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A B S T R A C T

Thunderstorms have potentially hazardous impacts on society and the
economy due to accompanying phenomena, such as lightning, strong
winds, and intense precipitation, creating a demand for accurate and
timely thunderstorm forecasts. Thunderstorm forecasts several hours
in advance are based on simulations of the future atmosphere via
numerical weather prediction (NWP). However, as none of the NWP
state variables, such as temperature, pressure, or specific humidity,
directly indicates thunderstorm occurrence, surrogate variables like
convective available potential energy or synthetic radar reflectivity are
used as proxies instead.

Surrogate variables of thunderstorm occurrence are typically de-
rived from NWP state variables through the consideration of physical
principles and empirical knowledge. In this thesis, however, we present
a machine learning (ML) model based on deep learning which by-
passes the use of such surrogate variables; instead, the model directly
processes the vertical variation of the NWP state variables with height
to infer the corresponding probability of thunderstorm occurrence. In
addition, this thesis makes use of a convection-permitting ensemble
NWP model, i.e., an NWP model which (1) allows for resolving at-
mospheric convection without parameterizations, and (2) generates
multiple possible forecasts consistent with forecast uncertainty. While
these two properties have individually shown promise for improving
thunderstorm forecasts, their combined potential for this task has
so far been less explored. Specifically, we train our model on fore-
casts of ICON-D2-EPS, a limited-area model for Central Europe run
operationally by the German Meteorological Service (DWD), with
observations from the lightning detection network LINET serving as
the ground truth. With regard to model architecture, we employ con-
siderations based on physics and symmetries to keep model size and
inference times computationally efficient. For instance, a sparse layer
encourages interactions at similar height levels, whereas a shuffling
mechanism forces the model to learn pressure coordinates instead of
non-physical patterns tied to the vertical NWP grid.

Evaluating our model for lead times up to 11h, we find that it
outperforms a baseline model relying on traditional thunderstorm sur-
rogate variables, which shows the capability of deep learning methods
to discover—on their own—skillful representations of thunderstorm
occurrence in NWP data. A linear sensitivity analysis (saliency map)
suggests that these patterns found in the data are to a considerable
extent physically interpretable: our model has learned the climatologi-
cal propagation direction of thunderstorms in the study region and
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relies on fine-grained structures, such as ice-particle content near the
tropopause and cloud cover, as well as mesoscale structures related
to atmospheric instability and moisture. As additional results, we
quantitatively explain skill gains resulting from our use of ensemble
data. Finally, we demonstrate how neural network models like ours
help keeping thunderstorm occurrence predictable for longer lead
times compared to models which do not rely on ML.

This thesis primarily contributes to improving the skill of thunder-
storm forecasts by combining high-resolution NWP and ensemble
systems with deep learning. On the other hand, many concepts and
methods derived here apply to general binary classification problems,
especially when high class imbalance is involved. More generally,
our results exemplify the usefulness of incorporating physical con-
siderations and symmetry principles into ML architectures to achieve
lightweight models.

Z U S A M M E N FA S S U N G

Gewitter haben potenziell gefährliche Auswirkungen auf Gesellschaft
und Wirtschaft, da sie mit Begleiterscheinungen wie Blitzschlag, star-
ken Winden und intensiven Niederschlägen einhergehen. Dies führt
zu einem Bedarf an präzisen Gewittervorhersagen. Vorhersagen meh-
rere Stunden im Voraus basieren auf Simulationen der zukünftigen
Atmosphäre mittels numerischer Wettervorhersage (NWP). Da jedoch
keine der NWP-Zustandsgrößen wie Temperatur, Druck oder spezifi-
sche Feuchte direkt auf das Auftreten von Gewittern hinweist, werden
stattdessen Ersatzgrößen wie die für Konvektion verfügbare potentiel-
le Energie (CAPE) oder synthetische Radarreflektivität als Indikatoren
für Gewitter herangezogen.

Solche Ersatzgrößen werden üblicherweise unter Anwendung phy-
sikalischer Prinzipien und Empirie aus den NWP-Zustandsgrößen
abgeleitet. In der vorliegenden Arbeit wird hingegen ein tiefes neu-
ronales Netzwerkmodell des maschinellen Lernens (ML) vorgestellt,
das ohne Verwendung dieser Ersatzgrößen auskommt. Stattdessen
verarbeitet das Modell direkt die vertikale Variation der NWP-Zu-
standsgrößen mit der Höhe, um die entsprechende Wahrscheinlichkeit
eines Gewitterauftretens zu bestimmen. Ergänzend kommt ein kon-
vektionsauflösendes Ensemble-NWP-Modell zum Einsatz, das also
(1) atmosphärische Konvektion ohne Parametrisierung auflöst und
(2) mehrere mögliche Vorhersagen im Rahmen der Unsicherheit gene-
riert. Obwohl beide Eigenschaften bereits einzeln vielversprechende
Ergebnisse hinsichtlich der Verbesserung der Vorhersagegüte von Ge-
wittern zeigen konnten, wurde deren kombinierter Nutzen bisher
weniger untersucht. Das trainierte ML-Modell basiert auf Vorhersagen
des operationellen Lokalmodells ICON-D2-EPS für Mitteleuropa des
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Deutschen Wetterdienstes (DWD); als Referenzdaten dienen Beobach-
tungen des Blitzortungssystems LINET.

Bei der Modellarchitektur wird besonderer Wert auf physikali-
sche und symmetriebezogene Überlegungen gelegt, um Modellgröße
und Inferenzzeiten effizient zu halten. So fördert etwa eine spärli-
che Schicht Interaktionen auf ähnlichen Höhenniveaus, während ein
Shuffling-Mechanismus das Erlernen von Druckkoordinaten anstelle
nicht-physikalischer Muster innerhalb des vertikalen NWP-Gitters
erzwingt.

Die Modellbewertung für Vorhersagehorizonte von bis zu 11 Stun-
den zeigt eine überlegene Leistung im Vergleich zu einem Referenz-
modell, das auf traditionellen Ersatzgrößen basiert. Dies unterstreicht
das Potenzial von Deep-Learning-Methoden, selbstständig aussage-
kräftige Repräsentationen für Gewitterereignisse in NWP-Daten zu
erlernen. Eine lineare Sensitivitätsanalyse (Salienzkarte) weist darauf
hin, dass viele der identifizierten Muster physikalisch interpretierbar
sind: So wird etwa die klimatologische Zugrichtung von Gewittern im
Untersuchungsgebiet erfasst, wobei zusätzlich feinskalige Strukturen
wie der Eispartikelgehalt nahe der Tropopause, Wolkenbedeckung
sowie mesoskalige Merkmale atmosphärischer Instabilität und Feuch-
tigkeit berücksichtigt werden. Darüber hinaus wird in dieser Arbeit die
Verbesserung der Vorhersagegüte, die aus dem Einsatz von Ensemble-
Daten resultiert, quantitativ erklärt. Abschließend wird gezeigt, dass
neuronale Netzwerke wie das vorgestellte Modell zur Erhaltung der
Vorhersagbarkeit von Gewittern auch bei längeren Vorhersagezeiten
beitragen können – im Gegensatz zu Verfahren ohne maschinelles
Lernen.

Diese Arbeit leistet einen Beitrag zur Verbesserung der Gewitter-
vorhersagegüte durch die Kombination hochauflösender numerischer
Wettervorhersagemodelle mit Ensemble-Ansätzen und Deep Learning.
Die entwickelten Konzepte und Methoden sind zudem auf allgemeine
binäre Klassifikationsprobleme übertragbar, insbesondere bei stark
unausgewogenen Klassenverhältnissen. Darüber hinaus wird die Rele-
vanz physikalischer Überlegungen und Symmetrieprinzipien für die
Entwicklung effizienter ML-Modelle exemplarisch aufgezeigt.
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Part I

I N T R O D U C T I O N A N D B A C K G R O U N D





1
I N T R O D U C T I O N

1.1 the aim of this work

Thunderstorms have likely inspired awe, fear, and reverence, in hu-
mankind since the earliest days of our existence. For instance, in
Ancient Rome, lightning and thunder were associated with Jupiter,
the most powerful god in Roman mythology.1 In 1505, the 21-year-old
law student Martin Luther was caught in a violent thunderstorm and,
fearing for his life, vowed to become a monk if he survived—an event
that ultimately set him on the path to initiating the Protestant Refor-
mation (Brecht, 1983, p. 57). In 1725, the Italian composer Antonio
Vivaldi expressed the fury and raw energy of thunderstorms in the
dramatic third movement of Summer from The Four Seasons (Lockey,
2017).

While thunderstorms are no less inspiring nowadays, their impact
in the form of lightning, strong winds, and intense precipitation (in-
cluding graupel and hail) is nevertheless hazardous to society and
the economy. For instance, there is the small but real chance of being
struck by lightning (Holle, 2016), which is why people are advised to
“go indoors when thunder roars”. Thunderstorms also threaten crops
and livestock (Holle, 2014), and may trigger wild fires (Veraverbeke
et al., 2017). Additionally, they constitute a major safety concern for
aviation (Gerz et al., 2012; Borsky et al., 2019). Furthermore, thunder-
storms and lightning damage electrical electrical infrastructure such
as wind turbines (Yasuda et al., 2012), decelerating the transition to
sustainable energy production. Finally, although the global impact
of climate change on thunderstorm frequency is still uncertain and
varies regionally, studies suggest that thunderstorms will become
more frequent in many European countries (Diffenbaugh et al., 2013;
Rädler et al., 2019; Taszarek et al., 2021). This trend underscores the
growing importance of accurate and timely forecasts of thunderstorm
occurrence in the future.

Methods for forecasting thunderstorm occurrence fall into two cate-
gories based on how far in advance one aims to predict. For short-term
forecasts with lead times up to approximately 2h, the highest skill
is achieved with nowcasting methods based on the extrapolation of
remote sensing data (e.g., James et al., 2018; Pulkkinen et al., 2019;
Y. Zhang et al., 2023). On the other hand, nowcasting skill quickly

1 See, e.g., “tum pater omnipotens misso perfregit Olympum fulmine“ (translation
from Latin: “then the all-mighty father shattered Olympus by emitting a bolt of
lightning”), from Ovid: Metamorphoses, book 1, lines 154–155.
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4 introduction

deteriorates in the course of even 1h (Pulkkinen et al., 2020; Leinonen
et al., 2023), which is why thunderstorm forecasts several hours ahead
rely on numerical weather prediction (NWP). This method essentially
consists of simulating the future atmospheric state by numerically
solving equations derived from the laws of physics. NWP skill has
improved in the past decades due to more powerful high-performance
computing, a more accurate representation of physical processes, the
increased availability of observational data through satellite imagery,
and advancements in how these observations are assimilated into
physically consistent initial conditions (Bauer et al., 2015; Yano et al.,
2018). While the atmospheric state in NWP is encoded in terms of cer-
tain three-dimensional state variables, such as temperature, pressure,
or specific humidity, none of these variables alone directly indicates
thunderstorm occurrence. As a matter of fact, individual strokes of
lightning, the defining aspect of thunderstorms, are not even part of
the governing equations in NWP. Instead, forecasting thunderstorm
occurrence using NWP boils down to first computing the atmospheric
state at the target time, and then to identifying thunderstorm occur-
rence in the NWP output via surrogate variables.

Surrogates of thunderstorm occurrence and convective environ-
ments in NWP output have traditionally been derived from the state
variables via a combination of physical considerations and empirical
knowledge. Examples include simulated radar reflectivity (e.g., Kain
et al., 2008; Kober et al., 2012; Kerr et al., 2025), updraft helicity (Sobash
et al., 2011; Loken et al., 2017), or convective available potential energy
(CAPE; Kaltenböck et al., 2009; Taszarek et al., 2021). In addition,
forecasters consider possible sources of lift via, e.g., orography, or
solar radiation. A simultaneous consideration of multiple surrogates
was made possible by fuzzy logic expert systems, which rely on de-
cision rules based on domain knowledge to automatically identify
thunderstorm occurrence (e.g., P.-F. Lin et al., 2012; J. Li et al., 2021).
Lately, works have been concentrating on machine learning (ML) meth-
ods based on artificial neural network models, which generalize the
fuzzy-logic approach in the sense that decision rules are constructed
by solving a data-driven optimization problem. These methods are
powerful because they enable the systematic development of models
tailored to specific applications. While the developer supplies input
samples and a ground truth of the application of interest, the ML
framework provides a systematic “recipe” for model development. In
the use-case of identifying thunderstorm occurrence in NWP data,
the ground truth is often provided by observational data, such as
satellite imagery (Jardines et al., 2021, 2024a), radar data (Gagne et al.,
2017; Burke et al., 2020; Leinonen et al., 2022), storm reports (Loken
et al., 2020; Sobash et al., 2020), or lightning (Ukkonen et al., 2019;
Geng et al., 2021). Previous studies include neural networks with rela-
tively few neurons (Jardines et al., 2021; Kamangir et al., 2020; Sobash
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et al., 2020; Ukkonen et al., 2019), as well as neural networks with
hundreds of thousand trainable parameters (Geng et al., 2021; Jardines
et al., 2024b). Findings suggest that neural network models are more
skillful at predicting thunderstorm occurrence than comparable ML
approaches like random forests (Herman et al., 2018; Ukkonen et al.,
2019).

As many surrogate variables are derived from the NWP state vari-
ables, a natural progression from the state of the art is to process the
NWP state variables directly, as shown in Fig. 1.1. The corresponding
ML architectures, deep neural networks, would learn the representa-
tions needed to infer thunderstorm occurrence automatically, elimi-
nating the need for “human-designed” surrogates altogether. Deep
learning models have demonstrated remarkable success in computer
vision, outperforming traditional ML approaches (Krizhevsky et al.,
2012; LeCun et al., 2015). On the other hand, if applying deep learning
directly to NWP state variables is a logical next step, one may wonder
why this has not yet become standard for the identification of thun-
derstorm occurrence in NWP forecasts. The primary limitations have
likely been the computational demands associated with handling large,
complex, datasets. These challenges are increasingly surmountable, as
evidenced by recent work incorporating multiple NWP state variables
at several vertical levels alongside surrogates (Zhou et al., 2019; Jar-
dines et al., 2024a). An example from a related topic includes a deep
learning model which infers precipitation rates directly from six state
variables, outperforming the NWP model’s quantitative precipitation
forecasts (Zhou et al., 2022). Yet, to the best of our knowledge, no
study has directly inferred thunderstorm occurrence solely from the
NWP state variables. With this thesis, we aim to contribute to closing
this research gap.

NWP
state

variables

Thunderstorm
forecast

Surrogate
variables

physics,

experience

expert systems,
neural networks

Deep learning

Figure 1.1: Deep learning as a means of processing NWP state variables
directly, bypassing the use of surrogate variables.

While the development of a deep neural network model processing
NWP state variables directly constitutes a crucial means by which we
aim to improve the skill of NWP-based thunderstorm forecasts, it is not
the only research path which we will follow in this thesis. Indeed, one
crucial reason why the provision of accurate thunderstorm forecasts
several hours ahead remains difficult is that the underlying NWP
model’s skill at producing the target atmospheric state is simply not
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perfect. NWP forecast uncertainty results from model grid spacings
too coarse to resolve single-cell convection, insufficient sub-gridscale
parametrization of model physics and uncertain initial and boundary
conditions, and is exacerbated by rapid error growth in time due to
the fundamentally chaotic nature of the equations of motion of the
atmospheric state (Lorenz, 1969; Palmer et al., 2014; Craig et al., 2021).
As a consequence, the skill of thunderstorm forecasts based on NWP
decreases with lead time, which ultimately limits the predictability of
thunderstorm occurrence in practice. Therefore, thunderstorm forecast
skill may not only be increased by improvements of the NWP output
processing but also by accounting for advancements related to the
underlying NWP model itself.

We now motivate two advancements in NWP towards more skillful
thunderstorm forecasts, namely convection-permitting models and
ensemble systems. The former concept refers to NWP models with a
sufficiently small grid spacing so that convective parameterizations,
which account for the net effect of subgrid-scale atmospheric convec-
tion on the NWP state variables, can be switched off. Studies have
shown convection-permitting models to be beneficial for forecasting
thunderstorms and extreme precipitation (Done et al., 2004; A. J. Clark
et al., 2009; P. Clark et al., 2016). However, so far, only few studies have
deployed ML for identifying thunderstorm occurrence in forecasts of
convection-permitting NWP models (Sobash et al., 2020; Burke et al.,
2020). The latter NWP-based advancement refers to ensemble models.
In contrast to deterministic models, which compute a single future at-
mospheric state from the initial conditions, ensemble models produce
multiple physically consistent forecasts. The variability between the
ensemble members aims to reflect the NWP uncertainty in the initial
conditions, NWP model parameters, and boundary conditions, and
can be harvested to improve on deterministic forecasts (Richardson,
2000; Zhu et al., 2002; Schwartz et al., 2017). In fact, previous stud-
ies (Schwartz et al., 2015; Loken et al., 2017) show that combining
severe weather forecasts from multiple members increases forecast
skill, especially on mesoscale length scales relevant for thunderstorms
(Sobash et al., 2016). Although Jardines et al. (2024a) explicitly consider
the ensemble spread of predictors in their ML model, most studies
already achieve improved forecast skill simply by ensemble-averaging
member-wise severe-weather forecasts (Schwartz et al., 2015; Sobash
et al., 2016; Loken et al., 2017).

Based on the above considerations, we identify three research paths
towards more skillful NWP-based thunderstorm forecasts:

1. Direct processing of the NWP state variables via a deep learning
model instead of relying on thunderstorm surrogates which are
derived from the state variables.

2. Consideration of convection-permitting NWP forecasts.
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3. Consideration of ensemble NWP forecasts.

Pursuing the incorporation of all three aspects, we formulate the
following overarching aim of this thesis:

Aim of this thesis: Development of a deep neural network model for the
identification of thunderstorm occurrence in convection-permitting NWP
ensemble forecasts.

Addressing the aim in several intermediate steps, we develop SALAMA
(signature-based approach of identifying lightning activity using ma-
chine learning), a series of ML models for identifying thunderstorm
occurrence in NWP data. All SALAMA models are trained on opera-
tional forecasts of ICON-D2-EPS, a convection-permitting ensemble
NWP model for Central Europe run operational by the German Mete-
orological Service (DWD). Lightning observations from the lightning
detection network LINET serve as the ground truth for training. We
evaluate model performance for lead times up to 11h.

1.2 intermediate steps and research questions

Instead of building the target model for identifying thunderstorm oc-
currence in one go, we take several intermediate steps towards the aim
of this thesis. Each step gives rise to one first-author publication, and
helps addressing certain research questions which we will formulate
below.

As we shall see, the large files sizes associated with individual
convection-permitting ensemble NWP forecast samples limit training
set sizes and, ultimately, the complexity of ML models trained on
these data sets. Especially since thunderstorms are climatologically
rare events, it is all the more difficult to adequately represent them
in the already limited training set. Therefore, it is key to develop an
ML framework which addresses problem-related data scarcity. On
the other hand, an ML model processing the NWP state variables
directly requires a certain amount of model complexity for skillful rep-
resentations indicative of thunderstorm occurrence. Our first research
question (RQ) explores how to address this issue:

RQ 1: How can an ML framework account for the rare occurrence of thun-
derstorms and for practical limits on training data size due to computational
costs?

One outcome of this will be to rely on physics-based ideas and symme-
try considerations to constrain model complexity. In particular, instead
of processing forecasts from all ensemble members simultaneously, we
first develop a simpler neural network model which identifies thun-
derstorm occurrence in forecasts of each member separately; hence,
the model acts as a single-member model. Furthermore, building on
successful work in the literature, our first model prototype still relies
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on surrogate variables which are known to be associated with thun-
derstorm occurrence. This initial model is referred to as SALAMA 0D
and gives rise to the publication P1.

In a second step, we replace the surrogate variables of our initial
model by vertical profiles of the NWP state variables, which yields the
deep neural network SALAMA 1D and the publication P2. This work
allows us to address RQ 2:

RQ 2: Can a deep neural network model, which is given the flexibility to
discover—on its own—the representations needed to infer thunderstorm oc-
currence, outperform a conventional ML model relying on human-engineered
predictors, despite constraints on training set size and high computational
resource requirements?

A follow-up issue which immediately arises concerns the interpretabil-
ity of ML output (Flora et al., 2024; Yang et al., 2024). Arguably, insight
into how ML models arrive at their predictions is crucial for end users
to put trust into them (Dramsch et al., 2025). Therefore, we address
RQ 3:

RQ 3: To what extent are the patterns identified by our deep neural network
model physically interpretable?

SALAMA 1D is still a single-member model. Therefore, in a third
step, we process all members of the NWP ensemble simultaneously by
applying SALAMA 1D to all members and computing the ensemble
mean. This evaluation mode, to which we refer as SALAMA 1D-EPS,
gives rise to the publication P3, in which we address RQ 4:

RQ 4: By how much and why does skill increase when averaging over an
NWP ensemble of thunderstorm forecasts?

Finally, with our trained ML model in place, we explore the net benefit
of ML-based thunderstorm forecasts compared to raw NWP output.
Specifically:

RQ 5: Which factors affect the decay of ML model skill with lead time? To
what extent can ML counteract skill decays resulting from the increase of
NWP uncertainty?

