of
the galaxy power spectrum and bispectrum to break the degeneracy between the bias
parameters and the amplitude of fluctuations σ8. Our main goal is to assess the potential
impact on cosmological inference when we consider the entire data vector distribution
through SBI rather than relying on the assumption of a Gaussian likelihood. We also
provide a comprehensive description of how simulation-based inference works in practice,
as this is one of the first applications of this technique to galaxy clustering. In the context of
SBI, this is the first time that the complete second-order bias expansion is used. Our work
is thus complementary to recent work [90,91,149], which uses halo occupation distribution
(HOD) as a bias model, and includes the power spectrum on smaller scales. Note that our
forward model is numerically much less costly than the one used in [90, 91, 149], allowing
us to generate many more independent simulated data realizations.
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4.2 Methods

4.2.1 LEFTfield and SBI

The forward model we use to get from the initial conditions, cosmological, noise and bias
parameters to the final data is LEFTfield, which evolves a given initial (linear) density field
up to n-th order in LPT [190]. This represents a powerful tool for cosmological inference
using SBI. As already discussed, statistical inference in SBI is dependent on the quality
of the simulator and the simulation budget. Using the EFT-based approach, we keep all
the modes under control up to a certain scale Λ, such that SBI only learns the features we
trust from our simulator. We therefore combine two big advantages of EFTofLSS for SBI:
(i) theoretically robust treatment of bias; and (ii) fast evaluation thanks to the fact that
we only need to follow the evolution of modes up to Λ, making it a perfectly suitable tool
for analysing convergence and coverage of SBI algorithms. For example, using a Subhalo
Abundance Matching (SHAM) [219] approach would be less theoretically robust, while
being much more costly in comparison. The price to pay of course is that our forward
model is limited to scales where perturbation theory is valid.

Our model differs from those commonly used in the EFTofLSS literature where the basis
for the n-point functions are generated by methods such as CLASS-PT [53] and PyBird [61],
since we directly measure the n-point functions on the simulated galaxy density field. By
doing so, we are also simulating the full (non-Gaussian) distribution of our data vector, as
generated by the LPT-based simulator, and SBI can provide us with the correct distribution
for the summary statistics considered. Each simulation realization is run with a different
seed for the density and stochastic fields, so that our model correctly accounts for cosmic
variance. Note that SBI models the probability density of the data vector, and is therefore
also in contrast to emulators [20], where the expectation value of the summary statistics is
learned.

LEFTfield settings. In this paper, we use second-order LPT (2LPT) and CIC for the
density assignment throughout. Unless otherwise stated, we employ second-order La-
grangian bias with operators

OL =
{
δ,∇2δ,

(
tr
[
M (1)

])2
, tr

[
M (1)M (1)

]}
, (4.1)

and stochastic parameters (see Sec. 2.5 and Appendix A.1)

Ostoch. =
{
ε, ε2, εδ

}
, (4.2)

neglecting higher-derivative stochastic corrections. We set σfid
8 = 0.85, while all other

cosmological parameters are fixed to Ωm = 0.3, ΩΛ = 0.7, h = 0.7 and ns = 0.967.
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4.2.2 Summary statistics
The usual procedure to extract information from the galaxy density field is through its
n-point functions. Since its one-point function (the mean density) is trivial, most of the
information can be captured by its two- and three-point functions or, equivalently, their
Fourier transforms, namely the power spectrum and bispectrum. Under the homogeneity
and isotropy conditions, the bispectrum is described by three parameters which characterize
the shape and the scale of the triangles, thus encoding important cosmological information
beyond the two-point function which only depends on scale [196]. Especially in the context
of primordial non-Gaussianities, it is convenient to separate the triangle shapes into e.g.
“squeezed” and “equilateral” configurations, but we do not make such distinctions as we
work with all triangle configurations.

The tree-level galaxy power spectrum displays a degeneracy between the amplitude of
density fluctuations, parametrized by α in our forward model, and the linear bias b1, while
the bispectrum has the power of breaking this degeneracy [77, 78, 142, 196]. The intuition
is that, at leading order in perturbations, the galaxy bispectrum will depend on a sum
of different powers of the bias parameters and the linear power spectrum, allowing for
a determination of the linear and second-order bias parameters which is independent of
the power spectrum normalization. We refer the reader to [107] and [66] (Sec. 4.1.1) for
an illustration of the different shape contributions of the matter and galaxy bispectrum,
respectively.

To measure such n-point functions on the grids generated by LEFTfield, we use the
bispectrum estimator introduced by [195]. We start by defining the quantities [87]

Ik(x) =
∫

||p|−k|<∆k
2

dp

(2π)3 δg(p)eix·p, Jk(x) =
∫

||p|−k|<∆k
2

dp

(2π)3 e
ix·p, (4.3)

where all p modes within a k-shell of width ∆k centered on k are integrated. The expres-
sions for Ik(x) and Jk(x) therefore represent the inverse Fourier transform over a k-shell
of the galaxy overdensity field, which is calculated following the procedure of Sec. 2.5, and
a unit field, respectively. The power spectrum estimator is defined as

P̂ (k1) =
(
L3

N6

) ∑N3

i=1 I
D
k1(xi)IDk1(xi)∑N3

j=1 J
D
k1(xj)JDk1(xj)

, (4.4)

where the superscript D refers to the discretized version of the fields, k1 is the Fourier bin,
N is the grid size and L is the box size, while the bispectrum estimator in turn is

B̂(k1, k2, k3) =
(
L6

N9

) ∑N3

i=1 I
D
k1(xi)IDk2(xi)IDk3(xi)∑N3

j=1 J
D
k1(xj)JDk2(xj)JDk3(xj)

. (4.5)

It is now evident that the power spectrum comes essentially for free when estimating
the bispectrum. As already discussed in the introduction, we do not suffer from binning
effects, since bin averaging is automatically taken into account in the SBI framework. This
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Figure 4.1: Comparison of power spectrum and bispectrum estimators to theory for the
linear forward model in Eq. (4.6), where we use Λ = 0.3hMpc−1, kmin = 2πL−1hMpc−1 and
kmax = 0.2hMpc−1 for both cases. The blue lines show the n-point function estimator from
LEFTfield as described in this section, which agree with the theory predictions indicated
by the red curves. Left: we set b1 = b2 = 1 and use 50 linear bins for the power spectrum.
The linear power spectrum PL is displayed in black for reference. Right: we set b1 = 1 and
b2 = 0.1, in order to suppress next-to-leading-order corrections, and use 150 triangle bins
for a better visualization of the bispectrum, which are constructed from 10 linear bins in
k. The lowest triangle bin indexes contain the smaller k-modes, hence their large variance,
where k1 ≤ k2 ≤ k3, where k1 corresponds to the outermost loop index, while k3 is the
innermost index.

allows us to use both “open” and “closed” triangle configurations, as opposed to likelihood-
based approaches where the binning effect is important for the open triangles [103, 159].
“Open” triangles are those for which the k-bins do not respect the momentum conservation
constraint |k3−k2| < k1 < k2+k3, although there are individual triples of modes associated
to the bin which do satisfy the relation.

Considering the most costly model in this work, i.e., the Euclid configuration described
in Section 4.3.2, using LEFTfield to generate Nsim = 105 density grids with 2LPT, con-
struct a second-order bias expansion and compute their corresponding power spectra and
bispectra with data vector size of D = 49 (6 bins for the power spectrum and 43 triangle
bins for the bispectrum) takes roughly 19500 core hours when using 2GHz Intel Xeon Gold
6138 CPUs.

We show in Figure 4.1 the comparison of our estimators to their respective theoretical
predictions. We use here a linear forward model instead of 2LPT, which is given directly
from Eq. (2.107) for α = 1, where we construct the final density field in a box with size
L = 2000hMpc−1 as

δg(k, z) = b1 δ
(1)(k, z) + b2

(
[δ(1)]2(k, z) − ⟨[δ(1)]2⟩(z)

)
, (4.6)

choosing the redshift z = 0. The second-order bias term generates a nonzero bispectrum.
The prediction for the power spectrum estimator is then PT (k) = b2

1PL(k) + 2b2
2P1loop(k),
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where
P1loop(k) =

∫
||p|−k|<∆k

2

dp
(2π)3PL (|p|)PL (|k − p|) eik·p (4.7)

and PL has support up to Λ. For the bispectrum, its leading-order theory prediction in
this case reads BT (k1, k2, k3) = 2b2

1b2[PL(k1)PL(k2) + 2 perm.]. We have also tested the
LPT predictions for the power spectrum and bispectrum estimator (not shown), where in
the latter case we compare the closed triangle bins only.

Simulation-based inference

We have tested some of the NDE algorithms implemented in the publicly available SBI
package [211], and we chose to work with NPE from SBI as our baseline. There are several
reasons for our choice; first, this method has been empirically observed to perform better for
the inference problems considered in this work, especially for a limited simulation budget
and large dimensions of the data parameter vectors. Second, it does not require an extra
MCMC step as in NLE and NRE, or a retraining of the model for each observation such as
for non-amortized algorithms, allowing for faster posterior diagnostics. Lastly, amortized
posteriors such as the ones obtained by NPE tend to be more conservative [96].

We use the SNPE method of [85] with 10 atoms for atomic proposals and MAF with
5 autoregressive layers (i.e., stacked MADEs), each constructed using two fully-connected
tanh layers with 50 hidden units. We train the models by stochastically minimizing the loss
using the Adam optimizer [112] with learning rate of 5 × 10−4 and batch size of 50, where
10% of the samples are used for validation and the training is stopped if the validation set
loss did not improve after 20 consecutive epochs.

Training the most complex case considered here (Section 4.3.2, with data vector size
of D = 49, Nθ = 8 parameters and simulation budget of Nsim = 105) takes roughly one
hour on a single 2GHz Intel Xeon Gold 6138 CPU, and no significant improvement was
observed when using a GPU. Generating 105 samples from the estimated posterior takes
less than one second, allowing for efficient calibration analysis since the NPE posterior is
amortized.

4.3 Results
In this section, we present our results regarding two cases: first, a simple, linear forward
model, described in Sec. 4.3.1, where we compare ABC and NPE. In Sec. 4.3.2, we then
use a 2LPT forward model and estimate the posterior with NPE, as summarized in Figure
4.2.

4.3.1 Linear forward model
We start reporting our results with a very simple model, where we aim to infer the linear
bias b1 and the noise amplitude Pε from the galaxy power spectrum. For that, we consider
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Figure 4.2: Flowchart of our pipeline for SBI, assuming an nLPT forward model. The
cosmological, bias and noise parameters θ are sampled from the prior and used as input
for LEFTfield (Sec. 2.5), which constructs a model for the galaxy overdensity field δg
through nLPT (2LPT in this work). We then measure the summary statistics x, which in
our case is the galaxy power-spectrum concatenated with the bispectrum (Sec. 4.2.2). We
repeat this process Nsim times, and use the resulting pairs {(θn,xn)}Nsim

n=1 as input to the
SBI neural density estimation (Sec. 3.4.2), which then gives us the posterior p(θ|x) that
can in turn be evaluated at a given observed data xo.

a linear forward model, where instead of using LPT we use Eq. (2.107) with α = 1 to
construct the galaxy overdensity field as

δg(k, z) = b1 δ
(1)(k, z) + ε(k), (4.8)

where ε(k) is a Gaussian random field of zero mean and variance Pε. We use a box of size
L = 2000h−1Mpc, and choose redshift z = 0, without any loss of generality in this case.

We define the observed data xo as a fiducial power spectrum P̄ (k) measured from a par-
ticular realization of the model evaluated at the ground-truth parameters b̄1 = 1.5 and P̄ε =
103 h−3Mpc3. We then generate Nsim simulated datasets, where θ = {b2

1, Pε} are sampled
from a Gaussian prior as θ ∼ N (θ̄, 10−1 × θ̄) and x = {P (k)} = {P (k1), P (k2), . . . , P (kD)},
where D is the number of power-spectrum bins Nbin, are the power spectra of the simulated
datasets. It is important to stress that, for each simulation, the realization of both δ(1)(k)
and ε(k) are also varied. We infer b2

1 instead of b1 since its posterior can be evaluated
analytically assuming a Gaussian likelihood and prior. Note that the SBI posterior for b2

1
does not necessarily converge to the analytical one, since we relax the Gaussian likelihood
assumption in this case.

The ABC metric we consider is

ρ(x,xo) = 1
(D −Nθ − 1)

D∑
i=1

(xi − xio)2

Cov[x̄i] , (4.9)

where the sum runs over the summary statistics bins (k-bins for the power spectrum). This
metric is inspired by the reduced χ2, and is expected to be close to optimal in the present
case, in addition to being straightforward to interpret. Here, D = Nbin = 4, Nθ = 2 and
Cov[P̄ (k)] = 2⟨P̄ (k)⟩2/Nk, where ⟨P̄ (k)⟩ is the mean of the fiducial power spectrum over
initial conditions evaluated at fiducial parameters θ̄ and Nk is the total number of modes
which lie in the respective k-bin. As explained in Sec. 3.4.1, the proposed parameters θ are
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Figure 4.3: Posterior standard deviation of the linear bias parameter squared b2
1 obtained

by SBI divided by its analytical prediction as a function of the total simulation budget Nsim.
Continuous lines show the results obtained from ABC, while the dashed line corresponds
to NPE. The value of f denotes the fractional percentage of samples which were accepted
in ABC, where we use f ×Nsim for posterior estimation. The error bars correspond to 10
different realizations of the observational mock data xo.

then accepted or rejected according to this metric evaluated at the simulated data vector
x, and the ABC posterior should converge to the true one in the ϵ → 0 limit. However,
due to computational efforts, one can never truly reach this limit.

We take the approach of [137], where instead of defining a specific threshold ϵ we accept
the parameters corresponding to the lowest quantile f of metric values. We show in Figure
4.3 the SBI posterior standard deviation for b2

1 normalized by the analytical prediction,
where we compare ABC to NPE. We use a minimum of 102 samples for estimating the
posterior variance, leading to a different number of points for different choices of f . The
corresponding threshold value ϵ for each percentage fraction f = {10−1, 10−2, 10−3, 10−4}
is ϵ = {16.2, 3.6, 1.1, 0.4}.

First, we can see that the NPE posterior converges much faster in terms of Nsim than
the ABC one, as expected since the effective number of samples used in ABC is f ×Nsim,
although the total simulation cost is Nsim, while NPE uses all simulations at hand for
posterior estimation. Further, we find that one has to be careful when choosing the value
for the treshold ϵ; values that are too large will lead to significantly overestimated error
bars, regardless of the number of simulations used. If the summary statistics used is
approximately Gaussian-distributed with approximately known covariance, such as in our
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case, defining the ABC metric via the reduced χ2 makes the former interpretable, with
convergence expected for values of ϵ of order unity, which is indeed confirmed by Figure 4.3
given the values of ϵ listed above. In the simple case we considered here, we can see that the
posterior standard deviation converges to the Gaussian prediction, and we can conclude
that for this particular case the non-Gaussianity of the power spectrum at low-k does not
significantly impact the constraints.

Figure 4.3 serves as a useful cross-check of the different SBI approaches. In the fol-
lowing, due to the difficulty in achieving converged posteriors via ABC, we will use NPE
throughout.

4.3.2 2LPT forward model
We now move to a forward model consisting of second-order LPT and second-order bias
expansion as described in Section 2.5, where the galaxy overdensity field is given by Eq.
(2.115). Here, x is the concatenated vector of power spectrum and bispectrum bins of
dimensionD = Nbin+Ntr, whereNtr denotes the number of triangle bins for the bispectrum.
We use the configuration of the Euclid satellite [18], which will cover a volume of 63h−3Gpc3

with mean number density of galaxies n̄g = 5.2 × 10−4 h−3Mpc3 at mean redshift z = 1.4.
We consider two cutoffs for generating the datasets. For Λ = 0.1hMpc−1, the grid size

is Nc = 1283 and the dimension of the data vector is D = 33, while for Λ = 0.2hMpc−1,
Nc = 2563 and D = 49. The fiducial values of the bias and noise parameters are set to

θ̄ =
{
ᾱ, b̄1, b̄∇2δ, b̄tr[M(1)M(1)], b̄σσ, 10−3P̄ε, c̄εδ, c̄ε2

}
= {1, 1.5, −1.84, −0.26, −0.79, 1.92, 0.75, 0.17} ,

(4.10)

where the fiducial noise parameters are set to their corresponding Poisson expectation (see
Appendix A), inspired by galaxy number densities of current and upcoming spectroscopic
surveys, and we choose to sample 10−3Pε instead of Pε in order to have all parameters to be
of order unity, which is desirable for the neural density estimation. The fiducial Eulerian
linear bias is set to b̄1 = 1.5, while b̄tr[M(1)M(1)] and b̄σσ are determined from b̄1 through the
bias relations (see Appendix B).

Regarding b̄∇2δ, we expect its value to be close to zero, but with variance between two
and three times the Lagrangian radius of an average Euclid galaxy. To set its fiducial
value, we first find the minimum mass Mmin which satisfies the integral

⟨bO(z,Mmin)⟩ =
∫ ∞

Mmin
dM

dn(z,M)
dM

bO(z,M) (4.11)

for ⟨b1(z,Mmin)⟩ = b̄1 = 1.5 using the Tinker mass function for n(z,M) [213] and the Tinker
linear bias predictions for b1(z,M) [214]. We then use Eq. (4.11) for the higher-derivative
bias evaluated at the obtained Mmin, where b∇2δ(z,M) is determined by −R2

L(M)/2.5 [122],
to set its fiducial value as the calculated mean, i.e., b̄∇2δ = ⟨b∇2δ(z,Mmin)⟩.

