
Bridging Theory and Observation:
Advancing Cosmology and Astrophysics

through Constrained Simulations and
Machine Learning

Elena Hernández Martínez

München 2025





Bridging Theory and Observation:
Advancing Cosmology and Astrophysics

through Constrained Simulations and
Machine Learning

Elena Hernández Martínez

Dissertation
an der Fakultät für Physik

der Ludwig–Maximilians–Universität
München

vorgelegt von
Elena Hernández Martínez

aus Bilbao

München, den 13.05.2025



Erstgutachter: Prof. Dr. Klaus Dolag
Zweitgutachter: Prof. Dr. Jochen Weller
Tag der mündlichen Prüfung: 27.06.2025



Zusammenfassung

Galaxienhaufen sind die größten gravitativ gebundenen und virialisierten Strukturen im Univer-
sum und bieten zahlreiche Möglichkeiten zur Untersuchung astrophysikalischer Prozesse und
kosmologischer Parameter. Die präzise Gewinnung von Informationen aus Galaxienhaufen ist
jedoch nach wie vor eine große Herausforderung, da ihre hochgradig nichtlineare Natur und
die begrenzte Auflösung und Modellierungstiefe numerischer Simulationen eine physikalisch
akkurate und sinnvolle Verbindung mit Beobachtungen erschweren. Diese Dissertation adressiert
diese Problematik durch die Kombination von constrained kosmologischen Simulationen und
simulationsbasierter Inferenz mittels maschinellen Lernens.

Im ersten Teil stellen wir eine neuartige Reihe hydrodynamischer constrained Simulationen
vor, das SLOW-Projekt (Simulating the LOcal Web), das darauf ausgelegt ist, die großräumige
Struktur des lokalen Universums im Eins-zu-eins-Vergleich realitätsnah nachzubilden. Wir zeigen,
dass diese Simulationen die Positionen und Eigenschaften von über 46 beobachteten Galaxien-
haufen mit hoher Genauigkeit reproduzieren. Insbesondere stimmen die Massen, Temperaturen,
Röntgenleuchtkräfte und Sunyaev-Zel’dovich Effect (SZ)-Signale der simulierten Haufen sehr
gut mit den Beobachtungen überein, was den Einsatz constrained Simulationen auf Basis von
Eigengeschwindigkeiten zur Rekonstruktion realer Strukturen im lokalen Kosmos eindrucksvoll
bestätigt.

Im zweiten Schritt analysieren wir die thermodynamischen Eigenschaften dieser simulierten
Haufenrepliken. Dabei zeigt sich, dass die Profile auf großen und mittleren Skalen gut model-
liert werden. In den Kernregionen treten jedoch deutliche Abweichungen auf, insbesondere bei
Entropie- und Gasdichtewerten. Dies unterstreicht die Notwendigkeit verbesserter Auflösung und
einer weiterentwickelten Modellierung der Galaxienentstehung. Darüber hinaus stellen wir einen
Zusammenhang zwischen den beobachteten thermodynamischen Eigenschaften lokaler Galaxien-
haufen und deren Masseaufbau-Historien in den Simulationen her, wodurch wir eine Verbindung
zwischen der Entstehung eines Haufens und seiner späteren Einordnung als Cool-Core- oder
Non-Cool-Core-System aufzeigen.

Abschließend demonstrieren wir, dass maschinelles Lernen, trainiert auf gemittelten thermo-
dynamischen Profilen aus hochaufgelösten Zoom-in-Simulationen von Galaxienhaufen, sowohl
kosmologische als auch astrophysikalische Parameter mit bemerkenswerter Genauigkeit rekon-
struieren kann. Mithilfe der CAMELS-zoomGZ-Simulationsreihe, welche den 28-dimensionalen
Parameterraum des IllustrisTNG-Modells abdeckt, erreichen wir eine bislang unerreichte In-
ferenzgenauigkeit. Wir zeigen, dass diese Inferenz auch bei starkem Rauschen und begrenzter
radialer Abdeckung stabil bleibt. Zudem analysieren wir, wie die Inferenz basierend auf gemittel-
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ten Profilen den Ansatz auf Basis integrierter Größen deutlich übertrifft. Somit zeigen wir, dass
Galaxienhaufenprofile eine besonders leistungsstarke Datengrundlage für simulationsbasierte In-
ferenz bilden.

Insgesamt liefert diese Arbeit einen kohärenten Rahmen, der die Struktur und Entwicklung von
Galaxienhaufen mit den zugrundeliegenden physikalischen Parametern verbindet. Durch die enge
Verknüpfung von Simulationen, Beobachtungen und maschinellem Lernen legt diese Dissertation
das Fundament für eine neue Generation präziser Kosmologie, welche den astrophysikalischen
und kosmologischen Informationsgehalt von Galaxienhaufen vollständig ausschöpft.



Abstract

Galaxy clusters are the largest gravitationally bound and virialized structures in the Universe
and powerful probes of both astrophysical processes and cosmological parameters. However,
extracting precise information from galaxy clusters remains challenging due to their highly non-
linear nature and the difficulty of connecting resolution and model-limited simulations with
observations in a physically accurate and meaningful way. This thesis addresses these challenges
by combining the use of constrained cosmological simulations and simulation-based inference
using machine learning.

We first present a novel suite of constrained hydrodynamical simulations, the SLOW (Simulat-
ing the LOcal Web) project, designed to reproduce the large-scale structure of the local Universe
on a one-to-one basis. We show how these simulations accurately replicate the positions and
properties of over 46 observed galaxy clusters. We establish that the clusters’ masses, temper-
atures, X-ray luminosities, and SZ signals are matched with high fidelity, validating the use of
constrained simulations based on peculiar velocities as tools for creating replicas of real cosmic
structures present in our local Universe.

In a second step, we analyze the thermodynamic properties of these simulated cluster replicas,
revealing that large-scale and intermediate radial profiles are well modeled. However, core regions
show strong discrepancies, specially in the entropy and gas density values. We will discuss
how these point to the necessity of improvements in resolution as well as improvements in the
current implementation of galaxy formation models. Additionally, we will link the observed
thermodynamic features of local clusters to the clusters’ mass assembly histories recovered in the
simulations, establishing a connection between the formation path of clusters and their late-time
cool-core/non-cool-core classification in observations.

Finally, we demonstrate that machine learning models trained on stacked thermodynamic
profiles from high-resolution zoom-in simulations of galaxy clusters can recover both cosmo-
logical and astrophysical parameters with remarkable accuracy. Using the CAMELS-zoomGZ
suite, which spans the 28-dimensional parameter space from the IllustrisTNG model, we achieve
an unprecedented inference accuracy for cosmological parameters as well as astrophysical pa-
rameters. We will show how the inference remains robust under high noise levels and limited
radial coverage. Moreover, we will explore how inference done using stacked galaxy cluster
profiles outperforms the inference done with integrated quantities, positioning cluster profiles as
a powerful tool for simulation-based inference.

Together, the results of this thesis provide a unified framework that connects the structure
and evolution of galaxy clusters with the underlying physical parameters that govern them. By
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bridging simulations, observations, and machine learning-based inference, this work aims to lay
the foundation for a new generation of precision cosmology using galaxy clusters as astrophysical
and cosmological laboratories.
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"Isn’t it funny how day by day nothing changes, but when you look back, everything is different?"

— commonly attributed to C.S. Lewis
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The overarching objective of cosmology is to achieve a comprehensive understanding of
the Universe and its evolution. This involves tracing the development of its matter and energy
components from the very beginning, nearly 14 billion years ago, to the present day. In modern
cosmology, the formation of structure in the Universe is understood to result from the gravitational
amplification of tiny fluctuations in a generally smooth and uniform matter distribution. These
small irregularities are believed to have originated from quantum fluctuations in a scalar field,
which triggered a rapid phase of accelerated expansion known as cosmic inflation (see Guth,
1997). Following this early phase, the Universe emerged from an extremely hot and dense state,
and has been expanding ever since.

One of the most extensively studied pieces of evidence supporting this picture is the Cosmic
Microwave Background (CMB) radiation. First detected by Penzias & Wilson (1965), the CMB
is the earliest observation of our Universe, providing an image of the Universe when it was only
about 380,000 years old. The CMB is characterized by its general homogeneity and isotropy, with
tiny perturbations which provide the necessary seeds for the cosmic structures that we observe
today. Detailed measurements of these small perturbations in the CMB have been carried out
by numerous experiments (e.g., Fixsen et al., 1996; Torbet et al., 1999; Melchiorri et al., 2000;
Hanany et al., 2000; Hinshaw et al., 2007; Planck Collaboration et al., 2020a). These small
perturbations are believed to have evolved in the web of structures that we observe in the late-time
large-scale structure of the Universe.

This arrangement of matter is often referred to as the cosmic web, and it forms a vast network
connecting dense regions, filled with galaxies and stars, through elongated filaments, which are
separated by large, underdense voids. The formation and evolution of this cosmic web is explained
commonly with the 𝛬CDM (Lambda Cold Dark Matter) model. This model is widely accepted
not only because it successfully accounts for a wide range of observations, but also due to its
relative simplicity. It assumes that at large-scales the Universe is homogeneous and isotropic (as
supported by the CMB) and the validity of general relativity. With this assumptions it is possible
to describe the Universe with just six key parameters: matter density (𝛺m), baryon density (𝛺b),
dark energy density (𝛺𝛬), the scalar spectral index (𝑛𝑠), the amplitude of matter fluctuations (𝜎8),
and the Hubble constant (𝐻0).

A key method for investigating the fundamental components of the Universe is through
the study of how matter and radiation are distributed on the largest scales in the comic web, in
particular at the intersections of the filaments of the web, what we call the nodes, where clusters of
galaxies reside. These structures are massive gravitationally bound systems having characteristic
masses ranging from 1014 to 1015 𝑀⊙ and containing hundreds or even thousands of galaxies.
They consist of both baryonic and dark matter and represent the largest virialised structures in the
Universe. Their formation is believed to be closely tied to the gravitational collapse of the most
massive overdensities present in the primordial density field (see e.g. Press & Schechter, 1974a;
Springel et al., 2005c; Tinker et al., 2008; Kravtsov & Borgani, 2012a) and thus, the number
and mass distribution of these structures are highly sensitive to cosmological parameters, making
them essential for constraining models of cosmic evolution (see e.g. Vikhlinin et al., 2009; Allen
et al., 2011; Mantz et al., 2015; Planck Collaboration et al., 2016a).

The galaxies that reside within clusters also provide valuable insights into the processes gov-
erning structure formation. For instance, their orbits within the cluster’s gravitational potential,
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carry evidence of how clusters assemble through hierarchical merging (see e.g. Dressler, 1980; De
Lucia & Blaizot, 2007; Kravtsov & Borgani, 2012b). At the same time, the dense environments
in which these galaxies evolve subject them to processes such as tidal stripping, ram pressure and
shocks (Gunn & Gott, 1972; Binney & Tremaine, 1987; Abadi et al., 1999; Markevitch et al.,
2002; Roediger & Brüggen, 2007; Tonnesen & Bryan, 2012), which can significantly affect their
properties and evolution.

For these reasons, galaxy clusters offer a unique setting to explore a broad range of astro-
physical phenomena taking place in some of the most extreme environments in our Universe.
The combination of complexity and scale that galaxy clusters offer makes them exceptional
laboratories for advancing both astrophysical and cosmological research.

Providing a complete description of these systems, however, requires an accurate treatment
of the highly non-linear processes involved in gravitational collapse, together with the heating
and cooling mechanisms governing baryonic matter. As clusters assemble, the intracluster gas is
heated to extremely high temperatures, sufficient for it to emit X-rays via thermal bremsstrahlung,
through a combination of adiabatic compression and shock heating. Once confined within
the gravitational potential well of the cluster, the gas tends to settle into a state of hydrostatic
equilibrium.

As the intracluster gas becomes denser, radiative cooling processes become more efficient,
allowing the formation of stars and fueling accretion onto supermassive black holes (SMBHs)
that reside at the centers of massive galaxies within the cluster. This in turn triggers feedback
mechanisms, such as energy injection from supernovae (SNe) and active galactic nuclei (AGN),
which heat the intracluster gas and distribute metals throughout the cluster environment.

Understanding the highly non-linear processes involved requires sophisticated modeling meth-
ods. Semi-analytic models (SAMs) and numerical simulations are widely used to study these
systems, as they allow us to follow the dynamics of cluster assembly and the influence of baryonic
physics on the large-scale properties of these structures.

Through the analysis of an extended set of standard and constrained cosmological hydrody-
namical simulations, this thesis aims to study the hot gas properties of galaxy clusters and their
use for cosmological parameter inference.

The thesis is structured as follows:
Part II provides the theoretical and observational background necessary to contextualize the

work. It reviews the standard cosmological model, the formation of large-scale structure, and the
physical processes that shape the thermodynamic and observable properties of galaxy clusters.

Part III presents the methodological framework used in the thesis. This includes a description
of the cosmological simulations employed, both traditional and constrained, alongside details of
the machine learning architectures used for inference, and the techniques applied to construct
merger trees and analyze cluster evolution.

Part IV contains the main results and is divided into three research chapters. Chapter 4 focuses
on the construction and validation of the SLOW simulation suite, a set of constrained simulations
designed to reproduce the observed structure of the local Universe. Chapter 5 analyzes the
thermodynamic profiles of the hot gas of the simulated local clusters, comparing them to X-
ray and SZ observations, and investigates the connection between core properties and cluster
formation histories. Chapter 6 applies machine learning to stacked thermodynamic profiles from
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zoom-in simulations to infer both cosmological and astrophysical parameters, demonstrating the
power of cluster profiles as tools for simulation-based inference.

Finally, Part V summarizes the main findings of the thesis and discusses several future
directions. These include high-resolution simulations with varied physics models, inference
based on 2D cluster maps, and the integration of constrained zoom-in simulations for cosmological
parameter inference.
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Part II

Scientific Background





1 | Cosmology and Large-Scale Structure

The standard cosmological model, known as the 𝛬CDM model, offers a remarkably accurate
description of our Universe. This chapter introduces several fundamental concepts essential to
this model.

For clarity, the following conventions are adopted:

• Natural units are used where 𝑐 = ℏ = 1.

• Greek indices (𝛼, 𝛽) run over spacetime coordinates, while Latin indices ( 𝑗 , 𝑘) indicate
spatial components.

• The Einstein summation convention applies throughout.

• The metric signature is (−, +, +, +).

• A dot over a variable denotes differentiation with respect to physical time.

• Distances are expressed in Mpc/ℎ and masses in𝑀⊙/ℎ, with ℎ defined as: ℎ ≡ 𝐻0
100𝑘𝑚𝑠−1𝑀𝑝𝑐−1 .

• Important constants in SI (Workman et al., 2022):

– speed of light: 𝑐 = 299,792,458 m/s,

– gravitational constant: 𝐺 = 6.67430 × 10−11 m3 kg−1 s−2,

– parsec: 1 pc = 3.08567758149 × 1016 m,

– solar mass: 𝑀⊙ = 1.98841 × 1030 kg.

1.1 The 𝛬CDM Universe
In the following, we will present the formalism related to the standard cosmological model of
the Universe. The summaries covered here and in subsection 1.1.1 are based on the works by
Mukhanov (2005); Carroll (2019); Baumann (2022); Dodelson & Schmidt (2024); Turner (2024).

The 𝛬CDM model is built on the cosmological principle, which is the assumption that, when
viewed on sufficiently large scales, the Universe is both homogeneous and isotropic. Moreover,
gravity is considered the only relevant interaction, with general relativity as the theory that governs
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it. Other interactions such as electromagnetism are considered to play a role only on smaller
scales compared to gravity and to affect baryonic matter but not CDM.

The connection between the curvature of spacetime and the matter-energy content of the
Universe is captured by Einstein’s field equations:

𝐺𝜇𝜈 = 𝑅𝜇𝜈 −
1
2
𝑅𝑔𝜇𝜈 = 8𝜋𝐺𝑇𝜇𝜈, (1.1)

where 𝐺 is Newton’s gravitational constant and 𝑇𝜇𝜈 represents the energy-momentum tensor
that encodes the distribution of matter and energy throughout the Universe. The cosmological
constant 𝛬 can be incorporated either by including a term 𝛬𝑔𝜇𝜈 on the left-hand side, or by
treating it as part of 𝑇𝜇𝜈.

In this context, the metric tensor 𝑔𝜇𝜈 describes spacetime geometry, while 𝑅𝜇𝜈 and 𝑅 corre-
spond to the Ricci tensor and Ricci scalar, respectively, with 𝑅 = 𝑅

𝜇
𝜇. The Ricci tensor itself can

be written explicitly as:

𝑅𝜇𝜈 =
𝜕𝛤𝛼𝜇𝜈

𝜕𝑥𝛼
−
𝜕𝛤𝛼𝜇𝛼

𝜕𝑥𝜈
+ 𝛤𝛼𝛽𝛼𝛤

𝛽
𝜇𝜈 − 𝛤𝛼𝛽𝜈𝛤

𝛽
𝜇𝛼, (1.2)

where the Christoffel symbols 𝛤 are defined in terms of the metric components as:

𝛤
𝜇

𝛼𝛽
=

1
2
𝑔𝜇𝜆

(
𝜕𝑔𝜆𝛽

𝜕𝑥𝛼
+ 𝜕𝑔𝜆𝛼
𝜕𝑥𝛽

−
𝜕𝑔𝛼𝛽

𝜕𝑥𝜆

)
. (1.3)

Equation 1.1 expresses how matter and energy influence the geometry of spacetime determined
by the right hand side of the equation. The metric tensor 𝑔𝜇𝜈 determines the line element:

𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 . (1.4)

Given that the cosmological principle presumes large-scale homogeneity and isotropy, the
spacetime metric must reflect these symmetries, i.e. translational and rotational symmetry. The
metric that satisfies these conditions is unique and is called the Friedmann-Lemaître-Robertson-
Walker (FLRW) metric. Its line element is given as:

𝑑𝑠2 = −𝑑𝑡2 + 𝑎2(𝑡)
[

𝑑𝑟2

1 − 𝐾𝑟2 + 𝑟2
(
𝑑𝜃2 + sin2 𝜃 𝑑𝜙2

)]
, (1.5)

where (𝑟, 𝜃, 𝜙) are comoving polar coordinates, and 𝑎(𝑡) is the scale factor that describes the
scaling of spatial distances with respect to a given distance at a chosen initial time 𝑡0. By
convention this time is chosen to be our current time, so that 𝑎(𝑡0) ≡ 𝑎0 = 1. The scale factor
relates the physical coordinates 𝑥phys to the comoving coordinates 𝑞com through 𝑥phys = 𝑎(𝑡) 𝑞com.
This means that if two objects are not subject to any net force, they will maintain fixed positions
in comoving coordinates, in other words, they move along with the cosmic expansion, and their
physical separation increases proportionally to 𝑎(𝑡). Finally, the parameter 𝐾 indicates the spatial
curvature of the Universe:

𝐾 =


1 closed Universe (spherical geometry)
0 flat Universe (Euclidean geometry)
−1 open Universe (hyperbolic geometry)

(1.6)
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Throughout this work, we will assume a flat Universe (𝐾 = 0), in concordance with theoretical
predictions from inflation (Mukhanov, 2005) as well as with the latest observational data (Planck
Collaboration et al., 2020a). However, for completeness, in this section we will retain 𝐾 in the
formalism where relevant.

Using equations 1.4 and 1.5 we can derive the components of the FLRW metric 𝑔𝜇𝜈. Now,
we can calculate the left hand side of Eq. 1.1. Consistent with the assumptions of homogeneity
and isotropy that we applied for the metric, the Universe’s matter and energy components need
to also comply with these assumptions. This means that on large scales we can approximate
all matter and energy contents as perfect fluids. For perfect fluids in a comoving frame the
energy-momentum tensor has the form:

𝑇
𝜇
𝜈 = diag(−𝜌, 𝑝, 𝑝, 𝑝), (1.7)

where 𝜌 is the energy density and 𝑝 the pressure. Each different matter and energy component
has different energy densities and pressures. Nevertheless, the total properties are additive, which
means that the total energy density and pressure are sums over the respective properties of the
various fluid components in the Universe.

We use now this energy-momentum tensor combined with the FLRW metric in the Einstein’s
equations ( 1.1). Then, we arrive at the two Friedmann equations:

𝐻2 =

(
¤𝑎
𝑎

)2
=

8𝜋𝐺
3

𝜌 − 𝐾

𝑎2 , (1.8)

¥𝑎
𝑎
= ¤𝐻 + 𝐻2 = −4𝜋𝐺

3
(𝜌 + 3𝑝), (1.9)

where 𝐻 =
( ¤𝑎
𝑎

)
is the Hubble parameter. Note that we included the spatial curvature 𝐾 in

Eq. 1.8 for completeness. We calculate the time derivative of the first Friedmann equation (1.8)
and combining it with the second Friedmann equation (1.9) we get to the continuity equation,
describing the local conservation of energy and momentum:

¤𝜌 + 3𝐻 (𝜌 + 𝑝) = 0. (1.10)

For different types of matter and energy, pressure and density are typically related via an
equation of state that can expressed with the following generalized form:

𝑝 = 𝑤𝜌, (1.11)

If we combine this expression with the continuity equation (1.10) we arrive at an explicit
scaling of density with the scale factor:

𝜌 ∝ 𝑎−3(1+𝑤) (1.12)

The parameter𝑤 characterizes the fluid, so that radiation and relativistic particles have𝑤𝑟 = 1
3 ,

while non-relativistic matter is treated as dust and has 𝑤𝑚 = 0. The cosmological constant has
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𝑤𝛬 = −1. From this, the evolution of the energy densities shows the following respective
dependencies:

𝜌𝑟 ∝ 𝑎−4, 𝜌𝑚 ∝ 𝑎−3, 𝜌𝛬 = const. (1.13)

These different dependencies on the scale factor determine the epochs at which different kinds
of matter and energy content dominated. For instance, radiation and relativistic particles, which
scale as 𝜌 ∝ 𝑎−4, were dominant in the early Universe, when the scale factor 𝑎 was still small.
At intermediate times, however, matter began to take over as the dominant component. Since
the cosmological constant 𝛬 remains constant and does not depend on 𝑎, it becomes increasingly
important at later times, as the densities of other components decrease with the expansion of the
Universe.

For a flat Universe (𝐾 = 0), the first Friedman equation (1.8) at present time 𝑡0 defines the
critical density 𝜌crit,0 as:

𝜌crit,0 =
3𝐻2

0
8𝜋𝐺

, (1.14)

Physically, the critical density represents the precise value of total energy density required to make
the geometry of the Universe flat. If the actual total density exceeds this value, the Universe would
have positive curvature and be closed; if it falls below, the Universe would be open with negative
curvature. Thus, the critical density serves as a useful measure to compare the contribution of
different components of the energy budget in the Universe, by allowing us to express the density
of each component in terms of the dimensionless parameter 𝛺𝑖:

𝛺𝑖,0 =
𝜌𝑖,0

𝜌crit,0
=

8𝜋𝐺 𝜌𝑖,0

3𝐻2
0

. (1.15)

For brevity, the subscript ‘0’ will be dropped from here onward, with 𝛺𝑖 always referring to
present-day values unless stated otherwise. The first Friedmann equation (1.8) can be expressed
in terms of these dimensionless parameters for the previously introduced matter and energy
components of the Universe:

𝐻2(𝑎)
𝐻2

0
= 𝛺r𝑎

−4 + 𝛺m𝑎
−3 + 𝛺𝛬 . (1.16)

Here, the cosmological constant and curvature parameters are:

𝛺𝛬 =
𝛬

3𝐻2
0
, 𝛺𝐾 = − 𝐾

𝐻2
0
. (1.17)

We now need to introduce the cosmological redshift, 𝑧. Let us consider a distant source that
emitted light at time 𝑡em with wavelength 𝜆em. If the light was observed at time 𝑡0 with 𝜆0, then
the redshift is defined as:

𝑧 =
𝜆0 − 𝜆em

𝜆em
. (1.18)
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As the light traveled from the source to the observer, the Universe expanded. This cosmic
expansion stretches wavelengths proportionally to the scale factor, 𝜆 ∝ 𝑎. The Eq. 1.18 can be
expressed in terms of the scale factor for observations at present times as:

1 + 𝑧 = 1
𝑎(𝑡em)

. (1.19)

where we considered 𝑎0 = 1. The redshift is a fundamental quantity in astrophysics and
cosmology and will be used across this work as a measure of distance as well as time.

Finally, combining these results, we can express the Hubble parameter for a flat universe
(𝛺𝐾 = 0) as a function of redshift:

𝐻 (𝑧) = 𝐻0
√︁
𝛺r(1 + 𝑧)4 + 𝛺m(1 + 𝑧)3 + 𝛺𝛬 . (1.20)

For a flat Universe, 𝛺𝛬 can be simplified as:

𝛺𝛬 = 1 − 𝛺m − 𝛺r. (1.21)

As we mentioned previously, at low redshifts (late time Universe) the contribution of radiation
to the total energy budget becomes negligible (𝛺r ≈ 0), leading to a simplified form of the Hubble
parameter:

𝐻 (𝑧) = 𝐻0
√︁
𝛺m(1 + 𝑧)3 + 1 − 𝛺m, (1.22)

which expresses the expansion of the Universe across time in terms of the current expansion
rate 𝐻0, the redshift 𝑧 and the matter density content 𝛺m. As we will see in future sections, the
determination of the values of 𝐻0 and 𝛺m has become a fundamental part of modern cosmology.

1.1.1 The Growth of Inhomogeneities and the Peculiar Velocity Field
Previously, we considered a Universe that is homogeneous and isotropic. However, small de-
viations from perfect uniformity were already present in the early Universe. The temperature
anisotropies observed in the Cosmic Microwave Background (CMB) are of order 𝛥𝑇/𝑇 ∼ 10−5,
corresponding to perturbations of similar magnitude in the baryonic matter density field. Due
to gravitational instability, even the smallest density perturbations grow over time under the in-
fluence of gravity. Overdense regions exert a stronger gravitational pull on their surroundings,
attracting more matter and further increasing their density. Meanwhile, the expansion of the
Universe, driven by dark energy (or the cosmological constant in the 𝛬CDM model), suppresses
this growth. The cosmic structures we observe today, from stars to galaxies and galaxy clusters,
emerged from this ongoing competition between gravitational collapse and cosmic expansion.

In the early Universe, baryons were tightly coupled to photons. Frequent interactions with
photons and the resulting radiation pressure prevented baryonic matter from collapsing under
gravity. In contrast, CDM, which does not interact electromagnetically, was unaffected by
radiation pressure and could begin clustering under gravity even before recombination. After
recombination, once free electrons and protons combined to form neutral atoms, baryons were
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able to fall into the gravitational potential wells already established by dark matter, thereby
accelerating the process of structure formation.

To understand how small density fluctuations in the early universe evolved into the non-linear
structures we observe today, we start by analyzing their growth using linear perturbation theory.
This is a valid approximation, due to the fact that the density contrasts in the early universe
were small. However, as structures grow and interactions become more complex, non-linear
effects become significant, and thus more advanced methods are necessary in order to follow the
evolution of structures. On scales smaller than the Hubble radius 𝐻−1, and for non-relativistic
matter, Newtonian gravity is enough for tracking the evolution of perturbations, as long as also
cosmic expansion and the evolving background density are accounted for.

For simplicity, we treat baryons and CDM together as a single non-relativistic fluid, influenced
only by gravity. This fluid is described by its density 𝜌m(®𝑥, 𝑡), negligible pressure 𝑝m ≪ 𝜌m, and
velocity field ®𝑣, with |®𝑣 | ≪ 𝑐. For this discussion, we will refer to density and pressure simply as
𝜌 and 𝑝, focusing solely on the matter component. Doing so, we can understand the growth of
structure mathematically, starting with the definition of overdensity at some point in space ®𝑥 at
time 𝑡:

𝛿(®𝑥, 𝑡) ≡ 𝜌(®𝑥, 𝑡) − 𝜌̄(𝑡)
𝜌̄(𝑡) (1.23)

Initially, we will ignore the Universe’s expansion to focus purely on gravitational dynamics.
As has been already stablised in the introduction to this section, we will describe the density
field as a perfect fluid, fully describable by its energy density 𝜌 and pressure 𝑝. Thus, we can
understand its evolution using the three main fluid equations.

The Continuity equation:
𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌®𝑣) = 0, (1.24)

where ®𝑣 is velocity. This equation expresses the conservation of mass, stating that changes in
mass density within a fixed volume arise solely from matter flowing into or out of that region.
A positive (negative) divergence corresponds to mass flowing into (out of) the region, leading
to an increase (decrease) in density. This form of the equation applies to non-relativistic matter,
which is a valid approximation on the scales we are considering. However, in the relativistic case,
one would need to replace 𝜌 with 𝜌 + 𝑃/𝑐2 in the second term to account for the contribution of
pressure to the energy density.

The Euler equation:

𝜌
𝑑®𝑣
𝑑𝑡

= −∇𝑝 − 𝜌∇𝛷, (1.25)

with 𝛷 being the gravitational potential. The Euler equation is derived from the assumption
of momentum conservation and states that gravitational forces due to pressure are what induce
velocity flows in the universe. It can be thought of as the fluid-dynamics equivalent of Newton’s
second law from classical mechanics. At the same time the gravitational potential 𝛷 satisfies
Poisson’s equation:

∇2𝛷 = 4𝜋𝐺𝜌, (1.26)



1.1 The 𝛬CDM Universe 17

where G is the gravitational constant. This equation relates the gravitational potential to the
matter and energy content of the Universe. Regions with higher matter density generate stronger
gravitational fields, while regions of lower density produce weaker ones.

Together, these equations fully describe how the fluid’s density, pressure, velocity, and grav-
itational potential evolve over time. From this equations it is possible to arrive at the general
equation for the evolution of density fluctuations, which has the following form:

𝜕2𝛿

𝜕𝑡2
+ 2

¤𝑎
𝑎

𝜕𝛿

𝜕𝑡
=
∇2𝑝

𝜌𝑎2 + 1
𝑎2∇ · (1 + 𝛿)∇𝜙 (1.27)

As perturbations are considered small, i.e., 𝛿 ≪ 1, we can linearize the fluid equations by
neglecting higher-order terms. We also assume that the velocity field is irrotational (i.e., has no
vorticity). This assumption stems from the expectation that inflation primarily generates scalar
perturbations, resulting in a purely irrotational flow without vector or tensor modes (Mukhanov,
2005). Moreover, in an expanding Universe, any initial vorticity decays over time unless actively
sourced. Under these two assumptions, we can write the linearized equations governing the
evolution of density perturbations as follows:

𝜕2𝛿

𝜕𝑡2
= 2

¤𝑎
𝑎

𝜕𝛿

𝜕𝑡
− ∇2𝑝

𝜌𝑎2 − 4𝜋𝐺𝜌𝛿, (1.28)

𝜕𝛿

𝜕𝑡
= −1

𝑎
∇ · ®𝑣. (1.29)

Equation 1.28 is a second order differential equation. The most general solution for 𝛿 has the
form:

𝛿(®𝑥, 𝑡) = 𝛿(®𝑥)𝐷1(𝑡) + 𝛿(®𝑥)𝐷2(𝑡). (1.30)

Here, 𝐷1 represents the growing mode, while 𝐷2 corresponds to a decaying mode. The
decaying solution quickly becomes negligible, so the evolution of the perturbation is dominated
entirely by the growing mode 𝐷1. By making this approximation and substituting the result into
Eq. 1.29, we can relate the velocity field to the growing mode as follows:

𝜕𝛿

𝜕𝑡
= 𝛿(®𝑥) 𝑑𝐷1

𝑑𝑡
= −1

𝑎
∇ · ®𝑣. (1.31)

We define now the linear groth rate of structure f :

𝑓 ≡ 𝑑 ln𝐷1(𝑎)
𝑑 ln 𝑎

=
1

𝐷1(𝑎)
𝑑

𝑑 ln(𝑎)𝐷1(𝑎). (1.32)

With this convention we can rewrite Eq. 1.28 as

∇ · ®𝑣 = −𝑎𝐻 𝑓 𝛿(®𝑥, 𝑡). (1.33)

If we integrate over all positions, we arrive at an equation for the peculiar velocity:
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𝑣(®𝑟) = 𝐻0𝑎 𝑓

4𝜋

∫
𝑑3®𝑟′𝛿 (®𝑟

′) (®𝑟′ − ®𝑟)
|®𝑟′ − ®𝑟 |3

(1.34)

Equations 1.33 and 1.34 explicitly relate the peculiar velocity field ®𝑣(®𝑟) at a given position ®𝑟 to
the gravitational influence of the surrounding density field 𝛿(®𝑟′) at position ®𝑟′. The contribution
of each point ®𝑟′ to ®𝑣(®𝑟) is weighted by the term (®𝑟′− ®𝑟)/|®𝑟′− ®𝑟 |3, meaning that regions closer to ®𝑟
exert a stronger influence on the velocity. Thus, we can also state that the peculiar velocity field
®𝑣(®𝑟) is a tracer of the underlying gravitational potential field. This is a pivotal point as it lies in
the foundation of the constrained simulations used in this work, which will be presented in detail
in the next chapters.

We can also understand peculiar velocities as the relation between physical and comoving
coordinates. The relation between physical coordinates of a point in space-time ®𝑟 (𝑡) to the
comoving coordinates ®𝑥(𝑡) is:

®𝑟 = 𝑎(𝑡)®(𝑥). (1.35)

The proper velocity is:

®𝑢 =
𝑑®𝑟
𝑑𝑡

= ¤𝑎®𝑥 + 𝑎®𝑣(®𝑥, 𝑡) =
(
¤𝑎
𝑎

)
®𝑟 + 𝑎®𝑣(®𝑟/𝑎, 𝑡). (1.36)

Here, 𝑎®𝑣 represents the peculiar velocity, which corresponds to the time derivative of the
comoving coordinate ®𝑥. The term ( ¤𝑎/𝑎)®𝑟 = 𝐻®𝑟 arises purely from the expansion of the Universe
and describes the smooth Hubble flow. The second term accounts for deviations from this smooth
expansion. These are the peculiar velocities, driven by the gravitational influence of local matter
overdensities. In practice, most galaxies exhibit non-negligible peculiar velocities, causing them
to deviate from the Hubble flow.

1.1.2 Cosmological Parameters
As explained in the previous sections, in order to describe the evolution of the universe in the
𝛬CDM model, we rely on a set of fundamental parameters: the density of radiation 𝛺r, the
density of matter 𝛺m, the curvature parameter 𝛺𝑘 , the contribution of the cosmological constant
𝛺𝛬, and the present-day value of the Hubble parameter, 𝐻0. In addition to these, the amplitude of
initial matter fluctuations is encapsulated in 𝜎8, which quantifies the strength of density variations
on scales of 8 Mpc ℎ−1.

We have also seen that with this cosmological model, the non-relativistic matter component
includes both ordinary baryons and CDM. This dual nature of the non-relativistic matter is
supported by evidence coming from the early Universe (like the CMB), as well as from the later
Universe, such as observations of the local Universe. Studies supporting the existence of dark
matter were presented already in the 1930s, where (Zwicky, 1933) showed that visible (baryonic)
mass alone could not account for the velocities of galaxies within clusters. Similarly, galactic
rotation curves demonstrate the presence of unseen mass, as the baryonic contribution alone
cannot explain the observed rotational speeds (Rubin et al., 1980; Bosma, 1981). Despite the
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Figure 1.1: CMB temperature power spectrum as measured by the Planck Collaboration et al.
(2020b). The best-fit model yields parameters 𝛺𝛬 = 0.6889 ± 0.0056, 𝛺m = 0.3111 ± 0.0056,
𝛺bℎ

2 = 0.02242 ± 0.00014, 𝛺dmℎ
2 = 0.11933 ± 0.00091, and 𝜎8 = 0.8102 ± 0.0060.

overwhelming evidence for its existence, the fundamental nature of dark matter remains elusive
(for a detailed review, see Arbey & Mahmoudi, 2021). The current prevailing view, which seems
to explain structure formation best, is that dark matter is "cold", i.e. moving at non-relativistic
speeds, and interacts purely through gravity. Nevertheless, alternatives remain plausible and are
currently being explored. Some proposed alternatives are fuzzy dark matter, consisting of ultra-
light scalar fields, warm dark matter with higher velocities or even models where dark matter
exhibits some degree of self-interaction, making it partially collisional. Candidates for dark matter
include primordial Black Holes (BHs) and hypothetical weakly interacting massive particles
(WIMPs), both of which lie beyond the Standard Model of particle physics. Modifications to
general relativity itself have also been proposed but often fall short when confronted with specific
observational tests (Bertone & Tait, 2018; Feng, 2010; Hu et al., 2000; Tulin & Yu, 2018; Carr
& Kuhnel, 2021; Clifton et al., 2012). To fully capture the matter composition of the Universe,
it is therefore essential to consider the baryonic density 𝛺b and the contribution from cold dark
matter 𝛺DM separately.

Today, multiple techniques are employed to constrain the numerical values of these six
cosmological parameters. The most comprehensive constraints come from precise measurements
of the CMB anisotropies. These observations have progressively improved over time, beginning
with the COBE satellite (Boggess et al., 1992), followed by WMAP (Komatsu et al., 2011),
and most recently the Planck mission (Planck Collaboration et al., 2014b, 2020b). By fitting
theoretical models to the temperature power spectrum of the CMB, we can derive values for all
the main cosmological parameters.

The latest results from Planck Collaboration et al. (2020b) are visualized in Fig. 1.1. These
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constraints are very precise and are widely adopted, for example, as inputs for cosmologi-
cal simulations. These studies report a present-day Hubble parameter of 𝐻0 = (67.66 ±
0.42) km s−1 Mpc−1, alongside density parameters 𝛺𝛬 = 0.6889±0.0056, 𝛺m = 0.3111±0.0056,
𝛺bℎ

2 = 0.02242 ± 0.00014, 𝛺dmℎ
2 = 0.11933 ± 0.00091, and 𝜎8 = 0.8102 ± 0.0060. Further-

more, the curvature parameter is found to be consistent with a spatially flat Universe (𝛺𝑘 ≈ 0).
A different approach to measuring cosmological parameters consists of studying the Large

Scale Structure (LSS) of the Universe at later times, using galaxies as tracers of the matter dis-
tribution. This requires extensive sky surveys that catalogue vast numbers of galaxies. Several
such surveys are currently active. Recent constraints have been provided by the Dark Energy
Spectroscopic Instrument (DESI Collaboration (2024)), the extended Baryon Oscillation Spec-
troscopic Survey (eBOSS) as part of SDSS (Alam et al., 2021), and the Dark Energy Survey
(DES Collaboration, 2022).

In addition to galaxies, a key cosmological probe of LSS is the abundance and distribution of
galaxy clusters across cosmic time. Galaxy clusters, as the most massive gravitationally bound
and virialized structures in the Universe, trace the high-density peaks of the matter field and
are highly sensitive to both the expansion history and the growth of cosmic structures, rather
than baryonic micro-physics. Cluster counts as a function of redshift and mass provide stringent
constraints on cosmological parameters, particularly the matter density 𝛺m and the amplitude
of matter fluctuations 𝜎8 (Vikhlinin et al. (2009); Mantz et al. (2015); Bocquet et al. (2019)).
Observations from X-ray surveys (Chandra, XMM-Newton; Allen et al. (2008); Pratt et al. (2009)),
Sunyaev-Zel’dovich Effect (SZ) surveys (Planck: Planck Collaboration et al. (2016a); SPT: Bleem
et al. (2015); ACT: Hilton et al. (2021)), and optical surveys (e.g. DES: Abbott et al. (2022);
HSC: Oguri et al. (2018)) have contributed to increasingly precise measurements of the cluster
mass function and its evolution.

Alongside galaxy and cluster counts, other LSS observables such as Baryon Acoustic Os-
cillations (BAO) and redshift-space distortions (RSD) further enhance our understanding of the
cosmic expansion and structure formation (Alam et al. (2017); Bautista et al. (2021)). Further-
more, weak gravitational lensing of galaxies, known as cosmic shear, provides a direct probe
of the total matter distribution, independent of galaxy bias, offering valuable cross-checks on
cosmological models (Hildebrandt et al. (2021); Amon et al. (2022)). Even the largest under-
dense regions in the Universe, the cosmic voids, are being explored as complementary probes
sensitive to the growth of structure and properties of dark energy (Sutter et al. (2014); Hamaus
et al. (2016)).

The combination of diverse LSS (late time) observables and CMB (early time) measurements
aims to improve constraints on the key cosmological parameters (Kravtsov & Borgani (2012b);
Allen et al. (2011)). However, important discrepancies remain. Tensions have emerged con-
cerning the value of 𝜎8, and the different methods mentioned above yield also varying estimates
of the Hubble constant 𝐻0. We will explore these inconsistencies in the next section. That
said, upcoming surveys such as Euclid (Laureĳs et al. (2011)), the Vera C. Rubin Observatory’s
Legacy Survey of Space and Time (LSST; Collaboration (2009)), and the Nancy Grace Roman
Space Telescope (Spergel et al. (2015)) are planned to expand the available data, allowing for new
high-precision tests of the 𝛬CDM model.
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1.1.3 Tensions in Cosmology
Despite the success of the 𝛬CDM model in describing a wide range of cosmological observations,
discrepancies persist between early- and late-time probes in the inferred values of some key
cosmological parameters. These tensions may point to new physics beyond the standard model
or to unresolved systematics in measurements and analyses, and thus, they remain an important
focus of current research. Among these tensions, the most important discrepancies are the ones
surrounding the value of the 𝐻0 and the amplitude of matter clustering quantified by 𝜎8 (or its
derived parameter 𝑆8). These tensions challenge the completeness of the standard 𝛬CDM model
and have sparked intense theoretical and observational efforts, remaining an important focus of
current research.

The 𝐻0 Tension

The Hubble constant, 𝐻0, quantifies the current expansion rate of the Universe. The measure-
ment of its value has historically relied on two main approaches: early-Universe measurements,
predominantly from the CMB observations assuming 𝛬CDM cosmology, and late-Universe mea-
surements using cosmic distance ladder methods. The Planck satellite’s analysis of the CMB
anisotropies infers a value of 𝐻0 = (67.27± 0.60) km/s/Mpc, under the assumption of a spatially
flat 𝛬CDM cosmology (Planck Collaboration et al., 2020b). In contrast, direct local measure-
ments, such as those from the SH0ES collaboration using Cepheid-calibrated Supernovae (SNe),
report a significantly higher value of 𝐻0 = (73.04 ± 1.04) km/s/Mpc (Riess et al., 2022).

This discrepancy of about 5𝜎 represents one of the most statistically significant and persistent
anomalies in modern cosmology. The tension is not confined to these two measurements alone;
while early-Universe probes such as the CMB and BAO are mutually consistent, late-time, model-
independent probes like distance ladder methods and strong lensing time delays also converge
towards the higher 𝐻0 value. Figure 1.2 shows an overview of the value of𝐻0 inferred by different
methods. This convergence among independent late-Universe measurements strengthens the fact
that the tension cannot be easily dismissed as a result of unknown systematics within a single
method (Di Valentino et al., 2021).

Efforts to resolve the Hubble tension span a wide spectrum, including revisions to the cosmic
distance ladder, improvements in the control of systematics, and the exploration of new physics
beyond 𝛬CDM. Models involving early dark energy, modifications of gravity, or new light relics
in the early Universe have been investigated as potential solutions (Knox & Millea, 2020). Some
approaches propose a modification to the expansion history at early times to reconcile the observed
discrepancies without disrupting the success of 𝛬CDM at other epochs.

The 𝜎8 and 𝑆8 Tension

The parameter 𝜎8 characterizes the amplitude of matter density fluctuations on scales of 8 ℎ−1

Mpc. A related parameter, 𝑆8 ≡ 𝜎8(𝛺m/0.3)1/2, is often used to combine information on 𝜎8 and
the matter density parameter 𝛺m in weak lensing analyses.