This thesis is structured as follows. Chapter 2 summarizes the
relevant background on thunderstorms, NWP, and ML. We present
our ML framework in Chapter 3 and our data preprocessing pipeline
in Chapter 4. The results are divided into three chapters. Namely, the
findings related to SALAMA 0D, SALAMA 1D, and SALAMA 1D-
EPS, are presented and discussed in Chapters 5, 6, and 7, respectively.
Chapter 8 summarizes our responses to the RQs raised in this thesis,
concludes our work, and proposes further research avenues.



2
F O U N D AT I O N S

This chapter summarizes the main foundational concepts at a level
required to follow this thesis. We start by providing essential meteoro-
logical background on thunderstorms. We then introduce numerical
weather models, which produce the main data source of this work.
Finally, we close with an outline of binary classification using neural
networks, which will later form the basis of our own machine-learning
framework.

2.1 thunderstorm fundamentals

The World Meteorological Organization (WMO) defines a thunder-
storm as “[o]ne or more sudden electrical discharges, manifested by a
flash of light (lightning) and a sharp or rumbling sound (thunder).”1

How do these electrical discharges come about? Why are thunder-
storms so often accompanied by heavy rain or even hail? And how
does warm and sunny summer-day weather suddenly turn into dark
skies with lightning in the first place? In this chapter, we discuss these
questions by explaining the basic physics of how thunderstorms are
formed in Earth’s atmosphere and how the associated hazards are
produced.

The atmosphere—a fluid

We begin by introducing the physical framework used to describe the
state of the atmosphere throughout this thesis. Apart from occasional
liquid and solid particles, such as raindrops, hail, or aerosols, the
atmosphere essentially consists of what is commonly referred to as air,
a mixture of many different gases, the two most abundant of which
are nitrogen and oxygen (Wallace et al., 2006, p. 8). The atmosphere
also contains water vapor, the concentration of which depends on
location, height, and time. The thermodynamic conditions in the
atmosphere are such that water vapor can undergo phase transitions.
What may sound trivial turns out to be of paramount importance for
thunderstorm formation, as we will discuss shortly.

The gaseous nature of the atmosphere lends itself to a two-com-
ponent (dry air + water vapor) fluid-mechanic treatment, in which
the atmospheric state is described by certain scalar functions and
vector quantities of space and time (e.g., Vallis, 2017). For dry air,
these atmospheric variables are pressure p, temperature T , density

1 https://cloudatlas.wmo.int/en/thunderstorm.html, last access: 2025/05/20
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ρ, as well as velocity v. In cartesian coordinates on a tangent plane
on the sphere, v decomposes into the vertical velocity w, and two
horizontal components, namely the zonal, or westerly, velocity u, andwesterly: eastward

the meridional, or southerly, velocity v. These six variables are coupled tosoutherly: northward
each other by three momentum equations, two equations reflecting the
conservation of energy and mass, and one equation of state, such as the
ideal gas law. Additional constituents, like water vapor, liquid water,
or ice, require separate variables (and equations of state). For instance,
to account for water vapor, one can introduce the water vapor mixing
ratio rv ≡ ρv/ρd (throughout this chapter, the subscript “v” denotes
water vapor quantities while “d” is used for dry-air quantities). In fact,
there are several often-used variables to describe moisture. Closely
related to rv is specific humidity q ≡ ρv/(ρd + ρv). Alternatively, dew-
point temperature Td refers to the temperature to which air needs to be
cooled (at constant pressure and water vapor mixing ratio) to become
saturated. If we denote saturation water vapor mixing ratio by rvs,
then the quotient rv/rvs is called relative humidity (Markowski et al.,
2010, p. 12).

Air density decreases with height, causing 80% of the atmospheric
mass to lie within the lowest 10− 15 km above the ground. This lowest
atmospheric layer, referred to as the troposphere, exhibits a temperature
decrease γ with height (lapse rate), of

γ ≡ −
dT
dz

≈ 6.5K km−1 (2.1)

on average (Wallace et al., 2006, p. 11), and hosts most of the atmo-
spheric processes related to thunderstorm activity. The upper limit of
the troposphere, referred to as tropopause, is marked by a temperature
inversion caused by the absorption of ultraviolet radiation by ozone
molecules. Tropopause height varies with location and time and is
defined in practice by the lowest level where the lapse rate drops to
⩽ 2K/km, with the average lapse rate within 2km above remaining
⩽ 2K/km, (World Meteorological Organization, 1957).

Buoyancy and parcel theory

With all atmospheric variables in place, we start approaching the issue
of how thunderstorms form. Thunderstorms are associated with the
atmospheric process of deep (moist) convection (Stevens, 2005). Generally,
convection refers to the motion of fluids due to density changes.
For instance, in the atmosphere, air parcels which are warmer than
their environment will rise due to their reduced density. As we shall
see, the fact that water vapor can undergo a phase transition under
atmospheric conditions is key in releasing a density-driven instability
capable of lifting air to great heights.

Next, we derive an equation of motion for the vertical displacement
of parcels, relying on Markowski et al. (2010, pp. 19–21, 41–43). This
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equation will later allow us to perform a stability analysis, which will
in turn uncover the mechanism releasing deep convection. We begin
by recognizing that, since Earth rotates, the atmosphere is subject
to inertial forces, namely the Coriolis force and the centrifugal force.
However, we will assume these terms to be negligible for vertical
motions in what follows. We will also neglect viscous effects. The
momentum equation (i.e., Newton’s second law, expressed for a fluid)
in the vertical then reads

ρ
dw
dt

= −
∂p

∂z
− ρg, (2.2)

where g denotes gravitational acceleration. Equation (2.2) can be recast
into a more intuitive form, highlighting how variations in density are
associated with a force, namely buoyancy. To see this, we develop p

and ρ around a hydrostatic (dw/dt = 0) base state depending only on
height z; i.e., we set p(x, t) = p(z) + p ′(x, t), ρ(x, t) = ρ(z) + ρ ′(x, t)
with

∂p

∂z
= −ρg. (2.3)

Subtracting Eq. (2.3) from Eq. (2.2) and rearranging, we obtain

dw
dt

= −
1

ρ

∂p ′

∂z
−

ρ ′g

ρ
. (2.4)

The first term describes the perturbation pressure gradient force, while
the second term denotes buoyancy B. Using the ideal gas law, and
neglecting the effect of water vapor (and other hydrometeors, such as
cloud water or ice) on buoyancy, one can express B as

B ≈ T ′

T
g, (2.5)

where we expressed temperature, as well, in terms of a perturbation
around the hydrostatic base state.

In the following, we consider a location in which the troposphere
is in the above hydrostatic base state. At this location, let us consider
a parcel of air which is located at the height z0 and in equilibrium
with its environment. We will now study in some detail vertical dis-
placements ∆z of this parcel. For this, we assume the parcel to be
sufficiently small such that it does not affect the air in its environment
during parcel displacement. This allows us to neglect the perturbation
pressure gradient force in Eq. (2.4). Therefore, and as w = dz/dt,
parcel displacement is described by

d2∆z

dt2
=

T − T

T
g, (2.6)

where we regard T as the parcel temperature and T as the environ-
mental temperature. The set of simplifying assumptions which went
into deriving Eq. (2.6) is referred to as parcel theory in the literature
(Emanuel, 1994; Markowski et al., 2010).
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Infinitesimal parcel displacements

In order to identify buoyancy-related instabilities which may initiate
deep convection, we will first linearize Eq. (2.6) to study under which
conditions parcels are unstable with respect to small vertical displace-
ments. For small displacements, we can perform a first-order Taylor
series expansion,

T(z) = T0 − Γp∆z, T(z) = T0 − γ∆z, (2.7)

where T0 denotes the temperature of the parcel and the environment at
height z0 while the vertical temperature gradients Γp and γ are referred
to as the parcel lapse rate and environmental lapse rate, respectively.
We assume particle displacement to occur adiabatically, i.e., without
heat exchange with the environment. If the parcel is unsaturated (i.e.,
its relative humidity is below 100%), adiabatic ascent occurs at the dry-
adiabatic lapse rate, which can be shown to be Γd ≡ g/cp ≈ 9.8K km−1.
Here, cp denotes the specific heat of air for a constant pressure process.
On the other hand, if the rising parcel is saturated, latent heat is
released, which is why the moist-adiabatic lapse rate Γm is smaller than
Γd. In contrast to its dry-air counterpart, Γm varies as a function of rv;
typical values are between 5K km−1 and 9K km−1 (Markowski et al.,
2010, p. 14).

Inserting Eq. (2.7) into Eq. (2.6), we obtain

d2∆z

dt2
=

γ− Γp

T0 − γ∆z
g∆z ≈ −g

Γp − γ

T0
∆z. (2.8)

Apparently, the parcel experiences a positive restoring force (i.e., is
stable with respect to small vertical displacements) for γ < Γp. As there
are two types of parcel lapse rates, γ falls into one of three categories:

• γ > Γd: the environmental lapse rate is absolutely unstable.

• Γm < γ < Γd: the environmental lapse rate is conditionally unstable;
i.e., it is stable with respect to dry-adiabatic ascent, but unstable
with respect to moist-adiabatic ascent.

• γ < Γm: the environmental lapse rate is absolutely stable.

Absolutely stable environmental lapse rates allow for stable stratifi-
cation of air, preventing any convective overturn. As for absolutely
unstable lapse rates, these may occur, for instance close to the ground
in the boundary layer as a consequence of high solar radiation. In
these cases, convection is indeed triggered, restoring stability. How-
ever, since absolutely unstable layers of air are redistributed as they
form, they cannot be the driving instability of deep convection.

This leaves us with conditionally unstable lapse rates. Unless the
environment happens to be saturated at z0, conditionally unstable
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lapse rates are actually not unstable towards infinitesimal displace-
ments either. On the other hand, if a parcel were forced to rise a finite
distance against the restoring force until the parcel becomes saturated,
it may become unstable. Indeed, as it turns out, we need to extend
our discussion to finite-amplitude displacements to understand the
initiation of deep convection.

Finite-amplitude parcel ascent

While infinitesimal vertical parcel displacements do not suffice to
release an instability capable of producing deep convection, finite
displacements do. To see this, let us consider the vertical profile
of environmental temperature displayed in Fig. 2.1. Since pressure
monotonously decreases with height in a hydrostatic environment, we
opt for measuring height in terms of pressure, as is common practice
in meteorology (e.g., Markowski et al., 2010; Vallis, 2017). Note in
particular that the vertical axis is scaled logarithmically with pressure
while the horizontal temperature axis is skewed by 45◦, giving rise to a
skew-T log-p diagram. Consider now a parcel located close to the surface.
This parcel is stable with respect to infinitesimal displacements, but
we assume now that the particle is forced to ascent (we will discuss
possible sources of lift later). The parcel rises dry-adiabatically until it
saturates. Parcel temperature as a function of height is equally shown
in Fig. 2.1. The height at which saturation occurs is referred to as
the parcel’s lifting condensation level (LCL). From there, the parcel rises
moist-adiabatically. Remarkably, for this environmental temperature
profile and parcel, there exists a height at which parcel temperature
exceeds the temperature of its environment, at which point the parcel
becomes positively buoyant. This height is called level of free convection
(LFC). While external forcing was needed to raise the parcel to its
LFC, the parcel now continues to rise on its own. It remains positively
buoyant until it reaches its equilibrium level (EL). This instability with
respect to finite-amplitude parcel displacements, which enables air
to be lifted to heights as great as the tropopause, gives rise to deep
convection. Henceforth, for simplicity, the term “convection” will be
used to refer specifically to deep convection.

The energy (per parcel mass) released at the LFC is referred to as
convective available potential energy (CAPE), and is given by

CAPE =

∫EL

LFC
Bdz =

∫EL

LFC
g
T(z) − T(z)

T(z)
dz. (2.9)

Typically, CAPE values ≲ 1000 J kg−1 are considered small while
values ≳ 2500 kg are considered large (Markowski et al., 2010, p. 33).
One can show that CAPE is proportional to the area enclosed by T and
T between the LFC and the EL in a skew-T log-p diagram (Emanuel,
1994, p. 171). Similarly, the energy barrier (per parcel mass) which a
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parcel at height z0 needs to overcome to reach its LFC is referred to as
convective inhibition (CIN), and is given by

CIN = −

∫LFC

z0

Bdz = −

∫LFC

z0

g
T(z) − T(z)

T(z)
dz. (2.10)

CIN values ≲ 10 J kg−1 are typically considered small, whereas values
≳ 50 J kg−1 are considered large.

CAPE and CIN for the parcel described above are annotated in
Fig. 2.1. If the two variables are computed for a parcel starting from
25− 50hPa above ground (rather than directly from the ground), we
refer to them as mixed-layer CAPE and CIN. These aim to account for
parcel dilution with dry environmental air (Markowski et al., 2010,
pp. 192–193). Throughout this thesis, we assume CAPE and CIN to
be associated with mixed-layer parcels starting at 25hPa above the
ground unless stated otherwise.

Ingredients for convection initiation

Forecasters traditionally consider three aspects, or ingredients, when
predicting convection initiation. This is sometimes called ingredient-
based methodology (Doswell et al., 1996). We will put these three ingre-
dients into the context of what we have discussed so far.

The first ingredient for convection initiation is instability. As we have
seen, this aspect is associated with the presence of CAPE. Generally,
the presence of CAPE requires sufficiently high mid-tropospheric lapse
rates. The second ingredient is lower tropospheric moisture. Abundant
low-level moisture allows a parcel to quickly reach its LCL, such that
it can continue to rise moist-adiabatically to its LFC. Conversely, if the
lower troposphere is too dry, an LFC might not even exist. The third
ingredient refers to a source of lift. Lift is required to overcome any ex-
isting CIN. Lift may be provided by air mass boundaries. For instance,
the cold (and, hence, relatively dense) air mass behind a cold front
may advance underneath the warmer air mass, causing the warmer
air mass to rise. Furthermore, orography (i.e., hills, mountainside) can
initiate convection through upward-blowing winds.

There are also processes to consider which act on the synoptic scale;
i.e., on length scales of multiple thousand kilometers. While synoptic-
scale processes are typically too slow to actively trigger convection,
they can prepare the environment for convection by modulating CAPE
and CIN. For instance, environmental lapse rates and moisture can
be advected by the mean wind and, thereby, help destabilizing the
middle troposphere and moistening the environment. Synoptic ascent
contributes to reducing CIN.

It is important to stress that while high values of CAPE and low
values of CIN are certainly favorable for convection to be initiated,
they do not guarantee convection initiation, even if sufficient lifting
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Figure 2.1: Trajectory of a parcel forced to rise from the ground in a skew-T
log-p diagram. The parcel rises dry-adiabatically until reaching its
LCL, at which point it ascends moist-adiabatically, cooling down
more slowly than the environment (we assume a pseudo-adiabatic
process, in which liquid water is removed as soon as it forms; the
corresponding formula is given in, e.g., Emanuel (1994, p. 131)).
Parcel temperature T starts to exceed environmental temperature
T at a height marked by the LFC. The parcel stays positively
buoyant until reaching its EL. While enough CAPE is available to
sustain convection, a strong lift would be required to overcome
the present amount of CIN. As a matter of fact, convection failed
to be initiated that day. The vertical profiles of T and dew-point
temperature Td have been obtained from a 2-hour forecast of
the sixth member of the ICON-D2-EPS model (introduced in
Chapter 4).
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is provided (Markowski et al., 2010, pp. 192–195). This is partly due
to the simplifications made in parcel theory, namely the neglect of
pressure perturbations, which reduce the energy available for updrafts,
as well as the neglect of moisture and condensate loading, which are
buoyancy-altering. Moreover, we have not taken into the account the
entrainment (i.e., mixing) of dry environmental air into the parcel,
which reduces the parcel’s buoyancy. CAPE and CIN also depend on
the parcel’s initial height. Hence, while surface-based convection is
prevented by high CIN, elevated convection atop stable layers might
still occur. This illustrates the complexity associated with forecasting
convection initiation.

The convective life cycle

Having understood the basic mechanism for convection initiation, we
discuss now ongoing convection and its accompanying phenomena,
relying on Doswell (1984). Let us, therefore, assume that convection
has been initiated at a given location. As positively buoyant air is
accelerated to its EL, condensation occurring in the rising parcels
produces a towering cumulus cloud of great vertical extent. If the
instability persists, the cloud continues to grow until reaching the
tropopause. There, the temperature inversion causes the cloud top to
become characteristically wide and flat like an anvil. At this stage, the
cloud is referred to as cumulonimbus.

The updraft in a cumulonimbus cloud also lifts water droplets,
which grow and cool below their freezing point. These supercooled
droplets may freeze to ice crystals or graupel, or grow to hail. The
abundant condensation causes precipitation to start and then to inten-
sify. Precipitation partly evaporates in unsaturated air, causing it to
cool. This results in a downdraft of air, which is intensified by the drag
of the precipitating droplets. It is at this mature stage, where a steady
updraft and downdraft coexist, that lightning activity is maximal.
Lightning refers to electrical discharges within a cloud, or between the
cloud and the ground. The charging of the cloud is hypothesized to be
driven by collisions between ice particles and larger graupel particles
(Saunders, 2008; Dwyer et al., 2014). Lightning causes nearby air to
heat up and rapidly expand, resulting in a sound perceived as thunder.

The air transported in the downdraft spreads out horizontally when
reaching the surface, creating a gust front of relatively cold wind.
As this cold pool continues to grow horizontally, it may provide the
required lift to trigger convection nearby. The cold pool eventually
reaches the updraft region, replacing the warm and moist low-level
air. As the updraft can no longer be sustained, convection stops.

What we have outlined above is actually the life cycle of single thun-
derstorm cells, which are rather short-lived with life times of the order
of half an hour (Markowski et al., 2010, pp. 207–208). When gust fronts
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repeatedly initiate new cells (multi-cell convection), a thunderstorm can
persist for multiple hours. A third organization type of thunderstorms
is referred to as supercellular convection. A supercell is a large isolated
cell with a rotating updraft and can equally last for multiple hours.

We mention in closing that convection is not always organized in
an isolated manner. A widespread group of thunderstorms spanning
a contiguous area of the order of 100 km in at least one horizontal
direction is referred to as mesoscale convective system (MCS). MCSs
may develop through cold-pool merging of multiple isolated thun-
derstorms, or arise as a whole after convection initiation (Houze Jr.,
2004).

2.2 numerical weather prediction

Numerical weather prediction (NWP) provides the primary data
source of input for our ML models. Therefore, in this section, we
give an overview of the NWP aspects which we deem key for follow-
ing the remainder of this thesis.

The basic idea

We have already stated in Section 2.1 that the atmosphere can be
modeled as a (rotating, two-component) fluid characterized by a set
of state variables, such as pressure, temperature, and vertical velocity,
which are functions of space and time. The state variables are coupled
to each other by the laws of physics, namely

• the Navier-Stokes equations (including the effect of Earth’s ro-
tation), which describe the effect of pressure gradients, gravity,
inertial and viscous forces on fluid velocity,

• the mass continuity equation reflecting mass conservation,

• the first law of thermodynamics reflecting energy conservation,

• equations of state for dry air and for each water phase.

Given appropriate initial and boundary conditions, one may solve
this set of partial differential equations, obtaining a prediction of the
future atmospheric state. The equations can typically be solved only
numerically, giving rise to NWP, which has steadily improved over
the past century in terms of forecast skill (Bauer et al., 2015).

Discretization

The governing equations of the atmosphere need to be discretized
horizontally, vertically, and in time, to be solved numerically. To this
end, NWP models define a spatial grid with a certain horizontal



18 foundations

grid spacing and several vertical levels. While discretization errors
decrease at smaller grid spacings, computation times increase, which
is why it is currently unfeasible to, e.g., run kilometer-scale global
NWP models operationally. On the other hand, it is often sufficient to
obtain high-resolution forecasts only for a specific region of interest.
One possible way of achieving this is to simply restrict the model
domain to the region of interest. These limited-area models (LAMs)
allow for model runs on a higher spatial resolution compared to
global models. Boundary conditions are provided by a driving model,
which is usually a global model (Bauer et al., 2015). An alternative
way of obtaining regional high-resolution forecasts is through nesting,
by which a refined subregion with smaller grid spacings (a nest) is
added to a coarse global model’s grid (Reinert et al., 2020).

Parameterization of physical processes

When discretizing the atmospheric equations, one needs to recognize
that any processes occurring at scales smaller than grid-scale cannot
be resolved. Examples include turbulent transport near the surface or
drag effects from subgrid-scale orography. In addition, there are phys-
ical processes which are simply not represented in the fluid equations,
such as reflection and absorption of electromagnetic radiation by the
atmosphere (radiative transfer), or processes determining cloud cover
(Prill et al., 2024). The effect of these processes on the atmosphere’s
state variables is modeled by parameterizations (Bauer et al., 2015; Yano
et al., 2018).

If the horizontal grid spacing of an NWP model is of the order of
tens of kilometers or more, deep convection has to be parameterized
to account for the corresponding bulk transport of mass, momen-
tum, heat, and moisture (Emanuel, 1994, Chapter 16). Examples of
operational parameterization schemes for cumulus convection are the
Tiedtke-Bechthold scheme (Bechtold et al., 2014), or the Kain-Fritsch
scheme (Kain et al., 1990). However, in this thesis, we will work with
forecasts of a convection-permitting NWP model. The grid spacing of
such a model is sufficiently small so that deep convection can be
triggered without a parameterization (P. Clark et al., 2016).

