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Abstract 
Cancer is a complex genetic disease emerging from the accumulation of somatic alterations that drive 
tumour growth. This disease is remarkably heterogeneous, comprising several subtypes driven by various 
distinct mutational events and with individual response mechanisms. Notably, its complexity renders this 
disease hard to research and contributes to be one of the top deadliest worldwide.  

High-throughput drug screens have empowered numerous targeted and combination therapies for person-
alised patient treatment by revealing potentially relevant biomarkers. The application of large scale of ge-
nomic datasets, such as the Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Therapeutics 
Response Portal (CTRP), has sparked the need for suitable bioinformatic tools to properly mine, model and 
analyse cancer biomarkers in the data.  

In this dissertation, I focused on three aims towards cancer biomarker discovery and developed distinct 
algorithms to analyse each task. Aim 1, analysing drug resistance mechanisms using statistical frame-
works; Aim 2, investigating synergistic drug combinations in cells with uncontrolled proliferation markers 
using curve fitting methodologies; and Aim 3, identifying new cancer-specific driver genes based on a 
network-based approach.  

Aim 1: To investigate acquired resistance to a treatment from initially responsive cell lines, I developed an 
outlier statistical model that identifies unexpectedly resistant cell lines from the GDSC and CCLE drug 
screens. This method not only reproduced known biomarkers in lung adenocarcinoma, but also outper-
formed a standardized outlier detection method. Furthermore, the proposed hierarchical statistical frame-
work was also tested in terms of false discovery rate bounds.  

Aim 2: Secondly, I looked into the modelling of drug responses with unexpectedly increase cell viability 
missed by standard methodologies, and proposed to leverage drug-induced uncontrolled proliferation as a 
new synergistic combination therapy with drugs that act on fast proliferating cells, e.g., DNA damaging 
agents. Building on this, I developed two mathematical frameworks based on Gaussian and linear models 
to capture cancer-type biomarkers of increased viability. Promising candidates in lung cancer were tested 
in additional drug screen experiments and potential synergistic drug combinations were hypothesised. 

Aim 3: I proposed the weighted Protein-Protein Interaction (wPPI) tool based on PPI networks, combined 
with Gene Ontology and Human Phenotype Ontology datasets, to infer new tissue-specific genes closely 
related to cancer driver genes. Subsequently, the gene expression profiles of the top highest scoring can-
didates were used to develop drug response machine learning models in breast cancer. The performance 
of the built models was assessed and cross-compared with models created with several gene feature sets, 
namely unspecific tissue-specific genes and genes prioritised with other network-based methodology.  

In summary, this dissertation introduces innovative and robust computational methodologies to advance 
tissue-specific cancer biomarker discovery. These approaches address multiple challenges associated with 
limited statistical power in precision oncology, including the investigation of rare phenomena and the insuf-
ficient understanding of key players of cancer progression. As an overarching goal, these methodologies 
are envisioned to not only enhance insights into the complex mechanisms underlying cancer, but also con-
tribute to the design of refined targeted therapeutic strategies.  
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1. Introduction 

1.1 Cancer biology 
Cancer is a complex and heterogeneous disease driven by genetic, epigenetic, and environmental altera-
tions. Its development is mainly characterized by dynamic somatic mutations in the genome that gradually 
transform normal cells into malignant clones with uncontrolled proliferation, apoptosis evasion and meta-
static capability, i.e., cancer hallmarks (Hanahan & Weinberg, 2000). In 1838, pathologist Johannes Müller 
described for the first time that cancers are composed of cells (Müller, 1838). Later, his student Rudolf 
Virchow discovered that these cells are in fact derived from previous healthy cells (Virchow, 1858). These 
findings were fundamental to understand the disease origin and, together with technological advances, its 
several hallmarks (Hanahan & Weinberg, 2011).  

The WHO agency states cancer is the second most frequent cause of death worldwide, with an estimation 
of nearly 10 million deaths across 185 countries in 2020 (Ferlay et al., 2021). The most common cancer 
types are breast (2.26 million cases) and lung (2.21 million cases). Notwithstanding, studies made in the 
United States (Siegel et al., 2022) and Europe (Dalmartello et al., 2022) noted and predicted a decline in 
the risk of developing cancer and mortality patterns for several cancer types (e.g., lung, breast and prostate 
cancer) due to the adoption of low risk factor habits, employment of early detection programs and continu-
ous improvements in medical practices.  

In summary, despite notable research advances, the inevitable accumulation of somatic alterations 
throughout a person’s life combined with its multifaceted complexity, positions cancer as a challenging 
worldwide health concern. Therefore, a comprehensive response addressing its diverse mechanisms is 
crucial to enable early detection, effective treatment strategies and, ultimately, improve survival rates.  

1.1.1 Genetic variations 
Even though the human DNA is almost identical from one individual to another (around 99.5% shared base 
pairs), one can find subtle natural variation within each individual (Collins & Mansoura, 2001; Gonzaga-
Jauregui et al., 2012; Levy et al., 2007). These alterations may be inherited through generations in the 
reproduction process from parental cells (germline variation), or from changes in any single dividing cell 
(excluding germ cells) by internal or external processes accumulated through a lifespan of an individual 
(somatic variation) (Figure 1).  

Cancer is mainly driven by the accretion of somatic mutations derived from alterations in the nucleotide 
sequence during DNA replication or recombination. The former mechanism is one of the most essential 
processes the cell undergoes during the S-phase, DNA synthesis, in preparation for mitosis, where two full  

https://paperpile.com/c/locLTC/0Ni8P
https://paperpile.com/c/locLTC/9smG
https://paperpile.com/c/locLTC/pkoH
https://paperpile.com/c/locLTC/3pSDr
https://paperpile.com/c/locLTC/u6gLB
https://paperpile.com/c/locLTC/4Gqc5
https://paperpile.com/c/locLTC/PndOE
https://paperpile.com/c/locLTC/p5eLl+feRR+Llrz
https://paperpile.com/c/locLTC/p5eLl+feRR+Llrz
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copies of a cell are created from a single parental one. During this process, the original double helix is 
separated in two DNA strands, where one of the strands is read by a DNA polymerase enzyme and serves 
as a template to synthesize a new complementary DNA segment. Notwithstanding the high level of accu-
racy entangled in it, this process is error prone during the reading and writing stages. In brief, the human 
DNA consists of almost 6 billion base pairs and is estimated to have an average mistake rate of 1 in 1010 
per replicated nucleotides (Kunkel & Bebenek, 2000; McCulloch & Kunkel, 2008; Pray, 2008). Leading to a 
potential ~120 thousand error rate per each cell division event.  

Furthermore, DNA replication is conducted by polymerases enzymes and new mutations mainly manifest 
when mistakes are not corrected by these enzymes. Examples of these errors consist of single base inser-
tions/deletions (indels; e.g., copy number variation (CNV)) or substitutions (e.g., single nucleotide polymor-
phisms (SNPs)) (Loeb et al., 1974). In addition, mutations can also be derived by DNA damage from expo-
sure to environmental factors (induced mutations; e.g., ultraviolet radiation and smoking) or from internal 
natural reactions (spontaneous mutations). 

Favourably, there are several intrinsic DNA repair mechanisms available throughout the cell cycle, namely 
DNA mismatch repair, nucleotide excision repair, base excision repair and double-strand break repair 
(Alhmoud et al., 2020). Moreover, in the event of persistent damage, repair processes such as apoptosis 
(controlled cell death) and senescence (cell cycle arrest) are activated by intrinsic or extrinsic pathways. 
The existence of these key safety repair protocols increases the accuracy of the DNA replication process 
and defend human cells against mutation effects. 

A B

Figure 1: Germline and somatic variations. 
 

(A) Germline variations originate from alterations in parental cells and culminate into mutations in all tis-
sues. In contrast, (B) somatic variations can occur in a single dividing cell by internal or external processes 
and result in a somatic mutation in the locally affected tissue.  
Figure created with BioRender.com. 
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1.1.2 Cancer functional events  

1.1.2.1 Passenger and driver mutations 
Somatic mutations can be grouped in two categories: passenger and driver mutations.  The latter, albeit 
only represent a small portion of the total number of mutations, are responsible for driving the cancer pro-
gression and, therefore, have a selective advantage with regard to other cells (Stratton et al., 2009). Nota-
bly, cancer evolves by the cumulative collection of driver mutations which impacts key pathways and trig-
gers cancer hallmarks (Hanahan & Weinberg, 2000). In contrast, passenger mutations are the most com-
mon type of variations, functionally neutral and with no direct impact on cancer development (Castro-Giner 
et al., 2015; McFarland et al., 2013).  

Driver mutations take place in cancer driver genes and mainly manifest in the form of somatic mutations, 
with only a minority occurring in the germline. Most of the human genome comprises non-coding sequence 
regions (intergenic and introns), with only ~2% of gene-encoding genome (exons) (Elgar & Vavouri, 2008; 
Encyclopedia of Cancer, 2018). Most driver mutations are found in the exon’s regions, but some are also 
present in non-coding regions (Rheinbay et al., 2020). Examples of the latter are mutations in the TERT 
(Fredriksson et al., 2014; Melton et al., 2015; Rheinbay et al., 2020; Weinhold et al., 2014), PLEKHS1 
(Fredriksson et al., 2014; Melton et al., 2015; Nik-Zainal et al., 2016; Weinhold et al., 2014) and WDR74 
(Nik-Zainal et al., 2016; Weinhold et al., 2014) promoter regions.  

Point substitution mutations in the coding region can be subdivided into two categories: non-synonymous 
(alter protein sequence) and synonymous (coding silent) mutations. Non-synonymous mutations consist of 
a single nucleotide base modification that results in the alteration of the amino acid sequence of a protein. 
These can be manifested as missense, nonsense or splices site mutations, or as small insertions and 
deletions (indels) (Pleasance et al., 2010). In cancer, the most common type of protein-altering mutation 
are missense mutations and these are characterised by the change of one amino acid via a single base 
pair substitution (Vogelstein et al., 2013). A notable example of this category of mutations are single nucle-
otide substitutions in the p53 transcription factor during DNA binding activity (amino acid residues 102-292) 
(Baugh et al., 2018; Cho et al., 1994; Pavletich et al., 1993). These mutations prompt the disruption of the 
normal functional activity and stability of p53 during its response to DNA damage mechanisms, such as 
cell-cycle regulation and controlled cell death (Olivier et al., 2010). Alternatively, a nonsense mutation is a 
single nucleotide prematurely translated to a stop codon, consequently leading to protein truncation.  

In this thesis I explore mechanisms of indirect resistance in cancer. In particular, I focus attention on lung 
adenocarcinoma and epidermal growth factor receptor (EGFR)-related mutations, where the gold-standard 
T790M mutation exhibits secondary resistance to EGFR tyrosine kinase inhibitors (TKI). Within this cancer 
type, two notable non-synonymous mutations are the replacement of leucine to arginine at codon 858 in 
exon 21 (L858R) and short deletions in exon 19, which provoke truncation of beta3-alphaC loop (Foster et 
al., 2016). These EGFR mutations are commonly linked to non-small cell lung cancer (NSCLC) (A. R. Li et 
al., 2008; Lynch et al., 2004; Mitsudomi & Yatabe, 2010; Paez et al., 2004; J. Su et al., 2017), and strongly 
sensitive to EGFR TKIs, such as gefitinib (Haber et al., 2005; Lynch et al., 2004; Paez et al., 2004). Tumours 
with these mutations are commonly referred to as “oncogene addicted” since tumour growth and survival 
is dependent on the presence of EGFR activating mutations (Soria et al., 2012). 
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Furthermore, non-synonymous mutations are intrinsically exposed to natural selection, and this is particu-
larly essential in cases of alterations in cancer-related genes that could drive cancer biogenesis (Cartegni 
et al., 2002; Druillennec et al., 2012). 

Distinctively, synonymous mutations are defined by nucleotide changes in protein coding regions that do 
not modify the translated protein sequence. In detail, a codon is composed of three nucleotides that encode 
a particular amino acid. However, due to redundancy in the genome, this sequence of nucleotides is not 
necessarily unique since multiple codons can be translated to the same amino acid. For instance, if the 
sequence GGT is altered in the third position to GGA, the resulting encoded amino acid would be glycine 
for both the non-altered and mutated codons (Pawlak et al., 2023). Therefore, typically, these mutations 
are interpreted as silent and invisible to natural selection. However, in contrast to its ‘silent’ perceptivity, 
synonymous mutations can alter splicing regulatory sites and mRNA stability or translation (Duan et al., 
2003; Sauna & Kimchi-Sarfaty, 2011), thus leading to non-silent effects (Supek et al., 2014).  

1.1.2.2 Copy number alterations 
Genetic variations typically emerge in the synthesis (S-phase) and mitosis (in particular, during metaphase 
or anaphase) phases of the cell cycle throughout the course of cancer evolution. These alterations encom-
pass a wide range of forms, namely copy number variations (CNVs), single-nucleotide variations (SNVs) 
and insertions or deletions (indels). 

Taking into consideration CNVs frequently enclose genes and represent one of the most prevalent forms 
of genetic alteration, the study and comprehension of CNVs role is paramount in cancer diagnosis (Almal 
& Padh, 2012; Kuiper et al., 2010; Shlien & Malkin, 2009). CNVs are genomic structural regions where the 
number of copies of a gene has been modified in comparison to a reference genome. These alterations 
can be created due to amplifications or deletions, and lead to potential gain or loss of genomic DNA, re-
spectively  (Redon et al., 2006). 

CNVs are encountered throughout several types of cancer with variant frequencies, and are associated 
with various key pathways in cancer (Andor et al., 2016). For example, the amplification of the chromosomal 
region 17q12-q21 in breast and gastric cancers (Cancer Genome Atlas Network, 2012; Iqbal & Iqbal, 2014; 
Liang et al., 2016; Slamon et al., 1987). This region contains the gene HER2 (human epidermal growth 
factor receptor 2), often referred to by its alias ERBB2 (Erb-B2 receptor tyrosine kinase 2). In detail, HER2 
encodes an 185-kDa tyrosine kinase receptor (p185HER-2) from the EGFR family (Doherty et al., 1999), 
which is responsible for the regulation of cell growth and proliferation via signalling pathways such as the 
PI3K-AKT-mTOR and MAPK (Yarden & Sliwkowski, 2001). Amplification of the HER2 gene causes HER2 
overexpression and, consequently, enable activation via ligand-activated hetero-dimerization (heterodi-
mers such as EGFR or HER3) or homo-dimerization. Notably, these dimerisation processes activate growth 
factor signalling and define compounds targeting HER2 (e.g., Trastuzumab) to be commonly leveraged in 
clinics as an effective targeted therapy for breast cancer (Gajria & Chandarlapaty, 2011).   

1.1.2.3 Other events 
During the cell cycle, in particular through the nuclear division process in the M-phase, several genome 
rearrangements may occur due to error-prone mechanisms. Notably, during this phase, chromosome seg-
regation takes place, where two sister chromatids are created, separated and posteriorly aligned. This pro-
cess may lead to stalled or collapsed DNA replication forks (Hills and Diffley 2014), and if defectively 
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repaired, result in structural and numerical genomic aberrations such as gain or loss of a chromosomal arm 
(aneuploidy) and/or more than one complete pair of chromosomes (polyploidy) (Storchova and Pellman 
2004).  

Chromosomal segregation error events occurring during the mitosis phase are referred to as chromosomal 
instability (CIN) (Lengauer et al., 1998), and represent a human cancer hallmark (Hanahan & Weinberg, 
2011). Remarkably, the majority of human tumours manifest chromosomal rearrangements promoted by 
CIN (Santaguida and Amon 2015), and the CIN phenotype is enriched in metastatic and relapsing tumours 
(Turajlic and Swanton 2016; Sotillo et al. 2010). In addition, a burden of CIN phenomena is associated with 
cancer poor prognosis, therapeutic resistance and consequent low survival rate in several solid tumour 
types such as breast and colon cancer (Lee et al. 2011; Carter et al. 2006; Swanton et al. 2009; Walther et 
al. 2008). Despite its central role in cancer evolution, the measurement of CIN in cancer tumours is not 
easily testable and is only possible through indirect inference of chromosomal mis-segregation rates via 
next-generation sequencing (NGS) technologies, such as bulk DNA sequencing and single-cell sequencing 
(Bakhoum et al. 2018; Bakker et al. 2016). 

Chromosomal translocations are another cancer driving genetic abnormality in the DNA. These are recur-
rent events where a chromosome segment breaks and is transferred to another chromosome or to a differ-
ent site of the same chromosome (Rabbitts 1994). Although translocation phenomena contribute to genetic 
heterogeneity and evolution, typically these are linked to the production of oncogenes, and consequent 
misregulation of gene expression (Zheng 2013).  Among various cancers, translocations are typical drivers 
of lymphomas and leukaemias. For instance, a famous translocation is derived via the fusion of genes BCR 
and ABL localised on chromosomes 22 and 9, respectively (Korsmeyer 1992). This fusion forms an abnor-
mal chromosome, the Philadelphia chromosome (Ph), of chronic myelogenous leukaemia patients, and 
originates a new fusion gene BCR-ABL with enhanced cell growth, proliferation and resistance to cell death. 
Currently, the knowledge of this translocation is leveraged as a therapeutic marker for Ph-positive leukae-
mia patients (An et al. 2010). 

In addition, tumour plasticity may render pre- or malignant cells more prone to a proto-oncogenic state 
through epigenetics’ alterations (Flavahan et al. 2017). In particular, chromatin, transcriptional or proteomic 
aberrations can modify chromatin states, expression of genes and/or gene pathway mechanisms, that con-
sequently lead to an oncogene activation and subsequent tumour development (Allis and Jenuwein 2016; 
Puisieux et al. 2014).  For example, isocitrate dehydrogenase (IDH) gene mutations in gliomas lead to 
stochastic hypermethylation of CTCF, and subsequent insulation disruption of PDGFRA oncogene (Flava-
han et al. 2016). Ultimately, this event induces the activation of PDGFRA and promotes proliferation of 
hypermethylated glioma cells. 

1.1.3 Tumour evolution 
In 1976, it was formalised that the creation and development of cancer is a dynamic process where sub-
populations of cells with growth and survival advantage are favoured (Nowell, 1976). This process grants 
evolutionary advantage to cancer cells and triggers several cancer hallmarks, such as uncontrolled prolif-
eration, evasion of programmed cell death and senescence.  

As the tumour progresses, cancers evolve to a heterogeneous collection of tumour cells with distinct genetic 
and phenotypic signatures. This heterogeneity can be labelled as intratumour or intertumour (Burrell et al., 
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2013). The former reflects the genomic and biological changes that occur within the primary tumour and its 
metastases. Whilst the latter contemplates the heterogeneity between tumours of the same hispathological 
subtype occurring in different patients.  

In addition, the dynamic nature of the tumour evolution can lead to spatial and temporal diversity (Hiley & 
Swanton, 2014), thus promoting a higher genomic instability (e.g., increased metastasis recurrence and 
outgrowth of cell clones due to drug resistance). Therefore, a comprehensive evaluation of tumour hetero-
geneity profile and its evolutionary outcomes are of great research relevance to improve clinical prognosis 
and therapies (Heppner & Miller, 1983; Lee et al., 2011; Seoane & De Mattos-Arruda, 2014).  

1.1.4 Oncogenes and tumour suppressor genes 
Cancer genes play a relevant role in cancer evolution and progression, and can be classified as tumour 
suppressors (TSGs) or oncogenes (OCGs) (Croce, 2008). The latter have origin in proto-oncogenes, which 
are genes that stimulate cell growth and viability. Once affected by activating mutations (e.g., amino acid 
amplifications or translocations), these proto-oncogenes can develop into its active status OCGs. This ac-
tivation may ignite several cancer hallmarks such as cell cycle forward (i.e., commit the cell to pass from a 
G-phase to S-phase or mitosis), cell survival and evading apoptosis and cell senescence (Hanahan & 
Weinberg, 2011). Typical examples of oncogenic mutations are hotspot mutations of KRAS in codons at 
positions 12 and 13 (most frequent), and 18, 61, 117 and 146 (less frequent) (Bamford et al. 2004). These 
mutations are the result of natural selection and drive tumour evolution by activating PI3K-AKT and ERK 
signalling cascades (two of the main pathways involved in cancer events) (Janakiraman et al., 2010; Tan 
& Du, 2012).  

In contrast, TSGs regulate normal cell division and replication processes, which cancer often impede. 
These can be inactivated by loss-of-function (LOF) events such as homozygous deletions, truncations, 
frameshifts and non-synonymous mutations. Notably, the inactivation of suppressor genes supports tumour 
evolution by impairing DNA damage response pathways and removing control mechanisms of cell growth, 
apoptosis and senescence (Kern & Winter, 2006; Vogelstein et al., 2013). In 1984, the first TSG (RB) was 
reported (Murphree & Benedict, 1984). This gene plays a fundamental regulator role in the cell cycle, by 
preventing the progression of the cell from the G1- to S-phase via inhibition of E2F transcription factors 
(Weinberg, 1995).  

A tumour may develop due to the accumulation of driver alterations caused by cancer driver genes, which 
can be either TSGs or OCGs (Figure 2). However, depending on the context and tissue type, a gene may 
act as a TSG or OCG. For instance, TP53 is commonly identified as a TSG in several cancer types, and 
acts as a driver gene when a mutation has altered both of its alleles. Nonetheless, TP53 can also attain 
gain-of-function alterations that grant oncogenic functions (Soussi & Wiman, 2015). Furthermore, several 
studies have reported that certain genes may share both functions depending on the mutational context 
(Bailey et al., 2018; Sanchez-Vega et al., 2018; Vogelstein & Kinzler, 2004). This versatile functionality 
illustrates how, in different environments, events such as loss-of-function of TSGs and gain-of-function in 
OCGs are naturally selected, in order to promote cancer adaption and evolution. Notably, a deeper inves-
tigation of these driver genes classes is a fundamental step towards improvement of precision medicine.  
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1.2 Precision medicine in cancer  
The rapid and increased development of NGS technologies in the past years, has enabled to unfold a 
deeper knowledge on the roles of genomics and the immune system in cancer research (Berger & Mardis, 
2018; Malone et al., 2020; A. M. Tsimberidou et al., 2020). In parallel, the advancement in clinical trials 
empowered a shift from tumour type therapy to a gene targeting methodology by leveraging tumour molec-
ular characterization, medical imaging and spatial profiling of immune tissues - thus, paving the way for 
more diverse and patient tailored biomarker analysis (Janiaud et al., 2019; Rodon et al., 2019; A.-M. Tsim-
beridou et al., 2012). The integration between these two pillars - tumour’s genomic alterations and clinical 
trials – constitutes the basis of precision oncology, and its continuous improvement is imperative to move 
from a “one size fits all” design to tailored and effective treatments (Manzari et al., 2021; Schilsky, 2010).   

1.2.1 Biomarker discovery 
Broadly, a cancer biomarker constitutes a set of molecules which may influence, predict or indicate the 
existence of a particular condition  (Strimbu and Tavel 2010). In particular, biomarkers are key in stratifying 
between responders and non-responders tumours, and have a substantial number of applications in a clin-
ical setting, including risk assessment, cancer progression monitoring, evaluation of response treatment 
and prognosis prediction (Henry and Hayes 2012). In my thesis, I will focus in distinguishing biomarkers of 
drug resistance, uncontrolled cell proliferation and drug response.  

Figure 2: Role of normal and mutated tumour suppressor genes and proto-oncogenes in the cell cycle.  
 

Normal genes regulate the cell cycle processes and originate normal cells. In contrast, mutated genes 
contribute to alterations in the cell cycle and the creation of cancer cells.  
Figure created with BioRender.com using the template “Tumor Supressor Genes and Proto-oncogenes”. 
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Cancer biomarkers comprise a wide set of disciplines, and can be partitioned into three main categories: 
diagnostic, prognostic and predictive (Sawyers 2008; Henry and Hayes 2012). The former is employed to 
detect if a patient holds a particular disease, condition or disease-subtype. For instance, the role of thyroid 
hormone receptor a1 (THRa1) as a strong diagnostic marker for lung squamous cell carcinoma (SCC) in 
non-small cell lung cancer (NSCLC) patients (Mohamed et al. 2021).  

Within cancer patients, a prognostic biomarker indicates the likelihood of the disease’s recurrence or pro-
gression regardless of therapy, and guides optimal clinical treatment procedures according to the likelihood 
assessment. Several significant examples of this type of biomarker have been established in breast cancer, 
such as the combined overexpression of c-erbB-2 oncogene and p53 tumour protein which alters cell pro-
liferation mechanisms and is correlated with poor patient survival (Guerra et al. 2003; Sjögren et al. 1998; 
Nakopoulou et al. 1996; Beenken et al. 2001). As well as, the human epidermal growth factor receptor-2 
(HER2) overexpression and amplification. HER2 plays a direct role in cell signalling deregulation, whilst 
driving the disruption of normal tissue growth and development, and is significantly linked to poor disease 
outcome in lymph node-positive breast cancer patients (Cooke et al. 2001; Hou et al. 2022). 

On the other hand, predictive (or response) biomarkers can assess the response effectiveness to a partic-
ular therapy. In breast cancer, the overexpression of HER2 is a response biomarker of HER2-targeting 
therapies such as trastuzumab (Piccart-Gebhart et al. 2005; Romond et al. 2005), lapatinib (Zardavas et 
al. 2013; Geyer et al. 2006) and pertuzumab (von Minckwitz et al. 2017; Swain et al. 2015). Similarly, in 
colorectal cancer, KRAS acts as a predictive biomarker where KRAS-activating mutations are linked with 
resistance and poor treatment response to EGFR inhibitors such as cetuximab (Van Cutsem et al. 2009; 
Allegra et al. 2009). Another notable example related to EGFR inhibition, is the case of patients with acti-
vating L858R mutation in non-small cell lung cancer (NSCLC) which are sensitive to treatments with afatinib 
and erlotinib (Chen et al. 2013; Jia et al. 2016).    

In summary, cancer biomarkers are a notable tool in precision medicine in order to perform a more accurate 
diagnosis, develop effective personalised therapies, improve treatments’ success rates, reduce side effects 
and contribute to a faster approval of cancer treatments to be used in clinics. 

1.2.2 Therapies 

1.2.2.1 DNA damage 
DNA damage response mechanisms play a central role in several of the available cancer therapies used 
in clinics. This approach may render cells to compromise their damaged DNA responses, and therefore 
bypass relevant cell cycle checkpoints. Potentially, leading to an acceleration of the cell cycle and uncon-
trolled cell proliferation (Hoeijmakers 2009). 

Although the act of purposefully create genomic instability seems controversial when discussing therapeutic 
alternatives, the accumulation of DNA mutations combined with impaired DNA damage response, can also 
trigger other cellular responses such as cell senescence and apoptosis, and consequently reduce tumour 
growth (Childs et al. 2014). 

Unfortunately, due to the lack of specificity, all cells are affected during the DNA damage procedure. How-
ever, tumour cells are known to proliferate faster than healthy cells, and henceforth to be induced quicker 
to cellular control mechanisms. Hence, rendering them more susceptible to DNA damaging agents than 
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healthy cells, and a suitable therapeutic choice for cancer treatment (Lord and Ashworth 2012). Currently, 
several DNA damaging agents are leveraged in clinics, such as ultraviolet (UV) rays (Rastogi et al. 2010), 
alkylating agents (Kondo et al. 2010) and cisplatin (Basu and Krishnamurthy 2010). 

1.2.2.2 Conventional therapies 
The most conventional cancer treatment procedures are surgery, radiotherapy and chemotherapy, and 
these can be employed unassisted or in combination, depending on the tumour status  (Arruebo et al., 
2011).   

Typically, surgery performed in early stages of cancer is associated with an increased chance of success, 
since it is able to locally control the primary tumour, reduce inflammation, potentially remove all the existing 
cancerous cells and avoid additional treatments. Notably, this procedure is commonly employed in combi-
nation with chemotherapy, either prior to operation to shrink the tumour before resection, or post-operation 
to ensure the remaining cancer cell lines are destroyed. Taking into consideration the desired outcome, this 
procedure encompasses several types, such as curative surgery, preventive surgery and diagnostic sur-
gery (King & Primrose, 2003). Although commonly used as a primary treatment, this treatment is not par-
ticularly successful within cancers where metastasis takes place in a later stage or not at all (e.g., head and 
neck, cervix and brain) and cancers whose infected tissue is not locally contained (e.g., leukaemia) (Tan-
nock, 1998). Furthermore, surgery resection has been reported to contribute to metastatic seeding of can-
cer cells (Z. Chen et al., 2019; Tohme et al., 2017). 

A widely distinguished modality used in clinics is chemotherapy, where cytotoxic drugs are administered as 
a way to induce cellular stress and destroy cancer cell lines. One type of chemotherapy is to apply alkylating 
agents, which provoke DNA damage by attacking cancer cells via attachment of alkyl groups to DNA base 
pairs or DNA crosslinking (Fu et al., 2012). In detail, this causes single and double DNA breaks which, if 
not repaired properly, lead to a potential replication fork collapse and, consequently, cellular death. During 
the course of this therapy, chemotherapeutic agents particularly target fast-proliferating cells, whether 
healthy or malignant. Thus, inducing several severe side-effects, which include weakened immune system, 
loss of hair and skin damages, in healthy cells such as blood and digestive tract cells (Schirrmacher, 2019). 
In addition, chronic phenomena like drug resistance and rapid drug metabolism represent some of the 
limitations of chemotherapy (Gutteridge, 1985). 

Lastly, radiation therapy leverages high doses of ionising radiation to damage the genetic material of cancer 
cells, and consequently impair their division and proliferation capabilities. This method can ultimately lead 
to cell death or simply slow their growth, and is usually implemented with high-powered X-rays or proton 
beams via external or internal radiation (Baskar et al., 2012). Despite its remarkable efficiency in destroying 
locally a large quantity of cancer cells, radiation therapy can also damage surrounding healthy cells and 
tissues, and is associated with several side effects as a consequence of radiation administration (Bentzen, 
2006). 

1.2.2.3 Targeted therapies 
Alterations in the normal regulation of cancer signalling networks, which are typically driven by a specific 
molecular target (e.g., a protein), are key instigators in cancer growth and progression. Targeted cancer 
therapies focus on the development of cancer drugs designed to interfere or target these specific cancer-
driver nodes (Sawyers 2004). 
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The identification of molecular targets is based on a deep understanding of cancer biomarkers, and varies 
greatly from conventional approaches such as chemotherapies. Notably, targeted therapies aim for specific 
abnormally active proteins instead of targeting all fast-proliferating cells, as well as, present regularly a 
cytostatic instead of a cytotoxic approach (Breitbach et al. 2010). 

Several promising examples of targets involving members of kinases (e.g., MAP kinase pathway) can be 
found being currently used in clinics. One of the most frequent mutations observed in melanoma patients 
is BRAFV600E, encountered in up to 60% of all patients. This mutation is linked to several mechanisms 
related to melanoma evolution, such as metastasis, evasion of apoptosis, senescence and immune re-
sponse (Maurer et al. 2011). Notably, BRAFV600E is highly sensitive to treatments with FDA approved inhib-
itors, namely BRAF inhibitors such as vemurafenib and dabrafenib, and MEK inhibitors like trametinib and 
cobimetinib (Sosman et al. 2012; Ascierto et al. 2012). 

Another notorious instance of targeted therapy is the tyrosine kinase inhibitor (TKI) imatinib in the treatment 
of chronic myeloid leukaemia (CML) patients (Cortes et al. 2005; Savage and Antman 2002). In CML, the 
BCR-ABL1 fusion gene plays a vital driver role in the initiation and development of the malignancy, and is 
frequently detected in CML patients. During treatment, imatinib essentially targets the ATP binding site of 
ABL1 and prevents its and succeeding kinases activation (Quintás-Cardama and Cortes 2009). 

Although targeted therapies are a valuable and revolutionary example of cancer therapy, unfortunately 
cancer cell lines can develop resistance to targeted therapy (Braun et al. 2020; Tsuruo et al. 2003). A 
possible driver is tumour evolution, which can induce drug resistance or introduce new ways for the cancer 
to develop, and, consequently, disable the possibility for the drug agent to successfully interact with the 
target biomarker. 

A potential strategy to overcome these issues is to combine targeted therapies with other target agents or 
conventional cancer treatments through rational drug combinations. 

1.2.3 Drug resistance 
Drug resistance is a clinical response that can be intrinsic (primary) or acquired (secondary) to a specific 
treatment. While administering a target therapy, before all cancer cells are eliminated, due to evolutionary 
pressure and fast cell proliferation, a subpopulation of cells may gain mechanisms to cope (i.e., resistance). 
Subsequently, these resistant subclones can outgrow the cancer cells responding to the target agents, and 
lead to treatment failure (Vasan et al., 2019).  

A noteworthy example of a resistance mechanisms involves the response of TP53 mutants to the murine 
double minute 2 (MDM2) inhibitor nutlin-3a. The tumour suppressor p53 is a master regulator of several 
cancer key mechanisms such as apoptosis, senescence and cell cycle arrest, and is notoriously essential 
to combat cancer initiation and development (Lane 1992). Mutations in TP53 are relatively common and 
occur in approximately 50% of all cancer types (Toledo and Wahl 2006; Hollstein et al. 1991). In cancers 
with wild-type TP53, its function is often suppressed by MDM2 overexpression. To restore TP53 function-
ality, non-genotoxic drugs targeting MDM2, such as nutlin-3a, are employed (Vassilev et al. 2004). How-
ever, acquired resistance can arise when cancer cells develop other mutations not inhibited by MDM2, such 
as MDMX overexpression (Hu et al. 2006). As a consequence, TP53 aberrations constitute an indirect 
example of cancer cells resistance to nutlin-3a treatment (Hientz et al. 2017). 
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Mutations of the epidermal growth factor receptor (EGFR) frequently occur in lung adenocarcinoma pa-
tients, and are commonly marked as drivers of non-small cell lung cancer (NSCLC) (Paez et al., 2004; 
Shigematsu & Gazdar, 2006). Typically, these mutations are manifested as small in-frame deletions in exon 
19 or the point mutation L858R, and are strongly sensitive to TKIs, including gefitinib and erlotinib (Lynch 
et al., 2004; Pao et al., 2004). However, the efficacy of these TKIs can be impaired by the acquisition of an 
additional point mutation T790M, which confers resistance to the treatment (Pao et al., 2005). Notably, the 
T790M mutation changes the drug binding pocket of EGFR, resulting in steric interference of the TKIs 
binding and leading to EGFR-TKIs resistance (Kobayashi et al., 2005). The discovery of this example of 
secondary resistance became a clinical case of success, where gefitinib was ultimately approved as a first 
in line drug treatment for NSCLC patients without T790M mutation (Kazandjian et al., 2016). 

1.2.4 Drug combinations 
Combination therapy is a revolutionary treatment modality which combines multiple therapeutic methods. 
The principle behind it is to augment treatment efficiency by combining approved therapies with distinct 
target pathways in a synergistic or distinctive way (Bayat Mokhtari et al., 2017). Several combination 
screens are currently available (Menden et al., 2019; O’Neil et al., 2016) which enable the identification of 
new cancer combination biomarker candidates for an improved therapeutic outcome. 

In addition to a time and cost-effective procedure, this process also aims to minimise the possibility for 
cancer cells to acquire drug resistance. Notably, due to genetic diversity within tumours, the likelihood of a 
small group of cells to develop resistance to a single drug is high when considering a monotherapy ap-
proach. However, when assuming a combinatorial modality, the risk of treatment failure due to drug re-
sistance is reduced since multiple pathways are simultaneously targeted (Sharma et al., 2017). 

Furthermore, due to its synergistic or additive approach, combination therapy provides the possibility of 
administering lower dosages for each drug involved in the process (Schmucker et al., 2021), as well as, 
prevents toxic effects on healthy cells whilst producing cytotoxicity to cancer cells via drug antagonism 
(Blagosklonny, 2005; Chou, 2006). 

The potential of combination strategies is leveraged in various cancers, namely leukaemia (Ravandi et al., 
2010), breast cancer (Ji et al., 2019), melanoma (Eroglu & Ribas, 2016). For instance, consider the over-
expression of HER2, which is found approximately in one third of breast cancers, and is correlated with 
increased cancer growth and progression (Slamon et al., 1987). A standard therapy for these patients is 
the administration of the HER2 inhibitor trastuzumab (P. Carter et al., 1992). However, a significant fraction 
of patients expresses inherited or developed resistance mechanisms to this drug (Gajria & Chandarlapaty, 
2011; Narayan et al., 2009). Commonly, a standard therapy is to administrate trastuzumab with chemother-
apeutic agents, such as docetaxel and paclitaxel, as a first in line treatment regimen (Tolaney et al. 2015; 
Swain et al. 2015). Notwithstanding, for HER2-positive tumours, there are several synergistic drug combi-
nation protocols that do not involve chemotherapy. Namely, the dual HER2 blockage with trastuzumab and 
pertuzumab (Swain et al. 2015), which target different domains of HER2, or combinations of trastuzumab 
with TKIs lapatinib or neratinib (Blackwell et al. 2019; Yuan et al. 2022) 

 

.  

https://paperpile.com/c/63FzuC/JnjoE+Xohy
https://paperpile.com/c/63FzuC/JnjoE+Xohy
https://paperpile.com/c/63FzuC/52bJx+vO8V
https://paperpile.com/c/63FzuC/52bJx+vO8V
https://paperpile.com/c/63FzuC/jrN4
https://paperpile.com/c/63FzuC/7YQ9
https://paperpile.com/c/63FzuC/QHsb
https://paperpile.com/c/P6t504/2htS
https://paperpile.com/c/63FzuC/tbWV+3Kyo
https://paperpile.com/c/P6t504/jCBS
https://paperpile.com/c/P6t504/5cEQ
https://paperpile.com/c/P6t504/Auf3+aYKk
https://paperpile.com/c/63FzuC/HyNV
https://paperpile.com/c/63FzuC/HyNV
https://paperpile.com/c/63FzuC/4fVG
https://paperpile.com/c/63FzuC/0U0u
https://paperpile.com/c/63FzuC/YXWVs
https://paperpile.com/c/63FzuC/vbjJ
https://paperpile.com/c/63FzuC/aebe+qX5cV
https://paperpile.com/c/63FzuC/aebe+qX5cV
https://paperpile.com/c/jwekdw/aoJ2+JlPe
https://paperpile.com/c/jwekdw/aoJ2+JlPe
https://paperpile.com/c/jwekdw/JlPe
https://paperpile.com/c/jwekdw/ZHAD+h6Pb


 

 27 

1.3 Pharmacogenomics landscape 
A fundamental aspect when studying cancer is to understand the pillars behind its development and evo-
lution. Cancer is driven by changes in cellular and molecular mechanisms that govern cell life. In the past, 
it was initially believed that cancer biology causality could be summarised by a small number of cancer 
genes which triggered tumorigenic cell signalling pathways (Land et al. 1983). Nowadays, with the devel-
opment of NGS technologies coupled with advanced computational approaches, cancer research offers a 
more holistic and comprehensive overview of its hallmarks (Hanahan, 2022; Hanahan & Weinberg, 2011).  

1.3.1 Multi-omics 

1.3.1.1 Transcriptomics 
Conceivably, apart from accumulated mutations, the same amount of DNA material is roughly present in all 
cells available within a particular organism. Nonetheless, without losing the available genetic material, cells 
may exhibit vastly different functionalities due to somatic mutations and differentiation processes (Alberts 
et al. 2014). This diversity is primarily reflected in the distinct genes expressed within these cells, and their 
expression is regulated in several key points. In detail, should an alteration in a gene in the DNA occur, this 
information will be stored in a temporary template and be posteriorly transcribed from the DNA into a single 
strand ribonucleic acid (RNA). This mechanism is called transcription and the resulting transcript includes 
all intronic regions and is often referred to as pre-mRNA. Following, this transcript is furtherly processed 
via splicing, where the introns are removed, and converted to a mature product called messenger RNA 
(mRNA). Posteriorly, through a process labelled translation, the ribosome reads the sequence and builds 
a specific string of amino acids, which is later incorporated to a functional protein (Crick, 1958) (Figure 3). 

 

 

 

 

 

 

 

 

Figure 3: Illustration of transcription and translation processes.  
 

A double helix DNA is unwound by an RNA polymerase and a segment of DNA is transcribed into a single   
RNA molecule. The resulting pre-mRNA transcript contains both intron and exon regions. Subsequently, 
the primary pre-mRNA is spliced, where the intron regions are removed, developing into mRNA. Finally, 
the mRNA is translated to an amino acid string.  
Figure created with BioRender.com. 
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Several methods are available to quantify RNA transcripts, such as methodologies based on hybridization 
(e.g., microarray analysis) or sequence (e.g., tag-based sequencing). One of the most distinguishably used 
methods is RNA sequencing (RNA-seq) (Emrich et al., 2007; Lister et al., 2008; Wang et al., 2009). This 
technique leverages NGS technologies advances and aims to delineate and quantify transcriptome families 
- such as mRNA, small RNA, transfer RNA (tRNA) and ribosomal RNA (rRNA) – in a high-throughput man-
ner over continuous modifications during cellular development.  

The RNA-seq workflow starts with RNA extraction, subsequently it is copied by a method based on tran-
scription and a complementary DNA (cDNA) is synthesised. Next, a sequencing library is prepared, where 
captured mRNA molecules are fragmented and reverse transcribed, adapters are connected to the cDNA 
molecules and the library is amplified by PCR. Following these protocols, quality control of the samples is 
assessed, reads are trimmed and filtered (e.g., low quality reads or duplicates are removed), reads are 
mapped to a reference genome or transcripts, and thereafter a quantification of how many reads overlap 
the given genome is made. These steps are complemented by normalisation and filtering of samples, fol-
lowed by a statistical assessment of which genes are expressed and their individual level of expression 
(Wang et al., 2009).  

An interesting application of the RNA-seq technology is how gene expression profiling can be leveraged to 
stratify tumours’ subgroups. Typically, unsupervised clustering approaches such as hierarchical clustering 
and network clustering aid on the identification of molecular pattern signatures (Sørlie et al. 2003; Perou et 
al. 2000; Garber et al. 2001). For instance, in colorectal cancer (COREAD) the primary tumours have been 
classified into four consensus molecular subtypes (CMS; CMS1-4) (Guinney et al. 2015). In addition, the 
inclusion of clinical information complements these analyses and recognizes potential biomarkers linked to 
disease prognosis (Garber et al. 2001; Bramsen et al. 2017). 

Furthermore, the output from RNA-seq experiments is frequently used to perform differential gene expres-
sion analysis (DGEx). Given the originated data is discrete and represented by count values, this allows 
the application of binomial based mathematical procedures to reveal significant markers between biological 
conditions. Several open-source software specialised in these analyses with pre-processing, statistical 
models and complementary visualisations are available to the research community, such as edgeR (Rob-
inson et al. 2010), DESeq2 (Love et al., 2014) and Limma (Ritchie et al., 2015). 

1.3.1.2 Proteomics 
Inside a cell, besides the genome, there are functional proteins responsible for active roles, such as cell 
division, structure and organisation (Karplus & McCammon, 1983). Through a translation procedure, a seg-
ment of the DNA, which has been converted to RNA and mRNA (transcription, described in the previous 
section), is leveraged to produce proteins. Each piece of mRNA prescribes the order in which the sequence 
of amino acid blocks should be organised and assembled, and, thereafter, a protein is synthesised. This 
mechanism of converting genetic information, from DNA to protein, is acclaimed as “The Central Dogma” 
of molecular biology (Crick, 1958).  

Proteomics is the field which studies the collection of proteins in an organism (Graves & Haystead, 2002). 
In particular, it investigates an extensive number of processes, namely protein expression profiling, protein-
protein interactions (PPI), protein modifications and protein functions (Pandey & Mann, 2000). Proteomics 
is complementary to the Genomics and Transcriptomics research, and provides a comprehensive 
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understanding of cancer mechanisms since it focuses on gene activity outcome products and proteins are 
typically more stable than RNA molecules. Despite its advantages, there are several challenges related to 
proteomics experiments and analyses. Explicitly, low reproducibility of data collection and processing 
across experiments, missing to detect low abundance proteins and lack of sensitivity and specificity of 
protein identification tools (Garbis et al., 2005; O. T. Schubert et al., 2017; Tabb et al., 2010).   

