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Summary

The desire to understand financial markets has been unprecedented. This dissertation fur-
ther contributes to it. We investigate the methods to reproduce the behavior of financial
returns, examine their interrelationships within a portfolio during market stress, and intro-
duce a new method to forecast correlation. The essays on the topics are embedded in this
dissertation and presented as five coherent chapters.

The first chapter outlines the research goals of this dissertation. We motivate our research
projects and provide a comprehensive literature review.

The second chapter presents a simulation framework that combines stochastic volatility
models with various error distributions, conditional correlation models, and copulas. Em-
pirical evidence has shown that the behavior of financial returns adheres to a set of distinct
characteristics, commonly known as ”stylized facts”, such as heavy tails, volatility cluster-
ing, time-varying correlation, and non-linear dependence. The motivation for this project
is that many established methods only cover one or a subset of these characteristics, thus
producing inaccurate results. The simulation framework allows the combination of these
models while maintaining traceability and is easily modified. One way to calibrate this
model is to estimate the model components. Challenges such as optimal starting parame-
ters for estimation and variance initialization are addressed during this process. Further-
more, sampling methods, in particular Filtered Historical Simulation (FHS) and Moving
Block Bootstrap (MBB), are evaluated for deriving standard errors. The modular structure
of the framework allows for future enhancements, e.g., incorporating more sophisticated
variance models, error distributions, or advanced correlation dynamics.

The third chapter explores the dependence structures of financial returns, especially during
market stress. A phenomenon often observed is the increase in correlation among finan-
cial assets during market downturns, where stock prices often drop jointly. However, the
standard Pearson product-moment correlation cannot explicitly incorporate the effects of
such tail events. We propose a methodology that constructs correlation matrices based on
quantiles, particularly Value-at-Risk (VaR), and further modify the model to incorporate
the Expected Shortfall (ES). The correlation matrix is conditioned on a specific tail area by
selecting the quantile level associated with the respective risk measure and then implied
by solving a linear system of equations formed by portfolio quantiles, which are deter-
mined by a set of specific weight vectors. This approach accommodates large portfolios
and is suited for risk aggregation according to financial regulations. In this context, we in-
vestigate international stock indices across various quantile levels, return frequencies, and
portfolio configurations in an empirical study. Furthermore, the study investigates system-
atic deviations between implied and Pearson correlation, revealing significant differences,
particularly for extreme quantiles, thus justifying the necessity for tail-adjusted matrices.

The fourth chapter introduces a novel approach for forecasting correlation matrices based
on the implied correlation methodology. The method combines quantile forecasts obtained
from CAViaR models with implied correlation estimates to predict a correlation matrix.
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Unlike traditional forecasting methods that require modeling the entire return distribu-
tion, the CAViaR model focuses on modeling the respective quantile dynamic directly. The
empirical analysis uses six global stock indices, examining correlation forecasts under vary-
ing quantile levels and identification strategies. Comparisons are made with alternative
forecasts, including Exponentially Weighted Moving Average (EWMA) and Dynamic Con-
ditional Correlation (DCC) models. Since true correlation is not directly observable, we
additionally evaluate the quality of the correlation forecast in terms of a Markowitz-styled
Global Minimum Variance Portfolio (GMVP). Drawdown metrics such as the historical VaR,
ES, and Maximum Drawdown are compared for different parameter settings. The empirical
results are competitive but still need further research regarding alternative quantile dynam-
ics, rebalancing strategies, and broader portfolio frameworks to fully realize the benefits of
this approach.

We highlight our findings and discuss drawbacks and advantages in the last chapter. Fi-
nally, we present ideas for further potential research, which concludes the thesis.
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Zusammenfassung

Der Wunsch, Finanzmärkte zu verstehen, ist ungebrochen. Diese Dissertation leistet dazu
einen weiteren Beitrag. Wir erforschen Methoden, Renditezeitreihen von Finanzproduk-
ten zu reproduzieren, beleuchten die deren Zusammenhänge vor allem in angespannten
Marktumfeldern und stellen eine neue Methode zur Vorhersage von Korrelationen vor. Die
Essays zu den einzelnen Themen werden in dieser Dissertation als fünf zusammenhängen-
de Kapitel vorgestellt.

Das erste Kapitel stellt das Forschungsziel der Arbeit vor. Wir motivieren die Forschungs-
projekte und geben zudem eine ausführliche Literaturübersicht.

Im zweiten Kapitel wird eine Simulationsmethode vorgestellt, die stochastische Volatilitäts-
modelle mit verschiedenen Fehlerverteilungen, bedingten Korrelationsmodellen und Copu-
las kombiniert. Empirische Untersuchungen deuten darauf hin, dass Zeitreihen von Finanz-
renditen eine Reihe von Eigenschaften haben, die üblicherweise als ”stylized facts“ bekannt
sind. Beispiele hierfür sind schwere Ränder, Volatilitätscluster, zeitabhängige Korrelation
und nicht lineare Abhängigkeitsstrukturen. Die Motivation für dieses Projekt besteht dar-
in, dass viele etablierte Methoden nur einen Teil dieser Merkmale abdecken und daher
suboptimale Ergebnisse liefern. Das Simulationsmodell kombiniert die einzelnen Modelle
derart, dass die Ergebnisse nachvollziehbar sind. Die Schätzungen der einzelnen Modelle
bieten eine Möglichkeit, wie die Simulationsparameter bestimmt werden können. Schwie-
rigkeiten bei der Implementierung des Modells werden ebenfalls diskutiert, z.B. optimale
Startparameter für die Likelihood-Optimierung und Startwerte für die Varianzrekursion.
Darüber hinaus werden Samplingmethoden wie Filtered Historical Simulation (FHS) und
Moving Block Bootstrap (MBB) zur Herleitung von Standardfehlern diskutiert. Die modu-
lare Struktur des Frameworks ermöglicht Erweiterungen, z.B. Varianzmodelle mit komple-
xeren Dynamiken, andere Fehlerverteilungen oder Korrelationsdynamiken.

Im dritten Kapitel werden die Abhängigkeitsstrukturen von Finanzrenditen, vor allem bei
angespannten Märkten, untersucht. Ein häufiges Phänomen bei fallenden Aktienmärkten
ist der Anstieg der Korrelation zwischen Finanzanlagen, wodurch die Kurse gleichzeitig
fallen. Die übliche Pearson Korrelation ist jedoch nicht in der Lage, die Auswirkungen von
extremen Ereignissen zu berücksichtigen. Wir präsentieren eine Methode, die Korrelations-
matrizen basierend auf Quantilen konstruiert, insbesondere dem Value-at-Risk (VaR) und
dem Expected Shortfall (ES). Die Korrelationsmatrix wird durch die Auswahl des Quan-
tilniveaus auf einen bestimmten Bereich der Renditenverteilung bedingt und anschließend
durch das Lösen eines Gleichungssystems impliziert, das von Portfolioquantile aufgespannt
wird. Jedes Portfolio wird mit anderen Gewichten beschrieben. Der Ansatz über ein Glei-
chungssystem ist mit einer großen Anzahl an Anlageprodukten kompatibel und liefert eine
Matrix, die sich für die Aggregierung von Risiken gemäß regulatorischen Vorschriften eig-
net. In einer empirischen Studie untersuchen wir die impliziten Korrelationen zwischen
Aktienindizes für verschiedene Quantilniveaus, Renditefrequenzen und Portfoliokonfigu-
rationen. Zudem werden systematische Abweichungen zwischen der impliziten und der
Pearson-Korrelation untersucht, wobei es vor allem signifikante Unterschiede bei extremen
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Quantilen gibt. Entsprechend wird damit die Notwendigkeit von angepassten Korrelati-
onsmatrizen begründet.

Im vierten Kapitel wird ein neuer Ansatz zur Vorhersage von Korrelationsmatrizen vor-
gestellt, der auf der Methode der impliziten Korrelation beruht. Prognosen von Quanti-
len werden mittels CAViaR-Modellen erstellt und anschließend als Grundlage für implizi-
te Korrelationen verwendet. Im Gegensatz zu traditionellen Prognosemethoden, die eine
Modellierung der gesamten Renditeverteilung erfordern, modelliert das CAViaR-Modell
auf direktem Wege das jeweilige Quantil, wodurch eine gezielte Spezifikation der Dyna-
mik ermöglicht wird. Die empirische Analyse betrachtet sechs Aktienindizes und unter-
sucht Korrelationsprognosen bei verschiedenen Quantilniveaus und Identifikationsstrategi-
en. Die Ergebnisse werden mit Prognosen anderer Modelle, darunter das Exponentially
Weighted Moving Average (EWMA) und Dynamic Conditional Correlation (DCC), ver-
glichen. Da die tatsächliche Korrelation nicht direkt beobachtbar ist, bewerten wir die
Qualität der Korrelationsprognose anhand eines Portfolios. Konkret verwenden wir das
Global Minimum-Variance-Portfolio (GMVP) im Stile von Markowitz. Anschließend wer-
den Drawdown-Metriken wie der historische VaR, ES und dem Maximum Drawdown für
verschiedene Parametereinstellungen verglichen. Die empirischen Ergebnisse zeigen, dass
weitere Forschung hinsichtlich alternativer Quantildynamiken, Rebalancing-Strategien und
anderer Portfoliotypen notwendig ist, um das Potenzial dieser Prognosemethode voll aus-
zuschöpfen.

Im letzten Kapitel werden sämtliche Ergebnisse vorgestellt. Wir präsentieren Vor- und
Nachteile unserer Modelle und schließen die Arbeit zu möglichen weiterführenden For-
schungsarbeiten ab.
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Chapter 1

Introduction

Understanding the distribution of financial returns is a fundamental aspect of financial
econometrics. Accurate return modeling is essential to risk management, portfolio opti-
mization, economic forecasting, and financial regulation, to name a few. Numerous empir-
ical studies have identified specific statistical properties of financial time series, commonly
referred to as ”stylized facts”, see McNeil et al. (2015). The most prominent include heavy
tails, volatility clustering, time-varying correlation, and non-linear dependence structure,
where each characteristic has different implications depending on the specific financial ap-
plication. For example, heavy-tailed return distributions are particularly important to risk
management in quantifying extreme losses. Modeling volatility clusters and time-varying
correlation is essential for economic forecasting and portfolio optimization, while non-linear
dependencies are vital for assessing risk diversification effects.

This thesis studies financial returns in a multivariate setting by introducing a modular
simulation framework. The resulting simulation model finds application in various financial
applications and sets the stage for studying the dependence structure of financial assets,
especially during market stress. Specifically, we are interested in tail-correlation implied by
quantiles and subsequently discover a method to predict correlation matrices. The essays on
these research topics are embedded in this dissertation and presented as coherent chapters.

Regarding financial time series, despite extensive research on their unique characteristics,
most models address only one or a subset of these properties, leaving the full range of
financial return dynamics unexplored. We propose a unified framework that integrates
existing models to account for the majority of the unique characteristics. Our contribution
is to provide a simulation model that can be either calibrated according to the sample
data through estimation or by setting the model parameters directly. The flexibility of this
model allows the simulation of realistic financial scenarios while maintaining traceability.
Furthermore, we discuss practical challenges encountered during the estimation process
and the implementation of such a framework, which are often not mentioned further.

Building on the insights gained from studying financial returns, we motivate the necessity
for an alternative measure of correlation during extreme events, which is based on another
empirical observation that during financial distress, assets tend to decrease in synchrony.
Figure 1 shows the historical prices of stock markets from different geographical regions
and compares the Pearson correlation before and during events that had a significant im-
pact on the financial markets, namely the global financial crisis caused by the American
subprime mortgage crisis in 2008 and the outbreak of Covid-19 in 2020. Although the stock
markets seem to be correlated in general, especially between 2000 and 2007, we observe a
simultaneous sharp decline in prices during 2008 and 2020. The corresponding heatmaps
of the Pearson correlation indicate that the correlation of the returns during these events
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is significantly higher compared to less turbulent times. However, the heatmaps presented
in Figure 1 are ex-post correlation analyses and, therefore, have little practical use since
efforts to maintain risk diversification based on correlation should be considered before the
occurrence of such events.
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Figure 1: Historical prices & correlation of returns during different market periods.

The empirical fact that correlation increases during market stress has major consequences in
risk management, portfolio strategies, and regulation. For example, the European Union in-
troduced the Solvency II directive (European Union 2009) to establish a unified framework
for European insurance practice. In principle, the directive requires insurance companies to
determine a Solvency Capital Requirement (SCR) based on the Value-at-Risk (VaR), a mon-
etary risk measure, for different risk categories in order to ensure solvency during market
stress. The SCR is obtained by aggregating the individual risk estimates with a Pearson cor-
relation matrix. However, the risk is only adequately aggregated in this way if the Pearson
correlation fully describes the dependence structure among the financial assets. This is only
true for elliptically distributed data, which assume symmetric tail behavior, thus ignoring
the fact that extreme values in one variable increase the likelihood of extreme values in
another. Based on these facts Mittnik (2011) point out that the methods proposed by the
regulators do not account for these characteristics, thus rendering equity risk calibration in-
efficient, if not meaningless. In particular, a tail-adjusted correlation matrix should be used
for risk aggregation instead of the standard Pearson correlation, which underestimates risk.



3 Introduction

Our contribution is to construct a tail-adjusted correlation matrix suited for risk manage-
ment practice by extending the methodology of Campbell et al. (2002), who proposed a
correlation estimate implied by VaR although only for two asset portfolios. In particular,
the tail-correlation matrix should fulfill the following requirements:

• Ability to handle large number of financial securities and portfolios

• Interpretability of the tail-correlation matrix given a pre-specified risk quantity de-
scribed by Value-at-Risk or Expected Shortfall

• Suitability for (tail-) risk aggregation

• Minimal theoretical requirements

Regarding the first requirement, the literature discussed extreme correlations mostly in a
bi-variate return setting. We imply the unique elements of a correlation in vectorized form
by solving a system of linear equations. In doing so, we can obtain correlation matrices
for a large asset universe while maintaining computational feasibility. Furthermore, we
circumvent the definition of a threshold to classify extreme returns and rely on VaR or Ex-
pected Shortfall (ES) instead. This yields interpretable results, i.e., the correlation matrix
describes the dependence structure of a specific tail area based on the choice of the quantile
level associated with VaR or ES. If risk components are governed by a multivariate elliptical
distribution, the obtained correlation coincides with their unconditional Pearson correlation
counterpart, which offers a familiar way to interpret the results. If the underlying distribu-
tion is not elliptical, it can be viewed as a local elliptical approximation. A formal treatment
of local ellipticity is provided in Tjøstheim & Hufthammer (2013). Finally, we can relax the
requirement for the existence of moments since quantiles always exist.

A natural extension of the implied correlation methodology to forecasting correlation ma-
trices follows directly from the possibility of forecasting quantiles. Traditionally, forecasting
correlation is challenging due to several reasons. Starting with theoretical aspects, each cor-
relation forecast must lie within [−1, 1] while entire matrices must be positive-semidefinite
and symmetric. In order to obtain those characteristics, numerical adjustments such as
spectral correction for positive-semidefinitness and truncation for valid bounds are made
when necessary. Furthermore, forecasting high-dimensional correlation matrices is partic-
ularly burdensome with the quadratic increase of correlation pairs. It is also well known
that the volatility of asset returns exhibits clustering, which often increases correlation dur-
ing turbulent market periods, thus adding another layer of complexity that needs to be
considered. The main idea is to obtain a correlation matrix prediction based on quantile
forecasting. Consequently, the first step is to acquire quantile forecasts of the correspond-
ing financial assets, i.e., forecasting Value-at-Risk or Expected Shortfall. We will use the
Conditional Autoregressive Value-at-Risk (CAViaR) method by Engle & Manganelli (2004)
to forecast the necessary asset quantiles. Although ES provides more stable results, we will
focus on VaR forecasts instead for simplicity. The predicted correlation matrix is given by
the implied correlation matrix of the CAViaR forecasts, thus connecting dynamic quantiles
with the implied correlation framework.
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The thesis is structured as follows: The remainder of Chapter 1 provides a literature
overview. Chapter 2 introduces a financial return simulation framework. Existing mod-
els and their roles to account for specific characteristics are presented. The empirical
work demonstrates the simulation capabilities of the model based on three financial as-
sets, followed by a thorough discussion of the potential drawbacks and challenges while
implementing such a model. Chapter 3 introduces the concept of VaR- and ES-implied
correlation. The bi-variate case is explained first and extended to an n-asset setting. We
discuss different portfolio construction methods that are required to establish a linear sys-
tem from which the correlation is obtained as a solution of the system. Finally, we analyze
correlation patterns produced by different parameter settings in the first part and investi-
gate asymmetries in the second part. Chapter 4 provides an overview of CAViaR models
that are used to compute quantile forecasts. In the following step, dynamic quantiles by
CAViaR are connected to the implied correlation from the previous chapter. Furthermore,
evaluation strategies for correlation forecasts regarding potential benchmarks and portfo-
lio performance are discussed. The viability of this method is assessed by an empirical
study involving indices representing markets of different geographical regions. Chapter 5
summarizes all results and point out potential fields for further research.



5 Introduction

1.1 Literature Review

The literature discussing models to approximate financial returns is vast. We provide an
overview of this field with selected works and more recent literature. In an early study,
Ibbotson & Sinquefield (1976) proposed a simulation model by combining forecasts of dif-
ferent economic factors such as government bond yields, interest rates, and inflation. Each
factor is governed by a specific model that best describes the corresponding dynamics. For
example, interest rates are assumed to follow an autoregressive process, while a random
walk drives risk premium. A probability distribution of the returns is then constructed
based on the forecast errors. The authors correctly predicted that the volatility of returns is
not constant. However, these effects were not addressed due to the lack of statistical tools.
After the introduction of the bootstrap by Efron (1982), Korajczyk (1985) applied it to fi-
nancial returns. This approach was appealing due to its simplicity and the absence of
required distributional assumptions. However, for the bootstrap to produce meaningful re-
sults, the sample needs to be independent and identically distributed (i.i.d.). Since financial
returns exhibit serial correlation, especially in their volatility patterns, this criterion is vio-
lated, resulting in biased and inconsistent estimates. To address these issues, refined boot-
strap methods were developed, such as the Moving Block Bootstrap (MBB), which samples
blocks of data instead of just one data point, and the Filtered Historical Simulation (FHS)
by Barone-Adesi et al. (1999) which uses conditional variance models to capture volatility
clustering. Ruiz & Pascual (2002) provides an overview of Block Bootstraping methods
specifically for financial time series. These sampling methods are a key component of the
simulation effort.

Focusing on time series models, Engle (1982) introduced the Autoregressive Conditional
Heteroskedasticity (ARCH) model, which models volatility as a function of past innova-
tions. Expanding on this concept, Bollerslev (1986) incorporated historical volatility as
an additional component, resulting in the Generalized Autoregressive Conditional Het-
eroskedasticity (GARCH) model. Since then, the GARCH model has been continuously
adapted to new findings on financial time series. For example, Nelson (1991) and Glosten
et al. (1993) incorporated leverage effects where negative returns tend to increase volatil-
ity more than positive returns. Haas et al. (2004) presented Markov-Switching GARCH
models that enable different volatility regimes while incorporating non-linearity by select-
ing normal mixture distributions to drive the innovation process. A mixture distribution is
described as a weighted sum of multiple densities and is capable of producing a skewed
distribution that is better suited to reflect the typical characteristics of financial returns.
Extending these univariate conditional variance models to a multivariate framework has
proven challenging due to the fast-increasing number of parameters. The development of
conditional correlation models aimed to tackle the computationally burdensome estimation
process. The core idea is to treat the volatility characteristics of the assets separately and
join them through a correlation matrix based on the standardized residuals. The correla-
tion matrix can be either static, as in the Constant Conditional Correlation model (CCC) by
Bollerslev (1990), or dynamic, governed by its own law of motion producing the Dynamic
Conditional Correlation model (DCC) by Engle (2002). Thus far, the presented models
focus only on the first and second moments of the return distribution. However, higher
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moments such as skewness and kurtosis measure asymmetry and ”tailedness”, which are
especially relevant for extreme market scenarios. In this context, Haas et al. (2004) proposed
a mixed normal distribution as the error distribution for a GARCH model. The key idea is
to combine several weighted component distributions with different parameters to repro-
duce the underlying return distributions. Another approach is to connect GARCH models
with copulas, as was demonstrated in Jondeau & Rockinger (2006). Copulas provide addi-
tional modeling possibilities for non-linear relationships. Similar to conditional correlation
models, the dependence structure is also derived from the standardized residuals. The cor-
relation matrix is treated as a parameter of the copula where each element may follow a
specific dynamic, e.g. Markov-switching model. The articles presented in this paragraph
form the core literature of the first research project.

Regarding literature on correlation during declining markets, Erb et al. (1994) explored the
correlation among financial markets concerning economic activity by constructing corre-
lation matrices based on average returns over a time period and concluded that correla-
tion is lowest when the economies expand and highest during joint recessions. Bae et al.
(2003), focus on the joint occurrence of extreme returns rather than deriving the correla-
tion. The authors suggest quantiles as a reference to classify extreme events instead of a
certain return threshold level, which we will adapt in our research. The results of this study
indicate that financial contagion, particularly for large negative returns expressed in joint
exceedances, propagates differently in countries with no clear results. However, contagion
can be predicted based on exchange rates, interest rates, and conditional stock volatility.
Further studies by Longin & Solnik (1995), Butler & C. (2002), Ang & Bekaert (2002), Ang
& Chen (2002) explored the behavior of correlations during market stress and the impact
on portfolio diversification using GARCH and regime-switching models. Longin & Solnik
(2001) investigate the conditional correlation with extreme value theory obtaining so-called
exceedance correlation. Their approach is to derive the asymptotic distribution of extreme
returns specified by a threshold and compare them with alternative distributions. Formally,
let {rt,i}t∈I and {rt,j}t∈I denote the returns of two financial assets. The exceedance correla-
tion is then defined by

ρ+ = Corr(rt,i, rt,j|rt,i ≥ θ+i , rt,j ≥ θ+j ) θ+i , θ+j ≥ 0 (1)

ρ− = Corr(rt,i, rt,j|rt,i ≤ θ−i , rt,j ≤ θ−j ) θ−i , θ−j ≤ 0 (2)

where θ+i , θ+j , θ−i and θ−j are the corresponding thresholds. The exceedance correlation is
differentiated between ρ+ representing correlation conditioned on significance gains and ρ−

for extreme losses. The results of their empirical study favor the perspective that the correla-
tion of large negative returns increases while large positive returns do not. However, Forbes
& Rigobon (2002) point out that cross-market correlations are inaccurate if heteroskedastic-
ity of returns is not considered. The authors argue that correlation is conditional on market
volatility. Hence, conditional correlation estimates in the style of exceedance correlation
are upward biased, particularly during market stress. The central insight is that once het-
eroskedasticity effects are considered, financial contagion, vanishes to a certain degree, con-
cluding that markets are already highly correlated beforehand and not only during crisis
times. In addition, typical for methods focusing on extreme or rare events, the estimation
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also becomes increasingly unreliable due to data scarcity.

Finally, an early study on correlation forecast was done by Erb et al. (1994), who used the
forecast results for portfolio optimization and obtained substantially different asset allo-
cation weights compared to correlation matrices from historical data. The methodology is
based on an instrumental variable regression approach proposed by Longin & Solnik (1995),
which includes instruments that reflect the persistence of correlation and economic factors
such as business cycles, recession, and expected returns. However, this approach could not
account for correlation clustering and thus ignores one essential characteristic of financial
time series.

Following the introduction of the GARCH model by Bollerslev (1986), its multivariate gener-
alization produced several extensions to forecast covariance/correlation. The VEC-GARCH
of Bollerslev et al. (1988) treats conditional variance and covariances as lagged squared re-
turns and cross-products of returns. This model is flexible because each parameter can
be modeled separately but has restrive conditions for the covariance matrix to be positive
definite. The GARCH-BEKK (Engle & Kroner 1995) model circumvents this problem by
replacing the constants with another parameter matrix that ensures positive definiteness.
However, all three presented models are challenging to estimate due to the large amount
of parameters and the requirement to invert several matrices. Silvennoinen & Teräsvirta
(2009) provides an in-depth discussion of these models. The Dynamic Conditional Correla-
tion model proposed by Engle (2002) amends the aforementioned drawbacks by modeling
asset variance and portfolio correlation separately, which significantly reduces the number
of parameters compared to VEC-GARCH or GARCH-BEKK, thus making DCC an efficient
and parsimonious model. We refer to Section 2.2.3 in which the theoretical properties of the
DCC models are discussed. Further content on DCC extensions is found in Engle (2009).

In a more recent study, Bollerslev et al. (2022) conducted correlation forecasting by com-
bining a large set of features (lagged returns, high and low-frequency market data, sector
information, etc.) into a linear model. Different machine learning-inspired estimation tech-
niques (Ridge Regression, Elastic Net, or Neural Networks) are then explored with the
LASSO-based estimates producing the most promising results regarding theoretical bench-
marks and economic profitability. The Heterogeneous Autoregressive model (HAR) serves
as a reference model. Similar to our study, the authors evaluate the viability of correlation
forecasts by constructing a Global Minimum Variance Portfolio (GMVP) and evaluating its
performance using various risk metrics.

The literature on forecasting VaR is vast, and providing an overview of all forecasting
methods is out of the scope of this work. Classical methods like the historical, variance-
covariance, or Monte Carlo approach are discussed in McNeil et al. (2015). A survey on ad-
vanced methods such as extreme value theory, time series with different error distributions,
and quantile regression are provided in Kuester et al. (2005). Finally, although not related to
risk management directly, Kelly & Xiu (2023) gives an overview of machine learning meth-
ods applied to topics in finance, including simulating returns in general. Deep quantile
regression methods using neural networks are also intensively studied at the moment; see
Chronopoulos et al. (2024) and the literature therein.



Chapter 2

Advances in Risk and Return Modeling: Esti-
mation, Simulation, Application

2.1 Defining Financial Returns for Statistical Modeling

The main objects of interest are financial returns, which are more desirable for statistical
modeling than prices due to their stationarity property. In addition, returns can be modified
to account for taxes, dividends, and fees. They offer a scale-free quantity that is comparable
across different asset classes.

Definition 2.1.1 (Net Return & Logarithmic Return)
Let Pt be the price of a financial security at time t. The one-period simple net return Rt is given by

Rt =
Pt − Pt−1

Pt−1
. (3)

The logarithmic return or continuously compounded return is defined as

rt = ln
[

Pt

Pt−1

]
. (4)

Logarithmic returns often approximate a normal distribution more closely than simple re-
turns, especially for daily or high-frequency intraday data. Furthermore, they can be aggre-
gated linearly by a sum and behave symmetric in response to changes. The former property
greatly increases computational efficiency if returns over multiple periods are considered.

We establish the concept of stationarity. Every observed time series can be viewed as a real-
ization of a stochastic data-generating process. Understanding this data-generating process
is the main goal of all modeling exercises. However, estimates are only reliable if certain
stability assumptions are made. In particular, the marginal and joint distribution char-
acterizing the time series must remain stable over time to ensure consistency and sound
asymptotic behavior.

Throughout this thesis, we treat only real-valued random variables and time series models.
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Definition 2.1.2 (Covariance Stationarity)
A time series {Yt}t∈Z is covariance stationary or weakly stationary if

E[Yt] = µ and V[Yt] = σ2 for all t ∈ Z, (5)

Cov[Yt, Yt−k] = γk for all t, k ∈ Z. (6)

In other words, the mean, variance and autocovariance functions are finite and independent of time.

Assuming that a financial return series is stationary guarantees that its first and second
moment are well-defined and suitable for modeling. We refer to Hansen (2022) and the lit-
erature therein for other stationarity concepts and focus on covariance stationary processes
for the remainder of this work.

In a time series model, the randomness is usually described by a white noise process. It
serves as an innovation process where realizations are also called (economic) shocks.

Definition 2.1.3 (White Noise Process)
A process {εt}t∈Z is a white noise process if

E[εt] = 0 and V[εt] = σ2 < ∞ for all t ∈ Z, (7)

Cov[εt, εt−k] = 0 for k ̸= 0. (8)

A white noise process is a serially uncorrelated zero mean process with finite variance.

In many econometric applications, white noise is assumed to follow a normal distribution.
We will study alternative distributions that are more suited to modeling financial returns
because a normal distribution cannot capture heavy tails or asymmetries.

2.2 Capturing Financial Time Series Dynamics

In this chapter, we provide an overview of the building blocks for the simulation framework
and discuss the purpose of each model. Starting on a univariate level, stochastic volatility
models capture asset-specific properties such as volatility clustering patterns, heavy tails,
asymmetry, and leverage effects. This stage yields standardized residuals after filtering the
original return series. Next, the linear dependence structure of the assets is captured by
a correlation model. In particular, the law of motion is determined by the specification
of the correlation model. Through this step, we obtain cross-filtered residuals. Finally,
the remaining potential non-linear relationships or joint occurrences of extreme events are
covered by a copula. Furthermore, we assume stationary return series with zero mean.
Otherwise, the sample is centered by rt − µ for all t. A constant µ is a direct consequence
of stationarity. Figure 2 visualizes the role of each model component.
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Input: Financial Data

Dynamic Volatility, Leverage Effects

Heavy Tails, Skewness

Dynamic Correlation

Non-Linearity, Joint Tail Events

GARCH, GJR-GARCH

Error Dist: t, skewed-t, mixture

EWMA, CCC, DCC

Copula

Output: Simulation Parameters

Figure 2: Workflow of addressing financial time series characteristics

2.2.1 Stochastic Volatility Models

The primary goal of stochastic volatility models is to address the dynamic nature of volatil-
ity, i.e., volatility clustering. Engle (1982) proposed the Autoregressive Conditional Het-
eroskedasticity (ARCH) model where the volatility is a function of squared historical shocks
and provided stability criteria. Bollerslev (1986) generalized this model by including histor-
ical volatility additionally. The Generalized Autoregressive Conditional Heteroskedasticity
(GARCH) model has become a standard model in both theory and pratices and serves as
a benchmark for other volatility models, see Hansen & Lunde (2005). We present two vari-
ants of the GARCH model, namely the original GARCH and the GJR-GARCH which also
incorporate leverage effects.
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Definition 2.2.1 (GARCH)
Let {rt}t∈Z denote a return series of a financial security. Define {εt}t∈Z as a white noise process of
any distribution P. A GARCH(p,q) process with p, q ∈ N is described by

rt = σtεt, (9)

σ2
t = ω +

p

∑
i=1

αir2
t−i +

q

∑
j=1

β jσ
2
t−j (10)

with ω, αi, β j ∈ R, 0 < i ≤ p and 0 < i ≤ q. The process is covariance stationary if

ω > 0, αi, β j ≥ 0 for all i, j and (11)

p

∑
i=1

αi +
q

∑
j=1

β j < 1. (12)

If the process is stationary, the unconditional variance of the model is given by

σ2 =
ω

1 −
p
∑

i=1
αi −

q
∑

j=1
β j

. (13)

The constant in the variance equation (10) contributes to the unconditional variance, while
the coefficients describe the influence of squared past shocks and volatility. The sum of
the coefficients in Equation (12) describes the overall persistence of shock on the model. It
determines if the impact of any shocks decays over time and, thus, allows the model to
revert to its unconditional long-term variance. Evidently, the unconditional variance grows
significantly if the model exhibits strong persistence.

One drawback of the base GARCH model is that shocks are treated symmetrically. How-
ever, empirical works have shown that price declines tend to have a more significant impact
on volatility than growth. We will also discuss the impact of this phenomenon on de-
pendence structure in Chapter 3. On the univariate scale, Glosten et al. (1993) presents a
modification that allows the GARCH model to account for such leverage effects.
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Definition 2.2.2 (GJR-GARCH)
Let {rt}t∈Z denote a return series of a financial security. Define{εt}t∈Z as a white noise process of
any distribution P. A GJR-GARCH(p,o,q) process is defined by

rt = σtεt (14)

σ2
t = ω +

p

∑
i=1

αir2
t−i +

o

∑
k=1

γk It−kr2
t−k +

q

∑
j=1

β jσ
2
t−j (15)

with

It =

{
1, if rt < 0
0, otherwise

(16)

and ω, αi, βk, γj ∈ R, 0 < i ≤ p, 0 < j ≤ q and 0 < k ≤ o. The process is covariance stationary if

ω > 0, αi, γk, β j,≥ 0 for all i, k, j and (17)

p

∑
i=1

αi +
q

∑
j=1

β j +
1
2

o

∑
k=1

γk < 1. (18)

Motivated by theoretical ambiguity and empirical conflicts regarding the trade-off between
risk and returns, Glosten et al. (1993) reviewed works that state a positive relation between
expected excess return and conditional variance. In contrast, others find a negative or no
significant relation at all. It is argued that common models cannot account for seasonal
effects and asymmetry of return innovations, which the GJR-GARCH model tries to over-
come. Unlike the standard GARCH model, the GJR-GARCH model incorporates leverage
effects. The leverage parameter γj captures the asymmetric response of volatility to positive
and negative shocks in the previous returns, according to the sign of the last realizations.
This model can be modified by including dummy variables to capture seasonal effects. We
will focus on a simple GJR-GARCH model with p = q = o = 1. Zakoian (1994) extends the
base model to a new family of threshold models to which the GJR-GARCH belongs.

2.2.2 Error Distribution

Selecting the error distribution for the white noise process plays an essential role in defining
the behavior of the stochastic volatility model. While the variance equation only specifies
the dynamic of the volatility, the error distribution determines the range and characteristics
of each innovation such as tail events and asymmetry. We provide an overview of possible
choices.
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Definition 2.2.3 (Normal Distribution)
Let X be a real-valued random variable on a probability space (Ω,F , P). The random variable
X follows a Gaussian or normal distribution with mean µ and variance σ2, denoted by X ∼
N (µ, σ2), if P has a probability density function of the form

fµ,σ2(x) =
1

σ
√

2π
exp
(
− (x − µ)2

2σ2

)
with x ∈ R (19)

where exp(·) represents the exponential function.

In many applications, normal white noise is assumed. However, Baillie & Bollerslev (1989)
pointed out that although a GARCH model with normal white noise is able to generate a
heavy-tailed return distribution up to a certain degree, the result still does not accurately
reflect the underlying sample distribution. The authors propose the t-student distribution
as an alternative.

Definition 2.2.4 (t-Student Distribution)
Let X be a real-valued random variable on a probability space (Ω,F , P). The random variable X
follows a t-distribution with ν > 2 degrees of freedom, denoted by X ∼ t(ν), if P has a probability
density function of the form:

fν(x) =
Γ
(

ν+1
2

)√
(ν − 2)πΓ

(
ν
2

) (1 +
x2

ν − 2

)− ν+1
2

with x ∈ R (20)

where Γ(·) represents the Gamma function. An alternative parameterization of the t-distribution
with a location parameter µ ∈ R, a scale parameter σ > 0 and a tail parameter ν > 2 is given by:

fµ,σ,ν(x) =
Γ
(

ν+1
2

)
σ
√
(ν − 2)πΓ

(
ν
2

) (1 +
(x − µ)2

σ2(ν − 2)

)− ν+1
2

with x ∈ R. (21)

The additional degree of freedom parameter ν characterizes the tail behavior. For ν → ∞,
the t-student distribution converges to the normal distribution. A small value of ν puts more
probability mass on the tails of the conditional distribution, thus implying more extreme
events.
However, Hansen (1994) points out that there is no reason to believe that the conditional
distribution of returns is sufficiently described only by their first two moments. Indeed,
numerous studies show that asymmetries exist in covariance and volatility, which is directly
reflected in both frequency and severity of extreme losses during market stress, see Bekaert
& Wu (2000). As a result, the requirements for a feasible distribution are a closed-form
density function and a low-dimensional parameter vector. We present two generalizations
of the t-student distribution that fulfill these two conditions and focus on the normalized
version, i.e., zero mean and unit variance.
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Definition 2.2.5 (Skewed t-Student Distribution, Hansen (1994))
Let X be a real-valued random variable on a probability space (Ω,F , P). The random variable
X follows a normalized skew t-distribution with degrees of freedom ν and shape parameter λ,
denoted by X ∼ st(ν, λ), if P has a probability density function given by:

fν,λ(x) =


bc
(

1 + 1
ν−2

(
bx+a
1−λ

)2
)− ν+1

2

for x < −a/b,

bc
(

1 + 1
ν−2

(
bx+a
1+λ

)2
)− ν+1

2

for x ≥ −a/b,

(22)

where x ∈ R, 2 < ν < ∞, and −1 < λ < 1. The constants a, b, and c are given by:

a = 4λc
(

ν − 2
ν − 1

)
, (23)

b2 = 1 + 3λ2 − a2, (24)

c =
Γ
(

ν+1
2

)√
π(ν − 2)Γ

(
ν
2

) , (25)

where Γ(·) denotes the Gamma function. The parameter ν controls the tail behavior of the distribu-
tion. The parameter λ governs the skewness, with λ = 0 reducing the distribution to the standard
t-distribution.

Theodossiou (1998) studies the natural extension of the skewed-t distribution towards the
skew generalized t-distribution in which the kurtosis is also included. Further properties
regarding variants of the t-distribution and ways to represent asymmetric elliptical distri-
butions are studied in Azzalini & Capitanio (2003) and Azzalini & Genton (2008). In Gupta
(2003), the skew t-distribution is extended to a multivariate framework.

2.2.3 Conditional Correlation Models

Univariate models are widely used in practice due to their simplicity and mathematical
tractability. Nevertheless, univariate models, by nature, cannot capture the dependence
structures with other assets. In a multivariate time series setting, the covariance matrix usu-
ally describes the dependence structure. The VEC-GARCH of Bollerslev et al. (1988) and
GARCH-BEKK by Engle & Kroner (1995) are notable models for a multivariate GARCH
extension. Although these models offer high flexibility, the estimation process becomes
computationally cumbersome as the number of assets increase. In particular, the number
of parameters increase quadratically. An additional challenge is to guarantee that the co-
variance matrix remains well-defined, i.e., positive semi-definite. A major advancement in
treating volatility models in a multivariate framework while maintaining practical applica-
bility was presented in Bollerslev (1990) and Engle (2002), where conditional variance and
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correlation are separately modeled.

Bollerslev (1990) developed the Constant Conditional Correlation (CCC) as an extension of
the Seemingly Unrelated Regression (SUR) to understand the comovements of exchange
rates. In particular, variance and covariance are dynamic, while the correlation is kept
constant. In context of financial time series, denote {rt}t∈I as a series of (n× 1)-dimensional
vector of returns for an index set I and {zt}t∈I a multivariate white noise process. Assuming
zero mean, the multivariate equivalent to the univariate conditional variance model can be
expressed as

rt = H1/2
t zt (26)

where H t denotes the conditional covariance matrix. The key idea is to decompose the
covariance matrix into

H t = DtRDt (27)

where Dt denotes a diagonal matrix containing the asset specific stochastic volatilities gov-
ernd by individual univariate models, i.e.

Dt =


σ1,t 0 · · · 0
0 σ2,t · · · 0
...

...
. . .

...
0 · · · · · · σn,t

 . (28)

thus seperating volatility and dependence modeling which greatly increases estimation ef-
ficiency and stability. The model is called Constant Conditional Correlation because the
correlation matrix R in Equation (27) is time-independent.

The natural time-dependent generalization was provided by Engle (2002). Three possible
specifications for the correlation dynamics were investigated: A simple rolling correlation
with a prespecified lag window, an exponential smoother with a decay factor, and GARCH-
like dynamics. Regarding the first two methods, it is unclear what conditions are required
for consistent estimates. The rolling correlation method requires selecting a lag window,
while the exponential smoother has no criteria for choosing the decay factor. Using specific
heuristic values is not backed by any theory but originates from practical experience. Re-
garding the GARCH dynamic, we assume normality, which provides a likelihood function
that can be optimized. Even if the normality assumption does not hold, as long as the con-
ditional mean and variance are correctly specified, the maximum likelihood estimate will
be asymptotically normal and consistent, see Glosten et al. (1993). In this case, a Quasi-
Maximum-Likelihood estimation is performed. We will introduce GARCH-like dynamics
and refer to Engle (2002) for alternative dynamic correlation parameterizations.
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Definition 2.2.6 (Dynamic Conditional Correlation)
Let {rt}t∈Z be a d-dimensional vector of financial returns. Let {z}t∈Z denote a vector-valued white
noise process. The Dynamic Conditional Correlation (DCC) model with GARCH-like dynamics
is defined by the following equations:

rt = Ctxt + εt (29)

εt = H1/2
t zt (30)

H t = DtRtDt (31)

Rt = diag(Qt)
−1/2Qtdiag(Qt)

−1/2 (32)

Qt = (1 − λ1 − λ2)R + λ1ϵ̃t−1ϵ̃T
t−1 + λ2Qt−1. (33)

where Ct is a matrix of parameters governing the mean process, xt is a vector of independent variables
which may contain lagged values of rt, H1/2

t represents the Cholesky factor of the time-varying
conditional covariance matrix H t which corresponds to the multivariate volatility and ϵ̃t = D−1

t εt
represents the vector of standardized residuals.

The DCC recursion in Equation (33) represents GARCH-like dynamics by incorporating
historical squared residual vectors and correlation. For a stable DCC model, λ1, λ2 are
nonnegative and satisfy 0 ≤ λ1 + λ2 < 1 similar to the stationarity condition. Equation (32)
normalizes Qt such that the dynamic correlation coefficients in Rt remain in [-1,1]. If Rt is
assumed to be time-independent, then this model becomes the CCC model.

2.2.4 Copula

In this modeling framework, copula models constitute the last building block. They provide
further flexibility regarding dependence modeling beyond linear relationships covered by
the correlation models presented in the previous section. The correlation models yield
standardized cross-correlation filtered residuals on which the copula is built. A key feature
of copulas is their ability to model dependency structures independently of their margins.
This separation enables additional options to reflect the unique characteristics of financial
assets in terms of their interactions. At their core, copulas link multivariate distribution
functions to their marginals, grounded in Sklar’s theorem.

Theorem 2.2.1 (Sklar 1959)
Let H be a joint cumulative distribution function (cdf) with marginals F1(x1), . . . , Fd(xd). Then
there exists a copula C : [0, 1]d → [0, 1] such that for all x = (x1, . . . , xd) ∈ R̄d:

H(x) = C(F1(x1), . . . , Fd(xd)). (34)

If the marginals F1(x1), . . . , Fd(xd) are continuous, then C is unique. Otherwise, C is uniquely
determined on the cartesian product of the ranges of the marginal cdfs Ran(F1)× ... × Ran(Fd).
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Conversely, if F1(x1), . . . , Fn(xd) are continuous marginal distribution functions and C a copula,
then the function H is a joint distribution function with marginal distributions F1(x1), . . . , Fn(xd).
In other words, any multivariate joint distribution can be represented as a copula combining its
marginals.

Remark 2.2.1
A copula density function is directly acquired by computing the derivative of C. Set ui ≡ F(xi),
then the copula density c is given by

c(u) =
∂C(u)

∂u1 · · · ∂ud
=

h(x)
d

∏
i=1

fi(xi)

(35)

where u = (u1, ..., ud) ∈ [0, 1]d. The existence of such a density function c is guaranteed by Sklar’s
theorem. The joint and marginal density is denoted by h(·) and fi(·) respectively.

A Copula-GARCH model was proposed by Jondeau & Rockinger (2006). In their work, re-
turns were modeled by a GARCH process with skewed-T distributed errors and joined by
elliptical copulas, i.e., Gaussian and t-student. In particular, the parameters of the error dis-
tributions and the copula may vary over time. While an autoregressive process governs the
parameters of the error distributions, the correlation parameters of the copula are charac-
terized by either a time-varying correlation or Markov regime-switching models. Another
approach to model multivariate dependence dynamically was presented by So & Yeung
(2014), where the authors use vine copulas. The benefit of using vine copulas is the de-
composition of a multidimensional density into a product of conditional bivariate copulas
and marginal densities. As a result, this method also allows the study of high-dimensional
portfolios. A survey on copula-based models can be found in Patton (2012).

We will focus on parametric copulas with continuous marginals because the dependence
structure can be extracted directly from multivariate distributions with unique closed-form
densities that enable estimation by the Maximum-Likelihood principle. A rigorous treat-
ment of copula theory is found in Nelsen (2006) and Joe (1997). We present the Gaussian,
t-student, and skewed-t copulas, and discuss their strengths and weaknesses in the context
of financial return modeling.
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Definition 2.2.7 (Gaussian Copula)
Let Φ−1 be the inverse of the univariate cdf of the standard normal distribution Φ. Denote the
multivariate normal cdf with correlation matrix R as ΦR. The d-dimensional Normal Copula or
Gaussian Copula C : [0, 1]d → [0, 1] is given by

C(u;R) = ΦR(z) (36)

with density

c(u;R) =
ϕR(z)

n
∏
i=1

ϕ(Φ−1(ui))
=

1√
det(R)

exp(−1
2

z⊤(R−1 − I)z) (37)

where z = (Φ−1(u1), ..., Φ−1(ud)) and I represents the identity matrix.

We use a different notation style for the correlation parmeter to avoid confusion with the
conditional correlation models. The Gaussian copula is a member of the elliptical copula
family and fully described by the correlation matrix R. However, it lacks the ability to
account for tail dependence rendering this specific copula unsuitable for financial applica-
tions. The Gaussian copula gained attention in the aftermath of the financial crisis 2008
due to its (miss)usage in modeling credit derivatives, that is, modeling default probabili-
ties. In this context, one crucial deficiency of the Gaussian copula is the inability to model
extreme events such as default clustering. Extreme events are even treated independently
as their size of default increases. In conjunction with reckless risk management and bank-
ing practices, it contributed to the American subprime mortgage crisis outbreak. Donnelly
& Embrechts (2010) provide a detailed overview of this topic. Regarding market risk, the
t-student copula stands out as a viable alternative, particularly in addressing the issue of
tail dependence that the Gaussian copula fails to handle.

Definition 2.2.8 (t-Student Copula)
Let T−1

ν be the inverse function of the univariate cdf of the t-student distribution Tν. Denote the
multivariate t-student cdf with correlation matrix R and degree of freedom parameter ν > 2 as
TR,ν. The d-dimensional t-student Copula C : [0, 1]d → [0, 1] is given by

C(u;R, ν) = TR,ν(T−1
ν (u1), ..., T−1

ν (ud)) (38)

with density

c(u;R, ν) =
tR,ν(T−1

ν (u1), ..., T−1
ν (ud))

n
∏
i=1

tν(T−1
ν (ui))

=
1√
|R|

Γ( ν+d
2 )

Γ( ν
2 )
√
(νπ)d

(
1 +

z⊤R−1z
ν

)− ν+d
2

. (39)

where z = (t−1
ν (u1), ..., t−1

ν (ud)), Γ is the gamma function and ν is the degrees of freedom of the
t-distribution.
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The t-Student copula has an additional parameter that governs tail behavior allowing for a
more realistic representation of joint extreme market movements. However, similar to the
Gaussian copula the t-student copula assumes symmetric tail dependence, meaning it treats
the likelihood of joint extreme losses the same as joint extreme gains.

A possible solution is to consider asymmetric copulas similar to adjusting the error distri-
bution for the univariate conditional variance models. A candidate is the skewed-t copula
proposed by Demarta & McNeil (2005). Note that this copula is not elliptical but rather an
extension of the elliptical family. First, we introduce the multivariate skewed-t distribution
as a mean-variance mixture. The dependence structure of the copula can be extracted in
the same way as was done with the previous mentioned parametric copulas. We follow the
notation of Demarta & McNeil (2005). A mean-variance mixture is of the form

X = µ + γg(W) +
√

WZ (40)

for some function g : [0, ∞) → [0, ∞) and a d-dimensional parameter vector γ. With γ ̸= 0,
setting g as the identity and W ∼ Ig(ν/2, ν/2) where Ig represents the inverse gamma
distribution yields a skewed multivariate t distribution. The resulting density, which could
be used to construct the copula, is defined by

f (x) = c
K ν+d

2

(√
(ν + (x − µ)′Σ−1(x − µ))γ′Σ−1γ

)
exp((x − µ)′Σ−1γ)√

(ν + (x − µ)′Σ−1(x − µ))γ′Σ−1γ
ν+d (

1 + (x−µ)′Σ−1(x−µ)
ν

) ν+d
d

(41)

where

c =
2

2−(ν+d)
2

Γ
(

ν
2

)
(πν)

d
2 |Σ| 1

2
(42)

is a normalizing constant, and Kλ denotes a modified Bessel function. An in-depth dis-
cussion on the properties of this copula can be found in Demarta & McNeil (2005). Inves-
tigating the effect of more sophisticated copula to capture non-linear and non-symmetric
dependence is a potential topic for future research.

2.3 Simulation Parameters

2.3.1 Estimating the Model Components

Calibrating the simulation model amounts to estimating the model components starting
with the univariate stochastic volatility models. Let {rt}t∈Z denote a return series of a
specific asset.
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For illustration, define a GARCH(1,1) model and a generic white noise process {εt}t∈Z:

rt = µ + σtεt (43)

σt = ω + αε2
t−1 + βσ2

t−1 (44)

with εt
iid∼ WN . Assume that µ = 0, otherwise, center the returns by substracting the

mean. The likelihood function is determined by the choice of the error distribution. If
normal white noise is assumed, i.e., WN ≡ N (0, 1), the logarithmic likelihood function for
optimization with θ = (µ, ω, α, β)′ is given by

lr(θ) =
T

∑
t=1

[
−1

2
ln(2π)− 1

2
ln(σ2

t )−
(rt − µi)

2

2σ2
t

]
. (45)

The first term in the square brackets is usually discarded for the optimization process since
they do not contain any parameters.

Similarly, if the error distribution follows a t-student distribution with degree of freedom
ν > 2, i.e., WN ≡ t(ν) the target function with θ = (ν, µ, ω, α, β) becomes

lr(θ) = T
[

ln Γ
(

v + 1
2

)
− ln Γ

(v
2

)
− 1

2
ln [(v − 2)π]

]
(46)

−
T

∑
t=1

[
v + 1

2
ln
(

1 +
(rt − µ)2

(v − 2)σ2
t

)
+ ln(σ2

t )

]
. (47)

where Γ represents the gamma function. The degree of freedom parameter ν can be either
jointly estimated with the remaining parameters or set as a predetermined value. If so,
the common value is chosen between 4 and 8 according to Tsay (2010). In this case, the
log-likelihood function is reduced to

lr(θ) = −
T

∑
t=1

[
v + 1

2
ln
(

1 +
(rt − µ)2

(v − 2)σ2
t

)
+ ln(σ2

t )

]
. (48)

For the skewed-t distribution, we refer to Azzalini & Genton (2008) and the literature
therein.

