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Zusammenfassung

Die Optimierung des Straßenverkehrs senkt Kosten und schont die Umwelt. Um effiziente
Routen zu finden, sind Mobilitätsdienste wie automatisierte Routenplaner auf Basis dig-
italer Straßenkarten mittlerweile allgegenwärtig. Zusätzliche Echtzeitinformationen über
den sich ständig ändernden Zustand der Umgebung bringen weitere Verbesserungen. Diese
räumlich-zeitlichen Informationen sind aufgrund der komplexen Umgebung, insbesondere
der Vielzahl unabhängiger Akteure, nicht deterministisch und müssen daher durch Sen-
soren erfasst werden. Die erfassten Daten sind jedoch oft nicht perfekt. Beispielsweise
können durch unvollständige Sensorabdeckung Beobachtungslücken entstehen. Eine re-
duzierte Anzahl von Sensoren kann sogar gewollt sein, denn es muss ein Kompromiss
zwischen der Qualität von Mobilitätsdiensten und damit verbundener Kosten gefunden
werden. Dieser Zielkonflikt besteht auch im Hinblick auf andere Eigenschaften von Mobil-
itätsdiensten, etwa der Anzahl dafür benötigter Fahrzeuge. Die Lösung dieser Zielkonflikte
ist ein wichtiger Teil der Optimierung.

Um den Straßenverkehr zu optimieren, untersucht diese Dissertation, inwiefern Mobil-
itätsprobleme effizient unter Verwendung von Echtzeitdaten gelöst werden können. Da
Installation und Betrieb von Sensoren mit Kosten verbunden sind, werden Methoden zur
Auswahl von Standorten für stationäre Sensoren behandelt. Mobile Sensoren können eine
Alternative zu stationären Sensoren sein. Da deren Abdeckungsbereich dynamisch ist,
werden Methoden zur Abschätzung unbeobachteter Zeiten und Orte vorgestellt. Weiter-
hin sind die Auswirkungen verschiedener Datenqualitäten auf die Lösungen von Mobil-
itätsproblemen nicht offensichtlich. Daher wird betrachtet, wie die Güte verschiedener
Methoden und Datenqualitäten bewertet und verglichen werden kann.

Die genannten Beiträge zu den Themenfeldern Beschaffung, Verbesserung und Evalu-
ation von Daten werden mit realen Mobilitätsproblemen illustriert: Die Suche eines freien
Straßenparkplatzes kann mittels Methoden, die Echtzeitdaten verwenden, effizient gelöst
werden. Weiterhin werden Planungsmethoden für kooperative Multiagentensysteme, die
Flottendaten gemeinsam nutzen, vorgestellt. Eine weitere Anwendung ist die Position-
ierung von Rettungswagen: Betreiber von Notfalldiensten möchten verletzte Personen
schnellstmöglich erreichen. Eine Anzahl von Rettungswagen muss daher optimal im Ein-
satzgebiet verteilt werden. Bisherige Methoden dafür wurden auf Fahrzeuge mit Ver-
brennungsmotoren ausgelegt. Elektrische Rettungswagen benötigen allerdings signifikante
Ladezeiten. Daher wird in dieser Arbeit eine neue Problemdefinition samt Lösungsmethode
für die Positionierung elektrischer Rettungswagen vorgestellt.
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Abstract

Optimization of street traffic lowers costs and reduces environmental harm. In order to
obtain efficient routes, mobility services, such as automated route planners using digital
street maps, are now ubiquitous. Adding real-time information regarding the constantly
changing state of the environment brings further improvements. Due to the environment’s
complexity, especially the large number of independent actors, this spatio-temporal data
is non-deterministic and thus must be obtained through sensors. However, obtained in-
formation is often not perfect. For example, observation gaps may result from incomplete
sensor coverage. A reduced sensor set may even be intended, as a trade-off between mobil-
ity service quality and associated cost must be made. This trade-off also extends to other
characteristics of mobility services, e.g., the amount of vehicles necessary for providing the
service. Solving such trade-offs is an important part of optimizing street traffic.

In order to optimize traffic, this thesis investigates how mobility problems can be effi-
ciently solved using real-time information. As the installation and maintenance of sensors
to obtain such information comes with a cost, methods for selecting locations of stationary
sensors are compared. A method with higher cost efficiency than previously existing solu-
tions is introduced. Mobile sensors can be an alternative to stationary sensors. As their
coverage area is dynamic, imputation methods to obtain probabilities for unseen times
and locations are presented. Further, the effects of different data qualities on solutions to
mobility problems are not obvious. Thus, methods for evaluating performance of different
methods and data qualities are considered.

The stated contributions to the topics of obtaining, improving and evaluating data
are illustrated using real-world mobility problems: The on-street parking search problem
can be solved by methods that make use of real-time data. Further, cooperative multi-
agent planning methods using shared fleet data are presented in this thesis. Another
application is the ambulance redeployment problem: Emergency medical service providers
aim to reach injured persons as fast as possible. Therefore, a number of ambulances must
be optimally distributed over the operational area. Previous distribution methods were
designed for combustion engine vehicles. Electric ambulances, however, need significant
charging times. Thus, this thesis presents a novel problem formulation suitable for electric
ambulances, as well as a method for solving this new problem.
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Chapter 1

Introduction

Mobility is a central aspect of life. Attending a workplace, visiting a service provider,
and joining social gatherings are pillars of modern society and economy. In many places
all over the world, individual transportation by private car is a major concern. High
load on street networks causes traffic congestion, especially during rush hour. Scarcity
of street-network resources such as parking bays or charging stations for electric vehicles
further contributes to congestion: Drivers searching for such resources are slowing down
traffic and continue to use street space after they have reached their destination. This is
especially problematic in case available resources are rare, e.g., most encountered parking
bays are occupied [29]. Traffic congestion diverts time from more valuable activities: Not
only the quality of life of individuals is affected, but workforce productivity significantly
suffers from time loss [4, 42]. Further costs are incurred by increased fuel use, maintenance
and fleet sizes. Finally, congestion directly increases pollution due to the widespread use of
fossil fuels. CO2 emissions are the main driver of the current climate change that increases
the number of hot temperature extremes, heavy precipitation events and drought events
in many regions all over the world [23]. Therefore, optimizing transport is an important
endeavor in order to reduce social, economic and environmental cost.

This optimization can be done by two approaches: Optimizing vehicles and optimiz-
ing their routes. Electric vehicles can be used to reduce environmental harm. However,
optimization of trips is still necessary, as electric vehicles still use energy and are affected
by congestion and inefficient routes. More efficient trips not only reduce the negative im-
pact of the optimized trips, but decrease pressure on the street network as a whole. This
improves traffic flow for others, which brings additional indirect benefits. One way to op-
timize trips is to prevent unnecessary detours. For example, the on-street parking search
problem is prone to detours: If a vehicle has to be parked on a street near the destination
and parking space is rare, the resulting search phase adds further driving until the vehicle
is parked [88]. Depending on the search strategy, some of the paths driven during search
may be not necessary and could be avoided in order to reach the goal earlier. Optimization
of transport also pertains to ambulances of Emergency Medical Service (EMS) providers.
One of their core responsibilities is a quick response to health emergencies in order to
assess the situation, perform health-stabilizing actions, and transport patients swiftly to
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hospitals where further measures can be provided [48]. A low response time is critical
because survival and recovery rates decline quickly over time in severe health conditions
such as cardiac arrest [71, 16]. This time is significantly impacted by the distribution
of waiting ambulances and their crews over the covered area [40], which is an interesting
spatio-temporal problem. Existing problem formulations and their solutions, however, do
not consider the limited battery capacity of current electric vehicles. In summary, both
the optimization of trip times and the increased use of electric vehicles are proper ways to
reduce the social, economic and environmental cost of transportation.

Optimization of trips especially benefits from the growing availability of data and com-
putational resources that enable tackling such problems using computer science approaches
[65]. For example, calculating the fastest (or otherwise optimal) route between a deter-
mined origin and destination is now a standard feature of every modern car and mobile
phone. The corresponding routing problem has been subject to much research and engi-
neering due to the mentioned benefits of reducing travel times or energy use. In case a
vehicle has to be parked at a destination, an extension to this problem surfaces if multiple
possible parking opportunities exist. This parking search problem is usually complicated
by not knowing the current, or future, occupancy of parking spots. Solving it brings further
reduction of travel times. Additionally to the street graph, parking bays are increasingly
included in digital maps. Real-time data, such as parking occupancy data, can be obtained
by sensors. Sensors can be permanently installed at static locations, e.g., in-ground sensors
at parking bays. Data can also be recorded by mobile sensors, i.e., vehicles sensing the
availability state while passing by the location. Both variants require significant expenses
for implementing and maintaining sensor networks. In the case of electric ambulances, their
current positions and energy levels can be determined by the vehicles and then submitted
to a central planning instance in real time. Together with expected incident occurrence by
area, this is the foundation for real-time ambulance redeployment decisions that optimize
ambulances’ base stations in order to reach incidents as fast as possible.

Additionally to real-time data, estimates of future states bring further benefits. In
the parking use-case, the activity between the current time and future developments until
the arrival at parking bays is unknown because competing agents normally do not share
information. Thus, their future arrival or departure may change the state of resources.
This creates uncertainty about the future state of parking bays even if the real-time data
is always fully known. As the agent’s trip towards the respective destinations takes time,
this can negatively influence the outcome of a parking intention. A suitable solver should
therefore not only consider momentary snapshots but also information about the dynamics
of parking availability, e.g., estimated inflow and outflow. This dynamic may follow com-
plex patterns. For example, the parking situation in a residential area may be very stable
at nighttime, and may change frequently in a busy shopping street. In the ambulance use-
case, future energy usage must be considered when making redeployment decisions. For
example, an ambulance may be low on energy and therefore required to be stationed at a
base station with a charger for a while. Its energy consumption can be estimated based
on past behavior, as can the time needed for charging. Finally, time and location of future
incidents are unknown. This demand needs to be predicted using appropriate methods,
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e.g., based on historic data combined with inputs such as population density. No matter
the use-case, the real-time state of the environment is often partially unknown: Gaps in
the sensor network may create permanent blind spots. Temporary blind spots are caused
by mobile sensors being out of an area. In these cases, a now-cast is necessary, i.e., the
prediction of the current state given data from other locations at the same time.

This thesis presents contributions to the state of the art of using real-time data to
better solve mobility problems. Contributions are clustered into four topics: 1) Problem
formulation and methods to find solutions to mobility problems. 2) Obtaining data, e.g.,
through sensors. 3) Post-processing of data, e.g., if sensor gaps are present. 4) Evaluating
the previous steps with regard to the effects of different data qualities in order to arrive at
efficient mobility systems. The thesis takes two common mobility problems as examples:
The parking search problem and the ambulance redeployment problem. Both benefit from
additional data. However, this data needs to be obtained first, e.g., by a set of sensors. As
the raw data may not cover all locations and/or times, it may be beneficial to improve it,
e.g., through spatio-temporal interpolation. When using data in a real application, it is
prudent to compare the expected use of certain data qualities, as improving data quality
is usually connected with a cost that may or may not be justified. It should be noted that
these contributions do not only concern the stated problems, but can be applied to benefit
other mobility problems.

The remainder of this thesis is structured as follows: Chapter 2 describes the research
area of this thesis including problem definitions and related work. Chapter 3 gives an
overview of contributions of this thesis by identifying and answering a set of core research
questions. The subsequent chapters (4, 5, 6, 7, and 8) contain peer-reviewed publications
that detail the contributions of this thesis. For each publication, the individual contri-
butions of the respective authors are stated at the beginning of its respective chapter.
Chapter 9 then concludes the thesis by giving a summary and an outlook.
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Chapter 2

Research Area

This chapter gives an overview of the research area of this thesis. Key concepts and
problems are presented together with approaches published in related work.

First, the term “mobility problem” and other key concepts used throughout this thesis
are defined. Two important mobility problems are introduced, namely the parking search
problem and the ambulance location problem. The main driver of this thesis is that
real-time data enables better solutions to mobility problems. Thus, ways to obtain better
solutions by using additional real-time spatio-temporal data regarding the environment are
shown. Ways to obtain real-time data are then described. Because obtained data may be
incomplete, common approaches for improving real-time data are then presented. Finally,
as various data qualities come with different cost, ways to achieve a preferable cost-benefit
trade-off between data quality expenses and resulting solution quality are discussed.
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2.1 Mobility Problems
In this thesis, mobility means the movement of entities within a spatial environment to
more beneficial locations. Entities can be persons, goods or vehicles. The benefit, and
therefore value, of a new location may be due to certain actions possible by or with this
entity at this location. Beneficial locations are not necessarily static for a given entity.
For example, a person may wish to be at home at night but in an office during the day.
A mobility problem consists of a set of spatial requirements, such as a specified entity
being at a certain location, a number of locations covered by multiple entities, or a single
entity having visited a certain number of locations. It concerns a specified environment, i.e.,
a street network and all relevant entities. The environment state is affected by a sequence
of movement actions. If a sequence of actions transforms the environment in a way that
satisfies all requirements, it is called a solution to the mobility problem. In its simplest
form, a mobility problem asks for a specified entity to be at a certain location, i.e., the
route between two given locations, a common problem solved by in-car navigation systems.
Its solution is a series of actions, one for each intersection encountered until the destination
is reached. More complicated mobility problems require a multitude of requirements to be
fulfilled. For example, the Traveling Salesman Problem (TSP) is a well-known problem
with multiple locations to be visited by a given entity [51]. The cost of a solution is the
effort or expense required to execute it. Its metric depends on the underlying use-case.
Travel time is often used as the metric because it directly covers economic costs such as
wages and vehicle occupation. Further, time spent driving is usually perceived to be less
valuable than time spent at the destination. Recent environmental concerns have led to
the use of environmental impact metrics and metrics combining environmental impact and
travel time [36]. Naturally, in order to use resources efficiently, a good solution should
minimize the cost metric.

Environments with many active entities taking actions that change the environment
state cause complex dynamics. Actions of one entity can influence the outcomes of an oth-
erwise independent entity. Whether this is considered by a mobility problem depends on
the use-case and stance of the involved party. For example, a person looking for a parking
opportunity typically aims to find a parking opportunity as fast as possible without consid-
ering the goals of other traffic participants. In this case, the solver’s optimization horizon
ends when a parking opportunity is found. On the other hand, a more global approach
optimizes multiple entities over a larger time span: It may, for example, be better (with
regard to this global point of view) to send a first user to a parking bay with slightly longer
driving time if this allows another user to reach the destination much faster. Optimizing
over a larger horizon is especially important for the ambulance location use-case: Letting
a patient in serious condition wait for an exceptionally long time poses a severe health
risk and thus must be prevented by looking at a larger picture, i.e., moving ambulances
to areas with lacking coverage beforehand. Therefore, ambulance placement algorithms
optimize a long horizon response time metric [101]. This extended scope typically means
that solvers are more complex and must also be evaluated over an extended time span in
order to obtain conclusive performance reports.
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(a) Paved footpaths seen from above. Cropped
aerial photo by Gary Stebbins, CC-BY 4.0

(b) Visualization of graph representation.
Edges labeled with actual distance (meters).

V = {1, 2, 3, 4, 5, 6}
E = {(1, 2, 20), (1, 3, 27), (2, 4, 31), (2, 5, 69), (3, 4, 26), (3, 6, 64), (4, 5, 37), (5, 6, 52)}
(c) Textual form of graph representation. Nodes in V are indexed left to right. Edges in E are
triples, giving indices of two nodes connected by the edge followed by its actual length.

Figure 2.1: Section of the Edmonds Civic Center Playfield footpaths in Washington, USA

A key element of mobility problems is the environment. Mobility is usually constrained
to a set of interconnected pathways that enable a safe and speedy locomotion, e.g., a
street network. This view is taken throughout this thesis, i.e., all possible travel routes
are covered by a graph structure mirroring the real-world pathway network: Pathways are
represented by edges E that connect nodes V , which represent real or virtual points in the
underlying space, e.g., our three-dimensional Euclidean reality [14]. These nodes include
origins and destinations. Each edge connects exactly two nodes, i.e., E ⊆ N × N . As such
a graph is defined as tuple G = (V, E). Each vertex v ∈ V may have additional attributes
such as its real world coordinates or type. Each edge e ∈ E is also usually associated
with certain attributes, such as length of the road or the time needed to traverse it. In
routing applications, it is common to include the spatial distance and the speed limit of the
corresponding road. Node and edge labels are chosen according to the use case. The use
case also determines the degree of abstraction and the entities contained or attached to the
graph. For example, tunnels and their height may be included in case vehicles may in some
configurations not be able to safely pass through them. One example of a mapping from
real environment to graph can be seen in Figure 2.1: Figure 2.1a shows an aerial photo
of footways. Figure 2.1b shows a visualization of the corresponding graph: Nodes (black
circles) indicate the coordinates of intersections. Edges give all possible transfers, labeled
with their real-world spatial distances. A textual representation of the graph, similar to a
representation inside computer programs, is given in Figure 2.1c. Movement graphs for all
parts of the world are prepared and licensed by public and private institutions, as well as
community-driven projects, such as the OpenStreetMap initiative.
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(a) Parking bays in one-way street (left). (b) Parking bays at intersection.

Figure 2.2: On-street parking bays (rectangles with dark borders) in Melbourne, Aus-
tralia. Parking bay data by City of Melbourne (https://data.melbourne.vic.gov.
au/explore/dataset/on-street-parking-bays), CC BY license. Map data by Open-
StreetMap contributors, ODbL license. Base map by OpenStreetMap France, CC BY-SA
license.

2.1.1 Parking Search Problem

When arriving at a destination by one’s own car, it is necessary to park at a suitable
parking spot. This need for parking can be fulfilled by three categories of parking types.
The most convenient is a reserved, private parking bay. The second is a shared parking
facility such as a public parking garage (off-street parking). The third is curbside parking
(on-street parking), i.e., parking directly at the side of a street. Especially in residential
areas, public on-street parking is often the only choice. A street naturally provides only
a limited supply of parking bays. In many cities, this results in a shortness of parking
opportunities, creating the need to search for a parking bay within the destination area.
This requires additional time for the parking process which contributes to traffic jams,
wastes time and resources, and pollutes the environment [88]. In contrast to public on-
street parking, private and off-street parking are less complicated: Private parking at an
exclusively reserved location does not come with availability difficulties. While off-street
parking may be difficult to find in some situations, many solutions for guiding drivers
to suitable off-street parking lots exist [5, 20]. This thesis therefore concerns itself with
the reduction of parking search time when on-street parking opportunities are rare, i.e.,
the on-street parking search problem. Figure 2.2 shows two exemplary on-street parking
situations: In Figure 2.2a, a number of parking bays is located in a one-way street that

https://data.melbourne.vic.gov.au/explore/dataset/on-street-parking-bays
https://data.melbourne.vic.gov.au/explore/dataset/on-street-parking-bays
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are not immediately accessible when arriving from the lower left corner. Figure 2.2b shows
an intersection in which more parking bays are located on the left street segment. In both
cases, knowing the location of parking bays is helpful when looking for a parking bay in
the vicinity.

Formally, the parking search problem consists of the following parts: A street graph
G = (V, E) with known edge traversal costs. A subset of V are on-street parking bays, each
fitting exactly one vehicle and thus having a binary availability state. Third, the origin
o ∈ E and destination d ∈ E of the agent, i.e., the requirements of the problem. Its solution
is a route r = (e1, ...en), ei ∈ E, ∀j ∈ [1, n − 1] : ej = (u, v) ⇒ ej+1 = (v, w); u, v, w ∈ V
leading from origin to a parking bay available at arrival time. The cost of the route is the
sum of costs of traversed edges c(r) = ∑n

i=1 c(ei). As a parking bay can be far away from
the destination, it is prudent to further add the walking time between parking bay en and
actual destination to the cost metric: ĉ(r) = c(r) + w(en, d) with w being the walking cost
function. An optimal solution to the parking search problem minimizes the total trip time
r̂ = argminr ĉ(r) under the constraint that en is available at arriving time.

It should be noted that the parking search problem is trivial if lots of free parking
bays are available, i.e., even advanced methods bring only small advantages if parking
opportunities are spread out evenly over an area and parking opportunities are not rare [97].
This case is therefore not interesting from a computer scientist’s point of view. Further, the
disadvantages of parking search, such as additional time requirements, pollution and traffic
congestion, are especially large in case free parking opportunities are rare. Therefore, this
thesis focuses on the scenario of parking opportunities being rare.

2.1.2 Ambulance Location Problem
Ambulance crews aim to reach emergency sites as fast as safely possible as survival and
recovery rates decline quickly over time in severe health conditions such as cardiac arrest
[71, 16]. It is therefore crucial to aim for low distances between ambulances on standby
and potential accident scenes so that the nearest available ambulance arrives at the scene
quickly in case of an emergency [26]. Minimizing distances also reduces the risk for an
ambulance to be involved in a traffic accident while driving to the scene and reduces de-
ployment cost [26]. Large cities or metropolitan areas therefore distribute ambulances over
the service area in order to minimize emergency response times. Because ambulances need
to be cleaned and resupplied between emergency runs, stand-by locations are restricted to
a fixed set of base stations, such as hospitals or fire stations [32]. Figure 2.3 illustrates
the emergency medical service network of San Francisco, USA: Figure 2.3a shows the ac-
tual locations of hospitals and base stations within the city. The distribution of hospitals
follows the population density, which is highest in the north-east of the peninsula. Fig-
ure 2.3b adds an exemplary assignment of a limited number of ambulances to base stations.
This particular assignment also follows population density while at the same time having
ambulances in more remote areas to ensure low response times in these areas.

The ambulance distribution problem therefore asks for an assignment of ambulances to
base stations that optimizes the emergency response service, limited by a certain number
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(a) Locations of hospitals (markers with house
icons) and base stations (markers without icon).

(b) Assignment of 15 ambulances (markers with
briefcase icons) to base stations.

Figure 2.3: Ambulance scenario in San Francisco, USA. Map data by OpenStreetMap
contributors, ODbL license.

of available ambulance vehicles. Ideal solutions optimize a response time metric. In the
context of the ambulance distribution problem, response time is defined as the time between
an ambulance’s departure from its base station and its arrival at the scene [40]. Several
response time metrics are possible. A common choice is the average response time (ART)
over the number of processed incidents [15]. However, each patient in a life-threatening
situation requires a swift response. A single very large delay cannot be equalized by a high
number of slightly faster responses. Therefore, ambulance service providers often use the
fraction of responses within a certain response time threshold (RTT) as a response time
metric [63], e.g., aim to reach 90% of all incidents within 10 minutes.

An early problem formulation for the distribution of ambulances is called the Ambu-
lance Location Problem (ALP) [15, 62, 40]. It asks for a mapping M : A → W that assigns
each ambulance to a certain base station. This mapping is fixed, i.e., an ambulance always
returns to its assigned base station. A static approach has the benefit of low complexity
as no further decisions are necessary once the mapping has been decided. A weakness of
the ALP formulation’s fixed mapping becomes apparent when considering that due to a
certain combination of distress calls, two ambulances may end up nearer at the respective
other’s base station than their own. In this case, it would be preferable for the ambulances
to switch base stations in order to reduce travel time. Such situations can be better con-
sidered by a dynamic mapping, i.e., an ad-hoc assignment of base stations based on the
actual situation. This can be found by solving the Real-Time Ambulance Redeployment
Problem or Dynamic Ambulance Redeployment Problem (DAR) [31, 40, 92]. Its underly-
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Figure 2.4: Simplified schematic overview of the EMS process with redeployment.

ing ambulance process is shown in Figure 2.4: After an ambulance completes its mission
at the incident scene or hospital, it is not forced to return to its previous base station but
may return to a different one. This re-assignment of its base station is called redeployment.
Resulting solutions can react to the shifting distribution of ambulances and thus generally
yield better results than solutions for static formulations due to the volatility of the prob-
lem [40]. Formally, the DAR is defined as follows [40]: Its environment state contains a
street graph as described above, a set of ambulances A, a set of hospitals H ⊆ V , and a set
of base stations W ⊆ V . A certain ambulance demand di is assumed for each node in the
street graph. Additionally to the standard driving time, it also includes driving times with
siren τi,j for each pair of nodes. Each time an incident has to be handled, the nearest avail-
able ambulance is dispatched to the incident and follows the process given in Figure 2.4.
Determining the next base station to be redeployed to is based on the environment state
immediately before the decision is taken.
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2.2 Solving Mobility Problems

Requirements Movement Graph Domain Knowledge Real-Time Data

Solution to Mobility Problem

Figure 2.5: Inputs for solving a mobility problem.

Figure 2.5 shows inputs for solving mobility problems: First, the requirements to be
fulfilled for the mobility problem to be solved and the movement graph as both described
in Chapter 2.1. Requirements and movement graph are sufficient to obtain solutions. Addi-
tional benefit can be achieved by including domain knowledge, such as knowing certain
rules or characteristics of the underlying processes and involved entities. It includes vehicle
characteristics, and characteristics of involved processes such as unloading times, typical
traffic patterns, etc. This knowledge can be gained by analyzing the problem and observing
environment dynamics, i.e., it represents experience with the respective problem. It may
be obtained by mobility researchers or data-driven learning systems. A central point of
this thesis is that additional real-time data enables better solutions to mobility problems.
Real-time data reduces uncertainty about the current environment state and thus enables
solutions to be better tailored to current circumstances. One example is a navigation sys-
tem that is able to produce solutions based on the street graph and traffic rules, but further
profits from real-time data, especially in extreme situations like temporary street closures
or severe traffic jams. Real-time data is conceptually different from domain knowledge, as
it cannot be learned but must be freshly obtained from the environment. It comes in dif-
ferent qualities as exemplified in Figure 2.6 for parking availability data: In the best case,
the states of entities are perfectly known, e.g., through direct sensor coverage. In other sce-
narios, only estimates are available. If future states are concerned, state values are usually
probabilistic as mobility problems are typically subject to complex system dynamics, e.g.,
caused by unknown motivations of individual traffic participants. A probabilistic problem
formulation subsumes both types of data and is therefore preferable. In case a method
for solving a mobility problem requires non-probabilistic input, it is possible to “convert”
probabilistic data to non-probabilistic data by sampling from the respective distribution
or following a maximum-likelihood approach.

To make use of the existing work regarding solving problems computationally, it is
often beneficial to fit mobility problems into general formal frameworks for which solvers
have been established. For example, many mobility problems can be formalized as Markov
Decision Processes (MDP). An MDP is a tuple (S, A, C, P ) of the following elements [96,
84]: A state space S that contains all possible states of the environment. Each state s ∈ S
contains all relevant information, such as the current location of the entities. Further, a set
of actions A that can be taken in order to change the environment state. A state transition
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(a) Discrete states (available or occupied). (b) Probabilistic state knowledge.

Figure 2.6: Availability states of on-street parking bays. Base map license as in Figure 2.2.

probability distribution P (s′|s, a) that gives the probability to transition to state s′ after
taking action a while in state s. And a cost function C(s, a) giving the cost of taking
action a when in state s. The solution to an MDP is a policy π : S → A that assigns an
action to each possible state. Solving the MDP means to find a policy π that maximizes a
certain optimization criteria.

Once the problem is formalized, a method to solve it, i.e., to obtain a solution that
minimizes the cost metric, has to be found. A multitude of methods for solving mobil-
ity problems have been discussed in related work. The naive method is to enumerate all
possible solutions and select the best one. However, this complete search is often compu-
tationally infeasible due to the large number of solution candidates. Even for conceptually
simple problems, such as finding the shortest route between two locations, the complexity
of the environment quickly increases the search space thus rendering naive methods such
as a brute force search infeasible. Thus, optimized methods have been devised in numerous
fields of study. Solvers can be classified into optimal and heuristic solvers: Optimal solvers
guarantee an optimal solution. For example, Dijkstra’s Algorithm is a fast optimal solver
for the Shortest Path Problem [28]. Depending on the problem, optimal solvers may be
computationally expensive. For example, the TSP is NP-complete, with a run time rising
exponentially with the number of visited cities [37]. Many common mobility problems are
instances of the Vehicular Routing Problem (a generalization of the TSP) and also NP-
complete [50]. Because this causes the computational demands to be infeasible for problem
sizes occurring in the real world, heuristic solvers are widely used. Heuristic solvers do not
guarantee optimal solutions, but solutions can be obtained in practical time frames and
are often sufficient for practical purposes.

2.2.1 Parking Search Problem
The naive approach to the parking search problem is to drive towards the destination and
start looking out for parking bays when near the destination, possibly expanding the search
radius until a parking opportunity is found [9]. This strategy is often good enough if many
available parking bays are present in the vicinity of the destination. Otherwise, resulting
detours will cost time and money. A better strategy is to not target the destination itself
but instead known locations of nearby parking opportunities, i.e., to take the number of
parking bays per street segment into account [90]. For example, if the destination lies
in a residential street that does only provide parking for residents, looking for parking in
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this street as a non-resident should be avoided. Parking search can be further improved if
the typical parking availability is known for the destination area. For example, if parking
demand is known to be low, nearer streets with only a few bays may be preferred to slightly
farther streets with many bays. On the other hand, streets with low number of bays may be
avoided if free parking opportunities are known to be very rare. A simple implementation
of parking routing is to look up the nearest group of parking bays in the street graph and
set a navigation route to this group instead of the actual destination, speculating that
one of those nearest bays might be free at arrival. Alternatively, known parking bays can
be displayed to the driver who includes this additional information when deciding on a
route to take based on intuition or other preferences [72, 12]. This can be automated by
optimizing over all possible routes using a metric that includes both the estimated time
spent to find a parking bay, and the (walking) distance to the actual destination [3].