Currently, several methods are available to analyse proteomics data, namely based on mass spectrometry 
(Aebersold & Mann, 2003; Domon & Aebersold, 2010; Medzihradszky et al., 2000). One of the advantages 
of proteomics in respect to transcriptomics, is the possibility to measure post-translational modifications 
(PTMs; e.g., phosphorylation and sulphation) of proteins, which reveals various proteins’ functional status, 
e.g., protein activity, stability, localization and interaction with other proteins (F. Cheng et al., 2018; Him-
melstein et al., 2017; Kong et al., 2020; Mann & Jensen, 2003; Zhou et al., 2014). For instance, methods 
such as CausalPath (Babur et al. 2021) have been successfully leveraged in research to predict pathway 
activities.   

1.3.2 Phenotypic data 
Investigation of phenotypic traits offers a translational bridge between the genotype of an organism and 
disease pathophysiology. Precisely, the phenotype of an organism is an observable manifestation of its 
genotype, such as height and hair colour. Nonetheless, these physical traits can be influenced by external 
factors, namely environment (e.g., sun exposure and diet) (Hunter, 2005). A particularly interesting phe-
nomenon is the generation of genetic modifications that result in phenotypes with varying growth degrees 
and/or survival advantage, rending them relevant when exploring therapeutic mechanisms. For instance, 
tumour microenvironment may influence the autophapy process in cells, alter its phenotype and drive drug 
resistance (Amaravadi et al., 2016).     

In order to dissect phenotypic profiles one can leverage human phenotype ontologies, such as Human 
Phenotype Ontology (HPO) (Köhler et al., 2021) and Online Mendelian Inheritance in Man (OMIM) (Am-
berger et al., 2015). These phenotypic resources provide a link between disease’s biomedical information 
and phenotypic terms, and therefore facilitate the investigation of genetic diseases. 

Various methods focus on the exploration of models based on phenotypic outcomes and multi-omics (i.e., 
genomics, transcriptomics, among others) due to their direct association and correlation (Chang et al., 
1999; Chia et al., 2017; Mo et al., 2013; Sadanandam et al., 2013). These approaches are hypothesised to 
yield more thorough and effective models, with the identification of relevant cancer specific genes, pathways 
or other biomarkers and, ultimately, pave the way to a novel and more rigorous precision oncology.     

Another pertinent phenotypic angle is the stratification between responders and non-responders in a phar-
macogenomics context. Distinct genetic profiles may render patients to respond differently to a drug treat-
ment, thus categorising populations in two or more distinctive subgroups depending on their drug-reaction 
profiles (Roses, 2000). This phenomenon raises the investigation of the genomics’ variant profiles within 
the subpopulations, and the identification of possible markers which can improve treatment efficacy and 
minimise adverse drug effects (Evans & McLeod, 2003). Several notable examples of this classification can 
be found in oncology research with significant impact in precision medicine. For instance, the compound 
gefitinib was established as the first drug on the treatment of patients with advanced NSCLC (Herbst et al., 
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2004), after uncovering sensitive responses in subpopulations with EGFR mutations (Lynch et al., 2004; 
Paez et al., 2004).  

1.3.3 Biological prior 
Currently, with the advance of technology, there has been a substantial increase in the quantity and quality 
of multi-omics datasets generated to research cancer’s cellular processes, ultimately driving more efficient 
therapies. Although this big data outcome presents an ideal scenario to further investigate the disease, 
these experiments often originate multiple potential candidate omics (dimensionality curse) and are convo-
luted with noise (Cantini et al., 2021; Jiang et al., 2022). As a consequence, this poses a challenge in the 
recognition of true positive candidate omics with functional relevance to cancer.  

On this account, additional tools of biological prior are typically leveraged in order to 

• Boost the statistical power of machine learning and statistical applications; 

• Create more evidence across several omic layers; 

• Validate analysis based on gold standards; 

• Aid on the interpretation of results. 

Ultimately, the integration of biological prior knowledge enables a more holistic interpretation of high-
throughput results, as well as, underlines disease aetiology more effectively in comparison to only omics-
based approaches (Jones et al., 2008; Martínez-Jiménez et al., 2020).   

1.3.3.1 Biological Pathways 
A biological pathway describes a set of biochemical reactions performed by a group of molecules within a 
cell, during cellular programs (e.g., cell division and cell death) (Hanahan & Weinberg, 2000; Vogelstein & 
Kinzler, 2004). These processes are activated when an initial molecule binds to a protein receptor and 
subsequently extends through a chain activation of another molecule. This procedure continues until all the 
molecules in the signalling pathway are activated and the cell function is finalised. If an issue occurs during 
this activation, aberrations may occur in the system and trigger disease development.  

The analysis of biological pathways enables the identification of genes with a relevant and central role in a 
disease, as well as, to establish the signalling pathways associated with these genes (Graham & Xavier, 
2020; Paczkowska et al., 2020). For instance, the overexpression of the E3 ligase, MDM2 provokes the 
suppression of TP53. Consequently, the inactivation of p53 induces an evasion of several cellular pro-
cesses, such as cellular senescence and apoptosis, and leads to uncontrolled cell proliferation and survival 
(Ozaki and Nakagawara 2011; Aubrey et al. 2018). Therefore, several MDM2 inhibitors have been devel-
oped to avoid the interaction between MDM2 and p53, and assure the p53 activity of key cellular function-
alities (Zhao et al. 2015). 

Furthermore, biological pathways also empower the investigation of mutual exclusivity in cancer. It has 
been demonstrated that distinct tumours typically progress by activating the same oncogenic pathways 
(Sanchez-Vega et al. 2018), and key cancer driver oncogenes (e.g., EGFR and KRAS) frequently manifest 
mutually exclusive properties if mutated in the same signal pathway (Kandoth et al. 2013). Thence, several 
methods based on oncogenic network modules and statistical tests have been developed to identify 
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mutually exclusive gene and pathway modules (Pulido-Tamayo et al. 2016; Ciriello et al. 2012; Babur et al. 
2015). 

Notably, the understanding of signalling pathway mechanisms ultimately enables a deeper and robust in-
vestigation of the disease, and is essential for the design of new targeted therapies. For example, in breast 
cancer the overexpression of HER2 leads to an abnormal activation of the PI3K/AKT and Ras/ERK down-
stream pathways, and subsequent uncontrolled tumour growth and poor clinical prognosis (Iqbal and Iqbal 
2014). Therefore, drugs such as trastuzumab were developed to directly target HER2 and prevent its acti-
vation (Rimawi et al. 2015; Hudis 2007).   

In cancer, the genetic alterations responsible for processes that may lead to tumorigenesis (e.g., apoptosis 
and cell growth) can be associated with dysregulations in several signalling pathways (Hanahan & Wein-
berg, 2000). Moreover, these perturbations co-occur at fluctuating frequencies and distinct pathways across 
different tumour and tissue types. Examples of distinguished pathways in cancer that are usually activated 
are the transforming growth factor beta (TGFβ) (Massagué, 2008) and the receptor tyrosine kinase 
(RTK)/Ras/MAP kinase (MAPK) (Santarpia et al., 2012).  

Throughout the years, has been established several pathway databases that provide the users a free 
search tool of available and curated signalling pathways, such as Reactome (Gillespie et al., 2022), KEGG 
(Kanehisa et al., 2023) and WikiPathways (Martens et al., 2021). These repositories serve as a pillar in 
several bioinformatics studies to contextualise and interpret results in a functional matter (Ciriello et al., 
2013; Reimand et al., 2019; Son et al., 2013), as well as, to empower sophisticated computational frame-
works (Adam et al., 2020; Colaprico et al., 2020; Gao et al., 2019; Jiao et al., 2020).  

1.3.3.2 Protein-Protein Interaction Networks 
Biological networks can be leveraged to investigate alterations in cellular pathways derived by modifications 
in the protein activity, and enrich biological interpretability by integrating several biological layers. Further-
more, these networks offer a higher coverage of the disease and can be exploited for multi-omics data 
integration frameworks (Ma & Zhang, 2019; Yan et al., 2018) and on drug discovery (Altieri, 2008; Hopkins, 
2008).   

Within the biological networks umbrella, in this thesis I highlight the protein-protein interaction (PPI) net-
works (Stelzl et al., 2005). PPIs describe the biochemical interactions between proteins across different 
organisms during cellular processes (e.g., cell transcription and translation) under diverse environmental 
situations.  

Typically, PPI networks are modelled as graph representations, where the nodes reflect the proteins and 
the edges denote the physical or functional of each pair of interacting proteins. These networks can be 
represented as directed or undirected graphs. The latter is the most common type of connection in PPIs 
and dictates if a protein A physically binds protein B. On the other hand, directed graphs provide information 
on the hierarchical direction of a reaction flow. This orientation can be applied, for example, to model met-
abolic reactions, and has been successfully leveraged in several biological segments (Cao et al., 2014; 
Vinayagam et al., 2011).   

The graph representation of PPIs empowers the discovery of subtype-specific modules consisting of topo-
logical (e.g., locally highly connected interacting proteins) and functional (e.g., highlight proteins with im-
perative role in each module and pathways) properties of interest (Kim & Kim, 2018; Yin et al., 2021).  
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Several PPI resources are publicly available and these are mainly stratified between datasets with experi-
mentally detected interactions from literature, such as BioGRID (Oughtred et al., 2021) and IntAct (Del Toro 
et al., 2022), and databases originated through computationally inferred interaction, such as STRING 
(Szklarczyk et al., 2018). In addition to these resources, there are available software’s which compile sev-
eral of these PPI datasets, and provide tools to leverage and model them within bioinformatics analysis, 
including Omnipath (Türei et al., 2021), HIPPIE (Alanis-Lobato et al., 2016) and Cytoscape (Shannon et 
al., 2003). 

The integration of PPI networks with other genomic (e.g., gene networks and gene expression), phenotypic 
and/or drug information has been extensively applied in the investigation of disease biomarkers and poten-
tial drug targets in cancer and other diseases (Y. Cheng et al., 2019; Isik et al., 2015; Pu et al., 2022; 
Vinayagam et al., 2014). Furthermore, these network analyses can be further extended to model patient-
specific systems and aid the design of personalised precision medicine (Li et al., 2017; Vaske et al., 2010).  

1.3.3.3 Ontology Databases 
Biologic ontologies serve as a complementary tool of the previously described systems when investigating 
disease mechanisms. These provide a comprehensive relationship between biological or phenotypic terms 
and genes/proteins within these terms, and are typically organised in a directed acyclic graph form. Accord-
ingly, the use of ontologies is frequently recognized in data integration approaches to interpret findings 
systematically and identify potential disease genes/proteins of interest (Yang et al., 2015; Y. Zhang et al., 
2022).   

- Gene Ontology 
Gene Ontology (GO) is a knowledge base resource with functional biological annotations of genes stratified 
in three different categories: biological process (BP), molecular function (MF) and cellular component (CC) 
(Ashburner et al., 2000). The database is organised in a graph form, where a node represents a GO term 
and edges depict functional relationships between terms. Moreover, the ontologies are arranged in a hier-
archical structure, where the information becomes more specific as one navigates from the parent to the 
child nodes. 

GO is estimated to currently encode more than 7.4 million biological concepts of several organisms and be 
extensively referenced in systems biology analysis published manuscripts. The database is mainly lever-
aged to perform enrichment analysis and integrate with other omics and databases (e.g., PPIs) (Tomczak 
et al., 2018).  

- Human Phenotype Ontology  
The study of phenotypic features and how these dynamically change as a consequence of genomic varia-
tion is essential to unveil the genes involved and their biological functions. In addition, the examination of 
diseases with shared phenotypic traits can reveal disease families and, consequently, disclose signalling 
modules involved (Brunner & van Driel, 2004; Rodriguez-Pinilla et al., 2007; Turner & Reis-Filho, 2006).  

The Human Phenotype Ontology (HPO) database was developed to aid in the investigation of phenotypic 
data in a disease context (Köhler et al., 2021). Currently, HPO is composed of more than 13,000 terms 
based on clinical information annotation available in literature, and OMIM (Amberger et al., 2015), Orphanet 
(Weinreich et al., 2008) and DECIPHER (Firth et al., 2009) repositories. Each term represents a phenotypic 
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anomaly, and these are modelled in an ontology structure similar to the one of GO. Furthermore, the infor-
mation in the ontology is organised in six distinct sub-ontologies: phenotypic abnormality, mode of inher-
itance, medical history, disease frequency, clinical modifier and blood group. 

1.3.4 Pharmacological screens 
Effective and efficient biomarker discovery extensively relies on high-throughput screens (HTS). Although 
the most precise models would be achieved through in vivo models, these models’ application is highly 
unethical and unfeasible in economic and safety terms (Workman et al., 2010). Therefore, drug screens 
assessed over a wide range of drugs against a substantial amount of cancer cell lines are leveraged since 
these enable to capture tumour heterogeneity and elaborate biomarker hypotheses to later guide clinical in 
vivo research (H. Gao et al., 2015; Kulasingam et al., 2010). 

1.3.4.1 Cell models 
Cancer cell lines are broadly leveraged as in vitro model systems of cancer tumours in cancer biomarker 
identification and validation, and drug response investigation. 

The complex mechanism to produce a new cell line initiates by modifying and stabilising the function of the 
cells in order to elude cellular mechanisms within the cell cycle, such as apoptosis and senescence (Pas-
cual et al., 2019). From this, a cell line capable to grow without limitations emerges, which is fundamental 
when taking into consideration the environmental differences between in vivo and in vitro conditions (Rock-
well, 1980; van Staveren et al., 2009).   

In parallel with the first discoveries on cancer cells, during the 20th century it was cultured the first cell line, 
called HeLa, from a cervical carcinoma patient (Gey, 1952). This discovery was later followed by the crea-
tion of the first large-scale high-throughput screen by the National Cancer Institute (NCI). The project was 
established with 59 unique tumour cell lines across nine diverse cancer types (e.g., breast, leukaemia and 
melanoma - pan-cancer screening), and labelled as NCI-60 (originally 60 cell lines were screened, however 
two cell lines were identical clones) (Shoemaker, 2006). The project was envisioned as a replacement of 
immunodeficient mice tumours for anti-cancer therapeutic screenings (Winograd et al., 2013), and can be 
leveraged to investigate the mode of action (MoA) of compounds through pattern recognition models. 

Currently, the biggest HTS available are the Genomics of Drug Sensitivity in Cancer (GDSC) (Garnett et 
al., 2012; Iorio et al., 2016), Cancer Cell Line Encyclopedia (CCLE) (Barretina et al., 2012) and the Cancer 
Therapeutics Response Portal (CTRP) (Basu et al., 2013; Seashore-Ludlow et al., 2015). These screens 
contain over 1,000 cancer cell lines treated with hundreds of compounds in several cancer tissue types, 
hence empowering the exploration of pan-cancer biomarkers.  

Despite its simplistic nature, in vitro cell lines enable the investigation of experimental work in a cost effec-
tive, practical, fast and ethical manner (Kaur & Dufour, 2012). Furthermore, in order to overcome the lack 
of specificity of in vitro models, currently large-scale cell line panels (e.g., GDSC, CCLE and CTRP) are 
leveraged in research to model cancer heterogeneity and explore the diverse outcomes in clinics (Gillet et 
al., 2013).  
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In addition, it is possible to integrate the phenotypic information of cell models with omics, namely genomics, 
transcriptomics and proteomics, thus opening a large window of opportunity for researchers to study po-
tential biomarkers in cancer and hypothesise treatment approaches (Huang & Vakoc, 2016). 

Notwithstanding the extensive advantages in leveraging cell line screens, one should bear in mind the 
exhaustive and prolonged procedure of cell line creation, the possibility of cross-contamination (Buehring 
et al., 2004), the lack of ability to capture the full complexity and heterogeneity of tumours, and the non-
matched outcomes between in vitro and in vivo (Weinstein, 2012).  

1.3.4.2 GDSC, CCLE and CTRP screens 
Precision oncology aims to optimise patient treatment based on robust and specific genetic and molecular 
characteristics. To this end, large-scale pharmacogenomic screens, based on cancer cell lines models and 
tested against a wide range of approved compounds, are leveraged to represent tumour heterogeneity and 
explore biomarkers of drug sensitivity, patient stratification and personalised treatments (S. V. Sharma et 
al., 2010). 

After the development of the NCI-60 screen, efforts were allocated to expand the amount of cell lines and 
candidate drugs screened in pharmacological screens. From this, several noteworthy large HTS studies 
were generated, such as GDSC (Garnett et al., 2012; Iorio et al., 2016), CCLE (Barretina et al., 2012), 
CTRP (Basu et al., 2013; Seashore-Ludlow et al., 2015) and Genentech Cell Line Screening Initiative 
(gCSI) (Haverty et al., 2016).  

The initial release of GDSC comprised 639 cancer cell lines and 130 drugs (Garnett et al., 2012). Subse-
quently, the screen was augmented to 1,001 cell lines and 265 compounds (Iorio et al., 2016). Currently, 
the project is frequently updated with new cell lines, compounds and drug response metrics, and its data is 
incorporated within two distinct datasets GDSC1 and GDSC2. On another hand, the CCLE project contains 
pharmacological screens of 24 drugs against 479 cancer cell lines and genomic data for 947 cell lines 
(Barretina et al., 2012). The CTRP first release included 185 compounds tested against 242 cancer cell 
lines (CTRP v1) (Basu et al., 2013), and was later expanded to 481 compounds and 860 cell lines (CTRP 
v2) (Seashore-Ludlow et al., 2015). The genetic information available in CTRP was integrated from the 
CCLE resource.   

Moreover, all these pharmacological screens comprise a full molecular characterisation of the cancer cell 
lines. In detail, both GDSC and CCLE contain mutation profiles, copy number variations (with Affymetrix 
SNP6.0 arrays) (Freeberg et al., 2022) and gene expression information (with Affymetrix U219 and Affy-
metrix U133 Plus 2.0, for GDSC and CCLE, respectively) (Sarkans et al., 2018). In addition, GDSC also 
provides DNA methylation profiles (with IlluminaHumanMethylation450 BeadChip) (Edgar et al., 2002). 

The experimental protocols of GDSC and CCLE vary in terms of the tested drug concentrations. Whilst 
GDSC tailors the concentration range to capture the sensitivity window, CCLE considers a fixed concen-
tration range to all the compounds. This distinction resulted in several discrepancies in the drug response 
outcomes between the pharmacological screens (Haibe-Kains et al., 2013). Therefore, several studies ex-
plored the dissimilarities between the GDSC and CCLE screens (Bouhaddou et al., 2016; Cancer Cell Line 
Encyclopedia Consortium & Genomics of Drug Sensitivity in Cancer Consortium, 2015; Geeleher et al., 
2016), and concluded that the observed divergences were mainly driven by distinct experimental and data 
analysis designs.  
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In addition, other studies also examined the drug response of GDSC, CCLE and CTRP screens, whilst 
having in consideration the variability intrinsic in the methodology and protocol designs (Pozdeyev et al., 
2016; Xia et al., 2022). In essence, a satisfactory agreement between the findings across the three HTS 
was concluded, rendering these screens as valid tools for the exploration of cancer biomarkers. 

The identification of robust and patient-tailored sensitive biomarkers is the main goal of HTS such as GDSC, 
CCLE and CTRP. Owing to the extensive molecular characterisation of cell lines and their large-scale phar-
macological screening, these screens enable to define genomic, transcriptional and epigenetic profiles that 
describe the association between a compound and a cancer cell line (Ben-David et al., 2018). Furthermore, 
these screens include a wide landscape of cancer types, and provide information on compounds of clinical 
interest for targeted therapies, which facilitates the investigation of personalised and therapeutic biomarkers 
(Aldonza et al., 2020; Krug et al., 2020; McDermott et al., 2007; Safikhani et al., 2017). 

Notwithstanding the various advantages of leveraging pharmacological screens, these remain an open re-
search field with need of improvement. Notably, an expansion of current screens is of the utmost relevance 
to empower the investigation of further cancer biomarkers. However, not only this expansion is bounded by 
available labour and costs, but current screen designs suggest the majority of the screened cell lines do 
not respond to the tested compounds (Bouhaddou et al., 2016). In addition, current screens present diffi-
culty to recognize resistance biomarkers due to cytotoxicity and limitation of tested concentrations (Figure 
4), and rather identify potential candidates as non-responders (Ayestaran et al., 2020). Therefore, future 
pharmacological screens need to overcome these limitations by leveraging new methods of cell line screen-
ing and develop adequate cancer specific designs (Ling et al., 2018).  

 

 

 

 

 

1.3.4.3 Drug response metrics 
Cell line drug response is commonly assessed and represented by a cell viability assay succeeding multiple 
treatments of cancer cell lines over a wide range of drug concentrations. Henceforth, after a specific period 

Figure 4: Challenges to identify resistance biomarkers in high-throughput screening.  
 

Response curves of cell lines NCI-H2291 and NCI-H23 treated with gefitinib. (A) Response based on raw 
cell viability data from GDSC. Exemplification of a non-responder cell line where the IC50 value was extrap-
olated beyond the tested drug concentrations. (B) Raw pharmacological data obtained from CTRP drug 
screens. Tested drug concentrations are higher and potentially cytotoxic. Consequently, this may lead to 
off-target effects in the cell line.  
This image is a compilation of panels from the original supplementary figure 2 “Synopsis of pharmacology 
screens and response examples” by (Ayestaran et al., 2020) under a CC-BY-4.0 license (http://crea-
tivecommons.org/licenses/by/4.0/). 
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of time, the number of viable cells is quantified in respect to a control substance and, subsequently, drug-
cell line responses are derived to each given concentration (Figure 5). 

 

 

 

 

 

 

 

 

Drug-cell response values are typically represented by curve fitting processes (Figure 6 A-B), including 
sigmoid models (Vis et al., 2016) and Gaussian processes (GP) (D. Wang et al., 2020). These methods 
are summarised by curve measurements (Figure 6 C-D), such as the concentration necessary to reduce 
cell viability by half (IC50 – half maximal inhibitory concentration) or the area under the curve (AUC). For 
instance, the GDSC and CCLE screens represent the drug response via IC50 values (Barretina et al., 2012; 
Iorio et al., 2016), whilst CTRP uses AUC values (Seashore-Ludlow et al., 2015). 
 

Although it is conveniently manageable and interpretable to summarise the whole drug response in one 
representative metric, this also entails several limitations. For instance, AUC values are difficult to interpret 
and compare across different screens since it depends on the considered drug concentration ranges 

Figure 5: Typical cell viability assay protocol.  

At day 0, treatment and control plates are seeded with cell lines. Posteriorly, treatment with a specific drug 
concentration and control compound are given to treatment and control cell lines, respectively. In the end, 
the intensities of the treatment, control and blank are quantified and cell viabilities are estimated. 
Figure created with BioRender.com. 

Figure 6: Raw drug response, curve fitting and drug response measures. 

(A) Exemplification of initial cell viability values as a function of drug concentration. (B) Raw drug response 
is typically fitted using curve fitting methods such as sigmoid models and Gaussian Processes. In this figure 
it is illustrated the case of a responder cell line. (C) The half maximal inhibitory concentration (IC50) and (D) 
the area under the curve (AUC) are commonly leveraged as metrics to characterize the drug response.  
Figure created with BioRender.com. 
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(Pozdeyev et al., 2016). Moreover, IC50’s are calculated by interpolation or extrapolation methods, depend-
ing if the IC50 value is within the tested concentration range or not, respectively. In the latter situation, the 
assigned IC50 value will not be an adequate representation of the drug response (Pozdeyev et al., 2016). 
For example, the CTRP project attempts to approach this problem by testing cells over high drug concen-
trations, however this is subsequently affected by the possibility of cytotoxicity. 

In addition, metrics such as IC50 do not provide information regarding the curve behaviour, like the level of 
response sensitivity and the amount of noise in the data (Haibe-Kains et al., 2013; Haverty et al., 2016). 
Hence, there is no assessment on the reliability and specificity of the drug response outcomes. In order to 
overcome these issues, several studies (Bayer et al., 2023; Di Veroli et al., 2015; D. Wang et al., 2020) 
proposed to additionally leverage curve error and slope metrics, however these works are still not accepted 
as new gold-standards. Lastly, these measures do not take into consideration the cell growth rate when 
computing the drug response, neglecting the effects of cell proliferation rates or seeding densities of a cell 
line on the drug response (Hafner et al., 2016). 

1.4 Computational methods in pharmacogenomics 
Over the past years, biological research has collected a considerable amount of pharmacogenomic data 
thanks to new technologies such as DNA sequencing and HTS. This increase in data complexity has 
sparked the need to develop computational approaches that are able to deal with large datasets and inves-
tigate new hypotheses (Figure 7). Namely, various statistical and machine learning (ML) methods are lev-
eraged to jump from the raw data into biological interpretable results in a systematic and reliable manner 
(Boniolo et al., 2021; Farnoud et al., 2022). 

 

 

 
 
 

Figure 7: Data complexity augmentation requires advanced mathematical models.  

(A) Simple statistical procedures such as hypothesis testing, provide important tools to investigate bi-
omarkers in cancer pharmacogenomics. For example, it enables to stratify between sensitive and non-
responders to a specific drug treatment. (B) Furthermore, machine learning methods, namely clustering, 
prediction and classification, can be leveraged for more complex tasks. Specifically, to perform drug re-
sponse prediction based on multi-omics data and clustering of unprocessed data. (C) Notwithstanding, 
when handling significantly large and complex datasets, it becomes challenging to identify meaningful fea-
tures and extract conclusions with standard approaches. Therefore, deep learning frameworks based on 
conventional neural networks are typically employed.  
Figure created with BioRender.com. 
 

In my thesis, I consider several computational concepts to integrate multi-omics data, investigate unex-
pected phenomena in drug response assays and prioritise the feature space in order to enhance ML 
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predictive power. Ultimately, these approaches were created to identify new relevant biomarkers that can 
aid in the diagnosis and treatment of cancer patients. 

1.4.1 Statistical methods for biomarker discovery 
During the investigation of new cancer biomarkers, one requires statistical approaches to tackle the high-
dimensional data for several purposes. Namely, to 

• identify significant biomarkers; 
• stratify between sensitive and non-responder cohorts; 
• explore out-of-the-distribution observations, i.e., outliers; 
• ensure non-biased conclusions. 

One of the pillars of pharmacogenomics is the exploration of treatment efficacy and the variants involved 
with it. For this, typically one starts to identify distinct cell or patient cohorts and test their reaction to several 
treatments. Notably, these groups contain specific genetic variation, and therefore are defined by particular 
oncogenic alteration events, reflected on the oncogenes’ status. In order to understand the relationship 
between these oncogenes and the compounds, it is conventional to leverage statistical tests such as t-test 
(STUDENT, 1908) or analysis of variance (ANOVA) (Girden, 1992). For instance, when exploring drug 
sensitivity, one stratifies between responding and non-responding cell lines. If this analysis is performed 
within a cancer type framework, a t-test is an adequate tool. However, within a pan-cancer analysis setting 
with several tissue types, an additional correction of the tissue type is required and therefore it is used 
ANOVA (Iorio et al., 2016). In my thesis I leverage ANOVA for two purposes: to identify drug sensitivity 
biomarkers across several cancer types, and to recognize increasing cell viability biomarkers within mutant 
subpopulations.  

Another important factor while performing bioinformatic analysis, is the identification and validation of pu-
tative markers through hypothesis testing. Typical cases occur when performing differential expression 
analysis (Anders & Huber, 2010), testing the several combinations of drug-cell with a particular condition 
(e.g., sensitivity or resistance marker) (Iorio et al., 2016) or while performing gene set enrichment analysis 
(GSEA) (Subramanian et al., 2005).  In these situations, a p-value will be assigned to each gene, drug-cell 
response, group of genes or pathway, and inform (under a specific threshold) of the probability of this 
particular event to happen if the null hypothesis is valid. Following this, it is possible to sort and recognize 
phenomena based on their significance (Panagiotakos, 2008). 

However, frequently in this sort of analyses, thousands of hypotheses are tested, rendering the possibility 
of encountering false positive situations inevitable, and the assigned p-values misleading. Therefore, when 
performing statistical hypothesis testing, the p-values should be reported together with additional metrics 
independent of the sample size, such as confidence intervals or effect size (Halsey, 2019). For instance, 
while performing ANOVA analysis to identify sensitive drug response biomarkers, the p-values are comple-
mented with Cohen’s D effect size (Lakens, 2013). 

Furthermore, it is recommended to correct the statistical tests taking into account the false positive rate 
inflation (Type I error). One of the most traditional methods is the conservative Bonferroni correction method 
(Bonferroni, 1936), where the raw p-values are divided by the number of total tests. An alternate classical 
technique is the Benjamini-Hochberg (BH) procedure (Benjamini & Hochberg, 1995), which controls the 
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false discovery rate (FDR) by ranking the p-values in an ascending order and multiplying them by the num-
ber of features over their corresponding rank.  

In addition to the mentioned procedures, another group of FDR controlling techniques is the adjustment 
across multiple hypotheses testing families which are hierarchically structured, i.e. hierarchical false dis-
covery rate (HFDR) controlling procedures. Several methods are possible to employ in this kind of hierar-
chical analysis, e.g. Yekutieli’s (Yekutieli, 2008) and Benjamini-Yekutieli’s (Benjamini & Yekutieli, 2001) 
methods. However, their application is dependent on several characteristics of the hierarchical framework, 
including the independence level within statistical families and which FDR correction procedure is imple-
mented at each statistical level. In this thesis, I apply the Yekutieli HFDR control procedure in a two-level 
statistical framework where initially sensitive response biomarkers are identified, followed by the discovery 
of resistance biomarkers within the recognized sensitive ones. 

Apart from these multiple testing correction procedures, re-sampling techniques such as bootstrapping or 
permutation methods are also commonly leveraged (Camargo et al., 2008).  

Lastly, the exploration of novelties and outliers is of notable interest in bioinformatic research in the context 
of semi-supervised and unsupervised anomaly detection frameworks, respectively. The distinction between 
these two terms depends if the out of the distribution observation in question is something we want to 
investigate (novelty) or if its presence of damages in the raw data and/or subsequent analyses (outlier) 
(Hodge & Austin, 2004). Throughout my thesis I present two distinct examples of anomaly detection - the 
investigation of unexpected cell lines with resistance markers (novelty) and the identification of out of the 
distribution points whilst performing curve fitting of drug responses (outliers).  

1.4.2 Dose-response curve fit 
In cancer research, cell viability is typically assessed via HTS assays of several cell lines tested against 
multiple compounds over various concentration points. The resulting cell line drug response relationship is 
derived via a dose response curve. In the case of a full responder cell line, this curve typically resembles a 
sigmoidal curve with decreasing viability as the dosage increases (Figure 8 A). Furthermore, for the sake 
of simplicity, this information is commonly summarised by curve metrics such as IC50’s or AUC values 
(Barretina et al., 2012; Garnett et al., 2012; Iorio et al., 2016; Seashore-Ludlow et al., 2015). 

The modelling of drug responses can be performed using both parametric or non-parametric models and 
is typically conducted using nonlinear models, including the Non-linear Least Squares (NLS) algorithm 
(Becsey et al., 1968). Nonetheless, the modelling of these experimental designs is challenging due to the 
sparse sample size, small number of experimental replicates, existence of noise and nonlinear response 
behaviour. Therefore, most current curve fitting models are assumed to be parametric sigmoidal models 
with specific upper and lower boundaries (e.g., the cell viability is assumed to be reduced to zero for high 
drug concentrations) (Dawson et al., 2012; Iorio et al., 2016; Vis et al., 2016; Y. Wang et al., 2010).  
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However, these restrictions often result in approximations where intrinsic noise of the experimental data 
and the true response of the curve fitting are ignored, leading to imprecise drug response estimations. In 
particular, several distinct curve patterns are currently unidentified or misclassified. Namely, 

• Increasing cell viability (ICV), i.e., cases where the cell lines exhibit an unexpected increase in the 
cell viability upon treatment (Figure 8 B). This phenomenon is counterintuitive in HTS, since one 
would expect a decrease in cell viability as drug dosage increases, eventually leading to cell death. 
In contrast, within an ICV scenario, a possible hypothesis is that the cancer drug facilitates cell 
growth by inhibiting cell cycle checkpoints, consequently accelerating the cell cycle. Such curve 
patterns are misclassified as non-responders by currently employed curve fitting methods.  

• Maximal effect at high concentrations (Emax) above zero (Figure 8 C). Theoretically, the Emax value 
is modelled to converge to zero since high drug concentrations lead to cytotoxicity, and henceforth 
no cell viability. However, cancer cells may develop an intrinsic resistance to the compound driven 
by alterations in the gene expression, or other omics. Similarly to the previous situation, this type 
of responses are incorrectly modelled and wrongly classified as sensitive responses in HTS. 

Both of these phenotypes hold significant potential to investigate in pharmacogenomics. For instance, HTS 
are typically tested over a short timeframe (3-6 days), rendering it difficult for a cell line to acquire resistance 
to a particular compound during the assay period. Hence, the possibility of an Emax to converge to a value 
greater than zero, likely elicits the existence of a resistance biomarker between the cell and the drug.  

Furthermore, the case of ICV may conceal an extreme case of drug resistance or a prospective therapeutic 
scenario. Notably, uncontrolled tumour growth is a cancer hallmark and an event that should ideally be 
prevented from arising or actively combated. However, the existence of this uncontrolled proliferation be-
tween a drug and a cell line may pave the way for a novel and controversial (but effective) cancer therapy 
through synergistic drug combinations. For example, with drugs such as DNA damaging agents which fa-
vourably work with fast dividing tumours, and possibly reduce the tumour growth at a faster rate than its 
increase due to an efficient drug targeting scheme (O’Connor, 2015; Swift & Golsteyn, 2014).  

A B C

Figure 8: Types of drug responses in HTS. 

(A) A cell line is called responder if its cell viability reduces as the drug concentration increases. Typically, 
the drug response is modelled as a sigmoid curve that equals to zero at the maximal drug concentration. 
Currently modelling of drug screen data neglects atypical behaviours, such as (B) increased cell viability 
and (C) Emax higher than zero. 
Figure created with BioRender.com.  
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In my thesis, I explore biomarkers of ICV in drug assays by developing a computational framework without 
parameterization of the cell viability upper and lower limits. This flexible approach allows to systematically 
investigate potential drugs which efficiently work with cell lines with fast proliferation based on their growth 
rates and hypothesise potent combination candidates of these two within cancer types.  

In addition, a possible alternative to the commonly considered drug response fitting mechanisms based on 
NLS modelling of a sigmoid function, is to utilise Gaussian Processes (GP) which enable to measure and 
account for the uncertainty in the drug response data (D. Wang et al., 2020). This is of particular interest 
for HTS where there is a considerable amount of noise in the data and few replicates. Although this ap-
proach may entail higher complexity due to the need to specify a particular kernel, GPs can deal better with 
noisy HTS data and provide a more accurate assessment of the drug response (D. Wang et al., 2020). For 
this reason, in my thesis I propose the exploration of new drug response biomarkers through the usage of 
GP curve fit modelling with several kernels and report their overall accuracy in HTS screens typically as-
sessed with a NLS sigmoidal framework (Iorio et al., 2016; Vis et al., 2016). 

1.4.3 Networks for gene identification and prioritisation 
An obstacle in cancer research is to efficiently tackle the vast amount of biological data and its quality in 
order to investigate underlying cellular processes. 

A possible solution is to leverage biological networks, namely protein-protein interaction (PPI) networks, to 
stratify biological functional relationships between genes or proteins, infer relevant features to oncogenic 
changes and/or to perform knowledge guided investigations. For instance, these can be leveraged to iden-
tify drug response biomarkers (Garcia-Alonso et al., 2018; Kong et al., 2020), classify tumour subtypes (J. 
Cao et al., 2021; J. Su et al., 2010), predict patient outcome (Nuncia-Cantarero et al., 2018; Taylor et al., 
2009) or as machine learning input tools (Costello et al., 2014; Kong et al., 2020; Schulte-Sasse et al., 
2021). Several biological network databases with curated ensembles of several PPIs from literature and 
high-throughput experiments are currently available online, including STRING (Szklarczyk et al., 2018) and 
Omnipath (Türei et al., 2021). 

Nonetheless, pairwise network tools such as PPIs potentially contain high false positive (i.e., incorrect in-
teractions) and false negatives (i.e., missing interactions) rates, a significant amount of data to analyse and 
several non-relevant interactions (Liu et al., 2009; von Mering et al., 2002). Therefore, many network-based 
methodologies with functional inference have been proposed to create meaningful data analysis tools. In 
detail, these typically integrate several heterogeneous sources, such as physical binding, genetic and phe-
notypic interactions. This data integration can be conducted by combining the edges of several networks 
via mathematical inference (I. Lee et al., 2011; Peterson et al., 2015) or through edge weighting (Liu et al., 
2009; Mostafavi et al., 2008; Z. Zhang et al., 2018). Subsequently, the built integrated network can be 
investigated by network-based inference methods, including graph-based clustering (J. Wang et al., 2019; 
H. Zhou et al., 2017) and label propagation (e.g., random walk with restart algorithm) (Lei et al., 2019; 
Mostafavi et al., 2008; Valdeolivas et al., 2019), to derive functional insights. 

Several sophisticated methods focus on the integration of external functional annotations (Ashburner et al., 
2000; Köhler et al., 2021) and topological network structure for the identification of relevant candidate genes 
(Ietswaart et al., 2021; Kumar et al., 2018; Mostafavi et al., 2008). In addition, through computational anal-
yses, these studies can also be extended and customised to perform candidate’s prioritisation via statistical 
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inference (e.g., similarity probability or permutation-based with p-value ranking) for a specific task (Ietswaart 
et al., 2021; Kumar et al., 2018; Morrison et al., 2005). For instance, instead of leveraging all the unspecific 
GO term ontology annotations, one can use expert knowledge to guide the method and only focus on 
disease-relevant ontologies (e.g., annotations tailored to a particular disease or tissue). Notable graph-
based methods of omics prioritisation include GeneFriends (Raina et al., 2023), pBRIT (Kumar et al., 2018) 
and PhenoRank (Cornish et al., 2018). 

In this thesis I present a novel approach called weighted Protein-Protein Interaction (wPPI) (Galhoz et al., 
2021) which integrates PPI data from Omnipath, and ontologies databases GO and HPO to identify and 
prioritise new genes based on a given genes of interest. The proposed framework is customised by tissue-
type through a personalised filtering of the ontology databases and is ultimately used as a tool to system-
atically augment the set of features used in a posterior machine learning (ML) drug response model.    

Despite the success of network-based approaches, current methods still face application challenges due 
to inconsistencies across data modalities (e.g., tissue-specific modules, different omics identifiers and lev-
els of specification), intrinsic noise and structural disorder of PPI interactions, existence of directionality and 
hierarchy in both PPI networks and ontologies, as well as computational challenges such as data storage 
(Milano et al., 2022; Sevimoglu & Arga, 2014). Fortunately, these issues are starting to be addressed in 
emerging knowledge representation methodologies. For instance, the recently published BioCypher frame-
work offers the integration of several biomedical resources harmonized by user-specific ontologies and fast 
query and extraction of knowledge graphs (Lobentanzer et al., 2023).      

1.4.4 Machine learning for drug response prediction 
Transitioning from knowledge guided inference of relevant features through statistical and network-based 
methods, here it is discussed another pillar of computational pharmacogenomics: the prediction of drug 
response using machine learning (ML) methods. 

In particular, ML algorithms can be split in unsupervised and supervised learning, depending if the predic-
tion is performed on unlabelled or labelled data, respectively (Vamathevan et al., 2019). The former is a 
data-driven approach which infers hidden or intrinsic patterns in the data by assessing similarity between 
the samples. These are commonly used for exploratory purposes, namely to stratify groups in the raw data, 
as a dimensionality reduction technique or for high-dimensional data visualisation. Typical examples of this 
modality are clustering algorithms, including k-means (Hartigan & Wong, 1979) and hierarchical clustering 
(Bridges, 1966), and segmentation techniques, such as Principal Component Analysis (PCA) (Pearson, 
1901) and t-distributed stochastic neighbour embedding (t-SNE) (Gmail & Hinton, 2008). 

In contrast, supervised ML methods aim to develop a mapping function between the known input labels 
and output values through training models. Subsequently, the built learning algorithms can be applied to 
predict future outputs on an unseen set of input data, such as an external independent dataset or part of 
the original input data which was not involved in model training. In addition, in order to achieve more accu-
rate and robust predictions, one can also leverage prior knowledge (biological priors) or estimated sub-
groups from an unsupervised algorithm, as input to supervised approaches. For example, established clus-
tering groups from gene expression profiles can be used to predict drug response (Majumdar et al., 2021).  

Subject to the intended application goal, supervised learning methods can be partitioned into classification 
or regression tasks depending if the outcomes are discrete or continuous variables, respectively. Examples 
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of a classification task are the stratification of cancer type classes from high-throughput data (Tyanova et 
al., 2016) or the categorization of cell lines as sensitive or resistant (Ahmadi Moughari & Eslahchi, 2021; 
Iorio et al., 2016). On the other hand, the prediction of the drug response of cancer cell lines is performed 
using regression methods (Costello et al., 2014; Menden et al., 2013). 

Within each supervised learning technique, a broad spectrum of supervised linear and non-linear ML algo-
rithms are available, including Support Vector Machine (SVM; C. Cortes & Vapnik, 1995), Ensemble (Z.-H. 
Zhou, 2011) and Kernel (Hofmann et al., 2008) methods for classification. Alternatively, for regression, 
Neural Networks (W. S. McCulloch & Pitts, 1943), Linear Regression (e.g., LASSO, Ridge and Elastic Net 
regularisation) (Bingham & Fry, 2010) and Decision Trees (Wu et al., 2008).  

During model learning, a relevant aspect to have in consideration is model robustness in terms of over- and 
underfitting. These phenomena significantly affect the performance of ML approaches, and can be detected 
during model training or when assessing the accuracy of the trained model in a new independent test data. 
Particularly, overfitting is disclosed by a high accuracy in the training data, but fails to infer accurate predic-
tions on the test data. Conversely, during underfitting the model is too simplistic and does not accurately 
predict the training data (Camacho et al., 2018). 

To address undesirable fitting situations, adjustment of model’s complexity, data augmentation, feature 
engineering and/or regularisation techniques (e.g., LASSO, Ridge or Elastic Net) should be employed. 
Several notable resampling methodologies are commonly leveraged, including cross-validation (CV) (Has-
tie et al., 2009; Picard & Cook, 1984) and bootstrapping (Mooney et al., 1993). For the former, the amount 
of k folds considered depends on the user and data structure, however a 10-fold CV or a leave-one-out 
cross-validation (LOOCV) are the most widely known structures. In addition, a repeated CV procedure can 
be leveraged for a more robust and accurate estimation of the model performance (J.-H. Kim, 2009). 

Moreover, in order to assess the validity of predictions, model performance can be inferred by evaluation 
metrics depending if the predictive model is a classification or regression task. In the case of a classification 
ML model, metrics such as the area under the curve (AUC), accuracy and confusion matrix are widely 
considered (Lever, 2016). On the other hand, the performance of regression methods can be evaluated by 
variance-based metrics, including the Pearson Correlation Coefficient (Lee Rodgers & Nicewander, 1988) 
and root-mean-squared error (RMSE) (Hastie et al., 2009). 

Throughout this thesis I focus on the application of linear models, namely ANOVA for the distinction be-
tween sensitive and resistant cell lines, and LASSO regression for the prediction of drug response. Although 
these are simplistic approaches, the usage of these linear methodologies is motivated by the balance be-
tween model simplicity and accuracy. These are expressed by the straightforward fitting and model’s out-
come interpretation, the possibility of taking into account various components (e.g., clinical and genetic 
features) and the consistent good results in literature for the designated tasks (Geeleher et al., 2014; E. W. 
Huang et al., 2020; Iorio et al., 2016). In addition, I propose to employ the LASSO model in combination 
with the previously mentioned wPPI network approach (Galhoz et al., 2021) for an appropriate knowledge-
guided feature selection and, consequently, derive an informative final model. In order to ensure model 
robustness, the constructed predictive model will be trained and tuned using the repeated cross-validation 
technique, performance will be assessed by the Pearson correlation coefficient and additionally bench-
marked against other state-of-the-art network-based feature selection procedures.  
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1.5 Aims of the thesis 
Throughout the recent years, there has been a notable expansion of pharmacological screens and in the 
development of innovative approaches to analyse unexpected behaviours within these screens. These ad-
vancements grant unique opportunities to pave new pathways in precision medicine, by improving the cur-
rent understanding of biomarkers in cancer research, as well as develop new therapy mechanisms.  