Estimating the DCC models also requires a distributional assumption for the data, here the
standardized residuals. With it, the parameters of the conditional correlation model can be
estimated with the Maximum Likelihood principle. Recall that the fundamental concept of
the DCC model lies in the decomposition of the covariance matrix into a diagonal matrix
Dt containing the conditional variance and a dynamic correlation matrix Rt, formally

H t = DtRtDt. (49)
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This is directly reflected in the likelihood function for a given distribution. Denote Θ as the
vector containing all parameters of the correlation model. For normal distributed residuals,
the likelihood function and its logarithmic counterpart are given by

Lε(Θ) =
T

∏
t=1

1

(2π)
n
2 |Dt||Rt|

1
2

exp
(
−1

2
ε′t(DtRtDt)

−1εt

)
(50)

lε(Θ) = −1
2

T

∑
t=1

(
n ln(2π) + 2 ln |Dt|+ r′tDt

2rt + ln |Rt|+ εt
′Rt

−1εt − εt
′εt

)
. (51)

Next, define θ as the vector containing all parameters of the conditional variance models
and ψ as the vector of the parameters for the correlation model, which contains the unique
elements of the correlation matrix in addition to parameters describing its dynamics. The
log-likelihood function in Equation (51) can be divided into a variance and correlation
component. Formally,

lε(Θ) = lr(θ) + lε(ψ) (52)

with

lr(θ) = −1
2

T

∑
t=1

(
n ln(2π) + 2 ln |Dt|+ r′tD

−2
t rt

)
(53)

lε(ψ) = −1
2

T

∑
t=1

(
ln |Rt|+ ε′tR

−1
t εt − εt

′εt

)
. (54)

If the variance entries Dt are pre-specified by conditional variance models, estimating the
parameters of the DCC model reduces to optimizing lε(ψ) in Equation (54).

Recall that the dynamic of the correlation matrix is described by

Rt = diag(Qt)
−1/2Qtdiag(Qt)

−1/2 (55)

Qt = (1 − λ1 − λ2)R + λ1ϵ̃t−1ϵ̃T
t−1 + λ2Qt−1 (56)

In this setting, Equation (56) describes GARCH-like dynamics where R roughly corresponds
to the constant. The matrix R is also called quasicorrelation, where each entry is treated
as a parameter. Equation (55) scales the overall result Q back to a valid correlation matrix.
However, the number of parameters still grows quadratically with increasing assets, render-
ing estimation cumbersome. In addition, R needs to remain positive definite, which is not
guaranteed if λ1 + λ2 is close to one. Engle (2009) proposes an auxiliary estimator based on
a moment condition. Formally, R is set to be the sample correlation matrix. This procedure
drastically reduces computation time and is referred to as ”Correlation Targeting”. We will
remain with the sample correlation. Further methods are discussed in Engle (2009) and the
literature therein. Similar to the univariate stochastic volatility model, the DCC can retrieve
residuals that are filterd for cross-correlation meaning that linear relationships among the
standardized (cross-)filterd residuals should not be present anymore. The residuals are the
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data foundation for the last step.

The last component of the model aims to capture the remaining dependencen using copulas.
As mentioned in Section 2.2.4, we consider parametric copulas with continuous marginals
only. Given the unique copula density the estimation procedure amounts to maximizing
the likelihood function

lθ(u1, . . . , un) =
n

∑
i=1

log cθ(ui) (57)

where θ is a vector of parameters, cθ(·) the corresponding copula density and u1, ..., un the
marginals transformed into uniform scale using either a parametric or empirical cumulative
distribution function.

If the DCC model is correctly specified, the correlation parameter of the copula should be
approximately unity—the remaining parameters account for effects beyond linear relation-
ships. For example, the parameters of a t-copula are given by a correlation matrix Σ and a
degree of freedom parameter ν that specifies tail dependence. The traditional way to cali-
brate the copula is to estimate Σ and ν. In this framework, similar to correlation targeting, Σ
can be set as a constant. The only remaining task is to estimate ν, which drastically simpli-
fies the estimation process. Naturally, this holds for other elliptical copulas with additional
parameters.

Overall, we can summarize the calibration process as a multistage estimation procedure.
Let Θvar, ΘDCC and Θcop be compact subsets of finite Euclidian spaces representing the
parameter space for the stochastic volatility models, DCC, and copula, respectively. Denote
n ∈ N as the number of financial assets and Θ = Θvar × ΘDCC × Θcop. Then, the calibration
process can be divided into three steps:

θ̂i,var = argmax
θi,var∈Θvar

li,var(θi,var) for i = 1, ..., n (58)

θ̂DCC = argmax
θDCC∈ΘDCC

lDCC(θDCC) (59)

θ̂cop = argmax
θcop∈Θcop

lcop(θcop) (60)

where li,var, lDCC, lcop represent the log-likelihood functions of the corresponding model
components. The final parameter vector is θ̂ = (θ̂var, θ̂DCC, θ̂cop) with θ̂var = (θ̂1,var, ..., θ̂n,var).
A possible simulation framework could be described by the following example:
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Example 2.3.1
Given n financial assets, assume that their variance is described by a zero mean GARCH(1,1) model
with normal innovations, i.e.

ri,t = σi,tε i,t

σ2
i,t = ωi + α1,ir2

i,t−1 + β1,iσ
2
i,t−1

with ε i,t
iid∼ N (0, 1) and i = 1, ..., n. The univariate models are summarized in a DCC framework:

rt = H1/2
t zt

H t = D1/2
t RtD1/2

t

Rt = diag(Qt)
−1/2Qtdiag(Qt)

−1/2

Qt = (1 − λ1 − λ2)R + λ1ϵ̃t−1ϵ̃T
t−1 + λ2Qt−1

Assuming that {zt}t∈Z is multivarite normal white noise, we can apply the probability integral
transform on the cross-correlation filtered residuals to transform the data into uniform scale. In
this example, the t-student copula is used to model the remaining dependence in the tails of the
distribution:

Cν,R(u1, ..., un) = Tν,R(T−1
ν1

(u1), ..., T−1
νn

(un)).

Overall, n × 3 parameters for the univariate models θ̂i,var = (ωi, αi, βi), two parameters θDCC =
(λ1, λ2) and one parameter for the copula θ̂cop = ν. If the correlation matrix R is also estimated,
additional n(n − 1) correlation parameters need to be estimated.

2.4 Bootstrap Methods for Multistage Estimation

One challenge in multistage estimation is to evaluate the variability of the estimates for
robustness. In particular, the standard error of each parameter at every stage must be con-
sidered for the subsequent one. In a recent article, Gonçalves et al. (2023) points out that the
conventional way to derive errors includes the computation of numerous derivatives of the
objective function where analytical derivatives cannot be easily obtained, which prompted
the use of numerical derivatives. However, obtaining the derivative in both ways is prone
to errors. The main finding in this article is that bootstrapping a two-stage quasi-maximum
likelihood estimator still yields consistent results and can be generalized beyond two stages.
As a result, using Bootstrap to derive standard errors and confidence intervals for time se-
ries data is justified under certain regularity conditions.

As part of the calibration effort for the simulation model, we present two approaches for
sampling returns that are used to derive standard errors: The Moving Block Bootstrap
(MBB) by Liu & Singh (1992), and a modified version of the Filtered Historical Simulation
(FHS) by Adesi (2014). The latter has become a tool widely used in risk management
practice. Both methods are specifically constructed to account for serial correlation in time
series data.
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2.4.1 Moving Block Bootstrap

The MBB method partitions the sample into a family of overlapping blocks given a specific
block size. Indices of these blocks are then drawn with replacement until a bootstrap sample
is formed. The desired statistics are computed over several iterations based on the bootstrap
sample. The procedure is defined in the following way:

Define {rt}t=1,...,n as a generic time series sample and l ∈ N as the bootstrap block length
with 1 ≤ l < n. Define the blocks of l succesive observations beginning with rt as

Bt,l = {rt, rt+1, ..., rt+l−1}. (61)

If l = 1, the bootstrap reduces to the classical assumption of an i.i.d. sample. Given a
partition of the sample by n = kl, where other specifications are also possible, the new
bootstrap sample consists of k = n/l draws with replacement from the set of overlapping
blocks

{B1,j, ..., Bn−1+l,l}. (62)

The indices I1, ..., Ik are uniformly distributed on {0, ..., n − l} and determine the choice of
the blocks. Finally, we obtain a bootstrap sample

{r∗t = rτt , t = 1, ..., n} (63)

with τt defined as a set of indices according to a block

{τl} ≡ {I1 + 1, ..., I1 + l, ..., Ik + 1, ..., Ik + l}. (64)

More precisely, {Ik + 1, ..., Ik + l} represents the k-th block with length l.

The block bootstrap samples several adjacent data points simultaneously instead of just
one. However, a potential drawback is that block bootstrap can result in a non-stationary
series while the original series is stationary. It needs to be clarified how to choose the size
of the blocks, and no objective criterion so far exists for determining the appropriate length
of the window. Gonçalves et al. (2023) state that the average block sizes in other literature is
3.90, however, this value is not backed by any theory. A detailed overview on bootstrapping
financial time series is discussed in Ruiz & Pascual (2002).

2.4.2 Filtered Historical Simulation

The FHS method adapts a a semi-parametric approach to describe the sample. The underly-
ing volatility dynamic is assumed to be driven by a stochastic volatility model. We describe
this procedure directly in a multivariate setting. Assume that the conditional variance is
governed by a multivariate GARCH model with zero mean. Without further specifiying the
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volatility dynamic, the scaled innovation process is given by

εt = H1/2
t zt. (65)

where H t is the conditional covariance matrix and zt a white noise vector. Consequently, if
the model is correctly specified, filtering for heteroskedasticity should yield

{zt : t = 1, ..., n} = {H−1/2
t εt : t = 1, ..., n} (66)

which is a white noice process and thus should be independent and identically distributed.
In this case, standard bootstrapping is possible by sampling {zt : t = 1, ..., n} with replace-
ment and thus creating a bootstrap sample {z∗t = zτt : t = 1, ..., n} where {τt} is defined
as in (64) with l = 1.. The original purpose of Barone-Adesi et al. (1999) is to create a
return distribution by scaling the bootstrap sample with a volatility forecast which is used
to make a Value-At-Risk prediction. Instead, we obtain a synthetic return series by rein-
troducing heteroskedasticity where the bootstrapped residuals serve as a new innovation
process. Formally, the return sample is obtained by

{ε∗t : t = 1, ..., n} = {H1/2
t z∗t : t = 1, ..., n} ≡ {r∗t : t = 1, ..., n}. (67)

Reintroducing heteroskedasticity requires starting values to initiate the variance recursion.
Common choices are historical or asymptotic values, however, they lack theoretical justifica-
tion. In pratical appplication, the effects of initial values are smoothend by an initial phase
or burn-in phase which discards the first k > 0 realization according to a predetermined
value.
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2.5 Empirical Application

In this section, we will calibrate the simulation model according to three financial assets.
The focus of this study is to highlight the challenges of the entire process. Furthermore, we
present two methods for obtaining standard errors, model diagnostics where appropriate
and the limitations of each model component. Finally, we investigate possible areas of
applications and discuss potential extensions of the simulation framework.

1992 1996 2000 2004 2008 2012 2016 2020 2024
15

10

5

0

5

10

15
DAX

1992 1996 2000 2004 2008 2012 2016 2020 2024
15

10

5

0

5

10

15
NASDAQ

1992 1996 2000 2004 2008 2012 2016 2020 2024
15

10

5

0

5

10

15
GOLD

Figure 3: Chart of historical daily returns for DAX, NASDAQ and Gold from 1990 to 2024.

2.5.1 Data Description

The sample consists of daily returns for three assets: the German stock index DAX, the gold
price as a commodity, and the NASDAQ Composite index for U.S. equities from January
1st, 1990, to December 29th, 2023, with n = 8288 data points. We choose this selection
of assets to include two different asset classes as well as stock indices from two different
geographic regions. Historical prices of the DAX and NASDAQ indices were retrieved from
Yahoo! Finance, while gold prices were obtained from the World Gold Council website. The
DAX consists of 40 major companies based in Germany, reflecting a broad range of sectors,
including automotive, pharmaceutical, and technology industries.1 Similarly, the NASDAQ
Composite encompasses 100 companies, primarily from the technology sector. Since gold
prices can vary across different regional markets, we use the gold price traded in the London
Bullion Market (LBMA) for this analysis, as this price series is commonly referenced as a
benchmark for global gold prices. Furthermore, the data is centered such that we can focus
on variance and correlation while assuming a zero mean process. The analysis is built on
centered logarithmic returns.
1The index consisted of 30 companies up to September 2021 and since then was extended to 40 companies
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Figure 4: Histogram of daily returns with fitted normal density.

Figure 3 shows the return charts of the assets where events such as the dotcom crisis in
2000, the financial crisis in 2008, and the outbreak of the Covid-19 pandemic are reflected by
significant changes visible, especially for the stock indices. Figure 4 displays the histogram
of the sample data overlayed by the density of a normal distribution. The parameters are
estimated by Maximum-Likelihood. Clearly, the densities are not able to approximate the
sample distribution properly.

We compute descriptive statistics and provide additional tests for peakedness, heavy tails,
and leptokurtosis proposed by Schmid & Trede (2003). The tests are based on quantiles
which are more robust regarding outliers especially for higher moments. It is calculated as
a ratio

TestSchmid =
x1−p − xp

x1−q − xq
, (68)

where xp corresponds to the p-th quantile of the distribution. A specific choice of the quan-
tiles determines the area of interest, i.e., heavy tails (T), peakedness (P) and leptokurtosis
(L). The authors propose the following specifications:

T =
x0.975 − x0.025

x0.875 − x0.125
, P =

x0.875 − x0.125

x0.75 − x0.25
, L =

x0.975 − x0.025

x0.75 − x0.25
.
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We refer to the article for critical values regarding hypothesis testing. The asymptotic dis-
tribution of the statistics is based on modified versions of the standard normal distribution.
Tables of critical values are provided for finite samples (n ≤ 2000) respectively.

Descriptive Statistics
DAX NASDAQ Gold

Mean 0.017 0.039 0.018
(0.014) (0.015) (0.010)

Standard Error 1.388 1.466 0.991
(0.028) (0.035) (0.019)

Excess Kurtosis 5.642*** 6.670*** 6.572***
(1.000) (1.116) (1.030)

Skewness -0.143*** -0.202*** -0.247***
(0.159) (0.160) (0.175)

Schmid & Trede Statistics

T̂n 2.112*** 2.240*** 2.227
(0.013) (0.014) (0.015)

P̂n 1.955*** 2.007*** 1.958
(0.009) (0.010) (0.010)

L̂n 4.132*** 4.498*** 4.361***
(0.022) (0.024) (0.025)

Correlation Matrix

DAX 1
NASDAQ 0.507 1
GOLD -0.047 -0.010 1

*, **, and *** denote statistical significance levels at 10, 5, and 1 percent, respectively. The cor-
responding statistical tests evaluate whether the kurtosis and skewness are significantly different
from those of a normal distribution, i.e., excess kurtosis and skewness of zero. Corresponding crit-
ical values regarding tailness, peakedness, and leptokurtosis are derived from a modified normal
distribution. The tests evaluate whether the estimated values are statistically different from values
derived from a normal distribution. Standard errors were obtained by block bootstrapping and dis-
played in brackets below the estimates. The correlation matrix is reported at the bottom, with only
the lower triangular matrix entries.

Table 1: Descriptive statistics for daily logarithmic returns.
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The descriptive statistics in Table 1 confirms that excess kurtosis and skewness are statis-
tically different from their normal counterparts. This is further confirmed by the Schmid-
Trede test, which also affirms that the estimates are highly significantly different from those
by a reference normal distribution. This is inline with the empirical observations that re-
turns are clearly not normal distributed.

2.5.2 Model Estimation

We estimate a simulation model consisting of univariate GJR-GARCH volatility model with
skewed-t distributed errors, GARCH-like DCC dynamics and t-student copula. The stan-
dard errors are obtained by the modified FHS approach described in Section 2.4. Formally,
the simulation framework with n=3 assets is described by

ri,t = σi,tε i,t

σ2
i,t = ωi + α1,ir2

i,t−1 + γ1,i It−1r2
i,t−1 + β1,iσ

2
i,t−1

with ε i,t
iid∼ skewed-t(0, 1, νi,dist, λi,dist), i = 1, 2, 3 and

It−1 =

{
1, if ri,t < 0
0, otherwise.

The univariate models are summarized in a DCC framework:

rt = H1/2
t εt

H t = D1/2
t RtD1/2

t

Rt = diag(Qt)
−1/2Qtdiag(Qt)

−1/2

Qt = (1 − λ1 − λ2)R + λ1ϵ̃t−1ϵ̃T
t−1 + λ2Qt−1

with Copula

Cν,R(u1, u2, u3) = Tν,R(T−1
ν1

(u1), T−1
ν2

(u2), T−1
νn

(u3)).

Overall, this simulation framework requires fifteen parameters for the univariate models
θ̂i,var = (ωi, αi, βi, νi,dist, λi,dist), two parameters θDCC = (λ1, λ2) and one parameter for the
copula θ̂cop = νcop. If the correlation matrix R is treated as a parameter, additional 3
correlation parameters need to be estimated. Estimation results are presented in Table 2.

The GJR-GARCH parameters of the marginal conditional variance models describe the
corresponding volatility dynamics. The ω parameters of the equity indices DAX (0.034)
and NASDAQ (0.027) exhibit higher baseline volatility compared to Gold’s low ω (0.0003),
which suggests minimal long-term volatility, affirming its role as a stable asset during cri-
sis. In all three cases, the α1 coefficient presents a rather small value, indicating that recent
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DAX NASDAQ Gold

GARCH(1,1) Parameters

ω̂ 0.034*** 0.027*** 0.0003***
SE filtered (0.005) (0.004) (0.001)
t-stat 6.092 6.473 2.955

α̂1 0.012* 0.029*** 0.005****
SE filtered (0.007) (0.008) (0.009)
t-stat 1.698 3.510 6.066

γ̂1 0.122*** 0.125*** 3.11 × 10−8

SE filtered (0.016) (0.012) (0.007)
t-stat 7.378 10.339 4.288

β̂1 0.905*** 0.893*** 0.941***
SE filtered (0.009) (0.008) (0.008)
t-stat 96.697 108.436 109.623

Skewed t-Student Error Parameters

ν̂dist 844.065 414.255 790.148
SE filtered 204.662 130.803 161.011

λ̂dist -0.121*** -0.190*** -0.215***
SE filtered (0.022) (0.015) (0.032)
t-stat 5.373 12.140 6.576

DCC(1,1) Parameters

λ̂1 0.011
SE filtered (0.007)
t-stat 1.504

λ̂2 0.983***
SE filtered (0.045)
t-stat 21.733

t-Copula Parameters

ν̂cop 3.331
SE (0.004)

Σcop

DAX 1
NASDAQ -0.003 1
GOLD 0.005 -0.012 1

*,**, and *** denote statistical significance levels at 10, 5, and 1 percent, respectively. Corresponding
critical values are derived from a standard normal distribution. The tests evaluate whether the
estimated values are statistically different from zero. Standard errors were obtained using the filtered
historical bootstrap method.

Table 2: Parameter estimates for GJR-GARCH-DCC-t-Copula model with univariate
skewed-t student errors, GARCH-like correlation dynamics and t-Copula. Stan-
dard errors are obtained by filtered historical bootstrap.
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shocks only have a minor contribution to the evolution of volatility. The β1 values are all
close to 0.9, thus demonstrating the strong persistence of past volatility impacts. Unlike
a standard GARCH model, the GJR-GARCH model also considers the impact of returns
on volatility depending on the sign. That is the effect of negative returns compared to
positive returns. The parameter γ is highly significant for the equity indices, DAX (0.122)
and NASDAQ (0.125), indicating a pronounced leverage effect, which is not true if gold is
considered. This result again seems to agree with the assumption that gold as a commodity
is an alternative investment instrument less volatile than equities and suited for portfolio
diversification strategies.

Capturing leverage effects also have an impact on the estimates for the degrees of freedom
parameter regarding the error distribution. The skewed-T distribution in the GJR-GARCH
model captures heavy tails and skewness. Although not statistically significant on any level,
controlling for leverage effects seems to account for heavy tails. The degrees of freedom
parameters νi,dist are high, indicating tail behavior similar to a normal distribution. Negative
skewness is reported, showing that negative returns increase future volatility more than
positive returns. In all three cases, DAX (-0.121), NASDAQ (-0.190), and Gold (-0.215),
the estimates are found to be significantly different from zero confirming the asymmetric
nature of returns.
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Figure 5: Fitted volatility by univariate GJR-GARCH models with normal errors.
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Figure 6: Standardized residuals obtained after filtering returns with a GJR-GARCH model.

Figure 5 displays the characteristic volatility spikes as a reaction to major financial market
events. The early 2000s saw the dot-com bubble burst and the aftermath of the September
11 attacks, leading to economic recessions. The collapse of the housing market in the United
States triggered the financial crisis in 2008. In more recent history, the COVID-19 pandemic
in 2020 and the Russo-Ukrainian war in 2022 hit the financial markets once more. By the
magnitude of the spikes, we can also observe that gold as a commodity reacts to these
events but is not as pronounced as stock markets.

DAX Nasdaq Gold

rt r2
t ε̃t rt r2

t ε̃t rt r2
t ε̃t

Ljung-Box

Test Stat. 20.58 3562.26 2.962 50.71 5665.83 20.070 15.47 1154.20 12.680
p-val 0.024 0.00 0.982 0.00 0.00 0.880 0.11 0.00 0.242

Jarque-Bera

Test Stat. 11022.82 7706.54 15421.36 999.24 15000.95 8652.28
p-val 0.00 0.00 0.00 0.00 0.00 0.00

Table 3: Ljung-Box and Jarque-Bera test statistics.
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Standardized residuals are obtained by filtering the original return series and depicted in
Figure 6. Compared to Figure 3, the chart, apart from occasional spikes, does not display
any clusterings. This is backed by the results of the Ljung-Box Test in Table 3, which tests for
serial correlation. In every case, no evidence of serial correlation is reported for residuals but
for the returns and squared returns. Finally, the Jarque-Bera test provides strong evidence
against normality for both returns and standardized residuals. Consequently, selecting a
normal white noise might not be appropriate for the innovation process.
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Figure 7: Scatterplot of standardized residuals - Visualization of cross-correlation between
DAX, NASDAQ and Gold.

Although the univariate stochastic volatility models filtered serial correlation, correlation
among the standardized residuals is still present. Figure 7 shows the scatterplot of the
standardized residuals. The first scatterplot visualizes the relationship between the stock
markets. The scatterplot hints at a positive correlation between DAX and NASDAQ due
to its clockwise tilted oval shape, while the second and third plots display a more circular
form, indicating a weaker correlation between the stock markets and gold.

Based on standardized residuals, the DCC model is estimated. Figure 8 visualizes the
evolution of correlation coefficients over time compared to the static Pearson correlation.
The correlation between DAX and NASDAQ remains positive. However, with varying
magnitude, the correlation of the stock market indices with gold tends to turn negative
during market distress. With only the λ2 parameter (0.984) being statistically significant, the
conditional correlation in the DCC setting is mainly determined by the previous realization
and not the values of the residuals. Similar to volatility, correlation also persists over time.

Filtering the standardized results with the DCC model for cross-correlation should yield
a multivariate normal white noise. However, Figure 9 still indicates some dependence in
tail events. The scatterplot is segmented into 50 colored tiles where the color indicates
the amount of points in a certain area. For DAX-NASDAQ and DAX-GOLD, potential
tail-dependence is shown by darker colors in the corners.

Concluding the model calibration, we estimate a copula model based on the cross filtered
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Figure 8: Chart of fitted correlation obtained bei a GARCH-like DCC model.

residuals. As expected, the correlation matrix ΣCop is close to the identity matrix since the
linear dependence was accounted for by the DCC model. The degree of freedom parameter
ν̂Cop = 3.836 indicates heavier tails, meaning there is a higher probability of extreme co-
movements.
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Figure 9: Scatterplot of cross-correlation filtered residuals after uniform transformation by
the empirical cdf.

The parameters obtained in each step function as a potential default input for the simulation
model. This entire process could be also described as a whitening process since the ultimate
goal is to obtain i.i.d. residuals. Furthermore, additional parameters may be added to model
the conditional mean by relaxing the zero-mean assumption. Overall, the framework allows
a wide range of extensions to further enhance its simulation capabilities.
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2.5.3 Simulating Returns

We calibrate the simulation framework according to the parameter estimates in Table 2 and
simulate 5000 sample paths over 1500 days. Returns are then converted back to prices and
visualized with an initial price of 100 seen in Figure 10. Note that the simulated paths of
gold display a more narrow cone than the equities which is attributed to the lower volatility
of the asset.
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Figure 10: Simulated price paths according to a GJR-GARCH-DCC-T-Copula model with
skewed-T student errors and GARCH like DCC dynamics.

Recall, that the simulation framework assumed zero mean indicated by the horizontal align-
ment of the cones. Incorporating a non-zero mean process tilts the cone in the respective
angle as shown in Figure 11.

Our main goal is to present a simulation framework and its potential enhancements to
existing financial econometric applications. The next step would involve integrating the
results into an application of interest.

For portfolio analysis, simulated returns could provide insight into the behavior of a spe-
cific asset allocation, particularly in assessing the variability of the risk-return profile in
the context of Markowitz-styled portfolios. The concept is to construct the set of efficient
portfolios (efficient frontier) for every simulated scenario and thus acquire a distribution
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Figure 11: Price projection for DAX with zero (upper panel) and 5 percent (lower panel)
constant mean.

of the set of efficient portfolios. The variance of this efficient frontier distribution offers
an empirical measure of the variability for a specific asset allocation. As a result, portfolio
optimization becomes more robust by averaging across multiple possible scenarios. This
type of analysis is discussed in Michaud (2000) and Markowitz & Usmen (2005).

Similarly, simulated return scenarios can contribute to a better understanding of the risk
associated with a financial asset since the model can mimic heavy tails, leptokurtosis, and
asymmetries. In particular, different return scenarios generate a distribution of simulated
returns from which Value-at-Risk or Expected Shortfall inferences can be obtained. This is a
direct application of the Monte Carlo simulation method for risk modeling but with a more
refined data-generating process. The parameters can also be adjusted for stress testing to
encompass more extreme events during simulation.

Another possible application of this framework is further improving the FHS semi-parametric
sampling methodology. In the original version by Barone-Adesi et al. (1999), stochastic
volatility models filter serial correlation for each asset separately without incorporating the
dependence structure. However, our model additionally allows us to filter for conditional
correlation, which renders the resulting residuals approximately truly independent and
identically distributed since each step of the model allows for control over at least one as-
pect of the ”stylized” properties. As a result, this sampling technique can be employed to
evaluate standard errors of estimates where analytical or numerical derivatives are difficult
to obtain.
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2.6 Technical Aspects

2.6.1 Variance Initialization

A key challenge in estimating the proposed models is the optimization of the likelihood
function in each step. The initial choice of the parameters carries significant weight, as the
shape of the likelihood function can be complex with numerous local maxima. This makes
the selection of starting values a crucial task, as it directly impacts the reliability of the
parameter estimates. The implementation of the simulation framework draws from the arch
python library of Sheppard (2015).

Starting with a simple GARCH(1,1) model,

rt = σtεt

σ2
t = ω + α1r2

t−1 + β1σ2
t−j

initial parameter for σ1, ω, α1 and β1 are required to begin the optimization process. Poten-
tial choices for the initial variance are shown in table below:

Sample Variance σ2
1 =

1
T

T
∑

t=1
r2

t

Unconditional Variance σ2
1 =

ω

1 − α1 − β1

Backcasting with Exponential Smoothing σ2
1 = λT σ̂2 + (1 − λ)

T−1
∑

j=0
λjr2

1+j

Table 4: Possible choices for the initial variance σ2
1 .

The sample variance reasonably approximates the unconditional variance, provided the
time series is stationary. It is also proposed by Bollerslev (1986). However, the sample
variance is a static measure and, therefore, cannot adapt to recent changes in volatility.
Evidently, if the sample variance is calculated during a specific period of high volatility and
vice versa, it might not represent the overall variance. Given a highly persistent GARCH
process, the initial guess of σ1 could be distant from its actual mean value.

The asymptotic unconditional variance presents an alternative way to initiate the variance.
Although the unconditional variance is also a static measure like the sample variance, it
is directly derived from the model itself and, therefore, less subjective. The unconditional
variance leverages the theoretical properties of the GARCH model, ensuring that the initial
value is consistent with the long-term behavior of the process. However, it requires accurate
initial estimates of ω, α1 and β1. In addition, if the sum of α1 and β1 is close to 1, the
optimization process can become highly unstable. For the process not to become a unit root
process, the constraint of α1 + β1 < 1 has to be met, which also ensures stationarity.
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The exponential smoothing with backcast tries to overcome some of the aforementioned
drawbacks. This method adjusts the initial variance based on recent data, which now
accounts for changes in volatility patterns. It gives more weight to recent observations,
making the initial variance responsive to recent market conditions. However, the effec-
tiveness of this method depends on the choice of the smoothing parameter. An inappro-
priate choice can lead to either over-smoothing, which ignores recent changes, or under-
smoothing, which makes the variance too reactive to short-term fluctuations. RiskMetrics
(1996) proposed a decay factor of λ = 0.94 with a window length of T = 74 for trading and
λ = 0.97 with T = 151 for investing.

Adding another routine to find an optimal initial value increases computational complexity.
Regarding the exponential smoothing, the optimization routine could include both T and λ.
This is reasonable if the parameter choice should be as objective as possible. However, the
parameter increase may render the entire process unfeasible in extreme cases. In practice,
heuristic values based on other empirical works or experience are often preferred over
objectivity to reduce computation time.

Albeit cumbersome, a grid search significantly increases the accuracy by prescanning the
geometry of the likelihood function. Subsequently, the space of possible parameters is nar-
rowed down to a smaller area. Therefore, setting the grid resolution is a trade-off between
estimation accuracy and computational resources. Assuming that the data of interest is
well-studied, e.g., historical data of financial assets, one could justify the choice of the grid
boundaries on the fact that the volatility of most financial time series are highly persistent.
In this research project, the interval for the constant ω and ARCH parameter α1 is set be-
tween [0.001, 0.4]. The GARCH parameter β1 is set between [0.5, 0.98]. A grid search is
performed once for each marginal variance model and held fixed during the bootstrap of
the estimates for standard errors.

2.6.2 Likelihood Function Surface

We analyze the geometry of the multivariate negative log-likelihood function. A grid search
greatly increases the quality of parameter estimates by providing refined starting values
which increases the chance for the optimization algorithm to converge. Naturally, the nu-
merical effort increases according to the grid resolution and number of model parameters.

For illustration, we analyze a GARCH(1,1) process with normal errors based on the same
data (DAX, NASDAQ, Gold) studied in the empirical example, see Section 2.5. Let θ =
(ω, α1, β1), then the likelihood function is of the form

lr(θ) =
T

∑
t=1

[
−1

2
ln(2π)− 1

2
ln(σ2

t )−
r2

t

2σ2
t

]
. (69)
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For this specific task, we increased the resolution of the grid from 10 to 100, meaning that
100 equidistant points for ω, α1 ∈ [0.001, 0.4] and β1 ∈ [0.5, 0.98] are considered. Parameter
sets are combined such that the stationarity constraint of α1 + β1 < 1 is fulfilled. Overall,
10000 combinations are evaluated based on the corresponding likelihood function.

Figure 12: Negative logarithmic likelihood surface - DAX.

Figure 12 visualizes the surface structure of the negative log-likelihood function for the
german stock index DAX. Each axis represents a parameter of the GARCH model while
the color of each point indicate the value of the log-likelihood function. The range of the
evaluated likelihood function is mapped to a color scheme where darker tones reflect lower
values and vice versa. The red dot marks the optimal value which is a minimum since the
negative log-likelihood function is evaluated due to the nature of the search algorithm.

The surface plot reveals that the area of interest is located in low ω, α1 and relatively high
β1 parts (bottom right), consistent with the volatility persistency of financial time series. We
can clearly see the irregular structure with numerous local extrema. For that reason, the
choice of initial parameters has a crucial impact on the parameter outcome. In practical ap-
plications, however, i.e., software development, initial values are often chosen heuristically
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based on experience. Figures 23 and 24 in Appendix A.2 show the likelihood surface plots
of the remaining assets which share a similar structure. So far, no clear strategy exists in
terms of the best initial parameter values for optimization.

One particular observation is that the optimal parameters represent a solution on the
boundary of the permissible set, which is problematic since boundary solutions render
theoretical standard errors invalid. The asymptotic normality of the Maximum-Likelihood
estimator only holds for interior points. As a result, the standard errors derived under
the assumption of an interior solution do not accurately reflect the true variability of the
estimator. This boundary behavior suggests that the model may not be a good fit for the
data, as it points toward a potential near-non-stationary process or misspecification. Higher
moments must likely be considered as well. Several attempts to obtain inner solutions by
modeling the mean with an ARIMA process or increasing lags yield no better results, indi-
cating that our model still cannot adequately represent the actual data-generating process.
For estimation purposes, this phenomenon remains an obstacle. Nevertheless, using the
model to simulate returns may still prove helpful.

A grid search was also conducted for the DCC model before the main optimization routine.
Since the DCC recursion is motivated by the GARCH model, initial values of λ1, which
governs the impact of returns are searched in [0.1, 0.4] while λ2, which describes the impact
of the previous correlation, is evaluated in the interval [0.5, 0.9].

Naturally, the grid search becomes unfeasible for a large set of financial assets. In practice,
it has become commom practice to select heuristic values based on past experience, i.e., pa-
rameters controlling the effects of past shocks are selected closer to zero, while parameters
modeling the effects of past volatility or correlation is set close to one.

2.6.3 Comparison of Standard Errors by FHS and MBB

We estimate a simple GARCH-DCC-t-Copula model with normal distributed white noise
to assess the difference of standard errors using MBB and FHS. Table 16 and Table 17 in
Appendix A present the estimation results. Overall, the estimates for the model components
are fairly close however the standard errors differ significantly. The MBB produces larger
standard errors in almost almost all cases. Furthermore, it did not provide significant results
for the constants ω of the univariate variance models and λ1 for the DCC. It is not clear
what causes these changes. Nevertheless, the ω and λ1 are close to zero. One potential
explanation for the differences is that standard errors derived using the MBB does not
accuratly replicate the underlying data distribution. While block-bootstrapping preserves
the dependence structure within blocks of data, it does not capture the time-varying nature
of financial data as effectively especially for longer periods. The FHS approach is not reliant
on specific data blocks. The choice of appropriate block size might affect the precision of
the standard errors and add potential bias.



Chapter 3

Tail Correlation Matrices

Another empirical observation regarding financial returns is that they tend to decline jointly
during bearish markets. Although the simulation model presented in the previous chap-
ter accounts for dynamic correlation, the severity of correlation increase during such ex-
treme market scenarios is not covered. In fact, the only parameters that account for joint
occurrences of extreme events are partly determined by the parameters of the error distri-
butions and the copulas, which become increasingly difficult to handle for more complex
model choices. Consequently, for a risk management tool to remain viable for practical
applications, particularly risk aggregation for high dimensional portfolios, we present an
alternative strategy using tail-adjusted correlation matrices implied by quantiles instead.

3.1 Value-at-Risk Implied Correlation

Campbell et al. (2002) propose correlation estimates implied by VaR of a two-asset portfolio.
First, we define the Value-at-Risk and follow the notation of McNeil et al. (2015):

Definition 3.1.1 (Value-at-Risk)
Given a confidence level α ∈ (0, 1). The VaRα of a portfolio at the confidence level α is given by
l ∈ R such that the probability of the loss L exceeding l is no larger than 1 − α. Formally,

VaRα = inf{l ∈ R : P(L > l) ≤ 1 − α} = inf{l ∈ R : FL(l) ≥ α} (70)

The Value-at-Risk is a quantile associated with the loss distribution of an asset or portfolio.2

Using quantiles circumvents selecting a threshold for asset or portfolio returns, effectively
collapsing a multivariate problem into a univariate setting. It is compatible with mean-
variance portfolio optimization and directly applicable to risk aggregation. Ultimately,
quantiles allow a direct economic interpretation depending on the choice of the quantile
level. In this context, an event is classified as extreme if the returns falls below a predeter-
mined bound, e.g., 5% quantile, if the losses are represented in the left/lower tail. First, we
will outline the methodology for bi-variate portfolio following Campbell et al. (2002) and
then present an extension of this method beyond two assets based on Mittnik (2014).

2Note that the loss distribution is a mirrored version of the return distribution such that losses are denoted by
a positive sign.
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Two Asset Scenario

Let r1 and r2 denote returns of two arbitrary financial assets. Define w1, w2 with w1 + w2 =
1 as the portfolio weights associated with the fraction of investment in each asset. The
portfolio return and variance is then given by

rp = w1r1 + w2r2, (71)

σ2
p = w2

1σ2
1 + w2

2σ2
2 + 2w1w2σ1σ2ρ12. (72)

Assume that the returns follow an elliptical distribution. Then, any quantile can be repre-
sented as a transformed version of the standardized α-quantile of the marginal distribution
with a location and scale parameter. Formally, given some α-level

qα,i = µi + σiΦ−1(α) with i = 1, 2. (73)

For simplicity, set µi = 0. We can rearrange (73) to σi = qα,i/Φ−1(α) and substitute the asset
and portfolio variance in (72) resulting in

q2
α,p = w2

1q2
α,1 + w2

2q2
α,2 + 2w1w2qα,1qα,2ρ12. (74)

This step connects quantiles with portfolios. The choice of the α−level determines how
much we ”move” into the tail of the return distribution. Finally, solving for ρ12 yields the
VaR-implied correlation coefficient:

ρα,12 =
q2

α,p − w2
1q2

α,1 − w2
2q2

α,2

2w1w2qα,1qα,2
. (75)

If normality holds, the implied correlation is constant and equals the Pearson correlation.
Our analysis in Section 3.7.5 provide some evidence that this is not the case. Implied
correlation indeed tends to deviate from the Pearson correlation depending on the return
frequency and quantile level.

Multi Asset Scenario

The two-asset case relies only on one portfolio, which is solved for the correlation coeffi-
cient. Extending the portfolio to n assets introduces n(n − 1)/2 unique correlation coeffi-
cients. Solving a linear system for the unique elements requires at least the same amount
of equations. Here, the equations admit the form described in (74) where a different set of
weights determines each portfolio.

For an n-asset portfolio, denote the return, variance and weight associated with each asset
by ri, σ2

i and wi with i = 1, ..., n. Further, denote rp, σ2
p as the portfolio return and portfolio



43 Tail Correlation Matrices

variance respectively. Formally,

rp =
n

∑
i=1

wiri (76)

σ2
p =

n

∑
i=1

n

∑
j=1

wiwjσiσjρij with ρij = 1 for i = j. (77)

We establish a connection between variance and quantiles in the same way shown in (74)
by substituting the variance with corresponding quantiles in (77), i.e.,

q2
α,p =

n

∑
i=1

n

∑
j=1

wiwjqα,iqα,jρα,ij. (78)

As mentioned before, for n-assets, a total of at least n(n − 1)/2 implied correlation co-
efficients are required, which is clearly not obtainable by one portfolio, i.e., by only one
equation. Our idea is to jointly estimate the unique elements of the correlation matrix by
constructing a linear system where each equation represents a portfolio quantile but with
different weights. Hence, introducing n(n − 1)/2 portfolios corresponds to an exact iden-
tified linear system, whereas going beyond this number results in an overidentified system
solved by a least square calculation. The algebraic task is to derive an expression of the type
Ax = ρ where ρ represents the unique elements of a correlation matrix. We will derive the
expressions for the components in the next step following Mittnik (2014).

Define W = {w = (w1, ..., wn) ∈ Rn|∑n
i=1 wi = 1} as the set of weight vectors where each

element represents one specific wealth allocation. Define qα = (qα1,1, ..., qαn,n)′ as a vector
of return quantiles and Rα the quantile-implied correlation matrix. Technically, αi can be
different for each asset, but in our study, α is set constant for all quantiles. We discard the α-
index for notational convenience. Possible choices for individual α levels will be discussed
when investigating ES-implied correlation in Section 3.2.

Next, use the Schur-Product to rewrite (78) as a matrix product and factorize the quantiles
that are associated with the variance:

q2
αp,p = z′αRαzα with zα = qα ⊙ w =

[
w1qα,1 ... wnqα,n

]
(79)

q̃α,p = q2
α,p −

n

∑
i=1

q2
α,iw

2
i = z′α(Rα − I)zα. (80)

We derive an explicit expression of the unique elements in Rα by applying the vectorization
operator vec(·) on (80):

q̃α,p = vec(z′α(Rα − I)zα) = (zα ⊗ zα)
′vec(Rα − I) (81)

where ⊗ is the Kronecker product. Since q̃α,p is already a vector, it remains unchanged.
The vec(·) operator creates a vector by vertically stacking the columns of a matrix. Fur-
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thermore, the operator admits an alternative representation with a duplication matrix D
and the lower diagonal vectorization operator vecl(·), i.e. vec(·) = Dvecl(·). The vecl(·)
operator returns a vector by stacking the elements below the main diagonal column-wise of
a matrix, effectively yielding the unique elements of the implied correlation matrix. Define
vecl(Rα) := ρα and we obtain

q̃α,p = (zα ⊗ zα)
′vec(Rα − I) (82)

= (zα ⊗ zα)
′Dvecl(Rα) (83)

= (zα ⊗ zα)
′Dρα (84)

where ρα contains all unique elements of Rα. Now, introduce m ≥ n(n − 1)/2 equations of
the same type where the weight vector wk of each equation is drawn from W . Formally,
define

q̃α,pk = (zα,k ⊗ zα,k)
′Dρα with k = 1, ..., m (85)

In order to express all components by a linear system, we introduce quantities that allows
us to express (zα,k ⊗ zα,k)

′D for all k with a single matrix. Define

q̃p = (q̃α,p1 , . . . , q̃α,pm)
′ (86)

Zα = (zα,1, . . . , zα,m)
′ (87)

Xα = (Zα ⊗r Zα)D (88)

where ⊗r is the Khatri-Rao product or row-wise Kronecker product, see Appendix C defi-
nition C.2. The linear system that can be solved for ρα has the form

q̃p = Xαρα. (89)

The implied correlation depending on the number of introduced equations is then given by

ρα =

{
X−1

α q̃p, for m = n(n − 1)/2

(X ′
αXα)−1X ′

αq̃p, for m > n(n − 1)/2.
(90)

Although our method produces tail correlation matrices, in some cases, they are not well-
defined. To be precise, correlation coefficients may violate the theoretical range [−1, 1] or
not admit positive semi-definiteness (psd). The potential source for such occurrences may
stem from the fact that VaR is not a coherent risk measure in the sense of Artzner et al.
(1999) due to lack of subadditivity.
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This deficit may propagate to the resulting correlation matrix, especially if local ellipticity
does not hold. In addition, the VaR-implied correlation matrix might be inefficient due to
lack of information beyond the specified quantile level. Recall that the VaR only controls
the probability given a prespecified loss but does not account for the severity once a loss
occurs (Föllmer & Schied 2004). This motivates ES-implied correlation to compensate for
these drawbacks. In Section 3.3, we will discuss further methods to obtain well-defined
correlation matrices.

3.2 Expected Shortfall Implied Correlation

Unlike VaR, the ES is a coherent risk measure. It is defined as an integral over the entire tail
area. Thus, implying correlation from ES incorporates information about the severity of the
loss beyond a single quantile. In our empirical study, using ES also contributes to numerical
stability by reducing bound exceedances and violation of positive semi-definiteness. We
define the Expected Shortfall first:

Definition 3.2.1 (Expected Shortfall)
Let L denote the loss of a financial instrument such that E[|L|] < ∞. Given a confidence level
α ∈ (0, 1), the Expected Shortfall is defined as

ESα =
1

1 − α

1∫
α

VaRu(L)du. (91)

By integrating the VaR over the tail area beyond α, extreme events are now reflected in this
risk measure. Depending on the study of interest, we can specify quantile regions by

{qαk
|αk ∈ A ⊂ (0, 1)n}. (92)

For example, if only the lower and upper tail regions are of interest, A becomes

Alower = (0, α1]× · · · × (0, αn] (93)
Aupper = [α1, 1)× · · · × [αn, 1). (94)

The choice of α1, ..., αn consequently determines the range of the tail area with lower/higher
levels representing more extreme regions. Integrating quantile regions into the implied
correlation framework presented in Section 3.1 is straightforward. Given a quantile region
A, the natural representative quantile vector is given by the conditional expectation

qA = E[qα|α ∈ A]. (95)
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Let Tl denote the number of quantile vectors belonging to a specific tail region, e.g. Alower =
(0, α]n. The empirical estimate corresponds to the discrete counterpart of the Expected
Shortfall defined in 3.2.1. Formally,

q̂Al =
1
Tl

Tl

∑
k=1

qαk with αk ∈ Alower. (96)

Technically, quantile regions enable a refined choice of confidence levels for each asset or
portfolio. A possible application is to select the range of the region depending on the posi-
tion of the corresponding asset. For example, given a long position, quantiles of the lower
tail reflecting losses are of interest, while quantiles of the upper tails reflecting gains are
considered for short positions. Selecting from both regions thus covers both position types
in the portfolio. Another example is to introduce more estimation portfolios based on a
neighborhood of the targeted confidence level αk ∈ [αk ± δ] to incorporate more informa-
tion on that area with different portfolio configurations. Studying all possible settings is
not within the scope of this thesis. We will, therefore, focus on VaR and ES-based analysis
with common tails and quantile levels.

3.3 Ensuring Well-Defined Correlation Matrices

Our proposed method to derive implied correlation does not guarantee well-defined matri-
ces. Specifically, two requirements must be met: ρα,i ∈ [0, 1], where ρα,i ∈ ρα are the unique
elements of Rα and Rα is positive semi-definite. We present two strategies:

3.3.1 Quadratic Optimization

One strategy proposed by Mittnik (2014) is to treat the correlation estimation as a quadratic
optimization problem:

min
ρ

1
2

ρ′
αX ′

αXαρα − 2q̃p
′Xαρα (97)

subject to
|ρα| ≤ 1n(n−1)/2 (98)

λi ≥ 0 for i = 1, ..., n (99)

where Xα is defined as in (88) and ρα in (90). The eigenvalues of Rα are defined λi with
i = 1, ..., n and 1n(n−1)/2 represents a n(n − 1)/2-dimensional vector of ones. The first
constraint ensures that the implied correlation vector is properly bounded, while the second
ensures positive semi-definiteness. However, similar to pairwise correlation estimation, this
approach is unfeasible since the number of unknown parameters grows quadratically.
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3.3.2 Spectral Correction

Spectral correction is a strategy that is often applied in portfolio optimization. The principle
is to perform an eigenvalue decomposition of the covariance matrix and set all negative
eigenvalues either to zero or a small positive value. The reconstructed covariance matrix
is then positive semi-definite or definite. For correlation matrices, the reconstructed matrix
must be scaled such that the diagonal elements admit unity.

Formally, define a matrix R ∈ Rn that is not psd and perform an eigenvalue decomposition

R = QΛQ⊤ (100)

where Q is the orthogonal matrix of eigenvectors, and Λ is the diagonal matrix of eigen-
values λi for i = 1, ..., n. The spectral correction replaces all negative eigenvalues with zero,
i.e.,

λ̃i = max(λi, 0). (101)

Next, the adjusted correlation matrix R̃ is reconstructed using the modified eigenvalues:

R̃ = QΛ̃Q⊤ (102)

where Λ̃ is the diagonal matrix of non-negative eigenvalues λ̃i. According to Driessel
(2007), by replacing negative eigenvalues, the resulting matrix is the approximation for the
closest psd matrix w.r.t. the Frobenius norm and spectral norm. This first step ensures
positive definiteness but does not guarantee unity on the diagonal. Rebonato & Jaeckel
(2011) suggests rescaling the matrix for this property, i.e.,

R̄ = SR̃S (103)

where S contains the reciprocal square roots of the diagonal elements of the matrix R̃. The
spectral correction will be applied to the implied correlation matrix if they are not positive
semi-definite.
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3.4 Portfolio Weights

The tail correlation estimate defined in (90) requires at least n(n − 1)/2 equations to span
a linear system from which ρα is implied. A natural question is how to construct the
portfolios, i.e., how to select portfolio weights. One minimal numerical requirement for Xα

is having full rank such that the inverse exists.

For an exact identified system Mittnik (2014) proposes equally weighted two-asset portfolios
to maximize the degree of orthogonality. More precise, we choose weight vectors such that

arg min
wi ,wj∈W

⟨wi, wj⟩ subject to wi ̸= wj, (104)

where ⟨·, ·⟩ denotes the standard inner product in a Euclidean space and W the space of
portfolio weights. This procedure ensures orthogonality of the weight vectors and helps to
avoid multicollinearity issues during estimation. Extension to an overidentified system in
the same style is to include more equations by further adding equally weighted portfolios
beyond two asset portfolios. For example by constructing a system consisting of equally
weighted two-asset and three asset portfolios.

While maintaining the minimal numerical requirements, choosing the weights from an in-
vestment or risk management perspective revolves around allocation constraints. Such con-
straints may represent investment limits in certain asset classes or trading strategies. Ac-
cordingly, a set of portfolios that approximate the intended portfolio can be built. Variation
of the weights provides the manager with additional insight into the tail dependence of the
target portfolio. In this context, the choice of portfolio weights is motivated by understand-
ing the tail correlation in a attainable set relevant to the investor rather than regions with
unrealistic investments. Naturally, the weights can admit negative values if short positions
are taken.

The choice of weight vectors is also subject to regulatory constraints such as the Solvency
II directive (European Union 2009) or Basel III (Basel Committee on Banking Supervision
2013, 2017) accords. For example, the Basel III accords require banks to group financial
instruments by similar risk characteristics. Correlation is then studied within and across
the so-called risk buckets, e.g., interest rate, equity, or credit spread risk. Each risk bucket
has a specific aggregation formula that includes risk weights and correlations. The final
risk capital requirement, where diversification effects are considered, is then obtained by
aggregating the different risk buckets using additional correlation parameters. The im-
plied correlation matrix reflects these risk management practices if the weights are selected
accordingly.
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Finally, avoiding multicollinearity becomes cumbersome in high-dimensional portfolios
since it is not feasible, if not impossible, to construct weight vectors accordingly in de-
tail. In this case, a grid approach with randomly selected weights might provide a solution.
A sufficiently large number of draws should provide a representative implied correlation of
the subspace. The Dirichlet distribution is a candidate for the underlying distribution given
random weights that ensure that portfolio weights sum up to one.