Adding real-time information

Real-time information about availability states of parking areas or individual parking bays
enables better solutions to the parking search problem [84]. Figure 2.7 illustrates this:
Coming from the south, the western area is initially preferable due to the higher number of
parking bays. But considering the current high occupancy there and having high availabil-
ity estimates for three bays on the right side, it is preferable to instead turn right. Real-time
information about availability states can thus be used to obtain more targeted solutions.
The corresponding approach has been formalized as a Dynamic Resource Routing Problem
(DRRP) [84, 83]: Given a street graph with parking bays as described above, the goal is
to minimize the time needed to find an available resource (parking spot) and then walk to
the destination. In contrast to formulations in the preceding paragraph, resources are now
assumed to have a binary availability state and are not considered if they are known to be
not available. The states are probabilistic, i.e., a resource has a probability of being avail-
able. Known or assumed availability probability distributions can then be used to find the
fastest route. The DRRP has been modeled as a fully-observable Markov Decision Process

Figure 2.7: Coming from the south, it is preferable to turn right given the favorable
estimates for three parking bays despite the smaller number of parking bays (note left-
hand driving in this picture). Base map license as in Figure 2.2.
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(MDP): The state space contains the location of the driver, i.e., the current node in the set
of street graph nodes N , and the binary availability state of each parking bay in the set of
bays P . Actions move the driver to a neighboring node, i.e., change the state. As availabil-
ity information is contained in the state, these may also change during the time needed to
traverse between the two nodes. This can be done by a continuous time Markov model [84].
Actions are taken based on a policy that can in theory be optimally computed. However,
due to the large state space size of |N |2|P |, this is computationally infeasible for typical on-
street parking areas unless further optimizations are employed [84]. Approximate solvers
with drastically lower computational demands have been applied, such as Replanning and
Hindsight Planning approaches [82]: Replanning solves the problem for the most likely
scenario only, i.e., assumes the most likely availability state for each parking spot. This is
fast and has been shown to give good results, but stands in obvious conflict to the problem
formulation (and the real world) that does not ignore low-probability bays during parking
search. The Hindsight Planner approach includes these by repeatedly sampling possible
scenarios according to the probability model and then choosing the best action according
to all sampled scenarios [107].

2.2.2 Ambulance Location Problem
The Ambulance Location Problem (ALP) as described in Section 2.1.2 seeks a fixed map-
ping from ambulances to base stations. Various methods to obtain this mapping have been
proposed: The Location Set Covering Model assigns base stations in a way that guarantees
the coverage of each possible demand location V . Here, a demand location is said to be
covered when it can be reached within a defined driving time [99]. Other definitions of
coverage consider the expected demand at demand locations [21, 25, 75]. More sophisti-
cated methods honor the fact that ambulances may be already busy and can not actually
cover certain locations during this time, such as the Maximum Expected Covering Location
Problem (MEXCLP) approach [24] and its variations [8, 34, 59, 74].

The Dynamic Ambulance Redeployment Problem (DAR), also defined in Section 2.1.2,
on the other hand, seeks a dynamic mapping of ambulances to base stations. Methods
for solving the DAR often adapt previously existing static redeployment methods and
their optimization strategies to the dynamic case. For example, the MEXCLP method
described above has been adapted to the dynamic case by sending the ambulance that
needs to be redeployed to the base station that maximizes coverage according to the original
MEXCLP model at each redeployment step [40]. Another approach uses a reinforcement
learning approach that learns redeployment actions with real-world EMS request data:
The input for the policy learning algorithm is a vector consisting of a score for each base
station. Scores are calculated by a separate neural network based on numerous features
of the current environment state, such as the expected number of ambulance requests, the
positions of ambulances, travel times of the ambulance to redeploy, and travel times of
occupied ambulances [43].

Dynamic redeployment approaches can adapt to changing demand patterns [73]. The
demand for ambulances varies significantly because the distribution of the population varies
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during the day and week. For example, ambulance demand is generally lower at night,
especially in industrial areas on weekends, and shifts to residential areas at night [69].
Dynamic redeployment methods can integrate historical patterns into their redeployment
decisions.

Adding real-time information

Real-time data can lead to better solutions in various ways. While demand patterns can
be inferred from historic data, demand also depends on effects such as the current weather
[104]. Real-time weather monitoring therefore can improve redeployment decisions. Other
real-time data concerns the situation at hospitals: If hospitals are crowded, the patient
and crew may need to wait for several minutes until the patient can be taken over by
hospital staff [30]. Incorporating real-time data about waiting times can lower the time
until patients can be taken care of, as well as lower the necessary waiting time at hospitals
[53].

The introduction of electric ambulances introduces new challenges which can be ad-
dressed by real-time data. An electric ambulance running out of energy mid-trip causes a
temporary loss of this ambulance until another vehicle arrives to recharge it. Additionally
to the extra effort, such an event poses a severe health risk if it happens en-route to an
incident or hospital. Therefore, it is crucial to consider the real-time battery state when
making dispatch as well as redeployment decisions. Electric ambulances further benefit
from the intelligent management of charging stations as the availability of chargers at base
stations is restricted due to grid limitations or budget constraints. Sending an ambulance
with low energy to a base station with no available chargers should be avoided in order to
maximize the number of available ambulances. In conclusion, electric ambulance deploy-
ments benefit from real-time data due to their limited energy capacity and non-negligible
charging duration requirements. It is therefore important to obtain real-time data regard-
ing charging infrastructure and the battery levels of ambulances. Additional data about
active charging processes is beneficial because even though a charger may be occupied by
a charging ambulance, this ambulance may clear the charger before another ambulance ar-
rives. On the other hand, if the charging ambulance is still low on battery and another one
is already waiting, a detour to a farther away base station with better charging opportuni-
ties may be preferable. Related work does not explicitly cover these special considerations
for electric ambulances. This thesis fills this gap as described in Chapter 3.
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2.3 Obtaining real-time data
As introduced in Section 2.1, entities present in the environment have certain attributes.
Attributes can be classified by their volatility: Some attributes change never or very infre-
quently, such as the presence of a traffic light or a parking bay at a certain street position.
They can be obtained by surveying the street network once in a while, or by manual up-
dates initiated by infrastructure providers. On the other hand, high-variability attributes,
such as parking bay availability, change frequently. Real-time coverage is therefore required
for such attributes. This can be provided by sensor networks. Because real-time data en-
ables better solutions to mobility tasks, the focus of this section lies on high-variability
attributes. Attributes can further be classified as categorical or numerical. Categorical
attributes take exactly one specific value of a discrete set of values. For example, parking
bays are either occupied or available at a certain time. Numerical attributes lie on a scale
that can be used for mathematical operations, such as a battery level.

The street environment is a public space that can be observed by an interested party.
Local legislation may restrict data collection to protect the privacy of individuals, but
it is often possible to record data while maintaining the privacy of individuals by using
adequate methods [110]. Data collection can be subdivided into two categories depending
on the collection methods: First, data concerning stationary entities and secondly, data
concerning mobile entities. Both are described in the remainder of this section.

After data has been recorded locally, it can be sent to a central server for processing
[55], or be transmitted between vehicles through a vehicular ad-hoc network (VANET) [19,
27, 52]. A VANET does not require central server infrastructure and may thus be cheaper
to maintain. However, the type of information transmission is not further considered in
this thesis as it does not affect mobility problems or their solvers.

2.3.1 Measuring attributes of stationary entities
A straight-forward way to obtain data about entities at fixed locations is to manually record
them by persons on site. Manual collection is quite flexible and can be a good option
to obtain data for static attributes or for short studies concerning dynamic attributes.
However, a long term deployment may be prohibitively expensive. Automated approaches
using sensors are preferable for long term deployments as their higher initial investment
is offset by lower maintenance cost. Such automated sensor setups are described next,
starting with stationary sensors followed by mobile sensors.

Stationary sensors

The state of stationary entities can be determined by temporarily or permanently installed
stationary sensors which are placed so that their sensor range covers the entity. The
type of sensors to deploy depends on the attribute to be measured. For example, the
presence of cars at parking bays can be detected using distance sensors (e.g., infrared, radar,
ultrasonic sensors), magnetometers and pressures sensors [39] placed in or directly above
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the street surface parking lot [109, 10, 111]. Another method is to evaluate camera footage
overlooking parking bays. This has the advantage that one sensor can cover multiple
parking bays. However, processing is more challenging due to natural variability of the
scene (visibility, weather, lighting, etc.) [86]. It may also be problematic with regard to
privacy considerations.

Depending on the area to be monitored, the amount of sensors needed may be large
and thus require considerable installation and maintenance cost. Outfitting only a subset
of parking bays with sensors is cheaper, although it obviously comes with the disadvantage
of blind spots. In case a sensor can cover multiply entities, one approach is to maximize the
coverage, i.e., maximize the number of entities covered by sensors [7, 95]. Heuristics such
as simulated annealing or genetic algorithms can be used in case the optimal solution is too
computationally expensive because of a large set of sensors [70]. Another approach is to
place sensors in a data-driven fashion. This problem is known as sparse sensor placement
optimization for reconstruction (SSPOR) problem [58]. It can be used if data about the
spatial phenomenon to be measured is already available. Solutions for it often maximize
a non-spatial measure such as entropy or mutual information [49, 67]. Alternatively, the
error of a reconstruction method can be minimized [89]. In the case of parking sensors, the
data needed for data-driven approaches can be recorded by preliminary studies conducted
by persons manually observing the parking bays over a limited time. Another option is the
temporary deployment of a full set of sensors. This temporary set can then be replaced
with a reduced but permanently installed set after the optimal set has been determined.

For certain types of real-time data, no additional sensors are needed. For example, data
regarding ambulance base station chargers can be taken directly from their control units.

Mobile sensors

Data can also be recorded and transmitted by mobile sensors, i.e., sensors attached to
objects moving through the environment. These sensors may record a multitude of entities
at different times. During the time of movement between entities, they may not be in
range of any entity and thus not deliver information. This approach can be further split
into two approaches: First, deploying specialized probe vehicles whose primary mission is
to record such data. A famous example are Google Street View mapping vehicles that
have been driven over large areas and time spans in order to record pictures of streets and
other data such as air quality data [2]. However, deploying specialized probe vehicles to
obtain data comes with a cost due to maintenance and energy use. A cheaper alternative
is to collect data passively during the normal operation of vehicles, e.g., by taxis during
their regular service [11]. The disadvantage of this approach is, however, that the areas to
be recorded can not be controlled as to not inconvenience the user, causing irregular data
gaps which complicate data use. It should be noted that the spatial density of the fleet
vehicles’ distribution is varying considerably: Highly frequented areas come with a higher
number of measurements due to the higher density of vehicles. While this eases the issue
as data about highly frequented area tends to be comparatively valuable, gaps still exist
and need to be attended.
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Modern cars are commonly outfitted with a multitude of sensors to increase safety
and comfort. For example, recent cars contain ultrasonic distance sensors for collision
prevention while maneuvering near obstacles. Front-facing cameras are installed for au-
tomated emergency brake systems. Using these sensors for additional data recording can
help to reduce cost of sensing applications. In the case of parking occupancy data, data
has been obtained using ultrasonic distance sensors [61] and front cameras [38, 35]. Note
that car manufacturers typically don’t provide sensor interfaces which complicates data
access. Thus, it has been proposed to use sensors of smartphones carried in cars [57] that
can be readily accessed by custom apps.

2.3.2 Measuring attributes of mobile entities
Data about mobile entities can also be recorded by stationary and mobile sensors. For the
mobility problems covered in this thesis, this is not practical. For example, the destina-
tion of a vehicle passing a stationary sensor can generally only be determined with high
uncertainty. Similarly, the battery state of a vehicle cannot be determined from outside.
Therefore, attributes of mobile entities are usually recorded and transmitted by the entities
themselves: Sensors that measure the location, battery state and energy use area already
installed in modern vehicles. Measured values can then be transmitted to a central control-
ling instance via a radio connection such as GSM. In case the vehicle’s navigation system is
set to a certain destination, such data can be transmitted over the same connection. This
also applies to determined routes or certain targeted parking bays. If an external device
such as a smartphone is used to provide the mobility service, the relevant information can
directly be transmitted from this device. Parking destinations can be chosen by drivers
or navigation systems and shared with other traffic participants [19, 27, 52] or a central
server [55]. Data regarding ambulance positions and states are usually transmitted by
crew through radio on certain events such as arrival at the incident scene, hospital or base
station [60]. Computerized systems have been introduced that automatically determine
ambulance locations with recording devices such as GPS devices combined with a real-
time digital radio connection to the dispatch center [60, 33, 41]. Obtained data can then
be considered in ambulance redeployment, e.g., by an emergency dispatch center operator
or a computerized system.
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2.4 Improving real-time data
Deployed data recording systems often yield data of imperfect quality. This can be due to
anomalies such as malfunctions, but can also be systematic due to sensor characteristics
or sensor placement. In some cases, the set of available measurements can be sparse.
Improving data is therefore often beneficial or even mandatory. Dynamic attributes change
depending on the underlying process which makes them probabilistic, i.e., a probability
distribution over possible values can be assigned to them. Modeling and estimating these
distributions is often a key to improving imperfect data. This section gives an overview of
types of data deficits and how they can be mitigated: First, spatial gaps are considered.
This is followed by a discussion of temporal missing data that requires nowcast. Data of
future points in time can naturally not be observed. Thus, because estimates of future
states are beneficial, the topic of predicting future states is covered.

2.4.1 Filling spatial gaps
Recorded spatio-temporal data lacks in the spatial dimension if not every location is covered
by sensors, e.g., due to high installation or maintenance cost. Locations of interest within
such gaps can be interpolated by spatial interpolation algorithms which take available
measurements into account. Interpolation can be formalized as finding a function A(x) = z
that assigns a value z to each position x, constrained by the fact that it passes through
each point in a given set of N points R = {(xi, zi)} with i ∈ [1, N ] [64]. In real-world
problem settings, x is a two-dimensional location in a city coordinate system. The value z
refers to the measured domain, such as availability of a parking bay at location x.

To determine the interpolation function A, several further assumptions have to be
taken that depend on the domain [66, 64]. One assumption is that local correlations exist
and decrease with growing distance. This is exploited by the Inverse Distance Weighting
(IDW) interpolation method that blends measured values weighted by distance [87], shown
in Equation 2.1: A value A at location x is the weighted average of all available values Ai.
Weights wi(x) depend only on distance, each being the reciprocal of the distance between
the location x of interest and the location xi of the ith available value raised to the power
of α. This parameter α determines the spatial influence: Increasing α shifts weight to
nearer sensors, while a small α causes a smoother interpolation as even far away sensors
are included with comparatively large weight. IDW is beneficial for interpolating parking
availability if only a limited number of sensors is present [13]. This makes sense as the
parking pressure of neighboring parking bays should be similar due to the local nature of
the parking search process.

A(x) =
∑

i∈R wi(x)Ai∑
i∈R wi(x) , wi(x) = 1

d(x, xi)α
(2.1)

Note that spatial interpolation often uses the Euclidean distance. In the field of mo-
bility, where travel is conducted on a graph structure, it is instead natural to use graph
distance. This distance is the sum of edge lengths of edges needed to travel between two
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points. In case a certain mode of transport, i.e., transport by car, is known, it further may
be prudent to include the driving speed on edges. Driving speed can further be estimated
by known speed limits or derived from actual timestamped driving trajectories [44, 108].

2.4.2 Nowcast and Forecast given recent measurements

t − 3

Observed

t − 2

Fill

t − 1

Observed

t

Nowcast

t + 1

Forecast

Figure 2.8: Visualization of an entity’s measurement time series. Measurements are only
available for points marked with black squares. Time t is now.

Similar to the spatial dimension discussed above, the temporal dimension may also
suffer from gaps. They can occur on unforeseen, accidental outages. In this case, the latest
available data will become increasingly unreliable. Gaps also occur in normal operation
due to systematic effects, e.g., the sampling frequency being too low to track the underlying
dynamics. One such scenario is a mobile sensor network that is not able to cover all entities
within the spatial area continuously, e.g., due to a limited number of sensors or a limited
detection ranges: If sensors only visit an entity from time to time, this causes an irregularly
spaced, intermittent sampling. A reduced set of sensors may be a conscious choice in order
to lower costs and thus is an especially relevant case to consider.

Unknown temporal data falls in three categories given in Figure 2.8: Missing values
before the latest observation may be filled to improve solutions. In case the latest measure-
ment is not recent, estimate for the current state (nowcast) is needed. Forecasts may also
be used by solvers. For this thesis, gaps after the latest measurement, i.e., nowcast and
forecast, are of special importance because mobility problems benefit from real-time data
as discussed above in Section 2.2. Note that the age of the most recent measurement varies:
Some entities may have been just measured, while others may not have been visited for a
rather long time. The older a measurement, the less reliable it is. This information decay
is an interesting effect that calls for a blend of recent measurements and knowledge about
the dynamics that can be determined on historic data: If the last measurement is fresh, it
can be taken directly, but the older it is, the more important a model becomes. On the
other hand, if the recent measurement is very old (with regard to the attribute’s variance),
it may have lost its predictive power completely. Continuous-time Markov models have
been employed to obtain a nowcast or forecast [18, 45, 82]. They assume exponentially
distributed sojourn times in the respective state changes, which allows to determine the
current state probabilities based on an existing measurement in the past. While they ele-
gantly solve the problem of determining the current state, their assumption of fixed state
change probabilities often clashes with the real world. For example, parking bay availability
distributions are usually highly dependent of the time of day, e.g., in residential areas, the
time between state changes is much lower at nighttime. Parameter estimation for Markov
models is normally done on complete data [76]. It has been done on intermittent data for
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discrete Markov models using an expectation-maximization algorithm [106] and a Bayesian
approach [56]. Various other methods to obtain nowcast or forecast values based on recent
measurements exist [98]. They typically are supervised learning methods: Feature vectors
include information about the time of day and recent measurements. They are then used
to train models such as Regression Trees [109], Wavelet Neural Networks [105] or Support
Vector Regression [10] on historic data. These models, however, do not explicitly include
the assumption of monotonic information decay discussed above and thus may lead to less
accurate results.

2.4.3 Nowcast and Forecast without recent measurements
In contrast to the case discussed above, it may be possible that recent data is never
available. In this case, there is no “most recent measurement” to work with and the notion
of “information decay” is not useful. One reason may be an abnormal situation, such as a
long-term outage. A more common situation is the regular absence of sensors, for example
due to budget restrictions. In this case, nowcasts and forecasts must be based on historic
data, if available. Expert knowledge may also be incorporated into models. As a wealth of
research has been conducted on predicting system states in case no recent data is available,
this is not a focus of this thesis: Different types of time series modeling and supervised
learning approaches can be used.

Ambulance demand predictions are necessary for determining the number of ambu-
lances, base station locations, hospital capacity and scheduling ambulance crews. There-
fore, ambulance demand predictions have been made long before modern deployment meth-
ods were introduced. Prediction methods include time series analysis and statistical mod-
eling [1, 46, 68, 91]. Lately, machine learning approaches are being pursued [85, 54, 102].
Some methods are able to predict long term trends, e.g., due to population increase while
others focus on the near future by processing weather or event information. Long term
forecasts are often used when deciding the construction of new base stations. In contrast,
short term predictions are used by DAR solvers. Prediction methods usually do not only
predict the absolute demand, but also demand in various areas. For example, higher pop-
ulated areas typically bring a higher incident density. Accordingly, data about population
density, points of interest etc. are valuable input features.
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2.5 Evaluating real-time data
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Figure 2.9: Data pipeline from environment observation to using data in mobility service.
The three arrows represent classes of data processing methods.

Figure 2.9 summarizes the data flow described in this thesis. Each processing step
(Obtain, Improve and Use) can be implemented by a multitude of methods as described in
the previous sections. After each step, the result can be evaluated and compared against
results of alternative methods. One reason for evaluation is that the final product may be
subject to a certain required minimum quality. For example, emergency medical service
providers are normally required to satisfy certain minimum response time metrics, often
by law [17]. Combinations of methods which cannot reach these minimum targets must
therefore be excluded from consideration. While such target figures result from the evalua-
tion of the last step only, it may still make sense to evaluate the intermediate steps, as this
evaluation may highlight certain deficiencies. A second reason for evaluation is to ensure
a reasonable cost-benefit ratio: Defaulting to the best data quality may be prohibitively
expensive, or at least not cost effective. This is due the fact that a higher data quality is
usually connected to more expenses, e.g., caused by a larger number of sensors or better
sensor capabilities. It is thus advantageous to evaluate different data qualities in order
to compare them. The best scenario can then be selected based on efficiency. It should
be noted that the effect of different evaluations of the first steps depend on the mobility
problem: Some use-cases may depend largely on accurate raw data while others may not
be as sensitive. This further depends on evaluated scenarios: For example, it is not at all
necessary to obtain real-time data in a parking setting with an abundance of free parking
bays. The remainder of this section summarizes evaluation methods of the respective data
processing steps.

2.5.1 Evaluating obtainment methods
Performance of methods for obtaining data using sensors depends mainly on the density of
a sensor network. As perfect raw data obtained by fully covering the entities in question
with sensors is expensive, it may be beneficial to first determine the effects of a reduced
sensor set. To obtain test data for evaluation, a temporary field study can be used to obtain
complete data. This data can then be statistically evaluated to observe characteristics of
the underlying processes. Statistical methods such as time-series cross-correlation analysis
can be used to determine the level of sensor redundancy [6, 47]. High redundancy may
indicate that the set of sensors can be reduced without harming the quality of obtained
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data. The perfect data can further be artificially altered by reducing the virtual set of
sensors to obtain information about statistical properties of less expensive sensor networks.
Another factor is the spatial uniformity of obtained data. For example, the coverage of a
mobile sensor deployment depends on the routes of sensors which are determined by the
type of vehicles: A fleet of dump trucks can be expected to return a regular covering of
a residential area at a regular interval, e.g., visiting each street once a week on a given
day. On the other hand, if a fleet of commuters’ cars is equipped, the data set relatively
over-evaluates areas targeted by commuters at certain locations and times. If the routes of
mobile sensors can be controlled, different methods to allocate routes may be simulated to
obtain multiple sets of raw data for evaluation. These can then be analyzed as described
above.

2.5.2 Evaluating improvement methods
Data improvement methods as described in Section 2.4 transfer an input data set into
an output data set. As these methods are usually presented in scientific publications,
standard ways of comparing their performance have been established by the scientific
community. For interpolation or prediction methods, a test set is normally held back while
the remaining data is processed. The method’s error can then be determined by comparing
generated results against withheld test set values. This enables insights in the suitability
of methods. In the case of model-based approaches, evaluations indicate the validity of
model assumptions. Methods based on neural networks can be evaluated with regard to
parameters such as their network topology and training methods. Note that the choice of
improvement methods is limited by the initial data quality. For example, some models are
not suitable for sparse data.

2.5.3 Evaluating application-specific data usage methods
The evaluation of actual application performance arguably yields the most valuable results,
as it directly measures the end-user value and thus is crucial for strategic decisions. For
example, it may turn out that a substantially lower interpolation error may not improve
the application performance much. In case a lower error can only be obtained with large
investments such as a higher number of installed sensors, it may be wise to accept a
deployment with higher errors. Thus, finding a cost-efficient solution requires evaluating
the last processing step. Evaluation answers the question of how much data is necessary
to reach a certain target. The economic efficiency of smart city solutions can be evaluated
before its actual implementation using initial cost benefit analysis (CBA) [100]. Here,
costs include investment costs, maintenance costs, etc. Direct benefits include income from
rented devices, apps or service subscriptions. Secondary effects such as the reduction of
accidents or the increase in life quality are often harder to determine, but still a significant
part of the positive effects. To quantify such benefits, it may be suitable to determine time
savings.
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Simulation methods are especially valuable because they allow the evaluation of differ-
ent scenarios. For example, a parking service may respond differently when parking avail-
ability distributions are modified in the simulation. A simulation is a highly controlled
evaluation environment that allows to change individual variables while keeping others
unchanged. Computing different scenarios yields insights into complex system behavior.
These allow better informed implementation choices. One example is a simulation study
regarding the helpfulness of Parking Guidance and Information (PGI) signs that direct
drivers to free parking garages, which determined that such signs did barely reduce travel
times [103]. To get insight into human parking search process, a simulated human driver
searching for on-street parking opportunities has been introduced [9]. Another strategy is
the assumption of unrealistically extreme scenarios to evaluate the maximum impact of a
smart city method. For example, if data about homes and workplaces of the population is
known, the reduction of cars can be determined under the assumption that everyone will
use a central car pooling service [22]. While this scenario is unrealistic, it is nevertheless
valuable to determine an upper bound on the effectiveness of ride-sharing. For example,
if the expected benefits are large, such behavior could be encouraged by the government.
In addition to the best-case scenario, it may be interesting to determine mixed scenarios,
i.e., 10% of the population using a certain service.
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Chapter 3

Overview of Contributions

This thesis brings several contributions to the research area described in Chapter 2. The
research area is structured into four fields that enable a categorization of contributions,
namely: 1) Solving mobility problems with real-time data; 2) Obtaining real-time data; 3)
Improving real-time data; 4) Evaluating real-time data.

Regarding the first field, the thesis contributes to two topics: The parking search
problem given multiple agents sharing data (Section 3.1.1; Chapter 4), and the dynamic
ambulance redeployment problem for electric vehicle fleets (Section 3.1.2; Chapter 5). In
the second field, the thesis considers the problem of distributing a limited number of
stationary sensors over spatially distributed entities (Section 3.2.1; Chapter 6). The field
of improving data is addressed by contributions regarding the processing of temporally
intermittent data, e.g., data obtained from mobile sensors (Section 3.3.1; Chapter 7).
Finally, the field of evaluating data is considered by presenting a framework for evaluating
and comparing different scenarios regarding their data qualities in order to quantify the
potential of mobility services (Section 3.4.1; Chapter 8).

These contributions are contained within five peer-reviewed publications, which are
included in the named chapters. To give an overview, each publication is summarized
into a research question and its answer, presented in Table 3.1. The remainder of this
chapter further expands on these research questions and details the respective context and
motivation.
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Research question Summary of contribution
How can the parking search prob-
lem be formulated and efficiently
be solved for a fleet of selfish
agents that share data?
[Section 3.1.1]

The parking search problem for multiple selfish
agents which share destination and observation data
is formulated as a Markov Decision Process. Effi-
cient approximate solvers are presented and evalu-
ated in a realistic setting.
[Chapter 4]

Do existing solutions for the
ambulance redeployment problem
work well for electric ambulances?
If not, how can better solutions be
obtained?
[Section 3.1.2]

The new Dynamic Electric Ambulance Redeploy-
ment problem is formulated, considering battery
levels and other data relevant for an electric am-
bulance fleet. A novel solver based on minimizing
spatial energy deficits is presented.
[Chapter 5]

How do data-driven methods com-
pare to data-agnostic methods
when distributing a limited num-
ber of stationary sensors over a set
of spatially distributed entities?
[Section 3.2.1]

Several methods for distributing sensors are pre-
sented, some only needing location data, some being
data-driven. They are evaluated in a realistic simu-
lation environment for the parking search problem.
[Chapter 6]

How can the state of an entity
with a temporally non-stationary
but cyclic probability distribution
be estimated when recent observa-
tions are sparse?
[Section 3.3.1]

The cyclic behavior of state changes is modeled by a
novel Time-Inhomogeneous Markov Model. Train-
ing methods for complete data and sparse data are
presented and evaluated.
[Chapter 7]

How to quantify the potential of
data-driven mobility services in re-
lation to data quality?
[Section 3.4.1]

A simulation-based framework for determining ben-
efits of mobility services is presented. General sce-
narios are introduced and exemplified using the
parking search mobility service.
[Chapter 8]

Table 3.1: Overview of research questions and summarized contributions of this thesis.
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3.1 Solving mobility problems with real-time data

3.1.1 Sharing data between competing parking search agents
Agents searching for a free parking opportunity naturally observe the environment for
parking spaces and their availability states. If this is automated, for example by sensors
attached to a vehicle as described in Section 2.3.1, such parking data could always be
recorded, not only when actively searching for a parking bay. As shown in Section 2.2.1,
parking services benefit from using parking availability data. The quality of data improves
if data from all agents is combined. Therefore, it makes sense for agents to share data in
order to minimize parking search times. Parking agents compete with others in the same
environment, i.e. agents act selfish in order to optimize their own parking time. Still, it
seems promising to share information in order to avoid preventable detours. To sum up,
the research question is: How can the parking search problem be formulated and
efficiently be solved for a fleet of selfish agents that share data?