Despite the continuous development, analyses built on drug screens are complex and statistically under-
powered due to poor molecular characterisation and/or infrequent alteration events across cancer types. 
Moreover, standardised frameworks used to describe drug responses are rather simplistic, with parameter-
isation constraints which neglect unexpected phenotypes of potential interest in therapeutic settings.  

In this thesis I focus on the development of new mathematical methodologies that tackle the low statistical 
power in HTS and contribute to the identification of novel cancer biomarkers through three different aims:   

1. Identify drug resistance in HTS – Indirectly explore unpredicted resistance behaviours in HTS 
through an advanced and innovative statistical framework for outlier detection in sensitive cell lines. 
The proposed procedure outperforms existing state-of-the-art outlier identification methods, suc-
cessfully recognizes established resistance markers in different cancer types and reveals several 
new biomarker hypotheses to be leveraged for drug combinations;  

2. Exploit increased cell viability induced by drugs for cancer treatment – Creation of a sophis-
ticated methodology to investigate the unexpected increasing cell viability phenotype, missed by 
standardised models. The proposed framework leverages both linear and non-linear flexible curve 
fitting strategies, and is complemented with a detailed exploration of the molecular characterisation, 
to recognize candidates for validation. In addition, I analyse cell proliferation rates to hypothesize 
potential drug combination with synergistic effects involving the validated candidates; 

3. Unveil novel cancer-specific genes via functional networks – Design of a comprehensive net-
work-based approach integrating signalling pathways, genomic and phenotypic data to recognize 
and prioritise new cancer-specific genes. The proposed framework is leveraged as a feature aug-
mentation tool to enhance drug response prediction using gene expression profiles. The built ML 
models are benchmarked against another knowledge-based feature selection procedure and the 
identified cancer biomarkers are analysed in therapeutic contexts.  

In the upcoming section I provide an overview of the publicly available datasets I used throughout my thesis, 
and detailed mathematical descriptions of the methods developed and leveraged for the investigation of 
the previously enumerated approaches. Subsequently, in chapter 3 I illustrate the relevant applications and 
outcomes of the applied methodologies. Lastly, in chapter 4, I summarise the main results of the three 
applications, discuss the relevance of the findings, debate current limitations and propose an outlook for 
possible future research.  
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2. Materials and Methods 

2.1 Public resources 
In this section I provide an overview of the public data resources, data processing tools and methods nec-
essary to perform the bioinformatic analysis presented in this thesis.  

Throughout this thesis I illustrate results for three distinct projects in pharmacogenomics (overview of the 
projects can be found in the List of Publications chapter). Therefore, several of the public materials are 
shared but were downloaded and used at different time points depending on the project at hand. For these 
situations, the relevant dates of access and indication of data versions used for each project are indicated.  

2.1.1 GDSC and CTRP pharmacological screens 
Raw pharmacology data from the GDSC (Garnett et al., 2012; Iorio et al., 2016) and CTRP (Basu et al., 
2013; Seashore-Ludlow et al., 2015) projects are leveraged throughout this thesis. Two versions of the 
former are considered – one containing 495 compounds, 818 cell lines and 317,357 drug-cell combinations 
(Project 1, downloaded in 2019) and another consisting of 516 different compounds, 998 cell lines and 
420,273 drug-cell combinations (Projects 2 and 3, downloaded in 2021; Figure 9). 
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Figure 9: Overview of GDSC number of cells and functional events by cancer tissue. 

Number of (A) cells and (B) genomic alterations per cancer type, for Projects 2 and 3. PANCAN tissue was 
not considered. Barplots coloured according to the cancer type.  
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For Project 1, only CTRP screening data (downloaded in 2019) with cell lines available in the GDSC dataset 
was considered, comprising 545 compounds, 504 cell lines and 220,461 drug-cell combinations. In total, 
the combination of GDSC and CTRP datasets consisted of 814 unique compounds and 816 unique cell 
lines to be investigated in Project 1.    

In addition, drug response data was estimated for both pharmacological screens by the sigmoidal-based 
curve fitting method used in the GDSC project (Vis et al., 2016) and represented by the concentration 
required to reduce the cell viability by half (IC50) metric. Moreover, the IC50 values were described in the 
natural logarithm form of the µM concentrations, where low values of IC50 state a higher sensitivity of the 
cell line to the tested compound and vice versa. 

2.1.2 Experimental Design 
For the GDSC and CTRP projects, the raw data was generated using a cell viability (CV) assay where cell 
lines were seeded in 384-well plates and treated with several compounds for 72 hours. In the GDSC project, 
for each drug, the cell lines were tested with 5 or 9 distinct concentrations in 4- or 2-fold dilution points, 
respectively. Whilst, in the CTRP project, the tested compounds were only plated into 2-fold concentration 
ranges. Afterwards, cells were stained using CellTiter-Glo and their fluorescence signal intensity (I) was 
assessed (Basu et al., 2013; Iorio et al., 2016).   

Each cell assay consisted of three different types of wells: cells treated with a given drug at a specific 
concentration, cells treated with a control substance (typically DMSO) and blank wells (plate with no cells 
used for background correction) (Figure 5). Based on these measures, the cell viability of each drug is 
computed as: 

𝐶𝑉!"#$ =
𝐼!"#$ − 𝐼%&'()
𝐼*+(,"+& − 𝐼%&'()

 

Equation 1 

Where Idrug is the intensity of the well treated with the compound, Iblank and Icontrol are the average intensities 
across the wells on that particular plate with no cells and treated with DMSO, respectively. 

2.1.3 Genetic data 
Cancer functional events (CFEs) of the screened cell lines were retrieved from the GDSC project (Iorio et 
al., 2016). These included copy number variations from Affymetrix Genome-Wide Human SNP Array 6.0, 
and mutation status of whole genome sequencing from Affymetrix GeneChip Human Genome HT-
HGY122A Array. CFEs were described as binary events for each cell line across 21 different cancer types 
and 1,073 different mutations. In addition, gene expression profiles were detected for 1,018 cell lines across 
17,418 genes. 

2.1.4 Omnipath prior knowledge network  
The Omnipath database was used to derive direct and indirect human Protein-Protein Interaction (PPI) 
networks around cancer genes of interest. The Omnipath combines over 100 resources of curated path-
ways with information of inter- and intracellular signalling interactions, including a collection of 61 protein 
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network databases (Türei et al., 2021). For this thesis, the Omnipath network was downloaded using the R 
package OmnipathR (Valdeolivas et al., 2019), and consisted of a total of 46,285 protein interactions, with 
4,663 and 4,654 unique protein and gene symbols, respectively (downloaded in 2022). 

2.1.5 Ontology Databases 
Gene Ontology (GO) (Ashburner et al., 2000) and Human Phenotype Ontology (HPO) (Köhler et al., 2021) 
resources were leveraged to build functional weighted PPI networks. The usage of these ontology data-
bases in a bioinformatics’ framework enables the addition of genomic and phenotypic knowledge to existing 
interacting PPI networks and inference of disease-specific interactions and genes. The GO and HPO on-
tologies were directly downloaded from the respective portals using the wPPI R package (Galhoz et al., 
2021). The GO database encoded 606,840 gene-ontology combinations, with 18,346 unique GO IDs and 
19,712 gene symbols; and the HPO database comprised 209,825 gene-ontology interactions, with 8,919 
unique HPO IDs and 4,769 gene symbols (both ontology databases were accessed in 2022). 

2.1.6 Cancer specific genes from IntOGen 
The Integrative OncoGenomics (IntOGen) platform (Martínez-Jiménez et al., 2020) was used to derive 
cancer-specific driver genes. This bioinformatics tool includes a collection of seven computational driver 
identification methods, namely OncodriveFML (Mularoni et al., 2016) and oncodriveCLUSTL (Arnedo-Pac 
et al., 2019), and combines their outcome through a weighted scoring procedure to identify cancer specific 
drivers. The leveraged IntOGen dataset comprises 568 mutational cancer drivers (release of 02.02.2020), 
inferred from sequenced patient tumour samples from several sequencing projects such as ICGC (J. Zhang 
et al., 2019), TCGA (K. Tomczak et al., 2015) and PCAWG (ICGC/TCGA Pan-Cancer Analysis of Whole 
Genomes Consortium, 2020), with a total of 28,076 samples across 66 different cancer types. 
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2.2 Indirect drug resistance in pharmacological screens 
In this chapter I outline a new statistical framework to investigate unexpected resistance biomarkers in 
publicly available HTS drug screens. 

2.2.1 ANOVA models  
The assessment of sensitivity in a pharmacological screen is a relative inference based on the domain of 
screened cell lines available. Notably, a cell line is sensitive to a compound if its drug response is below 
the maximum concentration tested for that drug, and significantly lower than the drug response seen in the 
remaining cell lines in the screen. Henceforth, cases where all cell lines respond to a compound do not 
represent a cancer biomarker but rather a high level of toxicity to the drug.  

The stratification between sensitive and non-responding (i.e., resistant) cell lines is a classification problem, 
and is commonly solved using an analysis of variance (ANOVA) statistical framework across all cancer 
types available in the pharmacological screen (Garnett et al., 2012; Iorio et al., 2016).  

Iñigo Ayestaran constructed ANOVA models based on the drug response (𝑌-) and mutation status (𝑀.,',#.) 
of the CFEs across 𝑁 cell lines (𝑌- = (𝑦-/, … , 𝑦-0)). It is assumed the drug response of the tested cell lines 
are independent variables, with a normal distribution (𝑌-~𝑁(𝜇- , 𝜎-1)). Furthermore, several factors such as 
tissue type (tissue), screening medium (medium), microsatellite instability status (MSI) and growth proper-
ties (growth) have a significant effect in the drug response (B.-J. Chen et al., 2015), and therefore were 
considered as covariates in the model.  

Therefore, the following ANOVA model for each combination of drug, CFE and cancer type was considered: 

𝑌-~𝐶(𝑡𝑖𝑠𝑠𝑢𝑒) + 𝐶(𝑚𝑒𝑑𝑖𝑢𝑚) + 𝐶(𝑀𝑆𝐼) + 𝐶(𝑔𝑟𝑜𝑤𝑡ℎ) +𝑀.,',#., 

where 𝑌- is a vector representing the drug response IC50 values of drug 𝑖 across 𝑁 cell lines, 𝑀.,',#. is the 
CFE status binary coded as mutant (=1) or wild-type (=0) and 𝐶(. ) are cancer specific covariates.  

To ensure statistical power and increase biological interpretability, CFEs without known driver genes and 
with less than four mutant cell lines were neglected.  

In order to account for the effect of sample size (i.e., amount of tested cell lines with a specific CFE status), 
the statistical inference for each drug-gene combination was complemented with the signed Cohen’s D 
statistic (Lakens, 2013). This effect size is given by the mean difference of two groups (one having a specific 
CFE feature and the other not) divided by the pooled standard deviation.  

Ultimately, drug sensitivity biomarkers were selected based on an unadjusted p-value threshold of < 0,001 
and Cohen’s effect size < -1. 

2.2.2 Outlier detection methods 

- Novel framework based on standard deviation 
The identification of sensitive markers in pharmacological screens is a well-recognized concept in cancer 
research. However, the exploration of resistant biomarkers remains a challenge since these are rare events 
and it is difficult to stratify between cytotoxicity and resistance.  

https://paperpile.com/c/zwPuVJ/bJf2G+SqEU9
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In order to circumvent these challenges, in our work (Ayestaran et al., 2020), Iñigo Ayestaran proposed a 
new statistical framework to investigate, within the pool of sensitive cell lines of a specific cancer type and 
with a particular CFE (chapter 2.2.2), subpopulations of cell lines which present UNexpectedly RESistant 
(UNRES) markers.  

Briefly, the mathematical workflow explores the standard deviation of the sensitive population’s drug re-
sponse and systematically identifies cell lines that significantly influence the upper bound of its distribution 
(i.e., the most likely resistant cell lines).  

In detail, each subgroup of 𝑀 sensitive cell lines (𝑌2 , 𝑗 = 1,… ,𝑀) are firstly organized based on their IC50 
values 

𝑦(𝐼𝐶34)/ < ⋯ < 𝑦(𝐼𝐶34)5. 

Next, the cell lines with the highest IC50 values are systematically removed from the collection of sensitive 
cell lines and the standard deviation (SD) of the new distribution is estimated. This procedure continues for 
a maximum of 5 iterations (𝑘 = 1,… ,𝑀 − 5) or until half of the sensitive cell lines sample are reached (𝑘 =

1,… ,5
1
).  

Finally, the standard deviation delta between the new collection of sensitive cell lines without the 𝑘 most 
resistant cell lines (𝑆𝐷)) and the original population (𝑆𝐷4) is assessed  

∆𝑆𝐷) =	𝑆𝐷) −	𝑆𝐷4. 

In order to identify UNRES cell lines, Iñigo employed a bootstrap resampling strategy where the 𝑀− 𝑘 drug 
responses values were permuted and randomly selected. It was considered 𝐵 = 10,000 bootstrapping iter-
ations to ensure a robust estimation, and computed bootstrap SD deltas for each loop ∆𝑆𝐷)(%++,) =
	𝑆𝐷)(%++,) −	𝑆𝐷4. Subsequently, the generated bootstrap values were significantly tested under the null dis-
tribution by assessing the proportion of ∆𝑆𝐷)(%++,) with values higher or equal than the observed delta 
(∆𝑆𝐷)): 

𝑝∗ = /
9
∑ 𝐼M∆𝑆𝐷)(%++,) ≥ ∆𝑆𝐷)O9
%:/ , 

where 𝑝∗ indicates the statistics’ p-value and 𝐼(. ) is an indicator function which is equal to 1 when the tested 
hypothesis is true, and 0 otherwise.  

To ensure a reliable and significant identification of UNRES cell lines, the bootstrap p-values were adjusted 
for multiple hypothesis testing via the Benjamini-Hochberg FDR procedure with 𝛼 = 15%. 

Ultimately, due to the lack of statistical power, the candidate UNRES cell lines were defined as truly re-
sistant cell lines if and only if the associated CFE was mutually exclusive (i.e., CFEs which were mutated 
in all UNRES cell lines and wild-type in the sensitive cell lines, and vice-versa) and if the CFE was enriched 
in the UNRES subpopulation (i.e., Fisher’s enrichment test between sensitive and UNRES cell lines).  

Moreover, to assess the quantitative effect of the UNRES cell lines in the SD distribution, the analysis was 
enhanced with an inference of the normalized variation between the UNRES cases and the remaining 
sensitive population: 

𝑆𝐷(+";'&-<=! = − ∆?@!AB[∆?@!]
?@"AB[∆?@!]

, 
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where the expected delta value 𝐸[∆𝑆𝐷)] is given by the median of the bootstrap distribution of ∆𝑆𝐷).  

Lastly, Iñigo Ayestaran additionally quantified the probability of selection of UNRES cell lines purely by 
chance through a permutation-based analysis. In detail, for each combination of drug and CFE, it was 
applied a model where the drug response values were randomly permuted 100 times, and subsequently 
applied our sensitivity and UNRES identification frameworks. At the end, the total amount of selected sen-
sitive and UNRES cell lines, and an upper limit of UNRES cell lines for each drug-CFE association was 
reported.  

- Neyman-Pearson 
The previously proposed UNRES cell lines identification workflow is in essence an outlier detection strategy 
which leverages the distribution of the sensitive cell line population and significantly explores out of the 
distribution markers in the upper bound.  

In order to evaluate the performance of our suggested framework, I benchmarked it against the state-of-
the-art Neyman-Pearson (NP) outlier detection approach (Neyman & Pearson, 1933). Notably, this strategy 
is based on multiple hypothesis testing, therefore we formulated the identification of UNRES cell lines as: 

𝐻4: 𝑌(𝐼𝐶34)4 < 𝑥(𝐼𝐶34)*"-,-*'& 

𝐻/: 𝑌(𝐼𝐶34)4 ≥ 𝑥(𝐼𝐶34)*"-,-*'&, 

where the drug response of the original sensitive population 𝑌4 = (𝑦4/, … , 𝑦45) follows a normal distribution 
𝑌4~𝑁(𝜇4, 𝜎41)), 𝑥(𝐼𝐶34)*"-,-*'& is the statistics’ critical value from which we define the significance area of 
interest, and we intend to identify cell lines that reject the null hypothesis 𝐻4.  

 

 

 

 

 

 

To ensure similar conditions between the methods, I considered in the Neyman-Pearson framework the 
same significance level 𝛼 = 15% as in our proposed framework.  

Ultimately, the UNRES cell lines detected by NP for each drug-CFE combination were reported, compared 
to our framework and investigated in regard to existing gold standards.  

IC50xcritical

Sensitive markers Resistance markers

Figure 10: Neyman-Pearson outlier detection to identify resistance markers. 

Given the drug response values of the sensitive population, it is expected to recognize cell lines with po-
tential resistant markers as the ones with highest IC50 values. Therefore, assuming a normal probability 
model and under the significance threshold 𝛼 = 15%, the critical value 𝑥*"-,-*'& and rejection region (in red) 
are defined. Cell lines which fall in the rejection region are identified as resistant cell lines candidates.  

https://paperpile.com/c/zwPuVJ/JwxA
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2.2.3 Hierarchical false discovery rate control 
In the proposed pipeline, two statistical tests are performed – first, the selection of sensitive cell lines (chap-
ter 2.2.1), followed by the identification of UNRES cell lines (chapter 2.2.2). Notably, these tests are hierar-
chically associated, since the exploration of UNRES cell lines occurs within populations of sensitive cell 
lines with a specific combination of drug and CFE.  

Therefore, the tested multiple hypotheses are not independent, and the identification of significant markers 
is linked to a general control of the FDR that takes into consideration the hierarchical dependency within 
the framework. 

Considering the hierarchical structure of our statistical pipeline and the possibility of arranging it based on 
multiple families of drug-CFE associations, the Hierarchical False Discovery Rate (HFDR) controlling pro-
cedure developed by Yekutieli (Yekutieli, 2008) was a suitable methodology to leverage and estimate a 
universal bound for the FDR of the overall procedure.   

 

 

 

 

 

 

 

 

 

 

 

 

 

IC50xcritical

Sensitive markers Resistance markers

Figure 11: Hierarchical False Discovery Rate (HFDR) structure to test sensitive and resistance bi-
omarkers in drug screens.  

The procedure is arranged in a two-level hierarchical tree of statistical hypothesis. In the root level ℒ4, each 
hypothesis 𝐻?, , 𝑡 = 1,… ,𝑁 tests if the cell line contains a sensitive biomarker. For each rejected parent 
hypothesis 𝐻?,, the associated children nodes (𝐻E,;, 𝑚 = 1,… ,𝑀) are tested in level ℒ/ in respect to re-
sistance markers.  
This figure was created by me and it is an adaptation of the original supplementary figure 5 “Hierarchical 
FDR procedure illustration” by (Ayestaran et al., 2020) under a CC-BY-4.0 license (http://creativecom-
mons.org/licenses/by/4.0/). 
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First, I organized the statistical hypotheses in a 2-level tree of 𝑇 disjoint drug-CFE families – where the first 
level tests if cell lines are sensitive biomarkers (ℒ4 = {𝐻?/, … , 𝐻?0}) and the second level if the cell lines of 
rejected parent hypotheses 𝐻?, present UNRES markers (ℒ/ = {𝐻E,/, … , 𝐻E,5; 	𝑡 = 1,… ,𝑁}). Notably, each 
hypothesis 𝐻E,2 in level-1 is associated with a parent hypothesis 𝐻?,.  

Moreover, several conditions are necessary to employ the HFDR procedure. In particular, 

• hypotheses of each drug-CFE family are required to be tested simultaneously at each level; 
• per definition, a set of hypotheses with the same parent node is called a family of hypotheses. 

Here, FDR is controlled within families, and the p-values are assumed to be independent across 
families; 

• a family of hypotheses at level ℒ/ is only tested if its parent hypothesis at level ℒ4 was rejected, 
i.e., we investigate if a cell has UNRES markers only if it was previously identified as a sensitive 
cell line; 

• at each level ℒ the hypotheses are tested by the Benjamini-Hochberg (BH) procedure. However, 
it is not required to use the same 𝛼 control rate across the tree levels.  

Thoroughly, I formulated the HFDR procedure to our framework in the following way: 

1. Test the root hypotheses 𝐻?, = {sensitive cell line with drug-CFE	𝑡} at level-0 ℒ4 under a signifi-
cance rate 𝛼 = 0,001; 

2. For each rejected parent hypothesis 𝐻?,, test child hypotheses 𝐻E,) =
{sensitive and UNRES cell line with drug-CFE	𝑡	; 	𝑘 = 1,… ,𝑀} and employ the BH procedure to 
control the FDR at 𝛼 = 0,15 within each t-th family in ℒ/. 

The usage of different control rates 𝛼 across the HFDR framework was motivated by different statistical 
requirements at each hierarchical level ℒ. Notably, a conservative threshold based on p-value and not on 
FDR at the first level ℒ4 guarantees the identification of true sensitive biomarkers whilst enabling the pos-
sibility to subsequently investigate putative UNRES biomarkers. Moreover, a higher control rate at the final 
level ensures a low FDR in the identification of UNRES cell lines and of the overall HFDR procedure.  

Finally, an estimation of the universal bound for the multiple family FDR was provided. I leveraged the 
following approximation deduced by Yekutieli (Yekutieli, 2008),  

𝐹𝐷𝑅	 ≤ 𝛼 ∗ 𝛿 ∗ [no. discoveries + no. families]
[no. discoveries + 1]

, 

Equation 2 

which depends on the number of significant markers in levels ℒ4 and ℒ/ (no. discoveries), number of drug-
CFE combinations (no. families), control rate 𝛼 and inflation rate d (here assumed as 𝛿 = 1, as theorized 
by Yekutieli) (Yekutieli, 2008).   
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2.3 Exploration of increasing cell viability in high-throughput 
screens 

For this study I developed a new mathematical framework to explore unexpected drug response behav-
iours, in particular the phenomenon of increasing cell viability.  

2.3.1 Principal component analysis 
The dimensional reduction technique Principal Component Analysis (PCA) (Pearson, 1901) was used to 
visualise high-dimensional raw pharmacological data. This unsupervised tool enables to highlight intrinsic 
patterns in the drug response data prior to any post-processing analyses. 

For each drug, cell viabilities (Equation 1) were computed based on drug, blank and control intensities for 
all available titration points 𝑇/, … , 𝑇0 (where 𝑁 = 5 or	9, depending on the drug in question). Following, PCA 
performs an orthogonal linear transformation and projects the 𝑁-dimensional cell viabilities into two principal 
components which maximize the feature’s variance (i.e., thus minimizing the loss of statistical information). 
Notably, each principal component is defined by a linear combination of the features from the original data 

𝑃𝐶/ = 𝑎/𝐶𝑉/ +⋯+ 𝑎0𝐶𝑉0 

𝑃𝐶1 = 𝑏/𝐶𝑉/ +⋯+ 𝑏0𝐶𝑉0, 

Where 𝑉𝑎𝑟(𝑃𝐶/) > 𝑉𝑎𝑟(𝑃𝐶1), 𝑎- and 𝑏- are coefficients estimated by least squares optimization, and 𝐶𝑉- is 
the drug cell viability at the 𝑖-th titration point.  

Ultimately, the application of PCA increases data interpretability by facilitating the visualisation of the drug 
response data in a 2D space, hence granting the possibility to easily investigate patterns in the data and 
identify clusters of drugs with similar response.  

2.3.2 Curve fitting methods 
The drug response of pharmacological high-throughput screens is typically modelled with the assumption 
of a sigmoidal behaviour, where the maximal cell viability is seen at the initial drug concentration, followed 
by a continuous decrease in viability as the drug concentration is increased.  

As previously outlined (chapter 1.4.2), in HTS it is possible to encounter several other curve patterns. 
Therefore, an appropriate curve fitting that models all the possibilities is essential for an appropriate esti-
mation of the drug response.  

In this section, I outline the mathematical formulation of three different kinds of curve fit methodologies 
which were leveraged in this thesis. 

- Sigmoid curve fit 
A notable possibility to perform a sigmoid curve fitting of pharmacological data was proposed by the GDSC 
project (Vis et al., 2016) and it is implemented in the gdscIC50 R package (https://github.com/ Cancer-
RxGene/gdscIC50). This tool was initially designed to fit data from GDSC, however it is also possible to 
leverage it on pharmacological data from other resources, such as data from CTRP, as we have performed 
in our work (Ayestaran et al., 2020).  

https://paperpile.com/c/a4hTPL/szwlD
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As a way to tackle intrinsic noise in drug response data, this tool models under the assumption that the cell 
viability decreases with a sigmoidal shape within a scale from one to zero: 

CV = 1 at initial concentration; 

 CV → 0 at the maximum concentration. 
Equation 3 

Built on these simplifications, the authors described the sigmoid drug-response model 𝒚-2 as a function of 
the drug concentration 𝒙, dependent on slope 𝑠- and position 𝑝-2 parameters for cell line 𝑖 and compound 
𝑗: 

𝒚M𝒙, 𝑠- , 𝑝-2O =
1

1 + 𝑒
𝒙AG#$
.#

, 

with 𝑠- = 𝛼 + 𝑎- and 𝑝-2 = 𝛽 + 𝑏- + 𝑏-2 
Equation 4 

Notably, the shape parameter 𝑠- only changes based on the cell line type, whilst the position 𝑝-2varies 
across cell-drug combinations. Wherein, parameters 𝑎- and 𝑏- represent respectively the impact of slope 
and position in cell line 𝑖, and 𝑏-2 the joint effect of drug 𝑗 and cell line 𝑖 in the curve shape. In parallel, 
parameters 𝛼 and 𝛽 represent fixed population effects for the shape and position parameters, respectively.  

The sigmoid formulation and its parameters in Equation 4 were estimated using a Non-linear Mixed Effects 
model (Lindstrom & Bates, 1990), enabling the inference of cell line response coupled with nested random 
effects across all drugs. Moreover, the drug response IC50 value is given by 𝑝-2 and estimated by interpo-
lation or extrapolation (in case the 50% viability is not achieved within the available dosage range).  

- Linear curve fit 
The previously described sigmoid formulation robustly models the most typical (and desirable) curve shape 
of drug response data. However, its intrinsic assumptions (Equation 3) prevent the identification of several 
drug response patterns. 

For this reason, here I propose a relaxed and linear curve fitting approach where these assumptions are 
neglected. Due to its simplistic nature, a linear regression enables a fast, not computationally expensive 
and robust against overfitting modelling alternative.  

Although a linear fit is not a perfect representation of the real curve behaviour, it is able to provide a rough 
and quick overall picture of the curve’s growth. For these reasons, the linear formulation was leveraged in 
the pre-processing stage for the identification of noisy responses and putative outliers (see chapter 2.3.3), 
stratification between non-responders and responders, and as a basic estimator of responses with increas-
ing cell viability (detailed in the chapter 2.3.5).   

For each cell line-drug combination, the following linear formulation was considered: 

𝒚(𝒙) = 𝛽4 + 𝛽/𝒙 + 𝜖 
Equation 5 

https://paperpile.com/c/a4hTPL/GExm
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Where 𝒙 is a vector with the drug concentration values, 𝛽4 is the intercept at the initial drug concentration, 
the coefficient 𝛽/ describes the curve slope and 𝜖 is a random disturbance term.  

In contrast to the sigmoid curve fit, with the linear formulation the drug responses were summarised by the 
curve’s slope 𝛽/, instead of the IC50 value.  

The linear fitting and slope information were computed using the lm function available in the stats R package 
(R Core Team, 2016). 

- Gaussian curve fit 
In addition to the linear formulation, I also considered a Gaussian-based curve fit methodology without any 
prior assumptions regarding the cell viability domain. 

The usage of a Gaussian Process (GP) model provides a realistic and robust fitting of the drug response, 
where it is possible to include relevant parameter information (e.g., relations between variables and statis-
tical distributions) and leverage several kernels (from linear to sigmoid-like curve shapes). Furthermore, 
GPs are known to perform interpolation with low uncertainty (Rasmussen & Williams, 2005; D. Wang et al., 
2020). 

Despite its numerous advantages, a Gaussian-based model is notable for its likelihood to overfit and is 
computationally more costly in comparison to the two previous formulations.  

For the implementation of the Gaussian model, I leveraged the formulation available in the Kernlab R pack-
age (Karatzoglou et al., 2004) with its default parameters. This resource offers seven different kinds of 
kernel functions to test and considers the model’s hyperparameters fixed (therefore saving some compu-
tational time in hyperparameter tuning). 

In detail, the relationship 𝑓 between the drug response 𝒚 and the concentration points 𝒙 is defined by the 
posterior distribution 

𝑝(𝒚 = 𝑓(𝒙)|𝑥,Ψ) = 𝑁(𝑓(𝒙)|𝒎,𝐾H(𝒙, 𝒙′)), 
Equation 6 

which follows a multivariate normal distribution, with mean drug response 𝒎 = 𝐸[𝑓(𝒙)] and covariate func-
tion 𝐾H(𝒙, 𝒙′)) dependent on hyperparameters Ψ at the points 𝒙 and 𝒙I. 

The covariate function 𝐾H expresses how two points in the domain space statistically relate. Although this 
function can take several shapes, in this thesis I considered two kernel functions:  

• Gaussian Radial Basis 

𝐾H(𝒙, 𝒙I) = exp(−𝜎||𝒙 − 𝒙I||1) 

Where hyperparameter 𝜎 denotes the variance. This kernel is the classical formulation and is typi-
cally applied for data without prior knowledge.  

• Spline 

𝐾H(𝒙, 𝒙I) = 1 + 𝒙𝒙IM1 +min(𝒙, 𝒙I)O −
𝒙 + 𝒙I

2 min(𝒙, 𝒙I)1 +
min(𝒙, 𝒙′)J

3  

Defined by a piecewise cubic polynomial, and with a sigmoid-like shape.   

https://paperpile.com/c/vuvIN9/yfJw
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2.3.3 Noise and outlier removal 
Pharmacological data contains a fair amount of intrinsic noise. This noisy behaviour may be conditioned by 
a large amount of meaningless data distribution (noisy responses), or by a small number of points in the 
drug-cell response (outlier points).  

In order to tackle the corrupted data, I implemented the following mathematical approaches based on the 
original cell viabilities 𝐶𝑉- 	(Equation 1) and the linearly fitted drug response 𝒚t (Equation 5):  

- Noisy drug responses 
Noise in HTS experiments is common and unavoidable, and this is reflected in cell viability values.  Prior to 
drug fitting, drug responses with high levels of noise were flagged and filtered out from the dataset. For this, 
noise was assessed based on the difference in cell viability between subsequent titration points (∆𝐶𝑉-) using 
the following index: 

𝜂!"#$ = v𝐶𝑉- − 𝐶𝑉-K/ − range(𝐶𝑉/, … , 𝐶𝑉()
0A/

-:/

 

Where the relative difference is given by ∆𝐶𝑉- = 𝐶𝑉- − 𝐶𝑉-K/, 𝐶𝑉- is the cell viability at the 𝑖-th titration point 
and 𝑁 the amount of titration points for a specific drug-cell combination.  

Notably, a low 𝜂!"#$ indicates a preservation of the curve’s monotonic behaviour as the drug concentration 
increases (i.e., strictly increasing, decreasing or constant), whilst a high 𝜂!"#$ suggests a noisy curve with 
several fluctuations in the cell viability.   

- Outlier points  
The presence of a discrete amount of out-of-the-distribution cell viability points (i.e., outlier responses) can 
affect the curve fitting procedure and, in consequence, lead to a misclassification of the drug response.  

Hence, the classic Cook’s Distance outlier detection method (Cook & Dennis Cook, 1977) was used to 
identify and remove outlier points. In detail, the linear curve fit procedure (Equation 5) was employed to 
predict the drug response 𝒚t,  and the effect of removing the 𝑖-th	(𝑖 = 1,… ,𝑁) observation was assessed by: 

Cooks- =
∑ M𝑦w2 − 𝑦w2(-)O

10
2:/

nrpredictors ∗ 𝑀𝑆𝐸
 

Where 𝑁 is the number of observations, 𝑦w2 is the drug response at the 𝑗-th fitted response value, 𝑦w2(-) is the 
fitted response without the 𝑖-th observation, nrpredictors is the number of predictors (i.e., coefficients) in the 

regression model and 𝑀𝑆𝐸 =	∑(MN#AM#)
%

0
 is the mean squared error (MSE).  

Titration points were recognized as outlier points and filtered out from the analysis if they satisfied: 

Cooks- > 4 ∗
∑ Cooks20
2:/

𝑁 	

That is, an observation was deemed an outlier point if its Cook’s distance was higher than four times the 
mean of all the distances. In addition, to limit the filtering of observations across a single drug response, a 
maximum of 4 points were classified as outliers.   

https://paperpile.com/c/vuvIN9/tbyA
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Following this post-processing stage, all the drug responses were estimated using the curve fitting methods 
presented in the chapter 2.3.2. 

2.3.4 Drug response metrics 
In order to describe the drug-cell line response, several metrics were considered. Specifically, measures 
based on the distribution of the cell viabilities (metrics prior to curve fitting), and metrics specific to the curve 
fitting (metrics after curve fitting).  

- Metrics prior to curve fitting 
The shape of the cell viability values distribution provides relevant information on the increasing, decreasing 
or constant behaviour of the drug response.  

For instance, the indexes of Skewness and Kurtosis (Groeneveld & Meeden, 1984; Joanes & Gill, 1998) 
measure the symmetry and tail shape of the distribution with respect to a normal distribution: 

• Skewness 

Per definition, the Skewness of a dataset dictates how much the distribution deviates from a normal 
distribution. In particular, it separates the classification into symmetric or asymmetric distribution. 
Where the former indicates the dataset has an even distribution on both sides and resembles a normal 
distribution; while the latter suggests the data is skewed either to the left- (negative-skewed; Figure 12 
A) or right-side (positive-skewed; Figure 12 C) of the distribution.  

To infer this measure, the Fisher-Pearson coefficient of Skewness for each drug response 𝒚 =
(𝑦/, … , 𝑦0) is computed: 

𝑆 =
∑ (𝑦- − 𝑦y)J/𝑁0
-:/

𝑆𝐷J  

Where 𝑁 is the number of observations, 𝑦y the mean and 𝑆𝐷 the standard deviation.  

Notably, 𝑆 = 0 for a normal distribution (Figure 12 B), and approaches zero (𝑆 → 0) for any symmetric 
data. Based on this knowledge, typically a dataset is labelled symmetric if 𝑆 ∈ [−0.5,0.5], negative-
skewed if 𝑆 < −0.5 (Figure 12 A) and positive-skewed if 𝑆 > 0.5 (Figure 12 C).  

 

Negative Zero Positive

A                                  B                                 C

Negative Zero Positive

A                                  B                                 CFigure 12: Examples of Skewness distributions.  

(A) Negative-skewed distribution, with longer left tail and most of the distribution at the right side; (B) 
symmetric distribution with zero Skewness and data (approximately) equally distributed on both sides; 
(C) Positive-skewed with longer right tail and peak is towards the left side.  

https://paperpile.com/c/vuvIN9/XCwb+8tze
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• Kurtosis 

In parallel, Kurtosis measures the tailedness of a distribution with respect to a normal distribution. Com-
monly, this factor is employed to assess outliers in a distribution – light-tailed (Figure 13 A) indicate 
broader distribution peaks, shorter tails and less outlier-prone; while heavy-tailed (Figure 13 C) means 
a distribution with sharper peaks, longer tails and high likelihood of containing outliers spread across 
the dataset.  

 

 

 

 

The Kurtosis of a drug response 𝒚 = (𝑦/, … , 𝑦0) is given by: 

𝐾 =	
∑ (𝑦- − 𝑦y)O/𝑁0
-:/

𝑆𝐷O  

For interpretation purposes, the measure Excess Kurtosis Kexcess = K − 3 is frequently handled. For a 
dataset with normal distribution, the expected value of Excess Kurtosis is Kexcess = 0 (Figure 13 B). 
Moreover, a light-tailed dataset presents a negative Excess Kurtosis (Kexcess < 0; Figure 13 A) and a 
heavy-tailed one contains a positive value (Kexcess > 0; Figure 13 C).  

Following the Cook’s outlier detection procedure (chapter 2.3.3) application and based on their defini-
tions, the Kurtosis and Skewness metrics were used to preliminary recognize probable increasing cell 
viability responses, i.e., negative-skewed with heavy-tails responses (points concentrated around high 
cell viability values).  

- Metrics after curve fitting  
Several summary statistics of the drug response curve fitting can be extracted from the constructed models. 
Briefly, both linear and Gaussian gradients were computed and used as a summary metric for these models. 
In addition, the Root Mean Squared Error (RMSE) was estimated to describe the models’ fitness.  

• Slope 

Commonly, metrics like IC50 or area under the curve (AUC) are leveraged to characterise the drug 
response, as it is performed in the Sigmoid curve fit formulation by GDSC.  

However, my research focus lies on the investigation and identification of unexpected drug responses, 
with emphasis on increasing cell viability cases. For this reason, a metric which explores the direction 
and steepness of the response, such as the curve gradient (i.e., slope), is a preferable measure.  

 

Figure 13: Examples of Kurtosis formulations.  

(A) Negative Excess Kurtosis, with light-tails and flatter distribution; (B) normal-like distribution with zero 
Excess Kurtosis; (C) Positive Excess Kurtosis, with heavy-tails and sharper distribution.  

Negative Zero Positive

A                                  B                                 C

Negative Zero Positive

A                                  B                                 C
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In detail: 

• a highly positive slope (𝑠 ≫ 0) indicates a probable case of increasing cell behaviour;  
• in contrast, a highly negative slope (𝑠 ≪ 0) suggests a decreasing response;  
• whereas, a close to zero slope (𝑠 ≅ 0) is characteristic of non-responders.  

Notably, the above formulations are conditioned by the slope magnitude and level of intrinsic noise in 
a particular drug response.   

For the linear formulation (Equation 5) (Montgomery et al., 2021), the curve slope 𝑠 is determined by 
the coefficient 𝛽/ and defines the rate of change of the drug response 𝒚 with respect to each unit 
increase of the drug concentration 𝒙 = (𝑥/, … , 𝑥0): 

𝑠 =
∑ (𝑥- − 𝑥̅)(𝑦- − 𝑦y)0
-:/

∑ (𝑥- − 𝑥̅)10
-:/

 

Equation 7 

Where 𝑥̅ and 𝑦y represent the average of the drug concentrations and cell viabilities over 𝑁 observations, 
respectively  

Alternatively, for the Gaussian model (Equation 6) (Rasmussen & Williams, 2005) the gradient of the 
relationship 𝑓 is based on the differentiation of the covariate function 𝐾H. In detail, the expected gradient 
of the function 𝑓 at concentration points 𝒙′ (i.e., 𝑓I = 𝑓(𝒙′)) can be reduced to the gradient of the co-
variate function: 

𝐸[∇𝑓I|𝒙, 𝒚, 𝒙I] = ∇𝐸[𝑓I|𝒙, 𝒚, 𝒙I] = ∇v𝛼-𝐾H(𝒙, 𝒙′)
0

-:/

=v𝛼-∇𝐾H(𝒙, 𝒙′)
0

-:/

 

Equation 8 

Where 𝛼 = (𝑲𝚿 + 𝜎1𝑰)A/𝒚, with identity matrix 𝐼, hyperparameter 𝜎 and matrix 𝑲𝚿 with covariate func-
tion values 𝐾H across all dosages.  

The linear and Gaussian slopes (Equation 7 and Equation 8) were estimated via the outputs of the 
lm()  (R Core Team, 2016) and gausspr() (Karatzoglou et al., 2004) functions, respectively. 

• RMSE 

The Root Mean Squared Error (RMSE) was leveraged to evaluate the predictive power of the linear 
(Equation 5) and Gaussian (Equation 6) curve fitting methodologies. Intrinsically, this metric measures 
how accurately the drug prediction 𝒚t quantitatively varies with regard to the observed cell viabilities 𝒚: 

RMSE =	�
1
𝑁v

(𝑦- − 𝑦w-)1
0

-:/

 

Notably, low RMSE values close to zero (RMSE → 0) indicate a suitable curve fit model with small 
deviations to the original response.  

https://paperpile.com/c/Br9paK/LWVQ
https://paperpile.com/c/Br9paK/UMica
https://paperpile.com/c/Br9paK/8ZHHk
https://paperpile.com/c/Br9paK/NNpMT
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2.3.5 Association analysis 
Linear and Gaussian drug response models (Equation 5 and Equation 6, respectively) were fitted on the 
GDSC pharmacogenomic data, and slope information for each cell-drug combination was estimated. Fol-
lowing, these models were integrated with cancer-specific functional events’ data (i.e., pan-cancer tissue 
was neglected) to investigate significant cases of increasing cell viability (ICV) across combinations of Al-
teration (somatic mutations, gene fusions or copy number alterations), Tissue (TCGA labelled) and Drug 
types (ATD).  

I considered the following distinct mathematical approaches for the exploration of significant ATD combi-
nations containing ICV biomarkers:  

• ANOVA 

Under the assumptions of independency and normal distribution of the slope of the drug responses, 
ANOVA univariate models based on the mutational status (𝑀.,',#.) were built to test the slope distribu-
tion for each 𝑘-th ATD combination: 

slope ~	𝑀.,',#., 

where 𝑀.,',#. is a binary variable defining mutant (=1) or wild-type (=0) oncogenes.  

Following, the resulting p-values were corrected with the Benjamini-Hochberg (BH) procedure (Benja-
mini & Hochberg, 1995) and the FDR threshold of 𝛼 = 5% was used to define significant associations.  

In order to guarantee statistical power and focus on oncogenes with potential biomarkers of increasing 
cell viability, significant ATD candidates were selected for further investigation if the alterations con-
tained at least 2 mutant/wild-type cell lines and positive delta mean slope between mutant and wild-
type populations (∆slope = slopeMT − slopeWT > 0). 

• Ranked hypergeometric test 

An alternative approach is to investigate ATD combinations based on the enrichment of high valued 
slopes within the mutant population, which may indicate a driver mutation for a given drug. For this, the 
slopes of all 𝑁 drug responses available in the dataset were initially ranked from the highest to the 
lowest fit slope (slope- > slope2 ,	for	𝑖 < 𝑗). Succeeding, information regarding wild-type populations was 

discarded and enrichment scores 𝑠" for each 𝑘-th ATD combination were estimated: 

𝑠"(ATD)) = ES-∗ ,	with 𝑖∗ = arg.max
-

|ES-| 

ES- =

⎩
⎪
⎨

⎪
⎧
0, if 𝑖 = 0

ES-A/ +
1

∑ slope2
Q
2:/

�slope-�, if 1 ≤ 𝑖 ≤ 𝑁	and 𝑖 ∈ ATD)

ES-A/ +
1

𝑁 − 𝐾 , if 1 ≤ 𝑖 ≤ 𝑁	and 𝑖 ∉ ATD)

 

Equation 9 

Where 𝐾 is the amount of drug responses with mutant status within the 𝑘-th ATD combination, 𝑁 the 
total amount of drug responses available across all ATD combinations and |. | represents the absolute 

https://paperpile.com/c/63FzuC/ZJPw
https://paperpile.com/c/63FzuC/ZJPw
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value. Notably, in the formulation of Equation 9 it is tested the statistical excess of mutants in the upper 
extreme of the cell line distribution (i.e., where the drug responses with the highest slopes are located). 

Based on these formulations, p-values for positively enriched combinations 𝑠"(ATD)) > 0 (i.e., ATD 
combinations enriched with high slope values) were assessed: 

𝑝(ATD)) = 	
𝑃(𝑠"(𝑞) ≥ 𝑠"(ATD)))

𝑃(𝑠"(𝑞) ≥ 0)  

Where 𝑞 is a random selected set of slopes from the original pool of slopes (slope/, … , slope0) with the 
same size as the 𝑘-th ATD combination (i.e., size(𝑞) = size(ATD)) = 𝐾).  

Similarly to the ANOVA approach, the p-values were corrected using the BH procedure and significant 
combinations were defined by 𝛼 = 5%. 