Definition 3.4.1 (Dirichlet Distribution)
Let α = (α1, α2, . . . , αn) ∈ Rn be a vector of positive real numbers, called the concentration parame-
ters. The Dirichlet distribution with parameter α is a distribution over the k-dimensional probability
simplex:

∆n−1 =

{
(x1, x2, . . . , xn) ∈ Rn | xi ≥ 0 for all i and

n

∑
i=1

xi = 1

}
. (105)

The probability density function of the Dirichlet distribution is given by:

f (x1, x2, . . . , xn; α1, α2, . . . , αn) =
1

B(α)

n

∏
i=1

xαi−1
i , (106)

for (x1, x2, . . . , xn) ∈ ∆n−1, where B(α) is the multivariate Beta function, defined as:

B(α) = ∏n
i=1 Γ(αi)

Γ (∑n
i=1 αi)

, (107)

and Γ(·) is the Gamma function.

If αi = 1, ∀i = 1, ..., n, the distribution equals a uniform distribution over the entire simplex
corresponding to the number of assets. If the concentration parameters are larger than one,
the resulting draw from the distribution is more constrained in smaller intervals.
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3.5 Asymptotic Properties

Deriving the standard errors of correlation has been a challenge and subject of ongoing re-
search; see Gnambs (2023) and the literature therein. There are several reasons: the underly-
ing sampling distribution of a correlation coefficient in general is not normal, especially for
small sample sizes and estimates near the boundary. Although Fisher’s Z-transformation
stabilizes the estimates to a certain degree, the distribution of the sample correlation re-
mains skewed and asymmetric close to the boundaries which also persists for large sam-
ples. As a result, asymptotic normality only holds for moderate ρ. Furthermore, we lack
knowledge of the true correlation distribution without further assumptions. In particular,
this may pose a problem for financial returns since returns are not normal distributed. Nev-
ertheless, this section derives the asymptotic distribution of the implied correlation vector
ρα for the exact identified case. We will discuss alternative ways to obtain standard errors
based on sampling methods in the subsequent section. Formally, we are interested in the
limit distribution of √

n(ρ̂α − ρα). (108)

Our strategy is based on two ideas. First, the correlation estimates can be interpreted
as a function of asset and portfolio quantiles. In particular, the function is linear and
differentiable. Second, sample quantiles in both univariate and multivariate settings are
asymptotically normal distributed. As a result, the implied correlation estimates are also
asymptotically normal distributed, and the covariance matrix can be obtained by the delta
method. In summary, the asymptotic variance matrix of ρ̂α is derived in three steps:

1. Estimate the covariance matrix Σq of asset and portfolio quantiles.

2. Compute the gradient ∇ρ̂α.

3. Scale Σq with the gradient according to the delta method.
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3.5.1 Asymptotic Distribution of Sample Quantiles

We present two key theorems that addresses the asymptotic normality of sample quantiles.
Recall that for a distribution function F and 0 < α < 1 the α-quantile or the generalized
inverse F−1 : (0, 1) → R of F is defined as

qα = F−1(α) = inf{x ∈ R|F(x) ≥ α}. (109)

For the sample equivalent, let {X1, ..., Xn} be a realization of F and X(1) ≤ ... ≤ X(n) repre-
sent the order statistic, i.e., the sorted values of the sample. The empirical quantile is then
defined as

q̂α = cX(mα) + (1 − c)X(mα+1) (110)

where mα is the integer part of nα and

c =

{
1 if nα ∈ Z

0 else
(111)

Hyndman & Fan (1996) discuss several sample quantile definitions and present computa-
tion methods. Interpolation techniques are an alternative way of determining quantiles if
nα is not an integer. We will keep the intuitive definition using the integer part approach.
In the next step, the asymptotic normality of sample quantiles is summarized in the two
following theorems.

Theorem 3.5.1 (Asymptotic Distribution of a Sample Quantile)
Let F be a cumulative distribution function that is differentiable in the neighborhood of qα with
0 < α < 1 . Let the derivative f (F−1(α)) > 0 for any α. Then the empirical estimator F̂−1(α) of
the theoretical quantile is asymptotically normal distributed with

√
n(F̂−1(α)− F−1(α))

d→ N
(

0,
α(1 − α)

f 2(F−1(α))

)
. (112)

Proof: See David & Nagaraja (2003, Theorem 10.3, p.288) and Walker (1968)

Babu & Rao (1988) showed that this result holds for quantile vectors. Let X i = (x1i, .., xni)
with i = 1, ..., m be m independent copies of X. Define qi := F−1

i (α) as the marginal quantile
function and q̂i := F̂−1

i (α) as the empirical counterpart. The theorem derives the asymptotic
distribution of the vector (q̂1, ..., q̂p) which represents the sample quantiles of the underlying
data.
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Theorem 3.5.2 (Joint Asymptotic Distribution of Quantile Functions)
Let Fi be continuously twice differentiable in a neighborhood of qi and δi = fi(qi) > 0, i = 1, ..., m
where fi denotes the derivative of Fi. Then the asymptotic distribution of

yn :=
√

n(q̂1 − q1, ..., q̂m − qm) (113)

is m-variate normal with zero mean vector, and variance covariance matrix

Σ =



α1(1 − α1)

δ2
1

σ12

δ1δ2
· · · σ1m

δ1δm
...

... · · ·
...

...
... · · ·

...
σm1

δmδ1

σm2

δmδ2
· · · αm(1 − αm)

δ2
m


(114)

where σij = Fij(qi, qj)− qiqj.

Proof: See Babu & Rao (1988, p.17, Theorem 2.1)

This result ensures asymptotic normality and an explicit expression of the covariance matrix
for sample quantiles which can be used to derive the limit distribution using the delta
method.

3.5.2 The Limit Distribution

The Delta method presents a way to acquire the asymptotic distribution of desired statistics
that can be represented as a function of another statistic with known asymptotic behavior.
Assuming the function is continuous and differentiable, the limit distribution is derived di-
rectly from a Taylor expansion at a desired point. A linear transformation of the underlying
known distribution then obtains the limit distribution.

Theorem 3.5.3 (Delta Method)
Let µ ∈ Rn. Suppose that Yn = (Yn1, ..., Ynk) with n ∈ N is a sequence of random vectors such that

√
n(Yn − µ)

d−→ N (0, Σ) (115)

Let g : Rk → R be a continuously differentiable function in the neighborhood of µ, ∇g(y) denote
the gradient of g and ∇µ ≡ ∇g(µ) ̸= 0. Then

√
n(g(Yn)− g(µ)) d−→ N (0,∇T

µ Σ∇µ) (116)

Proof: See Vaart (1998, p.26, Theorem 3.1)
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We use the Delta method in order to derive the asymptotic distribution of the implied
correlation vector. Note that the implied correlation vector can be interpreted as a linear
map or a function of asset and portfolio quantiles. Let q be a vector containing asset and
portfolio quantiles:

q =
[
qα1 qα2 ... qαn qp,1 ... qp,m

]′ . (117)

Then, we can interpret (90) as a function of the quantile vector q, formally

ρα(q) = X−1
α q̃p. (118)

Following Theorem 3.5.2, the joint asymptotic distribution of sample quantiles follows a
multivariate normal distribution

√
n(q̂− q) ∼ N (0, Σq) (119)

where n is the sample size and q̂ is an estimate of the true population quantile q. Babu &
Rao (1988) point out that the covariance matrix Σq can be estimated by its sample equivalent
with a kernel density estimator or bootstrap procedures. Both methods yield a consistent
estimate of Σq. Let ∇ρα denote the gradient of ρα(·). Using the delta method in Theorem
3.5.3, the asymptotic distribution of ρ̂ is given by

√
n(ρα(q̂)− ρα(q)) ∼ N (0,∇′

ρα
Σq∇ρα) (120)

from which standard errors can be obtained.

3.5.3 Computing the Gradient

We compute the gradient of ρα(·) using tools from matrix algebra. A detailed description
of how to manipulate matrices using matrix products such as the Kroncker product, Khatri-
Rao product, and factorizing rules are found in Lütkepohl (2006). Matrix differentials are
discussed in Abadir & Magnus (2005). Appendix C summarizes the most important fea-
tures. Our approach is similar to Neudecker & Wesselman (1990), where the covariance
matrix of a sample correlation matrix is derived. Recall that ρα is obtained as a solution of
the linear system, assuming that Xα is of full rank. We suppress the α index for notational
convenience.
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Theorem 3.5.4
Let ρ(·) be the estimator as defined in (118). In particular ρ : Rn+m → Rm where n is the number
of assets and m = n(n − 1)/2 the number of portfolios. Further, let A ≡ Aα = Zα ⊗ Zα where Zα

denotes the matrix of weighted quantiles defined in (87). Then the gradient ∇′
ρ is given by

dρ

dq′ = X−1Dq̃p
− (ρ′ ⊗ X−1)(D′ ⊗ S)DA (121)

where D and S denote a duplication matrix and a selection matrix, respectively. Dq̃p
and DA

contain all partial derivatives with respect to the asset and portfolio quantiles.

Proof: First, apply the differential operator on (89). By the chain rule (165), the equation is
of the form

dq̃p = (dX)ρ + Xdρ

Next, solve for dρ and use (169), (159):

dρ = X−1dq̃p − X−1(dX)ρ (122)

= X−1dq̃p − (ρ′ ⊗ X−1)dvecX (123)

We evaluate the expressions of the differentials dq̃p and dvecX separately. Note that X−1

and q̃p are functions of q. Consider dq̃p, we have

dq̃p = Dq̃p
dq (124)

where Dq̃p
is the Jacobian containing all partial derivatives w.r.t. to q. Technical notes on

this step are presented in Appendix C.3.

For the second component, X was introduced in (88) as the Khatri-Rao product of Zα that
contained the weighted quantiles given m different portfolios attached to a duplication
matrix D. Applying the differential on the vectorized matrix and reformulating the Khatri-
Rao product to a Kronecker product with (161), we get:

dvecX = dvec((Zα ⊗r Zα)D)

= dvec(S(Zα ⊗ Zα)D)

= (D′ ⊗ S)dvec(Zα ⊗ Zα)

where S is another selection matrix. Further simplifying does not yield a more beneficial
form of the derivative. Therefore, define A = Zα ⊗ Zα and rewrite dvecX with differentials

dvecX = (D′ ⊗ S)dvecA (125)
= (D′ ⊗ S)DAdq (126)

Note that DA only depend on the asset quantiles, thus the Jacobian matrix has two blocks,
the first block contains the derivatives with respect to the asset quantiles while the second
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block is a matrix of zeros. Now, we can state the derivative. Insert (124), (125) into (122)
yields:

dρ = X−1Dq̃p
dq− (ρ′ ⊗ X−1)(D′ ⊗ S)DAdq (127)

= (X−1Dq̃p
− (ρ′ ⊗ X−1)(D′ ⊗ S)DA)dq (128)

Finally, the gradient of the implied correlation estimator is given by

∇′
ρα

=
dρ

dq′ = X−1Dq̃p
− (ρ′ ⊗ X−1)(D′ ⊗ S)DAα

(129)

q.e.d.

3.6 Semi-Parametric Estimation - Assessing Standard Errors

As mentioned in the previous section, the distribution of the sample correlation is asymmet-
ric, especially for small sample sizes and estimates close to the theoretical bounds [−1, 1],
rendering theoretical standard errors unreliable. An alternative way to obtain standard er-
rors is through bootstrapping. In particular, Horowitz (2001) points out that the Bootstrap
is often more accurate in finite samples than first-order asymptotic approximations.

However, bootstrapping financial returns must be done with care. As was discussed in
Chapter 2, sampling returns directly may render the bootstrapped statistics invalid due to
the unique characteristics of financial returns, such as heteroscedasticity and serial correla-
tion. Consequently, the sample is not independent and identically distributed as required
for bootstrapping. Two bootstrap methods to account for these characteristics were dis-
cussed in Section 2.4, i.e., Moving Block Bootstrap (MBB) and Filtered Historical Simulation
(FHS). Recall that although MBB can partially preserve dependence structure, it is am-
biguous regarding block length and has the potential to induce structural breaks. For this
specific task, continue with the filtering approach by estimating univariate GARCH(1,1)
models with normal distributed errors for each asset. Ideally, the standardized residuals
should be further filtered for cross-correlation by a multivariate model, e.g., Example 2.3.1,
but this step was dropped to ensure numerical feasibility.

For standard errors of a statistic of interest, Efron & Tibshirani (1994) suggest repeating
the sampling procedure at least 300 times. We follow this suggestion but add an initial
stage (burn-in) of an additional 100 draws, thus sampling the standardized residuals 400
times. Heteroscedasticity is then reintroduced according to the model parameters (see Ap-
pendix B.2), and the first 100 values are discarded. This corrects for unrealistic initial values
that may not represent the overall distribution. Although not pursued in this work, this
procedure can also produce confidence intervals.
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3.7 Empirical Study

The first part of the empirical study focuses on the impact of different parameter settings,
e.g., different quantile levels, risk measures (VaR and ES), identification strategies for the
portfolio system, variation in portfolio weights, and choice of return frequencies. In ad-
dition, we compare theoretical and bootstrapped standard errors for the exact identified
case. The setup for this study allows a wide array of parameter combinations, which pro-
duces a substantial volume of results. To maintain clarity, we will present the most relevant
findings to our research question, namely, whether correlations tend to increase during tur-
bulent market periods and highlight surprising results. All remaining results are collected
in Appendix B.

The second part of the study investigates the differences between implied correlation and
Pearson correlation. Furthermore, we test whether the implied correlation is asymmetric
conditional on the tail regions. In other words, does the correlation implied by losses differ
from the correlation implied by gains?

3.7.1 Tail Correlation Patterns

We study international correlation patterns for stock indices of 10 developed countries
across geographical regions. The dataset consists of Tdaily = 6604 daily observations for
each index starting from 1997-12-31 until 2022-12.31. For weekly and monthly returns the
data set is reduced to Tweekly = 1322 and Tmonthly = 304. This period features the impact
of significant historical financial and political crises, including the Dot-com Bubble (2000-
2002), the Global Financial Crisis precipitated by the US housing bubble (2007-2009), the
Covid-19 pandemic (2020-2022), and the outbreak of the Russo-Ukrainian War. The data
source is Thomson Reuters Datastream. Centered logarithmic returns computed are con-
sidered. A large data sample ensures numerical stability due to more datapoints in tail
regions.

We present tail correlation estimates for lower and upper tails implied by Value-at-Risk
and Expected Shortfall. The lower tail region addresses losses events, whereas the up-
per tail reflect gains. Given a risk measure, we cover different α-quantile levels, i.e., α ∈
{0.001, 0.005, 0.01, 0.05, 0.1} for daily and weekly returns. For monthly returns, we select
α ∈ {0.005, 0.01, 0.025, 0.05, 0.1}. The reason for a different set of quantiles while using
monthly returns is the numerical instability that arises due to the potential lack of data.
Our method relies heavily on sufficient data reflecting extreme scenarios which by nature
are scarce.



57 Tail Correlation Matrices

No. Symbol Index Name (Country)
1 DJI Dow Jones Industrial Average (United States)
2 NASDAQ Nasdaq Composite (United States)
3 IBEX IBEX 35 Index (Spain)
4 FCHI CAC 40 Index (France)
5 SSMI Swiss Market Index (Switzerland)
6 FTMIB FTSE MIB Index (Italy)
7 GDAX DAX Performance-Index (Germany)
8 FTSE FTSE 100 Index (United Kingdom)
9 N225 Nikkei 225 Index (Japan)

10 HSI Hang Seng Index (Hong Kong)

Table 5: Stock indices used for the empirical analysis across geographical regions.

3.7.2 Does Correlation Increase for Extreme Quantiles?

Figure 13 visualizes implied correlation for different quantile levels using heatmaps. The
Pearson correlation is displayed on the bottom right. Each heatmap is divided by a diagonal
of ones where the lower triangular matrix represents the correlation matrix implied by the
lower tail and the upper triangular matrix by the upper tail. In doing so, we obtain a
graphical comparison between two tails that might reveal potential asymmetries. Positively
correlated indices are colored red, and negatively correlated pairs are colored blue. Darker
colors signify stronger/weaker dependence. We will focus on correlation implied by the
Expected Shortfall because it produce more stable results by incorporating information
from the entire quantile region of interest. Correlation implied by VaR tends to behave
erratic especially once extreme quantiles are considered.

We can observe that stock indices of countries that share a geographical vicinity tend to be
stronger correlated resulting in distinct block patterns. For central European countries, this
can be explained by the stronlgy intertwined economies. DJI and NASDAQ are both indices
of the US, which is also plausible for pronounced interdependence. European markets also
tend to exhibit stronger dependence towards US markets, which is not apparent for Asian
indices. Asian markets overall seem to be loosely connected to their Western counterparts.
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Figure 13: Heatmaps of ES-implied correlation for daily returns - The left panel features VaR- and the right panel shows ES-
implied correlation from equal-weighted two-asset portfolios.
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(a) Daily Returns
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(b) Weekly Returns
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(c) Monthly Returns

Figure 14: Heatmaps of implied correlation for daily, weekly and monthly returns - Implied correlation by equal-weighted two-
asset portfolios. The lower triangular matrix shows correlation implied by the lower tail, the upper triangular matrix
shows correlation implied by the upper tail.
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Figure 14 displays ES-implied correlation for different return frequencies. While the corre-
lation block patterns remain mostly distinguishable for daily and weekly returns, this block
structure vanishes if monthly returns are considered, especially for extreme quantiles. One
possible explanation is the reduced serial correlation for lower return frequencies than daily
or weekly returns. Looking at different quantile levels, we can observe changes in implied
correlation in both directions. Dependence tends to increase when moving into the tails,
particularly for pairs already strongly correlated. On the other hand, pairs that exhibit
weak correlation might even change signs. Drastic changes in correlation are only observed
for lower tail implied correlation given weekly returns, especially for α = 0.001. However,
it is questionable if it makes sense that DJI and NASDAQ become less correlated in such
an extreme scenario. Additional heatmaps for varying return frequencies and VaR-implied
correlation are presented in Appendix B.5.

We provide another visualization of implied correlation using boxplots. Figure 15 plots
implied correlation of all return frequencies according to a quantile level. More precisely,
correlation coefficients over all return frequencies are collected and plotted against a quan-
tile level. We distinguish between red boxes representing the lower tail while green boxes
visualize the upper tail. Boxplots of both tails are more closely aligned for quantile regions
closer to the center of the distribution. The horizontal line in the box represents the median,
which is slightly higher for the upper tail regions. This trend shifts towards the lower tail
implied correlation beginning with α = 0.25. The difference is most extreme for α = 0.001,
which supports our hypothesis for increased correlation in extreme loss scenarios.
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Figure 15: Boxplot of ES-implied correlation over all return frequencies.

We observe the same results also for different return frequencies, see Figure 27 in Appendix
B.6. Asset-specific correlation are presented in Figure 28. One particular observation here
is that the range of the boxplots is more narrow for pairs that are in closer proximity. Boxes
with the largest range usually include indices of the Asian markets.
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3.7.3 Theoretical and Bootstrapped Standard Errors

We investigate the efficiency of the correlation estimate in two settings. First, we com-
pare theoretical standard errors with bootstrapped standard errors for correlation estimates
implied by an exact identified portfolio system. In this case, equally weighted two-asset
portfolios are considered. Second, bootstrapped standard errors of estimates implied by
an exact and overidentified system are investigated. The overidentified portfolio system
adds equally weighted two-asset portfolios and equally weighted three-asset portfolios. For
n = 10 assets, the exact identified portfolio consists of 45 equations, while the overidentified
portfolio system consists of 165 equations.

We observe the increase in standard errors when moving into tails because the amount of
available data for modeling is scarce. This effect is more pronounced with decreasing return
frequency. Regarding the variability of the implied correlation estimate, we further notice
that theoretical standard errors differ significantly from bootstrapped standard errors for
specific pairs with no clear patterns.

α = 0.05/0.95 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.82 (0.044) 0.491 (0.047) 0.558 (0.047) 0.484 (0.043) 0.496 (0.045) 0.603 (0.144) 0.518 (0.298) 0.09 (0.046) 0.148 (0.041)
NASDAQ 0.784 (0.044) 1 0.409 (0.04) 0.501 (0.043) 0.389 (0.041) 0.429 (0.038) 0.561 (0.115) 0.424 (0.213) 0.051 (0.032) 0.169 (0.031)
IBEX 0.549 (0.049) 0.45 (0.043) 1 0.86 (0.07) 0.715 (0.064) 0.867 (0.074) 0.751 (0.151) 0.761 (0.335) 0.18 (0.041) 0.255 (0.037)
FCHI 0.569 (0.044) 0.469 (0.039) 0.893 (0.071) 1 0.802 (0.07) 0.851 (0.07) 0.882 (0.169) 0.852 (0.366) 0.221 (0.042) 0.29 (0.039)
SSMI 0.543 (0.043) 0.41 (0.04) 0.755 (0.066) 0.844 (0.065) 1 0.732 (0.064) 0.741 (0.165) 0.774 (0.367) 0.243 (0.048) 0.242 (0.041)
FTMIB 0.522 (0.047) 0.441 (0.04) 0.877 (0.073) 0.894 (0.066) 0.758 (0.063) 1 0.784 (0.153) 0.742 (0.325) 0.154 (0.038) 0.226 (0.035)
GDAX 0.595 (0.129) 0.51 (0.104) 0.818 (0.153) 0.909 (0.159) 0.801 (0.159) 0.836 (0.148) 1 0.767 (0.422) 0.188 (0.087) 0.28 (0.088)
FTSE 0.563 (0.294) 0.423 (0.212) 0.802 (0.347) 0.877 (0.37) 0.834 (0.38) 0.802 (0.341) 0.825 (0.406) 1 0.216 (0.192) 0.295 (0.181)
N225 0.134 (0.044) 0.122 (0.033) 0.279 (0.046) 0.307 (0.044) 0.329 (0.05) 0.27 (0.045) 0.28 (0.093) 0.309 (0.207) 1 0.419 (0.051)
HSI 0.154 (0.036) 0.149 (0.029) 0.339 (0.042) 0.373 (0.039) 0.391 (0.043) 0.339 (0.039) 0.345 (0.091) 0.41 (0.219) 0.544 (0.056) 1

α = 0.005/0.995 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.776 (0.14) 0.459 (0.155) 0.488 (0.152) 0.378 (0.129) 0.428 (0.156) 0.585 (0.489) 0.505 (0.2) 0.073 (0.124) 0.229 (0.134)
NASDAQ 0.778 (0.151) 1 0.373 (0.107) 0.371 (0.096) 0.28 (0.092) 0.362 (0.105) 0.514 (0.367) 0.39 (0.106) -0.045 (0.072) 0.128 (0.084)
IBEX 0.543 (0.172) 0.431 (0.122) 1 0.884 (0.211) 0.726 (0.203) 0.837 (0.213) 0.722 (0.544) 0.791 (0.236) 0.201 (0.137) 0.188 (0.114)
FCHI 0.59 (0.159) 0.486 (0.113) 0.838 (0.21) 1 0.797 (0.194) 0.877 (0.193) 0.838 (0.575) 0.92 (0.226) 0.264 (0.132) 0.248 (0.109)
SSMI 0.516 (0.163) 0.351 (0.1) 0.73 (0.194) 0.767 (0.172) 1 0.692 (0.182) 0.622 (0.521) 0.796 (0.196) 0.194 (0.131) 0.193 (0.121)
FTMIB 0.51 (0.151) 0.423 (0.107) 0.848 (0.21) 0.887 (0.198) 0.74 (0.175) 1 0.728 (0.538) 0.766 (0.231) 0.221 (0.136) 0.253 (0.126)
GDAX 0.59 (0.396) 0.467 (0.292) 0.821 (0.464) 0.924 (0.509) 0.785 (0.461) 0.86 (0.47) 1 0.775 (0.804) 0.176 (0.327) 0.247 (0.282)
FTSE 0.616 (0.215) 0.438 (0.117) 0.781 (0.224) 0.897 (0.206) 0.755 (0.179) 0.796 (0.212) 0.851 (0.65) 1 0.329 (0.236) 0.312 (0.178)
N225 0.201 (0.151) 0.078 (0.09) 0.366 (0.171) 0.389 (0.16) 0.359 (0.154) 0.414 (0.157) 0.324 (0.308) 0.39 (0.23) 1 0.392 (0.156)
HSI 0.268 (0.116) 0.185 (0.076) 0.401 (0.134) 0.423 (0.116) 0.391 (0.113) 0.411 (0.119) 0.362 (0.277) 0.432 (0.14) 0.626 (0.18) 1

Table 6: ES-implied correlation estimates with theoretical standard errors - lower tail corre-
lation estimates are on the lower triangle matrix while the upper triangular matrix
represent implied correlation by upper quantiles.

Starting with Table 6 and 7: Bootstrapped SEs are smaller than their theoretical counterparts
in most cases. This is visible for pairs involving the NASDAQ, DAX, or N225. Surpris-
ingly, this is not the case for pairs involving DJI. Theoretical SEs involving DJI are overall
smaller than bootstrapped SEs, especially for α = 0.05/0.95, while bootstrapped SEs for
α = 0.005/0.995 show no significant differences. For weekly and monthly returns, theo-
retical SEs remain significantly larger than bootstrapped SEs, but SEs increase due to the
reduced amount of underlying data in both cases.

The discrepancy between theoretical and bootstrapped standard errors may be attributed
to finite sample properties since asymptotic theory often approximates properties for large
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α = 0.05/0.95 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.82 (0.103) 0.491 (0.079) 0.558 (0.079) 0.484 (0.073) 0.496 (0.08) 0.603 (0.147) 0.518 (0.211) 0.09 (0.048) 0.148 (0.049)
NASDAQ 0.784 (0.208) 1 0.409 (0.029) 0.501 (0.028) 0.389 (0.03) 0.429 (0.028) 0.561 (0.034) 0.424 (0.074) 0.051 (0.027) 0.169 (0.027)
IBEX 0.549 (0.217) 0.45 (0.028) 1 0.86 (0.018) 0.715 (0.029) 0.867 (0.019) 0.751 (0.035) 0.761 (0.09) 0.18 (0.03) 0.255 (0.031)
FCHI 0.569 (0.243) 0.469 (0.029) 0.893 (0.018) 1 0.802 (0.025) 0.851 (0.016) 0.882 (0.03) 0.852 (0.097) 0.221 (0.029) 0.29 (0.029)
SSMI 0.543 (0.231) 0.41 (0.028) 0.755 (0.026) 0.844 (0.025) 1 0.732 (0.027) 0.741 (0.034) 0.774 (0.093) 0.243 (0.029) 0.242 (0.027)
FTMIB 0.522 (0.213) 0.441 (0.029) 0.877 (0.019) 0.894 (0.02) 0.758 (0.027) 1 0.784 (0.032) 0.742 (0.091) 0.154 (0.028) 0.226 (0.028)
GDAX 0.595 (0.159) 0.51 (0.05) 0.818 (0.048) 0.909 (0.054) 0.801 (0.051) 0.836 (0.049) 1 0.767 (0.165) 0.188 (0.048) 0.28 (0.043)
FTSE 0.563 (0.175) 0.423 (0.127) 0.802 (0.129) 0.877 (0.143) 0.834 (0.126) 0.802 (0.129) 0.825 (0.114) 1 0.216 (0.059) 0.295 (0.059)
N225 0.134 (0.086) 0.122 (0.037) 0.279 (0.03) 0.307 (0.031) 0.329 (0.032) 0.27 (0.029) 0.28 (0.038) 0.309 (0.106) 1 0.419 (0.027)
HSI 0.154 (0.084) 0.149 (0.035) 0.339 (0.03) 0.373 (0.032) 0.391 (0.032) 0.339 (0.029) 0.345 (0.035) 0.41 (0.106) 0.544 (0.027) 1

α = 0.005/0.995 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.776 (0.11) 0.459 (0.084) 0.488 (0.085) 0.378 (0.075) 0.428 (0.086) 0.585 (0.082) 0.505 (0.217) 0.073 (0.066) 0.229 (0.068)
NASDAQ 0.778 (0.098) 1 0.373 (0.082) 0.371 (0.08) 0.28 (0.079) 0.362 (0.084) 0.514 (0.078) 0.39 (0.08) -0.045 (0.055) 0.128 (0.066)
IBEX 0.543 (0.113) 0.431 (0.08) 1 0.884 (0.064) 0.726 (0.087) 0.837 (0.065) 0.722 (0.088) 0.791 (0.094) 0.201 (0.067) 0.188 (0.074)
FCHI 0.59 (0.118) 0.486 (0.076) 0.838 (0.065) 1 0.797 (0.085) 0.877 (0.061) 0.838 (0.079) 0.92 (0.093) 0.264 (0.069) 0.248 (0.075)
SSMI 0.516 (0.12) 0.351 (0.074) 0.73 (0.09) 0.767 (0.093) 1 0.692 (0.088) 0.622 (0.09) 0.796 (0.09) 0.194 (0.063) 0.193 (0.071)
FTMIB 0.51 (0.108) 0.423 (0.078) 0.848 (0.063) 0.887 (0.06) 0.74 (0.098) 1 0.728 (0.093) 0.766 (0.092) 0.221 (0.066) 0.253 (0.074)
GDAX 0.59 (0.129) 0.467 (0.08) 0.821 (0.107) 0.924 (0.101) 0.785 (0.105) 0.86 (0.104) 1 0.775 (0.097) 0.176 (0.071) 0.247 (0.077)
FTSE 0.616 (0.161) 0.438 (0.137) 0.781 (0.152) 0.897 (0.156) 0.755 (0.149) 0.796 (0.15) 0.851 (0.135) 1 0.329 (0.078) 0.312 (0.072)
N225 0.201 (0.124) 0.078 (0.055) 0.366 (0.07) 0.389 (0.073) 0.359 (0.071) 0.414 (0.071) 0.324 (0.07) 0.39 (0.122) 1 0.392 (0.08)
HSI 0.268 (0.122) 0.185 (0.054) 0.401 (0.064) 0.423 (0.07) 0.391 (0.065) 0.411 (0.064) 0.362 (0.067) 0.432 (0.123) 0.626 (0.077) 1

Table 7: ES-implied correlation estimates with bootstrapped standard errors - lower tail cor-
relation estimates are on the lower triangle matrix while the upper triangular ma-
trix represent implied correlation by upper quantiles.

samples. For extreme tail regions, asymptotic properties derived from theoretical SEs might
not hold. In contrast, the bootstrap can provide a more accurate reflection of the actual
sampling variability in smaller sample sizes, see Horowitz (2001). We find no evidence of
an increase in efficiency for correlation implied by an overidentified system. The magnitude
of SEs is in the same range of correlation implied by an exact identified system. Estimation
results of all parameter sets are presented in Appendix B.3. In the subsequent analysis, only
ES-implied correlations from exact identified systems are explored.

3.7.4 Portfolio Systems with Random Weights

Our study on correlation implied by portfolios with random weights yields no meaningful
results. If weight is assigned to every asset, the random weights are drawn from a Dirichlet
distribution that ensures that the sum of the weights equals one. The parameter of the
distribution is selected such that the Dirichlet distribution reflects a uniform distribution
over all its support. For two-asset portfolios, we draw a single weight w1 from the uniform
distribution and define the second weight as w2 = 1 − w1. Figure 16 presents heatmaps of
two settings with random weights on all assets and random weights on two assets. In both
cases, the portfolio system is exact identified.

While random weights on two asset portfolios still produce block patterns, although much
more extreme, random weights on all assets produce erratic patterns. Further investigation
reveals numerous boundary violations and frequent application of spectral corrections to
produce well-defined correlation matrices. We did not continue further research in this
area. However, this analysis highlights the critical role of portfolio weights when applying
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(a) Random Weights on all assets
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(b) Random weights on two assets

Figure 16: Heatmaps of lower ES-implied correlation - Exact identified systems with ran-
domly weighted portfolios for daily returns are considered.

the implied correlation methodology. Future research could address the trade-off between
selecting weights for numerical stability while maintaining an economic interpretation.

3.7.5 Difference between Implied Correlation and Pearson Correlation

We visualize the difference between implied correlation and Pearson correlation in two
ways. Figure 17a shows the difference

ρPearson − ρImplied

for different quantile levels and plots the sorted values in descending order. The x-axis rep-
resents the order of the corresponding pair, which differs across quantile levels. Pairs above
the dotted line indicate a positive difference featuring cases where the Pearson correlation
is larger than the implied correlation. The number of positive/negative pairs might provide
insight into systematic behavior relative to each type of correlation.
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We investigate pairs of the lower tail first. Implied correlation from moderate quantiles are
close, with 0.005- and 0.001-quantile levels producing the largest deviations. Most of the
differences are negative for daily and weekly returns, suggesting stronger tail dependence.
Surprisingly for monthly returns, the Pearson correlation is larger than the correlation im-
plied by the 0.005-ES and 0.01-ES in contrast to 0.1-ES which produces a larger tail correla-
tion in all pairs. Regarding the upper tail, most Pearson correlations are slightly larger for
daily returns and monthly returns. Similar to the lower tail, the largest differences are ob-
served for extreme quantile levels. In this setting, we find no clear indications if the implied
correlation deviates systematically from the Pearson correlation.

An alternative comparison is presented in Figure 17b where average implied and Pearson
correlation are viewed instead of single pairs. The plots reveal that the ES-implied cor-
relation behaves less volatile than the VaR-implied correlation, as was mentioned at the
beginning of the empirical analysis. The average ES-implied correlation is close to its Pear-
son counterpart over all return frequencies for moderate quantile levels. For the lower tail,
the average correlation tends to increase while moving into the tails. This effect is more ob-
served for daily and weekly returns. In contrast, the average correlation decreases sharply
for monthly returns given extreme quantiles. Regarding the upper tail, the average correla-
tion tends to decrease for high quantile levels, suggesting a reduced correlation for gains.
Overall, our results have similarities to Mittnik (2014), although no information on other
return frequencies was provided. It was shown that correlation dependence behaves dis-
tinctly for high quantile levels and thus is not compatible with an elliptical data-generating
process. We conclude with similar results.

We conclude this section by comparing the ten strongest and weakest correlation pairs
across different quantile levels with their Pearson counterpart. Table 8 displays the pairs for
daily returns. Tables with other return frequencies are found in Appendix B.7. Considering
lower tail correlation, graphical analysis already provided a hint that indices of countries
that are geographically close to each other are strongly correlated. Indeed, nine out of
ten pairs feature European indices such as France-Germany (FCHI-GDAX) or France-Italy
(FCHI-FTSEMIB), with the former being the most substantial overall return frequency. The
implied correlation constantly remains high for the ten strongly correlated pairs and signif-
icantly increases when selecting small quantile levels. In particular, ES implied correlations
for α = 0.001 are consistently higher than Pearson correlation for strongly correlated pairs,
whereas only 6 out of 10 pairs behave similarly for the weakly correlated pairs. Note that
nine out of ten weak correlation pairs always include an Asian index, HSI, or N225, further
highlighting the geographical significance when studying dependence structures. Results
for upper tail correlation are also mixed. The increasing correlation behavior for high quan-
tile levels is inconsistent among the strong and weak correlated pairs. Unlike the lower
tail where FCHI/GDAX are strongly correlated even for extreme quantiles, the correlation
decreases from .878 to .704 when considering the 0.999 quantile on daily return frequency.
In extreme cases, the sign of the correlation might even change, e.g., NASDAQ/N225, al-
though it should be noted that the corresponding Pearson correlation is already close to
zero. In summary, this analysis shows that pairs that are already strongly dependent in
terms of Pearson correlation tend to increase if measured by implied correlation while
moving into the tails. This behavior is more distinct for the lower tail.
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Lower Tail (Losses) Pearson Upper Tail (Gains)
Correlation Pairs 0.001 0.005 0.01 0.05 0.01 0.9 0.95 0.99 0.995 0.999

FCHI vs GDAX 0.974 0.924 0.917 0.909 0.906 0.891 0.878 0.882 0.848 0.838 0.704
FCHI vs FTMIB 0.961 0.887 0.868 0.894 0.886 0.874 0.859 0.851 0.845 0.877 0.961
FCHI vs FTSE 0.921 0.897 0.922 0.877 0.891 0.869 0.851 0.852 0.881 0.920 0.951
IBEX vs FCHI 0.880 0.838 0.882 0.893 0.881 0.867 0.862 0.860 0.868 0.884 0.963
IBEX vs FTMIB 0.878 0.848 0.915 0.877 0.864 0.860 0.864 0.867 0.818 0.837 0.955
FTMIB vs GDAX 0.966 0.860 0.813 0.836 0.830 0.815 0.795 0.784 0.760 0.728 0.661
FCHI vs SSMI 0.801 0.767 0.803 0.844 0.834 0.810 0.797 0.802 0.796 0.797 0.815
DJI vs NASDAQ 0.906 0.778 0.779 0.784 0.814 0.809 0.804 0.820 0.827 0.776 0.749
GDAX vs FTSE 0.956 0.851 0.888 0.825 0.826 0.805 0.789 0.767 0.731 0.775 0.696
IBEX vs GDAX 0.846 0.821 0.796 0.818 0.822 0.794 0.776 0.751 0.731 0.722 0.619
NASDAQ vs N225 -0.124 0.078 0.088 0.122 0.134 0.125 0.077 0.051 0.002 -0.045 -0.048
DJI vs N225 0.019 0.201 0.169 0.134 0.133 0.148 0.098 0.090 0.078 0.073 0.123
NASDAQ vs HSI 0.170 0.185 0.186 0.149 0.144 0.187 0.164 0.169 0.140 0.128 0.160
DJI vs HSI 0.168 0.268 0.204 0.154 0.157 0.191 0.146 0.148 0.187 0.229 0.372
FTMIB vs N225 0.543 0.414 0.323 0.270 0.265 0.249 0.159 0.154 0.216 0.221 0.277
IBEX vs N225 0.504 0.366 0.295 0.279 0.274 0.263 0.200 0.180 0.199 0.201 0.213
GDAX vs N225 0.492 0.324 0.251 0.280 0.287 0.266 0.200 0.188 0.182 0.176 0.189
SSMI vs N225 0.413 0.359 0.324 0.329 0.335 0.292 0.222 0.243 0.219 0.194 0.279
FCHI vs N225 0.491 0.389 0.327 0.307 0.321 0.293 0.212 0.221 0.257 0.264 0.244
FTSE vs N225 0.475 0.390 0.323 0.309 0.321 0.297 0.207 0.216 0.267 0.329 0.338

Table 8: Pearson and ES-implied correlation from daily returns - Presented are the ten
strongest and weakest pairs according to Pearson correlation. We compare Pearson
correlation with ES-implied correlation over different quantile levels.

In order to assess the statistical significance of the difference between Pearson and implied
correlation, we construct confidence intervals based on the bootstrapped standard errors.
In particular, the difference is likely significant if the confidence intervals are disjoint, i.e.,
do not overlap. We further apply Fisher’s z-transformation to the sample correlations to
stabilize the variance, enabling more robust statistical testing of the coefficients. As de-
scribed in Section 3.5, this transformation yields approximately normally distributed vari-
ables, particularly for coefficients near the bounds and in cases of small sample sizes. The
transformation is defined by

z =
1
2

ln
(

1 + ρ

1 − ρ

)
. (130)
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Figure 17: Differences between implied and Pearson correlation - Left Panel features the difference between implied and Pearson
correlation - Right Panel shows the average correlation.



67 Tail Correlation Matrices

In the subsequent step, the confidence intervals are constructed by

CI = z ± Zα/2 · SEz (131)

The results are brought back to original scale using the inverse fisher transform. Formally,

ρ =
e2z − 1
e2z + 1

. (132)

Table 9 shows the confidence intervals of Pearson and ES-implied correlation for the lower
tail (α = 0.01) based on monthly returns. The five correlation pairs with the largest positive
difference are shown, corresponding to the red line depicted in the bottom left plot in Figure
17a.

Pearson 0.01 ES-Implied

Correlation Pair ρPearson CI ρES CI ρPearson − ρES

NASDAQ vs GDAX 0.734 [0.697, 0.767] 0.373 [0.021, 0.642] 0.361
NASDAQ vs FTSE 0.651 [0.599, 0.698] 0.316 [-0.059, 0.613] 0.335
NASDAQ vs FCHI 0.712 [0.671, 0.749] 0.391 [0.055, 0.648] 0.320
SSMI vs FTSE 0.741 [0.704, 0.773] 0.423 [0.220, 0.591] 0.317
NASDAQ vs FTMIB 0.627 [0.570, 0.677] 0.362 [0.032, 0.622] 0.264

Table 9: Implied correlation - 5% confidence intervals

We find three pairs (NASDAQ-GDAX, NASDAQ-FCHI, SSMI-FTSI) where the confidence
intervals do not overlap, indicating statistical differences. However, evaluating the signifi-
cance of the difference between Pearson and implied correlation in this way is less robust
than a statistical test since no precise p-values or degree of significance are obtained. One
criterion for existing statistical tests regarding the equality of correlation coefficients or cor-
relation matrices is the independence of the underlying sample. In our case, both Pearson
and implied correlations are obtained from the same sample. While Pearson correlation is
computed over the entire sample, implied correlation only considers quantiles. It is unclear
how statistical tests for the significance of differences are conducted under these circum-
stances. Nevertheless, we can conclude that the Pearson correlation matrix differs from the
implied correlation matrix if only a single pair is already significantly different.
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3.8 Tail Asymmetry

Literature on statistical tests specifically for tail correlations is scarce. Based on exceedance
correlation according to Longin & Solnik (2001), see equation (1), Ang & Chen (2002) pro-
posed a summary statistic that measures how much the observed (tail) correlation in the
data deviates from those predicted by a reference model. Candidates for a reference model
are, for example, normal distribution, GARCH, or regime-switching models. Therefore, the
test evaluates whether the null hypothesis, which asserts that the reference model matches
the empirical correlation, holds true. However, this approach relies on the assumption of a
reference model and does not provide information on asymmetries in the return data itself.
Hong et al. (2007) propose a non-parametric test that generally evaluates data asymmetry.
As a result, if symmetry is rejected, the underlying data cannot be modeled by any sym-
metric distribution. In addition, the asymptotic behavior is known to follow a chi-square
distribution. However, both studies suffer from the ambiguous choice of exceedance level.
Different choices may yield varying degrees of evidence for asymmetry. In addition, the
presented methods are only available for bi-variate portfolios.

We assess asymmetry or, more generally, distortion by adopting a regression approach. The
idea is to regress the correlation implied by the upper tail against the lower tail. Formally,

ρlower = β0 + β1ρupper + ϵ. (133)

The intercept β0 relates to a systematic shift of implied correlation w.r.t. a reference correla-
tion. For example, while β1 = 1 holds, a positive intercept translates to a systematic positive
deviation, stating a stronger correlation in general. The slope parameter β1 addresses devi-
ation conditional on the size of the correlation, i.e., whether correlation differs only for pairs
that are stronger (or weaker) correlated. This translates to a rotation of the regression line.
Geometrically, if the corresponding correlation pairs are identical, they should be situated
on a 45-degree line. Consequently, several types of asymmetry are considered:

1. β0 ̸= 0 and β1 = 1 shift distortion

2. β0 = 0 and β1 ̸= 1 size distortion

3. β0 ̸= 0 and β1 ̸= 1 both

Similar to the previous section, we apply Fisher’s Z-transformation for robustness. If the
sets of correlation are similar, the intercept β0 should be close to zero and the slope β1 close
to unity.
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3.8.1 Distortion Analysis between upper and lower Tail Correlation

Regression results are reported in Table 10. ES-implied correlation by the lower tail is
regressed on implied correlation by the upper tail of the same quantile level. The corre-
sponding scatterplot is visualized in Figure 18. The intercept parameter is positive overall
return frequencies and quantile levels. The intercept increases significantly once extreme
quantile levels are considered, with 0.560 as the maximum for α = 0.001 and weekly re-
turns. The results indicate a systematic shift where the correlation implied by losses seems
to be systematically higher than the correlation implied by gains. Concurrently, the slope
parameter decreases down to 0.246 for monthly returns. We find the most considerable
deviations for extreme quantile levels or lower return frequencies that coincide with our
findings from previous analyses. For distortion in size, the clockwise rotation of the re-
gression line suggests that large correlation coefficients implied by lower tails are larger
relative to their counterpart in the upper tail. Apart from a few occurrences, the hypothesis
”β0 = 0” is always rejected on a high confidence level. This holds the same for ”β1 = 1”.
The F-statistics for the hypothesis ”β0 = 0 ∧ β1 = 1” consistently rejects symmetry for all
tail correlation pairs, including extreme quantiles.
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Tail Region α β̂0 tβ̂0=0 p-val β̂1 tβ̂1=1 p-val Fβ0=0,β1=1 p-val

Daily Returns
0.250 0.039 4.343 0.000 0.962 60.341 0.000 16.517 0.000
0.100 0.072 6.222 0.000 0.939 45.404 0.000 35.652 0.000
0.050 0.083 6.281 0.000 0.931 39.206 0.000 36.444 0.000
0.010 0.099 6.267 0.000 0.922 31.901 0.000 38.019 0.000
0.005 0.171 9.814 0.000 0.816 25.354 0.000 65.843 0.000
0.001 0.200 4.430 0.000 0.793 9.958 0.000 12.979 0.000

Weekly Returns
0.250 0.064 2.577 0.013 0.939 25.402 0.000 13.034 0.000
0.100 0.085 2.624 0.012 0.923 18.951 0.000 15.913 0.000
0.050 0.065 2.050 0.046 0.952 19.899 0.000 15.426 0.000
0.010 0.211 3.433 0.001 0.679 7.955 0.000 7.493 0.002
0.005 0.271 3.691 0.001 0.616 5.701 0.000 6.811 0.003
0.001 0.560 6.729 0.000 0.492 3.224 0.002 31.468 0.000

Monthly Returns
0.250 0.078 1.569 0.124 0.926 12.633 0.000 6.115 0.005
0.100 0.374 7.818 0.000 0.624 7.951 0.000 101.842 0.000
0.050 0.449 8.989 0.000 0.484 5.863 0.000 80.775 0.000
0.025 0.457 8.940 0.000 0.453 5.167 0.000 62.797 0.000
0.010 0.462 7.363 0.000 0.350 3.215 0.002 28.451 0.000
0.005 0.421 6.367 0.000 0.246 2.187 0.034 23.228 0.000

Table 10: Relationship between lower and upper ES-implied correlations estimates - Re-
ported are intercept and slope estimates, β̂0 and β̂1, when regressing lower tail-
correlation on upper tail-correlations. For a given tail region, specified by α, ab-
sence of shift and size symmetry is given vor ”β0 = 0” and ”β1 = 1”. The
corresponding t-statistics are reported in the next column. The F-statistic tests the
joint absence of shift and size asymmetry, with p-values given in the last column.
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(b) Weekly Returns
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Figure 18: ES-implied correlation: Lower tail vs Upper tail - Matching pairs will lie on the red line. The green line represents a
linear approximation of the two correlation types. The corresponding regression results are reported in table 10.
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3.8.2 Distortion Analysis between Implied and Pearson Correlation

The regression approach also enables us to study other correlation settings such as tail
correlation with Pearsons correlation, i.e.,

ρtail = β0 + β1ρPearson + ϵ, (134)

where ρtail can either represent correlation implied from the upper or lower tail. Using the
same approach from the previous section, we compare the differences by regressing implied
correlation on Pearson correlation. Regression results are presented in Table 11 and 12. The
corresponding scatterplot visualizations are found in Appendix B.8, Figure 29 and 30.

Regarding shift distortion for lower tails, the intercepts for different quantile levels are
close or above zero with only one significant deviation of 0.401 for α = 0.001 given weekly
returns. Out of 18 configurations, only two cases reject the β0 = 0 hypothesis on a 1%
significance level. Therefore, we find little evidence for a systematic shift. Regarding size
distortion, the β̂1 coefficient ranges from 0.572 to 1.119, with half of the cases above and
below one. Except for one case, the Null hypothesis of β1 = 1 is rejected on all levels,
confirming a size distortion. However, we find no clear pattern concerning the direction for
this type of asymmetry.

Considering the upper tail, we find mixed evidence for shift distortion with β0 ranging be-
tween -0.543 and 0.084. Most negative estimates suggest that the upper implied correlations
are smaller than their Pearson counterpart. However, we reject the hypothesis ”β0 = 0” on
1% significance level in 7 out of 18 cases. Slope estimates are close to 1, slightly varying
between 0.952 and 1.379. Statistical tests uniformly reject “β1 = 1”, pointing to significant
size distortion. We also note that in 12 out of 18 cases, the estimates are larger than 1.
Geometrically, the regression line rotates counterclockwise, indicating that Pearson correla-
tion tends to dominate their implied correlation counterpart for small sizes and vice versa.
Similar to the results from investigating tail asymmetry, the F-statistics rejects symmetry in
most of the cases.
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Tail Region α β̂0 tβ̂0=0 p-val β̂1 tβ̂1=1 p-val Fβ0=0,β1=1 p-val

Daily Returns
0.500 -0.092 -6.069 0.000 1.119 42.470 0.000 21.518 0.000
0.100 0.007 1.030 0.309 1.013 86.268 0.000 13.585 0.000
0.050 0.004 0.500 0.620 1.023 76.904 0.000 14.527 0.000
0.010 0.012 0.831 0.410 1.011 42.166 0.000 4.701 0.014
0.005 0.076 4.535 0.000 0.911 31.275 0.000 13.857 0.000
0.001 0.040 1.026 0.311 1.041 15.357 0.000 7.686 0.001

Weekly Returns
0.500 -0.018 -0.846 0.402 1.012 32.427 0.000 2.977 0.062
0.100 0.029 1.383 0.174 0.977 31.540 0.000 6.390 0.004
0.050 0.037 1.466 0.150 0.962 26.314 0.000 3.173 0.052
0.010 -0.039 -0.820 0.417 1.077 15.316 0.000 1.537 0.227
0.005 -0.070 -0.952 0.346 1.109 10.382 0.000 0.553 0.579
0.001 0.401 1.535 0.132 0.572 1.499 0.141 3.251 0.048

Monthly Returns
0.500 -0.009 -0.293 0.771 1.004 22.079 0.000 0.810 0.452
0.100 0.104 3.137 0.003 0.944 19.586 0.000 68.903 0.000
0.050 0.121 2.563 0.014 0.901 13.164 0.000 23.750 0.000
0.025 0.109 1.293 0.203 0.881 7.162 0.000 2.445 0.099
0.010 0.120 0.777 0.441 0.774 3.455 0.001 1.314 0.279
0.005 -0.013 -0.065 0.949 0.821 2.820 0.007 7.969 0.001

Table 11: Relationship between Pearson and ES-implied correlations estimates for the lower
tail region. Reported are intercept and slope estimates, β̂0 and β̂1, when regressing
lower tail correlation on Pearson correlations. For a given tail region, specified by
α, absence of shift and size asymmetry is given for ”β0 = 0” and ”β1 = 1”. The
corresponding t-statistics are reported in the next column. The F-statistic tests the
joint absence of shift and size asymmetry, with p-values given in the last column.
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Tail Region α β̂0 tβ̂0=0 p-val β̂1 tβ̂1=1 p-val Fβ0=0,β1=1 p-val

Daily Returns
0.500 0.042 6.932 0.000 0.952 90.373 0.000 33.600 0.000
0.100 -0.063 -7.770 0.000 1.068 76.045 0.000 45.436 0.000
0.050 -0.076 -7.465 0.000 1.082 61.368 0.000 42.050 0.000
0.010 -0.085 -6.661 0.000 1.077 48.852 0.000 42.366 0.000
0.005 -0.099 -5.530 0.000 1.086 34.950 0.000 30.868 0.000
0.001 -0.089 -2.210 0.032 1.100 15.746 0.000 3.457 0.041

Weekly Returns
0.500 0.034 1.423 0.162 0.963 27.656 0.000 2.477 0.096
0.100 -0.014 -0.521 0.605 0.989 25.492 0.000 8.663 0.001
0.050 0.006 0.229 0.820 0.957 25.347 0.000 11.324 0.000
0.010 -0.092 -1.417 0.164 1.176 12.340 0.000 3.907 0.028
0.005 -0.114 -1.374 0.177 1.146 9.423 0.000 1.255 0.295
0.001 -0.318 -1.529 0.134 1.154 3.795 0.000 14.930 0.000

Monthly Returns
0.500 0.084 3.184 0.003 0.923 24.119 0.000 27.417 0.000
0.100 -0.134 -2.111 0.041 1.071 11.619 0.000 32.148 0.000
0.050 -0.202 -2.523 0.015 1.159 9.964 0.000 24.882 0.000
0.025 -0.384 -4.188 0.000 1.378 10.355 0.000 37.382 0.000
0.010 -0.543 -3.758 0.001 1.572 7.481 0.000 23.782 0.000
0.005 -0.291 -1.155 0.255 1.163 3.175 0.003 8.999 0.001

Table 12: Relationship between Pearson and ES-implied correlations estimates for the upper
tail region. Reported are intercept and slope estimates, β̂0 and β̂1, when regressing
upper tail correlation on Pearson correlations. For a given tail region, specified by
α, absence of shift and size asymmetry is given for ”β0 = 0” and ”β1 = 1”. The
corresponding t-statistics are reported in the next column. The F-statistic tests the
joint absence of shift and size asymmetry, with p-values given in the last column.