Obtaining an initial state from observations

Once the physical equations governing the time evolution of the atmo-
sphere are identified and discretized, the problem at hand boils down
to solving an initial-value problem, which might seem conceptually
straightforward. However, observational data is too sparse to provide
full initial conditions for all atmospheric state variables on the entire
spatial grid, horizontally and vertically. This issue has given rise to
data assimilation techniques, which produce a physically-consistent
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atmospheric initial state (called analysis) from available observations
and a previous model run (Bauer et al., 2015).

Once the analysis is available, future atmospheric states (the forecasts)
are computed by numerically solving the initial value problem. The
time difference between when the analysis is valid and when a forecast
is valid is referred to as lead time. As the computations associated with
determining the analysis are extensive, the valid times of the first few
forecasts of an operational NWP model lie in the past by the time at
which they become available. In fact, it usually takes 1− 2h for an
operational NWP model to catch up with real-time.

Ensemble systems

We close by discussing the origin and quantification of NWP forecast
uncertainty. One source of uncertainty is given by the fact that the
time-evolution of a nonlinear system, despite being deterministic, can
sensitively depend on the system’s initial conditions—a finding which
has given rise to chaos theory (Lorenz, 1963). The chaotic nature of
Earth’s atmosphere has been extensively studied (Thompson, 1957;
Lorenz, 1969; Palmer et al., 2014; Craig et al., 2021) and has become
known to a broader audience as the butterfly effect. In our case, this
implies that uncertainties in the NWP analysis will grow in time.
Further uncertainties may arise from physical parameters in the NWP
model parameterizations, or from any boundary conditions. These
uncertainties translate into a forecast uncertainty which grows with
lead time, ultimately limiting predictability. A major breakthrough in
the history of NWP is marked by the advent of methods capable of
estimating forecast uncertainty, namely ensemble methods (Bauer et al.,
2015).

The general idea of ensemble forecasting systems is reminiscent
of Monte-Carlo simulations: Instead of just one forecast, ensemble
forecasting systems produce multiple physically consistent forecasts
(the ensemble members). This is done by running the NWP model
several times, each time with “slightly” different initial and boundary
conditions and model parameters. Importantly, these perturbations are
chosen in such a way that they reflect the corresponding uncertainties.
In practice, the process of generating an ensemble of perturbed initial
conditions has been integrated into data assimilation (Bauer et al.,
2015; Reinert et al., 2020). In an operational setting, the number of
ensemble members is limited by computational resources, typically to
a few tens of members.
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2.3 binary classification using artificial neural net-
works

As was pointed out, we will devote ourselves in this thesis to identify-
ing thunderstorms in NWP data. Specifically, given some NWP output,
e.g., the 5-hour forecast of the atmospheric state variables at Munich,
Germany, our task will be to determine whether that output is associ-
ated with thunderstorm occurrence or not. The task of categorizing
elements into one of two classes is referred to as binary classification,
and encompasses a vast number of use cases, for instance,

• is a given e-mail spam or not?

• given a patient’s mole, is it benign or skin cancer?

• will a given borrower return their loan?

In this section, we will formally introduce binary classification.
While motivated by thunderstorm identification, we keep the setting
general so that our discussion remains valid for other use cases. We
will also introduce artificial neural network models and explain how
they can be employed to construct binary classification models in a
data-driven manner. Finally, we discuss verification scores to quantify
the skill of binary classification models.

Definition of binary classification models

Given a pair of classes which we denote by “A” and “B”, we formally
define a binary classification model as a function C : RNf → [0, 1]
which maps a sample ξ of real-valued numbers, the features, to a
number between zero and one (Goodfellow et al., 2016, p. 98). The
sample ξ characterizes the element to be classified. The output C(ξ)
is interpreted as the probability that ξ belongs to class “A”. The prob-Without loss of

generality, we tailor
the discussion to

class “A” instead of
class “B”.

ability that ξ belongs to class “B” is then 1−C(ξ). Hence, rather than
to assign a class label (i.e., “A” or “B”), a binary classification model as
defined above provides probabilistic scores for each class. This enables
C to convey the degree of confidence associated with classifying ξ. If
required, a class label could be assigned in this probabilistic setting by
establishing a decision threshold (e.g., an e-mail is treated as spam if
the binary classifier is at least “60% certain” that it is spam).

Constructing a binary classification model from data

Now that we know what a binary classification model is, we discuss
next how to construct a specific model C : RNf → [0, 1] for a given
use case from data. To be precise, imagine that we have collected N

examples (ξ(j),y(j))j=1,...,N, each consisting of a sample ξ(j) ∈ RNf and
a label y(j) ∈ {0, 1} (1: class “A”, 0: class “B”). Furthermore, we assume
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C to take a certain parameterized form; i.e., C = C(· ;θ). The task
of setting the functional form of C and adjusting the corresponding
parameters θ to optimally describe the given data is addressed by
machine learning (ML) methods. ML is a subfield of artificial intelligence
and exploits optimization methods and data to build statistical models,
such as C (Goodfellow et al., 2016, pp. 2–3). The process of adjusting
the parameters θ is commonly referred to as training an ML model. In
our case, the training set (ξ(j),y(j))j=1,...,N is labeled; i.e., the ground
truth y(i) is provided for each input sample. This puts us into the
branch of supervised learning. As the label y(j) takes on discrete and
finite values, we are dealing with a classification task (in contrast to
regression tasks, which handle continuous labels). In our setting, the
possible outcomes of y(j) are restricted to two values, hence the term
binary classification.

We will later introduce artificial neural network models as a means
to systematically parameterize C in terms of θ. For now, however,
considering C as given, we explain how to adjust its parameters θ.
Consider a sample ξ(j) from the training set, as well as the corre-
sponding label y(j). We assume now that C, with the parameters θ

fixed to certain values, is the true statistical model describing the
example (ξ(j),y(j)). In this case, we can meaningfully ask: what is
the probability of observing the label y(j), given the sample ξ(j)? By
definition of C, this probability L is given as

L
(
θ|ξ(j),y(j)

)
≡

C(ξ(j);θ) if y(j) = 1,

1−C(ξ(j);θ) if y(j) = 0.
(2.11)

Note that we have made explicit in the notation that we regard L

as a function of θ, while we consider ξ(j) and y(i) as parameters of
L. In a Bayesian framework, the expression L as a function of θ is
commonly referred to as likelihood function (Gelman et al., 2013, p. 7).
It can be seen as a measure of plausibility that the example (ξ(j),y(j))

is described by C with parameters θ.
We can now similarly ask for the probability of observing all labels

in the training set, given the corresponding input samples and pa-
rameters θ. As our statistical model C processes each sample in the
training set individually, the likelihood function L̃ associated with all
samples and labels factorizes,

L̃(θ) =

N∏
j=1

L
(
θ|ξ(j),y(j)

)
. (2.12)

The most plausible parameters θ, given the examples in the training
set, are those which maximize Eq. (2.12) with respect to θ. Equivalently,
one can minimize L(θ) ≡ − 1

N log L̃(θ),

L(θ) = −
1

N

N∑
j=1

logL
(
θ|ξ(j),y(j)

)
. (2.13)
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We reiterate that the term “training”, as adopted by the ML commu-
nity, simply refers to identifying the parameters θ which minimize
Eq. (2.13). The functions to be minimized during training are com-
monly referred to as loss functions in ML. Equation (2.13) is usually
called binary cross-entropy loss and constitutes, as we have outlined, a
natural choice of loss function for binary classification tasks. In particu-
lar, this loss function allows us to build the probabilistic interpretation
of C (i.e., C(ξ) referring to the probability of ξ being associated with
class “A”) explicitly into the ML framework.

Training details

We continue by describing how loss functions, such as L(θ), are
minimized in practice. L(θ) is a nonlinear function of its parameters,
and parameter size ranges from thousands to millions in many ML
applications, which is why minimization is done numerically (LeCun
et al., 2015). Minimization algorithms in ML rely on the concept of
gradient descent,

θnew ≡ θ− η∇θL(θ), (2.14)

in which adjustments in parameter space occur towards the direc-
tion of steepest descent (if L(θ) is considered as a high-dimensional
landscape). The step size η is usually called learning rate. Gradient
descent in this form can become rather expensive as each parameter
update involves computing gradients for all examples in the training
set. Therefore, in practice, one typically partitions the training set
into smaller, random, subsets, which then fit into the memory of the
available compute hardware. Each subset, called minibatch, is used
to estimate the gradient in Eq. (2.14) and update θ. This approach is
referred to as stochastic gradient descent (SGD; Bishop, 2006, p. 240).
After each minibatch has been used once, which defines an epoch,
the training set is again randomly partitioned and one repeats SGD.
Modern SGD algorithms like AdaGrad (Duchi et al., 2011) or Adam
(Kingma et al., 2014) keep track of past parameter adjustments, and
apply averaging and adaptive learning rates to improve convergence.

Provided that our model C is sufficiently complex in terms of param-
eter size (and assuming that the predictors ξ contain enough relevant
information for the classification task), C will be able to classify the
examples in the training set at a certain level of skill (we will discuss
measures of skill later in this chapter). However, C is only useful if it
is also skillful at classifying unseen data. To check for generalization,
available data can be split before training. In practice, data is often
actually split into three separate data sets, so that training is done
using one set while generalization is measured using a test set. A
third set, the validation set, can be used to monitor training progress
and for hyperparameter tuning. The latter refers to the adjustment of
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model or training parameters other than θ, such as learning rate, or
minibatch size.

If C performs significantly worse on the test set than it does on the
training set, overfitting has occurred. This issue tends to arise if the
amount of training data is not sufficient to constrain the parameters
of the ML model. Methods to address overfitting are referred to as
regularizations. An example is given by early stopping, which relies on
tracking training skill and validation skill as a function of epoch: if
validation skill no longer improves, or even deteriorates, although
training skill continues to improve, training is stopped.

Neural networks and deep learning

Having discussed the training of an ML model C, we now discuss one
particular means to parameterize C, namely artificial neural network
models, or neural networks, in short. These arguably constitute the
most ubiquitous type of ML models employed in science and engi-
neering (LeCun et al., 2015). We restrict our discussion to feedforward
neural networks, as these are conceptually the most fundamental ones.

A feedforward neural network for binary classification is a function
C : RNf → (0, 1) modeling the relationship between the predictors
ξ ∈ RNf and the corresponding probability of occurrence of class “A”.
The simplest feedforward neural network consists of a single unit
of what is sometimes referred to as single-layer perceptron, or artificial
neuron (Goodfellow et al., 2016, pp. 12–14, 164–165),

C(ξ;θ) = φ

(
θ0 +

Nf∑
i=1

θiξi

)
. (2.15)

This parameterization features a linear combination of the input plus
an offset θ0, as well as a non-linear function φ : R → (0, 1) called acti-
vation function, which provides a mapping to probability-like output.
The thusly parameterized model has Nf + 1 parameters θi, i = 0, ...,Nf.
These parameters are often referred to as weights, though the offset θ0
is sometimes called bias.

It is useful to introduce at this point a graphical representation of
the model’s architecture, which we show in Fig. 2.2. The vector-valued
input is depicted as vertically stacked nodes, to which we refer as input
layer. Equivalently, there is one node in the output layer representing
the final result. Arrows leading to the node indicate which nodes in
the input layer contribute.

More complex feedforward neural networks are obtained by com-
bining multiple artificial neurons. An example is given in Fig. 2.3. The
input layer connects to five artificial neurons, each of which has its
own set of parameters and a custom activation function. Two impor-
tant activation functions are shown in Fig. 2.4. Each neuron connected
to the input layer outputs one number, leading to five nodes in what
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input layer

output layer

Figure 2.2: Architecture of a simple feedforward neural network consisting
of a single artificial neuron.

is called a hidden layer. The nodes in the first hidden layer then feed to
a subsequent layer of artificial neurons, giving rise to a second hidden
layer. Finally, a last neuron maps to the output layer. Importantly,
the repeated use of activation functions enables the representation of
complex non-linear relationships between input and output.

input layer

hidden layers

output layer

Figure 2.3: Architecture of a feedforward neural network with two hidden
layers consisting of five nodes each. The symbols inside the nodes
indicate activation functions: the neurons in the hidden layers use
rectified linear units (ReLUs) as activation functions while the
output neuron uses a sigmoid function (Fig. 2.4).

The term “feedforward” stems from the fact that the information
content in one layer is processed and passed on only to subsequent
layers (and not to preceding layers). Moreover, a feedforward neural
network such as in Fig. 2.3 is referred to as fully-connected or dense,
as the nodes in a given layer are connected to all nodes of the subse-
quent layer. The complexity of a (fully-connected) feedforward neural
network is adjustable through the number of hidden layers, and the
size of each layer; i.e., the number of nodes. Tasks involving neural
networks with multiple hidden layers are referred to as deep learning
(LeCun et al., 2015). Their hierarchical structure allows deep neural
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Figure 2.4: Two commonly-used activation functions, ReLU(x) ≡ max(x, 0)
and sigmoid(x) ≡ 1/(1 + e−x). A sigmoid activation function
is typically used for the output layer to obtain probability-like
output within the open interval (0, 1). Conversely, the ReLU acti-
vation function is often chosen for hidden layers as it is less prone
to numerical instability during training (Glorot et al., 2011).

networks to learn useful representations of the input data on their
own, rather than relying on manual feature engineering using domain
knowledge.

Skill evaluation metrics

Next, we discuss how to quantify a binary classification model’s clas-
sification skill using appropriate metrics which are called skill scores.
Skill scores are useful for multiple reasons. In many applications, the
difference between an ML model’s skill on the training set and on
unseen data constitutes a measure of what is called generalization error
(Goodfellow et al., 2016, p. 110). In this thesis, however, we use skill
scores mostly for comparing the skill of multiple ML models which
are evaluated on the same test set. Skill evaluation metrics form a vast
subject with considerable research contributions by the meteorological
community, who has gathered abundant forecast verification exper-
tise (e.g., Wilks, 2019, Chapter 9). We will focus on skill scores used
in severe weather forecasting and briefly motivate their respective
purpose.

Often deployed metrics for evaluating classification skill include the
Brier score (BS) (Brier, 1950),

BS =
1

N

N∑
j=1

(p(j) − y(j))2, p(j) = f(ξ(j)). (2.16)

The BS is negatively-oriented (“the lower, the better”). The popularity
of the BS stems from it being strictly proper (Bröcker et al., 2007b). For
this, one needs to understand that for some scores it is possible to
strategically alter (“hedge”) the probabilities p(j) to obtain a higher
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score on average (Wilks, 2019, pp. 418–419). Strictly proper scores,
however, penalize hedging.

Normalization with a reference Brier score BSref yields the positively-
oriented Brier skill score (BSS),

BSS = 1−
BS

BSref
. (2.17)

Positive values correspond to higher-than-reference skill, with BSS = 1

indicating perfect skill. As a reference score, one often chooses the BS
obtained for a model classifying samples randomly with a probability
g, such that BSref =

1
N

∑N
j=1(g− y(j))2. The probability g is set to the

fraction of samples of class “A” in the test set and is called sample
climatology in meteorological contexts. Throughout this work, the
BSS is to be understood with climatology as reference unless stated
otherwise.

While the BSS directly acts on the probability outputs p(j) (Eq. (2.16))
of the model, a large class of classification metrics requires the conver-
sion of probabilities to binary output first. This is done by introducing
a decision threshold p̃. If p ⩾ p̃, thunderstorm occurrence for the
corresponding example is deemed "true", otherwise "false". In com-
bination with the two options from the label, there are four possible
outcomes for each example. They are presented as a contingency
matrix in Table 2.1.

Table 2.1: Contingency matrix for binary classification.

Class “A” observed?

True False

Class “A” predicted?
True Hit False alarm

False Miss Correct reject

We can now use counts of the four different outcomes (evaluated on
the test set) to construct skill scores. While there is an infinite number
of options to do so, we will focus in this thesis on scores suitable for
classification tasks with a high class imbalance. This means that, e.g.,
class “A” (the minority class) occurs considerably less frequently than
the other (the majority class). In particular, we do not wish to reward
the ML model for correctly classifying the majority class. Therefore,
we dismiss scores which explicitly involve correct rejects.

Two suitable scores are given by the positively-oriented probability
of detection (POD) and the negatively-oriented false-alarm ratio (FAR),
defined by

POD =
hits

hits + misses
, (2.18)

FAR =
false alarms

hits + false alarms
. (2.19)
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Here, e.g. "hits" refers to the number of examples in the test set which
qualify as "hit" according to Table 2.1. POD is often called recall in the
ML literature, while 1− FAR is also known as precision.

Precision and recall need to be simultaneously considered when
evaluating a classification model. For instance, a model predicting the
class “A” at every occasion would have perfect recall—but minimal
precision. For problems with class imbalance, a popular choice of
combining the two scores consists of taking the harmonic mean, which
yields the positively-oriented F1-score:

F1 =
2

POD−1 + (1− FAR)−1
=

2hits
2hits + misses + false alarms

(2.20)

Another option of combining the contingency matrix elements is given
by the positively-oriented critical-success index (CSI):

CSI =
hits

hits + misses + false alarms
(2.21)

A modification of the CSI consists of subtracting from the hit count
the hits expected from climatology. The equitable threat score (ETS)
reads

ETS =
hits − hits by accident

hits − hits by accident + misses + false alarms
, (2.22)

with

hits by accident =
(hits + misses)× (hits + false alarms)

N
. (2.23)

Finally, drawing (POD, 1− FAR) for different decision thresholds
into one diagram, one obtains a precision-recall (PR) curve. The area
under the PR curve (PR-AUC) is bounded by 0 and 1 and constitutes
a positively-oriented measure of skill. An example PR diagram will
be given in Fig. 5.6 later.

Reliability diagrams

We close by discussing an additional versatile tool for quantifying
the skill of binary classification models, namely reliability diagrams
(e.g., Bröcker et al., 2007a). In contrast to the skill evaluation met-
rics introduced before, which assign a single number to a given test
set, reliability diagrams offer a comprehensive overview of the full
joint distribution of predictions and observations (Wilks, 2019, pp.
404–405). A reliability diagram is constructed as follows. Partitioning
the range (0, 1) of possible model probabilities into Nb equidistant
bins of width ∆p ≡ 1/Nb, we distribute the test set examples among
the bins according to the assigned model probabilities. For each bin
i = 1, 2, ...,Nb, we extract the observed relative frequency oi of class
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“A”, the bin-averaged model probability pi, and the number Ni of ex-
amples per bin. A reliability diagram, exemplified in the upper panel
of Fig. 5.3 later, consists of a calibration function and a refinement distri-
bution. The calibration function is a plot of oi against pi, and measures
whether the model probabilities are consistent with observed relative
frequencies of the target class, a characteristic known as reliability.
A well-calibrated model exhibits a calibration function close to the
1:1 diagonal. The refinement distribution corresponds to the distribu-
tion of model probabilities. Skillful models are capable of producing
well-calibrated model probabilities larger than climatology, which is
referred to as resolution (Toth et al., 2003). Shaded bands on the cali-
bration function correspond to the symmetric 90% confidence interval
around the median. The confidence interval is estimated by bootstrap
resampling (e.g., Bröcker et al., 2007a): By drawing with replacement
from the test set, one produces multiple resamples of the same size
as the original set and considers resample-to-resample fluctuations of
the calibration function.
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3
O U R M A C H I N E L E A R N I N G F R A M E W O R K

In this chapter, we will present our ML approach for identifying thun-
derstorm occurrence in convection-permitting ensemble numerical
weather prediction (NWP) forecasts. We will frame the problem in
terms of the concepts introduced in Section 2.3, motivate some crucial
simplifying assumptions made on the way and discuss our treatment
of issues related to the rarity of thunderstorm occurrence.

3.1 problem formulation

Recall the overarching aim of this thesis:

Aim of this thesis: Development of a deep neural network model for the
identification of thunderstorm occurrence in convection-permitting NWP
ensemble forecasts.

So, given an Ne-member ensemble forecast of the atmospheric state
for a given horizontal NWP grid point and target time, we aim to
infer the corresponding probability of thunderstorm occurrence. This
defines a binary classification task with the two classes “thunderstorm
occurrence” (label: 1) and “no thunderstorm occurrence” (label: 0).
We encode the atmospheric state at a given grid point in terms of
Nf atmospheric variables given on Nz vertical levels. Their functional
relationship with the corresponding probability of thunderstorm oc-
currence is modeled via a deep neural network model CEPS

CEPS : RNe×Nf×Nz → (0, 1). (3.1)

The predictors are denoted as ξ ≡ (ξ(k))k=1,...,Ne with ξ(k) ∈ RNf×Nz .
We call the deep neural network model SALAMA (signature-based ap- salama (Finnish):

bolt of lightningproach of identifying lightning activity using machine learning). Once
trained, and given an NWP forecast of a given lead time, SALAMA
provides the corresponding thunderstorm forecast (Fig. 3.1).

We can make certain symmetry considerations to reduce model
complexity. In particular, we expect CEPS to be invariant with respect
to ensemble member permutations (ξ(1), ...,ξ(Ne)). One possible way
of accounting for exchange symmetry is by considering CEPS as the
ensemble mean of a more elementary model C acting on the individual
members,

CEPS(ξ) =
1

Ne

Ne∑
k=1

C
(
ξ(k)

)
; C : RNf×Nz → (0, 1). (3.2)

The function C defines a binary classification model for the identifica-
tion of thunderstorm occurrence in the NWP output of the individual

31
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NWP forecast of
atmospheric state

lead time

1h 1h thunderstorm forecast
SALAMA

2h 2h thunderstorm forecast
SALAMA

11h 11h thunderstorm forecast
SALAMA

Figure 3.1: Our ML framework within the thunderstorm forecast value chain.
The SALAMA model identifies thunderstorm occurrence in NWP
forecasts of the atmospheric state. The same SALAMA configura-
tion is used for all lead times.

members. Therefore, we first train a single-member deep neural net-
work model, which we call SALAMA 1D (Chapter 6), and later use
Eq. (3.2) to apply it to the entire NWP ensemble (Chapter 7). We will
refer to the latter evaluation mode as SALAMA 1D-EPS.