We compare our results to a Fisher forecast, which approximates the posterior with a
Gaussian via the ensemble average of its curvature of around the maximum. The Fisher
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information matrix for the likelihood is defined as

F
(L)
αβ ≡ −

〈
∂2 ln L
∂θα∂θβ

〉 ∣∣∣∣∣
θ̄

, (4.12)

which for a Gaussian likelihood reduces to

F
(L)
αβ =

D∑
i,j=1

[
∂xi

∂θα
(Cov[x])−1

ij

∂xj

∂θβ

] ∣∣∣∣∣∣
θ̄

, (4.13)

where the mean of the derivatives as well as the covariance of the data vector x over initial
conditions realizations are evaluated at the fiducial parameters values θ̄. We also include
the prior Fisher matrix F

(p)
αβ = δαβ/σ

2
α, where δαβ is the Kronecker delta function and σα

is the standard deviation considered for the parameter θα in a Gaussian prior. The total
Fisher information matrix for the posterior is then F = F (L) +F (p). The marginal posterior
in any subspace of the parameter space is then controlled by the corresponding restriction
of F−1. Specifically, the 1-sigma uncertainty on θα is approximated by

√
(F−1)αα. As

previously discussed, the power spectrum and bispectrum are not exactly Gaussian dis-
tributed, and one of the main goals of this paper is to explore the final parameter posterior
when this assumption is relaxed. However, the Fisher prediction provides a guideline for
interpreting our results.

Since we aim to use NPE instead of sequential methods for amortabilizity and since SBI
requires many simulations around high density posterior regions, a careful choice of priors
(i.e. neither too wide nor too narrow) is crucial. We hence choose the mean and variance
of our priors in the following way. First, we run SNPE with batches of 103 simulations
starting from the prior

α ∼ N (1.2, 12), b1 ∼ N (1.25, 22), bσσ ∼ N (0, 22), btr[M(1)M(1)] ∼ N (0, 22),
b∇2δ ∼ N (0, 252), 10−3 Pε ∼ N (2, 12), cεδ ∼ N (0, 22), cε2 ∼ N (0, 22),

(4.14)

where we choose the centers of α and b1 in such a way that their multiplication equals
1.5 = ᾱ × b̄1. After SNPE convergence, we sample from the final posterior to choose the
prior for NPE to be a Gaussian centered on the sample mean with variance given by at
least two times the SNPE sample variance. For all inference cases, we overplot the prior
with the posterior to guarantee that the latter is not bounded by the prior ranges. We
refer the reader to Sec. 4.4 for examples comparing SNPE and NPE.

Fixed cosmology: impact of the likelihood form

We start with the case where α is fixed to unity, while all the first and second order bias
and noise parameters are sampled. We name as full SBI results from the forward model
where the measured data vector from LEFTfield are used directly for posterior estimation.
We compare these results to a Gaussian-likelihood model, where we generate samples from
the data vector as x ∼ N (⟨x⟩,Cov[x̄]), where ⟨x⟩ denotes the mean of the data vector over
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Figure 4.4: Parameter posterior for the case where the cosmological parameter α is fixed.
The left and right contour plots correspond to the models where the data vector is sampled
from a Gaussian with analytical and sample covariance, respectively. For all cases, the
neural density estimator method NPE was used with a simulation budget of Nsim = 105.

initial conditions realizations calculated at the proposed parameter θ and the covariance
is calculated for the data vector at the fiducial parameters x̄. While the name Gaussian
likelihood refers to the fact that the data is Gaussian distributed by construction, we
emphasize that the posterior is also obtained with NPE as in the full-SBI case. We of
course expect to obtain the same result when performing a Monte Carlo sampling based
on the same Gaussian likelihood for the data vector.

Regarding the covariance Cov[x̄], we consider two distinct cases. First, we consider an
analytical, diagonal covariance for the data vector, namely

Cov[P̄ (k)] = 2⟨P̄ (k)⟩2/Nk, (4.15)

where ⟨P̄ (k)⟩ is the mean of the fiducial power spectrum over initial conditions evaluated
at fiducial parameters θ̄ and Nk is the total number of modes which lie in the respective
k-bin, and

Cov[B̄(k1, k2, k3)] = sB ⟨P̄ (k1)⟩⟨P̄ (k2)⟩⟨P̄ (k3)⟩/k3
fNt, (4.16)

where sB is the triangle shape symmetry factor (6, 2 and 1 for equilateral, isosceles and
scalene triangles, respectively), kf = 2πL−1 is the fundamental frequency and Nt is the
number of triangle configurations inside each triangle bin. Second, we measure the sample
covariance from Ncov simulations with parameters fixed at their fiducial values.

To summarize, in both Gaussian-likelihood cases, the likelihood of the data vector is
characterized completely by its first and second moments (namely the mean and covari-
ance), where the covariance is fixed to the fiducial point in parameter space. Compared
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to the analytical covariance, the sample covariance case adds more realism, since cross-
correlations between different elements of the data vector (i.e. off-diagonal elements of
the covariance) are included. In contrast, the full SBI forward model captures the full
distribution of the data vector, including its higher-order moments, and as function of the
position in parameter space.

We show in Figure 4.4 the estimated posteriors for the Gaussian likelihood model at
kmax = Λ = 0.1hMpc−1, which closely resembles the Fisher prediction. For all parameter
posteriors considered in this work, we always sample 105 posterior samples for plotting.
The Fisher derivatives are taken numerically for the full case, with steps given by the stan-
dard deviation of the NPE posterior, while for the Gaussian-likelihood case it is evaluated
analytically at the fiducial values from the mean cross-spectra of the bias expansion basis.
The small deviations come from the fact that, although the likelihood and the prior are
Gaussian, the posterior is not necessarily Gaussian, as the parameters enter nonlinearly
in the prediction for the expectation value of the data vector. Note that, although the
Fisher prediction is evaluated at the fiducial parameters points, we shift the mean of the
Fisher contours to the maximum a posteriori posterior values for better comparison. This
results shows that NPE can successfully recover the expected posterior in this idealized
case, showing that this method is therefore robust for the data vector size and number of
simulations used.

Figure 4.5 compares the Gaussian-likelihood posteriors with the full-SBI case. First
of all, we can notice that the Gaussian likelihood cases are very similar, which indicates
that off-diagonal terms do not play an important role on the scales k ≤ Λ = 0.1hMpc−1

considered here. The difference between these and the full-SBI posteriors is slightly larger,
but still small, which also indicates that the non-Gaussianity of the data vector also does
not affect the constraints. Figure 4.6 shows the corresponding result when going to smaller
scales, k ≤ Λ = 0.2hMpc−1. The posterior differences are somewhat larger than on smaller
scales, as expected, though still not dramatic.

We show the simulation-based calibration (SBC) tests of the posterior in Figure 4.7
(see Appendix 3.4.4). As previously discussed, a healthy posterior should lead to uniformly
distributed rank statistics for all parameters, and we show two different visualizations which
can help us in identifying possible problems with the estimated posterior. First, if the SBI
underestimates the true posterior variance for some parameter, one expects a “U-shaped”
rank distribution, or equivalently a CDF lying below the grey shaded area of the 95%
confidence interval of a uniform distribution. Conversely, if the posterior overestimates the
errors, one would get a centrally peaked distribution, or a CDF above the grey area. Since
our ranks are uniformly distributed and all CDFs lie inside the grey region, we conclude
that our posterior passed the calibration test, although we re-emphasize that this is only
a necessary and not a sufficient condition.

We show convergence of the obtained posterior with respect to the number of simu-
lations for the full case in Figure 4.8. The results indicate that adding more simulations
than Nsim = 105, the simulation budget used in the previous figures, does not change the
full-SBI posteriors. The conclusions hold equivalently for the Gaussian likelihood cases.
Note that the sudden upturns for a low simulation budget only indicates that the budget
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Figure 4.5: Parameter posterior for the case where the cosmological parameter α is fixed.
Blue and purple contours correspond to the models where the data vector is sampled
from a Gaussian likelihood with analytical and sample covariance, respectively, where
Ncov = 104. The red contours show the full SBI results, with no Gaussian assumption.
Dotted lines indicate the Fisher prediction with sample covariance for reference. For all
cases, the method NPE was used from a simulation budget of Nsim = 105, scale cut of
kmax = Λ = 0.1hMpc−1 and data vector dimension D = 33.
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Figure 4.6: Same as Fig. 4.5, but for kmax = Λ = 0.2hMpc−1 and D = 49.
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Figure 4.7: SBC (simulation-based calibration) tests for the full-SBI case where the cosmo-
logical parameter α is fixed with Nsim = 105. The upper panels show the CDF of the ranks
distributions for each parameter, where the grey area show the 95% confidence interval of
a uniform distribution, while the lower panels show the rank distribution, where the grey
areas denote the 99% confidence interval of a uniform distribution.
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Figure 4.8: Convergence of the full-SBI parameter posterior with the number of simulations
Nsim for the case where the cosmological parameter α is fixed. The standard deviation
of the posterior samples are normalized by their respective Fisher prediction for better
comparison. Note that it should not necessarily converge to one. The errors indicate
posterior evaluation at 10 different data observations, with same fiducial parameters but
different initial conditions realizations.

was not sufficient for convergence, and that running SBI again on the same dataset could
lead to different posteriors.
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Inferring cosmology

We now turn to constraining the bias and noise parameters together with the cosmological
parameter α, where we recall that α ≡ σ8/σ

fid
8 and set its fiducial value to ᾱ = 1. We

show in Figure 4.9 how we are able to infer these parameters independently with the help
of the bispectrum at kmax = 0.1hMpc−1, and that SBI is successful in this context even
considering the dimensionality of the problem and the nontrivial parameter degeneracies.

We can notice that the analytical covariance underestimates the errors in this case, a re-
sult that has already been discussed in the galaxy clustering literature [41,54]. We however
find no significant difference between the Gaussian likelihood case with sample covariance
and the full-SBI one, a result which is in agreement with the current intuition that adding
off-diagonal terms to the covariance would be more important than considering a non-
Gaussian likelihood. Our conclusion is that, for this particular case, the non-Gaussianity
of the data vector (especially at low-k modes) does not lead to any considerable effect on
the posterior densities. The conclusion still holds for kmax = 0.2hMpc−1, as displayed in
Figure 4.10, although differences between full-SBI and Gaussian-likelihood results become
more noticeable. The 1-σ errobars for the full-SBI, Gaussian-likelihood with sample co-
variance, Gaussian-likelihood with analytical covariance and the Fisher forecast are 0.173,
0.173, 0.169 and 0.21 kmax = 0.1hMpc−1, respectively, while 0.131, 0.111, 0.111 and 0.100
for kmax = 0.2hMpc−1.

We emphasize here that this conclusion is highly problem-dependent, and it does not
necessarily extend to other cosmological parameters, scale ranges or summary statistics.
For example, since most of the constraining power on fNL comes from low-k modes, one
could expect it to be more sensitive to the Gaussian likelihood assumption. At the other
extreme, on highly nonlinear small scales, one can also expect deviations from Gaussianity,
while some summary statistics might not even be well described by an analytical form in
any scale range.

In general, relaxing the Gaussian assumption in the likelihood is a non-trivial analytical
task, but SBI methods provide us a straightforward route. The investigation of whether
relaxing the Gaussian likelihood assumption leads to an increase of the error bars has been
previously discussed in the literature; for example, [89] reported no significant difference
when using the power spectrum only. In contrast, Figure 3 of [125] show that when using
the two-point correlation function, the posterior obtained by SBI displays larger error bars
than when considering a Gaussian likelihood in the context of lognormal fields.

The SBC results are shown in Figure 4.11, which indicate that our posterior estimates
pass the calibration test also for this case. The convergence is analyzed in Figure 4.12. We
can notice a slower convergence with respect to the number of simulations when compared
to the case where α is fixed, which might be related to the fact that the two-dimensional
contours of α and the other parameters are more non-Gaussian in this case, due to the
increased degeneracies relative to the α-fixed case, and therefore the normalizing flow needs
more simulations to fit the posterior.

We show in Sec. 4.4 an analysis of how our results can be affected by data vector
normalization and the number of sample covariance estimates for the Gaussian-likelihood
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Figure 4.9: Parameter posterior for the case where the cosmological parameter α is sampled
together with the bias and noise parameters. The contour colors, simulation budget and
data vector size are the same as in Fig. 4.5. For all cases, the method NPE was used from
a simulation budget of Nsim = 105, scale cut of kmax = Λ = 0.1hMpc−1 and data vector
dimension D = 33.
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Figure 4.10: Same as Fig. 4.9, but for kmax = Λ = 0.2hMpc−1 and D = 49.
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Figure 4.11: Same as Fig. 4.7 but for the case where the cosmological parameter α is
sampled as well, with Nsim = 105.
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Figure 4.12: Same as Figure 4.8, but showing convergence for the full case where the
cosmological parameter α is sampled.
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Figure 4.13: Left: Convergence of the standard deviation of the posterior of each parameter
with respect to the simulation budget Nsim normalized by their Fisher prediction. Solid
lines denote the case where the data vector corresponds to the raw spectra, while dashed
lines display the results using the normalized spectra. Right: Standard deviation of the
parameters from SNPE starting from the prior of Eq. (4.14) as a function of its rounds,
where 103 simulations are sampled at each round, divided by the NPE standard deviation
of each parameter obtained from Nsim = 105.

case, besides providing a comparison of bispectrum with power-spectrum-only constraints.
We also compare the results with SBI density estimators other than NPE (namely SNPE
and NLE), as well as the impact of a more complex network architeture or using an ensemble
of networks instead of a single realization for posterior estimation.

4.4 Tests of the inference
In this section, we analyse some details of our pipeline focusing on a particular case, namely
the one where the cosmological parameter α is fixed and kmax = Λ = 0.1hMpc−1. We will
be referring to the full case using NPE and Nsim = 105 unless stated otherwise; note that
the following conclusions hold qualitatively the same for the other cases (using a simulation
budget Nsim that guarantees convergence).

Data vector normalization. It is well known that usually machine learning techniques
perform better with normalized values. Since our parameters θ are already of order one,
instead of using the data vector x as the raw power spectrum and bispectrum for density
estimation, we also test normalizing them as P (k)/PL(k) and B(k1, k2, k3)/[PL(k1)PL(k2)+
2 perm.]. However, as we can see in the left panel of Figure 4.13, the normalization does
not lead to faster convergence in this case.

SNPE. The right hand side of Figure 4.13 shows the results of SNPE, the sequential
version of NPE. As we can see, the standard deviations converge to the ones corresponding
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Figure 4.14: Left: posteriors obtained with NLE, NPE and SNPE (at round 22). Right:
Parameter posterior comparing the prior range in grey with the constraints from power
spectrum only (dark cyan) and the power spectrum combined with the bispectrum (cyan).

to the final NPE posterior, what further confirms our posterior convergence. As aforemen-
tioned, although this case uses less simulations for convergence (e.g., after 15 rounds, where
convergence seems to be safely reached, one would have used a total of only Nsim ∼ 104 sim-
ulations), performing SBC tests on such non-amortized posteriors is a heavy computational
task.

Neural density estimation algorithm. We compare the posteriors obtained from
NPE, NLE and SNPE (at round 22) on the left side of Figure 4.14. As expected, all
posteriors look very similar. The small deviations could be due to a not sufficiently flexible
model or convergence issues. We explore the impact of network architecture below.

Bispectrum constraining power. We can also compare our analysis with a power-
spectrum only analysis, i.e. the case where the data vector consists solely of the power
spectrum in the same k bins. We can see on the right hand side of Figure 4.14 that,
as expected, b1 and 10−3 Pε are the most well-constrained parameters when considering
only the power spectrum. Although the power spectrum does include higher-order (loop)
contributions, these have very similar shape and are of limited use in disentangling the
second-order bias parameters. As a result, essentially all of these parameters turn out to
be prior dominated, i.e. the bispectrum is essential for constraints on higher-order bias
and σ8.
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Figure 4.15: Left: impact of the number of simulations for covariance estimation on the
final posterior for the Gaussian-likelihood case with sample covariance. Right: impact of
doubling the number of hidden units and number of transforms.

Number of covariance estimates. On the left hand side of Figure 4.15 we can see how
Ncov, the number of simulations used to estimate the covariance, changes the contours for
the Gaussian-likelihood case with sample covariance. As expected, fewer simulations tend
to underestimate the errors, although the effect is minor in this case.

Network architecture. We have also tested how increasing the complexity of the flow
can affect the final posterior densities. We show in the right panel of Figure 4.15 that a
more complex model, denoted as “larger NF” (normalizing flow), where we increased the
hidden units from 50 to 100 and the number of transforms from 5 to 10, leads to basically
the same posteriors.