In addition to the significance inference, ATD combinations of interest were detected by the following 
criteria: 

• Positive average slope of the mutant population avg slope5R > 0 or positive delta mean slope 
∆slope = slopeMT − slopeWT > 0; 

• Alterations with at least 2 mutant/wild-type cell lines;  
• Positive enrichment score (𝑠"(ATD)) > 0); 

2.3.6 Correlation analysis 
In order to suggest a novel and effective cancer therapy based on drug responses with increasing cell 
viability markers, it is needed to investigate compounds efficient with increased tumour growth (i.e., drugs 
able to reduce the viability of fast proliferating cell lines). Ultimately, the goal is to define potential com-
pounds which synergistically combine with the formerly identified ATD combinations with ICV markers.  

Accordingly, the cell growth rate of each cell line available in the GDSC dataset was assessed based on 
the measured intensities at days 0 (i.e., untreated cell lines) and 4 (i.e., cell lines treated with control com-
pound DMSO) (Gonçalves et al., 2020): 

Ratecell growth =
mean(𝐼post-treatment)
mean(𝐼pre-treatment)

 

Equation 10 

Where mean(𝐼.) is the average of all recorded intensities pre- and post-treatment at days 0 and 4, respec-
tively. 

Following, a correlation analysis between the drug responses’ IC50 value (assessed by the GDSC sigmoid 
formulation Equation 4) and the cell growth rate (Equation 10) was performed for each drug and cancer 
type combination: 

𝑅 = cor(IC34,Ratecell growth) 

Intrinsically, the top negatively correlated drug-tissue specific associations were highlighted and investi-
gated in the context of its drug targets and pathways to hypothesize synergistic drug combinations.   

https://paperpile.com/c/locLTC/TehX
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2.4 wPPI network for tissue specific drug response modelling 
In the following sections I describe the methodology supporting the published Bioconductor package wPPI 
(Galhoz et al., 2021), and indicate how this tool was manipulated to identify new cancer-specific relevant 
genes and predict drug response of pharmacological data.  

2.4.1 Systems biology network wPPI 
Network-based methods enable feature-oriented and disease specific analyses with the possibility of inte-
grating several data layers (e.g., omics, cell type, phenotypic) for a more context-aligned investigation. With 
this in mind, I developed the wPPI framework (Galhoz et al., 2021) which identifies and ranks a collection 
of new genes with potential relevance to a particular disease, based on known disease genes, PPI network 
topology, functional scores and a path search algorithm (Figure 14).  

In detail, the wPPI pipeline can be subdivided in five distinct stages: 

• Genes of interest 

The wPPI algorithm prioritises candidate genes based on their similarity to known disease-relevant 
genes, i.e. seed genes. A curated list of seed genes can be derived from expert knowledge, tran-
scriptomic analysis, downstream analysis (e.g., gene set and pathway enrichment analysis), genome-
wide association studies (GWAS), drug targets or gold standards (Figure 14 A).  

• Protein-protein interaction (PPI) network  

The set of disease-specific genes of interest is expanded with n-th degree neighbors through a protein-
protein interaction (PPI) network (Figure 14 B). The PPI data is acquired from the Omnipath database 
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Figure 14: Schematic of the wPPI gene prioritisation tool.  

(A) The framework starts by receiving a curated collection of established disease-specific genes of interest 
(seed genes), namely from expert knowledge, downstream analyses or high-throughput experiments. (B) 
A protein-protein interaction (PPI) network from Omnipath (Türei et al., 2021) is constructed around the 
given seed genes where each node represents a protein and edges denote an undirected relationship 
between interacting proteins. (C) In order to deduce functionally relevant interactions, the PPI network is 
integrated with ontology databases Gene Ontology (GO) (Ashburner et al., 2000) and Human Phenotype 
Ontology (HPO) (Köhler et al., 2021). Subsequently, protein interactions are weighted according to the 
network topological structure and functional similarities between the pair of proteins and ontology annota-
tions. (D) Random Walk with Restart (RWR) search algorithm is applied to the weighted network to assess 
similarity probabilities between the given seed genes and genes in their vicinity (candidate genes). (E) At 
the final stage, the candidate genes available in the network are prioritised based on the inferred scores, 
and proposed as potential new disease-specific genes. 

https://paperpile.com/c/zwPuVJ/YPOQ
https://paperpile.com/c/zwPuVJ/YPOQ
https://paperpile.com/c/locLTC/Czy6O
https://paperpile.com/c/locLTC/BE6G5
https://paperpile.com/c/locLTC/1Zf2z
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(Türei et al., 2021), which comprises an extensive collection of over 100 signalling network resources 
with experimentally and predicted protein interactions, for several organisms (e.g., Human and mouse). 

The built PPI network can be described using graph theory terminology. In detail, a graph 𝐺 = (𝑉, 𝐸) is 
composed by a set of nodes 𝑉 = {𝑣/, … , 𝑣5}, with 𝑀 proteins, and a set of edges connecting pairs of 
proteins 𝐸 = {𝑒-2 , ∀(𝑖, 𝑗) ∈ [1,𝑀]}. An edge 𝑒-2 represents the undirected and binary association be-
tween proteins 𝑖 and 𝑗, where an adjacent (or neighbour) pair of proteins equals 1, otherwise 0. These 
interactions can be represented by the adjacency correlation matrix 

𝐴 = �
𝑒// ⋯ 𝑒/5
⋮ ⋱ ⋮
𝑒5/ ⋯ 𝑒55

�,  

where 𝑒-2 = �1, if proteins 𝑖 and 𝑗 directly interact
0,	otherwise �. 

• Functional similarity  

In order to evaluate biologically relevant and context specific interactions in the network, each pair of 
interacting proteins of the constructed PPI graph network are weighted based on network topological 
features and functional annotations from public ontology databases (Figure 14 C).   

Gene-phenotype relationships are inferred using the Human Phenotype Ontology (HPO) database 
(Köhler et al., 2021); whilst gene-gene functionalities are deduced from the Gene Ontology (GO) re-
source (Ashburner et al., 2000). In order to integrate the ontology annotation terms from HPO and GO 
with the PPI network, functional scores are calculated and assigned to each edge 𝑒-2. Specifically, for 

each annotation term 𝑇,  it is defined the ratio 𝐺R 𝐺,+,'&� between the number of genes annotated in 𝑇 

(𝐺R) and the total number of genes available in the GO/HPO resource (𝐺,+,'&). Building on this, shared 
annotation scores are calculated for each interacting pair of proteins 𝑖 and 𝑗 using the Fisher’s combined 

probability score 𝑠-2 = ∑ −2 log �𝐺R 𝐺,+,'&� �∀-,2∈R   (R. A. Fisher, 1992).  

In addition to the functional score assessment, the contribution of the network topology is taken into 
account through the number of common neighbours between connecting nodes 𝐶𝑁-2 = 𝑁- ∩ 𝑁2 (i.e., 
defined by the intersection of the neighbourhoods of genes 𝑖 and 𝑗). This topological property essentially 
benefits interactions between proteins with similar local communities.  

Succeeding, the original adjacency matrix (𝐴) of the PPI graph 𝐺 is converted to a weighted adjacency 
matrix normalized by column  

𝐴W = �
𝑤// ⋯ 𝑤/5
⋮ ⋱ ⋮

𝑤5/ ⋯ 𝑤55
�,  

Equation 11 

where each edge weight is defined according to its functional similarity scores from ontology databases 
and network geometry 𝑤-2 = 𝑠-2(HPO) + 𝑠-2(GO) + 𝐶𝑁-2. 

In the interest of a more context specific analysis, the wPPI methodology can be customised to focus 
on a specific subset of HPO annotations (e.g., use only phenotypic annotations related to diabetes), 

https://paperpile.com/c/locLTC/Czy6O
https://paperpile.com/c/locLTC/1Zf2z
https://paperpile.com/c/locLTC/BE6G5
https://paperpile.com/c/locLTC/XboD
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one or more particular GO categories (i.e., Biological Process, Molecular Function and Cellular Com-
ponent), and to consider the full or slim version of the GO database.  

• Random walk with restart (RWR) algorithm 

The Random Walk with Restart (RWR) search algorithm is employed to compute topological profiles 
between each pair of proteins, and therefore estimates how closely related the seed genes are to the 
candidate genes in the network (Figure 14 D) (Valdeolivas, Tichit, et al., 2019).  

In detail, RWR is employed to the normalised weighted network 𝐴W, and the seed genes are taken as 
starting points. Starting from a node 𝑣-, the algorithm simulates a walker which, at every iteration, has 
the possibility to move to a direct neighbour with probability 𝑝 = 1 − 𝑟 or return back to the starting 
position with probability 𝑝 = 𝑟. The parameter 𝑟 is the restart probability and can be fixed to a value 
between 0 and 1.  

Formally, let 𝒑4 represent the initial probability vector with the 𝑖-th element equal to 1 and 0 in the other 
positions (i.e., the starting node is 𝑣-), and 𝒑, the moving probability vector of all nodes at iteration 𝑡. 
Hence, the probability vector at step 𝑡 + 1 is given by 

𝒑,K/(𝑣-) = (1 − 𝑟)𝐴W𝒑, + 𝑟𝒑4 

Where the transition matrix 𝐴W is defined by the weighted adjacency matrix containing topological and 
functional information (Equation 11). 

The RWR is applied over several iterations and the value of 𝒑,K/ is updated at each step until a steady 
state is reached. This is obtained when the condition |𝒑,K/ − 𝒑,|1 < 𝑘 is verified, where 𝑘 is a predefined 
threshold.  

 

Figure 15: Schematic of Random Walk with Restart search algorithm.  

(A) Initial PPI network with coloured seed genes (blue, purple and salmon) and candidate genes (in 
grey). For exemplification purposes, the node 𝑣- coloured in blue is used as the starting point. (B) 
Application of RWR algorithm starting at node 𝑣- until a steady state is reached. Mock resulting proba-
bilities of transition to candidate genes are depicted and coloured accordingly (i.e., dark and light grey 
represent higher and lower scores, respectively). Notably, the candidate genes with higher scores re-
flect a higher functional and topological proximity to seed node 𝑣-.  

  

At the end of the algorithm, probabilities of transition to any node in the network are estimated and 
these values are used to rank the candidate genes in the PPI network (Figure 15). Notably, genes with 
higher probabilities are considered to be in close proximity to the seed genes, and consequently are 
more relevant to the disease than genes with lower probabilities.  
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• Gene prioritisation 

Based on the prior that genes closely connected and functionally similar in PPI networks are potentially 
related to similar diseases, the candidate genes are prioritised based on their correlation to the given 
genes of interest (Figure 14 E). 

Leveraging the transition probabilities estimated by the search algorithm RWR, gene scores are com-
puted for all the candidate genes available in the network. Specifically, the final score for each candidate 
gene is described by the sum of its correlations in respect to the seed genes: 

𝑠* = v 𝑝X(𝑖, 𝑐)
-∈{seed genes}

, 

Equation 12 

Where the steady state probability 𝑝X(𝑖, 𝑐) defines the probability of the seed gene 𝑖 reaching the can-
didate gene 𝑐.  

According to this definition (Equation 12), the candidate genes are ranked and hypothesized as poten-
tial new genes of interest to the disease.  

The wPPI gene prioritisation tool was ultimately consolidated to a R package, and published in the open-
source project Bioconductor (Galhoz et al., 2021). In addition, a Shiny app was developed to enable users 
to interactively apply the wPPI and visualise the results (https://github.com/aGalhoz/wppi.shiny).   

2.4.2 Lasso regression model 
The network-based method wPPI can be leveraged to dissect new disease-specific features and subse-
quently build robust machine learning models for drug response prediction with the selected genes.  

Let 𝒚 = (𝑦/, … , 𝑦0) be the vector of the drug response values of drug 𝑑 ∈ 𝑫, expressed by the logarithm of 
the half-maximal inhibitory concentration 𝐼𝐶34, and 𝒈 = {𝑔., 𝑔*} = {𝑔/, … , 𝑔5} a set of genes composed by  
input seed genes 𝑔. and wPPI’s candidate genes 𝑔*.  

I built Machine learning (ML) models based on LASSO regression (Tibshirani, 1996) to predict the drug 
response 𝒚 using gene expression profiles from GDSC: 

𝒚(𝑑) = 𝛽4 +v𝛽)𝑋)

5

):/

+ 𝜖 

Equation 13 

Where the coefficients 𝛽) are gene-specific estimators, 𝑋) = (𝑥)/, … , 𝑥)0) is the gene expression profiles 
vector for each 𝑘-th gene in the analysis, and 𝜖 is a random error term.  

In order to select the best ML model, a hyperparameter tuning optimization step is performed, where the 
most optimal hyperparameter 𝜆 is evaluated. Specifically, the hyperparameter 𝜆 works as a penalty term 
on the model’s features and defines the amount of shrinkage in the model, thence acting as a feature 
selection mechanism.  

https://github.com/aGalhoz/wppi.shiny
https://paperpile.com/c/locLTC/tvhr
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Let 𝐾,+G define the set of selected features from the LASSO model (Equation 13). The selection of the 
parameter 𝜆 is achieved by estimating the coefficients 𝛽§ which minimize the error sum of squares (RSS): 

𝐿YZ??[M𝛽§O = 𝑅𝑆𝑆 + 𝜆 v �𝛽§)�
)∈Q'()

=v©𝑦- − 𝛽§4 − v 𝛽§)𝑥)-
)∈Q'()

ª

10

-:/

+ 𝜆 v �𝛽§)�,
)∈Q'()

 

Equation 14 

Where 𝑦- is the 𝑖-th drug response observation, 𝑥)- the gene expression profile of the 𝑖-th cell line and 𝑘-th 
gene selected, 𝑁 the amount of cell lines and 𝛽§) the LASSO coefficients.  

Finally, the estimated regression coefficients (Equation 14) were fitted with the gene expression profiles of 
the selected genes to predict the drug response values 𝒚t. 

2.4.3 Performance metrics 
I adopted the k-fold cross-validation procedure to perform hyperparameter optimisation and assess the 
performance of the built machine learning models.  

To train and test the models, each group of cell lines treated by drug 𝑑 ∈ 𝑫 was randomly split into 𝑘 = 10 
(approximately) equally sized folds. Specifically, in each fold, 𝑘 − 1 groups were used for model fitting 
(training dataset), and the model’s performance was validated on the leaven out partition (test dataset). 
Next, this framework is repeated for every k-th fold, the performance across all folds is averaged and rec-
orded as the predictive value of the drug response 𝒚t (Hastie et al., n.d.; Picard & Cook, 1984).  

During the training phase, a 10-fold nested cross-validation procedure was employed for hyperparameter 
tuning. Accordingly, an additional validation set was created inside each training set fold and, through a 
grid search strategy, the optimal value of the LASSO’s hyperparameter 𝜆 was evaluated.   

Finally, the Pearson correlation coefficient (𝑅) was used to assess the models’ prediction accuracy by com-
paring the predicted (𝒚t) and observed (𝒚) 𝐼𝐶34 drug response values (Lee Rodgers & Nicewander, 1988): 

𝑅G"=!A+%. =	
∑(𝑦- − 𝑦y)(𝑦w- − 𝑦wy)

«∑(𝑦- − 𝑦y)1∑(𝑦w- − 𝑦wy)1
 

Where (. )yyyy represents the mean values of the variables.  

2.4.4 Gene ontology enrichment analysis 
Functional enrichment analysis of genes of interest prioritised by wPPI was conducted using ViSEAGO 
package (Brionne et al. 2019). This tool integrates a notable number of functional resources, such as gene 
annotations from Gene Ontology (GO) and pathway information from diverse sources (e.g., KEGG, MSigDB 
and REACTOME).  

Using all the candidate genes as background, GO functional enrichment analysis was assessed through 
Fisher’s exact test and reported in terms of Biological Process (BP). In detail, the over-representation of 
genes of interest in a specific GO functional annotation is tested by the following mathematical formulation: 

https://paperpile.com/c/locLTC/OuPsg+gfX97
https://paperpile.com/c/locLTC/SiUtS
https://paperpile.com/c/Jl2sSZ/uD5H
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Where:  

• 𝑛 is the total number of genes in the background (i.e., candidate genes) 
• 𝑗 is the total number of genes in a specific functional category 
• 𝑚 is the number of genes of interest  
• 𝑘 is the number of genes of interest in the functional category 

The resulting p-values were adjusted for multiple hypothesis testing by the Benjamini-Hochberg proce-
dure (Benjamini & Hochberg, 1995), and significantly enriched pathways were defined with 𝛼 = 5%.        

 

https://paperpile.com/c/locLTC/2UqaJ
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3. Results 

3.1 Indirect drug resistance in pharmacological screens 

3.1.1 Overview of high-throughput drug screens 
The drug response of the GDSC high-throughput screen (HTS) is expressed in terms of IC50 values. On 
the other hand, typically the data from CTRP is represented using AUC values. However, to ensure a 
common metric of representation across both pharmacological screens, IC50 values were computed for the 
CTRP dataset leveraging the sigmoid curve fit model used to estimate drug responses in the GDSC project  
(Vis et al., 2016). 

In total, both drug screens comprised 814 unique compounds (397 from GDSC and 545 from CTRP), 820 
unique cell lines (818 from GDSC and 490 from CTRP) across 19 different cancer types (Figure 16). More-
over, the cell lines and compounds were tested together and yielded 317,357 and 220,461 drug responses 
for GDSC and CTRP, respectively.  

 

 

 

 

 

 

 

In order to investigate sensitive and resistant biomarkers within these pharmacological screens, cancer 
functional events (CFE) data from GDSC were integrated into the analysis. Looking into the mutation fre-
quency of cancer types with large amount of cell lines (Figure 17), is possible to note how rarely mutations 
occur across the panels. Specifically, majority of the mutations appear in less than half of the cell lines, 
which highlights one of the main limitations in the investigation of resistant markers using HTS.  

330330330330 2222488488488488

GDSCGDSCGDSCGDSC
CTRPCTRPCTRPCTRP

Cell lines

269269269269 417417417417128128128128

GDSCGDSCGDSCGDSC CTRPCTRPCTRPCTRP
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Screened compoundsA B

Figure 16: Overview of pharmacological screens represented in Venn diagrams.  

(A) GDSC and CTRP datasets contain drug response metrics of 820 unique cell lines. From these, 488 cell 
lines are shared between the drug screens, 330 cell lines are only available in the GDSC and 2 only in 
CTRP. (B) The cell lines were tested against 814 unique drugs. Of which, 128 drugs are found in both 
datasets, 269 solely in GDSC and 417 only in CTRP. The amount of cell lines and compounds in the GDSC 
and CTRP datasets are coloured in blue and yellow, respectively.  
This image was created by Iñigo Ayestaran and extracted from panel H of the original supplementary figure 
2 “Synopsis of pharmacology screens and response examples” by (Ayestaran et al., 2020) under a CC-BY-
4.0 license (http://creativecommons.org/licenses/by/4.0/).  

https://paperpile.com/c/a4hTPL/JNPWu
https://paperpile.com/c/63FzuC/Trsj
http://creativecommons.org/licenses/by/4.0/).
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Figure 17: Mutational frequency in GDSC stratified by cancer type.  

Cancer mutation events available from the GDSC project for (A) colorectal adenocarcinoma (COREAD), 
(B) lung adenocarcinoma (LUAD) and (C) breast cancer (BRCA). The mutations’ frequencies are repre-
sented in ascending order of occurrence at the cancer cell lines of each cancer type. The mutations are 
divided into single nucleotide variant (SNV) and copy number (CN) gain/loss classes.  
This image was produced by Iñigo Ayestaran and based on panels B and C of the original supplementary 
figure 2 “Synopsis of pharmacology screens and response examples” by (Ayestaran et al., 2020) under a 
CC-BY-4.0 license (http://creativecommons.org/licenses/by/4.0/).  

3.1.2 Detection of sensitive cell lines 
With the aim of building meaningful models with sufficient statistical power, the CFEs were reduced to cases 
where the mutations contain cancer driver genes, at least 4 mutated cell lines and majority of the cell line 
population with IC50 values bellow the maximal drug concentration. Based on these criteria, the GDSC and 
CTRP datasets were limited to 20,238 and 22,173 drug responses, respectively.   

In order to identify sensitive biomarkers, an analysis of variance (ANOVA) with mutational status as input 
factor and adjusted to several medium-related covariates (i.e., tissue, medium, MSI and growth properties) 
was employed. The results were reported based on p-value significance and signed Cohen’s effect size D 
(Figure 18). Notably, based on the definition of Cohen’s effect size, a positive value indicates resistance 
markers, whilst a negative one indicates sensitivity. Thus, given the significance (p-value < 0,001) and focal 
(Cohen’s effect size D < -1) criteria, the ANOVA models revealed 57 and 37 CFE-drug sensitive combina-
tions for GDSC and CTRP, respectively.  
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https://paperpile.com/c/63FzuC/Trsj
http://creativecommons.org/licenses/by/4.0/).
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Figure 18: Volcano plots reveal sensitive markers based on drug response and ANOVA analysis. 

Biomarkers obtained with (A) GDSC and (B) CTRP drug response, respectively. The x-axis denotes Co-
hen’s drug effect size and the y-axis the significance of the CFE-drug association. The sensitive associa-
tions are located in left-hand size of the plot, where the drug effect size is negative. In total, 57 and 37 
sensitive associations were discovered for GDSC and CTRP, respectively. The point size represents the 
amount of mutated cell lines, and is coloured by the cancer type.  
This figure was created by Iñigo Ayestaran and extracted from the panels A and B of the supplementary 
figure 3 “Results for sensitivity biomarker discovery and CTRP UNRES identification” by (Ayestaran et al., 
2020) under a CC-BY-4.0 license (http://creativecommons.org/licenses/by/4.0/). 

https://paperpile.com/c/63FzuC/Trsj
https://paperpile.com/c/63FzuC/Trsj
http://creativecommons.org/licenses/by/4.0/).
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3.1.3 Identification of UNexpectedly RESistant (UNRES) cell lines  
The previously discovered CFE-drug associations with sensitivity markers are the starting point for the 
exploration of resistant biomarkers.  

The UNRES discovery pipeline was leveraged to flag putative UNRES cell lines (see chapter 2.2.2). In 
detail, for each sensitive CFE-drug association, the framework analyses the effect in the standard deviation 
distribution when the cell lines with the highest IC50 values (up to 5 cell lines) are neglected.  

Based on the significance threshold p-adjusted < 0.15, it was detected a total of 53 and 35 potential UNRES 
associations in the GDSC and CTRP screens, respectively (Figure 19, Appendix Table 11 and Table 12).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: UNRES cell lines in high-throughput screens. 

Identification of sensitive CFE-drug associations with resistance markers in (A) GDSC and (B) CTRP. The 
x-axis denotes de standard deviation (SD) delta when the cell lines with the i-th (𝑖 = 1,… ,5) highest drug 
response are removed from the distribution. Significance was assessed through a bootstrap mechanism, 
and the adjusted p-values (FDR) were used to define significant bootstrap estimates via FDR < 15%. The 
significant UNRES associations are highlighted in the plot, coloured based on tissue type and circle size 
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equal to the number of cell lines flagged as resistant. In addition, resistant cell lines from the same sensitive 
association were recognized through dashed lines.  
This image was created by Iñigo Ayestaran and retrieved from panels B and C of the figure 1 “Identification 
of UNRES Cell Lines” by (Ayestaran et al., 2020) under a CC-BY-4.0 license (http://creativecommons.org/li-
censes/by/4.0/).   

Looking into the resulting volcano plots (Figure 19), associations in lung adenocarcinoma are some of the 
most significant resistant markers with high standard deviation delta identified in both GDSC and CTRP.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Boxplots of drug responses with resistant cell lines in lung adenocarcinoma. 

Drug responses in lung adenocarcinoma (LUAD) for drugs gefitinib, afatinib and erlotinib in (A)-(C) GDSC 
and (D)-(F) CTRP, respectively. The highlighted mutant cell lines NCI-H1650 (PTEN mutation, coloured in 
blue) and NCI-H1975 (EGFR T790M mutation, coloured in red) were identified as resistance cell lines. The 
y-axis represents the drug response IC50 values in log form and the significance is denoted by the p-ad-
justed value (q value) from the bootstrap estimates.  
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https://paperpile.com/c/63FzuC/Trsj
http://creativecommons.org/licenses/by/4.0/).
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This figure was created by Iñigo Ayestaran and compiled using panels A-C of figure 2 “Integration of Iden-
tified Hits with Public CRISPR Datasets” and panels C-E of supplementary figure 3 “Results for sensitivity 
biomarker discovery and CTRP UNRES identification” by (Ayestaran et al., 2020) under a CC-BY-4.0 li-
cense (http://creativecommons.org/licenses/by/4.0/). 

Remarkably, the T790M mutated NCI-H1975 cell line reveals resistance to several first- and second-gen-
eration EGFR inhibitors, including afatinib, erlotinib and the gold-standard gefitinib (Figure 20). Further-
more, the NCI-H1650 cell line with PTEN deletion was also consistently identified as a resistant cell line 
across EGFR inhibitors (Figure 20). Noteworthy, this cell line disclosed resistance to compounds targeting 
the EGFR T790M mutation, namely the third-generation EGFR inhibitor osimertinib, and drugs WZ8040 
and canertinib (Figure 21).  
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Figure 21: Boxplots depicting resistance of NCI-H1650 cell line in lung adenocarcinoma. 

Drug response in lung adenocarcinoma (LUAD) for drugs osimertinib, WZ8040 and canertinib in (A) GDSC 
and (B)-(C) CTRP, respectively. The cell NCI-H1650 (in blue) reveals resistance to the drugs, whilst the 
T790M mutated cell NCI-H1975 (in red) is sensitive. Notably, this sensitive behaviour is not surprising since 
the tested compounds directly inhibit the EGFR T790M mutation. The x-axis stratifies the responses in wild-
type (WT) and mutant (MT) cell lines and the y-axis delineates IC50 values in log form. Statistical differences 
between WT and MT groups were assessed through bootstrap and reported by the corrected p-value (q 
value). 
This image was created by Iñigo Ayestaran and compiled using panel E of figure 2 “Integration of Identified 
Hits with Public CRISPR Datasets” and panels G-H of supplementary figure 3 “Results for sensitivity bi-
omarker discovery and CTRP UNRES identification” by (Ayestaran et al., 2020) under a CC-BY-4.0 license 
(http://creativecommons.org/licenses/by/4.0/). 

https://paperpile.com/c/63FzuC/Trsj
http://creativecommons.org/licenses/by/4.0/).
https://paperpile.com/c/63FzuC/Trsj
http://creativecommons.org/licenses/by/4.0/).
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3.1.4 Benchmark with state-of-the-art outlier detection method 
The presented UNRES framework was benchmarked against the established outlier detection method Ney-
man-Pearson (NP). Notably, per definition, here the concept of outlier is defined by a mutant cell line whose 
drug response is out of the distribution of the sensitive subpopulation with a specific CFE-drug combination.  

In summary, under the significant threshold 𝛼 = 15%, the NP approach identified a total of 26 and 8 poten-
tial resistant associations in the GDSC and CTRP drug screens (Table 1 and Table 2), respectively. From 
these, 12 and 5 associations were shared with the proposed UNRES framework for GDSC and CTRP, 
respectively. 

It should be noted that, in comparison with the UNRES method, the NP results were distributed across a 
larger and a smaller amount of unique CFE-drug associations for GDSC (14 against 12) and CTRP (3 
against 17), respectively. In addition, the NP approach failed to detect resistant gold-standards for lung 
adenocarcinoma, namely the EGFR-TKIs erlotinib and afatinib (in both screens, Figure 20 B-C, E-F), and 
gefitinib (in CTRP, Figure 20 D).  

 

Tissue:drug:mutation Method resistant outliers 
UNRES 

N. resistant outliers 
NP 

BRCA-1799.2:gain:cnaBRCA26 
(CDK12,ERBB2,MED24) both 2 out 5 

BRCA-255.1:gain:cnaBRCA26 
(CDK12,ERBB2,MED24) both 1,2,3,4,5 out 6 

BRCA-255.1:gain:cnaBRCA27 
(CLTC,PPM1D) both 3,4 out 4 

BRCA-293.1:gain:cnaBRCA27 
(CLTC,PPM1D) both 4 out 4 

COREAD-1371.1:BRAF_mut both 2,3,4,5 out 5 
LUAD-1010.2:EGFR_mut both 2 out 2 
LUAD-1915.2:EGFR_mut both 2 out 1 
OV-326.1:PIK3CA_mut both 1,2,3 out 2 

SKCM-1036.1:BRAF_mut both 4,5 out 5 
SKCM-1061.1:BRAF_mut both 1,2,3 out 5 
SKCM-1373.1:BRAF_mut both 1,2,3,4,5 out 3 

SKCM-1047.1:loss:cnaSKCM4 
(BNC2,CDKN2A,JAK2,PSIP1) both 1,2,3,4,5 out 11 

BRCA-381.1:gain:cnaBRCA26 
(CDK12,ERBB2,MED24) UNRES 1,2,3,4,5 out - 

BRCA-119.1:gain:cnaBRCA26 
(CDK12,ERBB2,MED24) UNRES 1 out - 

LGG-1248.1:gain:cnaLGG16 (EGFR) UNRES 1 out - 
LUAD-1010.1:EGFR_mut UNRES 1,2,3 out - 
LUAD-1032.1:EGFR_mut UNRES 1,2,3 out - 
LUAD-1032.2:EGFR_mut UNRES 1 out - 
LUAD-1168.2:EGFR_mut UNRES 2 out - 
LUAD-1377.1:EGFR_mut UNRES 1 out - 
LUAD-1549.2:EGFR_mut UNRES 2 out - 
LUAD-1919.2:EGFR_mut UNRES 1 out - 
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SKCM-1003.2:BRAF_mut UNRES 1 out - 
THCA-1373.1:BRAF_mut UNRES 1 out - 
THCA-1036.1:BRAF_mut NP - 1 
SKCM-1036.2:BRAF_mut NP - 8 
SKCM-1371.1:BRAF_mut NP - 9 

COREAD-1373.1:BRAF_mut NP - 3 
COREAD-1373.2:BRAF_mut NP - 4 

SKCM-1373.2:BRAF_mut NP - 6 
HNSC-1377.1:TP53_mut NP - 7 

LGG-1495.1:gain:cnaLGG16 (EGFR) NP - 1 
BRCA-1549.2:gain:cnaBRCA26 

(CDK12,ERBB2,MED24) NP - 3 

BRCA-1560.2:PIK3CA_mut NP - 5 
BRCA-1561.2:PIK3CA_mut NP - 1 

SKCM-173.1:loss:cnaSKCM4 
(BNC2,CDKN2A,JAK2,PSIP1) NP - 2 

LUAD-221.1:EGFR_mut NP - 2 
COREAD-326.1:PTEN_mut NP - 2 

Table 1: Resistant associations identified with UNRES and Neyman-Pearson in GDSC. 

Combinations of cancer type, drug ID and mutation event with potential resistant markers identified by the 
UNRES and Neyman-Pearson (NP) frameworks under 𝛼 = 15%, in the GDSC screen. The results from the 
frameworks are represented in a distinct format – for UNRES it is specific which cell lines were selected as 
outliers, whilst for NP approach it is specified how many outliers. 

 

Tissue:drug:mutation Method 
N. resistant out-

liers UNRES 
N. resistant outliers 

NP 
BRCA-606144:gain:cnaBRCA26 

(CDK12,ERBB2,MED24) both 1,2,3,4,5 out 1 

LUAD-362063:loss:cnaLUAD34 
(FAT1,IRF2) both 1 out 1 

SKCM-616355:gain:cnaSKCM12 
(KRAS) both 2 out 2 

SKCM-32622:NF1_mut both 2 out 2 
SKCM-616355:NF1_mut both 2 out 2 
DLBC-410270:MLL2_mut UNRES 1,2 out 1 

BRCA-418038:gain:cnaBRCA26 
(CDK12,ERBB2,MED24) UNRES 1,2,3,4,5 out - 

COREAD-417416:AKAP9_mut UNRES 1,2 out - 
COREAD-58339:AKAP9_mut UNRES 2 out - 

LUAD-52926:EGFR_mut UNRES 2 out - 
LUAD-52928:EGFR_mut UNRES 2 out - 
LUAD-606035:EGFR_mut UNRES 2 out - 
LUAD-606135:EGFR_mut UNRES 1,2 out - 
LUAD-606138:EGFR_mut UNRES 1 out - 
LUAD-628614:EGFR_mut UNRES 1,2 out - 
SKCM-27894:ARID2_mut UNRES 1 out - 
SKCM-347813:ARID2_mut UNRES 1 out - 
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SKCM-52882:ARID2_mut UNRES 2 out - 
SKCM-649862:ARID2_mut UNRES 1 out - 
SKCM-411809:NF1_mut UNRES 2 out - 
SKCM-52882:NF1_mut UNRES 1,2 out - 
SKCM-632907:NF1_mut UNRES 2 out - 

COREAD-28801:FBXW7_mut NP - 9 
BRCA-606138:gain:cnaBRCA26 

(CDK12,ERBB2,MED24) NP - 1 

LUAD-622913:EGFR_mut NP - 3 

Table 2: Resistant associations identified with UNRES and Neyman-Pearson in CTRP. 

Combinations of cancer type, drug ID and mutation event with potential resistant markers identified by the 
UNRES and Neyman-Pearson (NP) frameworks under 𝛼 = 15%, in the CTRP screen. The results from the 
frameworks are represented in a distinct format – for UNRES it is specific which cell lines were selected as 
outliers, whilst for NP approach it is specified how many outliers. 

3.1.5 Hierarchical statistical significance estimation 
The UNRES framework comprises two statistical tests hierarchically dependent. First, CFE-drug associa-
tions with sensitive markers (under 𝛼sensitivity = 0.001) are investigated, and, within the rejected hypothesis, 
cell lines as potential markers of unexpected resistance (under 𝛼resistance = 0.15) are distinguished. As a 
result, the model raises two potential concerns related to FDR control:  

1. What is the upper bound for FDR rate of the whole UNRES hierarchical framework (FDRUNRES)? 
Are the results of each step bounded by the system’s FDR? 

2. How does the UNRES model compares to a baseline model? 

To address the first part, the hierarchical FDR (HFDR) control procedure was employed. Given the formu-
lation Equation 2, an upper bound was estimated based on the number of discoveries and CFE-drug com-
binations across the sensitivity and resistance assessments. The global bounds were FDRUNRES = 22.57% 
and FDRUNRES = 22.40% for GDSC and CTRP, respectively. Notably, these estimates are slightly higher 
than the leveraged thresholds, meaning the reported findings are controlled by the global FDRUNRES for 
each dataset. 

In addition, permutation resampling of the drug responses within a tissue type in GDSC and CTRP enabled 
the creation of baseline models. For each cancer type, sensitivity and resistant hypotheses were generated, 
and an estimation of the number of false positives was performed. The estimates revealed 15.6% and 
12.1% portions of the detected UNRES as potential false positives for GDSC and CTRP, respectively. 
Remarkably, these inferred values are in accordance with the significant threshold  𝛼resistance = 0.15 used to 
identify resistant cell lines.  
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3.2 Exploration of increasing cell viability in high-throughput 
screens 

3.2.1 Unsupervised visualization of raw drug response 
Pharmacological data was acquired from the GDSC project, and consisted of 420,273 raw drug-cell com-
binations across 988 cell lines tested over 516 compounds. For preliminary visualisation purposes, I lever-
aged the drug response available in the GDSC project computed with a sigmoid curve fit model (Iorio et al., 
2016; Vis et al., 2016). The drug response was separated into monotonic (i.e., ∀𝑥 ≤ 𝑦, IC34(𝑥) ≤ IC34(𝑦) 
and vice-versa) and non-monotonic cases. This resulted in 29,078 and 391,195 monotonic and non-mon-
otonic drug responses, respectively. 

Unsupervised visualisation of all cell viabilities (described in terms of IC50 values), showed no clear pattern 
in the drug response (Figure 22 A). However, focusing on the monotonic responses, an explicit organization 
of monotonically increasing and decreasing responses is observed. In particular, it is unveiled a striking 
clustering of cases with unexpected increasing cell viability upon drug treatment (Figure 22 B).  

Although this preliminary discovery was based on monotonic responses, when scanning non-monotonic 
responses, several potential cases of increasing cell viability are equally noticeable (Figure 23).  

Briefly, these findings not only highlight the existence of unanticipated response behaviors across drug 
screens, but also suggest IC50 values are not an appropriate metric to describe drug response.  

Figure 22: Principal Component Analysis (PCA) of cell viability values. 

(A) All drug-cell combinations; (B) Monotonic increasing (+1) and decreasing (-1) responses. Region 
highlighted in red unfolds a notable clustering of increasing cell viability cases independent of IC50 values. 
The points are coloured based on IC50 values computed with the gdscIC50 package (Vis et al., 2016), 
and shaped according to non-monotonic (0), monotonic increasing (+1) and monotonic decreasing (-1) 
drug responses.  

https://paperpile.com/c/63FzuC/Uv5k+ZtBf
https://paperpile.com/c/63FzuC/Uv5k+ZtBf
https://paperpile.com/c/a4hTPL/JNPWu
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3.2.2 Curve measures prior to curve fitting 
An initial attempt to characterise the drug responses based on the distribution of the cell viability values 
was performed using the Skewness and Kurtosis measures (see details in chapter 2.3.4). In detail, skew-
ness provides information on the distribution direction (left, right or central) and kurtosis stratifies between 
peak and flat distributions. A normal distribution is characterised by zero skewness and zero kurtosis. 

Notably, drug responses with increasing cell viability phenotypes would expectably present a distribution 
tilted to the right side with peak in the region of high cell viability (CV	≫	1) (Figure 24). Per definition, this 
would translate into negatively and positively valued skewness and kurtosis parameters, respectively.  

 

 

 

 

 

 

 

 

 

C

A B

Figure 23: Examples of increasing cell viability in non-monotonic drug responses.  

Raw drug responses with drug CHIR-99021 with cell lines (A) YT and (B) KP-4, respectively. In the x-axis 
it is represented the drug concentrations in log form, and in the y-axis the cell viability.  

Figure 24: Distribution of drug response for increasing cell viability cases. 

Increased cell viability responses present a non-normal distribution left skewed and with a sharp peak in 
the highlighted region.  
Figure created with BioRender.com. 
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Looking into the distribution of the skewness and kurtosis parameters in monotonic and non-monotonic 
drug responses (Figure 25), no explicit patterns are detectable in the data. In particular, by focusing on the 
visualizations of monotonic responses (Figure 25 A-B), the previously highlighted region of interest (Figure 
22 B) contains responses with no clear combination of skewness and kurtosis values. 

Although the usage of these parameters bears the advantage of describing the drug responses in a com-
putationally inexpensive manner, the results are highly influenced by the intrinsic noise in the responses. 
In addition, the outcomes of these parameters may be confounded with non-responders, and lead to inap-
propriate selection of phenotypes.   

Ultimately, it is challenging to define an appropriate characterization of the drug responses solely based on 
the skewness and kurtosis parameters. In alternative, a comprehensive curve fitting methodology which 
incorporates the skewness and kurtosis parameters in its model and is robust against noise, is a more 
suitable solution to recognize “non-classical” phenotypes such as the increasing cell viability phenomenon.  

A B

C D

Skewness (monotonic) 

Skewness (non-monotonic)

Kurtosis (monotonic) 

Kurtosis (non-monotonic)

Figure 25: PCAs with Skewness and Kurtosis distributions. 

PCAs of (A)-(B) monotonic and (C)-(D) non-monotonic drug responses. Plots coloured based on skewness 
and kurtosis values.  
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3.2.3 Pre-processing: noise and outlier detection 
Drug response data is constitutionally noisy, and strongly influences the stratification between phenotypes 
in HTS (Figure 22 A). Sometimes this can be conditioned by a small number of points in the drug-cell 
response, or by a large amount of meaningless data distribution.  

Noise was assessed based on the difference between the cell viability of subsequent concentration points 
(see details in chapter 2.3.3). According to its distribution (Figure 26), the threshold 𝜂!"#$ > 2 was employed 
to distinguish drug responses with high levels of noise where it is fundamentally not possible to estimate 
the true behaviour (Figure 27). This assumption identified 1,416 noisy responses and reduced the initial 
dataset to 418,857 drug-cell combinations.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A B

Figure 27: Examples of drug responses with high level of noise. 

Drug responses of (A) cell line LAMA-84 with drug Doramapimod, and (B) cell line 22RV1 with drug 
Thapsigargin.  

Figure 26: Distribution of noise across all combinations of cell and drug available in GDSC. 

Noise was quantified based on the cell viability between subsequent titration points and represented by the 
index 𝜂!"#$. A conservative filter 𝜂!"#$ = 2 was selected to remove unreliable responses (represented by 
the horizontal dashed line). The x-axis contains all the available drug-cell combinations and the y-axis the 
𝜂!"#$ values. 
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In order to avoid intrinsic changes on the real drug response due to the presence of out of the distribution 
points (Figure 28), I employed the classic Cook’s distance outlier detection method to recognize and remove 
outlier points from the responses (details in chapter 2.3.3). 

 

 

 

 

 

 

 

In summary, a total of 412,092 cell viability observations were identified as outliers and filtered out from the 
analysis. These outlier points were distributed across 322,366 unique drug-cell combinations and their 
quantity ranged between 1 and 4 points for each drug response (Table 3). Notably, majority of the drug 
responses included only one outlier point and 96,491 drug responses did not contain any detectable outlier.  
 

Number of outliers Number of drug-cell combinations 
0 96,491 
1 233,384 
2 88,242 
3 736 
4 4 

Table 3: Number of outliers across the drug-cell combinations in the dataset. 

Figure 28: Example of drug response with outlier.  

Drug response of cell line BB49-HNC and drug Obatoclax Mesylate with 9 titration points. The first obser-
vation is highlighted in red and was identified as an outlier point.  
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3.2.4 Curve Fitting: Linear and Gaussian Models 
As previously discussed, currently available strategies to describe drug response in high-throughput 
screens are not suitable measures and neglect the identification of unexpected phenotypes, such as the 
increasing cell viability (details in chapters 1.4.2, 3.2.1).  

In light of this, I explored two types of curve fitting methodologies, namely, Gaussian processes (GP) and 
linear models. Notably, these were modelled to enable the investigation of drug responses with increasing 
viability (see formulations of these models in chapter 2.3.2). 

First, I investigated the curve fitting leveraging Gaussian Processes with Radial Basis and spline kernels. 
For this, I applied the gausspr function from the Kernlab R package with default parameters (Karatzoglou 
et al., 2004). Generally, the resulting curve fittings were successful in modelling the behaviour of the drug 
response and robust against non-linear alterations in the observations. In detail, owing to its sigmoidal like 
nature, the spline kernel revealed smoother fits in comparison with the Radial Basis kernel (Figure 29 B-C, 
E-F and Table 4). Despite the high fitting performance, the GP models bear high computational cost due to 
hyperparameter tuning and suggest potential overfitting profiles.  

 

 

 

 

 

 

A B CLinear fit GP with Radial Basis kernel GP with spline kernel 

D E FLinear fit GP with Radial Basis kernel GP with spline kernel 

Figure 29: Examples of linear and Gaussian Processes curve fits. 

Linear, GP with Radial Basis kernel and GP with spline kernel fittings for (A)-(C) NB14 cell line with drug 
Foretinib, and (D)-(F) CHP-212 cell line with drug Brivanib, respectively. The first horizontal panel illustrates 
a responder cell line and the second panel a case of increasing cell viability.  

https://paperpile.com/c/a4hTPL/8enn
https://paperpile.com/c/a4hTPL/8enn
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In addition, linear curve fits were also employed. In contrast to GP, linear models provide a less efficient 
curve fit and higher fitting errors (Figure 29 A, D and Table 4). However, these are rather simplistic and 
computational inexpensive models that can indicate the direction of the drug response, and, therefore, aid 
on the recognition of responses with increasing viability.  
 

Type of curve fit model Monotonic Non-monotonic 

Linear 2,91 × 10A/ 1,02 × 104 

GP with Radial Basis kernel 6,65 × 10AJ 1,14 × 104 

GP with spline kernel 6,18 × 10AJ 1,14 × 104 

Table 4: Average RMSE values for linear and GP curve fits for monotonic and non-monotonic responses.  
 
Furthermore, the gradient of the linear and Gaussian models was used to characterise the drug response. 
Based on the distribution of the slope of the linear and GP with spline kernel curve fitting models, I defined 
the subset of responses with high-slope based on the criteria slopelinear > 0.2 and slopeGaussian > 1.1 (Figure 
30). 
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Figure 30: Distribution of slopes for drug responses in GDSC. 