Chapter 4 therefore investigates how this can be done and how large the improvements
are: A novel Markov Decision Process formulation is introduced, which covers multiple
agents sharing destination and observation data. Methods to determine an optimal policy
are presented for both complete data and sparse data. As described in Section 2.2.1,
determining a policy for the single agent case is already computationally infeasible in
larger scenarios. The complexity of the new multi agent problem is even larger. Therefore,
existing approximate solvers (Replanner and Hindsight Planner) are adapted for this MDP.
Evaluations in a simulation using real-world data indicate that the presented method can
effectively be used in realistic scenarios.

3.1.2 Redeployment of electric ambulances
The Dynamic Ambulance Redeployment problem given in Section 2.2.2 was formulated
before the recent shift towards electric mobility which also includes electric ambulances.
Existing solutions assume that the need for refueling vehicles can be neglected during
planning as refueling takes little time and gas stations are omnipresent. This is valid for
traditional combustion engine ambulances. However, electric ambulances need significant
downtime for charging. Therefore, the question arises if the existing DAR problem for-
mulation is adequate for electric ambulances. The existing research gap regarding electric
ambulances is addressed by the research question: Do existing solutions for the am-
bulance redeployment problem work well for electric ambulances? If not, how
can better solutions be obtained?

This question is investigated in Chapter 5: The existing Dynamic Ambulance Rede-
ployment problem is extended to include not only position and destination of ambulances,
but also their battery state. The base stations’ charging capabilities are also considered.
Combined with information about charging rates and usage estimates, redeployment ac-
tions can thus be decided based on properties relevant for electric ambulances in this new
Dynamic Electric Ambulance Redeployment (DEAR) problem formulation. The chap-
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ter further presents a method for solving this problem: Based on the intuition that the
amount of available energy is a proxy for ambulance availability (due to ambulances with
lower energy being less available), the introduced MED method aims to minimize spatial
energy deficits. To capture the dynamic nature of the problem, future energy deficits are
minimized. Evaluation with real-world data shows that electric ambulance redeployment
using the DEAR formulation and solver brings lower ambulance response times than using
previously existing methods.

3.2 Obtaining real-time data

3.2.1 Placing a limited number of sensors
Section 2.3 states that the best data quality can be achieved if each parking bay is observed
by a sensor at any given time. However, because installation and maintenance of sensors
comes with a cost, outfitting only a subset of locations with sensors may be preferable in
practice. This causes spatial gaps, i.e. locations for which no observations exist. Data for
this locations can be interpolated by spatial interpolation methods (see Section 2.4.1). In
order to make most of a limited amount of sensors, it is prudent to determine the opti-
mal subset for sensor placement. Research gaps regarding the effecting data quality have
been identified, especially regarding the amount of data required for the sensor placement
method, as obtaining data for a data-driven placement strategy comes with additional
costs. This results in the research question: How do data-driven methods compare
to data-agnostic methods when distributing a limited number of stationary
sensors over a set of spatially distributed entities?

Chapter 6 considers this question by presenting and evaluating a number of selection
methods. Methods include data-agnostic methods which only consider the set of possible
locations and the street graph. These methods can be applied without much preparation.
In contrast, included data-driven methods additionally make use of existing parking avail-
ability data. This data may be obtained through preliminary field studies. A simulation
framework to evaluate different methods is presented. Exemplary evaluations using real
parking availability data are conducted. Scenarios include complete and limited data, re-
spectively. Results show that data-driven methods yield slightly lower interpolation errors
than data-agnostic methods. If data is expensive, data-agnostic methods can be reasonable.

3.3 Improving real-time data

3.3.1 Exploiting daily cycles for short term predictions
As described in Section 2.4.2, measurements of a stationary entity are temporally inter-
mittent if obtained by moving mobile sensors. The age of the most recent measurement
increases until the next sensor visits, causing the recorded information to become increas-
ingly unreliable (information decay). Section 2.2.1 discussed that Markov chains are gen-
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erally an elegant way to estimate the current state based on the most recent measurement
and previously determined transition probabilities. However, methods described in related
work assume constant transition probabilities which are not observed in reality: Availabil-
ity states of real parking bays show a significant cyclic probability distribution change with
a 24 hour period, e.g., much less activity at night. A research gap thus concerns the inte-
gration of time-dependent model behavior. The resulting research question is: How can
the state of an entity with a temporally non-stationary but cyclic probability
distribution be estimated when recent observations are sparse?

Chapter 7 therefore introduces a novel time-inhomogeneous Markov model which im-
putes the missing times using non-constant (time-inhomogeneous) transition probabilities.
The chapter gives methods for determining transition probabilities on complete data, and,
more importantly, on sparse data as obtained in real-world mobile sensor deployments.
Evaluations using a simulation environment and real parking data show that the new cyclic
model is able to model the information decay over time better than previous methods.

3.4 Evaluating real-time data

3.4.1 Effects of data quality
When designing mobility services in order to solve mobility problems such as the park-
ing search problem, one should ask for the potential benefits of possible solutions, e.g.,
achievable time or energy savings. If such services are using data, the influence of data
quality should also be determined, as increasing data quality usually comes with a price
(see Section 2.3). Existing literature regarding mobility services focuses on methods for
solving mobility problems with or without data, but not the effects of different data qual-
ities. In order to assess the potential benefits of a data-driven mobility service, however,
data quality is a crucial element. This yields the research question: How to quantify
the potential of data-driven mobility services in relation to data quality?

The question is answered in Chapter 8: A simulation-based framework for evaluating
mobility services under different data qualities is introduced, focusing on quantifying po-
tential benefits. Different scenarios for data qualities are defined: The status-quo scenario
approximates the use-case without a mobility service, e.g., a human driver searching for
a parking space. Secondly, the baseline scenario gives an upper bound, e.g., when no
parking is necessary. Thirdly, the optimal scenario gives the benefit assuming omniscient
knowledge. These are then evaluated against each other and other settings, such as differ-
ent sensor sets. Exemplary experiments with real and synthetic parking data show that
an optimal parking recommendation service leads to travel times not much worse than
travel times when taking a taxi, while being a significant improvement over the status quo
parking search without any recommendation system.
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Abstract—Finding an available on-street parking spot is a
relevant problem of day-to-day life. In recent years, several cities
began providing real-time parking occupancy data. Finding a free
parking spot in such a smart environment can be modeled and
solved as a Markov decision process (MDP). The solver has to
consider uncertainty as available parking spots might not remain
available until arrival due to other vehicles claiming spots in the
meantime. Knowing the parking intention of every vehicle in the
environment would eliminate this uncertainty but is currently
not realistic. In contrast, acquiring data from a subset of vehicles
appears feasible and could at least reduce uncertainty.

In this paper, we examine how sharing data within a vehicle
fleet might lower parking search times. We use this data to better
estimate the availability of parking spots at arrival. Since optimal
solutions for large scenarios are computationally infeasible, we
base our methods on approximations shown to perform well in
single-agent settings. Our evaluation features a simulation of a
part of Melbourne and indicates that fleet data can significantly
reduce the time spent searching for a free parking bay.

Index Terms—Parking, Multi-Agent Routing, Sequential Deci-
sion Making Under Uncertainty

I. INTRODUCTION

Searching for free urban resources like on-street park-
ing spots or charging stations can be annoying and time-
consuming. According to [1], on average 30% of traffic in
cities is caused by parking search. Lowering this has beneficial
effects on the environment, drivers and traffic speed.

In recent years, several cities started providing real-time
occupation information of on-street parking spots. However,
knowing the current state of a parking spot does not eliminate
uncertainty about its availability at arrival time as other drivers
may claim or leave it in the meantime. Knowing the parking
intentions of all drivers would eliminate this uncertainty.
Unfortunately, it seems unlikely that all vehicles share their
data in the near future. However, a subset of vehicles (a “fleet”)
may share data, e.g., vehicles with the same route guidance
system or belonging to the same company. We propose two
approaches using fleet data to reduce uncertainty about future
resource states and thus average search time. As optimal
solutions are infeasible for larger scenarios, our approaches
are based on approximate solvers, replanning and hindsight
planning, which have been shown to perform well in single-
agent settings [2]. We model fleet parking guidance as a
competitive environment with selfish agents, i.e., each tries
to minimize its own search time regardless of others.

Our first approach is called Reservations: Agents share
their targeted parking spot and consider a parking spot to
be occupied when they know another agent also targets it
and would arrive earlier. This cannot completely eliminate
uncertainty regarding agents’ parking intention as vehicles
not in the fleet also occupy parking spots and thereby cause
unexpected rescheduling. Our second approach, Multi-Agent
Dynamic Probability Adaption, accounts for that by adjusting
the availability probability of nearby resources by approxi-
mating the agents’ behavior when their intended parking spot
becomes occupied. We evaluate our approaches with an agent-
based simulation, using real and synthetic occupancy data.
Results show that our multi-agent improvements reduce the
time spent to find a parking spot by up to around 84%.

To summarize, the contributions of this paper are:
• Formalizing resource routing in fleet scenarios.
• Fleet-based resource search based on reservations.
• Fleet-based resource search using adaption heuristics.
This paper is structured as follows: Section II provides an

overview of related work. Section III contains the definition of
the problem setting and the single-agent solutions our methods
are based on. Sections IV and V present our novel solutions
for fleet scenarios which are evaluated in an agent-based
simulation in section VI. We conclude the paper in section VII.

II. RELATED WORK

Searching for an on-street parking spot is a common prob-
lem of daily life. Thus, many approaches have been proposed
to either predict the availability of parking spots, simulate the
behavior of agents looking for parking spots or find routes
that minimize parking search time [3]. Many existing parking
guidance approaches do not solve competition between users,
rely on hardware to limit access to parking spots or assume
that all drivers use the same system. [4] propose parking
meters reporting availability so that users can navigate to
available spots. In one variation, a resource will only be seen
as available by a driver closer to it than competing agents.
This is similar to our concept of reservations. However, they
do not consider parking activity by vehicles not part of the
fleet. [5] introduce a model to predict the utilization rate
of a street segment that combines historical and real-time
data. At each decision point, the system recommends a street
segment matching user preferences. In multi-user scenarios, a
multi-user factor decreases the occupancy probabilities when



other agents arrive at a street segment earlier. This approach
shows some similarity to our multi-agent probability adaption.
As they use Integer Programming to minimize the objective
function, their approach is NP-hard [6] and thus may be
difficult to apply in real-time with large numbers of agents
and resources. [7] assign users to parking spots through a
central system using a queuing model. A major drawback is
that they rely on hardware restricting access to users with a
reservation. [8] compute routes to available spots by solving
a Time-Varying Traveling Salesmen Problem. Agents observe
the state of nearby resources and share it. In contrast to our
methods, occupied resources are ignored though they may
become available later. [9] use a game-theoretic framework for
competitive multi-agent parking search. Their goal is to find
a minimal-cost assignment of agents to parking spots. This
differs from our setting as they assume that either all vehicles
are part of the system or information about other vehicles is
only estimated by a prior probability distribution.

[10] define parking search using sensor data as a dy-
namic resource routing (DRR) problem and solve it as a
fully observable Markov decision process (MDP). A policy is
computed by bounded real-time dynamic programming using
novel bounds and estimation methods. Even though the authors
considerably lowered the computational overhead compared
to other MDP solvers, the exponential growth of the state
space still limits the applicability to larger settings. Thus, [2]
propose novel approximate methods based on replanning and
hindsight planning. The results indicate that search times come
close to the optimal solution of [10] which makes efficient
policies in large settings possible. Unlike our approaches,
explicit information about other vehicles searching for parking
spots is not considered. Our approaches are based on [2] and
we include their original methods as a single-agent baseline
to determine the benefits of our proposed fleet solutions.

[11] have shown that predicting the availability of a parking
spot in the near future is crucial for the performance of
dynamic resource routing. A vast number of approaches for
such predictions exists [3]. However, predicting the expected
occupancy of resources is not equivalent to predicting the
probability distribution that a parking spot is vacant at a certain
time, which is necessary for many approaches. In this paper,
we apply a continuous-time Markov chain (CTMC) [2], [12] to
incorporate recent observations (e.g. current resource states) as
well as long term observations (e.g. average occupancy time).

III. METHODOLOGY

We now formalize the search for an available resource in
a fully observable multi-agent setting as an MDP and review
the approximate solutions our methods are based on.

A. Problem Setting

The goal of DRR (dynamic resource routing) is to guide an
agent to a resource ri ∈ R, which is available upon arrival,
in a directed graph G = (N,E,C), such that the expected
total travel time is minimized. The graph G represents a road
network: Nodes N correspond to intersections, edges E =

N ×N to road segments and C : E → R+ is a function that
defines the cost of traversing an edge. Each resource is located
on an edge. Each agent αi ∈ Λ has a different destination,
start intersection and can begin its trip at any time. As this
information is not known in advance, Λ is not stationary over
time. We define cT (r, αi) as the terminal cost, e.g., the time
for walking from parking spot r to αi’s destination. The total
travel time consists of the driving time and cT . Whenever
an agent is at an intersection, a decision needs to be made
whether to take a resource on one of its outgoing edges or to
drive to another intersection. We call a setting fully observable
if agents always know the current state of all resources.

In a competitive and independent multi-agent setting, a
separate MDP is associated with each agent α. An MDP
can be defined as a 4-tuple (S,A,C, P ), where S is the
set of all possible states and A denotes the set of actions.
As ⊂ A is the set of available actions while in state s ∈ S.
C : A→ R is a function that defines the cost for action a ∈ A.
P : A× S → [0, 1] denotes the probability of traversing from
state s ∈ S to state s′ ∈ S after choosing action a ∈ As.

A policy π(s) = a is a mapping from any state s ∈ S to
an action a ∈ As. Solving an MDP corresponds to finding a
policy that minimizes the expected future costs over an infinite
time horizon. We assume that all fleet vehicles are guided by
the same system and thus, policies vary only with respect to
the agent’s destination. Thus, for a given agent, the policies of
other agents can be considered static. The expected future costs
are commonly denoted as utility U with Bellman equation:

Uπ(s) = C(st, π(st)) +
∑

s′∈S
P (s′|π(s), s)Uπ(s′) (1)

The Q-Value of a state-action pair (a, s), where a ∈ As and
s ∈ S, describes the expected costs when performing the
action a and following the optimal policy π. It is defined as
follows:

Qπ(s, a) = C(s, a) +
∑

s′∈S
P (s′|a, s)Uπ(s′) (2)

An optimal policy takes the action with lowest Q-Value.
In our fleet scenario, the system dynamics are determined by

drivers outside the system and fleet vehicles. This is modeled
by the transition probabilities of the MDP. Given the policy of
an agent, its behavior can be determined and shared with other
agents to reduce uncertainty about the future. Therefore, the
MDP contains the location and destination of all fleet agents.

We now formulate the fleet DRR problem as an MDP: The
state is defined as s = (l, {Li}, {Di}, {rj}), where l ∈ N is
the node at which the vehicle is currently located, {Li} the set
of fleet agents’ positions, {Di} the set of their destinations and
rj ∈ {available, occupied} the availability of the jth resource.
We define two actions a ∈ As: Take Road means to move
along an edge of the road network. Exactly one exists for
every outgoing edge from the current node. Its cost c(a) is
the edge cost. The Take Resource action represents driving
from a node to a resource on an outgoing edge, parking and
walking to the destination. Its cost is the driving time from



node to resource r plus the terminal cost cT (r). An action
determines the agent’s position in the next state with certainty,
while the state’s resource availabilities are not deterministic.
The transition probability P (s′|a, s, {πi}) of the next state
s′ depends on action a and the static policies {πi} of the
other agents. For Take Road, it is the product of the transition
probabilities of all resources according to the probabilistic
model. The Take Resource action always leads to the terminal
state, as the agent has parked. If other agents execute Take
Resource, these resources transition to the occupied state.

B. Continuous-Time Markov Models

Most methods in this paper require a stochastic process
for describing the future availability of parking spots relative
to the last time the parking spot was observed. [12] use
continuous-time Markov chains (CTMC) for modeling the
time-dependent availability of each resource to incorporate
short-term observations (real-time sensor data) and long-term
observations (average vacancy/occupancy duration). The avail-
ability of each resource is given for the current time t = 0.
There exists a CTMC for each resource and the CTMCs of all
resources are assumed to be mutually independent. Using the
Kolmogorov equations, we can compute the transition matrix:

P (t) =

(
T ta,a = µ

λ+µ + λ
λ+µe

−(λ+µ)t T ta,o = 1− T ta,a
T to,a = µ

λ+µ −
µ

λ+µe
−(λ+µ)t T to,o = 1− T to,a

)

(3)
We denote T tf,f ′ as the probability for being in state f ′ after
time t has passed while in state f at t = 0. Sojourn times are
modeled as exponentially distributed random variables with
parameter λ when in state available and µ when occupied.
Therefore, λ−1 describes the average time a resource stays
available and µ−1 the average time it stays occupied.

C. Replanning

Solving the DRR problem for a single agent is computation-
ally problematic for large settings as the state space complexity
is exponential in the number of resources [2]. Our fleet DRR’s
state space is additionally exponential in the number of agents.

The replanning solution in [2] avoids working on the state
space of the MDP but instead utilizes an extended street
network for deterministic planning: The network graph G
is extended by a virtual goal node Ngoal to model the Take
Resource action. For each resource ri, a virtual edge from any
intersection Ni to Ngoal is added, where Ni is the starting node
of an edge ri is assigned to. The cost cv(ri) = c(Ni, Ngoal)
of this virtual edge is set to the time needed to drive along
the road to reach this resource and the terminal cost cT . If
the resource is occupied, the cost is set to the expected time
required to circle the block until it is available, denoted as
ttr(ri). Because planning is not done in the state space of the
MDP, we cannot determine the exact transition probabilities
between resource states. However, this is unnecessary in
many DRR problems as the travel time between neighboring
intersections is typically small compared to the time between
resource state changes. Thus, for the most likely future, it can

be assumed that a resource keeps its state. In a majority of
settings, the Replanner detects mistakes very early and thus
does not suffer a large penalty if it has to replan.

D. Hindsight Planning

Hindsight planning is typically more effective than replan-
ning in “probabilistically interesting” tasks [2], [13]. It approx-
imates the value of a state by sampling futures, optimizes these
with a deterministic solver in hindsight and then combines the
solutions. This is often faster than solving the probabilistic
problem. [2] proposed a Hindsight Planner for DRR. A de-
terminization or future D is a non-probabilistic configuration
of resource states. Let C(s, a∗, D) denote the costs of the
optimal solution a∗ in state s using the determinization D. The
hindsight utility value or expected costs is defined as follows:

Uhs(s) = ED[C(s′, a∗, D)] (4)

Using this definition, we can now define Qhs(s, a):

Q̂hs(s, a) = c(a) + E[Uhs(s
′)] (5)

An optimal policy π∗ can be approximated by taking the action
having the best expected one-step look ahead hindsight value.
Q̂hs approximates the Q-function by reversing the order of
minimization and expectation, i.e., instead of taking the policy
with minimum expected cost, we use the expected cost of
optimal policies w.r.t. D. This can be efficiently approximated
by solving determinizations of the probabilistic problem. Note
that Uhs is a lower bound of the optimal utility values U∗ as
it is assumed that the outcome of each action is known.

In DRR, sampling a future is essentially equal to sampling
from the probability distribution of the resource states. The
optimal solution of that determinization is choosing an upon
arrival available resource with the least total cost. The hind-
sight costs C(s, a,D) are computed by calculating the arrival
time at each resource and then sampling resource states at
that time using the prediction model. If the resource is not
available, we need to add the time until the resource becomes
available again. As a driver is not allowed to wait at a resource,
we determine the number of round trips around the block
until it is available again. This is very time-consuming, so we
use the mean time until the resource becomes available again
instead, denoted as the minimum expected wait time tclaim.

IV. RESERVATIONS

In our setting, a resource can become occupied either
through a fleet vehicle or a vehicle not part of the fleet. The
latter case cannot be prevented and is anticipated by a model
for resource state changes, in our case, the CTMC described
above. We can, however, consider intended occupations by
other fleet vehicles to reduce uncertainty, as any other fleet
vehicle heading for the same parking spot and arriving earlier
dramatically reduces the expected availability for the agent.
We call this process reservation as the spot can be considered
occupied even if it is currently not. More formally, a reser-
vation is a tuple (ri, αi, tarrival), where tarrival denotes the time
when αi arrives at ri. Note that a resource with reservation still



can be occupied by non-fleet vehicles or fleet agents arriving
at the resource before the reservation becomes active.

When using the Replanner with reservations, agents treat a
“reserved” resource as occupied in case they expect to reach
it later than any other agent. If an agent changes its target
resource, the existing reservation is deleted and a reservation
for the new target is created. In [2], the D*-Lite algorithm is
applied to reduce computation time. This is not possible with
reservations as the costs of virtual edges depend on resource
availability which depends on arrival time and thus on the
path previously taken. Finding the shortest path in a time-
dependent graph is an NP-hard problem in general [14], [15].
Pre-computing all pairwise travel times between intersections
can be done in polynomial time [16], [17], as we do not
consider time-dependent costs. Calculating the arrival time at
each resource can be achieved in constant time during the
query phase. The memory cost can be reduced to O(N2) [18].

When applying the Hindsight Planner with reservations, a
modification is needed as no specific resource is targeted until
the end when a Take Resource action is chosen: For each agent,
the most often visited resource in all determinizations and its
expected arrival time at that resource are computed. Based on
this estimate, we generate a reservation for each agent. An
exception are agents choosing the Take Resource action for
whom a short-term reservation is created instead. This resolves
conflicts in the immediate future when the parking intention
of an agent is certain. Reserved resources can be considered
occupied in all futures, which restricts the sampling space.

V. MULTI-AGENT DYNAMIC PROBABILITY ADAPTION

The Hindsight Planner with reservation overestimates the
probability of a resource being available as it does not incor-
porate the behavior of other agents when they fail to take their
targeted resource. Thus, we propose to decrease the availability
probabilities of resources near the target accordingly.

To calculate the probability of taking another resource, we
propose a self-interacting time-dependent biased random walk
on a subset of the graph within an isochrone around the
targeted resource to limit the number of streets to consider.
In contrast to a pure random walk, the jumping probabilities
of a biased random walk are not equal and can depend on
several factors, including previously chosen nodes [19]. It can
efficiently approximate agents’ behavior due to its structural
similarity to the DRR MDP. At each intersection in the MDP,
an action is selected: Drive to another intersection or park at a
nearer resource. The policy specifies a probability distribution
over those actions. The biased random walk aims to estimate
these probabilities to approximate the policy. Let Ni be the
node where the agent is located and Nj is a node reachable
from Ni. The set of resources located on the edge (Ni, Nj) is
denoted as Rreachable(Ni, Nj). Pi,j(t) denotes the probability
that at least one resource on the edge (Ni, Nj) is vacant at
time t.Note that we assume the availability probabilities of the
resources to be mutually independent. The bias γi,j ∈]0, 1] of
the random walk is the product of visit decay factor θi,j and
a penalty factor δi,j for moving away from the target:

• θi,j =

{
0.95 if edge i,j was already visited
1 otherwise

• δi,j =
c((Ni,Nj),target(α))

IsochroneLimit , with c((ni, nj), target(α)) being
the time driving from the end of the road to the destina-
tion of the agent α.

The jumping probability is defined as follows:

Ji,j(t) = γi.j(1−
∏

r∈Ri,j

Pi,j(r = occupied, t)) (6)

With each jump from ni to nj , the accumulated time tacc is
increased by the costs of driving c(Ni, Nj). The random walk
starts at the end of the road in which the target resource is
located because agents can only make decisions when they are
at intersections. The accumulated time tacc is initialized with
the time needed to drive from the target resource to the next
intersection. The path probability Ppath reflects the likelihood
of not having found a resource and being at the end of the path.
This probability is the product of all jumping probabilities Ji,j
for the path. It is initialized with the probability Pinitial that the
preferred resource is occupied. We then sample how often we
end up at a resource r by only considering resources located
on the last street of the random walk. A random walk may end
after each jump with probability 1−Ppath. Let Etarrival(r) denote
the expected arrival time at a resource. It can be calculated
using the mean accumulated times tacc of paths that end in
a street from which r is reachable. Probability adaptions for
a resource are applied by subtracting the parking probability
Ppark(r) from all predicted availability probabilities after time
Etarrival(r). The parking probability Ppark(r) is calculated by
equally distributing the expected path probabilities E[Ppath] to
all resources located on that street. When an agent changes its
target resource, all adaptions created by that agent are reversed
and the process is repeated with the new target resource.
Note that using the expected arrival time at the resource
Etarrival(r) is not entirely accurate. However, it increases the
computational performance. As a further enhancement, one
could create multiple adaptions for each walk to create more
precise predictions about when agents arrive at certain parking
spots. The complete algorithm is shown in Algorithm 1.

VI. EVALUATION

In this section, we describe the evaluation of our approaches
with an agent-based simulation and present its results. The
simulation was run on a Linux server VM (Intel® Xeon® Silver
4108 CPU at 1.8 GHz and 59 GB RAM) using one thread
per run. All algorithms are implemented in Java. The least-
cost paths between all pairs of intersections and the Minimum
Expected Wait Time have been pre-computed. Our simulation
is based on a modified version of the COMSET simulator [20].

A. Experiment Design

1) Road Network and Resources: All experiments were
conducted on a sub-graph of the Melbourne road network
consisting of 3185 nodes and 6384 edges obtained from Open-
StreetMap. Attached to the edges are 4608 on-street parking
spots, shown in Figure 1, whose locations are published by



Algorithm 1 Biased random walk to create probability adap-
tions for resource rtarget with expected arrival time tarrival.

1: paths = ∅
2: for i = 0 . . . samples do
3: Ppath = P (rtarget = available, tarrival)
4: currentNode = rtarget.road.to
5: tacc = tarrival + tpartial
6: while true do
7: ~p = calculate biased probability Ji,j(tacc) of each

outgoing edge
8: ~p′ = ~p∑

pi∈~p pi

9: ~p′k =
∑k

i=0
~p′i

10: ~p′k =
∑k

i=1(
~p′i−1, ~p

′
i)

11: random ∈ U [0, 1] {choose from uniform distribution}
12: nextEdge = choose edge k with random ∈ pk
13: Ppath *= ~pk
14: tacc += c(nextEdge)
15: currentNode = nextEdge.road.to
16: if random > pk or no edges available then
17: paths.add((currentPath, pathProbability,

arrivalT ime))
18: break
19: else
20: currentPath.add((nextEdge)
21: CreateAdaptions(paths)

Fig. 1: Locations of parking spots (blue dots) present in the simulation.

the City of Melbourne under a creative commons license 1.
To accommodate for traffic jams and turn delays, the driving
speed of an agent is set to 25% of the road segment’s speed
limit. This factor has been calibrated through taxi trip times
in Manhattan recorded in the TLC Yellow dataset. Walking
distance (to determine terminal costs cT ) is measured by
greater circle distance which means an agent can walk through
buildings/parks and cross roads. Walking speed is 1.42 m

s [21].
2) Resource Volatility: To evaluate various environments,

we use a real-world and a synthetic setting: Real-World occu-
pations have been recorded by the city of Melbourne through
in-ground sensors 2. A two hour time period on a working day
in 2017 is used in our simulation. The average time a parking
spot stays available is approx. 75 min; the average time it stays

1On-street parking spot dataset: https://data.melbourne.vic.gov.au/Transport-
Movement/On-street-Parking-spots/crvt-b4kt

2Occupation dataset: https://data.melbourne.vic.gov.au/Transport/On-street-
Car-Parking-Sensor-Data-2017/u9sa-j86i

Single Destination Data-Driven Destinations

Algorithm Real Synthetic Real Synthetic

RANDOM 1634 842 794 957
PARKAGENT 961 964 588 555

RPL 667 954 41 104
HS 515 476 122 95

RPL + R 106 276 34 100
HS + R 109 262 97 73
HS + A 111 237 37 81

TABLE I: Mean parking time in seconds. “RPL” is Replanning; “HS” Hind-
sight Planning; “+ R” Reservations; “+ A” Probability Adaptions.

occupied approx. 29 min. Synthetic Resource occupations are
sampled from a CTMC model with µ−1 = 2091 seconds and
λ−1 = 120 seconds, i.e., spots are occupied for about 35 min
on average and occupied after an expected time of 2 min of
being free. This resembles situations where vacant spots are
rare (on average 5.4% of resources are free), thus presenting
a greater challenge than the Real-World setting.

3) Agents’ Destinations: In the Single Destination setting,
we create high competition by simulating 20 agents with
same destinations and start times to examine how algorithms
handle competition. We also include Data-Driven Destinations
in which the number of agents and their destinations are
estimated from real data: Destination clusters are inferred from
Melbourne parking events using DBSCAN [22]. Destinations
are randomly determined from two clusters. Start times are
randomly selected uniformly over one hour of a working day.
729 agents are heading into the first cluster and 63 to the other.