Ensemble network. Figure 4.16 shows the same results as Figure 4.9, but with an
ensemble of networks instead of a single realization. For that, we independently train
10 different posteriors for the three different cases with the same simulation budget of
Nsim = 105, and then sample 104 posterior samples for each of the 10 estimated posteriors.
This can give us an estimate of the error associated with the posterior estimation itself,
and as we can see the errors are indeed larger; however, the trends are very similar and
further confirm our previous findings.
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Figure 4.16: Same as Fig. 4.9, but using an ensemble of networks instead of a single
posterior estimation.
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4.5 Conclusions

We have explored for the first time how SBI performs within the context of a forward
model based on the EFTofLSS and the bias expansion with the goal of constraining cos-
mological, noise and bias parameters from the galaxy power spectrum and bispectrum.
First, we have demonstrated that SBI can successfully recover the expected posterior in
controlled cases where the data vector is sampled from a Gaussian likelihood. Considering
an Euclid-like mock tracer sample, we conclude that the non-Gaussianity of the lowest
order n-point functions on large scales does not impact the constraints on σ8 for the scale
ranges considered in this work, namely kmax = 0.1hMpc−1 and 0.2hMpc−1. In these cases,
adding off-diagonal terms to the covariance has a larger impact than relaxing the Gaus-
sian likelihood assumption. Our estimated posteriors passed the SBC test and, within this
specific context, we estimated the number of simulations needed for convergence to be of
the order of 105 simulations.

It is important to emphasize that, while SBI serves as a versatile and powerful tool
for cosmological inference, our utilization of machine-learning is strictly limited to the
statistical aspect of our inference process, specifically density estimation. This entails
essentially a fitting of the posterior distribution or likelihood function derived from a set of
simulations, allowing us to overcome the limitations of standard inference techniques that
rely on analytical approximations for the selected summary statistics. Most importantly,
this work is performed within the framework of a forward model rigorously constructed
to ensure accuracy on large scales. In this context, our understanding of the underlying
physics benefits from years of dedicated study within the EFTofLSS community, providing
us with a high level of control and intuitive comprehension, especially when employing the
power spectrum and bispectrum as summary statistics.

It is paramount to validate and establish the reliability of SBI in well-understood
regimes, such as those under consideration in this study. This validation process rep-
resents a crucial first step before delving into more complicated scenarios, where intuitive
comprehension may be lacking. In addition, knowledge of an explicit likelihood that is at
least valid for some elements of the data vector (for example on very large scales) allows
for the possibility for explicit combinations of analytical likelihoods and SBI [150].

As the next direct step of this work, we will test our inference pipeline on dark-matter
halos from N-body simulations and test different compression schemes other than n-point
functions. It would also be interesting to investigate the impact of the details of the forward
model that differ in our approach and current EFT-based analysis techniques based from
codes such as CLASS-PT or PyBird (see the discussion in [185]). We also aim to use SBI
to investigate whether the low-k non-Gaussianities of the lowest order n-point functions
impact the inference of cosmological parameters related to primordial non-Gaussianities.

In future work, we plan to extend our analysis to redshift space, using the LEFTfield
forward model extension presented in [205], and to sample more cosmological parameters
and to improve the realism of the forward model by incorporating systematic effects and
masks in LEFTfield. We are particularly interested in comparing the results from field-
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level cosmological inference, which explicitly marginalizes over the initial conditions using
HMC, to SBI inference, both using n-point functions as summary statistics and other
“field-level” compression mechanisms which learn the summary statistics directly from the
galaxy density field.

Regarding our SBI pipeline, we are planning to explore prior truncation schemes [111,
145], using techniques such as the Sobol’ sequence [202] and active learning [15]. We would
also like to improve our density estimation methods by hyperparameter tuning, besides
trying other SBI algorithms such as Neural Ratio Estimation [65, 70, 95, 145, 146]. In
particular, it would be interesting to test Truncated Marginal Ratio Estimation (TMNRE)
[55,145] for marginalizing over the bias parameters. Lastly, it would be interesting to also
explore other SBI diagnostics besides SBC [127,136,230].
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Chapter 5

How much information can be
extracted from galaxy clustering at
the field level?

This chapter is an adaptation of [157] (published in PRL). Authors: Nhat-Minh Nguyen,
Fabian Schmidt, Beatriz Tucci, Martin Reinecke & Andrija Kostić.

My main contribution to this work was performing SBI with LEFTfield on dark-matter
halos using the power-spectrum and bispectrum, thus providing a fair comparison to field-
level inference constraints on the cosmological parameter σ8. All field-level inference analy-
sis presented here were conducted by the first two authors, Nhat-Minh Nguyen and Fabian
Schmidt.

5.1 Introduction

Advancements in cosmological surveys of LSS have transitioned from angular clustering
measurements using photographic plates to three-dimensional clustering analyses with
spectroscopic data. Despite this progress, statistical techniques for analyzing galaxy clus-
tering still predominantly focus on two- and three-point correlation functions, leaving open
the question:

How much cosmological information can be robustly extracted from galaxies and LSS
tracers?

This work addresses this question by comparing constraints on the amplitude of linear
matter fluctuations, σ8 [32, 49, 51], obtained from (1) full field-level statistics and (2)
power spectrum plus bispectrum (P+B) summary statistics, within the framework of the
EFTofLSS.
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This work provides the first demonstration that robust σ8 constraints can be extracted
from nonlinear clustering of dark-matter halos in N-body simulations using field-level infer-
ence. Unlike previous studies relying on neural network compression [90, 129], which may
lose information, our approach explicitly samples the full posterior of [σ8, δ

(1)], ensuring
optimal constraints.

Our analysis advances prior works in three key ways: (1) We marginalize over unknown
initial conditions, making our constraints more applicable to real data. (2) We analyze
dark-matter halos instead of idealized tracers, testing the robustness of the EFT-based
forward model. (3) We perform a direct comparison between field-level and summary
statistics constraints using the same data and model, providing a fair assessment of the
information content in nonlinear galaxy clustering.

5.2 Methods
Data. We analyze two halo samples: SNG, comprising main halos in the log10 M200m =
12.5 − 14.0h−1M⊙ mass range at z = 0.50, identified using ROCKSTAR [33] in an N-body
simulation with σ8,true = 0.850, volume L3 = (2000h−1Mpc)3, and Nparticle = 15363 par-
ticles of mass Mparticle = 1.8 × 1011 h−1M⊙ [191]. Additionally, the Uchuu sample consists
of halos in the log10 M200m = 12.0 − 13.5h−1M⊙ mass range at z = 1.03, identified in the
Uchuu simulation [101], with σ8,true = 0.816, the same volume, but at a higher resolution
of Nparticle = 128003 and Mparticle = 3.27 × 108 h−1M⊙.

LEFTfield settings. We use 2LPT and Eulerian bias up to third order,

O ∈
[
δ, δ2, K2, δ3, K3, δK2, Otd,∇2δ

]
, (5.1)

and Gaussian stochasticity
σϵ(k) = σϵ,0

[
1 + σϵ,k2k2

]
. (5.2)

These bias operators are employed in the Forward-Based Inference (FBI) and Simulation-
Based Inference (SBI) P+B analyses, utilizing LEFTfield. The second cubic sharp-k filter
to the Eulerian density is applied with a cutoff Λbias = 1.2kmax. Throughout this work, we
adopt Λ = 1.2Λbias = 1.44kmax.

New developments. Relative to previous work [118, 190, 192, 217], we introduce: (1)
a third-order galaxy bias model for improved accuracy, (2) a non-uniform Fast Fourier
Transform (NUFFT) [29] for enhanced numerical convergence, and (3) a modified analysis
cutoff kmax = Λ/1.2 to mitigate higher-derivative contributions.

Field-Level Bayesian Inference (FBI). The FBI pipeline explicitly models the like-
lihood of the galaxy field Lexpl.

FBI following [47], assuming Gaussianity of stochasticity and
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marginalizing over ϵ analytically [46,193]. The likelihood takes the form:

Lexpl.
FBI

(
δobs.
g

∣∣∣∣ŝ, α, {bO}, {σϵ}
)

= −1
2

|k|<kmax∑
k>0[

ln 2πσ2
ϵ (k) + 1

σ2
ϵ (k)

∣∣∣∣δobs.
g (k) −

∑
O

bOO[α, ŝ](k)
∣∣∣∣2] ,

(5.3)

where the sum applies a spherical sharp-k filter up to kmax. Bias parameters {bO} are
marginalized with weakly informative priors. The posterior is explored using Hamiltonian
Monte Carlo (HMC) [151] for ŝ and slice sampling [152] for [α, {σϵ}].

Simulation-Based Inference (SBI) P+B SBI bypasses an explicit likelihood by learn-
ing the posterior from simulations [57], following [217]. Parameters θ ≡ [α, {bO}, {σϵ}] are
sampled and used to generate galaxy fields via Eq. (5.3). The power spectrum P and
bispectrum B are measured:

⟨δg(k)δg(k′)⟩ = P (k)(2π)3δD(k + k′), (5.4)
⟨δg(k1)δg(k2)δg(k3)⟩ = B(k1, k2, k3)(2π)3δD(k1 + k2 + k3), (5.5)

with P+B data vectors containing Nbin + Ntriangle elements. Neural posterior estimation
(NPE) [85] is performed using masked autoregressive flows [164] from sbi [211].

Comparison and Validation. The target posteriors for FBI and SBI P+B are

PFBI

(
α, {bO}, {σϵ}

∣∣∣δobs.
g

)
∝
∫

Dŝ P (ŝ) Lexpl.
FBI

(
δobs.

g

∣∣∣ŝ, α, {bO}, {σϵ}
)

P (α, {bO}, {σϵ}) ,

(5.6)

PP+B

(
α, {bO}, {σϵ}

∣∣∣P [δobs.
g ], B[δobs.

g ]
)

∝ Limpl.
P+B

(
P [δobs.

g ], B[δobs.
g ]

∣∣∣α, {bO}, {σϵ}
)

P (α, {bO}, {σϵ}) . (5.7)

We validate the SBI posterior using simulation-based calibration (SBC) [210] and con-
vergence tests. Our analysis assumes Gaussian noise, and comparisons with alternative
stochastic models are detailed in Sec. 5.5. Overall, we find consistency between the differ-
ent inference methods, reinforcing the robustness of SBI P+B in extracting cosmological
information.

FBI priors. The priors assumed in the FBI analysis for the amplitude rescaling param-
eter α, bias coefficients {bO} from Eq. (5.1), and noise parameters {σϵ} are:

P(α) = U(0.5, 1.5),
P(bδ) = N (1.0, 5.0),

P(bδ2) = P(bK2) = P(bδ3) = P(bδK2) = P(bK3) = P(bOtd) = N (0.0, 1.0),
P(b∇2δ) = N (0.0, 5.0),

P(σϵ,0) = U(0.8σϵ,Poisson, 100.), P(σϵ,k2) = U(−10.0, 100.0), (5.8)
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where U(a, b) denotes a uniform distribution between a and b, while N (µ, σ) is a normal
distribution with mean µ and standard deviation σ.

The parameter σϵ,Poisson represents the expected noise level based on Poisson shot noise
given the tracer number density. A lower bound of 0.8σϵ,Poisson is imposed to prevent
the MCMC chains from drifting to unrealistically low noise levels, a known issue still
under investigation. This bound is significantly below previous halo stochasticity estimates
[92, 194]. Our priors on {bO} are consistent with other EFT-based cosmological analyses
[38,103]. Additionally, [38] demonstrates that variations in bias priors do not significantly
impact σ8 constraints.

SBI P+B priors. For the SBC tests to reliably assess the uncertainty estimates of
the inferred SBI posterior, the posterior must be amortized, meaning it should not be
constrained to a single observation. However, conducting an amortized NPE using samples
drawn from the broad FBI prior would demand an extremely large number of simulations
to achieve convergence.

To address this, we adopt the approach outlined in [217]: (1) We begin training with
the same priors used in the FBI analysis and implement a sequential NPE (SNPE) across
multiple rounds, where each round’s posterior serves as the proposal distribution for the
next. This iterative process helps discard prior regions where the posterior has negligible
support. (2) For the final NPE posterior, training samples are drawn from a Gaussian
distribution that is broader than the posterior obtained in the last SNPE iteration. This
choice accelerates the SBC analysis and allows convergence with fewer simulations, while
ensuring consistency between the SBI and FBI analyses and preventing any parameter
from being dominated by its prior.

An additional refinement in SBI involves rescaling the bias parameters bO(n) , where n
represents the order of the bias operators defined in Eq. (5.1). Specifically, they are adjusted
as αnbO(n) during inference to mitigate prior volume effects and reduce degeneracies within
the SBI data vector. Furthermore, the higher-derivative bias parameters b∇2δ and b∇2ε are
rendered dimensionless by normalizing with R−2

∗ , where R∗ denotes the characteristic scale
of halo formation. In this study, we assume R∗ = 5h−1Mpc.

5.3 Results
Our key findings are illustrated in Fig. 5.1, where we contrast the posterior distributions
of α obtained from FBI and SBI P+B analyses. All methods successfully recover the true
value of α = 1 within the 68% confidence level.

For specific scale cutoffs, at kmax = 0.1 (0.12)hMpc−1, the constraints from FBI yield
α = 0.976 ± 0.056 (α = 1.013 ± 0.033), corresponding to relative uncertainties of 5.9% and
3.6%, respectively. This represents an improvement by a factor of 3.5 (5.2) over the SBI
P+B constraints, which result in α = 1.014 ± 0.200 (α = 0.872 ± 0.170). As expected,
the enhancement of field-level constraints over summary statistics increases with kmax,
reflecting the greater role of nonlinearities in the forward model at higher wavenumbers.
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Both FBI and SBI P+B analyses remain consistent across the two kmax values for each
inference approach, with their results differing by at most 0.2-σ (0.8-σ). This agreement
stems from their shared forward model, LEFTfield, which demonstrates its precision on
these scales.

To assess the generality of these findings, we perform an analogous analysis on the
publicly available Uchuu simulation. The results in Fig. 5.2 confirm this trend: FBI
improves constraints on α by factors of 1.9 (2.5) compared to SBI P+B. More pre-
cisely, at kmax = 0.1 (0.12)hMpc−1, the constraints from FBI are α = 0.941 ± 0.090
(α = 0.993 ± 0.053), whereas SBI P+B yields α = 1.018 ± 0.168 (α = 0.900 ± 0.136),
demonstrating agreement within 0.4-σ (0.6-σ).

The improvement factors in the Uchuu sample are slightly lower than those in SNG,
likely due to reduced contributions from displacement effects in higher-order statistics at
higher redshifts, where the growth factor is smaller. Since these contributions enhance σ8
inference at the field level, their diminished impact at higher redshifts may explain the
observed reduction in improvement.

For the variant SBI case shown in Sec. 5.5, which mirrors current standard P+B anal-
yses, the improvement factors in α constraints between FBI and SBI P+B are 3.5 (5.2) for
SNG and 2.3 (3.5) for Uchuu at kmax = 0.1 (0.12)hMpc−1. This underscores the advantage
of field-level inference over summary statistics.

5.4 Tests of the inference: FBI

Galaxy Bias Marginalization. In this study, we confirm this analytical marginaliza-
tion by reanalyzing the SNG sample at kmax = 0.10hMpc−1. We compare results using
a likelihood that marginalizes over all bias terms in Eq. (5.1), except for the linear bias
parameter bδ. In Fig. 5.3, we contrast the posteriors obtained with this “bδ-unmarg.” like-
lihood against those derived from the fiducial “{bO}-marg.” likelihood in Eq. (3.46). The
1D and 2D marginalized posteriors are fully consistent across both approaches. The “bδ-
unmarg.” likelihood reveals that FBI effectively constrains bδ and α, demonstrating its
capability to break the bδ − σ8 degeneracy using nonlinear clustering information.

It is worth noting that the “bδ-unmarg.” approach assumes a prior P(bδ|unmarg) =
N (1.0, 5.0) U(0., 7.), which differs slightly from the priors in the marginalized analysis.
However, given the strong constraint on bδ, this minor discrepancy is unlikely to affect
the results significantly. Additionally, the “bδ-unmarg.” chains achieved approximately
21 effective samples, significantly fewer than the fiducial chains [Table 5.1]. Therefore,
our primary focus remains on the overall consistency between the marginalized and un-
marginalized posteriors.

Eulerian and Lagrangian Bias Representations. For both the fiducial analyses
within FBI and SBI using P + B, we employ the Eulerian framework for the EFT galaxy
bias expansion, as elaborated in Sec. II of the Supplementary Material. An alternative
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Figure 5.1: Posterior constraints on α = σ8/σ8,true from the SNG sample (see text) at
kmax = [0.10, 0.12]hMpc−1. Vertical bands denote 68% confidence limits. The upper right
corners indicate the ratio of 1-σ constraints between FBI (blue) and SBI P+B (yellow).
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Figure 5.2: Similar to Fig. 5.1, but for the Uchuu sample (see text) at kmax =
[0.10, 0.12]hMpc−1.
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Figure 5.3: Posterior distributions comparing the fiducial {bO}-marginalized likelihood
(blue, open) and the bδ-unmarginalized likelihood (yellow, filled). The figure presents
1D and 2D constraints on α = σ8/σ8,fid., the linear bias parameter bδ, and the galaxy
stochasticity parameters [σϵ,0, σϵ,k2 ]. Contours indicate 68% and 95% confidence intervals.

formulation for the EFT bias terms O and bias expansion exists in Lagrangian space1.
Specifically, one can define O at the Lagrangian coordinates q = x(τ = 0) and transport
them to their final Eulerian positions x(q, τ), following the methodology outlined in Sec. 3
of [190].

At any fixed order in perturbation theory, both bias expansions yield equivalent results,
but deviations emerge at higher orders. Thus, comparing these approaches helps assess
the relevance of higher-order corrections in bias modeling.

Fig. 5.4 presents the parameter constraints derived using each bias model for a fiducial
halo sample at z = 0.5, considering a scale cutoff of kmax = 0.10hMpc−1. The posteriors
from both frameworks align well within statistical uncertainties, keeping in mind that the
Lagrangian chains contain approximately 13 effective samples, implying limited precision
in their posterior moments.