Slope distribution for drug-cell combinations using (A) Linear and (B) Gaussian with spline kernel curve fit 
models. Thresholds of slopelinear = 0.2 and slopeGaussian = 1.1 defined on the elbow of the distribution of 
linear and Gaussian slopes, respectively. Thresholds represented by dashed horizontal lines.  
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3.2.5 Investigation of potential increasing cell viability markers 
Based on the advantages given by both approaches, both linear and GP with spline kernel models were 
considered to investigate combinations of alteration, tissue and drug types (ATD) with significant markers 
of increasing cell viability in the mutant population.  

Binary event matrices (BEM) were retrieved from the GDSC website (Iorio et al. 2016). These contained 
cancer specific information regarding cancer functional events (CFEs) of 998 unique cell lines. In particular, 
for the biomarker analysis it was considered cancer-type specific events BEMs, and therefore pan-cancer 
(PANCAN) BEMs were filtered out from the original dataset, thus reducing the original dataset to events 
regarding 988 cell lines. 

Furthermore, only alterations with at least 2 cell lines in the mutant and wild-type populations were consid-
ered. In detail, these consisted of 40,286 combinations of alteration, tissue and drug types. 

Subsequently, the reduced BEM information was merged with the linear and Gaussian drug response fit-
tings.  Given these datasets, two statistical frameworks based on ANOVA and hypergeometric tests were 
employed (details of each method in chapter 2.3.5). 

For the ANOVA analysis, the aov() function (R Core Team, 2016) was applied to test the curve fit slope 
against the mutation status (slope ~	Mbcdceb). In parallel, for the hypergeometric enrichment analysis, the 
fgsea() function (Korotkevich et al. 2021) was employed to assess the enrichment of drug responses with 
high slope in the mutant population.  

Based on the criteria of interest, positive delta mean slope ∆slope = slopeMT − slopeWT > 0 and FDR = 5%, 
the ANOVA framework identified 48 and 125 significant ATD combinations using the linear and Gaussian 
curve fitting models, respectively (Figure 31, Appendix Table 13 and Table 14).  

Similarly, leveraging the same criteria and focusing on positive enriched ATD combinations (i.e., with en-
richment of high valued slopes), the hypergeometric enrichment framework distinguished 1,387 and 934 
ATD combinations with the linear and Gaussian curve fitting models, respectively (Figure 32).  
 
 
 
 
 

https://paperpile.com/c/jwekdw/omFp
https://paperpile.com/c/vuvIN9/yfJw
https://paperpile.com/c/NofMCp/IYog
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Figure 31: Volcano plots of ATD combinations with increasing cell viability markers from ANOVA pipeline.  

ANOVA results using (A) linear and (B) Gaussian with spline kernel curve fitting models. Highlighted ATD 
combinations satisfy the significance criteria FDR < 5% and ∆slope = slopeMT − slopeWT > 0, and are col-
oured according to the TCGA cancer abbreviation (48 and 125 ATD combinations for linear and Gaussian, 
respectively). The x- and y-axis represents the difference between the mean slope of the mutant and wild-
type populations, and log p-adjusted value, respectively. 
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Figure 32: Volcano plots of ATD combinations with increasing cell viability markers from hypergeometric 
enrichment framework.  

Enrichment results using (A) linear and (B) Gaussian with spline kernel curve fitting models. Highlighted 
ATD combinations satisfy the significance criteria FDR < 5%, ∆slope = slopeMT − slopeWT > 0 and positive 
enrichment score, and are coloured according to the TCGA cancer abbreviation (1,387 and 934 ATD com-
binations for linear and Gaussian, respectively). The x- and y-axis represents the difference between the 
mean slope of the mutant and wild-type populations, and log p-adjusted value, respectively. 
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3.2.6 Selection of increasing cell viability responses 
The previously mentioned ANOVA and hypergeometric-based frameworks revealed thousands of potential 
ATD combinations with increasing cell viability markers. In order to assist on the prioritisation of these 
markers, for each ATD combination it was assessed the number of drug responses with high slope in the 
mutant population (i.e., slopelinear > 0.2 or slopeGaussian > 1.1, Figure 30).  

Briefly, for the ANOVA pipeline with both linear and Gaussian slopes, the majority of the ATD combinations 
did not include responses with high-slopes in the mutant population (Appendix Table 13 and Table 14). In 
fact, only 1 ATD combination with 2 high-slope responses and 3 ATD combinations with 1 high-slope re-
sponses were discovered. In contrast, with the hypergeometric enrichment framework, several candidate 
ATD combinations contained 2 up to 5 responses with high slope (Appendix Table 15 and Table 16). 

In view of these results, I focused the investigation of increasing viability biomarkers to the findings obtained 
with the hypergeometric enrichment framework. Considering only ATD combinations with at least 2 re-
sponses with high slope, this unravelled a total 123 and 106 ATD combinations with increasing cell viability 
markers based on linear and Gaussian slopes, respectively (Figure 33, Appendix Table 15 and Table 16).  

For each of these ATD combinations of interest, I meticulously selected candidates to be further analysed 
based on the linear and Gaussian curve fittings of the top 4 highest slopes, as well as, the slope distributions 
of the wild-type and mutant populations within each ATD combination. In detail, focus was drawn to cases 
satisfying: 

• real increasing cell viability drug-cell responses – i.e., responses with full cell viability at the initial 
drug concentration (CVinitial ≅ 1) that experience a significant escalation of the cell viability as the 
drug concentration is increased (CV- → ∞, 	𝑖 → ∞); 

• median slope of the mutant population noticeably higher than the wild-type one 
(median(slopeMT) ≫ median(slopeWT)). 

Using these criteria, the set of ATD candidates was reduced to a refined subset of 19 ATD combinations 
(Table 5).     

Together with my colleague Ginte Kutkaite, from these 19 candidates, we investigated cases where specific 
drugs have been noted to increase cell viability in several cancer types. Remarkably, only two drugs fell 
under these conditions: SB590885 in ESCA and KIRC and CHIR-99021 in HNSC, OV and LUAD.  

Furthermore, based on publicly available literature resources and underlying alterations associated with 
increased cell viability in given cancer types, attention was drawn to the drug CHIR-99021, which is asso-
ciated with two distinct amplifications in LUAD - cnaLUAD3 and cnaLUAD27 (Figure 34 and Figure 35). 
Specifically, the cnaLUAD3 segment contains a number of genes including known oncogenes TERT and 
TRIP13, while cnaLUAD27 includes another oncogene MYC. These findings are consistent with a well-
established notion that oncogene amplification drives tumorigenesis by promoting genomic instability and 
ultimately uncontrolled cell proliferation (Hanahan and Weinberg 2000; Schwab 1998). Moreover, support-
ing our findings, several studies have reported synergistic effects between CHIR-99021 and chemothera-
pies in non-small cell lung cancer (NSCLC) and cholangiocarcinoma cells (Li et al. 2020; O’Flaherty et al. 
2019). 

https://paperpile.com/c/jwekdw/Ta52+PHgX
https://paperpile.com/c/jwekdw/w4Zt+4huV
https://paperpile.com/c/jwekdw/w4Zt+4huV
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Figure 33: Volcano plots of ATD combinations with at least 2 drug responses with high slopes. 

Hypergeometric enrichment analysis identified ATD combinations with increasing cell viability markers and 
at least 2 mutant responses with high slopes. Specifically, the framework revealed (A) 123 ATD combina-
tions with linear slope and (B) 106 ATD combinations with Gaussian slope. Highlighted ATD combinations 
satisfied significance criteria and the points size is proportional to the number of responses with high slope 
in the mutant population.   
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Tissue Drug Drug 
Target 

Target 
Pathway Alteration Diff. slope 

MT vs WT 
p-adjusted 

value 
Nr. high 

slope 

OV CHIR-99021 
GSK3A, 

GSK3B 

WNT signal-

ing 
cnaOV84 0,21699869 5,3084E-05 4 

OV CHIR-99021 
GSK3A, 

GSK3B 

WNT signal-

ing 
cnaOV85 0,18106223 3,3486E-05 4 

LUAD CHIR-99021 
GSK3A, 

GSK3B 

WNT signal-

ing 
cnaLUAD3 0,09866215 8,4423E-07 4 

KIRC SB590885 BRAF 
ERK MAPK 

signaling 
TP53_mut 0,08899524 0,00013713 4 

HNSC CHIR-99021 
GSK3A, 

GSK3B 

WNT signal-

ing 
cnaHNSC32 0,03523734 2,2635E-05 4 

OV CHIR-99021 
GSK3A, 

GSK3B 

WNT signal-

ing 
cnaOV38 0,2363685 0,00069351 3 

OV CHIR-99021 
GSK3A, 

GSK3B 

WNT signal-

ing 
cnaOV39 0,18749213 0,0002173 3 

LUAD CHIR-99021 
GSK3A, 

GSK3B 

WNT signal-

ing 
cnaLUAD27 0,0401948 2,9423E-06 3 

LUAD VX-702 p38 
JNK and 

p38 signal-

ing 

cnaLUAD27 0,02756114 0,00148157 3 

GBM Bosutinib SRC, ABL, TEC 
Other, ki-

nases 
cnaGBM122 0,11619582 0,0285229 3 

ESCA SB590885 BRAF 
ERK MAPK 

signaling 
cnaESCA11 0,01421669 0,00206439 3 

PAAD IOX2 EGLN1 Other ARID1A_mut 0,21400061 0,00071425 2 

OV AT7867 AKT 
PI3K/MTOR 

signaling 
cnaOV26 0,23012818 0,03581275 2 

PAAD IOX2 EGLN1 Other CDKN2A_mut 0,18699293 0,00058396 2 

OV Doramapimod p38, JNK2 

JNK and 

p38 signal-

ing 

NF1_mut 0,13247077 0,0024625 2 

LUAD VNLG/124 HDAC,RAR 

Chromatin 

histone 

acetylation 

cnaLUAD14 0,13367648 0,00016655 2 

OV Doramapimod p38, JNK2 

JNK and 

p38 signal-

ing 

cnaOV94 0,05878087 0,0018564 2 

OV CHIR-99021 
GSK3A, 

GSK3B 

WNT signal-

ing 
cnaOV54 0,04438891 0,01140414 2 

BRCA NSC-87877 

SHP-1 

(PTPN6), SHP-

2 (PTPN11) 

Other cnaBRCA18 0,00893763 0,04505482 2 

Table 5: Top ATD combinations with increasing viability markers.  

Highlighted combinations are the proposed candidates to be followed up. Information of drug target and 
target pathway were retrieved from the GDSC website.  
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Figure 34: Increasing cell viability results for drug CHIR-99021 with cnaLUAD3 alteration in lung adenocar-
cinoma (LUAD). 

(A) Hypergeometric enrichment score based on ranked slope; (B) boxplots of slope distribution of wild-type 
and mutant populations; (C)-(D) drug responses with the top 4 highest slopes, with cell lines 201T, NCI-
H2009, HCC-44 and NCI-H1563.   
 

 
Figure 35: Increasing cell viability results for drug CHIR-99021 with cnaLUAD3 alteration in lung adenocar-
cinoma (LUAD). 

(A) Hypergeometric enrichment score based on ranked slope; (B) boxplots of slope distribution of wild-type 
and mutant populations; (C)-(D) drug responses with the top 4 highest slopes, with cell lines 201T, NCI-
H2009, HCC-44 and LC-2-ad.   
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3.2.7 Hypergeometric enrichment tests of cell lines and compounds 
To extend and fine tune the list of putative candidates (Table 5), additional hypergeometric tests on the 
subset of high slopes (i.e., slopelinear > 0.2  or slopeGaussian > 1.1, Figure 30) were performed to identify 
significantly enriched combinations of drug and tissue type. In contrast to the previous framework, this 
analysis was performed independent of cancer functional events.  

With a threshold of p-adjusted value < 5%, I discovered a total of 29 significantly enriched drug-tissue types 
(Table 6). Remarkably, the top pairs include the candidates of increasing cell viability highlighted in the 
previous section, namely the compound CHIR-99021 in the tissues HNSC, OV and LUAD, and SB590885 
in KIRC (Table 5).  
 

Tissue Drug Drug 
Target 

Target  
Pathway 

p-adjusted 
value 

Nr. high 
slope 

Nr. 
responses 

LUAD CHIR-99021 GSK3A, GSK3B WNT signaling 3,39E-11 7 58 

HNSC CHIR-99021 GSK3A, GSK3B WNT signaling 1,24E-10 6 42 

OV CHIR-99021 GSK3A, GSK3B WNT signaling 1,24E-10 5 22 

PAAD SB590885 BRAF 
ERK MAPK sig-

naling 
4,66E-10 5 25 

LUAD VX-702 p38 
JNK and p38 

signaling 
1,81E-09 6 57 

LIHC CHIR-99021 GSK3A, GSK3B WNT signaling 3,27E-09 4 17 

KIRC SB590885 BRAF 
ERK MAPK sig-

naling 
4,86E-08 4 28 

LUAD SB590885 BRAF 
ERK MAPK sig-

naling 
4,86E-08 5 57 

NSCLC CHIR-99021 GSK3A, GSK3B WNT signaling 6,27E-08 4 30 

COREAD PAC-1 
Procaspase-3, Pro-

caspase-7 

Apoptosis regu-

lation 
3,43E-07 4 37 

MESO SB590885 BRAF 
ERK MAPK sig-

naling 
5,91E-07 3 19 

COREAD VX-702 p38 
JNK and p38 

signaling 
9,23E-07 4 46 

COREAD UNC0642 
G9a(EHMT2), 
GLP(EHMT1) 

Chromatin his-
tone methyla-

tion 

1,63E-06 4 46 

ESCA SB590885 BRAF 
ERK MAPK sig-

naling 
5,05E-06 3 33 

NSCLC Axitinib 
PDGFR, KIT, 

VEGFR 
RTK signaling 5,75E-06 3 30 

KIRC Lenalidomide CRBN 

Protein stability 

and degrada-

tion 

7,02E-06 3 30 

NSCLC Veliparib PARP1, PARP2 
Genome integ-

rity 
8,62E-06 3 28 
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GBM UNC0642 
G9a(EHMT2), 

GLP(EHMT1) 

Chromatin his-

tone methyla-

tion 

1,07E-05 3 34 

NSCLC Vismodegib SMO Other 1,4E-05 3 30 

GBM Bosutinib SRC, ABL, TEC Other, kinases 1,69E-05 3 35 

HNSC IPA-3 PAK1 Cytoskeleton 2,03E-05 3 42 

HNSC PLX-4720 BRAF 
ERK MAPK sig-

naling 
2,92E-05 3 40 

HNSC TL-2-105 not defined Other 3,01E-05 3 39 

COREAD Vismodegib SMO Other 3,08E-05 3 43 

BRCA Dasatinib 
ABL, SRC, Ephrins, 

PDGFR, KIT 
Other, kinases 3,36E-05 3 45 

BRCA CHIR-99021 GSK3A, GSK3B WNT signaling 4,01E-05 3 47 

SKCM Bexarotene 
Retinioic X recep-

tor (RXR) agonist 
Other 4,82E-05 3 52 

BRCA NSC-87877 
SHP-1 (PTPN6), 

SHP-2 (PTPN11) 
Other 8,73E-05 3 48 

LUAD ZM447439 AURKA, AURKB Mitosis 0,000114 3 61 

Table 6: Enriched combinations of drug and tissue type in the subset of high slopes.  

A total of 29 combinations were enriched based on FDR = 5%. Only drug-tissue combinations with at least 
2 drug responses were considered. The number of high-slopes and drug responses available in the drug-
tissue combinations was assessed independent of mutation events.  

3.2.8 Correlation between cell proliferation and drug response  
In the previous sections, drugs with increasing cell viability markers were highlighted. Notably, the ultimate 
motivation of this work was to hypothesize a new cancer therapy based on drugs which provoke tumour 
growth and synergistically combine them with compounds that effectively control this fast proliferation.  

For this, I assessed the correlation between the cell growth rate and the drug response (details in chapter 
2.3.6), and identified negatively correlated pairs. Initially, preliminary analysis on all 499 compounds avail-
able at the GSDC screen revealed 471 negatively correlated pairs, in which several drugs are DNA dam-
aging agents which target DNA replication pathways (Appendix Table 17). These findings are concordant 
with clinical chemotherapies where DNA damaging agents are used in combination with fast proliferating 
cells.  

Subsequently, given the interest in investigating the drug CHIR-99021 and the alternations cnaLUAD3 and 
cnaLUAD27 in lung adenocarcinoma, I performed an additional correlation analysis stratified by tissue type 
and focused the results in lung adenocarcinoma (Table 7). Based on these findings and integrating them 
with the drug combination database DrugCombDB (Liu et al. 2021), my colleague Ginte Kutkaite selected 
the drugs Paclitaxel, 5-Fluorouracil and Docetaxel as potential candidates to screen in combination with 
CHIR-99021.  

 

 

https://paperpile.com/c/jwekdw/WZSh
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Tissue Drug Drug Target Target Pathway 𝑹 
LUAD Luminespib HSP90 Protein stability and degradation -0.668691 

LUAD Seliciclib CDK2, CDK7, CDK9 Cell cycle -0.639655 

LUAD ERK_6604 ERK1,ERK2 ERK MAPK signaling -0.638096 

LUAD Paclitaxel Microtubule stabiliser Mitosis -0.633072 

LUAD 5-Fluorouracil Antimetabolite (DNA & RNA) Other -0.623237 

LUAD Docetaxel Microtubule stabiliser Mitosis -0.609848 

LUAD PRT062607 SYK Other, kinases -0.600892 

LUAD BMS-345541 IKK1, IKK2 Other, kinases -0.595863 

LUAD BMS-345541 IKK-1, IKK-2 Other -0.595863 

LUAD Pyridostatin G-quadruplex stabiliser DNA replication -0.592316 

Table 7: Correlation between cell growth rate and drug response in lung adenocarcinoma (LUAD).  

Top 10 negatively correlated drug response and cell growth rate 𝑅 = cor(IC34,Ratecell growth) in lung adeno-
carcinoma. Remarkably, interesting results are cases of negative IC50 value combined with positive cell 
growth.  

3.2.9 Wet lab experiments of potential ICV markers  
Based on the previously described analysis, the compound CHIR-99021 systematically revealed enrich-
ment of drug responses with increasing viability markers. Moreover, ATD combinations involving the am-
plifications cnaLUAD3 and cnaLUAD27 in lung adenocarcinoma revealed promising results to be furtherly 
investigated.  

Together with the groups of Prof. Dr. Daniel Krappmann and Dr. Kamyar Hadian, validation experiments of 
specific compounds and cell lines were performed.  

Specifically, we tested three GSK-3 inhibitors, namely CHIR-99021, SB216763 and 9-ING-41 (Duda et al. 
2020), and eight cell lines. The cell lines were determined based on their drug response with CHIR-99021 
(Figure 36). In detail, we selected two cell lines which presented increasing markers in both cnaLUAD3 and 
cnaLUAD27, only in cnaLUAD3 or cnaLUAD27 and two non-responders without biomarker (Table 8).  
 

COSMIC ID Cell line Drug Linear slope alteration 
908472 NCI-H1573 CHIR-99021 0.0017625 no biomarker 

687807 NCI-H1838 CHIR-99021 -0.0162034 no biomarker 

753600 NCI-H1563 CHIR-99021 0.2393604 LUAD3 

909721 SK-LU-1 CHIR-99021 0.1756879 LUAD3 

907786 LC-2-ad CHIR-99021 0.1960237 LUAD27 

908463 NCI-H1793 CHIR-99021 0.1699917 LUAD27 

1240145 HCC-44 CHIR-99021 0.2810958 LUAD3 & LUAD27 

687820 NCI-H2347 CHIR-99021 0.1838626 LUAD3 & LUAD27 

Table 8: Overview of the drug response of the eight cell lines selected for validation against CHIR-99021.  

COSMIC ID is the GDSC identifier of each cell line. Linear slope of the curve fitting model of the drug 
response of drug CHIR-99021 and specific cell line. In total 8 cell lines were selected, from which 2 had no 
biomarker and the rest contained the amplification cnaLUAD3, cnaLUAD27 or both.  

https://paperpile.com/c/jwekdw/Y3cg
https://paperpile.com/c/jwekdw/Y3cg
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Figure 36: Drug responses of CHIR-99021 with 8 cell lines selected for validation screen. 

(A)-(F) Drug responses with increased cell viability and containing amplifications cnaLUAD3 and/or 
cnaLUAD27. (G)-(H) In contrast, drug responses with approximate zero cell viability.   
 

With the intention of replicating the results obtained by the GDSC screen, the experiments were designed 
with comparable drug concentrations (total of 20 concentrations, Appendix Table 18), 2 replicates of blanks, 
3 replicates of each GSK-3 target and control (DMSO) compounds. Similarly to the GDSC screen, cells 
were treated for 72 hours and cell viabilities were determined using CellTiter-Glo.  

Cell viability curves were inferred for all combinations of drug and cell lines. As expected, at high concen-
tration ranges (around above 10	𝜇M), toxic effects take part and the drug response is reduced to zero 
(Appendix Figure 48). 

From all experimental curves, the drug responses involving the cell lines SK-LU-1 and NCI-H1793 showed 
the most promising responses. However, focusing on the drug concentration range where CHIR-99021 
depicts increase proliferation in the GDSC screen (i.e., between 0,01 and 2,5 𝜇M), only a marginal increase 
in the cell viability of these two cells was observed (Figure 36).  

In addition to the validation experiments, the drug response between CHIR-99021 and the cell lines SK-
LU-1 and NCI-H1793 was explored in public domain datasets. Namely, the CTRP version 2 drug screen 
(Seashore-Ludlow et al., 2015) and a recent study of cell cultured analysis of NSCLC cell lines clinics (Nair 
et al. 2023), built similar experimental designs and investigated the response of these two cells upon treat-
ment of CHIR-99021. Remarkably, both works revealed an increase in the viability of both cells around the 
same concentration range as seen in the GDSC drug screen (Figure 38).  
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Cell viability: LUAD3
GROUP_ID COSMIC_ID CELL_LINE_NAME DRUG_ID_LIB DRUG_NAME slope_LM mut_status detail

67452 753600 NCI-H1563 154 CHIR-99021 0.2393603836 LUAD3 high-slope_LUAD3

214456 909721 SK-LU-1 154 CHIR-99021 0.1756878991 LUAD3 high-slope_LUAD3
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Cell viability: LUAD27
GROUP_ID COSMIC_ID CELL_LINE_NAME DRUG_ID_LIB DRUG_NAME slope mut_status detail

163848 907786 LC-2-ad 154 CHIR-99021 -0,562 LUAD27 high-slope_LUAD27

192393 908463 NCI-H1793 154 CHIR-99021 -0,275 LUAD27 high-slope_LUAD27
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Figure 37: Most promising experimental cell viability results for validated cell lines and drugs. 

Cell viabilities of GSK-3 inhibitors CHIR-99021, SB216762 and 9-ING-41 against cell lines (A)-(B) SK-LU-
1 (with amplification cnaLUAD3) and (C)-(D) NCI-H1793 (with amplification cnaLUAD27). In the first col-
umn, the plots depict the mean cell viability values over all the replicates and a sigmoid curve fit using the 
nls() function from the stats R package. The second column illustrates the raw cell viability values of the 
three replicates at each titration point.  
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Figure 38: Evidence of increased viability of CHIR-99021 with SK-LU-1 and NCI-H1793 cell lines. 

Cell viabilities observed in CTRP drug screen for cell lines (A) SK-LU-1 and (B) NCI-H1793. Here the 
vertical dot line indicates the maximum concentration tested in the GDSC screen and is clearly visible an 
increase in the viability of both cell lines around this concentration point. Furthermore, cell viabilities of 
CHIR-99021 in combination with (C) Tozasertib in cell SK-LU-1 and (D) Olaparib in cell NCI-H1793 from 
the (Nair et al. 2023) study.  
The depicted visualizations were created by my colleague Ginte Kutkaite.  
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3.3 wPPI network for tissue specific drug response modelling 
 

3.3.1 Input features for gene prioritisation framework wPPI  
IntOGen seed genes 

The inference of new candidate cancer genes is correlated to the given seed genes (Figure 14 and Figure 
39 A). Hence, in order to ensure an appropriate selection of cancer specific genes, the input seed genes 
were determined using the Integrative Onco Genomics (IntOGen) database which contains an extensive 
repository of cancer driver genes (Martínez-Jiménez et al., 2020). Specifically, this dataset comprised 66 
different cancer types and 568 unique driver genes (repository downloaded in February 2020).  

Given the availability of cells and number of mutations per cancer type (Figure 9), as well as, the phenotypic 
nature of the cancer tissues, I focused my analysis in breast adenocarcinoma (BRCA). This derived a total 
of 99 seed genes to be considered in the analysis (Appendix Table 19). 

Ontology databases 

The wPPI framework is a network-based gene prioritisation network which functionally scores candidate 
genes based on network topology and shared ontology annotations (Figure 14). In detail, phenotypic and 
genomic specific information is incorporated through the Human Phenotype Ontology (HPO) and Gene 
Ontology (GO) databases, respectively.  

For the HPO database, I inferred together with my colleague Daniel Garger tissue-specific phenotypic an-
notations. In total, we defined 3 unique HPO annotations for BRCA. Furthermore, my colleague Phong 
Nguyen extracted genes involved in these tissue-specific HPO annotations. As a result, 63 unique gene 
symbols were found to be annotated in the BRCA-specific HPO annotations (Appendix Table 20).   
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Figure 39: Drug response prediction pipeline using the wPPI package. 

(A) Selection of tissue specific genes using IntOGen. These genes serve as seed genes for the wPPI 
framework. (B) Implementation of wPPI framework to the seed genes inferred by IntOGen. Identification of 
a set of new cancer specific candidate genes in close functional proximity to the seed genes. (C) Leverage 
of the gene expression profiles of the selected seed and wPPI candidate genes to predict drug response 
(represented by IC50 values) available in the GDSC project. (D) Application of LASSO regression to model 
drug response. Performance assessed by Pearson correlation coefficient and cross-validation. (E) Identifi-
cation of drugs with high predictive power and analysis of genes and pathways involved.  
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When leveraging wPPI, it is possible to include both, one or none of these ontology databases in the prior-
itisation of new genes. In order to define the best model, I estimated the drug response with several com-
binations of HPO and GO databases:  

• without HPO or GO annotations (scores estimated purely with topological information); 
• with only BRCA-specific HPO annotations (Appendix Table 20) and all GO database; 
• with all HPO and GO annotations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on the performances (Figure 40), for the following analysis, I only considered models based on all 
HPO and GO annotations.   
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Figure 40: Average Pearson correlation for drug response based on gene sets with different combinations 
of HPO and GO annotations. 

Six distinct models to predict drug response in BRCA: (1) all genes available in the gene expression; (2) 
seed genes from IntOGen (Appendix Table 19); (3) seed genes and all candidate genes inferred by wPPI 
with all HPO and GO annotations; (4) seed genes and top 5 % candidate genes from wPPI without HPO 
and GO annotations; (5) seed genes and top 5% candidate genes from wPPI with only BRCA specific HPO 
annotations (Appendix Table 20); (6) seed genes and top 5% candidate genes from wPPI with all HPO 
annotations. Results were averaged over all the drugs in the dataset (= 303 drugs). 
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Parameters of the search algorithm  

Once functional scores are calculated to all candidate genes, wPPI runs the Random Walk with Restart 
algorithm to search for functionally closely related genes in respect each seed gene (Figure 14). In order 
to establish “how far” the algorithm can investigate, this is modelled by the restart probability parameter 𝑟, 
which can take values between 0 and 1.  

Similarly to the previous analysis, I investigated the most optimal value of 𝑟 by modelling the drug response 
in BRCA over several values of 𝑟. Notably, the results suggest the restart probability parameter does not 
have a high influence on the model’s performance (Figure 41). Notwithstanding, I considered 𝑟 = 0.2 for 
the follow-up analysis since it presented the highest median across all drug responses.  
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Figure 41: Model performance with several restart probabilities. 

Pearson correlation between predicted and observed drug response (represented with IC50 values) for 
BRCA with restart probabilities 𝑟 = 0.1 − 0.9. 
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3.3.2 Identification of new cancer specific candidate genes with wPPI 
Taking the input seed genes (chapter 3.3.1), a PPI network was constructed with the seed genes and their 
direct interactors (i.e., first order degree neighbors, candidate genes) (Figure 14 B and Figure 39 B). For 
this, I used the Omnipath PPI network, which comprised 42,541 interactions and 7,463 unique proteins 
(Türei et al., 2021). Based on the availability of genes in the Omnipath PPI database (download version of 
2020), the amount of candidate genes was 2,931 genes for BRCA.  

Subsequently, given the specifics for the ontology databases and RWR algorithm previously discussed 
(chapter 3.3.1), a functional ranking of the cancer-specific candidate genes was estimated (Figure 14 C-E). 
Focusing on the top 5% ranked candidate genes, a total of 146 genes were discovered (Figure 42 and 
Appendix Table 21).   

 

 

 

 

 

 

 

 

 

In addition, I performed pathway enrichment analysis of the top 5% ranked genes in BRCA using the 
ViSEAGO package with default parameters (Brionne et al. 2019). Leveraging a significance threshold of 
α = 5%, several biological processes related with DNA damage response, cell development, proliferation 
and division were discovered (Figure 43). Interestingly, pathways involving ERRB4, which is typically impli-
cated in breast cancer proliferation and survival of cancer cells, were significantly enriched. Notably, these 
findings highlight the performance of wPPI to robustly select new cancer-specific candidate genes.  

 

 

 

 

 

 

BRCA

0 1000 2000 3000
Number of genes

seed gene_BRCA

candidate gene_BRCA

top 5% candidate gene_BRCA

Figure 42: Overview of number of seed and candidate genes in BRCA. 
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Figure 43: GO-term enrichment analysis of top 5% candidate genes from wPPI. 

The top 50 enriched pathways for BRCA. The biological processes are ordered according to their p-value 
significance.  
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3.3.3 Drug response prediction based on seed and wPPI genes 
Gene expression profiles of the seed genes and new candidate genes identified by wPPI were used as 
input features to train a LASSO machine learning (ML) model and predict the drug response in terms of 
IC50 values (Figure 39 D). For this task, I used datasets available in the GDSC project, namely gene ex-
pression of 17,419 genes and 1,018 cell lines and drug response measurements tested on 303 drugs. Since 
the analysis focused on breast tissue, the gene expression and drug responses were reduced to measure-
ments in 49 cell lines (Figure 44).   

 
Figure 44: Heatmaps of gene expression and drug response in BRCA. 

(A) Gene expression profiles of 17,419 genes and 49 cell lines. Expression values represented with a z-
score transformation. (B) Drug response of 303 compounds and 49 cell lines. Responses represented by 
IC50 values in log form. Unknow drug response values were mapped to zero values.  
 

In order to explore the performance of wPPI as a feature selection framework, I considered several sets of 
genes. Namely, the whole genome (all the genes in the gene expression, i.e., 17,419 genes), the tissue-
specific seed genes from IntOGen (S1; 96 genes), all the wPPI candidate genes (S2; the first order degree 
neighbours of the seed genes, i.e., 2,931 genes) and the top 5% ranked wPPI genes (S3; 146 genes).                                                                                                 

First, I cross-compared the ML models of the gene subsets (S1, S2 and S3) against the whole genome, and 
reported the average Pearson correlation R between the observed and predicted IC50 values over all drugs 
(Figure 40 and Table 9). As already observed in the previous chapter 3.3.1, the models’ performances 
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improve when leveraging a tissue-guided feature selection, with the highest averaged performance 
achieved with the top 5% ranked wPPI genes (𝑅?* = 2,99 × 10A1).  
 

Gene set Whole Genome Seed Genes (S1) 
Seed Genes + 

All wPPI Genes (S2) 

Seed Genes + 

Top 5% wPPI Genes (S3) 
Pearson correlation R 3,54 × 10!" 4,25 × 10!" 1,87 × 10!# 2,99 × 10!# 

Table 9: Averaged Pearson correlation between observed and predicted drug response of several gene 
sets.  
 

Moreover, I created random models composed by sets of randomly selected genes with the same size as 
the gene subsets (S1, S2 and S3). The performance of these random models was assessed over 500 itera-
tions (Table 10) and cross-compared with the Pearson correlation obtained for the gene subsets S1, S2 and 
S3 (Table 9).  
 

Gene set Random # S1 Random # S2 Random # S3 
Pearson correlation R −1,30 × 10!" 4,02 × 10!" −7,52 × 10!$ 

Confidence Interval [−2,68 × 10!", 7,77 × 10!%] [2,57 × 10!", 5,47 × 10!"] [−2,12 × 10!", 6,19 × 10!$] 

Table 10: Averaged bootstrapped Pearson correlation and confidence interval of random models with the 
same number of genes. 

Briefly, the random models performed significantly worse in comparison with the models built with cancer-
specific genes from IntOGen and wPPI (Table 9 and Table 10). Specifically, the random models build with 
a smaller input feature set (S1 and S3, with 96 and 146 genes, respectively), presented a negative Pearson 
correlation between the predicted and the observed drug response. This finding suggests inconsistency 
between the gene expression of the randomly selected genes with the observed IC50 values, and highlights 
that a knowledge-guided selection of a small subset of genes is required to provide accurate predictions.  

In contrast, the random model formed with the biggest gene feature set (S2, 2,931 genes; Table 10) re-
vealed a comparable performance with the model constructed with all the first order degree PPI neighbours 
of the seed genes (Table 9). This result is probably driven by the fact that the set of genes is large enough 
to encompass genes which are drug targets.   

As a next step, I comprehensively investigated the drug response prediction for each one of these gene 
subsets (S1, S2 and S3). Specifically, I analysed the performance of each model against the random model 
and across all the compounds available (Figure 45).  

Looking in detail to the models built with the seed genes and the top 5% ranked wPPI genes (Figure 45 C), 
and focusing on the drugs with the highest Pearson correlation (Figure 46 and Appendix Table 22) several 
drugs targeting the PI3K/Akt/mTOR, IGF1R and ERK MAPK signalling pathways were detected.  

For instance, Tozasertib is an Aurora kinase inhibitor and regulates mitosis progression (Wang et al. 2024). 
This kinase has been linked to tumorigenesis in several cancer types and high levels of it have been re-
ported in breast cancer patients (Yamamoto et al. 2013; Aradottir et al. 2015). Tozasertib revealed the 
highest performance across all tested compounds and gene subsets. Specifically, a Pearson correlation 
𝑅?* = 0,51 was achieved in the ML model built with the seed and the top 5% wPPI genes (against 
𝑅whole genome = 0,39; 𝑅?+ = 0,33; 𝑅?% = 0,38 and 𝑅random = 0,25). The model was built based on seed genes 
ERBB2 and ERBB3 (notorious breast cancer drivers) and wPPI IGFBP4 gene (Figure 46 A). IGFBP4 is an 

https://paperpile.com/c/jwekdw/jO14
https://paperpile.com/c/jwekdw/USV2+i5Ot
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insulin-like growth factor and responsible of transporting and regulating the hormone IGF-1. IGF-1 can 
activate PI3K/Akt/mTOR and MAPK/ERK pathways and overexpression of IGF-1 has been correlated with 
tumour proliferation in breast cancer (Christopoulos et al. 2015; Ekyalongo and Yee 2017; Wang et al. 
2019).  

AZD7762 targets checkpoint kinases 1 and 2 (CHEK1 and CHEK2), and has been described as a potential 
tool for combination therapies in breast cancer (Zabludoff et al. 2008; Park et al. 2016). Notably, this com-
pound revealed high Pearson correlation across all the tested subsets (𝑅whole genome = 0,46; 𝑅?+ = 0,40; 
𝑅?% = 0,49 and 𝑅?* = 0,43), with the best model being with the seed and all the wPPI candidate genes. 
Deeping into the genes leveraged in prediction (Figure 46 B), the majority were seed genes and were also 
found in the ML model of Tozasertib, namely CLTC, ERBB3 and VRK2. In detail, CLTC expression has 
been identified as a marker for several cancer types, and linked with tumor growth and proliferation of breast 
cancer cells (Shijie et al. 2021; Jiao et al. 2013). Moreover, VRK2 expression was negatively correlated 
with the drug prediction and breast cancer drivers ERBB2 and ERBB3, which is consistent with literature 
findings (Fernández et al. 2010).  

Other two compounds of interest were Vincristine and Phenformin (Figure 46 C-D), with ML predictive 
models mainly built with wPPI selected genes and significantly better performance with the top 5% wPPI 
genes (S3) than the one obtained with the other subsets.  

Vincristine is a chemotherapy drug currently used in clinics to advance-stage breast cancer patients (Byrne 
1976; Velho 2012). Its prediction based on the top 5% wPPI was positively correlated with the observed 
drug response (𝑅?* = 0,21), whilst the models built with the other gene subsets all revealed negative corre-
lation with the real drug response (𝑅whole genome = −0,071; 𝑅?+ = −0,051; 𝑅?% = −0,015 and 𝑅random =
−0,039). The wPPI genes used in the prediction with the highest absolute weights were AHSP, GML and 
ISCU (Figure 46 C). Currently, there is no clear evidence of a relation linking the genes AHSP and GML 
with breast cancer. However, AHSP gene has been reported to be directly regulated and activated by the 
seed gene GATA-1 (Gallagher et al. 2005; Lai et al. 2005), and GML is linked to apoptotic pathways (Ka-
gawa et al. 1997; Kimura et al. 1997). On the other hand, the ISCU gene, which negatively contributed to 
the prediction, has been reported to be downregulated in a variety of cancer tissues, including breast. This 
gene is directly regulated by p53, surrounded by SNPs associated to higher risk of developing breast cancer 
and its suppression has been linked to a worst prognosis of cancer patients (Petronek et al. 2021; Favaro 
et al. 2010; Degtyareva et al. 2020; Funauchi et al. 2015). 

Lastly, Phenformin inhibits melanoma cell growth, drives alteration in the cell cycle and has been recently 
suggested to be leveraged as an anticancer drug for breast cancer (García Rubiño et al. 2019; Guo et al. 
2017; Liu et al. 2015). Similarly to Vincristine, this compound reported a significantly better prediction with 
the gene subset composed by the top 5% wPPI genes (𝑅?* = 0,32), in comparison with the rest of the 
subsets (𝑅whole genome = 0,001; 𝑅?+ = 0,099; 𝑅?% = −0,015 and 𝑅random = 0,038). The top gene weights were 
derived by the wPPI genes B4GALT1 and ULK3 (Figure 46 D). B4GALT1 expression has been indicated 
to be directly estrogen-induced in breast cancer cells and to influence the proliferation of tumour cells (Vil-
legas-Comonfort et al. 2012; Choi et al. 2012). In contrast, the expression of ULK3, which presented a 
negative weight in the prediction, has been negatively correlated with the formation of breast cancer and is 
directly involved in the activation of GLI1 and GLI2, which have been pointed as potential breast cancer 
prognostic markers (Goruppi et al. 2017; Zhang et al. 2023; Im et al. 2013).  

https://paperpile.com/c/jwekdw/XPDa+0JyH+cfQC
https://paperpile.com/c/jwekdw/XPDa+0JyH+cfQC
https://paperpile.com/c/jwekdw/0aVA+L6Q4
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https://paperpile.com/c/jwekdw/ZF1m
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Figure 45: Performance of ML models with seed and wPPI candidate genes against random models across 
all drugs.  

Performance of models built with specific combinations of seed and wPPI candidate genes against random 
models constructed with the same amount of input features. Models with (A) seed genes, (B) seed and all 
wPPI candidate genes and (C) seed and top 5% ranked wPPI candidate genes. A total of 303 drugs are 
illustrated and compounds with higher Pearson correlation than random are highlighted. The x-axis and y-
axis represent the Pearson correlation of the seed plus wPPI candidate genes combination and of the 
randomly selected genes, respectively.   
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3.3.4 Comparison with existing gene prioritisation tool 
In order to benchmark the wPPI as a suitable gene prioritisation tool of cancer specific genes, I leveraged 
the GeneFriends tool to select breast cancer specific genes using the same seed genes used for wPPI 
(Raina et al., 2023). 
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Figure 46: Illustration of drugs with the high Pearson correlation coefficient and their respective gene 
weights used in the modelling.  

Weight distribution of the genes used in the drug response modelling of drugs (A) Tozasertib, (B) AZD7762, 
(C) Vinocristine and (D) Phenformin.   
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Employing the GeneFriends with the default parameters, a total of 474 candidate genes were discovered, 
where 103 of these genes were in common with the candidate genes from wPPI.  

The Lasso regression model was built around the selected 474 genes, and a mean Pearson correlation of 
𝑅GeneFriends = 3,59 × 10AJ was estimated across all the drugs. Notably, this performance is significantly 
worse than the ones obtained with the sets of wPPI candidate genes (Table 9).  

In addition, I also investigated the pathways involved with the candidate genes selected by GeneFriends 
(Figure 47). The resulting enriched pathways were mostly related with metabolic processes and regulation 
of gene expression, which are not specific to breast cancer.  
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Figure 47: Gene Ontology enrichment analysis of candidate genes from GeneFriends. 
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4. Discussion  

4.1 Summary 
Over the last decade, cancer research has made significant improvements driven by developments in ge-
nomic sequencing techniques, formulation of synergistic combination therapies and creation of adaptive 
clinical trial designs (Jiang et al. 2022). These advances, in combination with the creation of specialized 
bioinformatic tools, have paved the way for the creation of personalised cancer treatment and improve-
ments in the discovery of drugs and predictive biomarkers.  

Cancer cells can be explored using large-scale high-throughput screens (HTS), such as the Cancer Cell 
Line Encyclopedia (CCLE) (Barretina et al., 2012) and the Genomics of Drug Sensitivity in Cancer (GDSC) 
(Garnett et al., 2012; Iorio et al., 2016) projects. These high-throughput technologies facilitate a substantial 
amount of data to be analysed and are a cost-effective alternative to real tumours. In addition, given that 
biological systems encompass interconnections between several components, the integration of various 
heterogeneous data modalities is often required. Together, this sparks challenges regarding data handing, 
dimensionality and complexity, and brings into light the need of advanced and specialised computational 
techniques to accurately investigate these datasets (Hawkins et al. 2010; Jia et al. 2022; Cortés-Ciriano et 
al. 2021; Nicora et al. 2020).  

Currently, several algorithms are standardly leveraged to perform specific bioinformatic analysis tasks, such 
as ANOVA models to detect sensitive markers and regression models to predict drug response. However, 
the immeasurable quantity of available biological data enables innumerable unexplored opportunities to 
create new bioinformatic frameworks to investigate the data. As a result, creating applied and integrative 
computational methods to analyse and model large-scale datasets are a key step towards elucidating the 
complexity of cancer and accelerate personalised medicine.  

In this thesis, I presented three distinct bioinformatic frameworks to comprehensively investigate and iden-
tify new tissue-specific cancer biomarkers from large-scale pharmacological data. Specifically, my frame-
works are dedicated to addressing the following aims: (1) identification of resistance markers in HTS, (2) 
recognition of increasing viability in HTS and exploit for therapies, and (3) prediction of drug response based 
on cancer-specific gene prioritisation.  

These studies were performed using cell line models and consolidated with multi-omic datasets or valida-
tions experiments. Together, the proposed research handles statistical vulnerabilities intrinsic in pharma-
cological data and delivers resources to systematically uncover actionable biomarkers across cancer types.  

In brief, the presented work illustrates the use of mathematical models to distinguish biomarkers in multiple 
cancer subtypes and contributes to the development of novel precision medicine approaches. 

 

 

https://paperpile.com/c/jwekdw/StYc
https://paperpile.com/c/63FzuC/kcsp
https://paperpile.com/c/63FzuC/coPB+Uv5k
https://paperpile.com/c/jwekdw/S6HA+LVIo+5dOF+ai8D
https://paperpile.com/c/jwekdw/S6HA+LVIo+5dOF+ai8D


 

 109 

4.2 Identifying indirect resistance in HTS 
Drug screens, such as GDSC, were designed to maximize the investigation of drug sensitivity markers, 
where it is generally tested low concentrations in order to avoid cytotoxic effects (Garnett et al., 2012; Iorio 
et al., 2016). Consequently, in these screens, the majority of the cell lines end up not responding to the 
tested drug concentrations and the drug responses are summarised with extrapolated IC50 values. In con-
trast, the CTRP screen tests high concentration ranges, which can drive off-target effects in the drug re-
sponse. Notably, these render difficult to distinguish between real drug resistance and non-responders.  