There is a persistent tension between the amplitude of matter clustering inferred from Planck
CMB data and that measured by LSS probes at lower redshifts, such as weak gravitational lensing
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Figure 1.2: Current constraints for𝐻0 presented as a whisker plot showing 68% confidence levels.
Credits: (Di Valentino et al., 2021)
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Figure 1.3: Constraints for 𝜎8 as presented by (Douspis et al., 2019). Left: recent large-scale
constraints compared with CMB (black filled contours). Right: Comparison of SZ cluster
constraints from Planck (yellow) with CCCP prior on the mass bias and Planck CMB constraints
from 2013 and 2016 (grey and black, respectively). The displacement of the CMB constraints is
due to the new estimate of the reionisation optical depth. Credits: (Douspis et al., 2019)

surveys (e.g. KiDS, DES, HSC, see Fig. 1.3). The CMB-inferred value tends to be higher than
that from low-redshift observations, with the discrepancy reaching ∼2–3𝜎 significance Heymans
& et al. (2021); DES Collaboration et al. (2022).

A critical challenge arises from the correlations between 𝐻0 and 𝑆8 parameters: models that
aim to resolve the Hubble tension frequently exacerbate the 𝜎8 tension, and vice versa. For
instance, introducing late-time dark energy dynamics to increase 𝐻0 often results in a lower
𝛺m to preserve the CMB-inferred value of 𝛺mℎ

2, which in turn modifies the growth history of
cosmic structures and typically raises 𝜎8 beyond observational constraints from lensing surveys
(Di Valentino et al., 2021). Similarly, early-time modifications that enhance the primordial
curvature perturbations to address the 𝐻0 tension generally lead to an increase in 𝜎8 (Abdalla
et al., 2022).

Therefore, a viable resolution to these tensions requires models capable of simultaneously
addressing both 𝐻0 and 𝑆8 discrepancies. Some models that are being proposed involve mod-
ifications to gravity, interactions within the dark sector, or the introduction of time-varying
fundamental constants that influence both the expansion and growth histories of the Universe
(Di Valentino et al., 2021; Knox & Millea, 2020).

The persistence of the 𝐻0 and 𝜎8 tensions stress a potential limitations of the 𝛬CDM model.
While the effect of systematics and of statistical fluctuations remain plausible explanations, the
coherence of independent measurements points towards the possibility of new physics. Future



24 1. Cosmology and Large-Scale Structure

Figure 1.4: This figure illustrates how the value of a derived property can change between
cosmologies with different assumptions for the Hubble constant ℎ. It shows the fractional
difference in a quantity (in percent) relative to a baseline value of ℎ = 0.7, as ℎ varies continuously
from 0.60 to 0.90—a range that encompasses current estimates. The solid, dashed, and dotted
lines represent how this difference evolves for properties that scale as ℎ, ℎ2, and ℎ3, respectively.
Shaded bands correspond to various measurements of ℎ from the literature, each shown with
±1𝜎 uncertainty and vertically offset for clarity. Credits: Croton (2013).

observations from upcoming surveys and missions, such as the Vera C. Rubin Observatory,
Euclid, and the Nancy Grace Roman Space Telescope, promise to enhance our ability to probe the
expansion history and the growth of structure with unprecedented precision (NASA, 2025), and
thus be able to better understand whether these tensions are a signal of new fundamental physics
or simply reflect limitations in our current observational and theoretical frameworks.

1.1.4 Cosmological Distances
The difficulty in converging on unique values for cosmological parameters, as has been discussed
in Sect. 1.1.3, affects directly the interpretation of observations of galaxies and galaxy clusters.
Distant objects can only be studied through the light they emit, which travels to us over cosmo-
logical timescales. This means that measurements are constrained to our past light cone, rather
than surfaces of constant proper time. As light propagates through an expanding universe, its
properties are altered by the underlying cosmology. Therefore, the assumed cosmological param-
eters, particularly the Hubble constant, directly influence how we infer distances and positions of
astronomical objects. This becomes especially important when comparing different observations
or simulations that adopt different baseline cosmologies.

One such distance is the luminosity distance, 𝑑𝐿 , which is defined to preserve the Euclidean
inverse-square law for the diminution of light with distance from a point source:
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𝑑𝐿 =

(
𝐿

4𝜋𝑙

)1/2
=
𝑎2

0𝑟

𝑎
, (1.37)

where 𝐿 is the intrinsic luminosity of the source, 𝑙 the observed flux, 𝑎 the scale factor, and 𝑟
the comoving coordinate distance. At low redshift, the expression for 𝑑𝐿 reduced to:

𝑑𝐿 =
𝑐

𝐻0

[
𝑧 + 1

2
(1 − 𝑞0)𝑧2 + · · ·

]
. (1.38)

making explicit that 𝑑𝐿 ∝ ℎ−1.
Another important measure of distance is the angular diameter distance, 𝑑𝐴. This is con-

structed to preserve a geometric property of Euclidean space, namely, the variation of an object’s
apparent angular size with its distance from an observer. Let 𝐷 𝑝 (𝑡) denote the proper diameter
of a source located at coordinate 𝑟 and time 𝑡. If this diameter subtends an angle 𝛥𝜗, then:

𝐷 𝑝 = 𝑎𝑟𝛥𝜗. (1.39)

The angular diameter distance is then defined as

𝑑𝐴 =
𝐷𝑃

𝛥𝜗
= 𝑎𝑟 (1.40)

where 𝐷𝑃 ∝ ℎ−1 and thus 𝑑𝐴 ∝ ℎ−1.
Other derived quantities, such as volumes and luminosities, inherit even stronger depen-

dencies, scaling as ℎ−3 and ℎ−2, respectively. The impact of adopting different values of ℎ is
illustrated in Fig. 1.4, which shows how properties with different ℎ-dependencies shift when ℎ
varies between 0.60 and 0.90. For example, a property scaling as ℎ−3 can differ by more than
40% across this range. These dependencies emphasize a key conceptual point: observations are
inherently linked to cosmology. In practical terms, this means that most interpretations of obser-
vational data, especially at cosmological distances, necessarily rely on an assumed cosmological
model. Therefore, cosmology leaves a measurable imprint on observational quantities, typically
expressed with the quantity ℎ, which must be accounted for when comparing different datasets.

1.2 Galaxy Clusters in the Cosmological Environment
As has been previously explored, in the standard model of cosmology the formation of cosmic
structures is explained by the progressive amplification of small initial fluctuations in the density
field, modeled as a Gaussian random field. These perturbations grow over time due to gravitational
instability. In this scenario, some of the most massive structures, such as galaxy clusters, are
considered the latest systems to assemble under the influence of gravity in an expanding Universe
(Press & Schechter, 1974b; Peebles, 1980; Lacey & Cole, 1993; Springel et al., 2005c; Mo et al.,
2010; Kravtsov & Borgani, 2012a).

The exact origin of the primordial fluctuations from which massive structures such as galaxy
clusters evolve is still debated. The leading theory suggests they emerged as a consequence of
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Figure 1.5: The Bullet cluster. Left panel: optical image taken by the Magellan telescope. Right
panel: Chandra X-ray measurements of the hot plasma distribution (in red). The green contours
denote the gravitational potential derived from weak lensing measurements. Credits: Clowe et al.
(2006)

an early period of accelerated expansion, commonly referred to as inflation (Guth, 1981, 1997;
Linde, 2005). During the early stages of cosmic evolution, these fluctuations remain small,
characterized by a density contrast 𝛿𝜌/𝜌 much less than one, a regime often called linear, and
thus well described by the linear theory presented in Section 1.1. As gravity continues to enhance
these overdensities, their density contrast eventually approaches unity, where linear theory breaks
down. At this critical or turnaround threshold, the overdense regions decouple from the general
expansion and begin to collapse under their own gravity.

The non-linear collapse that follows is influenced by the composition of the collapsing region.
The halos conforming galaxy clusters are composed of dark matter and baryonic matter (existing
in various forms, including stars and gas) and Supermassive Black Holes (SMBHs). When
baryonic gas collapses, shock waves are generated, resulting in a rise in entropy. If radiative
cooling processes are inefficient, the system eventually settles into hydrostatic equilibrium, where
the gravitational pull is counteracted by pressure gradients (see Sarazin, 1986; Voit et al., 2005,
for comprehensive reviews). Conversely, if the collapsing structure is composed predominantly
of collisionless dark matter (e.g., CDM), no shocks occur, but the system still undergoes a rapid
phase of violent relaxation (Lynden-Bell, 1967), leading to a quasi-equilibrium state with an
almost universal density profile (Navarro et al., 1997). These self-bound dark matter structures
are known as dark matter halos. Their internal structure and properties have been extensively
investigated using cosmological simulations (see Chapter 2 of this work), and they play a central
role in our current understanding of galaxy formation (e.g., Springel et al., 2005c; Kravtsov &
Borgani, 2012b; Planelles et al., 2013).

Decades of numerical studies with hydrodynamical simulations (see Kravtsov & Borgani,
2012b, for a comprehensive review), have significantly advanced our ability to model and un-
derstand the complex baryonic physics within clusters. These models increasingly succeed in
reproducing the wealth of observational data collected over the years. Based on theoretical and
simulation results, the main stages in the assembly of galaxy clusters can be outlined as follows:
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As gravitational collapse proceeds, gas falling into the potential well of the cluster experiences
shock heating and adiabatic compression, raising its temperature. The cooling of gas within
clusters is regulated by several feedback mechanisms, including mechanical and radiative energy
release from SN winds and Active Galactic Nucleus (AGN) jets, thermal conduction, and addi-
tional plasma processes. Encounters between galaxies, such as harassment and tidal stripping,
also play a role in removing material from galaxies and redistributing it within the cluster (Mer-
ritt, 1983; Moore et al., 1996; Abadi et al., 1999; Boselli & Gavazzi, 2006; Cimatti et al., 2020,
see). As a result, most galaxy clusters are characterized by the extended halo of hot gas, known
as the Intracluster Medium (ICM), that roughly traces the spatial distribution of the underlying
dark matter halo, enclosing the population of galaxies that orbit within the cluster’s potential
well. Observations of this hot, X-ray emitting plasma have provided compelling support for the
existence of dark matter halos, as deeper gravitational wells are needed to explain the temperature
of the ICM (Sarazin, 1986; Frenk et al., 1999; Allen et al., 2002; Voit, 2005).

One of the most clear observational confirmations of the existence of dark matter comes from
the Bullet Cluster, as presented in the study by Clowe et al. (2006). This merging system exhibits
a clear separation between its collisional and collisionless components: the X-ray-emitting hot
gas and the dark matter. In Fig. 1.5, the optical image (left panel) shows the distribution of
galaxies, while the green contours represent the bimodal structure of the gravitational potential
derived from weak gravitational lensing. The right panel displays Chandra X-ray observations,
showing the hot gas component, which has been slowed by hydrodynamic interactions (ram
pressure and shocks) as it moves through the ambient gas of the merging system and is found
near the center of the two dark matter concentrations. This configuration demonstrates that,
during a merger, the collisionless dark matter passes through largely unaffected, while the gas
component undergoes shock heating and slows down, eventually settling toward an equilibrium
configuration. In these regions, the intracluster gas is already sufficiently dense to emit X-rays
through thermal bremsstrahlung. If local conditions allow the gas to cool efficiently—especially
in cluster cores—it may lose enough thermal energy to condense and form stars. The resulting
stellar component, however, represents only a small fraction of the total baryon content of the
cluster, accounting for roughly 12 ± 2 percent in the most massive systems (Giodini et al., 2009;
Chiu et al., 2018, and references therein).

1.2.1 Galaxy Clusters as Probes of Cosmology
Galaxy clusters are highly sensitive to the general growth of cosmic structure, making them pow-
erful cosmological probes. Thus, their abundance, spatial distribution, internal structure, as well
as their baryonic content offer complementary and independent constraints on the fundamental
cosmological parameters.

In Section 1.1.2, we mentioned the use of the abundance and distribution of galaxy clusters
as cosmological probes. The number density of galaxy clusters as a function of mass and red-
shift—the cluster mass function—is a sensitive probe of the underlying cosmology. In particular,
it depends on the matter density and the amplitude of primordial density fluctuations (Press &
Schechter, 1974a; Vikhlinin et al., 2009b). Measurements of the evolution of the cluster mass
function provide constraints on the growth rate of structure and thus on dark energy and modified
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gravity scenarios (Allen et al., 2011; Kravtsov & Borgani, 2012b).
The baryonic content of clusters, particularly their gas mass fraction ( 𝑓𝑔𝑎𝑠), provides an

additional cosmological probe. The ratio of baryonic to total mass in the largest, dynamically
relaxed clusters is expected to be representative of the cosmic mean (White et al., 1993; Allen
et al., 2008). By measuring 𝑓𝑔𝑎𝑠 as a function of redshift and assuming it is constant, one can
place tight constraints on the geometry of the Universe and the nature of dark energy (Allen et al.,
2004; Ettori et al., 2009; Vikhlinin et al., 2009; Mantz et al., 2010; Allen et al., 2011).

Clusters are also sensitive to modifications of gravity and the nature of dark energy through
their growth history and internal structure. Tests of modified gravity theories, such as 𝑓 (𝑅)
models, have been conducted using cluster abundance and dynamics (Schmidt et al., 2009;
Ferraro et al., 2011; Cataneo et al., 2015). Additionally, the detection and characterization of
cluster outskirts and splashback radii has also been use to further understand structure formation
and for constraining cosmological models (Diemer & Kravtsov, 2014; More et al., 2016; Baxter
et al., 2017; Pratt et al., 2019).

Thus, it is obvious that the usefulness of galaxy clusters as cosmological probes depends
strongly on how precise and accurate the measurements of their relative matter contents and total
masses are. In this regard, the main challenges that galaxy clusters face arise from observational
biases and systematic uncertainties.

One major source of uncertainty lies in the mass estimation techniques, which often rely
on assumptions that are not universally valid. X-ray methods, for example, assume hydrostatic
equilibrium between the ICM and the gravitational potential. However, non-thermal pressure
support from turbulence, bulk motions, or cosmic rays can lead to an underestimation of cluster
masses by up to 10–30% (Nagai et al., 2007). Similarly, gravitational lensing methods, though
independent of the cluster’s dynamical state, are subject to projection effects, where uncorrelated
structures along the line of sight can bias mass measurements (Sereno & Ettori, 2017).

Further complications arise from triaxiality and cluster orientation. Many clusters are not
spherical, and their three-dimensional shape and alignment relative to the observer can bias
both lensing and X-ray-derived masses (Corless & King, 2007; Buote & Humphrey, 2012).
Additionally, clumpiness in the ICM can artificially boost X-ray luminosities and inferred gas
densities, further affecting mass estimates and derived scaling relations (Mathiesen et al., 1999;
Nagai et al., 2007; Roncarelli et al., 2013).

Selection effects represent another critical source of bias. Flux-limited surveys tend to pref-
erentially detect the most luminous and often more relaxed clusters, introducing a Malmquist
bias that skews the sample toward objects with enhanced X-ray emission or SZ signal (Vikhlinin
et al., 2009a; Mantz et al., 2010; Maughan, 2014). The Eddington bias further affects the ob-
served mass function by scattering lower-mass clusters into higher-mass bins due to measurement
uncertainties, distorting the inferred cosmological parameters (Eddington, 1913; Allen et al.,
2011).

Finally, mass calibration uncertainties remain the dominant source of systematics in clus-
ter cosmology (Allen et al., 2011; Mantz et al., 2015; Planck Collaboration et al., 2016a;
de Haan et al., 2016; Pratt et al., 2019). Cross-calibration between different mass estimation
techniques—hydrostatic, lensing, and SZ—along with multi-wavelength observations and im-
proved simulations, is essential to mitigate these uncertainties.
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Addressing these biases and uncertainties is an active area of research. Advances in hydro-
dynamical simulations, accurate modeling of the ICM, sophisticated selection functions, and
multi-wavelength observations are all helping to improve the accuracy and precision of cluster-
based cosmological constraints.

1.2.2 The Intracluster Medium and its Thermodynamics
The gas in galaxy clusters forming the ICM is a hot, ionized plasma that fills the deep gravitational
potential wells carved out predominantly by dark matter. It constitutes the majority of the baryonic
mass within clusters, typically accounting for 10–15% of the total mass, while stars contribute
only a few percent. The remaining mass, around 85–90%, is in the form of dark matter (Navarro
et al., 1997; Kravtsov & Borgani, 2012b). With temperatures ranging from 107 to 108 K, the ICM
emits abundantly in X-rays via thermal bremsstrahlung and line emission from heavy elements,
making it a rich source of information about the thermodynamic state and evolutionary history
of galaxy clusters (Sarazin, 1986; Böhringer & Werner, 2010).

The ICM exists in a state of quasi-equilibrium, established by the balance between gravitational
heating from accretion and mergers and various cooling and feedback processes. This state is
commonly described by the virial theorem, which relates the kinetic and potential energies of
the system as 2𝐸kin + 𝐸pot − 𝐸s = 0. The collisional nature of the hot plasma allows the ICM to
trace the underlying gravitational potential, which itself follows a Navarro-Frenk-White (NFW)
density profile (Navarro et al., 1997):

𝜌(𝑟) = 𝜌c
𝛿𝑐

(𝑟/𝑟𝑠) (1 + 𝑟/𝑟𝑠)2 , (1.41)

where 𝜌c is the critical density of the Universe, 𝑟𝑠 is the scale radius, and 𝛿𝑐 is related to the
halo concentration. While dark matter dominates the potential, baryonic processes, such as gas
cooling and AGN feedback, can modify the central regions, leading to deviations from the pure
NFW form (van Daalen et al., 2011; Fedeli, 2012).

Observational studies of the ICM use multiple wavelengths to probe its various properties.
X-ray observations, primarily with Chandra and XMM-Newton, provide measurements of gas
density and temperature profiles by mapping surface brightness and fitting spectra. Assuming
hydrostatic equilibrium, these profiles can be used to infer total cluster masses. However,
hydrostatic mass estimates are affected by non-thermal pressure support from turbulence and
bulk motions, introducing the hydrostatic mass bias (Nagai et al., 2007; Lau et al., 2009; Nelson
et al., 2014; Biffi et al., 2016; Eckert et al., 2019; Vazza et al., 2009).

The thermal Sunyaev-Zel’dovich Effect (tSZ) provides a complementary method for probing
the ICM. As CMB photons pass through the hot plasma, they are inverse Compton scattered by
high-energy electrons, causing a frequency-dependent distortion of the CMB spectrum (Zeldovich
& Sunyaev, 1969; Sunyaev & Zeldovich, 1972). The magnitude of this effect is quantified by the
Compton-𝑦 parameter:

𝑦 =
𝜎𝑇

𝑚𝑒𝑐
2

∫
𝑃𝑒𝑑𝑙, (1.42)
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where 𝑃𝑒 is the electron pressure integrated along the line of sight. Since the tSZ effect is
independent of redshift, it offers a powerful, unbiased method for detecting galaxy clusters and
measuring their integrated pressure profiles (Planck Collaboration et al., 2016a). The kinetic SZ
effect, arising from bulk motions of the ICM relative to the CMB rest frame, provides additional
information about internal gas velocities, though its observational signature is weaker and more
challenging to isolate (Sunyaev & Zeldovich, 1980; Birkinshaw, 1999; Hand et al., 2012; Sayers
et al., 2013; Battaglia et al., 2017).

Thermodynamic profiles of the ICM, specifically temperature, density, pressure, and entropy,
are key to understanding both the equilibrium structure of the gas and its complex thermal history
(see Voit, 2005; Nagai et al., 2007). Gas density profiles typically show central values ranging
from 10−3 - 10−1 𝑐𝑚−3, followed by a steep decline with radius, especially beyond 𝑅500 (e.g.
Vikhlinin et al., 2006; Ettori et al., 2010). Temperature profiles exhibit a peak at intermediate
radii, decreasing toward both the core and the outskirts and with values around 107 - 108𝐾 , which
is close to the virial temperature of the halo (e.g. Vikhlinin et al., 2006; Cavagnolo et al., 2008).
Entropy profiles, often parameterized as 𝐾 = 𝑘𝐵𝑇𝑛

−2/3
𝑒 , rise with radius but flatten in the centers

of clusters, reflecting the effects of non-gravitational heating and cooling processes (e.g. Pratt
et al., 2009; Cavagnolo et al., 2009). Pressure profiles, when normalized by the characteristic
pressure and radius of the halo, typically using self-similar scaling with 𝑃500 and 𝑅500, display
a universal shape and are a fundamental tool for calibrating cluster masses in cosmological
studies (Arnaud et al., 2010; Planck Collaboration et al., 2013a; Ghirardini et al., 2019).

The chemical composition of the ICM, especially its metallicity, provides insight into the
enrichment history of galaxy clusters. Heavy elements, primarily iron, are synthesized in stars
and dispersed into the ICM by SNe and AGN-driven outflows. X-ray spectroscopy reveals that
metallicity is generally higher in the inner regions of clusters—often in association with the
Brightest Cluster Galaxy (BCG)—and declines with radius. However, both observations and
simulations indicate that this decline flattens at large radii, where metallicity tends to approach
a nearly universal floor of ∼ 0.1 − 0.3𝑍⊙, even out to 𝑅200 and at higher redshifts (Mernier
et al., 2018; Biffi et al., 2018). The origin of this widespread enrichment is still debated: it
may result from the stripping of enriched gas from infalling satellites or from AGN-driven uplift
of BCG gas. Current X-ray measurements are limited in their ability to disentangle metallicity
and temperature due to spectral resolution constraints, a challenge expected to be addressed by
upcoming calorimeter, based missions such as XRISM/Resolve. Overall, the observed radial
metallicity behavior reflects both the star formation and feedback history, as well as the efficiency
of mixing and transport processes such as turbulence (Biffi et al., 2017).

Although turbulence contributes less to the overall pressure support compared to thermal
pressure, it plays an important role in regulating small-scale processes within the ICM. Turbulent
motions, primarily driven by mergers, accretion flows, and AGN activity, provide non-thermal
pressure support and promote mixing of gas and metals throughout the ICM (Hitomi Collaboration
et al., 2016; Zhuravleva et al., 2019). Magnetic fields are also present, typically with strengths of
a few microgauss (Carilli & Taylor, 2002; Bonafede et al., 2011), but their dynamical impact on
large scales is generally subdominant.
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1.2.3 Galaxy Cluster Cores
The cores of galaxy clusters represent regions of dense, hot gas confined within the deepest
parts of the gravitational potential well. These environments are critical for understanding the
thermodynamic evolution of the ICM, as they host a range of physical processes including
radiative cooling, feedback from AGN, and gas dynamical interactions driven by mergers.

Early X-ray observations of galaxy clusters showed that the ICM at the cores of many clusters
had such high densities that the gas was expected to cool faster than the Hubble time (e.g. Lea
et al., 1973; Cowie & Binney, 1977; Fabian & Nulsen, 1977; Mathews & Bregman, 1978). These
findings gave rise to the consideration of the so-called cooling flow scenario, in which the core
gas of some clusters loses energy and cools under the influence of gravity, becoming denser as it
is compressed by the weight of the overlying ICM. As a result, hotter gas from the outer regions
moves inward to maintain pressure balance, producing a steady inward flow of gas known as a
cooling flow and giving rise to Cool-Core (CC) clusters.

While initial X-ray measurements appeared to support the cooling flow paradigm, along with
some detections of H 𝛼 and ultraviolet emission, optical surveys did not confirm the high star
formation rates, nor the presence of CO and molecular gas, that the model predicted (McNamara
& O’Connell, 1989; Edge, 2001). The validity of the classical cooling flow scenario was further
challenged when mass deposition rates inferred from ASCA spectral data diverged from those
estimated using classical determination of gas density (Makishima et al., 2001, and references
therein). Observations from the XMM-Newton Reflection Grating Spectrometer (RGS) revealed
a shortfall in emission at lower temperatures compared to what the cooling flow model forecasts
(Peterson et al., 2001; Tamura et al., 2001a,b; Kaastra et al., 2001; Xu et al., 2002; Sakelliou et al.,
2002; Peterson et al., 2003; Sanders et al., 2010). Likewise, although star formation is observed
in BCGs, the rates are far below those expected if the classical cooling flow model were accurate
(e.g., Fraser-McKelvie et al., 2014; McDonald et al., 2018).

The mismatch between theoretical expectations and observational evidence has come to be
known as the cooling flow problem. The traditional cooling flow framework operates under the
assumption that the gas cools in the absence of any substantial heating processes. However, to
reconcile the observed deviations, it is now broadly recognized that some form of energy input
must counteract the cooling, thereby stabilizing the thermal state of the ICM. Any proposed
heating mechanism must satisfy a number of stringent conditions. First, it should be capable of
offsetting cooling across the entire core, not just the innermost regions. Second, it must function
effectively across a broad range of system masses, from low-mass galaxy groups around 1013 M⊙
to massive clusters approaching 1015 𝑀⊙. Lastly, it must achieve a delicate balance, suppressing
cooling flows without producing clear signs of excessive heating (Fabian, 2002).

One of the first proposed mechanisms to counteract cooling in cluster cores is thermal
conduction, which could, in principle, transfer heat inward from hotter outer regions due to
the observed negative temperature gradients (e.g. Zakamska & Narayan, 2003). Nevertheless,
Dolag et al. (2004) demonstrated that even assuming a conductivity reduced to one-third of the
Spitzer value—accounting for suppression by tangled magnetic fields—has minimal impact on
star formation. This is because the bulk of cooling and star formation occurs at earlier cosmic
times, when the ICM is cooler and conduction is inherently less effective. Still, while thermal
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conduction alone may not resolve the cooling flow issue, it could contribute to maintaining thermal
balance in cluster cores and support gas mixing processes once the ICM reaches temperatures of
several keV during the later stages of structure formation.

Stellar feedback has been considered as a possible contributor to heating the ICM. Nonethe-
less, numerical simulations indicate that, even when processes like star formation, metal en-
richment, and stellar feedback are incorporated, the central regions of clusters still exhibit an
overabundance of cold gas and excessive star formation (e.g. Nagai et al., 2007; Borgani &
Kravtsov, 2011). Other hypotheses involve the interplay of multiple physical mechanisms, such
as the combination of sound waves and thermal conduction (e.g. Ruszkowski et al., 2004) or
turbulence working in tandem with conduction (e.g. Dennis & Chandran, 2005).

Despite the above proposed solutions, the leading explanation for the suppression of cooling
flows in galaxy clusters is feedback from the AGN residing in the BCG. At early cosmic times
(𝑧 > 1), this mechanism operates relatively clearly, as AGNs are typically in the quasar phase,
radiating at luminosities between 1044 − 1045 erg/s, which are on par with the X-ray output of
the cooling ICM, and launching jets that can extend to scales of roughly 100 kpc. This feedback
process is often described as self-regulating: the cooling of hot gas promotes the condensation
of cold clouds, which in turn fuel the AGN and trigger outflows that reheat the surrounding ICM
(Gaspari et al., 2020).

In contrast, at later epochs, AGNs in BCGs generally shift to a radio-mode phase, with much
lower radiative outputs below 1043 erg/s, falling short of the cooling region’s X-ray luminosity
(Russell et al., 2013; Fujita et al., 2014). Even so, these systems often exhibit X-ray cavities whose
associated power range from 1042 to 1045 erg/s, sufficient to counterbalance the cooling losses
(Rafferty et al., 2006). In the absence of high radiative efficiency, these power range is attributed to
nearly fully efficient mechanical feedback, which inflates buoyant bubbles in the ICM. However,
a key unresolved issue is how this energy can be redistributed uniformly throughout the cluster
core.

The impact of AGN feedback on galaxy cluster cores has been extensively investigated through
numerical simulations. Early efforts by Di Matteo et al. (2005) and Springel et al. (2005a) showed
that AGN-driven heating could effectively lower the excessive star formation in central regions
and reproduce the observed 𝑀𝐵𝐻–𝜎 relation. Building on this foundation, later models, such as
the ones presented by Sĳacki et al. (2007) and Fabjan et al. (2010), introduced more sophisticated
implementations, such as a high-efficiency radio-mode feedback operating at low accretion rates.
These modifications were designed to reduce star formation at low redshifts by mimicking the
dominant AGN state in the present-day universe, where AGNs typically operate in radio mode
and observed accretion rates are low.

However, raising the efficiency of AGN feedback is not without its drawbacks. For example,
simulations by Fabjan et al. (2010) indicate that even with enhanced radio-mode feedback, the
issue of overly high stellar mass fractions in massive clusters, ranging from [0.52- 18.51] ×1014
𝑀⊙, remains unresolved. Moreover, increasing feedback efficiency introduces new complications
at the scale of galaxy groups, where it leads to decreased gas content and elevated central entropy
levels.

This tendency toward overheating in group-scale halos has also been emphasized in the
independent work by Gaspari et al. (2013), who argues that galaxy groups cannot simply be
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treated as smaller analogues of clusters. Instead, they require more moderate, finely tuned
feedback to avoid excessive heating. More recently, Bahar et al. (2024) compared simulation
results to observational data from large samples of galaxy groups in the eRosita All-Sky Survey
(eRASS1), finding that simulations tend to over-predict central entropy levels in these systems.

Furthermore, there is growing evidence that the core status of clusters may not be completely
fixed but may have some transient nature. Rossetti et al. (2011) presents observational examples
of Non-Cool-Core (NCC) clusters with residual low-entropy gas—so-called "CC remnants",
suggesting that these systems may have once harbored cool cores, subsequently disrupted by
mergers or AGN activity. Similarly, simulations indicate that the thermodynamic state of the
core can evolve over time, with clusters transitioning between CC and NCC phases depending
on the balance of heating and cooling processes (Rasia et al., 2015; Hahn et al., 2017). This
transient nature of core states challenges the traditional view of the CC/NCC distribution as a
static classification and stresses the importance of understanding the dynamic interplay between
AGN feedback, mergers, and the cluster environment.

While AGN feedback is crucial in modulating core properties, it appears insufficient to account
for the full transition from a CC to a NCC state. In fact, the energy needed for such a core change
is of the order of [1 − 4] × 1061 ergs , far beyond the most energetic AGN burtst observed in
the late universe (see McCarthy et al., 2008). Thus, other mechanism need to be responsible of
these kind of changes. In this context, mergers between clusters are thought to be a key driver of
thermodynamic evolution of cluster cores.

Numerical simulations demonstrate that mergers can heat the core gas, disrupt the cooling
flow, and mix the high-entropy gas from the outer regions into the core, effectively transforming
a CC into an NCC cluster (Burns et al., 2008). In fact, galaxy cluster mergers are capable of
releasing gravitational binding energies of the order of 1064 erg (Sarazin, 2002), which would
suffice to explain a CC - NCC transition. Observationally, CC clusters are rarely found among
dynamically active systems with strong evidence of merge activity (Hoffer et al., 2012; Sanders
et al., 2010) and NCC clusters often exhibit disturbed X-ray morphologies and evidence of recent
merger activity (Rossetti & Molendi, 2010; Hudson et al., 2010). Further evidence is provided
by the findings reported by Chen et al. (2007), who found a trend whereby the fraction of CC
clusters decreases towards the most massive, dynamically young systems. This trend has also
been reproduced qualitatively by the simulations of Burns et al. (2008) and Planelles & Quilis
(2009). Mergers are thought to not only disrupt established cool cores but can also prevent their
formation by delaying the re-establishment of dense, low-entropy gas in the center. However, the
efficiency and timescale of this process remain areas of active study (Burns et al., 2008; Rossetti &
Molendi, 2010). Clearly, both the formation history and AGN feedback play a mutually influential
role when determining the state of the cluster centers.

Beyond the general challenge of understansing the mechanism controling the cooling and
heating in cluster cores, a persistent issue lies in defining what truly separates CC clusters
from NCC ones. Various studies adopt differing criteria to identify CC clusters—some rely on a
central drop in temperature (e.g. Sanderson et al., 2006; Burns et al., 2008), short Central Cooling
Time (CCT) (e.g. Bauer et al., 2005; O’Hara et al., 2006), or significant classical mass deposition
rate (e.g. Chen et al., 2007). The criteria used for classifcation is nontrivial and has implications
for cosmological studies since, when used as cosmological probes, clusters are often segregated
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into CC/NCC subsamples. To address this, Hudson et al. (2010) examined 16 different CC
diagnostics across 64 galaxy clusters from the HIFLUGCS (HIghest X-ray FLUx Galaxy Cluster
Sample) catalog (Reiprich & Boehringer, 2002). Their analysis identified CCT as the parameter
showing the clearest bimodal distribution, making it the most effective discriminator between CC
and NCC systems.

In this work, we adopt the classification scheme established by Hudson et al. (2010), which
categorizes clusters into Strong Cool-Core (SCC), Weakly Cool-Core (WCC), and NCC systems
based on CCT. Specifically, clusters with CCTs below 1 ℎ−1/2

71 Gyr are classified as SCC, those
with cooling times between 1 ℎ−1/2

71 Gyr and 7.7 ℎ−1/2
71 Gyr as WCC, and clusters with cooling

times above 7.7 ℎ−1/2
71 Gyr as NCC. According to this classification, Hudson et al. (2010) found

that SCC clusters exhibit low central entropy and a pronounced central temperature drop. In
contrast, WCC clusters show moderately elevated central entropy and temperature profiles that
are either flat or mildly decreasing toward the center, while NCC clusters are characterized by
high central entropy, consistent with prior studies.

In summary, galaxy cluster cores are complex environments where the balance between
cooling and heating processes shapes the thermodynamic properties of the ICM. The distinction
between SCC, WCC, and NCC clusters reflects differences in entropy, cooling time, and feedback
efficiency, influenced by both AGN activity and the cluster’s formation history. Understanding
these processes is essential for constructing a comprehensive picture of cluster evolution and for
interpreting the thermodynamic structure observed in both relaxed and disturbed systems at our
current time.
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Methods





2 | Numerical Cosmology

Numerical simulations are one of the fundamental tools on which this thesis is based. They
provide a powerful way to study the formation and evolution of cosmic structures across a wide
range of spatial mass and time scales. By solving the complex equations governing gravity,
hydrodynamics, and a host of astrophysical processes, simulations allow us to explore scenarios
that are inaccessible to direct observation or analytical modeling. They offer a way to study
mechanisms driving the growth of LSSs, the formation of galaxies, and the interplay between
baryonic and dark matter components in the Universe across cosmic time.

Cosmological simulations can be broadly classified into three categories, each tailored to
address different aspects of structure formation. Dark-matter-only simulations focus exclusively
on gravitational interactions, modeling the growth and clustering of dark matter halos without
considering the complex physics of baryons. The computational efficiency of these simulations
has been significantly improved through the use of highly optimized and parallelized gravity
solvers. Such simulations have been instrumental in establishing the LSS of the Universe and
the hierarchical assembly of dark matter halos. Hydrodynamic simulations, by contrast, incor-
porate the baryonic component, modeling gas dynamics, star formation, feedback from SNe and
active galactic nuclei (AGN), and chemical enrichment processes. While computationally more
demanding, they offer a detailed and realistic picture of galaxy formation and evolution. Finally,
semi-analytic models (SAMs) apply simplified, analytic prescriptions for baryonic processes onto
the backbone of dark-matter-only simulations. These models are less computationally demanding,
enabling rapid exploration of large parameter spaces.

In this work, we make use of cosmological hydrodynamical simulations to study the formation
and evolution of galaxy clusters and their internal structure. Given the breadth and depth of the
literature on cosmological simulations, this section aims to provide a general overview of the
main techniques, focusing in detail on those most relevant to the work presented in this thesis.
For readers seeking a more comprehensive treatment of the field, we refer to classic reviews
and foundational works such as Benz (1990); Springel (2005); Dolag et al. (2005, 2008, 2009);
Dehnen & Read (2011); Borgani & Kravtsov (2011); Hirschmann et al. (2014a); Springel (2016);
Vogelsberger et al. (2020).
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2.1 Standard Cosmological Simulations

The formation and evolution of structures in the Universe, from the smallest galaxies to the largest
clusters, is a fundamentally nonlinear process, thus even if linear perturbation theory provides
a solid framework for describing the growth of density fluctuations at early times, it becomes
insufficient once these overdensities grow and collapse under their own gravity. Understanding
this nonlinear regime requires the use of numerical simulations, which have become an essential
tool in modern cosmology. Thanks to the rapid advancements in computational power over the
last few decades, simulations now provide a detailed and realistic representations of the Universe
across a wide range of scales.

At the core of these simulations lies gravity, which governs the large-scale evolution of
matter and is primarily responsible for the hierarchical assembly of cosmic structures through the
accretion and merging of dark matter halos. However, as we have seen in Section 1.2, gravity
alone cannot account for the full complexity observed in galaxies and clusters, but simulations
need to include the dynamics of baryonic matter and the various astrophysical phenomena that
influence galaxy formation and evolution.

These processes can broadly be categorized into three main groups: gravitational dynamics,
hydrodynamical interactions, and galactic-scale processes. Gravitational dynamics are typically
modeled using N-body methods, which simulate the behavior of a large number of particles repre-
senting collisionless components such as dark matter and stars. These methods solve the evolution
of the phase-space distribution function, which satisfies the collisionless Boltzmann equation,
coupled to Poisson’s equation for the gravitational potential. To make these calculations tractable
for large particle numbers, several approximation techniques are commonly employed, including
Particle-Mesh (PM) methods, hierarchical Tree algorithms, and hybrid Tree-PM approaches,
which will be explored in detail in Sec 2.2.

Gas dynamics can be approached using two primary numerical schemes: Eulerian and
Lagrangian methods. Eulerian approaches track the evolution of fluid quantities on a fixed or
adaptive spatial grid. Lagrangian methods, by contrast, follow discrete fluid elements or particles
as they move through space, naturally adapting resolution to regions of interest such as the dense
cores of galactic halos. Both approaches have their advantages, and the choice often depends
on the goals of the simulation and the specific physical processes being modeled; both will be
presented in Sec 2.3.

Simulating galaxy formation presents an additional set of challenges, as it requires bridging
vast differences in scale, from the megaparsec regimes relevant for galaxy clusters down to the
sub-parsec scales where star formation and feedback occur. Directly resolving all relevant physical
processes is computationally prohibitive. Instead, simulations rely on sub-resolution models to
describe phenomena that take place below the resolution limit, such as radiative cooling, star
formation, chemical enrichment, and feedback from SNe and AGN. These subgrid models aim
to capture the cumulative effects of small-scale processes on the large-scale evolution of galaxies
and galaxy clusters. Further details will be explored in Sect. 2.4.
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2.2 N-body Solvers

2.2.1 PM code

The PM method is one of the foundational algorithms used in cosmological N-body simulations
to compute the gravitational interactions between particles. In the PM scheme, the simulation
volume, typically a cube with periodic boundary conditions, is divided into a uniform three-
dimensional grid consisting of 𝑀3 cells, where 𝑁 = 𝑀3 is the total number of mesh points.
Each particle’s mass is interpolated onto this grid to generate a continuous mass density field
(Eastwood & Hockney, 1974; Efstathiou et al., 1985). This density field serves as the source term
for solving Poisson’s equation in comoving coordinates:

∇2𝜙(®𝑥, 𝑡) = 4𝜋𝐺𝑎2(𝑡) [𝜌(®𝑥, 𝑡) − 𝜌̄(𝑡)] . (2.1)

The potential 𝜙 is efficiently computed by transforming the equation into Fourier space, where
it becomes an algebraic relation:

𝑘2𝜙®𝑘 = −4𝜋𝐺𝜌®𝑘 . (2.2)

This transformation allows for the use of the fast Fourier transform, which reduces the
computational complexity to 𝑂 (𝑁 log 𝑁), where 𝑁 is the number of mesh points. Once the
gravitational potential is obtained, its gradient is calculated to yield the gravitational force at each
mesh point, which is then interpolated back to the particle positions to update their velocities and
positions.

A key advantage of the PM method is its scalability: the computational cost for evaluating
gravitational forces scales linearly with the number of particles, assuming the grid size remains
fixed. However, this comes at the expense of spatial resolution. The forces are smoothed over the
scale of the grid spacing, limiting the accuracy in regions where fine spatial detail is required,
such as the dense cores of dark matter halos (Hockney & Eastwood, 1981; Klypin & Holtzman,
1997; Bagla, 2005).

The Particle-Particle-Particle-Mesh (P3M) algorithm attempts to address this issue by cal-
culating the potential, performing direct summation calculations for particles that are close to
each other (typically within a few mesh cell lengths), and through the PM method for the others
(Hockney & Eastwood, 1981; Efstathiou et al., 1985; Bouchet et al., 1985). Another technique to
increase resolution in grid-based methods involves the use of Adaptive Mesh Refinement (AMR).
In this scheme, regions of higher particle density are assigned additional refinement levels, sub-
dividing the mesh locally to improve spatial resolution (Berger & Oliger, 1984; Berger & Colella,
1989; Kravtsov et al., 1997; Teyssier, 2002; O’Shea et al., 2004; Bryan et al., 2014). This allows
the simulation to allocate computational resources dynamically, refining the mesh where high
resolution is needed (e.g., dense structures like halos), while keeping coarser grids in less dense
regions.
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2.2.2 The Tree algorithm
The Tree algorithm is a widely adopted method for computing gravitational interactions in N-
body simulations, offering a significant improvement in efficiency compared to direct pairwise
summation methods. Originally introduced by (Barnes & Hut, 1986), the approach strikes a
balance between computational speed and force resolution, making it particularly valuable in
cosmological applications where a wide range of scales must be resolved.

At its core, the Tree algorithm organizes particles into a hierarchical structure that groups
them according to their spatial proximity. Instead of calculating gravitational forces directly
between each pair of particles, a process that scales as 𝑂 (𝑁2) and quickly becomes intractable
for large particle numbers, the Tree method reduces computational complexity to approximately
𝑂 (𝑁 log 𝑁) by treating distant particle groups collectively through multipole expansions.

The algorithm begins by recursively subdividing the simulation domain into cubic regions,
forming a tree structure where each node represents a spatial cell. In three dimensions, the root cell
(representing the entire simulation box) is divided into eight subcells in an octree configuration.
This subdivision continues until the resulting cells contain either a single particle or no particles
at all. Each node of the tree stores aggregated information about the particles within its subregion,
typically the total mass and the center-of-mass position.

Once the tree structure is built, the next step involves computing gravitational forces through
a process known as “walking the tree.” For any given particle, the algorithm traverses the
tree to evaluate the gravitational influence of other groups of particles. Distant nodes can be
approximated as single pseudo-particles if they satisfy an acceptance criterion based on an
opening angle parameter, 𝜃. Specifically, if the angle subtended by a node is smaller than 𝜃,
the node’s multipole expansion is used directly. If not, the node is opened, and the algorithm
descends further into its subcells. This hierarchical approach allows the algorithm to bypass
unnecessary fine-grained calculations for distant regions while retaining high accuracy for nearby
interactions. Thus, the choice of the opening angle 𝜃 governs the accuracy of the calculation.
Smaller values of 𝜃 yield more accurate force calculations but increase the computational cost
by forcing the algorithm to explore deeper levels of the tree. In contrast, larger 𝜃 values enhance
speed at the expense of precision. We note that for strongly clustered distributions (like the ones
found in evolved cosmological structures), performance can degrade due to the increased number
of particles requiring direct interactions (Dolag et al., 2008).

Parallel implementations of the Tree algorithm face challenges related to data locality and
communication overhead. Efficient load balancing and minimizing communication between
processors are important steps for improving the performance on modern supercomputers. One
popular strategy to address these challenges involves sorting particles along a space-filling Peano-
Hilbert curve. This technique ensures that particles located close together in space are also close
in memory and more likely to be assigned to the same processor. As a result, the Peano-Hilbert
ordering minimizes communication between nodes and improves cache efficiency, making it
highly suitable for parallelized Tree algorithms (Springel, 2005).

Figure 2.1 demonstrates the structure of the Peano-Hilbert curve in two and three dimensions,
highlighting how the curve recursively fills space to maintain locality. Figure 2.2 illustrates the
computational advantages of the Tree algorithm over direct summation. In the left panel, each
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Figure 2.1: Peano–Hilbert space-filling curve illustrated in two dimensions (bottom) and three
dimensions (top). Credits: Springel (2005).