Chapter 4

Forecasting Correlation Matrices

Based on the implied correlation methodology in the previous chapter, we propose a new
method to forecast correlation matrices. The idea is to imply a correlation matrix based on
quantile forecasts. Although Expected Shortfall implied correlation matrices provide more
stable results, we will focus on Value-at-Risk for simplicity. Therefore, the initial step in
acquiring correlation forecasts is to obtain Value-at-Risk predictions.

4.1 CAViaR - Conditional Autoregressive Value-at-Risk

Traditional methods for forecasting VaR rely on the entire return distribution. For example,
Barone-Adesi et al. (1999) obtain VaR forecasts by bootstrapping filtered returns and scaling
the bootstrap sample with a volatility forecast. The VaR is then obtained from the scaled
bootstrap sample. In this case, bootstrapping filtered returns corresponds to modeling the
entire distribution. In contrast, the key concept of CAViaR models, as introduced by Engle
& Manganelli (2004), is to incorporate dynamics into quantiles using an autoregressive
specification instead of building a return distribution. CAViaR models directly estimate
VaR as a function of lagged variables from an information set, such as past VaR estimates,
lagged returns, and other relevant factors. We outline the methodology in the following
paragraph and adjust the notation for consistency.

Denote α ∈ R as the level related to a quantile or probability associated with a VaR. Let
{xt}t∈Z denote a set of variables. Typical candidates for {xt}t∈Z are financial returns. De-
fine βα ∈ Rp with p = k + r + 1 as a vector of undetermined parameters associated with
quantile level α which will be estimated at a later stage. Further, define qt,βα

≡ qt(xt, βα)
as the α-quantile of the conditional return distribution derived at t − 1. A generic CAViaR
specification maybe described by

qt,βα
= β0 +

k

∑
i=1

βiqt−i,βα
+

r

∑
j=1

β jl(xt−j). (135)

where l(·) is a function of finitely lagged observed variables. The CAViaR representation in
(135) allows a specific law of motion for a quantile according to any time series dynamic.
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The authors propose four different CAViaR specifications:

Adaptive: qt,βα
= qt−1,βα

+ β1{[1 + exp(G[xt−1 − qt−1,βα
])]−1 − θ} (136)

Symmetric Absolute Value: qt,βα
= β1 + β2qt−1,βα

+ β3|xt−1| (137)

Indirect GARCH(1,1): qt,βα
=
(

β1 + β2q2
t−1,βα

+ β3x2
t−1

)1/2
(138)

Asymmetric Slope: qt,βα
= β1 + β2qt−1,βα

+ β3(xt−1)
+ + β4(xt−1)

−. (139)

The adaptive model is a smoothed version of the step function given a finite value G, impos-
ing the rule that the VaR increases when returns exceed it and decreases otherwise. How-
ever, this approach does not account for the extent to which returns exceed VaR, treating
all exceedances equally. The symmetric absolute value and indirect GARCH specification
treat gains and losses equally but incorporate the magnitude of the returns. Finally, the
asymmetric slope not only incorporate past VaR estimates but additionally differentiates
between positive and negative returns.

We provide a brief overview of the quantile regression framework by Koenker & Bassett
(1978) which is used to estimate the presented CAViaR models. Unlike OLS regression
where the object of interest is the conditional mean, quantile regression addresses the con-
ditional quantile.

Definition 4.1.1 (Regression Quantile)
The conditional quantile of Y given X = x is the value qα(x) such that P(Y ≤ qα(x)|X = x) = α.
The regression model is of the form

yt = qα(xt) + εt with Qα(εt|xt) = 0

qα(·) is also called the quantile regression function.

Note that the α-quantile of the error and not the error itself is centered around 0 zero. Hence,
the error measures the deviation of the observed value from the conditional quantile as in
contrast to the conditional mean. This setting splits the residuals into a non-negative and
non-positive part proportionately according to the choice of α. Each residual is then evalu-
ated by a function ρα(·) that allows targeting a specific part of the destribution. Formally,

ρα(u) =

{
α · u if u ≥ 0,
(α − 1) · u if u < 0.

(140)

= u(α − I{u<0}) (141)
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Note that for α = 0.5 the loss function becomes symmetric and corresponds to regression
by least absolute deviations where the median represents the optimum assuming linear
dependency. Varying α tilts the function. Finally, the optimal parameters β̂α are defined as
a solution of

min
β

1
T

T

∑
t=1

ρα(yt − qt,βα
). (142)

One benefits of using quantile regression is that no assumptions regarding the return dis-
tributions are needed. Compared to traditional methods that impose at least an elliptical
distributions on returns, the normal distribution being the most prominent among those,
this method can cover any underlying distribution.

To put this method into context with CAViaR: The original quantile regression framework
assumes only a linear relationship of the conditional quantile of the form qα(xt) = X ′β.
Engle & Manganelli (2004) showed that quantile regression is also applicable for non-linear
dynamic relationships, i.e., if the dynamic of qα(xt) is described by a CAViaR model, the
parameter estimates remain consistent and asymptotically normal.

4.2 Dynamic Quantile Implied Correlation

4.2.1 Methodology

The Dynamic Quantile Implied Correlation (DQIC) or CAViaR-implied correlation is di-
rectly obtained by linking CAViaR to the asset and portfolio quantiles used to imply the
correlation matrix. Recall the expression for the implied correlation as a function of quan-
tiles for exact and overidentified systems defined in (90) and (118). We further assume that
the asset and portfolio quantiles share the same α-level and drop the α subscript for better
readability. The DQIC is directly obtained by substituting the static quantiles with dynamic
quantiles:

ρt ≡ ρ(qt) =

{
X−1

t q̃p,t for m = n(n − 1)/2

(X ′
tX t)−1X ′

tq̃p,t for m > n(n − 1)/2
(143)

with
qt =

[
q1,t q2,t ... qn,t qp1,t ... qpm,t

]′ (144)

where (q1,t, ..., qn,t) and (qp1,t, ..., qpm,t) are separately modeled by a CAViaR model. In this
study, we assume that the asset and portfolio quantiles are driven by an asymmetric slope
CAViaR specification as defined in (139). The choice for this model is motivated by the
nature of its ability to distinguish between the impact of positive and negative returns.
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Thus, asset and portfolio quantiles as described by

qi,t = βi,1 + βi,2qi,t−1 + βi,3(ri,t−1)
+ + βi,4(ri,t−1)

− for i = 1, ..., n (145)

and

qpj,t = βpj,1 + β j,2qpj,t−1 + βpj,3(rpj,t−1)
+ + βpj,4(rpj,t−1)

− for j = 1, ..., m. (146)

Note that the choice of the CAViaR α level corresponds directly to the desired tail area from
which the correlation matrix is derived.

4.2.2 Evaluation of Correlation Forecast

Unlike return forecasts, where the true value is available for performance evaluation, cor-
relation similar to volatility is not observable. Since both quantities are statistical measures,
they are always subject to sampling error, measurement noise, or specific assumptions. We
draw ideas from volatility forecasting. Usually, volatility forecast accuracy is valued ex-
post, i.e., compared to a historical measure by a reference measure. Andersen & Bollerslev
(1998) showed that using squared returns of high-frequency data as an approximation of
the “true” volatility significantly improves the accuracy of volatility forecasts. Based on this
finding, Skintzi & Xanthopoulos-Sisinis (2007) used realized correlation as a benchmark for
the accuracy of the correlation forecast. The forecast performance is evaluated by a statis-
tical loss function such as the mean absolute error (MAE) or the root mean squared error
(RMSE).
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Definition 4.2.1 (Realized Correlation)
Define t = 0, ..., T as the index of a specific time interval, e.g. day, week or month. Further define
K ∈ N as the amount of data points within this interval. Let ri,k define the return of the i-th asset at
time k ∈ {1, ..., n} within the t-th time interval. Then, the realized correlation is defined as

ρij,t =

K
∑

k=1
ri,krj,k√

K
∑

k=1
r2

i,k

√
K
∑

k=1
r2

j,k

. (147)

The numerator represents realized covariance while the square root of the sum of squared returns
corresponds to realized volatility.

Unfortunately, this approach requires high-frequency data, which were not available in
this study. An attempt was made to construct weekly realized correlation based on daily
returns, but the resulting series was highly volatile and exhibited unrealistic values. The
results are presented in Appendix D.4.

An alternative benchmark is the Exponentially Weighted Moving Average (EWMA) model.
The correlation matrix obtained in this way is a weighted sum of historical correlation
matrices and squared returns. If the initial matrix is positive definite, the EWMA filter will
preserve this property. We initialize the EWMA in our study with the sample covariance
matrix, ensuring that the entire dataset is taken into account. Other initialization methods
are discussed in Engle (2009). Regarding the smoothing parameter, RiskMetrics (1996)
suggested λ = 0.06 based on empirical experience. The correlation matrix is then derived
by normalizing the covariance matrix, with a diagonal matrix containing the conditional
volatility similar to the Dynamic Conditional Correlation (DCC) model discussed in Section
2.2.3. Formally, assume that the mean of the return series is zero, then the exponential
smoother is defined by

Hexp
t = λrt−1r′t−1 + (1 − λ)Hexp

t−1 (148)

Rexp
t = D−1

t Hexp
t D−1

t (149)

with Dt containing only the conditional volatilities on the diagonals.

However, evaluating correlation in this manner raises several concerns. As previously
noted, true correlation is unknown and both realized correlation and EWMA are only ap-
proximations with no theoretical foundation. Additionally, both methods are extensions
of Pearson correlation and lack the ability to capture tail behavior. Thus, comparing them
with DQIC is questionable.

This motivates another approach that evaluates the quality of correlation forecast in terms
of portfolio performance. The correlation forecasts are utilized to construct a global mini-
mum variance portfolio (GMVP) without short-selling to avoid unrealistic portfolio weights.
However, the correlation matrix does not incorporate the volatility of each asset, which is
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crucial for a meaningful asset allocation. Therefore, the implied correlation is re-scaled to
a covariance matrix by historical volatility. Our choice for the GMVP is driven by the fact
that this portfolio solely relies on covariance among assets and, by so, isolating covariance
as the key driver of portfolio performance. Furthermore, estimating expected returns is
not required, which significantly reduces the complexity of the portfolio construction pro-
cess. Recall that the optimization problem for obtaining the weights of the GMVP can be
formulated as follows:

Given n assets, let w = (w1, w2, . . . , wn)⊤ denote the vector of portfolio weights, Σ the n × n
covariance matrix of asset returns and 1 an n-dimensional vector of ones. The weights of
the GMVP portfolio are obtained as the solution of the following optimization problem:

min
w

w⊤Σw

subject to 1⊤w = 1,
w ≥ 0.

The evolution of the portfolio value is then compared to the portfolios constructed in the
same way using DCC forecasts and EWMA correlation instead. Finally, we evaluate the
portfolio performance based on drawdown metrics, e.g. Maximum Drawdown (MDD),
historical VaR and ES. The historical VaR for different alpha levels is obtained directly by
the sample quantile.

Definition 4.2.2 (Maximum Drawdown)
Let Vt represent the portfolio value at time t, where t = 0, 1, 2, . . . , T over the evaluation period
[0, T]. First, define the cumulative peak which tracks the portfolio highs up to time t as:

Pt = max
0≤s≤t

Vs (150)

A drawdown at time t is the relative decline from this cumulative peak:

Dt =
Vt − Pt

Pt
(151)

The Maximum Drawdown (MDD) over the period [0, T] is then the minimum of the drawdown
values:

MDD = min
0≤t≤T

Dt (152)

Note that the drawdown values are either zero or negative. Therefore, the minimum over all draw-
down values corresponds to the largest deviation from zero hence representing the Maximum Draw-
down.

We study the impact of different parameters on these drawdown metrics. More precise,
effects of implied correlation obtained by solving exact and overidentified system, different
CAViaR quantile levels and different rebalancing frequencies for daily and weekly returns.
Technically, the portfolio can be evaluated by other measures such as the Sharpe ratio or
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Sortino ratio. However, since the portfolio contains indices of different countries, it is not
clear how to select the risk free rate. We will therefore remain with the drawdown metrics
introduced in this section.

4.3 Empirical Study - Forecasting Correlation

For the empirical analysis, we investigate a subset of the global index portfolio from Section
3.7, selecting two indices per geographical location to represent the respective financial mar-
kets, i.e. DJI-NASDAQ (US-US), FCHI-GDAX (EU-EU), N225-HSI (ASIA-ASIA), DJI-GDAX
(US-EU), DJI-N225 (US-ASIA), and GDAX-N225 (EU-ASIA). Our intention is to study im-
plied correlation forecasts for markets in the same and across geographical regions. The
dataset contains Tdaily = 6522 data points from 1998-01-01 until 2022-12-30. We adopt an
80-20 split for the data, using 80% to estimate the CAViar/DCC models and 20% for out-
of-sample testing. Naturally, the split does not affect the EWMA and realized correlation
model. The empirical analysis is based on dynamic correlation estimates for daily and

No. Symbol Index Name (Country)
1 DJI Dow Jones Industrial Average (US)
2 NASDAQ Nasdaq Composite (US)
3 FCHI CAC 40 Index (EU)
4 GDAX DAX Performance-Index (EU)
5 N225 Nikkei 225 Index (ASIA)
6 HSI Hang Seng Index (ASIA)

Table 13: List of six stocks indices from different geographical regions used in the empirical
analysis.

weekly returns to assess short-term and longer-term dynamics in the correlation structure
across different markets. Selected quantile levels are α ∈ {0.25, 0.05, 0.01}. The realized cor-
relation is only considered for weekly returns due to data requirements. More precisely, we
only construct weekly realized correlation using daily data since daily realized correlation
requires high-frequency intraday data. Our focus is to investigate the behavior of DQIC
in general. We will, therefore, focus on the Asymmetric Slope CAViaR specification, see
equation (139), and do not explore the effects of different specifications of quantile dynam-
ics further. Finally, we employ two identification strategies for the DQIC and distinguish
between correlation implied by an exact identified system and an overidentified system.
Given n=6 assets, an exact identified system consists of 15 equations with equally weighted
two-asset portfolios. For the overidentified system, we include additional equally weighted
three-asset portfolios and, by so, raise the system to 35 equations.
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4.3.1 Analysis of Correlation Forecasts using EWMA and DCC as Benchmarks

The DCC model produces correlation forecasts that are smoother and less erratic compared
to those generated by EWMA and DQIC. This property is attributed to the inherent char-
acteristics of the DCC model to incorporate volatility clustering by utilizing underlying
conditional variance models that account for high and low volatility periods. In particular,
the parameters of the DCC model are optimized for each asset time series such that result-
ing correlations are more adaptive to long-term trends rather than reactive to short-term
fluctuations. As a result, the forecasts are less prone to noise and do not overreact to sud-
den spikes in volatility. Estimation results of the DCC model are presented in Appendix
D.2.

In contrast, the EWMA model puts more emphasis on recent data by assigning exponen-
tially greater weights to the latest observations. By construction, this property renders
EWMA sensitive to recent changes in market conditions, making it more responsive to
short-term shifts. However, unlike the DCC model, it lacks the ability to account for
volatility clustering and, therefore, might overreact to temporary spikes without distin-
guishing between impermanent shocks and more persistent volatility patterns. As a result,
the EWMA correlation estimates are more volatile due to their sensitivity to noise.

Correlation forecasts by the DQIC model are volatile, similar to the EWMA model, but
their magnitudes vary considerably depending on the respective market. Markets that are
traditionally stronger correlated, e.g., DJI and NASDAQ or GDAX and FCHI, exhibit less
variation, whereas loosely connected markets, in particular western and asian markets,
behave more noisy, see Figure 19.

The volatile behavior is further observed in both correlation forecasts implied by in-sample
and out-of-sample CAViaR. Parameter estimates for the CAViaR model are shown in Ap-
pendix D.1. Although the dynamic of the conditional quantile in the CAViaR model does
impose a certain law of motion, it does not incorporate the ability to specifically account for
volatility clustering, resulting in the erratic nature of the correlation forecasts. Focusing on
the effects of the CAViaR quantile level, we expect that a lower CAViaR level should result in
stronger correlation coefficients, i.e., correlation forecasts implied by a 0.01 CAViaR model
should exhibit a stronger tendency towards one compared to a 0.05 CAViaR specification.
This effect is clearly visible for correlations beyond geographical regions and further holds
for the two US markets. Surprisingly, we do not observe this behavior for European and
Asian markets. Similar results are obtained for weekly return frequencies; see Appendix
D.3.
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We present the benchmark results in Table 14. Recall that the Mean Absolute Error and
Root Mean Square Error are defined as follows:

MAE =
1
T

T

∑
t=1

|ρ̂ij,t − ρij,t| and RMSE =

√√√√ 1
T

T

∑
t=1

(ρ̂ij,t − ρij,t)2 (153)

where ρ̂ij,t represents the correlation forecast obtained by the DQIC and ρij,t the assumed
true value. Comparing MAE and RMSE values across different index pairs, models, and
DQIC levels suggests that forecasting based on daily returns yields more accurate predic-
tions compared to weekly returns in general. Between models, DCC often performs better
than EWMA at lower DQIC levels, while EWMA seems to perform better for less extreme
quantiles. Among index pairs, DJI and NASDAQ have lower MAE and RMSE, particularly
for 0.05 and 0.01, than all other pairs, indicating that DQIC is closest to DCC and EWMA
for American markets. Regarding return frequency, daily returns yield better forecasts than
weekly returns. By using weekly data, fluctuations within the week are discarded, leading
to a loss of information that could improve the predictive powers of the model.

4.3.2 Analysis of Correlation Forecasts using Global Minimum Variance Portfolio

In the previous section, we assumed that EWMA or DCC approximates the true correlation
and compared them against DQIC with different quantile levels. As mentioned before, the
true correlation is not observable, and neither EWMA nor DCC are tail measures. In this
section, we evaluate the quality of correlation forecasts by constructing global minimum
variance portfolios and evaluating different drawdown metrics based on their performance.
We will focus mainly on the Maximum Drawdown and historical Expected Shortfall.

Drawdown metrics for DQIC, DCC and EWMA portfolios are presented in Table 15. Start-
ing with daily returns: If the portfolio is balanced on daily frequency, the exact identified
DQIC 25% achieves the lowest MDD of 43.98%. This specific case also presents the largest
ES compared to other settings. For overidentified systems, DQIC 25% yields the lowest ES
for both 1% and 5%, although only slightly smaller than DCC and EWMA. Balancing the
portfolio on monthly frequency yields roughly equal MDD values, with the exact identified
DQIC 25% being slightly larger. Regarding ES, the portfolios constructed by DCC yield the
lowest results. For weekly returns and weekly portfolio rebalancing, exact identified DQIC
5% and 25% yield the lowest MDD with 51.793% and 51.776%, respectively. Surprisingly,
overidentified DQIC 1% presents a significantly larger MDD with 62%. The ES is approxi-
mately the same for all settings, with overidentified DQIC 5% (8.997) being slightly lower.
Regarding monthly rebalancing, we find the exact identified DQIC 1% to have the lowest
MDD of 50.995% while ES of all settings shows no notable patterns. A potential reason
could be that incorporating information from the tails might lead to estimates that are more
robust. DCC and EWMA generally yield lower drawdown estimates than DQIC portfolios
on 5% and 1% levels. We also noticed that the rebalancing frequency only moderately im-



Empirical Study - Forecasting Correlation 84

2000 2004 2008 2012 2016 2020
0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Asymmetric CAViaR - In-sample - DJI vs NASDAQ

DQIC =0.05 DQIC =0.01 EWMA DCC

2019-01 2019-07 2020-01 2020-07 2021-01 2021-07 2022-01 2022-07 2023-01 2023-07
0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Asymmetric CAViaR - Out-of-sample - DJI vs NASDAQ

DQIC =0.05 DQIC =0.01 EWMA DCC

2000 2004 2008 2012 2016 2020
0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Asymmetric CAViaR - In-sample - DJI vs GDAX

DQIC =0.05 DQIC =0.01 EWMA DCC

2019-01 2019-07 2020-01 2020-07 2021-01 2021-07 2022-01 2022-07 2023-01 2023-07
0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Asymmetric CAViaR - Out-of-sample - DJI vs GDAX

DQIC =0.05 DQIC =0.01 EWMA DCC

2000 2004 2008 2012 2016 2020
0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Asymmetric CAViaR - In-sample - N225 vs HSI

DQIC =0.05 DQIC =0.01 EWMA DCC

2019-01 2019-07 2020-01 2020-07 2021-01 2021-07 2022-01 2022-07 2023-01 2023-07
0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Asymmetric CAViaR - Out-of-sample - N225 vs HSI

DQIC =0.05 DQIC =0.01 EWMA DCC

Figure 19: Dynamic Quantile Implied Correlation - Implied correlation from an exact iden-
tified portfolio system in comparison with DCC and EWMA correlation for daily
returns.
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EWMA DJI vs. NASDAQ DJI vs. GDAX N225 vs. HSI

DQIC α MAE RMSE MAE RMSE MAE RMSE

Daily Returns
Exact 0.25 0.349 0.451 0.464 0.570 0.334 0.418

0.05 0.189 0.249 0.207 0.258 0.294 0.370
0.01 0.152 0.210 0.218 0.282 0.290 0.363

Over 0.25 0.486 0.691 0.456 0.568 0.441 0.576
0.05 0.193 0.254 0.199 0.250 0.313 0.400
0.01 0.205 0.272 0.201 0.259 0.336 0.418

Weekly Returns
Exact 0.25 0.356 0.524 0.327 0.429 0.567 0.684

0.05 0.366 0.483 0.333 0.438 0.287 0.358
0.01 0.397 0.566 0.347 0.462 0.439 0.538

Over 0.25 0.363 0.468 0.221 0.277 0.676 0.795
0.05 0.363 0.497 0.309 0.395 0.324 0.400
0.01 0.435 0.617 0.271 0.351 0.407 0.504

DCC DJI vs. NASDAQ DJI vs. GDAX N225 vs. HSI

DQIC α MAE RMSE MAE RMSE MAE RMSE

Daily Returns
Exact 0.25 0.388 0.517 0.476 0.572 0.279 0.344

0.05 0.200 0.264 0.217 0.309 0.301 0.376
0.01 0.144 0.191 0.251 0.309 0.296 0.368

Over 0.25 0.528 0.744 0.447 0.555 0.421 0.544
0.05 0.195 0.251 0.215 0.265 0.332 0.412
0.01 0.187 0.229 0.228 0.285 0.345 0.420

Weekly Returns
Exact 0.25 0.376 0.542 0.324 0.422 0.612 0.721

0.05 0.333 0.450 0.319 0.411 0.261 0.320
0.01 0.355 0.522 0.318 0.424 0.367 0.436

Over 0.25 0.355 0.481 0.213 0.259 0.718 0.833
0.05 0.333 0.461 0.286 0.361 0.295 0.370
0.01 0.407 0.580 0.255 0.317 0.338 0.416

Table 14: Forecasting benchmarks - The DQIC α column indicates the CAViaR quantile lev-
els from which the tail correlation matrix is implied. The quality of the implied
correlation forecasts is evaluated by the MAE and RMSE using EWMA (top panel)
and DCC (bottom panel) as reference models.
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pacts the outcome. Furthermore, DCC mostly outperforms EWMA across all rebalancing
frequencies and risk metrics, which could be related to the nature of DCC models to reflect
financial returns better.

Although our analysis was mainly based on drawdown measures, we also visualized the
portfolio performance with monthly rebalancing frequency in Figure 21 and 22. EWMA,
DCC, and DQIC portfolios outperform the German stock index GDAX in all cases. How-
ever, the American tech index Nasdaq (NASDAQ) remains superior to all portfolios. For
daily returns, the exact identified DQIC 1% portfolio performed surprisingly well, sharing
the best performance with DQIC 5% and EWMA if overidentified DQICs are considered.
One surprising result is the performance of weekly rebalanced DQIC 25% portfolios derived
from an exact identified system that outperformed all other portfolios by a large margin.
This effect is also observable for overidentified DQICs, although not as extreme. Portfolio
performance with daily/weekly rebalancing frequency is visualized in Appendix D.5 in
Figure 36 and 37 . One curious result is the portfolio performance of DQIC 25%, which
surpasses even the NASDAQ by 1300 points. Although these results are appealing, the
transaction costs render portfolio management with daily rebalancing unfeasible. In addi-
tion, stock markets from different geographical locations have different trading times. As a
result, it is impossible to simultaneously trade all assets in a globally diversified portfolio
during a single window.

We conclude this analysis by visualizing the portfolio weights and how they evolve for
exact identified DQIC portfolios based on weekly returns in Figure 20. Portfolio weights
produced by EWMA and DCC exhibit smooth and gradual changes in asset allocation. In
contrast, DQIC portfolios are more reactive to extreme market conditions, especially for
the 1% and 5% levels, featuring high variability in allocations. In this specific case, the
DQIC at the 1% level also produces the lowest MDD and moderate ES compared to other
portfolios. The portfolios are mainly composed of DJI, GDAX, and HSI, presenting one
index per geographic location, which seems reasonable since including strongly correlated
indices of the same area would not improve diversification benefits. While EWMA and
DCC portfolios include the remaining indices occasionally and only for a short period,
DQIC portfolios allocate wealth to these indices more often and abruptly.



87 Forecasting Correlation Matrices

2000 2004 2008 2012 2016 2020 2024
Year

0.0

0.2

0.4

0.6

0.8

1.0
Po

rtf
ol

io
 W

ei
gh

ts
Portfolio Weights - EWMA - Weekly Returns - Monthly Rebalancing

DJI
NASDAQ
FCHI
GDAX
N225
HSI

2000 2004 2008 2012 2016 2020 2024
Year

0.0

0.2

0.4

0.6

0.8

1.0

Po
rtf

ol
io

 W
ei

gh
ts

Portfolio Weights - DCC - Weekly Returns - Monthly Rebalancing
DJI
NASDAQ
FCHI
GDAX
N225
HSI

2000 2004 2008 2012 2016 2020 2024
Year

0.0

0.2

0.4

0.6

0.8

1.0

Po
rtf

ol
io

 W
ei

gh
ts

Portfolio Weights - CAViaR 25% - Exact Identification - Weekly Returns - Monthly Rebalancing
DJI
NASDAQ
FCHI
GDAX
N225
HSI

2000 2004 2008 2012 2016 2020 2024
Year

0.0

0.2

0.4

0.6

0.8

1.0

Po
rtf

ol
io

 W
ei

gh
ts

Portfolio Weights - CAViaR 5% - Exact Identification - Weekly Returns - Monthly Rebalancing
DJI
NASDAQ
FCHI
GDAX
N225
HSI

2000 2004 2008 2012 2016 2020 2024
Year

0.0

0.2

0.4

0.6

0.8

1.0

Po
rtf

ol
io

 W
ei

gh
ts

Portfolio Weights - CAViaR 1% - Exact Identification - Weekly Returns - Monthly Rebalancing
DJI
NASDAQ
FCHI
GDAX
N225
HSI

Figure 20: Evolution of portfolio weights - Presented are the portfolio weights with monthly
rebalancing and weekly returns. DQIC from an exact identified system are con-
sidered.
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Figure 21: DQIC portfolio performance - Depicted are the evolution of portfolio values for
daily (top) and weekly (bottom) returns. Correlation is implied by an exact
identified system with monthly rebalancing frequency. The verticle line divides
the chart into in-sample CAViaR/DCC (left) and out-of-sample CAViaR/DCC
(right) predictions. Initial investment and indices were normed to 100 monetary
units. Two indices (GDAX, NASDAQ) are included for comparison
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Figure 22: DQIC portfolio performance - Depicted are the evolution of portfolio values for
daily (top) and weekly (bottom) returns. Correlation is implied by an overiden-
tified system with monthly rebalancing frequency. The verticle line divides the
chart into in-sample CAViaR/DCC (left) and out-of-sample CAViaR/DCC (right)
predictions. Initial investment and indices were normed to 100 monetary units.
Two indices (GDAX, NASDAQ) are included for comparison
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Reported in % Daily/Weekly Rebalancing Monthly Rebalancing

MDD VaR 5% VaR 1% ES 5% ES 1% MDD VaR 5% VaR 1% ES 5% ES 1%

Daily Returns

EWMA 55.518 1.605 2.759 2.436 3.991 54.580 1.591 2.754 2.439 4.040
DCC 54.286 1.579 2.766 2.420 3.977 54.433 1.588 2.750 2.420 3.968

Exact Identification

DQIC 25% 43.982 1.656 3.056 2.601 4.429 57.232 1.685 3.128 2.661 4.536
DQIC 5% 56.852 1.643 2.854 2.500 4.187 54.357 1.592 2.809 2.475 4.098
DQIC 1% 55.730 1.621 2.785 2.473 4.217 54.713 1.592 2.786 2.455 4.132

Overidentification

DQIC 25% 49.940 1.550 2.815 2.394 3.860 55.204 1.655 3.011 2.585 4.286
DQIC 5% 55.130 1.633 2.819 2.490 4.207 54.059 1.585 2.792 2.477 4.110
DQIC 1% 56.247 1.616 2.872 2.464 4.122 54.573 1.582 2.753 2.448 4.079

Weekly Returns

EWMA 53.895 3.720 6.246 5.629 9.192 53.447 3.745 6.301 5.623 9.182
DCC 53.640 3.662 6.476 5.674 9.335 54.452 3.663 6.513 5.680 9.344

Exact Identification

DQIC 25% 51.793 3.700 6.191 5.439 8.986 53.178 3.667 6.456 5.533 9.038
DQIC 5% 51.776 3.673 6.272 5.527 9.023 51.574 3.620 6.541 5.573 9.000
DQIC 1% 55.686 3.892 6.665 5.747 9.631 50.955 3.773 6.345 5.590 9.384

Overidentification

DQIC 25% 52.505 3.699 6.470 5.652 9.681 54.101 3.655 6.410 5.568 9.482
DQIC 5% 51.997 3.723 6.193 5.453 8.997 52.992 3.718 6.526 5.552 9.066
DQIC 1% 62.041 3.905 6.371 5.913 9.422 56.399 3.575 6.712 5.648 9.291

Table 15: Portfolio drawdown metrics - Drawdown metrics of portfolios for daily and weekly returns. Results of different
identifcation and rebalancing strategies are presented. We report positive values that indicate losses.
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Chapter 5

Conclusion

We present a simulation framework specifically designed to account for the characteristics
of financial time series, also known as ”stylized” facts. The building blocks of the frame-
work include stochastic volatility models (GARCH, GJR-GARCH) with different error dis-
tributions (Normal, t-student) to account for asset-specific characteristics, while conditional
correlation models and copulas address the dependence structure among the assets. We
leveraged the abilities of each model and combined them into a streamlined, unified frame-
work.

Obtaining the simulation parameters amounts to estimating the model components where
the residuals of each stage are passed to the next until an independent and identically
distributed sample is obtained. Financial returns are first filtered for heteroskedasticity
and subsequently for cross-correlation. Copula models account for the remaining non-
linear relationships in the data. Although the data is filtered in multiple stages, we find
that the parameters describing the stochastic volatility model are boundary solutions to the
likelihood optimization, implying that the solution does not necessarily represent a global
optimum. In this case, the standard errors are meaningless, and the model is potentially
misspecified, although it might prove sufficient for the tasks at hand. This reminds us that
a statistical model remains an approximation of the true data-generating process.

Based on two stock indices (DAX, NASDAQ) and gold prices, we demonstrated an entire
calibration process of the simulation model and provided an introductory example of how
to obtain simulated return paths. Possible applications are discussed, such as portfolio
optimization, risk projection, and Monte Carlo simulation. Parameters can be manually
modified to produce more extreme events, especially for stress testing. One benefit of the
modular structure regarding the simulation model is that the components can be easily
exchanged. A better description of asset-specific characteristics can be acquired by select-
ing a more sophisticated error distribution. Alternative correlation dynamics beyond the
GARCH-like law of motion and advanced copulas for more control over non-linear rela-
tionships are worth exploring.

Although, this model is able to account for many characteristics, it offers no dedicated way
to address correlation for extreme market scenarios especially when returns jointly decline.
In this framework only parameters of the error distributions governing the tail behavior
cover this aspect. Modeling tail dependence structure also becomes increasingly difficult
if more complex models are considered. Consequently, we seek an alternative solution by
adjusting the correlation matrix to tail events.

Correlation remains essential for measuring dependence in financial applications. Although
the drawbacks of this measure are well studied, it remains the primary building block
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in almost all financial modeling methods as soon as we depart from the univariate asset
universe into multivariate return modeling, portfolio optimization, and risk management.
Motivated by numerous empirical evidence in favor of increased correlation, especially
during bearish markets, we propose a new method to measure correlation for different
scenarios implied by a monetary quantile-based risk measure, namely, Value-at-Risk and
Expected Shortfall. This enables us to condition correlation to extreme events that are
economically interpretable by selecting a respective quantile instead of a static threshold.
Correlation is implied by solving a linear system of equations, each representing a portfolio
with different asset weights, which also allows for the consideration of large portfolios
beyond two assets. The choice of portfolio weights depends on the financial constraints of
an investor and must also be chosen such that numerical stability is guaranteed.

The empirical analysis studies implied correlation of 10 stock indices from different ge-
ographical location. We evaluate the effects of different parameter settings by varying
quantile levels, return frequencies, risk measures, portfolio weights, and tail regions. In
particular, extreme events are considered by choosing a low/high quantile level, which can
be described as “moving into the tails” where lower quantiles represent losses and upper
quantiles gains.

Our initial analysis showed that VaR-implied correlation tends to behave more volatile.
ES-implied correlation produces stable results by its nature to incorporate additional infor-
mation from the tail. Therefore, the remaining analysis is focused ES-implied correlation.
We observe that indices that were already strongly correlated by Pearson standards tend
to increase for implied correlation when extreme quantiles are considered. Pairs that were
weakly correlated do not display consistent behavior; sometimes, they even change signs.
This pattern is more pronounced for the lower tail quantiles, i.e., quantiles describing losses.
A possible explanation is the scarcity of data for extreme quantiles and potential sampling
errors. We further emphasize the geographical attribute of each index. European and US
markets are traditionally closer aligned, while Asian markets seem less sensitive to changes
in the Western economy. This is also reflected in the variability of the correlation estimates,
where pairs involving an Asian index have significantly larger standard errors. If implied
correlation estimates are viewed as an entire sample over different return frequencies, the
median of lower implied correlation estimates is consistently higher than upper implied
correlation once extreme quantiles are considered.

Regarding the system of portfolio equations from which correlation is implied, the choice
of weights significantly impacts the estimation outcome. We mainly studied correlation
implied by an exact identified system with deterministic two-asset portfolios where the
weights are chosen such that multicollinearity is avoided. Our results in this setting differ
slightly from an overidentified system with equally weighed two- and three-asset portfolios.
However, randomly weighted portfolios induce significant instabilities such as boundary vi-
olations and non-positive-semidefinite matrices, which occur particularly often if weights
are put on all assets. Randomly weighted two-asset portfolios produce similar patterns to
the deterministic cases but remain unstable. Therefore, selecting weights is not straight-
forward and must be carefully done to guarantee numerical stability while maintaining
economic interpretability.
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The second part of our research investigates the differences between implied correlation
and Pearson correlation. An initial descriptive analysis of the deviations between implied
and Pearson correlation yields no apparent results. Differences between the two types of
correlation vary for different parameter sets. However, the most considerable deviations are
produced when extreme quantiles are considered. The average correlation tends to increase
while moving into the lower tails for daily and weekly returns but not so for monthly
returns. Further analysis of the ten strongest correlated pairs revealed a consistent increase
for lower quantiles in the lower tail.

Finally, we investigate systematic deviations using a linear regression approach. Geomet-
rically, if two correlation samples are equal, the corresponding scatterplot should lie on a
diagonal line of 45 degrees. Analyzing distortions in a statistical context translates into
testing whether the intercept differs from zero, the slope differs from one, or both. First,
we compare lower and upper implied correlations. The results indicate a systematic shift
where the correlation implied by losses seems to be systematically higher than that implied
by gains, meaning that an intercept of zero is often rejected. Systematic decreasing slope
coefficients suggest that large correlation coefficients implied by lower tails are larger rela-
tive to their counterpart in the upper tail. This finding is in line with our expectations. We
find strong evidence for size distortion but no evidence for a systematic shift between lower
implied and Pearson correlation. Similar results were also obtained when upper tails were
explored instead. In almost all cases, symmetry was rejected.

Although the initial study produces mixed results, we believe that the principle of risk-
implied correlation has the potential to be a valuable tool in addition to common depen-
dence modeling. Further research can be conducted on the choice of risk measure. In
theory, any quantile-based risk measure is viable for this approach. So far, only VaR and
ES shortfall have been studied. Recent literature proposes the Range Value-at-Risk Cont
et al. (2010) as a generalization that incorporates characteristics from both measures. Inves-
tigating quantile regions by a refined choice of quantile levels for each asset instead of one
uniform quantile level might also be worth exploring.

Finally, we introduce a method to predict correlation matrices as an extension of the quan-
tile implied correlation methodology. Our idea is first to obtain quantile forecasts using
CAViaR models by Engle & Manganelli (2004) and subsequently imply correlation matrices
based on these CAViaR predictions. One benefit of using CAViaR models is the possibility
of modeling quantiles directly instead of the entire return distribution while specifying a
particular law of motion. We selected the asymmetric slope dynamic for its ability to treat
positive and negative returns differently. Naturally, other dynamics are possible but are not
further explored in this initial study, which focuses on the general viability of this approach.

One obstacle in evaluating correlation forecasts is the lack of a valid reference value. Cor-
relation is a statistical measure prone to bias, sampling errors, and false assumptions, e.g.,
linear relationships. As a result, realized correlation, Exponentially Weighted Moving Av-
erage, and Dynamic Conditional Correlation serve only as an approximation of the actual
correlation. Realized correlation might provide an efficient benchmark similar to realized
volatility but relies on high-frequency data for accuracy, which is not available in this study.
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Nevertheless, using these quantities as benchmarks is questionable. However, we can de-
duce how DQICs behave compared to established methods while treating them as an ap-
proximation than a true benchmark. Unlike DCC, the DQIC and EWMA correlations exhibit
more variability since neither model can control volatility clustering. The magnitude varies
significantly depending on the markets. Pairs involving American and European markets
exhibit moderate variability. In addition, DQICs with extreme quantiles, e.g., 1% CAViaR,
are closer to one. The results involving Asian indices are less conclusive. A potential reason
is the geographical distance and the less intertwined economic systems relative to Western
markets.

An alternative approach is to construct portfolios based on the correlation forecasts and
evaluate the portfolio value in terms of drawdown metrics, e.g., Maximum Drawdown,
Value-at-Risk, or Expected Shortfall. Correlation forecasts were scaled with the historical
volatility to obtain covariance matrices, subsequently used to construct Markowitz-style
Global Minimum Variance Portfolios. DCC and EWMA portfolios generally produced sim-
ilar results over all return and rebalancing frequencies. Regarding DQIC portfolios, rebal-
ancing and identification strategies have the most effect on daily returns, while estimates
based on weekly returns remain primarily unchanged. A possible reason is that DQIC
models are more responsive to short-term changes or prone to noise. This is also reflected
in the change in portfolio weights.

Although this initial study does not provide clear results, we encounter cases where tail-
implied correlation portfolios do indeed yield better drawdown metrics and performance
than portfolios based on Pearson correlation. Further studies on other parameter settings,
e.g., different CAViaR quantile dynamics, identification, and rebalancing strategies, might
provide additional insights. Finally, portfolio behavior for different quantile levels and a
different type of portfolio in general beyond GMVP are worth exploring.
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A Advances in Risk and Return Modelling: Estimation, Simulation, Applica-
tion

A.1 Benchmark Model with MBB Surface

DAX NASDAQ Gold

GARCH(1,1) Parameters

ω̂ 0.032*** 0.024*** 0.003***
SE filtered (0.007) (0.004) (0.001)
t-stat 4.270 4.963 3.439

α̂1 0.086*** 0.097*** 0.058***
SE filtered (0.009) (0.008) (0.007)
t-stat 8.875 11.042 8.208

β̂1 0.894*** 0.889*** 0.941***
SE filtered (0.011) (0.009) (0.007)
t-stat 80.141 91.899 120.322

DCC(1,1) Parameters

λ̂1 0.001
SE filtered (0.006)
t-stat 1.643

λ̂2 0.984***
SE filtered (0.054)
t-stat 18.084

t-Copula Parameters

ν̂Cop 3.836
SE (0.003)

Σcop

DAX 1
NASDAQ 0.013 1
GOLD -0.004 -0.017 1

*,**, and *** denote statistical significance levels at 10, 5, and 1 percent, respectively. Corresponding
critical values are derived from a standard normal distribution. The tests evaluate whether the esti-
mated values are statistically different from zero. Standard errors were obtained using the modified
filtered historical bootstrap method with k = 300 iterations.

Table 16: Parameter estimates for a GARCH-DCC-t-Copula model with univariate normal
white noise, GARCH-like correlation dynamics and t-Copula. Standard errors are
obtained by filtered historical bootstrap.
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DAX NASDAQ Gold

GARCH(1,1) Parameters

ω̂ 0.032 0.024 0.003
SE block (0.063) (0.061) (0.052)
t-stat 0.504 0.390 0.068

α̂1 0.086*** 0.097*** 0.058**
SE block (0.022) (0.024) (0.025)
t-stat 3.775 3.923 2.287

β̂1 0.894*** 0.889*** 0.941***
SE block (0.039) (0.033) (0.060)
t-stat 22.899 26.758 15.534

DCC(1,1) Parameters

λ̂1 0.001
SE block (0.007)
t-stat 1.405

λ̂2 0.984***
SE block (0.245)
t-stat 4.009

t-Copula Parameters

ν̂Cop 3.836
SE block (0.002)

Σcop

DAX 1
NASDAQ 0.013 1
GOLD -0.004 -0.017 1

*,**, and *** denote statistical significance levels at 10, 5, and 1 percent, respectively. Corresponding
critical values are derived from a standard normal distribution. The tests evaluate whether the esti-
mated values are statistically different from zero. Standard errors were obtained using the Moving
Block Bootstrap with blocklength l = 5.

Table 17: Parameter estimates for a GARCH-DCC-t-Copula model with univariate gaussian
errors, GARCH-like correlation dynamics and t-Copula. Standard errors are ob-
tained by moving block bootstrap.
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Figure 23: Negative logarithmic likelihood surface - NASDAQ
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Figure 24: Negative logarithmic likelihood surface - GOLD
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B Implied Correlation - Results

B.1 Pearson Correlation Estimates

Daily Returns DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1.000
NASDAQ 0.809 1.000
IBEX 0.510 0.433 1.000
FCHI 0.556 0.483 0.867 1.000
SSMI 0.492 0.407 0.728 0.810 1.000
FTMIB 0.517 0.449 0.860 0.874 0.734 1.000
GDAX 0.576 0.520 0.794 0.891 0.773 0.814 1.000
FTSE 0.529 0.439 0.775 0.869 0.790 0.779 0.804 1.000
N225 0.148 0.125 0.263 0.293 0.292 0.248 0.265 0.297 1.000
HSI 0.199 0.187 0.317 0.351 0.324 0.307 0.339 0.372 0.506 1.000

Weekly Returns DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1.000
NASDAQ 0.772 1.000
IBEX 0.672 0.586 1.000
FCHI 0.751 0.678 0.858 1.000
SSMI 0.698 0.571 0.721 0.800 1.000
FTMIB 0.677 0.612 0.861 0.883 0.732 1.000
GDAX 0.747 0.684 0.818 0.915 0.787 0.838 1.000
FTSE 0.760 0.648 0.771 0.878 0.797 0.787 0.831 1.000
N225 0.545 0.509 0.534 0.599 0.533 0.550 0.581 0.572 1.000
HSI 0.489 0.493 0.500 0.550 0.478 0.504 0.545 0.572 0.545 1.000

Monthly Returns DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1.000
NASDAQ 0.748 1.000
IBEX 0.678 0.633 1.000
FCHI 0.777 0.712 0.849 1.000
SSMI 0.730 0.568 0.794 0.794 1.000
FTMIB 0.661 0.627 0.857 0.885 0.695 1.000
GDAX 0.778 0.734 0.784 0.915 0.754 0.811 1.000
FTSE 0.789 0.652 0.756 0.844 0.741 0.755 0.796 1.000
N225 0.606 0.607 0.579 0.622 0.562 0.582 0.613 0.586 1.000
HSI 0.580 0.590 0.537 0.524 0.439 0.470 0.535 0.592 0.483 1.000
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B.2 GARCH Estimates for Filtering Heteroskedasticity

Presented below are the GARCH models that are used to filter the return series for boot-
strapping. The standard error of an implied correlation estimate is derived in this way.

DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

GARCH(1,1) Parameters

ω̂ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SE (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
t-stat 1.881e+04 5.221e+07 1.779e+05 3.369e+06 1.332e+06 4.827e+05 1.135e+05 2.109e+06 1.589e+04 5.366e+06

α̂1 0.100 0.099 0.100 0.100 0.100 0.105 0.100 0.100 0.100 0.100
SE (0.000) (0.000) (0.008) (0.001) (0.000) (0.007) (0.005) (0.000) (0.001) (0.000)
t-stat 2.064e+02 2.973e+02 1.285e+01 8.209e+01 6.676e+03 1.509e+01 2.047e+01 6.231e+04 6.856e+01 3.329e+02

β̂1 0.880 0.871 0.879 0.880 0.880 0.884 0.880 0.880 0.880 0.880
SE (0.003) (0.003) (0.007) (0.003) (0.003) (0.003) (0.006) (0.002) (0.003) (0.003)
t-stat 3.325e+02 3.011e+02 1.178e+02 2.547e+02 3.421e+02 2.820e+02 1.537e+02 3.643e+02 2.522e+02 3.270e+02

Table 18: Estimates for a GARCH(1,1) model with normal errors for daily returns.

DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

GARCH(1,1) Parameters

ω̂ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SE (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
t-stat 4.927 5.969 6.354 6.394 3.967 0.972 2.539 7.321 1.838 7.457

α̂1 0.200 0.200 0.100 0.109 0.246 0.200 0.200 0.175 0.187 0.090
SE (0.045) (0.034) (0.027) (0.034) (0.057) (0.088) (0.060) (0.052) (0.090) (0.025)
t-stat 4.399 5.891 3.680 3.258 4.293 2.270 3.317 3.357 2.076 3.615

β̂1 0.700 0.780 0.880 0.871 0.678 0.700 0.700 0.782 0.588 0.892
SE (0.041) (0.029) (0.027) (0.021) (0.047) (0.181) (0.079) (0.028) (0.183) (0.020)
t-stat 16.918 26.686 32.521 41.763 14.383 3.865 8.852 27.649 3.222 44.466

Table 19: Estimates for a GARCH(1,1) model with normal errors for weekly returns.

DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

GARCH(1,1) Parameters

ω̂ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000
SE (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000)
t-stat 2.018 1.640 1.351 0.819 1.608 1.348 2.005 1.626 3.265 2.311

α̂1 0.100 0.151 0.041 0.192 0.082 0.055 0.149 0.152 0.161 0.157
SE (0.042) (0.062) (0.058) (0.156) (0.059) (0.046) (0.080) (0.070) (0.093) (0.054)
t-stat 2.400 2.445 0.712 1.234 1.392 1.188 1.860 2.181 1.729 2.903

β̂1 0.880 0.819 0.879 0.682 0.838 0.877 0.737 0.734 0.000 0.765
SE (0.033) (0.068) (0.088) (0.285) (0.092) (0.055) (0.089) (0.119) (0.234) (0.063)
t-stat 26.791 12.097 9.953 2.394 9.150 15.795 8.319 6.184 0.000 12.074

Table 20: Estimates for a GARCH(1,1) model with normal errors for monthly returns.
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B.3 Estimates for Equally Weighted Two-Asset Portfolios - Exact Identification

Estimates on the lower triangular matrix represent correlation implied by losses and esti-
mates from the upper triangular matrix represent correlation implied by gains.