MCMC Initialization in FBI. Regardless of the initial conditions, a properly con-
verged Markov Chain Monte Carlo (MCMC) chain samples from the same target distri-
bution. Ensuring convergence is particularly crucial in high-dimensional parameter spaces
such as those in FBI analyses.

Here, we explore two initialization strategies. For each FBI run, one MCMC chain is
1See Sec. 2.5.2-2.5.3 in [66].
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Figure 5.4: Comparison of posterior constraints obtained using the Eulerian bias (blue,
open) and Lagrangian bias (yellow, filled). The figure displays constraints on the amplitude
rescaling parameter α = σ8/σ8,fid. and the effective noise amplitude σeff.

ϵ = σϵ,0[1+σϵ,k2k2
max].

Contours denote 68% and 95% confidence regions of the 2D marginal posteriors, while
vertical bands represent the 68% intervals of the 1D marginal posteriors.
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Figure 5.5: Trace plot of the amplitude rescaling parameter α = σ8/σ8,fid. from TPI and
RPI chains in the FBI analysis. Different colors indicate distinct initial conditions.

initialized from the true initial conditions (true-phase initialization, TPI) ŝtrue, while addi-
tional chains begin from randomly selected initial conditions (random-phase initialization,
RPI) ŝ. By comparing TPI and RPI behaviors, we assess convergence.

Fig. 5.5 illustrates the trace plot of the parameter α in the FBI chains. After the
warm-up phase, the TPI (light blue) and RPI chains become indistinguishable, indicating
successful posterior sampling.

Posterior Sampling of Initial Conditions. Our field-level inference also constrains
the initial conditions ŝ of the observed volume. Fig. 5.6 summarizes different statistical
properties of the inferred initial condition posterior.

The top panel displays the histogram of ŝ− ŝtrue, where ŝ represents posterior samples,
and ŝtrue denotes the true initial conditions. The distribution follows a normal N (0, 1),
confirming that our inference correctly recovers the first two moments of P(ŝ|δobs.

g ).
In the middle panel, we present the square root of the ratio between the inferred and

true initial power spectra, a transfer function that remains consistent with unity across
Fourier modes, as expected.

The bottom panel shows the variance of ŝ − ŝtrue, which approaches zero for an ideal
forward model without noise. The inferred variance matches expectations from Poisson
noise in the data (see [118] for further discussion).

Parameter Posterior Convergence in FBI Given the high-dimensional nature of
FBI, ensuring posterior convergence is essential. Fig. 5.7 compares marginal posteriors of
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Figure 5.6: Trace plots of various statistics for the posterior initial conditions ŝ from the
TPI chain in Fig. 5.5. The warm-up phase is omitted, and samples are thinned by a factor
of 100 for clarity. Grey vertical bands mark scales beyond the cutoff kmax = 0.1hMpc−1.
(Top) Histogram of ŝ− ŝtrue. (Middle) Square root of the ratio between inferred and true
initial power spectra. (Bottom) Variance of ŝ− ŝtrue.
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Figure 5.7: Posterior consistency of MCMC chains with different initializations. Colors
correspond to the chains in Fig. 5.6. Contours represent the 68% and 95% credible intervals
of the 1D and 2D marginal posteriors for [α, σeff.

ϵ ].

α and σeff.
ϵ from MCMC chains with different initializations, at kmax = 0.1hMpc−1. The

consistency of posterior contours indicates that the chains adequately sample from the
underlying distribution.

Since MCMC samples are correlated, the standard error in the mean of α can be
estimated as σα/ESS, where ESS denotes the effective sample size. Table 5.1 provides ESS
estimates for different FBI analyses.

5.5 Tests of the inference: SBI

Analysis Setup. For the considered scale limits, namely kmax = 0.1 (0.12)hMpc−1, the
power spectrum consists of Nbins = 15 (18) bins, leading to an SBI data vector dimension
of D = 443 (714). We allocate a simulation budget of Nsim = 5 × 105 for most posteriors,
except for the SNG halo sample at the higher cutoff, which utilizes Nsim = 106, as justified
by the convergence analysis. For visualization purposes, we extract 105 posterior samples.

Training and Hyperparameters. We employ the SNPE method [85] using 10 atoms
for atomic proposals and masked autoregressive flows [164] with 10 autoregressive layers.
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Analysis ESS [samples]
SNG, kmax = 0.10hMpc−1 200
SNG, kmax = 0.12hMpc−1 100
Uchuu, kmax = 0.10hMpc−1 180
Uchuu, kmax = 0.12hMpc−1 60

Table 5.1: ESS estimates for α in various FBI analyses.

Each layer consists of two fully connected tanh layers with 100 hidden units. Training is
performed via stochastic minimization of the loss function using the Adam optimizer [112]
with a learning rate of 5 × 10−4 and a batch size of 50. We reserve 10% of samples for
validation and terminate training if validation loss remains stagnant for 20 consecutive
epochs.

Simulation-Based Calibration (SBC). To evaluate posterior uncertainties, we apply
SBC [210]. A well-calibrated posterior should exhibit uniform rank statistics for all param-
eters. Deviations from uniformity, such as U-shaped or inverted U-shaped distributions,
indicate under- or overestimated posterior variance, respectively. As illustrated in Fig. 5.8,
the uniform rank distribution confirms successful calibration.

Convergence Assessment. For SBI, posterior convergence is assessed by tracking the
evolution of uncertainty in α as a function of simulation budget, Nsim. Figure 5.9 depicts
this relationship, with the standard deviations of α normalized by Fisher-based constraints.
This analysis extends to all SBI P+B parameters, but for brevity, we focus on α.

Fisher Analysis. The standard deviation of parameter θα is estimated as
√

(F−1)αα,
where F denotes the Fisher information matrix, evaluated at the SBI posterior mode,
θmap. Following [217], F is computed via numerical differentiation of the mean data vector,
obtained by averaging over 1000 LEFTfield realizations. Sample covariance is estimated
from 105 simulations evaluated at θmap. When considering all third-order bias parameters,
the fiducial values of additional parameters are set to zero, and derivative step sizes are cho-
sen based on SBI priors. We confirm convergence with respect to step size, fiducial point,
and number of simulations. Figure 5.10 compares the SBI posterior to a Fisher analysis
using sample covariance, with log(bϵ) displayed instead of bϵ due to prior constraints.

Non-Gaussian Stochasticity. The primary analysis considers only Gaussian stochas-
ticity in the galaxy field. Standard P+B analyses typically include additional stochastic
contributions: δstoch.

g (x) = [bϵ + bϵδδ(x) + b∇2ϵ∇2]ϵ0(x) + bϵ2 [ϵ2
0(x) − ⟨ϵ2

0⟩], where ϵ0 is a unit
Gaussian field [217]. While density-dependent noise dominates over the k2 term [46], its
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Figure 5.8: Rank distributions from the SBC tests for the SBI posteriors shown in Fig. 5.1
and Fig. 5.2. The grey shaded area indicates the 99% confidence interval of an uniform
distribution. Upper, middle and lower panels correspond to the SNG (kmax = 0.1hMpc−1),
Uchuu (kmax = 0.1hMpc−1), and SNG (kmax = 0.12hMpc−1) analyses, respectively.
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Figure 5.9: Convergence of the standard deviations of α posteriors in SBI P+B analyses
with increasing simulation budget Nsim used for posterior estimation. Each value is nor-
malized by the corresponding α constraint from a Fisher analysis, for each of the cases
considered.
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implementation in FBI is technically challenging [47, 191]. Typically, only the third-order
bias operator relevant at one-loop order [22], denoted Otd, is constrained.

We conduct an alternative analysis, fixing all third-order bias parameters to zero except
bOtd, which is inferred alongside bϵ2 and bϵδ. Figure 5.11 shows that constraints on α
remain consistent with the Gaussian-only case. Convergence and calibration tests confirm
robustness (not shown).

P
/P

m
a
x

0.10hMpc−1 σ[P + B]nG

σFBI
= 3.5

[P+B]G

[P+B]nG

FBI

0.250.500.751.001.251.501.75
α

P
/P

m
ax

0.12hMpc−1 σ[P + B]nG

σFBI
= 5.2

SNG
z= 0.50

P
/P

m
a
x

0.10hMpc−1 σ[P + B]nG

σFBI
= 2.3

[P+B]G

[P+B]nG

FBI

0.250.500.751.001.251.501.75
α

P
/P

m
ax

0.12hMpc−1 σ[P + B]nG

σFBI
= 3.5

Uchuu
z= 1.03

Figure 5.11: Comparison of α posteriors in SBI P+B analyses, incorporating non-Gaussian
stochasticity, as detailed in Section 5.5. Vertical bands denote 68% credible intervals.
Upper right corners show the ratio of 1-σ constraints between FBI (blue) and SBI with
non-Gaussian stochasticity (pink).

5.6 Summary and Discussion
This chapter discusses the first constraints on σ8 derived from field-level inference of fully
nonlinear biased tracers, specifically N-body halos in their comoving rest frame. These
constraints rely on the EFTofLSS validity at quasilinear scales, with a rigorous marginal-
ization over fully nonlinear scales. Although we have not included the effect of redshift-
space distortions (RSD) from tracer peculiar velocities, typically used to constrain the
combination fσ8, our analysis still serves as a useful demonstration. First, when combined
with fσ8 constraints obtained from linear RSD, a separate σ8 constraint enables direct
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inference of the growth rate f , which serves as a sensitive probe of dark energy and grav-
ity [133–135, 225], providing more insights than the combination fσ8 alone. Second, for a
galaxy sample affected by line-of-sight-dependent selection bias, the dominant RSD con-
tribution is degenerate with the primary selection bias term [98,232], in the same way that
b1 is degenerate with σ8 in the analysis here. However, higher-order protected RSD con-
tributions can break the selection bias-growth rate degeneracy [7]. Therefore, even when
considering a redshift-space analysis, breaking the b1 − σ8 degeneracy remains crucial for
constraining both σ8 and f .

We compare our field-level results with simulation-based inference using summary
statistics like the power spectrum and bispectrum. By applying the same field-level forward
model in both methods, we demonstrate that the field-level approach outperforms the sum-
mary statistics significantly [Figs. 5.1 and 5.2]. Although previous studies, e.g., [48, 193],
have shown that field-level inference aligns with power spectrum and bispectrum analysis,
this correspondence only holds when expanding the field-level likelihood to second-order
in perturbation theory. Our forward model, however, includes third-order bias and thus
accounts for information from higher n-point functions. Our results confirm that even on
quasilinear scales, substantial cosmological information exists beyond the power spectrum
and bispectrum.

In Chapter 6, we investigate whether additional low-order summaries, such as the
trispectrum (4-point function), could extract more information.

While our current focus is on dark-matter halos, we show in [38] that this conclusion
extends to simulated galaxies as well, consistent with EFT principles. Looking ahead to
FBI on observed data, [45, 205] established the theoretical framework for incorporating
RSD into the LEFTfield forward model and demonstrated its successful implementation.
This advancement will facilitate field-level analysis in redshift space, unlocking further
cosmological information as discussed above.

We emphasize that we have not attempted to push our analysis to smaller scales but
instead targeted converged posteriors with conservative scale cuts at kmax ≤ 0.12hMpc−1, in
light of the fact that the computational cost of our forward model scales as ∼ Λ3 ln Λ. Even
with these scale cuts, our results show that field-level inference provides robust constraints
on structure growth, independent of the growth rate f , at the few-percent level, even
within a modest volume of 8 (h−1Gpc)3. This should allow for improved constraints on
cosmological parameters in both standard ΛCDM and extended models, using upcoming
DESI [8, 82], Euclid [40, 43], and PFS [209] data.
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Chapter 6

The information content in the
galaxy trispectrum

This chapter is an adaptation of a paper in preparation (to be submitted to JCAP). Author:
Beatriz Tucci. Since it is a work in progress, we report the current status and next steps
here.

6.1 Trispectrum

Given the evidence presented in Chapter 5 regarding the information content encoded at
the field level compared to the galaxy power-spectrum and bispectrum, we now turn our
attention to investigating the information content in the galaxy trispectrum. The galaxy
trispectrum has been used in cosmological contexts to infer parity violation and primor-
dial non-Gaussianities. However, it has never been employed for full-shape cosmological
inference due to challenges related to its high dimensionality.

One of the primary difficulties is estimating the galaxy trispectrum covariance, both
in mock data (due to the large number of dimensions) and when attempting to invert the
covariance matrix. Furthermore, the full model for the galaxy trispectrum in redshift space
remains unclear, as does the identification of the relevant stochastic terms.

In this chapter, we present the first steps towards providing, for the first time, an as-
sessment on the cosmological information content in the galaxy trispectrum. By using
SBI, the trispectrum covariance, along with higher-order moments, are automatically in-
corporated when learning the posterior distribution. Using LEFTfield, we explore the
information content of the galaxy trispectrum in comparison to using the power-spectrum
and bispectrum alone.
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Figure 6.1: Schematic representation of the galaxy trispectrum, where each galaxy is in
one of the vertices of the thetahedrum.

6.2 Estimators

6.2.1 Trispectrum estimator
Let the trispectrum be represented by a tetrahedron defined by four wavevectors k1, k2, k3,
k4 (see Figure 6.1. The diagonals connecting different pairs of points in this configuration
are denoted as follows: the diagonal connecting the beginning of k1 to the end of k2
is k12 = k1 + k2, and the diagonal connecting the beginning of k1 to the end of k4 is
k14 = k1 + k4. Since this forms a closed tetrahedral structure, the wavevectors satisfy the
closure condition,

k1 + k2 + k3 + k4 = 0. (6.1)
In general, the trispectrum of the real galaxy density field δg can be written as

⟨δg(k1)δg(k2)δg(k3)δg(k4)⟩ ≡ (2π)3δD(k1 + k2 + k3 + k4)T (k1, k2, k3, k4, k12, k14). (6.2)

In practice, in order to have a separable estimator, we can define the trispectrum estimator
used in [56,83,108], which averages over one of the diagonals of the thetahedrum, k14. The
idea is realizing that we want to close the two triangles formed by {k1,k2,−k12} and
{k3,k4,k12},

T̂ (k1, k2, k3, k4, k12) ∝
∫
pi∈ki,q∈k12

[
(2π)3δD(p1 + p2 − q)(2π)3δD(p1 + p2 + q)

δg(p1)δg(p2)δg(p3)δg(p4)
] (6.3)

where we introduced the notation∫
p∈ki

≡
∫

||p|−ki|<∆k/2

dp

(2π)3 , (6.4)

which indicates that all p modes within a k-shell of width ∆k centered on ki are integrated,
for i = {1, 2, 3, 4}. We can use FFTs to evaluate Eq. 6.3 if we replace the Dirac deltas by
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integrals. To see this, we can define

Iki
(x) =

∫
p∈ki

δg(p)eix·p, Jki
(x) =

∫
p∈ki

eix·p, (6.5)

which represent the inverse Fourier transform over a k-shell of the galaxy overdensity field
and a unit field, respectively, and

Iki,kj
(q) =

∫
dx e−iq·x Iki

(x)Ikj
(x), Jki,kj

(q) =
∫
dx e−iq·x Jki

(x)Jkj
(x). (6.6)

Our estimator then takes the form

T̂ (k1, k2, k3, k4, k12) =
∫
q∈k12

Ik1,k2(q)Ik3,k4(−q) ×
[∫

q∈k12
Jk1,k2(q)Jk3,k4(−q)

]−1
. (6.7)

For efficiency, we first compute the Nbin Iki
grids and then save all possible two-by-two

combinations of Iki,kj
without permutations, which gives us Nbin(Nbin + 1)/2 grids, and

then we sum over each of the given k12 bins. The normalization factor proportional to
Jki,kj

has to be calculated only once for a given setting, and it gives us the total number
of thetahedra in a given bin. In order to select only the non-trivial components of the
trispectrum and have a closed thetahedrum, we impose the conditions

k1 ≤ k2, k1 ≤ k3, k3 ≤ k4, |k1 −k2| ≤ k12 ≤ k1 +k2, |k3 −k4| ≤ k12 ≤ k3 +k4. (6.8)

Note that the trispectrum has disconnected contributions, when both pairs of external
legs are the same (e.g., k1 = k2 and k3 = k4), which can be removed since they have
the same information as the power-spectrum [83, 87]. Since we use the trispectrum for
SBI analysis, where we are free to choose the summary statistics, we do not subtract the
disconnected parts here.

6.2.2 Integrated trispectrum
A trispectrum estimator which integrates in both diagonals k12 and k14 is discussed in
[86–88], known as the integrated trispectrum. We can construct it as

T̂ (k1, k2, k3, k4) =
∫
dx Ik1(x)Ik2(x)Ik3(x)Ik3(x) ×

[∫
dy Jk1(y)Jk2(y)Jk3(y)Jk3(y)

]−1
,

(6.9)
which after discretization takes the form

T̂ (k1, k2, k3, k4) =
(
L9

N12

) ∑N3

i=1 I
D
k1(xi)IDk2(xi)IDk3(xi)IDk4(xi)∑N3

j=1 J
D
k1(xj)JDk2(xj)JDk3(xj)JDk4(xj)

. (6.10)

Since the the integrated trispectrum averages over an extra diagonal, we will use the
trispectrum estimator from the previous section in this thesis, unless otherwise stated.
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Figure 6.2: Total trispectrum estimator measured in a Gaussian random field.