Furthermore, direct approaches to investigate resistance may falsely recognize a non-responder cell line 
as a resistant one, and are limited to frequently mutated genes, e.g., TP53 (Figure 17). Overall, these 
underline that while it is possible to statistically identify resistant lines, the biggest challenge is to recognize 
resistance biomarkers. 

4.2.1 Recognition of indirect resistance with novel outlier detection method  
To address the lack of statistical power to identify resistance biomarkers in HTS, together with Iñigo 
Ayestaran, we developed a systematic hierarchical framework which investigates populations of cell lines 
carrying sensitivity biomarkers, where a subset of cell lines exhibits unexpected resistance (UNRES) to the 
treatment. 

In total, the framework revealed 57 and 37 significant sensitive markers in the GDSC and CTRP screens, 
respectively. These findings reflect the inherent design of these drug screens, where the GDSC screening 
efforts are focused on low concentration ranges to optimize the detection of sensitivity biomarkers.  

For the investigation of resistant markers, Iñigo (1) first created a novel statistical outlier detection tool 
based on standard deviation changes when the highest drug responses values are excluded and I (2) then 
benchmarked the model against the state-of-the-art Neyman-Pearson (NP) outlier detection method. Both 
approaches identified multiple resistant markers, with several common associations in GDSC and CTRP.  

The proposed UNRES framework recognized several established resistant biomarkers known in literature, 
such as gefitinib resistance with EGFR T790M mutation (Yun et al. 2008) and afatinib with PTEN mutation 
(Sos et al. 2009) in lung adenocarcinoma, whilst this was not consistently observed by the NP method. 
Furthermore, the UNRES method revealed a significant performance in the number of detected resistant 
markers with the CTRP database (17 with UNRES versus 3 with NP).  

The considerable discrepancy in performance between these two outlier methods lies on the mathematical 
structure of the models: whilst the UNRES framework will unavoidably test the top highest IC50 values of 
the mutant population, the NP procedure focus its attention in a fixed critical region of the standard deviation 
distribution. Notably, if there are few mutant cell lines or if the distribution is approximately normal with small 
deviations, it is possible that no cell line exposed in the critical region and henceforth the specific CFE-drug 
association is not tested and recognized with a resistance marker by the NP procedure. 

4.2.2 Statistical framework robust to hierarchical tests 
The presence of two hierarchical statistical tests - testing of sensitive markers, followed by testing of re-
sistant markers - also influences the statistical sensitivity of the proposed framework. In one hand, a strict 
significance threshold may filter out relevant sensitive associations to be explored in the second step, whilst, 

https://paperpile.com/c/63FzuC/coPB+Uv5k
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on the other hand, relaxed thresholds may induce a high number of false positives. In order to ensure a 
robust estimation of our hierarchical testing, I implemented a Hierarchical False Discovery Rate (HFDR) 
control procedure which provides an upper bound of the overall FDR, and controls the FDR both within and 
across CFE-drug associations. Specifically, we obtained an upper bound of 22.57% and 22.40% false pos-
itives rates in the overall analysis using the GDSC and CTRP screens, respectively. Remarkably, these 
rates were just slightly higher than the employed 15% threshold to infer UNRES cell lines, and probably 
influenced by small deviation differences between UNRES and sensitive cell lines.  

4.3 Recognizing increasing viability in HTS and exploiting it for 
therapies 

In addition to resistant responses, pharmacological drug screens can be leveraged to reveal other atypical 
and rare phenotypes of drug response.  

Drug response derived from HTS data is typically modelled by curve fitting frameworks based on sigmoidal 
shapes with several parametrizations related to the expected responder behaviour of the drug response. 
Notably, unexpected shapes such as increased cell viability are missed by these approaches. This phe-
nomenon is appealing to investigate since may indicate off-target effects, where these drugs inhibit cell 
cycle checkpoints, guiding to the acceleration of the cell cycle and consequent increased cell proliferation.  

4.3.1 Robust curve fitting models  
In this work, I have addressed the identification of responses with increased viability through a mathematical 
framework based on Gaussian Processes (GP) and linear curve fit approaches applied to responses in the 
GDSC drug screen.  

The GP models dynamically adapted to data oscillations and were robust against the noisy nature of the 
drug responses, revealing small error rates of around 6 × 10AJ in monotonic responses. Notably, this was 
a phenomenon already observed in another GP-based modelling work I contributed to (D. Wang et al., 
2020), where we showed the significant performance of a GP curve fit in comparison to a sigmoid one.  

Despite the notorious performance of a GP curve fit, its accuracy highly dependents on the sampling of the 
cell viability points, both in terms of the quantity of points available and how these are spread across the 
domain. Specifically, in cases of responses where several outlier points are filtered out, or when the viability 
points are not evenly distributed, the predicted GP curve struggles to accurately assess the real shape of 
the curve in the regions with missing data. Furthermore, GP models are notoriously sensible to overfit when 
dealing with small sets of data. Whilst a small error rate is desired during curve fitting, this could be an 
indicator of model overfitting. 

As an alternative to the GP fitting, I also explored a simpler approach based on linear predictions which 
was both used during the pre-processing stage and to recognize responses with increased cell viability. 
The linear gradient successfully distinguished between non-responders and responses with increasing 
markers, particularly in monotonic responses. Moreover, the model’s simplicity made it robust against ran-
dom fluctuations, provided easy to interpret coefficients and the hyperparameter estimation was a signifi-
cantly less expensive computational task in comparison to GP.  
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The pitfall of the linear approach is naturally the poor modelling of the curve shape, as it was demonstrated 
by the error assessment of the curve fitting model. However, given in this work I was not interested in 
providing a perfect modelling of the original drug response, but rather a systematic approach that flags 
responses with a potential increasing behaviour, I found the linear gradient suitable for this task. 

4.3.2 Statistical frameworks identify increased cell viability in HTS 
Two distinct statistical frameworks based on ANOVA and hypergeometric tests were employed to the linear 
and GP curve fits to recognize significant increasing cell viability cases in mutant subgroups with respect 
to wild-type ones.  

Initial analysis flagged hundreds and thousands of potential candidates using the ANOVA and hypergeo-
metric enrichment analysis, respectively. Given the ANOVA framework incorporates the mutation status as 
a cofounding factor in the analysis, the noticeable difference in the amount of increased cell viability markers 
discovered with the two approaches, is probably driven by a similar slope distribution between the wild-type 
and mutant populations. 

Majority of these candidates were encountered in the cancer types with the highest amount of cell lines, 
such as lung adenocarcinoma (LUAD), colorectal (COREAD), ovary (OV) and head and neck squamous 
cell carcinoma (HNSC). Nonetheless, this preliminary analysis did not reveal any striking drug or cancer 
event of particular interest. In order to short-list the potential candidates, I performed a data-driven approach 
based on the amount of drug responses with high-slopes in the mutant population of each alteration, tissue 
type and drug (ATD) association. Based on this strategy, the candidate pool was reduced to only a few 
hundred of ATD combinations discovered using the hypergeometric pipeline. Looking into these polished 
results, several compounds such as CHIR-99021 (GSK3a/b inhibitor), SB590885 (B-Raf inhibitor) and IOX2 
(PHD2 inhibitor) were distinguished in more than one cancer type.  

The systematic investigation of significant ATD associations was performed by cancer type in order to find 
tumour specific and exclusive markers. As a result, this reduced the available number of samples for each 
ATD combination and, subsequently, decreased the statistical power of the analyses. Therefore, shifting 
the focus of the analysis into cancer types with larger annotations of cells and drug, namely LUAD, OV and 
COREAD.  

4.3.3 Evaluation of promising increased viability candidates 
From all prospective results, the drug CHIR-99021 was unequivocally the most distinctive candidate, with 
top significance in LUAD, HNSC and OV for both linear and GP curve fitting models. This compound targets 
two isoforms of the glycogen synthase kinase-3 (GSK3a and GSK3b) of the Wnt signalling pathway, with 
GSK-3 being linked to several cancer specific mechanisms such as stem cell formation, and cell prolifera-
tion and differentiation.  

Specifically, CHIR-99021 is commonly used in combination with other drugs to activate the canonical Wnt 
signalling pathway, which subsequently promotes cell proliferation and survival in several cancer types, 
such as LUAD (Fernandes et al. 2024; Li et al. 2013), acute myeloid leukemia (LAML) (Hu et al. 2010) and 
COREAD (Polakis 2005). Moreover, the function of GSK3 in cancer highly depends of the cancer type, with 
several reports of its role not only as an oncogene but also as a tumour suppressor (Zheng et al. 2007; 

https://paperpile.com/c/jwekdw/BSQF+cEH1
https://paperpile.com/c/jwekdw/UNFg
https://paperpile.com/c/jwekdw/b2DL
https://paperpile.com/c/jwekdw/pnkh+e16I


 

 112 

Dong et al. 2005). Notably, these results illustrate the strong influence of the drug CHIR-99021 in the reg-
ulation of tumorigenicity and how important a cancer-specific analysis is in order to design an efficient 
cancer therapy plan.  

Significant increasing cell viability markers of CHIR-99021 were found in several combinations of cancer-
type and mutation event. From these, focus was given to amplifications with known oncogenes, namely 
cnaLUAD3 with TERT and TRIP13, and cnaLUAD27 with MYC. Interestingly, TERT has been shown to 
stimulate Wnt pathway activation in stem cells (Park et al. 2009; Listerman et al. 2014), TRIP13 promotes 
proliferation via the Wnt pathway in lung cells (Li et al. 2021) and MYC also regulates proliferation of colon 
cancer cells through the induction of LEF1, which interacts with b-catenin (Hao et al. 2019). Together, these 
studies suggest these oncogenes as possible biomarkers of increased cell viability with GSK3 inhibitors, 
such as CHIR-99021.  

Ultimately, we sought to validate CHIR-99021 in an independent validation experiment that could mimic the 
same conditions used in the GDSC high-throughput screen. For this, an experimental protocol was de-
signed, using similar media, three replicates, time assessment and approximate drug concentrations. Given 
the relevance of GSK3 inhibitors in cancer, two other GSK3-targeting compounds, SB216763 and 9-ING-
41, were also tested.  

Regrettably, the experimental results did not support our hypothesis of increased cell viability induced by 
CHIR-99021. Although some drug responses, namely the ones involving SK-LU-1 and NCI-H1793 cell 
lines, presented the indication of a possible start of increased cell viability around the concentration range 
of 0,5-1,5 𝜇M, the signal would be lost in the following cell viability points due to probable cytotoxic effects. 
Furthermore, the depicted drug response showed high variation between the three replicates, increasing 
the uncertainty in the experimental results. Nonetheless, from all the compounds tested, CHIR-99021 and 
SB216763 were the only compounds which manifested a marginal increase in the cell viability.  

Several factors could have influenced the lack of validation of our experimental results. For instance, the 
validated cell lines were not the top candidates of increased cell viability derived from our statistical frame-
work. Unfortunately, the cells 201T and NCI-H2009, which presented the highest drug response slope in 
GDSC, were not available for our analysis. Moreover, in order to explore the behaviour of the cells as the 
concentration increases, we extended the range of drug concentrations used in GDSC with high doses 
spread between large intervals. We hypothesize that at high drug concentrations, toxic effects start to play 
an active role and dead cells start to emerge and influence the viability signal of the overall response. 
Similarly, at low concentrations the data is too noisy, making it difficult to translate in follow-up analyses.  

Despite the lack of validation of our results in the experimental screen, two sets of publicly available data 
supported our findings of increased viability with CHIR-99021 in the cell lines SK-LU-1 and NCI-H1793 
(Figure 38) (Seashore-Ludlow et al. 2015; Nair et al. 2023). This not only highlights the robustness of the 
proposed methodology to capture candidates of increasing cell viability in drug screens, but also motivates 
a deeper examination of the experimental designs to recognize potential improvements.   
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4.4 Predicting drug response based on cancer-specific gene 
prioritisation 

The identification of genes with biological significance to oncogenic pathways remains an open subject in 
cancer research. Although several literature resources have pinpointed numerous cancer-specific driver 
genes, an extension of these lists could provide a better understanding of the underlying mechanisms in 
cancer, as well as, boost the statistical power of frameworks dedicated to explore cancer biomarkers.  

Within this context, computational analyses based on protein-protein interaction networks offer a remarka-
ble opportunity to systematically integrate several biological layers, enabling to efficiently recognize new 
genes with functional and therapeutic relevance in cancer.  

This approach is particularly useful for the previously discussed aims, where the identification of resistance 
and increasing viability biomarkers is limited due to rare mutation events. Notably, expanding the known 
mutation landscape may contribute to overcome vulnerabilities in HTS and advance biomarker discovery. 

4.4.1 Unveiling new cancer-type specific genes  
In this thesis, I presented wPPI, a new network-based systems biology framework which integrates multiple 
biological layers to identify novel cancer-specific genes.  Specifically, wPPI leverages information from pro-
tein-protein interaction (PPI) networks from Omnipath, and genotype-phenotype relationships from Gene 
Ontology (GO) and Human Phenotype Ontology (HPO) ontology databases, respectively. The recognition 
of new cancer-specific genes is established by the pathway search algorithm Random Walk with Restart 
(RWR) which infers functional scores to candidate genes in the neighborhood of given cancer-type drivers.  

Given breast cancer (BRCA) is one of the most prevalent cancer types worldwide and has a substantial 
amount of annotated both drugs and cell lines in GDSC, I used it to illustrate the capacity of wPPI as a 
cancer-specific gene identification and prioritisation tool. Leveraging a curated list of 99 BRCA driver genes 
from IntOGen, wPPI identified 2,931 new genes with potential relevance to BRCA.  

The wPPI candidate genes with the highest functional scores were enriched in pathways with high rele-
vance to breast cancer. Specifically, several pathways associated with DNA damage and repair, p53 signal 
transduction and ERBB4-related were depicted. The role of ERBB4 in breast cancer is context-dependent, 
with the possibility of acting as a tumour driver when interacting with HER2 or HER3, or tumour suppressor 
by inducing cell apoptosis or cell cycle arrest (El-Gamal et al. 2021; Sundvall et al. 2008). Moreover, alt-
hough p53 acts as tumour suppressor in cancer, with vital roles in cellular response to DNA damage, a 
mutation in TP53 can cancel its suppressive functions and shift its mechanisms to promote breast cancer 
progression (Marvalim et al. 2023).  

For an easy and flexible application, wPPI enables users to input their own set of seed genes, set explora-
tive parameters related to the RWR algorithm and define which ontology datasets to apply (just GO, HPO, 
both or none). In addition, within the GO context, users can also select which GO classes to leverage, 
namely Biological Process, Molecular Function and/or Cellular Component.  

The influence of the ontology databases and different parameters of the RWR were investigated through a 
machine learning (ML) model to predict the drug response based on gene expression in the breast tissue. 
Looking into the models’ performances, it is shown that the usage of GO annotations and cancer-driver 
genes as input are essential to infer tissue-relevant candidate genes. In contrast, the phenotypic information 
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from HPO or the parameters of the RWR search algorithm did not significantly contribute to the performance 
of the model.  

Regarding the first point, I believe that since I focused my investigation of candidate genes in the first order 
degree neighbors, any pair of genes would not be considerably spread in the PPI network and, therefore, 
the restart probability 𝑟 parameter did not have enough power in the search of new proteins. The expansion 
to higher graph orders should reveal an influence of the restart probability in the selection of new genes.  

Furthermore, the small effect of the phenotype information could be driven by the architecture of the HPO 
ontology database, where both the parental and child terms are included. Notably, in a tree structure, as 
one advances from the parental to the child annotations, the more specific are the terms encountered in 
the annotations. For instance, in the context of breast cancer, there were 63 genes associated to breast 
carcinoma (child annotation), but 92 genes for the neoplasm of the breast (parental annotation). Although 
wPPI is capable to work with small sets of annotations, the specificity of the child annotations renders lower 
chances to encounter pairs of genes which share the same HPO annotation, and, subsequently, has mini-
mal functional impact in the prioritisation of genes.  

On the other hand, the GO database enables to leverage a slim version where only parental broad terms 
with full coverage are used, ensuring a sufficient number of terms to calculate a robust functional score. 

4.4.2 Better predictive performance based on network-driven genes 
The incorporation of network analysis to augment the feature space and interpretability of ML models has 
become a common practice in biological contexts due to its robust predictive performance and potential 
translation to clinics. Specifically, one possible application is to leverage network analysis to identify drug 
response biomarkers in cancer (Kong et al. 2020; Lee et al. 2024; Topol 2015).  

Within this framework, I leveraged wPPI to infer new genes with potential relevance to breast cancer, and 
used them to predict drug response using gene expression of the cell lines. In fact, I analysed the ML 
performance using several sets of feature space, namely all the genes available in the gene expression 
(whole genome, 17,419 genes), the breast cancer driver genes used as seed in wPPI (99 genes), and both 
all and the top 5% candidate genes from wPPI (2,931 and 146 genes, respectively).  

Looking into the results, I observed a significant improvement in the prediction of the drug response when 
using models based on the wPPI genes together with the seed genes. Notably, this recognizes wPPI as a 
tool to prioritize genes with relevance to breast cancer, whilst reducing the noise in the predictive models.  

In contrast, the predictions made with both the smallest (driver genes) and the biggest dataset (whole ge-
nome) revealed a limitation in the prediction performance. These results demonstrate two interesting fac-
tors: first, the driver genes alone are not robust enough and probably miss relevant markers of drug re-
sponse; on the other hand, to use a large feature space without a proper selection of informative genes, 
probably leads to a redundant selection of features and predictions.  

Furthermore, I explored the robustness of the models by considering random selections of feature sets of 
the same size. Expectedly, the random models based on a small set of features revealed an explicit worst 
prediction. In fact, the Pearson correlation factor disclosed the averaged predicted drug responses were 
inversely related to the original drug responses. Consistent with the previously discussed results, a 
knowledge-guided identification of the feature space is paramount to generate reliable predictive models. 
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The ML model prediction using wPPI outperformed another ML model built with a network-based framework 
with similar characteristics to wPPI. In detail, I leveraged GeneFriends since it offered a user-friendly tool 
and enabled to receive a set of input genes and return a set of genes with functional relevance based on a 
significance threshold. However, this comparison was perhaps imbalanced since GeneFriends solely de-
pends on transcript data, and does not integrate genomics and phenotypic information such as wPPI. Other 
network-based approaches that include ontology annotation information (GO and/or HPO) are available in 
literature, but instead of delivering a ranked set of genes, these focus on different aspects such as the 
identification of disease modules (Buphamalai et al. 2021; Kong et al. 2020) or recognition of gene functions 
(Ietswaart et al. 2021).  

4.5 Limitations and future outlook  
This thesis focused on three aims targeting distinct objectives, but commonly addressing critical statistical 
vulnerabilities in pharmacological data analysis, including rare mutational events and insufficient molecular 
characterisation. Using robust and flexible computational methodologies, these approaches provided com-
plementary insights into various aspects of drug response modelling, offering a holistic framework to inves-
tigate cancer mechanisms and advancing precision oncology.  

Despite the significant advancements of the proposed work in cancer biomarker discovery, several limita-
tions can be nominated, namely related with data quality, unexplored analytical optimisations and transla-
tional challenges. These issues motivate future developments in the current frameworks to ensure their 
potential applicability and successful translation to therapeutic strategies.  

4.5.1 Data-based improvements  
The performance of the computational frameworks was highly conditioned by the quantity and quality of the 
biological data available. Deficiencies in these two aspects were reflected by the lack of consistency in 
screening designs, insufficient molecular characterisation of the cell lines and low-frequency mutational 
events across cancer subtypes.  

Challenges in high-throughput screens 

The investigation of unexpected phenotypes in HTS, namely resistance and increasing cell viability, was 
statistically underpowered. Not only these two types of responses are rare events in the drug screens, but 
the annotated mutation data is often limited to larger cancer types (e.g., lung, colorectal and skin) and 
alterations involving key cancer drivers like TP53 and KRAS. Notably, these constraints reduced the domain 
of exploration of these infrequent phenotypes, resulting in a small number of candidates verifying the sig-
nificance thresholds.  

Moreover, several signals within HTS data are obscured with incorrect, irrelevant, or incomplete biological 
annotations, which often contribute to noise in the predicted cell viabilities. This posed particular challenges 
to curve fitting methodologies, restricting their ability to accurately summarise the drug response and pre-
venting subsequent association analyses to properly distinguish phenotypes. As a result, meaningful bi-
omarkers could have been missed, underscoring one of the limitations of using drug screens to robustly 
identify biological signatures.   

https://paperpile.com/c/jwekdw/6arQ+S9Tc
https://paperpile.com/c/jwekdw/j42s


 

 116 

In this thesis, the effect of data incompleteness was also reflected in the estimation of drug response using 
gene expression and regression models (chapter 3.3). The average Pearson correlation between real and 
predicted values across all drugs was relatively low, driven by correlation values close to zero or negative 
in several drugs. Looking into the gene expression profiles of the BRCA cell lines (Figure 44), several 
columns depicted high sparsity patterns. This indicates that, for these drugs, only a limited number of cells 
contributed to the prediction of drug response, thus explaining the underwhelming performance.  

In order to mitigate the effects of data incompleteness and/or low characterisation, a thorough literature 
curation procedure, consolidated with the integration of additional drug screening datasets, is essential. 
This combined approach could enhance the statistical power of the analyses and ensure the identification 
of relevant biomarkers, leading to an increase in the number of significant potential biomarkers of re-
sistance, increased cell viability and of drug response.  

Despite its potential benefits, the integration of drug screens can be challenging due to inconsistencies in 
experimental designs. For instance, the GDSC and CTRP pharmacological datasets employ varying ranges 
of drug concentrations, inconsistent metrics to summarise the drug response and distinct approaches to 
assess the response at high concentration levels. In addition, the lack of commonalities between the 
metadata of these screens further complicates this integration (Haibe-Kains et al. 2013). Together, these 
discrepancies render difficult to directly integrate or cross-compare results between these two screens.  

During the investigation of UNRES cell lines, complexities involved of integrating drug response data from 
both GSDC and CTRP screen were highlighted (chapters 2.2 and 3.1). Whilst GDSC leverages IC50 values 
to define the drug responses, CTRP considers AUC values. Therefore, in order to guarantee a comparable 
measure, IC50 values were additionally computed for the drug responses in CTRP using the same curve 
fitting model applied for GDSC. Although such additional adjustments contribute to align the datasets, these 
increase the methodological complexity and constitute a challenge for systematic frameworks.  

Currently available tools, such as CellMinerCDB (Rajapakse et al. 2018) and DepMap (Tsherniak et al. 
2017), assist the exploration of meaningful biomarkers across various drug screens. However, these frame-
works predominantly focus in providing exploratory tools to analyse discrepancies between pharmacologi-
cal screens as a way to consolidate biomarker hypotheses. Although valuable, these frameworks present 
considerable limitations, such as the lack of additional analyses to harmonize metrics of different drug 
screens, or comprehensive characterisation of molecular data from distinct cell lines across the datasets. 
Additional refinements of these tools could significantly improve to the search of cancer biomarkers in HTS.  

Tissue-specific or pan-cancer analysis 

The analyses presented in this thesis were conducted across cancer subtypes, enabling to capture tissue-
type specific vulnerabilities, and, consequently, hypothesize better tailored therapeutic strategies. In litera-
ture, several examples of cancer-specific biomarkers are available, such as EGFR mutations T790M and 
L858R in NSCLC (Wee and Wang 2017), or BRAF V600E, which is a therapeutic target in melanoma but 
in colorectal cancer is mainly associated with a poor prognosis (Ascierto et al. 2012; Ducreux et al. 2019). 

Within this cancer-specific context, I systematically recognized the drug CHIR-99021 as a strong candidate 
of increased cell viability across several cancer types, including LUAD, OV and HNSC (section 3.2). A 
deeper look into the significant biomarkers revealed strong potential applicability in lung cancer, where the 
alteration events included known cancer drivers. Moreover, this result was further supported by additional 
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enrichment analyses of drug and tissue-type combinations. Together, these findings suggested a potential 
influence of the tissue type in the increasing cell viability phenotype.   

On the other hand, potential markers of interest can be confounded in cancer types with small wild-type 
and mutant populations, and therefore missed by a tissue-specific approach. In order to maximize the sta-
tistical power for HTS-based biomarker discovery, the computational frameworks presented in this thesis 
could be extended to a pan-cancer analysis. This strategy would probably reduce the number of statistical 
tests performed and, subsequently increase the pool of biomarker candidates.  

Multi-omics integration 

The combination of multiple molecular layers is crucial for a comprehensive investigation of biomarkers in 
HTS. For instance, in this thesis, I presented the network-based wPPI tool, which combines PPI networks, 
phenotypic and genomic ontologies, to model drug response data based on gene expression profiles (sec-
tions 2.4 and 3.3). Given its capability to infer meaningful genes and improve the prediction of the drug 
response in breast cancer, a future expansion of this multimodal approach to incorporate other data com-
plexities, like mutation profiles, proteomics or pathway information could provide a more complete picture 
of underlying tissue-specific mechanisms, and further improve the predictive power of the machine learning 
models (Menden et al. 2018; Cortés-Ciriano et al. 2016; Timpe et al. 2015).  

Given the diverse molecular alterations and interactions involved in cancer, the incorporation of multiple 
data layers (e.g., genomics, proteomics and phenotypic data) is an effective approach to capture the com-
plexity of cancer and its interconnected mechanisms. In conclusion, an integrative multimodal strategy is 
paramount to guide the development of more effective and personalized therapies in precision oncology.  

4.5.2 Extension of analytical tools  
Robust and interpretable computational approaches are fundamental in the analysis of cancer datasets. 
Advanced techniques used in this thesis, namely statistical pipelines, machine learning models or graph 
networks, facilitated the systematic identification of actionable biomarkers in cancer through multimodal 
strategies. However, the effectiveness of these analytical tools was challenged by common limitations in 
biological data, such as data sparsity and intrinsic noise. The investigation of alternatives to mitigate these 
constraints in the proposed frameworks may enhance their predictive power in future applications.  

Graph representations 

In the course of this thesis, one of the main computational approaches was a network-based one. Specifi-
cally, I implemented a novel systems biology tool, wPPI, which leverages protein-protein interaction (PPI) 
networks from the Omnipath resource (method details in 2.4.1). Typically, for simplicity, network-driven 
methodologies do not take into account the directionality of proteins in the PPI network. In a similar way, 
since the analysis performed in this thesis was restricted to the first order degree neighbours, the scale of 
the search did not justify modelling this additional complexity in the gene prioritisation process of wPPI.  

Some examples of a directional network propagation to distinguish therapies can be found in several stud-
ies in cancer (Wathieu et al. 2017; Mo et al. 2022). However, this is still not widely standardized in systems 
biology frameworks based on PPI data. Given its flexible design, the wPPI framework has potential to be 
applied in drug discovery applications, where understanding the activation or inhibition mechanisms of 
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proteins is particularly relevant. Therefore, to properly investigate such cases, the integration of the direc-
tionality into wPPI would be recommended.  

Moreover, within the wPPI pipeline, other graph representations were incorporated, such as the Gene On-
tology (GO) and Human Phenotype Ontology (HPO) databases. Typically, these networks are hierarchically 
structured, where the parent nodes represent general categories and the child denote more specific terms. 
In contrast to GO, the HPO database delivers both the parental and child annotations regardless of its 
hierarchical organisation, which can lead to convoluted results. In the future, to increase the impact of HPO, 
a slimmed version of the HPO database composed by only broader categories could be considered. How-
ever, this integration would require a meticulous selection of relevant HPO annotations to prevent incorrect 
phenotypic associations.  

Predictive machine learning models 

The modelling of gene expression profiles to predict drug response was successfully performed using Lasso 
regression models. These models bear the advantage of delivering interpretable gene weights, facilitating 
the identification of potential biomarkers and future investigation of therapy designs. Despite these ad-
vantages, the performance of a Lasso model may be negatively affected by high intrinsic correlation be-
tween genes, skewed feature selection or existing nonlinear interactions across genes and/or between 
genes and drugs.  

A possible extension of this work could involve to leverage more complex and advanced methodologies, 
such as deep learning, support vector machine or random forest models. These would be particularly inter-
esting to apply in cases where the proposed wPPI framework is expanded to include cancers with higher 
amount of known cancer drivers (e.g., LUAD and COREAD), higher-order neighbour degrees in the PPI 
network, or with the integration of additional molecular layers beyond gene expression (e.g., proteomics).   

Curve fitting 

Drug screening data is notoriously noisy and represents a significant challenge in the study of HTS-driven 
biomarkers. Several pharmacological datasets focus their efforts in screening high volumes of compounds 
and cells, often at the expense of increasing the number of experimental replicates. For this reason, when 
curve fitting methodologies perform drug response predictions, high levels of uncertainty may potentially 
compromise the estimated drug response.  

In order to effectively model the intrinsic noise in HTS, an alternative robust Bayesian curve-fitting approach 
combined with GP models, has been proposed (Wang et al. 2020). This approach revealed superior per-
formances compared with the standardized curve fit assessment available for the GDSC dataset, due to its 
accountability of uncertainty in the mathematical model. This work served me as inspiration to develop a 
flexible non-parametric computational curve fitting method based on GP to robustly distinguish phenotypes 
in the drug screens. Notably, this advanced framework efficiently captured unexpected dose-response 
curve shapes, such as the increasing cell viability phenotype (results discussed in chapter 3.2.4).  

Despite the numerous advantages of the proposed GP-based framework, several data-driven constraints 
still affected the predicted responses. For example, although I employed an outlier removal procedure dur-
ing data preparation, remaining residual noise in the experimental data may have deviated the direction of 
the curve fitting due to potential model overfitting. In order to mitigate this effect, the application of more 
sophisticated outlier detection methods (Motulsky and Brown 2006) could be considered in a future work.   
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Another possibility to mitigate the noise-derived limitations, could involve data imputation with artificial via-
bility values to ensure an even data sampling across the whole domain of cell viability. Systematic sampling 
techniques, like k-nearest neighbors or Bayesian methods, introduce new points based on the existing 
patterns in the data. Hence, in order to ensure that the true response signal is not overlooked, an efficient 
prior management of noise is necessary for an appropriate data imputation. 

Additional unexpected phenotypes  

In this thesis, I focused my attention to recognize responses with increasing cell viability using linear and 
Gaussian-based curve fitting methods (chapters 2.3 and 3.2). These approaches were built without specific 
parameterizations on the shape of the drug response, allowing to capture atypical drug responses. As a 
result, this flexible design enables to adapt these frameworks to further investigate other unexpected phe-
notypes in HTS, such as Emax value smaller or higher than zero (Figure 8). 

In order to capture these additional patterns in HTS, I could extend and tailor my current work with GP 
curve fitting by dynamically exploring additional kernels, and integrate them with summary metrics specific 
to each unexpected response phenotype. For instance, the gradient of the curve fit model can indicate 
whether the response is increasing or decreasing. However, this measure alone does not inform regarding 
the starting and final viability of the cells, or about the distribution of the cell viability values.  

The most challenging task would be to distinguish between responders with an Emax close to zero and 
responders with an Emax higher than zero. In both cases, the curve shape is decreasing but the threshold 
separating these classes is directly correlated with the distribution of the viability values. Therefore, I hy-
pothesize that implementing a framework that dynamically takes into account the distribution of the cell 
viability, in combination with a GP curve fitting model, could be a possible alternative framework to discrim-
inate unexpected drug response patterns in future work.  

4.5.3 Translation of findings as novel cancer therapies   
The findings unveiled throughout this thesis were functionally contextualised based on 

• gold-standards, e.g., in the investigation of UNRES cell lines, known resistance biomarkers T790M 
mutation and PTEN deletion in LUAD were identified by the proposed outlier-detection pipeline 
(section 3.1.3); 

• in vitro experiments, e.g., CHIR-99021 and other GSK3-inhibitor compounds were screened in an 
independent cell culture experiment against selected LUAD cell lines (section 3.2.9); 

• other computational frameworks, e.g., the genes selected by the wPPI prioritisation tool were func-
tionally analysed through pathway enrichment analyses and benchmarked with the GeneFriends 
prioritisation method (section 3.3.4). 

The work developed in this thesis was based on cell line models, which are simplified representations of a 
real tumour. This, in combination with possible artifacts in the datasets or unsuitable computational anal-
yses, means that HTS-driven biomarker candidates can only provide indications of biological signals.  

In order to increase the translation impact of the presented pipelines, more realistic preclinical models 
based on CRISPR screens, organoids or patient-derived xenograft (PDX), could be considered. For in-
stance, CRISPR resistance screens analysis could validate and clarify the resistance mechanisms of the 
identified UNRES cell lines and drugs (Ayestaran et al., 2020).  

https://paperpile.com/c/zwPuVJ/AZCNC
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Additionally, as an extension of the work performed in chapter 3.3.3, CRISPR knockout screens of genes 
with drug response markers could help to validate the positive or negative correlation of these genes with 
the drug response. In parallel, gene expression profiles of organoids or in vivo patient-derived data, could 
more accurately capture tumour-specificity transcriptional activity, leading to more robust predictive models 
of drug response (Lee et al. 2018; Nguyen et al. 2021).  

Furthermore, PDX models could be valuable complementary tools to preliminary investigations in cell lines, 
organoids or CRISPR screens, by verifying drug efficacy, and bridging preclinical findings to clinical appli-
cations (Liu et al. 2023). 

A long-term goal of this thesis would involve to explore novel cancer therapies by designing synergistic 
drug combinations built on HTS-driven atypical drug responses biomarkers, namely resistance and in-
creased cell viability biomarkers. Moreover, this investigation could be enriched by leveraging the wPPI tool 
to integrate additional molecular features (e.g., gene expression profiles, mutation events or CNVs) into the 
drug combinations prediction. In summary, I believe this integration strategy could suggest highly effective 
and targeted cancer therapies, ultimately driving significant advancements in precision oncology. 

https://paperpile.com/c/jwekdw/LodO+B77z
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Appendix A: Supplementary information to chapters 2.2 and 
3.1 

A.1 Resistance markers in GDSC screen 
 

Tissue Drug N. resistant 
outliers 

UNRES  
p-value 

UNRES  
FDR 

UNRES  
cell lines 

Putative resistance 
markers 

BRCA AST-1306 1 2.00e-04 4.50e-02 UACC-812 
CHEK2 Mut, 12q15 Am-

plification 
(MDM2,NUP107), 1p12 
Amplification (NOTCH2) 

BRCA AST-1306 2 1.80e-03 5.93e-02 UACC-812, HCC1569 NA 
BRCA AST-1306 3 2.90e-03 5.93e-02 UACC-812, HCC1569, 

MDA-MB-361 NA 

COREAD PLX-4720 4 2.80e-03 5.93e-02 KM12, LS-513, SW1417, 
RKO 

BRAF_mut-p.A712T, 
BRAF_mut-p.A404fs*9, 

BRAF_mut-p.E204V, 
BRAF_mut-p.E204* 

LUAD Gefitinib 1 7.00e-04 5.93e-02 NCI-H1975 
EGFR_mut-p.T790M, 
11q13.3 Amplification 

(CCND1) 
LUAD Gefitinib 2 1.30e-03 5.93e-02 NCI-H1975, NCI-H1650 EGFR_mut-p.T790M 
LUAD Afatinib 1 2.30e-03 5.93e-02 NCI-H1650 NA 
LUAD Afatinib 2 1.90e-03 5.93e-02 NCI-H1650, NCI-H1975 EGFR_mut-p.T790M 

OV GSK690693 1 1.20e-03 5.93e-02 TOV-21G 
PIK3CA_mut-p.H1047Y, 
KRAS Mut, LARP4B Mut, 

NF1 Mut, NSD1 Mut, 
PIK3R1 Mut, PTEN Mut, 
RNF43 Mut, STK11 Mut 

OV GSK690693 2 2.90e-03 5.93e-02 TOV-21G, OAW-42 PIK3CA_mut-p.H1047Y, 
PIK3CA_mut-p.H1047L 

SKCM SB590885 1 1.80e-03 5.93e-02 SK-MEL-31 NA 
BRCA CP724714 4 4.80e-03 7.12e-02 EFM-192A, JIMT-1, MDA-

MB-330, HCC1569 NA 

BRCA AST-1306 4 5.30e-03 7.12e-02 UACC-812, HCC1569, 
MDA-MB-361, HCC1954 NA 

COREAD PLX-4720 3 4.90e-03 7.12e-02 KM12, LS-513, SW1417 
BRAF_mut-p.A712T, 

BRAF_mut-p.A404fs*9, 
BRAF_mut-p.E204V, 
BRAF_mut-p.E204* 

LUAD Gefitinib 2 5.50e-03 7.12e-02 NCI-H1650, NCI-H1975 EGFR_mut-p.T790M, 
EGFR_mut-p.L858R 

LUAD AZD3759 2 5.70e-03 7.12e-02 NCI-H1975, NCI-H1650 EGFR_mut-p.T790M, 
EGFR_mut-p.L858R 

SKCM Camptothe-
cin 1 4.60e-03 7.12e-02 UACC-257 NA 

SKCM Nutlin-3a (-) 5 5.70e-03 7.12e-02 
Hs940-T, SK-MEL-2, 

CP66-MEL, Mewo, IGR-
37 

11q22.3 Deletion 
(CASP1) 

BRCA CP724714 3 6.90e-03 7.47e-02 EFM-192A, JIMT-1, MDA-
MB-330 NA 

BRCA CP724714 5 7.30e-03 7.47e-02 
EFM-192A, JIMT-1, MDA-

MB-330, HCC1569, 
UACC-812 

NA 

BRCA CP724714 3 6.50e-03 7.47e-02 EFM-192A, HCC1428, 
MCF7 NA 

BRCA CP724714 4 7.30e-03 7.47e-02 EFM-192A, HCC1428, 
MCF7, MDA-MB-361 NA 

BRCA CP724714 2 8.10e-03 7.92e-02 EFM-192A, JIMT-1 NA 
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BRCA AST-1306 5 9.10e-03 7.95e-02 
UACC-812, HCC1569, 

MDA-MB-361, HCC1954, 
MDA-MB-453 

NA 

COREAD PLX-4720 5 9.90e-03 7.95e-02 KM12, LS-513, SW1417, 
RKO, SNU-C5 

BRAF_mut-p.A712T, 
BRAF_mut-p.A404fs*9, 

BRAF_mut-p.E204V, 
BRAF_mut-p.E204* 

LUAD Afatinib 1 9.20e-03 7.95e-02 NCI-H1975 
EGFR_mut-p.T790M, 
11q13.3 Amplification 

(CCND1) 
LUAD Osimertinib 1 9.60e-03 7.95e-02 NCI-H1650 13q34 Deletion (TFDP1) 
SKCM Dabrafenib 3 8.60e-03 7.95e-02 SK-MEL-31, COLO-800, 

VMRC-MELG NA 

SKCM Nutlin-3a (-) 4 1.27e-02 9.85e-02 Hs940-T, SK-MEL-2, 
CP66-MEL, Mewo NA 

LUAD Gefitinib 3 1.32e-02 9.90e-02 NCI-H1975, NCI-H1650, 
PC-14 EGFR_mut-p.T790M 

LGG Daporinad 1 1.41e-02 1.02e-01 SW1783 PTEN Mut 
SKCM SB590885 2 1.50e-02 1.03e-01 SK-MEL-31, UACC-62 NA 
SKCM Dabrafenib 4 1.51e-02 1.03e-01 SK-MEL-31, COLO-800, 

VMRC-MELG, WM1552C NA 
THCA Dabrafenib 1 1.70e-02 1.12e-01 8505C NF2 Mut 
SKCM Dabrafenib 2 1.91e-02 1.23e-01 SK-MEL-31, COLO-800 NA 
BRCA CP724714 1 2.38e-02 1.30e-01 EFM-192A NA 
BRCA Amuvatinib 4 2.54e-02 1.30e-01 EFM-192A, HCC1428, 

MDA-MB-361, HCC1419 NA 

LUAD Afatinib 3 2.36e-02 1.30e-01 NCI-H1650, NCI-H1975, 
PC-14 EGFR_mut-p.T790M 

LUAD Erlotinib 2 2.49e-02 1.30e-01 NCI-H1975, NCI-H1650 EGFR_mut-p.T790M, 
EGFR_mut-p.L858R 

OV GSK690693 3 2.17e-02 1.30e-01 TOV-21G, OAW-42, OC-
314 

PIK3CA_mut-p.H1047Y, 
PIK3CA_mut-p.H1047L, 
PIK3CA_mut-p.R108H 

SKCM SB590885 3 2.33e-02 1.30e-01 SK-MEL-31, UACC-62, 
RPMI-7951 NA 

SKCM Dabrafenib 5 2.49e-02 1.30e-01 
SK-MEL-31, COLO-800, 

VMRC-MELG, WM1552C, 
HMV-II 

NA 

SKCM Nutlin-3a (-) 2 2.38e-02 1.30e-01 Hs940-T, SK-MEL-2 NA 
SKCM Nutlin-3a (-) 3 2.22e-02 1.30e-01 Hs940-T, SK-MEL-2, 

CP66-MEL NA 
BRCA Ibrutinib 2 2.66e-02 1.30e-01 MDA-MB-361, JIMT-1 NA 

SKCM PLX-4720 5 2.63e-02 1.30e-01 
COLO-800, WM35, 

UACC-62, HMV-II, SK-
MEL-31 

NA 

SKCM Nutlin-3a (-) 1 2.86e-02 1.37e-01 Hs940-T BAP1 Mut 

BRCA Lapatinib 1 3.24e-02 1.41e-01 UACC-812 

CHEK2 Mut, Lack of 
TP53 Mut, 12q15 Amplifi-
cation (MDM2,NUP107), 
Lack of 17q22 Amplifica-

tion (CLTC,PPM1D), 
20p12.1 Amplification 

(CRNKL1,FOXA2), 1p12 
Amplification (NOTCH2) 

BRCA CP724714 2 3.25e-02 1.41e-01 EFM-192A, HCC1428 NA 
LUAD Sapatinib 2 3.27e-02 1.41e-01 NCI-H1650, NCI-H1975 EGFR_mut-p.T790M 
LUAD Osimertinib 2 3.26e-02 1.41e-01 NCI-H1650, PC-3 [JPC-3] NA 
SKCM Dabrafenib 1 3.10e-02 1.41e-01 SK-MEL-31 NA 

COREAD PLX-4720 2 3.34e-02 1.42e-01 KM12, LS-513 
BRAF_mut-p.A712T, 

BRAF_mut-p.A404fs*9, 
BRAF_mut-p.E204V, 
BRAF_mut-p.E204* 

Table 11: UNRES cell lines discovered in GDSC drug screen. 