Figure 2.2: Left: Illustration of force computation for one out of 100 particles (shown as asterisks)
in two dimensions for clarity, using direct summation. Each line represents an individual force
calculation between pairs of particles. Middle: Approximate force calculation for the same
particle using a tree algorithm. Opened cells are depicted as black squares, with their centers
marked by solid squares (𝑧) and sizes indicated by dotted circles (𝑤). Each green line represents a
cell-to-particle interaction. Right: Approximate force computation for all 100 particles using the
tree method, requiring only 902 cell-particle and 306 particle-particle interactions (with opening
angle 𝜃 = 1 and maximum particles per cell 𝑛max = 1), in contrast to the 4950 direct particle-
particle interactions needed with brute-force summation. Credits: Dehnen & Read (2011).
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particle computes forces with every other particle individually, resulting in an 𝑂 (𝑁2) scaling. In
contrast, the middle panel shows how the Tree algorithm groups distant particles into composite
nodes, significantly reducing the number of force evaluations. As a result, the Tree algorithm
makes it feasible to model gravitational interactions in simulations with millions or billions of
particles.

Tree algorithms form the backbone of many modern cosmological simulation codes, such
as GADGET and its variants (Vogelsberger et al., 2020). These codes often implement hybrid
TreePM methods, combining the Tree algorithm for short-range interactions with a PM scheme
for long-range forces, as will be presented in the next subsection.

2.2.3 Tree-PM code
The TreePM algorithm represents a hybrid approach that combines the PM method and the
Tree algorithm. Originally introduced by Hernquist & Katz (1989) and further refined by (Xu,
1995), this technique profits from the strengths of both schemes to achieve efficient and accurate
gravitational force computations over a wide range of spatial scales.

The PM method is highly effective at computing long-range gravitational forces on large
scales, efficiently solving Poisson’s equation on a mesh through Fourier transforms. However,
its spatial resolution is fundamentally limited by the grid spacing, making it inadequate for
resolving small-scale interactions where higher force accuracy is required. In contrast, the Tree
algorithm excels at handling short-range forces by adaptively refining spatial resolution and
directly computing interactions within localized groups of particles.

The TreePM method integrates these complementary strategies by splitting the gravitational
force computation into two distinct components: a long-range part calculated using the PM
scheme and a short-range part handled by the Tree algorithm. This decomposition is typically
performed in Fourier space, where the gravitational potential is separated into long- and short-
range contributions:

𝜙®𝑘 = 𝜙
long
®𝑘

+ 𝜙short
®𝑘

. (2.3)

The long-range potential is computed as:

𝜙
long
®𝑘

= 𝜙®𝑘 exp (−𝑘2𝑟2
𝑠 ). (2.4)

Here, 𝑟𝑠 denotes the spatial scale that determines the transition between long-range and short-
range interactions. The exponential factor smoothly suppresses the short-range contributions in
the PM calculation.

The short-range component, representing the residual forces not captured by the PM grid, is
then evaluated in real space using the Tree algorithm. For distances much smaller than the box
size, 𝑟𝑠 ≪ 𝐿, the short-range potential is given by:

𝜙short(®𝑥) = −𝐺
∑︁
𝑖

𝑚𝑖

𝑟𝑖
erfc

(
𝑟𝑖

2𝑟𝑠

)
, (2.5)
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Figure 2.3: Spatial decomposition of the force in a Tree-PM, computed by placing a unit-mass
particle at a random location within a periodic box and measuring the resulting forces on a set of
randomly distributed test particles using the simulation code Gadget-2. Credits: Springel (2005).

where 𝑟𝑖 = | ®𝑥− ®𝑟𝑖 | is the distance between the particle of interest and the source particle 𝑖. The
complementary error function, erfc, introduces a smooth cutoff for distances beyond 𝑟𝑠, ensuring
that the Tree code focuses computational effort where it is most needed.

By combining these two schemes, TreePM achieves a balance between accuracy and compu-
tational cost. The PM method handles the large-scale, long-range gravitational field efficiently,
while the Tree algorithm refines the force computation at small scales, improving spatial and
temporal resolution. The force decomposition in TreePM is illustrated in Fig. 2.3, where the
gravitational force is shown to be split between long-range (dashed line) and short-range (dot-
dashed line) components, with the total force (solid line) smoothly transitioning between the two
regimes. This makes TreePM particularly well suited for cosmological simulations that require
resolving both the LSS of the Universe and the internal properties of dense regions like galaxy
clusters. In fact, the TreePM method is widely adopted in state-of-the-art simulation codes,
including Gadget-2 and Gadget-3 (Springel, 2005).

A further advantage of the TreePM approach is its compatibility with parallel computing
architectures. Since the PM component relies on global grid computations and the Tree calcula-
tions are localized to high-density regions, the method allows efficient domain decomposition and
distributed memory parallelization. As noted in (Springel, 2005), this division of labor enhances
scalability on massively parallel supercomputers, a key requirement for modern cosmological
simulations. Moreover, the Tree portion of the code is typically self-contained. Once the parti-
cles within a given tree node are assigned, no further data from outside the node is required for
subsequent calculations, facilitating efficient load balancing and data locality.

For the simulations presented in this thesis, we employ OpenGadget3 (OG3 Developers et.
al. in prep., Groth et al. (2023); Sala et al. (2024)) and AREPO (Springel, 2010; Weinberger
et al., 2020), which use the TreePM scheme described above.
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2.3 Hydrodynamical Simulations

2.3.1 Smoothed Particle Hydrodynamics
Smoothed Particle Hydrodynamics (SPH) is a mesh-free, Lagrangian method commonly used to
model fluid dynamics. Originally developed by Gingold & Monaghan (1977) and Lucy (1977) for
stellar applications, SPH has since become a widely adopted technique in cosmology, particularly
in simulations that aim to describe the gravitational and hydrodynamical evolution of cosmic
structures (see Price, 2012; Rosswog, 2015, for reviews). Its fully Lagrangian nature makes SPH
particularly compatible with N-body or Tree-based gravity solvers, as both follow the trajectories
of discrete particles through space and time.

In SPH, the fluid is discretized into particles that carry physical quantities such as mass,
density, and internal energy. These particles move with the fluid flow, and their properties are
computed by interpolating contributions from neighboring particles within a defined smoothing
length ℎ. This approach naturally adapts resolution to local density: higher resolution is achieved
in dense regions where particles are more concentrated, making SPH particularly effective at
following processes such as star formation and the collapse of gas clouds in galaxies.

The motion of the SPH particles follows the Lagrangian form of the hydrodynamic equations.
For an ideal, non-relativistic fluid under a gravitational potential 𝜙, the evolution equations can
be expressed as:

𝑑𝜌

𝑑𝑡
+ 𝜌∇ · ®𝑣 = 0, (2.6)

𝑑®𝑣
𝑑𝑡

+ 1
𝜌
∇𝑃 + ∇𝜙 = 0, (2.7)

𝑑𝑢

𝑑𝑡
+ 𝑃
𝜌
∇ · ®𝑣 = 0. (2.8)

These represent the continuity, momentum, and energy conservation equations, respectively.
The Poisson equation relates the gravitational potential to the density, and an equation of state
(usually polytropic) is introduced to connect pressure 𝑃 to density 𝜌.

To calculate each fluid quantity an estimation is performed by smoothing over neighboring
particles using a kernel function𝑊 (®𝑟 − ®𝑟′, ℎ). This kernel is generally symmetric, non-negative,
and normalized to integrate to unity. A generic scalar field 𝑓 (®𝑥) is approximated by the sum:

𝑓 (®𝑥) =
∑︁
𝑗

𝑚 𝑗

𝑓 𝑗

𝜌 𝑗
𝑊 (®𝑥 − ®𝑟 𝑗 , ℎ). (2.9)

Derivatives of quantities such as pressure or velocity gradients are computed by differentiating
the kernel:

∇𝐴(®𝑥) =
∑︁
𝑗

𝑚 𝑗

𝐴 𝑗

𝜌 𝑗
∇𝑊 (®𝑥 − ®𝑟 𝑗 , ℎ). (2.10)
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This formulation makes SPH efficient for following the evolution of astrophysical fluids, as it
depends only on local interactions within the smoothing length ℎ.

Several kernel functions are commonly used, each with different characteristics affecting
accuracy and stability. Choices include the cubic spline kernel (Monaghan & Lattanzio, 1985),
the quintic spline (Morris, 1996), and higher-order Wendland kernels (Wendland, 1995; Dehnen
& Aly, 2012), which are favored for reducing numerical noise and suppressing pairing instability.
In practice, SPH simulations often employ a large number of neighbors to minimize discretization
errors and improve stability. The effective volume of a particle is related to its smoothing length
and neighbor number 𝑁ngb, with the density estimated by:

𝜌𝑖 =
∑︁
𝑗∈Ngb

𝑚 𝑗𝑊 ( |®𝑟𝑖 − ®𝑟 𝑗 |, ℎ𝑖). (2.11)

Smoothing lengths are adjusted adaptively to maintain a roughly constant number of neigh-
bors, ensuring higher resolution in regions of higher density.

The equations of motion in SPH include hydrodynamical accelerations derived from pressure
gradients. In OpenGadget3, a fully conservative formulation is adopted (Springel & Hernquist,
2002), with accelerations given by:

®𝑎hydro,𝑖 = −
∑︁
𝑗∈Ngb

𝑚 𝑗

[
𝑓𝑖
𝑃𝑖

𝜌2
𝑖

∇𝑖𝑊𝑖 𝑗 (ℎ𝑖) + 𝑓 𝑗
𝑃 𝑗

𝜌2
𝑗

∇𝑖𝑊𝑖 𝑗 (ℎ 𝑗 )
]
, (2.12)

where 𝑓𝑖 is a correction factor accounting for changes in smoothing length:

𝑓𝑖 =

(
1 + ℎ𝑖

3𝜌𝑖
𝜕𝜌𝑖

𝜕ℎ𝑖

)−1
. (2.13)

Standard SPH implementations have historically struggled with issues such as the suppression
of fluid mixing and the accurate treatment of shocks. Artificial viscosity terms are typically
included to capture shocks by introducing dissipation where necessary (Morris, 1996; Agertz
et al., 2007). At the same time, artificial conductivity terms (Price, 2008) help reduce spurious
pressure discontinuities at contact interfaces. In OpenGadget3, these dissipation terms are
implemented with spatially dependent triggers (Beck et al., 2016), minimizing their impact in
regions where they are not physically required. Still, SPH struggles with some intrinsic limitations,
which include difficulties in modeling fluid mixing and instabilities without additional corrective
terms.

Nevertheless, its fully Lagrangian formulation, where mass elements are conserved by con-
struction, and resolution automatically follows mass distribution, makes SPH highly efficient
in cosmological simulations. Therefore, SPH remains a popular choice in large cosmological
hydrodynamical simulations, such as those run with OpenGadget3 and other modern codes.

2.3.2 Mesh codes
Instead of Lagrangian methods like SPH, many cosmological simulations employ mesh-based
approaches for modeling hydrodynamics. These methods are typically grounded in an Eulerian
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framework, in which the discretised quantity is volume rather than mass (as in SPH). Each cell
in the grid holds information about local fluid properties, such as density, velocity, and pressure,
which are evolved over time by calculating fluxes between adjacent cells. Mesh-based codes have
long been popular for their ability to resolve shocks and fluid instabilities with high precision
(Teyssier, 2002; Agertz et al., 2007; Toro, 2009).

The most straightforward implementation of mesh-based hydrodynamics uses a static Carte-
sian grid. Such grids are simple to construct and easily coupled with PM gravity solvers, since
mass densities are already assigned to the grid structure. However, uniform grids suffer from
an intrinsic lack of adaptivity: increasing the spatial resolution in localized regions requires
raising the resolution globally, which significantly inflates the computational cost, particularly in
simulations with large dynamic ranges (Kravtsov et al., 1997; Bryan & Norman, 1997).

To address these shortcomings, AMR schemes have been developed (Berger & Oliger, 1984;
Berger & Colella, 1989). AMR dynamically refines the grid structure by subdividing cells in
regions where increased resolution is required, such as high-density environments or around
shock fronts. Each refinement step typically halves the cell size, resulting in an eightfold
resolution increase in three dimensions. Codes like ART (Kravtsov et al., 1997) and AP3M
(Couchman, 1991) use AMR to efficiently allocate computational resources, maintaining high
spatial resolution where needed while keeping coarser grids in less critical regions.

Refinement criteria can be tailored depending on the specific scientific goals, and conservation
laws must be carefully enforced at the interfaces between different resolution levels to avoid
introducing unphysical discontinuities or numerical artifacts.

Hydrodynamical mesh codes typically solve the equations of mass, momentum, and energy
conservation using finite-volume methods. For each grid cell, fluxes are computed across cell
interfaces by solving local Riemann problems, which allows for accurate modeling of disconti-
nuities like shocks. The conservative nature of these schemes ensures that mass, momentum, and
energy are preserved to a high degree of accuracy.

The update of conserved quantities over a time step involves calculating the net flux across
the cell boundaries. In one dimension, the basic update formula for the conserved variables
𝑈 = (𝜌, 𝜌𝑣, 𝜌𝑒) is:

𝛥𝑈𝑖 = − 𝛥𝑡
𝛥𝑥

(
𝐹𝑖+1/2 − 𝐹𝑖−1/2

)
. (2.14)

This flux-based formulation, combined with high-order reconstruction schemes and slope
limiters, ensures stable and accurate solutions.

One of the key strengths of mesh codes is their ability to accurately model shocks and capture
fluid instabilities, such as Kelvin-Helmholtz and Rayleigh-Taylor instabilities, which are often
poorly resolved in SPH schemes. They also do not require artificial viscosity or conductivity
terms to handle discontinuities, as these are naturally managed by the Riemann solver (Agertz
et al., 2007).

However, mesh codes face challenges when dealing with high-velocity bulk flows. In Cartesian
grids, such flows can lead to numerical diffusion and errors due to the lack of Galilean invariance
(O’Shea et al., 2005; Heitmann et al., 2008). On top of this, grid-alignment effects can artificially



2.4 Galaxy Formation Models 47

influence fluid motion, and early refinement in AMR schemes can hinder the resolution of small
halos at late times in cosmological simulations (Agertz et al., 2007; Springel, 2010).

To overcome some of these limitations, a different approach known as the moving mesh method
has been developed. AREPO (Springel, 2010) is one of the most prominent implementations of
this concept. It employs a moving, unstructured mesh based on a Voronoi tessellation, where
mesh-generating points move with the local velocity of the fluid. This design allows the mesh
to adapt continuously to the flow, ensuring that fluxes are computed in the rest frame of the
interface between cells, significantly reducing numerical diffusion. Since the resolution follows
the mass distribution, AREPO retains one of the key advantages of SPH, while its mesh-based
nature allows for an accurate treatment of shocks and discontinuities without the need for artificial
diffusion terms.

AREPO’s Voronoi mesh is generated using an incremental insertion algorithm based on the
Bowyer-Watson scheme (Bowyer, 1981; Watson, 1981), optimized for parallel performance. This
algorithm efficiently updates the mesh at each timestep, ensuring that cells remain well-shaped
and isotropic. Additionally, the moving mesh approach mitigates grid-alignment effects and
maintains Galilean invariance, providing an accurate description of bulk flows and complex
dynamical interactions in cosmological simulations.

2.4 Galaxy Formation Models

Galaxy formation is governed by several physical mechanisms, including gas dynamics, radiative
cooling, star formation, chemical enrichment, and feedback from stars and AGNs. These pro-
cesses are intrinsically multi-scale, spanning many orders of magnitude in both space and time,
and are typically unresolved in cosmological simulations. As such, they must be incorporated
through phenomenological subgrid models.

This section presents an overview of the two state-of-the-art galaxy formation models imple-
mented in the simulations used throughout this thesis: the Magneticum and IllustrisTNG models.
Both galaxy formation models employ sophisticated treatments of baryonic physics to capture
the interplay between dark matter, gas, and stellar components, while incorporating feedback
mechanisms that regulate star formation and drive galaxy evolution. Although these models
differ in their numerical approaches and specific implementations, both provide valuable insights
into the processes shaping galaxies and galaxy clusters across cosmic time.

2.4.1 Magneticum

The Magneticum model builds upon the core framework of the Gadget-3 code, integrating
advanced subgrid models to represent key baryonic processes that are otherwise unresolved in
cosmological simulations (OG3 Collaboration in prep., Beck et al. (2016); Groth et al. (2023);
Sala et al. (2024)). Here we provide a summary on the implementation of the main components
of the galaxy formation model:
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Radiative Cooling and Heating Processes: Magneticum includes detailed models for radia-
tive cooling and heating. The cooling rates are computed by considering both primordial and
metal-line cooling contributions. Gas cooling depends on its temperature and metallicity and is
calculated under the assumption of ionization equilibrium in the presence of an evolving ultra-
violet background radiation field (Sutherland & Dopita, 1993; Katz et al., 1996; Wiersma et al.,
2009; Hirschmann et al., 2014a).

For primordial gas (hydrogen and helium), the cooling is dominated by bremsstrahlung at
high temperatures (above 106 K), where free electrons interact with ionized nuclei, emitting
photons and losing energy. At temperatures below 106 K, processes such as collisional excitation
and recombination dominate the cooling. Metal-line cooling is introduced using pre-computed
lookup tables, allowing for an efficient and metallicity-dependent treatment (Dolag et al., 2017).
The ionizing UV background is modeled following the prescription of (Madau et al., 1999),
representing the contribution of quasars reionizing the intergalactic medium at 𝑧 ∼ 6. The total
cooling rate 𝛬(𝑇, 𝑍) is a function of temperature 𝑇 and metallicity 𝑍 , and energy losses are
integrated into the thermal evolution of gas particles.

Star Formation and the Multiphase Interstellar Medium (ISM): Star formation within
Magneticum follows the sub-resolution multiphase model initially proposed by (Springel &
Hernquist, 2003). Gas particles eligible for star formation are those exceeding a density threshold
and undergoing cooling. These particles are treated as a composite of cold and hot gas phases,
maintaining pressure equilibrium.

The conversion of cold gas into stars proceeds on a characteristic timescale 𝑡∗, which scales
with gas density following a Schmidt-like relation (Schmidt, 1959):

¤𝜌∗ = (1 − 𝛽SNe)
𝜌𝑐

𝑡∗
. (2.15)

Here, 𝜌𝑐 is the cold gas density, and 𝛽SNe is the mass fraction of newly formed stars that
end their lives as Type II Supernovae (SNe II). This fraction depends on the chosen Initial Mass
Function (IMF), which in Magneticum is assumed to follow the Chabrier IMF (Chabrier, 2003).

Feedback from SNe plays a critical role in regulating star formation. A portion of the SN
energy is used to drive galactic winds, which expel gas from star-forming regions, reducing
cooling and suppressing further star formation. For galaxies up to 1010𝑀⊙ SNe help mitigate
the "overcooling problem" that can otherwise lead to excessive star formation rates in massive
galaxies.

Chemical Enrichment and Stellar Yields: The chemical evolution model in Magneticum
tracks the production and distribution of heavy elements released by stellar populations. The
primary sources of metal enrichment included are, Type Ia Supernovae (SNe Ia), SNe II and
Asymptotic Giant Branch (AGB) stars.

The mass return and metal yields for each channel are implemented using the stellar lifetimes
from Padovani & Matteucci (1993), and the yields are drawn from Thielemann et al. (2003) for
SNe Ia, Woosley & Weaver (1995) for SNe II, and Karakas (2010) for AGB stars. The lifetime
function 𝜏(𝑀) governs when stars of a given mass contribute to the chemical enrichment:
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𝜏(𝑀) =
{

10(1.34−
√

1.79−0.22(7.76−log𝑀))/0.11 − 9, if 𝑀 ≤ 6.6𝑀⊙

1.2𝑀−1.85 + 0.003, otherwise .
(2.16)

These metals are injected into the surrounding gas particles, enriching the interstellar and
intergalactic medium over time. This process allows the simulation to model the metallicity
dependence of cooling, star formation, and feedback processes.

SMBH and AGN Feedback: Magneticum includes a detailed prescription for SMBH formation
and evolution. BHs are seeded in halos exceeding a mass threshold (typically 𝑀halo ≥ 5 ×
1010ℎ−1𝑀⊙) and grow by gas accretion and mergers. The gas accretion rate follows the Bondi-
Hoyle-Lyttleton model (Bondi & Hoyle, 1944; Bondi, 1952):

¤𝑀Bondi = 𝛼
4𝜋𝐺2𝑀2

BH𝜌

(𝑐2
𝑠 + 𝑣2

rel)3/2
. (2.17)

Here, 𝛼 is a boost factor accounting for the unresolved structure of the ISM, 𝑐𝑠 is the local
sound speed, and 𝑣rel is the relative velocity between the BH and the surrounding gas.

The Eddington limit provides an upper cap on the accretion rate, preventing unphysical
growth:

¤𝑀Edd =
4𝜋𝐺𝑀BH𝑚𝑝

𝜖𝑟𝜎𝑇𝑐
, (2.18)

where 𝜖𝑟 is the radiative efficiency, 𝑚𝑝 the proton mass, 𝜎𝑇 the Thomson cross-section, and
𝑐 the speed of light.

Feedback from AGN activity is modeled through two modes:

1. Quasar Mode: At high accretion rates ( ¤𝑀/ ¤𝑀Edd ≥ 0.05), thermal energy is injected into
the surrounding gas to suppress cooling, resulting in strong, often bursty feedback episodes.

2. Radio Mode: At low accretion rates ( ¤𝑀/ ¤𝑀Edd < 0.05), the same thermal feedback mech-
anism is used, but with an energy injection efficiency that is four times higher. The lower
accretion rates result in more gradual, continuous heating that stabilizes the cooling flow
over time.

The energy injection from AGN feedback is given by:

¤𝐸feed = 𝜖 𝑓 𝜖𝑟 ¤𝑀BH𝑐
2, (2.19)

with 𝜖 𝑓 representing the fraction of radiated energy thermally coupled to the gas. This dual-
mode feedback regulates both star formation and BH growth, reproducing observed correlations
such as the 𝑀BH − 𝜎∗ relation.
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2.4.2 IllustrisTNG
The IllustrisTNG model (also called TNG) builds upon the groundwork established by the original
Illustris simulations (Vogelsberger et al., 2014; Genel et al., 2014). Using the moving mesh code
AREPO, IllustrisTNG integrates gravitational dynamics, Magnetohydrodynamics (MHD), and a
suite of subgrid physics models to simulate the formation and evolution of galaxies in a 𝛬CDM
Universe (Nelson et al., 2018; Pillepich et al., 2018).

Star Formation and ISM Treatment: Gas above a critical hydrogen number density threshold
(typically 𝑛H ≈ 0.1 cm−3) is modeled as a two-phase medium following the formulation of
(Springel & Hernquist, 2003). This treatment includes cold clouds embedded in a hot, pressurized
ambient phase, maintaining an Effective Equation of State (EQS) for star-forming regions. Stars
are formed stochastically in these dense environments, in proportion to the local gas density
and the empirical Kennicutt-Schmidt law (Kennicutt, 1998). A Chabrier (2003) IMF is adopted
throughout.

Stellar Feedback and Galactic Winds: The TNG model introduces significant refinements in
the stellar feedback processes relative to its predecessor. Winds from star-forming regions are
launched kinetically, with their velocity scaling as a function of the local dark matter velocity
dispersion, 𝜎DM, and the Hubble parameter 𝐻 (𝑧) (Oppenheimer & Davé, 2006). Specifically, the
wind velocity is given by

𝑣wind = max

[
𝜅𝑤𝜎DM

(
𝐻0

𝐻 (𝑧)

)1/3
, 𝑣min

]
, (2.20)

where 𝜅𝑤 is a scaling factor and 𝑣min enforces a minimum velocity to prevent unphysically slow
winds in low-mass halos (Pillepich et al., 2018).

The mass loading factor, 𝜂𝑤, which governs the mass outflow rate relative to the star formation
rate, depends on the wind energy and velocity:

𝜂𝑤 =
2

𝑣2
wind

𝑒wind(1 − 𝜏𝑤), (2.21)

where 𝑒wind represents the energy injected into the winds, and 𝜏𝑤 describes the thermal fraction
of this energy. To better match observed galaxy scaling relations, the model incorporates a
metallicity-dependent reduction in wind efficiency, accounting for enhanced radiative losses in
metal-rich gas.

Chemical Enrichment and Stellar Yields: The chemical evolution model tracks the production
and distribution of nine individual elements (H, He, C, N, O, Ne, Mg, Si, Fe), plus a tenth
component representing untracked metals. Stellar feedback returns mass and metals to the ISM
through three primary channels: AGB stars, SNe Ia, and SNe II. The TNG model updated the
yields and progenitor mass ranges used in Illustris, raising the lower mass threshold for SNe II
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events from 6 𝑀⊙ to 8 𝑀⊙, lying in closer agreement with later theoretical expectations (Smartt,
2009). The injection of metals follows time-dependent delay functions, with the delay time
distribution for SNe Ia adopting the formalism of (Maoz et al., 2012).

Supermassive Black Holes: BHs are seeded in halos once they exceed a mass threshold of
𝑀halo = 5 × 1010 ℎ−1 𝑀⊙, with seed BH masses set at 8 × 105 ℎ−1 𝑀⊙. Gas accretion onto BHs
follows the Bondi-Hoyle-Lyttleton prescription (Bondi & Hoyle, 1944; Hoyle & Lyttleton, 1939),
without the artificial 𝛼 boost factor used in previous models.

Two distinct feedback modes are employed:

• High accretion rates trigger a thermal quasar-mode feedback, where energy is isotropically
injected into the surrounding gas.

• Low accretion rates activate a kinetic feedback mode, releasing momentum-driven winds
that suppress star formation in massive galaxies and clusters (Weinberger et al., 2017).

The kinetic mode plays a main role in preventing excessive stellar mass buildup in massive
halos and addresses shortcomings from the original Illustris model, including overly large galaxy
sizes and high star formation rates at low redshift.

Magnetohydrodynamics: TNG introduces a uniform seed magnetic field at high redshift. Its
amplification and evolution are self-consistently modeled (Pakmor & Springel, 2013). This
allows the simulation to capture the impact of magnetic fields on galaxy formation and evolution,
influencing angular momentum transport, star formation, and gas dynamics (Marinacci et al.,
2015).

Calibration and Observational Comparisons: The TNG model was calibrated to match a
range of observations, including the galaxy stellar mass function, the cosmic star formation
history, and the baryon fractions in halos. While calibration focused on global trends, the
model also makes successful predictions for galaxy morphologies, color distributions, and the
distribution of metals in circumgalactic and intergalactic media (Nelson et al., 2018; Pillepich
et al., 2018)

2.5 Identifying Bound Structures in Simulations
Once we have a cosmological simulation, the next step is to identify the gravitationally bound
objects that are contained in it. As discussed earlier, the growth of cosmic structures is highly
sensitive to the underlying cosmological parameters, including the energy content of the Universe
and the properties of dark energy and dark matter. To connect these theoretical predictions with
observed structures like galaxies and galaxy clusters, it’s essential to apply robust methods to
detect and characterize bound structures within simulation data.

For this purpose, we focus on two algorithms commonly used in cosmological simulations:
the Friends-of-Friends (FoF) algorithm and the Subfind algorithm (Springel, 2005). These
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techniques are the backbone of the halo identification pipeline used in our simulations. For a
more comprehensive discussion of other methods, we refer the reader to reviews such as the one
by Knebe et al. (2013).

2.5.1 Friends-of-Friends Algorithm
The FoF method is one of the simplest and most widely used algorithms for identifying groups
of particles in simulations. It links particles into groups based on their spatial proximity using a
parameter called the linking length, which sets the maximum distance two particles can be apart
and still be considered part of the same group. Typically, this linking length is expressed as a
fraction of the mean inter-particle separation, with common values around 𝑏 ∼ 0.2 for locating
virialized halos.

The algorithm begins by selecting an initial particle and identifying all neighboring particles
within this linking length. These neighbors, in turn, are connected to their own neighbors, and
so on, until a complete group is formed. The choice of linking length directly influences the
resulting group structure: a shorter linking length typically results in smaller, denser groups,
while a larger one can connect structures that might otherwise be considered distinct.

FoF was first applied in observational cosmology by Geller & Huchra (1983) to identify
galaxy groups in redshift surveys. In numerical simulations, the FoF implementation described
by Springel (2005) has been widely adopted. This version employs a parallel, distributed approach
that is optimized for large datasets and high-performance computing architectures. The algorithm
efficiently partitions the simulation domain across computational nodes, performing neighbor
searches within each partition and merging groups when necessary. Iterative steps continue until
no further merges occur.

However, the FoF algorithm has known limitations. It may erroneously connect structures
via tenuous particle bridges or fail to recognize substructures within larger halos (Springel et al.,
2001). This motivates the use of more refined algorithms like Subfind, which will be presented
next.

2.5.2 The Subfind Algorithm
Subfind complements FoF by performing a more detailed analysis aimed at detecting substructures
within halos. Initially developed for dark matter-only simulations (Springel et al., 2001) and
later extended to hydrodynamical simulations (Dolag et al., 2009), Subfind refines the structure
identification process by locating self-bound subhalos within FoF groups.

The method begins by identifying a parent halo using the FoF algorithm. For each baryonic
particle (e.g., gas or stars), Subfind assigns it to the nearest dark matter particle’s FoF group.
Subfind then searches for overdense regions within the parent halo by analyzing the density
field. It identifies local maxima and saddle points in the density distribution by descending along
density gradients, effectively isolating regions that could correspond to gravitationally bound
substructures.

Once candidate subhalos are located, Subfind performs an unbinding procedure: it calculates
the gravitational potential for each candidate and removes particles whose total energy is positive
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Figure 2.4: Graphical illustration of two FoF groups identified using different linking lengths.
Shorter linking lengths result in smaller, more tightly bound groups.

(i.e., those not gravitationally bound). A substructure is confirmed if a minimum number of
particles remain bound after this process, commonly set to 50 particles in simulations. This
fixed threshold helps filter out noise and ensure a reliable identification of substructures, while
remaining consistent across simulations of similar resolution.

For each genuine subhalo, Subfind identifies the center as the particle with the minimum
gravitational potential. It then computes the subhalo’s virial radius and mass by applying a
spherical overdensity criterion, using thresholds based on the spherical collapse model (Eke
et al., 1996).

An important consideration is that Subfind may assign subhalos to the FoF group of a parent
halo even when they are located beyond its virial radius. Similarly, not every structure within a
FoF group necessarily lies within the main halo’s virial radius. Fig 2.4 illustrates examples of
halo and subhalo identification in simulations, showing how different linking lengths in the FoF
algorithm yield different groupings of particles.

2.6 Following a Halo Through Time: The Merger Tree
Understanding the formation and evolution of structures in the Universe requires a method to trace
their assembly over cosmic time. In cosmological simulations, this is achieved by constructing
merger trees: data structures that record the lineage of dark matter halos (and the galaxies they
host), capturing the hierarchical growth of structure. Merger trees enable the reconstruction
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of a halo’s ancestry by linking its progenitors at earlier times to its descendants at later stages
(Springel, 2005).

At their core, merger trees identify relationships between gravitationally bound objects, typi-
cally dark matter halos and subhalos, across different snapshots of a simulation. Each branch of
the tree describes the accretion history of a halo, while the nodes represent merger events, smooth
accretion, or other evolutionary processes. This structure captures not only the main progenitor,
often referred to as the "main branch," but also tracks secondary halos that merge into the larger
system, enabling a detailed analysis of merger histories, halo growth rates, and galaxy evolution
(Boylan-Kolchin et al., 2009; Henriques et al., 2015).

2.6.1 The L-HaloTree Algorithm
In this work, we employ the L-HaloTree algorithm (Springel, 2005; Boylan-Kolchin et al., 2009), a
widely used merger tree construction tool developed for the Millennium and Millennium-II simu-
lations. L-HaloTree operates on halo catalogs identified by the Subfind algorithm (Springel et al.,
2001; Dolag et al., 2009), following the evolution of these subhalos across time by establishing
unique links between progenitors and descendants.

It does this by evaluating the particle content of halos in consecutive simulation snapshots.
Specifically, each subhalo is represented by a set of bound particles, which are first ranked
according to their binding energy. To trace subhalos forward in time, the algorithm assigns a
descendant to each progenitor based on the weighted overlap of particles between snapshots. In
this weighting scheme, the most bound particles, typically the top 10%, are given the highest
importance, ensuring that the core of a subhalo is preferentially tracked, even if its outer layers
are stripped during mergers (Springel, 2005).

A key feature of L-HaloTree is its robustness against the temporary disruption in the identifi-
cation of halos. In some instances, a subhalo may momentarily disappear from a snapshot due to
limitations in the halo finder or strong tidal interactions. L-HaloTree accounts for such situations
by searching over multiple snapshots to reconnect subhalo trajectories and avoid losing continuity
in the tree structure (Boylan-Kolchin et al., 2009).

2.6.2 Merger Tree Structure and Outputs
Each node in an L-HaloTree represents a subhalo, characterized by its mass, position, velocity,
and other properties provided by the simulation. The tree structure captures several essential
relationships:

1. Descendant links, connecting a subhalo to its descendant in the following snapshot.

2. Progenitor links, pointing back to the various subhalos that merge to form the descendant.

3. Main progenitor branches, typically defined as the branch contributing the most mass to
the descendant halo.
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Figure 2.5: Hierarchical structure of merger trees in the L-HaloTree algorithm. Each blue circle
represents a halo, and halos within the same gray box belong to a common FoF group at a
given snapshot (time increases downward). Arrows illustrate the tree structure: Descendant
links (light blue) connect halos to their unique descendant in the next snapshot; FirstProgenitor
(dark blue) is the main (typically most massive) progenitor of a halo, while NextProgenitor
(red) refers to additional progenitors that merge into the same descendant. Within FoF groups,
FirstHaloInFOFGroup (green) indicates the central halo, and NextHaloInFOFGroup (purple)
connects to other group members. This structure enables efficient traversal of halo lineages and
group associations across time. Credit: Springel et al. (2005b)

4. Sibling and cousin relationships, which describe halos that are connected through shared
descendants or progenitors. For example, two progenitors of the same descendant halo
are considered siblings, while cousins may share a common ancestor further up the tree,
providing a broader view of the merger hierarchy.

These links enable an efficient reconstruction of halo assembly histories and the identification
of major and minor merger events, smooth accretion, and disruptions.

Furthermore, this hierarchical data structure eases rapid queries for progenitor and descendants
of a certain halo across time. A scheme of this hierarchical structure is shown in Fig. 2.5. The
flexibility of the format allows its use in a variety of downstream applications, such as SAMs
of galaxy formation (e.g. Henriques et al., 2015) or the analysis of merger rates and halo mass
assembly histories (e.g. Rodriguez-Gomez et al., 2015).
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2.7 Constrained Cosmological Simulations
Standard cosmological simulations reproduce the LSS of the Universe and the diversity of its
constituents in a statistical sense. However, they do not aim to replicate the actual observed
structures of the nearby Universe, such as the Virgo cluster, the Local Group, the Shapley
supercluster or the local Void, just to mention some.

Constrained cosmological simulations address this gap. Their aim is to reproduce the spatial
distribution, dynamical properties, and formation histories of specific structures in the observed
Universe. They provide a laboratory for studying the interplay between local cosmic structures
and cosmological parameters, mitigating cosmic variance by focusing on a specific realization of
the Universe, our own. This makes constrained simulations a powerful tool for astrophysical and
cosmological research.

2.7.1 Fundamental Concepts and Methodologies
The main goal of constrained cosmological simulations is to produce Initial Conditions (ICs)
that, when evolved forward in time, reproduce the structures observed in the local Universe.
These simulations differ from conventional simulations in that they do not start from a random
realization of the cosmic density field but from one shaped by observational data. Two primary
methods are used to generate such ICs:

• Backward Constrained Realizations (Hoffman-Ribak Algorithm, Hoffman & Ribak (1991)):
This approach uses linear theory and observational data, often peculiar velocities or galaxy
distributions, to reconstruct the linear density and velocity fields. The algorithm allows
for the generation of Gaussian random fields conditioned on these observations. Early
applications of this technique used galaxy redshift surveys to constrain the density field
(Mathis et al., 2002; Dolag et al., 2005), leading to simulations such as CORUSCANT
(Dolag et al., 2005) and SALACIOUS (Nuza et al., 2010). Later applications using the
local peculiar velocity field have led to simulations such as CLUES (Constrained Local
UniversE Simulations, Sorce et al., 2016a) and SLOW (Simulating the LOcal Web, Dolag
et al., 2023; Hernández-Martínez et al., 2024; Böss et al., 2023; Seidel et al., 2024) .

• Bayesian Forward Modeling: This approach reconstructs the ICs of the Universe by statis-
tically inferring the initial density field that, when evolved forward through a simulation,
best reproduces the observed LSS. Instead of using a fixed set of random simulations, the
method explores the space of possible ICs, often by sampling from a prior on the initial
Gaussian density field, and uses Bayesian inference to identify the most likely realization,
given the data (see Jasche & Wandelt, 2013; Jasche & Lavaux, 2019, and references therein).
This approach has inspired works such as ELUCID (Wang et al., 2016) and SIBELIUS
(McAlpine et al., 2022).

The quality of the constrained simulations depends critically on the type, quantity, and quality
of the observational constraints. Here, quality refers to how well the simulation reproduces
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observed structures in the local Universe, such as the correct positions, masses, and dynamics of
galaxy clusters or the cosmic web, given the input data. Two main types of observational data are
typically used:

• Galaxy Redshift Surveys: Provide direct information on the spatial distribution of galaxies
and, by inference, the underlying density field. However, they suffer from the fact that
in order to infer the underlying density field, it is necessary to assume a bias relation
between luminous and dark matter (see Desjacques et al., 2018, for a comprehensive
review). Additionally, peculiar velocities along the line of sight distort redshift-based
distance estimates.

• Peculiar Velocity Surveys: Peculiar velocities are directly related to the gravitational po-
tential, thus tracing the underlying matter distribution (see Sect. 1.1.1 for a theoretcal
explanation), without the need to assume any relation between luminous and dark matter.
This feature makes them very advantageous constraints. However, they are observationally
challenging, with larger measurement uncertainties and sparser datasets. Notable efforts to
use peculiar velocities as constraints include the Cosmicflows program (Tully et al., 2013,
2016; Tully et al., 2023) and their implementation in the CLUES (Sorce et al., 2016a) and
SLOW (Dolag et al., 2023; Hernández-Martínez et al., 2024; Böss et al., 2023; Seidel et al.,
2024) simulations.

2.7.2 Historical Development
Early efforts in constrained cosmological simulations began with low-resolution dark matter-only
simulations of the local environment. One of the first works was the one presented by Mathis
et al. (2002), who used redshift surveys to generate constrained ICs. This simulation was later
extended to include magneto-hydrodynamics (Dolag et al., 2005).

Building on these foundations, the CLUES project marked a major advancement in the field.
Initiated by Yepes et al. (2009); Gottlöber et al. (2010), CLUES pioneered the use of peculiar
velocity constraints rather than relying solely on galaxy redshift distributions. This approach
enabled the reproduction of prominent LSS in the local Universe, including the Virgo, Perseus,
and Coma clusters, within a (160ℎ−1Mpc)3 volume. CLUES produced both dark matter-only and
non-radiative hydrodynamical simulations, which provided valuable insights into the formation
and evolution of the Local Group (Libeskind et al., 2010; Nuza et al., 2014; Carlesi et al., 2016).

Focusing on higher-resolution zoom-in regions around the Local Group, the HESTIA simu-
lations (Libeskind et al., 2020) incorporated full galaxy formation physics, allowing for detailed
studies of the impact of the cosmic environment on galaxy evolution within the local volume.

Subsequent developments led to CLONES (Constrained LOcal and Nesting Environment
Simulations, Sorce et al. (2021)). This project expanded the constrained simulation volume
to (500ℎ−1Mpc)3 and employed improved techniques for generating constraints (Sorce, 2015;
Carlesi et al., 2016b). CLONES was particularly used to match the assembly histories of
individual galaxy clusters, offering a way to investigate their mass assembly history and general
evolutionary paths of individual replicas of the local Universe.
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More recently, the SIBELIUS project (McAlpine et al., 2022) introduced a different approach
based on Bayesian forward modeling. SIBELIUS-DARK succeeded in constraining a massive
volume of approximately (550ℎ−1Mpc)3, reproducing major features of the local LSS, such as the
Virgo cluster and the Local Void. Nevertheless, the number of reported identified counterparts is
limited to 12, and the simulation still faces challenges in accurately reproducing properties such
as the masses of individual structures.

In parallel, the SLOW (Simulating the LOcal Web) project (Dolag et al., 2023; Hernández-
Martínez et al., 2024; Böss et al., 2023; Seidel et al., 2024) represents the latest generation
of constrained cosmological simulations. Based on the CLONES realization and constrained
with peculiar velocity data from Cosmicflows-2 (CF2, Tully et al. (2013)), SLOW covers a
(500ℎ−1Mpc)3 volume and includes full magneto-hydrodynamical simulations with galaxy for-
mation physics. SLOW achieves unprecedented accuracy in replicating the properties of local
galaxy clusters, such as Virgo, Coma, and Perseus, not only in terms of their masses and positions
but also their multi-wavelength observational properties, including X-ray luminosities, temper-
atures, and SZ signals (Hernández-Martínez et al., 2024), marking a significant step forward in
bridging the gap between simulations and observations of the local Universe. More details on
this set of simulations will we covered in the next section.

2.7.3 The SLOW Project
Developed by Dolag et al. (2023) and expanded by Hernández-Martínez et al. (2024), SLOW
builds upon the previous CLONES project, using peculiar velocity data from the CF2 catalogue to
construct its ICs. The simulations in the SLOW project cover a comoving volume of (500ℎ−1Mpc)
each and include boxes with full hydrodynamical modeling and subgrid physics based on the
Magenticum model presented in Sect. 2.4.1. It has been shown to contain more than 46 replicas
of local galaxy cluster allowing for direct comparisons between simulations and multi-wavelength
observations of these clusters residing in our local environment.

Initial Conditions and Methodology: The two main pillars on which constrained ICs are
constructed are the prior cosmological model, like any random simulations, and the observational
data. For the former, we use Planck cosmology (𝛺m=0.307 ; 𝛺𝛬=0.693 ;𝐻0=67.77 km s−1 Mpc−1,
and 𝜎8=0.829 Planck Collaboration et al., 2014b). For the latter, in our case, the observational
data consist of CF2, the second catalog of the Cosmicflows project (Tully et al., 2013). This
catalog contains more than 8000 distance moduli of local galaxies obtained from various distance
indicators such as the Tully-Fisher relation, the fundamental plane, and SN. These distance
moduli are combined with observational redshifts to determine galaxy radial peculiar velocities.
The method to build the constrained ICs has been extensively discussed by, for instance, Sorce
et al. (2016a). The basis for SLOW’s ICs have been developed and published by Sorce (2018).
We present here a summary of the main steps:

1. The first step involves removing any nonlinear motions that would affect our linear recon-
struction of the linear initial fields. We are careful to keep galaxies still infalling onto



2.7 Constrained Cosmological Simulations 59

clusters outside of the latter. Galaxies are thus grouped, resulting in 5562 galaxies and
groups (Sorce & Tempel, 2018).

2. We then minimize the biases inherent to any observational radial peculiar velocity catalogs.
The effects of the homogeneous and inhomogeneous Malmquist biases as well as that of
the lognormal error (e.g. Kaptney, 1914; Malmquist, 1920; Landy & Szalay, 1992; Tully
et al., 2016) are minimized in the catalog with the method described by Sorce (2015).

3. The Wiener-Filter method (WF, Zaroubi et al., 1999) is then applied to the grouped catalog
of bias-minimized radial peculiar velocity constraints to reconstruct the tridimensional
cosmic displacement field.