Value-at-Risk - Daily Returns - Theoretical Standard Errors

α = 0.1/0.9 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.804 (0.077) 0.418 (0.065) 0.515 (0.07) 0.418 (0.066) 0.501 (0.068) 0.48 (0.17) 0.472 (1.607) 0.091 (0.064) 0.112 (0.058)
NASDAQ 0.925 (0.091) 1 0.432 (0.057) 0.492 (0.058) 0.48 (0.06) 0.454 (0.06) 0.495 (0.135) 0.497 (1.283) 0.148 (0.039) 0.168 (0.04)
IBEX 0.494 (0.07) 0.409 (0.051) 1 0.864 (0.1) 0.676 (0.086) 0.826 (0.098) 0.825 (0.204) 0.735 (1.829) 0.201 (0.048) 0.286 (0.049)
FCHI 0.584 (0.072) 0.483 (0.055) 0.916 (0.094) 1 0.783 (0.093) 0.944 (0.104) 0.89 (0.22) 0.85 (2.128) 0.207 (0.048) 0.364 (0.053)
SSMI 0.443 (0.068) 0.346 (0.052) 0.672 (0.084) 0.75 (0.086) 1 0.695 (0.085) 0.74 (0.215) 0.681 (2.02) 0.166 (0.05) 0.258 (0.051)
FTMIB 0.523 (0.07) 0.45 (0.052) 0.907 (0.097) 0.905 (0.093) 0.714 (0.084) 1 0.842 (0.203) 0.768 (1.888) 0.203 (0.047) 0.338 (0.051)
GDAX 0.512 (0.186) 0.474 (0.128) 0.846 (0.207) 0.891 (0.221) 0.723 (0.214) 0.836 (0.201) 1 0.815 (2.056) 0.227 (0.102) 0.373 (0.121)
FTSE 0.488 (1.146) 0.468 (0.828) 0.782 (1.384) 0.848 (1.501) 0.736 (1.492) 0.805 (1.381) 0.816 (1.512) 1 0.208 (0.784) 0.366 (1.059)
N225 0.175 (0.073) 0.175 (0.043) 0.276 (0.052) 0.309 (0.055) 0.316 (0.06) 0.211 (0.049) 0.248 (0.11) 0.37 (0.781) 1 0.474 (0.062)
HSI 0.197 (0.06) 0.218 (0.04) 0.365 (0.047) 0.441 (0.053) 0.332 (0.051) 0.375 (0.05) 0.367 (0.119) 0.423 (0.822) 0.506 (0.064) 1

α = 0.05/0.95 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.727 (0.072) 0.508 (0.074) 0.531 (0.082) 0.463 (0.067) 0.502 (0.083) 0.61 (0.234) 0.495 (0.432) 0.133 (0.076) 0.128 (0.059)
NASDAQ 0.848 (0.067) 1 0.513 (0.069) 0.545 (0.076) 0.403 (0.065) 0.465 (0.07) 0.58 (0.189) 0.382 (0.29) 0.116 (0.053) 0.165 (0.048)
IBEX 0.495 (0.066) 0.38 (0.054) 1 0.951 (0.125) 0.78 (0.108) 0.91 (0.123) 0.842 (0.255) 0.8 (0.491) 0.248 (0.066) 0.343 (0.064)
FCHI 0.559 (0.063) 0.443 (0.053) 0.857 (0.096) 1 0.75 (0.114) 0.868 (0.122) 0.877 (0.27) 0.837 (0.518) 0.2 (0.066) 0.394 (0.068)
SSMI 0.555 (0.066) 0.423 (0.059) 0.749 (0.093) 0.864 (0.1) 1 0.721 (0.107) 0.775 (0.274) 0.744 (0.528) 0.222 (0.073) 0.373 (0.068)
FTMIB 0.544 (0.07) 0.433 (0.056) 0.89 (0.101) 0.869 (0.096) 0.805 (0.093) 1 0.719 (0.229) 0.73 (0.456) 0.149 (0.058) 0.28 (0.062)
GDAX 0.583 (0.226) 0.563 (0.182) 0.786 (0.241) 0.892 (0.262) 0.814 (0.276) 0.804 (0.238) 1 0.814 (0.638) 0.175 (0.133) 0.339 (0.151)
FTSE 0.551 (0.587) 0.446 (0.378) 0.747 (0.606) 0.888 (0.694) 0.835 (0.71) 0.816 (0.63) 0.765 (0.701) 1 0.221 (0.271) 0.39 (0.302)
N225 0.111 (0.068) 0.141 (0.046) 0.275 (0.066) 0.376 (0.069) 0.347 (0.077) 0.3 (0.063) 0.33 (0.16) 0.355 (0.391) 1 0.434 (0.083)
HSI 0.141 (0.062) 0.094 (0.038) 0.338 (0.06) 0.387 (0.058) 0.382 (0.063) 0.314 (0.056) 0.387 (0.155) 0.431 (0.42) 0.533 (0.084) 1

α = 0.01/0.99 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.957 (0.149) 0.578 (0.148) 0.62 (0.152) 0.478 (0.134) 0.542 (0.137) 0.719 (0.703) 0.525 (0.171) 0.086 (0.149) 0.12 (0.097)
NASDAQ 0.851 (0.13) 1 0.481 (0.12) 0.617 (0.134) 0.41 (0.113) 0.474 (0.12) 0.678 (0.569) 0.427 (0.157) 0.132 (0.105) 0.208 (0.082)
IBEX 0.662 (0.155) 0.498 (0.117) 1 0.836 (0.199) 0.687 (0.178) 0.836 (0.189) 0.709 (0.635) 0.754 (0.245) 0.19 (0.128) 0.234 (0.098)
FCHI 0.588 (0.133) 0.499 (0.098) 0.952 (0.201) 1 0.774 (0.196) 0.846 (0.195) 0.859 (0.74) 0.878 (0.261) 0.195 (0.137) 0.258 (0.1)
SSMI 0.572 (0.138) 0.388 (0.093) 0.755 (0.173) 0.868 (0.165) 1 0.808 (0.199) 0.813 (0.81) 0.771 (0.238) 0.238 (0.152) 0.188 (0.104)
FTMIB 0.621 (0.142) 0.438 (0.1) 0.96 (0.201) 0.89 (0.173) 0.683 (0.148) 1 0.869 (0.735) 0.707 (0.229) 0.216 (0.136) 0.218 (0.093)
GDAX 0.56 (0.375) 0.514 (0.292) 0.841 (0.437) 0.859 (0.419) 0.708 (0.4) 0.76 (0.379) 1 0.748 (0.918) 0.238 (0.415) 0.254 (0.334)
FTSE 0.492 (0.167) 0.385 (0.129) 0.884 (0.25) 0.952 (0.219) 0.826 (0.205) 0.845 (0.223) 0.823 (0.631) 1 0.214 (0.233) 0.2 (0.15)
N225 0.116 (0.119) 0.156 (0.093) 0.22 (0.122) 0.277 (0.118) 0.315 (0.132) 0.212 (0.107) 0.221 (0.264) 0.25 (0.185) 1 0.525 (0.161)
HSI 0.149 (0.109) 0.199 (0.081) 0.239 (0.1) 0.272 (0.095) 0.287 (0.102) 0.266 (0.099) 0.319 (0.248) 0.3 (0.16) 0.421 (0.133) 1

α = 0.005/0.995 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.902 (0.231) 0.575 (0.254) 0.633 (0.224) 0.413 (0.195) 0.367 (0.201) 0.512 (0.487) 0.45 (0.307) 0.025 (0.164) 0.062 (0.123)
NASDAQ 0.757 (0.24) 1 0.402 (0.143) 0.604 (0.149) 0.298 (0.122) 0.399 (0.139) 0.557 (0.395) 0.487 (0.155) 0.027 (0.102) 0.137 (0.094)
IBEX 0.607 (0.26) 0.424 (0.146) 1 0.875 (0.264) 0.62 (0.228) 0.662 (0.251) 0.732 (0.594) 0.785 (0.299) 0.181 (0.178) 0.232 (0.136)
FCHI 0.658 (0.282) 0.404 (0.155) 0.873 (0.287) 1 0.706 (0.22) 0.794 (0.24) 0.881 (0.608) 0.846 (0.253) 0.405 (0.206) 0.407 (0.151)
SSMI 0.644 (0.31) 0.493 (0.201) 0.873 (0.339) 0.796 (0.331) 1 0.667 (0.222) 0.543 (0.504) 0.722 (0.238) 0.19 (0.16) 0.219 (0.141)
FTMIB 0.457 (0.219) 0.406 (0.127) 0.969 (0.274) 0.825 (0.26) 0.868 (0.319) 1 0.676 (0.539) 0.688 (0.267) 0.193 (0.17) 0.114 (0.114)
GDAX 0.576 (0.479) 0.301 (0.298) 0.715 (0.508) 0.858 (0.595) 0.752 (0.582) 0.691 (0.49) 1 0.731 (0.757) 0.188 (0.357) 0.211 (0.281)
FTSE 0.66 (0.461) 0.452 (0.143) 0.845 (0.304) 0.868 (0.36) 0.834 (0.402) 0.821 (0.286) 0.95 (0.807) 1 0.281 (0.241) 0.266 (0.171)
N225 0.179 (0.215) 0.098 (0.115) 0.173 (0.148) 0.155 (0.166) 0.252 (0.197) 0.178 (0.14) 0.063 (0.261) 0.146 (0.2) 1 0.541 (0.191)
HSI 0.122 (0.157) 0.17 (0.1) 0.336 (0.155) 0.323 (0.17) 0.398 (0.215) 0.422 (0.16) 0.31 (0.348) 0.28 (0.186) 0.475 (0.19) 1

α = 0.001/0.999 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.691 (0.57) 0.309 (0.423) 0.323 (0.418) 0.338 (0.496) 0.505 (0.495) 0.364 (0.659) 0.436 (0.951) 0.139 (0.462) 0.331 (0.425)
NASDAQ 0.755 (0.441) 1 0.326 (0.214) 0.233 (0.211) 0.36 (0.241) 0.428 (0.229) 0.505 (0.529) 0.334 (0.213) 0.15 (0.218) 0.128 (0.179)
IBEX 0.379 (0.411) 0.272 (0.212) 1 0.838 (0.407) 0.804 (0.453) 0.685 (0.369) 0.529 (0.636) 0.798 (0.412) 0.198 (0.288) 0.324 (0.264)
FCHI 0.53 (0.502) 0.46 (0.258) 0.773 (0.458) 1 0.794 (0.418) 0.839 (0.379) 0.682 (0.667) 0.868 (0.432) 0.063 (0.227) 0.128 (0.205)
SSMI 0.562 (0.533) 0.215 (0.208) 0.634 (0.404) 0.821 (0.49) 1 0.864 (0.437) 0.682 (0.746) 0.802 (0.424) 0.229 (0.351) 0.147 (0.238)
FTMIB 0.485 (0.466) 0.516 (0.279) 0.573 (0.403) 0.718 (0.449) 0.574 (0.392) 1 0.814 (0.786) 0.926 (0.439) 0.417 (0.372) 0.282 (0.237)
GDAX 0.383 (0.626) 0.359 (0.406) 0.673 (0.687) 0.946 (0.819) 0.797 (0.859) 0.772 (0.777) 1 0.78 (0.941) 0.143 (0.452) 0.359 (0.447)
FTSE 0.54 (0.68) 0.512 (0.254) 0.728 (0.456) 0.902 (0.473) 0.758 (0.506) 0.9 (0.452) 0.865 (0.937) 1 0.358 (0.478) 0.526 (0.374)
N225 0.316 (0.521) 0.158 (0.248) 0.768 (0.526) 0.702 (0.541) 0.534 (0.517) 0.813 (0.559) 0.725 (0.781) 0.761 (0.638) 1 0.329 (0.31)
HSI 0.183 (0.281) -0.034 (0.131) 0.44 (0.3) 0.368 (0.277) 0.26 (0.273) 0.666 (0.375) 0.356 (0.444) 0.576 (0.373) 0.829 (0.47) 1
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Value-at-Risk - Weekly Returns - Theoretical Standard Errors

α = 0.1/0.9 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.864 (0.215) 0.61 (0.179) 0.825 (0.158) 0.653 (0.131) 0.757 (0.132) 0.775 (0.131) 0.856 (0.141) 0.525 (0.095) 0.444 (0.132)
NASDAQ 0.685 (0.17) 1 0.667 (0.212) 0.77 (0.202) 0.638 (0.194) 0.677 (0.168) 0.776 (0.184) 0.853 (0.226) 0.53 (0.138) 0.624 (0.188)
IBEX 0.763 (0.203) 0.591 (0.182) 1 0.889 (0.245) 0.696 (0.218) 0.809 (0.199) 0.842 (0.21) 0.633 (0.198) 0.378 (0.124) 0.483 (0.174)
FCHI 0.873 (0.148) 0.624 (0.159) 0.891 (0.238) 1 0.86 (0.201) 0.88 (0.167) 0.896 (0.182) 0.861 (0.18) 0.459 (0.102) 0.497 (0.151)
SSMI 0.766 (0.116) 0.548 (0.156) 0.704 (0.201) 0.692 (0.15) 1 0.667 (0.141) 0.824 (0.163) 0.729 (0.144) 0.412 (0.099) 0.537 (0.154)
FTMIB 0.715 (0.108) 0.56 (0.131) 0.834 (0.187) 0.772 (0.13) 0.656 (0.112) 1 0.889 (0.148) 0.688 (0.134) 0.435 (0.09) 0.41 (0.117)
GDAX 0.891 (0.128) 0.692 (0.154) 0.834 (0.187) 0.879 (0.157) 0.681 (0.121) 0.916 (0.129) 1 0.751 (0.149) 0.565 (0.098) 0.61 (0.146)
FTSE 0.824 (0.116) 0.718 (0.176) 0.757 (0.208) 0.908 (0.164) 0.655 (0.106) 0.664 (0.109) 0.86 (0.13) 1 0.439 (0.091) 0.594 (0.154)
N225 0.576 (0.087) 0.602 (0.139) 0.786 (0.184) 0.759 (0.127) 0.489 (0.09) 0.591 (0.094) 0.634 (0.093) 0.761 (0.107) 1 0.561 (0.123)
HSI 0.488 (0.124) 0.572 (0.155) 0.413 (0.145) 0.613 (0.145) 0.483 (0.124) 0.479 (0.106) 0.536 (0.116) 0.693 (0.148) 0.621 (0.119) 1

α = 0.05/0.95 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.818 (0.338) 0.588 (0.287) 0.771 (0.201) 0.692 (0.178) 0.66 (0.142) 0.717 (0.151) 0.744 (0.171) 0.527 (0.118) 0.445 (0.158)
NASDAQ 0.83 (0.306) 1 0.616 (0.34) 0.69 (0.312) 0.67 (0.336) 0.613 (0.257) 0.723 (0.283) 0.688 (0.323) 0.556 (0.259) 0.529 (0.264)
IBEX 0.52 (0.217) 0.535 (0.288) 1 0.84 (0.372) 0.67 (0.33) 0.923 (0.353) 0.771 (0.302) 0.613 (0.316) 0.542 (0.272) 0.476 (0.265)
FCHI 0.66 (0.164) 0.815 (0.313) 0.801 (0.31) 1 0.702 (0.224) 0.848 (0.21) 0.871 (0.212) 0.688 (0.204) 0.534 (0.167) 0.556 (0.194)
SSMI 0.65 (0.153) 0.758 (0.324) 0.652 (0.268) 0.908 (0.242) 1 0.632 (0.178) 0.699 (0.194) 0.797 (0.217) 0.435 (0.138) 0.476 (0.198)
FTMIB 0.633 (0.131) 0.736 (0.268) 0.836 (0.266) 0.942 (0.214) 0.737 (0.173) 1 0.883 (0.175) 0.713 (0.165) 0.533 (0.125) 0.445 (0.148)
GDAX 0.723 (0.13) 0.759 (0.275) 0.753 (0.248) 0.844 (0.192) 0.798 (0.177) 0.806 (0.151) 1 0.746 (0.169) 0.518 (0.132) 0.603 (0.176)
FTSE 0.621 (0.129) 0.739 (0.307) 0.702 (0.272) 0.805 (0.21) 0.814 (0.194) 0.672 (0.142) 0.606 (0.129) 1 0.57 (0.143) 0.588 (0.193)
N225 0.414 (0.091) 0.678 (0.254) 0.479 (0.202) 0.634 (0.152) 0.557 (0.132) 0.627 (0.12) 0.621 (0.116) 0.656 (0.128) 1 0.535 (0.156)
HSI 0.323 (0.116) 0.45 (0.209) 0.257 (0.159) 0.524 (0.159) 0.386 (0.144) 0.531 (0.137) 0.475 (0.127) 0.443 (0.137) 0.509 (0.121) 1

α = 0.01/0.99 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.749 (1.095) 0.745 (0.728) 0.806 (0.593) 0.695 (0.543) 0.666 (0.363) 0.713 (0.448) 0.583 (0.36) 0.339 (0.229) 0.779 (0.363)
NASDAQ 0.725 (0.738) 1 0.567 (1.073) 0.705 (1.048) 0.655 (1.122) 0.616 (0.913) 0.608 (0.909) 0.528 (0.966) 0.345 (0.748) 0.537 (0.812)
IBEX 0.652 (0.769) 0.618 (0.898) 1 0.836 (0.973) 0.863 (1.045) 0.762 (0.724) 0.747 (0.824) 0.787 (0.809) 0.546 (0.581) 0.504 (0.543)
FCHI 0.52 (0.433) 0.441 (0.604) 0.724 (0.841) 1 0.778 (0.767) 0.867 (0.625) 0.939 (0.762) 0.774 (0.661) 0.561 (0.448) 0.585 (0.456)
SSMI 0.829 (0.505) 0.646 (0.696) 0.805 (0.887) 0.671 (0.606) 1 0.679 (0.57) 0.734 (0.678) 0.642 (0.625) 0.684 (0.517) 0.62 (0.467)
FTMIB 0.701 (0.315) 0.642 (0.593) 0.739 (0.697) 0.722 (0.462) 0.847 (0.508) 1 0.777 (0.517) 0.654 (0.407) 0.742 (0.352) 0.658 (0.357)
GDAX 0.803 (0.341) 0.588 (0.536) 0.728 (0.695) 0.581 (0.416) 0.676 (0.418) 0.824 (0.327) 1 0.858 (0.592) 0.606 (0.367) 0.607 (0.378)
FTSE 0.694 (0.315) 0.583 (0.629) 0.884 (0.849) 0.752 (0.5) 0.685 (0.458) 0.721 (0.297) 0.778 (0.324) 1 0.424 (0.283) 0.445 (0.308)
N225 0.506 (0.227) 0.523 (0.573) 0.551 (0.621) 0.483 (0.361) 0.78 (0.468) 0.831 (0.296) 0.453 (0.231) 0.546 (0.241) 1 0.602 (0.28)
HSI 0.631 (0.296) 0.605 (0.603) 0.668 (0.671) 0.746 (0.464) 0.562 (0.423) 0.711 (0.321) 0.69 (0.296) 0.914 (0.354) 0.59 (0.239) 1

α = 0.005/0.995 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.806 (0.879) 0.859 (0.851) 0.934 (0.665) 0.849 (0.666) 0.832 (0.55) 0.88 (0.521) 0.949 (0.537) 0.364 (0.291) 0.545 (0.334)
NASDAQ 0.819 (1.051) 1 0.603 (0.848) 0.746 (0.822) 0.824 (1.009) 0.77 (0.832) 0.613 (0.625) 0.617 (0.743) 0.462 (0.614) 0.246 (0.405)
IBEX 0.785 (0.799) 0.906 (1.167) 1 0.902 (1.06) 0.75 (1.027) 0.726 (0.916) 0.724 (0.77) 0.847 (0.943) 0.516 (0.629) 0.533 (0.58)
FCHI 0.621 (0.524) 0.592 (0.796) 0.807 (0.912) 1 0.684 (0.764) 0.743 (0.684) 0.825 (0.628) 0.836 (0.702) 0.423 (0.403) 0.623 (0.451)
SSMI 0.494 (0.457) 0.653 (0.783) 0.741 (0.84) 0.812 (0.632) 1 0.83 (0.817) 0.66 (0.627) 0.829 (0.773) 0.462 (0.497) 0.226 (0.361)
FTMIB 0.66 (0.372) 0.615 (0.674) 0.817 (0.678) 0.925 (0.54) 0.697 (0.434) 1 0.719 (0.495) 0.762 (0.575) 0.758 (0.463) 0.624 (0.404)
GDAX 0.544 (0.367) 0.631 (0.675) 0.831 (0.756) 0.695 (0.491) 0.789 (0.507) 0.654 (0.345) 1 0.876 (0.528) 0.259 (0.267) 0.439 (0.306)
FTSE 0.845 (0.435) 0.733 (0.936) 0.871 (0.932) 0.733 (0.557) 0.463 (0.459) 0.828 (0.388) 0.673 (0.386) 1 0.255 (0.284) 0.502 (0.345)
N225 0.542 (0.285) 0.662 (0.802) 0.518 (0.571) 0.245 (0.294) 0.351 (0.35) 0.322 (0.238) 0.286 (0.266) 0.277 (0.221) 1 0.515 (0.283)
HSI 0.775 (0.449) 0.34 (0.626) 0.414 (0.599) 0.469 (0.436) 0.327 (0.373) 0.52 (0.323) 0.42 (0.325) 0.581 (0.381) 0.376 (0.253) 1

α = 0.001/0.999 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.527 (1.006) 0.321 (0.692) 0.517 (0.751) 0.432 (0.773) 0.233 (0.421) 0.584 (0.728) 0.639 (0.676) 0.76 (0.63) 0.351 (0.397)
NASDAQ 0.68 (0.695) 1 0.43 (1.19) 0.716 (1.428) 0.358 (1.01) 0.342 (0.72) 0.708 (1.238) 0.6 (1.099) 0.629 (1.033) 0.455 (0.81)
IBEX 0.242 (0.422) 0.304 (0.711) 1 0.841 (1.358) 0.78 (1.363) 0.848 (0.973) 0.794 (1.201) 0.533 (0.94) 0.422 (0.721) 0.655 (0.814)
FCHI 0.258 (0.37) 0.36 (0.63) 0.996 (1.015) 1 0.819 (1.221) 0.682 (0.733) 0.859 (0.999) 0.696 (0.893) 0.564 (0.648) 0.682 (0.67)
SSMI 0.208 (0.415) 0.379 (0.797) 0.951 (1.224) 0.973 (1.09) 1 0.639 (0.841) 0.747 (1.067) 0.756 (0.992) 0.273 (0.687) 0.782 (0.885)
FTMIB 0.366 (0.309) 0.425 (0.598) 0.977 (0.804) 0.97 (0.721) 0.894 (0.787) 1 0.735 (0.729) 0.277 (0.463) 0.271 (0.382) 0.838 (0.521)
GDAX 0.262 (0.284) 0.366 (0.498) 0.995 (0.84) 1.0 (0.75) 0.973 (0.943) 0.971 (0.542) 1 0.806 (0.796) 0.735 (0.635) 0.791 (0.709)
FTSE 0.32 (0.301) 0.591 (0.65) 0.871 (0.778) 0.912 (0.738) 0.964 (0.901) 0.841 (0.482) 0.914 (0.558) 1 0.656 (0.578) 0.538 (0.507)
N225 0.179 (0.249) 0.305 (0.533) 0.995 (0.834) 0.996 (0.711) 0.968 (0.846) 0.962 (0.5) 0.996 (0.526) 0.894 (0.484) 1 0.239 (0.285)
HSI -0.014 (0.172) 0.576 (0.591) 0.128 (0.353) 0.141 (0.321) 0.074 (0.315) 0.26 (0.268) 0.144 (0.245) 0.197 (0.229) 0.152 (0.179) 1
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α = 0.1/0.9 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.861 (0.526) 0.711 (0.286) 0.788 (0.359) 0.504 (0.262) 0.664 (0.324) 0.715 (0.324) 0.798 (0.358) 0.775 (0.273) 0.76 (0.33)
NASDAQ 0.844 (0.397) 1 0.811 (0.395) 0.837 (0.46) 0.677 (0.46) 0.688 (0.37) 0.763 (0.415) 0.851 (0.509) 0.602 (0.333) 0.807 (0.38)
IBEX 0.524 (0.218) 0.585 (0.251) 1 0.857 (0.261) 0.567 (0.216) 0.776 (0.243) 0.784 (0.288) 0.884 (0.287) 0.492 (0.168) 0.368 (0.184)
FCHI 0.658 (0.297) 0.747 (0.312) 0.78 (0.205) 1 0.739 (0.309) 0.907 (0.319) 0.773 (0.301) 0.868 (0.334) 0.515 (0.199) 0.486 (0.228)
SSMI 0.54 (0.226) 0.437 (0.267) 0.402 (0.145) 0.586 (0.217) 1 0.495 (0.24) 0.821 (0.319) 0.609 (0.252) 0.496 (0.197) 0.35 (0.229)
FTMIB 0.458 (0.25) 0.514 (0.255) 0.838 (0.228) 0.808 (0.26) 0.636 (0.226) 1 0.546 (0.261) 0.685 (0.31) 0.337 (0.183) 0.426 (0.225)
GDAX 0.824 (0.327) 0.855 (0.326) 0.792 (0.26) 0.786 (0.277) 0.627 (0.217) 0.662 (0.268) 1 0.691 (0.299) 0.826 (0.266) 0.424 (0.229)
FTSE 0.803 (0.303) 0.692 (0.306) 0.571 (0.178) 0.797 (0.262) 0.812 (0.218) 0.589 (0.237) 0.762 (0.262) 1 0.427 (0.198) 0.456 (0.265)
N225 0.388 (0.169) 0.642 (0.228) 0.567 (0.138) 0.441 (0.16) 0.452 (0.135) 0.611 (0.184) 0.546 (0.167) 0.451 (0.152) 1 0.561 (0.217)
HSI 0.47 (0.238) 0.303 (0.189) 0.537 (0.18) 0.399 (0.186) 0.295 (0.165) 0.384 (0.198) 0.329 (0.176) 0.629 (0.228) 0.451 (0.157) 1

α = 0.05/0.95 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.527 (0.424) 0.369 (0.288) 0.659 (0.391) 0.792 (0.434) 0.484 (0.312) 0.562 (0.368) 0.64 (0.418) 0.327 (0.223) 0.46 (0.309)
NASDAQ 0.914 (0.507) 1 0.615 (0.383) 0.671 (0.415) 0.525 (0.457) 0.456 (0.319) 0.516 (0.381) 0.42 (0.404) 0.464 (0.315) 0.612 (0.367)
IBEX 0.791 (0.381) 0.676 (0.343) 1 0.781 (0.34) 0.609 (0.291) 0.819 (0.302) 0.65 (0.336) 0.509 (0.287) 0.271 (0.182) 0.431 (0.251)
FCHI 0.914 (0.386) 0.734 (0.367) 0.847 (0.298) 1 0.498 (0.277) 0.596 (0.275) 0.643 (0.338) 0.597 (0.303) 0.263 (0.165) 0.571 (0.291)
SSMI 0.918 (0.378) 0.731 (0.387) 0.81 (0.285) 0.882 (0.27) 1 0.662 (0.245) 0.586 (0.335) 0.463 (0.238) 0.375 (0.18) 0.283 (0.283)
FTMIB 0.52 (0.264) 0.517 (0.259) 0.769 (0.25) 0.615 (0.224) 0.477 (0.176) 1 0.641 (0.309) 0.779 (0.313) 0.517 (0.195) 0.437 (0.236)
GDAX 0.886 (0.435) 0.713 (0.389) 0.749 (0.307) 0.901 (0.326) 0.842 (0.327) 0.667 (0.25) 1 0.425 (0.313) 0.38 (0.235) 0.867 (0.397)
FTSE 0.878 (0.401) 0.647 (0.379) 0.866 (0.319) 0.885 (0.318) 0.946 (0.268) 0.485 (0.196) 0.847 (0.361) 1 0.275 (0.15) 0.459 (0.3)
N225 0.77 (0.306) 0.702 (0.3) 0.565 (0.213) 0.858 (0.232) 0.6 (0.168) 0.456 (0.161) 0.705 (0.27) 0.577 (0.178) 1 0.316 (0.204)
HSI 0.801 (0.36) 0.755 (0.33) 0.508 (0.224) 0.726 (0.276) 0.611 (0.232) 0.53 (0.198) 0.89 (0.336) 0.592 (0.241) 0.665 (0.212) 1

α = 0.025/0.975 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.575 (0.717) 0.66 (0.436) 0.826 (0.694) 0.582 (0.52) 0.451 (0.394) 0.91 (0.72) 0.728 (0.584) 0.41 (0.368) 0.638 (0.444)
NASDAQ 0.537 (0.461) 1 0.386 (0.406) 0.7 (0.705) 0.47 (0.615) 0.498 (0.509) 0.749 (0.705) 0.563 (0.735) 0.468 (0.535) 0.738 (0.548)
IBEX 0.466 (0.255) 0.441 (0.307) 1 0.814 (0.385) 0.874 (0.329) 0.601 (0.256) 0.554 (0.321) 0.83 (0.372) 0.274 (0.195) 0.554 (0.238)
FCHI 0.343 (0.312) 0.566 (0.426) 0.501 (0.236) 1 0.798 (0.45) 0.805 (0.394) 0.856 (0.566) 0.852 (0.516) 0.339 (0.27) 0.601 (0.349)
SSMI 0.627 (0.341) 0.492 (0.415) 0.786 (0.263) 0.828 (0.352) 1 0.674 (0.315) 0.534 (0.422) 0.749 (0.353) 0.439 (0.229) 0.501 (0.292)
FTMIB 0.521 (0.264) 0.521 (0.342) 0.786 (0.236) 0.737 (0.295) 0.9 (0.254) 1 0.547 (0.321) 0.81 (0.39) 0.404 (0.213) 0.486 (0.241)
GDAX 0.451 (0.356) 0.743 (0.479) 0.645 (0.273) 0.923 (0.425) 0.797 (0.393) 0.772 (0.305) 1 0.681 (0.494) 0.317 (0.311) 0.633 (0.361)
FTSE 0.739 (0.364) 0.748 (0.462) 0.611 (0.218) 0.78 (0.362) 0.865 (0.264) 0.784 (0.25) 0.844 (0.36) 1 0.559 (0.289) 0.808 (0.363)
N225 0.649 (0.327) 0.496 (0.375) 0.571 (0.21) 0.514 (0.253) 0.576 (0.214) 0.677 (0.216) 0.673 (0.297) 0.619 (0.219) 1 0.768 (0.297)
HSI 0.386 (0.26) 0.783 (0.429) 0.296 (0.182) 0.294 (0.221) 0.253 (0.201) 0.411 (0.198) 0.444 (0.259) 0.348 (0.213) 0.378 (0.22) 1

α = 0.01/0.99 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.538 (0.732) 0.467 (0.463) 0.472 (0.543) 0.619 (0.518) 0.423 (0.425) 0.628 (0.613) 0.602 (0.6) 0.374 (0.412) 0.76 (0.57)
NASDAQ 0.716 (0.964) 1 0.602 (0.607) 0.748 (0.744) 0.16 (0.524) 0.874 (0.673) 0.798 (0.727) 0.444 (0.691) 0.44 (0.602) 0.342 (0.409)
IBEX 0.902 (0.634) 0.868 (0.769) 1 0.706 (0.499) 0.48 (0.403) 0.888 (0.418) 0.679 (0.514) 0.533 (0.434) 0.107 (0.264) 0.37 (0.315)
FCHI 0.77 (0.617) 0.821 (0.802) 0.877 (0.455) 1 0.471 (0.454) 0.796 (0.498) 0.915 (0.634) 0.819 (0.591) 0.414 (0.405) 0.378 (0.348)
SSMI 0.535 (0.566) 0.487 (0.702) 0.567 (0.327) 0.845 (0.448) 1 0.257 (0.339) 0.515 (0.509) 0.846 (0.473) 0.257 (0.271) 0.163 (0.364)
FTMIB 0.865 (0.582) 0.808 (0.718) 0.863 (0.35) 0.87 (0.459) 0.593 (0.355) 1 0.805 (0.493) 0.461 (0.386) 0.194 (0.264) 0.31 (0.273)
GDAX 0.762 (0.72) 0.797 (0.75) 0.798 (0.501) 0.889 (0.598) 0.597 (0.47) 0.884 (0.505) 1 0.746 (0.595) 0.2 (0.365) 0.453 (0.379)
FTSE 0.763 (0.599) 0.825 (0.861) 0.835 (0.35) 0.816 (0.461) 0.615 (0.3) 0.63 (0.311) 0.776 (0.517) 1 0.527 (0.411) 0.287 (0.391)
N225 0.411 (0.451) 0.656 (0.761) 0.496 (0.274) 0.731 (0.404) 0.6 (0.29) 0.513 (0.291) 0.821 (0.521) 0.779 (0.328) 1 0.145 (0.328)
HSI 0.373 (0.421) 0.523 (0.604) 0.686 (0.358) 0.717 (0.48) 0.585 (0.414) 0.423 (0.299) 0.483 (0.386) 0.584 (0.377) 0.415 (0.329) 1

α = 0.005/0.995 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.401 (0.971) 0.456 (0.442) 0.778 (0.846) 0.593 (0.491) 0.424 (0.386) 0.588 (0.673) 0.703 (0.62) 0.346 (0.343) 0.341 (0.361)
NASDAQ 0.411 (0.503) 1 0.681 (0.926) 0.677 (1.138) 0.098 (0.86) 0.626 (0.809) 0.452 (0.895) 0.374 (1.188) 0.086 (0.708) 0.065 (0.295)
IBEX 0.876 (0.474) 0.243 (0.323) 1 0.792 (0.669) 0.688 (0.456) 0.752 (0.372) 0.6 (0.532) 0.717 (0.515) 0.329 (0.326) 0.302 (0.294)
FCHI 0.725 (0.53) 0.257 (0.409) 0.475 (0.333) 1 0.646 (0.635) 0.85 (0.648) 0.84 (0.822) 0.896 (0.958) 0.307 (0.448) 0.333 (0.36)
SSMI 0.333 (0.304) 0.11 (0.405) 0.27 (0.26) 0.326 (0.301) 1 0.38 (0.384) 0.438 (0.585) 0.758 (0.437) 0.154 (0.238) 0.46 (0.393)
FTMIB 0.765 (0.5) 0.409 (0.446) 0.641 (0.303) 0.865 (0.503) 0.653 (0.382) 1 0.854 (0.637) 0.753 (0.497) 0.511 (0.353) 0.129 (0.225)
GDAX 0.716 (0.573) 0.413 (0.431) 0.683 (0.416) 0.627 (0.472) 0.755 (0.463) 0.911 (0.535) 1 0.819 (0.757) 0.39 (0.526) 0.104 (0.279)
FTSE 0.616 (0.428) 0.247 (0.468) 0.633 (0.334) 0.777 (0.443) 0.34 (0.22) 0.833 (0.428) 0.616 (0.446) 1 0.269 (0.294) 0.598 (0.481)
N225 0.75 (0.45) 0.498 (0.507) 0.752 (0.347) 0.542 (0.409) 0.67 (0.261) 0.831 (0.39) 0.809 (0.511) 0.765 (0.358) 1 -0.119 (0.245)
HSI 0.309 (0.361) 0.243 (0.407) 0.416 (0.3) 0.493 (0.4) 0.67 (0.379) 0.79 (0.436) 0.772 (0.461) 0.777 (0.387) 0.726 (0.36) 1
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α = 0.1/0.9 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.804 (0.051) 0.475 (0.042) 0.54 (0.046) 0.477 (0.043) 0.504 (0.045) 0.578 (0.111) 0.505 (0.646) 0.098 (0.042) 0.146 (0.038)
NASDAQ 0.814 (0.044) 1 0.423 (0.033) 0.494 (0.037) 0.417 (0.036) 0.443 (0.035) 0.55 (0.087) 0.43 (0.427) 0.077 (0.026) 0.164 (0.025)
IBEX 0.532 (0.043) 0.423 (0.032) 1 0.862 (0.061) 0.722 (0.056) 0.864 (0.06) 0.776 (0.118) 0.765 (0.723) 0.2 (0.031) 0.272 (0.031)
FCHI 0.58 (0.042) 0.475 (0.032) 0.881 (0.055) 1 0.797 (0.062) 0.859 (0.061) 0.878 (0.133) 0.851 (0.805) 0.212 (0.033) 0.321 (0.034)
SSMI 0.525 (0.042) 0.401 (0.033) 0.745 (0.052) 0.834 (0.053) 1 0.728 (0.055) 0.757 (0.131) 0.758 (0.826) 0.222 (0.036) 0.268 (0.033)
FTMIB 0.535 (0.043) 0.442 (0.032) 0.864 (0.056) 0.886 (0.055) 0.755 (0.049) 1 0.795 (0.119) 0.761 (0.708) 0.159 (0.03) 0.258 (0.032)
GDAX 0.583 (0.106) 0.509 (0.078) 0.822 (0.122) 0.906 (0.131) 0.804 (0.131) 0.83 (0.12) 1 0.789 (0.789) 0.2 (0.064) 0.311 (0.067)
FTSE 0.548 (0.663) 0.436 (0.445) 0.778 (0.753) 0.891 (0.845) 0.815 (0.875) 0.8 (0.746) 0.826 (0.83) 1 0.207 (0.327) 0.322 (0.369)
N225 0.133 (0.039) 0.134 (0.023) 0.274 (0.034) 0.321 (0.034) 0.335 (0.036) 0.265 (0.032) 0.287 (0.07) 0.321 (0.418) 1 0.442 (0.04)
HSI 0.157 (0.034) 0.144 (0.021) 0.353 (0.032) 0.385 (0.031) 0.377 (0.032) 0.333 (0.03) 0.354 (0.07) 0.408 (0.467) 0.522 (0.04) 1

α = 0.05/0.95 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.82 (0.044) 0.491 (0.047) 0.558 (0.047) 0.484 (0.043) 0.496 (0.045) 0.603 (0.144) 0.518 (0.298) 0.09 (0.046) 0.148 (0.041)
NASDAQ 0.784 (0.044) 1 0.409 (0.04) 0.501 (0.043) 0.389 (0.041) 0.429 (0.038) 0.561 (0.115) 0.424 (0.213) 0.051 (0.032) 0.169 (0.031)
IBEX 0.549 (0.049) 0.45 (0.043) 1 0.86 (0.07) 0.715 (0.064) 0.867 (0.074) 0.751 (0.151) 0.761 (0.335) 0.18 (0.041) 0.255 (0.037)
FCHI 0.569 (0.044) 0.469 (0.039) 0.893 (0.071) 1 0.802 (0.07) 0.851 (0.07) 0.882 (0.169) 0.852 (0.366) 0.221 (0.042) 0.29 (0.039)
SSMI 0.543 (0.043) 0.41 (0.04) 0.755 (0.066) 0.844 (0.065) 1 0.732 (0.064) 0.741 (0.165) 0.774 (0.367) 0.243 (0.048) 0.242 (0.041)
FTMIB 0.522 (0.047) 0.441 (0.04) 0.877 (0.073) 0.894 (0.066) 0.758 (0.063) 1 0.784 (0.153) 0.742 (0.325) 0.154 (0.038) 0.226 (0.035)
GDAX 0.595 (0.129) 0.51 (0.104) 0.818 (0.153) 0.909 (0.159) 0.801 (0.159) 0.836 (0.148) 1 0.767 (0.422) 0.188 (0.087) 0.28 (0.088)
FTSE 0.563 (0.294) 0.423 (0.212) 0.802 (0.347) 0.877 (0.37) 0.834 (0.38) 0.802 (0.341) 0.825 (0.406) 1 0.216 (0.192) 0.295 (0.181)
N225 0.134 (0.044) 0.122 (0.033) 0.279 (0.046) 0.307 (0.044) 0.329 (0.05) 0.27 (0.045) 0.28 (0.093) 0.309 (0.207) 1 0.419 (0.051)
HSI 0.154 (0.036) 0.149 (0.029) 0.339 (0.042) 0.373 (0.039) 0.391 (0.043) 0.339 (0.039) 0.345 (0.091) 0.41 (0.219) 0.544 (0.056) 1

α = 0.01/0.99 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.827 (0.09) 0.504 (0.107) 0.536 (0.094) 0.438 (0.094) 0.439 (0.096) 0.6 (0.296) 0.495 (0.117) 0.078 (0.078) 0.187 (0.074)
NASDAQ 0.779 (0.098) 1 0.399 (0.079) 0.437 (0.071) 0.321 (0.07) 0.375 (0.078) 0.547 (0.243) 0.4 (0.099) 0.002 (0.054) 0.14 (0.055)
IBEX 0.588 (0.124) 0.442 (0.093) 1 0.868 (0.14) 0.712 (0.137) 0.818 (0.153) 0.731 (0.332) 0.782 (0.171) 0.199 (0.098) 0.201 (0.076)
FCHI 0.631 (0.108) 0.469 (0.079) 0.882 (0.168) 1 0.796 (0.126) 0.845 (0.139) 0.848 (0.356) 0.881 (0.162) 0.257 (0.093) 0.27 (0.074)
SSMI 0.552 (0.097) 0.351 (0.071) 0.763 (0.159) 0.803 (0.132) 1 0.723 (0.143) 0.669 (0.343) 0.814 (0.177) 0.219 (0.096) 0.23 (0.082)
FTMIB 0.514 (0.101) 0.392 (0.076) 0.915 (0.18) 0.868 (0.138) 0.735 (0.125) 1 0.76 (0.345) 0.758 (0.162) 0.216 (0.101) 0.232 (0.08)
GDAX 0.573 (0.248) 0.436 (0.189) 0.796 (0.306) 0.917 (0.329) 0.779 (0.304) 0.813 (0.296) 1 0.731 (0.471) 0.182 (0.204) 0.237 (0.179)
FTSE 0.592 (0.147) 0.438 (0.096) 0.82 (0.208) 0.922 (0.181) 0.802 (0.145) 0.816 (0.173) 0.888 (0.43) 1 0.267 (0.148) 0.293 (0.118)
N225 0.169 (0.091) 0.088 (0.06) 0.295 (0.103) 0.327 (0.099) 0.324 (0.093) 0.323 (0.095) 0.251 (0.174) 0.323 (0.143) 1 0.453 (0.109)
HSI 0.204 (0.085) 0.186 (0.057) 0.373 (0.095) 0.37 (0.084) 0.352 (0.078) 0.376 (0.088) 0.325 (0.183) 0.365 (0.115) 0.553 (0.111) 1

α = 0.005/0.995 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.776 (0.14) 0.459 (0.155) 0.488 (0.152) 0.378 (0.129) 0.428 (0.156) 0.585 (0.489) 0.505 (0.2) 0.073 (0.124) 0.229 (0.134)
NASDAQ 0.778 (0.151) 1 0.373 (0.107) 0.371 (0.096) 0.28 (0.092) 0.362 (0.105) 0.514 (0.367) 0.39 (0.106) -0.045 (0.072) 0.128 (0.084)
IBEX 0.543 (0.172) 0.431 (0.122) 1 0.884 (0.211) 0.726 (0.203) 0.837 (0.213) 0.722 (0.544) 0.791 (0.236) 0.201 (0.137) 0.188 (0.114)
FCHI 0.59 (0.159) 0.486 (0.113) 0.838 (0.21) 1 0.797 (0.194) 0.877 (0.193) 0.838 (0.575) 0.92 (0.226) 0.264 (0.132) 0.248 (0.109)
SSMI 0.516 (0.163) 0.351 (0.1) 0.73 (0.194) 0.767 (0.172) 1 0.692 (0.182) 0.622 (0.521) 0.796 (0.196) 0.194 (0.131) 0.193 (0.121)
FTMIB 0.51 (0.151) 0.423 (0.107) 0.848 (0.21) 0.887 (0.198) 0.74 (0.175) 1 0.728 (0.538) 0.766 (0.231) 0.221 (0.136) 0.253 (0.126)
GDAX 0.59 (0.396) 0.467 (0.292) 0.821 (0.464) 0.924 (0.509) 0.785 (0.461) 0.86 (0.47) 1 0.775 (0.804) 0.176 (0.327) 0.247 (0.282)
FTSE 0.616 (0.215) 0.438 (0.117) 0.781 (0.224) 0.897 (0.206) 0.755 (0.179) 0.796 (0.212) 0.851 (0.65) 1 0.329 (0.236) 0.312 (0.178)
N225 0.201 (0.151) 0.078 (0.09) 0.366 (0.171) 0.389 (0.16) 0.359 (0.154) 0.414 (0.157) 0.324 (0.308) 0.39 (0.23) 1 0.392 (0.156)
HSI 0.268 (0.116) 0.185 (0.076) 0.401 (0.134) 0.423 (0.116) 0.391 (0.113) 0.411 (0.119) 0.362 (0.277) 0.432 (0.14) 0.626 (0.18) 1

α = 0.001/0.999 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.749 (0.468) 0.392 (0.42) 0.387 (0.379) 0.366 (0.439) 0.508 (0.447) 0.739 (0.768) 0.444 (0.573) 0.123 (0.341) 0.372 (0.323)
NASDAQ 0.906 (0.443) 1 0.366 (0.198) 0.278 (0.17) 0.295 (0.179) 0.371 (0.187) 0.585 (0.396) 0.252 (0.135) -0.048 (0.133) 0.16 (0.134)
IBEX 0.655 (0.399) 0.505 (0.217) 1 0.963 (0.41) 0.802 (0.402) 0.955 (0.422) 0.619 (0.527) 0.936 (0.425) 0.213 (0.275) 0.2 (0.189)
FCHI 0.675 (0.415) 0.597 (0.228) 0.88 (0.371) 1 0.815 (0.411) 0.961 (0.399) 0.704 (0.548) 0.951 (0.335) 0.244 (0.276) 0.207 (0.181)
SSMI 0.488 (0.381) 0.421 (0.213) 0.634 (0.325) 0.801 (0.386) 1 0.839 (0.401) 0.665 (0.565) 0.874 (0.371) 0.279 (0.338) 0.237 (0.204)
FTMIB 0.684 (0.428) 0.593 (0.27) 0.878 (0.401) 0.961 (0.465) 0.776 (0.424) 1 0.661 (0.577) 0.941 (0.337) 0.277 (0.313) 0.162 (0.179)
GDAX 0.71 (0.644) 0.624 (0.444) 0.846 (0.579) 0.974 (0.681) 0.834 (0.644) 0.966 (0.698) 1 0.696 (0.586) 0.189 (0.373) 0.406 (0.365)
FTSE 0.675 (0.563) 0.607 (0.18) 0.751 (0.3) 0.921 (0.298) 0.839 (0.375) 0.858 (0.394) 0.956 (0.749) 1 0.338 (0.39) 0.291 (0.222)
N225 0.019 (0.213) -0.124 (0.113) 0.504 (0.286) 0.491 (0.297) 0.413 (0.287) 0.543 (0.32) 0.492 (0.45) 0.475 (0.301) 1 0.313 (0.276)
HSI 0.168 (0.234) 0.17 (0.133) 0.292 (0.2) 0.334 (0.204) 0.281 (0.227) 0.297 (0.226) 0.237 (0.284) 0.282 (0.171) 0.611 (0.272) 1
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α = 0.1/0.9 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.793 (0.136) 0.627 (0.118) 0.76 (0.106) 0.724 (0.088) 0.668 (0.085) 0.749 (0.086) 0.733 (0.079) 0.474 (0.06) 0.467 (0.093)
NASDAQ 0.784 (0.11) 1 0.577 (0.131) 0.705 (0.131) 0.615 (0.119) 0.59 (0.106) 0.719 (0.117) 0.641 (0.119) 0.473 (0.086) 0.519 (0.12)
IBEX 0.651 (0.11) 0.548 (0.105) 1 0.839 (0.153) 0.691 (0.133) 0.854 (0.133) 0.785 (0.129) 0.702 (0.125) 0.476 (0.094) 0.471 (0.108)
FCHI 0.762 (0.09) 0.7 (0.104) 0.872 (0.14) 1 0.792 (0.121) 0.876 (0.118) 0.917 (0.124) 0.807 (0.114) 0.512 (0.079) 0.536 (0.106)
SSMI 0.748 (0.078) 0.613 (0.092) 0.748 (0.12) 0.819 (0.101) 1 0.69 (0.091) 0.757 (0.094) 0.763 (0.088) 0.481 (0.067) 0.516 (0.097)
FTMIB 0.663 (0.066) 0.639 (0.083) 0.889 (0.116) 0.886 (0.096) 0.727 (0.078) 1 0.823 (0.094) 0.718 (0.087) 0.51 (0.067) 0.483 (0.088)
GDAX 0.759 (0.076) 0.678 (0.089) 0.8 (0.113) 0.902 (0.098) 0.787 (0.081) 0.825 (0.076) 1 0.776 (0.093) 0.52 (0.069) 0.566 (0.093)
FTSE 0.791 (0.071) 0.693 (0.098) 0.792 (0.119) 0.91 (0.1) 0.835 (0.079) 0.802 (0.074) 0.834 (0.08) 1 0.494 (0.059) 0.574 (0.099)
N225 0.538 (0.055) 0.561 (0.079) 0.553 (0.09) 0.61 (0.07) 0.587 (0.06) 0.558 (0.058) 0.567 (0.057) 0.642 (0.056) 1 0.52 (0.087)
HSI 0.54 (0.08) 0.471 (0.087) 0.45 (0.098) 0.577 (0.092) 0.503 (0.078) 0.514 (0.071) 0.522 (0.072) 0.625 (0.079) 0.588 (0.071) 1

α = 0.05/0.95 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.799 (0.208) 0.656 (0.213) 0.731 (0.144) 0.733 (0.121) 0.667 (0.103) 0.734 (0.105) 0.717 (0.115) 0.462 (0.075) 0.485 (0.105)
NASDAQ 0.772 (0.178) 1 0.55 (0.23) 0.683 (0.202) 0.577 (0.184) 0.577 (0.162) 0.727 (0.179) 0.602 (0.188) 0.429 (0.15) 0.513 (0.159)
IBEX 0.648 (0.167) 0.552 (0.18) 1 0.812 (0.28) 0.664 (0.239) 0.872 (0.261) 0.747 (0.218) 0.72 (0.246) 0.502 (0.188) 0.46 (0.176)
FCHI 0.75 (0.122) 0.639 (0.169) 0.867 (0.218) 1 0.77 (0.171) 0.853 (0.172) 0.893 (0.161) 0.835 (0.175) 0.552 (0.119) 0.555 (0.134)
SSMI 0.73 (0.109) 0.593 (0.158) 0.756 (0.188) 0.861 (0.144) 1 0.7 (0.13) 0.712 (0.13) 0.799 (0.14) 0.511 (0.098) 0.527 (0.127)
FTMIB 0.677 (0.093) 0.616 (0.14) 0.883 (0.188) 0.879 (0.133) 0.761 (0.11) 1 0.805 (0.122) 0.749 (0.128) 0.541 (0.088) 0.534 (0.112)
GDAX 0.719 (0.093) 0.656 (0.146) 0.78 (0.173) 0.914 (0.131) 0.819 (0.119) 0.822 (0.101) 1 0.794 (0.119) 0.494 (0.08) 0.548 (0.104)
FTSE 0.763 (0.106) 0.638 (0.163) 0.781 (0.188) 0.897 (0.146) 0.864 (0.124) 0.813 (0.102) 0.824 (0.105) 1 0.535 (0.092) 0.563 (0.119)
N225 0.539 (0.068) 0.542 (0.134) 0.504 (0.139) 0.587 (0.094) 0.608 (0.085) 0.546 (0.071) 0.545 (0.069) 0.585 (0.076) 1 0.521 (0.101)
HSI 0.572 (0.107) 0.476 (0.141) 0.505 (0.148) 0.6 (0.125) 0.539 (0.109) 0.529 (0.096) 0.548 (0.093) 0.609 (0.114) 0.606 (0.1) 1