While training a single-member model is conceptually less com-
plex than training on the entire ensemble, processing vertical profiles
of atmospheric state variables remains intricate and requires care
with regard to both the model architecture design and the data pre-
processing. To disentangle these two issues, we first train a simpler
model to which we refer as SALAMA 0D. This model also acts on
a single-member basis and uses the same preprocessing pipeline
(presented in Chapter 4) as SALAMA 1D. The difference lies in the
predictors ξ = (ξ(k))k=1,...,Ne , which are not vertical profiles but N ′

f
(zero-dimensional) atmospheric variables associated with thunder-
storm occurrence in the meteorological literature,

C0D : RN ′
f → (0, 1). (3.3)

As a result, SALAMA 0D gets by with a less complex architecture
compared to SALAMA 1D, allowing us to build up the entire value
chain from NWP input to thunderstorm forecast output in a simpler
setting before we address processing vertical profiles. In addition,
since the SALAMA 0D predictors are ultimately derived from the
state variables fed to SALAMA 1D, a comparison between the two
models enables us to test whether a deep neural network can learn
NWP input representations which are more useful for identifying
thunderstorm occurrence than the derived ones from the literature.
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3.2 simplifying assumptions

We have—sometimes implicitly—made simplifying assumptions and
choices in the presented ML framework, which we discuss now.

The first simplification concerns the horizontal and temporal extent
of the predictors and the ML output. Indeed, our single-member
models output the probability of thunderstorm occurrence for a single
grid point, and infer said probability from predictors ξ on the same
grid point. One could also take neighboring grid points (Zhou et al.,
2019), or time series (e.g., Geng et al., 2019; Sobash et al., 2020), into
account for classification. One could equally process multi-grid-point
input to also produce probabilities for multiple adjacent grid points
simultaneously (e.g., T. Lin et al., 2019; Geng et al., 2021). The latter
corresponds to framing the task as semantic segmentation instead of
binary classification. The reason why we opted for binary classification
of grid-pointwise input was to limit model complexity.

For the same reason, we do not consider the lead time of the NWP
input. Instead, as we will discuss in Chapter 4, we will train our
SALAMA models on short-term (0− 2h) NWP forecasts, for which we
expect NWP uncertainty to be minimal. Applying the trained models
on forecasts with increasing lead times will then allow us to study the
effect of increasing NWP uncertainty on thunderstorm identification
skill.

Finally, following Ukkonen et al. (2019), we feed atmospheric vari-
ables to our models without providing the geographical (lat/lon) lo-
cation of the corresponding grid point, in contrast to Zhou et al.
(2019). Nor do we provide the time of the day, or the time of the year
of the input, in contrast to Jardines et al. (2021). This might seem
counterintuitive; for instance, thunderstorm occurrence is more likely
in the afternoon than in the morning, which is why one might be
tempted to leverage the climatological insight associated with the time
of the day. However, the NWP forecasts arguably already reflect the
diurnal cycle of convection (as well as its seasonal cycle, and geograph-
ical distribution). Therefore, we expect our models to be capable of
reproducing temporal or spatial climatology variations solely from
processing atmospheric variables.

3.3 handling class imbalance

Thunderstorms are relatively rare events. As we shall see in Chapter 4,
only a few percent of the training set samples are associated with
thunderstorm occurrence if the data set is climatologically consistent.
This may complicate the prediction of thunderstorm occurrence, as
ML models tend to struggle with learning from unbalanced data sets
(Sun et al., 2009). As a matter of fact, we verified in a preliminary train-
ing run that, when trained on a climatologically consistent data set,
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SALAMA 0D would predict the majority class (i.e., no thunderstorm
occurrence) at every occasion. Therefore, we undersample the majority
class in the training sets of all our ML models, such that both classes
appear equally frequently (class balance). However, we keep the data
sets for testing and validation climatologically consistent in order to
evaluate (and eventually apply) our ML models in a realistic (opera-
tional) setting in which thunderstorms rarely occur. Undersampling is
common practice and allows us to avoid training with unfeasibly large
datasets solely to ensure sufficient representation of the minority class
(Hasanin et al., 2018; Mohammed et al., 2020). An issue that arises
is that ML binary classifiers trained on balanced data fundamentally
become miscalibrated when evaluated on a climatologically consistent
test set; i.e., the produced probabilities are inconsistent with observed
relative frequencies of thunderstorm occurrence. To address this, we
derived a simple analytic correction to adjust the raw model outputs
based on the sample climatology of the test set. We later found that
this phenomenon is known in the ML literature as prior probability shift
(Quiñonero-Candela et al., 2008, pp. 16–19). Specifically, if a model
trained on balanced data is evaluated on a climatologically consistent
data set, one needs to calibrate the raw model output p ′ using the
following formula to obtain a well-calibrated probability p (Elkan,
2001; Pozzolo et al., 2015):

p =
gp ′

gp ′ + (1− g)(1− p ′)
(3.4)

Here, g denotes the fraction of positive examples in the climatologi-
cally consistent data set (sample climatology). We provide a derivation
of Eq. (3.4) at the end of the section.

While undersampling has been applied in binary classification prob-
lems of thunderstorm forecasting, we are not aware of any related
works incorporating Eq. (3.4). Reasons why this issue has not arisen
in past works include:

• Model output calibration was not investigated (Jardines et al.,
2021; J. Li et al., 2021).

• Model output was calibrated via statistical methods like isotonic
regression (Niculescu-Mizil et al., 2005) using a validation set
(Ukkonen et al., 2019; Burke et al., 2020).

• Training was done without class-balancing (Sobash et al., 2020;
He et al., 2020). In these cases, the minority class appears to have
been sufficiently represented in the training set. We hypothesize
that these models could have been trained faster, using signifi-
cantly smaller training sets (with fewer majority class samples),
without loss of skill.

In contrast, the approach adopted in this thesis does not require
any calibration fit after training and allows for an economical use of
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computational resources. We will exemplify the validity of Eq. (3.4)
for SALAMA 0D in Chapter 5.

We close by formally deriving Eq. (3.4). To this end, it is useful
to revisit binary classification from a probabilistic perspective. Let a
sample ξ ∈ RN denote a realization of a continuous N-dimensional
random variable Ξ, while the label y ∈ {0, 1} denotes a realization of a
discrete random variable Y. The joint probability distribution of (Ξ, Y)
is entirely fixed by three terms, namely

• fΞ|Y(ξ|1), the conditional probability density function of Ξ, given
Y = 1,

• fΞ|Y(ξ|0), the conditional probability density function of Ξ, given
Y = 0,

• g ≡ P(Y = 1), the probability of sampling Y = 1 with no prior
knowledge, the sample climatology.

In particular, the terms can be combined via the law of total probability
to express the marginal probability density function of Ξ,

fΞ(ξ) = fΞ|Y(ξ|1)g+ fΞ|Y(ξ|0)(1− g). (3.5)

Invoking Bayes’ theorem, we express the conditional probability of
observing Y = 1 if given a sample ξ,

P(Y = 1|Ξ = ξ) =
fΞ|Y(ξ|1)g

fΞ(ξ)
=

1

1+ (1− g)R(ξ)/g
, (3.6)

where we introduced the residual function R(ξ) ≡ fΞ|Y(ξ|0)/fΞ|Y(ξ|1).
Equation (3.6) as a function of ξ is what an ML binary classification
model C : RN → (0, 1) learns during training. However, note that
Eq. (3.6) depends on sample climatology through the prefactor (1−

g)/g. As our training set contains an increased sample climatology g̃

(in our work: g̃ = 1/2), the ML model learns to output

C(ξ, g̃) =
1

1+ (1− g̃)R(ξ)/g̃
, (3.7)

where we made the dependence of C on g̃ explicit. Let now ξ be a
sample from a data set with a different sample climatology g ̸= g̃.
Naively applying our model results in the miscalibrated raw model
output p ′ ≡ C(ξ, g̃). The correct probability output p ≡ C(ξ,g) is
given by

p =
p ′

p ′ + 1−g
g

g̃
1−g̃(1− p ′)

, (3.8)

which can be derived by solving Eq. (3.7) for R(ξ) and substituting
the result into Eq. (3.6). Finally, Eq. (3.4) immediately follows from
substituting g̃ = 1/2. Note also that if the sample climatologies of
the training set and the test set are equal (i.e., g̃ = g), Eq. (3.8) yields
p = p ′, so that no probability correction is required.
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D ATA C O L L E C T I O N

As the ML model framework presented in Section 3.1 is based on
supervised learning, we require input samples, as well as labels, for
training. In this chapter, we introduce the NWP model which provides
the input to our ML models. Furthermore, we detail how we obtain our
ground truth for training from observational data. Finally, we present
the general structure of our preprocessing pipeline for producing data
sets for training, validation, and testing.

4.1 data from numerical weather prediction

According to the aim of this thesis, our objective is to process forecasts
of a convection-permitting ensemble model. There are several NWP
models available which produce forecasts of the above kind in an
operational fashion. Examples include AROME-EPS (France; Bouttier
et al., 2012), MOGREPS-UK (United Kingdom; Porson et al., 2020),
and ICON-D2-EPS (Germany; Zängl et al., 2015), all with comparable
horizontal grid spacings and ensemble sizes. Since this thesis was
carried out in Germany, we opt for exemplifying our ML framework
on forecasts of the ICON-D2-EPS model, with the aim of strengthening
collaborations with DWD, who runs the model operationally.

Icosahedral Nonhydrostatic (ICON)-D2-EPS is an limited-area model
(LAM) covering the areas of Germany and parts of its neighboring
countries (Fig. 4.1). The driving model is given by the global ICON
ensemble model with a nesting area over Europe. The ICON models
tesselate Earth’s surface (modeled as a perfect sphere with radius
6371.229 km) using spherical triangles. ICON-D2-EPS is convection-
permitting with an average horizontal grid spacing of 2.1 km, while
the grid spacing of its driving model amounts to 20 km within the
nesting area. In the vertical, ICON-D2-EPS adopts a terrain-following
coordinate system with 66 half levels, on which vertical velocity is
defined. The other state variables are computed on full levels, which lie
halfway between the half levels (Fig. 4.2). Additionally, ICON-D2-EPS
provides a number of single-level variables, which assign a single value
to each horizontal grid point on the NWP model domain. Examples
include surface pressure, mixed-layer convective available potential
energy (CAPE), or relative humidity at 700hPa. The data assimilation
system KENDA (Kilometer-scale Ensemble Data Assimilation; Schraff
et al., 2016) with a latent-heat nudging scheme (Stephan et al., 2008)
combines current observations and a short-term forecast from the
preceding data assimilation cycle to create a 20-member ensemble
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Figure 4.1: ICON-D2-EPS domain, taken from Reinert et al. (2020).

of physically consistent and statistically indistinguishable ensemble
members. The operational runs are initialized eight times daily, start-
ing at 0000 UTC (Coordinated Universal Time), and produce forecastsCf. Central European

Summer Time
(CEST):

UTC = CEST − 2h

with a time resolution of 1h.
As DWD keeps a rolling archive of ICON-D2-EPS forecasts from

only the last 1.5 years, we gather our own forecast archive by contin-
uously retrieving the latest forecasts from the DWD data base1. Our
NWP archive comprises several summer months in

• 2021 (June, July, August)

• 2022 (May, June, July)

• 2023 (July, August).

For each full hour of the day, we collect the latest available forecast.
According to the outlined NWP model initialization schedule, the
collected forecasts are at most 2h old. This procedure allows us to
train our models with minimal NWP forecast uncertainty. We collect
the forecasts for all ensemble members. For a limited number of days
within the study period, we additionally collect all forecasts with a
lead time of 3− 11h to evaluate ML skill as a function of lead time.
The precise days used for evaluating the different ML models are
specified in Chapters 5.1 (SALAMA 0D), 6.1 (SALAMA 1D), and
7.1 (SALAMA 1D-EPS), respectively. Each horizontal grid point of
an ensemble forecast contributes Ne = 20 samples ξ of atmospheric
variables for training a single-member SALAMA model. Lists of the
atmospheric variables used for training can be found in Section 5.1
(SALAMA 0D) and Section 6.1 (SALAMA 1D), respectively.

1 https://www.dwd.de/EN/ourservices/pamore/pamore, last access: 2025/05/20

https://www.dwd.de/EN/ourservices/pamore/pamore
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Figure 4.2: ICON-D2-EPS vertical levels and state variables, adapted from
Reinert et al. (2020).

4.2 lightning observations

As thunderstorms are defined by the occurrence of lightning (Sec-
tion 2.1), it seems natural to consider lightning observations to es-
tablish a ground truth for past thunderstorm occurrence. Possible
alternatives are given by radar data and satellite imagery. However,
we decided against radar observations because of the heterogeneity
of radar systems across the countries within the study region. As for
satellite imagery, data quality drops when channels for visible light
become unavailable, most notably after sunset. Instead, we choose
ground-based lightning observations, which provide high detection
efficiency and spatial accuracy across borders and throughout the
day. We expect the corresponding ground truth to be associated with
mature-stage convection, as lightning activity peaks at this stage of the
convective life cycle (Section 2.1). Specifically, we resort to the Light-
ning Detection Network (LINET) (Betz et al., 2009), which exploits
the radio spectrum to continuously measure strokes of lightning over
Europe. The technology achieves a detection efficiency of more than
95% and an average location accuracy of 150m. While LINET is able
to differentiate between cloud-to-ground and intracloud flashes, we
have considered all lightning events as we are only interested in the
yes/no occurrence of thunderstorm activity.
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Given an NWP grid point at horizontal position x and time t, we
consider a thunderstorm to occur at (x, t) if a flash of lightning is
detected at any (xl, tl) with

∥x− xl∥ < ∆r, |t− tl| < ∆t, (4.1)

where ∥·∥ denotes the great-circle distance between x and xl. Unless
stated otherwise, the spatial and temporal thresholds used in this
thesis read ∆r = 15 km and ∆t = 30min. The temporal threshold was
chosen such that the symmetric time interval around t (of length 2∆t)
agrees with the time resolution at which the NWP model produces
operational forecasts (1h). In turn, we set the spatial threshold to
∆r ≈ c∆t, assuming a typical thunderstorm advection speed of c ≈
10m s−1. A similar reasoning can be found in Ukkonen et al. (2019).
In Chapter 5, we will study the effect of varying the two thresholds.

4.3 compilation of data sets for machine learning

The gathered archive of NWP forecasts and lightning observations can
be considered a set of tuples (ξ,y), where ξ denotes the atmospheric
variables for a particular grid point, target time, and ensemble member,
whereas y denotes the corresponding ground truth. This constitutes
precisely the required setting needed to train our single-member ML
models. However, training with the entire archive (≈ 100 terabytes)
would not be computationally feasible. Therefore, we compile data
sets for training, validation, and testing, by drawing at random a fixed
number of tuples from the archive. All grid points, times and members
are equally likely to be drawn, which results in climatologically consis-
tent data sets. In the case of the training set, we arrange class balance
by keeping a drawn negative example only if the current number of
negative examples does not exceed half of the data set target size.
In practice, we parallelize the sampling of examples with multiple
workers which continuously communicate with each other about the
current number of negative examples (Message-Passing Interface (MPI)).
A summary of the different data sets is provided in Table 4.1.

To reduce correlations between the data sets, we ensure temporal
separation (e.g., Ravuri et al., 2021; Geng et al., 2021; Jardines et al.,
2024b). In practice, we use separate days for training, testing, and
validation. In addition, we let each day begin at 0800 UTC, which
we identified as the hour of least thunderstorm occurrence in our
observations (Fig. 4.3). The reason for shifting the start of the day is
to minimize the risk of correlations caused by thunderstorms which
persist after 0000 UTC.
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Table 4.1: General structure of the data sets for training, testing, and valida-
tion, used for the ML models in this thesis. We additionally compile
separate test sets in which the lead time tlead of the forecasts is
fixed. There is one such test set for each tlead = 0h, 1h, ..., 11h.

# examples Lead-time range Class imbalance

Training 4× 105 0− 2h 1 : 1

Validation 105 0− 2h climat. consist.

Test 105 0− 2h climat. consist.

Test (tlead fixed) 105 tlead climat. consist.
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Figure 4.3: Probability of thunderstorm occurrence (sample climatology;
∆r = 15 km, ∆t = 30min) on the ICON-D2-EPS domain from
July to August as a function of the hour of the day, estimated via
lightning observations between 2018 and 2022. Dashed line corre-
sponds to the average over all hours. Shaded bands denote the
symmetric 90% confidence intervals centered around the median
values. Confidence intervals for a given hour are estimated by
bootstrap resampling: First, we evaluate average sample clima-
tology for each observation month (10 months in total). Then we
generate 200 bootstrap resamples of the 10-element set by drawing
with replacement 10 elements for each resample.
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5
S A L A M A 0D : I N F E R E N C E F R O M S I N G L E - L E V E L
P R E D I C T O R S

In this chapter, we present results related to SALAMA 0D, the first
in a series of ML models processing numerical weather prediction
(NWP) forecasts. SALAMA 0D is a single-member ML model which
infers thunderstorm occurrence from a number of single-level vari-
ables which are known to be associated with thunderstorms. Setting
up the model and training it allows us to exemplify and test our
ML framework (Chapter 3) and data preprocessing pipeline (Chap-
ter 4) in a setting of limited compute and data intensity. We show
that SALAMA 0D produces well-calibrated probabilities while out-
performing a baseline ML classifier which relies on NWP reflectivity
only. By varying the spatiotemporal thresholds by which we associate
lightning observations with NWP data, we show that the time scale for
skillful thunderstorm predictions increases linearly with the spatial
scale of the forecast. The findings have been previously reported in
the publication P1:

P1: Vahid Yousefnia, K., T. Bölle, I. Zöbisch, T. Gerz (2024). “A machine-
learning approach to thunderstorm forecasting through post-proces-
sing of simulation data.” In: Quarterly Journal of the Royal Meteorological
Society 150.763, pp. 3495–3510. doi: 10.1002/qj.4777.

5.1 data and methods

In this section, we give details on the data used specifically in P1 and
introduce the model architecture of SALAMA 0D. In addition, we
propose a method to visualize model skill in terms of reliability and
resolution, and introduce a baseline ML model for comparison.

Study region and period

For the studies in P1, we crop the the ICON-D2-EPS model domain at
its borders by approximately 100 km to reduce boundary computation
errors. In a cylindrical projection, our study region corresponds to
a rectangle with the southwest corner located at 45◦ N, 1◦ E, the
northeast corner located at 56◦ N, 16◦ E and all sides being either
parallels or meridians (Fig. 5.5). At the time of this study, the NWP
forecast archive introduced in Section 4.1 comprised forecasts only
from 2021. Therefore, we randomly allocate the available days to
training, testing, and validation, in a ratio of 4:1:1 (Fig. 5.1). Other than
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that, we abide by the preprocessing pipeline presented in Section 4.3 to
produce all ML data sets in Table 4.1. In particular, the days allocated
for testing are equally used to generate test sets with fixed lead times.
The input samples ξ are comprised by N ′

f = 21 single-level predictors
introduced next.

1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22

23 24 25 26 27 28 29 30 June

1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22

23 24 25 26 27 28 29 30 31 July

1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22

23 24 25 26 27 28 29 30 August

Figure 5.1: Days (from 0800 UTC to 0800 UTC on the following day) during
the summer of 2021 which were used for compiling the datasets
for training (dark brown), testing (light blue with bold numerals)
and validation (light green). The days have been distributed at
random among the three sets.

NWP predictors

The atmospheric fields used as predictors of thunderstorm occurrence
in this study are given in Table 5.1. They have been selected as follows:
We considered as candidate predictors all single-level fields provided
in ICON-D2-EPS, as well as two pressure-level fields associated with
convection in the literature, namely the relative humidity at 700hPa
and the vertical wind velocity in pressure coordinates at 500hPa
(J. Li et al., 2021). In addition, we stipulated that the predictors be
available on the DWD open-data server1, so that the trained model
can eventually be used in real-time. For a given candidate input field,
we compared histograms of the field value distribution during and
in the absence of thunderstorm occurrence and kept only fields that
differed significantly in the two distributions.

As shown in Table 5.1, all predictors can be related to physical
phenomena related to convection, such as instability and moisture
(Section 2.1). In particular, our selection process has led to predictors
which agree with findings in the literature (Ukkonen et al., 2019;
Jardines et al., 2021; Leinonen et al., 2022). Conversely, convective

1 https://opendata.dwd.de, last access: 2025/05/20

https://opendata.dwd.de
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inhibition (CIN), which is sometimes used as a convective predictor
(e.g., Kamangir et al., 2020), has not passed the selection process. This
is likely due to the fact that we have checked for predictive power in
terms of mature-stage thunderstorms. CIN, however, correlates with
the hours leading up to a thunderstorm and has been removed once
the storm reaches its mature stage.

Table 5.1: List of the 21 input parameters used in the study ("DIA": including
sub-grid scale).