4. The reconstructed cosmic displacement field is then used through the Reverse Zel’dovich
Approximation (Doumler et al., 2013) to relocate the galaxy and group constraints to the
positions of their progenitors. It ensures that structures are at the proper position at redshift
zero. We also replace noisy radial peculiar velocities by their 3D WF reconstructions
(Sorce et al., 2014)

5. We produce the initial density and velocity fields constrained with the grouped, bias-
minimized, and relocated 3D peculiar velocities using the Constrained Realizations (CR)
technique (CR, Hoffman & Ribak, 1991, 1992; van de Weygaert & Bertschinger, 1996).
This method derives an estimate of the residual between the WF reconstruction and the true
field using a random realization. It allows the regions where only scarce or low-quality data
is available to be filled with a random Gaussian field, while converging to the constrained
values where these are available. Doing so, we restore statistically the otherwise missing
structures and ensure the overall compliance with the prior power spectrum. The "strength"
of the observational data used as constraints determines the extent to which the ICs are
likely to reproduce the observed local Universe. In those regions where the data is lacking
or dominated by error, the recovered velocity field will tend towards the random realization
of the prior model. The evolution of the simulation will thus be determined by the interplay
between the random modes and the constraints.

6. As scales below the linear threshold (3 – 4 Mpc) are non-constrained, at least not directly1,
there is no reason to work with density and velocity fields with resolution higher than that of
the galaxy groups and clusters. The resolution of the constrained density and velocity fields
can then be increased by adding small-scale features using the Ginnungagap software2.

The final ICs correspond to realization number 8 of the CLONES simulations, with additional
small-scale perturbations to achieve higher resolutions in different runs of SLOW.

1It can though, be shown that some small scales are induced by the large-scale environment. Carlesi et al. (2016a)
showed that it is the case of the local Group.

2https://github.com/ginnungagapgroup/ginnungagap
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Simulation Suite and Physics Models: The SLOW project includes a suite of simulations with
varying levels of physical complexity and resolution. These range from dark matter-only runs at
different resolution levels (7683 to 61443 particles), to full magneto-hydrodynamical simulations
incorporating cosmic rays, and hydrodynamical runs with galaxy formation physics. The latter
follow prescriptions similar to those used in the Magneticum simulations (see Sect. 2.4.1),
including radiative cooling, star formation, stellar feedback, chemical enrichment, and BH growth
with AGN feedback (Hirschmann et al., 2014b; Dolag et al., 2016; Dolag et al., 2025, and
references therein).

Reproducing the Local Universe: The SLOW project introduces several significant improve-
ments over previous generations of constrained cosmological simulations. One of the most
notable advancements lies in its use of a large simulation volume, (500ℎ−1Mpc)3, combined with
high-resolution hydrodynamical modeling that includes full galaxy formation physics. Unlike
earlier efforts, such as CLUES and HESTIA, which were typically limited to smaller volumes
or focused zoom-in regions, SLOW simultaneously captures the large-scale cosmic web and the
detailed baryonic processes that govern galaxy and cluster formation. At current time SLOW has
demonstrated high fidelity in reproducing multi-wavelength observables, including X-ray lumi-
nosities, temperatures, and SZ signals for the largest set of local Universe clusters ever replicated
in a cosmological volume (Hernández-Martínez et al., 2024).
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Table 2.1: Set of available SLOW simulations following different physical processes and utilizing
different resolutions. All are based on the same initial constrained density and velocity field.
Columns indicate: simulation name; final redshift 𝑧 to which the simulation was evolved; total
number of particles 𝑁; dark matter particle mass 𝑀DM; gas particle mass 𝑀gas (if applicable);
and the set of physical processes included (e.g., hydrodynamics, magnetic fields, cosmic rays,
galaxy formation).

Name 𝑧 N 𝑀D𝑀 𝑀g𝑎𝑠 Physics
SLOW – [𝑀⊙ℎ−1] [𝑀⊙ℎ−1]

DM7683 0 7683 2.4 × 1010 – DM only

DM15763 0 15763 2.9 × 109 – DM only

DM30723 0 30723 3.7 × 108 – DM only

DM61443 – 61443 4.6 × 107 – ICs only

AGN7683 0 2×7683 2.0 × 1010 3.7 × 109 Cooling, SF, AGN

AGN15363 0 2×15363 2.5 × 109 4.6 × 108 Cooling, SF, AGN

AGN30723 2 2×30723 3.1 × 108 5.5 × 107 Cooling, SF, AGN

CR30723 0 2×30723 3.1 × 108 5.5 × 107 MHD, Cosmic Rays
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3 | Machine Learning

Machine Learning (ML) has become a cornerstone of modern data analysis across a wide range
of scientific fields, from biology and medicine to finance and astrophysics. Its strength lies in
its ability to learn from data, uncovering patterns, structures, or mappings that would be difficult
to identify through explicit modeling. In contrast to rule-based approaches, ML algorithms are
trained to recognize relationships between inputs and outputs through exposure to example data,
without the need for manual feature design or hardcoded rules (Bishop, 2006; Goodfellow et al.,
2016).

The purpose of this section is to equip the reader with the essential ML background needed
to follow the methods developed in later chapters, particularly Chapter 6. While ML is a vast
and rapidly evolving field, we focus here on a selection of foundational concepts that are most
relevant to our applications. Section 3.1 begins with an overview of the use of ML in the field of
astrophysics and cosmology. Section 3.2 explores the differences between classical ML techniques
and Deep Learning (DL), including the structure and function of Neural Networks (NNs), the
training, and the performance metrics with which results are typically evaluated. In Section 3.3,
we explore the application of ML for cosmological parameter inference, particularly exploring
the CAMELS project. For readers seeking a more comprehensive treatment of the subject,
we recommend the foundational texts by Bishop (2006); Goodfellow et al. (2016); VanderPlas
(2016); Stevens et al. (2021); Alzubaidi et al. (2021).

3.1 The Need for Machine Learning in Cosmology
Modern cosmology stands at the intersection of theory, simulation, and observation, relying
on increasingly large and complex datasets to test fundamental models of the Universe. While
traditional statistical methods have long played a central role in the analysis and interpretation
of cosmological data, they face significant limitations in the current era. These methods often
rely on assuming a specific model, a choice that may be unjustified a priori, while typically also
depending on low-dimensional summary statistics, and struggling with scalability when applied
to large simulations or observational datasets. As cosmological models grow in complexity, and
the data used to constrain them becomes higher dimensional and noisier, new approaches are
needed to extract information efficiently and robustly.

This need is only becoming more urgent with the advent of next-generation surveys such as
Euclid Laureĳs et al. (2011), SKA (Braun et al., 2019), and LSST (LSST Science Collaboration
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et al., 2009), which will deliver unprecedented volumes of high-dimensional data. These instru-
ments are poised to transform cosmology into a data-intensive science, further pushing traditional
methods to their limits and requiring scalable, flexible analysis techniques.

ML offers a flexible and scalable solution to many of these challenges. Unlike traditional
techniques that rely on pre-defined models and assumptions, ML algorithms are capable of learn-
ing from raw or minimally processed data, capturing complex non-linear relationships without
requiring explicit likelihoods. This makes ML particularly well suited for high-dimensional
problems and for simulation-based workflows where no tractable likelihood exists.

Over the past decade, ML has already demonstrated its utility in a wide range of astro-
physical applications. Convolutional Neural Networks (CNNs) have been used to classify
galaxies by morphology, distinguish between merger types, and analyzing photometric im-
ages (Domínguez Sánchez & et al., 2018). Other ML-based models have shown promising
results with weak gravitational lensing data, for example, by learning to extract lensing signals
from noisy maps (Schmelzle et al., 2017), or by estimating cosmological parameters directly from
simulations of LSS (Ravanbakhsh et al., 2017).

A particularly important role for ML in cosmology is in the context of likelihood-free inference,
also known as Simulation-Based Inference (SBI). In many physical systems, the forward model
(i.e., simulation) is known, but the likelihood of the data given model parameters is not. ML-based
SBI methods address this by learning a mapping between simulation outputs and the parameters
used to generate them, typically using NNs trained on large ensembles of simulated data (Cranmer
et al., 2020; Alsing et al., 2019). This allows researchers to perform parameter estimations even
in cases where the full likelihood function is unknown or intractable.

In parallel, ML is increasingly used for building emulators, surrogate models trained to ap-
proximate the outputs of high-fidelity simulations. These models can predict simulation results
across parameter space orders of magnitude faster than running the simulations themselves (Heit-
mann et al., 2009; Agarwal et al., 2021). When combined with SBI techniques, emulators enable
both rapid forward modeling and efficient inverse inference.

Together, these capabilities make ML a powerful and increasingly indispensable component of
modern cosmological analysis. Its ability to operate on high-dimensional data, bypass likelihood
assumptions, and accelerate computation opens new possibilities for interpreting observations
and exploring theoretical models. As observational and simulated datasets continue to grow in
size and complexity, the need for ML in cosmology will only become more pressing.

3.2 Fundamentals of Machine Learning
At the core of ML is the concept of learning a mapping: given a dataset composed of input
vectors ®𝑥 and corresponding target values or labels ®𝑦, a ML algorithm is trained to approximate
a function that predicts the outputs from the inputs. This process is typically referred to as the
training phase. The function approximator, often referred to as a model in the ML context (e.g.,
a NN or decision tree), is distinct from the term "model" as used in physics or statistics, where it
usually denotes a set of assumptions about the data-generating process. In contrast, ML models
are data-driven and learn patterns directly from examples, without requiring an explicit physical
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or probabilistic model of the system (Hastie et al., 2009).
ML is typically divided into two main paradigms: supervised and unsupervised learning. In

supervised learning, each input is associated with a known output or label, allowing the algorithm
to learn a direct mapping from data to target. For example, a model might be trained to identify
cats in images after being shown many labelled examples. In contrast, unsupervised learning deals
with unlabelled data. The model is tasked with discovering latent structure, such as clustering or
statistical distribution, without predefined targets (Murphy, 2012). For instance, an unsupervised
model might learn to separate images of cats and dogs purely based on patterns in the data, even
if the categories are not named.

This work primarily focuses on supervised learning, which offers a robust framework for
classification and regression tasks, especially when a sufficiently large and representative labelled
dataset is available. Supervised models are particularly effective for processing the kind of
structured outputs we obtain from simulations, such as halo properties or spatial maps (Ntampaka
et al., 2019).

Training an ML model involves optimizing its internal parameters ®𝜃, which control how inputs
are transformed into outputs. It is important to distinguish between parameters, which are learned
during training, and hyperparameters, which are set by the user and define aspects of the model
architecture (e.g., number of layers or learning rate). The performance of the final model depends
critically on both (Goodfellow et al., 2016).

To evaluate model performance reliably, data is usually divided into three disjoint subsets: the
training set, used to fit the model; the validation set, used to tune hyperparameters and prevent
overfitting; and the testing set, which provides an unbiased estimate of generalization to new data
(Kuhn & Johnson, 2013). Overfitting occurs when a model becomes too tailored to the training
data, capturing noise or fluctuations rather than general patterns. In contrast, underfitting happens
when the model is too simple to represent the underlying structure, resulting in poor performance
even on training data (Hastie et al., 2009; Kuhn & Johnson, 2013; Géron, 2019).

Another fundamental aspect is generalization, i.e. the ability of the model to make accurate
predictions on new, unseen inputs. This is essential in scenarios where models are deployed be-
yond the training data, such as in interpreting new observations or applying models to simulations
generated under different conditions. Poor generalization is often a consequence of training data
that is insufficient in quantity, lacks diversity, or is poorly processed and unrepresentative of the
target distribution (Hastie et al., 2009; Kuhn & Johnson, 2013; Domingos, 2012; Ntampaka et al.,
2019).

To ensure robust learning, input data often requires preprocessing. This may involve nor-
malization, handling missing values, encoding categorical variables, or transforming features
into more suitable representations (Géron, 2019). While these steps may seem routine, they
can significantly influence training time and final performance by improving numerical stability,
ensuring consistent feature scaling, and allowing models to detect relevant patterns more easily.
Poor preprocessing can lead to longer convergence times, biased learning, or degraded predictive
accuracy.

Although the field of ML encompasses a wide range of models and techniques, many foun-
dational ideas are shared across architectures. In the next sections, we build on this foundation to
explore more specific algorithms and their role in our astrophysical applications.
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3.2.1 Deep Learning
While all ML algorithms share the objective of learning patterns from data, DL represents a
specialized and particularly powerful subset of the field. DL models are constructed using
Artificial Neural Network (ANN), which draw inspiration from the way biological neurons
function. These models are especially effective for analyzing unstructured or high-dimensional
data, such as images, audio, or spatial fields (Goodfellow et al., 2016; Géron, 2019).

The basic building block of a DL model is the artificial neuron, an abstraction loosely
based on the biological neuron. In biological systems, neurons integrate electrical signals from
neighboring cells through dendrites. If the cumulative signal exceeds a certain threshold, the
neuron activates and transmits a signal down its axon. In artificial models, each neuron similarly
takes multiple weighted inputs, applies a bias, and passes the result through an activation function
to produce an output. The weights can be thought of as a kind of transformation matrix that scales
and combines the input features, while the bias shifts the resulting value, much like adjusting
the baseline or offset before applying the activation. This structure is illustrated in Fig. 3.1.
The activation introduces nonlinearity, which is critical for learning complex mappings between
inputs and outputs.

Deep Neural Network (NN) are formed by stacking multiple layers of neurons, typically
including an input layer, one or more hidden layers, and an output layer, where depth refers
specifically to the number of layers in the network (Goodfellow et al., 2016). A network with
many neurons in a single layer is considered wide but not deep, whereas a deep network has
multiple stacked layers, each potentially with several neurons.

Each layer in the network is designed to process and transform the representation of the data.
As shown in Fig. 3.1, the input layer receives the (possibly preprocessed) input data, hidden
layers extract increasingly abstract features, and the output layer returns the final prediction. This
architecture enables NN to learn hierarchical feature representations that capture subtle structures
in the data (LeCun et al., 2015).

Compared to traditional ML models, DL has several distinguishing features:

• Automatic feature extraction: Deep networks can learn useful representations from raw
inputs without manual engineering.

• Model depth and expressiveness: With many layers, DL models can approximate highly
complex functions.

• Low human supervision: DL architectures reduce the need for hand-crafted features or
preprocessing.

• High data and compute requirements: Training requires large datasets and computational
resources to prevent overfitting and ensure convergence.

In conclusion, DL provides a powerful framework for modeling complex data distributions.
Its capacity to automatically learn layered abstractions makes it particularly effective for tasks
where traditional ML models struggle. These properties are used throughout this thesis to analyze
astrophysical simulations and perform parameter inference in high-dimensional parameter spaces.
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Figure 3.1: Biological neural cell (top) and artificial neuron (bottom) schemes. Artificial neurons
can be modelled in terms of a simplified version of the functioning principles of biological
neurons. Both neurons receive some information to process. This information is first processed
by the cell body/artificial neuron. Subsequently, the information is subject to a non-linear
activation layer (axon/activation function) in order to provide an answer. Credits: http://www.
mplsvpn.info/2017/11/what-is-neuron-and-artificial-neuron-in.html

http://www.mplsvpn.info/2017/11/what-is-neuron-and-artificial-neuron-in.html
http://www.mplsvpn.info/2017/11/what-is-neuron-and-artificial-neuron-in.html
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Figure 3.2: Example of a dense NN composed of an input layer, three hidden layers (labelled
as 1st, 2nd, and 3rd layers), and an output layer. Each neuron in a given layer is connected to
every neuron in the subsequent layer, forming a dense structure. The input features 𝑥1 and 𝑥2 are
passed through weighted connections and transformed into intermediate values (scores), which
are then processed by activation functions (e.g., sigmoid in this case) to generate the outputs of
the hidden units. This process is repeated across layers, with each layer applying new weights
and activation functions. The final output layer provides the prediction values. The diagram
highlights the role of weights, scores, and activation functions at each step of the computation.
Credits: https://lamarr-institute.org/blog/deep-neural-networks/

https://lamarr-institute.org/blog/deep-neural-networks/
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Figure 3.3: Impact of learning rate on gradient descent convergence. A learning rate that
is too low results in slow progress toward the minimum (left panel), while an optimal rate
achieves fast and stable convergence (central panel). In contrast, a learning rate that is too
high causes overshooting and potential divergence from the minimum (right panel). Credits:
https://www.jeremyjordan.me/nn-learning-rate/

Figure 3.4: Behavior of the loss function over training epochs for different learn-
ing rates. A low learning rate results in slow convergence, while a very high
learning rate causes the loss to diverge. A high learning rate may converge ini-
tially but can oscillate or stall. A well-chosen learning rate ensures fast and sta-
ble convergence of the loss. Credits: https://discuss.datasciencedojo.com/t/
what-is-a-model-learning-rate-is-a-high-learning-rate-always-good/710

https://www.jeremyjordan.me/nn-learning-rate/
https://discuss.datasciencedojo.com/t/what-is-a-model-learning-rate-is-a-high-learning-rate-always-good/710
https://discuss.datasciencedojo.com/t/what-is-a-model-learning-rate-is-a-high-learning-rate-always-good/710
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Dense Neural Networks

A fundamental architecture within the family of DL models is the dense neural network, also
known as a Fully Connected Network (FCN). This type of network is defined by the full
connectivity between layers: each neuron in one layer is connected to every neuron in the next.
Such models are widely used due to their general-purpose nature and ability to approximate
complex, nonlinear functions.

Dense networks consist of an input layer, one or more hidden layers, and an output layer (see
Fig. 3.2 for a schematic representation). Each neuron computes a weighted sum of its inputs,
adds a bias term, and applies a non-linear activation function (such as ReLU, sigmoid, or tanh).
These transformations are composed layer by layer, enabling the model to learn rich hierarchical
representations of the input.

Formally, the transformation applied by a dense layer can be written as:

®ℎ = 𝑓 (𝑊 ®𝑥 + ®𝑏), (3.1)

where ®𝑥 is the input vector, 𝑊 is the weight matrix, ®𝑏 is the bias vector, and 𝑓 is a nonlinear
activation function applied element-wise. In a multilayer network, the output ®ℎ of one layer
serves as the input to the next.

One of the appealing theoretical properties of dense networks is their universal approximation
capability: a feedforward network with a single hidden layer and a sufficient number of neurons
can approximate any continuous function on a compact domain to arbitrary accuracy (Hornik
et al., 1989). In practice, deeper architectures are often preferred as they allow for a more efficient
representation and hierarchical decomposition of complex functions.

Despite their expressive power, dense networks can be computationally demanding. The
number of trainable parameters increases rapidly with the number of neurons and layers, which
can lead to overfitting if the training dataset is limited or if no regularization techniques are
employed.

Emulators

In many areas of computational science, particularly in cosmology, physical models are imple-
mented via large-scale numerical simulations. These simulations are essential for capturing the
complex, nonlinear dynamics governing structure formation, galaxy evolution, and the behavior
of the intergalactic medium. However, their high computational cost makes it impractical to run
them repeatedly across wide ranges of parameter space. To overcome this limitation, researchers
have developed emulators: fast surrogate models that approximate the output of simulations while
requiring orders of magnitude less computational time.

An emulator is a model trained to learn the mapping between a set of input parameters
(e.g., cosmological parameters, feedback strengths) and associated outputs (e.g., density fields,
halo profiles, or power spectra). Once trained, the emulator can generate predictions nearly
instantaneously. This enables dense sampling of the parameter space, uncertainty quantification,
and a seamless integration into larger inference workflows (Heitmann et al., 2009; Cranmer et al.,
2020).
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The general process of emulator construction involves three main steps:

1. Sampling parameter space: Input parameters are selected using techniques such as Latin
hypercube sampling or quasi-random sequences to ensure good coverage.

2. Running simulations: High-resolution simulations are performed at the sampled param-
eter points to provide the training data.

3. Training the surrogate model: A regression model, commonly a Gaussian Process (GP)
or a NN, is trained to interpolate between simulation outputs based on the input parameters.

GPs are non-parametric, kernel-based models that define a distribution over functions and
provide both mean predictions and associated uncertainty estimates (Rasmussen & Williams,
2006). Their probabilistic nature makes them particularly well suited to scientific applications
requiring rigorous error propagation. However, GPs scale cubically with the number of training
samples, which can become a bottleneck for large datasets.

To address higher-dimensional and data-intensive problems, more recent developments use
DL to construct emulators. NNs, including fully connected neural networks, CNNs, and au-
toencoders, have been applied successfully to emulate outputs from cosmological simulations
(Ravanbakhsh et al., 2017; Villaescusa-Navarro et al., 2021). These methods scale better with
dataset size and can generalize across complex parameter spaces, although they may require more
training data and computational resources upfront.

In this thesis, we employ a ML-based emulator named CARPoolGP (Lee et al., 2023) to
generate synthetic realizations of galaxy cluster profiles. CARPoolGP is a sampling and regres-
sion technique that combines the CARPool method (Chartier et al., 2021) with GP regression to
reduce the variance in emulated quantities. The key behind CARPoolGP is that, by introducing
correlations between simulations at different points in parameter space, one can significantly en-
hance statistical efficiency. Specifically, CARPoolGP uses pairs of simulations based on the same
ICs but evolved in time with different cosmological and astrophysical parameters, to create cor-
relations and reduce the variance in the predicted/emulated quantities. Furthermore, the method
supports active learning by identifying the most informative locations in parameter space for gen-
erating new simulations, thereby optimizing the use of computational resources. The interested
reader can find a detailed explanation of the working principle of CarpoolGP in Section 3.3.2.

Emulators like CARPoolGP are increasingly vital tools in cosmology, offering a powerful
combination of speed, accuracy, and uncertainty quantification. When integrated into likelihood-
free inference pipelines, they enable efficient exploration of high-dimensional parameter spaces,
making them well-suited for modern astrophysical and cosmological parameter inference (Alsing
et al., 2019; Cranmer et al., 2020).

Model Training and Optimisation with Optuna

Training a DL model involves optimizing its parameters, weights and biases, to minimize a
predefined loss function 𝐽 ( ®𝜃), which measures the discrepancy between predicted and true
outputs. The training process relies on optimization algorithms that guide the model’s parameters
toward configurations that reduce this loss.
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At the heart of this process is the concept of gradient-based optimization. To update the
weights, we compute the gradient of the loss function with respect to each model parameter.
These gradients inform how each parameter should be adjusted to reduce the loss. The most
widely used method is gradient descent, in which parameters are iteratively updated by moving
them in the direction of the negative gradient. However, evaluating the gradient over the entire
dataset can be computationally expensive. To address this, Stochastic Gradient Descent (SGD) is
commonly used. Instead of computing gradients on the full dataset, SGD estimates them using
small subsets of the data known as mini-batches, allowing for a faster and more scalable training
(Ruder, 2016). This technique offers a trade-off between computational efficiency and stability.
A critical hyperparameter in this process is the learning rate, which controls the size of parameter
updates. Setting it too high may prevent convergence, while too low a value slows training and
risks poor local minima (see Fig. 3.3). Figure 3.4 shows the evolution of the loss function during
training with optimal and sub-optimal learning rate choices.

The gradients are computed using a method known as backpropagation, which efficiently
applies the chain rule of calculus through the network layers. In backpropagation, the gradient of
the final layer is computed first and then propagated backwards through the network. This allows
intermediate layers to reuse partial gradient computations, significantly improving efficiency
compared to naive approaches. The number of epochs, or complete passes through the training
dataset, also plays a key role in determining model performance.

To improve model generalization and avoid overfitting, several regularization strategies are
typically employed in the training phase:

• Weight decay: Also known as ℓ2-regularization, this technique penalizes large weights by
adding a term proportional to the squared magnitude of the weights to the loss function.
The gradient update is thus modified as:

®𝜃 → ®𝜃 − ∇𝐽 ( ®𝜃) − 𝜆 ®𝜃, (3.2)

where 𝜆 is the regularization strength and ®𝜃 are the model parameters.

• Early stopping: During training, performance is monitored on a separate validation set. If
the validation loss begins to increase while the training loss continues to decrease, training
is stopped. This prevents the model from overfitting to the training data and preserves its
ability to generalize.

Optimizers are algorithms that determine how weights are updated during training. While
basic SGD is effective, more advanced methods are often used to improve convergence and
stability:

• Momentum: This method helps accelerate training by incorporating a running average of
past gradients. By doing so, it reduces oscillations and encourages smoother convergence.
The momentum term ®𝑚𝑡 is updated as:

®𝑚𝑡 → 𝛽 ®𝑚𝑡−1 + 𝛼∇𝐽 ( ®𝜃), (3.3)

and the parameters are updated as ®𝜃 → ®𝜃 − ®𝑚𝑡 , where 𝛽 is the momentum factor and 𝛼 the
learning rate.
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• Adam: In this thesis, we make use of the Adam optimizer (Kingma & Ba, 2014), which
combines the benefits of momentum and adaptive learning rates. Adam estimates the first
and second moments of the gradient and uses them to adapt the step size for each parameter.
This optimizer has demonstrated to perform well across a wide range of problems with
minimal manual tuning.

While choosing an optimizer is crucial, selecting the right hyperparameters, such as learning
rate, number of layers, batch size, and regularization strength, is equally important. These
hyperparameters are not learned during training and must be tuned externally. Manual tuning
or grid search can be prohibitively expensive, especially when the parameter space is large
or training is computationally demanding. To address this challenge, we employ Optuna, an
automated hyperparameter optimization framework (Akiba et al., 2019).
Optuna1 uses a technique known as sequential model-based optimization to guide the search

for optimal hyperparameters. It defines a study composed of multiple trials, where each trial
corresponds to a model trained with a different set of hyperparameter values. These are evaluated
based on a user-defined objective function, typically a validation metric such as accuracy or loss.
Optuna then uses algorithms like the Tree-structured Parzen Estimator (TPE) to propose new
hyperparameter combinations that are likely to perform well.

Some of the main advantages that Optuna presents are its computationally efficiency, as poor-
performing trials are pruned early, conserving computational resources. It also offers flexibility
in the exploration of parameters, allowing to control the search space using defined conditional
searches. Finally, is also offers a high automation level, as once the search space and objective
function are defined, Optuna performs the search with minimal human intervention.

In this thesis, Optuna is used to fine-tune the hyperparameters of the NNs employed in
the parameter inference. By systematically optimizing these hyperparameter configurations, we
improve model generalization, accelerate convergence, and ensure consistent performance across
diverse datasets.

3.2.2 Performance Metrics
In the context of simulation-based inference with NNs, a number of standard metrics are com-
monly used to assess both the accuracy of the parameter estimates and the reliability of the
associated uncertainty predictions. These metrics are typically computed on a held-out test set
of 𝑁 samples, where each true parameter value 𝜃𝑖 is compared to the predicted posterior mean 𝜇𝑖
and its predicted standard deviation 𝜎𝑖. Four widely used metrics are described below:

1. Root Mean Squared Error (RMSE). RMSE quantifies the power of our inference by
measuring the average magnitude of errors between predicted and true values. It provides a
single number that describes how close the predictions are to the actual values. The RMSE is
computed as:

1https://optuna.org
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RMSE =

√√√
1
𝑁

𝑁∑︁
𝑖=1

(𝜃𝑖 − 𝜇𝑖)2 (3.4)

Low RMSE values indicate that the predictions are close to the actual values, signifying
higher accuracy fo the model. High RMSE values indicate larger errors between predictions
and actual values, signifying lower accuracy. RMSE is particularly useful in contexts where the
magnitude of the error is important and provides an absolute measure of fit.

2. Mean Relative Uncertainty (𝜖). This metric tells us about the precision of the model by
evaluating the relative size of the standard deviation of the prediction compared to the predicted
means.

𝜖 =
1
𝑁

𝑁∑︁
𝑖=1

𝜎𝑖

𝜇𝑖
(3.5)

A lower 𝜖 implies higher precision, meaning the predicted values have smaller relative
uncertainties. Higher values of 𝜖 indicate lower precision, meaning the predicted values have
larger relative uncertainties. This metric helps us understand the precision of the predictions,
although it does not provide information about their accuracy.

3. Pearson Correlation Coefficient (𝑟). The correlation coefficient measures the strength and
direction of the linear relationship between the predicted and actual values:

𝑟 (𝜃, 𝜇) = cov(𝜃, 𝜇)
𝜎𝜃𝜎𝜇

(3.6)

An 𝑟 value close to 1 indicates a strong positive linear relationship between predicted and
actual values, meaning the predicted values closely follow the trend of the real values. An 𝑟 value
close to −1 indicates a strong negative linear relationship between predicted and actual values,
indicating that the predicted values follow the opposite trend of the real values. If 𝑟 is close to 0,
this indicates little to no linear relationship between predicted and actual values, suggesting the
predicted values are scattered randomly and do not align with the trend of the real values. The
correlation coefficient is useful for understanding the degree to which the predictions follow the
trend of the actual data.

4. Reduced Chi-Squared (𝜒2). The reduced chi-squared provides a measure of how accurate
the predicted standard deviations of the network are by comparing it to the residuals, i.e., the
differences between the real and expected values.

𝜒2 =
1
𝑁

𝑁∑︁
𝑖=1

(
𝜃𝑖 − 𝜇𝑖
𝜎𝑖

)2
(3.7)
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A value of 𝜒2 ≈ 1 indicates that the model fits the data well. The residuals are consistent
with the expected variance, considering the uncertainties in the data. In other words, the model’s
predictions differ from the observed values by approximately the expected amount, given the
measurement uncertainties. A value of 𝜒2 < 1 suggests that the uncertainties in the data have
been overestimated, as the deviations between the observed and predicted values are smaller
than what would be anticipated given the uncertainties. If 𝜒2 > 1, the model does not fit the
data well. The deviations between the model predictions and the observed data are larger than
expected based on the uncertainties. This may suggest that the uncertainties in the data have been
underestimated.

These metrics collectively offer a comprehensive assessment of the model’s performance,
highlighting both its accuracy and precision.

3.3 Parameter Inference in Cosmology

A central objective in cosmology is to infer the underlying physical quantities that govern the
evolution of the Universe, such as the matter density 𝛺𝑚, the amplitude of primordial fluctuations
𝜎8, or the strength of baryonic feedback, from observable data. Traditionally, this has been
achieved using likelihood-based statistical methods, where one defines an explicit probability
distribution for the data given the model parameters, and applies Bayes’ theorem to compute the
posterior (Trotta, 2008; Verde, 2010).

However, the applicability of classical inference techniques is limited in modern cosmologi-
cal contexts. Forward models, such as hydrodynamical or N-body simulations, are often highly
nonlinear and stochastic, and their outputs are not amenable to simple parametric likelihoods.
Additionally, observables such as galaxy cluster profiles, LSS, or weak lensing maps are inher-
ently high-dimensional and structured, making the construction of tractable likelihoods either
intractable or impossible (Elsner et al., 2019; Alsing et al., 2019). Even with simplifying as-
sumptions (e.g., Gaussian fields, linear response models), such approximations can lead to biased
posteriors and loss of information.

To overcome these limitations, the field has increasingly turned to likelihood-free inference
techniques, often implemented using ML. These methods bypass the need for explicit likelihoods
by learning a direct mapping from data to parameters, or from data to posterior distributions, using
large ensembles of simulations as training data. NNs, normalizing flows, and SBI architectures
provide scalable and flexible alternatives capable of extracting information from complex, high-
dimensional data sets (Alsing et al., 2019; Cranmer et al., 2020; Březina et al., 2022).

In the following subsection, we focus on the CAMELS project (Cosmology and Astrophysics
with MachinE Learning Simulations) (Villaescusa-Navarro et al., 2021), a pioneering suite of
simulations specifically designed to enable ML-based inference in cosmology. CAMELS provides
a controlled environment to test, benchmark, and develop inference methods using simulated
universes with varying cosmological and astrophysical parameters.
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3.3.1 The CAMELS project
The CAMELS project (Villaescusa-Navarro et al., 2021) is a large-scale initiative designed to
explore the use of ML techniques for cosmological inference. The central goal of CAMELS
is to generate a statistically rich and physically diverse simulation dataset that allows models to
learn the relationship between high-dimensional observables—such as matter density fields, halo
properties, or gas profiles, and the underlying cosmological and astrophysical parameters that
shape them.

CAMELS achieves this by producing thousands of hydrodynamical and N-body simulations
that systematically vary both cosmological parameters (e.g., 𝛺𝑚, 𝜎8) and astrophysical feedback
parameters (e.g., SN and AGN feedback strengths). These simulations are run using several
independent codes, such as IllustrisTNG (Springel et al., 2018), SIMBA (Davé et al., 2019),
Magneticum (Dolag et al., 2025), Eagle (Schaye et al., 2015), and Astrid (Bird et al., 2022),
each of the models incorporating different physical prescriptions. A summary of the simulations
available to date is presented in Table 3.1. By varying the input parameters across a wide domain,
CAMELS enables the construction of flexible ML models that can generalize across different
regimes of physical theory and numerical implementation.

To efficiently explore a multi-dimensional parameter space, the CAMELS simulations are
sample across the possible cosmological and astrophysical parameters using samplings such as
Latin Hypercubes or Sobol Sequences. Each simulation corresponds to a unique point in the
sampled space. This diversity in simulations enables both supervised learning and SBI tasks,
making CAMELS a benchmark suite for testing new methodologies.

Type Code Subgrid model Generation
First Second

Hydrodynamic

Arepo IllustrisTNG 3,219 1,192
Gizmo SIMBA 1,171
MP-Gadget Astrid 2,080
OpenGadget Magneticum 77
Swift EAGLE 1,052
Ramses 552 48
Enzo 6
Gadget4-Osaka CROCODILE 260 148
Gizmo Obsidian 27

N-body Gadget-III – 6,136 1,072

Table 3.1: Summary of the available simulations in the CAMELS suite, classified by simulation
codes, subgrid models.

Several recent studies have made use of the CAMELS simulation suite to perform parameter
inference using ML, particularly focusing on field-level likelihood-free inference. For example,
Shao et al. (2022) trained graph NNs on halo catalogs from N-body simulations and showed
that models using positions and velocities of halos with masses ≳ 1010ℎ−1𝑀⊙, can robustly
infer cosmological parameters like 𝛺m and 𝜎8 with high accuracy. Their models generalize well



3.3 Parameter Inference in Cosmology 77

across N-body simulations using different codes. Building on this, Shao et al. (2023) extracted
a symbolic equations using graph NNs that predicts 𝛺m directly from positions and velocities
of dark matter halos. de Santi et al. (2023) extended this approach to galaxy catalogs from
hydrodynamic simulations, finding that models using both galaxy positions and radial velocities
maintain robustness across different implementation of galaxy formation physics, when inferring
𝛺m. This robustness persists even under observational systematics, as shown in de Santi et al.
(2025), who incorporated realistic effects such as masking and redshift distortions. Finally,
Echeverri-Rojas et al. (2023) demonstrated that NNs can recover 𝛺m from integrated galaxy
properties, such as total stellar mass and metallicity, across multiple simulation codes and for
redshifts 𝑧 ≲ 3, although fall short when infering 𝜎8 or parameters regulating feedback processes.

These works collectively show that while ML-based parameter inference is promising, it is
highly sensitive to the choice of observables, the preprocessing of input data, and the structure of
the neural architecture. In particular, the entanglement between cosmology and baryonic physics
remains a major obstacle. This and the inference of all possible cosmological and astrophysical
parameters are challenges we aim to address in this thesis.

3.3.2 The CARPoolGP Emulator
To address the high computational cost of generating large numbers of high-resolution simulations,
Lee et al. (2023) introduced CARPoolGP (Cluster-Accelerated Regression via Pooling and GPs),
a novel emulator framework designed for efficient and accurate modeling of complex simulation
outputs. Developed in the context of the CAMELS-ZOOMGZ suite, CARPoolGP enables fast
emulation of halo-scale properties, such as matter and gas profiles, across varying cosmological
and astrophysical parameters, while accounting for both halo-to-halo variations and the effects of
different physical models.

The central idea behind CARPoolGP is to pool information across pairs of simulations of
the same halo. In zoom-in simulations, a given halo is re-simulated under different physical
assumptions or parameter values (e.g., different feedback strengths or cosmologies), called a
surrogate simulation. Rather than treating the original or base simulation and its surrogate as
independent samples, CARPoolGP constructs a joint probabilistic model that learns a shared
structure across both versions of the same halo. Figure 3.5 shows a schematic representation of
both base a surrogate simulations across a parameter Q. Specifically, it models the outputs using
a GP with a decomposition into two components: a latent, halo-specific kernel that captures
shared physical structure, and an additive kernel encoding the effects of varying parameters.
This pooling reduces the variance of the emulator and improves generalization, especially when
training data is limited.

Formally, CARPoolGP is built within a multi-output GP regression model. For each halo,
the different simulations are treated as multiple outputs of a shared underlying process. This
hierarchical modeling approach enables the emulator to disentangle the influence of cosmology
and feedback from intrinsic halo-specific features. Moreover, it allows the model to interpolate
smoothly in parameter space, even in regions where only low-fidelity or sparse data is available.
Figure 3.6 shows a simplified representation of the improved accuracy and predictive uncertainty
with the CARPoolGP methodology in comparison to a standard random sampling.
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Figure 3.5: Illustrative example demonstrating the performance of CARPoolGP, as introduced by
Lee et al. (2024). The left panel displays 50 base samples (red) and 50 surrogate samples (blue),
where each surrogate sample is correlated with a base sample located at the nearest parameter
region. A grey double-headed arrow highlights one such correlated pair. In contrast, the right
panel shows 100 uncorrelated samples drawn uniformly at random across the parameter space.
The black line in both panels represents the true variation of the target quantity 𝑄.

Figure 3.6: Comparison of emulation performance using CARPoolGP (left panel) and standard
random sampling (right panel), both based on the same number of samples. The blue line and
shaded region represent the predicted mean and 95% confidence interval, respectively, while
the black dotted line shows the true underlying variation of the quantity 𝑄. In the CARPoolGP
case, base and surrogate samples are correlated across parameter islands, leading to significantly
improved accuracy and reduced predictive uncertainty. Credit: Lee et al. (2024)
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In this thesis, we adapt CARPoolGP to emulate thermodynamic profiles of the hot gas of
galaxy clusters, such as pressure, temperature, entropy, X-ray surface brightness and electron
density, across variations in astrophysical parameters. The emulator is trained on a set of high-
resolution zoom-in simulations, enabling us to predict smooth and realistic profiles for unseen
configurations. These emulated profiles serve as inputs for our simulation-based inference model,
expanding our training set without requiring thousands of expensive simulations.
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4 | Simulating the Local Web: Properties
of Local Galaxy Clusters

The content of this chapter has been published by Hernández-Martínez et al. (2024) in A&A.
Some adjustments have been made.

4.1 Constructing a Sample of Local Universe Galaxy Clusters

4.1.1 A General View
The local Universe encompasses a spatial region of approximately z < 0.1 (R < 200 Mpc/h). Due
to its close proximity, the local Universe is the most extensively studied part of the Universe, pre-
senting a unique laboratory to study galaxy clusters across a wide range of shapes, characteristics,
and dynamical states.

In our local volume, located approximately 15 Mpc away, the Virgo cluster stands out as the
primary defining feature of our immediate cosmic neighborhood and covers the largest area in
the sky. Its closeness has made it among the best observed clusters of our Universe (Binggeli &
Huchra, 2000), also hosting the well-known central galaxy M87.

Moving beyond Virgo, a roster of renowned and well-observed clusters such as Centaurus,
Fornax, Hydra, Norma, and Perseus take the central stage within the local volume. Perseus, in
particular, has been widely observed through X-ray studies using Chandra observations (Weis-
skopf et al., 2000; Fabian et al., 2011), as well as ROSAT PSPC (Branduardi-Raymont et al.,
1981; Schwarz et al., 1992; Allen et al., 1993), Hitomi (Aharonian et al., 2017), XMM-Newton
data and Suzaku mosaics (Simionescu et al., 2012; Simionescu et al., 2013; Urban et al., 2013).
These studies have shown very distinctive features that make this cluster worth studying, like its
pronounced cool core, with a sharp peak in X-ray surface brightness and decreasing temperature
toward the center, and strong signs of ongoing AGN feedback processes (Böhringer et al., 1993;
Fabian et al., 2000a). Perseus shows also signs of a powerful merger, yet its cool core remains
undestroyed. However, the motion induced by this merger seems to penetrate the cool core of the
cluster, forming a large-scale sloshing inside the cluster (Simionescu et al., 2012).

At a distance of roughly 100 Mpc, we find the Coma cluster, a remarkable rich and complex
structure, with an also rich history of detailed observations (Fitchett & Webster, 1987; Mellier
et al., 1988; Biviano et al., 1996; Biviano, 1998; Planck Collaboration et al., 2013b). White et al.
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(a)

(b)

Figure 4.1: Full-sky projections of the Compton-y signal encompassing the entire simulation
volume in SLOW are shown in the following manner: (a) A full-sky projection in galactic
coordinates. (b) On the left, the galactic northern sky is projected, while on the right, the
galactic southern sky is shown. The zone of avoidance lies at the edge of the spheres. Circles
are employed to mark the projected 𝑟500 values for the cross-identified clusters. Note that the
cross-identification of A576 and A3571 was improved with respect to Dolag et al. (2023)

.
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(1993) showed that the Coma cluster was plausibly formed by the merging of several distinct
substructures which are not yet fully merged and Vikhlinin et al. (1994) showed that the extended
regions of X-ray emission in the central region of Coma are associated with the subgroups NGC
4889 and 4874, two galaxies lying at the center of the cluster. It also presents signs of recent
infall in the form of linear filaments to the southeast (Vikhlinin et al., 1997), extending ≈ 1 Mpc
from the cluster center toward the two central galaxies aforementioned (Andrade-Santos et al.,
2013; Neumann et al., 2001; Arnaud et al., 2001; Briel et al., 2001).

Beyond the previously mentioned clusters, we can find a significant number of very massive
clusters extending up to a distance of over 150 ℎ−1Mpc (Courtois et al., 2013; Dupuy, A. &
Courtois, H. M., 2023). Therefore, within the cosmological volume where our simulation is
constrained, we account for a rich variety of galaxy clusters. This allows us to conduct detailed
studies of their evolution as well as testing (hydro)dynamical and physical processes governing
their formation.

4.1.2 Collection Sample of Local Galaxy Clusters

The previously mentioned examples show the immense diversity of processes and dynamical states
observed in local clusters. Thus, detailed observations of the local Universe add immeasurable
value to astrophysical discussions like the survivability of cool cores (e.g. McDonald et al.,
2013), the effects of mergers and AGN associated feedback (e.g. Eckert et al., 2021), as well as
cosmological discussions on LSS formation (e.g. Mathis et al., 2002), mass estimation based on
individual clusters (e.g. Lebeau et al., 2023) and inference of cosmological parameters (e.g. Tully
et al., 2023).

In this work, we collected information from a total of 221 local Universe clusters and groups
from the literature. To do so, we combined the CLASSIX catalog of local X-ray clusters and
groups (Böhringer et al., 2016), the Tully galaxy groups catalog1 (Tully, 2015) and the SZ Cluster
Database2. This list was then expanded with additional data from the X-rays Galaxy Clusters
Database (BAX)3. In addition, we included other, well-known local clusters and groups from
various individual observations. From this collection, we selected all clusters with SZ derived
𝑀500 masses4 above 2 × 1014 M⊙, with a corresponding position in the Tully galaxy group
catalog. Additionally, we incorporated six renowned local clusters with an X-ray-derived 𝑀500
value exceeding 1014 M⊙ as well as prominent galaxy clusters from the Tully galaxy groups
catalog where additional X-ray data were available. From this, we constructed a final set of 46
clusters where we identified a counterpart candidate within the simulations. Within this selection,
the inferred masses of the clusters are based on vastly different methods. Therefore, in the later
analysis, we restricted direct comparisons of 𝑀500 to the subsample of clusters where 𝑀500 was
based on the observed SZ signal.