4) Approaches: Multiple approaches have been imple-
mented as simulation agents. The replanning approach is
the Spatial Replanner with improved cost model [2]. Hind-
sight planning based approaches use 100 determinizations to
sample resource states. Hindsight planning with reservations
is based on the resource chosen in most determinizations.
Probability adaptions perform 30 biased random walks within
an isochrone of 300 seconds driving time around the most
chosen resource. Two baseline approaches not using avail-
ability information are included: A simple agent driving to
the destination street and then taking random streets until an
available parking spot is found. Secondly, Parkagent [23] with
its default parameters to simulate a human’s search behavior.

B. Evaluation Results

Table I shows mean parking times of evaluated approaches.
In settings with real-world occupations, replanning with reser-
vations has the best results, closely followed by hindsight
planning with adaptions. In synthetic settings, hindsight plan-
ning beats replanning. In synthetic single destination settings,
adaptions are best. Reservations are slightly better in data-
driven settings. All multi-agent approaches provide effective
parking guidance and always perform better than Parkagent.

To evaluate the effectiveness of multi-agent improvements,
we compare the relative parking time difference of agents with
multi-agent improvements against their baseline approaches:



Single Destination Data-Driven Destinations

Algorithm Real Synthetic Real Synthetic

RPL + R 84.11 71.11 18.11 3.91
HS + R 78.85 44.85 22.69 22.93
HS + A 78.38 50.15 75.17 14.44

TABLE II: Reduction in percent of the total parking time by multi-agent
improvements over their corresponding single-agent approach in various
fully observable settings. “RPL” is Replanning; “HS” Hindsight Planning;
“+ R” Reservations; “+ A” Probability Adaptions.

Table II shows a significant reduction in parking times, in
all settings, using our multi-agent approaches. For example,
in the data-driven destination setting with real-world occupa-
tions, adaptions bring a 75% reduction compared to single-
agent hindsight planning. Overall, improvements lie between
around 79% and 14%. Hindsight planning with adaptions is
often more effective than hindsight planning with reservations.
Reservations with replanning significantly reduce parking
time, especially in real-world occupation and single destination
scenarios. However, in the data-driven destination setting with
synthetic occupations, it was only decreased by around 4%.
Multi-agent improvements aim to reduce conflicts between
agents with similar destinations. Our experiments show that
this is achieved, as no such unsuccessful resource claims occur
anymore when reservations or probability adaptions are used.

The median planning computation time per trip is around
0.1 seconds for replanning approaches and about 10 seconds
for hindsight planning approaches. Reservations and adaptions
do not have a significant influence on computation time. As
our experiments contain hundreds of agents and thousands of
parking spots, this leads to the conclusion that all approaches
can be used in real-time, even in large-scale scenarios.

VII. CONCLUSION

In this paper, we proposed multi-agent variations of existing
approaches for solving the dynamic resource routing problem
in fully observable scenarios: We formalized the problem
and presented two approaches to solve it: Reservations and
dynamic probability adaptions. Each was solved by a Re-
planner and a Hindsight Planner. Agent-based simulations
were conducted to gain insights into their effectiveness and
the impact of sharing fleet data. Our experimental evaluation
shows that both are able to improve parking guidance signif-
icantly. In situations with very few available parking spots,
hindsight planning with reservations or adaptions can deliver
the best results. Replanning with reservations does work very
well in settings close to the real world. It is efficient, easy
to implement and can provide parking guidance without a
prediction model. We conclude that all approaches presented
in this paper can, given their effectiveness and efficiency even
in large-scale scenarios, be deployed in real-world parking
guidance systems of a vehicle fleet.
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ABSTRACT
Dynamic Ambulance Redeployment (DAR) is the task of dynami-
cally assigning ambulances after incidents to base stations to mini-
mize future response times. Though DAR has attracted considerable
attention from the research community, existing solutions do not
consider using electric ambulances despite the global shift towards
electric mobility. In this paper, we are the first to examine the impact
of electric ambulances and their required downtime for recharg-
ing to DAR and demonstrate that using policies for conventional
vehicles can lead to a significant increase in either the number
of required ambulances or in the response time to emergencies.
Therefore, we propose a new redeployment policy that considers
the remaining energy levels, the recharging stations’ locations, and
the required recharging time. Our new method is based on min-
imizing energy deficits (MED) and can provide well-performing
redeployment decisions in the novel Dynamic Electric Ambulance
Redeployment problem (DEAR). We evaluate MED on a simulation
using real-world emergency data from the city of San Francisco
and show that MED can provide the required service level without
additional ambulances in most cases. For DEAR, MED outperforms
various established state-of-the-art solutions for conventional DAR
and straightforward solutions to this setting.
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• Information systems→ Spatial-temporal systems; • Com-
puting methodologies→ Simulation environments.
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1 INTRODUCTION
The Emergency Medical Service (EMS) is a critical part of health
infrastructure all over the world [15]. Paramedics are often the first
professional aid in health emergencies and are responsible for safe
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and quick transport to a secondary care unit such as a hospital. A
low response time to emergency calls has increased survival and
recovery rates in life-threatening health conditions such as cardiac
arrest [5, 18]. Ambulance response times to emergencies depends
on various factors, such as the emergency call itself, the processing
time needed for dispatch, the readiness of a qualified paramedic
team, and its travel time to the incident location. Travel time is
a substantial factor. While it can be accelerated by using high-
powered vehicles and specialized training for driving in emergency
conditions, the initial distance of the ambulance to the incident site
is the most prominent factor, with various approaches trying to
minimize this distance by proper ambulance placement.

Today, most ambulances are outfitted with internal combustion
engines (ICE) using fossil fuels. However, the growing public de-
mand for less air pollution and less release of greenhouse gases
promotes the transition towards electric vehicles (EV). Electric am-
bulances further come with additional benefits, such as a smoother
acceleration improving in-ambulance care. Thus, a first generation
of electric ambulances is already commercially available.

Ambulances are usually positioned at base stations strategically
placed over a city or coverage area to minimize incident response
times. Incoming emergency calls are assigned to an ambulance,
which drives to the incident location. Some incidents can be re-
solved on-site, while in other cases, patients need to be transported
to a hospital. After completing their assignment, ambulances return
to a base station. While ambulances could return to their origin
station, it is often advisable to select another base station based
on the actual ambulance distribution at this time. This selection of
base stations is known as the Dynamic Ambulance Redeployment
(DAR) problem in literature [13, 16, 23].

In this paper, we show that existing approaches do not perform
well when confronted with electric ambulances. First, we present
a formal definition of the Dynamic Electric Ambulance Redeploy-
ment Problem (DEAR), which extends existing DAR formalizations
by battery levels, range restrictions, charging stations, and recharg-
ing. Based on this extension, we can examine the performance of
established state-of-the-art methods for dynamic ambulance rede-
ployment, which do not consider these aspects. Afterwards, we
present the minimizing energy deficits (MED) approach, designed
to avoid these shortcomings and provide state-of-the-art ambulance
redeployment for E-Ambulances. Our method is based on matching
the predicted future demand in the area of each base station to the
joint energy level of the ambulances. The energy level of vehicles
at a base station is extrapolated for the same time frame as the
future demand and considers any recharging activity increasing
the energy level. Based on both estimations on future development,
MED assigns ambulances to those base stations where the deficits
between the energy level and the demand are expected to be the
largest. We compare MED to various state-of-the-art conventional
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ambulance redeployment methods on an extended environment of
[23]. Our results demonstrate that the conventional DAR methods
suffer significant performance decreases in various settings. In con-
trast, MED can cope well with the requirements of E-Ambulances,
often compensating for their drawbacks against using conventional
ICE ambulances.

To summarize, our contributions are as follows:
• We formalize DEAR, an extension of the DAR problem con-
sidering electric ambulances.
• We extended a DAR simulation environment based on real-
world data to consider the DEAR setting and examine the
performance of conventional DAR methods.
• We propose MED and present experimental results showing
that it copes well with DEAR compared to existing DAR
methods and basic DEAR approaches.

The remainder of this paper is structured as follows: Related work
is presented in Section 2. We then formulate the Dynamic Electric
Ambulance Redeployment Problem (DEAR) in Section 3 and pro-
pose MED in Section 4. We evaluate established DAR approaches
and MED for DEAR using a simulation based on real-world incident
data from San Francisco in Section 5 and summarize our work in
Section 6.

2 RELATEDWORK
The ambulance location problem (ALP) is an established research
topic. Existing approaches can be classified into static and dynamic
methods: In static methods, ambulances are stationed at fixed base
stations and always return to the same base station after an inci-
dent has been handled [7, 8, 19]. One way to obtain a static assign-
ment is to solve the Maximum Expected Covering Location Problem
(MEXCLP) [8, 13]. Its solution maximizes the expected coverage
of incident locations. In contrast to the Maximum Coverage Lo-
cation Problem [7] it is based on, the underlying model assumes
an ambulance to be busy with a certain probability. In this way,
ambulances that are unavailable due to being on a mission, are not
included in the coverage calculation. This reasonable modification
has been proven to be advantageous compared to earlier methods
[12, 13]. Expected Response Time Model (ERTM) [3] is another static
approach that has shown excellent performance due to its direct
minimization of the expected response time [3, 23].

Current state-of-the-art ALP solutions use a dynamic assignment
due to the volatility of the problem [13]. The dynamic assignment of
ambulances is also called Real-Time Ambulance Redeployment Prob-
lem or Dynamic Ambulance Redeployment Problem (DAR). Dynamic
redeployment leads to better response times than static return poli-
cies because the stochastic nature of incoming emergency calls can
lead to imbalances in ambulance distribution which are ignored by
static approaches [10, 11]. The redeployment decision is primarily
based on the locations of ambulances and base stations but may
also take other factors, such as demand distributions, into account.
The DMEXCLP approach by [13] is a dynamic variation of MEXCLP.
At each redeployment step, it selects the base station providing the
largest coverage increase in the respective situation according to
the MEXCLP strategy. This way, DMEXCLP takes the actual distri-
bution of ambulances into account. A reinforcement-learning based

Drive to incident scene

Time at incident scene

Drive to hospital

Time at hospitalDrive to base station

Charge at base station

Wait at base station

Redeploy

Dispatch

Figure 1: Simplified schematic overview of the modeled EMS
process. Specifics for electric ambulances are shown in red.

approach “Reinforcement Learning Deep Score Network” (DRLSN)
is presented by [14].

A vision paper by [20] highlights the growing importance of
electric ambulances and the associated challenge of keeping a fleet
of ambulances charged. It suggests a high-level framework for am-
bulance scheduling concerning the optimal use of renewable energy
sources, including predictive components for patient demand and
energy production and use. Though this work is related, it does nei-
ther propose a formalization of DEAR nor does it provide a method
for the redeployment problem for electric ambulances.

3 PROBLEM DEFINITION
In this section, we will provide a formal definition of the Dy-
namic Electric Ambulance Redeployment (DEAR) problem, out-
lining the operational process of the Emergency Medical Services
(EMS) provider and considering the specifics of electric ambulances.
Figure 1 provides a visual representation of the EMS process. When
an incident occurs, the EMS operator receives a call, and an available
ambulance is dispatched from a base station to the incident location.
In our scenario, the ambulance closest in driving time is dispatched
to ensure a prompt response. If no ambulance is available, the inci-
dent is handled as soon as an ambulance becomes available again.
Upon arrival at the incident, on-site care is provided to the patient.
Depending on the patient’s condition, subsequent transport to a
hospital may be necessary. Otherwise, the ambulance is redeployed
from the incident site to a base station. Once the ambulance arrives
at a base station, it becomes idle and available for dispatch. Consid-
ering electric vehicles introduces unique challenges compared to
Internal Combustion Engine (ICE) vehicles. The downtime for refu-
eling ICE vehicles is typically not a significant concern due to their
long ranges and fast refueling times. However, electric vehicles
have shorter ranges and require substantial charging time. There-
fore, factors such as charging downtime, battery levels, and the
availability of fast chargers at base stations need to be considered in
the EMS process. It is crucial only to dispatch an electric ambulance
if its battery is sufficiently charged to not run out of energy while
handling the incident. Therefore, we define a minimum dispatch
range 𝜏MDR (measured in time units) as the worst-case trip, starting
from the current base station to any incident location, followed by
transportation to any hospital, and finally redeployment to a base
station.

Electric ambulances can be charged at regular AC outlets (we
refer to them as slow chargers), which are already available in large
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numbers at base stations. However, slow chargers have limited
power output, resulting in extended charging times and longer
downtimes of ambulances. Charging times can be significantly re-
duced by installing high-voltage DC chargers (fast chargers specifi-
cally installed for electric vehicles) at base stations. However, their
number is limited because installation presents a significant cost
factor and constraints caused by the capabilities of the energy grid.

Assigning chargers to ambulances at a base station requires a
charging policy when the number of ambulances exceeds the num-
ber of fast chargers. The objective is to charge ambulances in a
manner that allows them to reach the minimum dispatch range
𝜏MDR as quickly as possible, thereby maximizing the number of
available ambulances. It is also important to avoid an unreasonably
high number of re-plugging actions by staff. To achieve these goals,
we implement the following approach: Ambulances below 𝜏MDR are
categorized as high-priority and are charged first. If there are more
high-priority ambulances than available chargers or fast charg-
ers, the ambulance with the shortest time required to reach 𝜏MDR
is prioritized for charging. This ensures that ambulances are pre-
pared for service at the earliest possible time. Once an ambulance
reaches 𝜏MDR, it becomes a low-priority ambulance. For charging
low-priority ambulances, we prioritize ambulances with the lowest
battery level to minimize the number of re-plugging actions. Re-
plugging can occur when an ambulance at the station is sufficiently
charged to provide the minimum dispatch range, is fully charged,
arrives, or is dispatched.

Now, we present a formal definition of the novel DEAR problem,
considering the aforementioned characteristics. In this task, an
operator needs to dynamically select a base station to redeploy an
ambulance to after the ambulance finishes handling an incident,
either from the incident site or the hospital.

The road network is represented as a graph𝐺 = (𝑉 , 𝐸), where𝑉
is the set of nodes representing locations in the road network, and 𝐸
is the set of directed edges representing road segments connecting
the nodes.

Incidents are emergencies requiring medical attention by an
ambulance and are denoted as 𝐼 . Each incident is mapped to the
nearest node in the graph.

Base Stations Let𝑊 be the set of base stations available within
the road network, where ambulances are stationed and dispatched
to incidents. Each base station is mapped to the closest node in the
road network. Base stations are equipped with charging infrastruc-
ture to support the operation of electric ambulances. They possess
an unlimited number of slow chargers (regular AC outlets) and
have varying numbers of fast chargers. Not all base stations are
guaranteed to have fast chargers available.

Hospitals The set 𝐻 represents the hospitals. Similar to base
stations, hospitals are mapped to the closest node in the graph.

Ambulances are electric vehicles, introducing specific charac-
teristics that affect their operational constraints. Key properties
include battery level and capacity, energy use per time, and charg-
ing characteristics. The charging rate of an ambulance depends on
various factors, including its current battery level and the power
output of the charger. A linear charging function is utilized, al-
though other charging functions may also be employed. We assume
that all ambulances are the same type, i.e., their key properties
are equal. Let us note that our method can easily be adapted to

more specific settings if required. Ambulances are initially assigned
to base stations and can be dynamically redeployed to other base
stations depending on incident demand. We allow an ambulance to
be redeployed only after finishing handling an incident.

Travel Times In our setting, the travel times 𝜏 (𝑖, 𝑗) between two
nodes 𝑖, 𝑗 ∈ 𝑉 are assumed to be deterministic and do not vary with
traffic conditions. When responding to an incident or transporting
a patient, ambulances use lights and sirens to alert other drivers,
enabling them to travel at fast speeds [4]. We denote the travel time
with lights and sirens activated as 𝜏 (𝑖, 𝑗).

4 MED: MINIMIZE ENERGY DEFICIT
In this section, we introduce our approach Minimize Energy Deficit
(MED) for the DEAR problem.

While approaches for solving the DAR problem can be applied,
they do not take the additional complexity of electric ambulances
into account. Our evaluation demonstrates that this leads to drasti-
cally degraded response times or requires multiple additional am-
bulances to maintain EMS service levels compared to combustion
engines.

Thus, it is crucial for a redeployment policy to take battery levels
and charging into account. MED is based on the concept of match-
ing the anticipated energy demand at different stations with the
expected energy supply at those stations. While the energy demand
depends on the incidents and, consequently, the amount of energy
needed to handle all incidents. On the other hand, the expected
energy supply depends mainly on the distribution of ambulances
across the base stations, which is influenced by redeployment deci-
sions. Whenever a redeployment decision needs to be made, our
approach deploys the ambulance to the station, which minimizes
the energy deficit.

Our proposed method consists of three steps described in the
remainder of this section:

(1) Determine the expected energy demand.
(2) Determine the expected energy supply.
(3) Calculate and minimize the energy deficit.

4.1 Expected Energy Demand
We introduce the concept of energy demand 𝜃𝑤 , which refers to the
expected energy required to handle incoming incidents within the
lookahead duration Δ𝑡 at base station𝑤 . It is determined based on
the expected number of incidents in the vicinity of the base station
𝑑𝑤 (𝑡now,Δ𝑡) during the lookahead duration and an expected energy
use per incident 𝜌𝑤 . The expected energy demand can be expressed
as the product of these:

𝜃𝑤 = 𝑑𝑤 (𝑡now,Δ𝑡)𝜌𝑤 (1)
We define the demand forecast 𝑑𝑤 (𝑡now,Δ𝑡) as a function that

estimates the expected number of incidents in the vicinity of the
station 𝑤 from the current time 𝑡now until 𝑡now + Δ𝑡 . Numerous
approaches have been proposed in the literature for predicting am-
bulance demand [21, 22, 25, 26]. These methods include but are not
limited to machine learning techniques, time series analysis, and
statistical models. In this paper, we compute an hourly historical
average for demand prediction. [6] shows that this method yields a
strong baseline for predicting ambulance demand. Let us note that
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our approach does not depend on a specific forecasting method and
likely benefits from more accurate predictions. We leave the explo-
ration of more sophisticated demand models to future research.

The vicinity 𝑉𝑤 of a base station𝑤 is defined to be the incident
locations 𝑖 ∈ 𝑉 where the travel time 𝜏 (𝑤, 𝑖) is shorter than from
any other station. Mathematically, this can be expressed as follows:

𝑉𝑤 = {𝑖 ∈ 𝑉 |𝜏 (𝑤, 𝑖) ≤ min
𝑤′∈𝑊

𝜏 (𝑤 ′, 𝑖)} (2)

Using historical incident data, we calculate the average number
of incidents per hour 𝜅𝑤 (ℎ) in the vicinity of each base station
𝑤 and each hour of day ℎ ∈ {0, ..., 23}. Let 𝛽ℎ ∈ [0, 1] represent
the fraction of hour ℎ in the time interval [𝑡now, 𝑡now + Δ𝑡]. The
demand forecast is then given by:

𝑑𝑤 (𝑡now,Δ𝑡) =
∑︁

ℎ∈{0,...,23}
𝛽ℎ𝜅𝑤 (ℎ) (3)

Determining the expected energy per incident within the prox-
imity of each station holds significant importance. This necessitates
evaluating the energy expenditure for traveling from a base station
to the incident location, potentially to a hospital and returning to a
station. A simplistic approach would assume that incidents solely
occur at the centers of each demand area (i.e., the base stations),
then travel to the nearest hospital, and finally return to the closest
station. However, such an approach lacks accuracy. Therefore, we
assume that the locations of incidents are uniformly spatially dis-
tributed across all possible incident locations 𝑖 ∈ 𝑉𝑤 in the vicinity
of 𝑤 . We consider the probability of requiring transportation to
a hospital, as well as accounting for the distribution of patients
transported to different hospitals and the expected energy for rede-
ployment to a station. The hospital distribution and the probability
of requiring hospital transportation are derived from historical data.

We denote the proportion of incidents requiring hospital trans-
portation as 𝛼 , while 𝛼ℎ is the fraction of these incidents handled
by hospital ℎ. To calculate the expected energy use per incident
𝜌𝑤 in the vicinity of station 𝑤 , we first determine the expected
driving time for fully handling an incident and redeployment to a
station. Subsequently, we estimate the energy usage by multiply-
ing the resulting driving times with the parameter 𝑃𝑑𝑟𝑖𝑣𝑖𝑛𝑔 , which
approximates the energy consumed per unit of time:

E(𝜌ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙 (𝑖)) =
∑︁
ℎ∈𝐻

𝛼ℎ
1
|𝑊 |

∑︁
𝑤′∈𝑊

(𝜏 (𝑖, ℎ) + 𝜏 (ℎ,𝑤 ′)) (4a)

E(𝜌𝑏𝑎𝑠𝑒 (𝑖)) =
1
|𝑊 |

∑︁
𝑤′∈𝑊

𝜏 (𝑖,𝑤 ′) (4b)

𝜌𝑤 = 𝑃𝑑𝑟𝑖𝑣𝑖𝑛𝑔
1
|𝑉𝑤 |

∑︁
𝑖∈𝑉𝑤

𝜏 (𝑤, 𝑖)+𝛼E(𝜌ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙 (𝑖))+(1−𝛼)E(𝜌𝑏𝑎𝑠𝑒 (𝑖))

(4c)

4.2 Expected Energy Supply
This section focuses on outlining the methodology for calculating
the expected energy supply 𝜙𝑤 , at a base station𝑤 over a specific
time period. The actual energy supply depends on the demand,
as ambulances may leave the base station to respond to incidents.
While it is theoretically possible to model the distribution of inci-
dents and to sample from an exponentially expanding set of future

scenarios to derive estimates, finding optimal solutions is computa-
tionally intractable. Even approximations similar to the hindsight
planning approaches in [24] are impracticable due to the inherent
complexity and real-time constraints of the DEAR problem. To ad-
dress this, we propose calculating an optimistic, expected energy
supply𝜙𝑤 , assuming that no incidents occur and no ambulances are
redeployed during the prediction horizon, effectively disregarding
the demand. This simplification allows for a deterministic calcula-
tion. However, we account for the probability of ambulances being
dispatched and subsequently reducing the energy supply during the
lookahead duration Δ𝑡 . This is achieved by introducing a charging
discount factor 𝛾 ∈ [0, 1] to adjust the expected energy supply,
resulting in 𝜙𝑤 = 𝛾𝜙𝑤 . Note that even with those assumptions, de-
termining the expected energy supply still requires simulating the
complex charging logic and considering the arrivals of ambulances
en route to the base station.

4.3 Minimize Energy Deficit
After we have defined the expected energy demand and supply, we
continue by specifying how to calculate the energy deficits and sub-
sequently dynamically redeploy ambulances. To define the energy
deficit 𝛿𝑤 at a specific base station𝑤 , we calculate the difference
between the expected energy demand and supply: 𝛿𝑤 = 𝜃𝑤 − 𝜙𝑤 .
However, simply minimizing this deficit has certain limitations. For
instance, if a station already has sufficient supply to meet the de-
mand, adding more supply would be unnecessary, even if it reduces
the deficit. Therefore, we introduce a weighted deficit 𝜔𝑤 using
a soft plus function [9]. This function assigns lower importance
to stations with negative deficits (i.e., surplus supply compared to
demand) and prioritizes stations with high deficits. The weighted
deficit is calculated as follows:

𝜔𝑤 = log(1 + 𝑒𝑥𝑝 ( 1
100𝛿𝑤)) (5)

In the last step, we describe the methodology for using the
weighted energy deficit𝜔𝑤 to make redeployment decisions. When-
ever an ambulance 𝑎 needs to be redeployed, we simulate sending
the ambulance to each base station 𝑤 to obtain 𝜔𝑤 (𝑎). This is
used to calculate the reduction in the expected weighted energy
deficit 𝜔𝑤 − 𝜔𝑤 (𝑎) at each station. Subsequently, we redeploy the
ambulance to the station that yields the most significant reduction.

4.4 Computational Complexity
Making ambulance redeployment decisions is a time-critical task,
and any method should be able to compute a redeployment deci-
sion within seconds. Consequently, we designed our approach with
this requirement in mind. To make each redeployment decision,
we must assess the expected energy demand 𝜌𝑤 and the expected
energy supply 𝜙𝑤 at each station 𝑤 both with and without the
ambulance being redeployed. The energy demand consists of two
components, the expected number of incidents and energy use per
incident. The complexity of the former depends on the demand
prediction model used. In this paper, we use the historical average,
which can be pre-computed so that a prediction can be made in
constant time. The second component, the expected energy use
per incident, is a constant factor that can also be pre-computed.
Therefore, calculating the expected energy demand has constant
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complexity. The primary computational effort lies in determining
future energy supplies, which involves simulating the charging
logic of each ambulance. As we assume optimistically that ambu-
lances will not be deployed, they will eventually reach full charge,
and their energy supply will no longer change. In other words,
each ambulance adds a particular constant computational effort to
simulate. From a computational point of view, the time complexity
of determining future energy supplies is linear in the number of
ambulances, resulting in a complexity of 𝑂 ( |𝐴|).

Our approach has an overall worst-case time complexity of
𝑂 ( |𝐴| |𝑊 |). For each station, we need to calculate the expected
energy demand (with constant complexity due to pre-computation)
and compute the expected energy supply twice.

We implemented our method in C++ to obtain evaluation results
presented in the next section. Executed on a notebook with Intel®
Core™ i7-10750H CPU, one redeployment decision is obtained in ap-
proximately 0.23 milliseconds during a typical evaluation run with
45 base stations and 25 ambulances. Repeating the measurements
with 1,000 ambulances in the environment (an unreasonably high
number for benchmark purposes only), one decision is obtained in
approx. 0.26 ms. These results satisfy the real-time requirement.

5 EVALUATION
In this section, we evaluate various solutions in a DEAR setting
based on real-world emergency data from the city of San Francisco.
We will first detail our experimental setup and, afterward, exam-
ine the impact of electric ambulances on DAR solutions and the
performance of our newly proposed method MED.

5.1 Simulation environment
We evaluate various scenarios using an event-based simulator that
replays real-world emergency data. This simulator mirrors the
DEAR problem defined in Section 3 to simulate the operations of
the EMS with electric ambulances. The foundation of our simula-
tor is an openly accessible simulation environment for dynamic
ambulance redeployment developed by [23]. Since this simulation
does not consider electric vehicles, we extended it to include vehi-
cles’ battery state, charging, and energy use. Further, base stations
were modified to contain a definable number of chargers of speci-
fied charging power with the problem definition’s charging logic.
Note that charging electric vehicles is a complex process influenced
by factors such as battery level, battery condition, and ambient
temperature. Similarly, energy usage depends on variables like driv-
ing profile, traffic conditions, and secondary loads such as heating
or equipment required for patient care. Given the complexity of
modeling these factors accurately, we simplify our simulation by
utilizing constant values for charging power and driving energy
usage, respectively.

The simulated EMS system is based on the city of San Francisco,
USA. The system contains eleven hospitals and 45 base stations.
Their locations are depicted in Figure 2. The road network graph
used in the simulation was acquired from OpenStreetMap 1, with
intersections representing the graph nodes. Hospitals and base sta-
tions were attached to the nearest node in the graph. Driving times

1ODbL license https://www.openstreetmap.org/copyright. Map data copyrighted by
OpenStreetMap contributors and available from https://www.openstreetmap.org.

Figure 2: Simulation environment of San Francisco, USA. Lo-
cations of base stations are marked in orange if a fast charger
is present and otherwise, in blue; Hospitals are marked in
red. Note that population density is highest in the downtown
area (top right). Map data © OpenStreetMap contributors.

were computed based on the shortest path with respective street
limits depending on the road type. To account for traffic and slowing
down due to turns and crossings, we calibrated the driving times
based on estimates by HERE Traffic 2 by multiplying a constant
factor. Based on this method, the average speed, including traffic
congestion, was estimated to be 32 𝑘𝑚

ℎ . Ambulances returning to a
base station are assumed to drive at traffic speed. However, when
moving toward an incident or hospital, ambulances are granted
certain exemptions from traffic regulations, allowing them to drive
faster. Nevertheless, traffic congestion and safety considerations
still limit realistic driving speed. Thus, we scaled driving times
accordingly, resulting in an average emergency speed of 50 𝑘𝑚

ℎ as
suggested by [11].

The city of San Francisco has made real incident data publicly
available through their Fire Department Calls for Service dataset 3.
This dataset contains historical records of health emergency calls,
including information such as the date, time, and location of each
emergency. This enables us to simulate the historical occurrence
of incidents with arbitrary configurations of base stations, ambu-
lances, and redeployment methods. However, it is important to note
that while the dataset indicates whether a hospital was targeted,
specific details such as the hospital’s name or location are not dis-
closed. Selecting a suitable hospital involves a complex decision
process, including various factors such as the patient’s medical
needs, hospital occupancy levels, patient preferences, and the prox-
imity to hospitals [1]. Since this information is unavailable to us,
2https://www.here.com/platform/traffic-solutions/real-time-traffic-information
3https://data.sfgov.org/Public-Safety/Fire-Department-Calls-for-Service/nuek-vuh3
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we determine target hospitals by random sampling according to the
real-world distribution of patient transports to hospitals between
February 2022 and February 2023 published by the Data Working
Group (DWG) of the City of San Francisco 4. Note that this random
sampling was done as a preprocessing step, ensuring the hospital
transportations are consistent across all experiments. Locations of
incidents were mapped to the nearest graph node in our simulation.