Phys. significance ICON name Description

Instability CAPE_ML Mixed-layer convective avail-
able potential energy

CEILING Ceiling height

OMEGA500 Vertical wind velocity in pres-
sure coordinates at 500hPa

PS Surface pressure

PMSL Surface pressure reduced to
mean sea level

Cloud cover CLCH High level clouds (0− 400hPa)

CLCM Mid-level clouds
(400− 800hPa)

CLCL Low-level clouds (800hPa to
ground)

CLCT Total cloud cover

Precipitation and DBZ_CMAX Maximal radar reflectivity

moisture ECHOTOP Echotop pressure

RELHUM700 Relative humidity at 700hPa

RELHUM_2M 2m relative humidity

Column-
integrated

TQC,
TQC_DIA

Cloud water

water quantities TQG Graupel

TQI,
TQI_DIA

Ice

TQV,
TQV_DIA

Water vapor

TWATER Total water content
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ML architecture and training

The architecture deployed for SALAMA 0D is presented in Fig. 5.2.
Evaluating the training set, we scale the predictors to have zero mean

21 thunderstorm
features

3 hidden layers à 20 nodes

thunderstorm
probability

Figure 5.2: The architecture of SALAMA 0D: Input features are scaled to
order 1. We use rectified linear units as activation functions in the
hidden layers. A sigmoid function maps the output layer to the
open interval (0, 1).

and unit variance before minimizing binary cross-entropy loss via the
Adam optimizer (Kingma et al., 2014). The analytic calibration formula
(3.4) is applied whenever SALAMA 0D is used on the validation or
test set.

The architecture presented in Fig. 5.2 actually constitutes the result
of a hyperparameter study in which we varied the number of hidden
layers, as well as the number of nodes per layer. We found that once
a certain complexity was reached in terms of network size, adding
new nodes or layers had no effect on the validation loss at the end
of training. Figure 5.2 constitutes the smallest network for which this
complexity threshold has been exceeded.

Bin-wise reliability and resolution

Figure 5.3a shows the reliability diagram (Section 2.3) obtained for
SALAMA 0D. Shown are two calibration functions: The light gray line
corresponds to a calibration function without any probability correc-
tion, whereas the solid black line results from applying our analytic
calibration formula (3.4) to the model output. The uncalibrated line
severely overestimates the relative frequency of thunderstorm occur-
rence at all model probabilities. As has been worked out in Section 3.3,
this is not a result of faulty training but stems from having different
sample climatologies in the training and test sets. The calibrated curve,
indeed, considerably corrects for this effect, resulting in reliable fore-
casts for probabilities close to 0 and 1. On the other hand, our model
still underestimates the relative frequency of thunderstorm occurrence
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for forecast probabilities below 0.6. We shall see in Chapter 6 that
model retraining after expanding our NWP forecast archive resolves
this issue. For now, we consider our model sufficiently well-calibrated
and appreciate that the level of reliability has been attained by means
of the analytic correction (3.4) alone without the need of resorting
to statistical methods like isotonic regression (Niculescu-Mizil et al.,
2005).
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Figure 5.3: Reliability diagram of SALAMA 0D, evaluated for the test set with
the label configuration ∆r = 15 km,∆t = 30min (Section 4.2). (a)
Calibration curve after applying probability correction (3.4) (black
solid line), and before (grey light dotted line), and refinement
distribution. Shaded band corresponds to the symmetric 90%
confidence interval obtained by 200 bootstrap resamples. (b) Bin-
wise resolution and reliability (Eqs. (5.1) to (5.2)) and their relation
to the Brier skill score (BSS) (Section 2.3) as a function of model
probability.

The refinement distribution in Fig. 5.3a informs about the resolution
of our model. It can can be difficult to compare two models solely
from their refinement distributions, especially when the two models
in question are similarly skillful. To assess resolution (and reliability)
more easily, we introduce the following two terms which are defined
for each probability bin i of width ∆p:

RESi =
1/∆p

g(1− g)

Ni

N
(pi − g)2, (5.1)

RELi =
1/∆p

g(1− g)

Ni

N
(pi − oi)

2 (5.2)

Up to a factor g(1 − g) known as the uncertainty term, the sums∑
i∆piRESi and

∑
i∆piRELi are often used as quantitative defini-

tions of resolution and reliability (Wilks, 2019, pp. 402–404). It follows
from Murphy (1973) that the area enclosed by RESi and RELi as a func-
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tion of pi is equivalent to the Brier skill score (BSS) (with climatology
as reference).

We propose to plot the bin-wise terms defined in Eqs. (5.1) to (5.2)
against pi, as shown in Fig. 5.3b. This visualization offers an overview
of how much each probability bin contributes to reliability and res-
olution, and ultimately to the BSS. For instance, resolution is most
impacted by examples with model probabilities of approximately 0.3
and dominates over reliability. This visualization will prove most
useful in Chapters 6.2 and 7.2, as well.

Baseline model

To better assess the skill of SALAMA 0D, we introduce a baseline
model for comparison. As thunderstorms are accompanied by heavy
precipitation (Section 2.1), radar reflectivity as a measure of precipita-
tion rate constitutes a natural surrogate for thunderstorm occurrence
in the nowcasting community (Dixon et al., 1993; Wilson et al., 1998;
Turner et al., 2004). ICON-D2-EPS outputs the column-maximal radar
reflectivity (DBZ_CMAX in Table 5.1), to which we henceforth refer
as reflectivity. In order to construct a baseline, we train a new model
which uses only reflectivity as input. The architecture of the baseline
model is identical to the one presented in Fig. 5.2 (three hidden layers
with twenty nodes each) except for the input layer, which has now
only a single node. Just like for SALAMA 0D, the baseline model
outputs the probability of thunderstorm occurrence. Note that since
reflectivity is one of the predictors used for SALAMA 0D, we can use
the same data sets as for SALAMA 0D, ignoring predictors other than
reflectivity.

Figure 5.4a shows the resulting reliability diagram. The light dot-
ted line corresponds to the uncorrected calibration curve, while the
dash-dotted line results from applying probability correction (3.4). The
baseline model produces well-calibrated output for small model prob-
abilities while the model displays underconfidence above probabilities
of approximately 0.2. As examples with probabilities higher than 0.2
make up less than 1% of the examples in the test set, we presume
that these examples therefore did not contribute sufficiently to the loss
function, which instead favored well-calibrated small probabilities. In
an effort to construct a competitive baseline model, we use the valida-
tion set to fit a linear function to the part of the dash-dotted calibration
curve with probabilities higher than 0.15. Specifically, if the output of
the baseline model after application of probability correction (3.4) is
denoted by p, the calibrated output reads 2.379 p− 0.206 for p > 0.15,
and p otherwise. The resulting well-calibrated calibration curve is
given by the solid line in the reliability diagram. The refinement dis-
tribution and the lower panel in Fig. 5.4a refer to fully calibrated
probabilities. One can see that the BSS is essentially determined by the
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baseline resolution, just like for SALAMA 0D (Fig. 5.3). The baseline
scores comparably to SALAMA 0D in terms of reliability. On the other
hand, the baseline resolution is significantly worse, which results in a
lower BSS compared to SALAMA 0D.

Figure 5.4b shows the learned and calibrated relationship between
NWP reflectivity and the corresponding probability of thunderstorm
occurrence. The herein observed monotonously increasing relation-
ship implies that thunderstorms become more likely as reflectivity
increases. A typical reflectivity threshold for defining thunderstorms
in nowcasting is 35dBZ (Dixon et al., 1993; Mueller et al., 2003), for dBZ: decibels

relative to a
reflectivity factor of
1mm m−3;
logarithmic unit for
quantifying the
returned power of
radars (Markowski
et al., 2010, p. 369).

which the probability of thunderstorm occurrence reads 0.22.
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Figure 5.4: Training of the baseline model. (a) Reliability diagram panels as
in Fig. 5.3, but for the baseline model. (b) Learned relationship
between the baseline input field and the corresponding probabil-
ity of thunderstorm occurrence.

5.2 results

In the following, we compare SALAMA 0D to the baseline model
based on reflectivity, and investigate how the spatiotemporal thresh-
olds of the lightning label configuration (Section 4.2) influence the clas-
sification skill of SALAMA 0D as a function of lead time. Unless stated
otherwise, these thresholds are fixed to ∆r = 15 km,∆t = 30min in
this section.

Comparison to the baseline model

As a first step, we visually compare the performance of SALAMA 0D
and the baseline model in a case study. For this purpose, we run
SALAMA 0D for three consecutive hours of an evening with thunder-
storm occurrence over Southern Germany. This day has not been used
for the training of SALAMA 0D. In Fig. 5.5, we plot the probability of
thunderstorm occurrence for an arbitrary member of the NWP ensem-
ble for the entire study domain. Observed thunderstorm occurrence
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is given by black contours. The corresponding plots for the baseline
model are added below the panels of SALAMA 0D. In this particular
case study, SALAMA 0D tends to identify more thunderstorm pixels
than the baseline model. On the other hand, SALAMA 0D seems to
produce more false alarms.
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Figure 5.5: Probability of thunderstorm occurrence for June 23, 2021 from
1900 UTC on, for SALAMA 0D (upper row) and the baseline
model (lower row). The model lead times for the three hours
are 1h, 2h, and 0h, respectively. The color maps display the
result for the first ensemble member of ICON-D2-EPS, while
lightning labels (∆r = 15 km,∆t = 30min, Section 4.2) are shown
as black contours. A jump in the color maps indicates the decision
thresholds used for the evaluation of the skill scores in Table 5.2.

In order to compare the skill of SALAMA 0D and our baseline
quantitatively for the entire study period, we evaluate the skill scores
introduced in Section 2.3. We use for this purpose the test introduced
in Section 5.1, which consists of examples of the entire summer of
2021. For some of the scores, we need to set a decision threshold. As a
criterion, we demand that forecasts be unbiased (average fraction of ex-
amples classified as thunderstorms is equal to the observed fraction of
thunderstorm examples), yielding thresholds of 0.193 (SALAMA 0D)
and 0.119 (baseline). The thresholds are also indicated in the color
bars of Fig. 5.5. The threshold found for reflectivity corresponds to
28dBZ and is slightly below the typical literature threshold cited in
Section 5.1.

The performance of SALAMA 0D and the baseline is summarized
in Table 5.2. Irrespectively of the skill score under consideration,
SALAMA 0D scores better than the baseline model. The uncertain-
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ties are computed here, as well as for the subsequent evaluations,
by bootstrap resampling. Note that we obtain POD = 1− FAR = F1
for both models. This results from our choice of decision threshold
(hits + misses = hits + false alarms for unbiased forecasts). We also

Table 5.2: Scores for classification skill, evaluated on the test set, for
SALAMA 0D and the baseline model. The probability thresholds
used for evaluation are chosen such that the forecast is unbiased
and amount to 0.193 (SALAMA 0D), 0.119 (baseline). Uncertainties
are obtained from 200 bootstrap resamples and show the symmet-
ric 90% confidence interval.

Skill score SALAMA 0D Baseline

PR-AUC 0.358± 0.018 0.141± 0.012

BSS 0.209± 0.010 0.063± 0.007

POD 0.403± 0.016 0.189± 0.012

1− FAR 0.402± 0.017 0.188± 0.013

F1 0.403± 0.015 0.189± 0.012

CSI 0.252± 0.012 0.104± 0.007

ETS 0.241± 0.012 0.093± 0.007

show the precision-recall (PR) diagram for both models in Fig. 5.6.
Both models considered in this study display higher skill than a ran-
dom model following climatology would. SALAMA 0D, however, has
higher classification skill than the baseline, as can be seen from the
higher area under the curve (AUC) in the PR diagram in Fig. 5.6. The
enhanced skill of SALAMA 0D with respect to the baseline model il-
lustrates that a multi-parameter approach to thunderstorm forecasting
is superior to employing a single input feature.

Lead time dependence of classification skill

The data sets for training, testing and validation used so far are com-
prised of NWP forecasts with lead times up to 2h. We reiterate that
the reason for this choice was to train and evaluate our model in a
setting of minimal NWP forecast uncertainty. On the other hand, this
procedure raises the question whether the thunderstorm signature
learned by the model generalizes to NWP data with longer lead times
(and higher forecast uncertainty). For this purpose, we involve the
test sets with fixed lead times. In Fig. 5.7, we plot the SALAMA 0D
classification skill, measured in terms of the skill scores introduced
in Section 2.3 as a function of lead time and compare it to the de-
pendence obtained for the baseline model. Figure 5.7 shows that, for
SALAMA 0D, classification skill decreases approximately exponen-
tially (note the log-scaling of the y-axis) for lead times longer than
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Figure 5.6: PR curve for SALAMA 0D (solid) and the baseline model
(dashed), evaluated on the test set. Annotations added to the
curves correspond to different decision thresholds (Section 2.3).
Grey dotted line denotes models with no identification skill
(1 − FAR = g). Uncertainties are obtained from 200 bootstrap
resamples and show the symmetric 90% confidence interval.

1h, irrespectively of the skill score under consideration. On the other
hand, SALAMA 0D skill is systematically superior to baseline skill for
all lead times. In fact, even the 11-hour-lead-time skill of SALAMA 0D
is higher than the baseline skill for any of the considered lead times.
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Figure 5.7: Classification skill as a function of lead time for SALAMA 0D (left)
and the baseline model (right). The probability thresholds used
for evaluation are chosen such that the forecast is unbiased and
amount to 0.193 (SALAMA 0D), 0.119 (baseline). Uncertainties are
obtained from 200 bootstrap resamples and show the symmetric
90% confidence interval.

It is tempting to assume that the decrease in skill with lead time
originates from an increasing NWP forecast uncertainty for longer
lead times. We can use ensemble data to check this hypothesis. Let
q be either one of the 21 input features, or the model thunderstorm
probability; i.e., a quantity that is given for each ensemble member
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and each lead time. Then define the ensemble spread σ ′
q of q as the

ensemble standard deviation of q,

σ ′
q(tlead) =

√
⟨q(tlead)2⟩− ⟨q(tlead)⟩2, (5.3)

where we make the dependence on the lead time tlead explicit. The
brackets ⟨·⟩ denote the average over all 20 ensemble members. Denote
by σ ′

q(tlead) the expression obtained by performing the average of σ ′
q

over the entire study region and all times associated with the test set.
Lastly, we define the normalized ensemble spread of q,

σq(tlead) =
σ ′
q(tlead)

σ ′
q(0h)

, (5.4)

as a function of lead time. It quantifies ensemble spread in such a way
that different input features can be directly compared to each other.
In Fig. 5.8, the normalized ensemble spread of each of the 21 input
features is shown as thin solid lines and the corresponding curve
for the model output of SALAMA 0D is drawn in thick and dashed.
One can see that the ensemble spread does indeed increase with lead
time for most input features, the increase being approximately linear.
The ensemble spread of the SALAMA 0D output increases in line
with the majority of the input features and with a similar slope. This
suggests that the decrease in classification skill observed in Fig. 5.6 is
qualitatively consistent with the increasing variance in the simulation
data.
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Figure 5.8: Normalized ensemble spread (as defined in Eq. (5.4)) of input
features in comparison to spread of model thunderstorm proba-
bility as a function of lead time. Each thin solid line refers to one
of the 21 input features. The thick dashed green line is associated
with SALAMA 0D. A shaded band represents the symmetric 90%
confidence interval of uncertainty, estimated with 200 bootstrap
resamples.
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Effect of the label size

So far, the temporal and spatial thresholds of the label configuration
have been fixed to ∆r = 15 km and ∆t = 30min (henceforth referred
to as “default configuration”). We now study how varying the spa-
tiotemporal thresholds affects the classification skill of SALAMA 0D.

As a first step, we compute reliability diagrams for different label
configurations. In Fig. 5.9a, we study a configuration with smaller
thresholds than for the default configuration. Figure 5.9b displays a
configuration with reduced ∆t and increased ∆r. In Fig. 5.9c, both
thresholds are increased with respect to the default configuration.
The exact choice of ∆t and ∆r for the three panels is somewhat ar-
bitrary but still allows for qualitative insight: Irrespectively of the
configuration, forecasts are well-calibrated for small and large model
probabilities. In addition, model skill, quantified in terms of the BSS,
increases from left to right. The diagrams show that the increase in
the BSS is mainly due to enhanced contribution to resolution from
probabilities larger than 0.3, though a reliability improvement from
probabilities around 0.2 adds to the increase in the BSS as well.

Figure 5.9: Reliability diagrams as in Fig. 5.3, but with label configurations (a)
∆t = 15min,∆r = 9 km (s = 14 km), (b) ∆t = 10min,∆r = 21 km
(s = 24 km), (c) ∆t = 40min,∆r = 24 km (s = 36 km). The spatial
scale s is introduced in Eq. (5.5).

As we have seen that the qualitative lead time dependence of
SALAMA 0D skill does not depend on the skill score, we consider
from now on only PR-AUC for further investigations. We start by
computing PR-AUC for several label configurations, which is shown
in Fig. 5.10. The color pattern in the figure suggests that the two
thresholds are not independent variables of classification skill. Instead,
one can find a parameter c with a unit of speed such that classification
skill is nearly constant along lines

s = ∆r+ c∆t = const. (5.5)

Indeed, s corresponds to a spatial resolution scale; it determines
the minimal spatial accuracy that can be expected from a model
trained with a given label configuration. We expect the parameter
c to roughly quantify the speed at which regions of thunderstorm
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occurrence are advected in the atmosphere. A fit to the data provides
c = (5.6± 0.3)m s−1, the order of magnitude of which is consistent
with typical low- to mid-tropospheric wind speeds. We can now
motivate the spatiotemporal thresholds for the reliability diagram in
Fig. 5.9b: they have been chosen such that s takes on the same value
as the default configuration (s = 24 km).

Lines of constant s appear as dashed lines in Fig. 5.10 and indicate
that classification skill increases with s. This is in line with the dis-
played observation of an increased BSS in the reliability diagrams. This
is also consistent with Roberts (2008), which investigates the spatial
variation of precipitation forecast skill. Note that sample climatology
g increases with s as well. In fact, it amounts to g = 1.7× 10−3 in
the lower left pixel of Fig. 5.10, and to g = 4.6× 10−2 in the upper
right corner. Since a random model with no skill has PR-AUC = g,
the increase in skill as a function of s is to a slight extent also due to
the increase in g.
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Figure 5.10: Classification skill of SALAMA 0D, expressed in terms of the
area under the PR curve, as a function of the label configuration
(Section 4.2). The slope of the dashed lines is chosen such that
classification skill is approximately constant along the lines. Each
line corresponds to a specific spatial scale s (Eq. (5.5)).

Next, we investigate how the decrease of classification skill with
lead time depends on the spatial scale. Motivated by the observed
decay of classification skill with lead time, we fit an exponential func-
tion exp(−tlead/τ) to the lead time dependence of classification skill
(measured again by PR-AUC). The skill decay time τ then provides a
characteristic time scale for the decrease of classification skill. For each
label configuration in Fig. 5.10, we compute the corresponding spatial
scale, as well as τ. In Fig. 5.11, we present a scatter plot of τ and s.
The figure shows a tight positive linear correlation between the two
quantities, which means that classification skill decreases more slowly



58 inference from single-level predictors

for coarser label configurations. This is in agreement with the antici-
pation (Lorenz, 1969) that resolving smaller scales in NWP models is
associated with a more rapid growth of forecast errors. Our finding
is complementary to convection studies involving a scale-dependent
skill score (Roberts, 2008), and high-resolution simulations (Selz et al.,
2015).
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Figure 5.11: Decay time of classification skill (quantified by the area under the
PR curve) as a function of the spatial scale. Each data point cor-
responds to one label configuration in Fig. 5.10. The parameters
of a linear fit are also shown, as well as the Pearson coefficient
of correlation.

5.3 conclusions

In this chapter, we developed SALAMA 0D, a feedforward neural
network model which identifies thunderstorm occurrence in NWP
forecasts up to 11h in advance in a grid-point-wise manner. The in-
ference of the probability of thunderstorm occurrence is based on
single-level predictors that are physically related to thunderstorm ac-
tivity. The availability of all predictors in real-time makes SALAMA 0D
suitable for operational use.

In response to research question (RQ) 1, we addressed the technical
challenge caused by the rarity of thunderstorms and the corresponding
small fraction of positive examples by increasing this fraction during
training and analytically accounting for the increase when testing.
This approach allowed us to ensure reasonable reliability without
calibration fits. Furthermore, we proposed a novel visualization of
reliability and resolution as a function of bin-wise model probability.
The visualization could be beneficial for the comparison of similarly
skillful binary classification models.

We studied how the NWP forecast uncertainty depends on the lead
time of the forecast and related it to the classification skill decrease
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of SALAMA 0D. As a preliminary response to RQ 5, this suggested
that the decrease in ML skill is driven by an increasing NWP un-
certainty. Additionally, we systematically varied the spatiotemporal
criteria by which we associate lightning observations with NWP data.
This allowed us to test SALAMA 0D with different spatial scales and
estimate the order of magnitude of the speed at which thunderstorms
are advected in the atmosphere. We showed that classification skill
increases with the spatial scale of the forecast and is higher than for a
baseline model based on NWP reflectivity alone. In response to RQ 5,
we found that the decay time of classification skill is proportional to
the spatial scale. In combination with the result that the SALAMA 0D
classification skill is correlated with the NWP forecast uncertainty,
our findings indicated that predicting thunderstorm occurrence at a
smaller spatiotemporal resolution reduces the predictability of thun-
derstorm occurrence.