 

 160 

A.2 Resistance markers in CTRP screen 
 

Tissue Drug N. resistant 
outliers 

UNRES  
p-value 

UNRES  
FDR 

UNRES  
cell lines 

Putative resistance 
markers 

BRCA neratinib 2 1.40e-03 4.00e-02 JIMT-1, MDA-MB-361 NA 
BRCA neratinib 3 1.20e-03 4.00e-02 JIMT-1, MDA-MB-361, 

HCC1569 NA 

BRCA neratinib 4 1.80e-03 4.00e-02 JIMT-1, MDA-MB-361, 
HCC1569, MDA-MB-453 NA 

LUAD afatinib 1 1.90e-03 4.00e-02 NCI-H1650 13q34 Deletion (TFDP1) 
LUAD WZ8040 1 2.00e-03 4.00e-02 NCI-H1650 13q34 Deletion (TFDP1) 
BRCA ZSTK474 1 3.90e-03 4.33e-02 JIMT-1 4q34.1 Deletion 

(FAT1,IRF2) 
BRCA ZSTK474 3 3.80e-03 4.33e-02 JIMT-1, BT-474, HCC202 NA 

COREAD tipifarnib-
P2 1 3.90e-03 4.33e-02 RKO 

AKAP9_mut-p.K37E, 
AKAP9_mut-p.?, BRAF 

Mut, NUP98 Mut, ZNRF3 
Mut 

SKCM dasatinib 2 3.90e-03 4.33e-02 COLO-792, MEL-JUSO 

ARID2_mut-p.R274*, 
ARID2_mut-p.K119fs*31, 

ARID2_mut-p.L409*, 
Lack of ARID1A Mut, 

Lack of BRAF Mut, Lack 
of 12p12.3 Amplification 

(KRAS) 

BRCA neratinib 5 5.70e-03 5.18e-02 
JIMT-1, MDA-MB-361, 

HCC1569, MDA-MB-453, 
HCC202 

NA 

BRCA ZSTK474 4 5.20e-03 5.18e-02 JIMT-1, BT-474, HCC202, 
HCC2218 NA 

BRCA ZSTK474 5 6.30e-03 5.25e-02 JIMT-1, BT-474, HCC202, 
HCC2218, ZR-75-30 NA 

LUAD gefitinib 2 7.10e-03 5.37e-02 NCI-H1650, NCI-H1975 

EGFR_mut-p.T790M, 
EGFR_mut-p.L858R, 

9p21.3 Deletion 
(CDKN2A), Lack of 

7p11.2 Amplification 
(EGFR) 

LUAD erlotinib 2 8.50e-03 5.37e-02 NCI-H1650, NCI-H1975 

EGFR_mut-p.T790M, 
EGFR_mut-p.L858R, 

9p21.3 Deletion 
(CDKN2A), Lack of 

7p11.2 Amplification 
(EGFR) 

LUAD afatinib 2 8.40e-03 5.37e-02 NCI-H1650, NCI-H1975 

EGFR_mut-p.T790M, 
EGFR_mut-p.L858R, 

9p21.3 Deletion 
(CDKN2A), Lack of 

7p11.2 Amplification 
(EGFR) 

SKCM dasatinib 2 8.60e-03 5.37e-02 COLO-792, Mewo 

NF1_mut-p.W1236R, 
NF1_mut-p.?, NF1_mut-

p.Q1336*, Lack of 
ARID1A Mut, Lack of 
BRAF Mut, Lack of 

12p12.3 Amplification 
(KRAS) 

COREAD tipifarnib-
P2 2 9.20e-03 5.41e-02 RKO, CW-2 

AKAP9_mut-p.K37E, 
AKAP9_mut-p.?, 

AKAP9_mut-p.K2021fs*3, 
AKAP9_mut-
p.N2045fs*3, 

AKAP9_mut-p.Y2858C, 
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FAT1 Mut, Lack of 
FBXW7 Mut, FXR1 Mut 

BRCA ZSTK474 2 1.11e-02 5.55e-02 JIMT-1, BT-474 
CNA: MED24, 13q11 De-

letion 
(PABPC3,SACS,ZMYM2) 

SKCM GSK46136
4 1 1.07e-02 5.55e-02 COLO-792 

ARID2_mut-p.R274*, 
ASPM Mut, ASXL2 Mut, 

PHLPP1 Mut 

SKCM dacarba-
zine 2 1.09e-02 5.55e-02 COLO-792, Mewo 

NF1_mut-p.W1236R, 
NF1_mut-p.?, NF1_mut-

p.Q1336*, Lack of 
ARID1A Mut, Lack of 
BRAF Mut, Lack of 

12p12.3 Amplification 
(KRAS) 

BRCA neratinib 1 1.34e-02 6.32e-02 JIMT-1 4q34.1 Deletion 
(FAT1,IRF2) 

DLBC BRD-
K13999467 1 1.39e-02 6.32e-02 OCI-LY-19 

MLL2_mut-p.S2597fs*94, 
MLL2_mut-

p.M1379fs*52, ARID1A 
Mut 

LUAD saracatinib 2 1.70e-02 7.08e-02 NCI-H1975, NCI-H1650 

EGFR_mut-p.T790M, 
EGFR_mut-p.L858R, 

9p21.3 Deletion 
(CDKN2A), Lack of 

7p11.2 Amplification 
(EGFR) 

SKCM BRD-
K51490254 2 1.64e-02 7.08e-02 SK-MEL-31, SK-MEL-28 

Lack of ARID1A Mut, 
Lack of ARID2 Mut, Lack 

of NF1 Mut 
LUAD canertinib 1 1.86e-02 7.44e-02 NCI-H1650 13q34 Deletion (TFDP1) 

SKCM simvastatin 1 2.71e-02 1.04e-01 COLO-792 
ARID2_mut-p.R274*, 

ASPM Mut, ASXL2 Mut, 
PHLPP1 Mut 

SKCM BRD-
K51490254 2 3.02e-02 1.12e-01 Mewo, COLO-792 

NF1_mut-p.Q1336*, 
NF1_mut-p.W1236R, 
NF1_mut-p.?, Lack of 
ARID1A Mut, Lack of 
BRAF Mut, Lack of 

12p12.3 Amplification 
(KRAS) 

COREAD KU-55933 2 3.59e-02 1.12e-01 RKO, CW-2 

AKAP9_mut-p.K37E, 
AKAP9_mut-p.?, 

AKAP9_mut-p.K2021fs*3, 
AKAP9_mut-
p.N2045fs*3, 

AKAP9_mut-p.Y2858C, 
FAT1 Mut, Lack of 

FBXW7 Mut, FXR1 Mut 
LUAD WZ8040 2 3.16e-02 1.12e-01 NCI-H1650, PC-14 Lack of 8q24.21 Amplifi-

cation (MYC) 

SKCM BI-2536 1 3.33e-02 1.12e-01 COLO-792 
ARID2_mut-p.R274*, 

ASPM Mut, ASXL2 Mut, 
PHLPP1 Mut 

SKCM dasatinib 1 3.59e-02 1.12e-01 COLO-792 
NF1_mut-p.W1236R, 
NF1_mut-p.?, ASPM 

Mut, ASXL2 Mut, 
PHLPP1 Mut 

SKCM ISOX 2 3.58e-02 1.12e-01 COLO-792, Mewo 
NF1_mut-p.W1236R, 

NF1_mut-p.?, NF1_mut-
p.Q1336*, Lack of 

ARID1A Mut, Lack of 
BRAF Mut, Lack of 
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12p12.3 Amplification 
(KRAS) 

SKCM pevonedi-
stat 2 3.76e-02 1.14e-01 COLO-792, Mewo 

NF1_mut-p.W1236R, 
NF1_mut-p.?, NF1_mut-

p.Q1336*, Lack of 
ARID1A Mut, Lack of 
BRAF Mut, Lack of 

12p12.3 Amplification 
(KRAS) 

DLBC BRD-
K13999467 2 4.11e-02 1.21e-01 OCI-LY-19, NU-DUL-1 

MLL2_mut-p.S2597fs*94, 
MLL2_mut-

p.M1379fs*52, 
MLL2_mut-

p.D1215fs*115 

LUAD QW-BI-011 1 4.88e-02 1.39e-01 NCI-H1838 
CLSPN Mut, LPHN2 Mut, 
NF1 Mut, 9p21.3 Deletion 
(CDKN2A), 7p11.2 Ampli-

fication (EGFR) 
BRCA neratinib 2 1.40e-03 4.00e-02 JIMT-1, MDA-MB-361 NA 
BRCA neratinib 3 1.20e-03 4.00e-02 JIMT-1, MDA-MB-361, 

HCC1569 NA 

BRCA neratinib 4 1.80e-03 4.00e-02 JIMT-1, MDA-MB-361, 
HCC1569, MDA-MB-453 NA 

LUAD afatinib 1 1.90e-03 4.00e-02 NCI-H1650 13q34 Deletion (TFDP1) 
LUAD WZ8040 1 2.00e-03 4.00e-02 NCI-H1650 13q34 Deletion (TFDP1) 
BRCA ZSTK474 1 3.90e-03 4.33e-02 JIMT-1 4q34.1 Deletion 

(FAT1,IRF2) 
BRCA ZSTK474 3 3.80e-03 4.33e-02 JIMT-1, BT-474, HCC202 NA 

COREAD tipifarnib-
P2 1 3.90e-03 4.33e-02 RKO 

AKAP9_mut-p.K37E, 
AKAP9_mut-p.?, BRAF 

Mut, NUP98 Mut, ZNRF3 
Mut 

SKCM dasatinib 2 3.90e-03 4.33e-02 COLO-792, MEL-JUSO 

ARID2_mut-p.R274*, 
ARID2_mut-p.K119fs*31, 

ARID2_mut-p.L409*, 
Lack of ARID1A Mut, 

Lack of BRAF Mut, Lack 
of 12p12.3 Amplification 

(KRAS) 

BRCA neratinib 5 5.70e-03 5.18e-02 
JIMT-1, MDA-MB-361, 

HCC1569, MDA-MB-453, 
HCC202 

NA 

BRCA ZSTK474 4 5.20e-03 5.18e-02 JIMT-1, BT-474, HCC202, 
HCC2218 NA 

BRCA ZSTK474 5 6.30e-03 5.25e-02 JIMT-1, BT-474, HCC202, 
HCC2218, ZR-75-30 NA 

LUAD gefitinib 2 7.10e-03 5.37e-02 NCI-H1650, NCI-H1975 

EGFR_mut-p.T790M, 
EGFR_mut-p.L858R, 

9p21.3 Deletion 
(CDKN2A), Lack of 

7p11.2 Amplification 
(EGFR) 

LUAD erlotinib 2 8.50e-03 5.37e-02 NCI-H1650, NCI-H1975 

EGFR_mut-p.T790M, 
EGFR_mut-p.L858R, 

9p21.3 Deletion 
(CDKN2A), Lack of 

7p11.2 Amplification 
(EGFR) 

LUAD afatinib 2 8.40e-03 5.37e-02 NCI-H1650, NCI-H1975 

EGFR_mut-p.T790M, 
EGFR_mut-p.L858R, 

9p21.3 Deletion 
(CDKN2A), Lack of 

7p11.2 Amplification 
(EGFR) 
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SKCM dasatinib 2 8.60e-03 5.37e-02 COLO-792, Mewo 

NF1_mut-p.W1236R, 
NF1_mut-p.?, NF1_mut-

p.Q1336*, Lack of 
ARID1A Mut, Lack of 
BRAF Mut, Lack of 

12p12.3 Amplification 
(KRAS) 

COREAD tipifarnib-
P2 2 9.20e-03 5.41e-02 RKO, CW-2 

AKAP9_mut-p.K37E, 
AKAP9_mut-p.?, 

AKAP9_mut-p.K2021fs*3, 
AKAP9_mut-
p.N2045fs*3, 

AKAP9_mut-p.Y2858C, 
FAT1 Mut, Lack of 

FBXW7 Mut, FXR1 Mut 

BRCA ZSTK474 2 1.11e-02 5.55e-02 JIMT-1, BT-474 
CNA: MED24, 13q11 De-

letion 
(PABPC3,SACS,ZMYM2) 

Table 12: UNRES cell lines discovered in CTRP drug screen. 
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Appendix B: Supplementary information to chapters 2.3 and 
3.2  

B.1 Increasing viability markers using ANOVA with linear slope 
 

Tissue Drug Drug ID alteration Diff. slope 
 MT vs WT 

Mean slope 
MT 

p-adjusted 
value 

Nr. high 
slope 

COREAD Cytarabine 1006 APC_mut 0,138654 -0,19895 0,000826 0 
LAML TW 37 1149 NRAS_mut 0,161032 -0,31581 0,000877 0 
LIHC Mirin 1048 TP53_mut 0,0578 -0,1728 0,003135 0 
DLBC PFI-1 1219 CREBBP_mut 0,239473 -0,08665 0,005974 0 
STAD Elesclomol 1031 TP53_mut 0,107866 -0,21114 0,006797 0 
BRCA Shikonin 170 ASH1L_mut 0,192817 -0,26716 0,006939 0 
LUSC IGF1R_3801 1738 cnaLUSC10 0,078662 -0,19333 0,007793 0 
LAML PAK_5339 1730 TP53_mut 0,103478 -0,27093 0,007857 0 
LGG LDN-193189 478 cnaLGG7 0,175882 -0,30592 0,00814 0 
BLCA AZD5582 1617 ARID1A_mut 0,074037 -0,17896 0,011173 0 
STAD BMS-536924 1091 cnaSTAD13 0,154696 -0,21662 0,011715 0 
ESCA CPI-613 415 cnaESCA12 0,099089 -0,25739 0,011814 0 
HNSC SNX-2112 328 cnaHNSC2 0,096384 -0,2426 0,012711 0 
BRCA Tanespimycin 1026 cnaBRCA26 0,122406 -0,19667 0,012798 0 
SKCM Mitoxantrone 1810 NRAS_mut 0,185041 -0,05122 0,013097 0 
SKCM Mitoxantrone 1810 cnaSKCM27 0,182066 -0,05364 0,013533 0 
KIRC Dyrk1b_0191 1407 TP53_mut 0,073097 -0,21935 0,014079 0 

PAAD 
(5Z)-7-Oxoze-

aenol 
1242 SMAD4_mut 0,094195 -0,23221 0,01545 

0 

GBM Vinorelbine 140 TP53_mut 0,08802 -0,16471 0,017123 0 
LAML Serdemetan 1133 TP53_mut 0,136631 -0,22271 0,017903 0 
ESCA Shikonin 170 EGFR_mut 0,100084 -0,39295 0,02005 0 

COREAD Belinostat 274 BPTF_mut 0,139139 -0,28304 0,021936 0 
ESCA CAY10603 276 NFE2L2_mut 0,159045 -0,27649 0,02261 0 
LIHC Vorinostat 1012 TP53_mut 0,149029 -0,19609 0,023962 0 
DLBC Entinostat 1593 EP300_mut 0,108243 -0,23744 0,024825 0 
ESCA NSC-207895 269 cnaESCA11 0,058029 -0,19473 0,026027 0 
HNSC Midostaurin 153 A_mut 0,292148 0,053966 0,026829 0 
GBM Doxorubicin 133 cnaGBM101 0,232435 -0,06616 0,026963 0 

SKCM Dinaciclib 1180 BRAF_mut 0,095915 -0,20792 0,027598 0 
HNSC Cytarabine 1006 PIK3CA_mut 0,167297 -0,18986 0,029903 0 
LGG Flavopiridol 432 cnaLGG14 0,141406 -0,26477 0,030723 0 
LGG Flavopiridol 432 NF1_mut 0,128396 -0,27499 0,031409 0 
STAD AZ960 1250 cnaSTAD3 0,078495 -0,17314 0,032522 0 
LAML AZD5582 1427 TP53_mut 0,079994 -0,24543 0,033135 0 

LGG 
(5Z)-7-Oxoze-

aenol 
1242 cnaLGG14 0,111219 -0,24582 0,035027 

0 

LIHC Tenovin-6 342 cnaLIHC10 0,113133 -0,27813 0,035654 0 
LAML JNK-9L 157 SACS_mut 0,116364 -0,37213 0,035874 0 
SKCM PLX-4720 1036 cnaSKCM28 0,231295 -0,04204 0,035944 0 

COREAD CAY10603 276 
cnaCOREAD2

8 
0,167429 -0,27299 0,037801 

0 

GBM Tanespimycin 1026 PTEN_mut 0,144077 -0,21706 0,038547 0 
SKCM Topotecan 1808 cnaSKCM28 0,176617 -0,09896 0,03911 0 
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DLBC Nutlin-3a (-) 1047 TP53_mut 0,169421 -0,17194 0,039581 0 
LUSC FH535 173 cnaLUSC54 0,118187 -0,25873 0,042794 0 

COREAD IMD-0354 442 TP53_mut 0,129258 -0,311 0,046909 0 
SKCM Tenovin-6 342 cnaSKCM27 0,088968 -0,29951 0,047266 0 
UCEC MIM1 446 CHD4_mut 0,171298 -0,22157 0,047708 0 
PAAD AZD8055 1059 cnaPAAD3 0,191562 -0,08989 0,048844 0 
UCEC QL-XII-47 235 CHD4_mut 0,161154 -0,2372 0,049204 0 

Table 13: Combinations of alteration, tissue type and drug (ATD) with increasing viability markers identified 
by ANOVA model with linear slope, arranged according to significance values. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 166 

B.2 Increasing viability markers using ANOVA with Gaussian slope 
 

Tissue Drug Drug ID alteration Diff. slope 
 MT vs WT 

Mean slope 
MT 

p-adjusted 
value 

Nr. high 
slope 

HNSC IPA-3 176 cnaHNSC19 1,396996671 0,49229497 0,02663 2 
HNSC Midostaurin 153 A_mut 1,476490887 0,435857881 0,001308 1 
BRCA BX-912 222 cnaBRCA27 1,205050423 0,127336753 0,01037 1 
SKCM RO-3306 1052 CDKN2A_mut 1,300699963 0,324957959 0,030105 1 
HNSC CUDC-101 273 NOTCH1_mut 0,604645207 -0,420596594 1,23E-06 0 
LIHC HG6-64-1 159 cnaLIHC7 0,382315989 -0,671169664 9,72E-05 0 
LUAD AR-42 272 cnaLUAD6 0,40610182 -0,625737697 0,000309 0 

OV AZ20 1184 cnaOV54 0,175065443 -0,84667261 0,000472 0 
LUAD AR-42 272 cnaLUAD7 0,370949106 -0,657285004 0,000977 0 
SKCM AZD6738 1394 cnaSKCM28 0,223983065 -0,692619097 0,001364 0 
LGG Doxorubicin 133 TP53_mut 0,265247246 -0,959799333 0,001658 0 

PAAD PF-00299804 363 cnaPAAD4 0,147047849 -1,034577129 0,003127 0 
LUAD AZD1480 1432 TP53_mut 0,174902356 -0,904102411 0,003319 0 
SKCM Apitolisib 382 cnaSKCM22 0,511948348 -0,548573807 0,004761 0 

SKCM Apitolisib 382 
cnaSKCM24,
cnaSKCM25 

0,501992679 -0,557566024 0,004761 
0 

SKCM PFI-1 1219 cnaSKCM28 0,101200654 -0,824516395 0,004826 0 
LIHC AZD8835 1445 cnaLIHC7 0,264470671 -0,698042055 0,006395 0 
LUAD Apitolisib 382 cnaLUAD10 0,209617633 -0,896557284 0,006766 0 
LAML AZD6738 1394 CREBBP_mut 0,111096017 -0,822664497 0,007175 0 

LUAD 
AKT inhibitor 

VIII 
228 cnaLUAD22 1,002781795 -0,219513521 0,008039 

0 

LUAD Tipifarnib 204 cnaLUAD13 0,45081383 -0,739272876 0,008403 0 
LUAD Tipifarnib 204 cnaLUAD29 0,35173439 -0,851456524 0,008403 0 
HNSC AZD5582 1617 cnaHNSC1 0,121631274 -0,771719015 0,009002 0 
DLBC VX-11e 2096 cnaDLBC2 0,176404735 -0,683599717 0,009113 0 
HNSC JNK-9L 157 cnaHNSC20 0,16070268 -0,764874771 0,009283 0 
BLCA CI-1040 1015 cnaBLCA5 0,593502139 -0,536027389 0,010077 0 
UCEC OSU-03012 167 LARP4B_mut 0,258652757 -0,878250668 0,010188 0 
BRCA Tipifarnib 204 cnaBRCA38 0,349468761 -0,880888622 0,010278 0 

KIRC LDN-193189 478 

cnaKIRC12,c
na-

KIRC13,cnaKI
RC14,cnaKIR

C15 

0,163433496 -0,953295778 0,011806 

0 

KIRC BX-912 222 cnaKIRC24 0,368541083 -0,746269234 0,011819 0 

LUSC 
Podophyllo-

toxin bromide 
1825 cnaLUSC41 0,109256049 -0,614671409 0,011838 

0 

PAAD 
(5Z)-7-Oxoze-

aenol 
1242 CDKN2A_mut 0,299117844 -0,675920455 0,01207 

0 

ESCA Topotecan 1808 PIK3CA_mut 0,202638172 -0,677791441 0,012116 0 
DLBC Teniposide 1809 MLL2_mut 0,141328787 -0,671947086 0,012396 0 

COREAD Foretinib 308 KDM6A_mut 0,461295109 -0,688531154 0,01244 0 
COREAD Foretinib 308 SRGAP3_mut 0,463313418 -0,686685843 0,01244 0 

ESCA Shikonin 170 cnaESCA12 0,284770587 -0,562063994 0,013309 0 
SKCM Flavopiridol 432 ARID2_mut 0,357423346 -0,451671375 0,013795 0 

OV MPS-1-IN-1 294 cnaOV35 0,263915375 -0,980035407 0,013811 0 
OV MPS-1-IN-1 294 cnaOV84 0,263915375 -0,980035407 0,013811 0 
OV MPS-1-IN-1 294 cnaOV85 0,263915375 -0,980035407 0,013811 0 
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SKCM 
Telomerase 
Inhibitor IX 

1930 cnaSKCM3 0,121713854 -0,5905388 0,014246 
0 

DLBC Oxaliplatin 1806 MLL2_mut 0,278611432 -0,520562397 0,014442 0 
GBM NG-25 260 NF1_mut 0,270868694 -1,028161321 0,01452 0 

LUAD GSK650394 177 
SMARCA4_m

ut 
0,609008413 -0,179319402 0,014583 

0 

COREAD Refametinib 1526 FBXW7_mut 0,195748733 -0,770332347 0,015373 0 

KIRC PF-00299804 363 

cnaKIRC12,c
na-

KIRC13,cnaKI
RC14,cnaKIR

C15 

0,186317907 -0,909719853 0,015901 

0 

SKCM MIM1 446 cnaSKCM4 0,125895494 -0,976857109 0,015971 0 
GBM FGFR_3831 1422 cnaGBM122 0,124767484 -0,774536636 0,015987 0 

GBM 
Obatoclax 
Mesylate 

182 cnaGBM101 0,249898853 -0,844021032 0,01614 
0 

LGG Cediranib 1922 cnaLGG16 0,0768098 -0,829696248 0,016255 0 
LGG AT-7519 219 cnaLGG14 0,282309865 -0,650272506 0,016804 0 

BRCA AZD8055 1059 cnaBRCA14 0,315244583 -0,300210543 0,016932 0 
BRCA AZD8055 1059 cnaBRCA16 0,332369212 -0,261096689 0,016932 0 

LUAD 
Piperlongu-

mine 
1243 cnaLUAD2 0,13446498 -0,841143231 0,017088 

0 

THCA Embelin 172 NRAS_mut 0,23556058 -0,870309838 0,017235 0 
SKCM PFI-1 1219 cnaSKCM27 0,100483276 -0,820927407 0,018066 0 
LUAD AZD1332 1463 cnaLUAD34 0,200907963 -0,701267924 0,018283 0 
THCA Foretinib 2040 TP53_mut 0,15957413 -0,818213274 0,018767 0 

LUSC 
Telomerase 
Inhibitor IX 

1930 cnaLUSC3 0,149850672 -0,630188252 0,020508 
0 

OV FEN1_3940 1419 cnaOV51 0,088962838 -0,853201004 0,020993 0 
COREAD UNC0638 1236 PIK3CA_mut 1,240724488 0,334103348 0,021341 0 

HNSC CUDC-101 273 cnaHNSC14 0,322952567 -0,696253694 0,021708 0 
PAAD NG-25 260 CDKN2A_mut 0,202796489 -0,979913559 0,024771 0 
BRCA Eg5_9814 1712 cnaBRCA14 0,218253042 -0,480733159 0,025615 0 
BRCA Eg5_9814 1712 cnaBRCA15 0,218253042 -0,480733159 0,025615 0 
BRCA Eg5_9814 1712 cnaBRCA16 0,218253042 -0,480733159 0,025615 0 
ESCA CAY10603 276 cnaESCA7 0,096143841 -0,934103875 0,026428 0 
LUAD Flavopiridol 432 cnaLUAD2 0,163474889 -0,698041841 0,026504 0 
LUAD Flavopiridol 432 cnaLUAD7 0,203571448 -0,653248462 0,026504 0 
ESCA CAY10603 276 cnaESCA12 0,090040325 -0,938172885 0,026887 0 
HNSC PFI-1 1219 cnaHNSC29 0,186824891 -0,720733016 0,027163 0 
SKCM PFI-1 1219 cnaSKCM5 0,087660531 -0,832147309 0,028509 0 
ESCA Pazopanib 199 cnaESCA11 0,522260809 -0,703394836 0,028664 0 

COREAD Refametinib 1526 AKAP9_mut 0,196955303 -0,757193124 0,030257 0 
ESCA Lapatinib 1558 cnaESCA9 0,147196759 -0,766500806 0,030755 0 

HNSC 
CAP-232, TT-
232, TLN-232 

436 cnaHNSC19 0,398847533 -0,717586103 0,031062 
0 

HNSC 
CAP-232, TT-
232, TLN-232 

436 cnaHNSC28 0,409256243 -0,708218264 0,031062 
0 

SKCM AZD8931 1416 ARID2_mut 0,205518917 -0,717953178 0,031999 0 
SKCM AZD8931 1416 NF1_mut 0,195470383 -0,727021367 0,031999 0 
HNSC Mitomycin-C 136 NFE2L2_mut 0,253003745 -0,906991788 0,033076 0 
HNSC Refametinib 1014 CDKN2A_mut 0,339502157 -0,794037425 0,033198 0 
ESCA ACY-1215 264 cnaESCA7 0,114349154 -0,961296915 0,033337 0 
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LGG BX795 1037 cnaLGG1 0,337919761 -0,854511439 0,034642 0 
COREAD Foretinib 308 CTNNB1_mut 0,369656242 -0,782876867 0,035777 0 

LAML ZSTK474 223 ASXL1_mut 0,153237712 -1,04266067 0,036071 0 
LAML ZSTK474 223 KRAS_mut 0,147884877 -1,046407655 0,036071 0 
LAML ZSTK474 223 TP53_mut 0,14330184 -1,063945965 0,036071 0 
LGG AZD8931 1416 cnaLGG16 0,211974389 -0,735521617 0,036877 0 

SKCM AZD6738 1394 cnaSKCM27 0,152898 -0,761757156 0,038159 0 
KIRC Bleomycin 190 TP53_mut 0,447867632 -0,653652355 0,03871 0 
KIRC Bleomycin 190 cnaKIRC22 0,447867632 -0,653652355 0,03871 0 
BRCA Midostaurin 153 PIK3CA_mut 1,095677871 0,070980763 0,039157 0 
KIRC IPA-3 176 SETD2_mut 0,905130635 -0,012315402 0,039966 0 

SKCM Dinaciclib 1180 
cnaSKCM24,
cnaSKCM25 

0,255451148 -0,342301965 0,04043 
0 

ESCA CDK9_5576 1708 cnaESCA7 0,088791623 -0,629728226 0,040468 0 

GBM ZM447439 1050 
cnaGBM93,cn
aGBM94,cna

GBM95 
0,228940065 -0,877491018 0,040491 

0 

OV FH535 173 cnaOV83 0,487051243 -0,50074131 0,040517 0 
SKCM PLX-4720 1036 cnaSKCM28 0,758757984 -0,066594611 0,040554 0 
LUAD Apitolisib 382 cnaLUAD19 0,201504567 -0,89567201 0,041814 0 
BRCA GNE-317 1926 cnaBRCA17 0,089919266 -0,639233821 0,042045 0 
DLBC TWS119 366 cnaDLBC2 0,150043697 -0,870748975 0,042947 0 
BRCA FTY-720 546 cnaBRCA32 0,149597932 -0,912330346 0,043269 0 
GBM OSI-027 299 PTEN_mut 0,34075665 -0,882344596 0,043368 0 

COREAD EHT-1864 1069 
cnaCOREAD3

3 
0,212006277 -1,000131314 0,04396 

0 

OV Embelin 172 cnaOV38 0,379977504 -0,611077381 0,044274 0 
LUAD Flavopiridol 432 cnaLUAD31 0,189185738 -0,666653328 0,045171 0 
GBM UNC0638 1236 NF1_mut 0,12015983 -0,807388426 0,045597 0 
GBM UNC0638 1236 cnaGBM68 0,142291557 -0,771252685 0,045597 0 
DLBC NVP-BHG712 295 EP300_mut 0,236715223 -0,956054603 0,045898 0 
ESCA QL-XII-47 235 NOTCH1_mut 0,283639109 -0,759574968 0,046699 0 
SKCM NSC-207895 269 cnaSKCM22 0,107481374 -1,084630298 0,04672 0 
SKCM NSC-207895 269 cnaSKCM23 0,107481374 -1,084630298 0,04672 0 

SKCM NSC-207895 269 
cnaSKCM24,
cnaSKCM25 

0,107481374 -1,084630298 0,04672 
0 

GBM 
Obatoclax 
Mesylate 

182 

cnaGBM97,cn
aGBM98,cna
GBM99,cnaG
BM100,cnaG
BM102,cnaG
BM103,cnaG
BM104,cnaG
BM105,cnaG

BM106 

0,269796448 -0,808947406 0,047243 

0 

COREAD Foretinib 308 ELF3_mut 0,402141001 -0,74261491 0,048388 0 
DLBC Vorinostat 1012 cnaDLBC2 0,365700794 -0,382365731 0,048899 0 
BRCA Lapatinib 1558 cnaBRCA26 0,26648522 -0,700709786 0,048915 0 
BRCA Lapatinib 1558 cnaBRCA27 0,299200766 -0,639090698 0,048915 0 
BRCA Lapatinib 1558 cnaBRCA30 0,330734394 -0,599690422 0,048915 0 
BRCA CD532 449 cnaBRCA33 0,160724818 -0,882146663 0,049058 0 
DLBC BIBF-1120 380 TP53_mut 0,188345783 -0,871747497 0,049381 0 
GBM Fedratinib 306 cnaGBM123 0,206704446 -1,039079143 0,049419 0 
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HNSC IGF1R_3801 1738 SMAD4_mut 0,236621201 -0,583141086 0,049454 0 
LUAD Navitoclax 1011 cnaLUAD10 1,118362606 0,105253221 0,049831 0 

Table 14: Combinations of alteration, tissue type and drug (ATD) with increasing viability markers identified 
by ANOVA model with Gaussian slope, arranged according to significance values and number of responses 
with high-slope (i.e., slopeGaussian>1.1) in the mutant population. 
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B.3 Increasing viability markers using Hypergeometric enrichment 
with linear slope 
 

Tissue Drug Drug ID alteration Enrichment 
Score 

Diff. slope 
 MT vs WT 

Mean slope 
MT 

p-adjusted 
value 

Nr. high 
slope  

OV CHIR-99021 154 cnaOV84 0,962218 0,216999 0,231771 5,31E-05 4 

OV CHIR-99021 154 cnaOV85 0,949301 0,181062 0,231771 3,35E-05 4 

LUAD CHIR-99021 154 cnaLUAD3 0,892942 0,098662 0,205837 8,44E-07 4 

HNSC CHIR-99021 154 cnaHNSC17 0,828134 0,049332 0,149774 2,78E-07 4 

KIRC SB590885 1061 TP53_mut 0,825863 0,088995 0,184869 0,000137 4 

OV CHIR-99021 154 TP53_mut 0,805262 0,063644 0,170504 3,35E-05 4 

HNSC CHIR-99021 154 cnaHNSC32 0,773111 0,035237 0,165113 2,26E-05 4 

OV CHIR-99021 154 cnaOV38 0,958384 0,236368 0,258117 0,000694 3 

OV CHIR-99021 154 cnaOV83 0,952361 0,197978 0,227404 0,001095 3 

OV CHIR-99021 154 cnaOV39 0,943975 0,187492 0,258117 0,000217 3 

COREAD PAC-1 175 SMAD4_mut 0,90299 0,165299 0,199932 0,000903 3 

LUAD CHIR-99021 154 cnaLUAD27 0,799777 0,040195 0,196592 2,94E-06 3 

LUAD VX-702 1028 cnaLUAD3 0,724679 0,05075 0,142923 0,001874 3 

COREAD VX-702 1028 FBXW7_mut 0,717891 0,060616 0,132916 0,00073 3 

LUAD SB590885 1061 STK11_mut 0,69442 0,055461 0,218733 0,003374 3 

LUAD SB590885 1061 
SMARCA4_mu

t 
0,662497 0,042372 0,141069 0,0014 3 

LUAD VX-702 1028 cnaLUAD27 0,651763 0,027561 0,148128 0,001482 3 

COREAD PAC-1 175 FBXW7_mut 0,609987 0,079158 0,212148 0,020163 3 

GBM Bosutinib 1019 cnaGBM122 0,592087 0,116196 0,195961 0,028523 3 

ESCA SB590885 1061 cnaESCA11 0,589711 0,014217 0,24459 0,002064 3 

LUAD SB590885 1061 KRAS_mut 0,573302 0,005319 0,195751 0,000328 3 

PAAD IOX2 1230 ARID1A_mut 0,971096 0,214001 0,210681 0,000714 2 

STAD 
Doramapi-

mod 
1042 cnaSTAD51 0,957162 0,20162 0,177771 0,005267 2 

COREAD VX-702 1028 PBRM1_mut 0,956213 0,112968 0,164347 0,002442 2 

OV AT7867 356 cnaOV26 0,953078 0,230128 0,165439 0,035813 2 

PAAD IOX2 1230 CDKN2A_mut 0,950669 0,186993 0,246045 0,000584 2 

LUSC 
Lenalido-

mide 
1020 

cnaLUSC6,cna

LUSC7,cnaLU

SC37 

0,950292 0,172935 0,165074 0,007215 2 

COREAD VX-702 1028 FAM123B_mut 0,949635 0,129009 0,166072 0,00073 2 

LUAD TL-2-105 211 ARID1A_mut 0,946464 0,198925 0,2296 0,004255 2 

OV 
Doramapi-

mod 
1042 NF1_mut 0,94582 0,132471 0,229292 0,002463 2 

LUSC 
Lenalido-

mide 
1020 cnaLUSC25 0,928981 0,128514 0,165074 0,006146 2 

BRCA NSC-87877 147 cnaBRCA29 0,926677 0,08796 0,176215 0,001333 2 

KIRC 
Lenalido-

mide 
1020 cnaKIRC23 0,924315 0,169019 0,153241 0,00227 2 

LUAD VNLG/124 271 cnaLUAD14 0,921427 0,133676 0,310294 0,000167 2 
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OV CHIR-99021 154 cnaOV35 0,920204 0,120343 0,171314 0,011404 2 

COREAD Vismodegib 1033 BRWD1_mut 0,912311 0,15194 0,249241 0,032124 2 

LUAD VX-702 1028 cnaLUAD12 0,910996 0,072853 0,154252 0,002433 2 

LUAD CHIR-99021 154 cnaLUAD10 0,909401 0,035948 0,154126 1,05E-05 2 

GBM UNC0642 1263 cnaGBM25 0,908084 0,15591 0,2357 0,006653 2 

OV CHIR-99021 154 cnaOV40 0,9047 0,121525 0,230221 0,011404 2 

BLCA QL-XII-61 1203 TP53_mut 0,901178 0,155601 0,194877 0,002638 2 

LUSC 
Lenalido-

mide 
1020 cnaLUSC14 0,887209 0,149456 0,126363 0,006146 2 

HNSC CHIR-99021 154 cnaHNSC19 0,88097 0,043325 0,14171 0,003099 2 

BRCA IPA-3 176 cnaBRCA57 0,878559 0,188192 0,150477 0,009614 2 

LUAD JQ1 1218 cnaLUAD13 0,872514 0,102868 0,171232 0,003735 2 

OV CHIR-99021 154 cnaOV20 0,872381 0,065029 0,169958 0,016468 2 

COREAD AT7867 356 
cnaCOREAD4

8 
0,868113 0,234303 0,184547 0,014054 2 

COREAD VX-702 1028 MGA_mut 0,86597 0,076868 0,164474 0,00619 2 

LUAD VX-702 1028 cnaLUAD10 0,845373 0,059145 0,102656 0,001482 2 

OV 
Doramapi-

mod 
1042 cnaOV95 0,844996 0,068765 0,149072 0,001479 2 

BRCA Midostaurin 153 cnaBRCA39 0,842326 0,16051 0,133954 0,006695 2 

COREAD VX-702 1028 CTCF_mut 0,836008 0,107378 0,200389 0,004338 2 

OV 
Doramapi-

mod 
1042 cnaOV94 0,835077 0,058781 0,201843 0,001856 2 

LUAD VX-702 1028 cnaLUAD18 0,831054 0,055876 0,146819 0,003013 2 

LUAD CHIR-99021 154 cnaLUAD17 0,827104 0,077479 0,201773 0,003111 2 

LUAD C-75 435 cnaLUAD29 0,82158 0,024338 0,12895 0,000212 2 

LIHC CHIR-99021 154 cnaLIHC7 0,803436 0,036856 0,209196 0,048623 2 

COREAD VX-702 1028 CEP290_mut 0,799232 0,109652 0,225876 0,018768 2 

COREAD UNC0642 1263 NCOR1_mut 0,795855 0,130937 0,339461 0,017755 2 

OV CHIR-99021 154 cnaOV54 0,794608 0,044389 0,250515 0,011404 2 

COREAD UNC0642 1263 CTNNB1_mut 0,792157 0,108226 0,327945 0,017755 2 

OV CHIR-99021 154 cnaOV55 0,787009 0,056237 0,311382 0,047285 2 

LUAD CHIR-99021 154 STK11_mut 0,784156 0,00671 0,167347 0,00141 2 

STAD 
Doramapi-

mod 
1042 cnaSTAD47 0,777668 0,101424 0,141167 0,005267 2 

OV CHIR-99021 154 
cnaOV52,cna

OV53 
0,771591 0,03378 0,212834 0,015583 2 

LUSC PFI-3 1530 cnaLUSC10 0,767329 0,064508 0,145225 0,002819 2 

COREAD VX-702 1028 CHD9_mut 0,76587 0,077621 0,163638 0,00619 2 

BRCA AZD6094 1403 cnaBRCA47 0,762722 0,056173 0,149516 0,009675 2 

COREAD Vismodegib 1033 B2M_mut 0,757514 0,074769 0,177353 0,009368 2 

LUAD TL-2-105 211 cnaLUAD22 0,742463 0,100536 0,158473 0,011927 2 

GBM SGC0946 1264 cnaGBM125 0,741251 0,04027 0,119009 0,006708 2 

HNSC TL-2-105 211 cnaHNSC2 0,732983 0,050524 0,140552 0,001974 2 

STAD 
Doramapi-

mod 
1042 cnaSTAD16 0,728696 0,091649 0,220846 0,01568 2 
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COREAD UNC0642 1263 
cnaCOREAD4

9 
0,72358 0,071139 0,168762 0,000691 2 

BRCA NSC-87877 147 cnaBRCA17 0,713667 0,044023 0,247119 0,003595 2 

COREAD VX-702 1028 SACS_mut 0,713229 0,076204 0,155106 0,004338 2 

KIRC 
Lenalido-

mide 
1020 cnaKIRC24 0,710447 0,074879 0,131361 0,006415 2 

LUAD Axitinib 1021 
SMARCA4_mu

t 
0,709011 0,108949 0,156274 0,00214 2 

STAD 
Doramapi-

mod 
1042 cnaSTAD17 0,702646 0,095498 0,141167 0,011349 2 

LUSC 
Lenalido-

mide 
1020 cnaLUSC10 0,69871 0,077544 0,112328 0,006146 2 

GBM PAC-1 175 PTEN_mut 0,689436 0,036565 0,123671 0,000854 2 

KIRC 
Lenalido-

mide 
1020 cnaKIRC22 0,684645 0,073258 0,132288 0,001587 2 

LUAD VX-702 1028 STK11_mut 0,677764 0,038582 0,147294 0,002944 2 

BRCA AZD6094 1403 cnaBRCA17 0,675683 0,02226 0,133146 0,008511 2 

KIRC 
Lenalido-

mide 
1020 

cnaKIRC12,cn

aKIRC13,cnaK

IRC14,cnaKIR
C15 

0,666445 0,074744 0,128577 0,001587 2 

COREAD VX-702 1028 ARID1A_mut 0,659634 0,053363 0,173905 0,007339 2 

THCA VX-702 1028 TP53_mut 0,659328 0,037366 0,162773 0,003894 2 

COREAD UNC0642 1263 MLL2_mut 0,658156 0,049142 0,208432 0,004854 2 

COREAD VX-702 1028 B2M_mut 0,656197 0,048551 0,150983 0,022292 2 

COREAD 
JNK Inhibi-

tor VIII 
1043 PIK3CA_mut 0,653037 0,035746 0,178491 0,010043 2 

DLBC PFI3 1620 TP53_mut 0,651595 0,008114 0,114195 0,011626 2 

STAD 
Doramapi-

mod 
1042 cnaSTAD30 0,634323 0,059601 0,220846 0,006844 2 

BRCA AZD6094 1403 cnaBRCA18 0,633176 0,010931 0,118379 0,000612 2 

COREAD IAP_7638 1429 PIK3CA_mut 0,626907 0,043921 0,10846 0,006302 2 

PAAD SB590885 1061 SMAD4_mut 0,624828 0,034219 0,201394 0,011599 2 

BRCA NSC-87877 147 cnaBRCA22 0,623658 0,029318 0,115004 0,009591 2 

COREAD UNC0642 1263 RNF43_mut 0,607426 0,035179 0,267675 0,017755 2 

COREAD Vismodegib 1033 
cnaCOREAD4

9 
0,596759 0,041755 0,132623 0,003604 2 

COREAD VX-702 1028 PIK3CA_mut 0,589508 0,028824 0,160055 0,004338 2 

THCA IAP_7638 1429 BRAF_mut 0,580572 0,016298 0,146509 0,040054 2 

COREAD Vismodegib 1033 PIK3CA_mut 0,579758 0,038309 0,151816 0,009368 2 

STAD 
Doramapi-

mod 
1042 cnaSTAD41 0,575 0,086287 0,151409 0,005267 2 

COREAD VX-702 1028 
cnaCOREAD4

9 
0,574282 0,006342 0,138091 0,004037 2 

BRCA NSC-87877 147 cnaBRCA18 0,572611 0,008938 0,222921 0,045055 2 

STAD 
Doramapi-

mod 
1042 cnaSTAD13 0,566766 0,056558 0,13033 0,006978 2 
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COREAD Vismodegib 1033 
cnaCOREAD3

3 
0,564205 0,027582 0,125329 0,001547 2 

BRCA Midostaurin 153 cnaBRCA26 0,551175 0,107518 0,100451 0,006695 2 

PAAD SB216763 1025 cnaPAAD4 0,538375 0,102613 0,137374 0,006266 2 

COREAD UNC0642 1263 EP300_mut 0,529069 0,009071 0,200803 0,017755 2 

DLBC 
GSK260641

4 
1618 TP53_mut 0,527546 0,000488 0,152111 0,028721 2 

GBM UNC0642 1263 cnaGBM125 0,524621 0,007535 0,149323 0,043333 2 

COREAD VX-702 1028 EP300_mut 0,522024 0,003023 0,174836 0,012205 2 

COREAD IAP_7638 1429 
cnaCOREAD1

9 
0,521494 0,013319 0,163593 0,015048 2 

COREAD MCT1_6447 1436 PIK3CA_mut 0,51746 0,007313 0,103562 0,013164 2 

HNSC 
GSK190452

9A 
202 cnaHNSC32 0,508083 0,035834 0,136844 0,020294 2 

HNSC 
GSK190452

9A 
202 cnaHNSC32 0,508083 0,035834 0,136844 0,020294 2 

STAD 
Doramapi-

mod 
1042 TP53_mut 0,501968 0,052837 0,151409 0,011349 2 

COREAD Vismodegib 1033 
cnaCOREAD1

1 
0,499988 0,0054 0,175732 0,011946 2 

HNSC PD173074 1049 cnaHNSC11 0,496794 0,038638 0,12689 0,01959 2 

COREAD Vismodegib 1033 KRAS_mut 0,490065 0,007688 0,117101 0,003604 2 

COREAD IAP_7638 1429 EP300_mut 0,484063 0,013398 0,107438 0,02472 2 

BRCA Dasatinib 1079 cnaBRCA31 0,44226 0,044286 0,12542 0,031964 2 

BRCA Dasatinib 1079 cnaBRCA31 0,44226 0,044286 0,12542 0,031964 2 

Table 15: Combinations of alteration, tissue type and drug (ATD) with increasing viability markers identified 
by the hypergeometric model with linear slope, arranged according to significance values and number of 
responses with high-slope (i.e., slopelinear>0.2) in the mutant population. Only ATD combinations with at 
least two mutant responses with high-slope are depicted.  
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B.4 Increasing viability markers using Hypergeometric enrichment 
with Gaussian slope 