5.1.1 Placement and power of fast chargers. As discussed in our
introduction, cities will likely outfit only a subset of base stations
with fast chargers, primarily due to installation costs. Therefore,
we strategically locate fast chargers at the stations with the high-
est demand, assigning one fast charger per station. Note that ac-
cording to our problem definition, additional slower chargers are
already present at every station. In our evaluation, we considered
three different types of fast chargers, each offering different charg-
ing powers. The first type is a high-power DC charger delivering
50 kW of charging power. The second type is a cheaper three-phase
AC charger delivering 22 kW charging power. Lastly, we considered
a more expensive option of 100 kW charging.

5.1.2 Electric Ambulance Models. The battery capacity and aver-
age driving energy use (𝑃driving) in our simulation are based on
real-world electric ambulances. We base our experiment values on
electric ambulance “WAS 500” because it is a suitable replacement
for ICE ambulances and technical data is readily available 5. We set
the battery capacity to 87 kWh, based on the specifications provided
in the datasheet of the ambulance. To determine 𝑃driving, we con-
sider the average speed and the energy usage from the datasheet.
We calculate this value as 30 kW.

5.2 Metrics
As motivated in our introduction, minimizing ambulance response
times is critical for EMS providers. In an ambulance redeployment
context, response times are usually defined as the time between
dispatching an ambulance at its base station and its arrival at the
incident scene. Aggregated metrics used for evaluating the per-
formance of EMS systems are the average response time (ART)
and the fraction of response times within a certain response time
threshold (RTT) [17, 23]. RTT values and targeted fractions are set
differently by different institutions [17]. San Francisco’s Emergency
Medical Services Agency aims to arrive at life-threatening incidents
within a 10 minute threshold at least 90% of the time [2, 23]. We
use this metric extensively in our evaluation, denoting it as RTT10.
We occasionally also include RTT fractions for 8 minutes (RTT8)
and 12 minutes (RTT12).

5.3 Baselines
We compare our method MED (Minimize Energy Deficit) with sev-
eral straightforward baselines as well as several state-of-the-art
approaches for redeploying combustion engine ambulances. The
most simple baseline is RAND, which redeploys the ambulance
to a random base station. NEAR selects the base station which
can be reached fastest by the ambulance (i.e. minimizes driving
time). NEARC and NEARF similarly select the nearest station but

4http://sfemergencymedicalresponse.weebly.com/ambulance-destinations.html
5https://www.was-vehicles.com/en/innovation/was-500-electric-ambulance.html

Table 1: RTT10 performance of conventional methods in the
ICE case compared to the EV case with different charging
powers and 24 ambulances.

Scenario ERTM DRLSN MEXCLP DMEXCLP
ICE 0.88 0.90 0.83 0.89
EV 22 kW 0.47 0.40 0.30 0.20
EV 50 kW 0.72 0.85 0.58 0.57
EV 100 kW 0.76 0.86 0.67 0.56

consider only stations with chargers (NEARC) or free, fast chargers
(NEARF), respectively. Note that this method checks availability
at query time. We also include state-of-the-art approaches from
the DAR problem discussed in (Section 2) and refer to them as con-
ventional approaches. These approaches consists of static methods,
namely ERTM[3] andMEXCLP[8, 13], a dynamic method called
DMEXCLP[13], and the reinforcement learning based approach
DRLSN[14]. Let us note that DRLSN is trained in an environment
considering DEAR, and thus, it can learn the specific behavior of
E-Ambulances. However, we did not change the agent itself as a
straightforward extension of observation data did not yield im-
proved results.

5.4 Results
In this section, we present the results of our experimental evalua-
tion based on the previously described simulation environment to
answer the following research questions:

(1) How large is the effect of replacing ICE ambulances with
EVs using established DAR methods?

(2) Does our approach MED perform better than methods from
related work for DEAR?

(3) What is the influence of simulation parameters such as the
number of available chargers?

(4) How sensitive is our approach to variation of its parameters?
For all experiments, methods were evaluated by simulating one

year of incidents (test set) in our simulation. The resulting response
times were then aggregated to obtain RTT10 and ART metrics. The
respective previous year (validation set) was used to determine
the method’s parameters, such as historical demand and selecting
hyper-parameters. The best set of hyper-parameters (according
to the RTT10 metric) was selected for evaluation on the test set.
Experiments were conducted for the years 2015 to 2022. Due to the
numerous parameters involved, including different combinations
of years, ambulance quantities, charger quantities, charging power,
etc., we cannot present all results here. Unless indicated otherwise,
the experiments were conducted with incidents from the year 2022,
using 15 fast chargers, each providing 50 kW charging power. Ad-
ditionally, we included variations of these parameters to facilitate a
comprehensive comparison of methods under different scenarios.

5.4.1 Effect of switching to electric ambulances. In this section, we
analyze the effectiveness of methods for ordinary DAR settings
(conventional approaches) when being applied to the DEAR prob-
lem. We present the results for ICE and EV scenarios containing
24 ambulances in Table 1, as 24 ambulances are required for the
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Figure 3: Number of additional ambulances needed to reach
same performance (RTT10 metric) as in the non-EV scenario
for best methods from related work. 50 kW charging power.

first method to reach the RTT10 target of 90%. We observe a sig-
nificant decline in the RTT10 metric when introducing energy use
and charging, with some cases showing a reduction of more than
50% in performance. Using 22 kW fast chargers results in inferior
performance: ERTM receives the best 22 kW RTT10 score (0.47),
which is not acceptable for an EMS provider, despite its signifi-
cantly better performance (0.88) in the ICE case. When using 50
kW or 100 kW fast chargers, the decline in performance is less
severe but still substantial. DRLSN achieves best RTT10 scores in
the ICE (0.90), 100 kW (0.86) and 50 kW (0.85) cases. Notably, its
reward-based algorithm shows the ability to learn certain charac-
teristics of the EV environment despite not explicitly observing
energy-related data. Its poor performance in the 22 kW case may be
explained by rewards being too sparse to enable effective training.
Like ERTM, bothMEXCLP and DMEXCLP show drastic decreases in
performance. Although the dynamic method DMEXCLP performs
better than the static approaches ERTM and MEXCLP in the ICE
case, it experiences substantial difficulties in the EV scenarios, even
showing worse results in the 100 kW case compared to 50 kW. Over-
all, results indicate that using fast chargers with 22 kW charging
power will not enable acceptable performance with these meth-
ods. Increasing the charging power to 50 kW improved the results,
but additional ambulances are still necessary. Installing 100 kW
chargers does not appear to improve results substantially. As in-
frastructure investments generally increase with higher charging
power, emergency medical service providers should be aware of
this effect when transitioning to electric ambulances.

Figure 3 provides insights into the number of additional ambu-
lances needed when transitioning from ICE to EV ambulances. It
depicts the number of additional ambulances required to reach an
equal or better RTT10 performance compared to non-EV ambu-
lances for the ERTM and DRLSN. We use 50 kW chargers in the
scenario, as there is a minimal improvement when using 100 kW.
ERTM requires an additional 3 to 6 ambulances. DRLSN requires 2
to 4 additional ambulances when replacing up to 25 ICE ambulances.
In settings replacing more than 25 ICE the number of additional
ambulances can decrease to 1.

Overall, our results show that employing conventional methods
from related work on the DEAR problem requires more ambulances

Table 2: Performance of all methods when using 24 ambu-
lances and 50 kW charging power.

Method RTT8 RTT10 ART
MED 0.87 0.92 4.64
NEAR 0.79 0.88 6.50
NEARF 0.79 0.87 5.38
DRLSN 0.81 0.85 5.90
NEARC 0.75 0.84 5.89
ERTM 0.68 0.72 19.27
MEXCLP 0.50 0.58 32.44
DMEXCLP 0.49 0.57 33.87
RAND 0.01 0.01 153.09

to achieve a similar level of performance compared to ICE ambu-
lances. Additionally, an interesting finding is that the difference
between 50 kW and 100 kW charging is minimal in contrast to
charging with 22 kW.

5.4.2 Performance of MED. We now introduce results for our ap-
proach MED and compare them to state-of-the-art conventional
methods developed for DAR, as well as our DEAR baselines. Results
for all methods are shown in Table 2. We again chose 24 ambulances
and 50kW charging power due to the previously mentioned practi-
cal relevance of this scenario. Our approach MED outperforms all
other methods across all metrics. Specifically, it achieves an RTT10
value of 0.92, which is well within the 90% target. The average
response time (ART) of 4.64 minutes is about 45s faster than the
second-best method NEARF, and 75s less than DRLSN, the best con-
ventional method from related work. It is worth noting that another
nearest station method, NEAR, also demonstrates surprisingly good
performance, securing the second-best RTT10 value of 0.88. The
best performing conventional method is DRLSN (0.85), followed
by ERTM (0.72). The difference between RTT10 and ART scores,
especially when considering the comparatively good performance
of simplistic baselines such as NEAR or NEARF underlines the ob-
servation that conventional methods do not perform well in the
evaluated EV scenario. In contrast, MED performs better in DEAR
(RTT10 of 0.92) than the best DAR approach in the corresponding
ICE scenario (RTT10 of 0.90, compare Figure 1).

The relationship between the number of deployed ambulances
and the performance is illustrated in Figure 4 for the best-performing
methods. MED consistently demonstrates strong results across all
metrics. Analyzing the RTT10 performance in Figure 4a, it becomes
evident that MED outperforms other approaches with a substantial
gap to the second best method up to a number of 29 ambulances. As
noted before, it is the first to exceed the 90% RTT10 target (dashed
red line). Furthermore, its performance considering the ART met-
ric (Figure 4b) is superior to others in the most interesting region
(due to its closeness to the 90% RTT10 target) of about 24 ambu-
lances. When 22 or fewer ambulances are used, method NEARF
yields lower ART values. This is because in these cases, demand
for ambulances, and the energy use that comes with it, is so high
that all other objectives fade in comparison to obtaining energy as
fast as possible. As the NEARF method is designed to immediately
drive to the nearest free charger, regardless of its location or any
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Figure 4: Performance comparison of best methods for 50 kW
charging power.

other criteria, it fulfills this objective well. In situations where a sub-
stantial number of ambulances (27 or more) are available, methods
from previous research narrow the gap. At this point, the locations
and availability of chargers become less critical as it becomes more
likely that a charged ambulance is stationed sufficiently close to
any incident. Furthermore, slow charging is sufficient to make sure
that drained ambulances will be available at a later point in time.
It is, however, interesting that the gap for the RTT10 metric (c.f.
Figure 4a) closes more slowly that the gap in ART (c.f. Figure 4b).
This indicates that MED still allows significantly fewer incidents
that are not handled within the 10-minute limit than compared
methods up to 29 ambulances.

As emergency service providers usually aim to fulfill a certain
minimum service level, we provide the number of ambulances
needed to reach a 90% fraction of common RTT values in Table 3.
An important observation is that MED requires the lowest num-
ber of ambulances to reach the target in all cases. A RTT8 target
is reached by deploying 26 ambulances with MED, whereas the
second best method, DRLSN, requires 29 ambulances. The RTT10
and RTT12 targets are reached with 24 and 22 ambulances, respec-
tively, requiring two and one ambulances less than the runner-up.
It is worth mentioning that most methods failed to reach the RTT8
target for fleet sizes up to 40, which is the maximum number of
ambulances considered in our experiments.

Table 3: Number of ambulances needed to reach the 90% RTT
target for various RTT values. 50 kW charging power.

Method 8 min 10 min 12 min
MED 26 24 22
DRLSN 29 26 25
NEAR > 40 26 24
ERTM 30 29 29
DMEXCLP > 40 32 31
MEXCLP > 40 32 29
NEARC > 40 > 40 23
NEARF > 40 > 40 23
RAND > 40 > 40 > 40

Table 4: Performances ofMED compared to bestmethod from
related work for each evaluation year. In each year, MED
performed best, followed by DRLSN. The number of ambu-
lances in each row was determined as the lowest amount
that reached 90% RTT10 for the given year. Column Diff for
RTT10 is the decrease of incidents that could not be reached
within 10 minutes. Column Diff for ART is the decrease in
response times.

Year RTT10 ART
MED DRLSN Diff MED DRLSN Diff

2015 0.901 0.860 -29.18% 4.810 5.551 -13.34%
2016 0.907 0.867 -30.57% 5.101 5.916 -13.78%
2017 0.919 0.877 -34.28% 4.494 5.345 -15.92%
2018 0.912 0.867 -33.63% 4.679 5.491 -14.79%
2019 0.910 0.875 -28.19% 4.579 5.469 -16.27%
2020 0.908 0.872 -28.18% 4.635 5.476 -15.37%
2021 0.905 0.852 -35.42% 4.927 5.767 -14.57%

To see if the superior performance of MED can be reproduced
in other years, we repeated the experiment above for each pair
of years starting in 2015. This includes fitting parameters on the
given year and testing methods’ performance in the following year.
The results summarized in Table 4 show that MED can reach the
90% RTT10 target with fewer ambulances than methods from re-
lated work each year. The difference in incidents that could not
be reached within 10 minutes is considerably lower in these cases,
namely between 28.18% to 35.42% lower. Average response times
also decrease consistently for all years. In absolute numbers, this
means reducing average response times by about 50 seconds in our
experiments, which can be valuable in critical emergencies.

These results demonstrate the superior performance of MED
for the DEAR problem across various scenarios. Furthermore, as
MED in DEAR displays a similar or better performance than com-
pared methods in the ordinary DAR environments based on ICE
ambulances, we can conclude that switching to an equally-sized
fleet of E-Ambulances can be done without significantly decreasing
response times.
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Figure 5: Performance of MED for different charging powers.

5.4.3 Varying power and number of chargers. The performance
of MED for different charging rates and numbers of deployed am-
bulances is presented in Figure 5. It can be seen again that the
difference between 50 kW and 100 kW fast charging power is min-
imal. However, 22 kW charging results in inferior performance.
For example, the RTT10 target is reached with 25 ambulances in-
stead of only 24 for both higher charging rates. This disparity
becomes more apparent as the number of ambulances decreases, as
the per-ambulance energy use and corresponding charging activity
increases in such scenarios. With increasing numbers of ambu-
lances, the charging pressure vanishes, which can be seen in the
convergence of all powers’ measurements. Figure 6 depicts the re-
sults of different methods for varying the number of installed fast
chargers. As before, we use 24 ambulances as the lowest amount to
be sufficient to reach the 90% RTT10 target. ERTM, MEXCLP, and
DMEXCLP exhibit a slow increase of performance when increas-
ing the number of fast chargers and thus appear to be especially
ill-suited for the EV scenario. In contrast, the performance of MED,
NEAR, NEARF and DRLSN follows an early quick increase with a
slower rise once about three fast chargers are installed, i.e., they
appear to either use less energy or utilize fast chargers better, or
both. It should be noted that MED is the only approach that meets
the 90% RTT10 level. Furthermore, MED’s performance does not
substantially increase when more than 11 chargers are installed
in the environment. To summarize, our method tailored for EV
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Figure 6: Comparison of RTT10 performance for different
numbers of fast chargers. Scenario with 24 ambulances and
50 kW charging power.
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Scenario with 24 ambulances and 50 kW charging power.

scenarios requires not only fewer ambulances but also fewer fast
chargers.

5.4.4 Parameter sensitivity. Figure 7 shows how varying MED’s
two parameters affect its RTT10 performance, using the scenario
of 24 ambulances and 50 kW charging. Examining the parameter
lookahead duration Δ𝑡 (Figure 7 left), the optimal value is 25 min-
utes, with a roughly linear decrease when higher or lower values
are used. The sensitivity of our approach to this parameter is low,
as doubling it to 50 minutes only marginally decreases RTT10 per-
formance by about 0.01. Varying the charging discount factor 𝛾
(Figure 7 right) appears to have little effect on performance. The
optimum is at a value of 0.4, which can be explained by charg-
ing processes at base stations being frequently interrupted due to
incoming incidents in this challenging scenario.

5.4.5 Qualitative analysis. Figure 8 shows a snapshot of our simu-
lation from the point of view of our approach MED. The weights
assigned by the method (orange bars) are calculated in a way that
expected demand (red bars) is offset by available energy (blue bars),
i.e., ambulances assigned to the respective base station. The energy
distribution appears to be pretty spread out to minimize response
times. Several base stations necessarily contain zero energy because,
in this scenario, 25 ambulances have to cover all 45 base stations.
However, the gaps are mostly in lower demand areas and can be
covered by nearby base stations with assigned ambulances.
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Figure 8: Snapshot of a simulation with 25 ambulances. Bar
plots indicate base stations’ estimated future energy values
as calculated by MED: Supply (blue); Demand (red); Deficits
(yellow) after nonlinear scaling (higher scores mean higher
priority). Map data © OpenStreetMap contributors.

6 CONCLUSION
In this paper, we introduce the Dynamic Electric Ambulance Re-
deployment (DEAR) problem extending the Dynamic Ambulance
Redeployment (DAR) problem to electric ambulances. We propose
the Minimize Energy Deficits (MED) method, which determines
redeployment actions by estimating the future energy deficit over
all base stations. The energy deficit of a base station weighs a
prediction of future demand against a prediction of the available
energy level corresponding to the remaining range of stationed am-
bulances. We conducted experiments in a realistic scenario using
an event-based simulator based on real-world incidents. Results
show that MED reaches better performance than compared DAR
methods, as well as baselines for EV settings. Furthermore, our
results indicate that transitioning to electric ambulances can be
done without increasing the number of available ambulances while
maintaining comparable response times.

For future work, we plan to explore using more sophisticated
prediction methods for demand and available energy. Furthermore,
we want to examine sequential planning approaches considering
multiple decisions in advance.
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ABSTRACT
When placing sensors in an environment, it may not be possible
to directly cover all entities of interest with sensors due to cost
or other restraints. This leads to a sensor placement problem in
which only a subset of all sensible sensor locations is equipped with
sensors. If data concerning the system to be measured is already
available or easily procured, sensor locations can be selected in a
data-driven approach. Without data, alternative methods have to be
applied. In this paper, we present and compare various data-driven
and data-agnostic methods for selecting parking sensor locations in
a city environment. Experiments using real-world data show that
methods only requiring parking bays’ locations compare reasonable
well to data-driven approaches requiring environment data which
may be expensive to acquire.

CCS CONCEPTS
• Applied computing→ Transportation; Forecasting; • Infor-
mation systems → Spatial-temporal systems; • Computing
methodologies→ Model development and analysis.
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1 INTRODUCTION
Accurate data is important when making statements regarding the
current or future state of a system such as an urban environment.
Such data can be automatically recorded by sensors and processed
according to the needs of relevant use-cases. For example, the City
of Melbourne, Australia, fitted individual parking bays in its Central
Business District with in-ground occupancy sensors to obtain real-
time parking occupancy information. This naturally comes with
costs for planning, installation and maintenance. Secondary factors
such as obtaining necessary permits, privacy concerns, property
restrictions or similar issues may complicate the installation of a
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complete sensor network. Consequently, outfitting only a subset
of possible sensor locations with sensors may be preferred or even
required. This comes with the disadvantage of having blind spots
which needs to be addressed in order to still be able to feed suitable
data to smart city applications. Although methods for filling gaps
exist, they come with an error due to the inherent uncertainty
caused by the environment’s dynamic behavior, e.g. visitors or
commuters parking their cars. In order to enable a good service
quality, data providers seek to minimize such errors.

Selecting a subset of possible sensors can be done in a data-
driven way by obtaining data from a particular environment and
then, using this data to calculate optimal sensor positions. In the
parking use case, this could be done by conducting a study in which
parking occupancy is recorded by human observers during a short
time-frame. As this also comes with drawbacks such as personnel
costs and an increased project duration and complexity, strategies
not requiring such data may be beneficial if their results are not
much worse than data-driven methods. It is important to note that
such strategies do not have to work completely without data: Data
regarding the environment is usually available, such as a map of
the street network including parking bays.

In this paper, we review data-driven and data-agnostic methods
relevant for placing sensors in order to interpolate parking occu-
pancy data. We state methods not needing initial occupancy data
but only a street network graph including parking bay locations.
We then evaluate various methods using real-world parking data
and conclude that our method is a viable alternative when obtaining
initial occupancy data is not possible or expensive.

2 RELATEDWORK
Using information obtained through spatial sensor networks is
a common theme in smart city applications. For example, it was
shown that information about the current occupancy state of park-
ing bays can be used to guide drivers to a free parking bay faster
than approaches without such data [15]. Future parking occupancy
can be predicted given data of sensor networks [2]. Methods for
monitoring parking availability include in-ground sensor networks
[19] and analysis of camera footage [16]. A comprehensive overview
of parking bay sensors and use-cases making use of parking data
is given in [6]. In case not every parking opportunity is directly
covered by sensors, interpolation methods can be used to estimate
parking occupancy at unobserved locations [3].

Approaches using stationary sensors described above assume
an already specified and fixed sensor network, either by outfit-
ting each parking bay in the target area with a sensor or making
use of an existing sensor infrastructure. In contrast, this paper is
concerned with selecting a limited number of street segments for
sensor placement.
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Basic approaches for selecting a subset of possible sensor loca-
tions for sensor placement in a spatial environment include spread-
ing the sensors randomly or uniformly over the area in question, e.g.
by drawing a suitable grid and placing sensors near grid intersec-
tions. A more sophisticated method is to solve a coverage problem
requiring that all areas or entities of interest are covered by at least
one sensor, i.e., are within its detection range. This problem can be
formalized as an optimization objective given coverage constraints
and efficiently be solved using integer linear programming solvers.
For example, [1] use a coverage approach to optimize placement
of data relay nodes given a fixed set of parking sensors. Finding
an exact solution may be computationally infeasible if the set of
possible sensor combinations is large. In this case, heuristics such
as simulated annealing or genetic algorithms can be applied [14].

Data-driven approaches need data of the type sensors would
yield before the actual sensor placement is decided. These data
may be collected by temporary sensors or a field study (e.g. per-
sonnel placed on streets with notepads). In some cases, it may be
inferred from other data, although this adds another layer of un-
certainty. Outfitting only a subset of possible sensor locations with
sensors is known as the sparse sensor placement optimization for
reconstruction (SSPOR) problem [11]. While work on SSPOR often
uses spatial examples such as temperature interpolation, methods
do not explicitly include spatial information. Instead sensors are
placed only using sensor data. The PySensors toolkit for sensor
placement presented by [4] contains algorithms to solve SSPOR:
It takes a set of complete measurements and determines which
components should be selected to reconstruct the remaining ones
in an optimal way. The same problem is solved by Polire, an open
source toolkit for spatial interpolation and sensor placement [9, 13].
It applies a greedy algorithm which selects sensors according to
gains in a specified criterion, such as mutual information or en-
tropy. The Chama framework for sensor placement covers many
relevant algorithms and strategies for sensor placement but focuses
on global event detection such as detecting an earthquake or a
pollutant leaking into a system [7]. We on the other hand are not
interested in detecting global events but detecting a multitude of
individual parking events. [8] determine how a fixed budget may
be best spent on individual observations when each observation
is connected with a certain cost. They do not determine a fixed
subset of sensors but determine which locations should best be
queried at which time. In contrast, we are interested in determining
a permanent network of stationary sensors.

3 PROBLEM DEFINITION
A spatial sensor selection problem includes entities of which state
information should be collected by sensors. Multiple problem defi-
nitions are possible depending on the nature of this entity. In our
definition, we consider 𝑛 discrete entities 𝑝𝑖 , e.g. each being the
set of individual parking bays of a given street segment. This cov-
ers the use-case of recording on-street parking availability with
in-ground devices as the infrastructure needed for a street segment
(such as a relay node processing raw data of individual sensors and
transmitting occupancy data to a central database) can be use by
multiple sensors connected by wires or near-field communication
[1]. In this case, we call the combined set of devices monitoring

exactly one street segment a sensor. It also covers the use-case of
recording such data by analyzing camera images, as a camera can
typically be installed in a way that covers all parking bays of a
street segment, but not multiple street segments at once.

Note that in our definition, a street segment never contains an
intersection. Further, the link between two intersections is divided
intomultiple street segments if it would otherwise contain toomany
parking bays. We call a street segment connected to an entity a
candidate segment as it is a candidate for sensor placement. Sensors
are never placed on street segments that are not candidate segments.

Each entity is connected to a measurable value 𝑣𝑖,𝑡 (0 ≤ 𝑣𝑖,𝑡 ≤ 1)
for each time 𝑡 , e.g. the fraction of occupied parking bays at time 𝑡 .
The spatial relation of 𝑝𝑖 is given as their location in a graph𝐺 with
nodes 𝑁 and edges 𝐸. Each 𝑝𝑖 is connected to an edge 𝑒𝑖 ∈ 𝐸, e.g. a
street segment. Each node carries location information in form of
Cartesian coordinates. Therefore, each entity 𝑝𝑖 can be assigned a
location 𝑙𝑖 that is defined as the midpoint between both nodes of
its edge 𝑒𝑖 .

As stated above, each entity 𝑝𝑖 is monitored by exactly one sensor.
Sensor presence is indicated by an indicator variable 𝑠𝑖 ∈ {0, 1}
which is set to 1 if a sensor is present at 𝑝𝑖 , otherwise 0. Each of𝑚
sensors placed covers exactly one entity, i.e.

∑
1≤𝑖≤𝑛 𝑠𝑖 =𝑚.

The sensor selection problem now selects the set of entities 𝜎̂ to
be equipped with a sensor that maximizes an objective function 𝜆
over all valid sensor subsets 𝜎𝑘 ∈ Ω:

𝜎̂ = argmax
𝜎𝑘 ∈Ω

𝜆(𝜎𝑘 ) (1)

with
Ω = {(𝑠1, ..., 𝑠𝑛)∀𝑠𝑖 ∈ {0, 1}},

∑
1≤𝑖≤𝑛

𝑠𝑖 =𝑚 (2)

Reasonable functions for 𝜆 include averaged interpolation or
prediction errors when using the subset to reconstruct actual values
𝑣𝑖,𝑡 . Assuming a predictor Γ(𝜎, 𝑖) taking a subset of sensors to
predict the value of the 𝑖-th sensor, the mean absolute error (MAE)
may be used:

𝜆MAE (𝜎) =
∑

0≤𝑖≤𝑛,∀𝑡
|𝑣𝑖,𝑡 − Γ(𝜎, 𝑖) | (3)

Note that the best subset depends on both predictor Γ and objec-
tive function 𝜆. These have to be chosen according to the use-case.

4 SENSOR PLACEMENT METHODS
Various methods for sensor placement are mentioned in Section 2
above. These include data-driven and data-agnostic approaches.
Data-driven approaches use observation data for placement of sen-
sors. In our parking use-case, this is parking occupancy data. Data-
agnostic methods don’t use such data but may usemetadata such as
locations of candidate segments and the street graph. Some meth-
ods are deterministic while others involve random components
such as random initialization or random tie-breaks. Each method
is given a input parameter𝑚 denoting the exact size of the target
subset of candidate segments to select for sensor placement, i.e. the
number of sensors to place.

We now describe a number of methods which are relevant for
our parking use-case and included in our evaluation.
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4.1 Data-agnostic placement methods
Simple placement methods Random and Largest are included as
benchmark methods for comparison. We devised methods Clusters
and MaxMin to exploit the observation that pairwise correlation
between spatial resources depends on the distance between them:
A smaller distance tends to coincide with higher similarity. This
may be due to their shared neighborhood with points of interest
targeted by drivers. Other reasons may include differing parking
rules or peculiarities of the street network such as dead-end streets
or especially busy areas. While we are certainly not the first to
use the underlying algorithms, we are not aware of other attempts
of using them in related problem settings. Method Coverage is
included for comparison as coverage-based methods are routinely
used for sensor placement [1, 18]. Note that we don’t use it in the
“traditional” way of optimizing direct sensor coverage as explained
below.

4.1.1 Random. Candidate segments are selected for sensor place-
ment by random draw. Each segment has the same probability of
being drawn.

4.1.2 Largest. Candidate segments are selected only by their re-
spective number of individual parking bays contained. Segments
with higher counts are selected first. This method is explicitly in-
cluded as a “higher-bound” benchmark as we have no reason to
believe that it leads to advantageous selections.

4.1.3 Clusters. This method is shown in Algorithm 1: To select
𝑛 sensors, segments are first clustered into 𝑛 clusters through K-
Means clustering using Lloyd’s algorithm [10]. Each cluster’s center
point is calculated as the mean location of all candidate segments it
contains. The nearest not previously selected candidate segment to
each center point is determined and selected for sensor placement.
Note that the algorithm uses locations given in a local Cartesian
coordinate system. Locations denoted in geographic coordinates
are projected to a suitable local Cartesian coordinate system first.
The method is not deterministic as results of Lloyd’s algorithm
depend on its random initialization and ties in distance are resolved
randomly.