α = 0.01/0.99 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.746 (0.798) 0.835 (0.675) 0.868 (0.43) 0.812 (0.73) 0.897 (0.321) 0.964 (0.338) 0.936 (0.31) 0.547 (0.216) 0.526 (0.227)
NASDAQ 0.81 (0.571) 1 0.545 (0.825) 0.724 (0.82) 0.564 (0.763) 0.608 (0.654) 0.723 (0.71) 0.699 (0.797) 0.496 (0.58) 0.441 (0.49)
IBEX 0.666 (0.35) 0.677 (0.523) 1 0.882 (0.798) 0.759 (0.883) 0.877 (0.659) 0.839 (0.638) 0.881 (0.689) 0.433 (0.439) 0.548 (0.485)
FCHI 0.645 (0.271) 0.551 (0.434) 0.89 (0.467) 1 0.751 (0.694) 0.851 (0.411) 0.904 (0.445) 0.905 (0.453) 0.489 (0.277) 0.621 (0.353)
SSMI 0.625 (0.259) 0.519 (0.426) 0.825 (0.449) 0.781 (0.355) 1 0.807 (0.658) 0.867 (0.651) 0.775 (0.665) 0.405 (0.46) 0.424 (0.412)
FTMIB 0.629 (0.173) 0.57 (0.366) 0.902 (0.378) 0.927 (0.309) 0.743 (0.271) 1 0.874 (0.31) 0.826 (0.291) 0.553 (0.209) 0.663 (0.258)
GDAX 0.676 (0.202) 0.609 (0.417) 0.915 (0.399) 0.942 (0.331) 0.797 (0.312) 0.84 (0.215) 1 0.936 (0.313) 0.506 (0.214) 0.539 (0.249)
FTSE 0.825 (0.205) 0.657 (0.487) 0.882 (0.39) 0.938 (0.318) 0.788 (0.3) 0.94 (0.211) 0.89 (0.229) 1 0.433 (0.182) 0.643 (0.267)
N225 0.575 (0.156) 0.533 (0.421) 0.678 (0.329) 0.584 (0.225) 0.556 (0.235) 0.58 (0.167) 0.592 (0.183) 0.575 (0.154) 1 0.466 (0.192)
HSI 0.581 (0.239) 0.464 (0.44) 0.518 (0.339) 0.556 (0.281) 0.405 (0.249) 0.498 (0.214) 0.54 (0.232) 0.556 (0.236) 0.534 (0.208) 1

α = 0.005/0.995 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.763 (0.842) 0.572 (0.521) 0.755 (0.51) 0.56 (0.433) 0.62 (0.314) 0.823 (0.384) 0.854 (0.361) 0.727 (0.272) 0.397 (0.23)
NASDAQ 0.887 (0.802) 1 0.47 (0.679) 0.649 (0.789) 0.367 (0.566) 0.434 (0.541) 0.615 (0.648) 0.7 (0.778) 0.601 (0.668) 0.548 (0.574)
IBEX 0.608 (0.43) 0.53 (0.669) 1 0.942 (0.918) 0.669 (0.73) 0.866 (0.691) 0.834 (0.651) 0.841 (0.695) 0.331 (0.412) 0.582 (0.53)
FCHI 0.622 (0.342) 0.573 (0.661) 0.895 (0.684) 1 0.668 (0.635) 0.912 (0.592) 0.924 (0.611) 0.91 (0.619) 0.532 (0.403) 0.681 (0.448)
SSMI 0.562 (0.389) 0.46 (0.641) 0.749 (0.609) 0.857 (0.614) 1 0.692 (0.53) 0.829 (0.555) 0.769 (0.51) 0.297 (0.34) 0.47 (0.377)
FTMIB 0.678 (0.251) 0.573 (0.55) 0.833 (0.514) 0.848 (0.425) 0.736 (0.439) 1 0.853 (0.423) 0.806 (0.39) 0.373 (0.243) 0.654 (0.329)
GDAX 0.625 (0.224) 0.53 (0.534) 0.852 (0.521) 0.961 (0.465) 0.92 (0.503) 0.832 (0.282) 1 0.935 (0.444) 0.484 (0.288) 0.636 (0.331)
FTSE 0.743 (0.278) 0.683 (0.698) 0.867 (0.585) 0.957 (0.504) 0.875 (0.522) 0.882 (0.341) 0.93 (0.335) 1 0.542 (0.256) 0.689 (0.323)
N225 0.646 (0.179) 0.451 (0.501) 0.836 (0.511) 0.63 (0.333) 0.588 (0.369) 0.608 (0.212) 0.687 (0.22) 0.655 (0.241) 1 0.315 (0.216)
HSI 0.511 (0.192) 0.496 (0.565) 0.499 (0.431) 0.446 (0.314) 0.317 (0.31) 0.486 (0.213) 0.488 (0.204) 0.43 (0.221) 0.544 (0.178) 1

α = 0.001/0.999 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.081 (1.412) 0.263 (0.685) 0.543 (0.776) 0.314 (0.733) 0.343 (0.433) 0.758 (0.643) 0.642 (0.588) 0.872 (0.557) 0.26 (0.333)
NASDAQ 0.083 (0.54) 1 0.197 (1.485) 0.411 (1.886) -0.062 (0.818) -0.07 (0.534) 0.185 (1.248) 0.235 (1.604) 0.113 (1.055) 0.533 (1.791)
IBEX 0.965 (0.746) 0.149 (0.533) 1 0.594 (1.001) 0.733 (1.234) 0.751 (0.858) 0.588 (0.882) 0.57 (0.823) -0.01 (0.317) 0.88 (0.939)
FCHI 0.993 (0.698) 0.175 (0.508) 0.979 (0.932) 1 0.708 (1.076) 0.713 (0.701) 0.65 (0.751) 0.882 (0.845) 0.241 (0.384) 0.512 (0.536)
SSMI 0.993 (0.675) 0.177 (0.519) 0.979 (0.895) 1.0 (0.806) 1 0.999 (1.061) 0.684 (0.916) 0.661 (0.928) -0.167 (0.278) 0.56 (0.737)
FTMIB 0.813 (0.484) 0.081 (0.399) 0.927 (0.743) 0.833 (0.599) 0.833 (0.615) 1 0.7 (0.564) 0.674 (0.524) -0.132 (0.212) 0.572 (0.402)
GDAX 0.994 (0.544) 0.164 (0.473) 0.982 (0.804) 1.0 (0.706) 1.0 (0.69) 0.841 (0.506) 1 0.821 (0.62) 0.417 (0.393) 0.562 (0.482)
FTSE 0.996 (0.484) 0.152 (0.457) 0.977 (0.712) 1.0 (0.642) 0.999 (0.63) 0.829 (0.436) 1.0 (0.543) 1 0.355 (0.331) 0.399 (0.351)
N225 0.986 (0.384) 0.213 (0.407) 0.981 (0.586) 0.999 (0.527) 0.999 (0.507) 0.837 (0.375) 0.998 (0.391) 0.997 (0.345) 1 0.038 (0.193)
HSI 0.949 (0.47) -0.0 (0.535) 0.927 (0.705) 0.953 (0.633) 0.953 (0.619) 0.763 (0.433) 0.952 (0.482) 0.953 (0.425) 0.95 (0.285) 1
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α = 0.1/0.9 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.599 (0.274) 0.49 (0.146) 0.731 (0.216) 0.693 (0.191) 0.533 (0.189) 0.732 (0.215) 0.761 (0.243) 0.461 (0.133) 0.585 (0.178)
NASDAQ 0.83 (0.276) 1 0.536 (0.189) 0.691 (0.243) 0.449 (0.251) 0.519 (0.2) 0.678 (0.224) 0.558 (0.28) 0.489 (0.216) 0.612 (0.204)
IBEX 0.804 (0.194) 0.645 (0.167) 1 0.798 (0.158) 0.575 (0.139) 0.835 (0.172) 0.658 (0.171) 0.634 (0.16) 0.308 (0.103) 0.511 (0.12)
FCHI 0.867 (0.236) 0.74 (0.213) 0.909 (0.166) 1 0.7 (0.187) 0.831 (0.208) 0.855 (0.213) 0.852 (0.237) 0.387 (0.118) 0.564 (0.154)
SSMI 0.797 (0.188) 0.647 (0.221) 0.759 (0.136) 0.841 (0.185) 1 0.649 (0.187) 0.622 (0.181) 0.632 (0.17) 0.384 (0.119) 0.359 (0.151)
FTMIB 0.71 (0.207) 0.633 (0.173) 0.895 (0.168) 0.896 (0.199) 0.742 (0.165) 1 0.724 (0.198) 0.748 (0.226) 0.421 (0.148) 0.417 (0.145)
GDAX 0.894 (0.221) 0.823 (0.213) 0.818 (0.177) 0.93 (0.204) 0.86 (0.176) 0.816 (0.192) 1 0.662 (0.214) 0.434 (0.13) 0.606 (0.16)
FTSE 0.881 (0.231) 0.707 (0.225) 0.794 (0.158) 0.897 (0.197) 0.87 (0.164) 0.773 (0.186) 0.862 (0.199) 1 0.416 (0.14) 0.582 (0.188)
N225 0.735 (0.162) 0.694 (0.184) 0.684 (0.114) 0.73 (0.144) 0.656 (0.12) 0.659 (0.138) 0.734 (0.14) 0.678 (0.146) 1 0.366 (0.124)
HSI 0.652 (0.198) 0.685 (0.209) 0.548 (0.129) 0.583 (0.152) 0.442 (0.13) 0.519 (0.152) 0.635 (0.151) 0.61 (0.168) 0.584 (0.138) 1

α = 0.05/0.95 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.553 (0.341) 0.546 (0.222) 0.744 (0.266) 0.672 (0.271) 0.453 (0.187) 0.815 (0.343) 0.758 (0.315) 0.405 (0.178) 0.533 (0.211)
NASDAQ 0.666 (0.445) 1 0.506 (0.246) 0.697 (0.33) 0.292 (0.279) 0.525 (0.226) 0.701 (0.341) 0.506 (0.359) 0.386 (0.233) 0.473 (0.221)
IBEX 0.76 (0.252) 0.63 (0.328) 1 0.852 (0.238) 0.634 (0.198) 0.806 (0.206) 0.639 (0.222) 0.717 (0.244) 0.302 (0.145) 0.539 (0.156)
FCHI 0.781 (0.262) 0.689 (0.365) 0.833 (0.234) 1 0.736 (0.233) 0.827 (0.234) 0.888 (0.305) 0.798 (0.275) 0.372 (0.142) 0.602 (0.179)
SSMI 0.724 (0.236) 0.576 (0.385) 0.753 (0.202) 0.887 (0.221) 1 0.609 (0.172) 0.541 (0.261) 0.692 (0.233) 0.387 (0.134) 0.434 (0.174)
FTMIB 0.77 (0.231) 0.612 (0.314) 0.868 (0.202) 0.937 (0.239) 0.839 (0.172) 1 0.763 (0.25) 0.664 (0.214) 0.429 (0.146) 0.412 (0.136)
GDAX 0.835 (0.285) 0.752 (0.369) 0.858 (0.241) 0.93 (0.274) 0.861 (0.24) 0.914 (0.233) 1 0.729 (0.327) 0.343 (0.192) 0.56 (0.206)
FTSE 0.814 (0.28) 0.676 (0.438) 0.762 (0.222) 0.88 (0.258) 0.863 (0.203) 0.813 (0.205) 0.855 (0.27) 1 0.444 (0.148) 0.673 (0.226)
N225 0.725 (0.203) 0.698 (0.38) 0.687 (0.169) 0.702 (0.169) 0.65 (0.129) 0.702 (0.144) 0.727 (0.207) 0.72 (0.147) 1 0.326 (0.131)
HSI 0.594 (0.216) 0.669 (0.343) 0.51 (0.162) 0.612 (0.187) 0.427 (0.149) 0.566 (0.157) 0.587 (0.2) 0.601 (0.189) 0.628 (0.15) 1

α = 0.025/0.975 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.528 (0.473) 0.555 (0.328) 0.669 (0.472) 0.628 (0.47) 0.445 (0.26) 0.661 (0.52) 0.691 (0.533) 0.395 (0.375) 0.522 (0.319)
NASDAQ 0.589 (0.38) 1 0.538 (0.313) 0.664 (0.398) 0.1 (0.263) 0.585 (0.309) 0.71 (0.438) 0.444 (0.404) 0.311 (0.303) 0.305 (0.218)
IBEX 0.853 (0.289) 0.669 (0.327) 1 0.838 (0.287) 0.64 (0.212) 0.779 (0.228) 0.678 (0.254) 0.705 (0.262) 0.346 (0.177) 0.51 (0.174)
FCHI 0.873 (0.42) 0.69 (0.457) 0.893 (0.327) 1 0.712 (0.274) 0.89 (0.285) 0.884 (0.402) 0.822 (0.356) 0.445 (0.221) 0.511 (0.217)
SSMI 0.627 (0.261) 0.419 (0.307) 0.638 (0.165) 0.798 (0.347) 1 0.442 (0.175) 0.513 (0.303) 0.776 (0.258) 0.291 (0.162) 0.452 (0.218)
FTMIB 0.914 (0.301) 0.592 (0.326) 0.851 (0.221) 0.904 (0.364) 0.69 (0.186) 1 0.811 (0.267) 0.579 (0.229) 0.352 (0.163) 0.291 (0.142)
GDAX 0.796 (0.368) 0.602 (0.356) 0.879 (0.284) 0.937 (0.472) 0.694 (0.293) 0.915 (0.317) 1 0.83 (0.412) 0.324 (0.239) 0.371 (0.191)
FTSE 0.835 (0.335) 0.589 (0.386) 0.805 (0.227) 0.882 (0.395) 0.642 (0.185) 0.841 (0.262) 0.822 (0.346) 1 0.521 (0.211) 0.546 (0.257)
N225 0.67 (0.253) 0.636 (0.341) 0.773 (0.186) 0.712 (0.284) 0.625 (0.142) 0.721 (0.192) 0.676 (0.258) 0.795 (0.202) 1 0.191 (0.166)
HSI 0.451 (0.303) 0.52 (0.368) 0.572 (0.243) 0.623 (0.399) 0.391 (0.244) 0.568 (0.264) 0.559 (0.318) 0.587 (0.293) 0.681 (0.291) 1

α = 0.01/0.99 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.364 (0.54) 0.592 (0.387) 0.727 (0.5) 0.584 (0.377) 0.437 (0.317) 0.43 (0.452) 0.686 (0.458) 0.472 (0.31) 0.511 (0.346)
NASDAQ 0.491 (0.469) 1 0.518 (0.492) 0.585 (0.571) -0.02 (0.374) 0.634 (0.503) 0.601 (0.628) 0.361 (0.607) 0.144 (0.404) 0.046 (0.232)
IBEX 0.986 (0.394) 0.491 (0.356) 1 0.866 (0.467) 0.626 (0.359) 0.886 (0.369) 0.671 (0.466) 0.789 (0.42) 0.554 (0.289) 0.37 (0.241)
FCHI 0.856 (0.487) 0.392 (0.419) 0.875 (0.391) 1 0.725 (0.428) 0.875 (0.416) 0.807 (0.555) 0.905 (0.553) 0.536 (0.359) 0.34 (0.264)
SSMI 0.558 (0.277) 0.308 (0.343) 0.498 (0.224) 0.548 (0.282) 1 0.461 (0.313) 0.522 (0.423) 0.84 (0.403) 0.295 (0.234) 0.609 (0.36)
FTMIB 0.875 (0.374) 0.363 (0.335) 0.898 (0.294) 0.963 (0.406) 0.453 (0.216) 1 0.695 (0.431) 0.667 (0.385) 0.465 (0.27) 0.095 (0.173)
GDAX 0.775 (0.448) 0.373 (0.356) 0.803 (0.365) 0.867 (0.465) 0.628 (0.318) 0.869 (0.381) 1 0.788 (0.572) 0.342 (0.361) 0.107 (0.216)
FTSE 0.784 (0.396) 0.316 (0.426) 0.813 (0.295) 0.88 (0.397) 0.423 (0.185) 0.888 (0.3) 0.732 (0.378) 1 0.555 (0.327) 0.533 (0.385)
N225 0.791 (0.347) 0.551 (0.411) 0.805 (0.235) 0.668 (0.295) 0.507 (0.177) 0.69 (0.225) 0.493 (0.261) 0.755 (0.245) 1 -0.083 (0.213)
HSI 0.478 (0.308) 0.397 (0.367) 0.565 (0.262) 0.593 (0.319) 0.373 (0.224) 0.605 (0.272) 0.505 (0.286) 0.721 (0.331) 0.813 (0.292) 1

α = 0.005/0.995 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.155 (0.488) 0.778 (0.476) 0.759 (0.605) 0.441 (0.35) 0.718 (0.492) 0.159 (0.426) 0.703 (0.499) 0.641 (0.371) 0.478 (0.365)
NASDAQ 0.595 (0.439) 1 0.252 (0.389) 0.278 (0.477) -0.058 (0.428) 0.455 (0.509) 0.624 (0.719) 0.214 (0.588) 0.085 (0.43) -0.14 (0.178)
IBEX 0.788 (0.405) 0.538 (0.345) 1 0.995 (0.53) 0.518 (0.354) 0.942 (0.387) 0.485 (0.421) 0.967 (0.499) 0.906 (0.424) 0.278 (0.24)
FCHI 0.743 (0.508) 0.292 (0.354) 0.799 (0.41) 1 0.469 (0.419) 0.958 (0.546) 0.455 (0.503) 0.956 (0.652) 0.907 (0.533) 0.236 (0.263)
SSMI 0.707 (0.321) 0.63 (0.352) 0.704 (0.272) 0.383 (0.281) 1 0.375 (0.352) 0.551 (0.553) 0.46 (0.329) 0.329 (0.208) 0.73 (0.411)
FTMIB 0.623 (0.345) 0.053 (0.213) 0.82 (0.263) 0.856 (0.417) 0.276 (0.214) 1 0.532 (0.486) 0.854 (0.478) 0.897 (0.42) 0.054 (0.209)
GDAX 0.531 (0.407) 0.099 (0.241) 0.436 (0.296) 0.832 (0.513) 0.302 (0.273) 0.51 (0.31) 1 0.454 (0.526) 0.375 (0.448) 0.082 (0.252)
FTSE 0.776 (0.44) 0.252 (0.351) 0.868 (0.381) 0.942 (0.54) 0.444 (0.212) 0.904 (0.387) 0.675 (0.425) 1 0.84 (0.387) 0.313 (0.309)
N225 0.726 (0.276) 0.517 (0.272) 0.494 (0.191) 0.53 (0.243) 0.139 (0.106) 0.471 (0.185) 0.183 (0.179) 0.587 (0.209) 1 -0.068 (0.232)
HSI 0.693 (0.372) 0.495 (0.338) 0.466 (0.24) 0.514 (0.315) 0.089 (0.165) 0.465 (0.243) 0.164 (0.211) 0.565 (0.309) 0.998 (0.26) 1
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α = 0.1/0.9 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.804 (0.143) 0.418 (0.136) 0.515 (0.15) 0.418 (0.136) 0.501 (0.14) 0.48 (0.191) 0.472 (0.177) 0.091 (0.084) 0.112 (0.087)
NASDAQ 0.925 (0.028) 1 0.432 (0.037) 0.492 (0.041) 0.48 (0.043) 0.454 (0.039) 0.495 (0.058) 0.497 (0.175) 0.148 (0.038) 0.168 (0.037)
IBEX 0.494 (0.033) 0.409 (0.039) 1 0.864 (0.036) 0.676 (0.045) 0.826 (0.037) 0.825 (0.054) 0.735 (0.228) 0.201 (0.042) 0.286 (0.04)
FCHI 0.584 (0.035) 0.483 (0.04) 0.916 (0.036) 1 0.783 (0.041) 0.944 (0.033) 0.89 (0.055) 0.85 (0.245) 0.207 (0.044) 0.364 (0.045)
SSMI 0.443 (0.033) 0.346 (0.039) 0.672 (0.04) 0.75 (0.04) 1 0.695 (0.04) 0.74 (0.057) 0.681 (0.256) 0.166 (0.04) 0.258 (0.045)
FTMIB 0.523 (0.032) 0.45 (0.042) 0.907 (0.035) 0.905 (0.034) 0.714 (0.039) 1 0.842 (0.053) 0.768 (0.226) 0.203 (0.039) 0.338 (0.043)
GDAX 0.512 (0.02) 0.474 (0.042) 0.846 (0.038) 0.891 (0.036) 0.723 (0.039) 0.836 (0.039) 1 0.815 (0.183) 0.227 (0.067) 0.373 (0.067)
FTSE 0.488 (0.098) 0.468 (0.161) 0.782 (0.204) 0.848 (0.212) 0.736 (0.184) 0.805 (0.206) 0.816 (0.162) 1 0.208 (0.176) 0.366 (0.176)
N225 0.175 (0.034) 0.175 (0.036) 0.276 (0.038) 0.309 (0.042) 0.316 (0.043) 0.211 (0.041) 0.248 (0.043) 0.37 (0.16) 1 0.474 (0.042)
HSI 0.197 (0.033) 0.218 (0.035) 0.365 (0.043) 0.441 (0.042) 0.332 (0.045) 0.375 (0.043) 0.367 (0.041) 0.423 (0.159) 0.506 (0.041) 1

α = 0.05/0.95 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.727 (0.14) 0.508 (0.123) 0.531 (0.134) 0.463 (0.121) 0.502 (0.128) 0.61 (0.213) 0.495 (0.194) 0.133 (0.086) 0.128 (0.084)
NASDAQ 0.848 (0.021) 1 0.513 (0.039) 0.545 (0.043) 0.403 (0.045) 0.465 (0.042) 0.58 (0.058) 0.382 (0.18) 0.116 (0.039) 0.165 (0.039)
IBEX 0.495 (0.024) 0.38 (0.045) 1 0.951 (0.039) 0.78 (0.044) 0.91 (0.04) 0.842 (0.058) 0.8 (0.213) 0.248 (0.045) 0.343 (0.041)
FCHI 0.559 (0.026) 0.443 (0.042) 0.857 (0.04) 1 0.75 (0.045) 0.868 (0.036) 0.877 (0.063) 0.837 (0.236) 0.2 (0.044) 0.394 (0.04)
SSMI 0.555 (0.025) 0.423 (0.043) 0.749 (0.048) 0.864 (0.045) 1 0.721 (0.043) 0.775 (0.056) 0.744 (0.238) 0.222 (0.047) 0.373 (0.047)
FTMIB 0.544 (0.023) 0.433 (0.046) 0.89 (0.042) 0.869 (0.041) 0.805 (0.046) 1 0.719 (0.061) 0.73 (0.216) 0.149 (0.041) 0.28 (0.039)
GDAX 0.583 (0.026) 0.563 (0.047) 0.786 (0.047) 0.892 (0.043) 0.814 (0.049) 0.804 (0.045) 1 0.814 (0.294) 0.175 (0.058) 0.339 (0.054)
FTSE 0.551 (0.097) 0.446 (0.132) 0.747 (0.171) 0.888 (0.18) 0.835 (0.156) 0.816 (0.171) 0.765 (0.128) 1 0.221 (0.151) 0.39 (0.145)
N225 0.111 (0.02) 0.141 (0.038) 0.275 (0.045) 0.376 (0.047) 0.347 (0.044) 0.3 (0.046) 0.33 (0.048) 0.355 (0.131) 1 0.434 (0.048)
HSI 0.141 (0.02) 0.094 (0.039) 0.338 (0.043) 0.387 (0.046) 0.382 (0.049) 0.314 (0.043) 0.387 (0.046) 0.431 (0.136) 0.533 (0.045) 1

α = 0.01/0.99 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.957 (0.136) 0.578 (0.111) 0.62 (0.114) 0.478 (0.125) 0.542 (0.11) 0.719 (0.169) 0.525 (0.223) 0.086 (0.08) 0.12 (0.087)
NASDAQ 0.851 (0.163) 1 0.481 (0.078) 0.617 (0.069) 0.41 (0.067) 0.474 (0.074) 0.678 (0.078) 0.427 (0.178) 0.132 (0.056) 0.208 (0.058)
IBEX 0.662 (0.199) 0.498 (0.064) 1 0.836 (0.069) 0.687 (0.079) 0.836 (0.07) 0.709 (0.085) 0.754 (0.172) 0.19 (0.065) 0.234 (0.066)
FCHI 0.588 (0.2) 0.499 (0.069) 0.952 (0.067) 1 0.774 (0.072) 0.846 (0.065) 0.859 (0.083) 0.878 (0.172) 0.195 (0.062) 0.258 (0.063)
SSMI 0.572 (0.189) 0.388 (0.07) 0.755 (0.075) 0.868 (0.072) 1 0.808 (0.073) 0.813 (0.08) 0.771 (0.182) 0.238 (0.067) 0.188 (0.064)
FTMIB 0.621 (0.193) 0.438 (0.069) 0.96 (0.067) 0.89 (0.066) 0.683 (0.072) 1 0.869 (0.084) 0.707 (0.171) 0.216 (0.063) 0.218 (0.062)
GDAX 0.56 (0.204) 0.514 (0.089) 0.841 (0.1) 0.859 (0.103) 0.708 (0.099) 0.76 (0.096) 1 0.748 (0.235) 0.238 (0.075) 0.254 (0.078)
FTSE 0.492 (0.213) 0.385 (0.096) 0.884 (0.086) 0.952 (0.103) 0.826 (0.093) 0.845 (0.078) 0.823 (0.061) 1 0.214 (0.126) 0.2 (0.138)
N225 0.116 (0.128) 0.156 (0.066) 0.22 (0.063) 0.277 (0.066) 0.315 (0.068) 0.212 (0.063) 0.221 (0.067) 0.25 (0.063) 1 0.525 (0.07)
HSI 0.149 (0.126) 0.199 (0.054) 0.239 (0.069) 0.272 (0.069) 0.287 (0.066) 0.266 (0.066) 0.319 (0.074) 0.3 (0.072) 0.421 (0.076) 1

α = 0.005/0.995 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.902 (0.146) 0.575 (0.111) 0.633 (0.117) 0.413 (0.133) 0.367 (0.109) 0.512 (0.146) 0.45 (0.242) 0.025 (0.083) 0.062 (0.087)
NASDAQ 0.757 (0.159) 1 0.402 (0.092) 0.604 (0.093) 0.298 (0.097) 0.399 (0.092) 0.557 (0.094) 0.487 (0.152) 0.027 (0.082) 0.137 (0.074)
IBEX 0.607 (0.177) 0.424 (0.088) 1 0.875 (0.101) 0.62 (0.108) 0.662 (0.095) 0.732 (0.119) 0.785 (0.151) 0.181 (0.077) 0.232 (0.083)
FCHI 0.658 (0.175) 0.404 (0.087) 0.873 (0.084) 1 0.706 (0.1) 0.794 (0.088) 0.881 (0.107) 0.846 (0.154) 0.405 (0.082) 0.407 (0.081)
SSMI 0.644 (0.164) 0.493 (0.083) 0.873 (0.099) 0.796 (0.094) 1 0.667 (0.098) 0.543 (0.104) 0.722 (0.167) 0.19 (0.084) 0.219 (0.082)
FTMIB 0.457 (0.156) 0.406 (0.086) 0.969 (0.086) 0.825 (0.091) 0.868 (0.09) 1 0.676 (0.111) 0.688 (0.141) 0.193 (0.076) 0.114 (0.074)
GDAX 0.576 (0.196) 0.301 (0.095) 0.715 (0.12) 0.858 (0.111) 0.752 (0.114) 0.691 (0.116) 1 0.731 (0.201) 0.188 (0.092) 0.211 (0.089)
FTSE 0.66 (0.253) 0.452 (0.07) 0.845 (0.062) 0.868 (0.063) 0.834 (0.065) 0.821 (0.059) 0.95 (0.068) 1 0.281 (0.134) 0.266 (0.137)
N225 0.179 (0.16) 0.098 (0.067) 0.173 (0.08) 0.155 (0.081) 0.252 (0.083) 0.178 (0.069) 0.063 (0.078) 0.146 (0.052) 1 0.541 (0.079)
HSI 0.122 (0.152) 0.17 (0.069) 0.336 (0.079) 0.323 (0.079) 0.398 (0.075) 0.422 (0.074) 0.31 (0.085) 0.28 (0.054) 0.475 (0.08) 1

α = 0.001/0.999 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.691 (0.174) 0.309 (0.155) 0.323 (0.149) 0.338 (0.168) 0.505 (0.146) 0.364 (0.168) 0.436 (0.247) 0.139 (0.141) 0.331 (0.137)
NASDAQ 0.755 (0.184) 1 0.326 (0.158) 0.233 (0.148) 0.36 (0.15) 0.428 (0.163) 0.505 (0.155) 0.334 (0.188) 0.15 (0.114) 0.128 (0.128)
IBEX 0.379 (0.184) 0.272 (0.163) 1 0.838 (0.158) 0.804 (0.181) 0.685 (0.146) 0.529 (0.203) 0.798 (0.15) 0.198 (0.129) 0.324 (0.142)
FCHI 0.53 (0.164) 0.46 (0.145) 0.773 (0.14) 1 0.794 (0.179) 0.839 (0.153) 0.682 (0.175) 0.868 (0.169) 0.063 (0.13) 0.128 (0.143)
SSMI 0.562 (0.161) 0.215 (0.156) 0.634 (0.177) 0.821 (0.162) 1 0.864 (0.174) 0.682 (0.181) 0.802 (0.162) 0.229 (0.137) 0.147 (0.132)
FTMIB 0.485 (0.185) 0.516 (0.158) 0.573 (0.147) 0.718 (0.133) 0.574 (0.16) 1 0.814 (0.201) 0.926 (0.154) 0.417 (0.125) 0.282 (0.145)
GDAX 0.383 (0.151) 0.359 (0.159) 0.673 (0.182) 0.946 (0.173) 0.797 (0.163) 0.772 (0.173) 1 0.78 (0.188) 0.143 (0.14) 0.359 (0.147)
FTSE 0.54 (0.103) 0.512 (0.065) 0.728 (0.076) 0.902 (0.064) 0.758 (0.071) 0.9 (0.072) 0.865 (0.075) 1 0.358 (0.155) 0.526 (0.168)
N225 0.316 (0.156) 0.158 (0.115) 0.768 (0.154) 0.702 (0.129) 0.534 (0.13) 0.813 (0.138) 0.725 (0.134) 0.761 (0.068) 1 0.329 (0.158)
HSI 0.183 (0.145) -0.034 (0.099) 0.44 (0.129) 0.368 (0.12) 0.26 (0.122) 0.666 (0.129) 0.356 (0.119) 0.576 (0.063) 0.829 (0.165) 1
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α = 0.1/0.9 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.864 (0.073) 0.61 (0.083) 0.825 (0.071) 0.653 (0.082) 0.757 (0.073) 0.775 (0.075) 0.856 (0.078) 0.525 (0.076) 0.444 (0.081)
NASDAQ 0.685 (0.073) 1 0.667 (0.092) 0.77 (0.078) 0.638 (0.09) 0.677 (0.081) 0.776 (0.077) 0.853 (0.085) 0.53 (0.082) 0.624 (0.083)
IBEX 0.763 (0.084) 0.591 (0.093) 1 0.889 (0.066) 0.696 (0.082) 0.809 (0.072) 0.842 (0.08) 0.633 (0.082) 0.378 (0.077) 0.483 (0.075)
FCHI 0.873 (0.07) 0.624 (0.077) 0.891 (0.069) 1 0.86 (0.071) 0.88 (0.058) 0.896 (0.052) 0.861 (0.064) 0.459 (0.075) 0.497 (0.078)
SSMI 0.766 (0.081) 0.548 (0.098) 0.704 (0.084) 0.692 (0.064) 1 0.667 (0.088) 0.824 (0.07) 0.729 (0.079) 0.412 (0.079) 0.537 (0.084)
FTMIB 0.715 (0.083) 0.56 (0.1) 0.834 (0.062) 0.772 (0.063) 0.656 (0.082) 1 0.889 (0.066) 0.688 (0.076) 0.435 (0.068) 0.41 (0.067)
GDAX 0.891 (0.068) 0.692 (0.079) 0.834 (0.066) 0.879 (0.045) 0.681 (0.071) 0.916 (0.062) 1 0.751 (0.074) 0.565 (0.077) 0.61 (0.075)
FTSE 0.824 (0.073) 0.718 (0.085) 0.757 (0.08) 0.908 (0.056) 0.655 (0.074) 0.664 (0.076) 0.86 (0.062) 1 0.439 (0.08) 0.594 (0.08)
N225 0.576 (0.092) 0.602 (0.098) 0.786 (0.086) 0.759 (0.084) 0.489 (0.091) 0.591 (0.087) 0.634 (0.085) 0.761 (0.082) 1 0.561 (0.071)
HSI 0.488 (0.088) 0.572 (0.084) 0.413 (0.088) 0.613 (0.074) 0.483 (0.094) 0.479 (0.081) 0.536 (0.079) 0.693 (0.082) 0.621 (0.085) 1

α = 0.05/0.95 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.818 (0.093) 0.588 (0.096) 0.771 (0.086) 0.692 (0.092) 0.66 (0.087) 0.717 (0.079) 0.744 (0.084) 0.527 (0.084) 0.445 (0.097)
NASDAQ 0.83 (0.085) 1 0.616 (0.103) 0.69 (0.098) 0.67 (0.112) 0.613 (0.093) 0.723 (0.092) 0.688 (0.108) 0.556 (0.095) 0.529 (0.095)
IBEX 0.52 (0.09) 0.535 (0.103) 1 0.84 (0.077) 0.67 (0.096) 0.923 (0.081) 0.771 (0.084) 0.613 (0.092) 0.542 (0.09) 0.476 (0.089)
FCHI 0.66 (0.088) 0.815 (0.096) 0.801 (0.075) 1 0.702 (0.083) 0.848 (0.068) 0.871 (0.059) 0.688 (0.075) 0.534 (0.091) 0.556 (0.09)
SSMI 0.65 (0.084) 0.758 (0.106) 0.652 (0.097) 0.908 (0.081) 1 0.632 (0.085) 0.699 (0.083) 0.797 (0.086) 0.435 (0.084) 0.476 (0.094)
FTMIB 0.633 (0.087) 0.736 (0.095) 0.836 (0.076) 0.942 (0.064) 0.737 (0.095) 1 0.883 (0.075) 0.713 (0.088) 0.533 (0.084) 0.445 (0.086)
GDAX 0.723 (0.085) 0.759 (0.09) 0.753 (0.078) 0.844 (0.063) 0.798 (0.081) 0.806 (0.076) 1 0.746 (0.082) 0.518 (0.077) 0.603 (0.084)
FTSE 0.621 (0.082) 0.739 (0.094) 0.702 (0.087) 0.805 (0.067) 0.814 (0.076) 0.672 (0.081) 0.606 (0.08) 1 0.57 (0.088) 0.588 (0.088)
N225 0.414 (0.092) 0.678 (0.109) 0.479 (0.093) 0.634 (0.09) 0.557 (0.091) 0.627 (0.092) 0.621 (0.081) 0.656 (0.088) 1 0.535 (0.079)
HSI 0.323 (0.094) 0.45 (0.104) 0.257 (0.091) 0.524 (0.091) 0.386 (0.094) 0.531 (0.086) 0.475 (0.083) 0.443 (0.091) 0.509 (0.092) 1

α = 0.01/0.99 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.749 (0.151) 0.745 (0.148) 0.806 (0.127) 0.695 (0.153) 0.666 (0.127) 0.713 (0.127) 0.583 (0.139) 0.339 (0.124) 0.779 (0.131)
NASDAQ 0.725 (0.153) 1 0.567 (0.162) 0.705 (0.162) 0.655 (0.171) 0.616 (0.147) 0.608 (0.162) 0.528 (0.162) 0.345 (0.135) 0.537 (0.148)
IBEX 0.652 (0.156) 0.618 (0.181) 1 0.836 (0.128) 0.863 (0.151) 0.762 (0.134) 0.747 (0.147) 0.787 (0.148) 0.546 (0.124) 0.504 (0.148)
FCHI 0.52 (0.142) 0.441 (0.167) 0.724 (0.123) 1 0.778 (0.142) 0.867 (0.113) 0.939 (0.104) 0.774 (0.137) 0.561 (0.125) 0.585 (0.146)
SSMI 0.829 (0.153) 0.646 (0.188) 0.805 (0.171) 0.671 (0.142) 1 0.679 (0.15) 0.734 (0.136) 0.642 (0.143) 0.684 (0.137) 0.62 (0.142)
FTMIB 0.701 (0.148) 0.642 (0.182) 0.739 (0.135) 0.722 (0.116) 0.847 (0.141) 1 0.777 (0.111) 0.654 (0.134) 0.742 (0.12) 0.658 (0.141)
GDAX 0.803 (0.151) 0.588 (0.164) 0.728 (0.147) 0.581 (0.114) 0.676 (0.138) 0.824 (0.13) 1 0.858 (0.124) 0.606 (0.113) 0.607 (0.142)
FTSE 0.694 (0.143) 0.583 (0.167) 0.884 (0.16) 0.752 (0.128) 0.685 (0.137) 0.721 (0.133) 0.778 (0.12) 1 0.424 (0.122) 0.445 (0.137)
N225 0.506 (0.145) 0.523 (0.159) 0.551 (0.153) 0.483 (0.14) 0.78 (0.162) 0.831 (0.14) 0.453 (0.139) 0.546 (0.151) 1 0.602 (0.129)
HSI 0.631 (0.141) 0.605 (0.16) 0.668 (0.169) 0.746 (0.155) 0.562 (0.174) 0.711 (0.138) 0.69 (0.138) 0.914 (0.138) 0.59 (0.133) 1

α = 0.005/0.995 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.806 (0.18) 0.859 (0.185) 0.934 (0.168) 0.849 (0.198) 0.832 (0.18) 0.88 (0.175) 0.949 (0.174) 0.364 (0.163) 0.545 (0.165)
NASDAQ 0.819 (0.179) 1 0.603 (0.188) 0.746 (0.192) 0.824 (0.21) 0.77 (0.189) 0.613 (0.198) 0.617 (0.179) 0.462 (0.18) 0.246 (0.171)
IBEX 0.785 (0.201) 0.906 (0.218) 1 0.902 (0.165) 0.75 (0.199) 0.726 (0.154) 0.724 (0.173) 0.847 (0.176) 0.516 (0.153) 0.533 (0.181)
FCHI 0.621 (0.189) 0.592 (0.188) 0.807 (0.136) 1 0.684 (0.165) 0.743 (0.138) 0.825 (0.136) 0.836 (0.159) 0.423 (0.156) 0.623 (0.175)
SSMI 0.494 (0.191) 0.653 (0.227) 0.741 (0.216) 0.812 (0.195) 1 0.83 (0.181) 0.66 (0.171) 0.829 (0.186) 0.462 (0.182) 0.226 (0.181)
FTMIB 0.66 (0.193) 0.615 (0.194) 0.817 (0.163) 0.925 (0.137) 0.697 (0.203) 1 0.719 (0.143) 0.762 (0.168) 0.758 (0.154) 0.624 (0.168)
GDAX 0.544 (0.176) 0.631 (0.191) 0.831 (0.165) 0.695 (0.144) 0.789 (0.19) 0.654 (0.15) 1 0.876 (0.177) 0.259 (0.15) 0.439 (0.161)
FTSE 0.845 (0.174) 0.733 (0.188) 0.871 (0.176) 0.733 (0.152) 0.463 (0.203) 0.828 (0.147) 0.673 (0.145) 1 0.255 (0.15) 0.502 (0.167)
N225 0.542 (0.191) 0.662 (0.186) 0.518 (0.201) 0.245 (0.197) 0.351 (0.212) 0.322 (0.188) 0.286 (0.183) 0.277 (0.208) 1 0.515 (0.154)
HSI 0.775 (0.174) 0.34 (0.195) 0.414 (0.186) 0.469 (0.183) 0.327 (0.218) 0.52 (0.171) 0.42 (0.19) 0.581 (0.168) 0.376 (0.161) 1

α = 0.001/0.999 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.527 (0.248) 0.321 (0.246) 0.517 (0.24) 0.432 (0.248) 0.233 (0.243) 0.584 (0.228) 0.639 (0.235) 0.76 (0.244) 0.351 (0.199)
NASDAQ 0.68 (0.25) 1 0.43 (0.265) 0.716 (0.249) 0.358 (0.261) 0.342 (0.241) 0.708 (0.246) 0.6 (0.271) 0.629 (0.219) 0.455 (0.211)
IBEX 0.242 (0.271) 0.304 (0.263) 1 0.841 (0.209) 0.78 (0.262) 0.848 (0.213) 0.794 (0.229) 0.533 (0.238) 0.422 (0.224) 0.655 (0.231)
FCHI 0.258 (0.263) 0.36 (0.262) 0.996 (0.173) 1 0.819 (0.243) 0.682 (0.198) 0.859 (0.186) 0.696 (0.224) 0.564 (0.253) 0.682 (0.229)
SSMI 0.208 (0.301) 0.379 (0.272) 0.951 (0.297) 0.973 (0.276) 1 0.639 (0.249) 0.747 (0.237) 0.756 (0.269) 0.273 (0.26) 0.782 (0.216)
FTMIB 0.366 (0.278) 0.425 (0.259) 0.977 (0.208) 0.97 (0.181) 0.894 (0.303) 1 0.735 (0.213) 0.277 (0.234) 0.271 (0.25) 0.838 (0.236)
GDAX 0.262 (0.267) 0.366 (0.267) 0.995 (0.24) 1.0 (0.198) 0.973 (0.285) 0.971 (0.231) 1 0.806 (0.232) 0.735 (0.23) 0.791 (0.221)
FTSE 0.32 (0.249) 0.591 (0.25) 0.871 (0.226) 0.912 (0.192) 0.964 (0.302) 0.841 (0.225) 0.914 (0.226) 1 0.656 (0.237) 0.538 (0.209)
N225 0.179 (0.288) 0.305 (0.252) 0.995 (0.286) 0.996 (0.293) 0.968 (0.318) 0.962 (0.32) 0.996 (0.308) 0.894 (0.304) 1 0.239 (0.195)
HSI -0.014 (0.234) 0.576 (0.251) 0.128 (0.26) 0.141 (0.258) 0.074 (0.314) 0.26 (0.28) 0.144 (0.288) 0.197 (0.252) 0.152 (0.259) 1
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α = 0.1/0.9 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.861 (0.125) 0.711 (0.137) 0.788 (0.117) 0.504 (0.126) 0.664 (0.133) 0.715 (0.117) 0.798 (0.121) 0.775 (0.136) 0.76 (0.15)
NASDAQ 0.844 (0.105) 1 0.811 (0.146) 0.837 (0.122) 0.677 (0.135) 0.688 (0.131) 0.763 (0.123) 0.851 (0.131) 0.602 (0.131) 0.807 (0.137)
IBEX 0.524 (0.163) 0.585 (0.157) 1 0.857 (0.128) 0.567 (0.137) 0.776 (0.121) 0.784 (0.109) 0.884 (0.117) 0.492 (0.129) 0.368 (0.172)
FCHI 0.658 (0.125) 0.747 (0.129) 0.78 (0.113) 1 0.739 (0.104) 0.907 (0.085) 0.773 (0.084) 0.868 (0.091) 0.515 (0.12) 0.486 (0.151)
SSMI 0.54 (0.147) 0.437 (0.14) 0.402 (0.131) 0.586 (0.127) 1 0.495 (0.118) 0.821 (0.102) 0.609 (0.105) 0.496 (0.105) 0.35 (0.144)
FTMIB 0.458 (0.174) 0.514 (0.164) 0.838 (0.103) 0.808 (0.09) 0.636 (0.127) 1 0.546 (0.117) 0.685 (0.129) 0.337 (0.149) 0.426 (0.142)
GDAX 0.824 (0.118) 0.855 (0.107) 0.792 (0.103) 0.786 (0.086) 0.627 (0.127) 0.662 (0.12) 1 0.691 (0.108) 0.826 (0.114) 0.424 (0.148)
FTSE 0.803 (0.117) 0.692 (0.145) 0.571 (0.129) 0.797 (0.122) 0.812 (0.162) 0.589 (0.154) 0.762 (0.109) 1 0.427 (0.119) 0.456 (0.159)
N225 0.388 (0.169) 0.642 (0.146) 0.567 (0.147) 0.441 (0.143) 0.452 (0.152) 0.611 (0.148) 0.546 (0.131) 0.451 (0.148) 1 0.561 (0.129)
HSI 0.47 (0.147) 0.303 (0.161) 0.537 (0.176) 0.399 (0.163) 0.295 (0.182) 0.384 (0.154) 0.329 (0.154) 0.629 (0.127) 0.451 (0.164) 1

α = 0.05/0.95 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.527 (0.139) 0.369 (0.15) 0.659 (0.127) 0.792 (0.146) 0.484 (0.147) 0.562 (0.139) 0.64 (0.127) 0.327 (0.114) 0.46 (0.165)
NASDAQ 0.914 (0.099) 1 0.615 (0.144) 0.671 (0.141) 0.525 (0.149) 0.456 (0.136) 0.516 (0.138) 0.42 (0.145) 0.464 (0.133) 0.612 (0.148)
IBEX 0.791 (0.144) 0.676 (0.163) 1 0.781 (0.123) 0.609 (0.141) 0.819 (0.109) 0.65 (0.132) 0.509 (0.132) 0.271 (0.13) 0.431 (0.153)
FCHI 0.914 (0.124) 0.734 (0.123) 0.847 (0.098) 1 0.498 (0.123) 0.596 (0.111) 0.643 (0.097) 0.597 (0.107) 0.263 (0.123) 0.571 (0.159)
SSMI 0.918 (0.115) 0.731 (0.13) 0.81 (0.13) 0.882 (0.124) 1 0.662 (0.144) 0.586 (0.127) 0.463 (0.123) 0.375 (0.11) 0.283 (0.162)
FTMIB 0.52 (0.164) 0.517 (0.162) 0.769 (0.094) 0.615 (0.1) 0.477 (0.139) 1 0.641 (0.143) 0.779 (0.111) 0.517 (0.139) 0.437 (0.167)
GDAX 0.886 (0.113) 0.713 (0.122) 0.749 (0.143) 0.901 (0.079) 0.842 (0.13) 0.667 (0.142) 1 0.425 (0.129) 0.38 (0.12) 0.867 (0.15)
FTSE 0.878 (0.111) 0.647 (0.14) 0.866 (0.128) 0.885 (0.101) 0.946 (0.12) 0.485 (0.133) 0.847 (0.121) 1 0.275 (0.136) 0.459 (0.176)
N225 0.77 (0.135) 0.702 (0.126) 0.565 (0.142) 0.858 (0.132) 0.6 (0.126) 0.456 (0.144) 0.705 (0.124) 0.577 (0.162) 1 0.316 (0.142)
HSI 0.801 (0.144) 0.755 (0.141) 0.508 (0.145) 0.726 (0.153) 0.611 (0.147) 0.53 (0.177) 0.89 (0.152) 0.592 (0.125) 0.665 (0.163) 1

α = 0.025/0.975 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.575 (0.162) 0.66 (0.163) 0.826 (0.159) 0.582 (0.151) 0.451 (0.194) 0.91 (0.156) 0.728 (0.157) 0.41 (0.143) 0.638 (0.185)
NASDAQ 0.537 (0.141) 1 0.386 (0.17) 0.7 (0.169) 0.47 (0.171) 0.498 (0.175) 0.749 (0.162) 0.563 (0.167) 0.468 (0.156) 0.738 (0.175)
IBEX 0.466 (0.146) 0.441 (0.181) 1 0.814 (0.151) 0.874 (0.153) 0.601 (0.128) 0.554 (0.147) 0.83 (0.15) 0.274 (0.145) 0.554 (0.188)
FCHI 0.343 (0.143) 0.566 (0.158) 0.501 (0.127) 1 0.798 (0.151) 0.805 (0.123) 0.856 (0.107) 0.852 (0.132) 0.339 (0.143) 0.601 (0.181)
SSMI 0.627 (0.136) 0.492 (0.174) 0.786 (0.157) 0.828 (0.134) 1 0.674 (0.178) 0.534 (0.158) 0.749 (0.159) 0.439 (0.166) 0.501 (0.185)
FTMIB 0.521 (0.142) 0.521 (0.167) 0.786 (0.114) 0.737 (0.116) 0.9 (0.126) 1 0.547 (0.148) 0.81 (0.179) 0.404 (0.167) 0.486 (0.178)
GDAX 0.451 (0.132) 0.743 (0.16) 0.645 (0.152) 0.923 (0.11) 0.797 (0.135) 0.772 (0.141) 1 0.681 (0.155) 0.317 (0.161) 0.633 (0.176)
FTSE 0.739 (0.136) 0.748 (0.168) 0.611 (0.153) 0.78 (0.116) 0.865 (0.126) 0.784 (0.127) 0.844 (0.134) 1 0.559 (0.146) 0.808 (0.173)
N225 0.649 (0.142) 0.496 (0.148) 0.571 (0.174) 0.514 (0.152) 0.576 (0.146) 0.677 (0.158) 0.673 (0.155) 0.619 (0.136) 1 0.768 (0.156)
HSI 0.386 (0.162) 0.783 (0.172) 0.296 (0.163) 0.294 (0.167) 0.253 (0.16) 0.411 (0.177) 0.444 (0.177) 0.348 (0.157) 0.378 (0.16) 1