1https://edd.ifa.hawaii.edu
2http://szcluster-db.ias.u-psud.fr
3http://bax.irap.omp.eu
4𝑀500 is the mass within the radius 𝑅500 for which the cluster mean total density is 500 times the critical density

at the cluster redshift
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4.1.3 Finding Galaxy Cluster Replicas in SLOW
For the sample of 46 galaxy clusters, we collected data from the literature for different mass
estimates and X-ray observables. The integrated Compton-y signal (Y) within 𝑅500 together with
the corresponding 𝑀500 mass estimate was taken from the SZ Cluster Database, while X-ray data
like temperature and luminosity in the 0.1-2.4 keV range of most of the clusters where taken
directly mainly from (Ikebe et al., 2002; Shang & Scharf, 2008; Planck Collaboration et al.,
2011), otherwise we took the values quoted in BAX. The inferred X-ray based 𝑀500 masses
where extracted from (Chen et al., 2007). The Tully galaxy groups catalog presented dynamical
mass estimations, 𝑀dyn, which we converted to the virial mass, by correcting it down by 12% as
presented by Sorce et al. (2016b) for their simulated Virgo cluster at z = 0, and then converted
the virial mass to 𝑀500 using the conversions presented in Ragagnin et al. (2021).

In Table 4.1, we report the observed position as sourced from the according group within the
Tully galaxy catalog, together with the position of the replica candidate within our simulation. In
addition, we list the relative displacement between the observed cluster position and that of the
replica candidate. Table 4.3 displays the observational quantities alongside the corresponding
values from the replica candidate, as obtained through the simulation, for comparison. This now
allows a more thorough comparison and emphasizes the strength of comparing multiple obser-
vational signals to their counterparts from the simulation. Typically, X-ray luminosity is among
the most commonly measured quantities, although it is most sensitive to inhomogeneities such
as clumping and hence most dependent on the detailed treatment of cooling and star-formation
processes in simulations. Therefore, it is difficult to accurately predict through simulations. In
a fully virialized cluster formed solely through gravitational collapse, X-ray luminosity, temper-
ature as well as SZ signal directly correlate with the mass of the cluster. However, in practice,
such relations suffer differently from scatter due to internal structures, deviation from spherical
symmetries as well as deviation from hydrostatic equilibrium. Indeed, different comparisons
suffer differently from individual observational biases, as well as from the incompleteness of the
simulations when it comes to reproducing the actual galaxy clusters and the treatment of relevant
physical processes affecting them. Therefore, we can get a more complete picture if we make use
of the entire set of observables along with the inferred masses for comparison.

To obtain the above-mentioned sample of counterpart candidates of local galaxy clusters
within the SLOW simulation, we applied the following procedure:

1. Starting from our collection of observed local galaxy clusters, we first associated the
cluster/group in Tully’s North/South Catalog. We used the member galaxy which is closest
to the position on the sky and redshift as the center and used the according supergalactic X,
Y, Z coordinates. For the few observed clusters without such an association, we converted
sky positions and redshifts directly into supergalactic X, Y, Z coordinates. When computing
the positions of clusters within the simulation, we used the observer position as presented
in (Dolag et al., 2023) as the optimized center.

2. We selected the Compton-y derived 𝑀500 cluster mass, or if unavailable, the X-ray derived
mass or dynamical mass, depending on data availability.
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3. We then identified all massive halos within a small "search radius," and with a lower
mass 𝑀500 cut typically not less than six times the observed mass. If we fail to identify a
suitable counterpart in close proximity to the observed cluster, we expand our search radius,
typically not exceeding 45 Mpc/h. The resulting median distance in which we found our
cluster replicas is ≈ 25 Mpc/h.

4. In cases where multiple candidates existed in terms of position and mass, we conducted a
comparison of temperature and luminosity values, along with an assessment of the cluster’s
close surroundings and dynamical state, especially if it was involved in a merging process,
or a stage before it. Additionally, for supercluster regions like Hydra-Centaurus or Shapley,
we considered the geometry of the surrounding cluster environment, its relative position to
nearby clusters, and how well the shape of the surrounding filaments matched the observed
galaxy distribution (see also Seidel et al., 2024).

Although the selection process described above is guided by the availability of observational
data, the combined usage of Planck selected clusters, the X-ray flux-limited CLASSIX catalog,
and the 2MRS-based Tully galaxy groups catalog leads to a very complete cover of massive local
galaxy clusters. Such a list of counterpart candidates is specifically designed to focus primarily
on the massive clusters identified through observational proxies. A comprehensive map of the
entire sky, featuring the 46 cluster replicas included in our SLOW simulation set, is provided
in Fig. 4.1. We note that this sample of clusters not only contains the 13 most massive clusters
but also 70% of clusters with 𝑀500 larger than 2 × 1014 M⊙ from the Planck SZ cluster catalog
(Planck Collaboration et al., 2014a) within a distance of ≈ 200 Mpc/h.

4.2 Scaling Relations for Low Redshift Clusters
It has been extensively demonstrated that the subgrid model presented in Sect. 2.4.1 yields galaxy
and ICM properties in galaxy clusters that closely align with observed trends and properties
(Gupta et al., 2017; Singh et al., 2020). The Magneticum simulations employing the same
hydrodynamical scheme, with a slightly earlier adaptation of the galaxy formation treatment, has
been compared to SZ data from Planck (Planck Collaboration et al., 2014b) and SPT (McDonald
et al., 2014). They have successfully replicated the observable X-ray luminosity relation (Biffi
et al., 2013), among other ICM characteristics. In this context, we will test the results of our
SLOW simulations to demonstrate their capability to reproduce SZ data and relationships with
X-ray observables scaling relations.

Scaling relations are particularly interesting as they are tightly related to the physics of cluster
formation and evolution. In the idealized framework where gravity is the dominant process in
cluster evolution, self-similar models predict simple scaling relations between cluster properties,
such as temperature, luminosity, and Compton-y value, with total mass (Kaiser, 1986). In general,
these relations are described by power laws, around which some data points scatter according to
a log-normal distribution. These relations describe positive correlations, so that larger systems
have on average higher values of the correlated parameter. On top of this, as these relations come
from the premise of self-similarity and thus gravity domination, any deviation of the relation may
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Figure 4.2: Scaling relations within 𝑅500 for simulated clusters at z = 0 and for observed low
redshift clusters. Gray data points represent the cluster values from our simulations, estimated
using Subfind (Springel et al., 2001; Dolag et al., 2009; Saro et al., 2006). The clusters that
have been cross-identified are highlighted in blue. Luminosity-mass (𝐿x – 𝑀500, top left),
luminosity-temperature (𝐿x – kT, top right), temperature-mass (kT – 𝑀500, bottom left) panels
show observational data from Pratt et al. (2009) (depicted as red points), which encompasses
clusters with redshifts ranging from 0.05 to 0.164, Zhang et al. (2008) (depicted in yellow) with
clusters spanning the redshift range of 0.14 to 0.3, and Mantz et al. (2010) (depicted in green),
which includes clusters with redshifts less than 0.3. The bottom right panel depicts the Compton-
y – 𝑀500 scaling relation. For observational data in this case, we rely on Planck’s catalog PSZ1v2
(Planck Collaboration et al., 2014a), considering only clusters with a redshift of less than 0.1.
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be a sign of important hydrodynamical processes taking center stage in the evolutionary history
of these structures. Therefore, scaling relations are an important tool in cosmology as well as in
the study of the thermodynamic history of clusters and their ICM.

We tested our simulated clusters’ scaling relations against the observed clusters’ scaling
relations reported by Zhang et al. (2008); Pratt et al. (2009); Mantz et al. (2010). The first three
panels in Fig. 4.2 show the results of 𝐿x – 𝑀500, 𝐿x – 𝑇x and 𝑇x – 𝑀500 scaling relations for the
clusters selections given in Pratt et al. (2009) in a redshift range of 0.05 < z < 0.164 (in red), Zhang
et al. (2008) spanning the range 0.14 < z < 0.3 (in yellow) and Mantz et al. (2010) containing
clusters with z < 0.3 (in green). Even if this redshift threshold is small enough to keep evolution
effects to a small level (Reichert et al., 2011), we corrected the data for possible redshift effects.

We calculated the luminosities, temperatures, and masses for our clusters in the 𝑅500 radius
using Subfind (Springel et al., 2001; Dolag et al., 2009; Saro et al., 2006). For the temperature,
in order to focus on the ICM gas, we performed a cutout above 105K. The simulated data points
for all clusters in our simulation are shown in gray, while the corresponding data points for our set
of 46 clusters are plotted in blue. All three figures show a great agreement between the observed
clusters and the simulated clusters in our box.

Furthermore, we examined the Compton-y - 𝑀500 relationship for our simulated clusters. In
this instance, we selected observational data from the Planck database for clusters with redshifts
below 0.1. For the simulated values, we generated Compton-y maps for each of the clusters
in our simulations employing Smac (Dolag et al., 2005), and computed the total Compton-y
emission within 𝑅500. Once more, our simulations faithfully reproduce the expected scaling
relation presented in the observational data. Thus, we can conclude that our improved subgrid
model presented in Sect. 2.4.1 can also successfully replicate the main ICM characteristics such
as 𝐿x – 𝑀500, 𝐿x – 𝑇x and 𝑇x – 𝑀500 and 𝑌500 – 𝑀500 scaling relations.

4.3 Assessing the Fidelity of Simulated Local Galaxy Clusters
in SLOW

Table 4.1 presents a comparison of the positions of local clusters and their simulated counterparts.
The median separation between the observed cluster position and that of its replica in our
simulation is of 25 Mpc/h, with only three exceeding a distance of 45 Mpc/h.

During the cluster identification process based on observed positions, two primary sources of
errors come into play. Firstly, when using distance measurements derived from redshift for the
positions of our galaxy clusters, we encounter uncertainties associated with the peculiar velocity
of the cluster. To quantify this uncertainty, we referred to the study by Dolag & Sunyaev (2013,
Figure 1), where the authors presented histograms of peculiar velocities of galaxy clusters in
a cosmological box across different mass bins. We adopted the 1-sigma error values for each
mass bin presented in Figure 1 of the mentioned paper to illustrate the typical peculiar velocity
uncertainties, which have a mild dependence on mass. These resulting uncertainty values are
displayed in column 8 of Table 4.1.

On the other hand, in simulations founded on peculiar velocities, uncertainties coming from
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distance moduli propagate to radial velocities and subsequently extend further to uncertainties
on the reconstructed density and total velocity field. Consequently, uncertainties in the observed
distances (which are around a 20% of the distance value) are directly coupled with displacements
of the three-dimensional positions within the evolved simulation.

In addition, a positional error originates from the creation of the constraints for the ICs, where
scales below the linear threshold are typically non-constrained. However, this generally adds an
error of 3 – 4 Mpc, which is significantly smaller than the two errors discussed above.

Therefore, the relative distances found for our simulated replicas, as presented in Table 4.1,
are reasonably small when compared to the above-discussed uncertainties, showing that we have
a high-fidelity reproduction of these observed clusters in our simulation. Note that for half
of the cluster replicas, the relative distances found are already almost fully covered when only
considering the uncertainty of the observed cluster position based on their expected, typical
peculiar velocity.

4.3.1 Detection significance
Originally, structure identification in reconstructions of the local Universe primarily relied on
tracing the large-scale linear field (Hoffman, 1993; Zaroubi et al., 1995; Fisher, 1995; Bistolas
& Hoffman, 1998) More recently, reproductions based on simulations have shifted their focus
toward individual, collapsed structures, leading to a manual one-to-one structure and galaxy
cluster identification (e.g., Klypin et al., 2003; Dolag et al., 2004; Carlesi et al., 2016b; Sorce,
2018; Sorce et al., 2019, 2020, 2022). Recently, Pfeifer et al. (2023) extended this type of identi-
fication by associating well-defined probabilities to the cross-matched galaxy cluster pairs. Our
current objective extends beyond the previous approach. We aim to identify collapsed, nonlinear
structures at smaller scales within the larger-scale cosmological hydrodynamical box and assess
their significance and the quality of their reproduction given the variety of multiwavelength
observational data available for the individual galaxy clusters.

Therefore, once we have found counterparts for our galaxy cluster selection, we can consider
the probability of such a finding compared to a random position in a very large simulation box.
Here, we can take the relative distance from the observed position, the inferred mass of the galaxy
cluster, or directly any observational signal that is typically used as a proxy for the cluster mass
(like X-ray luminosity, temperature, etc.) directly into account.

In mathematical terms, we want to perform a hypothesis test, where we ask what the p-value
of our finding is under the assumption of no difference compared to a null hypothesis, which in
this case is a random simulation. This can give us a measure of how likely it is that our finding is
in fact a product of the constraints in our ICs. Such a procedure is naturally only applicable for
rare (e.g., relatively high-mass systems), but can be extended to smaller accompanying systems,
see Seidel et al. (2024) for details. Particularly, we performed this test using the four main cluster
properties that we considered throughout this study, which are 𝑀500, 𝐿x500, 𝑇x500 and the 𝑌sz500
signal. This time, X-ray luminosities were also calculated using Smac in the 0.1 – 2.5 keV band.
We subsequently explain the procedure for 𝑀500, knowing that the analogous procedure applies
to the rest of the properties.

The steps are the following:
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1. We select bins for 𝑀500, ranging from 1014 M⊙ to 1015 M⊙ in steps of 10, giving a total
amount of ten bins. Each of these bins will serve as a mass threshold for our cluster search.

2. We place a virtual observer at random positions in our cosmological box (a total of 1 million
positions per mass bin), which is equivalent to positioning ourselves in a random box.

3. We choose each of these mass bins and use it as a threshold for the cluster property. Then
we search in a radius around the random position of the first cluster, which has a value for
𝑀500 larger than the threshold, and we save this distance as our minimum radial distance.
We perform this step using all bins as thresholds.

4. We compute a cumulative probability function for each of the mass bins, in order to calculate
the one-tailored p–value for each cluster.

5. Now we study our selected clusters in the light of these cumulative probabilities. We
take the relative positions of our clusters and perform a spline interpolation between the
cumulative probabilities of all bins at a fixed radius. By doing this, we can estimate the
exact probability of each of our clusters in terms of the 𝑀500 value.

6. We calculate the significance of the match as 1 – p, where p is the p-value associated with
that cluster. The significance values for each cluster are listed in Table 4.1.

Figures 4.3 and 4.4 depict the cumulative distribution functions representing various bins of
our four central properties. In these figures, blue points signify the observed clusters, accompanied
by their associated property uncertainties. Correspondingly, the simulated counterpart values are
denoted in red. Apart from the mass uncertainty, we also need to consider the distance uncertainty
originating from peculiar velocities, as well as distance moduli, as discussed in Sect. 4.3. Given
the uncertainty in how the distance moduli errors affect our simulations, we have limited our
analysis to the peculiar velocity uncertainty. For clarity, we have graphically represented this
uncertainty as a red line only for five clusters at different relative distances: Coma, Centaurus,
A3532, A2107, and A496. This uncertainty applies however, to all represented clusters.

Probability values below the −1𝜎 threshold indicate a significance level exceeding 80%.
Consequently, we classify all clusters falling below this threshold as highly significant matches.
It is worth noting that the significance of these clusters can exhibit notable variations when
considering distance errors. In the worst-case scenario, even with distance errors increasing the
relative distance, the significance for highly significant clusters remains at higher than 50%. In
contrast, under the best-case scenario, where the relative distance gets reduced, their significance
can increase dramatically, surpassing the 99% mark.

Some of the lines for the values representing the higher-mass bins show unusual patterns,
such as uneven spacing between bins or instances where two bins overlap. This is attributed
to the inherent limitations of small number statistics within our cosmological box. As we
move into higher property value ranges, the occurrence of clusters with such values diminishes.
Nevertheless, it is important to note that these irregularities do not have any relevant impact on
our significance estimate.
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Figure 4.3: Cumulative distribution functions for 𝑀500 and 𝑌500, respectively. The top panel
displays bins ranging from 1015 to 1014 M⊙, with increments of ten, showing the random expec-
tation of finding a cluster of a certain mass or higher within a sphere whose radius corresponds
to the distance displayed on the x-axis. Simulated 𝑀500 values, as estimated by Subfind, are
represented in red. The blue data points represent the observed 𝑀500 values obtained from clus-
ters Planck signals, including their associated errors. In cases where SZ-derived 𝑀500 values
were unavailable, X-ray-derived 𝑀500 values were used (indicated by square points). For cluster
A347 X-ray-derived mass information was not available, thus we used the 𝑀500 mass derived
by converting the dynamical mass estimated by Tully. The observational uncertainties in the
cluster’s position for Coma, A2734, AWM7, and Centaurus are represented by red lines, as an
illustrative example of how such positional uncertainty can impact the results of the significance
study (see Sect. 4.3.1 for a more comprehensive discussion). The bottom panel displays the
cumulative distribution function for the SZ-derived signal in 𝑅500. Simulated datapoint values
where estimated using Smac (Dolag et al., 2005). The bins range from 3×10−6 to 3×10−4 Mpc2,
with increments of 2.
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Figure 4.4: Similar to Fig. 4.3, we show cumulative distribution functions for 𝐿x and 𝑇x within
𝑅500. For a better comparison with observations, we estimated the X-ray luminosity in the band
0.1-2.4 keV for every cluster using Smac. In the top panel, the bin values range from 1044erg×s−1

to 1045erg× s−1, with increments of 10. Uneven spacing between higher-value bins has to do with
the inherent limitations of small number statistics within our cosmological box (see Sect. 4.3.1
for a deeper discussion). The bottom panel presents the cumulative distribution function from
the X-ray temperature in 𝑅500. We estimated this temperature using Subfind. The bin values
range from 2 keV to 9 keV, with increments of 1 keV.
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Lastly, we would like to emphasize the exceptionally high significance values observed across
all properties for several pivotal local galaxy clusters, notably including Virgo, Coma, Centaurus,
Perseus, Fornax, and Norma, among many others (see Table 4.1). These significance values,
hovering around 1.0, strongly indicate that the identification of these clusters is highly likely
attributable to the constraints we have imposed, rather than being a random occurrence.

4.3.2 Properties’ comparison
A notable advantage of our constrained local Universe simulations lies in our ability to perform
direct one-to-one comparisons once we have successfully matched our clusters with their sim-
ulated counterparts. Figure 4.5 illustrates the property ratios between observed and simulated
structures, in relation to their relative distances. The data points are color-coded based on their
significance, with higher significance levels represented by blue, while lower significance levels
are denoted by yellow.

In Fig. 4.5a, we illustrate the mass ratio of SZ-derived mass within 𝑅500 divided by the
Subfind-estimated 𝑀500. The dashed line in the plot represents the median value of the data,
while the red-shaded region surrounding the median corresponds to the dispersion observed in
the Compton-y – 𝑀500 scaling relations (Planck Collaboration et al., 2011, see Figure 5). The
median value is 0.87 indicating that the SZ-derived mass tends to be lower than the simulated
mass. This finding agrees with estimates of the hydrostatic mass bias.

The hydrostatic mass bias is relevant for gas-derived mass estimations such as X-ray or SZ
effect-derived masses, as it accounts for the fractional difference between the true mass and the
cluster mass inferred using a gas proxy, assuming hydrostatic equilibrium. This bias is estimated
from simulations to be between 10% and 20% (Lau et al., 2009, 2013; Biffi et al., 2016; Scheck
et al., 2023). In simpler terms, ICM-based mass estimates tend to underestimate the actual mass
by approximately a factor of 0.8-0.9, which closely matches the shift observed in the median of
our mass ratios being (1 − 𝑏) = 0.87.

Furthermore, a majority of the clusters closely align with the median, and approximately half
of them fall within the shaded region, which corresponds to the dispersion seen in the Compton-y
– 𝑀500 scaling relation.

We also notice that Fig. 4.5a shows a greater dispersion among clusters matched at smaller
relative distances, whereas the dispersion tends to be more confined to the proximity of the shaded
region for clusters matched at larger relative distances. This observation highlights a potential
bias in our matching process.

Our matching process relies in its first steps on positions and masses. In the search process,
sometimes we find a very massive galaxy cluster very close to the target cluster’s observed
position. This replica candidate has a high significance in terms of its mass as the relative
distance between the observed and simulated cluster is small, pointing to the fact that its existence
is very probably due to our constraints. Usually, after the complete selection procedure, that
cluster will be selected as the corresponding cluster replica.

However, if we fail to identify a suitable counterpart in close proximity to the observed cluster,
we expand our search radius. This broader search increases the pool of potential candidates for a
match. Therefore, the probability of finding a candidate with a very similar mass to the observed
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Figure 4.5: Simulated and observed quantities’ ratios as a function of relative distance. (a) Ratio
between the 𝑀500 mass, derived from the cluster SZ signal, and the Subfind-estimated 𝑀500 as a
function of relative distance. The dotted line corresponds to the median of the distribution, while
the shaded red region depicts the observed dispersion in the Compton-y–mass scaling relations
(Planck Collaboration et al., 2011). The three bottom panels present similar ratios for (b) X-ray
luminosity (𝐿500), (c) X-ray temperature (𝑇500), (d) and SZ-signal (𝑌500). These data points are
color-coded based on their mass significance, with higher significance levels indicated in black
and lower significance levels denoted in yellow.
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one becomes higher at these extended distances. Thus, the mass scatter becomes lower for these
clusters. These trends are only slightly reflected for temperatures, luminosities, and Compton-y
(see Figs. 4.5b,c,d).

In light of these results, we would like to discuss the replication quality of the subset of
extensively studied clusters in the literature listed in Table 4.3.

Coma demonstrates excellent agreement in terms of mass. Its simulated mass of 9.61 ×1014

M⊙ aligns well with the X-ray derived mass of 9.95+2.10
−2.99 ×1014 M⊙, and it is just a bit higher than

the SZ-derived mass. The simulated temperature of 7.06 keV also falls within the observed X-ray
temperature range of 8.07 ± 0.29 keV. However, its luminosity and Compton-y values are higher
by a factor of 1.5 and 3, respectively.

The Perseus cluster’s simulated mass of 5.17 ×1014 M⊙ is also in excellent agreement with its
X-ray estimated mass of 6.08+1.55

−2.85 M⊙. The simulated temperature of 4.97 keV closely matches
the reported X-ray temperature of 6.42 ± 0.06 keV.

Virgo with a simulated 𝑀500 mass of 6.57 ×1014 M⊙ and a virial mass of 7.12 ×1014 M⊙,
has a higher mass than the SZ estimated mass of 4.76± 0.55 ×1014 M⊙. However, considering
various studies over recent years estimating Virgo’s virial mass in the range of 6.0 - 8.0 ×1014 M⊙,
like de Vaucouleurs (1960), Karachentsev et al. (2014) at 8.0 ± 2.3 ×1014 M⊙, and Kashibadze
et al. (2020) at 6.3 ± 0.9 ×1014 M⊙, (see table 3 in Lebeau et al., 2023, for a longer list), we still
view the Virgo cluster’s mass in the simulation as accurately reproduced.

Hydra also agrees in its mass estimation, with 2.64 ×1014M⊙ in the simulation and 1.29+0.44
−0.55

×1014M⊙ given by the X-ray observation. The temperature value lies also very close, from
3.37 keV in the simulation to 3.15 ± 0.05 keV from observations. It is important to note that
these clusters have different dynamical states and likely underwent different formation paths, as
discussed in Sect. 4.1.1

Clusters’ replicas for Centaurus, AWM7, Fornax, and Norma deviate more from the observed
quantities than the previously mentioned cluster replica. One key factor contributing to these
differences in replication quality is the cluster’s position in the sky. If we examine the positions
of Centaurus, AWM7, Fornax, and Norma, we find that they are located in close proximity to
the "Zone of Avoidance" (as seen in Fig. 4.1), where the extinction is severe. Consequently,
the quality and quantity of observational data available for our constraints can be more limited.
Perseus and Hydra, on the other hand, are better reproduced, even though they are near the Zone
of Avoidance demonstrating the power of using peculiar velocities, which by tracing the potential
can put constraints far beyond their actual sampling points.

Compared to other simulations of the local volume constrained with galaxy distributions such
as SIBELIUS-DARK (McAlpine et al., 2022), we observe that the significant improvement in
the replication of well-studied clusters like Perseus and Virgo (Sorce, 2018) can now be extended
to various other local clusters. For instance, Perseus, with an observed X-ray-derived 𝑀500
of 6.08 × 1014 M⊙, was previously simulated with a mass of 1.87 × 1015 M⊙ in SIBELIUS-
DARK, whereas our replication yielded a closer mass of 5.17× 1014 M⊙. Similarly for Virgo, its
6.57×1014 M⊙ mass in our simulation lies in the range of 6−8×1014 M⊙ reported in the previous
mentioned studies by de Vaucouleurs (1960), Karachentsev et al. (2014) and Kashibadze et al.
(2020), while SIBELIUS-DARK contained a replica with a lower mass of 2.7 × 1014 M⊙ in 𝑅500
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and 3.5 × 1014 M⊙ in 𝑅200. Hydra replica is now also better reproduced in terms of mass, as we
find a cluster replica with a mass of 2.6 × 1014 M⊙, lying very well within the observed X-ray
derived mass range of 2.50+0.62

−1.02 × 1014 M⊙, in contrast to the 3.5 × 1014 M⊙ mass value reported
in SIBELIUS-DARK (see Table B1 in McAlpine et al., 2022, for comparison). Indeed, when
having a closer look at the quantity ratios in Fig. 4.5, we see that the general mass scatter is low,
pointing to a generally good cluster reproduction.

In this context, the cases of Norma and Centaurus are particularly intriguing, as they stand out
as outliers in the panels depicted in Fig. 4.5. Specifically, in the case of Norma, the simulated mass
is approximately six times lower than the observed mass. As mentioned earlier, the proximity of
the Norma cluster to the zone of avoidance and its association with the "Great Attractor" result in
poorly constrained information about its mass and nature (Lynden-Bell et al., 1988; Woudt et al.,
2007). In addition, Norma exhibits an elongated structure in both observations (as seen in Woudt
et al., 2007) and our simulation. This characteristic may indicate a highly dynamic, accreting
structure, further complicating the estimation of its true mass.

Norma shares its region of the sky with Hydra, Centaurus, and the Shapley clusters. Hydra
and Centaurus form a cluster pair in the southern sky, positioned closer to us than Norma. While
these two clusters are less massive, they are believed to play a central role in shaping the ’Great
Attractor’ structure (Raychaudhury, 1989). The challenge lies in their lower mass and their sky
location, making it difficult to obtain high-quality observational data for accurate replication.

However, it is worth noting that the mass of Hydra is well reproduced, lying within the
error region estimated from X-ray observations. The Centaurus cluster replica lies in the high
mass end of the observed masses for this cluster. Indeed, its mass is 1.18 times higher than the
dynamically estimated mass. Both structures if observed combined, constitute a good replica of
the Centaurus - Hydra pair. When considering the observed X-ray mass for Hydra (2.5 × 1014

M⊙) and the SZ and dynamical derived masses for Centaurus (1.23 × 1014 M⊙ and 5.28 × 1014

M⊙), the total pair mass falls within the range of 3.73×1014 to 7.78×1014 M⊙. In our simulation,
the combined mass of both clusters amounts to 8.85 × 1014 M⊙, which lies only slightly higher
than the observed range. Additionally, Fig. 4.6 depicts a density map of the Centaurus-Hydra
region, with overlaid positions of observed galaxies. Galaxies directly assigned to the Hydra and
Centaurus clusters are marked in red, while those in the surrounding region are in orange. This
figure illustrates our ability to accurately reproduce the relative positions of Centaurus and Hydra,
as well as the structure of the surrounding cosmic web. Even more, evolving the local Universe
forward in time as presented by Seidel et al. (2024), shows that the Centaurus-Hydra pair merge.
This indicates that although the individual clusters are less well replicated, the overall collapsing
structure associated with them is well reproduced.

In conclusion, our simulations provide valuable insights into the properties of numerous key
local galaxy clusters. However, there remains room for improvement, especially in accurately
replicating even more clusters as well as structures situated near the zone of avoidance, where
observational data is limited and replication could possibly be improved by the selection of
certain, random realizations.

Improving the precision of these simulations poses several challenges: acquiring more com-
prehensive data, including currently sparsely sampled regions, refining the galaxy formation
physics treatment within the simulations, as well as improving observational mass estimates for
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Figure 4.6: Density map of the Centaurus-Hydra region in the SLOW simulation, presented in
supergalactic coordinates and created using Smac. The locations of the Centaurus and Hydra
clusters are marked with two white circles, each indicating the R500 radius of the respective
structures. In the top panels, observed galaxies from the 2MRS1175 North Groups catalog
associated with Centaurus and Hydra are highlighted in red. Additionally, galaxies listed in both
the 2MRS1175 North and South Groups catalogs are shown in orange. These galaxy positions
have been corrected to account for distortions such as the "fingers of god" effect. In the bottom
panels, all galaxies from the CF2 Catalog in this area are displayed in orange, with those attributed
to Centaurus and Hydra in red, without adjusting for the "fingers of god" correction.
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better evaluation of similarity between simulated and observed clusters. Such improvements will
be essential for gaining a deeper understanding of these complex sky regions.

4.3.3 Observational tracers’ reliability
As previously discussed in the preceding sections, it is important to acknowledge the presence
of observational errors and biases, which can at times be challenging to precisely quantify. One
of our central observational parameters is mass estimations. It is noteworthy that these different
mass estimation approaches yield significant discrepancies in their mass assessments for various
clusters.

A potential source of bias in mass estimation appears to be the distance of the clusters from
the observer. To explore this possibility, we conducted tests to assess the behavior of each mass
estimation method in relation to distance. Initially, we conducted this analysis with respect to
the simulated masses. Figure 4.7 illustrates the relationship between observed mass estimates
and simulated masses in relation to distance. We categorized the clusters into two sets, one with
closer members and the other with more distant members, each with an equal number of clusters.
The median of both sets is represented by a green dashed line, while the green shaded region
delineates the range encompassing 50% of the clusters above and below the median.

Masses derived from X-ray emissions (Panel 4.7b) and SZ (Panel 4.7c) exhibit minimal
scatter around the median for both the closer and more distant cluster sets. The scatter shows no
significant increase or decrease with cluster distance in these cases. In contrast, the scenario is
quite different for dynamical masses (Panel 4.7a), where the scatter notably increases for clusters
at greater distances.

Furthermore, we conducted comparative analyses among the various mass estimation methods
while considering their relationship with distance, as depicted in Figs. 4.7 d, e, and f. When
comparing dynamical masses against X-ray and SZ derived mass estimations, dynamical masses
consistently display a high scatter, which becomes even more pronounced for clusters located
farther away, mirroring the pattern observed in Fig. 4.7a. Conversely, the scatter between X-ray
and SZ derived mass estimations is significantly low, as evident in panel 4.7f. Nevertheless, the
scatter between different observed mass estimates is as large as the scatter between simulated
and observed cluster counterparts. Taken together, this points to the fact that the level at which
the constrained simulation reproduces the mass of the local galaxy clusters is at the level of the
uncertainties in the observational mass estimates.

4.4 Summary and Conclusions
In this study, we have presented the first results on cluster identification in our constrained,
hydrodynamical cosmological simulation of the local Universe (SLOW), which includes cooling,
star formation, and the evolution of super-massive black holes. We compiled a dataset of over
221 observed galaxy clusters and groups within the local volume covered by our simulation from
existing literature, collecting X-ray luminosities, temperatures, and Compton-y signals as well as
inferred masses of these systems, when available. From this sample, we cross-identified 46 halos
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Figure 4.7: Mass ratios as a function of total distance. The top figures present the mass ratio
between Subfind-estimated 𝑀500 and three different mass estimations: (a) 𝑀500 derived from
the dynamical mass as provided in the Tully galaxy group catalog (Tully, 2015): 𝑀dyn, (b) 𝑀500
derived from SZ measurements as available in the Planck database: 𝑀SZ, and (c) 𝑀500 derived
from X-ray observations: 𝑀xray. These ratios are plotted against the total distance of the cluster. In
addition, the bottom figures illustrate the ratios between various observational mass estimations:
(d) 𝑀sz/𝑀dyn, (e) 𝑀xray/𝑀dyn, and (f) 𝑀sz/𝑀xray, all in relation to the total distance of the cluster.
(For further details on the observed quantities, please refer to table 4.3). A vertical dashed line
divides the clusters into two sets with an equal number of clusters. The green horizontal lines
represent the median values for each set, while the green shaded regions indicate the range that
encompasses 50% of the clusters above and below the median.
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in the simulation, which are candidates to represent the according galaxy clusters within the local
Universe. We then computed the significance of these associations based on different observables
and compared the global properties between the observed and simulated counterparts.

1. The galaxy clusters within the simulation generally follow the observed scaling relations
between mass, temperature, X-ray luminosity, and SZ signal. This has allowed us, for the
first time, to evaluate the cross-identification between simulations and observations, not
only on the total mass but also directly on the full bandwidth of observational signals from
the ICM. Thereby, such direct comparisons avoid the various biases inherited within the
different methods to determine the total mass of galaxy clusters from observational proxies.

2. We compared the positions of cross-identified galaxy clusters between observations and
simulations, combined with the match of their various global properties (e.g., mass, total X-
ray luminosity, temperature, or SZ signal) and computed the probability of finding a similar
match in a random position within a large volume simulation. From this, we computed the
significance of the match against the null hypothesis obtained from a random simulation
volume.

3. This sample of clusters encompasses the 13 most massive clusters with a 𝑀500 exceeding
2 × 1014𝑀⊙, as identified by the SZ signal from Planck observations within a radius of
approximately 300 Mpc. This highlights the success of our constrained simulation in
precisely replicating the local galaxy clusters.

4. Based on the assessment of the significance of a match, only a small fraction cannot be
distinguished from a random selection. On the contrary, even 18 of the matched clusters
exhibited significance values exceeding 0.8 across all studied quantities. Notably, Virgo,
Coma, and Perseus achieved a significance very close to 1.0 for all quantities, with the
smallest value being 0.98.

5. Compared to other constrained simulations, we report a significant improvement in the
number of identified replicas of extensively-studied galaxy clusters in the local Universe,
where masses now agree with their observational counterparts. Even for very prominent
clusters such as Perseus, Virgo, and Hydra, we noticed that compared to simulations where
the constraints are based on galaxy distributions, such as SIBELIUS-DARK, the mass is
recovered better by the SLOW simulation.

6. We also investigated the impact of the observational distance uncertainty on our comparison.
For the matched sample of galaxy clusters, the inferred displacement between the position
in our simulation and the cluster position based on the observed redshift often reflects the
uncertainties induced by the unknown peculiar velocity of the clusters. In the majority
of cases, this displacement is smaller than the typical error in the distance modulus of
the individual galaxies used for constructing the constraints for the ICs. This assessment
further demonstrates that our constrained simulation of the local Universe reproduces a
large number of galaxy clusters that can be directly compared with their observational
counterpart.
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7. Comparing the X-ray luminosity and temperature between observations and the simulated
counterparts, the obtained width of the relative scatter is 1.7 and 1.5, respectively, for
68% of the clusters. For the SZ signal, this scatter is of a factor 2.1. Interestingly, when
comparing the sample median of the 𝑀500 obtained from the simulations with the observed
one inferred from the SZ signal, we would deduce a bias of (1 − 𝑏) = 0.87, which is in the
range predicted by other simulations.

8. With our sample of cross-identified clusters, we compared the masses of the simulated
and observed clusters using mass estimates based on different observables (this being: the
SZ derived mass, dynamical masses from Tully’s galaxy catalog, and X-ray signal derived
masses). We find that the scatter between different observed mass estimates is as large
as the scatter between simulated and observed cluster counterparts. We neither find any
strong correlation of the scatter with the distance of the cluster, nor with the significance
assessment, except a tendency of the observational-inferred dynamical mass to have a
higher scatter at larger distances with respect to other measurements as well as with respect
to the simulations. Overall, this indicates that the level at which the constrained simulation
reproduces the mass of the local galaxy clusters is at the level of the uncertainties of the
observational mass estimates.

Overall, the current SLOW simulation of the local Universe faithfully replicates numerous
fundamental characteristics for a sizable number of galaxy clusters within our local neighborhood.
This is a first step in establishing an exciting avenue for cluster and cosmological research, where
such simulations enable us to investigate the formation and evolution of individual galaxy clusters.
This will allow us to study the physical processes governing the formation and evolution of galaxy
clusters beyond the limitations inherited when using averaged populations toward marking the
transition to test the effect of individual formation histories and environments.
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Table 4.1: Positions, distance uncertainties, relative distance, and significances for our selected set of
galaxy clusters. The observed positions are sourced from the Tully galaxy catalog and are represented in
supergalactic coordinates. In cases where Tully’s positions were unavailable, we extracted coordinates
from NED † and subsequently transformed them into supergalactic coordinates. These clusters are
denoted by a cross symbol. The distance uncertainties were determined through the consideration of
peculiar velocity uncertainties, as elaborated upon in Sect.4.3.1 for further details. Relative distance
indicates the disparity between the estimated observational position and the position of the corresponding
cluster in our simulation. Significances are assigned values ranging from 0 to 1, where higher numbers
signify greater significance (i.e., a higher probability of deviation from a random simulation).

Name

Simulations Observations
Distance Relative

Significance

SGX SGY SGZ SGX SGY SGZ Uncertainty Distance Lx500 Tx500 Ysz500 M500

[Mpc / h] [Mpc / h] [Mpc / h] (0 – 1)

A85 50.84 -143.10 25.88 46.39 -155.60 1.76 15 27.53 0.99 0.96 0.98 0.98

A119 73.61 -117.28 -24.93 57.59 -119.46 -1.67 15 28.32 0.98 0.98 0.98 0.97

A347 60.29 -2.44 -19.23 52.69 -16.38 -5.28 18 21.14 1.00 0.67 0.93 0.20

A496 -13.28 -94.52 -83.46 24.79 -51.18 -83.46 17 57.69 0.69 0.61 0.41 0.50

A539 54.47 8.98 -82.08 43.81 -18.63 -73.38 17 30.85 0.95 0.80 0.93 0.86

A576 120.30 39.98 -14.59 98.80 57.53 -38.41 17 36.57 0.70 0.60 0.74 0.69

A644 -26.48 70.51 -204.14 -9.74 83.20 -209.86 15 21.77 0.99 0.96 0.98 0.98

A754 -34.31 78.48 -144.27 -32.44 88.40 -143.56 14 10.12 0.98 0.97 0.99 0.98

A1185 24.59 112.10 -27.24 16.31 99.93 -25.16 18 14.86 0.98 0.88 0.96 0.94

A1367 -2.89 71.35 -18.73 -2.94 68.62 -12.68 17 6.64 0.99 0.98 0.99 0.98

A1644 -97.26 64.92 -5.74 -102.00 107.93 -10.76 15 43.57 0.93 0.70 0.85 0.76

A1736 -137.66 65.91 -22.87 -117.47 83.34 -0.73 17 34.66 0.88 0.67 0.85 0.77

A1795 † 6.26 201.72 29.19 -9.57 174.19 59.27 15 43.74 0.30 0.15 0.35 0.25

A2029 † -92.61 142.37 141.38 -94.65 162.38 127.79 14 24.27 0.99 0.95 0.98 0.98

A2063 -42.47 66.58 97.18 -39.98 76.20 66.87 17 31.90 0.70 0.69 0.80 0.75

A2065 † 7.25 138.68 107.11 -9.07 161.56 134.02 15 38.91 0.94 0.89 0.94 0.90

A2107 -28.27 71.39 83.16 -18.25 92.93 89.98 17 24.71 0.73 0.51 0.60 0.0.57

A2197/99 -12.99 48.75 97.11 18.31 57.56 72.51 17 40.77 0.94 0.35 0.69 0.61

A2256 115.91 96.33 79.47 137.38 86.90 78.14 14 23.49 0.82 0.62 0.80 0.73

A2319 81.29 2.38 118.30 72.21 21.34 136.87 12 28.05 0.99 0.93 0.98 0.93

A2572a 67.40 -88.63 16.82 66.25 -80.64 54.83 17 38.86 0.96 0.97 0.90 0.96

A2593 54.51 -107.62 32.14 66.54 -93.66 54.04 17 28.62 0.96 0.91 0.92 0.93
† NED Database: https://ned.ipac.caltech.edu
∗ For close-by systems such as Virgo we expect the error from direct distance measurements to be substantially
smaller.



104 4. Properties of Local Galaxy Clusters

Table 4.2: Table 4.1. continued.

Name

Simulations Observations
Distance Relative

Significance

SGX SGY SGZ SGX SGY SGZ Uncertainty Distance Lx500 Tx500 Ysz500 M500

[Mpc / h] [Mpc / h] [Mpc / h] (0 – 1)

A2634 80.38 -52.34 32.13 64.39 -54.96 37.40 18 17.04 0.67 0.60 0.94 0.65

A2665 111.79 -123.00 44.66 75.78 -140.15 49.86 17 40.22 0.90 0.51 0.34 0.77

A2734 -20.57 -186.09 21.73 -13.99 -188.50 5.14 17 18.01 0.96 0.80 0.80 0.88

A2877 † -8.07 -76.12 -0.78 -21.18 -65.46 -16.88 18 23.34 0.54 0.50 0.96 0.57

A3158 -49.26 -108.90 -119.25 -79.02 -135.57 -117.83 15 39.99 0.95 0.60 0.93 0.72

A3266 -59.95 -93.17 -128.12 -97.79 -105.76 -111.61 14 43.17 0.97 0.90 0.65 0.96

A3376 -36.34 -74.00 -124.29 -41.49 -50.16 -130.44 17 25.15 0.93 0.82 0.78 0.88

A3391 / 95 -53.30 -43.16 -101.67 -78.28 -51.37 -118.14 17 31.03 0.99 0.97 0.46 0.97

A3532 -156.71 96.63 -36.03 -143.78 96.68 -22.69 15 18.58 0.87 0.82 0.98 0.82

A3558 -141.91 66.10 -37.17 -130.29 78.7 -3.64 15 37.66 0.98 0.99 0.85 0.98

A3571 -142.64 54.10 -33.88 -109.39 58.57 4.39 15 50.90 0.89 0.45 0.78 0.60

A3581 -84.87 62.76 -23.92 -58.22 36.91 10.01 17 50.29 0.09 0.10 0.90 0.20

A3667 -156.83 -111.30 66.72 -133.15 -101.45 47.00 14 32.36 0.71 0.92 0.39 0.90

2A0335+096 74.52 -60.85 -58.17 70.15 -55.59 -62.44 18 8.07 0.99 0.99 0.98 1.00

3C129 † 55.55 11.33 -28.56 56.58 2.80 -23.92 18 9.76 0.97 0.92 0.99 0.93

AWM7 † 60.08 -6.71 -23.32 45.01 -11.89 -8.47 18 21.78 0.26 0.34 0.93 0.38

Centaurus/A3526 -22.82 11.21 -13.26 -34.25 14.93 -7.56 18 13.31 1.00 1.00 0.88 1.00

Fornax/AS0373 4.47 -6.59 -21.52 -1.69 -10.74 -8.69 19 14.83 0.90 0.53 0.98 0.70

Hydra/A1060† -21.21 9.89 -19.41 -25.63 21.99 -25.97 18 14.45 1.00 0.95 0.27 0.97

Norma/A3627 -45.65 -0.38 -5.67 -50.26 -7.06 6.44 17 14.58 0.94 0.66 0.99 0.73

Perseus/A426 59.22 2.13 -24.58 49.94 -10.73 -12.98 18 19.65 0.99 0.98 1.00 0.98

Coma/A1656 -2.93 82.27 -9.14 0.48 72.79 10.59 14 22.15 1.00 1.00 1.00 1.00

Virgo -3.60 10.36 -1.64 -3.48 14.86 -2.21 16 * 4.54 1.00 1.00 1.00 1.00
† NED Database: https://ned.ipac.caltech.edu
∗ For close-by systems such as Virgo we expect the error from direct distance measurements to be substantially
smaller.
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Table 4.3: X-ray luminosities (𝐿500) and temperatures (𝑇500) were primarily obtained from Ikebe
et al. (2002). If available we also used more recent data from Shang & Scharf (2008)‡ and Planck
Collaboration et al. (2011)∗. For clusters not included in these studies, the corresponding data were
extracted from the BAX database†. The SZ-signal (𝑌sz500) and its derived mass (𝑀sz500) were sourced
from the Planck database PSZ1v2. X-ray masses (𝑀x500) were extracted from Chen et al. (2007),
correcting for the differences in the value of H0 assumed. Dynamical masses were retrieved from the
Tully galaxy catalog and subsequently transformed to 𝑀500 by correcting for the 12% factor presented
by Sorce et al. (2016b) and the conversion method outlined by Ragagnin et al. (2021). Simulated values
for 𝐿500, and 𝑌sz500 were estimated using Smac, while the simulated 𝑀500 and 𝑇500 were estimated
using Subfind.