6.3 Validation of the trispectrum estimator
In order to validate our estimator, we use a linear forward model instead of LPT, which is
given directly from Eq. (2.107) for α = 1, where we construct the final density field as

δg(k, z) = b1 δ
(1)(k, z) + b2

(
[δ(1)]2(k, z) − ⟨[δ(1)]2⟩(z)

)
+ b3 [δ(1)]3(k, z). (6.11)

The first test consists of analyzing whether only the disconnected contributions of the
trispectrum are non-zero when measured in a Gaussian random field, which can be obtained
by setting b1 = 1 and b2 = b3 = 0 in Eq. (6.11). Following [83], we use a box size to
L = 1000hMpc−1 and scale range 4kf < k1, k2, k3, k4, k12 < 10kf with binning width
∆k = kf . We show in Figure 6.2 the measurement averaged over 100 realizations.

Next, we evaluate the configurations dependence of our estimator. If we consider a
linear forward model with nonzero b1, b2 and b3, then at tree level the galaxy trispectrum
reads

T LO
g (k1,k2,k3,k4) = b2

1 b
2
2 T1122(k1,k2,k3,k4) + b3

1 b3 T1113(k1,k2,k3,k4), (6.12)
where

T1122(k1,k2,k3,k4) = 4P (k1)P (k2)[P (|k1 + k3|) + P (|k1 + k4|)] + 5 perm. (6.13)
T1113(k1,k2,k3,k4) = 6P (k1)P (k2)P (k3) + 3 perm. (6.14)

Note that, while the theoretical prediction is given as a function of the vector of
wavenumbers, our estimator defined in Eq. 6.7 is only a function of the absolute values k1,
k2, k3, k4, k12 and integrate the theoretical prediction over k14. In fact, the trispectrum
has only six independent degrees of freedom due to rotational invariance, so that it is com-
pletely described by six variables such as the magnitudes k1, k2, k3, k4, k12, k14 (see, e.g.,
Fig. 6.3).
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6.3.1 T1122

Let us start by investigating how to express the arguments of T1122 as a function of these
absolute values, while T1113 is already expressed in such a way. Writing T1122 explicitly
over all permutations, we obtain

T1122(k1,k2,k3,k4) = 4P (k1)P (k2)
[
P (|k1 + k3|) + P (|k1 + k4|)

]
+ 4P (k1)P (k3)

[
P (|k1 + k2|) + P (|k1 + k4|)

]
+ 4P (k1)P (k4)

[
P (|k1 + k2|) + P (|k1 + k3|)

]
+ 4P (k2)P (k3)

[
P (|k2 + k1|) + P (|k2 + k4|)

]
+ 4P (k2)P (k4)

[
P (|k2 + k1|) + P (|k2 + k3|)

]
+ 4P (k3)P (k4)

[
P (|k3 + k1|) + P (|k3 + k2|)

]
.

(6.15)

Defining the diagonal k13 = |k1 +k3| = |k2 +k4| and noting that k14 = |k1 +k4| = |k2 +k3|,
we rewrite the expression as

T1122(k1, k2, k3, k4, k12, k14) = 4P (k1)P (k2)[P (k13) + P (k14)]
+ 4P (k1)P (k3)[P (k12) + P (k14)]
+ 4P (k1)P (k4)[P (k12) + P (k13)]
+ 4P (k2)P (k3)[P (k12) + P (k13)]
+ 4P (k2)P (k4)[P (k12) + P (k14)]
+ 4P (k3)P (k4)[P (k13) + P (k14)].

(6.16)

We now have the expression as function of given k1, k2, k3, k4, k12, k14. Note that, while
k2

13 = k2
1 + k2

3 + 2k1 · k3 is in principle a function of the dot product of two vectors, we can
express it as a function of the given absolute values only, since

k2
13 = k2

1 + k2
2 + k2

3 + k2
4 − (k2

12 + k2
14)

= k2
1 + k2

2 + k2
3 + k2

4 − (k2
1 + k2

2 + 2k1 · k2 + k2
1 + k2

4 + 2k1 · k4)
= k2

1 + k2
3 − (k2

1 + 2k1 · k2 + k2
1 + 2k1 · k4)

= k2
1 + k2

3 − 2k1 · (k1 + k2 + k4)
= k2

1 + k2
3 + 2k1 · k3.

(6.17)

Finally, we integrate the theoretical expression in k14 to have a prediction for our estimator,

T1122(k1, k2, k3, k4, k12) = 1
(kmax

14 − kmin
14 )

∫ kmax
14

kmin
14

dk14 T1122(k1, k2, k3, k4, k12, k14). (6.18)

For a given configuration of k1, k2, k3, k4, k12, the maximum and minimum values of
the diagonal k14 occur when the thetahedrum is planar (see Fig. 6.3), depending on the
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Figure 6.3: Maximum and minimum values that the diagonal k14 can take.

rotation around the diagonal k12. Using the cosine rule,

θ1 = arccos
(
k2

1 + k2
12 − k2

2
2k1k12

)
, (6.19)

θ2 = arccos
(
k2

4 + k2
12 − k2

3
2k4k12

)
, (6.20)

kmax
14 =

√
k2

1 + k2
4 − 2k1k4 cos(θ1 + θ2). (6.21)

The minimum diagonal length of k14 occurs when the quadrilateral is flipped around k12,

kmin
14 =

√
k2

1 + k2
4 − 2k1k4 cos(θ1 − θ2). (6.22)

Note that, although Fig. 6.3 depicts a convex quadrilateral, these expressions are valid in
general.

To test the performance of our estimator and compare it to the prediction of T1122, we
set b1 = 1, b2 = 0.5 and b3 = 0 in Eq. 6.11, box size to L = 1000h−1Mpc and we use
8 linear bins in k from kmin = 0.01hMpc−1 to kmax = 0.1hMpc−1. In total, we have 930
thetahedra configurations, and 882 after removing disconnected bins. We show in Fig. 6.4
the average and standard deviation over 2000 inital conditions realizations against the
prediction b2

1b
2
2T1122, where T1122 is given by Eq. (6.18). We find excellent agreement of our

estimator implemented in LEFTfield and the theoretical prediction.

6.3.2 T1113

For T1113, we set box size to L = 1000h−1Mpc and use 5 linear bins in k from kmin =
kf to kmax = 0.1hMpc−1. In total, we have 134 configurations, and 128 after removing
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Figure 6.4: Trispectrum estimator averaged over 2000 realizations (in black) and theoretical
prediction b2

1b
2
2T1122 (in red) as a function of thetahedrum bin. The standard deviation over

the realizations is indicated by the shaded grey area.

disconnected bins. We set b1 = 1, b2 = 0 and b3 = 0.1 in Eq. (6.11). Since T1113 depends
only on the magnitudes of the external momenta, we validate it as follows: for given
k1, k2, k3, k4, we calculate the histogram of (⟨T̂ ⟩ − b3

1b3T1113)/σ(T̂ ) for all diagonals k12
over 100 realizations, as the distributions should scatter around a unity Gaussian if the
estimator is correct. Note that for a given configuration the number of allowed diagonals
may vary due to the triangle inequality conditions (see Eq. 6.8). We show the results for
randomly selected configurations in Fig. 6.5. We do not see systematic bias in any of the
configurations, which further confirms the validity of our estimator.

6.4 Trispectrum covariance

Here, we analyze the trispectrum covariance for illustration purposes. We emphasize that
SBI does not require a explicit covariance, where the moments of the distributions are
learned from the trispectrum measurements in LEFTfield simulations. An analytical ap-
proximation can be obtained for the “Gaussian” trispectrum covariance (i.e., ignoring cross-
correlations in between different bins) [87],

Cov[T (k1, k2, k3, k4)] = (2π)9R1234

VsV
q

1234
P (k1)P (k2)P (k3)P (k4), (6.23)

where Vs is the effective survey volume, V q
1234 = 16π3k1k2k3k4∆k1∆k2∆k3∆k4 is the bin

integration volume, and and R1234 is the symmetric factor that counts the number of
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Figure 6.5: Normalized histogram of (⟨T̂ ⟩ − b3
1b3T1113)/σ(T̂ ), where T̂ are the estimated

trispectra for b1 = 1 and b3 = 0.1 and T1113 is the prediction.

possible permutations of equal sides between the two identical quadrilaterals sets,

R1234 =



1 for (ka, kb, kc, kd)
2 for (ka, ka, kc, kd)
4 for (ka, ka, kc, kc)
6 for (ka, ka, ka, kd)
24 for (ka, ka, ka, ka).

(6.24)

The reduced covariance matrix is a dimensionless form of the covariance matrix that
provides a measure of the correlation between different bins or modes, independent of their
variances, defined by normalizing each entry by the product of the mean values of the
corresponding bins. For a covariance matrix Cij, the reduced covariance matrix rij is given
by

rij = Cij√
CiiCjj

, (6.25)

where this normalization ensures that

−1 ≤ rij ≤ 1, with rii = 1. (6.26)

We show in Fig. 6.6 the reduced covariance matrix corresponding to the data vector of the
galaxy power-spectrum, bispectrum and trispectrum bins. We use the parameter values
from the MAP posterior of SNG halos at z = 0.5 and Uchuu halos at z = 1.03 and only
vary the initial conditions in LEFTfield. We observe that the data vector is more strongly
correlated in between different data vector bins at z = 0.5 than at z = 1.03, which is
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Figure 6.6: Reduced covariance matrix for the galaxy power-spectrum, bispectrum and
trispectrum bins. The left columns show the covariance for z = 0.5 and bias parameters
fixed to the MAP from SNG halos posterior, while the right column shows the same for
the Uchuu halos at z = 1.03. The colorbar on the upper panels show the value of the
reduced covariance matrix for each bin, while the lower panels have a maximum value of
0.3 to contrast the difference between both redshifts. In general, the data vector at z = 0.5
is more strongly correlated among between different bins than at z = 1.03.
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Figure 6.7: Diagonal part of the sample covariance Ĉ of the galaxy power-spectrum (up-
per left), bispectrum (upper right) and trispectrum (bottom) measured from LEFTfield,
compared to the corresponding theoretical covariance CT . Red lines correspond to redshift
z = 0.5 while blue lines indicate z = 1.03.

expected since gravitational evolution introduces coupling of different modes. This is in
agreement with [87], who also found smaller covariance for higher redshift.

In Fig. 6.7, we compare the theoretical covariance of the power-spectrum (Eq. 4.15),
bispectrum (Eq. 4.16) and trispectrum (Eq. 6.23), with the estimated covariance from
LEFTfield (same procedure as described above). The theoretical predictions matches well
with the sample covariance at both redshifts, although we see a bigger deviation at small
scales when considering the galaxy bispectrum and trispectrum.
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6.5 Results

6.5.1 LEFTfield settings
The baseline used in this paper is the same as [157] (detailed Chapter 5): 2LPT, third
order Eulerian bias and Gaussian stochasticity, including leading order higher-derivative
terms, i.e.,

O =
{
δ,∇2δ, δ2, K2, δ3, K3, δK2, Otd, ε,∇2ε

}
. (6.27)

We consider a box size of L = 2000h−1Mpc to analyze the same dark-matter halos as
well, namely SNG at z = 0.5 and Uchuu at z = 1.03, focusing on the lower-cutoff case
of Λ = 0.12hMpc−1 (kmax = 0.1hMpc−1). We use the same prior that was used in the
power-spectrum and bispectrum analysis considered in [157], the baseline prior,

α ∼ N (1, 0.32), b1α ∼ N (1.6, 0.52), bδ2α2 ∼ N (0, 0.52), bK2α2 ∼ N (0, 0.52),
bδ3α3 ∼ N (0, 12), bδK2α3 ∼ N (0, 12), bK3α3 ∼ N (0, 12), btdα

3 ∼ N (0, 12),
b∇2δαR

−2
⋆ ∼ N (0, 12), b∇2εR

−2
⋆ ∼ N (1, 12), bε ∼ U(0, 0.5).

(6.28)

We also consider a narrower prior (on the majority of the deterministic bias parameters),

α ∼ N (1, 0.32), b1α ∼ N (1.6, 0.252), bδ2α2 ∼ N (0, 0.252), bK2α2 ∼ N (0, 0.252),
bδ3α3 ∼ N (0, 0.252), bδK2α3 ∼ N (0, 0.252), bK3α3 ∼ N (0, 0.252), btdα

3 ∼ N (0, 0.252),
b∇2δαR

−2
⋆ ∼ N (0, 12), b∇2εR

−2
⋆ ∼ N (1, 12), bε ∼ U(0, 0.5).

(6.29)

6.5.2 Trispectrum information content
Here, we report the results of a joint analysis of the galaxy power-spectrum, bispectrum
and trispectrum using SBI and LEFTfield, while the analyzed data are the same dark-
matter halos that were analyzed in Chapter 5, as mentioned in the previous section. Due
to the increased computational demand of the galaxy trispectrum, we show results using 5
linear bins instead of 15 considered in Chapter 5 for the power-spectrum and bispectrum
only, keeping all other setting fixed and focusing on the case of kmax = 0.1hMpc−1. This
leads to a data vector of dimensionality D = 33 for the power-spectrum and bispectrum
(“PB”) and D = 167 for the power-spectrum, bispectrum and trispectrum (“PBT”). Our
main goal in this section is to provide an overview of the current status of this project,
while in the final manuscript we plan to provide an analysis with thinner k-bins and also
for kmax = 0.12hMpc−1.

In Fig. 6.8 (for Uchuu halos) and in Fig. 6.9 (for SNG halos), we can see the impact
of adding the galaxy trispectrum for constraining α together with bias and stochastic
parameters using the baseline prior in Eq. (6.28). The improvement factor for adding the
trispectrum, in this case, is of 1.2 for the Uchuu halos and unity for SNG, (i.e., the ratio of
standard deviation on α obtained by the posterior samples, σPB(α)/σPBT(α)). Note that



116 6. The information content in the galaxy trispectrum

Figure 6.8: Posterior distribution of all model parameters inferred using Uchuu halos at
redshift z = 1.03 as the “observed” data vector. Red and blue contours correspond to
when we include only power-spectrum and bispectrum (“PB”) or when we combine them
with the trispectrum (“PBT”) in the data vector. For both cases, the method NPE was
used from a simulation budget of Nsim = 8 × 105, scale cut of kmax = 0.1hMpc−1 and the
baseline prior given in Eq. (6.28).
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Figure 6.9: Posterior distribution of all model parameters inferred using SNG halos at
redshift z = 0.5 as the “observed” data vector. Red and blue contours correspond to when
we include only power-spectrum and bispectrum (“PB”) or when we combine them with
the trispectrum (“PBT”) in the data vector. For both cases, the method NPE was used
from a simulation budget of Nsim = 8×105, scale cut of kmax = 0.1hMpc−1 and the baseline
prior given in Eq. (6.28).
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since the cosmologies and redshifts are different, we need to train separate models for the
NPE in each case to then evaluate it at the corresponding halo data vector.

The fact that the trispectrum does not add information for the SNG halo sample at
z = 0.5, but does for Uchuu at z = 1.03, is intriguing. Many tests were made to the
baseline in order to test what was the reason for this difference. We tried to include
more simulations (up to 106); thinner bins (10 linear bins in k); include more wavenum-
bers (kmax = 0.12hMpc−1); hyperparameter optimization for NPE (varying batch size,
flow complexity, dropout probability, learning rate); different data compression schemes
(MSE and VMIM for the loss function, 1D CNN and FCN for the architecture); add the
integrated trispectrum instead; sequential SBI (different settings and number of simula-
tions per round); alternative density estimators ((S)NLE, NPSE, flow matching); include
higher-order stochastic terms; exclude disconnected bins from the trispectrum; evaluate
NPE at different “observed” data vectors (mock data generated from LEFTfield with no
model mismatch, mock data with lower noise level, Uchuu halo sample at z = 0.5, mock
data with Uchuu z = 1.03 best fit parameters, etc.). All these tests resulted in the same
qualitative feature: that the trispectrum seemed to not add information when compared to
power-spectrum and bispectrum constraints. We do not show all these tests here to avoid
clutter; all of them look like Fig. 6.9.

The only cases in which the trispectrum adds information are when the prior is narrower
(see Figs. 6.10 and 6.11, using the prior from Eq. 6.29) and when the parameter space is
reduced (specially when excluding third order bias parameters; see Figs. 6.12 and 6.13).
We believe that the issue could be related to the fact that high-order bias parameters are
too correlated, and that SBI struggles to break this degeneracy. Note, for example, the
strong correlations in the {b1α, bδ3α3, bK3α3} plane, and that most of the third-order bias
parameters are actually prior dominated. Therefore, narrowing the prior and reducing the
parameter space seem to help SBI for breaking bias degeneracies, as we discuss in detail
below.

The effect of narrowing the prior. We show in Table 6.1 the different constraints
on α depending if we use the baseline or narrower priors, corresponding to Fig. 6.10 and
Fig. 6.11. Note that we find agreement with the results presented in Chapter 5 for the
power-spectrum and bispectrum case (PB), although we emphasize that small differences
could come from the fact that we are using wider binning (5 linear bins instead of 15),
besides the fact that there is an stochasticity of SBI methods during training. The latter
can be easily solved with ensemble networks, as we plan to do once we settle the analysis
setup.