α = 0.01/0.99 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.538 (0.204) 0.467 (0.18) 0.472 (0.203) 0.619 (0.183) 0.423 (0.191) 0.628 (0.199) 0.602 (0.169) 0.374 (0.183) 0.76 (0.219)
NASDAQ 0.716 (0.158) 1 0.602 (0.213) 0.748 (0.208) 0.16 (0.2) 0.874 (0.221) 0.798 (0.21) 0.444 (0.208) 0.44 (0.187) 0.342 (0.212)
IBEX 0.902 (0.163) 0.868 (0.199) 1 0.706 (0.176) 0.48 (0.174) 0.888 (0.157) 0.679 (0.189) 0.533 (0.174) 0.107 (0.186) 0.37 (0.208)
FCHI 0.77 (0.18) 0.821 (0.193) 0.877 (0.146) 1 0.471 (0.196) 0.796 (0.166) 0.915 (0.131) 0.819 (0.17) 0.414 (0.189) 0.378 (0.222)
SSMI 0.535 (0.16) 0.487 (0.199) 0.567 (0.162) 0.845 (0.162) 1 0.257 (0.175) 0.515 (0.205) 0.846 (0.196) 0.257 (0.192) 0.163 (0.209)
FTMIB 0.865 (0.153) 0.808 (0.182) 0.863 (0.132) 0.87 (0.14) 0.593 (0.144) 1 0.805 (0.167) 0.461 (0.187) 0.194 (0.19) 0.31 (0.187)
GDAX 0.762 (0.165) 0.797 (0.176) 0.798 (0.151) 0.889 (0.136) 0.597 (0.166) 0.884 (0.127) 1 0.746 (0.178) 0.2 (0.188) 0.453 (0.191)
FTSE 0.763 (0.165) 0.825 (0.198) 0.835 (0.157) 0.816 (0.158) 0.615 (0.131) 0.63 (0.141) 0.776 (0.131) 1 0.527 (0.183) 0.287 (0.194)
N225 0.411 (0.182) 0.656 (0.172) 0.496 (0.187) 0.731 (0.178) 0.6 (0.166) 0.513 (0.169) 0.821 (0.18) 0.779 (0.159) 1 0.145 (0.177)
HSI 0.373 (0.186) 0.523 (0.202) 0.686 (0.203) 0.717 (0.188) 0.585 (0.185) 0.423 (0.174) 0.483 (0.192) 0.584 (0.176) 0.415 (0.184) 1

α = 0.005/0.995 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.401 (0.229) 0.456 (0.232) 0.778 (0.24) 0.593 (0.215) 0.424 (0.243) 0.588 (0.21) 0.703 (0.223) 0.346 (0.239) 0.341 (0.235)
NASDAQ 0.411 (0.215) 1 0.681 (0.233) 0.677 (0.216) 0.098 (0.232) 0.626 (0.248) 0.452 (0.24) 0.374 (0.236) 0.086 (0.218) 0.065 (0.225)
IBEX 0.876 (0.175) 0.243 (0.238) 1 0.792 (0.249) 0.688 (0.287) 0.752 (0.199) 0.6 (0.227) 0.717 (0.268) 0.329 (0.359) 0.302 (0.231)
FCHI 0.725 (0.187) 0.257 (0.217) 0.475 (0.166) 1 0.646 (0.259) 0.85 (0.219) 0.84 (0.17) 0.896 (0.231) 0.307 (0.332) 0.333 (0.23)
SSMI 0.333 (0.196) 0.11 (0.25) 0.27 (0.215) 0.326 (0.183) 1 0.38 (0.279) 0.438 (0.238) 0.758 (0.21) 0.154 (0.301) 0.46 (0.211)
FTMIB 0.765 (0.185) 0.409 (0.217) 0.641 (0.157) 0.865 (0.152) 0.653 (0.184) 1 0.854 (0.207) 0.753 (0.26) 0.511 (0.357) 0.129 (0.191)
GDAX 0.716 (0.213) 0.413 (0.236) 0.683 (0.2) 0.627 (0.168) 0.755 (0.216) 0.911 (0.155) 1 0.819 (0.198) 0.39 (0.258) 0.104 (0.216)
FTSE 0.616 (0.19) 0.247 (0.233) 0.633 (0.181) 0.777 (0.163) 0.34 (0.141) 0.833 (0.158) 0.616 (0.174) 1 0.269 (0.298) 0.598 (0.204)
N225 0.75 (0.21) 0.498 (0.204) 0.752 (0.205) 0.542 (0.195) 0.67 (0.207) 0.831 (0.18) 0.809 (0.209) 0.765 (0.193) 1 -0.119 (0.195)
HSI 0.309 (0.216) 0.243 (0.238) 0.416 (0.224) 0.493 (0.228) 0.67 (0.209) 0.79 (0.204) 0.772 (0.216) 0.777 (0.202) 0.726 (0.214) 1
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α = 0.1/0.9 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.804 (0.103) 0.475 (0.08) 0.54 (0.087) 0.477 (0.078) 0.504 (0.081) 0.578 (0.181) 0.505 (0.201) 0.098 (0.056) 0.146 (0.056)
NASDAQ 0.814 (0.393) 1 0.423 (0.022) 0.494 (0.021) 0.417 (0.023) 0.443 (0.021) 0.55 (0.034) 0.43 (0.079) 0.077 (0.023) 0.164 (0.023)
IBEX 0.532 (0.465) 0.423 (0.02) 1 0.862 (0.014) 0.722 (0.02) 0.864 (0.012) 0.776 (0.028) 0.765 (0.105) 0.2 (0.025) 0.272 (0.022)
FCHI 0.58 (0.486) 0.475 (0.019) 0.881 (0.011) 1 0.797 (0.017) 0.859 (0.012) 0.878 (0.033) 0.851 (0.116) 0.212 (0.025) 0.321 (0.019)
SSMI 0.525 (0.463) 0.401 (0.021) 0.745 (0.018) 0.834 (0.014) 1 0.728 (0.018) 0.757 (0.028) 0.758 (0.106) 0.222 (0.023) 0.268 (0.021)
FTMIB 0.535 (0.467) 0.442 (0.02) 0.864 (0.012) 0.886 (0.011) 0.755 (0.017) 1 0.795 (0.027) 0.761 (0.105) 0.159 (0.024) 0.258 (0.021)
GDAX 0.583 (0.477) 0.509 (0.029) 0.822 (0.029) 0.906 (0.034) 0.804 (0.029) 0.83 (0.03) 1 0.789 (0.204) 0.2 (0.044) 0.311 (0.043)
FTSE 0.548 (0.505) 0.436 (0.105) 0.778 (0.137) 0.891 (0.145) 0.815 (0.122) 0.8 (0.14) 0.826 (0.122) 1 0.207 (0.065) 0.322 (0.068)
N225 0.133 (0.414) 0.134 (0.023) 0.274 (0.024) 0.321 (0.022) 0.335 (0.021) 0.265 (0.023) 0.287 (0.028) 0.321 (0.115) 1 0.442 (0.021)
HSI 0.157 (0.424) 0.144 (0.021) 0.353 (0.021) 0.385 (0.022) 0.377 (0.021) 0.333 (0.021) 0.354 (0.026) 0.408 (0.109) 0.522 (0.019) 1

α = 0.05/0.95 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.82 (0.103) 0.491 (0.079) 0.558 (0.079) 0.484 (0.073) 0.496 (0.08) 0.603 (0.147) 0.518 (0.211) 0.09 (0.048) 0.148 (0.049)
NASDAQ 0.784 (0.208) 1 0.409 (0.029) 0.501 (0.028) 0.389 (0.03) 0.429 (0.028) 0.561 (0.034) 0.424 (0.074) 0.051 (0.027) 0.169 (0.027)
IBEX 0.549 (0.217) 0.45 (0.028) 1 0.86 (0.018) 0.715 (0.029) 0.867 (0.019) 0.751 (0.035) 0.761 (0.09) 0.18 (0.03) 0.255 (0.031)
FCHI 0.569 (0.243) 0.469 (0.029) 0.893 (0.018) 1 0.802 (0.025) 0.851 (0.016) 0.882 (0.03) 0.852 (0.097) 0.221 (0.029) 0.29 (0.029)
SSMI 0.543 (0.231) 0.41 (0.028) 0.755 (0.026) 0.844 (0.025) 1 0.732 (0.027) 0.741 (0.034) 0.774 (0.093) 0.243 (0.029) 0.242 (0.027)
FTMIB 0.522 (0.213) 0.441 (0.029) 0.877 (0.019) 0.894 (0.02) 0.758 (0.027) 1 0.784 (0.032) 0.742 (0.091) 0.154 (0.028) 0.226 (0.028)
GDAX 0.595 (0.159) 0.51 (0.05) 0.818 (0.048) 0.909 (0.054) 0.801 (0.051) 0.836 (0.049) 1 0.767 (0.165) 0.188 (0.048) 0.28 (0.043)
FTSE 0.563 (0.175) 0.423 (0.127) 0.802 (0.129) 0.877 (0.143) 0.834 (0.126) 0.802 (0.129) 0.825 (0.114) 1 0.216 (0.059) 0.295 (0.059)
N225 0.134 (0.086) 0.122 (0.037) 0.279 (0.03) 0.307 (0.031) 0.329 (0.032) 0.27 (0.029) 0.28 (0.038) 0.309 (0.106) 1 0.419 (0.027)
HSI 0.154 (0.084) 0.149 (0.035) 0.339 (0.03) 0.373 (0.032) 0.391 (0.032) 0.339 (0.029) 0.345 (0.035) 0.41 (0.106) 0.544 (0.027) 1

α = 0.01/0.99 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.827 (0.09) 0.504 (0.076) 0.536 (0.072) 0.438 (0.067) 0.439 (0.073) 0.6 (0.084) 0.495 (0.233) 0.078 (0.054) 0.187 (0.05)
NASDAQ 0.779 (0.093) 1 0.399 (0.063) 0.437 (0.062) 0.321 (0.062) 0.375 (0.058) 0.547 (0.063) 0.4 (0.084) 0.002 (0.045) 0.14 (0.048)
IBEX 0.588 (0.134) 0.442 (0.058) 1 0.868 (0.049) 0.712 (0.067) 0.818 (0.049) 0.731 (0.072) 0.782 (0.092) 0.199 (0.052) 0.201 (0.056)
FCHI 0.631 (0.133) 0.469 (0.063) 0.882 (0.044) 1 0.796 (0.063) 0.845 (0.046) 0.848 (0.055) 0.881 (0.098) 0.257 (0.053) 0.27 (0.054)
SSMI 0.552 (0.127) 0.351 (0.058) 0.763 (0.068) 0.803 (0.072) 1 0.723 (0.064) 0.669 (0.065) 0.814 (0.093) 0.219 (0.05) 0.23 (0.053)
FTMIB 0.514 (0.135) 0.392 (0.057) 0.915 (0.045) 0.868 (0.041) 0.735 (0.07) 1 0.76 (0.066) 0.758 (0.091) 0.216 (0.052) 0.232 (0.054)
GDAX 0.573 (0.17) 0.436 (0.074) 0.796 (0.09) 0.917 (0.085) 0.779 (0.094) 0.813 (0.087) 1 0.731 (0.115) 0.182 (0.06) 0.237 (0.059)
FTSE 0.592 (0.198) 0.438 (0.036) 0.82 (0.033) 0.922 (0.035) 0.802 (0.045) 0.816 (0.033) 0.888 (0.051) 1 0.267 (0.063) 0.293 (0.066)
N225 0.169 (0.159) 0.088 (0.047) 0.295 (0.05) 0.327 (0.057) 0.324 (0.059) 0.323 (0.052) 0.251 (0.062) 0.323 (0.038) 1 0.453 (0.059)
HSI 0.204 (0.151) 0.186 (0.041) 0.373 (0.051) 0.37 (0.053) 0.352 (0.055) 0.376 (0.053) 0.325 (0.059) 0.365 (0.034) 0.553 (0.059) 1

α = 0.005/0.995 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.776 (0.11) 0.459 (0.084) 0.488 (0.085) 0.378 (0.075) 0.428 (0.086) 0.585 (0.082) 0.505 (0.217) 0.073 (0.066) 0.229 (0.068)
NASDAQ 0.778 (0.098) 1 0.373 (0.082) 0.371 (0.08) 0.28 (0.079) 0.362 (0.084) 0.514 (0.078) 0.39 (0.08) -0.045 (0.055) 0.128 (0.066)
IBEX 0.543 (0.113) 0.431 (0.08) 1 0.884 (0.064) 0.726 (0.087) 0.837 (0.065) 0.722 (0.088) 0.791 (0.094) 0.201 (0.067) 0.188 (0.074)
FCHI 0.59 (0.118) 0.486 (0.076) 0.838 (0.065) 1 0.797 (0.085) 0.877 (0.061) 0.838 (0.079) 0.92 (0.093) 0.264 (0.069) 0.248 (0.075)
SSMI 0.516 (0.12) 0.351 (0.074) 0.73 (0.09) 0.767 (0.093) 1 0.692 (0.088) 0.622 (0.09) 0.796 (0.09) 0.194 (0.063) 0.193 (0.071)
FTMIB 0.51 (0.108) 0.423 (0.078) 0.848 (0.063) 0.887 (0.06) 0.74 (0.098) 1 0.728 (0.093) 0.766 (0.092) 0.221 (0.066) 0.253 (0.074)
GDAX 0.59 (0.129) 0.467 (0.08) 0.821 (0.107) 0.924 (0.101) 0.785 (0.105) 0.86 (0.104) 1 0.775 (0.097) 0.176 (0.071) 0.247 (0.077)
FTSE 0.616 (0.161) 0.438 (0.137) 0.781 (0.152) 0.897 (0.156) 0.755 (0.149) 0.796 (0.15) 0.851 (0.135) 1 0.329 (0.078) 0.312 (0.072)
N225 0.201 (0.124) 0.078 (0.055) 0.366 (0.07) 0.389 (0.073) 0.359 (0.071) 0.414 (0.071) 0.324 (0.07) 0.39 (0.122) 1 0.392 (0.08)
HSI 0.268 (0.122) 0.185 (0.054) 0.401 (0.064) 0.423 (0.07) 0.391 (0.065) 0.411 (0.064) 0.362 (0.067) 0.432 (0.123) 0.626 (0.077) 1

α = 0.001/0.999 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.749 (0.142) 0.392 (0.134) 0.387 (0.133) 0.366 (0.12) 0.508 (0.14) 0.739 (0.135) 0.444 (0.227) 0.123 (0.094) 0.372 (0.116)
NASDAQ 0.906 (0.15) 1 0.366 (0.148) 0.278 (0.158) 0.295 (0.143) 0.371 (0.164) 0.585 (0.157) 0.252 (0.115) -0.048 (0.107) 0.16 (0.119)
IBEX 0.655 (0.122) 0.505 (0.156) 1 0.963 (0.147) 0.802 (0.185) 0.955 (0.147) 0.619 (0.185) 0.936 (0.123) 0.213 (0.121) 0.2 (0.139)
FCHI 0.675 (0.139) 0.597 (0.164) 0.88 (0.128) 1 0.815 (0.182) 0.961 (0.137) 0.704 (0.154) 0.951 (0.114) 0.244 (0.128) 0.207 (0.141)
SSMI 0.488 (0.121) 0.421 (0.15) 0.634 (0.175) 0.801 (0.185) 1 0.839 (0.186) 0.665 (0.171) 0.874 (0.106) 0.279 (0.121) 0.237 (0.127)
FTMIB 0.684 (0.132) 0.593 (0.148) 0.878 (0.129) 0.961 (0.132) 0.776 (0.179) 1 0.661 (0.177) 0.941 (0.116) 0.277 (0.131) 0.162 (0.152)
GDAX 0.71 (0.13) 0.624 (0.156) 0.846 (0.183) 0.974 (0.181) 0.834 (0.173) 0.966 (0.182) 1 0.696 (0.125) 0.189 (0.122) 0.406 (0.142)
FTSE 0.675 (0.32) 0.607 (0.353) 0.751 (0.394) 0.921 (0.407) 0.839 (0.366) 0.858 (0.389) 0.956 (0.376) 1 0.338 (0.095) 0.291 (0.107)
N225 0.019 (0.127) -0.124 (0.104) 0.504 (0.127) 0.491 (0.123) 0.413 (0.145) 0.543 (0.128) 0.492 (0.131) 0.475 (0.313) 1 0.313 (0.142)
HSI 0.168 (0.141) 0.17 (0.098) 0.292 (0.114) 0.334 (0.127) 0.281 (0.121) 0.297 (0.117) 0.237 (0.109) 0.282 (0.309) 0.611 (0.153) 1
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α = 0.1/0.9 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.793 (0.036) 0.627 (0.046) 0.76 (0.038) 0.724 (0.041) 0.668 (0.04) 0.749 (0.033) 0.733 (0.037) 0.474 (0.042) 0.467 (0.045)
NASDAQ 0.784 (0.035) 1 0.577 (0.047) 0.705 (0.041) 0.615 (0.045) 0.59 (0.042) 0.719 (0.04) 0.641 (0.041) 0.473 (0.044) 0.519 (0.045)
IBEX 0.651 (0.039) 0.548 (0.048) 1 0.839 (0.032) 0.691 (0.043) 0.854 (0.035) 0.785 (0.037) 0.702 (0.04) 0.476 (0.047) 0.471 (0.048)
FCHI 0.762 (0.033) 0.7 (0.037) 0.872 (0.027) 1 0.792 (0.035) 0.876 (0.027) 0.917 (0.025) 0.807 (0.034) 0.512 (0.043) 0.536 (0.043)
SSMI 0.748 (0.037) 0.613 (0.042) 0.748 (0.037) 0.819 (0.033) 1 0.69 (0.042) 0.757 (0.036) 0.763 (0.036) 0.481 (0.049) 0.516 (0.048)
FTMIB 0.663 (0.038) 0.639 (0.039) 0.889 (0.031) 0.886 (0.025) 0.727 (0.04) 1 0.823 (0.031) 0.718 (0.039) 0.51 (0.045) 0.483 (0.044)
GDAX 0.759 (0.033) 0.678 (0.039) 0.8 (0.032) 0.902 (0.019) 0.787 (0.036) 0.825 (0.029) 1 0.776 (0.036) 0.52 (0.04) 0.566 (0.041)
FTSE 0.791 (0.03) 0.693 (0.035) 0.792 (0.034) 0.91 (0.023) 0.835 (0.029) 0.802 (0.033) 0.834 (0.028) 1 0.494 (0.044) 0.574 (0.041)
N225 0.538 (0.04) 0.561 (0.042) 0.553 (0.04) 0.61 (0.037) 0.587 (0.045) 0.558 (0.039) 0.567 (0.041) 0.642 (0.039) 1 0.52 (0.04)
HSI 0.54 (0.045) 0.471 (0.048) 0.45 (0.053) 0.577 (0.045) 0.503 (0.048) 0.514 (0.046) 0.522 (0.046) 0.625 (0.04) 0.588 (0.038) 1

α = 0.05/0.95 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.799 (0.06) 0.656 (0.063) 0.731 (0.052) 0.733 (0.057) 0.667 (0.05) 0.734 (0.054) 0.717 (0.051) 0.462 (0.053) 0.485 (0.063)
NASDAQ 0.772 (0.049) 1 0.55 (0.074) 0.683 (0.07) 0.577 (0.066) 0.577 (0.061) 0.727 (0.064) 0.602 (0.061) 0.429 (0.054) 0.513 (0.065)
IBEX 0.648 (0.056) 0.552 (0.071) 1 0.812 (0.049) 0.664 (0.06) 0.872 (0.054) 0.747 (0.052) 0.72 (0.062) 0.502 (0.059) 0.46 (0.068)
FCHI 0.75 (0.048) 0.639 (0.061) 0.867 (0.039) 1 0.77 (0.05) 0.853 (0.04) 0.893 (0.036) 0.835 (0.046) 0.552 (0.055) 0.555 (0.06)
SSMI 0.73 (0.051) 0.593 (0.062) 0.756 (0.063) 0.861 (0.054) 1 0.7 (0.053) 0.712 (0.052) 0.799 (0.048) 0.511 (0.061) 0.527 (0.06)
FTMIB 0.677 (0.049) 0.616 (0.059) 0.883 (0.043) 0.879 (0.034) 0.761 (0.054) 1 0.805 (0.04) 0.749 (0.047) 0.541 (0.055) 0.534 (0.059)
GDAX 0.719 (0.048) 0.656 (0.059) 0.78 (0.048) 0.914 (0.031) 0.819 (0.056) 0.822 (0.041) 1 0.794 (0.05) 0.494 (0.055) 0.548 (0.061)
FTSE 0.763 (0.047) 0.638 (0.059) 0.781 (0.048) 0.897 (0.033) 0.864 (0.045) 0.813 (0.04) 0.824 (0.039) 1 0.535 (0.055) 0.563 (0.059)
N225 0.539 (0.054) 0.542 (0.066) 0.504 (0.058) 0.587 (0.054) 0.608 (0.054) 0.546 (0.053) 0.545 (0.054) 0.585 (0.055) 1 0.521 (0.055)
HSI 0.572 (0.054) 0.476 (0.061) 0.505 (0.064) 0.6 (0.057) 0.539 (0.061) 0.529 (0.056) 0.548 (0.059) 0.609 (0.054) 0.606 (0.05) 1

α = 0.01/0.99 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.746 (0.125) 0.835 (0.124) 0.868 (0.122) 0.812 (0.13) 0.897 (0.12) 0.964 (0.115) 0.936 (0.112) 0.547 (0.106) 0.526 (0.108)
NASDAQ 0.81 (0.113) 1 0.545 (0.145) 0.724 (0.138) 0.564 (0.144) 0.608 (0.126) 0.723 (0.125) 0.699 (0.135) 0.496 (0.109) 0.441 (0.114)
IBEX 0.666 (0.129) 0.677 (0.146) 1 0.882 (0.108) 0.759 (0.132) 0.877 (0.119) 0.839 (0.124) 0.881 (0.126) 0.433 (0.1) 0.548 (0.126)
FCHI 0.645 (0.125) 0.551 (0.144) 0.89 (0.087) 1 0.751 (0.128) 0.851 (0.092) 0.904 (0.095) 0.905 (0.104) 0.489 (0.11) 0.621 (0.124)
SSMI 0.625 (0.129) 0.519 (0.147) 0.825 (0.146) 0.781 (0.145) 1 0.807 (0.126) 0.867 (0.119) 0.775 (0.119) 0.405 (0.117) 0.424 (0.111)
FTMIB 0.629 (0.119) 0.57 (0.132) 0.902 (0.094) 0.927 (0.074) 0.743 (0.14) 1 0.874 (0.099) 0.826 (0.112) 0.553 (0.103) 0.663 (0.118)
GDAX 0.676 (0.116) 0.609 (0.134) 0.915 (0.1) 0.942 (0.073) 0.797 (0.147) 0.84 (0.091) 1 0.936 (0.108) 0.506 (0.105) 0.539 (0.107)
FTSE 0.825 (0.114) 0.657 (0.129) 0.882 (0.114) 0.938 (0.083) 0.788 (0.136) 0.94 (0.087) 0.89 (0.081) 1 0.433 (0.098) 0.643 (0.118)
N225 0.575 (0.134) 0.533 (0.127) 0.678 (0.144) 0.584 (0.137) 0.556 (0.127) 0.58 (0.142) 0.592 (0.135) 0.575 (0.138) 1 0.466 (0.105)
HSI 0.581 (0.114) 0.464 (0.134) 0.518 (0.131) 0.556 (0.124) 0.405 (0.137) 0.498 (0.117) 0.54 (0.127) 0.556 (0.111) 0.534 (0.113) 1

α = 0.005/0.995 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.763 (0.151) 0.572 (0.18) 0.755 (0.173) 0.56 (0.179) 0.62 (0.166) 0.823 (0.157) 0.854 (0.169) 0.727 (0.14) 0.397 (0.14)
NASDAQ 0.887 (0.154) 1 0.47 (0.191) 0.649 (0.182) 0.367 (0.188) 0.434 (0.161) 0.615 (0.166) 0.7 (0.171) 0.601 (0.142) 0.548 (0.147)
IBEX 0.608 (0.179) 0.53 (0.188) 1 0.942 (0.147) 0.669 (0.192) 0.866 (0.151) 0.834 (0.167) 0.841 (0.178) 0.331 (0.142) 0.582 (0.17)
FCHI 0.622 (0.182) 0.573 (0.181) 0.895 (0.101) 1 0.668 (0.179) 0.912 (0.135) 0.924 (0.133) 0.91 (0.173) 0.532 (0.147) 0.681 (0.17)
SSMI 0.562 (0.195) 0.46 (0.196) 0.749 (0.194) 0.857 (0.2) 1 0.692 (0.163) 0.829 (0.168) 0.769 (0.167) 0.297 (0.156) 0.47 (0.157)
FTMIB 0.678 (0.179) 0.573 (0.168) 0.833 (0.122) 0.848 (0.103) 0.736 (0.206) 1 0.853 (0.142) 0.806 (0.163) 0.373 (0.147) 0.654 (0.171)
GDAX 0.625 (0.182) 0.53 (0.169) 0.852 (0.146) 0.961 (0.112) 0.92 (0.213) 0.832 (0.129) 1 0.935 (0.159) 0.484 (0.15) 0.636 (0.142)
FTSE 0.743 (0.17) 0.683 (0.176) 0.867 (0.137) 0.957 (0.111) 0.875 (0.197) 0.882 (0.12) 0.93 (0.118) 1 0.542 (0.137) 0.689 (0.149)
N225 0.646 (0.199) 0.451 (0.173) 0.836 (0.193) 0.63 (0.197) 0.588 (0.197) 0.608 (0.192) 0.687 (0.19) 0.655 (0.198) 1 0.315 (0.131)
HSI 0.511 (0.157) 0.496 (0.172) 0.499 (0.175) 0.446 (0.172) 0.317 (0.204) 0.486 (0.177) 0.488 (0.188) 0.43 (0.171) 0.544 (0.172) 1

α = 0.001/0.999 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.081 (0.293) 0.263 (0.304) 0.543 (0.284) 0.314 (0.309) 0.343 (0.291) 0.758 (0.299) 0.642 (0.312) 0.872 (0.251) 0.26 (0.242)
NASDAQ 0.083 (0.281) 1 0.197 (0.299) 0.411 (0.317) -0.062 (0.326) -0.07 (0.309) 0.185 (0.299) 0.235 (0.304) 0.113 (0.27) 0.533 (0.236)
IBEX 0.965 (0.33) 0.149 (0.327) 1 0.594 (0.28) 0.733 (0.333) 0.751 (0.276) 0.588 (0.315) 0.57 (0.307) -0.01 (0.251) 0.88 (0.298)
FCHI 0.993 (0.332) 0.175 (0.324) 0.979 (0.199) 1 0.708 (0.319) 0.713 (0.27) 0.65 (0.249) 0.882 (0.283) 0.241 (0.28) 0.512 (0.284)
SSMI 0.993 (0.345) 0.177 (0.345) 0.979 (0.364) 1.0 (0.347) 1 0.999 (0.322) 0.684 (0.293) 0.661 (0.325) -0.167 (0.319) 0.56 (0.254)
FTMIB 0.813 (0.327) 0.081 (0.306) 0.927 (0.231) 0.833 (0.207) 0.833 (0.348) 1 0.7 (0.289) 0.674 (0.293) -0.132 (0.31) 0.572 (0.301)
GDAX 0.994 (0.317) 0.164 (0.302) 0.982 (0.282) 1.0 (0.227) 1.0 (0.338) 0.841 (0.258) 1 0.821 (0.287) 0.417 (0.276) 0.562 (0.26)
FTSE 0.996 (0.309) 0.152 (0.302) 0.977 (0.262) 1.0 (0.22) 0.999 (0.337) 0.829 (0.224) 1.0 (0.226) 1 0.355 (0.275) 0.399 (0.268)
N225 0.986 (0.337) 0.213 (0.318) 0.981 (0.32) 0.999 (0.346) 0.999 (0.378) 0.837 (0.367) 0.998 (0.336) 0.997 (0.344) 1 0.038 (0.244)
HSI 0.949 (0.308) -0.0 (0.261) 0.927 (0.322) 0.953 (0.328) 0.953 (0.371) 0.763 (0.345) 0.952 (0.345) 0.953 (0.337) 0.95 (0.298) 1
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α = 0.1/0.9 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.599 (0.089) 0.49 (0.095) 0.731 (0.082) 0.693 (0.076) 0.533 (0.088) 0.732 (0.082) 0.761 (0.077) 0.461 (0.074) 0.585 (0.093)
NASDAQ 0.83 (0.049) 1 0.536 (0.087) 0.691 (0.087) 0.449 (0.087) 0.519 (0.085) 0.678 (0.09) 0.558 (0.089) 0.489 (0.078) 0.612 (0.092)
IBEX 0.804 (0.067) 0.645 (0.071) 1 0.798 (0.066) 0.575 (0.08) 0.835 (0.053) 0.658 (0.072) 0.634 (0.08) 0.308 (0.094) 0.511 (0.088)
FCHI 0.867 (0.056) 0.74 (0.063) 0.909 (0.04) 1 0.7 (0.068) 0.831 (0.05) 0.855 (0.041) 0.852 (0.07) 0.387 (0.077) 0.564 (0.09)
SSMI 0.797 (0.063) 0.647 (0.082) 0.759 (0.064) 0.841 (0.066) 1 0.649 (0.068) 0.622 (0.072) 0.632 (0.068) 0.384 (0.078) 0.359 (0.086)
FTMIB 0.71 (0.077) 0.633 (0.071) 0.895 (0.033) 0.896 (0.041) 0.742 (0.066) 1 0.724 (0.07) 0.748 (0.069) 0.421 (0.087) 0.417 (0.089)
GDAX 0.894 (0.049) 0.823 (0.055) 0.818 (0.056) 0.93 (0.033) 0.86 (0.061) 0.816 (0.05) 1 0.662 (0.078) 0.434 (0.071) 0.606 (0.091)
FTSE 0.881 (0.049) 0.707 (0.073) 0.794 (0.057) 0.897 (0.051) 0.87 (0.057) 0.773 (0.066) 0.862 (0.045) 1 0.416 (0.079) 0.582 (0.096)
N225 0.735 (0.074) 0.694 (0.065) 0.684 (0.069) 0.73 (0.074) 0.656 (0.075) 0.659 (0.071) 0.734 (0.063) 0.678 (0.085) 1 0.366 (0.08)
HSI 0.652 (0.086) 0.685 (0.081) 0.548 (0.086) 0.583 (0.085) 0.442 (0.092) 0.519 (0.09) 0.635 (0.081) 0.61 (0.075) 0.584 (0.091) 1

α = 0.05/0.95 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.553 (0.118) 0.546 (0.122) 0.744 (0.114) 0.672 (0.102) 0.453 (0.115) 0.815 (0.108) 0.758 (0.102) 0.405 (0.099) 0.533 (0.118)
NASDAQ 0.666 (0.08) 1 0.506 (0.12) 0.697 (0.123) 0.292 (0.103) 0.525 (0.115) 0.701 (0.117) 0.506 (0.114) 0.386 (0.104) 0.473 (0.112)
IBEX 0.76 (0.087) 0.63 (0.108) 1 0.852 (0.09) 0.634 (0.101) 0.806 (0.057) 0.639 (0.105) 0.717 (0.109) 0.302 (0.112) 0.539 (0.113)
FCHI 0.781 (0.078) 0.689 (0.092) 0.833 (0.065) 1 0.736 (0.102) 0.827 (0.072) 0.888 (0.057) 0.798 (0.087) 0.372 (0.098) 0.602 (0.107)
SSMI 0.724 (0.072) 0.576 (0.105) 0.753 (0.075) 0.887 (0.079) 1 0.609 (0.089) 0.541 (0.111) 0.692 (0.107) 0.387 (0.109) 0.434 (0.098)
FTMIB 0.77 (0.085) 0.612 (0.101) 0.868 (0.05) 0.937 (0.058) 0.839 (0.071) 1 0.763 (0.087) 0.664 (0.1) 0.429 (0.107) 0.412 (0.114)
GDAX 0.835 (0.073) 0.752 (0.087) 0.858 (0.086) 0.93 (0.045) 0.861 (0.074) 0.914 (0.064) 1 0.729 (0.098) 0.343 (0.101) 0.56 (0.114)
FTSE 0.814 (0.074) 0.676 (0.105) 0.762 (0.081) 0.88 (0.072) 0.863 (0.067) 0.813 (0.076) 0.855 (0.064) 1 0.444 (0.109) 0.673 (0.1)
N225 0.725 (0.093) 0.698 (0.087) 0.687 (0.094) 0.702 (0.09) 0.65 (0.097) 0.702 (0.091) 0.727 (0.09) 0.72 (0.091) 1 0.326 (0.092)
HSI 0.594 (0.102) 0.669 (0.116) 0.51 (0.108) 0.612 (0.113) 0.427 (0.106) 0.566 (0.11) 0.587 (0.103) 0.601 (0.101) 0.628 (0.099) 1

α = 0.025/0.975 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.528 (0.146) 0.555 (0.155) 0.669 (0.148) 0.628 (0.14) 0.445 (0.151) 0.661 (0.144) 0.691 (0.142) 0.395 (0.16) 0.522 (0.156)
NASDAQ 0.589 (0.12) 1 0.538 (0.143) 0.664 (0.148) 0.1 (0.14) 0.585 (0.16) 0.71 (0.15) 0.444 (0.161) 0.311 (0.133) 0.305 (0.159)
IBEX 0.853 (0.104) 0.669 (0.148) 1 0.838 (0.127) 0.64 (0.149) 0.779 (0.097) 0.678 (0.142) 0.705 (0.136) 0.346 (0.173) 0.51 (0.149)
FCHI 0.873 (0.116) 0.69 (0.126) 0.893 (0.096) 1 0.712 (0.145) 0.89 (0.106) 0.884 (0.078) 0.822 (0.118) 0.445 (0.18) 0.511 (0.149)
SSMI 0.627 (0.101) 0.419 (0.146) 0.638 (0.105) 0.798 (0.115) 1 0.442 (0.139) 0.513 (0.149) 0.776 (0.138) 0.291 (0.164) 0.452 (0.141)
FTMIB 0.914 (0.105) 0.592 (0.132) 0.851 (0.072) 0.904 (0.082) 0.69 (0.101) 1 0.811 (0.11) 0.579 (0.145) 0.352 (0.167) 0.291 (0.147)
GDAX 0.796 (0.113) 0.602 (0.134) 0.879 (0.096) 0.937 (0.069) 0.694 (0.113) 0.915 (0.077) 1 0.83 (0.125) 0.324 (0.16) 0.371 (0.16)
FTSE 0.835 (0.108) 0.589 (0.141) 0.805 (0.113) 0.882 (0.094) 0.642 (0.084) 0.841 (0.106) 0.822 (0.089) 1 0.521 (0.168) 0.546 (0.14)
N225 0.67 (0.122) 0.636 (0.117) 0.773 (0.128) 0.712 (0.117) 0.625 (0.123) 0.721 (0.116) 0.676 (0.114) 0.795 (0.107) 1 0.191 (0.139)
HSI 0.451 (0.146) 0.52 (0.149) 0.572 (0.148) 0.623 (0.142) 0.391 (0.146) 0.568 (0.134) 0.559 (0.143) 0.587 (0.134) 0.681 (0.142) 1

α = 0.01/0.99 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.364 (0.219) 0.592 (0.196) 0.727 (0.189) 0.584 (0.186) 0.437 (0.198) 0.43 (0.175) 0.686 (0.195) 0.472 (0.216) 0.511 (0.206)
NASDAQ 0.491 (0.164) 1 0.518 (0.193) 0.585 (0.204) -0.02 (0.181) 0.634 (0.212) 0.601 (0.209) 0.361 (0.196) 0.144 (0.191) 0.046 (0.215)
IBEX 0.986 (0.146) 0.491 (0.202) 1 0.866 (0.182) 0.626 (0.239) 0.886 (0.132) 0.671 (0.188) 0.789 (0.22) 0.554 (0.282) 0.37 (0.181)
FCHI 0.856 (0.166) 0.392 (0.183) 0.875 (0.128) 1 0.725 (0.198) 0.875 (0.155) 0.807 (0.133) 0.905 (0.172) 0.536 (0.255) 0.34 (0.195)
SSMI 0.558 (0.167) 0.308 (0.224) 0.498 (0.172) 0.548 (0.139) 1 0.461 (0.227) 0.522 (0.209) 0.84 (0.162) 0.295 (0.237) 0.609 (0.18)
FTMIB 0.875 (0.157) 0.363 (0.178) 0.898 (0.112) 0.963 (0.13) 0.453 (0.151) 1 0.695 (0.165) 0.667 (0.211) 0.465 (0.269) 0.095 (0.18)
GDAX 0.775 (0.164) 0.373 (0.189) 0.803 (0.144) 0.867 (0.111) 0.628 (0.157) 0.869 (0.125) 1 0.788 (0.167) 0.342 (0.222) 0.107 (0.197)
FTSE 0.784 (0.161) 0.316 (0.197) 0.813 (0.143) 0.88 (0.113) 0.423 (0.116) 0.888 (0.139) 0.732 (0.116) 1 0.555 (0.235) 0.533 (0.174)
N225 0.791 (0.166) 0.551 (0.18) 0.805 (0.151) 0.668 (0.159) 0.507 (0.144) 0.69 (0.133) 0.493 (0.157) 0.755 (0.157) 1 -0.083 (0.169)
HSI 0.478 (0.211) 0.397 (0.213) 0.565 (0.198) 0.593 (0.201) 0.373 (0.188) 0.605 (0.183) 0.505 (0.195) 0.721 (0.19) 0.813 (0.194) 1

α = 0.005/0.995 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.155 (0.256) 0.778 (0.31) 0.759 (0.293) 0.441 (0.256) 0.718 (0.295) 0.159 (0.252) 0.703 (0.281) 0.641 (0.31) 0.478 (0.27)
NASDAQ 0.595 (0.263) 1 0.252 (0.277) 0.278 (0.272) -0.058 (0.267) 0.455 (0.269) 0.624 (0.293) 0.214 (0.288) 0.085 (0.274) -0.14 (0.28)
IBEX 0.788 (0.223) 0.538 (0.289) 1 0.995 (0.254) 0.518 (0.331) 0.942 (0.192) 0.485 (0.27) 0.967 (0.315) 0.906 (0.392) 0.278 (0.244)
FCHI 0.743 (0.248) 0.292 (0.265) 0.799 (0.22) 1 0.469 (0.284) 0.958 (0.23) 0.455 (0.224) 0.956 (0.246) 0.907 (0.383) 0.236 (0.23)
SSMI 0.707 (0.24) 0.63 (0.33) 0.704 (0.258) 0.383 (0.237) 1 0.375 (0.333) 0.551 (0.287) 0.46 (0.227) 0.329 (0.333) 0.73 (0.259)
FTMIB 0.623 (0.228) 0.053 (0.245) 0.82 (0.154) 0.856 (0.209) 0.276 (0.188) 1 0.532 (0.239) 0.854 (0.3) 0.897 (0.394) 0.054 (0.218)
GDAX 0.531 (0.271) 0.099 (0.263) 0.436 (0.242) 0.832 (0.199) 0.302 (0.267) 0.51 (0.198) 1 0.454 (0.23) 0.375 (0.317) 0.082 (0.264)
FTSE 0.776 (0.236) 0.252 (0.292) 0.868 (0.204) 0.942 (0.19) 0.444 (0.2) 0.904 (0.201) 0.675 (0.197) 1 0.84 (0.334) 0.313 (0.216)
N225 0.726 (0.255) 0.517 (0.268) 0.494 (0.236) 0.53 (0.257) 0.139 (0.231) 0.471 (0.208) 0.183 (0.243) 0.587 (0.236) 1 -0.068 (0.215)
HSI 0.693 (0.281) 0.495 (0.304) 0.466 (0.249) 0.514 (0.285) 0.089 (0.257) 0.465 (0.243) 0.164 (0.263) 0.565 (0.259) 0.998 (0.273) 1
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B.4 Estimates for Equally Weighted Two and Three-Asset Portfolios - Overidentification

Estimates on the lower triangular matrix represent correlation implied by losses and esti-
mates from the upper triangular matrix represent correlation implied by gains.

Expected Shortfall - Daily Returns - Bootstrapped Standard Errors

α = 0.1/0.9 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.812 (0.096) 0.479 (0.082) 0.542 (0.087) 0.479 (0.079) 0.502 (0.083) 0.577 (0.173) 0.508 (0.187) 0.093 (0.054) 0.149 (0.052)
NASDAQ 0.822 (0.328) 1 0.421 (0.022) 0.494 (0.023) 0.417 (0.026) 0.441 (0.023) 0.55 (0.037) 0.434 (0.087) 0.079 (0.026) 0.17 (0.024)
IBEX 0.531 (0.398) 0.423 (0.02) 1 0.86 (0.021) 0.725 (0.024) 0.863 (0.022) 0.776 (0.035) 0.763 (0.11) 0.198 (0.026) 0.273 (0.024)
FCHI 0.577 (0.414) 0.471 (0.018) 0.88 (0.011) 1 0.795 (0.021) 0.857 (0.02) 0.875 (0.043) 0.848 (0.12) 0.206 (0.024) 0.319 (0.021)
SSMI 0.522 (0.397) 0.395 (0.02) 0.745 (0.017) 0.832 (0.015) 1 0.727 (0.022) 0.757 (0.038) 0.761 (0.112) 0.216 (0.024) 0.267 (0.026)
FTMIB 0.532 (0.399) 0.438 (0.019) 0.864 (0.012) 0.887 (0.011) 0.755 (0.017) 1 0.793 (0.035) 0.76 (0.11) 0.155 (0.025) 0.253 (0.023)
GDAX 0.585 (0.398) 0.505 (0.028) 0.82 (0.03) 0.906 (0.031) 0.803 (0.027) 0.831 (0.03) 1 0.785 (0.21) 0.192 (0.044) 0.308 (0.044)
FTSE 0.545 (0.447) 0.429 (0.094) 0.781 (0.132) 0.892 (0.145) 0.816 (0.117) 0.801 (0.135) 0.826 (0.1) 1 0.2 (0.061) 0.322 (0.069)
N225 0.138 (0.35) 0.129 (0.023) 0.284 (0.019) 0.324 (0.02) 0.335 (0.019) 0.269 (0.02) 0.293 (0.024) 0.323 (0.092) 1 0.449 (0.033)
HSI 0.157 (0.359) 0.148 (0.022) 0.351 (0.019) 0.387 (0.019) 0.378 (0.02) 0.336 (0.019) 0.355 (0.024) 0.41 (0.096) 0.516 (0.02) 1

α = 0.05/0.95 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.815 (0.098) 0.491 (0.08) 0.56 (0.083) 0.491 (0.075) 0.503 (0.081) 0.602 (0.146) 0.522 (0.218) 0.084 (0.045) 0.147 (0.047)
NASDAQ 0.799 (0.179) 1 0.416 (0.032) 0.504 (0.032) 0.396 (0.031) 0.434 (0.03) 0.559 (0.04) 0.434 (0.08) 0.056 (0.028) 0.165 (0.027)
IBEX 0.547 (0.202) 0.446 (0.032) 1 0.859 (0.026) 0.715 (0.03) 0.862 (0.027) 0.759 (0.038) 0.76 (0.101) 0.192 (0.029) 0.252 (0.03)
FCHI 0.571 (0.223) 0.464 (0.03) 0.892 (0.019) 1 0.801 (0.029) 0.85 (0.024) 0.876 (0.037) 0.851 (0.105) 0.217 (0.03) 0.283 (0.032)
SSMI 0.54 (0.218) 0.399 (0.032) 0.756 (0.027) 0.841 (0.022) 1 0.726 (0.027) 0.74 (0.039) 0.769 (0.099) 0.232 (0.029) 0.241 (0.03)
FTMIB 0.523 (0.197) 0.439 (0.029) 0.876 (0.018) 0.895 (0.016) 0.757 (0.025) 1 0.787 (0.039) 0.743 (0.1) 0.155 (0.03) 0.217 (0.029)
GDAX 0.591 (0.155) 0.496 (0.05) 0.822 (0.048) 0.909 (0.051) 0.802 (0.047) 0.835 (0.047) 1 0.767 (0.175) 0.189 (0.042) 0.279 (0.044)
FTSE 0.557 (0.163) 0.421 (0.086) 0.802 (0.078) 0.883 (0.087) 0.83 (0.079) 0.805 (0.075) 0.827 (0.059) 1 0.208 (0.056) 0.288 (0.064)
N225 0.132 (0.093) 0.117 (0.034) 0.29 (0.029) 0.322 (0.029) 0.335 (0.03) 0.284 (0.028) 0.289 (0.034) 0.315 (0.065) 1 0.425 (0.036)
HSI 0.153 (0.096) 0.139 (0.031) 0.34 (0.03) 0.37 (0.03) 0.378 (0.032) 0.34 (0.029) 0.341 (0.032) 0.404 (0.06) 0.542 (0.028) 1

α = 0.01/0.99 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.788 (0.097) 0.514 (0.086) 0.539 (0.088) 0.446 (0.074) 0.458 (0.085) 0.601 (0.102) 0.512 (0.225) 0.094 (0.052) 0.196 (0.054)
NASDAQ 0.807 (0.083) 1 0.403 (0.065) 0.429 (0.062) 0.319 (0.061) 0.38 (0.064) 0.551 (0.063) 0.391 (0.076) 0.003 (0.049) 0.141 (0.054)
IBEX 0.594 (0.137) 0.454 (0.058) 1 0.865 (0.049) 0.716 (0.069) 0.826 (0.05) 0.736 (0.064) 0.779 (0.089) 0.225 (0.052) 0.208 (0.049)
FCHI 0.624 (0.136) 0.488 (0.058) 0.886 (0.041) 1 0.797 (0.061) 0.847 (0.049) 0.846 (0.06) 0.881 (0.094) 0.28 (0.052) 0.26 (0.055)
SSMI 0.545 (0.133) 0.366 (0.055) 0.768 (0.061) 0.816 (0.059) 1 0.719 (0.067) 0.661 (0.067) 0.813 (0.091) 0.245 (0.046) 0.215 (0.056)
FTMIB 0.516 (0.139) 0.41 (0.055) 0.902 (0.042) 0.874 (0.039) 0.751 (0.059) 1 0.77 (0.063) 0.762 (0.082) 0.236 (0.053) 0.245 (0.053)
GDAX 0.582 (0.176) 0.457 (0.072) 0.809 (0.09) 0.922 (0.08) 0.786 (0.081) 0.821 (0.089) 1 0.741 (0.105) 0.201 (0.06) 0.24 (0.062)
FTSE 0.591 (0.242) 0.449 (0.082) 0.824 (0.084) 0.929 (0.085) 0.815 (0.082) 0.82 (0.083) 0.884 (0.089) 1 0.307 (0.057) 0.307 (0.061)
N225 0.185 (0.16) 0.113 (0.041) 0.306 (0.047) 0.354 (0.046) 0.345 (0.051) 0.346 (0.048) 0.268 (0.054) 0.349 (0.069) 1 0.467 (0.074)
HSI 0.184 (0.162) 0.182 (0.043) 0.372 (0.047) 0.381 (0.05) 0.367 (0.053) 0.382 (0.048) 0.333 (0.058) 0.382 (0.082) 0.548 (0.063) 1

α = 0.005/0.995 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.754 (0.108) 0.499 (0.086) 0.505 (0.085) 0.39 (0.081) 0.467 (0.084) 0.605 (0.091) 0.523 (0.226) 0.104 (0.065) 0.243 (0.066)
NASDAQ 0.808 (0.098) 1 0.389 (0.084) 0.371 (0.083) 0.294 (0.077) 0.367 (0.084) 0.523 (0.081) 0.378 (0.081) -0.019 (0.056) 0.144 (0.068)
IBEX 0.556 (0.123) 0.443 (0.079) 1 0.874 (0.07) 0.712 (0.085) 0.835 (0.077) 0.728 (0.082) 0.787 (0.095) 0.226 (0.061) 0.191 (0.069)
FCHI 0.61 (0.122) 0.495 (0.074) 0.848 (0.056) 1 0.79 (0.086) 0.874 (0.062) 0.845 (0.079) 0.902 (0.095) 0.273 (0.069) 0.239 (0.075)
SSMI 0.527 (0.106) 0.353 (0.074) 0.745 (0.093) 0.783 (0.095) 1 0.692 (0.085) 0.631 (0.09) 0.8 (0.084) 0.235 (0.068) 0.19 (0.068)
FTMIB 0.521 (0.12) 0.42 (0.072) 0.851 (0.056) 0.881 (0.057) 0.748 (0.091) 1 0.749 (0.088) 0.773 (0.094) 0.24 (0.067) 0.248 (0.071)
GDAX 0.602 (0.132) 0.473 (0.079) 0.828 (0.106) 0.922 (0.1) 0.785 (0.106) 0.856 (0.104) 1 0.763 (0.098) 0.188 (0.076) 0.245 (0.077)
FTSE 0.614 (0.182) 0.452 (0.104) 0.786 (0.103) 0.897 (0.114) 0.775 (0.11) 0.798 (0.111) 0.859 (0.104) 1 0.348 (0.059) 0.329 (0.066)
N225 0.226 (0.128) 0.123 (0.051) 0.377 (0.065) 0.419 (0.071) 0.372 (0.072) 0.428 (0.066) 0.355 (0.07) 0.408 (0.092) 1 0.427 (0.09)
HSI 0.261 (0.124) 0.193 (0.052) 0.409 (0.063) 0.439 (0.064) 0.403 (0.065) 0.432 (0.064) 0.368 (0.065) 0.439 (0.091) 0.622 (0.076) 1

α = 0.001/0.999 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.723 (0.146) 0.395 (0.14) 0.434 (0.134) 0.427 (0.126) 0.455 (0.131) 0.731 (0.132) 0.47 (0.221) 0.091 (0.099) 0.399 (0.105)
NASDAQ 0.98 (0.147) 1 0.346 (0.135) 0.33 (0.134) 0.33 (0.13) 0.362 (0.134) 0.575 (0.138) 0.323 (0.099) -0.053 (0.088) 0.212 (0.104)
IBEX 0.622 (0.131) 0.501 (0.146) 1 0.981 (0.139) 0.823 (0.175) 0.991 (0.129) 0.611 (0.173) 0.92 (0.124) 0.166 (0.099) 0.192 (0.128)
FCHI 0.641 (0.136) 0.566 (0.131) 0.872 (0.103) 1 0.836 (0.172) 0.973 (0.13) 0.723 (0.16) 0.945 (0.126) 0.219 (0.114) 0.235 (0.127)
SSMI 0.431 (0.122) 0.368 (0.136) 0.648 (0.158) 0.822 (0.158) 1 0.864 (0.177) 0.699 (0.165) 0.864 (0.109) 0.31 (0.102) 0.256 (0.126)
FTMIB 0.632 (0.132) 0.552 (0.133) 0.894 (0.117) 0.96 (0.114) 0.765 (0.163) 1 0.627 (0.169) 0.931 (0.124) 0.238 (0.097) 0.189 (0.148)
GDAX 0.667 (0.12) 0.593 (0.141) 0.851 (0.174) 0.979 (0.151) 0.831 (0.165) 0.954 (0.169) 1 0.717 (0.119) 0.176 (0.111) 0.434 (0.137)
FTSE 0.627 (0.306) 0.546 (0.369) 0.731 (0.409) 0.929 (0.434) 0.84 (0.389) 0.839 (0.414) 0.948 (0.397) 1 0.283 (0.097) 0.285 (0.108)
N225 0.009 (0.128) -0.142 (0.105) 0.546 (0.125) 0.486 (0.125) 0.395 (0.116) 0.545 (0.128) 0.473 (0.118) 0.468 (0.358) 1 0.343 (0.149)
HSI 0.177 (0.134) 0.141 (0.085) 0.309 (0.112) 0.35 (0.11) 0.304 (0.1) 0.294 (0.114) 0.278 (0.103) 0.307 (0.346) 0.578 (0.143) 1
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Expected Shortfall - Weekly Returns - Bootstrapped Standard Errors