The development of SALAMA 0D has allowed us to build up our
single-member ML framework and the corresponding data prepro-
cessing value chain in a setting in which computational demands
have been limited. In the next chapter, we replace single-level predic-
tors by vertical profiles of the NWP state variables, building on our
successfully tested ML framework.





6
S A L A M A 1 D : P R O C E S S I N G V E RT I C A L P R O F I L E S O F
S TAT E VA R I A B L E S

In this chapter, we present results associated with SALAMA 1D. In
contrast to SALAMA 0D, the new ML model infers the probability of
thunderstorm occurrence from the vertical profiles of ten atmospheric
variables, bypassing single-level predictors. The model’s architecture
is physically motivated: sparse connections encourage interactions at
similar height levels while keeping model size and inference times
computationally efficient, whereas a shuffling mechanism prevents
the model from learning non-physical patterns tied to the vertical
grid. We show that SALAMA 1D displays superior skill compared to
SALAMA 0D. Secondly, expanding the archive of forecasts from which
training examples are sampled improves skill, even when training
set size remains constant. Finally, a sensitivity analysis using saliency
maps indicates that our model relies on physically interpretable pat-
terns consistent with established theoretical understanding. The find-
ings have been previously reported in the publication P2:

P2 [under review]: Vahid Yousefnia, K., C. Metzl, T. Bölle (2025). “In-
ferring Thunderstorm Occurrence from Vertical Profiles of Convection-
Permitting Simulations: Physical Insights from a Physical Deep Learn-
ing Model.” In: Artificial Intelligence for the Earth Systems. Preprint
available from: https://arxiv.org/abs/2409.20087.

6.1 data and methods

In this section, we provide details on the data sets used specifically in
P2. Furthermore, we present in depth the architecture developed for
SALAMA 1D.

Study region and input fields

In contrast to Chapter 5, we alter the cropping of the ICON-D2-EPS
domain slightly to increase the size of our study region. The resulting
crop, which defines our study region for the remainder of this thesis,
is shown in Fig. 6.1.

Equally, instead of processing single-level predictors, SALAMA 1D
shall infer thunderstorm occurrence from the Nf = 10 variables given
in Table 6.1. These variables correspond to the fields which are op-
erationally available in ICON-D2-EPS on either full or half levels
(Section 4.1). Note that for the remainder of this work, we denote these

61
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Figure 6.1: Study region for the remainder of this thesis, shown in a paral-
lel projection. The polygon vertices are listed counterclockwise
from the bottom-left: (44.7◦N, 1.2◦E), (44.7◦N, 15.8◦E), (56.3◦N,
17.8◦E), (56.3◦N, 1.8◦W). This region roughly corresponds to the
numerical weather prediction (NWP) model domain (Fig. 4.1),
which we cropped at the borders by approximately 80 km to re-
duce boundary computation errors.

variables by their respective ICON names provided in Table 6.1. We
keep the fields on their native grid (vertically: Nz = 65 non-equidistant
levels, horizontally: spherical triangles) to limit interpolation errors.

ML data sets and SALAMA model configurations

For the remainder of this thesis, we resort to the entire numerical
weather prediction (NWP) archive with forecasts between 2021 and
2023 (Section 4.1). Table 6.2 provides an overview of how the archive is
split into ML data sets. We use the even days of 2023 for testing and the
odd days of 2023 for validation. Finally, to examine whether extending
the study period from which to gather examples enhances skill, we
compile two training sets for SALAMA 1D: one consists of examples
from 2021 and yields a model configuration to which we refer as
SALAMA 1D-2021. The other training sets comprises examples from
2021 and 2022, resulting in the model configuration SALAMA 1D-2022.
Note, however, that both training sets contain an equal number of
examples. Furthermore, the two models are tested (validated) on the
same test (validation) set.

As a baseline for comparison, we additionally retrain SALAMA 0D
to account for changes in the study region and period. In particular,
we ensure that the training set for SALAMA 0D is equally made
up of examples from only 2021, making it readily comparable to
SALAMA 1D-2021. Since SALAMA 0D is trained on a different set
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Table 6.1: (Instantaneous) vertical ICON-D2-EPS field profiles used in this
study.

ICON variable Description

U Zonal velocity

V Meridional velocity

T Temperature

P Pressure

QV Specific humidity

QC Cloud water mixing ratio

QI Cloud ice mixing ratio

QG Graupel mixing ratio

CLC Cloud cover

W Vertical velocity

Table 6.2: Splitting of the NWP archive for the ML data sets used in this
chapter. We refer to Table 4.1 for details on the composition of
these data sets (such as class imbalance).

Data set Time period

Training Jun-Aug 2021 (for SALAMA 0D
and SALAMA 1D-2021)

Jun-Aug 2021, May-Jul 2022 (for
SALAMA 1D-2022)

Validation Jul-Aug 2023 (odd days)

Test Jul-Aug 2023 (even days)

Test (tlead fixed) Jul-Aug 2023 (even days)

of atmospheric variables, we cannot directly use the same test set as
for the SALAMA 1D models. However, to ensure comparability, we
compile the SALAMA 0D test set such that each sample corresponds
to the same forecast, retrieved at the same grid point and from the
same ensemble member, as its counterpart in the SALAMA 1D test
set. The same procedure applies to the test sets with fixed lead time.
This guarantees that any differences in model performance can be
attributed to the choice of input variables.

SALAMA 1D model architecture and training

The architecture of SALAMA 1D, as illustrated in Fig. 6.2, combines
dense layers with a sparse layer strategically designed to reduce the
number of parameters. This approach addresses challenges such as
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overfitting and the high computational demands typically associated
with large ML models. Instead of using the pruning technique (LeCun
et al., 1989; Frankle et al., 2019), we incorporate physical aspects and
symmetry considerations to achieve a reduction in parameters. Be-
cause translational symmetry is broken along the z-direction, weight
sharing, as in convolutional layers, cannot be applied effectively. In-
stead, we implement sparse connections, allowing interactions only
between field values at similar height levels. Only further downstream
do dense layers then construct dependencies between more distant
field values. Additionally, we introduce a shuffling mechanism to en-
sure that the model does not rely on the vertical grid structure, forcing
it to infer vertical orientation from the data itself. This design allows
the model to, for instance, associate the formation of ice particles with
the height of the tropopausal temperature inversion rather than a fixed
height level, such as level 11. It turns out that shuffling also regularizes
the model, limiting overfitting issues further.

input layer

(10, 65)

sparse layer

(5, 20)

shuffle along
last dim.,
flatten

(100, )

dense layers

(67, )

(45, )

(31, )

(21, )

dense layers

(20, )

(20, )

(20, )

output layer

(1, )

Figure 6.2: Change in input size during a forward pass in SALAMA 1D.
The sparse layer reduces dimensionality and shuffles the data
to prevent the model from learning dependencies tied to the
vertical grid structure. Additionally, the shuffling acts as a reg-
ularization technique, helping to limit overfitting. Input fields
are scaled to order 1. We use rectified linear units as activation
functions after the flattened sparse layer and each dense layer, and
a sigmoid function to map the output layer to the open interval
(0, 1). The sparse layer has 8100 trainable parameters, the other
layers add 13 226 parameters. SALAMA 1D is lightweight with a
computational complexity (Sovrasov, 2018) of roughly 22 kMAC
(multiply-accumulate operations). SALAMA 0D (Section 5.1) re-
quires 1.3 kMAC.

Training is then performed analogously to Section 5.1: Evaluating
the training set, we scale the input fields to have zero mean and unit
variance before minimizing binary cross-entropy loss via the Adam
optimizer (Kingma et al., 2014). Using minibatches of size 1000, we
train for 300 epochs. After training, we inspect the validation loss as
a function of epoch and select the smallest epoch for which the loss
no longer decreases. The analytic calibration formula (3.4) is applied
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with the sample climatology value found in Section 4.3 whenever the
model is used on climatologically consistent data sets.

Sparse layer details

Figure 6.3 provides an illustration of our sparse layer. The input layer
is given by an array of shape (Nf,Nz) with a field dimension (iterating
over the Nf field profiles) and a height dimension (iterating over the
Nz vertical levels). Now, we consider a block of shape (Nf,k), where k

is the size of the block along the height dimension. We densely connect
the nodes within this block to h nodes in the following layer. Next,
we slide the block by s nodes along the height dimension and, again,
densely connect the corresponding nodes to h subsequent nodes of
the following layer. Starting with a block at the bottom of the input
layer, we repeat this procedure until reaching the top of the input
layer. Provided that Nz − k is divisible by s, this procedure leads
to Nk ≡ (Nz − k + s)/s blocks and produces Nk × h nodes in the
following layer. We incorporate a shuffling mechanism that randomly
permutes the order of the blocks for each example during training.

N
z

N f
(a)

Nk

h

N
z

N f
(b)

Nk

h

Figure 6.3: Illustration of the connections (lines between bold dots) between
the input layer of shape (Nf,Nz) and the following layer of shape
(h,Nk). (a) A block of nodes of shape (Nf,k) in the input layer is
connected to a row of h nodes in the following layer. (b) Then, the
block is shifted upwards by s nodes and rewired with the next
row of h nodes of the following layer. The input layer is shown in
two dimensions to help visualize each vertical field profile, but
there is no spatially extended structure beyond the vertical (z)
direction. Equally, we show the following layer in two dimensions
to illustrate the yield of each group of connections in a separate
row; however, this layer is flattened further downstream (Fig. 6.2).
For better readability, the layer sizes and hyperparameter settings
used in this illustration do not correspond to those in the actual
model.

In contrast to a convolutional layer with a sliding kernel, all Nk

blocks in our sparse layer have their own set of free parameters. In
total, the sparse layer contributes Nk × (Nf × k+ 1)× h parameters to



66 processing vertical profiles of state variables

the model. We have studied a large variety of (k, s,h)-combinations
and found that skill depends barely on the particular sliding block
configuration as long as a sufficiently large number of parameters
is exceeded. Setting k = 8, s = 3,h = 5, which corresponds to the
smallest model configuration with saturating skill, we obtain Nk =

20 blocks, and 8100 trainable parameters. In comparison to a fully
connected layer, parameter size is reduced by around 90%.

6.2 results

We intend to investigate the following aspects concerning the model
skill of SALAMA 1D. First, we compare SALAMA 1D to SALAMA 0D,
studying the potential benefit of considering vertical profiles (instead
of derived single-level predictors) for the prediction of thunderstorm
occurrence. Moreover, we are interested in examining whether extend-
ing the study period from which to gather training examples enhances
skill. Finally, we study how sensitively SALAMA 1D reacts to small
input changes. The results offer insight into how the model infers
thunderstorm occurrence from the input.

Model comparison

In order to get a first idea of the skill of the two SALAMA 1D models
and SALAMA 0D, we consider two cases with thunderstorm activity
in Central Europe, namely July 24, 2023, 1700 UTC (case A), and
August 2, 2023, 1200 UTC (case B). These two cases were chosen since
they display multiple simultaneous convective regions of varying
size. In Fig. 6.4, we show maps of the probability of thunderstorm
occurrence for Central Europe as produced by the three models and
compare them with lightning observations. The probability maps have
been computed by retrieving the latest NWP forecast for each target
time (case A: the 2-hour forecast of the 1500 UTC model run, case
B: 0-hour forecast of the 1200 UTC run) and applying the SALAMA
models to one ensemble member. For both cases, we also show raw
NWP output to see where the NWP model produces convection. To
this end, we consider the column-maximal radar reflectivity product of
ICON-D2-EPS. Specifically, for a given pixel, we compute the fraction
of pixels within a radius of 15 km which exceed a threshold of 37dBZ
(e.g., Theis et al., 2005; Roberts et al., 2008). Exceedance probabilities
of reflectivity with thresholds between 30dBZ and 40dBZ have also
been used in previous studies to identify thunderstorm occurrence
(e.g., Mueller et al., 2003; Leinonen et al., 2022; Ortland et al., 2023).

Case A is characterized by intense thunderstorm activity from the
Alps to Northern Germany, displaying roughly ten convective objects
of different sizes. Most lightning contours are predicted by all three
models. However, SALAMA 0D produces a significant number of false
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Figure 6.4: Model probability of thunderstorm occurrence for the three mod-
els of this study, evaluated for July 24, 2023, 1700 UTC (upper
panels), and August 2, 2023, 1200 UTC (lower panels). The filled
contours with varying shading display the result for the first
ensemble member of ICON-D2-EPS, whereas lightning labels are
shown as black contours. None of the dates have been used for
training. NWP forecast lead times are 2h for the upper panels
and 0h for the lower panels (note that 0-hour forecasts have lim-
ited operational utility, as they become available only after the
valid time has passed). The last column shows the probability of
exceeding a reflectivity threshold of 37dBZ for the first ensemble
member of ICON-D2-EPS. To obtain these exceedance probabili-
ties, we computed for each pixel the fraction of pixels within a
radius of 15 km at which the column-maximal radar reflectivity
product of ICON-D2-EPS exceeds the threshold.
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alarms. SALAMA 1D-2021 corrects many of them, especially in South-
ern Germany. SALAMA 1D-2022 tends to make its predictions more
confidently than the other models, resulting in more contours which
are filled out with high-probability pixels. On the other hand, the
model seems to produce slightly more false alarms than SALAMA 1D-
2021.

Thunderstorm activity in case B occurs primarily over the Benelux,
while two smaller thunderstorms are observed over the North Sea. The
latter two events are missed by the three models, though SALAMA 1D-
2022 only misplaces the storms towards the South. The thunderstorm
over the Benelux is captured to some extent by all the models. How-
ever, the SALAMA 1D models are more confident in their predictions,
producing high-probability pixels almost everywhere within the thun-
derstorm contour. On the other hand, they overestimate the size of
the thunderstorm, resulting in false alarms directly outside the con-
tour. SALAMA 0D predicts a wide band of thunderstorm activity
over France and Southwestern Germany, which was not confirmed
by lightning observations. This region of false alarms is significantly
reduced by the two SALAMA 1D models, with SALAMA 1D-2022

reducing the region to essentially zero.
The ML models, overall, align with raw NWP structures, with

highest ML probability output being collocated with a high likelihood
of exceeding 37dBZ. On the other hand, the ML models tend to
correct the areal size of simulated convection, with SALAMA 1D-2022

producing the least false alarms. Remarkably, the SALAMA 1D models
can also produce high-probability output when lightning occurred
but no convection has been triggered in the NWP model, as can be
seen for the lightning regions over France for case A, which suggests
that our ML models, SALAMA 1D-2022 in particular, may be able to
correct for NWP model biases.

To compare the models quantitatively, we use the test set from
Section 6.1. In the upper panels of Fig. 6.5, we show for each of our
models the corresponding reliability diagram with Nb = 10 bins. All
models display a similar degree of high reliability. We reiterate here
that it is important to apply the analytic model calibration formula
(3.4), otherwise high reliability could not be expected. The refine-
ment distributions, as well, look similar. However, the model reso-
lutions differ significantly: The lower panels of Fig. 6.5, which show
bin-wise reliability and resolution, indicate that the increase in skill—
measured by the Brier skill score (BSS)—for the two SALAMA 1D
models over SALAMA 0D is primarily due to enhanced resolution.
For SALAMA 1D-2021, both low- and high-probability examples en-
hance resolution, while for SALAMA 1D-2022, all bins with pi > 0.3
contribute additional improvements to resolution.

In Table 6.3, we summarize the performance of the three models
using the scores introduced in Section 2.3. These scores are posi-
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Figure 6.5: Reliability diagram for SALAMA 0D (left), SALAMA 1D-2021

(middle), and SALAMA 1D-2022 (right). Upper panels show
the calibration curve and the refinement distribution, while the
lower panels display bin-wise resolution and reliability (Eqs. (5.1)
and (5.2)). The uncertainty on the calibration curve is obtained
from 104 bootstrap resamples, using day-wise block resampling,
and show the symmetric 90% confidence interval. The area en-
closed by bin-wise resolution and reliability corresponds to the
BSS with climatology as reference. The BSS differences between
the models are significant on a 90% confidence level, as we check
in Table 6.3.

tively oriented and bounded by unity. Across all skill scores, the
SALAMA 1D models consistently outperform SALAMA 0D, with
SALAMA 1D-2022 showing higher skill than SALAMA 1D-2021.

So far, we have worked with a test set that consists of examples
from NWP forecasts with a lead time of at most 2h. Next, we examine
systematically how model skill depends on NWP forecast lead time.
The lead-time dependence of skill is shown in the upper panel of
Fig. 6.6. While we measure skill in terms of the BSS, we have checked
that the results of this section do not qualitatively change when consid-
ering a different skill score. All three models exhibit an approximately
exponential decrease in skill. The rate at which skill decreases is very
similar for the three models. This suggests that the decrease of skill is
not model-specific but results to a significant degree from an increas-
ing NWP forecast uncertainty, which is consistent with previous work
(Section 5.2). As a consequence, the SALAMA 1D models’ superior
skill for low lead times is passed on to longer lead times. In the lower
panel of Fig. 6.6, we show the difference in skill as a function of lead
time for all model pairs. Again, we find that the SALAMA 1D models
consistently outperform SALAMA 0D at a confidence level of 90%,
with SALAMA 1D-2022 showing higher skill than SALAMA 1D-2021.

It is worth noting that the decrease in skill of SALAMA 0D is
stronger than reported in Section 5.2. There, initial skill decreased by
at most 30% after 11h, while the decrease here is approximately twice
as high. This may result from using more diverse test sets in this study
(we use twice as many days to compile the training set).
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Table 6.3: Scores for classification skill (Section 2.3) evaluated on the test
set. All scores except BSS and PR-AUC require setting a decision
threshold to convert probabilities to binary output. The threshold
is chosen for each model such that the average fraction of exam-
ples classified as thunderstorms is equal to the observed fraction
of thunderstorm examples. For this threshold, recall is equal to
precision and the F1-score, such that only recall (POD) is reported
here. Uncertainties are obtained from 104 bootstrap resamples,
using day-wise block resampling, and show the symmetric 90%
confidence interval. The last five rows evaluate the distribution
of difference in skill between the models (score(A) − score(B) for
model pair (A, B)), obtained from the bootstrap resamples, and
show that all differences are significant on a 90% confidence level.

Skill score 0D 1D-21 1D-22

BSS 0.234+0.037
−0.048 0.261+0.035

−0.044 0.281+0.034
−0.044

PR-AUC 0.397+0.055
−0.071 0.439+0.051

−0.065 0.452+0.047
−0.061

POD 0.414+0.045
−0.059 0.452+0.041

−0.054 0.465+0.039
−0.050

CSI 0.261+0.037
−0.045 0.292+0.035

−0.043 0.303+0.034
−0.041

ETS 0.250+0.035
−0.043 0.281+0.033

−0.042 0.293+0.032
−0.039

Difference 1D-21, 0D 1D-22, 1D-21 1D-22, 0D

BSS 0.027+0.015
−0.013 0.020+0.008

−0.008 0.047+0.014
−0.013

PR-AUC 0.043+0.021
−0.019 0.012+0.011

−0.011 0.055+0.021
−0.017

POD 0.038+0.017
−0.016 0.014+0.009

−0.009 0.052+0.020
−0.018

CSI 0.031+0.013
−0.013 0.012+0.007

−0.007 0.043+0.015
−0.014

ETS 0.031+0.013
−0.013 0.012+0.007

−0.007 0.043+0.015
−0.014
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Figure 6.6: Lead-time dependence of model skill, quantified by the BSS. Up-
per panel shows the BSS for the individual models, while the
lower panel shows the skill difference ∆BSS = BSS(A) − BSS(B)
between model pair (A, B). Uncertainties are obtained from 104

bootstrap resamples, using day-wise block resampling, and show
the symmetric 90% confidence interval. As the shaded bands in
the upper panel overlap, the lower panel is crucial for testing
whether skill differences between the models are significant.

Interpretability study

For the remainder of this section, we focus on SALAMA 1D-2022,
referring to it simply as SALAMA 1D. Our goal is to gain insight into
how our model classifies input. We start by inspecting how the vertical
profiles of the SALAMA 1D input fields look like on average for test
set samples to which our model assigns a particularly high or low
probability of thunderstorm occurrence. Figure 6.7 shows the average
vertical profiles for the top and bottom probability percentile of test set
samples. Shaded bands denote the symmetric 50% confidence interval.
Note that we converted specific humidity to dew-point temperature Td

for a more straightforward comparison with temperature. For better
orientation within the panels, we also plot the average tropopause
height (Section 2.1).