Name

Obs Sim Obs Sim Obs Sim Obs Sim

Lx500 Lx500 Tx500 Tx500 Ysz500 Ysz500 Mx500 Msz500 Mdyn500 M500

[1044 erg s−1] [KeV] [10−4 Mpc2] [1014 × M⊙]

(band: 0.1-2.4 keV) (band: 0.1-2.4 keV)

A85 5.08 ± 0.07 8.06 6.51+0.16
−0.23 5.33 0.68 ± 0.05 1.12 6.06+1.18

−2.63 4.90 ± 0.21 – 6.64

A119 1.66 ± 0.028 ∗ 4.81 6.69+0.24
−0.28 5.59 0.33 ± 0.04 0.92 6.73+0.90

−1.94 3.34 ± 0.22 2.83 5.82

A347 – 7.86 – 0.40 – 0.004 – – 3.19 9.16

A496 2.19 ± 0.026 4.07 4.59 ± 0.10 4.44 0.23 ± 0.03 0.54 3.61+0.67
−1.58 2.74 ± 0.17 3.36 4.27

A539 0.64 ± 0.013 4.13 3.04+0.11
−0.10 3.98 – 2.32 2.01+0.24

−0.64 – – 3.63

A576 1.09 ± 0.12 2.77 3.83 ± 0.16 3.72 0.14 ± 0.02 0.13 3.46+2.44
−1.79 2.09 ± 0.19 17.15 3.03

A644 5.08 ± 0.09 5.51 6.54 ± 0.27 4.66 0.64 ± 0.06 0.76 6.31+1.61
−2.86 4.70 ± 0.23 – 5.10

A754 2.36 ± 0.07 2.25 9.00 ± 0.35 2.68 1.17 ± 0.06 0.13 10.39+3.30
−4.82 6.68 ± 0.20 6.65 1.91

A1185 0.37 † 3.11 3.9+2.00
−1.10

† 2.53 0.06 ± 0.02 0.14 – 1.27 ± 0.19 5.77 2.03

A1367 0.68 ± 0.009 1.11 3.55 ± 0.08 2.19 0.1 ± 0.02 0.06 5.56+0.83
−1.78 1.76 ± 0.14 2.65 1.10

A1644 2.32 ± 0.2 5.02 4.70+0.90
−0.70 4.53 0.43 ± 0.04 0.66 5.50+3.22

−3.30 3.83 ± 0.21 6.70 4.40

A1736 1.90 ± 0.19 3.71 3.68+0.22
−0.17 3.83 0.27 ± 0.05 0.41 1.63+0.46

−0.52 2.95 ± 0.27 8.89 3.32

A1795 4.02 ± 0.03 1.97 6.17+0.26
−0.25 2.94 0.6 ± 0.05 0.16 7.40+2.89

−4.11 4.54 ± 0.21 – 2.06

A2029 10.47 ± 0.11 6.32 7.93+0.39
−0.36 4.65 1.27 ± 0.08 0.93 7.46+2.47

−3.87 6.82 ± 0.24 – 6.09

A2063 1.31 ± 0.027 2.34 3.56 ± 0.16 3.61 0.13 ± 0.03 0.26 1.77+0.18
−0.44 2.03 ± 0.23 4.52 2.87

A2065 3.49 ± 0.022 ∗ 4.68 5.37 ± 0.34 5.30 0.55 ± 0.06 0.89 8.39+7.18
−5.11 4.30 ± 0.26 – 5.78

A2107 1.41 † 1.72 4.00 ± 0.10 † 2.26 0.12 ± 0.03 0.06 – 1.86 ± 0.22 6.85 1.33

A2197/99 2.43 ± 0.07 5.01 4.28 ± 0.10 3.33 0.23 ± 0.02 0.30 3.22+0.88
−1.42 2.78 ± 0.13 6.89 3.10

A2256 2.04 ± 0.13 ‡ 2.07 6.83+0.23
−0.21

‡ 2.46 1.08 ± 0.05 0.12 9.09+2.56
−3.09 6.34 ± 0.18 43.03 1.74

A2319 15.78 † 5.25 8.84+0.18
−0.14

† 4.78 1.90 ± 0.08 0.75 – 8.59 ± 0.22 27.20 4.57

A2572a 1.02 † 4.81 2.5 ± 0.13 † 6.40 0.15 ± 0.04 1.67 – 2.14 ± 0.27 3.06 7.57
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Table 4.4: Table 4.3. continued.

Name

Obs Sim Obs Sim Obs Sim Obs Sim

Lx500 Lx500 Tx500 Tx500 Ysz500 Ysz500 Mx500 Msz500 Mdyn500 M500

[1044 erg s−1] [KeV] [10−4 Mpc2] [1014 × M⊙]

(band: 0.1-2.4 keV) (band: 0.1-2.4 keV)

A2593 0.33 ± 0.048 ‡ 4.16 3.10 ± 1.50 ‡ 4.63 0.14 ± 0.03 0.66 – 2.09 ± 0.26 3.32 4.56

A2634 0.57 ± 0.016 0.55 3.45 ± 0.16 1.44 – 0.08 3.38+0.50
−0.75 – 2.40 6.27

A2665 0.499 ± 0.076 ‡4.38 3.98 ± 0.07 ‡ 3.74 0.14 ± 0.04 0.45 – 2.01 ± 0.28 1.40 4.09

A2734 1.45 ± 0.058 2.78 5.07+0.36
−0.42 2.51 0.19 ± 0.04 0.13 3.61+0.64

−1.17 2.38 ± 0.26 26.56 1.89

A2877 0.23 ± 0.005 0.97 3.50+2.20
−1.10 2.06 0.05 ± 0.01 0.05 5.16+5.05

−2.84 1.12 ± 0.14 – 1.20

A3158 3.36 ± 0.09 4.98 5.41+0.26
−0.24 3.96 0.52 ± 0.04 0.46 4.31+0.67

−1.24 4.20 ± 0.18 34.70 3.68

A3266 5.17 ± 0.07 7.04 7.72+0.35
−0.28 5.90 1.19 ± 0.06 1.70 14.43+3.57

−5.68 6.71 ± 0.18 21.42 8.72

A3376 1.27 ± 0.03 3.34 4.43+0.39
−0.38 3.64 0.17 ± 0.03 0.31 5.08+1.16

−1.49 2.27 ± 0.20 1.45 3.03

A3391/95 1.57 ± 0.049 6.29 5.89+0.45
−0.33 6.02 0.14 ± 0.02 1.32 4.53+0.55

−1.27 2.04 ± 0.18 – 7.02

A3532 1.31 ± 0.038 1.40 4.41+0.19
−0.18 2.64 0.3 ± 0.05 0.73 4.97+0.88

−2.13 3.09 ± 0.26 2.62 1.56

A3558 6.43 † 6.69 4.78 ± 0.13 † 7.65 0.55 ± 0.06 2.63 – 4.41 ± 0.27 37.10 9.47

A3571 4.72 ± 0.07 5.07 6.80+0.21
−0.18 4.21 0.6 ± 0.05 0.50 6.57+1.27

−2.57 4.67 ± 0.21 4.29 4.09

A3581 0.35 ± 0.017 1.63 2.83+0.04
−0.02 3.18 0.35 ± 0.017 0.90 0.70+0.14

−0.28 (1.83 ± 0.04) 1.10 2.40

A3667 5.66 ± 0.07 2.43 6.28+0.27
−0.26 4.98 0.9 ± 0.07 0.49 3.96+0.39

−0.86 5.77 ± 0.24 27.38 4.07

2A0335 2.58 ± 0.02 2.81 3.64+0.09
−0.08 3.52 – 1.34 2.09+0.82

−1.22 – – 2.78

3C129 1.27 ± 0.12 1.61 5.57+0.16
−0.15 1.78 – 0.04 4.04+1.69

−1.75 – – 0.87

AWM7 1.20 ± 0.04 0.24 3.70+0.08
−0.04 1.43 – 0.05 3.69+0.91

−1.69 – – 0.54

Centaurus 0.302 ± 0.025 5.07 3.69+0.05
−0.04 5.73 0.05 ± 0.01 1.09 – 1.23 ± 0.11 5.28 6.24

Fornax 0.04 ± 0.003 1.26 1.56+0.05
−0.07 0.85 – 0.04 0.97+0.33

−0.41 – – 0.36

Hydra 0.32 ± 0.017 4.83 3.15 ± 0.05 3.37 – 1.45 1.87+0.46
−0.76 – – 2.61

Norma 2.04 ± 0.1 1.73 5.62+0.12
−0.11 1.23 0.19 ± 0.04 0.01 – 2.55 ± 0.28 8.89 0.47

Perseus 9.33 ± 0.11 3.91 6.42 ± 0.06 4.97 – 4.34 4.56+1.16
−2.14 – 7.96 5.17

Coma 4.63 ± 0.11 7.04 8.07+0.29
−0.27 7.06 0.73 ± 0.05 2.31 7.46+1.57

−2.24 5.29 ± 0.20 4.77 9.61

Virgo 0.254 ± 0.005 ‡4.67 3.67+0.53
−0.52

‡ 5.70 – 1.08 0.83 ± 0.01 a 4.76± 0.55 b 3.43 6.57
a Virgo X-ray derived mass was extracted from Simionescu et al. (2017)
b Virgo SZ derived mass extracted from Planck Collaboration et al. (2016b)
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The content of this chapter is based on Hernández-Martínez et al. (in prep.) and will be submitted
to A&A, with some adjustments made.

5.1 Probing Galaxy Cluster Thermodynamics with Constrained
Simulations

A key component of galaxy clusters is the ICM, a hot, diffuse plasma that dominates their baryonic
mass. With temperatures reaching tens of millions of kelvin, the ICM emits X-rays primarily
through thermal bremsstrahlung radiation, making it observable with modern X-ray telescopes.
The thermodynamic properties of the ICM, including temperature, electron density, entropy,
and pressure, provide critical insights into the physical processes governing cluster formation
and their applications as cosmological probes (e.g., Vikhlinin et al., 2006; Eckert et al., 2013) .
Understanding these properties is essential for linking observations to theoretical models of LSS
growth.

The ICM’s thermodynamic profiles are shaped by the interplay of gravitational processes,
such as accretion and mergers, and non-gravitational mechanisms, including radiative cooling
and feedback from AGN. For instance, entropy profiles reveal the balance between gravitational
heating and additional energy input from non-gravitational processes, while pressure profiles are
key to connecting the thermal energy of the gas to the cluster’s mass (e.g., Voit, 2005; Arnaud
et al., 2010). Despite significant progress, many aspects of ICM physics remain unclear, such
as the precise role of AGN feedback in regulating cluster cores and the mechanisms responsible
for the observed deviations from self-similar scaling, particularly in disturbed systems (e.g.,
McNamara & Nulsen, 2007; Planelles et al., 2014; Le Brun et al., 2014).

The dynamical state of a cluster significantly impacts its ICM profiles. Relaxed clusters, typi-
cally characterized by symmetric profiles and cool cores, exhibit stable thermodynamic properties
where cooling and heating are in balance. Conversely, disturbed clusters—often believed to be the
result of recent mergers—show irregular temperature and density distributions, reflecting their
turbulent formation histories. The diversity in observed cluster profiles highlights the importance
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of understanding the relationship between a cluster’s dynamical state and the physical processes
shaping its ICM (e.g., Rasia et al., 2015; Barnes et al., 2017). These complexities pose challenges
for both observational studies and simulations aiming to replicate cluster behavior across a wide
range of conditions.

While statistical studies of galaxy cluster populations provide valuable insights into general
trends, they often obscure the unique features of individual systems. Constrained simulations
offer a complementary approach, enabling the study of specific clusters (e.g., Dolag et al.,
2005; Sorce et al., 2016) by reconstructing their ICs from observational data, such as galaxy
density fields (e.g., Hoffman & Ribak, 1991) or peculiar velocity measurements (e.g., Sorce
et al., 2016a). This approach allows for one-to-one comparisons between simulated and observed
clusters, providing a powerful tool to investigate how individual formation histories influence ICM
properties. Constrained simulations thus offer a unique perspective on the diversity of cluster
profiles, shedding light on the physical processes driving deviations from expected behaviors.

In this study, we investigate the thermodynamic properties,temperature, electron density, en-
tropy, and pressure, of the ICM of galaxy clusters within the local Universe simulation SLOW
(Dolag et al., 2023). We analyze these properties of the hot gas on a cluster-by-cluster ba-
sis and compare them with observational data at redshift zero. Expanding on previous work
by Hernández-Martínez et al. (2024), which showed that the SLOW constrained simulations
accurately reproduce the integrated properties of galaxy clusters, we demonstrate that these sim-
ulations also capture the detailed interior thermodynamic structures of galaxy clusters in our
Local Universe. This ability to replicate galaxy cluster profiles, which are intrinsically linked
to their formation histories, suggests that the simulations can reliably predict the evolutionary
trajectories of these systems. Consequently, we establish robust one-to-one connections between
the formation history of individual clusters and their observed thermodynamic states at 𝑧 = 0. By
linking the simulated cluster formation processes to their present-day observed ICM properties,
we aim to deeper understand the mechanisms shaping galaxy clusters and refine galaxy formation
models in a cosmological context.

5.2 Observational Thermodynamic Profiles: Data Sources,
Methods, and Systematics

We compiled a robust dataset of observed deprojected profiles by gathering results from the
literature (e.g., Vikhlinin et al., 2006; Arnaud et al., 2010; Eckert et al., 2013; Planck Collaboration
et al., 2013a; Ghirardini et al., 2019), covering up to 12 Local Universe galaxy clusters. These
profiles were originally derived from X-ray observations conducted with the Suzaku (Mitsuda
et al., 2007), Chandra (Weisskopf et al., 2002), and XMM-Newton (Jansen et al., 2001) telescopes.

The XCOP project (Eckert et al., 2017) served as a key source, offering deprojected thermo-
dynamic profiles such as temperature, density, pressure, and entropy for seven galaxy clusters,
including A644, A1644, A1795, A2029, A2319, A3158, and A3266 (Ghirardini et al., 2019).
These profiles were extracted under the assumption of spherical symmetry and were constructed
by combining X-ray observations from XMM-Newton with tSZ measurements from Planck 2015
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data release (i.e. the full intensity survey, see Ettori et al. (2019) Sec. 2 for further details).
In the case of A85 we compared our replica to the data presented by Ichinohe et al. (2015).

These observed deprojected thermodynamic profiles were derived using Suzaku observations
under the assumption of spherical symmetry, focusing on the direction of the infall of the
southern subcluster (S subcluster). Spectral data were extracted from concentric annuli centered
on the cluster and fitted employing the projection model to deproject the overlapping emission
along the line of sight. These profiles were compared to theoretical models (e.g., Nagai et al.,
2007; Pratt et al., 2010) to validate their accuracy and extend the analysis out to the virial radius
(𝑟200). Projection corrections were also applied to refine the three-dimensional distributions.

The observed deprojected thermodynamic profiles for Abell 119, were presented in Fig. 5.2
of Hudson et al. (2010). They were extracted using radial profiles of X-ray surface brightness
from Chandra observations and were deprojected assuming spherical symmetry.

The deprojected thermodynamic profiles of the Coma Cluster were obtained from multiple
observational datasets, including X-ray and tSZ-effect measurements. The deprojected profiles
presented in Planck Collaboration et al. (2013b, Fig. 13) were derived using a combination of
SZ data from the Planck satellite and X-ray data from an XMM-Newton mosaic.

Additionally, we include azimuthally resolved deprojected profiles presented by Simon (2013),
based on Suzaku X-ray observations, allowing for sector-dependent analyses, that included the
E+NE and NW+W directions, showing regional variations in the thermodynamic properties.
The deprojected profiles were obtained using the onion-shell deprojection technique, assuming
spherical symmetry. Furthermore, we incorporate the median deprojected pressure profile from
Mirakhor & Walker (2020), together with the shaded region representing the spread across all
measured sectors.

We include observations of the Perseus cluster, one of the most X-ray luminous galaxy clusters
in the local Universe. The deprojected thermodynamic profiles of Perseus were extracted from
Urban et al. (2013), which uses XMM-Newton observations. As usual, the deprojection analysis
was performed using an onion-shell technique.

We also include observations of the Virgo cluster, the nearest massive galaxy cluster at a
distance of 16 Mpc. The deprojected thermodynamic profiles of Virgo were extracted from
Urban et al. (2011), which used a mosaic of XMM-Newton observations covering the cluster out
to its virial radius. The study found that Virgo has a relatively shallow gas density profile, with
a power-law index of 𝛽 = 1.21 ± 0.12, indicating a less concentrated gas distribution compared
to more massive, relaxed clusters, and presented an entropy profile that follows a gravitational
collapse-like power law (𝐾 ∝ 𝑟1.1) within 450 kpc, but flattens at larger radii, falling below
theoretical expectations. As stated by Urban et al. (2011), due to the dynamically unrelaxed
nature of Virgo, significant substructure is present and deviations from hydrostatic equilibrium
are expected. This unrelaxed state has been independently confirmed by studies of simulated Virgo
replicas (Sorce et al., 2016; Sorce et al., 2021; Lebeau et al., 2024). Thus, the observed profiles
may be affected by systematic uncertainties arising from departures from spherical symmetry,
which are significantly larger than the measurement errors, making direct comparisons with
theoretical models challenging. Nevertheless, being aware of these complexities gives us a strong
foundation to test the robustness of simulation predictions for unrelaxed clusters.
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5.3 Thermodynamic Profiling of Simulated Galaxy Clusters

The simulation allows the extraction of thermodynamic properties of the ICM, such as tempera-
ture, density, entropy, and pressure, at various radii. These profiles are computed directly from
the hydrodynamical outputs of the SLOW-AGN15363 run, the highest resolution simulation in
the suite, which includes full galaxy formation physics. We focus our study on clusters for which
we have detailed observational data of their deprojected profiles.

To better represent the deprojected thermodynamic profiles extracted from observations, we
divided the simulated clusters into concentric bins spanning radii from 100 kpc to five times the
virial radius (where the virial radius lies tipycally at ∼ 1 Mpc). The lower limit of 100 kpc is
set by the resolution of the simulations, ensuring reliable measurements of the ICM properties.
Within each bin, we calculated the mass-weighted averages for pressure, temperature, entropy,
and electron density for the hot gas component (𝑇 > 105 K), following an approach with which
we aim to be consistent with methodologies typically adopted in observational analyses (Nagai
et al., 2007; Lau et al., 2009; Ghirardini et al., 2019).

We adopt mass weighting consistently across all thermodynamic quantities to ensure a phys-
ically self-consistent representation of the ICM’s thermal energy content. Although alternative
weighting schemes, such as volume weighting for density or spectroscopic-like weighting for
temperature (Mazzotta et al., 2004b), may offer closer analogs to specific observational methods,
we prioritize consistency and the physical interpretability of mass-weighted quantities. In par-
ticular, mass-weighted temperatures describe the actual thermal energy per unit mass, whereas
emission-weighted or spectroscopic temperatures tend to be biased toward denser, cooler gas
phases that dominate X-ray emission (Roncarelli et al., 2018).

The use of mass-weighted temperatures is further justified within 𝑟500, where the gas distri-
bution is more homogeneous and the impact of multiphase structures and clumping is reduced,
especially in relaxed clusters. In these regions, the mass-weighted and spectroscopic temperatures
generally agree within 10 to 15% (e.g., Mazzotta et al., 2004b; Rasia et al., 2005), which includes
intermediate radial ranges that constitute the main focus of our analysis.

Nevertheless, we recognize that mass-weighted temperatures may overestimate observation-
ally derived temperatures in more complex environments. Larger discrepancies are expected in
non-virialised clusters, where substructures and multiphase gas become more prominent, as well
as in the innermost regions (𝑟 ≲ 0.1𝑟500) where cool cores can bias X-ray measurements towards
lower values (Markevitch, 1998; Vikhlinin et al., 2005). Similarly, in the outskirts (beyond 𝑟500),
clumping and non-equilibrium effects introduce additional uncertainties.

An important distinction between our simulation-based profiles and observational studies is
that we do not mask substructures in our analysis. X-ray observational studies typically excise or
mask substructures, such as infalling clumps and merging sub-halos, to minimize contamination
in the derived profiles (Vikhlinin et al., 2005; Pratt et al., 2007; Eckert et al., 2015). In contrast,
by including all gas phases and substructures, our profiles capture the full complexity of the ICM
but also introduce greater scatter, particularly in the outskirts and dynamically active systems.
To account for this, we present both mean and median profiles. The median provides a robust
characterization of the bulk ICM, being less sensitive to high-density outliers — a desirable
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feature given that the distributions of thermodynamic quantities such as pressure and density
are often approximately log-normal. In such skewed distributions, the median is generally more
representative of the typical value than the mean, which can be significantly biased by dense
clumps and shocks. The mean, on the other hand, incorporates the contribution from dense
clumps and shocks, providing valuable insight into the total gas distribution and the level of gas
inhomogeneity. The difference between the mean and median serves as a useful diagnostic of the
cluster’s dynamical state and degree of clumping (Vazza et al., 2013; Zhuravleva et al., 2013).

Despite its simplicity, this approach enables a direct comparison between simulated and
observed deprojected profiles. By focusing on the simulated counterparts of observed clusters,
we can directly compare absolute values and radial distances, without the need to scale by
𝑅500. This strategy makes our comparison less sensitive to errors induced by the hydrostatic
mass bias. When observational profiles are scaled by 𝑟500 or 𝑀500, the derived scaling radius
typically assumes hydrostatic equilibrium; if non-thermal pressure support or bulk motions are
significant, this can lead to an underestimation of 𝑟500 and consequently shift the scaled profiles.
By comparing profiles in physical units (e.g., absolute distances in kpc), we reduce sensitivity to
these biases, although some implicit effects may remain through observational sample selection
and analysis choices.1

An important consideration in our comparison between simulated and observational profiles
is the cosmological model adopted in each case. The observational datasets employed in this
work are based on varying cosmological assumptions, which can introduce systematic differences
in key quantities such as radius, electron density, pressure, and entropy. While our simulations
adopt the Planck cosmology with ℎ = 0.67, 𝛺𝑀 = 0.315, and 𝛺𝛬 = 0.685, several observational
studies assume a flat 𝛬CDM cosmology with 𝐻0 = 70 km s−1 Mpc−1 (ℎ = 0.7), 𝛺𝑀 = 0.3,
and 𝛺𝛬 = 0.7. To ensure consistency, we rescale observational quantities that are sensitive to
the underlying cosmology. Physical radii scale inversely with the Hubble parameter, 𝑅 ∝ ℎ−1,
resulting in an increase of approximately 4.5% when converting observational radii from ℎ = 0.7
to ℎ = 0.67. Electron densities, derived from X-ray surface brightness profiles and dependent on
the angular diameter distance, scale as 𝑛𝑒 ∝ ℎ1/2, decreasing by about 2.3% in this conversion.
Pressure, defined as 𝑃𝑒 = 𝑛𝑒𝑘𝐵𝑇 , follows the same scaling as density, 𝑃𝑒 ∝ ℎ1/2, since X-ray
temperatures are cosmology-independent. Entropy, given by 𝐾 ∝ 𝑇𝑛−2/3

𝑒 , rescales as 𝐾 ∝ ℎ−1/3.
We note that the XCOP sample adopts the same Planck cosmology as our simulations. Thus,

no rescaling is necessary for the XCOP profiles, which can be directly compared to our simulated
clusters. For all other observational data sets, we apply the corresponding cosmology rescalings
to enable a consistent and meaningful comparison of the thermodynamic profiles and radial
distances.

The constrained nature of the simulations enables a direct connection between the thermody-
namic properties of the ICM and the formation histories and environments of individual galaxy
clusters. This allows us to explore how cluster dynamics and large-scale environmental factors
influence the diversity of ICM profiles observed at 𝑧 = 0. By comparing simulated analogs
to well-studied observed clusters, we gain valuable insights into the role of mergers, accretion,

1Note that the masses from the simulation, when compared to the observationally inferred ones, are compatible
with a hydrostatic bias of (1 − 𝑏) ≈ 0.87; (see Hernández-Martínez et al., 2024).
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Figure 5.1: Deprojected thermodynamic profiles of the galaxy cluster Abell 85. The panels show
(from left to right) the pressure, temperature, entropy, and electron density profiles as a function
of radius. The red solid line represents the median of the simulated cluster, with the red shaded
region indicating the 𝜎 scatter within each radial bin. The purple line represents the mean profile
of the simulation. The blue data points correspond to deprojected observational data extracted
using the Suzaku telescope and presented by Ichinohe et al. (2015). The vertical dashed lines
indicate 𝑟500 and 𝑟200 from observations.

and surrounding structure in shaping the thermodynamic properties of the ICM and driving
cluster-to-cluster variations.

5.4 Thermodynamic Profile Comparisons: Simulations vs.
Observations

In the following, we present a detailed analysis on the thermodynamic state of each of the clusters
analyzed and the quality of their profile reproduction.

• Abell 0085 is a well-known SCC cluster characterized by its steep central temperature gra-
dient, well-developed core, and relatively relaxed dynamical state (Reiprich & Boehringer,
2002). The Suzaku observations provide detailed measurements of the cluster’s electron
density, temperature, pressure, and entropy profiles, which reveal the thermodynamic prop-
erties of the ICM across a wide range of radii (Kawaharada et al., 2010; Ichinohe et al.,
2015). As shown in Fig. 5.1, the simulation accurately reproduces the majority of the
observed trends, particularly within 𝑟500.

The pressure profile of A85 is accurately replicated by the simulation. Within 𝑟500, the
simulation aligns closely with the observations, effectively capturing the radial decrease in
pressure. This strong agreement demonstrates the gravitationally driven structure formation
processes that dominate the inner regions of A85, where the cluster approaches hydrostatic
equilibrium (Vikhlinin et al., 2006; Eckert et al., 2013), and the assumption of spherical
symmetry is most valid in both observations and simulations. Beyond 𝑟500, the simulation
slightly underestimates the pressure, following a trend similar to that observed in the
median electron density profile. This minor discrepancy likely stems from a combination of
factors, including non-steady-state processes such as turbulence and accretion shocks, and
limitations in numerical resolution, which may have a greater influence in the low-density
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Figure 5.2: Deprojected thermodynamic profiles of the galaxy cluster Abell 119. The panels
show (from left to right) the electron density and pressure profiles as a function of radius.
The red solid line represents the median of the simulated cluster, with the red shaded region
indicating the 𝜎 scatter within each radial bin. The purple line represents the mean profile of
the simulation. The blue data points correspond to deprojected Chandra observations from the
ACCEPT database. The vertical dashed lines mark characteristic radii, including 𝑟500 and 𝑟200 of
the simulation. The observation profiles assume spherical symmetry and are obtained using an
onion-shell deprojection technique.

outskirts. Nonetheless, these deviations remain small, and the simulation reproduces the
overall pressure profiles with good accuracy.
The temperature profile is also well overall reproduced, and is well within the errors of the
observations.
The electron density profile of A85 in the core and intermediate regions further demonstrates
the accuracy of the simulation. Both, the mean and median predicted values closely track the
decline present in observations. This demonstrates that the simulation effectively captures
the overall gas distribution in the inner parts of the cluster. Beyond 𝑟500, a noticeable bump
in the mean values diverges from the median, coming closer to the values of the last two
Suzaku observations. This increase in electron density may be linked to shocks associated
with mergers involving substructures (Kempner et al., 2002; Durret et al., 2005), which
appear to influence the median density values further out, particularly beyond 𝑟200.
The observed entropy profile of A85 is particularly notable for its potential flattening at small
radii, consistent with the presence of a cooling flow region (Hudson et al., 2010; Panagoulia
et al., 2014), which is reflected in the long horizontal error bars in the observational data. A
similar flattening is evident in the inner regions of the simulated cluster, appearing slightly
more pronounced than in the observations. In the mid-regions, the observations exhibit a
steeper rise in entropy compared to the simulation, but the profiles quickly converge as they
approach 𝑟500.
Overall, the reproduction of A85’s deprojected ICM profiles is highly accurate, showing
strong agreement with observations, suggesting that for A85 the assumptions of hydrostatic
equilibrium and spherical symmetry provide a reasonable approximation.

• Abell 0119 is considered a NCC cluster that exhibits significant elongation toward the
northeast, suggesting it may be undergoing a merger (Govoni & Feretti, 2004; Hudson
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Figure 5.3: Deprojected thermodynamic profiles of the galaxy cluster Abell 644. The panels
show (from left to right) the pressure, temperature, and electron density profiles as a function
of radius. The red solid line represents the median of the simulated cluster, with the red shaded
region indicating the 1𝜎 scatter within each radial bin. The purple line represents the mean profile
of the simulation. The blue data points correspond to deprojected XMM-Newton observations
from Ettori et al. (2019), while the green points in the temperature panel represent Planck data
as presented in the same study. The vertical dashed lines mark characteristic radii, including 𝑟500
and 𝑟200.

et al., 2010; Parekh et al., 2015). Its X-ray peak, which does not dominate the surface
brightness, is co-spatial with a central cD galaxy. The cluster is highly diffuse, lacking a
prominent cool core, and features a large core region with slowly varying surface brightness,
which makes deprojection highly unstable.

The electron density and pressure profiles of A119, shown in Fig. 5.2, were extracted from
Cavagnolo et al. (2009) using Chandra observations and extend up to 500 kpc from the
cluster’s center. Overall, the simulation effectively captures the general trends observed in
the inner regions of the ICM, demonstrating its ability to model the gas distribution and
thermodynamic state of A119. However, the simulation shows a systematic deviation in
slightly underestimating the density. This discrepancy may arise from lack of resolution as
well as differences in the choice of the cluster center used for the deprojection (Maughan
et al., 2008). The simulation employs the SUBFIND-assigned center, which corresponds
to the gravitational potential center dominated by the dark matter component, whereas the
observations use the X-ray peak as the center.

Due to its diffuse and highly disturbed nature, it is highly likely that the gravitationally
determined center used in the simulation does not coincide with the X-ray peak center used
in the observations. Furthermore, the highly asymmetrical structure of the cluster renders
the assumption of spherical symmetry inappropriate for deprojection in both observations
and simulations (Ventimiglia et al., 2008), adding additional uncertainty and potential
sources of discrepancy. Despite these challenges, the simulation does successfully capture
the overall trend of the electron density profile.

For the pressure profile, the simulation follows the observed profile very well, with all
observed data points falling within the 1-sigma region of the simulated profile’s median.

In summary, despite the challenges associated with profile post-processing and the asym-
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Figure 5.4: Same as Fig. 5.3 but for the galaxy cluster Abell 1644. Observational data are from
Ettori et al. (2019).

metric nature of the cluster, the thermodynamic profiles of A119 are reproduced satisfac-
torily.

• Abell 0644 is a dynamically disturbed galaxy cluster, often categorized as a NCC system
(Buote & Tsai, 1996; Cassano et al., 2010; Rossetti et al., 2011). Previous studies have
revealed significant deviations from symmetry in its ICM, likely driven by recent merger
activity. Despite this, the cluster’s large-scale properties remain consistent with relaxed
systems (Hudson et al., 2010), presenting a unique combination of features. Observations
indicate a relatively flat temperature profile in the central regions, reflecting the absence of
a strong cool core (Cavagnolo et al., 2009; Lovisari & Reiprich, 2019). This combination of
dynamical disturbance and large-scale quasi-relaxation makes A644 an interesting system
for studying the interplay between mergers and the evolution of thermodynamic properties
in the ICM.

The thermodynamic profiles of A644 shown in Fig. 5.3, including pressure, temperature,
and electron density, show a strong level of agreement between observations and simula-
tions, particularly within 𝑟500.

The pressure profile shows that the simulation effectively captures the observed trends
from the core to the outskirts of the cluster. Within 𝑟500, the simulated values closely
match the observations, with most data points falling within the 1𝜎 uncertainty region of
the simulated profile. In the very central region, the simulation slightly underpredicts the
pressure, potentially due to the smoothing of substructures or differences in the choice of
the cluster center between the simulation and observations. Beyond 𝑟500, the simulation
exhibits a mild bump in the pressure profile. While this feature could be influenced
by unresolved small-scale substructures, other factors such as excess AGN feedback, an
active dynamical phase, or intrinsic deviations from the observational counterpart may also
contribute.

Observations indicate a relatively flat temperature profile in the central regions, reflecting
the absence of a strong cool core. The simulation accurately reproduces this flat trend,
effectively capturing the thermodynamic behavior of the cluster within 𝑟500. Beyond 𝑟500,
the simulation exhibits a similar bump as observed in the pressure profile, likely pointing
to the presence of a merging substructure. In general, the deviation between simulation
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Figure 5.5: Same as Fig. 5.3 but for the galaxy cluster Abell 1795. Observational data are from
Ettori et al. (2019).

Figure 5.6: Same as Fig. 5.3 but for the galaxy cluster Abell 2029. Observational data are from
Ettori et al. (2019).

and observations is of the same level as the deviations between the different observations
presented in Fig. 5.3, pointing to an agreement between observations and our replica as
close as the observational certainty itself. Thus, we conclude that overall, the simulation
allineates well with the observed temperature profile, showing minimal deviations and
demonstrating its ability to capture the thermodynamic state of the cluster’s outer regions.

For the electron density, the median of the simulation lies below the observed values, but
the mean exhibits noticeable bumps in the central region that come closer to the observa-
tional values. This behavior may indicate the presence of substructures in the cluster core,
potentially pointing to recent merger activity also in the simulated replica.

• Abell 1644 is a SCC cluster that exhibits clear signs of merging activity, as evidenced by
the presence of a double X-ray peak (Scheck et al., 2023). Reiprich et al. (2004) analyzed
XMM-Newton EPIC observations of the cluster, reporting that the flux of the northern
(smaller) subclump lies below the HIFLUGCS flux limit, while the southern (larger)
subclump exceeds this threshold. Further evidence suggests that the smaller subclump is
being stripped as it moves through the ICM, reinforcing the picture of ongoing dynamical
activity.

The deprojected thermodynamic profiles of A1644, including pressure, temperature, and
electron density, are shown in Fig. 5.4 and reveal a strong level of agreement between
observations and simulations. The pressure profile demonstrates that the simulation ef-
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fectively reproduces the observed trends from the core to the outskirts of the cluster. The
simulated values closely match the observations, with the data points falling within the 1𝜎
uncertainty band around the median of the simulated profile.
The temperature profile also shows good agreement between the simulation and observa-
tions, both within and beyond 𝑟500. The simulated temperature captures the flat-to-declining
trend observed in the core and intermediate regions. However, a slight overprediction of
the central temperature is noted, potentially due to limitations in the simulation’s ability to
model cooling processes or the impact of localized substructures near the cluster center.
Similarly, the electron density profile reveals a close match between the simulation and
observations, with predicted values lying within the observational uncertainties up to the
cluster core.

• Abell 1795. In the left panel of Fig. 5.5, we present the deprojected radial pressure profile
of the SCC cluster A1795. The red curve, indicating the median of our simulation suite,
generally follows the observed data out to 𝑟 ≈ 𝑟500 within the 1𝜎 scatter (light red shaded
region). Notably, in the innermost regions (𝑟 ≲ 200 kpc), the observed pressure rises
slightly above the median simulation curve. This offset may reflect key SCC features
such as strong cooling, gas sloshing, and the presence of a cold front (Markevitch et al.,
2001). These processes typically enhance the density and pressure within the cluster
core, particularly when a cool filament and ongoing feedback mechanisms are present, as
documented by Fabian et al. (2001), Oegerle et al. (2001) and Crawford et al. (2005). Beyond
a few hundred kiloparsecs, the observations remain in concordance with the simulation,
suggesting that the large-scale ICM structure is broadly captured. At larger radii (≳ 𝑟500),
the separation of the mean (purple) and median (red) curves indicates some offset in the
simulation, but overall consistency between the median and the observational data persists.
The middle panel shows the deprojected temperature 𝑘𝑇 (𝑟). A1795’s SCC nature man-
ifests in a pronounced temperature drop in the core, consistent with the short CCT of
∼ 0.5 ℎ−1/2

71 Gyr found here and in previous studies (Fabian et al., 2001). Observational
data (blue/green points) exhibit an inner temperature decline followed by a peak and eventual
fall-off at large radii, indicative of the strong cool core and subsequent hot ICM envelope.
The good agreement between the red (median simulation) curve and the observations in
the intermediate radii (𝑟 ∼ 200–500 kpc) implies that the simulations capture much of the
thermal structure outside the immediate influence of the cold front. However, the presence
of gas sloshing (Markevitch et al., 2001) and the prominent X-ray/H𝛼 filament Crawford
et al. (2005) in the central ∼ 50–100 kpc likely drives additional complexities not fully
replicated in the median simulation. At larger radii, the overall shape of the temperature
profile remains matched within±1𝜎 scatter, indicating robust reproduction of global cluster
properties by the simulations despite potential outliers.
The right panel displays the deprojected electron density 𝑛𝑒 (𝑟), which in the observations
peaks sharply in the center—characteristic of a SCC environment. The simulation fails
reproducing this high central densities and the steepness of the profile, most probably due to
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Figure 5.7: Same as Fig. 5.3 but for the galaxy cluster Abell 2319. Observational data are from
Ettori et al. (2019).

Figure 5.8: Same as Fig. 5.3 but for the galaxy cluster Abell 3158. Observational data are from
Ettori et al. (2019).

resolution limitations. Even more, the estimated values for 𝑟500 and 𝑟200 are notably lower
in the simulation than the ones estimated from the observations. Thus, higher resolution
and possibility a better treatment of cooling and feedback would be necessary to reproduce
the ICM properties of A1795.

• Abell 2029 is a well-studied SCC cluster that features a cold front, as identified by Marke-
vitch et al. (2003). The core has been extensively analyzed with Chandra, including a
detailed study by Clarke et al. (2004). Thermodynamic and chemical properties reveal
a dynamic and well-regulated environment. Figure 5.6 presents the deprojected thermo-

Figure 5.9: Same as Fig. 5.3 but for the galaxy cluster Abell 3266. Observational data are from
Ettori et al. (2019).
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dynamic profiles of A2029 from XCOP observations compared to simulated profiles. As
before, the vertical grey lines indicate observational values for 𝑟500 and 𝑟200, while the
maroon lines mark the corresponding values from simulations.

The left panel of Fig. 5.6 shows the pressure profile for this cluster. The observed data start
around a few 10−2 keV cm−3 in the core (at 𝑟 ∼ 100–200 kpc) and then smoothly decline by
roughly two to three orders of magnitude by 𝑟 ∼ 1 Mpc. The simulation median generally
tracks the measurements well, with its 1𝜎 band covering the observations through most
radii. Around 𝑟500 and beyond, the mean curve deviates upward from the median, hinting
to some possible substructures.

The cluster’s observed deprojected temperature profile shown in the middle panel of Fig. 5.6
is fairly high at small radii (∼ 9–10 keV) and increases slightly to a broad peak (∼ 11–13
keV) at a few hundred kpc, before declining beyond 𝑟 ∼ 500–700 kpc. Observations
(green/blue points) and the simulation median agree on the overall behavior of the profile,
while the simulation peak happens slightly closer to the center (∼ 500 kpc), than the
observed peak at ∼ 600 kpc. After the peak, both simulation and observation suffer a
decline, where the simulation’s decline is slightly steeper. This suggests that, on average,
the models replicate well A2029’s hot ICM.

As in many massive clusters, A2029’s electron density 𝑛𝑒 is strongly peaked at small radii—
∼ 3 × 10−2 cm−3 near 100 kpc—before falling by orders of magnitude outward, a feature
the simulation finds some struggle replicating. Indeed, we find higher electron density
measurements up to 700 kpc, from where simulation and observation start converging
again.

In summary, A2029’s profiles exhibit a characteristic “hot, dense core to cooler, lower-
density outskirts” structure, which we can often find in massive galaxy clusters. While we
do underestimate the electron density in the first 400 kpc of the cluster and converge from
500 kpc on, the simulation does reproduce the central and intermediate-radius regimes
quite well for pressure and temperature, where we see that the overall trends and shapes are
captured well along the complete profile.

• Abell 2319 is a well-studied merger cluster, known for its large core region extending
beyond 100 kpc and a prominent cold front (Feretti et al., 1997; Molendi et al., 1999;
O’Hara et al., 2004). The surface brightness profile is well-represented by a 𝛽-model,
reflecting the cluster’s dynamic state and the impact of ongoing merger activity.

As a dynamically active system, A2319 exhibits features such as a large core region, a
prominent cold front, and substructures. These processes disrupt the equilibrium state
typically assumed in many cosmological simulations, introducing complexities that are
challenging to model accurately.

In the left panel, the observed deprojected pressure profile of A2319 (blue points) decreases
steadily from ∼ 10−2 keV cm−3 in the core to around 10−5 keV cm−3 beyond 𝑟500. The
median of the simulated profiles (red line) follows the observations closely through the
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inner regions and starts deviating and underestimating the pressure at the intermediate
and outer regions. This systematic underestimation likely arises from the inability of the
simulations to fully capture the degree of gas compression and redistribution that arises
during the merger. Similarly we underestimate the 𝑟500 and 𝑟200 radii for the cluster.

Turning to the middle panel, the observed temperature data points show a rise to a broad
peak of ∼ 10–12 keV at a distance of 400 kpc. Simulated data show a peak at 300kpc
and suffers a slightly steeper decline, although it does try to follow the general trend of the
observational datapoints.

Finally, in the right panel, the electron density profile exhibits a steep decline with a similar
slope in observations as in simulations and with a constant underestimation of around a
factor 3 in the simulated reproduction.

Generally, the simulation reproduces the general trends of the thermodynamic profiles of
A2319 but fails to replicate their absolute values, indicating a possible systematic bias. In
the core, these biases are likely driven by an insufficient representation of gas compression
and cold front dynamics, while in the outskirts, they could stem from an underestimation
of shock heating and turbulence. The smoothing of substructures and the assumption of
quasi-hydrostatic equilibrium in the simulations contribute to these discrepancies, as well
as for the underestimation of 𝑟200 and 𝑟500, particularly in systems like A2319 that are far
from equilibrium.

• Abell 3158 is classified as a relaxed cluster based on the velocity dispersion of its member
galaxies (Łokas et al., 2006), which is consistent with the observed good agreement between
simulations and observations across most of its thermodynamic profiles. The cluster’s X-
ray emission is elliptical in shape, and it hosts two central cD galaxies, with one located at
the X-ray peak. Despite its relaxed classification, the cluster does not have a bright core,
exhibiting a relatively low central electron density of approximately 5 × 10−3 cm−3.

The simulation reproduces the observed pressure profile remarkably well. The agreement
between the observations and simulation in the core and intermediate regions reflects the
cluster’s relaxed dynamical state, where gas is well-distributed and close to hydrostatic
equilibrium.

When it comes to the temperature profile, the simulation performs well in terms of absolute
values, although the simulated replica shows a slowly decreasing trend with radius, while
observations show a flatter profile. However, the core and intermediate regions (𝑟 < 𝑟500),
successfully reproduce the observed peak temperature of approximately 5.7 keV in the
center.