α = 0.1/0.9 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.799 (0.041) 0.631 (0.045) 0.76 (0.036) 0.726 (0.042) 0.662 (0.038) 0.746 (0.037) 0.729 (0.038) 0.475 (0.042) 0.451 (0.045)
NASDAQ 0.781 (0.032) 1 0.568 (0.051) 0.703 (0.044) 0.606 (0.047) 0.583 (0.044) 0.712 (0.042) 0.639 (0.046) 0.475 (0.045) 0.513 (0.047)
IBEX 0.663 (0.037) 0.561 (0.046) 1 0.836 (0.033) 0.688 (0.045) 0.855 (0.033) 0.772 (0.038) 0.698 (0.042) 0.469 (0.047) 0.46 (0.049)
FCHI 0.764 (0.034) 0.695 (0.04) 0.876 (0.026) 1 0.791 (0.039) 0.869 (0.028) 0.91 (0.024) 0.811 (0.034) 0.509 (0.042) 0.537 (0.045)
SSMI 0.731 (0.038) 0.598 (0.044) 0.741 (0.041) 0.812 (0.037) 1 0.688 (0.041) 0.754 (0.038) 0.76 (0.04) 0.488 (0.042) 0.517 (0.044)
FTMIB 0.67 (0.037) 0.631 (0.039) 0.882 (0.029) 0.884 (0.025) 0.723 (0.042) 1 0.813 (0.029) 0.711 (0.036) 0.512 (0.048) 0.485 (0.048)
GDAX 0.755 (0.033) 0.682 (0.035) 0.804 (0.031) 0.9 (0.019) 0.78 (0.04) 0.825 (0.027) 1 0.775 (0.037) 0.502 (0.045) 0.555 (0.044)
FTSE 0.795 (0.031) 0.695 (0.037) 0.793 (0.033) 0.91 (0.02) 0.828 (0.03) 0.807 (0.032) 0.833 (0.024) 1 0.484 (0.044) 0.564 (0.041)
N225 0.54 (0.04) 0.563 (0.044) 0.545 (0.041) 0.613 (0.039) 0.574 (0.039) 0.555 (0.04) 0.564 (0.04) 0.626 (0.038) 1 0.52 (0.037)
HSI 0.537 (0.045) 0.468 (0.047) 0.458 (0.044) 0.579 (0.045) 0.497 (0.047) 0.504 (0.043) 0.528 (0.041) 0.624 (0.039) 0.574 (0.039) 1

α = 0.05/0.95 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.801 (0.059) 0.657 (0.064) 0.733 (0.051) 0.719 (0.057) 0.67 (0.053) 0.738 (0.052) 0.716 (0.052) 0.464 (0.055) 0.478 (0.063)
NASDAQ 0.772 (0.055) 1 0.536 (0.07) 0.675 (0.062) 0.567 (0.065) 0.564 (0.061) 0.714 (0.061) 0.596 (0.063) 0.425 (0.06) 0.506 (0.066)
IBEX 0.655 (0.056) 0.551 (0.072) 1 0.812 (0.048) 0.676 (0.061) 0.865 (0.053) 0.752 (0.054) 0.728 (0.058) 0.504 (0.055) 0.444 (0.064)
FCHI 0.747 (0.051) 0.641 (0.065) 0.866 (0.044) 1 0.77 (0.052) 0.85 (0.034) 0.89 (0.035) 0.838 (0.046) 0.549 (0.054) 0.548 (0.056)
SSMI 0.73 (0.053) 0.573 (0.067) 0.757 (0.068) 0.857 (0.058) 1 0.688 (0.054) 0.716 (0.052) 0.796 (0.055) 0.509 (0.059) 0.531 (0.057)
FTMIB 0.68 (0.052) 0.612 (0.058) 0.859 (0.049) 0.895 (0.034) 0.76 (0.06) 1 0.796 (0.04) 0.741 (0.049) 0.555 (0.056) 0.523 (0.058)
GDAX 0.722 (0.046) 0.66 (0.057) 0.789 (0.049) 0.913 (0.031) 0.808 (0.064) 0.835 (0.042) 1 0.792 (0.048) 0.49 (0.053) 0.534 (0.055)
FTSE 0.77 (0.05) 0.643 (0.057) 0.785 (0.053) 0.896 (0.032) 0.858 (0.047) 0.83 (0.038) 0.836 (0.04) 1 0.522 (0.055) 0.579 (0.055)
N225 0.538 (0.055) 0.535 (0.062) 0.497 (0.059) 0.587 (0.056) 0.585 (0.059) 0.547 (0.055) 0.545 (0.054) 0.586 (0.055) 1 0.531 (0.055)
HSI 0.577 (0.057) 0.468 (0.072) 0.514 (0.068) 0.603 (0.064) 0.539 (0.063) 0.522 (0.061) 0.556 (0.062) 0.625 (0.057) 0.571 (0.057) 1

α = 0.01/0.99 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.758 (0.128) 0.824 (0.131) 0.872 (0.129) 0.81 (0.126) 0.901 (0.115) 0.969 (0.116) 0.931 (0.115) 0.586 (0.108) 0.524 (0.1)
NASDAQ 0.876 (0.126) 1 0.561 (0.149) 0.718 (0.149) 0.564 (0.141) 0.627 (0.135) 0.727 (0.128) 0.706 (0.134) 0.51 (0.113) 0.479 (0.114)
IBEX 0.644 (0.123) 0.653 (0.147) 1 0.894 (0.108) 0.751 (0.13) 0.878 (0.113) 0.843 (0.118) 0.891 (0.123) 0.468 (0.095) 0.525 (0.145)
FCHI 0.622 (0.123) 0.551 (0.136) 0.878 (0.083) 1 0.735 (0.123) 0.864 (0.086) 0.915 (0.09) 0.905 (0.103) 0.533 (0.107) 0.625 (0.122)
SSMI 0.612 (0.123) 0.515 (0.147) 0.833 (0.13) 0.785 (0.128) 1 0.8 (0.123) 0.854 (0.111) 0.773 (0.119) 0.426 (0.118) 0.409 (0.113)
FTMIB 0.63 (0.115) 0.579 (0.126) 0.904 (0.096) 0.921 (0.073) 0.763 (0.133) 1 0.876 (0.097) 0.835 (0.106) 0.573 (0.106) 0.656 (0.127)
GDAX 0.652 (0.118) 0.6 (0.124) 0.903 (0.112) 0.928 (0.072) 0.807 (0.124) 0.847 (0.095) 1 0.946 (0.105) 0.536 (0.104) 0.558 (0.107)
FTSE 0.787 (0.107) 0.686 (0.129) 0.89 (0.103) 0.943 (0.076) 0.801 (0.121) 0.943 (0.088) 0.889 (0.081) 1 0.483 (0.094) 0.621 (0.111)
N225 0.583 (0.118) 0.535 (0.127) 0.699 (0.13) 0.594 (0.126) 0.565 (0.121) 0.608 (0.133) 0.605 (0.124) 0.596 (0.128) 1 0.467 (0.093)
HSI 0.578 (0.114) 0.47 (0.125) 0.518 (0.128) 0.548 (0.118) 0.389 (0.128) 0.539 (0.114) 0.534 (0.123) 0.557 (0.119) 0.524 (0.11) 1

α = 0.005/0.995 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.728 (0.164) 0.587 (0.171) 0.75 (0.171) 0.563 (0.168) 0.616 (0.15) 0.807 (0.168) 0.864 (0.167) 0.786 (0.14) 0.437 (0.125)
NASDAQ 0.905 (0.164) 1 0.51 (0.182) 0.684 (0.196) 0.393 (0.189) 0.439 (0.167) 0.625 (0.179) 0.724 (0.181) 0.618 (0.15) 0.6 (0.144)
IBEX 0.58 (0.191) 0.502 (0.195) 1 0.933 (0.145) 0.68 (0.183) 0.876 (0.143) 0.859 (0.158) 0.844 (0.174) 0.342 (0.144) 0.641 (0.158)
FCHI 0.599 (0.192) 0.537 (0.189) 0.896 (0.101) 1 0.667 (0.178) 0.916 (0.131) 0.934 (0.127) 0.932 (0.164) 0.539 (0.148) 0.718 (0.144)
SSMI 0.56 (0.201) 0.428 (0.203) 0.757 (0.181) 0.874 (0.179) 1 0.695 (0.176) 0.817 (0.155) 0.742 (0.167) 0.305 (0.153) 0.5 (0.145)
FTMIB 0.685 (0.173) 0.554 (0.185) 0.843 (0.107) 0.866 (0.102) 0.769 (0.18) 1 0.863 (0.139) 0.819 (0.155) 0.38 (0.145) 0.699 (0.155)
GDAX 0.603 (0.179) 0.512 (0.184) 0.845 (0.139) 0.96 (0.099) 0.93 (0.187) 0.841 (0.121) 1 0.946 (0.151) 0.501 (0.145) 0.682 (0.137)
FTSE 0.719 (0.173) 0.666 (0.182) 0.863 (0.136) 0.962 (0.104) 0.885 (0.186) 0.889 (0.112) 0.939 (0.119) 1 0.576 (0.144) 0.685 (0.139)
N225 0.62 (0.186) 0.449 (0.17) 0.828 (0.178) 0.658 (0.182) 0.613 (0.188) 0.635 (0.186) 0.704 (0.186) 0.686 (0.198) 1 0.293 (0.132)
HSI 0.467 (0.167) 0.465 (0.183) 0.55 (0.17) 0.447 (0.166) 0.375 (0.193) 0.511 (0.171) 0.511 (0.181) 0.442 (0.167) 0.542 (0.156) 1

α = 0.001/0.999 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.202 (0.286) 0.373 (0.3) 0.585 (0.306) 0.35 (0.297) 0.339 (0.313) 0.748 (0.291) 0.679 (0.295) 0.861 (0.269) 0.359 (0.246)
NASDAQ 0.265 (0.296) 1 0.176 (0.303) 0.41 (0.309) -0.019 (0.311) -0.061 (0.294) 0.242 (0.305) 0.345 (0.312) 0.202 (0.246) 0.483 (0.208)
IBEX 0.989 (0.314) 0.307 (0.33) 1 0.711 (0.259) 0.757 (0.324) 0.797 (0.267) 0.636 (0.306) 0.63 (0.313) 0.023 (0.263) 0.875 (0.278)
FCHI 0.997 (0.318) 0.324 (0.346) 0.994 (0.191) 1 0.776 (0.3) 0.731 (0.236) 0.66 (0.241) 0.877 (0.289) 0.21 (0.284) 0.565 (0.268)
SSMI 0.997 (0.342) 0.326 (0.367) 0.994 (0.352) 1.0 (0.342) 1 0.988 (0.319) 0.681 (0.297) 0.677 (0.304) -0.16 (0.315) 0.58 (0.273)
FTMIB 0.854 (0.301) 0.244 (0.309) 0.916 (0.215) 0.868 (0.193) 0.868 (0.357) 1 0.67 (0.275) 0.625 (0.314) -0.169 (0.285) 0.631 (0.295)
GDAX 0.997 (0.306) 0.317 (0.335) 0.995 (0.277) 1.0 (0.212) 1.0 (0.336) 0.871 (0.251) 1 0.858 (0.302) 0.451 (0.287) 0.644 (0.262)
FTSE 0.998 (0.287) 0.31 (0.328) 0.994 (0.261) 1.0 (0.186) 1.0 (0.34) 0.865 (0.213) 1.0 (0.214) 1 0.398 (0.292) 0.499 (0.265)
N225 0.994 (0.322) 0.349 (0.319) 0.994 (0.311) 0.999 (0.333) 1.0 (0.367) 0.872 (0.331) 0.999 (0.35) 0.999 (0.341) 1 0.072 (0.231)
HSI 0.967 (0.294) 0.209 (0.29) 0.959 (0.313) 0.969 (0.305) 0.969 (0.364) 0.814 (0.322) 0.969 (0.334) 0.969 (0.304) 0.968 (0.308) 1
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α = 0.1/0.9 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.618 (0.081) 0.49 (0.098) 0.711 (0.078) 0.683 (0.074) 0.535 (0.096) 0.732 (0.075) 0.752 (0.07) 0.431 (0.077) 0.567 (0.092)
NASDAQ 0.852 (0.049) 1 0.55 (0.08) 0.693 (0.082) 0.447 (0.077) 0.525 (0.079) 0.684 (0.081) 0.568 (0.088) 0.465 (0.076) 0.61 (0.094)
IBEX 0.782 (0.071) 0.649 (0.083) 1 0.81 (0.064) 0.6 (0.079) 0.837 (0.049) 0.669 (0.073) 0.663 (0.073) 0.296 (0.092) 0.517 (0.086)
FCHI 0.873 (0.056) 0.734 (0.065) 0.896 (0.044) 1 0.711 (0.069) 0.833 (0.046) 0.855 (0.042) 0.834 (0.056) 0.388 (0.078) 0.564 (0.084)
SSMI 0.788 (0.063) 0.626 (0.08) 0.751 (0.068) 0.847 (0.061) 1 0.653 (0.069) 0.638 (0.076) 0.648 (0.069) 0.414 (0.084) 0.38 (0.087)
FTMIB 0.732 (0.078) 0.633 (0.074) 0.885 (0.034) 0.889 (0.04) 0.758 (0.058) 1 0.721 (0.066) 0.741 (0.069) 0.409 (0.081) 0.411 (0.092)
GDAX 0.886 (0.045) 0.822 (0.055) 0.816 (0.062) 0.929 (0.033) 0.845 (0.062) 0.826 (0.052) 1 0.689 (0.069) 0.417 (0.079) 0.616 (0.087)
FTSE 0.882 (0.045) 0.727 (0.074) 0.782 (0.065) 0.897 (0.053) 0.863 (0.055) 0.775 (0.071) 0.865 (0.048) 1 0.395 (0.081) 0.589 (0.089)
N225 0.744 (0.074) 0.71 (0.073) 0.69 (0.083) 0.744 (0.076) 0.659 (0.076) 0.681 (0.071) 0.75 (0.063) 0.676 (0.083) 1 0.384 (0.073)
HSI 0.679 (0.079) 0.71 (0.086) 0.55 (0.09) 0.607 (0.086) 0.456 (0.081) 0.544 (0.089) 0.644 (0.074) 0.647 (0.069) 0.595 (0.088) 1

α = 0.05/0.95 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.554 (0.124) 0.513 (0.114) 0.718 (0.096) 0.688 (0.095) 0.436 (0.111) 0.786 (0.096) 0.783 (0.1) 0.404 (0.105) 0.539 (0.123)
NASDAQ 0.649 (0.08) 1 0.522 (0.113) 0.697 (0.11) 0.334 (0.103) 0.541 (0.109) 0.706 (0.109) 0.529 (0.117) 0.361 (0.103) 0.473 (0.123)
IBEX 0.779 (0.08) 0.654 (0.11) 1 0.84 (0.083) 0.658 (0.1) 0.819 (0.061) 0.639 (0.096) 0.698 (0.101) 0.268 (0.11) 0.528 (0.111)
FCHI 0.789 (0.078) 0.71 (0.09) 0.834 (0.067) 1 0.74 (0.09) 0.851 (0.068) 0.901 (0.059) 0.791 (0.077) 0.358 (0.11) 0.598 (0.118)
SSMI 0.732 (0.073) 0.558 (0.11) 0.76 (0.078) 0.889 (0.077) 1 0.612 (0.088) 0.578 (0.098) 0.703 (0.09) 0.359 (0.11) 0.434 (0.109)
FTMIB 0.768 (0.08) 0.614 (0.103) 0.859 (0.056) 0.935 (0.059) 0.825 (0.073) 1 0.763 (0.083) 0.669 (0.096) 0.386 (0.104) 0.386 (0.112)
GDAX 0.821 (0.07) 0.754 (0.093) 0.851 (0.079) 0.948 (0.047) 0.87 (0.077) 0.924 (0.066) 1 0.745 (0.089) 0.326 (0.116) 0.574 (0.129)
FTSE 0.84 (0.068) 0.679 (0.101) 0.792 (0.084) 0.888 (0.072) 0.85 (0.066) 0.814 (0.081) 0.852 (0.069) 1 0.426 (0.111) 0.659 (0.108)
N225 0.733 (0.088) 0.65 (0.094) 0.717 (0.094) 0.72 (0.084) 0.632 (0.089) 0.701 (0.087) 0.726 (0.084) 0.733 (0.091) 1 0.329 (0.096)
HSI 0.616 (0.11) 0.686 (0.108) 0.551 (0.1) 0.615 (0.113) 0.435 (0.1) 0.576 (0.113) 0.602 (0.111) 0.615 (0.103) 0.635 (0.103) 1

α = 0.025/0.975 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.455 (0.18) 0.513 (0.171) 0.697 (0.142) 0.641 (0.137) 0.41 (0.15) 0.672 (0.136) 0.745 (0.131) 0.409 (0.144) 0.544 (0.156)
NASDAQ 0.584 (0.136) 1 0.543 (0.14) 0.683 (0.153) 0.143 (0.147) 0.621 (0.16) 0.735 (0.152) 0.48 (0.159) 0.308 (0.137) 0.287 (0.162)
IBEX 0.853 (0.101) 0.649 (0.148) 1 0.835 (0.118) 0.653 (0.146) 0.791 (0.091) 0.672 (0.136) 0.696 (0.154) 0.318 (0.173) 0.514 (0.145)
FCHI 0.872 (0.111) 0.675 (0.131) 0.915 (0.099) 1 0.705 (0.133) 0.887 (0.097) 0.919 (0.083) 0.835 (0.115) 0.391 (0.17) 0.497 (0.152)
SSMI 0.643 (0.102) 0.407 (0.15) 0.655 (0.102) 0.782 (0.096) 1 0.455 (0.132) 0.524 (0.141) 0.803 (0.135) 0.315 (0.155) 0.493 (0.142)
FTMIB 0.913 (0.115) 0.595 (0.133) 0.867 (0.075) 0.919 (0.087) 0.682 (0.106) 1 0.813 (0.122) 0.568 (0.141) 0.341 (0.164) 0.277 (0.141)
GDAX 0.798 (0.117) 0.585 (0.136) 0.89 (0.095) 0.953 (0.076) 0.691 (0.109) 0.937 (0.08) 1 0.811 (0.127) 0.287 (0.154) 0.326 (0.154)
FTSE 0.825 (0.102) 0.592 (0.146) 0.821 (0.097) 0.895 (0.08) 0.67 (0.087) 0.848 (0.103) 0.822 (0.083) 1 0.476 (0.16) 0.586 (0.137)
N225 0.639 (0.127) 0.592 (0.121) 0.739 (0.133) 0.718 (0.119) 0.61 (0.118) 0.716 (0.117) 0.671 (0.137) 0.812 (0.112) 1 0.188 (0.136)
HSI 0.486 (0.143) 0.508 (0.149) 0.615 (0.135) 0.649 (0.143) 0.425 (0.143) 0.604 (0.137) 0.591 (0.142) 0.652 (0.131) 0.716 (0.134) 1

α = 0.01/0.99 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.366 (0.204) 0.618 (0.214) 0.723 (0.205) 0.554 (0.17) 0.449 (0.198) 0.476 (0.197) 0.729 (0.177) 0.486 (0.202) 0.48 (0.195)
NASDAQ 0.552 (0.176) 1 0.503 (0.186) 0.59 (0.209) 0.03 (0.185) 0.671 (0.205) 0.634 (0.22) 0.396 (0.21) 0.236 (0.187) 0.048 (0.196)
IBEX 0.995 (0.138) 0.519 (0.193) 1 0.886 (0.19) 0.671 (0.236) 0.896 (0.149) 0.678 (0.203) 0.824 (0.226) 0.566 (0.281) 0.418 (0.179)
FCHI 0.881 (0.164) 0.398 (0.183) 0.894 (0.147) 1 0.72 (0.21) 0.876 (0.165) 0.819 (0.132) 0.93 (0.171) 0.524 (0.263) 0.318 (0.188)
SSMI 0.569 (0.17) 0.385 (0.221) 0.547 (0.172) 0.548 (0.148) 1 0.435 (0.229) 0.531 (0.206) 0.829 (0.172) 0.271 (0.237) 0.587 (0.17)
FTMIB 0.919 (0.174) 0.413 (0.182) 0.929 (0.108) 0.976 (0.137) 0.475 (0.153) 1 0.716 (0.178) 0.706 (0.214) 0.526 (0.283) 0.12 (0.182)
GDAX 0.8 (0.176) 0.404 (0.185) 0.793 (0.142) 0.894 (0.115) 0.621 (0.165) 0.851 (0.125) 1 0.813 (0.172) 0.38 (0.225) 0.081 (0.188)
FTSE 0.807 (0.161) 0.353 (0.197) 0.849 (0.151) 0.868 (0.118) 0.472 (0.128) 0.894 (0.15) 0.745 (0.119) 1 0.523 (0.254) 0.48 (0.181)
N225 0.8 (0.171) 0.582 (0.177) 0.808 (0.147) 0.653 (0.172) 0.534 (0.164) 0.712 (0.138) 0.44 (0.174) 0.751 (0.168) 1 -0.024 (0.168)
HSI 0.544 (0.214) 0.418 (0.226) 0.56 (0.193) 0.618 (0.198) 0.383 (0.19) 0.626 (0.18) 0.484 (0.2) 0.697 (0.185) 0.784 (0.19) 1

α = 0.005/0.995 DJI NASDAQ IBEX FCHI SSMI FTMIB GDAX FTSE N225 HSI

DJI 1 0.201 (0.263) 0.815 (0.301) 0.792 (0.293) 0.504 (0.24) 0.713 (0.295) 0.304 (0.267) 0.782 (0.26) 0.692 (0.296) 0.385 (0.268)
NASDAQ 0.658 (0.247) 1 0.299 (0.286) 0.335 (0.287) -0.011 (0.283) 0.501 (0.285) 0.624 (0.299) 0.242 (0.288) 0.159 (0.298) -0.07 (0.258)
IBEX 0.856 (0.211) 0.575 (0.299) 1 0.996 (0.264) 0.586 (0.319) 0.96 (0.207) 0.515 (0.301) 0.973 (0.299) 0.933 (0.375) 0.199 (0.225)
FCHI 0.793 (0.252) 0.333 (0.263) 0.79 (0.235) 1 0.549 (0.285) 0.973 (0.23) 0.524 (0.24) 0.965 (0.225) 0.94 (0.378) 0.151 (0.252)
SSMI 0.674 (0.253) 0.692 (0.31) 0.706 (0.273) 0.346 (0.241) 1 0.45 (0.329) 0.435 (0.31) 0.599 (0.223) 0.378 (0.338) 0.793 (0.239)
FTMIB 0.677 (0.239) 0.128 (0.253) 0.804 (0.161) 0.857 (0.214) 0.202 (0.203) 1 0.619 (0.26) 0.907 (0.285) 0.919 (0.385) 0.021 (0.23)
GDAX 0.558 (0.275) 0.212 (0.262) 0.455 (0.259) 0.823 (0.208) 0.332 (0.282) 0.466 (0.219) 1 0.54 (0.259) 0.449 (0.353) 0.034 (0.249)
FTSE 0.835 (0.231) 0.3 (0.271) 0.866 (0.229) 0.934 (0.17) 0.389 (0.193) 0.898 (0.212) 0.628 (0.204) 1 0.895 (0.345) 0.232 (0.223)
N225 0.714 (0.236) 0.587 (0.244) 0.447 (0.24) 0.487 (0.234) 0.124 (0.234) 0.437 (0.195) 0.153 (0.232) 0.551 (0.239) 1 -0.114 (0.23)
HSI 0.64 (0.257) 0.53 (0.291) 0.395 (0.256) 0.487 (0.271) 0.006 (0.223) 0.443 (0.243) 0.147 (0.263) 0.534 (0.248) 0.989 (0.265) 1
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B.5 Heatmaps - Equally Weighted Two-Asset Portfolios

Value-at-Risk Implied Correlation - Equally Weighted Two Asset Portfolio - Exact Identification
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Expected Shortfall Implied Correlation - Equally Weighted Two Asset Portfolio - Exact Identification
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B.6 Boxplots - Expected Shortfall Implied Correlation
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Figure 27: Average ES-implied correlation for daily, weekly and monthly returns.
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Figure 28: ES-implied correlation for asset pairs over all return frequencies.
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B.7 Comparison of Strongest and Weakest Correlation Pairs

Lower Tail (Losses) Pearson Upper Tail (Gains)
Correlation Pairs 0.001 0.005 0.01 0.05 0.01 0.9 0.95 0.99 0.995 0.999

FCHI vs GDAX 0.999 0.961 0.942 0.914 0.902 0.915 0.917 0.893 0.904 0.924 0.650
FCHI vs FTMIB 0.833 0.848 0.927 0.879 0.886 0.883 0.876 0.853 0.851 0.912 0.713
FCHI vs FTSE 0.999 0.957 0.938 0.897 0.910 0.878 0.807 0.835 0.905 0.910 0.882
IBEX vs FTMIB 0.927 0.833 0.902 0.883 0.889 0.861 0.854 0.872 0.877 0.866 0.751
IBEX vs FCHI 0.979 0.895 0.890 0.867 0.872 0.858 0.839 0.812 0.882 0.942 0.594
FTMIB vs GDAX 0.841 0.832 0.840 0.822 0.825 0.838 0.823 0.805 0.874 0.853 0.700
GDAX vs FTSE 0.999 0.930 0.890 0.824 0.834 0.831 0.776 0.794 0.936 0.935 0.821
IBEX vs GDAX 0.982 0.852 0.915 0.780 0.800 0.818 0.785 0.747 0.839 0.834 0.588
FCHI vs SSMI 0.999 0.857 0.781 0.861 0.819 0.800 0.792 0.770 0.751 0.668 0.708
SSMI vs FTSE 0.999 0.875 0.788 0.864 0.835 0.797 0.763 0.799 0.775 0.769 0.661
SSMI vs HSI 0.953 0.317 0.405 0.539 0.503 0.478 0.516 0.527 0.424 0.470 0.560
DJI vs HSI 0.949 0.511 0.581 0.572 0.540 0.489 0.467 0.485 0.526 0.397 0.260
NASDAQ vs HSI -0.000 0.496 0.464 0.476 0.471 0.494 0.519 0.513 0.441 0.548 0.533
IBEX vs HSI 0.927 0.499 0.518 0.505 0.450 0.500 0.471 0.460 0.548 0.582 0.880
FTMIB vs HSI 0.763 0.486 0.498 0.529 0.514 0.504 0.483 0.534 0.663 0.654 0.572
NASDAQ vs N225 0.213 0.451 0.533 0.542 0.561 0.509 0.473 0.429 0.496 0.601 0.113
SSMI vs N225 0.999 0.588 0.556 0.608 0.587 0.533 0.481 0.511 0.405 0.297 -0.167
IBEX vs N225 0.981 0.836 0.678 0.504 0.553 0.534 0.476 0.502 0.433 0.331 -0.010
N225 vs HSI 0.950 0.544 0.534 0.606 0.588 0.545 0.520 0.521 0.466 0.315 0.038
GDAX vs HSI 0.952 0.488 0.540 0.548 0.522 0.545 0.566 0.548 0.539 0.636 0.562

Table 21: ES-implied correlation - Top 10 strongest and weakest pairs for weekly returns

Lower Tail (Losses) Pearson Upper Tail (Gains)
Correlation Pairs 0.001 0.005 0.01 0.05 0.01 0.9 0.95 0.99 0.995 0.999

FCHI vs GDAX 0.832 0.867 0.937 0.930 0.930 0.915 0.855 0.888 0.884 0.807 0.455
FCHI vs FTMIB 0.856 0.963 0.904 0.937 0.896 0.885 0.831 0.827 0.890 0.875 0.958
IBEX vs FTMIB 0.820 0.898 0.851 0.868 0.895 0.857 0.835 0.806 0.779 0.886 0.942
IBEX vs FCHI 0.799 0.875 0.893 0.833 0.909 0.848 0.798 0.852 0.838 0.866 0.995
FCHI vs FTSE 0.942 0.880 0.882 0.880 0.897 0.844 0.852 0.798 0.822 0.905 0.956
FTMIB vs GDAX 0.510 0.869 0.915 0.914 0.816 0.814 0.724 0.763 0.811 0.695 0.532
GDAX vs FTSE 0.675 0.732 0.822 0.855 0.862 0.796 0.662 0.729 0.830 0.788 0.454
FCHI vs SSMI 0.383 0.548 0.798 0.887 0.841 0.794 0.700 0.736 0.712 0.725 0.469
DJI vs FTSE 0.776 0.784 0.835 0.814 0.881 0.789 0.761 0.758 0.691 0.686 0.703
IBEX vs GDAX 0.436 0.803 0.879 0.858 0.818 0.783 0.658 0.639 0.678 0.671 0.485
SSMI vs HSI 0.089 0.373 0.391 0.427 0.442 0.440 0.359 0.434 0.452 0.609 0.730
FTMIB vs HSI 0.465 0.605 0.568 0.566 0.519 0.470 0.417 0.412 0.291 0.095 0.054
N225 vs HSI 0.998 0.813 0.681 0.628 0.584 0.483 0.366 0.326 0.191 -0.083 -0.068
FCHI vs HSI 0.514 0.593 0.623 0.612 0.583 0.524 0.564 0.602 0.511 0.340 0.236
GDAX vs HSI 0.164 0.505 0.559 0.587 0.635 0.535 0.606 0.560 0.371 0.107 0.082
IBEX vs HSI 0.466 0.565 0.572 0.510 0.548 0.536 0.511 0.539 0.510 0.370 0.278
SSMI vs N225 0.139 0.507 0.625 0.650 0.656 0.562 0.384 0.387 0.291 0.295 0.329
NASDAQ vs SSMI 0.630 0.308 0.419 0.576 0.647 0.569 0.449 0.292 0.100 -0.020 -0.058
IBEX vs N225 0.494 0.805 0.773 0.687 0.684 0.579 0.308 0.302 0.346 0.554 0.906
DJI vs HSI 0.693 0.478 0.451 0.594 0.652 0.581 0.585 0.533 0.522 0.511 0.478

Table 22: ES-implied correlation - Top 10 strongest and weakest pairs for monthly returns
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B.8 Tail Distortion

Distortion Analysis - Implied Correlation vs Pearson Correlation
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(a) Daily Returns
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Figure 29: ES implied correlation: Lower tail vs Pearson - Matching pairs will lie on the red line. The green line represents a
linear approximation of the two correlation types. The corresponding regression results are reported in table 11.
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Figure 30: ES implied correlation: Upper tail vs Pearson - Matching pairs will lie on the red line. The green line represents a
linear approximation of the two correlation types. The corresponding regression results are reported in table 11.
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C Notes on Matrix Algebra

C.1 Matrix Operators

Definition C.1 (Kronecker Product)
Let A = (aij) ∈ Rm×n and B = (bij) ∈ Rp×q. The Kronecker product or direct product of A and B
is obtained by multiplying each entry in A by the entire matrix B:

A ⊗ B =

 a11B . . . a1nB
...

...
am1B . . . amnB

 (154)

The Kronecker product can be generalized into a block Kronecker product or Kathri-Rao
product, see Khatri & Rao (1968). We are only interested in the row-wise Kroncker product
which is a special case of the Kathri-Rao product. In our work this operation is required to
summarize all portfolios into a linear system. Formally,

Definition C.2 (Kronecker Row-Product)
Let A = (aij), B = (bij) ∈ Rm×n. The Kronecker row-product of A and B is obtained by multiplying
each entry in A by the entire row of B:

A ⊗r B =

 a11 . . . a1n
...

...
...

am1 . . . amn

⊗r

 B1
...

Bm

 =

 a11B1 . . . a1nB1
...

...
...

am1Bm . . . amnBm

 (155)

Definition C.3 (Vectorization Operator)
The vectorization operator, denoted by vec, is a linear operator that transforms a matrix into a vector
by stacking its columns into a single column vector. Let A ∈ Rm×n such that

A =

 a11 · · · a1n
...

. . .
...

am1 · · · amn

 (156)
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the vectorization of A, denoted by vec(A), is defined as:

vec(A) =



a11
...

am1
...

a1n
...

amn


∈ Rmn×1. (157)

Following Lütkepohl (2006)3, the vec operator has the following properties:

Let A, B, C be two matricies with appropriate dimensions.

vec(A + B) = vec(A) + vec(B) (158)

vec(ABC) = (C′ ⊗ A)vec(B) (159)

Let A ∈ Rn×m and B ∈ Rp×q

vec(A ⊗ B) = (In ⊗ Kqm ⊗ Ip)(vec(G)⊗ vec(F)) (160)

We also need some results regarding the Khatri-Rao product from Lev-Ari (2005)4. We
follow the same notation as the author

Let A ∈ Rn×L and B ∈ Rp×L be matrices that share the same amount of columns. Then

(A ⊗c B) = (A ⊗ B)SL (161)

where ⊗c denotes the column-wise Kronecker product, also known as special case of the
Khatri-Rao product. Furthermore, SL is a selection matrix of the form

SL =
[
e1 eL+2 e2L+3 · · · eL2

]
(162)

and ek is an L2 × 1 column vector with a unity element in the k-th position and zeros
elsewhere. In our reserach, we use the row-wise Kronecker product hence

(A ⊗r B) = S′
L(A ⊗ B). (163)

3(158), (159) : p.622, (1),(2) ; (160): p.664, (27)
4(161) : p.127, (15),(16a),(16b)
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C.2 Matrix Differentials

We revise some results and rules regarding matrix differentials from Abadir & Magnus
(2005)5.

For two matrix functions F and G of the same order, we have:

d(F + G) = dF + dG (164)

Let F and G be two conformable matrix functions. For the chain rule and kronecker product
respectively it holds:

d(FG) = (dF)G + F(dG) (165)

d(F ⊗ G) = (dF)⊗ G + F ⊗ (dG) (166)

For a vector function, the differential and derivative can be obtained by

df(x) = Adx with Df(x) = A (167)

If A is also a function of x, say f(x) = A(x)x, the differential is

df(x) = dA(x)x + A(x)dx (168)

with

Df(x) =
∂f(x)
∂x′

= (x′ ⊗ I)
∂ vec(A)

∂x′
+ A

Finally, on the interplay of the vec and differential operator:

dvec(F) = vec(dF) (169)

5(164): p.355, 13.1 ; (165) (166): p.355, 13.3 ; (167), (168): p.360, 13.13 ; (169): p.355, 13.12
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C.3 Technical Notes on the Derivation of Theoretical Standard Errors

We present the exact identified case with n(n − 1)/2 two asset equal weighted portfolios.
First, consider DAα

. Let k, i = 1, . . . , n and l = 1, . . . , m. Note that Zα only depends on the
asset quantiles qα.

Aα = Zα ⊗ Zα =



· · · qkw(1)
k γ1 · · · qkw(1)

k γi · · · qkw(1)
k γn · · ·

...
...

...
· · · qkw(l)

k γ1 · · · qkw(l)
k γi · · · qkw(l)

k γn · · ·
...

...
...

· · · qkw(m)
k γ1 · · · qkw(m)

k γi · · · qkw(m)
k γn · · ·



with γi =
[
qαi w

(1)
i · · · qαi w

(m)
i

]⊤
which is a column of Zα. Vectorizing Zα ⊗ Zα yields

vec(Zα ⊗ Zα) =



...
qkw(1)

k γi
...

qkw(l)
k γi
...

qkw(m)
k γi
...


Now, interpreting each entry as a function of q we can compute the derivative. There are
two cases to distinguish.

For i = k

qkw(l)
k γk =



qkw(1)
k qkw(1)

k
...

qkw(l)
k qkw(l)

k
...

qkw(m)
k qkw(m)

k


∂

∂q
=⇒



0 · · · 2qkw(1)
k qkw(1)

k · · · 0
...

. . .
...

. . .
...

0 · · · 2qkw(l)
k qkw(l)

k · · · 0
...

. . .
...

. . .
...

0 · · · 2qkw(m)
k qkw(m)

k · · · 0



The k-th column contains the derivatives and all other entries are zero.
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For i ̸= k: i > k

qkw(l)
k γi =



qkw(1)
k qiw

(1)
i

...
qkw(l)

k qiw
(l)
i

...
qkw(m)

k qiw
(m)
i


∂

∂q
=⇒



0 · · · w(l)
k qiw

(1)
i · · · qkw(1)

k w(1)
i · · · 0

...
. . .

...
. . .

...
. . .

...
0 · · · w(l)

k qiw
(l)
i · · · qkw(l)

k w(l)
i · · · 0

...
. . .

...
. . .

...
. . .

...
0 · · · w(l)

k qiw
(m)
i · · · qkw(m)

k w(m)
i · · · 0



The k-th and i-th column contain the derivatives and all other entries are zero. If i < k the
columns in the last matrix is switched. Stacking the matrices after going through all indices
delivers DAα .

Now consider Dq̃p . Recall the definition of the squared excess quantile for one specific
weight vector in (79),

q̃p = q2
p −

n

∑
i=1

q2
αi

w2
i

Interpreting the vector q̃p which reflects different squared excess portfolio quantiles, see
(17), as a function of q, the derivative with respect to both asset and portfolio quantiles can
be calculated directly.

∂q̃p

∂q′
=

 −2qα1 w2
1,(1) · · · −2qαn w2

n,(1) | 2qp,1 · · · 0
...

. . .
... |

...
. . .

...
−2qα1 w2

1,(m1) · · · −2qαn w2
n,(m) | 0 · · · 2qp,m


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D Forecasting Correlation

D.1 CAViaR Estimation Results

Asymmetric Slope

DJI NASDAQ FCHI GDAX NK225 HSI
1% VaR
β1 -0.0728 -0.1184 -0.0657 -0.1060 -0.1681 -0.1307
Standard Errors 0.0098 0.0187 0.0198 0.0323 0.0413 0.0441
p-values 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
β2 0.9199 0.9114 0.9337 0.9036 0.8661 0.9027
Standard Errors 0.0165 0.0117 0.0112 0.0220 0.0225 0.0244
p-values 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
β3 -0.0100 -0.0651 -0.0777 -0.1472 -0.1274 -0.0582
Standard Errors 0.0571 0.0396 0.0317 0.0654 0.0540 0.0444
p-values 0.4305 0.0503 0.0071 0.0122 0.0092 0.0952
β4 0.3582 0.2993 0.2193 0.2810 0.5152 0.3518
Standard Errors 0.0830 0.0350 0.0224 0.0475 0.0782 0.0766
p-values 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

5% VaR
β1 -0.0457 -0.0441 -0.0327 -0.0488 -0.0656 -0.0414
Standard Errors 0.0126 0.0071 0.0058 0.0065 0.0096 0.0111
p-values 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000
β2 0.9013 0.9288 0.9233 0.9261 0.9032 0.9272
Standard Errors 0.0212 0.0080 0.0160 0.0065 0.0109 0.0118
p-values 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
β3 -0.0213 -0.0527 -0.0256 -0.0042 -0.0380 -0.0442
Standard Errors 0.0289 0.0204 0.0283 0.0171 0.0278 0.0234
p-values 0.2302 0.0049 0.1826 0.4028 0.0852 0.0297
β4 0.3054 0.1820 0.2500 0.2323 0.2736 0.2070
Standard Errors 0.0667 0.0191 0.0471 0.0189 0.0319 0.0202
p-values 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

25% VaR
β1 -0.0024 -0.0022 -0.0108 -0.0059 -0.0069 0.0000
Standard Errors 0.0015 0.0023 0.0056 0.0031 0.0038 0.0017
p-values 0.0533 0.1679 0.0256 0.0292 0.0361 0.4993
β2 0.9579 0.9632 0.9427 0.9427 0.9610 0.9763
Standard Errors 0.0060 0.0120 0.0248 0.0169 0.0080 0.0063
p-values 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
β3 0.0056 0.0174 0.0114 0.0089 0.0034 0.0037
Standard Errors 0.0094 0.0098 0.0163 0.0134 0.0106 0.0068
p-values 0.2768 0.0379 0.2422 0.2546 0.3723 0.2914
β4 0.0624 0.0692 0.0793 0.0838 0.0471 0.0396
Standard Errors 0.0043 0.0136 0.0226 0.0244 0.0071 0.0090
p-values 0.0000 0.0000 0.0002 0.0003 0.0000 0.0000

Table 23: Asymmetric CAViaR parameter estimates for daily returns.
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Asymmetric Slope

DJI NASDAQ FCHI GDAX NK225 HSI
1% VaR
β1 -1.0213 -1.1511 -1.1403 -1.4296 -2.4247 -0.9387
Standard Errors 1.1611 1.3076 0.3252 0.7127 0.8898 0.9416
p-values 0.1895 0.1893 0.0002 0.0224 0.0032 0.1594
β2 0.7244 0.7187 0.7091 0.7201 0.6341 0.7677
Standard Errors 0.4038 0.2910 0.0800 0.1456 0.1598 0.2040
p-values 0.0364 0.0068 0.0000 0.0000 0.0000 0.0001
β3 0.0950 -0.1642 -0.0384 0.0195 0.3623 -0.1236
Standard Errors 0.3243 0.2508 0.1203 0.1472 0.0958 0.2562
p-values 0.3848 0.2564 0.3748 0.4474 0.0001 0.3147
β4 1.0000 1.0000 0.8218 0.5699 0.7574 0.5954
Standard Errors 2.0099 1.1189 0.2564 0.2509 0.6170 0.4982
p-values 0.3094 0.1857 0.0007 0.0116 0.1098 0.1161

5% VaR
β1 -0.8565 -0.3214 -0.2688 -0.3384 -1.3337 -0.1385
Standard Errors 0.6392 0.1589 0.0748 0.1021 0.4156 0.0461
p-values 0.0901 0.0216 0.0002 0.0005 0.0007 0.0013
β2 0.6070 0.8084 0.8886 0.8633 0.6892 0.9251
Standard Errors 0.1982 0.0779 0.0334 0.0535 0.0899 0.0168
p-values 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000
β3 -0.1900 -0.1855 0.0273 0.0015 0.1652 -0.0062
Standard Errors 0.0756 0.1142 0.0323 0.0663 0.0681 0.0206
p-values 0.0060 0.0522 0.1986 0.4907 0.0076 0.3823
β4 0.5354 0.3326 0.2440 0.2990 0.3686 0.1744
Standard Errors 0.1624 0.1381 0.0743 0.1073 0.0756 0.0380
p-values 0.0005 0.0080 0.0005 0.0027 0.0000 0.0000

25% VaR
β1 -0.0259 -0.0059 -0.0242 -0.0907 -0.0061 -0.0154
Standard Errors 0.0248 0.0237 0.0165 0.0531 0.0238 0.0288
p-values 0.1484 0.4026 0.0714 0.0439 0.3992 0.2967
β2 0.9347 0.9513 0.9543 0.8803 0.9611 0.9368
Standard Errors 0.0402 0.0119 0.0122 0.0420 0.0187 0.0331
p-values 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
β3 0.0188 0.0133 0.0185 0.0334 -0.0057 -0.0214
Standard Errors 0.0397 0.0324 0.0134 0.0461 0.0246 0.0250
p-values 0.3177 0.3410 0.0832 0.2348 0.4083 0.1963
β4 0.0874 0.0822 0.0743 0.1455 0.0487 0.0765
Standard Errors 0.0632 0.0216 0.0170 0.0382 0.0199 0.0235
p-values 0.0833 0.0001 0.0000 0.0001 0.0072 0.0006

Table 24: Asymmetric CAViaR parameter estimates for weekly returns.
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D.2 DCC Estimation Results

DJI NASDAQ FCHI GDAX N225 HSI

GARCH(1,1) Parameters

ω̂ 0.0142*** 0.0170*** 0.0205*** 0.0205*** 0.0205*** 0.0802**
SE filtered (0.0027) (0.0044) (0.0051) (0.0051) (0.0051) (0.0096)
t-stat 5.0278 3.9110 3.7150 4.1807 8.0336 1.3360

α̂1 0.0805*** 0.0526*** 0.0868*** 0.0868*** 0.0868*** 0.0868***
SE filtered (0.0122) (0.0078) (0.01) (0.001) (0.0094) (0.0093)
t-stat 7.6356 10.2414 9.0514 8.5230 9.8952 5.9932

β̂1 0.9065*** 0.9321*** 0.9029*** 0.901*** 0.903*** 0.9014***
SE filtered (0.0115) (0.0093) (0.0091) (0.0094) (0.0099) (0.0093)
t-stat 77.884 97.0858 100.1440 98.2194 99.94540 103.6271

DCC(1,1) Parameters

λ̂1 0.0049
SE filtered (0.0071)
t-stat 1.3951

λ̂2 0.9947***
SE filtered (0.0147)
t-stat 60.9139

Table 25: Parameter estimates for a GARCH-DCC model with gaussian errors for daily
returns.
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DJI NASDAQ FCHI GDAX N225 HSI

GARCH(1,1) Parameters

ω̂ 0.3770*** 0.2258 0.1944 0.63021*** 0.9831*** 0.1204***
SE filtered (0.1378) (0.1690) (0.1661) (0.1661) (0.1661) (0.0317)
t-stat 2.7356 1.3357 1.1706 3.7949 5.9199 3.8038

α̂1 0.2034*** 0.1473*** 0.1198*** 0.1805*** 0.1259*** 0.0674
SE filtered (0.0435) (0.0315) (0.0443) (0.0443) (0.0443) (0.0443)
t-stat 4.6739 4.6742 2.7043 4.0745 2.8420 1.5214

β̂1 0.7413*** 0.8381*** 0.8647*** 0.7680*** 0.7666*** 0.9193***
SE filtered (0.0479) (0.0465) (0.0457) (0.0457) (0.0457) (0.0457)
t-stat 15.4809 18.0412 18.9382 16.8204 16.7897 20.1341

DCC(1,1) Parameters

λ̂1 0.01
SE filtered (0.0084)
t-stat 1.1883

λ̂2 0.88***
SE filtered (0.0313)
t-stat 28.7305

Table 26: Parameter estimates for a GARCH-DCC model with gaussian errors for weekly
returns.
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D.3 Charts - In-Sample and Out-of-Sample Correlation Forecasts
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Figure 31: CAViaR implied correlation forecasts - Daily Returns - Exact Identification
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Figure 32: CAViaR implied correlation forecasts - Weekly Returns - Exact Identification
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Figure 33: CAViaR implied correlation forecasts - Daily Returns - Overidentification
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Figure 34: CAViaR implied correlation forecasts - Weekly Returns - Overidentification
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D.4 Evaluation with Realized Correlation

Weekly realized correlation constructed from daily returns exhibits substantial variability.
We observe erratic changes in figure 35 with large amplitudes where realized correlation
admits unrealistic values. Andersen & Bollerslev (1998) emphasized that realized correla-
tions are only accurate if sufficient data is available. In our case, high-frequency intra-day
data would be required.
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Figure 35: CAViaR implied correlation forecasts - Daily returns - Weekly realized correlation
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D.5 Portfolio Evolution
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Figure 36: DQIC portfolio performance - Depicted are the evolution of portfolio values for
daily (top) and weekly (bottom) returns. Correlation is implied by an exact iden-
tified system with daily/weekly rebalancing frequency. The verticle line divides
the chart into in-sample CAViaR/DCC (left) and out-of-sample CAViaR/DCC
(right) predictions. Initial investment and indices were normed to 100 monetary
units. Two indices (GDAX, NASDAQ) are included for comparison
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Figure 37: DQIC portfolio performance - Depicted are the evolution of portfolio values for
daily (top) and weekly (bottom) returns. Correlation is implied by an overiden-
tified system with daily/weekly rebalancing frequency. The verticle line divides
the chart into in-sample CAViaR/DCC (left) and out-of-sample CAViaR/DCC
(right) predictions. Initial investment and indices were normed to 100 monetary
units. Two indices (GDAX, NASDAQ) are included for comparison
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D.6 Stackplots - Portfolio Weights
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Figure 38: Evolution of portfolio weights - Presented are the portfolio weights with daily rebalanc-
ing and daily returns. DQIC from an exact identified system are considered.



Forecasting Correlation 140

2000 2004 2008 2012 2016 2020 2024
Year

0.0

0.2

0.4

0.6

0.8

1.0

Po
rtf

ol
io

 W
ei

gh
ts

Portfolio Weights - EWMA - Daily Returns - Daily Rebalancing
DJI
NASDAQ
FCHI
GDAX
N225
HSI

2000 2004 2008 2012 2016 2020 2024
Year

0.0

0.2

0.4

0.6

0.8

1.0

Po
rtf

ol
io

 W
ei

gh
ts

Portfolio Weights - DCC - Daily Returns - Daily Rebalancing
DJI
NASDAQ
FCHI
GDAX
N225
HSI

2000 2004 2008 2012 2016 2020 2024
Year

0.0

0.2

0.4

0.6

0.8

1.0

Po
rtf

ol
io

 W
ei

gh
ts

Portfolio Weights - CAViaR 25% - Overidentification - Daily Returns - Daily Rebalancing
DJI
NASDAQ
FCHI
GDAX
N225
HSI

2000 2004 2008 2012 2016 2020 2024
Year

0.0

0.2

0.4

0.6

0.8

1.0

Po
rtf

ol
io

 W
ei

gh
ts

Portfolio Weights - CAViaR 5% - Overidentification - Daily Returns - Daily Rebalancing
DJI
NASDAQ
FCHI
GDAX
N225
HSI

2000 2004 2008 2012 2016 2020 2024
Year

0.0

0.2

0.4

0.6

0.8

1.0

Po
rtf

ol
io

 W
ei

gh
ts

Portfolio Weights - CAViaR 1% - Overidentification - Daily Returns - Daily Rebalancing
DJI
NASDAQ
FCHI
GDAX
N225
HSI

Figure 39: Evolution of portfolio weights - Presented are the portfolio weights with daily rebalanc-
ing and daily returns. DQIC from an overidentified system are considered.
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Figure 40: Evolution of portfolio weights - Presented are the portfolio weights with monthly rebal-
ancing and daily returns. DQIC from an exact identified system are considered.
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Figure 41: Evolution of portfolio weights - Presented are the portfolio weights with monthly rebal-
ancing and daily returns. DQIC from an overidentified system are considered.
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Figure 42: Evolution of portfolio weights - Presented are the portfolio weights with weekly rebal-
ancing and weekly returns. DQIC from an exact system are considered.
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Figure 43: Evolution of portfolio weights - Presented are the portfolio weights with weekly rebal-
ancing and weekly returns. DQIC from an overidentified system are considered.
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Figure 44: Evolution of portfolio weights - Presented are the portfolio weights with monthly rebal-
ancing and weekly returns. DQIC from an exact identified system are considered.
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Figure 45: Evolution of portfolio weights - Presented are the portfolio weights with monthly rebal-
ancing and weekly returns. DQIC from an overidentified system are considered.
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