The first column of panels in Fig. 6.7 shows temperature and dew-
point temperature Td for the two percentiles. The top percentile tropo-
sphere displays more moisture than the bottom percentile, in particular
in 2− 5 km height. This is consistent with the documented importance
of moisture for thunderstorm development, as the buoyancy of rising
air parcels is otherwise reduced by dry-air entrainment (F. Zhang
et al., 2003; Peters et al., 2023; Marquis et al., 2023). In the second
column of Fig. 6.7, we show average profiles of mixing ratios of cloud
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Figure 6.7: Average vertical field profiles for the top probability percentile
of test set samples (upper row) and the bottom percentile (lower
row), with annotated levels of the tropopause. We convert average
specific humidity to dew point temperature Td for a comparison
with T. Shaded bands correspond to the symmetric 50% confi-
dence interval.

water (QC), cloud ice (QI), and graupel (QG). The column suggests
that the model uses non-vanishing profiles of QI and QG to discrimi-
nate between the top and the bottom percentile. For high-probability
samples, ice particle content peaks close to the tropopause at a height
of 10− 12 km, consistent with measurements of vertical hydrometeor
distributions (e.g., Vivekanandan et al., 1999; Hubbert et al., 2018). The
third column of Fig. 6.7 displays the average profiles of cloud cover
(CLC). In general, our model associates non-vanishing CLC with a
high probability of thunderstorm occurrence. In particular, close to the
tropopause, CLC tends to be 100%. This is consistent with anvil cloud
top levels (Markowski et al., 2010, pp. 208–209). In the fourth column
of Fig. 6.7, we show vertical profiles of the three wind components U,
V, and W. It is noteworthy that high-probability samples tend to have
southwesterly wind profiles, whereas samples from the bottom per-
centile display northwesterly winds. This is consistent with studies on
the typical propagation direction of thunderstorms in Central Europe
(Hagen et al., 1999). On the other hand, vertical profiles of W vanish
for both percentiles. We presume that due to convection displacement
errors in the NWP model, the updraft regions within simulated deep
convection rarely match observed lightning observations. Therefore,
SALAMA 1D may have learned not to rely on W for inferring thun-
derstorm occurrence. The last column of Fig. 6.7 shows the average
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profiles of pressure. Both profiles appear to be essentially hydrostatic.
Surface pressure tends to be lower for the top percentile than for the
bottom percentile.

Comparing the average profiles of the SALAMA 1D input fields for
the two percentiles is useful to get a first idea whether our model sep-
arates the thunderstorm class from the majority class in a physically-
interpretable manner. On the other hand, this analysis does not inform
about the relative importance of the individual atmospheric variables.
Therefore, we conduct a linear sensitivity analysis of the conditional
probability C of thunderstorm occurrence (SALAMA 1D model out-
put) with respect to the input. The general idea is to consider for a
given input sample ξ = (ξij) ∈ RNf×Nz the partial derivatives of C:

Sij(ξ) ≡
∂C(ξ)

∂ξij
(6.1)

The term Sij(ξ) constitutes a measure of how much C reacts to changes
in ξij and, therefore, quantifies the importance of ξij to the outcome.
Sij(ξ) is commonly referred to as saliency in the ML literature (Si-
monyan et al., 2014; W. Li et al., 2022) while meteorologists might
know it as adjoint sensitivity (Errico, 1997; Warder et al., 2021).

In order for saliency values Sij(ξ) to be comparable across all in-
dices i, j, we need to scale the input fields appropriately. This scaling
accounts for the fact that the fields have different units and vary dif-
ferently from one sample to another. Consider an unscaled input field
ξ̃(z) (e.g., pressure), which we take as a function of height z above
ground. We define the corresponding scaled fields as

ξ(z) =
ξ̃(z) − µξ(z)

σξ(z)
, (6.2)

where µξ(z) and σξ(z) encode a characteristic background climatology
for ξ̃(z). We define these terms as

µξ(z) ≡ P50
(
ξ̃(z)

)
(6.3)

σξ(z) ≡
P99

(
ξ̃(z)

)
− P1

(
ξ̃(z)

)
2

, (6.4)

where Pn stands for the nth percentile of the variable in the brackets,
evaluated for the training set. We then compute saliency with respect
to the scaled fields.

While saliency varies from one sample to another and can be used
to interpret individual predictions, we propose averaging over the
top probability percentile to obtain more robust insight on the input
fields and height levels which contribute most to high-probability
output. To this end, we compute |⟨Sij⟩|, where the angle brackets
denote averaging over the top percentile samples. We take the absolute
value (absolute saliency), as we consider feature importance to be
linked to the (sample-averaged) intensity of the ML model’s linear
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Figure 6.8: Vertical profiles of average saliency for the top percentile of test
set samples (based on model probability), with annotated levels
of the tropopause, as well as the level of free convection (LFC)
and equilibrium level (EL) of a mixed-layer parcel. Saliencies for
the different fields are stacked on top of each other in the order
given in Table 6.1.

response, irrespective of whether this response is positive or negative.
In what follows, we refer to |⟨Sij⟩| simply as saliency, i.e., with sample-
averaging and taking the absolute value being implicitly implied
unless stated otherwise. The resulting saliency maps for the two
percentiles are shown in Fig. 6.8. Note that average saliencies of the
different fields are stacked on top of each other. As a consequence, the
saliency envelope quantifies how much individual height levels affect
the model outcome.

The saliency envelope displays two distinct peaks, at z = 12 km
and z = 5 km, respectively. The upper-level peak receives the most
contributions by horizontal velocity. Indeed, the saliencies of U and V
are maximal near the tropopause, where the average horizontal veloc-
ity difference between the top and the bottom percentile is greatest
(Fig. 6.7). This suggests that the model relies to a considerable extent
on the learned climatological propagation direction of thunderstorms.
Conversely, W saliency is approximately one order of magnitude
smaller than the saliencies of U and V, which is consistent with the
average vertical profiles of W being identical for the top and bottom
percentile (Fig. 6.7). QI saliency is maximal at the top of the tropo-
sphere, contributing significantly to the upper-level peak, as well. QI
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is present only at this height (Fig. 6.7), which suggests that the model
actively takes ice particle content into consideration to infer thunder-
storm occurrence. The only other hydrometeor field with significant
non-vanishing saliency is specific humidity (QV). QV saliency peaks
near the level of free convection (LFC), coinciding with the vicinity of
maximal tropospheric moisture (Fig. 6.7). Similarly, CLC saliency is
low but non-vanishing at all heights with non-zero CLC (Fig. 6.7).

Next, we turn to the mid-level peak. Apart from horizontal velocity,
the mid-level peak receives most contributions from temperature. This
may be partly due to convection feeding back to the temperature field.
However, since pressure saliency is non-vanishing only at the mid-
level peak and near the surface, we hypothesize that the ML model
also reconstructs lapse rates. To understand this, note that our model
is not informed about the height of individual vertical levels; rather,
these levels are randomly shuffled (Section 6.1). Thus, our model can
reliably infer heights levels—and in particular level spacings—only
from pressure, which monotonously decreases with height (Fig. 6.7).
Therefore, we expect pressure saliency to be a proxy for how much
the model relies on vertical gradients. Finally, as pressure saliency
contributes to the mid-level peak and temperature saliency is high,
we conjecture that our model reconstructs mid-level lapse rates. This
is supported by the fact that the mid-level peak is bounded by the
LFC and the equilibrium level (EL) of parcels lifted from the mixed
layer, meaning that such parcels are buoyant for height levels in
the vicinity of the mid-level peak. Positive buoyancy occurring in a
conditionally unstable troposphere is known to be a crucial ingredient
for thunderstorm development (Doswell et al., 1996) and constitutes
the basis for several traditional thunderstorm predictors, such as
convective available potential energy (CAPE).

To test whether SALAMA 1D considers mid-level lapse rates, we
show in Fig. 6.9a the distribution of 500− 300hPa lapse rates for the
top and bottom probability percentile. Indeed, essentially all high-
probability samples are associated with conditionally unstable mid-
level lapse rates, whereas the bottom percentile distribution extends
further into absolutely stable mid-level lapse rates. On the other hand,
the distributions of the two percentiles show a significant overlap,
which implies that considering mid-level lapse rates alone is not
sufficient to infer a high probability of thunderstorm occurrence.

Complementarily to mid-level lapse rates, we show the distributions
of CAPE for the two percentiles in Fig. 6.9c. Most samples in both
percentiles have a low value of CAPE, with around 40% of the high-
probability samples and 90% of the low-probability samples falling
into the lowest bin. Nevertheless, the top percentile distribution has a
longer tail, towards higher CAPE values, than the bottom percentile
distribution does. The low CAPE values of the bottom percentile
samples are consistent with conditional instability failing to develop.
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As for the top percentile samples, we expect CAPE to be considerably
reduced inside the core of a convective cell, whereas some CAPE is
expected to remain in lightning regions of less intense precipitation,
producing the long tail of the top percentile distribution.

As pressure saliency is non-vanishing also near the surface, we show
in Fig. 6.9b distributions of near-surface (10− 1000m) lapse rates. In-
deed, the distributions differ for the two percentiles. In contrast to
the mid-level peak, near-surface lapse rates for the top percentile tend
to be lower, and mostly absolutely stable, whereas lapse rates for
the bottom percentile are mostly conditionally unstable. Figure 6.9d
shows the corresponding distributions of convective inhibition (CIN).
While most samples of both percentiles fall into the lowest bin, the
top percentile distribution has a longer tail towards higher values
of CIN. This might seem surprising as this result seems to suggest
that stable low-level lapse rates (or: high values of CIN) favor thun-
derstorm occurrence. However, the reduction of CIN is conducive to
thunderstorm development only if sufficient CAPE has been able to
build up beforehand. The bottom-percentile samples are essentially
from environments with low CAPE and low CIN, which suggests
that in these cases, the constantly low CIN (due to, e.g., continuous
mixing of low-level air) caused any instabilities aloft to be released
prematurely, preventing CAPE from building up, or thunderstorms
from forming (Carlson et al., 1983; Tuckman et al., 2023). As far as the
top-percentile samples are concerned, CIN is expected to be mostly
removed within storm centers, while some CIN can be expected to
remain in the less intense regions of convective precipitation or for
samples with simulated convection occurring nearby or in the near
future (“near misses”). This effect likely produces the longer tail of
the top-percentile distribution of CIN.

In summary, SALAMA 1D appears to rely on two categories of
patterns. One category consists of patterns related to

• tropopausal ice particle content, or

• cloud cover.

These patterns pertain to regions within ongoing convection, in which
precipitation is most intense. In contrast, we identify a category of
patterns related to

• horizontal wind direction,

• mid-level and near-surface lapse rates, or

• low-level moisture.

We refer to the latter patterns as mesoscale since the underlying fields,
such as temperature and pressure, vary more slowly in the horizontal
than the fine-grained hydrometeor variables do. Conversely, we refer to
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Figure 6.9: Distribution of mid-level lapse rates (a), near-surface lapse rates
(b), mixed-layer CAPE (c) and mixed-layer CIN (d) for the top
and bottom probability percentile of test set samples.

the former patterns as sub-mesoscale. Mesoscale patterns in the above
sense tend to be characteristic of regions with sufficient distance to the
convective cores such that precipitation is less intense and some CAPE
remains to be released. SALAMA 1D is sensitive to both categories
in order to identify thunderstorm occurrence. While sub-mesoscale
patterns are useful for the identification of convective storm centers,
the sensitivity to mesoscale patterns could explain the ML model’s
skill at increasing the areas of simulated convection observed in the
case study (Fig. 6.3), namely by accounting for modestly-precipitating
regions with low-level moisture and left-over CAPE.

6.3 conclusions

Bypassing the traditional use of derived single-level predictors from
NWP data, we developed SALAMA 1D, an ML model for predicting
the probability of thunderstorm occurrence on a pixel-wise basis
by processing vertical profiles of three-dimensional variables from
convection-permitting NWP forecasts. In response to research question
(RQ) 1, the design of our model’s architecture was guided by physical
considerations. In particular, a sparse layer reduced parameter size
by encouraging interactions at similar height levels, while a shuffling
mechanism prevented the model from learning patterns tied to the
vertical grid structure. The latter also added a form of regularization
which limited overfitting.

In comparison to SALAMA 0D, which infers thunderstorm occur-
rence from derived single-level features, our new model demonstrated
higher skill across a wide range of metrics and for lead times up to
at least 11h. In response to RQ 2, this result indicated that informa-
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tion relevant to thunderstorm occurrence, while intricately encoded
in vertical profiles, can be successfully extracted by ML, resulting in
an improved ability to recognize thunderstorm occurrence in NWP
forecasts. Notably, our model remained lightweight in terms of compu-
tational complexity, making it just as suitable for real-time operational
use as SALAMA 1D is. In response to RQ 5, case studies suggested
that SALAMA 1D is capable of correcting the raw NWP output when
convective areas are of incorrect size or when NWP fails to produce
convection at all. Furthermore, doubling the number of days used to
compile the training set (while keeping the training set size constant)
also increased skill, underscoring the importance of a large and di-
verse database of NWP data. We anticipate further skill improvements
with the collection of more NWP data.

In response to RQ 3, a sensitivity analysis based on saliency maps
revealed that many learned patterns are physically interpretable. For
instance, our results suggested that SALAMA 1D has learned the
climatological propagation direction of thunderstorms in the study re-
gion and relies on fine-grained (sub-mesoscale) structures, such as ice
particle content near the tropopause, or cloud cover, to identify high-
precipitation regions of ongoing convection. Conversely, mesoscale
patterns related to atmospheric instability and moisture are used, pos-
sibly to account for regions with less intense precipitation and left-over
CAPE. We hypothesized that mesoscale patterns are instrumental in
correcting the areal size of simulated convection.

To improve the ML model’s capability of correcting for NWP-related
biases, it may be beneficial to adapt the model in such a way that
horizontally extended input, or several forecast times around the target
time, are processed. This would allow for improvement on correcting
location and timing errors of convection. Furthermore, one could train
the model in such a way that it can process all ensemble members
simultaneously in one forward pass, which would enable the ML
model to account for NWP forecast uncertainty.

In the next chapter, we will make a step towards ensemble process-
ing. While we do not retrain our model, we will investigate in detail
the benefit of applying SALAMA 1D to all ensemble members and
averaging over the generated predictions.



7
S A L A M A 1 D - E P S : L E V E R A G I N G E N S E M B L E
F O R E C A S T S

This chapter presents the results associated with SALAMA 1D-EPS,
our final ML model configuration, in which SALAMA 1D output is
averaged across members. We first demonstrate for our ML model
that ensemble-averaging significantly improves forecast skill. For one
particular skill score, the Brier skill score (BSS), we derive a novel
analytic expression linking skill differences to correlations between
ensemble members, which aligns with observed performance gains.
Additionally, we perform analyses which suggest that ML models like
SALAMA 1D can identify patterns of thunderstorm occurrence which
remain predictable for longer lead times compared to raw numerical
weather prediction (NWP) output. The findings have been previously
reported in the publication P3:

P3: Vahid Yousefnia, K., T. Bölle, C. Metzl (2025). “Increasing NWP
Thunderstorm Predictability Using Ensemble Data and Machine Learn-
ing”. arXiv: 2502.13316 [physics.ao-ph]. url: https://arxiv.org/
abs/2502.13316.

7.1 data and methods

In this section, we briefly summarize the ML model configurations
and data sets used throughout the current chapter.

ML model

So far, we have used SALAMA 1D only as a single-member model; i.e.,
given the NWP forecast of a single ensemble member, SALAMA 1D
infers the corresponding probability of thunderstorm occurrence. In
this chapter, we study the benefit of considering the entire forecast en-
semble. To this end, we define two evaluation modes of SALAMA 1D:

• Evaluation of SALAMA 1D on single ensemble members. We
use the SALAMA 1D-2022 variant throughout this chapter. We
refer to this evaluation mode as “SALAMA 1D model”.

• Evaluation of SALAMA 1D on all ensemble members (includ-
ing the analytic calibration (3.4)) and, then, computation of the
ensemble mean (Eq. (3.2)). We refer to this evaluation mode as
“SALAMA 1D-EPS model”.
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Data preprocessing

To compare the skill of our two ML models, we again compile test
sets with fixed lead times. The study region and time period for
the data sets are identical to those chosen for the test sets in Sec-
tion 6.1. Each data set (one for each lead time between 0h and
11h) consists of N = 105 examples, of which the NWP input is
ξ ∈ RNe×Nf×Nz = R20×10×65. To assure a fair comparison, both
models are evaluated on the same data sets. We deal with the different
model input dimensionalities as follows: For SALAMA 1D-EPS, we
process each data set directly by applying Eq. (3.2) to N ensemble sam-
ples. For SALAMA 1D, we restructure each data set in such a way that
each ensemble member is treated as an independent sample. Hence,
we apply the single-member model to Ne ×N = 2× 106 samples.

7.2 results

We first report on an increase in skill of SALAMA 1D-EPS with respect
to SALAMA 1D. In particular, we derive an analytic expression for the
difference in skill and show that the expression is consistent with the
measured difference in skill. Then, we compare the skill decay of our
ML model as a function of lead time to a simple benchmark model
based on raw NWP output without any ML-based corrections.

Quantitative benefit of ensemble data

To compare SALAMA 1D and SALAMA 1D-EPS quantitatively and
as a function of lead time, we first produce reliability diagrams (Sec-
tion 2.3). In Fig. 7.1, we show the reliability diagrams of SALAMA 1D
and SALAMA 1D-EPS for the lead times 0h, 4h, and 8h. We focus
first on the upper halves of each panel, which show the correspond-
ing calibration function and refinement distribution. SALAMA 1D
is well calibrated for the 0-hour forecasts and even outperforms
SALAMA 1D-EPS for high model probabilities. The higher reliabil-
ity of SALAMA 1D is not surprising since this model was explicitly
trained by loss-function optimization to output reliable single-member
probabilities. The model was not optimized for ensemble-averaged
model probabilities to be reliable. Therefore, it is remarkable that
SALAMA 1D-EPS produces similarly reliable forecasts anyway. For
longer lead times, both models show a similar degree of reliability.

As for resolution, it can be difficult to compare the two models solely
from their refinement distributions, especially when the two models in
question are similarly skillful. The lower half of each panel in Fig. 7.1
displays the bin-wise reliability and resolution contributions to the
BSS (Section 5.1). Inspection of the enclosed areas reveals that even
though SALAMA 1D-EPS scores worse than SALAMA 1D in terms of
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reliability, its resolution is higher across all lead times, which results
in a higher BSS. As lead time increases, both models’ skill drops;
SALAMA 1D-EPS, however, consistently outperforms SALAMA 1D in
terms of the BSS. Note that the higher skill results mainly from larger
contributions to resolution for modest probabilities lower than 0.5.
Conversely, the contribution to skill from probabilities close to 1 are
actually smaller for SALAMA 1D-EPS than they are for SALAMA 1D.
This illustrates qualitatively how ensemble-averaging increases skill:
The ensemble mean smooths out the rare high-probability predictions
of individual members in favor of a less confident but overall more
skillful averaged forecast. On a separate note, this finding also exem-
plifies how useful our visualization method of bin-wise reliability and
resolution is for interpreting model output.

Figure 7.1: Reliability diagrams and bin-wise reliability and resolution for
SALAMA 1D (upper panels) and SALAMA 1D-EPS (lower pan-
els) for the lead times 0h (left), 4h (middle), 8h (right). Shaded
bands around the calibration functions denote uncertainties on a
symmetric 90% confidence interval. Uncertainties are obtained
from 104 block bootstrap resamples, with day-wise block resam-
pling.

For the remainder of this section, we study in more detail the lead-
time dependence of the BSS for the two models, which is shown in the
upper panel of Fig. 7.2. SALAMA 1D-EPS outperforms SALAMA 1D
significantly. Indeed, an 11-hour forecast of SALAMA 1D-EPS is as
skillful (in terms of the BSS) as the 5-hour forecast of SALAMA 1D.
It is well established in the literature that ensemble systems extend
the skill of deterministic forecasts (e.g., Richardson, 2000; Zhu et al.,
2002; Schwartz et al., 2017). However, in our case (ensemble-averaging
over binary-classifier predictions), it is possible to analytically describe
the difference between deterministic and ensemble skill—at least in
terms of the BSS. We now derive this expression, which, to the best
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Figure 7.2: Lead-time dependence of skill, quantified by the BSS, of
single-member forecasts (SALAMA 1D) and ensemble forecasts
(SALAMA 1D-EPS) of thunderstorm occurrence. The lower panel
shows the difference in skill, together with the prediction from the
analytic expression (7.8), discussed later in the main text. Shaded
bands correspond to sampling uncertainty for a symmetric 90%
confidence interval. Uncertainties are obtained from 104 block
bootstrap resamples, with day-wise block-resampling. The lower
panel reveals that the skill difference between SALAMA 1D and
SALAMA 1D-EPS is significant even for the lead times at which
the shaded bands in the upper panel overlap.

of our knowledge, has not been previously reported in the forecast
verification literature.

Intuitively, ensemble-averaging leads to a more skillful forecast be-
cause we estimate the probability of thunderstorm occurrence based
on a larger sample (of size Ne = 20) than in the single-member case
(sample size 1). Formalizing this intuition is key to deriving the be-
spoke analytic expression for the ensemble-versus-deterministic BSS
difference. To this end, it is instructive to introduce a probabilistic
setting similar to Section 3.3, as is common practice when investigating
the statistical properties of verification scores like the BSS (Bröcker
et al., 2007b; Bradley et al., 2008). Specifically, we consider (continuous)
SALAMA 1D output p ∈ (0, 1) and the corresponding (discrete) thun-
derstorm occurrence ground truth y ∈ {0, 1} to follow some unknown
joint probability distribution. We denote the expected value and vari-
ance of p by E[p] ≡ p and Var[p] ≡ σ2, respectively. In a probabilistic
framework, the Brier score (BS) is formally defined as the following
expected value (Brier, 1950; Wilks, 2019),

BSsingle-mem = E
[
(p− y)2

]
(7.1)

= σ2 + p2 − 2E[py] + E
[
y2
]

, (7.2)

where we added the subscript “single-mem” to emphasize that this
result holds for when evaluating a single ensemble member (the pre-
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vious definition of the BS, Eq. (2.16), formally constitutes an estimator
of Eq. (7.1) for a finite sample size). The Brier skill score (BSS) is still
related to the BS by

BSSsingle-mem = 1−
BSsingle-mem

BSref
, (7.3)

where BSref = E
[
(g− y)2

]
≡ κ2 is a reference score using sample

climatology g ≡ E[y].
As for SALAMA 1D-EPS, we replace p in the above framework

by Ne (possibly correlated) continuous random variables p(k), the
arithmetic mean of which yields SALAMA 1D-EPS model output.
We now make the crucial assumption that the random variables p(k)

are exchangeable; i.e., their joint distribution is invariant under any
permutation of the indices {1, . . . ,Ne}. This assumption is motivated
by the fact that we trained SALAMA 1D on all ensemble members
without favoring any individual member. Moreover, the ensemble of
perturbed initial conditions produced by the Kilometer-scale Ensemble
Data Assimilation (KENDA) system in ICON-D2-EPS consists of statis-
tically indistinguishable members (Section 4.1). Now, exchangeability
implies that all p(k) have the distribution of p from SALAMA 1D
as their marginal distribution. In addition, we have E[p(k)] ≡ p and
E[p(k)y] = E[py] for all k, and the covariance matrix of the p(k) takes
on a particularly simple structure,

Cov
[
p(k),p(l)

]
=

σ2 if k = l

γ otherwise,
(7.4)

with σ2 from the single-member case, and some number γ ∈ R. In
Fig. 7.3, we exemplify the validity of parametrization (7.4) for two test
sets.