Considering the baseline prior, we obtain an improvement factor of 1.2 when including
the trispectrum for the Uchuu halos, and no improvement factor for SNG, as previously
discussed. However, when using the narrower prior, adding the trispectrum leads to an
improvement factor of 1.4 for both halo samples. This is a good indication that the
trispectrum can indeed add information even in this large parameter space, although by
using the narrower prior we are not able to provide a fair comparison with the field-level
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Figure 6.10: Same as Fig. 6.8, but using a simulation budget of Nsim = 5 × 105 and the
narrower prior given in Eq. (6.29).
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Figure 6.11: Same as Fig. 6.9, but using a simulation budget of Nsim = 5 × 105 and the
narrower prior given in Eq. (6.29).
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Mean and 68% CL error on α

Baseline prior Narrower prior
PB PBT PB PBT

SNG (z = 0.5) 0.858 ± 0.175 0.880 ± 0.191 0.929 ± 0.122 0.938 ± 0.087
Uchuu (z = 1.03) 1.175 ± 0.162 1.084 ± 0.139 1.166 ± 0.131 1.093 ± 0.091

Table 6.1: Results of inference on the cosmological parameter α obtained from dark-matter
halos, with values for the mean and 68% confidence level (CL) error on α from by the
posterior samples obtained by NPE. We compare results using the baseline and narrower
priors, for PB (power-spectrum and bispectrum) and PBT (power-spectrum, bispectrum
and trispectrum) data vectors.

inference analysis presented in Chapter 5. Moreover, we emphasize that third-order bias
parameters are prior dominated when using the galaxy n-point functions, which is not the
case for field-level inference. It would be interesting however to perform field-level inference
on these dark-matter halos using the narrower prior for a fair comparison in case we really
do not find any improvement when adding the trispectrum for SNG at z = 0.5 using the
baseline prior.

Reduced parameter space. Since the parameter space considered for analyzing dark-
matter halos with the galaxy trispectrum is considerably large, and we suspect that the lack
of information gain at z = 0.5 when using the baseline prior to be connected to the strong
degeneracies between bias parameters, we provide here an analysis of the information gain
by adding the trispectrum to the power-spectrum and bispectrum when the parameter
space is reduced.

First, we consider a linear forward model given by Eq. (6.11) to infer {bδ, bδ2 , bδ3}. Note
that, since in the linear forward model we do not use LPT, it is not possible to constrain α.
The results are shown in Fig. 6.12 for z = 0.5, where we analyze mock data generated from
LEFTfield. The information gain from adding the trispectrum in this case is huge, since
the power-spectrum and bispectrum alone are not able to constrain bδ3 , which only appears
in the trispectrum. Therefore, bδ3 is completely prior dominated for the PB case. This
is a good confirmation that in a very simple scenario the trispectrum adds considerably
information at z = 0.5.

Next, we use 2LPT to infer {α, bδα, bδ2α2, bδ3α3}. The results are shown in Fig. 6.13
for z = 0.5 and z = 1.0, where we again analyze mock data generated from LEFTfield.
The information gain from adding the trispectrum in this case is of order 1.5 for both
redshifts, where we have started from a prior much larger than the region of posterior
support. This indicates that the trispectrum contains relevant cosmological information
and demonstrates the power of breaking bias degeneracies even when the prior is very wide
at z = 0.5 when the parameter space is reduced.
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Figure 6.12: Posterior distribution of the model parameters using mock data generated
from the same model at redshift z = 0.5 when only sampling {bδ, bδ2 , bδ3} and using the
trivial forward model. Dark and light blue contours correspond to when we include only
power-spectrum and bispectrum (“PB”) or when we combine them with the trispectrum
(“PBT”) in the data vector. For both cases, the method SNPE was used using 15 rounds
and a simulation budget of Nsim = 104 per round, and scale cut of kmax = 0.1hMpc−1.
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Figure 6.13: Posterior distribution of the model parameters inferred using mock data gen-
erated from LEFTfield when only sampling {α, bδα, bδ2α2, bδ3α3} and using 2LPT. Left:
Inference at redshift z = 1.0. Light and dark pink contours correspond to when we include
only power-spectrum and bispectrum (“PB”) or when we combine them with the trispec-
trum (“PBT”) in the data vector. Right: Inference at redshift z = 0.5. Dark and light
blue contours correspond to when we include only power-spectrum and bispectrum (“PB”)
or when we combine them with the trispectrum (“PBT”) in the data vector. For all cases,
the method SNPE was used using 15 rounds and a simulation budget of Nsim = 104 per
round, and scale cut of kmax = 0.1hMpc−1.
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Further tests. We have identified the issue that the trispectrum does not add informa-
tion for the SNG halo sample at z = 0.5, but does for Uchuu at z = 1.03, when using the
baseline prior. There is information gain at z = 0.5, however, when we narrow the prior
or reduce the parameter space, what could indicate a failure in the inference procedure
when using the baseline prior at z = 0.5. As discussed in the beginning of this section, an
exhaustive list of tests were performed to spot causes for this possible failure. However,
the reason why SBI “struggles” more with z = 0.5 as opposed to z = 1.03 for the baseline
prior is still unknown. We have observed that there is information gain from adding the
trispectrum at z = 1.5 with the baseline priors, but not at z = 0, which seems to indicate
a trend where SBI struggles more with lower redshifts samples.

One hypothesis that was raised is that SBI would tend to struggle more when the
data vector is highly correlated, because at lower redshifts (e.g., z = 0.5) the data vector
elements exhibit higher cross-correlations than at higher redshifts (e.g., z = 1.03; see Fig.
6.6). To test this, we performed a Gaussian likelihood analysis as described in Sec. 4.3.2,
using Eq. 6.23 for the analytical covariance of the trispectrum. When including the
trispectrum, this analysis becomes more challenging, as the number of cross-trispectra to
be calculated and interpolated over α increases significantly. Therefore we only include
the deterministic bias parameters in this analysis and not higher-derivative or stochastic
terms. For a mock data generated with FTP (“fixed true phases”, see Chapter 5) SNG best
fit results, we show in Fig. 6.14 the difference between the Gaussian likelihood analysis
when including or not the cross-terms in the covariance, i.e., whether the data is sampled
from an analytical or sample covariance.

If the issue was indeed the cross-correlations between the data vector at z = 0.5, we
would expect a dramatic difference when comparing the sample and analytical covariance
cases, since the analytical one only has diagonal terms. However, Fig. 6.14 suggests that,
although the analytical covariance tends to underestimate the errors, as expected, both
posteriors are still highly correlated, and the trispectrum does not add information at
this redshift for breaking bias parameters degeneracies. If the prior is narrower, we see
information gain from adding the trispectrum at z = 0.5, for both covariances considered.
This tests therefore disfavors the hypothesis that the issue at z = 0.5 comes from the
higher cross-correlations between the data vector elements at this redshift.

We have also tested decorrelating the bias parameters in the posterior. From a poste-
rior we have obtained with NPE and for a given set of bias parameters that we want to
decorrelate, we can calculate the covariance matrix of the posterior samples Σ, which can
be decomposed into V DV T . We can use the eigenvectors V to rotate the bias parameters
into a basis where they are uncorrelated in the posterior. We perform the transformation

b̃O(n)αn = V T (bO(n)αn − ⟨bO(n)αn⟩), (6.30)

where b̃O(n)αn are the uncorrelated parameters. We have tried this transformation for the
set {b1α, bδ3α3, bK3α3} and for all bias parameters. Again, the results were that the trispec-
trum added information at z = 1.03 when compared to power-spectrum and bispectrum for
both the baseline and narrower priors, while at z = 0.5 the information gain only happens
for the narrower prior.
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Figure 6.14: Posterior distribution of the model parameters inferred using mock data from
SNG FTP parameters at redshift z = 0.5 as the “observed” data vector consisting of the
power-spectrum, bispectrum and trispectrum. In this case, the parameter space is reduced
to include the cosmological parameter α and deterministic bias parameters. The data
vector generated for training is sampled from a Gaussian likelihood. Grey and orange
contours correspond to when we use an analytical or sample covariance. For both cases,
the method NPE was used from a simulation budget of Nsim = 5 × 105, scale cut of
kmax = 0.1hMpc−1.
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6.6 Conclusion & next steps

In this chapter, we presented the first joint SBI analysis using the galaxy power-spectrum,
bispectrum, and trispectrum (PBT), applied to dark-matter halos. Using neural posterior
estimation (NPE) and Nsim = 8×105 simulations from LEFTfield, we assessed the impact
of including the trispectrum on constraints for the cosmological parameter α, bias and
stochastic parameters. These results are shown in Fig. 6.8 (for Uchuu halos) and in Fig. 6.9
(for SNG halos). Moreover, to the best of our knowledge, this work presents the first
validation in the literature of the trispectrum estimator used in this work against the
predictions of the tree-level trispectrum contributions T1122 and T1113 (see Sec. 6.3).

We find that the addition of the trispectrum leads to significantly different improve-
ments under the baseline prior for the two halo samples considered: a 20% gain in constrain-
ing power for α in the Uchuu halo sample at z = 1.03, and no gain for the SNG sample
at z = 0.5. This result appears robust across a wide range of tests, such as variations
in binning, kmax, network architecture, compression scheme, density estimator, and mock
data, indicating that the lack of gain in some cases is not due to numerical or architectural
limitations.

Instead, we found that high-order bias parameters are highly degenerate with third-
order bias being prior dominated, which challenges the inference process. By narrowing
the prior (Fig. 6.10 and Fig. 6.11) and reducing the number of parameters (Fig. 6.12 and
Fig. 6.13), the constraining power of the trispectrum becomes clearly evident. Using a
narrower prior, we observe consistent improvement in α constraints for both halo samples,
with an enhancement factor of 1.4 when adding the trispectrum to the power-spectrum
and bispectrum (see Table 6.1).

It is interesting to note the dependence of SBI on the prior when analyzing the combined
galaxy power spectrum, bispectrum, and trispectrum at z = 0.5, in contrast to z = 1.03.
One would expect that sequential SBI would eventually converge to the true posterior, but
this does not appear to be the case here. Before publishing the manuscript, we plan to
compare the SBI posteriors to those obtained via MCMC to investigate whether the issue
stems from inability of SBI to break certain degeneracies. In this comparison, we can use
the interpolated cross-spectra from the Gaussian likelihood analysis as predictions for the
mean of the data vector, combined with either analytical or sample covariances.

In addition, we plan to investigate the impact of eliminating cross-correlations between
bias operators with the orthonormalization scheme proposed in [194], where again the
cross-power spectra interpolated in α can be used in the Gram-Schmidt procedure. This
strategy may help reduce parameter degeneracies, as the bias parameters are known to be
highly correlated, which poses a challenge for SBI.

We plan to present results using the compression techniques discussed in Appendix C to
reduce the dimensionality of the galaxy trispectrum and improve the convergence properties
of SBI, especially at higher kmax. Additionally, we will compare the SBI posteriors to Fisher
predictions. We also plan to investigate the impact of higher-order stochastic contributions,
specifically those of order 3 (e.g., ε3), on the galaxy trispectrum in later stages of our
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analysis (see Appendix A.2)).
What is clear is that the galaxy trispectrum encodes cosmological information be-

yond what is accessible through the power spectrum and bispectrum alone. This supports
findings such as those of [157] presented in Chapter 5, which demonstrate additional in-
formation content in the galaxy density field. While these results are promising, caution
is warranted, especially given the novelty of the methods used, such as whether SBI is
sufficiently robust in this context and whether the strong bias degeneracies in LEFTfield
for the n-point functions can be mitigated. To trust trispectrum-based inference indepen-
dently of prior assumptions, further validation is essential. In particular, we aim to avoid
relying on artificially narrow priors, which could ultimately bias the inferred parameters.
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Chapter 7

Conclusion

In this thesis, we have explored how to use simulation-based inference (SBI) in the context
of galaxy clustering. Our goal was to obtain more robust error bars, since SBI accounts for
the true distribution of the data vector, and to achieve higher precision on cosmological
parameters by analyzing more informative summary statistics, such as the galaxy trispec-
trum. Moreover, SBI provided a way to perform an apples-to-apples comparison with
field-level inference, revealing the true information content encoded in the galaxy density
field for the first time.

In Chapter 2, we reviewed the main perturbative techniques used to construct the
galaxy bias expansion, which lies at the core of LEFTfield. By the end of this section, it
should be clear that LEFTfield constitutes a reliable model for galaxy clustering. Despite
being valid only on large scales due to its perturbative foundation, it remains agnostic to
the complexities of galaxy formation. Furthermore, it is a fast simulator suitable for SBI,
enabling convergence tests for the posterior with respect to the number of simulations.

Chapter 3 introduced SBI in detail. Its power and flexibility should be evident: SBI
is a sophisticated and promising inference framework that may represent the future of
cosmological analysis, especially as we aim to model more complex summary statistics and
adopt more reliable simulations. We also described field-level inference, which is enabled by
LEFTfield. After understanding these inference methods in theory, we moved to deriving
cosmological constraints from simulations, an essential first step in testing both SBI and
LEFTfield.

In Chapter 4, we demonstrated how to combine SBI and LEFTfield using measurements
of the power spectrum and bispectrum on mock data. This was the first step in our inference
pipeline and revealed the need for ∼ 105 simulations for convergence. Appendix C discusses
several techniques that could help reduce this number, with compression via VMIM being
the most promising. This compression method is also being tested for inference with the
galaxy trispectrum, which is highly dimensional.

In Chapter 5, we discussed the application of SBI to dark matter halos with power-
spectrum and bispectrum. Remarkably, SBI performs well even in the presence of model
mismatch. We also compared this to field-level inference using LEFTfield, showing that
the galaxy density field can contain up to five times more information on σ8. If so much
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information lies in the field, we should expect to find signals in the trispectrum. SBI is, in
principle, well-suited to handle it, as it avoids issues related to non-Gaussian likelihoods
or the estimation and inversion of covariance matrices. However, challenges remain. Our
trispectrum results show improvement factors that depend on the prior, reflecting the nov-
elty and complexity of using the trispectrum, SBI, and LEFTfield. Despite the difficulty,
preliminary results are promising, indicating that the galaxy trispectrum indeed encodes
cosmological information.

In the next stages of this research, I plan to use the reconstruction procedure described
in Appendix E to combine galaxy n-point functions before and after reconstruction. SBI
is ideal for this, as estimating the combined covariance and theoretical prediction of the
data vector is difficult. With SBI and LEFTfield, we can use power spectrum and bis-
pectrum measurements both pre- and post-reconstruction to extract tighter cosmological
constraints.

Another interesting direction, although still in early stages (and with too few results
to include here), is to perform SBI directly at the field level, without requiring an explicit
likelihood. This can be achieved by compressing the field using techniques discussed in
Appendix C, rather than working with summary statistics. Otherwise, more sophisticated
methods than normalizing flows are needed to handle the high dimensionality for sampling
the initial conditions. This is particularly interesting in our case, as it allows for a rare
comparison with the explicit likelihood approach, which is typically avoided due to its
complexity.
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Bispectrum and trispectrum
stochasticity

A.1 Leading order stochastic bispectrum

The leading order stochastic contribution for the galaxy bispectrum in LEFTfield can be
written as

〈
δg(k1)δg(k2)δg(k3)

〉∣∣∣∣LO

stoch.
= cε2

〈
ε(k1)ε(k2)[ε2](k3) + 2 perm.

〉
+ cεδ

〈
δg,det(k1)ε(k2)[εδ](k3) + 5 perm.

〉
,

(A.1)

where the brackets denote multiplication in real space. Higher-order contributions are
controlled by cε2cεδ or more than one power of cε2 or cεδ, which are expected to be small
(see below). Note that terms with only one power of δg,det ∼ δ, δ, ε or ε2 vanish due to the
zero mean of these operators. Now we calculate the first contribution of Eq. (A.1) as

〈
ε(k1)ε(k2)[ε2](k3)

〉
=
∫
q

〈
ε(k1)ε(k2)ε(q)ε(k3 − q)

〉
=
∫
q

[
δD(k1 + q)Pε(k1)δD(k2 + k3 − q)Pε(k2)

+ δD(k1 + k3 − q)Pε(k1)δD(k2 + q)Pε(k2)
]

= 2δD(k1 + k2 + k3)Pε(k1)Pε(k2)
= 2δD(k1 + k2 + k3)P 2

ε ,

(A.2)
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where
∫
q ≡

∫
dq/(2π)3 and on the last line we assumed that Pε(k) = Pε, ∀ k. The second

contribution in turn reads〈
δg,det(k1)ε(k2)[εδ](k3)

〉
=
∫
q

〈
δg,det(k1)ε(k2)ε(q)δ(k3 − q)

〉
=
∫
q

[
δD(k1 + k3 − q)Pδg,det,δ(k1) δD(k2 + q)Pε(k2)

]
= δD(k1 + k2 + k3)Pδg,det,δ(k1)Pε(k2)
= δD(k1 + k2 + k3)b1PεPm(k1),

(A.3)

where on the last line we additionally assumed that, at leading order, δg,det(k) = b1δ(k),
and Pm is the evolved matter power spectrum. Collecting all terms, Eq. (A.1) can be
written as 〈

δg(k1)δg(k2)δg(k3)
〉′
∣∣∣∣LO

stoch.
= 6 cε2P 2

ε + 2 b1cεδPε
(
Pm(k1) + 2 perm.