4.1.4 MaxMin. This method selects candidate segments so that
the minimum pairwise graph distance over all selected sensors
is maximized. This effectively spreads the sensors as widely as
possible while preventing sensors to be near to each other. The
large number of possible subsets prevents us from obtaining an
optimal solution due to the high computational complexity. Instead,
we use a greedy heuristic shown in Algorithm 2. We restart this
algorithms multiple times, always keeping the best result seen so
far, to minimize the risk of ending up in local optimum worse than
the global optimum.

4.1.5 Coverage. This method also exploits the spatial relationship
of parking segments. Here, a candidate segment is defined to be cov-
ered if at least one sensor is present within a certain graph distance
𝑑 . Note that “coverage” in this sense does not refer to direct cover-
age through actual observance by the sensor but indirect coverage
due to a statistically higher likeness of occupancy because of spatial
closeness. The method places 𝑚 sensors so that 𝑑 is minimized
under the constraint that each candidate segment is covered.

Data: 𝑃 ⊲ Set of all possible sensor locations
Data: 𝑘 ≥ 1 ⊲ Amount of sensors to select
𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑒𝑛𝑡𝑒𝑟𝑠 ← 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐾𝑀𝑒𝑎𝑛𝑠 (𝑃, 𝑘);
𝑏𝑒𝑠𝑡𝑆𝑢𝑏𝑠𝑒𝑡 ← {};
foreach 𝑐𝑒𝑛𝑡𝑒𝑟 ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑒𝑛𝑡𝑒𝑟𝑠 do

𝑚𝑖𝑛𝐷𝑖𝑠𝑡 ← inf;
foreach 𝑐 ∈ 𝑃 \ 𝑏𝑒𝑠𝑡𝑆𝑢𝑏𝑠𝑒𝑡 do

𝑑 ← 𝑑𝑖𝑠𝑡 (𝑐𝑒𝑛𝑡𝑒𝑟, 𝑐);
if 𝑑 < 𝑚𝑖𝑛𝐷𝑖𝑠𝑡 then

𝑚𝑖𝑛𝐷𝑖𝑠𝑡 ← 𝑑 ;
𝑏𝑒𝑠𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← 𝑐;

end
end
𝑏𝑒𝑠𝑡𝑆𝑢𝑏𝑠𝑒𝑡 ← 𝑏𝑒𝑠𝑡𝑆𝑢𝑏𝑠𝑒𝑡 ∪ {𝑏𝑒𝑠𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒};

end
return 𝑏𝑒𝑠𝑡𝑆𝑢𝑏𝑠𝑒𝑡 ;

Algorithm 1: Part of selection method Clusters.

Data: 𝑃 ⊲ Set of all possible sensor locations
Data: 𝑘 ≥ 1 ⊲ Amount of sensors to select
𝑏𝑒𝑠𝑡𝑆𝑢𝑏𝑠𝑒𝑡 ← 𝑝𝑖𝑐𝑘𝑂𝑛𝑒𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦 (𝑠𝑢𝑏𝑠𝑒𝑡𝑠𝑂 𝑓 𝑆𝑖𝑧𝑒 (𝑃, 𝑘));
𝑚𝑎𝑥𝑀𝑖𝑛𝐷𝑖𝑠𝑡 ←𝑚𝑖𝑛𝑃𝑎𝑖𝑟𝑤𝑖𝑠𝑒𝐷𝑖𝑠𝑡 (𝑏𝑒𝑠𝑡𝑆𝑢𝑏𝑠𝑒𝑡);
repeat

𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 ← 𝐹𝑎𝑙𝑠𝑒;
𝑆 ← 𝑏𝑒𝑠𝑡𝑆𝑢𝑏𝑠𝑒𝑡 ;
foreach 𝑇 ∈ 𝑠𝑢𝑏𝑠𝑒𝑡𝑠𝑂 𝑓 𝑆𝑖𝑧𝑒 (𝑆, 𝑘 − 1) do

foreach 𝑐 ∈ 𝑃 \ 𝑆 do
𝑈 ← 𝑇 ∪ {𝑐};
𝑑 ←𝑚𝑖𝑛𝑃𝑎𝑖𝑟𝑤𝑖𝑠𝑒𝐷𝑖𝑠𝑡 (𝑈 );
if 𝑑 > 𝑚𝑎𝑥𝑀𝑖𝑛𝐷𝑖𝑠𝑡 then

𝑚𝑎𝑥𝑀𝑖𝑛𝐷𝑖𝑠𝑡 ← 𝑑 ;
𝑏𝑒𝑠𝑡𝑆𝑢𝑏𝑠𝑒𝑡 ← 𝑈 ;
𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 ← 𝑇𝑟𝑢𝑒;

end
end

end
until not 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 ;
return 𝑏𝑒𝑠𝑡𝑆𝑢𝑏𝑠𝑒𝑡 ;

Algorithm 2: Part of selection method MaxMin.

This can efficiently be done by pre-computing solutions to the
the set-cover problem [12] for a each distance 𝑑 in a suitable range.
Each solution of the set-cover problem is a minimal set of sensors
so that each candidate segment is covered assuming a sensor range
of 𝑑 . An optimal set of 𝑚 sensors can then be looked up in the
pre-computed solution list by selecting the solution with lowest
distance under the condition that𝑚 sensors are selected.

Minimal set sizes for our evaluation environment Melbourne are
shown in Figure 1. For example, the installation of 50 sensors can
be done in a way so that no parking segment is more than about
300 meters away from a sensor.
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Figure 1: Minimum amount of sensors needed to cover all
parking segments for various coverage distances in our eval-
uation environment.

4.2 Data-driven placement methods
Data-driven approaches are given observation data of all candidate
segments. This means they can effectively select the best sensor sets
in hindsight. They are connected to higher costs in real-world appli-
cations in case such data needs to be obtained first. The following
methods are included:

4.2.1 MinError. This method places sensors in a way that min-
imizes the evaluation metric given occupancy data. Because the
computational complexity prevents us from finding the optimal
solution for larger experiments such as ours, we implemented a
greedy search heuristic: Starting with an empty set, sensors are
added one-by-one until the targeted number of sensors is reached.
The sensors added in each step is the one which, compared to all
other remaining candidates, leads to the smallest total error. While
this heuristic only approximates the optimal selection, it produces
results very close to the optimal solution in smaller experiments
and we are confident it is a good benchmark method.

4.2.2 PySensors. The PySensors [4] framework is included using
the original implementation1. It includes three choices of basis
functions, Identity, SVD and Random, each requiring parameters.
For our evaluation, we determined the best basis and parameters
experimentally in preliminary experiments. It should be noted that
PySensors makes no use of segments’ locations nor the street graph
but is a pure data-driven selection method working on occupancy
data.

4.2.3 Polire. Like PySensors, the Polire framework [13] does not
consider location information but only the supplied occupancy time
series. We include it in our evaluation via the original implemen-
tation2. Users can choose between stationary or non-stationary
models, different kernels and parameters. Those were again deter-
mined beforehand in preliminary experiments.

5 INTERPOLATION METHODS
Having selected a subset of segments for sensor placement, predic-
tor Γ (see Section 3) infers the states of remaining parking segments
from data obtained through those sensors. We use spatial interpo-
lation techniques for this task as parking bays are spatially related.
Two interpolation methods are used in our evaluation:

1https://github.com/dynamicslab/pysensors
2https://github.com/sustainability-lab/polire/blob/SenSys20_Poster/polire/
placement/base/base.py

The KNN (k nearest neighbors) method as shown in Equation 4
is employed to calculate parking availability 𝐴 at location 𝑥 given
the set 𝑅𝑘 of the 𝑘 nearest parking bays and their respective avail-
ability values𝐴𝑖 measured by sensors. In our evaluation, we set the
parameter 𝑘 to 5 as this value gave lowest interpolation errors in
preliminary experiments.

𝐴(𝑥) =
∑
𝑖∈𝑅𝑘 𝐴𝑖
𝑘

(4)

We also include the IDW (inverse distance weighting) method
[17] shown in Equation 5. Here, availability 𝐴 at location 𝑥 is calcu-
lated by a weighted average over all available sensor values𝐴𝑖 . The
weights𝑤𝑖 (𝑥) depend on the distance between location and sensor
raised to the power of 𝛼 . We set 𝛼 to 2 as preliminary experiments
gave good interpolation performance using this value.

𝐴(𝑥) =
∑
𝑖∈𝑅 𝑤𝑖 (𝑥)𝐴𝑖∑
𝑖∈𝑅 𝑤𝑖 (𝑥) ,𝑤𝑖 (𝑥) = 1

𝑑 (𝑥, 𝑥𝑖 )𝛼 (5)

According to [3], IDW is well-suited for estimating parking
availability given a limited number of sensors. This method seems
especially beneficial as the information given by a sensor in spatial
settings like ours is expected to statistically decrease with distance.

6 EVALUATION
Evaluation follows the two-step process described in Section 3.
First, a subset of parking segments is selected according to the
respective sensor placement method. Occupancy values are then
“virtually” measured by those sensors according to ground truth
data. These values are then used to obtain all remaining parking
segments’ occupancy values using an interpolation method. Finally,
the interpolation error is calculated using ground truth data. Non-
deterministic methods were evaluated multiple (7) times to reduce
influence of random effects.

Two experiments have been conducted to gain insights into
the performance of methods: The first scenario assumes complete
availability of observation data. This enables us to evaluate mod-
els’ best-case performance and gain insights in the general task of
interpolating parking occupancy. A low error in this scenario is
however not alone representative of a method’s real-world capa-
bility as there is no need to place sensors if all data is be available
anyway. The interpolation error on previously unseen data is also a
crucial metric. Therefore, we include a second scenario which only
presents a fraction of data to selection algorithms. In practice, this
data may be acquired through a field study. Interpolation errors
are then calculated over a test set consisting of a time span not
included in the initial training data.

6.1 Evaluation dataset
Real-world parking occupancy ground truth data for our evaluation
is taken from the City of Melbourne, Australia, open data platform3.
This platform provides the dataset On-street Parking Bays4 con-
taining locations of on-street parking bays in the Central Business
3City of Melbourne open data platform: https://data.melbourne.vic.gov.au;
Data licensed under Creative Commons Attribution 3.0 Australia:
https://creativecommons.org/licenses/by/3.0/au/
4https://data.melbourne.vic.gov.au/Transport-Movement/On-street-Parking-
Bays/crvt-b4kt
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Figure 2: On-Street parking segments used for evaluation.
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Figure 3: Histogram of parking segment sizes before and af-
ter processing.

District of Melbourne. We connected these parking bays to a street
graph obtained through OpenStreetMap5. Parking bays for loading
only and bays requiring special permissions were removed.

Individual on-street parking occupancy data of the same parking
bays is available in datasetOn-street Car Parking Sensor Data - 20176.
In this dataset, arrivals and departures of vehicles are recorded to
the second. We resampled the occupancy into 5-minute time slots,
each of which represents a state of the overall parking situation.
Individual parking bays were then aggregated according to their
street segments, a street segment being defined a segment of a street
between two intersections. Segments with more than 30 parking
bays were split into multiple smaller ones then amounting to sizes
of between 15 and 20 bays. This was done as exceptionally large
segments (usually caused by a street with few intersections) may
not be covered by a single sensor such as a camera sensor. The
resulting parking segment size histogram is presented in Figure 3.
After processing, we obtain 189 parking street segments.

The following datasets were included for evaluation:

5https://www.openstreetmap.org
6https://data.melbourne.vic.gov.au/Transport/On-street-Car-Parking-Sensor-Data-
2017/u9sa-j86i
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Figure 4: Distribution of parking bays having at least one
free bay, before and after artificial increase.

6.1.1 Regression. This dataset contains each parking street seg-
ment’s occupancy for each 5-minute time slot. These values are
calculated as average occupancy values over all individual park-
ing bays of respective segments, giving a numeric target variable
between 0 and 1.

6.1.2 ThreeBins. This dataset represents a classification problem
as numeric values of dataset Regression are sorted into the three
bins low occupancy, medium occupancy and high occupancy. It is
motivated by existing parking occupancy tools indicating estimated
availability using traffic light colors. This is easier to communicate
to end users than numeric values. Further, numeric values may
suggest a sense of accuracy that may be difficult to achieve when
predicting parking accuracy. On the other hand, a more coarse
classification such as this one is satisfactory for a user looking for
parking opportunities.

6.1.3 OneFreeHigh. In this dataset, the target variable is binary
and states if at least one individual parking bay of the parking
street segment in question is free at a given point in time. This
is motivated by the fact that in practice, drivers searching for a
parking opportunity in their immediate surroundings are primarily
interested in streets containing at least one free parking bay. It
should be noted that according to the Melbourne in-ground sensor
data, most parking segments contain at least one free parking bay
at a given time. Naturally, a parking information system is most
appreciated when finding a free parking opportunity presents a
challenge to motorists, i.e. when parking opportunities are rare.
To evaluate the various methods in such a setting, we artificially
increased the parking occupancy of all parking bays so that only
about every second parking segment contains at least one free
parking bay. This means an increase of parking demand by 38%.
A comparison of the resulting increased occupancy distribution
versus original occupancy distribution is shown in Figure 4.

6.2 Experiment 1: Training on complete data
Experiment 1 covers six months, from June to November 2017. Data-
driven methods will receive the complete ground-truth occupancy
data. As described above, this is unrealistic in practice but yields
insights about the best-case performance of placement methods.
No-data methods make no use of occupancy data.

Each selection method is executed multiple times: The respective
number of sensors to select increases from only one sensor to 171
sensors (out of 189 possible sensors). Interpolation errors for each
method and parameter are then calculated as described above.
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Figure 5: Mean absolute interpolation errors (over all park-
ing segments) by size of sensor subset on Regression dataset.
Each line represents a selection method.

6.2.1 Comparing results for different methods. The mean abso-
lute IDW interpolation errors of evaluated methods given varying
numbers of segments to select are shown in Figure 5. For non-
deterministic methods, multiple repetitions were run whose er-
rors are averaged. Not surprisingly, errors decrease with growing
amount of sensors. Our “lower-bound” benchmark method Min-
Error clearly produces the smallest error as expected given its direct
optimization of the IDW error. Other methods are not easily distin-
guished in this overview.

For a better evaluation, it is appropriate to exclude candidate
segments fitted with sensors from evaluation, as these naturally
show no error. We will focus on these error values in the remainder.
The are shown in Figure 6a for the Regression dataset. Our earlier
observations appear in more detail. Method Polire shows second-
best performance while Random appears to be average. Errors for
datasets ThreeBins and OneFreeHigh are shown in Figure 6a and
Figure 6c, respectively. The ranking of methods is similar to the
one observed for the Regression dataset. A notable exception is
the error curve of method Clusters when evaluated using dataset
OneFreeHigh: It is now intersecting with Polire multiple times. This
is especially remarkable given their different nature, as Clusters
does not need occupancy data but only parking bays’ locations.

A condensed comparison of errors is shown in Table 1. Relative
errors compared to MinError, the best method for each dataset, are
included. MinError being the overall best method is not surprising
as it by design directly optimizes the evaluation metric. Second-best
is Polire, also requiring complete data. Method Clusters reaches third
place even though it doesn’t use occupancy data. Sensors selected
by method PySensors produces slightly higher errors than some
data-agnostic methods. It can be seen that methods’ ranks are often
equal for both interpolation methods. Selection method Random
ranks in the bottom half of results. However, error differences
are relatively small in some cases. We attribute this to the fact
that random placement tends to cover the whole area which is
beneficial for interpolation as spatial resources such as parking
bays are typically locally correlated. Further, if random placement
considers not just an area but the set of possible sensor locations
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(a) Error using Regression dataset.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fraction of segments being outfitted with sensors

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

M
A

E

(b) Error using ThreeBins dataset.
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(c) Error using OneFreeHigh dataset.

Figure 6: Mean absolute interpolation errors (only unse-
lected parking segments) by size of sensor subset. Each line
represents a selection method (color definition in Figure 5).

as in the setting of this paper, it implicitly draws from a density
distribution of entities to be measured, potentially reducing the
interpolation error even more.
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Method Regression ThreeBins OneFreeHigh Mean
MinError .161 (+0%) .207 (+0%) .327 (+0%) +0.0%
Polire .193 (+19%) .239 (+15%) .377 (+15%) +16.9%
Clusters* .196 (+21%) .240 (+16%) .384 (+17%) +18.4%
MaxMin* .192 (+18%) .241 (+16%) .398 (+21%) +19.0%
PySensors .194 (+20%) .244 (+18%) .407 (+24%) +21.1%
Random* .197 (+21%) .247 (+19%) .404 (+23%) +21.8%
Coverage* .202 (+25%) .247 (+19%) .396 (+20%) +21.9%
Largest* .203 (+25%) .249 (+20%) .408 (+24%) +23.7%

Table 1: Mean IDW interpolation MAE values of selection
methods over all subset sizes. Relative difference to best in
column is shown in brackets, with mean in right column.
Methods not using parking data are marked with asterisks.

Method Regression ThreeBins OneFreeHigh Mean
MinError .174 (+0%) .226 (+0%) .384 (+0%) +0.0%
Polire .198 (+13%) .246 (+8%) .404 (+5%) +9.3%
Clusters* .194 (+11%) .246 (+8%) .414 (+7%) +9.3%
Coverage* .194 (+11%) .244 (+7%) .421 (+9%) +9.6%
MaxMin* .194 (+11%) .247 (+9%) .424 (+10%) +10.2%
PySensors .197 (+13%) .251 (+10%) .429 (+11%) +11.8%
Random* .199 (+14%) .252 (+11%) .428 (+11%) +12.3%
Largest* .205 (+17%) .254 (+12%) .429 (+11%) +13.8%

Table 2: Mean KNN interpolation MAE values of selection
methods over all subset sizes. Relative difference to best in
column is shown in brackets, with mean in right column.
Methods not using parking data are marked with asterisks.

Method Regression ThreeBins OneFreeHigh
IDW .196 .244 .398
KNN .197 .249 .423

Table 3: Mean interpolation errors of interpolationmethods
IDW and KNN for evaluated datasets.

6.2.2 Comparison of interpolation methods. Table 2 shows results
for KNN interpolation errors in contrast to the IDW interpolation
errors discussed above. Method MinError’s error is much higher
than before, lowering the relative difference to other methods. This
is expected as MinError directly minimizes the IDW error but now
interpolation uses the KNN method. The ranking of methods is
almost the same as before, suggesting that IDW and KNN produce
similar estimates.

Aggregated values for interpolation methods are shown in Ta-
ble 3. Note that these exclude methodMinError due to its minimiza-
tion of IDW error as this would skew results towards IDW. Still it
can be seen that IDW interpolation yields slightly better overall
results. This is not surprising as IDW weights nearer sensor values
higher than those farther away which exploits the environment’s
spatial correlation motivated above. Still differences are very small.

Method Regression ThreeBins OneFreeHigh
Random .0093 .0102 .0101
Clusters .0015 .0021 .0041
PySensors .0041 .0047 .0101

Table 4: Mean standard deviation of error for evaluated
methods and datasets. For each evaluated subset size, the
standard deviation was calculated over all repetitions. Av-
erages over all subset sizes are shown here.

10−4 10−3 10−2 10−1 100 101 102 103

Coverage
MaxMin

Polire
MinError
Clusters

PySensors
Random

Figure 7: Mean CPU time (in seconds) per selection run dur-
ing Experiment 1.

6.2.3 Variance analysis. Methods Random, Clusters and PySensors
are non-deterministic as they contain random choices at some point.
To average out random effects, evaluation results discussed above
have been averaged over a number of runs. It is important to also
analyze the errors’ variance as a high variance method may lead to
disappointing results when applied in a real-world setting without
ground-truth data. Consistently high variance would also ques-
tion the reliability of the evaluation procedure itself. The mean
standard deviation of individual methods is shown in Table 4: Re-
sults are low compared to the absolute errors in Table 1. Values for
method Clusters are significantly smaller than those of method Ran-
dom, indicating a stable clustering. The error variability of method
PySensors is caused by its use of randomized SVD solver [5]. Its
magnitude is again small compared to absolute error values. Over-
all, the low variance increases confidence in the applicability of
evaluated methods.

6.2.4 Comparison of selection time. Figure 7 shows the CPU time
needed per selection run during evaluation using an Intel® Core™
i7-10750H CPU. This comparison should be taken with a grain of
salt as implementations of methods are not primarily optimized for
best performance. Still the range over multiple orders of magnitude
is something to consider when applying methods in larger envi-
ronments than ours. Generally, the runtime of selection methods
is of lesser importance as they are only run during the planning
phase before sensors are being installed. For interpolation between
measurements of installed sensors, fast implementations of IDW
and KNN methods exist.

6.3 Experiment 2: Limited training set
This experiment covers the scenario of conducting a field study
to obtain data for data-driven placement methods. As Melbourne
ground truth data is readily available in the datasets described
above, we conduct a “virtual” field study by extracting a time span
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Method Regression ThreeBins OneFreeHigh Mean
MinError .165 (+0%) .213 (+0%) .333 (+0%) +0.0%
Polire .191 (+15%) .234 (+9%) .379 (+13%) +13.1%
Clusters* .195 (+18%) .239 (+12%) .385 (+15%) +15.4%
MaxMin* .190 (+15%) .240 (+12%) .399 (+19%) +16.1%
PySensors .194 (+17%) .242 (+13%) .407 (+22%) +17.9%
Random* .195 (+18%) .246 (+15%) .405 (+21%) +18.4%
Coverage* .201 (+21%) .246 (+15%) .397 (+19%) +18.8%
Largest* .201 (+22%) .249 (+16%) .409 (+22%) +20.6%

Table 5: Experiment 2: Mean IDW interpolation MAE val-
ues of selection methods over all subset sizes. Relative dif-
ference to best in column is shown in brackets, with mean
in right column.Methods not using parking data aremarked
with asterisks.

Method Regression ThreeBins OneFreeHigh
MinError 3.240% 7.092% 4.731%
Polire 0.623% 0.996% 0.034%
PySensors 0.097% 1.210% 0.886%

Table 6: Mean IDW-interpolationMAE increases from train-
ing to testing error of selectionmethods over all subset sizes.

of training data from these datasets. We chose a span of four consec-
utive weeks for training as shorter spans resulted in large training
set error variability due to the limited number of samples. A second
extract of the following four months is then used as test data on
which sensor selections are evaluated.

6.3.1 Comparing results for different methods. A comparison of
test errors for evaluated placement methods can be seen in Table 5.
They closely resemble the results of Experiment 1 shown in Table 1.
This is no surprise for data-agnostic methods as their selections do
not depend on the training data and all test data of Experiment 2 is
also included in Experiment 1. Data-driven methods on the other
hand are now working on substantially reduced training data (four
weeks instead of six month during Experiment 1) which however
did not effect their performance. This indicates that four weeks of
training data are sufficient for data-driven selection methods.

6.3.2 Comparing training and testing errors. Table 6 shows relative
increases of errors when comparing test dataset errors with training
errors. Method MinMax shows largest increases, probably due to
overfitting as it directly optimizes the error metric during training.
Methods Polire and PySensors show smaller deviations. This may
indicate that they internally created more robust models which
generalize better than the aggressive method ofMinMax. Generally,
the moderate increase indicates that good selections during training
are still good during later time spans. This is an important insight
as it confirms our initial proposition that placing sensors at only a
subset of parking street segments is a viable strategy.

7 CONCLUSION
In this paper, we described and compared various sensor placement
methods. Our evaluation using real-world parking data shows that
data-driven placement methods lead to slightly lower interpolation
errors than data-agnostic methods not receiving such data but
only metadata such as locations of on-street parking bays. Data-
driven methods however require data typically obtained through
preliminary surveys or installation of temporary sensors which
may be expensive and time-consuming.

We conclude that data-agnostic methods are a reasonable alterna-
tive if suitable data is not readily available. Especially our proposed
cluster-based method appears to be a good choice in such cases.
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ABSTRACT
Accurate spatio-temporal information is crucial for smart city appli-
cations such as modern routing algorithms. Often, this information
describes the state of stationary resources, e.g. the availability of
parking bays, charging stations or the amount of people waiting
for a vehicle to pick them up near a given location. Predicting
future states of the monitored resources is often mandatory be-
cause a resource might change its state within the time until it is
needed. It is often not possible to obtain complete history of a re-
source’s state. For example, the information might be collected from
traveling agents visiting the resource with an irregular frequency.
Thus, it is necessary to develop methods which work on sparse
observations for training and prediction. In this paper, we propose
time-inhomogeneous discrete Markov models to allow accurate
prediction even when the frequency of observation is very rare.
Our new model is able to blend recent observations with historic
data and also provide useful probabilistic estimates for future states.
Since resource availability in a city is typically time-dependent, our
Markov model is time-inhomogeneous and cyclic within a prede-
fined time interval. We propose a modified Baum-Welch algorithm
capable of training our model with sparse data. Evaluations on
real-world datasets of parking bay availability show that our new
method indeed yields good results compared to methods designed
for training on complete data and non-cyclic variants.
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Sensor networks; • Mathematics of computing→ Kalman filters
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1 INTRODUCTION
Knowledge of a city’s resources (e.g. parking bays, charging sta-
tions, stations for rental bikes) and their current availability state is
becoming more and more important. For instance, modern routing
algorithms integrate this information to minimize travel times[1,
5, 13] and augmented reality applications use such data to assist
users[7, 10]. Additionally, it is often required to estimate future
resource availability: Routing can be improved if states of parking
bays at arrival time are known[4]. If the parking situation is ex-
pected to be especially dire, people might consider switching to
public transportation or depart earlier. Similar benefits arise for
other types of resources such as rental stations.

In some cases, real-time information of resources is available,
e.g., a city might decide to equip all its parking bays with perma-
nently installed in-ground sensors. This is coupled with consider-
able expenses, and thus alternative ways of acquiring availability
information have been proposed: The “ParkNet”[11] project suc-
cessfully measured parking bay availability based on ultrasonic
sensors of passing vehicles[11]. Another method uses smartphones:
[9] describemultiple indicators for detecting parking and unparking
activity. Both methods result in sparse data and thus, a prediction
method for resource availability should be capable to cope with
sparse observations in order to be widely applicable. A further
requirement to model a city’s resources is to incorporate time-
dependent behavior. For example, a free parking spot in an office
district will typically stay vacant much longer during nighttime
than a few hours later when employees flock to nearby offices.

In this paper, we propose a novel prediction method for spatio-
temporal resources which fulfills all the requirements named above.
Our approach is based on a cyclic time-inhomogeneous discrete
Markov model which learns transition possibilities from observed
long-term observations but can predict short-term availability of
a resource based on the last known observation. Our model is
cyclic in time to model the typical change of availability during a
certain time period such as a day or a week. Within this period we
partition time into a set of discrete steps. For each of these steps,
we allow varying transition probabilities which makes our model
inhomogeneous in time. To allow the modeling of multiple spatially
clustered resources, the states of our Markov model correspond
to the number of available resources of a particular location. In
order to train our model based on sparse training samples, we allow
unknown observations and modify the well-known Baum-Welch
expectation-maximization algorithm for hidden Markov models to
estimate the parameters of our model. To show that our method
provides accurate predictions based on the given information, we
test our model on the real-world application of modeling parking
bays based on two real-world datasets.
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2 RELATEDWORK
Predicting the availability state of resources, especially parking
bays, is a task with great practical relevance and thus draws a lot
of attention within the scientific community. [15] surveys various
approaches to solve this problem. A method similar to our proposal
is [3]. The authors apply a continuous-time, homogeneous Markov
model with constant arrival and parking rates to meet the challenge
of out-dated information in a vehicular ad hoc network (VANET).
In contrast, our approach considers a time-inhomogeneous model
which is capable to model availability patterns within the day.

Resource availability is also modeled by [4]. They propose a
continuous-time Markov model in order to generate routes min-
imizing the expected time until a free resource is found near the
destination. The model is time-homogeneous, i.e. a Markov model
whose sojourn times in the two states “available” and “consumed”
are exponentially distributed with fixed parameters defining the
means of the respective distribution. These parameters are not
inferred algorithmically but based on estimates by the authors.

Availability of parking spots has been estimated based on infor-
mation about other spots at the same time[16]. The authors combine
historical knowledge with real-time observations, but model dy-
namics, i.e. the development of state probabilities over time, are
not covered. Thus, no prediction of future states is possible.

The prediction of resource availability without taking recent
knowledge into account can be understood as a regression or clas-
sification problem. Consequently, machine learning methods are
applied. For example, [2] predict the availability of parking bays
using Support Vector Regression. The Melbourne dataset also used
in our paper’s evaluation was used before by [19], who compare
Support Vector Regression, an approach using regression tree and
neural networks. Note that we take recent knowledge into account.

Above approaches using Markov models are not applicable for
data containing missing values. This was done by [18] with an
expectation-maximization algorithm for a discrete homogeneous
Markov model. A different approach was taken by [8] who train
their discrete homogeneous models using a Bayesian approach. The
estimation of parameters for homogeneous hidden Markov models
trained on data including missing values was examined by [17].