The BS for SALAMA 1D-EPS then reads:

BSEPS = E

( 1

Ne

Ne∑
k=1

p(k) − y

)2
 (7.5)

=
σ2

Ne
+ p2 +

Ne − 1

Ne
γ− 2E[py] + E

[
y2
]

(7.6)

By subtracting Eq. (7.2) from Eq. (7.6), we obtain the BS difference
∆BS = BSEPS − BSsingle-mem between the two SALAMA 1D evaluation
modes,

∆BS =
Ne − 1

Ne

(
γ− σ2

)
, (7.7)

where we note that the case of uncorrelated members (γ = 0) is known
in the ensemble ML community (Abe et al., 2022). The reference score
BSref = κ2 depends only on the observations; hence, it is independent
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Figure 7.3: Sample covariance matrix Cov[p(k),p(l)]/10−3 of the member-
wise probabilities p(k),k = 1, . . . ,Ne, estimated for the 0-hour
test set (left) and the 4-hour test set (right). If the members of
the ensemble are exchangeable, the covariance matrix is fully
determined by two numbers (one number for the diagonal entries
of the matrix, one number for the off-diagonal entries), which is
approximately the case.

of the thunderstorm identification model under consideration. There-
fore, it follows from Eq. (7.3) that the difference ∆BSS between the two
models is given by −∆BS/κ2, which yields

∆BSS =
Ne − 1

Ne

σ2

κ2

(
1−

γ

σ2

)
. (7.8)

Before discussing Eq. (7.8) more thoroughly, we compare the lead-
time dependence of ∆BSS, as shown in the lower panel of Fig. 7.2,
obtained through direct evaluation of the test sets with the values
calculated using Eq. (7.8). To evaluate σ2 and γ for a given lead
time, we used the corresponding test set to estimate the ensemble
covariance matrix (Fig. 7.3), and averaged over its diagonal entries
(for σ2), or off-diagonal entries (for γ). We find excellent agreement
between the direct measurement of ∆BSS and (7.8). Note, however,
that since the test sets are used for the direct evaluation of ∆BSS and
for computing σ2 and γ, the two data series in the lower panel of
Fig. 7.2 are not independent evaluations of ∆BSS. Nevertheless, their
agreement justifies the assumptions which went into deriving Eq. (7.8),
in particular, the p(k) being exchangeable.

Having validated Eq. (7.8), we discuss some immediate conclusions.
First, notice that ∆BSS decreases when γ/σ2 approaches 1, which
corresponds to ensemble members becoming increasingly correlated.
Figure 7.3 shows that correlation between the members is quite high
(γ ≈ 0.85σ2 for lead times of 0h). This suggests that efforts to decrease
inter-member correlations in the NWP ensemble (e.g., Anderson, 2016;
Necker et al., 2023; Morzfeld et al., 2023) are most promising for
improving thunderstorm forecasting skill in terms of the BSS. Fur-
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thermore, as expected, ∆BSS increases for larger sample sizes Ne, the
prefactor (Ne − 1)/Ne approaching 1. However, according to Eq. (7.8),
an ensemble size of Ne = 20 already yields a factor of 19/20 = 0.95,
which suggests that there is only little gain to be expected from in-
creasing the size of the NWP ensemble.

Finally, we acknowledge that our analysis focused on only one skill
score, namely the BSS. Note, however, that the qualitative trend seen
in the upper panel of Fig. 7.2 is equally recovered when using different
skill scores. In particular, we checked this for the F1-score, critical-
success index (CSI), equitable threat score (ETS), and the area under
the precision-recall curve (PR-AUC). The reason why we concentrated
on the BSS here is its mathematical tractability, which allows for a
closed-form expression of ∆BSS. Remarkably, the result that ∆BSS ⩾ 0

can also be obtained from Jensen’s inequality, which states that if a
function φ : R → R is convex, then

φ (E[x]) ⩽ E[φ(x)] (7.9)

for a continuous random variable x (Jensen, 1906). In our case, we
estimate expected values via averaging over Ne samples of the ran-
dom variable p− y, using a convex function φ(p) = p2 for BS. This
immediately yields ∆BS < 0. We conclude that a skill increase through
ensemble averaging is guaranteed for all convex skill scores. This has
been noted before (Rougier, 2016).

ML skill decay with lead time

By now, we have well understood the difference in skill between our
two ML models. However, we have not commented yet on their general
decrease in skill as a function of lead time (e.g., Fig. 7.2). We saw in
Chapters 5.2, and 6.2, that the decrease of ML-based classification
skill with lead time is considerably driven by an increase in NWP
forecast uncertainty. We now investigate more precisely whether ML
skill decay with lead time can be solely attributed to the increasing
forecast uncertainty of the underlying NWP model.

To this end, we define a surrogate variable for thunderstorm oc-
currence in the raw NWP output (without any ML-based corrections)
and compare it to our ML predictions. ICON-D2-EPS generates a
column-maximal radar reflectivity product, in which (synthetic) radar
reflectivity is computed from simulated liquid and solid water content
using a one-moment parametrization scheme (Zängl et al., 2015). To
obtain probabilistic reflectivity forecasts which can be directly com-
pared to ML model output, we consider exceedance probabilities of
reflectivity (e.g., Theis et al., 2005; Roberts et al., 2008): For a given
grid point of an NWP forecast, we first define its neighborhood as
the set of grid points within a great-circle distance ∆r = 15 km, which
yields Nn = 166 neighbors. Just as in Fig. 6.4, our surrogate variable
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for thunderstorm occurrence in raw (deterministic) NWP data at a
given grid point is then defined as the fraction of neighbors exceed-
ing a reflectivity threshold of 37dBZ. We chose this threshold after
consulting previous studies in the literature which identified thun-
derstorms via thresholds between 30dBZ and 40dBZ (Mueller et al.,
2003; Leinonen et al., 2022; Ortland et al., 2023), and verifying that the
following results do not change qualitatively if a different threshold
within this range is chosen. The spatial threshold ∆r has been chosen
to match the threshold used for the spatial aggregation of the light-
ning observations (Section 4.2), which serve as the ground truth for
evaluating raw NWP skill, as well. The thusly constructed surrogate
variable, henceforth called “raw NWP”, produces probability-like out-
put between 0 and 1, making a comparison to SALAMA 1D output
straightforward. For ensemble forecasts, we compute exceedance prob-
abilities for each member, and then evaluate the ensemble mean, just
like for SALAMA 1D-EPS.

When comparing the skill of the ML-based models with those
based on raw NWP output, one needs to take the following aspect
into account: while we expect higher model reflectivities to be more
frequently associated with observed thunderstorm occurrence, the
exceedance probabilities are generally not well-calibrated. In turn,
a calibration-sensitive skill score (e.g., the BSS) would display low
skill even if our surrogate variable were perfectly capable of discrim-
inating between the two classes. Therefore, we measure skill using
the resolution term (5.1) of the BSS, defined as RES =

∑Nb
i=1 RESi∆p,

effectively removing calibration sensitivity from the BSS. Any other
calibration-blind score, such as PR-AUC, would be equally suitable
for the following analysis.

Figure 7.4 shows the skill of the SALAMA 1D models and raw NWP
as a function of lead time. Raw NWP initial skill is lower than ML
initial skill, which likely originates from the ML model having access
to more atmospheric variables, resulting in more precise patterns of
thunderstorm occurrence. Skill decreases with lead time in the case
of raw NWP output, as expected from increasing NWP forecast un-
certainty. In order to compare the drop in skill quantitatively with the
SALAMA 1D models, we fit exponential functions ∝ exp (−tlead/τ)

to each curve. The fit parameter τ then provides a characteristic time
scale of skill decay—and hence, predictability—that can be compared
between the individual models. It is worth noting that taking into
account the entire ensemble results in longer skill decay times, no
matter whether one considers the ML-based models or raw NWP
output. On the other hand, the SALAMA 1D models display signifi-
cantly (on a 90% confidence level) longer skill decay times than the
corresponding models based on raw NWP output. This suggests that
while the SALAMA 1D models’ skill decay is to a significant extent
driven by an increasing NWP forecast uncertainty, the ML models
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do manage to slow down the decay. SALAMA 1D may have learned
from observations to advantageously combine multi-variable input,
resulting in more persistent patterns of thunderstorm occurrence—
specifically, longer-term predictable patterns—than if no observation-
based postprocessing had occurred. This finding is consistent with the
established understanding that the postprocessing of NWP variables
with observational data leads to improved forecasts (Vannitsem et al.,
2021).
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Figure 7.4: Lead-time dependence of skill, quantified by the calibration-blind
skill score RES (Eq. (5.1)) for deterministic forecasts (left panel)
and ensemble-averaged forecasts (right panel). Each panel dis-
plays the results for SALAMA 1D and a simple model based
on raw NWP output without any ML corrections. For each line,
we fit an exponential function ∝ exp (−tlead/τ) to introduce a
characteristic time scale τ of skill decay. Across all lines, the skill
of ML-based forecasts decays more slowly than for raw NWP
forecasts, as ∆τ ≡ τ(ML) − τ(raw NWP) > 0. Shaded bands cor-
respond to sampling uncertainty for a symmetric 90% confidence
interval. Uncertainties are obtained from 104 block bootstrap re-
samples with day-wise block-resampling.

7.3 conclusions

This chapter aimed to contribute to the question of how ensemble
NWP models can help improving thunderstorm forecasting. Specifi-
cally, we quantitatively investigated the added benefits of ensemble-
averaging, and of using an ML model trained on observations instead
of using raw NWP output.

We exemplified the benefit of averaging over ensemble predictions
using the SALAMA 1D model, which infers the probability of thunder-
storm occurrence from vertical profiles of atmospheric variables and
has been trained using forecasts of the convection-permitting NWP
model ICON-D2-EPS (Chapter 6). In response to research question
(RQ) 4, we found that applying SALAMA 1D to each NWP forecast
member individually and then evaluating the ensemble mean (the
“SALAMA 1D-EPS” evaluation mode) increases skill across lead times
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up to (at least) 11h, with an 11-hour ensemble forecast displaying
the same skill as a 5-hour forecast of a single member (effectively a
deterministic forecast). Importantly, we were able to quantitatively
describe skill improvements resulting from ensemble-averaging by
deriving and validating a novel analytic formula for the difference in
skill (quantified by the BSS).

In response to RQ 5, a comparison with a simple model based on
raw NWP output without any ML-based corrections revealed that
skill decreases less quickly with lead time for the ML model than for
the model based on raw NWP. This suggested that the decrease in
ML skill with lead time is only partially a result of increasing NWP
forecast uncertainty. Instead, the ML approach may allow for favorably
combining input from multiple atmospheric variables by systemati-
cally taking observational data into account, which is consistent with
understandings in the postprocessing community.

In closing, we stress that our findings justify applying ensemble-
averaging to any binary classification model of ensemble NWP fore-
casts which processes each member separately. As long as the correla-
tion between the members of the underlying ensemble NWP model is
sufficiently small, we expect classification skill to improve as a result.
This particularly applies to ML-based classification models whose
growing role in severe weather forecasting is strengthened by our
findings.



8
C O N C L U S I O N A N D P E R S P E C T I V E S

This thesis was targeted at improving numerical weather prediction
(NWP)-based thunderstorm forecasts by combining three concepts,
namely deep learning, convection-permitting NWP, and ensemble sys-
tems. To this end, we developed SALAMA 1D, a deep neural network
model for the identification of thunderstorm occurrence in convection-
permitting ensemble forecasts. Bypassing the traditional use of single-
level thunderstorm surrogates derived from the NWP state variables,
our model directly processes the vertical profiles of state variables on
a point-wise basis to infer the corresponding, well-calibrated, proba-
bility of thunderstorm occurrence. SALAMA 1D produces probability
output for each member of an ensemble forecast individually; to con-
sider the entire ensemble system, we proposed applying SALAMA 1D
to all members and computing the ensemble mean on the generated
predictions. We referred to this evaluation mode as SALAMA 1D-EPS.
The single-member model SALAMA 1D was trained on operational
forecasts of the ICON-D2-EPS model with lightning observations from
the LINET network providing the ground truth. The code for our
model is available under an open-source license,1 as are the data sets
used for training and evaluation.2 We conclude by summarizing our
findings in the context of our research questions (RQs), discussing
them, and proposing further research.

8.1 summarized answers to the research questions

The research conducted in this thesis was guided by RQs raised in
Chapter 1, to which we summarize our answers below.

RQ 1: How can an ML framework account for the rare occurrence of thun-
derstorms and for practical limits on training data size due to computational
costs?

The issue at hand consisted in the fact that, on the one hand, training
set size was limited in practice due to otherwise unfeasibly long train-
ing times of our ML model. On the other hand, since thunderstorms
are rare events, climatologically consistent data sets would need to
be large to contain sufficiently many thunderstorm samples for train-
ing. Our solution to this issue was twofold. Firstly, we adopted the
widely adopted approach of undersampling the majority class during
training. During inference on climatologically consistent data sets, we

1 https://github.com/kvahidyou/SALAMA

2 https://doi.org/10.5281/zenodo.13981207
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analytically corrected the probability shift caused by the undersam-
pling strategy and showed that this procedure yielded well-calibrated
probability output without calibration fits. The second part of our so-
lution to the issue at hand consisted in keeping ML model complexity
in check to ensure efficient training and avoid overfitting. To this end,
we applied considerations based on physics and symmetries. As a first
step, we invoked exchange symmetry to evaluate all individual mem-
bers separately via a single model instead of processing all members
simultaneously. We physically motivated the redundancy of providing
location or time information as predictors. Within SALAMA 1D’s archi-
tecture, we introduced a sparse layer, which encouraged interactions
at similar height levels, allowing us to reduce model size further in
spite of a broken translational symmetry in the vertical. In addition, a
shuffling mechanism prevented the model from learning patterns tied
to the vertical grid structure, effectively forcing the model to discover
pressure-based coordinates, while also adding a form of regularization
which limited overfitting.

RQ 2: Can a deep neural network model, which is given the flexibility to
discover—on its own—the representations needed to infer thunderstorm oc-
currence, outperform a conventional ML model relying on human-engineered
predictors, despite constraints on training set size and high computational
resource requirements?

For all considered lead times, our deep neural network approach
significantly (on a 90% confidence level) outperformed our initial
model prototype which relied on single-level thunderstorm surrogate
variables. This indicated that information relevant to thunderstorm
occurrence, while intricately encoded in vertical profiles, can be suc-
cessfully extracted by ML, resulting in an improved ability to recognize
thunderstorm occurrence in NWP forecasts. While our deep learning
model constituted a major conceptual leap forward in comparison
to our initial model prototype, it is still a lightweight ML model in
terms of computational complexity and, hence, suitable for real-time
operational use.

RQ 3: To what extent are the patterns identified by our deep neural network
model physically interpretable?

The patterns learned by our deep neural network are to a consider-
able extent physically interpretable, as we established using a linear
sensitivity analysis based on saliency maps. Our results suggested
that our model has learned the climatological propagation direction of
thunderstorms in Central Europe and relies on fine-grained structures,
such as ice particle content near the tropopause, or cloud cover, to iden-
tify highly-precipitating regions of ongoing convection. Conversely,
mesoscale patterns related to atmospheric instability and moisture
serve to additionally account for areas with less intense precipitation
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and left-over CAPE. Models with interpretable patterns consistent
with physical understanding arguably foster more trust than a pure
“black-box” model, which is important to make ML models like ours
likely to be used in practice by severe-weather forecasters.

RQ 4: By how much and why does skill increase when averaging over an
NWP ensemble of thunderstorm forecasts?

SALAMA 1D-EPS displayed a considerable increase in skill compared
to the single-member model SALAMA 1D. As a matter of fact, an
11-hour ensemble forecast turned out to be as skillful as a 5-hour
single-member forecast. We argued that skill increases because the
ensemble system’s larger sample size allows to estimate the proba-
bility of thunderstorm occurrence more accurately than when only a
single forecast is available. For a particular skill score (the Brier skill
score (BSS)), we derived an analytic expression for the difference in
skill, which, to the best of our knowledge, has not been previously
reported, and encourages efforts to reduce correlations between the
NWP ensemble members.

RQ 5: Which factors affect the decay of ML model skill with lead time? To
what extent can ML counteract skill decays resulting from the increase of
NWP uncertainty?

The thunderstorm identification skill of SALAMA 1D-EPS decreases
exponentially in the considered forecast range (Chapter 7), which we
found to be the case for earlier model prototypes, as well (Chapter 6).
We showed for SALAMA 0D that ML initial skill and skill decay time
increase with the spatial scale of the forecast (Chapter 5). Furthermore,
our ML model’s initial skill, as well as skill decay time, are signifi-
cantly (on a 90% confidence level) higher than raw NWP skill, which
results in an increased practical predictability of thunderstorm occur-
rence (Chapter 7). Rather than mirroring the increasing NWP forecast
uncertainty, this result suggested that our ML model can partially
correct for biases in the NWP model. This was consistent with a case
study in Chapter 6, in which our ML model corrected the areal size of
convection and correctly produced non-vanishing probability output
even the NWP model failed to produce convection. We hypothesized
that the reliance of our ML model on mesoscale patterns indicative of
less intense precipitation outside convective cores is instrumental in
correcting the areal size of simulated convection.

8.2 discussion and outlook

In this section, we discuss limitations in our methodology and propose
research avenues to address them. Furthermore, we comment on the
general significance of this work.
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Some conceptual questions went unaddressed in this thesis. For
instance, while we investigated the added benefit of ensemble data
compared to deterministic forecasts, we did not study the benefit
of convection-permitting forecasts. Retraining on NWP data with a
coarser horizontal grid resolution can help quantifying how much
of the observed skill of our SALAMA models can be attributed to
the grid spacing of ICON-D2-EPS. Possible NWP models for this task
include the deterministic ICON model over Europe with a resolution
of 6.5 km. Such a retraining additionally allows us to study whether
the learned patterns of SALAMA 1D generalize to different model
domains while addressing the need of the aviation sector for higher
spatial coverage than provided by ICON-D2-EPS.

Further limitations are given by simplifying assumptions which
went into constructing our ML framework, namely the processing
of grid-pointwise input, and the merging of ensemble forecasts by
computing the ensemble mean of ML output. These model choices
were justified to constrain model complexity and arguably were instru-
mental in keeping a degree of interpretability in the model, as, e.g.,
spatially extended input would have complicated a graphical repre-
sentation of saliency in terms of input fields and height. Nonetheless,
future research should investigate the use of NWP state variables at
several horizontal locations around the grid point of interest. This
could help a deep neural network to better account for convection dis-
placement errors of NWP. Similarly, an ML model trained to process
all ensemble members could harvest valuable data from the spread of
an ensemble, instead of considering only the ensemble mean. On the
other hand, individual training set samples will become large in size
when ensemble members and neighboring grid points are considered,
which will in practice limit the number of available training samples—
even more so than in this thesis. Methods from transfer learning could
be used to limit the number of adjustable parameters. For instance,
one could first train an autoencoder to learn a low-dimensional em-
bedding of the (10, 65)-dimensional SALAMA 1D input. In a second
step, a deep neural network could be trained to process the vertical-
profile embeddings from Nn neighboring grid points and Ne members
simultaneously.

We close by emphasizing that while the primary focus of this thesis
was to develop a deep learning model for identifying thunderstorm
occurrence in NWP data, many concepts and methods derived here
actually apply to a large class of use-cases involving binary classifica-
tion: Our novel visualization method of reliability and resolution as a
function of model output (Chapter 5) provides a useful extension to
reliability diagrams, arguably making refinement distributions easier
to interpret. Furthermore, while the analytic calibration formula (3.4)
used for correcting probability shifts due to undersampling is known
in the broader ML literature, its application to binary classification in
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severe weather forecasting appears to be novel, allowing for training
under optimal use of computational resources without the need for
calibration fits afterwards. Finally, while deep learning on increasing
amounts of data plays an ever more significant role in research and in
our daily life, this thesis demonstrates how the incorporation of physi-
cal considerations and symmetry principles can help reducing model
complexity and addressing issues like overfitting. In this sense, theo-
retical physics remains instrumental in our data-driven new era—just
as thunderstorms will continue to inspire awe across humankind.
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