)
, (A.4)

where the prime denotes the Dirac delta function. We can now do the matching between
the above equation and Eq. (2.83) to obtain that

6 cε2P 2
ε = Bε, cεδPε = Pεεδ

. (A.5)

In the Poisson limit, it is expected that Pε = n−1
g , Bε = n−2

g and Pεεδ
= b1n

−1
g /2 [189],

where ng is the galaxy comoving number density. We therefore arrive at the values

cε2
Poisson= 1

6 , cεδ
Poisson= b1

2 , (A.6)

which will be used for our fiducial values, as in Eq. (4.10). Note that the leading or-
der stochastic spectra are only used here in order to determine the fiducial value of the
stochastic parameters, and the forward model takes into account all loop contributions for
cosmological inference.

A.2 Leading order stochastic trispectrum
From [87,221], the leading-order stochastic galaxy trispectrum,

⟨δg(k1)δg(k2)δg(k3)δg(k4)⟩L.O.
stoch ≡ (2π)3δD(k1234)T L.O.

stoch(k1,k2,k3,k4), (A.7)

has Poisson expectation

T L.O.
stoch(k1,k2,k3,k4) = 1

n̄
[B(k1 + k2,k3,k4) + 5 perm.]

+ 1
n̄2 [P (k1 + k2 + k3) + 3 perm.]

+ 1
n̄2 [2P (k1 + k2) + 2 perm.]

+ 1
n̄3 .

(A.8)
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Now, we shall look at the trispectrum generated by LEFTfield, where ε is Gaussian,
and identify which higher-order stochastic terms will generate. At third order and ignoring
higher-derivatives corrections, we have

δg = δg,det + ε+ bε2

[
ε2
]

+ bε3

[
ε3
]

+
n+m≤3∑
εnOm

bεnOm [εnOm] (A.9)

More specifically,

εtot = cε

bεε+ bε2

[
ε2
]

+ bε3

[
ε3
]

+
n+m≤3∑
εnOm

bεnOm [εnOm]
 , (A.10)

where for simplicity we set cε = 1 and b2
ε⟨εε⟩ ≡ Pε. This general term can be explicitly

written as

n+m≤3∑
εnOm

bεnOm [εnOm] = bεδ [εδ] + bεδ2

[
εδ2

]
+ bεK2

[
εK2

]
+ bεδ3

[
ε2δ

]
. (A.11)

Now, our task is to identify the momentum structure appearing from the trispectrum
in LEFTfield. Then we can simply match the bias parameters to the Poisson expectations.

We consider the PT hierarchy

1) bε, b1

2) bε2 , bεδ, b2, bK2

3) bε3 , bεδ2 , bεK2 , bO(3)

We are going to consider, first, the L.O. terms appearing up to 2. We generate the
expected Poisson momenta structure already at this order.

The leading order galaxy trispectrum then contains, up to permutations,

T L.O.
stoch(k1,k2,k3,k4) = bεδb

2
1⟨ε(k1)[εδ](k2)δ(k3)δ(k4)⟩ + 5 perm.

+ bε2bεδb1⟨ε(k1)ε2(k2)[εδ](k3)δ(k4)⟩ + 3 perm.
+ (bεδ)2 ⟨ε(k1)ε(k2)[εδ](k3)[εδ](k4)⟩ + 5 perm.
+ (bε2)2 ⟨ε(k1)ε(k2)ε2(k3)ε2(k4)⟩ + 5 perm..

(A.12)

T L.O.
stoch(k1,k2,k3,k4) = 4Pεbεδb2

1 [B (|k1 + k2|, k3, k4) + 5 perm.]
+ 8P 2

ε bε2bεδb1 [P (|k1 + k2 + k3|) + 3 perm.]
+ 4P 2

ε b
2
εδ [2P (|k1 + k2|) + 2 perm.]

+ 24P 3
ε b

2
ε2 .

(A.13)
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⟨ε(k1)[εδ](k2)δ(k3)δ(k4)⟩ =
∫
q

⟨ε (k1) ε(q)δ (k2 − q) δ (k3) δ (k4)⟩

=
∫
q
δD (k2 − q + k3 + k4)Bm (|k2 − q|, k3, k4) δD (k1 + q)Pε (k1)

= δD(k1234)PεBm (|k1 + k2|, k3, k4)
(A.14)

⟨ε(k1)ε2(k2)[εδ](k3)δ(k4)⟩ =
∫
q1,q2

⟨ε (k1) ε (q1) ε (k2 − q1) ε (q2) δ (k3 − q2) δ (k4)⟩

=
∫
q1,q2

δD (k3 − q2 + k4)Pm (k3 − q2)

× [δD (k1 + q1)Pε (k1) δD (k2 − q1 + q2)Pε (|k2 − q1|)
+δD (k1 + k2 − q1)Pε (k1) δD (q1 + q2)Pε (q1)]
= 2δD (k1234)Pm (|k1 + k2 + k3|)P 2

ε

(A.15)

⟨ε(k1)ε(k2)[εδ](k3)[εδ](k4)⟩ =
∫
q1,q2

⟨ε (k1) ε (k2) ε (q1) δ (k3 − q1) ε (q2) δ (k4 − q2)⟩

=
∫
q1,q2

δD (k3 − q1 + k4 − q2)Pm (k3 − q1)

× [δD (k1 + q1)Pε (k1) δD (k2 + q2)Pε (k2)
+δD (k1 + q2)Pε (k1) δD (k2 + q1)Pε (k2)]
= δD (k1234)P 2

ε [Pm (|k1 + k3|) + Pm (|k1 + k4|)]
(A.16)

The last line follows from T1122,

⟨ε(k1)ε(k2)ε2(k3)ε2(k4)⟩ = 4P 3
ε (A.17)
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Appendix C: Bias relations

The bias expansion is constructed upon a sum of operators at given order in perturbation
theory at a certain given time, where one can always relate a given basis of operators one
to another. From the fiducial value of the linear bias b1, which is related to the Eulerian
basis OE = {δ, δ2, K2}, where K2 ≡ (Kij)2 and

Kij(k) ≡
[
kikj
k2 − 1

3δij
]
δ(k), (B.1)

we wish to determine a physically-motivated fiducial value for the second-order bias param-
eters associated to the Lagrangian operators OL = {tr[M (1)], tr[M (1)]2, tr[M (1)M (1)]}. At
leading order, these operators can be related as

σ2 ≡
(
tr[M (1)]

)2
= δ2, tr[M (1)M (1)] = K2 + 1

3δ
2. (B.2)

and assuming a local Lagrangian bias model with vanishing Lagrangian tidal bias, we can
use the co-evolution relations [66] to obtain that the conversion between both sets of bias
parameters reads

bσσ = b2 − 4
21(b1 − 1),

btr[M(1)M(1)] = 1
3

(
b2 − 4

21(b1 − 1)
)
,

(B.3)

where the bias terms with no subscripts are the Eulerian bias. By setting b1 = 1.5, b2 is
determined by the fitting formula b2(b1) presented in Ref. [123] as b2 = −0.69. Our second
order bias terms are then set to the fiducial values b̄σσ = −0.79 and b̄tr[M(1)M(1)] = −0.26,
as in Eq. (4.10). Note that the fiducial linear bias is b̄1 = 1.5, since it is the Eulerian linear
bias by construction.



136 B. Appendix C: Bias relations



Appendix C

Optimizing SBI

In this section, we analyze whether we can improve on the number of simulations needed
for convergence in SBI. In light of Fig. 4.12 and Fig. 5.9, the number of simulations needed
for convergence when using power-spectrum and bispectrum to constrain α is of order 105.
In general, sequential algorithms tend to decrease the simulation bugdet needed, as evident
in Fig. 4.13. However, posteriors obtained by sequential methods are not amortized, and
we are restrained from performing SBC tests on those. It is therefore desirable to improve
the convergence properties of SBI, i.e., look for strategies that make the convergence of the
posterior as a number of simulation budget to flatten at lower values. By having LEFTfield
at hand, in principle we can generate as many simulations as we want for estimating the
posterior with SBI. However, as we increase the parameter space and the dimensionality of
the data vector, generating orders of magnitude of more simulations becomes increasingly
more challenging. Note that, if we artificially lower the prior, the simulation budget for
convergence decreases. However, we always intend to use uninformative priors to avoid
biased inference.

C.1 Convergence with simulation budget

We start our discussion by noting the convergence properties and validation loss for a
simple case, the linear forward model considered in [217] (Sec. 4.3.1). As we can see in
Fig. C.1, since we only sample two parameters and use the power-spectrum for analysis,
we note that in this case both the standard deviation of b2

1 and the validation loss of NPE
tend to converge pretty quickly, at around Nsim ∼ 103.

We now consider the Uchuu P+B lower cutoff case of [157] where we use both power-
spectrum and bispectrum (P+B) at kmax = 0.12hMpc−1, with total dimensionality D =
443, to infer 11 parameters (α, third order bias, Gaussian stochasticity and leading order
higher-derivative terms). Further details on the data and model can be found in Sec. 5.2
and of SBI in Sec. 5.5. As we can see in Fig. C.2, validation convergence in this case is
achieved at least for Nsim = 2 × 105. One can ask therefore what can be done to improve
the convergence properties in this case, as we discuss in the following sections.
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Figure C.1: Left: standard deviation of b2
1 obtained by NPE as a function of simulation

budget used in training. Right: logarithm of the best validation loss over all epochs
obtained by NPE as a function of simulation budget used in training.

C.2 Hyperparameter optimization
Since in Fig. C.2 the hyperparameters of SBI were fixed, here we try to check how hyper-
parameter optimization can improve the validation loss at fixed simulation budget using
OPTUNA [14]. The idea discussed in the literature is that, if you train multiple models (for
example, 100), and do an ensemble of a fraction of them with best objective function to be
optimized (for example, 10 models with best validation loss), you can minimize the neural
network error and obtain better convergence properties. We use again the Uchuu P+B for
lower cutoff, where we use NPE as the neural density estimator and MAFs for constructing
the normalizing flow. The hyperparameters changed by OPTUNA are, with baseline values
in paranthesis:

• “nt”: number of transforms in the flow (10);

• “lr”: learning rate (10−4);

• “bs”: batch size (50);

• “hf”: number of hidden units (100).

In Fig. C.3, Fig. C.4 and Fig. C.5, we keep the simulation budget fixed (Nsim = 5 ×
104, Nsim = 105 and Nsim = 5 × 105, respectively), and change the hyperparameters
listed above for training NPE. We check how hyperparameter optimization changes both
the standard deviation of α (as a proxy for convergence) and best validation losses (as
a proxy for the quality of the trained model). From Fig. C.2, we saw that, with the
baseline hyperparameters, Nsim = 5 × 104 is far from convergence, Nsim = 105 is close
to convergence and Nsim = 5 × 105 is already converged. We want to investigate here
whether hyperparameter optimization can help with convergence, and we would expect,
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Figure C.2: Left: logarithm of the best validation loss over all epochs obtained by NPE
as a function of simulation budget used in training. Right: logarithm of the validation
(training) loss over batches obtained by NPE in continuous (dashed) lines as a function of
training epoch for different simulation budgets.

for a the cases with limited simulation budget, the models with best validation loss to be
correlated with a lower error on α, since usually the trend is that the error decreases until
convergence. We have to be careful about our conclusions, which can change depending on
the dimensionality of parameter and data vector spaces, type of summary statistics being
used, neural density estimator considered, etc. We draw our conclusions for the specific
case considered here.

In Fig. C.3, it is interesting to notice how with a limited simulation budget (Nsim =
5 × 104), you never achieve the validation loss even of the baseline trained with Nsim = 105

(indicated in black). This seems to indicate that adding more simulations is more important
than hyperparameter tuning for achieving a better model. The error on α presents a huge
scatter when we change the hyperparameters, going above and below the baseline models
with both Nsim = 105 and Nsim = 5 × 105. However, the few posteriors that yield a smaller
standard deviations for α do not have a significantly better validation loss, as we can see
from the correlation plot. These results also indicate that there is no correlation between
convergence and improvement of the model when doing hyperparameter optimization for
a limited simulation budget.

In Fig. C.4 and Fig. C.5, we can see that the error on α tends to show a smaller scatter
after convergence (Nsim = 5 × 105) when we change the hyperparameters. However, we do
not see any evident correlation between the best validation loss and a smaller error on α
for a fixed simulation budget.

We conclude that, although hyperparameter optimization is important for reducing
the intrinsic neural network error on the parameters posterior, it does not significantly
help with convergence. Adding more simulations to the training data will always yield
to a better performance, both in terms of validation loss as well as (reliable) convergence
properties.
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C.3 Data compression
In Sec. 3.5, we discussed a few data compression strategies that can be used for reducing
the dimensionality of the data vector. Here, we investigate whether these techniques can
improve convergence in SBI, again for the Uchuu P+B lower cutoff case.

MOPED. MOPED is an optimal compression scheme when the data vector has a per-
fect Gaussian likelihood and no parameter dependence, which is not exactly true for our
case considered here. However, MOPED has the advantage of not having additional free
parameters as in the case of network-based compression schemes, and is (arguably) more
interpretable. By inspecting Eq. 3.23, we need to estimate the covariance and the deriva-
tive of the data vector with respect to the model parameters. This is done exactly as for
Fisher analysis, described in Sec. 5.5. In essence, we fix the fiducial parameters to the
MAP of the posterior; the sample covariance is estimated over 105 realizations of initial
conditions, while the derivatives are obtained by finite differences over 103 realizations.

VMIM. VMIM requires training additional parameters φ corresponding to the compres-
sion network Fφ besides ϕ of the network qϕ. This is implemented in a straighforward way,
as the loss function is the same as NPE; the difference is that we embed a compression
network Fφ to the SBI algorithm. For the architecture, given that our data vector is one
dimensional, we have tried both a fully connected network (“FCE”) with layers and hidden
features and a 1D CNN (“CNN”) with . We have experimented with the hyperparameters
in this case, although it is not shown here. Interestingly, in [201] it was found that, in-
dependently of the architecture used, VMIM yielded better cosmological constraints when
compared to other loss functions used.

MSE. We have also tried MSE using a fully connected network, although the results
are not shown here due to its poor performance in our case. In particular, the validation
metric (inferred versus true parameters, for example) for higher-order bias parameters was
pretty low. Further investigation is necessary in terms of changing the architecture and
hyperparameter optimization in this case. This is however somewhat consistent to what
was found in [201], where VMIM showed significantly better performance than MSE.

Normalization. We experiment also normalizing the data vector input in two ways:
“PBnorm” corresponds to dividing the power-spectrum and bispectrum by their tree-level
expectation values, as described in Sec. 4.4, while “PBstd” we normalize each bin by
subtracting the mean and dividing by the standard deviation obtained in the simulations
used for the covariance calculation.

Results. In Fig. C.6, we show both the validation loss and error on α as a function
of simulation budget, using the baseline hyperparameter values for NPE (“NPEL”). The
best performance was achieved by VMIM; particularly “NPEL PBstd FCE VMIM” was
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the best model, which has the “PBstd” normalization and VMIM using a fully connected
network as the compression scheme. In this case, we can expect convergence at half to one
order of magnitude before the baseline case with no compression. MOPED is also expected
to help with the convergence properties, although VMIM overcomes it. We conclude that
data compression can help with SBI convergence, as expected.
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Figure C.3: Hyperparameter optimization for NPE when usingNsim = 5×104. Grey (black)
horizontal lines indicates NPE results using baseline hyperparameters and Nsim = 105

(Nsim = 5 × 105). See the hyperparameters list C.2 for a description of specific hyperpa-
rameters chosen by OPTUNA in each label. Top left: logarithm of the best validation loss
over all epochs obtained by NPE as a function of OPTUNA trial. No model presents a better
validation loss than the baselines with more simulations. Top right: standard deviation
of α obtained by NPE as a function of OPTUNA trial. The models with lower error on α
than the baseline with Nsim = 5 × 105 (in grey) are displayed with a star mark. Bottom:
correlation of standard deviation of α and best validation loss over all epochs obtained by
NPE for each OPTUNA trial.
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Figure C.4: Same as Fig. C.3, but the hyperparameter optimization for NPE is done when
using Nsim = 105. The models with higher validation loss than the baseline with Nsim = 105

(in black) are displayed with a star mark.
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Figure C.5: Same as Fig. C.3, but the hyperparameter optimization for NPE is done when
using Nsim = 5 × 105. The models with higher validation loss than the baseline with
Nsim = 5 × 105 (in grey) are displayed with a star mark.



C.3 Data compression 145

Figure C.6: Data compression impact on convergence properties of NPE. Solid and dashed
lines correspond to different runs with exact same configurations and indicate the intrinsic
network error. Left: logarithm of the best validation loss over all epochs obtained by each
method as a function of simulation budget used in training. Right: standard deviation of
α obtained by NPE as a function of simulation budget used in training.
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Appendix D

On the non-Gaussianity of the
n-point functions

The main premise of [217] is analyzing the impact of the non-Gaussianity of the galaxy
n-point functions at low-k in cosmological inference. To illustrate the problem, we first
consider 105 realizations of the power spectrum, P (k) = {P (k1), P (k2), . . . , P (kNbin)}, that
we measure from LEFTfield. In practice, we are measuring the true distribution of the
data vector, which is expected to be non-Gaussian on large scales due to the break of
central limit theorem (see discussion in Chapter 4). We keep the parameters fixed to the
MAP of the posterior, while we only change the initial conditions realization, as is done
for calculating the data vector covariance. From this set of simulations, we can calculate
the mean ⟨P (k)⟩ and the standard deviation σ[P (k)] over the realizations for each bin and
define two distributions,

P = (P (k) − ⟨P (k)⟩) /σ[P (k)], (D.1)
and

PGaussian = (PG(k) − ⟨PG(k)⟩) /σ[PG(k)], PG(k) ∼ N (⟨P (k)⟩, σ2[P (k)]). (D.2)

If the full distribution of measured spectra P is Gaussian, we expect it to match perfectly
that of a perfectly Gaussian distribution, PGaussian. This exercise can be repeated also
for the bispectrum and integrated trispectrum over multiple bins. We show in Fig. D.1
the results for each of the n-point functions, where we divide both histograms by max[P ]
so that the maximum of the histogram is unity. As expected, we see larger deviations
from Gaussianity at larger scales, and the deviations appear to be more significant for
higher-order n-point functions. This is confirmed in Fig. D.2, where we calculate the KL
divergence between these two distributions for each n-point function.