3 PROBLEM SETTING
We define a resource cluster as a group of one or more resources
with binary states of availability. Each cluster is modeled by one
model. Thus, spatially related resources can be modeled by a joint
model. A cluster’s state can be measured at a given point of time t ,
i.e. the individual states of its resources become known. The sum of
all resources being in the available state at this moment is denoted
as Ot , the observation at time t , following the notation of [12].
Without loss of generality, we discretize time into a sequence of
equally-spaced time-steps. Thus, we obtain an observation sequence
O = [O1,O2, ...,Om , ...], in which Om represents the last known
observation. In this paper, we particularly consider sparse data and
thus many Ot will be unknown. We denote these by Ot = −1.

Given an observation sequence O of a resource cluster, for ex-
ample a group of one or more parking bays, our goal is to predict
the number of available resources E(m + d) of this cluster at an
arbitrary time d after the last observation at timem.

S1,1

S1,2

a1,1,1 a1,2,2

S2,1

S2,2

a2,1,1

a2,2,2

S3,1

S3,2

a3,1,1a3,2,2

S4,1

S4,2

a4,1,1

a4,2,2

Figure 1: A cyclic Markov model with period length p = 4
and two states. St,i is used as a shortcut for qt = Si . An edge
between nodes St,i and St+1, j represents a transition proba-
bility denoted by at,i, j . Some labels are omitted for clarity.

4 TIME-INHOMOGENEOUS MARKOV MODEL
To satisfy the requirements given in the introduction, wemodify the
standard discrete, homogeneous Markov model given in [12]: This
model is specified by a set of states S , its state transition probability
distribution A and the initial state distribution π . The state of a
resource cluster at time t is denoted by qt and assumes one of the N
possible states in S = {S1, ..., SN }. In our case, S = {0, ...,M} with
each state representing a number of currently available resources
in a cluster of size M . A is given by a matrix A = {ai j } with ai j
being the probability of arriving in Sj when taking one time-step
forward from Si : ai j = P[qt+1 = Sj |qt = Si ].

In our cyclic, inhomogeneous variant, transition probabilities
vary with regard to the respective cycle position x in a cycle of pe-
riod length p. Thus, we no longer have a single transition matrix A,
but a set of transition matrices Ax = {axi j } with axi j = Px [qt+1 =
Sj |qt = Si ]. Note that while t may be any positive integer, x runs
from 1 to the period length p. The cyclic model’s initial state dis-
tribution π is likewise extended to include the cycle position x :
π = {πxi } with πxi = Px [q1 = Si ]. Figure 1 gives an example
for a cyclic Markov chain with p = 4 and N = 2. In real-world
applications, p will typically be larger, e.g. p = 1440 for a one day
period discretized in minutes.

Knowing the state sm at timem, calculating the state probability
vector sm+d after d time-steps is straightforward: We modify the
original procedure of [12] to use the appropriate state transition
matrix Ax when iterating through the chain. Note that x and t are
aligned in a way that q1 corresponds the first cycle position (x = 1).

sm+d = sm

m+d−1∏
j=m

A((j−1) mod p)+1 (1)

We then obtain E(m + d) using the equation E(t) = ∑N
i=1 Sist (i).

4.1 Estimating model parameters
If gap-less training data is available, model parameters can be cal-
culated in the established way[14], which has to be only slightly
adapted to reflect the newly introduced time-inhomogeneity. This
modified algorithm is described next. Secondly, if training data
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contains missing values, we need to employ another algorithm. We
propose a modified Baum-Welch algorithm described thereafter.

4.1.1 Estimating parameters from complete data. Analogous to [12],
we use relative frequencies in observation sequence O to calculate
state transition probabilities P(qt+1 = Sj |qt = Si ,O) for each (t ,i ,j):

P(qt+1 = Sj |qt = Si ,O) =
P(qt = Si ,qt+1 = Sj |O)

P(qt = Si |O)
(2)

In the homogeneous case, both nominator and denominator
would be accumulated over all t for all transitions (i ,j). In the cyclic
case, we only need to consider t in the set θ (x) = {t | 1 ≤ t <
T∧((t−1) mod p)+1 = x} of times belonging to the same cycle posi-
tion x . The state transition probabilities axi j for the respective cycle
positions x and states i ,j, can then be calculated by accumulating
and normalizing only the probabilities satisfying this restriction:

axi j = P(qt+1 = Sj |qt = Si ,O, t ∈ θ (x))

=

∑
t ∈θ (x ) P(qt = Si ,qt+1 = Sj |O)∑

t ∈θ (x ) P(qt = Si |O)
(3)

4.1.2 Estimating parameters from sparse data. If the observation
sequence O contains missing values, we apply an algorithm based
on the Baum-Welch algorithm for hidden Markov models (HMM).
The motivation is that although the states of our model are not
hidden in the usual way (i.e. states are never directly measurable),
they are hidden in the sense of “being unknown to us” at times of
missing values. To match our model to the HMM notation, we only
have to introduce an observation symbol probability distribution
B = bj (k) for each j of our N states[12]: bj (k) = P[vk at t |qt = Sj ].
In our case, the set of symbols V = {v1, ...,vM } equals the set of
states S , so N = M . B is not dependent on the cycle position x , as
this was not needed for our use-cases. However, this extension can
easily be done and may for example be appropriate if a camera-
based recognition system principally has a lower accuracy at night.

To be able to use the Baum-Welch algorithm, we have to adapt it
to our cyclic method: The equations for the forward, backward and
intermediate variables α , β , and ξ have to be adjusted from their
original forms in [12] by replacing ai j with axi j , with x being the
position in the cycle. The equations for γ are not changed, as they
do not include state transition probabilities. As defined above, x is
calculated from t using the formula x = ((t − 1) mod p) + 1, with p
being the cycle length. Note that α and β are calculated recursively
and initialized as in [12]: α1(j) = bj (O1) and βT (i) = 1.

αt+1(j) = bj (Ot+1)
N∑
i=1

αt (i)axi j

βt (i) =
N∑
j=1

axi jbj (Ot+1)βt+1(j)

ξt (i, j) =
αt (i)axi jbj (Ot+1)βt+1(j)∑N

i=1
∑N
j=1 αt (i)axi jbj (Ot+1)βt+1(j)

(4)

The next iteration’s axi j are determined as in section 4.1.1:

axi j = P(qt+1 = Sj |qt = Si ,O, t ∈ θ (x)) =
∑
t ∈θ (x ) ξt (i, j)∑
t ∈θ (x ) γt (i)

(5)

To cope with missing observations, we apply the “trick” of set-
ting bj (−1) = 1, i.e. assuming that the probability of an unknown
observation is always 1[6, 17]. The reasoning behind this is that if
we don’t know the state at this point in time, all states are possible
and therefore also all possible paths containing this state have to
be considered when estimating state transition probabilities.

Given above equations, the estimation of Ax is done as usual:
First, each matrixAx is initialized with suitable values. For example,
the majority of the probability mass is assigned to staying in the
same state, i.e. setting diagonal values to almost one. Then, using
Ax and fixed parameters π and b, the equations given above are
evaluated to obtain values for α , β , ξ and finally axi j . These axi j
then form the newAx , to be used in the next iteration of this process.
This cycle is repeated until a convergence criterion is met and the
last Ax is returned[12]. We stopped when axi j changed less than
an ϵ threshold between two subsequent iterations.

5 EVALUATION
Two real-world datasets of parking events are used: Dataset Can-
berra recorded by the ACT government during their “SmartParking”
trial1 and dataset Melbourne provided by the City of Melbourne2.
Each dataset contains gap-less data recorded by permanently in-
stalled in-ground sensors. Only “on-street” bays without excep-
tional permission (such as short-term parking opportunities or
bays for the disabled) were considered. These were grouped into
resource clusters by spatial similarity (i.e. street segment). This
resulted in 160 bays in 21 clusters for Canberra and 5222 bays in
291 clusters for Melbourne. For both datasets, weeks three and six
of a total of eight adjacent weeks were taken as the gap-less train-
ing set Tr0, while the remaining six weeks form the testing set
Te . Only weekdays were considered for both training and testing.
To evaluate the algorithms under sparse data, additional training
sets were constructed from Tr0: In our application, gaps appear
when a resource is not observed in a given minute. Assuming that
arrivals of agents are independent and identically distributed, the
time between two subsequent arrivals (and thus observations) is
exponentially distributed with mean time between arrivals β . This
distribution is used to sample sparse training setsTrβ fromTr0[14].

We compare the following prediction models and training proce-
dures: Our proposed model trained using the modified Baum-Welch
algorithm (BW) and the standard algorithm for gap-free data (STD),
respectively. Then, a trivial model always “predicting” the last mea-
sured value (LAST). This is expected to perform very good for
short-term predictions as changes of resource availability happen
over time. Further, a model always returning the historic average
(AVG) for the minute-of-day in question. AVG represents the com-
plement to LAST because it only depends on historic data but does
not consider the last known state. We also compare to SVM re-
gression (SVM) [2] which represents a state-of-the-art approach
for long-term predictions. For each resource cluster, one model
was trained for each training set and tested independently from
other clusters. All results were averaged over four repetitions, to

1“Smart Parking Stays”: https://www.data.act.gov.au/Transport/Smart-Parking-
Stays/3vsj-zpk7 licenced under “Creative Commons Attribution 4.0 International”
2“Parking bay arrivals and departures 2014”: https://data.melbourne.vic.gov.au/Transport-
Movement/Parking-bay-arrivals-and-departures-2014/mq3i-cbxd licenced under
“Creative Commons Attribution 3.0 Australia”
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Table 1: Normalized MAE for evaluated models.

5 to 20 bays per cluster 1-bay-clusters
Canberra Melbourne Can. Mel.

hom. inhom. hom. inhom. inhom. inhom.
BW 0.197 0.142 0.174 0.121 0.258 0.230
SVM – 0.172 – 0.150 0.277 0.278
STD 0.202 0.167 0.175 0.151 0.293 0.241
AVG 0.423 0.348 0.315 0.250 0.475 0.350
LAST 0.206 0.206 0.186 0.186 0.273 0.255

reduce the variation introduced by the random sampling process.
The cycle period was chosen to be one day, i.e. each weekday was
assumed to show roughly the same behavior as is supported by the
data. As we discretized time by the minute, this leads to a period
length of 1440. Models were trained on datasets of different levels
of sparsity (β ∈ {30, 60, 120}). Then, each minute in the testing
data between 7 a.m. and 11 p.m. (at night, almost all bays are free
which poses no challenge) was taken as a target and predicted by
each model given a measurement d ∈ {15, 30, 60, 120, 240} min-
utes before. The individual errors were accumulated per model to
obtain mean absolute error (MAE) values. Because the number of
resources differs between resource clusters, MAEs are normalized
by the total number of resources of the respective cluster to allow
the comparison of clusters of different size. For example, a model
for a cluster of size twenty evaluating to an absolute MAE of 2.0
will result in a normalized MAE of 0.1.

Results for clusters containing 5 to 20 bays are shown in Table 1,
both for the models mentioned above and their time-homogeneous
counterparts, i.e. models using the same algorithm but not tak-
ing the time-of-day into account. As LAST always ignores the
time-of-day by definition, results of both variants are the same.
No time-homogeneous version of SVM was evaluated as it would
merely output a constant prediction as the latest observation was
not included in its training. When comparing the respective val-
ues, it becomes obvious that the time-inhomogeneous models show
much better performance than their counterparts. This supports our
choice to introduce time-inhomogeneous variants. Furthermore,
predictions given by BW consistently result in lowest errors.

To evaluate whether our grouping of spatially similar parking
bays into resource clusters and jointly modeling them by one model
for each of those clusters is warranted, another experiment was
conducted: In this experiment, each resource cluster (and thus
model) only contains a single parking bay. The results are also
listed in Table 1. Comparing these errors to previous results shows
that combining similar bays improves predictive performance.

6 CONCLUSION
In this paper, we investigate the problem of predicting the availabil-
ity state of resources given historic data and a recent measurement.
Resources in Smart City settings are usually depending on the time
of day. To address this, we propose a time-inhomogeneous Markov
model able to model such cyclic behavior. As the historic data
typically available in our setting is sparse, we present a modified
Baum-Welch algorithm able to train this model with sparse data.

Evaluations on real-world datasets show that the proposed time-
inhomogeneous Markov model combined with our modified Baum-
Welch training algorithm yields better predictions on sparse data
than other approaches such as the standard Markov model or an
SVM. Also, time-inhomogeneous variants perform consistently
better than their time-homogeneous counterparts, supporting our
proposal to take the time-of-day into account. Evaluations further
show that it is favorable to predict spatially related resources using
a joint model instead of building isolated models for each individual
resource.
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ABSTRACT
When traveling it is often necessary to take a detour, for example
to find an on-street parking opportunity or a charging station. Nu-
merous systems intending to reduce time or other resources spent
on such detours have been presented. An example are methods
guiding drivers to free on-street parking opportunities. However,
the question of how much can actually be saved by using such solu-
tions when compared to the status quo remains largely unanswered.
Often, the cost attached to these detours is unclear. In this work,
we present a generalized approach to answer these questions: A
methodology consisting of an evaluation environment powered
by real-world data and implementations of different scenarios. We
then illustrate our proposal by using it to quantify the potential
of an optimal assistant for finding on-street parking opportunities.
We further show how to generate synthetic but realistic parking
data when real-world data is not available.

CCS CONCEPTS
• Applied computing → Transportation; • Information sys-
tems→ Spatial-temporal systems; • Computing methodolo-
gies→ Model development and analysis.
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ing, spatio-temporal simulation
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1 INTRODUCTION
Mobility is a key element of societies which enables commercial
endeavors such as trade andmeeting in workplaces, as well as direct
social interaction. Traveling always comes with a cost: Primarily the
time spent for the trip but often also expenditures for fuel or parking
fees. Even worse, it is often not possible to take the best-possible
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path to the destination: When taking the car, it has to be parked
before the remainder of the way to the destination is completed
on foot. Thus, we do not just waste time on the actual search, but
also on the walk from the eventually found parking bay to the
destination. Another example regards the vehicle itself: Its energy
storage has to be replenished in certain intervals, which becomes
especially relevant with the current rise of battery electric vehicles.
Parking and recharging necessitates detours, which increase total
trip times. More examples can be found, such as detours caused by
blocked roads or when sharing a ride with others.

As these detours cost time and money, evaluating their length
and how to reduce these costs, are of great interest for travelers
as well as for cities, transport agencies and car manufacturers.
Thus, the first question addressed in this paper is: How large is
the impact of these detours when compared to the baseline
case? The baseline case is defined as the situation in which the
detour in question is not necessary. For example, taking a taxi
gets rid of the need of parking and a vehicle with a conventional
combustion engine is not affected by the recharging problem as
cruising ranges are still significantly larger and refueling still takes
much less time than recharging a battery.

To minimize these detours considerable effort is undertaken. For
example, the search for parking is optimized by parking guidance
systems. The detour needed for recharging batteries is reduced
by intelligent placement of charging opportunities, such as near
points of interest as supermarkets or at certain highway stops. This
leads us to the second question: How big is the potential of the
used strategies for minimizing these detours? Answering this
question is arguably even more important as it is mandatory to
justify the cost associated to engineer, buy and maintain potential
solutions. For example, several solutions for Smart Cities accrue
considerable costs when sensors need to be installed throughout
the street network. Of course, the service quality depends on the
quality of this data, but it is often unclear to which extent. It is
important to note that these savings are depending on the current
setting–the best parking guidance system for example does not
provide much value if the destination area is guaranteed to provide
an almost inexhaustible pool of available parking opportunities.

This paper presents an approach to answer both questions: We
determine the cost and potential savings by simulating different
scenarios in an evaluation environment powered by realistic data.
To get insights into the minimally obtainable cost, we propose
to include the theoretically optimal scenario (e.g. having full in-
formation about the environment). We also include a baseline
scenario to determine the cost when the necessity of a detour is
absent. Third, a status quo scenario is evaluated to obtain esti-
mates for the cost currently incurred. It is of course advantageous
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to also include other scenarios which are expected to give results
somewhere in-between. These are then compared to optimal and
baseline scenarios to determine the possible advantage (and there-
fore value) of a strategy for reducing the cost of the necessary
detour.

Relevant metrics for quantifying cost of a detour may include the
congestion level of roads, spent fuel, pollution and time used. Time
wasted is one of the most important metrics because various other
metrics directly depend on it. It is also often the immediate source
of frustration, as in our case study of hunting for a free parking
spot and then walking from there to the actual destination. Thus,
we focus on time, keeping in mind that a reduction in trip time will
also decrease traffic, pollution and energy wasted.

Related work using simulations often aims to analyze the col-
lective dynamics and effects of a multitude of drivers in a city, for
example, a swarm of drivers searching for parking opportunities.
As such, these simulations may involve thousands of agents, hoping
to recreate (or approximate) realistic distributions. Because of the
difficulty of building a simulator which adequately recreates these,
for example, parking availability distributions as observed in the
real world, we do not attempt to do so but use prerecorded data.
This data follows realistic distributions because it was recorded
in reality or at least generated using generative models estimated
from real observations. This allows us to use only a single agent
in each simulation run–the other agents’ effects are covered by
real-world data. In this sense, we basically replay a time span in
history. The combination of prerecorded agents with simulated
agents can be problematic because the simulated agents cannot
influence the recorded agents’ actions or state. While it is true that
the simulated agent would in reality slightly change the state of
the system, e.g. the traffic flow, we argue that the influence of just
one agent is negligible with regard to the overall outcome.

If no real-world data is available, our methodology can still be
carried out by using synthetic data. Such data can be generated with
models of the domain in question. In this case, only a few parameters
are required which may be easier procured than real-world data.
Section 5 describes how to generate such data in our on-street
parking use case. It should however be noted that realistic behavior
is often not accurately reproduced by artificial models, especially
when these are only comparatively simple approximations of the
real processes. Let us note that it is outside of the scope of this
paper to examine more accurate methods to estimate real-world
distributions. We argue that real-world data is strongly preferable
as necessary assumptions when using synthetic data may lead to
unrealistic simulation behavior and ultimately wrong conclusions.

To summarize, our approach enables the quantification of cost
attached to a necessary detour, as well as the potential of methods
to decrease the cost of these detours. This enables decision-makers
to more accurately determine if cost associated with a service (or
certain effort for implementation) will be justified by the value the
method is expected to provide. In the following, we first discuss
related work and then present our methodology in detail. We then
illustrate our approach by applying it to the use case of on-street
parking, with both real-world and synthetic data, before we end
with concluding remarks.

2 RELATEDWORK
We first discuss existing work related to our general methodology,
i.e. regarding our two questions of determining impact of use cases
and the potential of solutions lessening this impact. Afterwards,
we review work regarding our on-street parking case study.

2.1 Use cases’ impact and solutions’ potential
Cici et al. [9] evaluate the potential of ride-sharing systems using
a data-driven analysis of possible shared rides. They assume that
individual trips of neighbors to the same work area can in principle
be shared. Based on cellphone data, they identify the homes and
workplaces of users and determined shared rides. A 52% reduction
of the amount of cars is reported, which the authors take as an
upper bound for the potential of car pooling. As not everybody
is able or willing to participate in a car pooling scheme, the real
reduction is expected to be lower. This is similar of our approach
of also including an optimal scenario in our evaluation.

Turečková and Nevima [20] discuss approaches to determine the
efficiency of smart city solutions not restricted to transportation
including a cost benefit analysis (CBA) done before the solution is
implemented. This allows to estimate potential benefit before funds
are allocated, which is also one of our goals. It should be noted that
they evaluate efficiency with regard to numerous factors including
societal, economic end environmental ones. Our methodology can
be used for determining the value (not only measured in money but
also other resources as time and environmental ones) of a solution
which can then be used alongside these other factors in a CBA.

The placement of gateways in 5G cellular networks is analyzed
by Kiess and Khan [13] with regard to the evaluating the potential
of using more than one gateway in a nation-wide network. A sce-
nario consisting of a central gateway is taken for comparison, as
is the theoretically best scenario of a direct transmission without
gateways. As with our examples, this best scenario is not feasible in
the real world according to the authors. They describe and evaluate
further scenarios consisting of more than one gateway to deter-
mine the potential of this strategy. It is shown that a strategy of
four gateways could yield a significant reduction in transmission
cost. While the placement of gateways in cellular networks does
not directly relate to transportation, this application affirms our
general methodology. It should be noted that their model-based
approach may have benefited from a simulative approach using
real world data, as we propose in this paper.

Zhan et al. [24] present an efficiency analysis of the New York
taxi system: They use real-world data of taxi trips to calculate the
total empty trip cost of these trips. Because empty trips are not
earning money, they are inefficient although necessary. For com-
parison, the authors algorithmically determine a second mapping
of taxis to passengers which minimizes empty trip cost while at
the same time retaining the same trips as in the original data. Such
a comparison between status quo and an optimal scenario is very
much in the spirit of our paper–it relates to our second question
regarding the potential of a solution.

2.2 Simulation of on-street parking
Parking is an important topic in most cities and thus a well-studied
research area. Assigning parking bays to individual vehicles[1]
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or pricing parking events[2] is often of particular interest, other
studies include side-effects such as road congestion or pollution
caused by vehicles looking for a parking opportunity[18]. For this
paper, determining the time lost by searching for the parking lot
is especially relevant. One strategy is to analyze real-world data
regarding average time spent looking for parking.

Though it is beneficial to analyze parking as it occurs in reality
through surveys or data analysis, research focuses on evaluations
based on artificial scenarios by devising appropriate models or
simulations. These have the advantage that parameters as parking
demand, street graphs, traffic patterns etc. can be modified to see
how certain measures or future developments would influence
the relevant metrics. For instance, Belloche [3] use mathematical
models for estimating parking search time: Based on a survey in
Lyon including 896 usable parking approaches and their respective
search times, they argue that parking search time can to some
degree be approximated by an exponential model based solely on
the congestion ratio. Taking a different approach, Zhang et al. [25]
use timed petri nets to model driving towards parking opportunities
based on availability information given by parking providers.

Especially relevant to our on-street parking use case are ap-
proaches making use of a simulation. Benenson et al. [4] describe
the PARKAGENT model to simulate residential parking in Tel Aviv.
Their agents use a parking search algorithm inferred by observing
human drivers, described below in Section 4.2. Their simulator is
applied to obtain insights into the effects of a hypothetical new
parking garage. Steenberghen et al. [19] simulate agents looking
for parking opportunities to determine effects on traffic in Leu-
ven (SUSTAPARK). Waraich et al. [22] propose a parking search
model for the MATSim toolkit1. This model chooses from different
strategies, such as on-street parking, off-street parking or parking
on private grounds, based on their predicted utility with regard to
factors as trip time, walking distance and price.

In our case study, we apply our methodology to determine the
potential of on-street parking guidance systems. The existence of
this potential is of course well known and thus route guiding system
for parking have been proposed before:

Boehlé et al. [6] present a route guidance system which aims
to reduce both time wasted in traffic and time wasted for parking
search. Information about traffic and parking availability is shared
and parking bays are reserved in advance. Their simulations show
that a drastic reduction of overall travel time is already achieved
when only 10% of cars use the reservation system. It is however
unclear which extend these improvements carry over into the real
world, as the simulation is done in artificial cities and is not stated
how many parking opportunities were present and how routes
were set-up.

Savings in travel time are determined byWaterson et al. [23] in a
simulation of a simplified city plan of Southampton. Only off-street
parking (i.e. parking garages) is considered, while we focus on on-
street parking. Their simulation shows that Parking Guidance and
Information (PGI) signs (directing drivers to free parking garages)
bring almost no reduction in travel times and may therefore not be
justified in this regard.

1https://matsim.org/

Friedrich et al. [10] present two algorithms to search for a best
route in a probabilistic graph: A branch and bound algorithm used
when having probabilistic data and a heuristic used when only
map data is available. They also describe a field study in different
areas of Berlin, comparing the performance of a human driver with
their search algorithms. This study used 87 runs in 36 situations
over four days. 15 of these situations were selected for evaluation
(“difficult situations”) as the others did not pose a challenge for
finding a suitable parking opportunity. Results indicate that their
approach can beat a human driver with regard to total trip time.

Liu et al. [16] propose and on-street parking guidance system and
evaluate it using real-world parking data from the city ofMelbourne.
They use a receding-horizon approach in a multi-agent setting.
Routes are generated based on predictions of parking availability.
The authors report significant improvement compared to the “Smart
Parking” algorithm given by Geng and Cassandras [11].

All approaches for route guidance systems mentioned above aim
to decrease time spent for parking and substantiate their respective
proposals with good arguments such as quantitative comparisons
against previously published approaches. However, none considers
the question of how much time could actually be saved in the first
place (the “second question” we state in the introduction). It is also
not stated how grave their respective parking problem is when
compared to the baseline of not needing to park at all (our “first
question”). We argue that answering those questions would have
improved the value of their evaluations, as readers would be able
to better appraise their contributions. As it is in fact not technically
difficult to obtain answers to these questions when a simulation
environment is available, we hope that future publications take
the extra mile to give answers to these questions according to our
proposed methodology. Of course this hope is not restricted to use
cases regarding parking guidance system but all use cases onto
which our general approach can be mapped.

3 METHODOLOGY
As motivated in the introduction, we aim to tackle two questions:
First, how large is the cost of necessary detours when compared to
the baseline case. Second, how large is the potential of any strategy
forminimizing the detours.We answer both questions by simulating
the use case in question in a realistic environment. Table 1 shows
an overview of terms used in our methodology which are detailed
in the remainder of this section.

3.1 Use case
The use case always includes going from origin to destination under
a predefined set of constraints. These constraints are central in our
approach as they necessitate a detour. In the following, we will
take a use case related to charging stations as our running example:
We suppose that a vehicle needs recharging between starting the
journey at the origin and reaching the destination. Therefore, a
detour is mandatory, which not only consists of additional distance
traveled but also additional time needed because it might be neces-
sary to wait for a free charging station. In our scenario, we want to
determine suitable locations for charging station given a data set
of regularly traveled vehicle trajectories for which the detour over
the charging station should be minimized.
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Table 1: Overview of terms used in our methodology

Term Definition

Use case Task of vehicle with necessity causing detour
Scenario Approach being evaluated which defines type

of agents and their configuration (e.g. amount
of knowledge/data provided)

Agent Entity moving through the environment to its
destination

Environment Infrastructure to use by the agent, i.e. road
graph, parking bay locations

Setting Parametrization of the environment, i.e. traf-
fic, destinations, availability of resources (e.g.
charging stations)

Metric Used for measuring cost, usually total trip time

Table 2: Definitions of main scenarios

Name Definition Example

Baseline Detour not necessary No charging necessary
Optimal Detour minimized

perfectly
Optimal placement of
charging stations

Status Quo Detour as is now Current placement of
charging stations

3.2 Scenario
A scenario describes a setting to solve the given mobility task. Thus,
scenarios might vary with respect to constraints and available infor-
mation. We propose three main scenarios summarized in Table 2:

The Baseline scenario is used to provide a baseline for a partic-
ular use case, i.e., the detour is not required. It is used to determine
a lower bound on the cost of the use case. In our charging station
example, the baseline would be that no charging is necessary and
thus no cost is incurred by the detour of any considered trip. The
Optimal scenario includes detours but assumes optimal precondi-
tions to minimize detours. It is used to obtain a lower bound for
all methods that require a detour. Thus, the optimal scenario often
will not be practicable or even possible in the real world. In our run-
ning example, it would mean that charging stations can be placed
optimally. Thus, we assume free placement of stations and do not
consider waiting times. As a third scenario, we propose to include a
Status Quo scenario describing the preconditions the use case has
to be tackled by the current state-of-the-art methods. Thus, it sets
the preconditions for solutions which can be practically applied.
In our charging station example, real charging stations with their
properties such as location, amount of individual charging bays,
available charging voltages etc. are used. Evaluation of this scenario
will provide estimates of currently observed detour costs.

Note that additional scenarios describing the status quo are possi-
ble. For example, it may be of interest to evaluate the currently used
strategy of placing new charging stations, e.g. at supermarkets or
existing fuel stations. The strategy can than be evaluated against the

theoretically best strategy determined through the optimal scenario
described above.

Apart from these three main scenarios, it is usually beneficial to
add more scenarios according to the use case and connected ques-
tions. These typically consist of different approaches to minimize
the detour, e.g. different algorithms or cost functions for placing
charging stations. In our experience, it is especially interesting to
also include scenarios with varying quality of data as for example
different types of sensor networks (static sensors, data collection
by vehicles themselves and so on). Many such scenarios can be
thought of, for example varying in the way of data is acquired:
data may be recorded by infrastructure sensors (e.g. cameras or in-
ground sensors), the vehicles itself, smartphone apps etc. These can
typically be modeled quite easily when an simulation environment
is present by for example implementing virtual in-ground sensors
which provide additional data to the agents.

Depending on the scenario, the status quo may be already ob-
servable in the real-world. In this case, it may only be necessary
to evaluate the new solution if the scenario can be reproduced
with sufficient accuracy, ideally in the same environment, i.e. the
real world. If not, both may be evaluated in a simulation–with the
advantage that the simulation can directly be verified using the
real-world data.