The observations of the electron density show a rather low density in the center; neverthe-
less, due to resolution limitations, this simulation is not capable of achieving central values
much higher than 10−3cm−3, falling short in reproducing the inner electron densities of the
cluster cores. Observations and simulations start converging again at ∼ 𝑟500.
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Figure 5.10: Deprojected thermodynamic profiles of the Coma cluster, comparing simulation
results to observational data. The panels, from left to right, show the pressure, temperature,
entropy, and electron density profiles. The red line represents the median profile of the simulated
Coma cluster, while the red shaded region indicates the 1𝜎 scatter of particles within each
spherical-shell bin. The purple line represents the mean profile of the simulation. Observational
data from A. Simionescu et al. (2013) are shown as blue points (E+NE direction) and green
points (NW+W direction). The black line represents the median deprojected pressure profile
from Mirakhor & Walker (2020), with the shaded grey region indicating the range covered by
profiles in all observed sectors. In the leftmost panel, the light blue line represents the pressure
profile derived from Planck data as presented by Planck Collaboration et al. (2013b). The vertical
dashed lines indicate 𝑟500 and 𝑟200 from observations (blue) and simulations (red).

• Abell 3266 is a well-known merging cluster (Henriksen & Tittley, 2002) The pressure
profile shown in the left panel of Fig. 5.9 shows good agreement between the simulation
and observations in the core and intermediate regions (𝑟 < 𝑟500), suggesting that the
simulation captures the broad thermodynamic structure of the cluster reasonably well.

The temperature profile (middle panel of Fig. 5.9) highlights the cluster’s disturbed ther-
modynamic state, with a relatively flat temperature distribution in the core and intermediate
regions. This behavior is consistent with the turbulent mixing and heating caused by the
ongoing merger, which suppresses the formation of a steep temperature gradient.

The electron density profile shown in the right panel of Fig. 5.9 agrees well with the
observed density at intermediate and outer regions but it under-predicts the density slightly
in the inner parts. Interestingly, the simulated mean and median deviate strongly at 𝑟500,
indicating the existence of substructure possibly forming part of an ongoing merger.

Overall, even if A3266 is a merging cluster, with presumably a disrupted inner structure, it
is well reproduced in terms of its main ICM properties.

• The Coma Cluster is a massive, dynamically evolved, and nearly isothermal galaxy cluster,
often used as a reference system for studying the thermodynamic properties of the ICM
(Briel et al., 1992; Arnaud et al., 2001; Simionescu et al., 2013). Unlike SCC clusters,
Coma exhibits a flat central entropy profile and lacks a strongly peaked density distribution,
characteristics typical of NCC systems (Cavagnolo et al., 2009; Planelles et al., 2014).
Observations indicate that the ICM is well mixed, with no evidence of a dominant central
cooling flow (Matsushita et al., 2013).
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Figure 5.11: Deprojected thermodynamic profiles of the Perseus cluster compared to obser-
vational data from (Urban et al., 2013). The panels, from left to right, show the pressure,
temperature, entropy, and electron density profiles. The red line represents the median profile of
the simulated Perseus cluster, while the red shaded region indicates the 1𝜎 scatter of particles
within each spherical-shell bin. The purple line represents the mean profile of the simulation.
The blue points correspond to deprojected observational data from Urban et al. (2013). The
vertical dashed lines mark 𝑟500 and 𝑟200 of the simulations.

Figure 5.10 presents the deprojected thermodynamic profiles of Coma from multiple obser-
vational datasets compared to simulated profiles. Observational measurements include de-
projected profiles from Simionescu et al. (2013), where green points represent the NW+W
direction and blue points represent the E+NE direction. The black line represents the
median deprojected pressure from (Mirakhor & Walker, 2020), with the shaded region in-
dicating the range covered by deprojected profiles across all sectors. In the leftmost panel,
the light blue line represents Planck data (Planck Collaboration et al., 2013b, Fig. 13).

The pressure profile (left panel) shows good agreement between the simulation and the
observations at the core while slightly overestimating the values in the mid and outer
regions. The simulated median profile lies close to the NW+W (green) deprojected data
points and slightly higher than the E+NE (blue) data points.

The temperature profile (second panel) is relatively flat, consistent with the isothermal
nature of the Coma Cluster (Arnaud et al., 2001). The simulation reproduces this trend
very well, maintaining a nearly constant temperature over a large radial range (Mirakhor &
Walker, 2020).

The entropy profile (third panel) shows that the simulation matches Simionescu et al. (2013)
remarkably well, with both the simulated and observed profiles exhibiting a smooth increase
with radius, characteristic of NCC clusters. The NW+W and E+NE measurements (green
and blue points) follow the simulated median profile closely, confirming that the simulation
captures the entropy structure of Coma accurately. Some scatter between different sectors
is visible in the observational data, as also seen in the black median profile from Mirakhor
& Walker (2020), but overall, the agreement between the simulation and the observations
remains strong.

The electron density profile (right panel) also shows very good agreement between the
simulation and observations. The simulated density profile follows the deprojected values
from Simionescu et al. (2013) (blue and green points) closely at all radii. Since NCC
clusters like Coma have more diffuse central gas, the simulation does not suffer from the
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strong underestimation of central density that is sometimes seen in simulated CC clusters
due to resolution limitations. The black line from Mirakhor & Walker (2020) provides
a sector-averaged comparison, with the simulated profile staying well within its observed
spread. Interestingly, the mean and the median deviate strongly in the core, showing the
presence of big substructure in the center of the cluster, as expected for the Coma cluster.

Overall, the simulation provides an excellent fit to the observations from Simionescu et al.
(2013) and (Mirakhor & Walker, 2020) across all thermodynamic profiles, confirming that
it successfully reproduces the pressure, temperature, entropy, and electron density structure
of the Coma Cluster.

• The Perseus Cluster is a well-studied SCC cluster and one of the most X-ray luminous
clusters in the local Universe (e.g., Fabian et al., 2000b; Churazov et al., 2003). Observations
from Urban et al. (2013) reveal a well-developed cool core with a steep temperature gradient
and an entropy profile that flattens at small radii, consistent with a cooling flow region. The
pressure and density profiles indicate a relatively relaxed structure, with no major recent
disturbances within 𝑟500 (Zhuravleva et al., 2015).

Figure 5.11 presents the deprojected thermodynamic profiles of Perseus from Urban et al.
(2013) compared to simulated profiles. The vertical dashed line marks 𝑟500 and 𝑟200 of the
simulated replica.

The pressure profile (left panel) exhibits strong agreement between simulations and obser-
vations within 𝑟500. The median simulated values closely track the observed data, and the
1𝜎 region, remains relatively small, indicating that the pressure distribution is smooth and
well-defined in the simulated ICM.

The temperature profile (second panel) follows the observed trend well, showing a steep
increase from the core, reaching a peak at intermediate radii. The simulation accurately
reproduces this behavior within 𝑟500, with most data points falling within the uncertainty
range. However, at very small radii (𝑟 ≲ 200 kpc), the simulation slightly overpredicts
the temperature, which may indicate differences in cooling efficiency or AGN feedback
behaviour, as it is expected to have a relevant impact at such scales (e.g., Fabian et al.,
2006; McNamara & Nulsen, 2007).

The entropy profile (third panel) shows the characteristic flattening at small radii, a feature
associated with a cooling flow (Cavagnolo et al., 2009; Werner et al., 2013). The simulation
captures this trend, though it slightly overestimates the entropy in the core, which could be
linked to the treatment of radiative cooling and thermal conduction. At intermediate radii
(100 < 𝑟 < 500 kpc), the observed and simulated profiles align more closely, indicating
that the simulation successfully models the entropy structure of the cluster.

The electron density profile (right panel) is generally underestimated within 𝑟500, but
converges to observations at 𝑟 ≈ 𝑟500.

• The Virgo Cluster The Virgo Cluster is the nearest massive galaxy cluster, located at a
distance of 16 Mpc (Mei et al., 2007; Ferrarese et al., 2012). Unlike many other well-studied



124 5. Thermodynamics and Evolution of Local Galaxy Clusters

Figure 5.12: Deprojected thermodynamic profiles of the Virgo cluster, comparing simulation
results to observational data. The panels, from left to right, show the pressure, entropy, and
electron density profiles. The red line represents the median profile of the simulated Virgo
cluster, while the red shaded region indicates the 1 𝜎 scatter of particles within each spherical-
shell bin. The purple line represents the mean profile of the simulation. Observational data from
Urban et al. (2011) are shown as blue points. The green points represent deprojected profiles
from a Virgo replica run using the RAMSES code presented by Lebeau et al. (2024), which
employs different subgrid physics and resolution (dark matter particle mass of 109 𝑀⊙). The
vertical dashed lines indicate 𝑟500 and 𝑟200 from the simulated replica.

clusters, Virgo is a dynamically young system, exhibiting significant substructure and signs
of a late time merger and ongoing formation (e.g., Boselli et al., 2014; Sorce et al., 2016;
Sorce et al., 2021). X-ray studies, such as the one performed by Urban et al. (2011) have
revealed that the cluster has a relatively shallow density profile, with a power-law index of
𝛽 = 1.21 ± 0.12, which is lower than what is typically observed in more massive, relaxed
clusters. The entropy profile follows a gravitational collapse-like power law (𝐾 ∝ 𝑟1.1)
within 450 kpc, but beyond this radius, it flattens significantly, falling below theoretical
expectations by a factor of 2–2.5 (Ettori et al., 2002; Urban et al., 2011). This behavior has
been attributed to clumping in the ICM, which artificially enhances the observed density
while reducing the inferred entropy (Simionescu et al., 2011; Nagai & Lau, 2011).
Due to its non-relaxed state and complex morphology, the results of the de-projection analy-
sis, which assumes spherical symmetry, should be interpreted with caution (Mazzotta et al.,
2004a). In fact, Urban et al. (2011) noted that systematic uncertainties due to deviations
from spherical symmetry are significantly larger than measurement errors, complicating
direct comparisons with theoretical models or simulations.
Figure 5.12 presents the deprojected thermodynamic profiles of the Virgo Cluster from
Urban et al. (2011) alongside the simulated profiles. The vertical dashed lines mark 𝑟500
and 𝑟200. Additionally, green points represent the deprojected profiles of a Virgo replica
simulated with the RAMSES code as presented in Lebeau et al. (2024), which employs
a different subgrid physics model and resolution (DM mass of 109 𝑀⊙ in the RAMSES
replica, while 2.9 × 109 𝑀⊙ in the SLOW replica). Notably, both simulations (the main
one and RAMSES) agree with each other, despite these differences in the implementation
of code and subgrid physics.
The pressure profile (left panel) shows notable discrepancies between simulations and
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observations, where observed data points systematically fall below the simulation. This
may be due to departure from hydrostatic equilibrium, as turbulence and bulk motions in
the Virgo ICM can redistribute pressure, leading to deviations from hydrostatic models.
Additionally, projection effects in the observational de-projection analysis may contribute
to the observed offset. The agreement between the two simulations suggests that this
discrepancy is not simply a result of the simulation’s subgrid physics or resolution. Instead,
it may arise from a combination of observational systematics, Virgo’s non-relaxed state,
and potential shared limitations in the simulation models of ICM turbulence and heating.

The entropy profile (middle panel) shows a significant mismatch, with observed entropy
values well below the simulated predictions. The simulated profile predicts a more gradual
increase, while observations indicate a steeper rise followed by a flattening. This suggests
that the simulation may overpredict heating processes or underestimate gas mixing, leading
to systematically higher entropy values. Given the cluster’s unrelaxed state, deviations from
spherical symmetry may introduce further biases in the deprojected entropy values. The
fact that the RAMSES simulation reproduces the same trends reinforces the robustness of
the simulated entropy structure, regardless of the numerical implementation or resolution.
However, the discrepancies could also indicate that the simulations fail to fully capture
some of the physical processes shaping the entropy profile, such as turbulence, conduction,
or small-scale gas clumping.

The electron density profile (right panel) also exhibits systematic differences. While the
general decline in density is captured, the simulated cluster maintains a higher central
density than the one observed. Observations indicate a more diffuse gas distribution, which
could result from large-scale gas motions, substructure, or incomplete virialization. The
agreement between the two simulations suggests that these discrepancies are not only an
artifact of the simulation technique, but a consequence of a combination of observational de-
projection assumptions, departures from hydrostatic equilibrium, and possibly limitations
in how the simulations model the core structure of the Virgo cluster.

Overall, the Virgo Cluster presents significant challenges for direct comparisons between
simulations and observations due to its dynamically non-relaxed nature. The large uncer-
tainties in the de-projection analysis, as highlighted by Urban et al. (2011), suggest that
some observed-simulated discrepancies may stem from the limitations of assuming spher-
ical symmetry and hydrostatic equilibrium. However, the possibility remains that current
simulations may not fully capture some aspects of Virgo’s complex thermodynamic state,
such as non-thermal pressure support, gas clumping, or turbulent mixing. Future work
could explore non-spherical modeling approaches, alternative subgrid physics models, or
dynamical state indicators to better characterize the Virgo cluster’s complex ICM.



126 5. Thermodynamics and Evolution of Local Galaxy Clusters

Figure 5.13: Evolution of the mass assembly history for clusters classified as SCC, WCC, and
NCC based on observational criteria. The panels show the total median and mean mass growth
as well as the total stellar mass growth, normalized to the final mass, as a function of redshift.
The blue line represents the median 𝑀200𝑐/𝑀200,𝑧=0 mass growth, while the green line shows the
mean 𝑀200𝑐/𝑀200,𝑧=0 mass growth. The orange line represents the median stellar mass growth,
𝑀★/𝑀★,𝑧=0. The shaded regions indicate the 1𝜎 scatter for the total median mass and the median
stellar mass for each classification. The vertical dashed lines mark the redshifts at which 50%,
75%, and 90% of the total mass was assembled.

5.5 The Impact of Formation History on Cluster Thermody-
namics

We have now extensive evidence that the assembly history of a galaxy cluster plays a fundamental
role in determining its present-day thermodynamic state (Voit et al., 2005; Burns et al., 2008;
Kravtsov & Borgani, 2012; Lau et al., 2015). Current simulations, including the SLOW suite,
face challenges in accurately reproducing the thermodynamic profiles of the innermost regions
of galaxy clusters. In particular, they struggle to replicate the observed differences in central
slopes between SCC, WCC, and NCC clusters (see e.g. Rasia et al., 2015; Planelles et al., 2017;
Barnes et al., 2018; González Villalba et al., 2025). These discrepancies likely arise from an
incomplete understanding of subgrid physics, particularly regarding cooling, turbulence, and
feedback mechanisms. However, a key strength of the SLOW constrained simulations is their
ability to faithfully reproduce the LSSs of the local Universe, ensuring that the formation histories
of individual clusters are well captured (see, e.g., Sorce et al., 2016). With our simulations
successfully matching the observed thermodynamic profiles at intermediate and large radii,
where our lack of resolution and subgrid physics does not introduce significant biases, we can
be confident that the formation pathways of these structures are realistically constrained. This
enables us to investigate the connection between a cluster’s assembly history and its present-day
classification as SCC, WCC, or NCC. The classification of clusters follows the criteria established
by Hudson et al. (2010) for the HIGFLUGCS catalog (see Sect.1.2.3 for further details).

Figure 5.13 illustrates the median evolution of total mass (𝑀200) and stellar mass (𝑀∗),
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normalized to their respective values at 𝑧 = 0, for the clusters in our simulated volume classified
by observations as SCC, WCC, and NCC clusters respectively. A clear trend emerges: current-day
SCC clusters tend to finish their mass assembly earlier than their WCC and NCC counterparts.
In fact, current day SCC have assembled a larger fraction of their total mass already at 𝑧 ≈ 0.25
while their WCC and NCC counterparts still grow in mass significantly after 𝑧 ≈ 0.25. The
vertical markers in Fig. 5.13 indicate the redshifts at which 50%, 75%, and 90% of the total mass
has been accreted. Clearly visible for SCC clusters is an extended plateau from z ≈ 0.25 to z ≈
0. This suggests a more rapid formation history before, followed by a late-time relaxation. In
contrast, NCC clusters accumulate their mass more gradually, and a significant fraction of their
growth occurs more abruptly at recent times, indicating fast accretion episodes through significant
mergers. WCC clusters exhibit an intermediate accretion pattern, bridging the gap between SCC
and NCC populations. Their mass assembly shows subsequent increases from z≈1.0 onward, but
these are less abrupt compared to the NCC case. This increased merger rate of NCC clusters is in
line with recent findings supporting mergers as drivers of the transition between SCC and NCC
clusters (Sarazin, 2002; Chen et al., 2007; Burns et al., 2008; Sanders et al., 2010; Rossetti &
Molendi, 2010; Hudson et al., 2010; Hoffer et al., 2012; González Villalba et al., 2025).

This distinction in mass growth histories is also reflected in the evolution of the stellar mass
component. The stellar mass growth curves (yellow lines in Fig. 5.13) reveal that SCC clusters
build up their stellar content earlier and more efficiently compared to NCC clusters. This early
stellar mass accumulation is consistent with a formation scenario where SCC clusters experience
early, intense cooling and subsequent star formation within their cores. Conversely, NCC clusters
show a delayed stellar mass growth, likely due to a more prolonged merger history that disrupts
early cooling and extends the timescales for stellar assembly.

The delayed assembly of NCC clusters agrees with the expected more disturbed dynamical
states observed at 𝑧 = 0. Mergers inject turbulence into the ICM, suppressing the formation of a
central cool core by redistributing entropy and mixing high- and low-entropy gas. This mechanism
naturally explains why NCC clusters exhibit flatter entropy profiles and weaker central cooling
signatures compared to SCC clusters. The enhanced scatter in the total mass accretion histories
of NCC clusters further supports the idea that these systems undergo more stochastic growth,
with frequent late-time mergers playing a dominant role in shaping their final structure.

WCC clusters represent an intermediate evolutionary state, exhibiting characteristics of both
SCC and NCC populations. Their accretion histories suggest a mix of early mass assembly with
later minor mergers that do not fully disrupt their cores. This transitional nature may indicate
that WCC clusters evolve into NCC clusters over time if additional late-time mergers continue to
inject energy into the ICM.

Overall, the connection between merger history and cluster classification at 𝑧 = 0 is evident
in both the total and stellar mass assembly histories. SCC clusters, which form earlier and
more quiescently, retain their dense, cooling cores, while NCC clusters, shaped by extended
merger activity, remain dynamically disturbed with higher entropy cores. The SLOW simulations
successfully reproduce these trends, offering a detailed view of how individual formation pathways
influence the present-day structure of local galaxy clusters.
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5.6 Summary and Conclusions
In this study, we examined the thermodynamic properties of local galaxy clusters using the con-
strained cosmological simulation AGN15363 from the SLOW project. By performing one-to-one
comparisons with observed systems, we assessed the ability of the simulation to reproduce late-
time profiles in the Local Universe and explored the physical processes shaping them. The close
agreement between simulated and observed deprojected profiles suggests that constrained simu-
lations effectively capture the large-scale formation histories of individual clusters, providing a
reliable framework for connecting past accretion and merger events to present-day thermodynamic
states.

Our findings highlight several key aspects of cluster evolution:

1. The SLOW simulations successfully reproduce the thermodynamic structure of galaxy
clusters, recovering key trends in pressure, temperature, electron density, and entropy
profiles across a broad range of cluster environments. While the agreement is particularly
strong for dynamically evolved systems, the simulation also matches the profiles of disturbed
clusters such as Coma and A119, where the large-scale ICM properties agree well with
observations.

2. Current cosmological simulations, including SLOW, face difficulties in accurately repro-
ducing core regions, particularly in electron density and entropy profiles, which tend
to be systematically underestimated or overestimated. These discrepancies arise from a
combination of numerical resolution constraints and limitations in the implementation of
subgrid physics, including potentially excessive AGN feedback and incomplete modeling
of non-thermal pressure support. The largest deviations are found in NCC clusters, where
the spherical symmetry assumption used for profile de-projection is less applicable, and
merger-driven turbulence and substructure interactions introduce additional complexities
that are not fully captured. However, the ability to directly compare simulated and ob-
served clusters on a one-to-one basis reveals a new pathway to identify where current
models struggle to capture key physical processes, particularly in cluster cores, and provide
critical insights into the mechanisms shaping core structure and the impact of mergers,
turbulence, and feedback. Identifying these mismatches serves as a new tool to iden-
tify pathways toward refining AGN and star formation models with a stronger physical
foundation.

3. The overall accurate reproduction of late-time profiles indicates that the simulation captures
the formation histories of clusters well. This makes it possible to connect formation history
to observables that are otherwise difficult to reproduce in simulations, such as the cores
of galaxy clusters. We studied the evolutionary paths of the clusters of our simulation,
classifying them based on their observed cores: SCC, WCC, and NCC. We found that
SCC, WCC and NCC clusters differ in their evolution, with SCC clusters forming earlier
and evolving more quiescently, while WCC clusters experience extended merger activity
that disrupts their cores and increases entropy accross their evolution and NCC experience
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late time major mergers that make them accrete most of their mass in later times. This
link between formation history and core structure provides insight into regions of the ICM
where subgrid models remain incomplete, particularly in the treatment of AGN feedback,
turbulence, and radiative cooling.

These results emphasize the value of constrained simulations in bridging theoretical models and
observations, offering a powerful framework to investigate the formation and evolution of galaxy
clusters in a cosmological context. By enabling direct comparisons between simulated and ob-
served structures, we validate the ability of these simulations to recover the large-scale formation
history of clusters while also exposing critical gaps in our understanding of cluster cores and their
thermodynamic evolution. Our analysis highlights a clear connection between formation history
and present-day core properties, with SCC clusters forming earlier and evolving more quies-
cently, WCC clusters experiencing prolonged merger activity that gradually disrupts their cores,
and NCC clusters undergoing late-time major mergers that significantly reshape their structure.
This evolutionary link provides a new avenue for identifying the missing physical ingredients in
subgrid models, particularly in AGN feedback, turbulence, and non-thermal pressure support,
neccessary to accurately simulate the formation and evolution of galaxy clusters. Moving for-
ward, improving these models will be essential for capturing the full complexity of cluster cores
and their thermodynamic states. Future high-resolution simulations, combined with increasingly
precise observational data, will refine our understanding of these processes and further enhance
the predictive power of constrained cosmological simulations, advancing our knowledge of galaxy
cluster physics and LSS formation in the Universe.
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6 | Cosmological and Astrophysical Param-
eter Inference from Stacked Galaxy Clus-
ter Profiles Using CAMELS-zoomGZ

The content of this chapter has been published by Hernández-Martínez et al. (2025) in ApJ. Some
adjustments have been made.

6.1 Galaxy Cluster Profiles as Cosmological Probes
Galaxy clusters serve not only as proof of the hierarchical nature of cosmic structure formation
but also as invaluable laboratories for probing both astrophysical processes and fundamental cos-
mological parameters. Their formation and evolution are governed by the underlying cosmology,
while their observable properties are shaped by complex baryonic physics such as gas cooling,
star formation, and feedback from SNe and AGNs. This dual sensitivity makes galaxy clusters,
and in particular their radial profiles, exceptionally powerful cosmological probes (Mandelbaum,
2018; Secco et al., 2022).

Radial profiles of galaxy clusters encapsulate a wealth of information about their thermody-
namic state and composition. Properties such as the ICM gas density, temperature, metallicity,
X-ray surface brightness, and the tSZ Compton-𝑦 parameter provide complementary insights
into the physics of the ICM and the gravitational potential wells of clusters. For instance, X-ray
observations from instruments like Chandra and XMM-Newton have mapped the temperature and
density structure of clusters in detail (Vikhlinin et al., 2006; Pratt et al., 2009; Ettori et al., 2013;
Zhuravleva et al., 2014), while the SZ, as measured by facilities such as the Atacama Cosmology
Telescope (ACT) and the South Pole Telescope (SPT), directly probes the pressure distribution
of the hot gas (Battaglia et al., 2012; Hasselfield et al., 2013; Bleem et al., 2015; Raghunathan
et al., 2019; Hilton et al., 2021).

The potential of these profiles extends beyond individual cluster studies. When stacked across
samples of clusters, radial profiles can mitigate the stochasticity and noise inherent to single
systems, revealing underlying trends driven by cosmology and baryonic physics. This approach
is particularly valuable in the era of large sky surveys, where ensemble analyses of cluster
populations can make use of their statistical power to achieve precision cosmology. Upcoming
missions like eROSITA, Euclid, and the Vera C. Rubin Observatory’s LSST are expected to deliver
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such datasets, enabling deep exploration of the mass and redshift dependence of cluster properties
and their cosmological implications (Ivezić et al., 2019; Euclid Collaboration et al., 2022; Secco
et al., 2022).

In this context, we employ the CAMELS-zoomGZ simulations (Lee et al., 2024) to explore
the efficacy of stacked galaxy cluster profiles as cosmological probes. CAMELS-zoomGZ is a
set of 768 zoom-in simulations centered on galaxy clusters and groups. It extends the CAMELS
suite (Villaescusa-Navarro et al., 2021) to high-mass systems (1013 − 1014.5 𝑀⊙), across the
full 28-dimensional parameter space (spanning cosmological and astrophysical variables) of the
IllustrisTNG model (Weinberger et al., 2017; Pillepich et al., 2018, see also Sect. 2.4.2 for further
details). This expanded parameter space includes variations in key cosmological parameters such
as 𝛺m, 𝐻0, and 𝜎8, alongside an extensive range of baryonic physics prescriptions encompassing
stellar and AGN feedback, IMF slopes, and metal enrichment processes (Ni et al., 2023).

In this work, we make use this new suite of simulations to focus on extracting detailed
information from simulated stacked galaxy cluster profiles. Our analysis reveals that stacked
galaxy cluster profiles allow us to infer all cosmological as well as all astrophysical parameters of
the model with the highest accuracy ever achieved, enhancing our ability to interpret observations
from upcoming cosmological surveys.

6.2 Neural Network Architecture and Training for Parameter
Inference

6.2.1 Architecture and Loss Function

In this work, we use an ML architecture to perform inference on the values of all cosmological and
astrophysical parameters in the IllustrisTNG model. We do this by using stacked galaxy cluster
profiles emulated applying CarpoolGP (presented in detail in Sect. 3.3.2) on the extracted profiles
from the CAMELS-zoomGZ simulation set. These profiles include, temperature, metallicity,
X-ray surface brightness, pressure and Compton-y. The architecture used in this work comprises
multiple fully connected layer blocks, each containing a fully connected layer, followed by a
LeakyReLU activation layer with a slope of 0.2 and a dropout layer, where the dropout rate is a
hyperparameter. The final layer of the architecture is a fully connected layer.

Our NN is designed to compute key statistical moments, such as the mean and variance, of
the marginal posterior distributions for each parameter, without making any assumption about
the shape of the posterior.

The input to our models is a 1D vector containing the values of an averaged galaxy cluster
profile for each radial bin. The model output 2𝑁params values, where 𝑁params is the number
of parameters considered for inference. For each parameter 𝑖, the models return its marginal
posterior mean (𝜇𝑖) and standard deviation (𝜎𝑖). This is achieved by minimizing the following
loss function:
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This loss function ensures that 𝜇𝑖 and𝜎𝑖 represent the parameter’s posterior mean and standard
deviation, as described in Jeffrey & Wandelt (2020) and Villaescusa-Navarro et al. (2021).

The training process uses simulated data {𝑥𝑖, 𝜃𝑖}, where the parameters 𝜃𝑖 are sampled from
prior distributions. The networks learn to map the input data 𝑥 to the moments of the poste-
rior distribution. During inference, the trained networks can rapidly evaluate the moments for
newly observed data, eliminating the need for extensive sampling or density estimation, thereby
streamlining the process of parameter inference in complex cosmological models.

6.2.2 Input Data
The one-dimensional vector that we will use as input can be composed of only one or several
concatenated average galaxy cluster radial profiles of various types, extending up to 𝑟200𝑐 for
a specific point in the IllustrisTNG model parameter space. The quantities considered include
radial temperature, metallicity, gas density, X-ray surface brightness, and the Compton-y profile.
The first three profile types are divided into 30 bins each, while the latter two consist of 29 bins.
Therefore, the input size ranges from 29 to 148 bins, depending on the combination of profiles
used.

We analyze the concatenated emulated profiles to assess their impact on the inference of the
28 parameters of the IllustrisTNG model presented in Table 6.1. Additionally, we investigate the
inference performance when using each profile type individually.

To investigate the effect of noise on the profiles, we generated a set of noisy profiles by adding
random Gaussian noise to each bin, with noise levels of 10%, 20%, 30%, and 40% of the bin
signal.

To determine where the majority of the information resides, we created a set of profiles by
progressively excluding the outer regions, ranging from 0.7𝑅200𝑐 to 0.1𝑅200𝑐. Similarly, we cut
out the inner regions from 0.1𝑅200𝑐 to 0.27𝑅200𝑐 to analyze the impact of the outer regions on the
inference.

Additionally, we also created integrated values from the profiles to compare the inference
performance of the full averaged radial profiles with that of the integrated quantities, providing
insights into the relative effectiveness of each approach for different parameters.

6.2.3 Training procedure and optimization
We trained our model on the emulated galaxy cluster profiles. We examined the effect of the size
of the training set on the inference and concluded that employing 300,000 averaged profiles when
using one profile type yields a noticeable improvement in accuracy, but it is more convenient and
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Parameter Meaning

𝛺m Ratio of the matter density of the universe to the critical
density.

𝜎8 Amplitude of matter fluctuations on a scale of 8 Mpc.
WindEnergyIn1e51erg
(ASN1)

Galactic wind energy (in units of 1051 ergs) injected into
galactic winds by SN feedback.

RadioFeedbackFactor
(AAGN1)

Efficiency of energy injection from AGN in their kinetic
mode into the surrounding gas.

VariableWindVelFactor
(ASN2)

Controls wind velocity scaling according to local galaxy
conditions, particularly setting the speed per unit of star
formation.

RadioFeedbackReiorientation-
Factor (AAGN2)

Determines the speed and frequency of feedback injection
events in radio (kinetic) mode.

𝛺𝑏 Ratio of the density of baryonic matter to the critical den-
sity of the universe.

𝐻0 Hubble parameter, i.e. current rate of expansion of the
universe

𝑛𝑠 Initial power spectrum spectral index.
MaxSfrTimescale (𝑡SFR) The timescale over which gas is converted into stars at the

star-formation density threshold.
FactorForSofterEQS Adjustment to the EQS for gas–see Springel & Hernquist

(2003)–in star-forming regions.
IMFslope Slope of the IMF, which describes the distribution of

masses for a population of stars at the time of their for-
mation.

SNII_MinMass_Msun
(SNII)

Minimum stellar mass, in solar masses, required for a star
to end its life as a SNe II.

ThermalWindFraction (W1) Proportion of the total energy from stellar feedback that is
used to heat the gas and drive thermal wind (injected as
thermal feedback).

VariableWindSpecMomentum
(W2)

Regulates how the speed of galactic winds changes due to
stellar feedback.

WindFreeTravelDensFactor
(W3)

Controls wind particle travel distance by setting a density
threshold, determining how far they move before recou-
pling , affecting galactic wind propagation through the
ISM and Circumgalactic Medium (CGM).

Table 6.1: Parameters of the IllustrisTNG model.
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Parameter Meaning

MinWindVel (W4) The minimum velocity imparted to gas particles that are
ejected as part of galactic winds.

WindEnergyReductionFactor
(W5)

The fraction by which the galactic wind energy budget, via
the mass-loading, is reduced at higher metallicities.

WindEnergyReduction-
Metallicity (W6)

Adjusts the typical metallicity at which the galactic wind
energy budget will be reduced.

WindEnergyReduction-
Exponent (W7)

Defines the exponent in the power-law relationship be-
tween wind energy and gas metallicity, influencing how
strongly metallicity affects the wind energy.

WindDumpFactor (W8) Represents the fraction of metals that are not fully ejected
out into the galactic wind, but instead get deposited into
nearby star-forming cells before the actual wind ejection.

SeedBlackHoleMass (BH1) Initial mass of seed black holes introduced in the simula-
tion to represent the formation of SMBHs in galaxies.

BlackHoleAccretionFactor
(BH2)

Rate at which black holes accrete gas, expressed as a Bondi
rate multiplier, affecting black hole growth and AGN feed-
back processes.

BlackHoleEddingtonFactor
(BH3)

Normalization factor for the limiting Eddington accretion
rate for the accretion onto SMBHs. In some cases it may
allow super-Eddington accretion scenarios in the simula-
tion.

BlackHoleFeedbackFactor
(BH4)

Scales the energy released by an accreting black hole to
influence its environment through thermal energy, kinetic
outflows, or radiation.

BlackHoleRadiativeEfficiency
(BH5)

Refers to the fraction of accreted gas mass rest energy
converted into radiation, affecting AGN luminosity and its
environmental feedback.

QuasarThreshold (Q1) Eddington ratio threshold for classifying a black hole
in quasar mode feedback, distinguishing AGN feedback
modes by accretion rate.

QuasarThresholdPower (Q2) Sets the power-law dependency of the threshold accretion
rate, influencing the steepness of the transition between
AGN feedback modes.

Table 6.2: Continuation of table 6.1.
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computationally efficient to use 30,000 averaged profiles of each type when using the five profiles
types altogether (see Sec. 6.4.1). These profiles were consistently divided such that 70% were
used for training, and 15% were allocated for both validation and testing, respectively, with the
samples randomly drawn across the parameter space.

We trained the models using the specified architecture for 1000 epochs, employing the ADAM
optimizer (Kingma & Ba, 2014) to perform gradient descent, with a batch size of 256 samples.
Hyperparameter optimization was conducted using the Optuna package (Akiba et al., 2019),
which employs Bayesian optimization with the Tree Parzen Estimator (TPE) (Bergstra et al.,
2011). The optimized hyperparameters included the number of layers, the number of neurons in
the fully connected layers, the learning rate, the weight decay, and the dropout rate. This process
involved at least 1000 trials, with Optuna directed to minimize the validation loss. The validation
loss was computed using an early-stopping scheme to ensure only the model with the minimum
validation error was saved. The selected model was then used for subsequent testing.

6.2.4 Performance Evaluation

As previously introduced in Sect. 3.2.2, our assessment of model performance relies on four
complementary metrics that jointly characterize the accuracy and precision of the parameter in-
ference: the Root Mean Squared Error (RMSE), the mean relative uncertainty (𝜖), the correlation
coefficient (𝑟), and the reduced chi-squared (𝜒2).

The RMSE represents the absolute measure of the fit, providing information of the magnitude
of the error in the prediction. The mean relative uncertainty, 𝜖 , evaluates the typical relative scale
of the predicted standard deviation, serving as an indicator of model precision. The correlation
coefficient, 𝑟, measures the strength and direction of the linear relationship between predicted and
true values, with values close to 1 indicating predictions closely following the underlying truth,
values close to 0 showing no correlation between predictions and real values and values closer
to −1 indicating a strong negative linear correlation. Finally, the reduced chi-squared statistic,
𝜒2, provides a measure of how accurate the predicted standard deviations of the network are by
comparing it to the residuals.

Together, these metrics offer a robust and comprehensive evaluation framework, enabling us
to quantify both the predictive power and the uncertainty calibration of our models across the
cosmological and astrophysical parameter space explored in this work.

6.3 Assessing the Power of Cluster Profiles for Cosmological
Parameter Inference

In this section, we present the outcomes derived by performing inference of the IllustrisTNG
model parameters using averaged galaxy cluster profiles.
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Figure 6.1: Inference results for the parameters in the IllustrisTNG model. The top panels for
each parameter show the comparison between true values (x-axis) and inferred values (y-axis),
with a black line representing the one-to-one correspondence. The bottom panels display the
residuals (inferred minus true values) as a function of the true values to better illustrate the spread.
Each subplot corresponds to a different parameter, covering a wide range of cosmological and
astrophysical parameters within the model. The correlation coefficient (𝑟), root-mean-square
error (RMSE), mean relative error, and reduced chi-squared (𝜒2) are reported within each top
panel. The results demonstrate high accuracy and reasonable error margins across all parameters,
as indicated by the strong correlation coefficients and relatively low residuals.
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6.3.1 Inference with multiple cluster profiles
The primary aim of this study is to establish the theoretical framework for cosmological param-
eter inference using averaged or stacked galaxy cluster profiles by inferring cosmological and
astrophysical parameters from simulated clusters in the IllustrisTNG model (parameters listed in
Table 6.1). As a start, we establish a set of 300,000 points in the IllustrisTNG model parameter
space, for which we emulate the five averaged profile quantities, at a constant mass of 1014𝑀⊙.
Of these points in parameter space, 70% are selected for training, while 15% are reserved for
validation and testing, respectively. For each parameter space point, a 1-dimensional vector of
concatenated averaged cluster profiles serves as the input to our network.

Once the model is trained and validated with five concatenated averaged profiles using 210,000
(70%× 300,000) and 45,000 (15%× 300,000) parameter space locations for training and valida-
tion, we test it using other independent 45,000 parameter space locations. The model returns for
each input vector a posterior mean and standard deviation as prediction for each parameter of the
IllustrisTNG model. Fig. 6.1 shows the result of the prediction for each of the 45,000 individual
points in parameter space belonging to the testing set. Fig. 6.1 displays the prediction results
for each of the 45,000 test points in parameter space, with the y-axis representing the network’s
predicted values and the x-axis showing the actual “target" or real values. The error bars indicate
the uncertainty estimated by the network for each prediction.

We employ the metrics presented in Sec. 3.2.2 to quantify the model performance, revealing
high accuracy and reasonable error margins. The model notably excels in inferring cosmological
parameters like 𝛺m, 𝐻0, and 𝛺𝑏, each showing a correlation coefficient of 0.99, followed closely
by 𝜎8 and 𝑛𝑠 with correlation coefficients of 0.98 and 0.97, respectively. All astrophysical
parameters demonstrate correlation coefficients above 0.90, with some, such as the IMF slope
and the ASN2, approaching 1.

To further understand the outstanding performance of our model, we examine the influence
of individual parameters within the IllustrisTNG model by generating mean galaxy cluster pro-
files under various fiducial conditions in the IllustrisTNG parameter space, involving 27 fixed
parameters and one variable parameter. This method allows for a thorough exploration of each
parameter’s impact and nuances on different profile types, also highlighting potential degenera-
cies.

Fig. 6.2 illustrates the impact of varying each cosmological parameter across its full range for
each profile type. The results indicate that each parameter introduces distinct features at specific
points in the profiles, which are not replicated by other parameters. This suggests that there are
no significant degeneracies between the effects of different parameters on the profiles, as each
produces unique, non-overlapping features. This holds true across all profile types.

Additionally, we observe that certain parameters cause greater variation than others. For
example, 𝛺m and 𝐻0 result in the most pronounced spread, followed by 𝛺𝑏, while 𝜎8 and 𝑛𝑠
show a more subtle effect on the profile variation. This pattern is reflected in the correlation
coefficients shown in Fig. 6.1, where 𝛺m and 𝐻0 have the highest values, followed by 𝛺𝑏, with
lower coefficients for 𝜎8 and 𝑛𝑠. This trend persists throughout the study, indicating that the
former parameters are inferred more accurately than the latter.

Figs. A.1.1 - A.1.5 in Appendix A.1 showcase the variations across all profile types for all
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28 parameters, both astrophysical and cosmological. We can extend the argument above to this
greater set of 28 parameters, as we observe that all of them introduce unique features. Even if we
do not observe degeneracies among the parameters for any profile type, certain profile types seem
to be more sensitive to specific parameters. For instance, astrophysical parameters like IMF have
a mild effect on the SBx, gas density, and Compton-y profiles, but exert the strongest influence
on the metallicity profiles.

Notably, while most profile types exhibit the greatest spread with variations in cosmological
parameters, the metallicity profiles are equally, if not more, affected by astrophysical parameters.
This is particularly evident with parameters such as the IMF, ASN1, ASN2, and W3. The
distinct responses of these profiles to the underlying parameters suggest that their combined
effects are key to optimal parameter inference. As demonstrated in Figs. A.1.1 - A.1.5, there
are no obvious degeneracies within the same profile type, indicating that the main challenge in
parameter inference lies in unraveling the collective impact of multiple parameters—a task where
machine learning techniques excel, thereby explaining the model’s exceptional performance.

It is important to note, however, that we are working with stacked galaxy cluster profiles,
which are noiseless and have a high number of bins (29 or 30, depending on the quantity).
Additionally, the use of multiple stacked profiles helps reduce cosmic variance, contributing to
the accuracy of our parameter inference.

Finally, we note that although using 300,000 parameter space locations provides the most
accurate results, we find that performance nearly saturates when using five profiles with 30,000
locations (see Sec. 6.4.1). As a result, in the following sections, we will proceed with 30,000
parameter space locations when working with all five profile types, and reserve the use of
300,000 locations for cases involving only a single profile type. This balance between accuracy
and computational efficiency ensures a robust parameter inference while optimizing the use of
resources.

6.3.2 Inference with individual profile types
To discern the unique contributions of each profile type, we conducted independent analyses using
300,000 profiles per type while employing the same architectural framework. The upper left panel
of Fig. 6.3 displays the correlation coefficients for each parameter inferred using different profile
types.

Generally, some parameters, such as the cosmological parameters 𝛺m, 𝐻0, and 𝑛𝑠 and the
astrophysical parameters ASN1, ASN2, and IMF show higher correlation coefficients across most
profile types, indicating more robust inference. On the other hand, most of the wind parameters
(W1-W8) and black hole (BH1-BH5) parameters tend to have lower correlation coefficients,
suggesting they are more challenging to infer accurately.

Each profile type is sensitive to different model parameters and with a different strength:

• Gas density profiles: These profiles show high correlation coefficients, particularly for
cosmological parameters such as 𝛺m and 𝛺𝑏. These parameters represent the density
ratios of matter and baryonic matter, respectively, to the critical density of the universe.
Their strong correlations with gas density suggest that these profiles are still sensitive,
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Figure 6.2: Mean galaxy cluster profiles illustrating the effects of varying each cosmological
parameter individually. The rows correspond to different profiles: temperature (𝑇), X-ray surface
brightness (𝑆𝐵𝑋), normalized metallicity (𝑍/𝑍⊙), Compton-y parameter, and gas density (𝜌𝑔).
Each column represents the impact of varying a single cosmological parameter (𝛺m, 𝜎8, 𝛺𝑏,
𝐻0, and 𝑛𝑠) across the full range of their values. The profiles are shown as a function of the
radial distance normalized by 𝑅200. The color gradient within each panel highlights the spread
introduced into the profiles by the variations in the corresponding cosmological parameter, with
the color scale representing the range of parameter values. This visualization demonstrates
how changes in cosmological parameters affect different physical quantities in galaxy clusters,
providing insight into the sensitivity of cluster profiles to cosmological variations.
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even if astrophysical phenomena are present, to small variations in the overall mass and
baryonic content in clusters, which are directly influenced by these cosmological densities.
A similar rationale applies to 𝜎8, which describes the amplitude of matter fluctuations and
is best inferred by the gas density profile, which outperforms the rest of the quantities. The
density profile also shows high correlation coefficients for wind parameters, black hole,
and black hole feedback parameters. In the case of the wind parameters, these parameters
govern aspects of wind energy, momentum, and travel distance (W1-W4) as well as energy
reduction and wind particle decoupling (W5-W8). In the case of the BH parameters, they
govern the initial BH mass, accretion rates, and the efficiency in energy conversion (BH1-
BH5) as well as the energy injection strength and direction of the inhomogeneous feedback
mode (Q1-Q2). Thus, all these parameters regulate the distribution of gas inside the cluster,
leaving a distinctive imprint on the gas density profiles.

• Temperature profiles: The temperature profile performs well across most parameters,
particularly cosmological and some feedback parameters. For instance, it outperforms all
other quantities in most wind parameters. Galactic winds, driven by SNe, inject energy
into the interstellar and ICM, heating the gas and altering its temperature. Temperature is a
sensitive indicator of feedback processes, which are critical in regulating star formation and
redistributing gas within clusters. Wind-driven feedback mechanisms inject thermal energy
into the surrounding gas, raising its temperature. The temperature profile is sensitive to
this, reflecting the cumulative effect of these winds over time and space within the cluster.
As a result, the temperature profile becomes a key observable in understanding how winds
modulate the thermal state of the gas.