In standard cosmological analysis, by assuming that the likelihood of the n-point func-
tions is Gaussian, we are assuming that they are distributed as the grey lines in Fig. D.1.
Although we have shown in [217] that this does not impact α inference for the power-
spectrum and bispectrum, the advantage of SBI is that we will always use the true data
vector distribution (for example, the colored lines), without having to assume a specific
form for their distribution and worring whether it will impact cosmological inference.
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Figure D.1: Distribution of galaxy n-point functions over initial conditions realizations
measured in LEFTfield (in colored lines) compared to a Gaussian distribution (in grey).
Top left: measured power-spectrum distribution P (in green) and Gaussian distribution
PGaussian (in grey) for different k-bins. Top right: measured bispectrum distribution B
(in blue) and Gaussian distribution BGaussian (in grey) for different triangle bins. We only
select equilateral bins in this illustration (k1 = k2 = k3). Bottom: measured integrated
trispectrum distribution T (in red) and Gaussian distribution TGaussian (in grey) for different
quadrilateral bins. We only select equilateral bins in this illustration (k1 = k2 = k3 = k4).
The bump observed in the first panel is due to discreteness effects (i.e, it would not be
present if we used more simulations).
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Figure D.2: KL divergence between the full and Gaussian distribution of each n-point
function. The vertical lines in the bispectrum and trispectrum figures correspond to when
the innermost index starts running again, i.e., when we go to large scales at the left parts
of the plots.
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Appendix E

Field-level inference of the BAO scale

This chapter contains a brief summary of [23] (published in JCAP) and [24] (submitted to
JCAP). Authors: Ivana Babić, Fabian Schmidt & Beatriz Tucci.

The purpose of these works is constraining the BAO scale at the field-level using
LEFTfield. In the first paper [23] (Sec. E.1), we keep the initial conditions fixed, sampling
the BAO scale together with bias and stochastic parameters. We present a comparison of
field-level constraints on the BAO scale against power-spectrum analysis. In the second
paper [24] (Sec. E.2), we infer all parameters at the field-level jointly with the initial con-
ditions. We then present a comparison with pre- and post-reconstruction power-spectrum
analysis.

My main contributions were helping the first author, Ivana Babić, with the development
of the fixed-phases power spectrum covariance for the first paper and the reconstruction
algorithm for the second paper (see Sec. E.2). All analysis presented here were primarily
conducted by her.

E.1 Fixed initial conditions

This section presents a summary of [23]. We compared field-level inference of the BAO
scale from halo catalogs using a forward modeling approach based on LEFTfield with the
traditional method relying on power spectrum compression. In this work, we have used
3LPT and third-order Lagrangian bias expansion, and Gaussian noise with the leading
order higher/derivative stochastic operators.

Modeling the BAO at the field-level
The standard method for extracting the BAO signal involves comparing the observed scale
of the BAO feature with predictions, allowing one to infer the angular diameter distance
to a given redshift under an assumed cosmology. However, this strategy is not directly
applicable in our context. Since we are working with simulations in a cubic box with
periodic boundary conditions, altering distances would require the introduction of a window
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function and would prevent us from maintaining fixed initial conditions corresponding to
the true cosmology. Modifying the assumed distance scale also changes the comoving
volume, complicating the comparison with our fixed-volume simulations. To avoid these
issues, we take a different route: we effectively rescale the predicted comoving sound horizon
instead.

Our goal is to extract the BAO scale rs using only the oscillatory component of the
power spectrum, excluding its broad-band part, which is influenced by other cosmological
parameters. A straightforward method might be to vary the baryon density ωb and find
which value best reproduces the observed oscillations. However, adjusting ωb modifies
both the oscillatory and smooth components of the power spectrum, making this approach
unsuitable.

We instead approximate the linear matter power spectrum with the form

PL(k, β) = PL,sm(k)[1 + A sin(kβrfid) exp(−k/kD)], (E.1)

where A and kD are fixed constants, and rfid is the fiducial value of the BAO scale. This
formulation separates the broad-band component, given by PL,sm(k), from the oscillatory
part of the spectrum. The sinusoidal term, sin(kβrfid), encodes the BAO signal, while the
exponential factor represents Silk damping due to photon diffusion before recombination,
which is not captured in the fluid approximation.

We define the scaling factor
β = rs/rfid, (E.2)

so that varying β corresponds to adjusting the BAO scale rs while keeping the overall
distance scale fixed. Importantly, since the BAO signal was imprinted during the early
Universe, altering its scale in the initial linear power spectrum is physically justified. This
modification changes only the oscillatory structure of the spectrum without affecting its
global shape.

The smooth power spectrum PL,sm(k) takes the form depending on the smooth transfer
function of [72] and with free parameters fitted by CLASS code [130].

Given the known fiducial power spectrum—used to generate the initial conditions in
our simulations—we can derive the power spectrum corresponding to a different BAO scale
using Eq. (E.1). We define a modulation factor f(k, β) such that

f 2(k, β) = PL(k, β)
Pfid(k) = 1 + A sin(kβrfid) exp(−k/kD)

1 + A sin(krfid) exp(−k/kD) . (E.3)

This function satisfies f(k, 1) = 1 and allows us to relate the fiducial and rescaled linear
density fields via

δβ(k, β) = f(k, β)δfid(k). (E.4)

Thus, δβ represents a linear density field with the same phases as the fiducial one but with
a modified BAO scale rs = βrfid. These rescaled fields δβ are used as the initial conditions
in our forward modeling throughout this work.
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Results
In this work, we have used 3LPT and third-order Lagrangian bias expansion, while we
assume gaussian stochasticity with leading-order higher-derivative term. For the data, we
consider a box with size L = 2000h−1Mpc. We use four halo mass bins in the mass range
1012.5h−1M⊙–1014.5h−1M⊙, with number densities spanning n̄h ∼ 10−5 − 10−4 h3/Mpc3,
depending on the mass and redshift.

The field-level inference results show that systematic biases in β̂ are well controlled,
remaining below ∼ 2% across all samples. To benchmark the EFT likelihood, we compared
it against a Gaussian likelihood constructed from the power spectrum using the same
underlying forward model and bias parameter fits from the field-level analysis, where we
use the fixed-phases covariance derived in the paper.

A direct comparison of the two approaches (Fig. E.1) reveals that while both methods
perform similarly at small cutoffs, the EFT likelihood significantly outperforms the power
spectrum-based inference at Λ > 0.12hMpc−1. At Λ = 0.2hMpc−1, the BAO scale
uncertainties from the power spectrum are up to 3.3 times larger, depending on the halo
sample. This improvement is expected since the EFT likelihood incorporates higher-order
correlations and bulk-flow information not accessible to the power spectrum alone.

E.2 Free initial conditions

This section presents a summary of [24]. In this work, we have reported the results of
field-level inferences of the BAO scale, performed using LEFTfield when simultaneously
inferring the BAO scale, initial conditions, bias, and stochastic parameters, and has been
applied to mock datasets in real space (i.e., neglecting redshift-space distortions). We also
provide a comparison to the reconstructed power spectrum.

BAO reconstruction
After generating the mock catalog, we proceed with the reconstruction process. To en-
sure an unbiased comparison with the field-level method and maintain consistency in the
accessible k-modes, we carefully match the smoothing scale and grid sizes. The smooth-
ing choice is particularly crucial since the field-level method uses a sharp-k filter, whereas
standard reconstruction applies a Gaussian filter.

For standard reconstruction, we set the Gaussian smoothing scale to R = Λ−1. This
choice is conservative, as it permits contributions from modes with k > Λ in standard
reconstruction while excluding them in the field-level approach. The reconstruction process
for a given cutoff Λ < Λ0 follows these steps (see Fig. E.2 for a flowchart summarizing the
procedure):

1. The galaxy tracers are assigned to a grid of size Nassign = 2NΛ using a NUFFT-based
assignment, yielding the initial density field δg.
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Figure E.1: Ratio of the uncertainty on the BAO scale inferred from the power spectrum
likelihood, σPS(β̂), to that from the field-level likelihood, σF (β̂), as a function of cutoff for
different redshifts. Each panel corresponds to a different halo mass range. From From [23].
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2. The density field δg is then smoothed using a Gaussian filter WG(kR) with scale
R = 1/Λ:

δg(k) → WG(k/Λ)δg(k). (E.5)

3. The estimated displacement field ψ is obtained from the smoothed density field as:

ψ(k) = −i k
k2WG(k/Λ)δg(k)

bδ
, (E.6)

where the bias parameter bδ is set to the true value used in generating the mock
catalog.

4. The displacement field ψ is interpolated to the tracer positions and used to shift
them accordingly.

5. The displaced density field δd is constructed by reassigning the shifted tracers to a
grid of size 2NΛ using NUFFT. This step effectively cancels out a significant portion
of the large-scale perturbations in δg.

6. A uniform grid of particles is generated and displaced using ψ to form the “shifted”
field δs. The assignment to the grid again follows the NUFFT method, with the same
resolution 2NΛ.

7. The reconstructed density field is computed as:

δrec
g = δd − δs. (E.7)

Here, subtracting δs restores the large-scale modes removed during the displacement
step.

8. Finally, the power spectrum of the reconstructed field, P rec
g , is measured, imposing

kmax = Λ.

Post-reconstruction, the BAO wiggles appear significantly sharper, highlighting the
method’s success in reducing nonlinear damping.

We extract the BAO scale parameter β and its associated uncertainty from both pre-
and post-reconstruction datasets by performing a Markov Chain Monte Carlo (MCMC)
analysis with the emcee sampler [76]. In this process, we simultaneously constrain β and
the parameters describing the broadband shape of the power spectrum using the following
fitting template:

Pmodel(k, β) = (B1 +B2k
2)Pm(k, β) + A(k), (E.8)

where B1 and B2 are nuisance parameters, and

Pm(k, β) = Pfid(k)f 2(β, k) (E.9)
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posterior sampling

Figure E.2: Flowchart of the two methods for BAO inference employed in this work: field-
level inference (top) and power spectrum-based inference with and without reconstruction
(bottom). The reconstruction step includes the generation of a discrete tracer catalog from
δg, as described in the text. From [24].

denotes the linear power spectrum modified to include the rescaled BAO signal, as defined
in Eq. (E.3). The term A(k) captures smooth contributions and is modeled by a cubic
polynomial:

A(k) = a0 + a2k
2 + a3k

3. (E.10)

We compute the power spectrum using linear binning with a spacing of ∆k = 0.0028 hMpc−1,
and restrict the fit to the wavenumber range 0.03 hMpc−1 < k < Λ.

We assume Gaussian likelihood and covariance for the power spectrum analysis.

Results
In this work, we use 2LPT and second-order Lagrangian bias with operators and second
order Eulerian bias, and Gaussian noise.

Two mocks were generated using bias parameters extracted from fixed-initial-condition
analyses of halo catalogs, but at significantly higher resolution (or cutoff) than used in
our inference procedure. This deliberate model mismatch aims to better mimic realistic
scenarios. The essential difference between the two types of mocks lies in the bias model
used to generate them: Mock A was built using second-order Lagrangian bias, while Mock
B relied on second-order Eulerian bias.

For Mock A, we only used a second-order Lagrangian bias expansion during inference.
The resulting systematic bias in β remained below 1% and was negligible across all Λ values,
except at the highest cutoff, where it rose to roughly 1.8%. We observe that switching to
a third-order bias expansion in inference likely mitigates this bias.

In the case of Mock B, based on Eulerian bias, we examined both second-order Eulerian
and Lagrangian bias expansions in inference. The Eulerian approach yielded residual bias
consistent with zero, with decreasing trend as Λ increased. Conversely, inference using
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1Figure E.3: Inferred error bar σPS(β) on the BAO scale using pre- and post-reconstruction
power spectrum, relative to that in the field-level inference σF, in the case of Mock A. This
mock was generated (and sampled, in case of field-level inference) using Lagrangian bias.
Pre-reconstruction results are depicted using squares, whereas post-reconstruction results
are represented by stars. It is evident that, even comparing to power spectrum after BAO
reconstruction, the field-level BAO scale inference is more precise, by up to a factor of 1.35.
From [24].

the Lagrangian model showed slightly elevated residual bias. Once again, increasing the
order of the bias expansion is expected to reduce this effect. Additionally, the Lagrangian
inference yielded narrower error bars compared to the Eulerian case, likely due to the
additional filtering used when constructing Eulerian bias operators. This filtering omits
certain mode-coupling contributions that are retained in the Lagrangian formulation.

Standard BAO inference typically involves reconstructing the density field from the
tracer catalog and extracting the BAO scale from the post-reconstruction power spectrum.
In Sec. E.2, we described the application of this reconstruction method to our mocks. As
is standard practice, we fixed the linear bias parameter during reconstruction, favoring the
reconstruction-based method over the field-level approach, where all bias parameters are
inferred simultaneously with the BAO scale. Figures E.3 provide a comparison between
the field-level error bars, σF, and those from the power spectrum, σPS. Depending on the
mock and Λ, σF can be up to twice as small (pre-reconstruction) or about 1.5 times smaller
(post-reconstruction) than σPS. Nevertheless, field-level inference presents a more coherent
framework, as it allows joint inference of all relevant parameters and avoids the need for
fitting functions like Eq. (E.8) used in power spectrum analyses.

E.3 Conclusions and next steps

In the future, we plan to infer the BAO scale via SBI and LEFTfield. This will allow for
consistent marginalization over bias, noise, and cosmological parameters, instead of fixing
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them as done in traditional analysis.
Moreover, combining BAO reconstruction with the full-shape of the galaxy power-

spectrum has been shown to achieve even tighter cosmological constraints [170], but mod-
eling the covariance and the reconstructed spectra remains challenging. Since we developed
a reconstruction algorithm in LEFTfield, we plan to use SBI to do a joint analysis of pre-
and post-reconstructed galaxy power-spectrum and bispectrum in order to obtain more
cosmological information. SBI circumvents the issues of covariance modeling of these com-
bined statistics, while LEFTfield naturally provides a model for the reconstructed spectra
by means of measuring the n-point functions on the reconstructed field.

In this context, we would be be pioneer to include the bispectrum into the analysis,
besides analyzing how much information is transferred between pre- and post-reconstructed
higher-order statistics, and comparing the information content to field-level inference.
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und H. Gil-Maŕın, JCAP 2020 (2020), 005.

[61] G. D’Amico, L. Senatore und P. Zhang, JCAP 01 (2021), 006.

[62] R. Daviet. Inference with Hamiltonian Sequential Monte Carlo Simulators, 2018.

[63] K.S. Dawson, D.J. Schlegel, C.P. Ahn, S.F. Anderson, É. Aubourg, S. Bai-
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[104] M.M. Ivanov, M. Simonović und M. Zaldarriaga, JCAP 2020 (2020), 042.

[105] J. Jasche und B.D. Wandelt, MNRAS 432 (2013), 894.

[106] N. Jeffrey, J. Alsing und F. Lanusse, MNRAS 501 (2021), 954.

[107] D. Jeong und E. Komatsu, ApJ 703 (2009), 1230.

[108] G. Jung, A. Ravenni, M. Baldi, W.R. Coulton, D. Jamieson, D. Karagiannis,
M. Liguori, H. Shao, L. Verde, F. Villaescusa-Navarro und B.D. Wandelt, ApJ 957
(2023), 50.

[109] T. Kacprzak und J. Fluri, Physical Review X 12 (2022), 031029.

[110] N. Kaiser, ApJL 284 (1984), L9.

[111] K. Karchev, R. Trotta und C. Weniger, MNRAS 520 (2023), 1056.

[112] D.P. Kingma und J. Ba, arXiv e-prints (2014), arXiv:1412.6980.

[113] D.P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever und M. Welling,
arXiv e-prints (2016), arXiv:1606.04934.

[114] D.P. Kingma und M. Welling, arXiv e-prints (2013), arXiv:1312.6114.
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[184] K.K. Rogers, R. Hložek, A. Laguë, M.M. Ivanov, O.H.E. Philcox, G. Cabass, K. Ak-
itsu und D.J.E. Marsh, JCAP 06 (2023), 023.

[185] H. Rubira und F. Schmidt, (2023).

[186] H. Rubira und F. Schmidt, JCAP 01 (2024), 031.

[187] H. Rubira und F. Schmidt, JCAP 10 (2024), 092.

[188] W. Rudin: Real and Complex Analysis. McGraw-Hill series in higher mathematics.
Tata McGraw-Hill, 2006.

[189] F. Schmidt, PhRvD 93 (2016), 063512.

[190] F. Schmidt, JCAP 2021 (2021), 033.

[191] F. Schmidt, JCAP 04 (2021), 032.

[192] F. Schmidt, G. Cabass, J. Jasche und G. Lavaux, JCAP 2020 (2020), 008.

[193] F. Schmidt, F. Elsner, J. Jasche, N.M. Nguyen und G. Lavaux, JCAP 01 (2019),
042.
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