3.3 Agent
The entity going from origin to destination is called an agent. It may
be designed to reflect human behavior or to represent a user using
a new service to be evaluated. In other words, we do not model
a given service explicitly but implicitly through the behavior of
agents. Agents take actions which may or may not advance them to
their destination. Different agents may be provided with different
sets of actions depending on the concept they are representing. For
example, an action might be to take a turn at an intersection or to
occupy a particular charging station.

For evaluating the baseline scenario and the optimal scenario,
we require that agents act optimal with respect to the respective
constraints. Since both scenario are used to generate lower bounds,
sub optimal behavior would lead to losing the bounding property
here. Fortunately, both scenarios are simplified settings which allow
for deterministic solutions under best case assumptions.

For all other scenarios, agents act according to the configuration
of the given scenario, such as real-time sensor data or data about
charging station reservations. The scenario also defines the con-
straints which must be followed by the agents, e.g. whether the
environment is completely or partially observable. For example, an
agent might only have access to current occupancy of some of the
charging stations.

In our example of evaluating the placement of charging stations,
individual electric vehicles represent agents. Additional to the origin
and destination as described above, each has a battery charge state
which decreases during the trip according to a realistic model of
energy use while driving. Actions of the agents include choosing
the route taken and the charging stations used. Depending on
the scenario, agents may be informed of the availability state of
charging stations and/or other agents’ planned uses of charging
stations.
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Let us note that the quality of the agent policy plays an important
role when evaluating scenarios. Thus, evaluations can only measure
how beneficial a certain scenario is in combination with a given
agent policy. For example, if the scenario would provide information
which the agent cannot exploit, we have to consider that a better
policy exists which could exploit the provided information.

3.4 Environment
Themost realistic evaluation environment is arguably the real world
itself–a real city with real entities. However, properly executed field
studies are typically expensive while data obtained in a passive way
is often lacking the requirements for determining comparable re-
sults regarding the metric of interest. In some settings, field studies
are virtually impossible, e.g. when covering large time-frames or a
huge number of entities (vehicles/persons). Simulations also bring
the advantage of enabling a multitude of scenarios under varying
settings for evaluation. It is generally possible to repeat simulations
while changing only parts of the parameters and thus, excluding
unintended side-effects. A simulation can also be repeated multiple
times to obtain average results, which increases the reliability of
results when random effects are present (for example caused by
non-deterministic agents). The environment in this simulation typ-
ically mirrors a real one. In this case, street graph, speed limits and
further properties can be copied from digital maps of real trans-
portation networks. For instance, the location of existing charging
stations and/or possible locations for new charging stations would
be included in our charging station placement example.

3.5 Setting
When using a simulation, realistic distributions of entities relevant
to the application (such as traffic patterns or availability of charging
stations) are needed, which may be acquired from the real world
or generated synthetically. Of course, it is best to use data of the
real-world, to minimize the divergence of reality and simulation.
Luckily, numerous data providers provide real-world datasets, often
at no cost and non-restrictive license terms. If no fitting real-world
dataset can be obtained, it may be possible to build a synthetic
dataset with realistic properties. For example, when the exact oc-
cupancy of individual parking bays is not available, but aggregate
distributions are, these aggregates may be used to generate the
target distributions. Of course a careful modeling is needed to not
diverge too much from reality.

To obtain reliable values, settings should be initialized exten-
sively enough to cover the range of external distributions (such
as traffic patterns changing by time of day). This is especially im-
portant in use cases sensitive to changes in these distributions. For
instance, we expect our charging station example to be especially
sensitive to the time of the day, as charging demand significantly
varies over the course of the day and charging a vehicle takes a
significant amount of time during which the used charging bay is
not available to other agents. It is of course beneficial if real data
is available enough so that multiple sets of different times of day
and/or dates can be examined. Furthermore, it is generally useful to
include a variety of settings during an evaluation. For example, it is
often interesting to use traffic patterns not present in reality now
but expected in projections of the future. If random influences are

present, especially when non-deterministic algorithms are involved,
simulation runs should be repeated appropriately to obtain good
approximations of the expected values.

3.6 Metric
In transport applications, various metrics are related to time. For
example, time spent on the road can be less productive or enjoyable
and professional drivers need to be paid per hour. Other candidate
resources include fuel spent or a reduction of emissions. Time can
be measured directly or indirectly through related metrics such
as traffic flow speed or traffic throughput. Depending on the ap-
plication, other metrics may be better suited. For example, when
car occupants aren’t strong walkers or when unwieldy objects are
being transported, the walking distance after parking the vehicle
may be critical. However, the total trip time is often the most im-
portant metric. This also applies to our example of charging station
placement, as time spent for charging is perceived as one of the top
disadvantages of electric vehicles [14].

3.7 Evaluation
After obtaining the results of running the simulations, differences
between certain scenarios are analyzed: The difference of Baseline
and Optimal scenarios indicates the gravity of the use case, i.e. if it
necessitates big detours even in the best-possible way or has little
impact on the overall trip cost. This targets the first question of
our paper. The difference of Baseline and Status Quo scenarios also
provides an answer to it, in a way providing a high bound for the
cost which should be approached with suitable measures. In our
example of charging station placement, this cost represents the
additional amount of time a battery electric vehicle currently needs
when compared to a vehicle with combustion engine. The differ-
ence between Optimal and Status Quo scenarios aims at the second
question: It directly indicates the potential of those measures. If the
potential turns out to be very small, even expensive measures would
not lead to a significant cost reduction. If the potential is in contrast
very large, it can be warranted to invest large sums in strategies
to alleviate the cost. Of course these strategies can itself be imple-
mented as scenarios according to our methodology, to determine if
those investments will lead to the anticipated cost reduction. When
looking at our charging station placement example, the low cost
of the optimal scenario likely comes with a prohibitively high in-
vestment. Limiting certain parameters in further scenarios, e.g. the
amount of charging stations to be placed or the amount of money
invested, would be interesting to determine the cost of realistic
approaches which should of course again be compared against the
main scenarios given above. It may be especially interesting to
determine which scenario represents a turning point, i.e. is the first
to provide a significant benefit. It is for example likely that even an
advanced parking guidance assistant yields no improvement when
parking opportunities are abundant in the destination area. Now,
different scenarios with increasing percentages of occupied parking
bays can be evaluated: It is likely that the parking assistant will start
to outperform the status quo approach at a certain occupancy value.
This value would be interesting to know in order to determine if it
makes sense to deploy the service (which may be associated with a
certain cost) in a certain district or not.
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Figure 1: Snapshot of the street graph and on-street parking
bays during a simulation run. Street graph shown in blue,
free parking bays as green dots, occupied bays as red dots.

4 CASE STUDY: ON-STREET PARKING
We now illustrate the general approach described above by evaluat-
ing the use-case of on-street parking. Here, a traveler has the task of
parking at a free parking bay and walk from there to the destination.
Our goal is to obtain insights into the potential of parking guidance
services but also into the general use case and costs of associated
detours. Detours consist of the necessary search for a parking bay
and the time incurred for walking to the actual destination.

4.1 Evaluation Environment
For simulating parking search, a modification of the COMSET sim-
ulator created by van Barlingen et al. [21]2 is used. While COMSET
was originally built to evaluate taxi search time while looking for
customers, its event-based engine and well-structured code-base
allow for straight-forward adaption to other domains. COMSET
uses street network data from OpenStreetMap3, which is made
available under an open data license. This makes it convenient to
use street graphs other than the originally included street graph of
New York City.

In ourmodification, on-street parking bays are added to the street
graph at their real-world location. Additionally, two new events are
introduced: Parking bays change their occupation state based on
prerecorded data and agents are notified when they pass a resource
during their trip, at which point they may record the observed occu-
pation state and, if the bay is free, may decide to park there. Parking
bay locations and their respective state-change events are loaded
from real-world data sets, which will be described in Section 4.3.
Since we aim to also measure the time needed for walking from
the parking position to the actual destination, a method for deter-
mining walking time from parking bay to destination was added:
We determine air-line distance and then multiply it with a constant
walking speed also addressed below in Section 4.3. While we sys-
tematically underestimate walking distance this way, we decided
against implementing a more complex calculation as pedestrians

2COMSET on Github (MIT license): https://github.com/Chessnl/COMSET-GISCUP
3https://www.openstreetmap.org - Data ©OpenStreetMap contributors

Table 3: Scenarios in the on-street parking use case.

Name Description

Baseline No parking necessary (passenger takes taxi)
Optimal Omniscient agent knows future
Status Quo Human-like agent searches without help

can often take unmapped shortcuts through buildings or open areas
and walking routes in this use case usually turn out to be quite
simple, such as down a road.

4.2 Scenarios and Agents
We implement the three main scenarios as shown in Table 3:

The Baseline scenario consists of going by taxi, i.e. the agent
finds the best (with regard to total trip time) drop-off point, stops
there and the passenger then walks from that point to the destina-
tion. Thus no detour is necessary as required.

In the Optimal scenario, the agent has full knowledge of the
future and parks at parking bay 𝑏opt. This bay is defined as the bay
having the minimal total trip time 𝑡total (𝑏) = 𝑡drive (𝑏) + 𝑡wait (𝑏) +
𝑡walk (𝑏) of all bays 𝑏 in the evaluation environment. Here, 𝑡drive (𝑏)
is the driving time from the agent’s current position to𝑏, determined
according to the street graph (taking the fastest route). If 𝑏 is free at
arrival time, 𝑡wait (𝑏) will be zero. Otherwise, the agent cannot park
and must keep driving, as stopping and waiting for a bay to become
free is forbidden because it would likely impede traffic and thus not
be socially acceptable. In this case, the agent however returns to𝑏 on
the fastest route and checks the bay’s occupancy state again, adding
the time of the detour to 𝑡wait (𝑏). This is repeated until the bay is
free and thus can be occupied. The walking time 𝑡walk (𝑏) is the time
needed to walk from 𝑏 to the destination. Note that the agent will
always reach the destination after time 𝑡total (𝑏opt) as no random
effects are present in our simulation and the agent’s knowledge
is flawless. As motivated above, we include this unrealistic (as
perfect knowledge about the future is not available in the real-
world) scenario to gain insights in the optimal performance for
reasons of comparison.

For the Status Quo scenario, we use an agent approximating
the parking strategy of a human driver who has no knowledge
about the parking opportunities in the destination environment
nor about their current or future availability states. In Benenson
et al. [4] (PARKAGENT), such an agent was described: The agent
drives towards the destination using the fastest route. When the
agent is less than an awareness distance 𝐷𝑎 (250 m) away from the
destination, it slows down to 25 km/h and starts counting occu-
pied and unoccupied parking places while still driving towards the
destination. As soon as the agent is less than a second, smaller,
parking distance 𝐷𝑝 (100 m) away from the destination, it further
reduces its speed to 12 km/h. On each passed parking opportunity,
a formula is evaluated to decide if this opportunity should be taken.
If the agent has not parked until the destination is passed, the third
stage is entered: The agent takes the first parking opportunity en-
countered while cruising in an area given by radius 𝐷𝑝 around the
destination[15]. 𝐷𝑝 is increased by 30 m each minute as agents
become increasingly desperate[4].
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It should be noted that, alternatively, other agents could be used
for the status quo scenario. For example, Bischoff and Nagel [5]
describe an on-street parking strategy they call “simple random
search logic”: The agent drives towards the destination using the
fastest route and then takes the first parking opportunity it en-
counters. If no parking opportunity is available in the remainder of
the destination street, a random sequence of neighboring streets is
likewise searched until a free parking bay is found. We choose the
PARKAGENT model because its authors specifically designed it for
recreating the behavior of real drivers searching for an on-street
parking opportunity, a goal we share.

We record the individual total trip times, being the sum of driving
time and walking time, for later evaluation.

4.3 Evaluation Setup
We will now describe the simulator setup used for obtaining mea-
surements for our on-street parking example.

4.3.1 Street graph. The street graph of theMelbourne Central Busi-
ness District (CBD) is obtained from the OpenStreetMap project
mentioned above. It contains 3185 nodes (intersections) and 6384 di-
rected edges (roads) with a combined length of about 305 kilometers
over an area of approximately nine square kilometers.

4.3.2 Parking bays. The City of Melbourne, Australia, maintains
an open data platform4 where it provides various datasets under
creative commons license.

This data platform provides the dataset “On-street Parking Bays”5,
of which we extract the location of on-street parking bays. These
bays are then added to the nearest road in our street graph. We are
interested in a typical parking setting, so we do not include bays
for short-time parking or bays which require extra permissions,
such as bays for people with special needs.

4.3.3 Parking data. To obtain realistic simulation results, we use
prerecorded parking bay occupancy state changes i.e. the park-
ing bays in our simulation behave in the same way as their real
counterparts did at a certain day in the past.

The data platform just mentioned provides the dataset “On-street
Car Parking Sensor Data - 2017”6 which contains such data cor-
responding to the parking bays: Occupancy state changes were
recorded throughout the year 2017 by permanently installed in-
ground sensors. The temporal resolution is one second, which al-
lows a realistic replay. It should be noted that the dataset contains
artifacts such as overlapping occupancy events which were cor-
rected prior to using it.

A snapshot of the simulation’s parking bay occupation states
can be seen in Figure 1.

4.3.4 Speed of travel. Though the maximum allowed speed for a
given street is provided by OpenStreetMap, the speed observed
in reality is generally lower due to traffic lights, congestion and

4City of Melbourne open data platform: https://data.melbourne.vic.gov.au;
Data licensed under “Creative Commons Attribution 3.0 Australia”:
https://creativecommons.org/licenses/by/3.0/au/
5https://data.melbourne.vic.gov.au/Transport-Movement/On-street-Parking-
Bays/crvt-b4kt
6https://data.melbourne.vic.gov.au/Transport/On-street-Car-Parking-Sensor-Data-
2017/u9sa-j86i

similar influences. It would be ideal if actual historic travel speed
values could be used during our simulations. Unfortunately it was
not possible to obtain these for same time spans as covered by our
parking data. Thus we take the same approach as the original au-
thors of COMSET did: They determine a global “calibration” factor
by comparing real trip times with trip times obtained by simulating
the same routes assuming the maximum allowed speed for each
street segment[21]. Taking the same approach, we arrive at a factor
of 1.35 for trips in our street network, i.e. a given trip takes approx-
imately 35% longer in reality than the shortest path according to
the speed limit. Agents include this factor in their calculations and
it is also reflected in simulated driving speeds.

When measuring walking time, we assumed no delays due to
traffic and thus set the walking speed to a constant value. We use a
walking speed of 1.42 m/s as determined by Browning et al. [7].

4.3.5 Simulated trips. As we want to determine the time an agent
needs to find a parking opportunity, we need to determine start
and destination locations for these trips. For our evaluation, we
determine one destination location for each road longer than 20 m
and shorter than 200 m randomly using a uniform distribution in
this range. This range restriction is included to not over-represent
areas with lots of small connecting roads and exclude long road
segments not relevant to parking as those belonging to highways.
For each of those destination locations, we randomly determine
a start location so that the shortest road distance between start
and destination equals 750 m (using a uniform distribution over
all locations satisfying the constraint). This distance was chosen
experimentally to be long enough to allow the agent some variation
in approaching the destination (e.g. from the north or south), while
not restricting the set possible starting locations too much. This
leads to 4085 pairs of start and destination location.

To be able to analyze parking search times with regard to time of
day, trips were generated for each of those start-destination-pairs at
multiple starting times. According to the data, demand for parking
is typically high from morning to afternoon in our evaluation area.
As we are interested in challenging situations, we choose evaluation
time segments accordingly: Hourly from 8:30 a.m. to 3:30 p.m. at a
random day in our data (August 9, 2019), resulting in 32680 trips.

Each of those trips was simulated independently for each agent
type. Agent types involving a random component were simulated
three times and then averaged to account for random fluctuations.
This number was chosen empirically to be large enough to reduce
variance due to random effects while still keeping computation
times low. While three is not a large value for such attempts, the
large amount of trips helps to smooth out random effects well.

4.4 Results
4.4.1 Hardness of parking. The difference Baseline and Optimal
scenarios indicates the “hardness” of parking with regard to total
trip time, i.e. it answers the question “How much time does the
optimal parking agent lose compared to arriving by taxi?”. A visu-
alization of these differences can be seen in Figure 2a. Quantitative
results are summed up over all agent deploy times in Figure 3a.
Those results state that taking a taxi does not decrease total trip
time by more than one minute approximately half of the time (56%).
Interestingly, total trip time is rarely increased by more than five
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(a) Disadvantage of optimal parking agent compared to taking a taxi. (b) Disadvantage of human-like agent compared to optimal agent.

Figure 2: Results for real-world parking occupancy data. Blue dots represent parking bays. A green dot indicates that a trip
ended here for which the optimal/human agent did not needmore than oneminute longer than the taxi/optimal agent. Yellow
1-2, Orange 2-5, Red more than five minutes. All agents in these visualizations started their trips at half past noon.

(a) Taxi agent vs. Optimal agent by time of day. (b) Optimal agent vs. Human agent by time of day.

Figure 3: Results for real-world parking occupancy data. The green bars indicate the proportion of trips in which the opti-
mal/taxi agent did not need more than one minute longer than the human/optimal agent. Yellow 1-2, Orange 2-5, Red 5+ min.

minutes. This amounts to the walking time of the bays most far
away from the nearest group of parking bays, as represented by
the red dots in Figure 2a. A good example of this is the cluster of
red dots in the left center. Here are no parking bays (blue dots),
so the optimal agent needs much walking time while the taxi can
just park at the destination. When parking bays are near, as in the
center of the map, the optimal agent generally finds a parking bay
with only little extra time when compared to the taxi agent.

4.4.2 Advantage of optimal agent. The additionally needed time
of the human-like agent used in the Status Quo scenario when
compared to the omniscient agent in the Optimal scenario gives an
indication of the disadvantage an uninformed human driver may
have when compared to an optimal agent. Looking at this time
answers the question “How much time can a human driver save
using optimal assistance?”–an exemplary visualization can be seen
in Figure 2b. This figure shows that the human-like agent suffers
especially when no parking bays are near its destination. As it does
not know the location of parking bays, it has to search them, thus
accumulating a large extra time. But also when parking bays are
present in the immediate surroundings, the agent is often not able
to find one without some delay. This can be seen in the center where

lots of orange dots are present, representing an extra time of two
to five minutes when compared to the optimal agent which knows
the location and occupancy of parking lots. Figure 2a quantifies
these delays: Only approx. 32% of all trips were disadvantaged by
less than one minute when compared to the optimal agent.It also
becomes apparent that this disadvantage gets worse around noon.
This can be explained by the heightened demand for parking bays
during this time of day.

5 CASE STUDYWITHOUT REAL-WORLD
DATA

In our on-street parking case study presented above, real-world
parking data was available for evaluation. Such data is however
often not readily available. We argue that in this case, synthetic
data can be used. In this section we will give an example of how to
generate such data based on only a few parameters for a generative
model. Otherwise, our example remains unchanged, i.e. the street
graph, agents etc. are not modified.
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(a) Taxi agent vs. Optimal agent by time of day. (b) Optimal agent vs. Human agent by time of day.

Figure 4: Results for synthetic parking occupancy data. The green bars indicate the proportion of trips in which the opti-
mal/taxi agent did not need more than one minute longer than the human/optimal agent. Yellow 1-2, Orange 2-5, Red 5+ min.

Figure 5: Parking durations of real vs. synthetic dataset.

5.1 Generation of synthetic data
To generate synthetic parking data similar to realistic observations,
some knowledge about the behavior of real bays is needed. Often,
an average occupation rate 𝜔 can be estimated, for example that
70% of parking bays are occupied at a given time. Additionally, a
mean parking duration 𝛾 can be estimated, such as 45 minutes. In
our case, these estimates are based on our experience gained while
working with the Melbourne dataset, however they can also be
gained by analyzing data from ticket vending machines or recorded
trajectories of cars [8]. Estimates 𝜔 and 𝛾 can now be used to
parametrize a model for generating parking events.

One such model for parking events is called Continuous Time
Markov Chain (CTMC)[12]. It assumes exponentially distributed
sojourn times in each of the two possible states available and occu-
pied of a single parking bay. The model is quite simple which brings
advantages and disadvantages. The advantage is its elegance and
the requirement of only two parameters (state change rates 𝜆 and 𝜇
as described in [12]). The disadvantage is that while availability du-
rations indeed seem to be approximately exponentially distributed,
it may be argued that this does not generally apply to occupation
durations due to parking time restrictions or other factors. However,
Figure 5 shows that while data generated by the model does not
perfectly reflect the data from our Melbourne dataset, the general
trend does fit, which in our experience is good enough as an ap-
proximation. Note that we did not choose the parameters to get the
highest possible similarity of resulting distributions as this would
not be possible if a real dataset was not available.

To parameterize the CTMC model, we assume to have estimates
for the overall occupation rate 𝜔 and mean parking duration 𝛾 .
The CTMC’s sojourn time in the state occupied ( 1𝜇 ) is thus already

specified by 𝛾 . The sojourn time in the state available ( 1𝜆 ) can be
calculated via the model’s stationary distribution given in [12]:

𝜋1 =
𝜇

𝜆 + 𝜇 ⇒ 𝜆 =
𝜇 (1 − 𝜋1)

𝜋1
(1)

In this equation, 𝜋1 is the stationary probability of the state
available, for which we know that 𝜋1 = 1−𝜔 . Together with 𝜇 = 1

𝛾
we arrive at:

𝜆 =
𝜇𝜔

1 − 𝜔 =
𝜔

𝛾 (1 − 𝜔) (2)

In our example, we use a mean parking duration 𝛾 of 45 minutes,
thus 𝜇 = 1

45min , and an average occupation rate 𝜔 = 0.7. Using the
equation above, we arrive at 𝜆 = 7

135min . These parameters are then
used to sample parking events according the CTMC model, i.e. via
its exponential distributions. This process is quite straight-forward:
As a parking bay’s states available and occupied alternate, one draws
in an alternating way from each exponential distribution to obtain
the respective duration, until enough data is generated. This is done
for each parking bay. Note that this implies independent behavior
of parking bays as given by the model. If different parameters are
available for different parking bays (e.g. because they are located in
areas with different average parking occupancy), data can of course
be sampled from differently parametrized distributions.

5.2 Results
Results obtained using the synthetic dataset can be seen in Figure 4.
As the CTMCmodel for creating these data did not take time-of-day
changes into account, fluctuations between the different starting
times are minimal–those are caused by the randomness introduced
while sampling the data. It should be noted that the human-like
agent of the Status Quo setting is not deterministic. Therefore, it
is also introducing a slight random variation. However, compared
to the example with real-world data in Figure 3, it can be seen
that the overall results are similar when excluding time-of-day
influences. This indicates that synthetic data can in this case be a
good substitute when real-world parking data is not available.

It should be noted that the CTMCmodel’s limitation of assuming
a constant occupation rate throughout the day can be remedied by
using a more complex model. This may be beneficial when a more
realistic representation is required, as we have seen in Section 4.4
that this rate does indeed vary depending on the time of day. More
complex models covering such time-of-day variations, as the Cyclic
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Time-Inhomogeneous Markov Model proposed in [17], however
require more parameters, which may not be available.

6 CONCLUSION
In this paper, we present an approach to quantify the cost of neces-
sary detours and the potential of solutions for reducing this cost.
In contrast to related literature, we focus on comparisons with
the status quo and a best-case scenario instead of just giving ab-
solute numbers of a solution’s performance or comparing against
competing solutions. Our method can be applied under various
preconditions, such as in the real world or using a simulator. Real-
world data is advantageous in regard to realism, but synthetic data
can also be used for evaluation if it is carefully constructed to
resemble distributions observed in the real world. Our approach
enables decision makers to better appraise the potential of mobility
solutions. We also argue that comparing against the introduced
benchmark scenarios can indicate which research or business op-
portunities are most promising, or which are already “solved” for
practical purposes. Our general method is applied to a case study
on searching on-street parking opportunities. To quantify the cost
of necessary detours caused by searching for a free parking bay, we
compare going by taxi (baseline) with having full knowledge of the
future (optimal scenario). Results show that taking a taxi saves less
than one minute of total trip time in 56% of the simulation runs
as the optimal agent is typically able to find a parking space near
to the destination. This indicates that if a human driver would be
using a park-routing service approaching the performance of the
optimal agent, driving your own car would not take much longer
than taking a taxi. Secondly, we compared the omniscient agent
with a human-like agent to get an insight in the potential for strate-
gies attempting to shorten the time needed for finding a suitable
parking bay. Our results indicate that even when free parking bays
are not far from the destination (which the omniscient agent knows
about), the human agent often needs one to five minutes longer to
search for a parking bay and walk from there to the destination.
While in reality, it won’t be possible to reach the performance of the
omniscient agent because complete and correct information about
the future is not available, this comparison shows the potential of
methods for reducing time spent for parking search.When applying
our methodology with synthetic parking occupancy data generated
by an artificial model of parking bay behavior, we observe similar
simulation results as obtained using real-world data. This indicates
that synthetic data can be used as a substitute if no real-world
data is available. This broadens the potential application areas of
our approach, as real-time data is often not readily available but
parameters for suitable generative models can often be estimated
or even measured with good confidence.
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Chapter 9

Concluding Remarks

This chapter gives a summary of contributions and indicates directions for future research.

9.1 Summary
This thesis highlights four propositions regarding mobility problems: 1) Mobility tasks such
as the parking search problem or the ambulance redeployment problem can be addressed
by developing computer systems that recommend actions based on a known or estimated
environment state. 2) Data about the environment state can be obtained by sensors.
3) Post-processing of obtained data can improve data quality in case of imperfections such
as sensor gaps. 4) The effects of different data qualities should be determined and compared
in order to decide on implementation details such as the number of sensors to be installed.

Advances in each of these four fields potentially increase the overall quality of the even-
tual actions or plans recommended by the computer system. Therefore, each is covered
in this thesis: In the first field, a variation of the resource routing problem is introduced:
A fleet of agents with individual resource routing tasks improves travel times by sharing
data obtained by the same agents while passing resources. The problem is formalized and
methods are given to solve it in various settings, including a partially-observable setting
in which no stationary sensors are present. The thesis also considers the ambulance rede-
ployment problem for electric ambulances by introducing the dynamic electric ambulance
redeployment problem (DEAR). A method to solve the problem is given and evaluated
against existing solutions for the non-electric case. The second field, obtaining data, is
especially interesting when not all resources can be observed by sensors due to budget or
other restrictions. This thesis therefore compares existing data-driven and data-agnostic
sensor placement methods for a limited number of stationary sensors and presents a method
for placing sensors more cost efficiently. In the third field, improving data, the estimation
of current or future resource states is especially interesting if only sparse measurements
are available. Here, this thesis presents a way to obtain estimates by exploiting the cyclic
nature of state change dynamics usually present in environmental data such as parking
availability data. Finally, the thesis underlines the importance of evaluating and com-
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paring different data qualities with regard to the user-observable quality of the mobility
solution. This is beneficial when different data qualities come with different cost, e.g., ad-
ditional sensors increase data quality but require further investment. Knowing the effects
of different methods for obtaining, improving and using data enables decision makers to
implement cost-effective solutions to mobility problems.

9.2 Outlook
Solving real-world mobility problems is difficult because of the complex dynamic envi-
ronment that includes numerous independent actors, side effects and external influences.
Therefore, many opportunities for future work on topics covered in this thesis exist: First,
methods for solving mobility problems necessarily include assumptions or abstractions of
the real world. For example, approaches presented in this thesis assume that traffic flow
speed is not affected by actions taken. This may lead to inaccuracies in some instances,
e.g., simultaneously routing multiple vehicles through a narrow street can actually cause
congestion and thus increase average driving time. Future work should quantify the effects
of such feedback loops and improve methods if necessary. External influences, e.g., current
or predicted weather, can often be integrated into existing methods in a straightforward
way. It seems promising to determine the significance of various external effects and in-
clude relevant contributors. Further, methods can be improved by integrating anomalies
such as temporary street closures or sudden spikes in demand caused by events such as
large concerts. The electric ambulance location problem introduced in this thesis assumes
a fixed number of ambulances. As ambulance demand varies throughout the day, future
work could improve the state of the art by additionally planning crew schedules. This is
especially relevant for electric ambulances due to their charging time requirements.

Regarding real-time data, future work may evaluate heterogeneous sensor networks,
especially the combination of stationary and mobile sensors, as benefiting from their re-
spective advantages may increase efficiency. Further, approaches given in this thesis assume
accurate sensor readings. In real-world deployments, sensors can fail and certain environ-
mental conditions may lead to elevated error rates. Extensions considering such sensor
anomalies may provide more robust solutions. This thesis discusses how the benefit of
certain data can be determined with regard to a mobility application. A next step would
be to assign a monetary value to data points, e.g., by determining users’ willingness to
pay for a certain benefit. Knowing the actual value of data may enable a more efficient
placement of sensors and facilitate the trade of data, resulting in improved service quality.
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