• Metallicity profiles: The metallicity profiles show weaker performance for cosmological
parameters like 𝜎8, and 𝐻0. This is likely because cosmological parameters govern LSS
and the overall mass distribution of the universe, which influence the gas distribution and
temperature more directly than metallicity. Metallicity is more of a tracer of the cumulative
effects of star formation and feedback processes over time, making it less sensitive to the
direct effects of cosmological parameters. Thus, we observe that the metallicity profile
tends to perform relatively better for parameters associated with stellar feedback processes
(e.g., ASN1, ASN2) and star formation (e.g., IMF). This pattern can be attributed to the
fact that the stellar content and the corresponding feedback in the form of SNe can enrich
the ICM with metals, thereby altering the metallicity distribution. Since these processes
directly influence the metallicity, the metallicity profile is more sensitive to changes in these
parameters, leading to higher correlation coefficients.
Although winds influence metal distribution, their effect on temperature is more pronounced
than on metallicity. Metals are less efficiently transported by winds than thermal energy.
Due to their higher atomic weight and radiative properties, metals cool more quickly and
mix with the ICM in a slower and more localized fashion. This explains why changes in
metallicity are more spatially confined than changes in temperature, making metallicity
profiles less sensitive to wind parameters.
We also observe that the metallicity profiles seem to be less sensitive to AGN feedback
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Figure 6.3: Correlation coefficient (𝑟) values for the inference of all IllustrisTNG parameters,
analyzed separately for different types of mean galaxy cluster profiles. The different colors
represent the various types of profiles used: gas density (𝜌𝑔), temperature (T), X-ray surface
brightness (SBx), metallicity (Z), and Compton-y parameter (Y). Each set of bars corresponds
to a different IllustrisTNG parameter, listed along the x-axis, with the correlation coefficient on
the y-axis. The study uses 300,000 profiles for each type, with 70% allocated for training and the
remaining 30% used for validation and testing. The plot illustrates how the choice of profile type
affects the accuracy of parameter inference, with varying correlation coefficients observed across
the different parameters and profile types.

and BH parameters. The metallicity reflects the long-term history of star formation and
SN activity, gradually enriching the ICM with metals. This process occurs over longer
timescales compared to the more episodic and intense events associated with AGN feedback.
While AGN feedback can have significant short-term impacts on the local environment,
such as heating and gas displacement, these effects do not necessarily result in immediate
changes in metallicity. The metals might have already been distributed by earlier generations
of stars and SNe, with AGN feedback playing a role more in redistributing or removing gas
rather than enriching it.

• X-Ray Surface Brightness profiles: The surface brightness profiles generally show in-
termediate correlation coefficients for most parameters. It tends to perform better than
Compton-y, but often underperforms compared to gas density and temperature profiles.
This suggests that while surface brightness is a useful observable, it may not be sensitive
to the full extent of the physical processes influencing certain parameters as effectively as
other profiles.

The surface brightness profile tends to perform relatively well for cosmological parameters
such as 𝛺m, 𝜎8, and 𝛺𝑏. Since SBx is a measure of the X-ray emission, it is sensitive
to the amount and distribution of gas in clusters, which in turn is influenced by the large-
scale distribution of matter and the potential well of the clusters which is governed by
cosmological parameters. Regions of higher matter density will have more gas, higher
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temperatures, and thus stronger X-ray emission. This makes the SBx profile a good tracer
of cosmological parameters, especially those that affect the LSS of the universe, such as 𝛺m
and 𝜎8. However, because SBx is an integrated quantity along the line of sight, it averages
the X-ray emission over the entire cluster. This can smooth out local variations in gas
density and temperature, especially those caused by astrophysical processes like feedback
from AGNs or SNe. As a result, while SBx is sensitive to the broad effects of cosmological
parameters (which impact the overall matter distribution and cluster formation), it may not
be as sensitive to localized phenomena like feedback, which affect temperature and gas
density more directly.

• Compton-y profiles: The Compton-y profiles tend to show lower correlation coefficients
across most parameters compared to other profiles like gas density and temperature. This
suggests that the Compton-y profile is less effective at capturing the nuances of many
parameters in the IllustrisTNG model, particularly those related to feedback and small-
scale processes.

Despite its generally lower performance, the Compton-y profile does exhibit good corre-
lation for parameters that directly influence the large-scale thermal properties of the gas,
such as certain cosmological parameters (𝛺m, 𝜎8) and feedback parameters that affect the
overall thermal energy content of the ICM.

The Compton-y profile generally underperforms for feedback-related parameters (e.g.,
ASN1, ASN2, AAGN1, AAGN2) and wind parameters (W1-W8). This could be because
these parameters often involve localized or dynamic processes that impact the temperature
and density of the gas in ways that may not significantly alter the overall thermal pressure
integrated along the line of sight. Consequently, these effects are not well captured by the
Compton-y profile, which averages over these localized variations.

Nevertheless, although the Compton-y profile appears less effective at capturing detailed,
localized processes, its smoother nature may make it less sensitive to the specific subgrid
models used in the simulation. As a result, it could still be very valuable when transitioning
this method to future observational applications.

6.3.3 Different mass bins
Our previous sections focused on mean cluster profiles for galaxy clusters with a mass of 1 ×
1014𝑀⊙. Here, we expand our analysis to explore how predictions vary across different galaxy
cluster masses.

To do this, we generated new sets of mean galaxy cluster profiles in 30,000 different parameter
space locations, where we treated the mass of the cluster as an extra parameter so that our model
has now 29 parameters (28 IllustrisTNG parameters + mass). We varied the value of the mass
to cover the full spectrum of galaxy group and cluster masses in our simulations, this is from
1 × 1013𝑀⊙ to 3 × 1014𝑀⊙. The NN’s performance in parameter inference across these different
masses is illustrated in Fig. 6.4.
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Figure 6.4: Correlation coefficients (𝑟) for the inference of various parameters as a function of
galaxy group/cluster mass. Upper left panel: Correlation coefficients for cosmological parameters
and mass. Upper right panel: Correlation coefficients for star formation and feedback parameters.
Lower left panel: Correlation coefficients for wind parameters. Lower right panel: Correlation
coefficients for black hole (BH) and AGN parameters. The x-axis represents the mass of the galaxy
groups or clusters, while the y-axis shows the correlation coefficient values. Each line represents a
different parameter within each category. The minimum value of the lowest correlation coefficient
is approximately 0.8 across all mass bins, indicating that the inference method is robust for galaxy
groups and clusters across a mass range of 1013 to 3× 1014 M⊙. This robustness suggests reliable
parameter inference across the entire mass range studied.
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In the upper left panel of Fig. 6.4, the correlation coefficients for cosmological parameters
(𝛺m, 𝜎8, 𝛺𝑏, 𝐻0, 𝑛𝑠) and mass are consistently high across all mass bins. This indicates that
the inference of these parameters is robust across various galaxy group and cluster masses, with
minimal variation in accuracy as mass increases. Although the correlation for the mass parameter
shows a slight dip, it remains above 0.8 overall, indicating stable performance.

In contrast, the upper right panel of Fig. 6.4 shows that the correlation coefficients for stellar
parameters tend to decrease with increasing mass, particularly for parameters like the Maximum
Star Formation Timescale (𝑡𝑆𝐹𝑅) and the Factor for Softer EQS. This trend suggests that stellar
feedback processes, as captured by these parameters, become more challenging to infer accurately
in more massive clusters.

A similar pattern is observed for the wind parameters in the lower left panel and for the BH
and AGN feedback parameters in the lower right panel, where most parameters show a slight
decrease in correlation coefficients with increasing mass.

This decrease in inference accuracy with increasing mass can be attributed to the fact that, as
clusters grow more massive, internal processes such as star formation, SN feedback, and AGN
activity have a relatively smaller impact on overall cluster properties. Instead, gravitational dy-
namics and LSS become the dominant factors driving massive structures closer to self-similarity.
As a result, the accuracy of inferring these parameters may decrease with mass, as cluster
properties become more governed by simpler, mass-dependent scaling laws rather than detailed
processes.

Nevertheless, despite the observed decreases in correlation coefficients with mass, the mini-
mum value of the lowest correlation coefficient is approximately 0.8 across all mass bins. This
indicates that the inference method remains generally robust across a wide range of galaxy groups
and cluster masses, from 1013 to 3× 1014 M⊙. This robustness suggests that, even though certain
parameters are more sensitive to mass and exhibit varying performance, mean galaxy cluster
profiles still contain key information about both the processes occurring within these systems and
the cosmology of the universe they inhabit, across the entire mass range studied.

6.3.4 Noisy profiles
Galaxy cluster profiles observed in astronomical data are often impacted by various sources of
noise, typically quantified by the signal-to-noise ratio (S/N). It is common to perform spectral
modeling in each spatial pixel to ensure a minimum S/N, usually having a value of 10 to
100 (Böhringer & Werner, 2010), which is then processed to produce either a projected or
deprojected profile. To evaluate how noise affects our parameter inference, we simulate the
expected observational noise by introducing Gaussian noise into our profiles. For each bin, we
added a specific percentage of random Gaussian noise, creating datasets with noise levels of
10%, 20%, 30%, and 40%, corresponding to S/N ratios of 10, 5, 3.3, and 2.5, respectively. This
approach allows us to study the limit of S/N = 10, above which we anticipate improved results,
while also examining how inference accuracy degrades with increasingly noisy data. These
modified profiles were then used for the training, validation, and testing of our model.

The effect of the introduced noise in the parameter inference is depicted in Fig. 6.5. As
Gaussian noise increases from 0% to 40%, there is a general decline in the correlation coefficients
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Figure 6.5: Radar chart displaying the correlation coefficients for various IllustrisTNG parameters
under different levels of Gaussian noise. The radial distance from the center represents the
correlation coefficient, with higher values indicating stronger correlations. Each parameter is
represented by a specific symbol on the perimeter of the chart, corresponding to the different
physical or cosmological parameters within the IllustrisTNG model. The different shaded regions
correspond to varying noise levels, ranging from no noise to 40% Gaussian noise. As noise
increases, the correlation coefficients generally decrease, indicating a reduction in the accuracy of
parameter inference. The chart visually demonstrates how increasing noise impacts the reliability
of inferred parameters, with the outermost regions (no noise) showing the highest correlation,
and the innermost regions (40% noise) showing the lowest correlation.
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for all parameters, indicating that noise consistently reduces the accuracy of parameter inference.
However, the extent of this decline differs between the parameters. For example, parameters like
𝛺m, 𝛺𝑏, and 𝐻0 maintain relatively high correlations even at 40% noise, suggesting that these
cosmological parameters are more robust to noise. Similarly, certain astrophysical parameters,
such as ASN2 and IMF, also exhibit high correlation levels despite the added noise.

In contrast, other parameters, such as W7 among the wind parameters, and Q1 and BH2 among
the black hole parameters, experience a sharper decline in correlation coefficients, indicating
greater sensitivity to noise. This suggests that the inference of these parameters is more vulnerable
to the degradation of input data quality.

Parameters associated with similar physical processes or feedback mechanisms tend to exhibit
similar patterns of sensitivity to noise. For example, many wind parameters (W1-W8) and
black hole feedback parameters (BH1-BH5) show a clustered response to increasing noise,
with significant declines in correlation, suggesting that certain processes are uniformly more
challenging to infer accurately in the presence of noise.

The relative ranking of parameters by their correlation coefficients remains fairly stable across
different noise levels. Parameters that start with high correlations in the no-noise scenario (e.g.,
𝛺m, 𝑛𝑠) generally maintain higher correlations even as noise increases, compared to those that
begin with lower correlations. This consistency implies that while noise affects all parameters,
those that are inherently more robust—likely due to their strong influence on large-scale cluster
properties—remain more reliable even under noisy conditions.

This analysis suggests that when noise is introduced, the results are driven less by the non-
degeneracy of parameters and more by the strength of each parameter’s influence on the profiles.
Some parameters may only affect the profiles in specific ranges where the data is highly correlated.
If this correlation is disrupted by noise, the network’s performance declines. However, certain
cosmological parameters like 𝛺m, 𝛺𝑏, and 𝐻0, as well as astrophysical parameters such as IMF
and ASN2, have an impact on the profiles that remains robust to noise. We note that these
parameters are also the ones that can be inferred well with lower training data, as shown in Fig.
6.9 of appendix 6.4.1. These parameters generate significant variation in the profiles (see Figs.
A.1.1 - A.1.5), and the strength of this correlation allows them to be inferred accurately even
under extreme noise conditions.

6.3.5 Inference accuracy and radial cut
To determine which regions within galaxy clusters provide the most significant information for
parameter inference, we performed an analysis by progressively excluding the outer parts of the
cluster. Specifically, we applied radial cuts at 70%, 50%, 27%, and 10% of the virial radius,
thereby removing the outer regions beyond these thresholds. Fig. 6.6 shows the correlation
coefficients obtained for each of these radial cuts compared to using the full virial radius. The
correlation coefficients (𝑟) for various IllustrisTNG parameters are plotted as a function of different
radial cuts within the cluster, ranging from 1.0 𝑅200 (i.e., the entire virial radius) down to 0.1
𝑅200. Each set of bars represents a different parameter, with the color gradient indicating the
specific radial cut used in the analysis.

Figure 6.6 shows that as the radial cut decreases (from 1.0 𝑅200 to 0.1 𝑅200), the correlation
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Figure 6.6: Bar chart displaying the correlation coefficients (𝑟) for various IllustrisTNG parame-
ters as a function of different radial cuts within the cluster, ranging from 1.0× 𝑅200 to 0.1× 𝑅200.
The parameters are listed along the x-axis, with each set of bars representing a different parameter,
while the color gradient indicates the radial cut used for the analysis. The results show that while
correlation coefficients generally decrease with smaller radial cuts, the overall change is not very
large. This suggests that a significant portion of the information required for accurate parameter
inference is concentrated within the innermost 0.1 × 𝑅200 of the cluster’s radius.

coefficients generally decrease for most parameters. However, this decline is modest, suggesting
that while the outer regions do contribute to parameter inference, the bulk of the relevant informa-
tion is concentrated in the inner region, particularly within the innermost 0.1 𝑅200. Interestingly,
for some parameters, shorter profiles yield slightly better results, which is counterintuitive since
reducing the number of bins should reduce the information available to the network. We attribute
this to the epistemic uncertainty in the network, arising from the inherent limitations of any
model, and improvements to the architecture could potentially reduce this uncertainty. These
results suggest that although parameter inference accuracy declines slightly as the radial cut de-
creases, strong results can still be achieved for most parameters, even when the radius is truncated
to 10%.

The upper panel of Fig. 6.7 compares the correlation coefficients (𝑟) for various IllustrisTNG
parameters when using only the innermost 0.1 𝑅200 region (light purple) versus the combined
outer region from 0.1 to 1.0 𝑅200 (dark purple). Each set of bars corresponds to a different
parameter, with the correlation coefficient displayed on the y-axis. The results demonstrate
that the innermost 0.1 𝑅200 region generally yields higher correlation coefficients across most
parameters, indicating that this central region contains the most critical information for accurate
parameter inference. The outer region contributes less to the overall correlation, as reflected by
the lower coefficients when this region is used in isolation.

The lower right plot offers a similar comparison, this time between the central 0.27 𝑅200
region (light blue) and the outer shell from 0.27 to 1.0 𝑅200 (dark blue). Similar to the previous
comparison, the central 0.27 𝑅200 region shows higher correlation coefficients than the outer
shell. The outer shell exhibits a more pronounced drop in correlation coefficients compared to
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Figure 6.7: Bar charts comparing the correlation coefficients (𝑟) for various IllustrisTNG pa-
rameters across different radial ranges within the cluster. The left panel shows the correlation
coefficients for the full radial range (1.0 × 𝑅200, gray), the inner region (0.1 × 𝑅200, light purple),
and the outer shell between 0.1 × 𝑅200 and 1.0 × 𝑅200 (dark purple). The right panel displays the
correlation coefficients for the full radial range (1.0× 𝑅200, gray), the central region (0.27× 𝑅200,
light blue), and the outer shell between 0.27 × 𝑅200 and 1.0 × 𝑅200 (dark blue). In both panels,
each set of bars represents a different parameter, with the correlation coefficient on the y-axis.
The results indicate that the central regions (up to 0.1×𝑅200 or 0.27×𝑅200) generally provide the
highest correlation coefficients, suggesting they contain the most critical information for accurate
parameter inference. The outer shells show a significant drop in correlation, especially in the
right panel, highlighting the diminished contribution of the outer regions to the overall accuracy.
These findings stress the importance of the inner cluster regions in the inference of the model
parameters.
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Figure 6.8: Radar charts showing the correlation coefficients for various IllustrisTNG parameters,
with the radial axis representing the correlation coefficient values. Each chart compares the results
obtained from using the profile of a specific quantity (light-shaded region) against those obtained
from the integrated quantity up to 𝑅200 (dark-shaded region). The quantities examined are (top left)
metallicity (𝑍/𝑍⊙), (top center) temperature (𝑇), (top right) surface brightness (S𝑋), (bottom left)
Compton-y parameter, and (bottom right) gas density (𝜌𝑔). The light-shaded regions generally
encompass larger areas, indicating that using profiles provides higher correlation coefficients and,
consequently, more accurate parameter inference compared to using integrated quantities.



6.3 Assessing the Power of Cluster Profiles for Cosmological Parameter Inference 151

the central region, highlighting that while it adds some information, its contribution to overall
accuracy is less significant. This reinforces the conclusion that the cores of galaxy clusters are
fundamental for accurate parameter determination, which is not entirely unexpected since cluster
cores tend to be more affected by astrophysical processes such as cooling, strong star formation
bursts, and the effects of AGN feedback.

6.3.6 Integrated quantities
Previous studies have focused on inferring some of the IllustrisTNG parameters using the inte-
grated 𝑌200𝑐 (Lee et al., 2024). In this work, we extend the analysis to evaluate the inference
capabilities of all integrated quantities and compare them to the capabilities derived from using
the full cluster profile. To achieve this, we generate average galaxy cluster profiles in a specific
parameter space location for 30 different masses, uniformly spaced in log space from 1013 to
3 × 1014 M⊙. We select a total of 300,000 of these parameter space locations and create 30
averaged galaxy cluster profiles for each of them.

Our input vector, representing a single location in parameter space, consists of one profile per
mass bin, with each profile containing either 30 or 29 bins, depending on the quantity, resulting
in a total of 900 or 870 values. For the integrated quantities, all profiles are collapsed into a single
value, so each input vector will contain 30 values, one for each mass bin.

Figure 6.8 demonstrates the correlation coefficients for the IllustrisTNG parameters, compar-
ing the performance of using full galaxy cluster profiles (light shaded regions) versus integrated
quantities up to 𝑅200 (dark shaded regions) for each individual quantity. Across all five radar
charts, it is evident that using the full profiles generally results in higher correlation coefficients,
implying more accurate parameter inference compared to the use of integrated quantities. The
size of the light-shaded regions relative to the dark-shaded ones provides a visual representation
of this difference.

The extent to which the profile outperforms the integrated quantity varies by parameter.
Temperature profiles stand out most, as profiles achieve correlation coefficients above 0.9 for all
parameters, while the integrated quantity does not surpass 0.6. This suggests that the detailed
temperature profile carries a wealth of information that is lost when collapsing the profile into
a single integrated quantity, highlighting the importance of spatial variations in accurately con-
straining model parameters. These results are followed by the gas density, metallicity, and surface
brightness, which also show a better correlation coefficient for the profiles than for the integrated
quantities.

For the Compton-y parameter, the difference between full profiles and integrated quantities is
less pronounced. While full profiles still offer a slight advantage, the performance gap is narrower.
This can be explained by the smoother nature of Compton-y profiles, which exhibit fewer localized
features compared to other quantities. As Compton-y represents the overall thermal pressure
integrated along the line of sight, it is a cumulative measurement. This integration leads to a
smoothing effect, diminishing the sharp gradients or features observed in other profile types. As
a result, the Compton-y profiles lack the detailed localized features that could be exploited for
more precise parameter inference. Consequently, reducing the profile to a single integrated value
leads to a smaller difference in the network’s ability to infer the model parameters.
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Previous studies have shown that when using 𝑌200𝑐, ASN2 was the best-inferred parameter
among AAGN1, AAGN2, ASN1, and ASN2 (Lee et al., 2024). This result is reaffirmed here
for 𝑌200𝑐 and extends to the results for 𝑇200𝑐 and 𝜌𝑔, further supporting the robustness of these
parameters.

Overall, these findings, while consistent with prior research, demonstrate that using the full
profile generally offers a clear advantage in achieving higher accuracy in parameter inference
across all physical quantities and parameters. This emphasizes the value of incorporating full
profiles in astrophysical analyses, particularly for parameters where spatial variations within the
cluster are fundamental for accurate modeling and inference.

6.4 Further Considerations

6.4.1 Inference Accuracy and Dataset Size
In this study, CARPoolGP’s primary function is to generate a comprehensive dataset of mean
galaxy cluster profiles for training, validating, and testing our NN architecture. The optimal num-
ber of profiles needed to achieve accurate model performance while maintaining computational
efficiency is not well-defined. To address this, we evaluated our NN’s performance using all five
profile types together using different parameter space points: 300 (210 for training), 3,000 (2100
for training), 30,000 (21000 for training), and 300,000 (210000 for training).

Fig. 6.9 illustrates the correlation coefficients (𝑟) for various IllustrisTNG parameters as
a function of the input size used for model training, ranging from 300 to 300,000 parameter
space locations. Notably, each input size involves the use of five distinct profiles per galaxy
cluster—covering gas density, temperature, X-ray surface brightness, metallicity, and Compton-y
parameters. The radar chart depicts how the accuracy of parameter inference improves with
increasing input size, as indicated by the outward expansion of the shaded regions corresponding
to each input size.

As the input size grows, there is a clear improvement in the correlation coefficients across
all parameters. The analysis shows that with just 300 parameter space locations, the average
correlation coefficient starts at a modest 0.5, but increases significantly to around 0.9 with 30,000
parameter space locations, reaching a point of apparent saturation. Beyond this threshold, moving
to 300,000 parameter space locations yields only marginal gains, indicating diminishing returns
with larger datasets. This suggests that using 30,000 parameter space locations with five profiles
each is sufficient to capture most of the relevant information for robust parameter inference.

While the increased input size benefits most parameters, the extent of improvement varies.
Cosmological parameters such as 𝛺m, 𝛺𝑏, and 𝐻0 maintain relatively stable and high correlation
coefficients across all input sizes, highlighting their strong influence on cluster profiles. In
contrast, some astrophysical parameters, especially those linked to complex feedback mechanisms
(e.g., BH and AGN parameters), show more significant gains with larger input sizes, reflecting
the greater complexity and variability in their effects on the profiles.

Certain parameters, like ASN2 and IMF, which are closely related to stellar content and
feedback processes within clusters, exhibit high correlation coefficients even with smaller input
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Figure 6.9: Radar chart displaying the correlation coefficients for various IllustrisTNG param-
eters as a function of input size. The radial axis represents the correlation coefficient values,
with different symbols around the perimeter corresponding to specific IllustrisTNG parameters,
including cosmological and astrophysical quantities. The shaded regions represent the results for
different input sizes, ranging from 300 to 300,000 profiles. As the input size increases, the shaded
regions expand outward, indicating improved correlation coefficients. Notably, the 30,000 profile
input size approaches a saturation point, beyond which further increases in input size yield only
marginal improvements in accuracy. This suggests that 30,000 profiles are sufficient to achieve
robust parameter inference, with larger datasets providing only slight gains in accuracy across all
parameters.
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sizes. This robustness suggests that these parameters exert a pronounced impact on the profiles,
making them easier to infer accurately with fewer data points.

The findings from Fig. 6.9 have significant implications for our NN training strategy. While
using 300,000 parameter space locations may be beneficial for inference with a single profile type,
the saturation point identified at around 30,000 parameter space locations suggests that training
can be optimized by focusing on this input size when utilizing all five profile types together,
achieving a balance between computational efficiency and inference accuracy. Consequently, we
will use this number of profiles in the subsequent steps of our analysis.

6.4.2 Consistency Tests

Figure 6.10: Correlation coefficients for the inference of 28 IllustrisTNG model parameters under
two different scenarios. The grey bars represent the results using full galaxy cluster profiles with
30 bins per profile type and 30,000 parameter space locations, providing sufficient information
to infer all parameters with high accuracy. The red bars show the results for Test A, where the
number of input values is reduced to 25 (5 bins per profile type). As expected, the NN fails
to infer most parameters, accurately predicting only 𝐻0, the IMF slope, and ASN2. Test B is
represented by the orange colored bars, where only one bin for each quantity (a total of 5 bins)
was used, resulting in even lower correlation coefficients for all quantities. The green bars show
the results of Test C, where the tetsing was performed on corrupted data, yielding correlation
coefficients close to 0 for most parameters.

To verify that our NN is not affected by any information leaks, we perform a series of tests.
Test A uses 5 bins per quantity, resulting in 25 input values for each parameter space. Since it

is not feasible to infer 𝑛 parameters with fewer input values (𝑁 < 𝑛), we expect the NN to struggle
when trying to infer 28 parameters from only 25 input values. We assess the NN’s performance
across 30,000 parameter space locations. The results, shown in Fig. 6.10, compare the NN’s
performance with full galaxy cluster profiles (grey bars), which provide enough bins to infer all
parameters, versus using only 25 input values (red bars). As expected, the NN fails to infer most
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parameters, successfully predicting only three—𝐻0, the IMF slope, and ASN2—with moderate
accuracy. Fig. 6.12 compares predicted and actual values, showing that while the trend is correct
for these three parameters, there is more scatter and higher standard deviation compared to the
results using full profiles (Fig. 6.11). With insufficient input data, the network is unable to infer
the remaining parameters.

Test B reduces the input vector size further by selecting only the first bin for each quantity,
resulting in just 5 input values. The brown bars in Fig. 6.10 display the correlation coefficients,
showing even further degradation in the NN’s performance. Fig. 6.13 compares predicted and
actual values, highlighting that even for the best-inferred parameters such as 𝐻0, the IMF slope,
and ASN2, scatter and uncertainty increase significantly, while the rest of the parameters are not
inferred at all.

Test C examines the impact of corrupted data. Here, the network is trained using full profiles,
but during testing, one profile is corrupted by adding random noise, effectively erasing its original
values. The green bars in Fig. 6.10 display the correlation coefficients for this test, where the
NN clearly fails to infer any parameters from the corrupted data. Fig. 6.14 shows predicted
values versus the mean for each quantity, demonstrating that the network completely misses its
predictions when faced with corrupted data.

In conclusion, these tests confirm that our NN architecture does not suffer from information
leaks, and the results in our study reflect physical phenomena rather than model artifacts.

6.5 Discussion and Conclusions
In this study, we investigated the inference of cosmological and astrophysical parameters using
averaged galaxy cluster profiles generated from the IllustrisTNG simulations. We performed
parameter inference across the 28-dimensional IllustrisTNG model parameter space. The results
show that stacked galaxy cluster profiles possess strong constraining power over this multidimen-
sional parameter space, containing enough information to accurately infer all cosmological and
astrophysical parameters of the model.

1. Stacked galaxy cluster profiles allow us to infer all cosmological and astrophysical param-
eters of the IllustrisTNG model with high accuracy in the noiseless case with 29 to 30 bins
per profile. Including gas density, temperature, X-ray surface brightness, metallicity, and
Compton-y profiles, we obtain coefficients approaching 0.97 for all cosmological param-
eters. For the remaining quantities, correlation coefficients remain above 0.90, reflecting
very high accuracy across all parameters.

2. Our analysis reveals that different profile types exhibit varying sensitivities to specific
parameters. For instance, temperature profiles generally provide the highest correlation
coefficients for wind and feedback parameters, likely due to their sensitivity to energy
injection processes within clusters. Gas density profiles also perform well, especially for
cosmological parameters, suggesting that these profiles are highly responsive to the overall
matter distribution within clusters. Conversely, the Compton-y profiles tend to show lower
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correlation coefficients, particularly for parameters related to localized processes, though
their smoother nature may make them less susceptible to the specifics of subgrid models.

3. We observed that the inference accuracy for certain parameters diminishes as the cluster
mass increases, which may be attributed to the self-similar nature of more massive clusters.
These systems are less influenced by localized processes, such as star formation and
feedback, leading to a reduced sensitivity to the parameters governing these processes.

4. Radial cuts within clusters reveal that, based on our results using TNG28, the majority of the
information required for accurate parameter inference is concentrated within the innermost
regions, particularly within 0.1 𝑅200,𝑐. Interestingly, while cluster cores typically dominate
the overall cluster emission, their underlying physics remains incompletely developed and
unconverged across simulations. This finding highlights the importance of focusing on the
central regions of clusters in future simulation efforts and observational studies to gain a
deeper understanding of their physical processes and to improve their use for cosmological
information extraction.

5. The addition of Gaussian noise to the profiles resulted in a general decline in correlation
coefficients across all parameters, highlighting the sensitivity of the inference process to
data quality. However, certain cosmological parameters, such as 𝛺m, 𝛺𝑏, and 𝐻0, along
with specific astrophysical parameters like ASN2 and IMF, maintained relatively high
correlation levels even under significant noise. These parameters also generate a greater
spread in the profiles, suggesting that both the non-degeneracy of the parameters and the
strength of their influence on the profiles are key factors when dealing with noise. It is
important to note that with a typical lower S/N value of 10, the inference remains highly
accurate, with correlation coefficients exceeding 0.7 for these influential parameters. Even
at an extremely low S/N ratio of 2.5, the impact on these parameters is minimal, indicating
that their strong effects on the profiles make them more resistant to noise.

6. When comparing the inference capabilities of integrated quantities to full cluster profiles,
our results show that full profiles generally provide a more accurate inference, particularly
for parameters with significant spatial variations within the cluster. The integrated quan-
tities, while consistent across different parameters, tend to underperform compared to the
full profiles. This highlights the importance of considering the full spatial information
contained within cluster profiles for precise parameter inference.

Our findings indicate that stacked galaxy cluster profiles contain important information that
allows us to effectively disentangle the effects of cosmology and astrophysical processes, providing
accurate inference across a wide range of parameters. The robustness of our results across
different mass bins, noise levels, and radial cuts suggests the potential of using stacked galaxy
cluster profiles to maximize the extraction of cosmological and astrophysical information and
increases their utility for cosmological parameter inference.

These results stress the value of detailed profile analysis in astrophysical and cosmological
research, particularly in the context of upcoming large-scale surveys. Future work could expand
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this approach to include more diverse simulation sets and even include observational data, further
refining the accuracy and applicability of parameter inference in cosmology for the next-generation
surveys.
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Figure 6.11: Inference results for all 28 IllustrisTNG model parameters using complete galaxy
cluster profiles with full information across 30 bins. Each top panel shows the comparison
between the true values (x-axis) and the predicted values (y-axis), with a black line indicating
the one-to-one correspondence. The bottom of each panel displays the residuals to illustrate the
spread. The correlation coefficient (𝑟) and root-mean-square error (RMSE) mean relative error (𝜖)
and reduced chi-squared (𝜒2) are reported in blue for each parameter. These results demonstrate
high accuracy across all parameters, with strong correlation coefficients and relatively low RMSE
values. The accurate predictions underline the ability of the model to infer both cosmological
and astrophysical parameters when provided with full, detailed profiles, as reflected by the close
alignment between predicted and true values and the small residuals across the parameter space.
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Figure 6.12: Inference results for test A. Similar to Fig. 6.11, but here the results show the
decrease in inference capabilities of the network when using an input size N=25. Only ASN2
and 𝐻0 are infered with some moderate accuracy.
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Figure 6.13: Inference results for test B. Similar to Fig. 6.11, but here the results show how the
NN is not capable of inferring any parameter when using an input size of N=5.
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Figure 6.14: Inference results for test C. Similar to Fig. 6.11. The results show that when using
corrupted data for testing, the NN is not capable of inferring any of the parameters.
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7 | Conclusion

In this thesis, we worked on advancing the understanding of the thermodynamic structure, as-
sembly histories, and cosmological implications of galaxy clusters, though the use of constrained
simulations and ML-based inference. Doing this, this work has established new methodologies
for linking simulations to observations and has opened new pathways of using galaxy clusters as
precise probes of cosmology and galaxy formation physics. The main findings and contributions
of this work are summarized below.

Reproducing Observed Galaxy Clusters with Constrained Simulations: A central contribu-
tion of this work lies in demonstrating the efficacy of constrained simulations in reproducing the
physical properties of individual galaxy clusters in the local Universe. As presented in Chapter 4,
through a detailed comparison of 46 observed clusters with their simulated counterparts in the
SLOW simulation suite, we showed that the simulations successfully match global properties
such as mass, X-ray luminosity, temperature, and SZ signal, with a strong agreement for promi-
nent systems like Virgo, Coma, and Perseus. Our study using one-to-one mass comparisons
between observations and simulations supports a hydrostatic mass bias estimate of (1−𝑏) ≃ 0.87
and indicates that constrained realizations can accurately reflect both the statistical and spatial
diversity of real clusters. Importantly, the observed discrepancies between simulations and data
are now comparable in scale to observational uncertainties, suggesting that we may be reaching
the limit of current measurement precision rather than that of the simulations themselves.

Understanding Thermodynamic Structure and Formation Histories: Building on this val-
idation, Chapter 5 of these thesis examined the thermodynamic structure and formation histories
of these galaxy clusters. By analyzing pressure, temperature, entropy, and electron density pro-
files, we found that the local galaxy clusters are generally modeled with fidelity, particularly at
large and intermediate radii. However, persistent discrepancies in cluster cores, such as flattened
entropy and elevated densities, highlight the continued limitations of current subgrid models,
especially those governing AGN feedback and radiative cooling. We established a physical link
between the thermodynamic state of cluster cores and their mass assembly histories: clusters that
formed early tend to host cool cores, while late-forming systems are more likely to be disturbed
and non-cool-core. This connection provides a physically motivated explanation for the observed
diversity in cluster core structures.
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Performing High-Accuracy Simulation-Based Inference: The final part of this thesis, pre-
sented in Chapter 6, advances the use of simulations not only as a tool for reproducing observa-
tions, but also for inferring the underlying cosmological and astrophysical parameters driving clus-
ter formation and evolution. Using the CAMELS-zoomGZ suite, which spans a 28-dimensional
parameter space in the IllustrisTNG model, we trained neural networks on stacked galaxy cluster
profiles to perform likelihood-free inference of cosmological parameters (e.g., 𝛺𝑚, 𝐻0, 𝜎8) and
baryonic physics parameters (e.g., IMF slope, feedback efficiencies). These models achieved
correlation coefficients of 0.97 or higher for cosmological parameters and above 0.90 for most
astrophysical ones, demonstrating that spatially resolved cluster profiles are powerful observables
for parameter inference. Furthermore, we showed that inner cluster regions, particularly within
0.1 𝑅200, carry the bulk of the constraining power. Full thermodynamic profiles consistently
outperformed integrated quantities up to 𝑟200, underscoring the importance of preserving spatial
structure in the data. Importantly, the robustness of these results was tested under realistic degra-
dations, including radial truncation and substantial noise. Even with signal-to-noise ratios of 10
or worse, key parameters such as 𝛺𝑚, 𝐻0, and the IMF slope could still be inferred with high
confidence. This establishes galaxy cluster profiles as powerful observables for cosmological
inference and lays the groundwork for future likelihood-free pipelines.

Establishing a Framework for Physically-Informed Cluster Cosmology: This thesis estab-
lishes a unified framework for using constrained simulations and machine learning to disentangle
the physics and cosmology encoded in galaxy clusters. Constrained simulations offer a reliable
way to reproduce individual systems and track their histories, allowing us to perform detailed one-
to-one studies of the galaxy clusters in our local neighborhood. At the same time, deep learning
methods enable the extraction of cosmological and astrophysical information from galaxy clusters
and efficient and thus accurate parameter inference across high-dimensional cosmological/galaxy-
formation models. By bridging cosmological simulations, ML-based inference, and observational
validation, this work paves the way for extracting maximal information from forthcoming surveys
such as eROSITA, Simons Observatory, and Euclid, and contributes toward the next-generation
cluster cosmology.
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The work presented in this thesis has demonstrated the power of combining constrained cosmolog-
ical simulations, thermodynamic analysis of galaxy clusters, and SBI to probe both astrophysical
processes and cosmological parameters. Nevertheless, several key challenges remain unresolved,
and overcoming them will be essential to fully exploit the potential of galaxy clusters as precision
tools in modern cosmology. This section outlines the most pressing issues identified during this
research and proposes future directions to address them.

Limitations in the Modeling of Baryonic Physics: Although the constrained simulations
employed in this thesis successfully reproduce the global thermodynamic properties of many local
galaxy clusters, systematic discrepancies persist, particularly in the core regions. The simulated
entropy and electron density profiles often deviate from observations, especially for cool-core
clusters. These mismatches point to persistent resolution limitations as well as limitations in
current subgrid models of baryonic physics, including the implementation of AGN feedback,
radiative cooling, and star formation.

Future work will focus on the development of a comprehensive suite of high-resolution zoom-
in simulations targeting the same galaxy clusters modeled in the SLOW project. By simulating
each cluster with high resolution and using different galaxy formation models (e.g., IllustrisTNG,
Simba, and Magneticum), it will be possible to isolate the effects of various feedback prescriptions
on cluster thermodynamics. By comparing with X-ray and SZ observations from instruments
such as eROSITA, Chandra, and Planck, it will be possible to evaluate and improve the physical
fidelity of current subgrid models.

Understanding the Connection Between Formation History and Observable Diversity: The
link between cluster formation history and present-day observables, although addressed in this
thesis, could be further explored. The classification of clusters into cool-core and non-cool-core
types appears to correlate with assembly history, but a detailed causal mapping is still lacking.

Future work will take advantage of merger trees and formation histories derived from zoom-in
simulations to quantify how progenitor dynamics, such as early accretion events or late major
mergers, shape the detailed thermodynamic properties of clusters at redshift zero. Conducting this
analysis across multiple feedback models will further clarify which aspects of cluster evolution
are robust and which are model-dependent, ultimately informing a more predictive theory of
cluster diversity.
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Toward Realistic and Spatially-Informed Inference Frameworks: The SBI framework de-
veloped in this thesis has demonstrated that thermodynamic profiles of galaxy clusters contain rich
information about both cosmological and astrophysical parameters, and that machine learning
models can recover these parameters with high precision under idealized conditions. However,
applying these techniques directly to observational data introduces new challenges, including
instrumental noise, finite resolution, and projection effects, which are not captured in standard
simulations outputs.

Moreover, while radial profiles outperform integrated observables as input quantities, they
still compress and average out important spatial features of the ICM. In disturbed or non-spherical
systems, such as those undergoing mergers, radial statistics can obscure asymmetries, cold fronts,
and substructures that carry valuable physical information.

To address these limitations, I propose constructing mock X-ray and SZ observations from
simulations, accurately reproducing survey-specific characteristics such as noise levels, resolu-
tion, and angular coverage. These mocks will serve as more appropriate training data for SBI,
bridging the gap between theoretical modeling and observational data.

In parallel, extending the inference to two-dimensional data will be possible by using CNNs
applied directly to simulated SZ and X-ray images. This would allow us to exploit spatial
correlations and morphological features that are lost through radial averaging. Additionally, the
use of more expressive statistical tools, such as normalizing flows, will enable better modeling of
posterior distributions, capturing parameter degeneracies and non-Gaussian features that simpler
models cannot.

Together, these developments will lead to more physically grounded and observationally
relevant inference, advancing the applicability of SBI methods to current and future galaxy
cluster surveys.

A New Approach - Constrained Zoom-In Simulations for Cosmological Inference: A par-
ticularly promising direction for future research lies in the combination of the two main strategies
used throughout this thesis: constrained initial conditions and cosmological parameter inference.
To date, SBI has largely relied on random initial conditions, which neglect the specific large-scale
environment of observed clusters. I propose developing a novel suite of zoom-in simulations
of local galaxy clusters using constrained initial conditions, run across a range of cosmological
parameters (e.g., 𝛺𝑚, 𝐻0, 𝜎8). This dataset can serve as the foundation for a SBI framework
that performs cosmological parameter inference directly from real observed systems in our local
neighborhood. Such an approach would represent a step-change in our ability to constrain cos-
mology from individual galaxy clusters in the local Universe.

In conclusion, this thesis has laid the groundwork for a new generation of cluster cosmology:
one in which high-resolution, physically motivated simulations are combined with flexible, data-
driven inference techniques to yield meaningful constraints on both astrophysical processes and
fundamental cosmological parameters. By extending these methods to more realistic conditions,
incorporating spatial information, and making use of the structure of the local Universe itself,
future work can decisively advance our understanding of structure formation in the cosmos.



A | Appendix

A.1 Emulated Profiles With One Parameter Variation
To better understand the impact of individual parameters of the IllustrisTNG model on the
averaged galaxy cluster profiles, we performed a series of emulations where we varied one
parameter at a time while keeping the remaining 27 parameters fixed at their fiducial values.
This method enabled a thorough exploration of each parameter’s influence on the gas density,
temperature, metallicity, Compton-y, and X-ray surface brightness mean profiles, as shown in
Figs. A.1.1-A.1.5. By isolating specific parameters, we gained deeper insights into their roles
and identified potential degeneracies across different profile types.

We observe that cosmological parameters such as 𝛺m and 𝐻0 result in strong spreads for all
quantities, followed closely by 𝛺𝑏. Parameters such as 𝜎8 and 𝑛𝑠 show a more subtle effect on
the profile variation for all quantities.

Astrophysical parameters, while having a milder influence on the profiles for most quantities,
show a stronger effect on metallicity, which is particularly sensitive to stellar parameters like the
IMF and feedback and wind parameters such as ASN1, ASN2, and W3.

The distinct responses of these profiles to the underlying parameters suggest that their com-
bined effects are key to optimal parameter inference, helping to explain the model’s exceptional
performance.

A closer examination of Figs. A.1.1-A.1.5 reveals that each parameter introduces distinct,
unique features in the profiles across all quantities. This observation is key to understand the
high accuracy of our inference. These non-degenerate features enable the neural network to
disentangle the individual effects of each parameter, allowing for parameter inference with an
accuracy of 0.97 or higher in the noiseless case. This suggests that stacked galaxy cluster profiles
contain clear and unambiguous information about both the astrophysical processes occurring in
groups and clusters and the cosmological details of the Universe in which these structures reside.
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Figure A.1.1: Gas density profiles showing the impact of varying individual parameters for all
parameters in the IllustrisTNG model. Each line represents the profile obtained when a single
parameter is varied while keeping the others fixed at their fiducial values. The color gradient
within each panel highlights the spread introduced into the profiles by the variations in the
corresponding cosmological parameter, with the color scale representing the range of parameter
values. This visualization demonstrates how changes in cosmological parameters affect different
physical quantities in galaxy clusters, providing insight into the sensitivity of cluster profiles to
cosmological variations.
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Figure A.1.2: Similar to Figure A.1.1, but for temperature profiles. Each line shows the effect of
varying a single parameter while the others remain at their fiducial values, with the lines colored
according to the value of the varying parameter.
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Figure A.1.3: Similar to Figure A.1.1, but for metallicity profiles. Each line shows the effect of
varying a single parameter while the others remain at their fiducial values, with the lines colored
according to the value of the varying parameter.
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Figure A.1.4: Similar to Figure A.1.1, but for Compton-y profiles. Each line shows the effect of
varying a single parameter while the others remain at their fiducial values, with the lines colored
according to the value of the varying parameter.
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Figure A.1.5: Similar to Figure A.1.1, but for X-ray surface brightness profiles. Each line shows
the effect of varying a single parameter while the others remain at their fiducial values, with the
lines colored according to the value of the varying parameter.
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