 
Tissue Drug Drug ID alteration Enrichment 

Score 
Diff. slope 
 MT vs WT 

Mean slope 
MT 

p-adjusted 
value 

Nr. high 
slope  

STAD XMD11-85h 1158 TP53_mut 0,694942 1,138687 0,12809 0,000387 5 

COREAD Erlotinib 1 EP300_mut 0,90587 1,49234 0,17312 0,000238 4 

STAD XMD11-85h 1158 cnaSTAD16 0,856011 1,224707 0,136431 0,000583 4 

COREAD Erlotinib 1 ARID1A_mut 0,831976 1,589181 0,140655 0,001358 4 

LUAD UNC0638 1236 cnaLUAD21 0,673723 1,139841 0,066189 0,008708 4 

UCEC FGFR_0939 1421 ARID1A_mut 0,98578 1,892104 0,07564 4,56E-05 3 

COREAD Erlotinib 1 SACS_mut 0,984591 1,664232 0,137077 0,0002 3 

COREAD Erlotinib 1 MAP2K4_mut 0,981977 1,654626 0,186106 0,0002 3 

COREAD Erlotinib 1 AKAP9_mut 0,981977 1,610047 0,174382 0,0002 3 

KIRC PFI-3 1530 PTEN_mut 0,979802 1,503329 0,113725 5,4E-05 3 

BLCA PLX-4720 1371 CDKN1A_mut 0,976013 1,701688 0,10108 0,000471 3 

BLCA KIN001-042 289 cnaBLCA18 0,975509 1,145038 0,058193 0,0004 3 

LUSC UNC0638 1236 
cnaLUSC30,cn

aLUSC32 
0,974237 1,623793 0,079332 0,000564 3 

COREAD Linifanib 277 SOS2_mut 0,97348 1,138847 0,028733 4,22E-05 3 

BLCA MCT1_6447 1436 cnaBLCA9 0,969159 1,490512 0,074316 2,01E-05 3 

LUAD UNC0642 1263 cnaLUAD12 0,96812 1,208607 0,059727 0,000101 3 

COREAD JQ1 1218 NUP98_mut 0,961332 1,392523 0,081002 1,27E-05 3 

OV CHIR-99021 154 cnaOV84 0,961311 1,258175 0,231771 8,09E-06 3 

OV CHIR-99021 154 cnaOV38 0,961309 1,176964 0,258117 5,17E-05 3 

LIHC 
PHA-

793887 
301 cnaLIHC7 0,956858 1,342044 0,137468 0,000145 3 

COREAD AZD5582 1427 
cnaCOREAD2

7 
0,942312 1,143837 0,06497 0,000792 3 

BLCA IPA-3 176 cnaBLCA5 0,941676 1,42047 0,078233 1,14E-05 3 

KIRC 
Lenalido-

mide 
1020 cnaKIRC23 0,931508 1,251987 0,153241 0,000571 3 

OV CHIR-99021 154 cnaOV85 0,928102 1,117152 0,195766 1,75E-05 3 

LGG Sunitinib 5 cnaLGG1 0,92336 1,192607 0,098974 0,000148 3 

LUSC UNC0638 1236 cnaLUSC25 0,907913 1,452893 0,062364 0,001959 3 

OV Veliparib 1018 cnaOV43 0,899182 1,183985 0,111806 0,001046 3 

LAML Dasatinib 51 NRAS_mut 0,898549 1,331125 0,053597 3,66E-05 3 

COREAD Erlotinib 1 
cnaCOREAD1

9 
0,886713 1,262343 0,137077 0,004748 3 

COREAD Erlotinib 1 CHD9_mut 0,883541 1,254483 0,186106 0,004748 3 

COREAD Erlotinib 1 PTEN_mut 0,883541 1,254483 0,186106 0,004748 3 

COREAD Erlotinib 1 BMPR2_mut 0,883463 1,253387 0,194914 0,004748 3 

COREAD Erlotinib 1 MLL2_mut 0,883463 1,253387 0,194914 0,004748 3 

BRCA UNC0642 1263 cnaBRCA12 0,828414 1,212999 0,046617 1,89E-05 3 

BLCA MPS-1-IN-1 294 cnaBLCA15 0,780797 1,393804 0,048508 0,000867 3 

BRCA UNC0642 1263 cnaBRCA64 0,753693 1,16442 0,05549 0,000292 3 



 

 175 

DLBC rTRAIL 1261 PTEN_mut 0,742834 1,101629 0,104614 0,009635 3 

UCEC FGFR_0939 1421 EP300_mut 0,737932 1,450967 0,058485 0,016784 3 

LUAD Bryostatin 1 197 RB1_mut 0,976571 1,163421 0,096963 0,000101 2 

LIHC 
PHA-

793887 
301 cnaLIHC10 0,971914 1,292134 0,052123 0,000263 2 

LIHC 
Bicalutam-

ide 
1502 cnaLIHC7 0,970527 1,264931 0,073834 0,000151 2 

STAD AZD4547 1497 BCOR_mut 0,969679 1,592553 0,050627 0,000274 2 

LUAD 
Bicalutam-

ide 
1502 U2AF1_mut 0,968247 1,669657 0,131842 0,000185 2 

COREAD JQ1 1218 TP53BP1_mut 0,968161 1,474772 0,090335 0,00116 2 

STAD Ruxolitinib 206 ARID2_mut 0,967024 1,113653 0,036436 0,000849 2 

SKCM TANK_1366 1461 cnaSKCM26 0,964198 1,269747 0,041974 0,001526 2 

COREAD FGFR_0939 1421 
cnaCOREAD1

4 
0,961949 1,154057 0,141782 0,000998 2 

PRAD MCT4_1422 1437 cnaPRAD7 0,96155 1,810884 0,117706 0,000668 2 

OV CHIR-99021 154 cnaOV83 0,961309 1,189109 0,227404 5,17E-05 2 

LAML Dasatinib 51 KRAS_mut 0,960798 1,204202 0,090169 0,000381 2 

STAD WHI-P97 288 cnaSTAD45 0,957023 1,475322 0,056081 0,000147 2 

OV MCT4_1422 1437 cnaOV50 0,952241 1,780874 0,069387 0,000163 2 

LUAD SB505124 1194 RBM10_mut 0,950534 1,234897 0,108705 0,001459 2 

COREAD JAK1_3715 1433 
cnaCOREAD2

1 
0,950329 1,568255 0,023352 0,002143 2 

OV AT7867 356 cnaOV102 0,948575 1,206786 0,0417 0,006821 2 

COREAD 
Tubastatin 

A 
265 BRWD1_mut 0,948302 1,391116 0,037868 0,000555 2 

HNSC Ponatinib 155 A_mut 0,947013 1,291424 0,103037 0,000793 2 

GBM 
BMS-

345541 
203 

cnaGBM134,c

naGBM135 
0,943782 1,163311 0,070634 0,00254 2 

HNSC SGC0946 1264 cnaHNSC3 0,943195 1,114322 0,087709 0,002177 2 

HNSC SGC0946 1264 A_mut 0,941247 1,115209 0,083975 0,002177 2 

SKCM SGC0946 1264 cnaSKCM26 0,937842 1,116728 0,057478 0,001299 2 

BRCA UNC0642 1263 BRCA1_mut 0,937749 1,132761 0,048376 0,000292 2 

LUAD QL-XII-61 1203 cnaLUAD30 0,937644 1,618105 0,068006 0,000435 2 

ESCA UNC0638 1236 
cnaESCA2,cna

ESCA3 
0,936381 1,725635 0,140194 0,001668 2 

COREAD PLX-4720 1371 

cnaCOREAD2

3,cnaCOREAD
53 

0,93232 1,274254 0,09517 0,005122 2 

OV IAP_7638 1429 

cnaOV61,cna

OV62,cnaOV6

3 

0,931501 1,647349 0,055135 0,002457 2 

ESCA PFI-3 1530 NFE2L2_mut 0,930238 1,173527 0,056346 0,001884 2 

COREAD CHIR-99021 1241 
cnaCOREAD2

8 
0,925111 1,198795 0,151834 0,003329 2 

GBM JAK3_7406 1434 cnaGBM133 0,92234 1,825803 0,043519 0,003035 2 
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OV AT7867 356 cnaOV26 0,91571 1,408289 0,165439 0,0158 2 

LGG CHIR-99021 1241 cnaLGG7 0,908751 1,348566 0,063622 0,004717 2 

ESCA AZD3514 1382 
cnaESCA2,cna

ESCA3 
0,907794 1,762344 0,138821 0,004731 2 

ESCA 
Tubastatin 

A 
265 

cnaESCA2,cna

ESCA3 
0,907144 1,259352 0,02643 0,009578 2 

LUAD T0901317 333 cnaLUAD32 0,902914 1,180897 0,018668 0,008062 2 

UCEC Refametinib 1526 CHD4_mut 0,89891 1,933095 0,122935 0,007239 2 

BRCA QL-XII-61 1203 cnaBRCA30 0,8969 1,432752 0,058462 0,010841 2 

COREAD UNC0638 1236 KDM6A_mut 0,895613 1,115138 0,108913 0,007637 2 

LUSC UNC0638 1236 

cnaLUSC6,cna

LUSC7,cnaLU

SC37 

0,895348 1,270226 0,048897 0,008125 2 

BRCA VX-702 1028 BRCA1_mut 0,895114 1,283577 0,131431 0,007354 2 

COREAD JQ1 1218 
cnaCOREAD2

1 
0,89255 1,146759 0,070519 0,01957 2 

OV Cisplatin 1496 SMAD4_mut 0,888427 1,776571 0,033225 0,005379 2 

STAD UNC0638 1236 BCOR_mut 0,885635 1,218922 0,094426 0,01059 2 

LUAD JAK3_7406 1434 U2AF1_mut 0,88238 1,21701 0,04833 0,022524 2 

OV JAK1_3715 1433 
cnaOV87,cna

OV88 
0,881508 1,272219 0,049873 0,031332 2 

GBM RO-3306 1052 cnaGBM124 0,87957 1,349715 0,071208 0,003353 2 

COREAD PLX-4720 1371 
cnaCOREAD2

7 
0,874312 1,179891 0,097373 0,005122 2 

LIHC Olaparib 1495 cnaLIHC10 0,87137 1,909235 0,037377 0,015854 2 

OV JAK1_3715 1433 

cnaOV61,cna

OV62,cnaOV6
3 

0,863284 1,234479 0,046686 0,031332 2 

OV JAK1_3715 1433 cnaOV18 0,859746 1,263849 0,04459 0,018692 2 

OV JAK1_3715 1433 cnaOV19 0,859743 1,225807 0,030517 0,031332 2 

OV FR-180204 263 cnaOV82 0,855189 1,138828 0,069213 0,04629 2 

BRCA JQ1 1218 cnaBRCA24 0,854893 1,346379 0,067912 0,040426 2 

LAML TANK_1366 1461 SACS_mut 0,852646 1,546972 0,01778 0,013053 2 

COREAD 
Piperlongu-

mine 
1243 CDH1_mut 0,846204 1,41016 0,015718 0,03848 2 

BRCA UNC0642 1263 cnaBRCA48 0,845387 1,12592 0,04517 0,001794 2 

LIHC AZD4547 1497 cnaLIHC7 0,843931 1,486166 0,054692 0,019199 2 

COREAD TANK_1366 1461 SOX9_mut 0,824442 1,286752 0,044442 0,00091 2 

PAAD FGFR_3831 1422 ARID1A_mut 0,82032 1,55538 0,027715 0,03685 2 

COREAD 
Piperlongu-

mine 
1243 BRWD1_mut 0,817048 1,376095 0,033485 0,042468 2 

SKCM IAP_7638 1429 cnaSKCM30 0,81208 1,125409 0,053952 0,017139 2 

BLCA IAP_7638 1429 MLL2_mut 0,797737 1,449961 0,021328 0,031936 2 

COREAD FGFR_3831 1422 SRGAP3_mut 0,7436 1,104326 0,138401 0,049119 2 

OV FEN1_3940 1419 PTEN_mut 0,715882 1,398655 0,053381 0,041698 2 
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LUAD 
Genentech 

Cpd 10 
225 cnaLUAD25 0,710741 1,521279 0,087733 0,036276 2 

BLCA 
NVP-

BHG712 
295 cnaBLCA9 0,680603 1,101755 0,049679 0,042106 2 

HNSC 
NPK76-II-

72-1 
257 cnaHNSC19 0,65233 1,138745 0,035398 0,022507 2 

Table 16: Combinations of alteration, tissue type and drug (ATD) with increasing viability markers identified 
by the hypergeometric model with Gaussian slope, arranged according to significance values and number 
of responses with high-slope (i.e., slopeGaussian>1.1) in the mutant population. Only ATD combinations with 
at least two mutant responses with high-slope are depicted.  
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B.5 Correlation between cell growth rate and drug response 
Drug Drug ID Drug Target Target Pathway 𝑹 

BI-2536 1086 PLK1, PLK2, PLK3 Cell cycle -0,514 

5-Fluorouracil 1073 Antimetabolite (DNA & RNA) Other -0,50601 

Dactinomycin 1911 RNA polymerase Other -0,49023 

Gemcitabine 1190 Pyrimidine antimetabolite DNA replication -0,48697 

Oxaliplatin 1089 DNA alkylating agent DNA replication -0,47561 

Epirubicin 1511 Anthracycline DNA replication -0,46112 

Docetaxel 1819 Microtubule stabiliser Mitosis -0,45534 

Luminespib 1559 HSP90 
Protein stability and 

degradation 
-0,45367 

Paclitaxel 1080 Microtubule stabiliser Mitosis -0,45343 

Vinorelbine 2048 Microtubule destabiliser Mitosis -0,43517 

MK-1775 1179 WEE1, PLK1 Cell cycle -0,43221 

Buparlisib 1873 
PI3Kalpha, PI3Kdelta, PI3Kbeta, 

PI3Kgamma 
PI3K/MTOR signaling -0,43021 

Camptothecin 1003 TOP1 DNA replication -0,43012 

Telomerase Inhibitor IX 1930 Telomerase Genome integrity -0,42353 

Oxaliplatin 1806 DNA alkylating agent DNA replication -0,41629 

GNE-317 1926 PI3Kalpha PI3K/MTOR signaling -0,4158 

AZD6738 1917 ATR Genome integrity -0,41505 

BDP-00009066 1866 MRCKB_HUMAN Cytoskeleton -0,41462 

PARP_0108 1459 PARP1, PARP2, PARP6 Genome integrity -0,41019 

Rapamycin 1084 MTORC1 PI3K/MTOR signaling -0,4091 

Obatoclax Mesylate 1068 BCL2, BCL-XL, BCL-W, MCL1 Apoptosis regulation -0,40842 

Gemcitabine 1393 Pyrimidine antimetabolite DNA replication -0,40682 

BMS-345541 1249 IKK1, IKK2 Other, kinases -0,40623 

VE821 2111 ATR Genome integrity -0,40607 

CDK9_5576 1708 CDK9 Cell cycle -0,40422 

Vinblastine 1004 Microtubule destabiliser Mitosis -0,40233 

Ulixertinib 1908 ERK1, ERK2 ERK MAPK signaling -0,39826 

AZD5153 1706 BRD4 Chromatin other -0,39257 

PARP_9482 1460 PARP1, PARP2, PARP5a Genome integrity -0,39211 

ICL1100013 1266 N-myristoyltransferase 1/2 Other -0,39023 

GSK591 2110 PMRT5 
Chromatin histone meth-

ylation 
-0,38953 

AZD7969 1426 GSK3B WNT signaling -0,38949 

VX-11e 2096 ERK2 ERK MAPK signaling -0,38889 

Dactolisib 1057 PI3K (class 1), MTORC1, MTORC2 PI3K/MTOR signaling -0,38789 

YK-4-279 1239 RNA helicase A Other -0,38662 

Irinotecan 1088 TOP1 DNA replication -0,38349 

Docetaxel 1007 Microtubule stabiliser Mitosis -0,38282 

Pevonedistat 1529 NAE Other -0,3791 

OTX015 1626 BRD2, BRD3, BRD4 Chromatin other -0,37639 

AZ20 1184 ATR Genome integrity -0,37504 

Pyridostatin 2044 G-quadruplex stabiliser DNA replication -0,3741 
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PRT062607 1631 SYK Other, kinases -0,37116 

Cytarabine 1006 Antimetabolite Other -0,37059 

Gemcitabine 135 Pyrimidine antimetabolite DNA replication -0,36526 

Bleomycin (50 uM) 1378 dsDNA break induction DNA replication -0,36444 

AZD6738 1394 ATR Genome integrity -0,36343 

AZ6102 2109 TNKS1, TNKS2 WNT signaling -0,36231 

Palbociclib 1054 CDK4, CDK6 Cell cycle -0,3588 

TTK_3146 1464 TTK Mitosis -0,35843 

Dinaciclib 1180 CDK1, CDK2, CDK5, CDK9 Cell cycle -0,35759 

Daporinad 1248 NAMPT Metabolism -0,35465 

CDK9_5038 1709 CDK9 Cell cycle -0,3512 

Wee1 Inhibitor 1046 WEE1, CHEK1 Cell cycle -0,3492 

PLK_6522 1451 PLK1, PLK2, PLK3 Cell cycle -0,34862 

I-BET-762 1624 BRD2, BRD3, BRD4 Chromatin other -0,34772 

SN-38 1494 TOP1 DNA replication -0,3475 

CAY10566 416 Stearoyl-CoA desaturase Other -0,34227 

CCT-018159 1170 HSP90 
Protein stability and 

degradation 
-0,34157 

HG-5-113-01 1142 LOK, LTK, TRCB, ABL(T315I) Other -0,34056 

ERK_2440 1713 ERK1,ERK2 ERK MAPK signaling -0,34043 

Doxorubicin 1386 Anthracycline DNA replication -0,34006 

VE-822 1613 ATR Genome integrity -0,33998 

KRAS (G12C) Inhibitor-

12 
1855 KRAS (G12C) ERK MAPK signaling -0,3367 

VSP34_8731 1734 VSP34 Other -0,33522 

Talazoparib 1259 PARP1, PARP2 Genome integrity -0,3346 

Entospletinib 1630 SYK Other, kinases -0,33218 

Bleomycin (10 uM) 1392 dsDNA break induction DNA replication -0,33165 

Sabutoclax 1849 BCL2,  BCL-XL,  BFL1, MCL1 Apoptosis regulation -0,33157 

GSK650394 177 SGK2, SGK3 Other, kinases -0,3306 

Niraparib 1177 PARP1, PARP2 Genome integrity -0,32933 

I-BRD9 1928 BRD9 Chromatin other -0,32723 

AT13148 2170 AKT1 PI3K/MTOR signaling -0,32542 

OSU-03012 167 PDK1 (PDPK1) Metabolism -0,32429 

Temozolomide 1375 DNA alkylating agent DNA replication -0,32354 

MIM1 1996 MCL-1 Apoptosis regulation -0,32315 

WZ4003 1614 NUAK1, NUAK2 Other, kinases -0,32239 

Cisplatin 1005 DNA crosslinker DNA replication -0,32107 

Alisertib 1051 AURKA Mitosis -0,32039 

Lestaurtinib 1024 
FLT3, JAK2, NTRK1, NTRK2, 

NTRK3 
Other, kinases -0,31775 

Selisistat 341 SIRT1 
Chromatin histone acet-

ylation 
-0,31458 

Crizotinib 1083 MET, ALK, ROS1 RTK signaling -0,31452 

AZ960 1250 JAK2, JAK3 Other, kinases -0,31399 

GSK1904529A 1093 IGF1R, IR RTK signaling & -0,31343 
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IGF1R signaling 

GSK2606414 1618 PERK Metabolism -0,31338 

Pemetrexed 428 TYMS DNA replication -0,31299 

ERK_6604 1714 ERK1,ERK2 ERK MAPK signaling -0,31196 

Epothilone B 201 Microtubule stabiliser Mitosis -0,3113 

LJI308 2107 RSK2, RSK1, RSK3 PI3K/MTOR signaling -0,31071 

Methotrexate 1008 Antimetabolite DNA replication -0,31035 

XMD11-85h 1158 
BRSK2, FLT4, MARK4, PRKCD, 

RET, SRPK1 
Other, kinases -0,31023 

SB216763 1025 GSK3A, GSK3B WNT signaling -0,31022 

Olaparib 1495 PARP1, PARP2 Genome integrity -0,30997 

Eg5_9814 1712 KSP11 Other -0,30919 

Sphingosine Kinase 1 In-

hibitor II 
408 Sphingosine Kinase Other, kinases -0,30846 

AZD5438 1401 CDK2 Cell cycle -0,30832 

5-Fluorouracil 179 Antimetabolite (DNA & RNA) Other -0,3069 

Ulixertinib 2047 ERK1, ERK2 ERK MAPK signaling -0,30609 

Cediranib 1922 
VEGFR, FLT1, FLT2, FLT3, FLT4, 

KIT, PDGFRB 
RTK signaling -0,30537 

MIRA-1 1931 TP53 p53 pathway -0,30482 

QS11 151 ARFGAP1 Other -0,30467 

Table 17: Negative correlation between cell growth rate and drug response. 

Results organised based on negative correlation, i.e. the most interesting results are cases of negative IC50 
value combined with positive cell growth. Table depicts the correlation values for 100 unique drugs.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 181 

B.6 Drug concentrations in GDSC and validation screens 
CHIR-99021 SB216763 9-ING-41 Validation 

 
0.01 0.0390625  0.000076 

0.02 0.0781250  0.000153 

0.04 0.1562500  0.000305 

0.08 0.3125000  0.000610 

0.16 0.6250000  0.001221 

0.32 1.2500000  0.002441 

0.64 2.5000000  0.004883 

1.28 5.0000000  0.009766 

2.56 10  0.019531 
   0.039063 
   0.078125 
   0.15625 
   0.3125 

   0.6250 

   1.25 

   2.5 

   5 

   10 

   20 

   40 

Table 18: Drug concentrations in GDSC and validation experiments. 

CHIR-99021 and SB216763 were available in the GDSC screen, and were tested with 9 distinct titration 
points. The drug 9-ING-41 was not available in GDSC, and therefore no drug concentration is reported. For 
comparison, in the validation screen experiments a wide range of concentration was employed with 20 
titration points.  
 

 

 

 

 

 

 

 

 

 

 



 

 182 

B.7 Cell viabilities of the validation screen 
 

 

Cell viability: LUAD3 + LUAD27
GROUP_ID COSMIC_ID CELL_LINE_NAME DRUG_ID_LIB DRUG_NAME slope mut_status detail

319477 1240145 HCC-44 154 CHIR-99021 -0,231 Both high-slope_LUAD3_LUAD27

17771 687820 NCI-H2347 154 CHIR-99021 -0,220 Both high-slope_LUAD3_LUAD27
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Cell viability: LUAD27
GROUP_ID COSMIC_ID CELL_LINE_NAME DRUG_ID_LIB DRUG_NAME slope mut_status detail

163848 907786 LC-2-ad 154 CHIR-99021 -0,562 LUAD27 high-slope_LUAD27

192393 908463 NCI-H1793 154 CHIR-99021 -0,275 LUAD27 high-slope_LUAD27
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Cell viability: no biomarker
GROUP_ID COSMIC_ID CELL_LINE_NAME DRUG_ID_LIB DRUG_NAME slope mut_status detail

195336 908472 NCI-H1573 154 CHIR-99021 -0,226 no biomarker no biomarker

15646 687807 NCI-H1838 154 CHIR-99021 -1,445 no biomarker no biomarker
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Cell viability: LUAD3
GROUP_ID COSMIC_ID CELL_LINE_NAME DRUG_ID_LIB DRUG_NAME slope mut_status detail

67452 753600 NCI-H1563 154 CHIR-99021 -0,302 LUAD3 high-slope_LUAD3

214456 909721 SK-LU-1 154 CHIR-99021 -0,169 LUAD3 high-slope_LUAD3
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Figure 48: Cell viabilities of validated cell lines and drugs. 

Cell viabilities of drugs CHIR-99021, SB216762 and 9-ING-41 with cell lines (A)-(B) NCI-H1573 and NCI-
H1838 (non-responders); (C)-(D) NCI-H1563 and SK-LU-1 (cnaLUAD3); (E)-(F) LC-2-ad and NCI-H1793 
(cnaLUAD27); (G)-(H) HCC-44 and NCI-H2347 (both cnaLUAD3 and cnaLUAD27). Viability values are the 
mean of all replicates, and curve fit was performed using the nls() function with a sigmoid formulation. 
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Appendix C: Supplementary information to chapters 2.4 and 
3.3  

C.1 Seed genes from IntOGen database 

Seed gene Cancer tissue 
ABL2 BRCA 

AFF3 BRCA 

AKT1 BRCA 

ALK BRCA 

ARHGEF12 BRCA 

ARID1A BRCA 

ARID1B BRCA 

ASXL1 BRCA 

ATM BRCA 

BAP1 BRCA 

BRAF BRCA 

BRCA1 BRCA 

BRCA2 BRCA 

CACNA1D BRCA 

CASP8 BRCA 

CBFB BRCA 

CDH1 BRCA 

CDKN1B BRCA 

CDKN2A BRCA 

CLTC BRCA 

CREBBP BRCA 

CTCF BRCA 

CUX1 BRCA 

DDX3X BRCA 

EGFR BRCA 

ELN BRCA 

EPAS1 BRCA 

EPHA3 BRCA 

ERBB2 BRCA 

ERBB3 BRCA 

ERBB4 BRCA 

ESR1 BRCA 

ETV5 BRCA 

FAT1 BRCA 

FAT3 BRCA 

FAT4 BRCA 

FBXW7 BRCA 

FGFR2 BRCA 
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FOXA1 BRCA 

GATA1 BRCA 

GATA3 BRCA 

GNAS BRCA 

GRIN2A BRCA 

HIST1H3B BRCA 

HOXC13 BRCA 

HOXD13 BRCA 

HRAS BRCA 

HSP90AA1 BRCA 

JAK2 BRCA 

KAT6B BRCA 

KDM6A BRCA 

KLF4 BRCA 

KMT2C BRCA 

KMT2D BRCA 

KRAS BRCA 

LRP1B BRCA 

MAP2K4 BRCA 

MAP3K1 BRCA 

MAX BRCA 

MDM4 BRCA 

MEN1 BRCA 

MTOR BRCA 

MYH11 BRCA 

MYH9 BRCA 

MYO5A BRCA 

NCOA1 BRCA 

NCOR1 BRCA 

NCOR2 BRCA 

NF1 BRCA 

NIN BRCA 

NONO BRCA 

NOTCH2 BRCA 

NTRK1 BRCA 

NUMA1 BRCA 

PDGFRB BRCA 

PIK3CA BRCA 

PIK3R1 BRCA 

PLAG1 BRCA 

POLD1 BRCA 

PREX2 BRCA 

PTEN BRCA 

PTPN13 BRCA 

PTPRD BRCA 

RB1 BRCA 
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RGS7 BRCA 

RHPN2 BRCA 

RUNX1 BRCA 

SALL4 BRCA 

SF3B1 BRCA 

SMAD2 BRCA 

SMAD4 BRCA 

SMARCD1 BRCA 

SPEN BRCA 

TBX3 BRCA 

TP53 BRCA 

USP6 BRCA 

ZBTB16 BRCA 

ZFHX3 BRCA 

ZXDB BRCA 

Table 19: Seed genes from IntOGen for breast adenocarcinoma. 
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C.2 HPO annotations and genes involved with BRCA 
HPO Annotation HPO ID Gene ID Gene Symbol 
Breast carcinoma HP:0003002 999 CDH1 

Breast carcinoma HP:0003002 2099 ESR1 

Breast carcinoma HP:0003002 3418 IDH2 

Breast carcinoma HP:0003002 545 ATR 

Breast carcinoma HP:0003002 11200 CHEK2 

Breast carcinoma HP:0003002 7517 XRCC3 

Breast carcinoma HP:0003002 4835 NQO2 

Breast carcinoma HP:0003002 5728 PTEN 

Breast carcinoma HP:0003002 7373 COL14A1 

Breast carcinoma HP:0003002 79728 PALB2 

Breast carcinoma HP:0003002 4436 MSH2 

Breast carcinoma HP:0003002 6794 STK11 

Breast carcinoma HP:0003002 5889 RAD51C 

Breast carcinoma HP:0003002 4210 MEFV 

Breast carcinoma HP:0003002 10483 SEC23B 

Breast carcinoma HP:0003002 672 BRCA1 

Breast carcinoma HP:0003002 675 BRCA2 

Breast carcinoma HP:0003002 2956 MSH6 

Breast carcinoma HP:0003002 9821 RB1CC1 

Breast carcinoma HP:0003002 388662 SLC6A17 

Breast carcinoma HP:0003002 8438 RAD54L 

Breast carcinoma HP:0003002 8493 PPM1D 

Breast carcinoma HP:0003002 5245 PHB 

Breast carcinoma HP:0003002 5892 RAD51D 

Breast carcinoma HP:0003002 4361 MRE11 

Breast carcinoma HP:0003002 5290 PIK3CA 

Breast carcinoma HP:0003002 5424 POLD1 

Breast carcinoma HP:0003002 4763 NF1 

Breast carcinoma HP:0003002 5888 RAD51 

Breast carcinoma HP:0003002 324 APC 

Breast carcinoma HP:0003002 7291 TWIST1 

Breast carcinoma HP:0003002 79719 AAGAB 

Breast carcinoma HP:0003002 6392 SDHD 

Breast carcinoma HP:0003002 472 ATM 

Breast carcinoma HP:0003002 2778 GNAS 

Breast carcinoma HP:0003002 4683 NBN 

Breast carcinoma HP:0003002 83990 BRIP1 

Breast carcinoma HP:0003002 1029 CDKN2A 

Breast carcinoma HP:0003002 4913 NTHL1 

Breast carcinoma HP:0003002 580 BARD1 

Breast carcinoma HP:0003002 6390 SDHB 

Breast carcinoma HP:0003002 5071 PRKN 

Breast carcinoma HP:0003002 3417 IDH1 

Breast carcinoma HP:0003002 4193 MDM2 
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Breast carcinoma HP:0003002 3845 KRAS 

Breast carcinoma HP:0003002 7486 WRN 

Breast carcinoma HP:0003002 207 AKT1 

Breast carcinoma HP:0003002 2263 FGFR2 

Breast carcinoma HP:0003002 3161 HMMR 

Breast carcinoma HP:0003002 54894 RNF43 

Breast carcinoma HP:0003002 1499 CTNNB1 

Breast carcinoma HP:0003002 4978 OPCML 

Breast carcinoma HP:0003002 5002 SLC22A18 

Breast carcinoma HP:0003002 23022 PALLD 

Breast carcinoma HP:0003002 10111 RAD50 

Breast carcinoma HP:0003002 4089 SMAD4 

Breast carcinoma HP:0003002 6391 SDHC 

Breast carcinoma HP:0003002 4292 MLH1 

Breast carcinoma HP:0003002 5426 POLE 

Breast carcinoma HP:0003002 7157 TP53 

Breast carcinoma HP:0003002 100144748 KLLN 

Breast carcinoma HP:0003002 205717 USF3 

Breast carcinoma HP:0003002 841 CASP8 

Hereditary Breast And Ovarian 

Cancer Syndrome 

   

Multifocal breast carcinoma    

Table 20: HPO annotations and genes involved with breast adenocarcinoma. 
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C.3 Top 5% wPPI candidate genes  

Seed gene Cancer tissue 
ABCA3 BRCA 

ABRAXAS1 BRCA 

ACTR8 BRCA 

ADGRB1 BRCA 

ADI1 BRCA 

AHSP BRCA 

AIFM2 BRCA 

ALB BRCA 

ALX1 BRCA 

ANKRD17 BRCA 

ANKS1B BRCA 

AP3B2 BRCA 

APLF BRCA 

ARHGAP22 BRCA 

ARHGAP4 BRCA 

ATMIN BRCA 

ATP5PF BRCA 

B4GALT1 BRCA 

BCL11A BRCA 

BEX1 BRCA 

BRAP BRCA 

C4BPB BRCA 

CARM1 BRCA 

CCM2 BRCA 

CCNG2 BRCA 

CD99L2 BRCA 

CGAS BRCA 

CHAMP1 BRCA 

CSH2 BRCA 

CSPG5 BRCA 

CTSD BRCA 

DAP BRCA 

DCHS1 BRCA 

DCLRE1A BRCA 

DDX10 BRCA 

DNTTIP2 BRCA 

DOCK6 BRCA 

EBP BRCA 

EDC3 BRCA 

EDN2 BRCA 

EI24 BRCA 

EIF4EBP3 BRCA 

FABP5 BRCA 
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FAM102A BRCA 

FBXO31 BRCA 

FLYWCH1 BRCA 

GCG BRCA 

GML BRCA 

GREB1 BRCA 

GRIP1 BRCA 

HJURP BRCA 

HOXC6 BRCA 

HOXC9 BRCA 

HSPBP1 BRCA 

IFT46 BRCA 

IGFBP4 BRCA 

ING2 BRCA 

INHBE BRCA 

INVS BRCA 

ISCU BRCA 

L3MBTL2 BRCA 

LTB4R2 BRCA 

LUC7L2 BRCA 

MAF1 BRCA 

MAP3K9 BRCA 

MLLT1 BRCA 

MMP16 BRCA 

MPG BRCA 

MTA3 BRCA 

MUC4 BRCA 

NDUFV3 BRCA 

NOP2 BRCA 

NOP53 BRCA 

NRG2 BRCA 

NRG3 BRCA 

NRG4 BRCA 

NSD2 BRCA 

P4HA2 BRCA 

PACS2 BRCA 

PADI4 BRCA 

PATL1 BRCA 

PCBP3 BRCA 

PCBP4 BRCA 

PEX5 BRCA 

PIDD1 BRCA 

PISD BRCA 

PLAGL1 BRCA 

PLEKHA4 BRCA 

PLK4 BRCA 
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PPARGC1B BRCA 

PPM1G BRCA 

PRDM15 BRCA 

PRDX2 BRCA 

PRPF19 BRCA 

PRPH BRCA 

PYGO2 BRCA 

RABGGTA BRCA 

RASA4 BRCA 

RELL2 BRCA 

RGS4 BRCA 

RIN2 BRCA 

RNF144B BRCA 

RNF168 BRCA 

RPL35A BRCA 

RPL37A BRCA 

RPRM BRCA 

S100A4 BRCA 

SCARA3 BRCA 

SCN3B BRCA 

SESN1 BRCA 

SESN2 BRCA 

SESN3 BRCA 

SH3BGRL3 BRCA 

SH3BP4 BRCA 

SHISA5 BRCA 

SLC38A2 BRCA 

SLX4 BRCA 

SSR4 BRCA 

SYTL1 BRCA 

TCEAL6 BRCA 

THEM4 BRCA 

TIGAR BRCA 

TIPARP BRCA 

TMIGD2 BRCA 

TRIAP1 BRCA 

TRIM22 BRCA 

TRIM25 BRCA 

TRIP11 BRCA 

TSC1_TSC2 BRCA 

TWF1 BRCA 

UCHL3 BRCA 

ULK3 BRCA 

USP28 BRCA 

USP4 BRCA 

USP9X BRCA 
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UXS1 BRCA 

VRK2 BRCA 

WASHC2A BRCA 

WRAP53 BRCA 

ZBTB2 BRCA 

ZBTB7A BRCA 

ZMAT3 BRCA 

ZNF420 BRCA 

ZNF506 BRCA 

ZNF768 BRCA 

ZNRF2 BRCA 

Table 21: Top 5% candidate genes obtained with wPPI for BRCA. 
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C.4 Drugs with highest performance in drug response prediction  

Drug Name Drug Target Drug Target 
Pathway 

R Whole        
Genome R Seed Genes R All wPPI 

genes 
R top 5%  

wPPI genes 

Tozasertib 
AURKA, AURKB, 

AURKC, others 
Mitosis 0,390886 0,330962 0,378349 0,507688 

MK-1775 WEE1, PLK1 Cell cycle 0,234541 0,416909 0,3676 0,455271 

AZD7762 CHEK1, CHEK2 Cell cycle 0,459132 0,401807 0,486379 0,428097 

Teniposide  DNA replication 0,136477 0,2678 0,292931 0,392465 

BDP-

00009066 

MRCKB_HU-

MAN 
Cytoskeleton 0,225545 0,252586 0,20693 0,383094 

AZD6738 ATR Genome integrity 0,264725 0,233921 0,288025 0,378632 

Alisertib AURKA Mitosis 0,199881 0,243214 0,26493 0,374932 

Lapatinib EGFR, ERBB2 EGFR signaling 0,23795 0,24258 0,235349 0,365944 

Acetalax  Unclassified 0,233922 0,293219 0,263342 0,352011 

Mitoxantrone  DNA replication 0,226403 0,262313 0,252516 0,334954 

PF-4708671 S6K1 
PI3K/MTOR sig-

naling 
0,096943 0,250757 0,229969 0,333649 

Talazoparib PARP1, PARP2 Genome integrity 0,250895 0,269377 0,204998 0,328013 

Afatinib ERBB2, EGFR EGFR signaling 0,374082 0,27585 0,324955 0,317749 

Phenformin Biguanide agent Other 0,001037 0,099849 -0,01549 0,314599 

Fludarabine  Unclassified -0,04923 0,406979 0,102287 0,302846 

Linsitinib IGF1R IGF1R signaling 0,046492 0,080315 0,192044 0,288236 

Midostaurin 
PKC, PPK, FLT1, 

c-FGR, others 
Other 0,100154 0,036091 0,215258 0,286401 

Ipatasertib 
AKT1, AKT, 

AKT3 

PI3K/MTOR sig-

naling 
-0,00205 0,22391 0,058412 0,282306 

LGK974 PORCN WNT signaling 0,208171 0,138621 0,231873 0,275009 

Sapitinib 
EGFR, ERBB2, 

ERBB3 
EGFR signaling 0,322194 0,351216 0,356562 0,267933 

Ispinesib Me-

sylate 
KSP Mitosis 0,185426 0,234234 0,093978 0,263703 

Zibotentan 
Endothelin-1 re-

ceptor (EDNRA) 
Other -0,05233 -0,04796 -0,02467 0,260703 

Cytarabine Antimetabolite Other 0,113954 0,130744 0,084259 0,246953 

Docetaxel 
Microtubule sta-

biliser 
Mitosis 0,157346 0,002614 0,244906 0,243585 

Crizotinib MET, ALK, ROS1 RTK signaling 0,157913 0,312602 0,103864 0,241391 

CP724714 ERBB2 RTK signaling 0,188894 0,252839 0,274771 0,232046 

AZD5363 
AKT1, AKT2, 

AKT3, ROCK2 
Other, kinases 0,02474 0,105357 0,035511 0,225739 

Trametinib MEK1, MEK2 
ERK MAPK sig-

naling 
0,237925 0,19375 0,275602 0,219384 

Dasatinib 

ABL, SRC, 

Ephrins, PDGFR, 

KIT 

Other, kinases 0,234148 0,285279 0,29615 0,217422 
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Gemcitabine 
Pyrimidine anti-

metabolite 
DNA replication 0,104439 0,120705 0,085044 0,216272 

XAV939 TNKS1, TNKS2 WNT signaling 0,034207 0,09833 -0,02107 0,213758 

Ponatinib 

ABL, PDGFRA, 

VEGFR2, 

FGFR1, SRC, 

TIE2, FLT3 

Other, kinases 0,168379 0,188671 0,100644 0,211884 

Avagacestat 
Amyloid beta20, 

Amyloid beta40 
Other -0,00808 -0,02752 -0,02076 0,211646 

BX-912 PDK1 (PDPK1) Metabolism 0,145743 0,246326 0,139803 0,210417 

Podophyllo-

toxin bromide 
 Unclassified -0,12984 0,036123 -0,02832 0,209728 

Nutlin-3a (-) MDM2 p53 pathway 0,0765 -0,12067 0,134132 0,207812 

GW-2580 CSF1R RTK signaling 0,091003 0,079199 0,04054 0,206578 

Vincristine  Mitosis -0,0706 -0,05127 -0,01498 0,205185 

Epothilone B 
Microtubule sta-

biliser 
Mitosis -0,03722 0,230779 0,017455 0,203053 

WHI-P97 JAK3 Other, kinases 0,091391 0,238935 0,116409 0,200884 

BMS-536924 IGF1R, IR IGF1R signaling 0,24459 0,13779 0,389783 0,199746 

Dihydro-

rotenone 
 Unclassified 0,052686 0,141683 0,064662 0,198684 

Cisplatin DNA crosslinker DNA replication 0,106475 0,029424 0,039025 0,198253 

JNK-9L JNK2, JNK3 
JNK and p38 

signaling 
0,008019 0,211268 -0,01674 0,193442 

PD0325901 MEK1, MEK2 
ERK MAPK sig-

naling 
0,187155 0,186555 0,114792 0,192811 

Amuvatinib 
KIT, PDGFRA, 

FLT3 
RTK signaling 0,053505 0,17025 0,051041 0,19268 

ZM447439 AURKA, AURKB Mitosis 0,029657 0,091725 0,115051 0,186553 

Telomerase In-

hibitor IX 
Telomerase Genome integrity 0,220479 0,101308 0,259824 0,18295 

Ibrutinib BTK Other, kinases 0,150802 0,224171 0,087624 0,178849 

Bortezomib Proteasome 
Protein stability 

and degradation 
0,083515 0,156998 0,268667 0,176349 

Table 22: Top 50 drugs with the highest performance in machine learning models build with the top 5% 
ranked wPPI genes. 
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Appendix D: Curriculum vitae  
 
WORK EXPERIENCE 
 
Scientific Researcher (June 2024 – Current) 
Computational Health Center, Helmholtz Center Munich, Germany 
 

• Statistical analysis of clinical questionnaire data 
• Multi-omics (metabolomics, proteomics, lipidomics) analysis and integration 
• Focus on Amyotrophic Lateral Sclerosis 
• Manuscript preparation, scientific presentations and writing scientific reports 
• Work developed within the premodiALS international consortium 
 
Ph.D. Candidate (May 2019 – May 2024)  
Computational Health Center, Helmholtz Center Munich, Germany 
 

• Development and application of statistical and ML tools for biomarker discovery 
• Implementation of curve fitting methods based on sigmoid, GP and linear models 
• Creation of a network-based approach to enhance feature space in drug response prediction 
• Applications in cancer pharmacogenomics, neurodegenerative diseases and COVID-19 
• Manuscript preparation, scientific presentations and support in grant proposals 
• Collaborations with international research partners and supervision of students 
 
Engineer at Toyota Motor Europe via AKKA Technologies (April 2018 – March 2019)  
Toyota Motor Europe NV/SA, Belgium 
 

• Creation of a Surrogate Modelling toolbox for drivetrain applications based on GP 
• Application of multi-objective optimization methods 
• Presentations for cross-disciplinary internal discussions 
 
EDUCATION 
 
Ph.D. fellowship in Biology (May 2019 – Current)  
Ludwig Maximilian University of Munich, Germany 
 
M.Sc.: Mathematics and Applications (September 2015 – December 2017) 
Technical University of Lisbon, Portugal 
Eindhoven University of Technology, Netherlands 
 
B.Sc.: Applied Mathematics and Computation (September 2011 - July 2016)  
Technical University of Lisbon, Portugal 
 
SKILLS 
 
Languages  
Portuguese (Native), English (Fluent), Italian & Spanish (Conversational), German (Basic) 
 
Programming  
R (Advanced), MatLab, Python, Shell Scripting, SQL and Mathematica (Intermediate) 
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Developer tools  
Git, CI, HPC, RMarkdown, BioConductor packages, Jupyter Notebook, LaTeX 
 
ADDITIONAL INFORMATION 
 
Awards  
• Top 10% most downloaded paper at Clinical and Translational Medicine Journal, 2022 
• ECMI certificate for a Master in Mathematics for Industry, 2017 
• Academic Merit Diploma at Technical University of Lisbon, 2016/2017 
 
Extras  
• Online presentation of bioinformatic analysis at ENCALS meeting in Stockholm, July 2024 
• Creation & Publication of the wPPI BioConductor package, 2021 
• Poster presentation in the DZD Advisory Meeting in Hohenkammer, December 2019 
• Poster presentation in the DZD Diabetes Research School at IRB Barcelona, September 2019 
• Participation in the ECMI Modelling Week at Lappeenranta Univ. of Technology, July 2017 
• Member of the SCIFI committee at Eindhoven Univ. of Technology, February-July 2017 
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