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Zusammenfassung

Die Strahlentherapie in Anwesenheit intra-fraktioneller Bewegung kann erheblich von
der Echtzeit-Bildgebung mit Magnetresonanztomographie (MRT) profitieren, da diese
eine überlegene Weichteilkontrastierung bietet und keine ionisierende Strahlung ver-
wendet. Bewegungsbedingte Bildgebungsfehler wurden jedoch als Hauptursache für
die gesamte Schleifenlatenz in der MRT-geführten Strahlentherapie (MRgRT) identi-
fiziert. Diese Fehler führen zu verbleibenden geometrischen Verfolgungsfehlern und
beeinträchtigen somit die Wirksamkeit des aktiven Bewegungsmanagements. In dieser
Dissertation wird die Möglichkeit untersucht, diese Fehler in der MRgRT durch Deep-
Learning-basierte intra-frame Bewegungskompensation zu reduzieren.

Zunächst wurde ein bewegungsabhängiges k-Raum-Simulationsverfahren entwick-
elt, um das Verhalten der dynamischen MRT-Bildgebung sowie bewegungsbedingte
Bildfehler zu untersuchen. Darauf aufbauend wurde eine Methodik zur Erstellung
und Erweiterung von intra-frame Bewegungsdatensätzen vorgeschlagen, bei der bewe-
gungsverfälschte Daten mit ihren Echtzeit-Ground-Truth-Pendants kombiniert wurden,
wobei der Schwerpunkt auf schnellen anatomischen Veränderungen lag. Konkret
wurden auf der Grundlage einer groß-zu-feinen gitterbasierten Repräsentation pa-
tientenspezifischer Bewegungsdaten digitale 4D-MRT-Phantome zur Modellierung
von Lungenkrebspatienten erzeugt, und ein spezielles intra-frame Bewegungsmod-
ell wurde mittels stückweiser linearer Approximation zwischen aufeinanderfolgenden
Kontrollpunkten aufgebaut. Zusätzlich wurde ein Verfahren zur Erzeugung von Abwe-
ichungen von Bewegungsmustern eingeführt, um potenzielle Positionen anatomischer
Strukturen umfassend zu erforschen und die Vielfalt intra-frame Bewegungsverläufen
zu erhöhen.

Zweitens wurde eine Machbarkeitsstudie mit kartesischer Cine-MRT durchgeführt,
die zeigte, dass UNet-Modelle intra-frame Bewegungen wirksam kompensieren kön-
nen, indem sie das Bild an der Endposition der Aufnahme aus bewegungsverfälschten
Eingangsdaten schätzen. Quantitativ stieg im Testdatensatz für die Konturierung des
makroskopischen Tumorvolumens (GTV) der mediane Dice Similarity Coefficient (DSC)
von 89% auf 97%, während der 95. Perzentilwert der Hausdorff-Distanz (HD95) von
4,1 mm auf 1,4 mm sank. Geometrische Fehler in Zielstrukturen mit ausgeprägten
intra-frame Deformationen konnten erfolgreich korrigiert werden und zeigten eine
enge Übereinstimmung mit dem Ground Truth hinsichtlich Form und Position des
Zielvolumens. Die Saliency Maps wiesen darauf hin, dass sich das Modell bei der
Inferenz hauptsächlich auf die später erfassten k-Raum-Komponenten konzentrierte
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und entsprechend im Ortsraum auf die Ränder der sich bewegenden Strukturen an
deren Echtzeit-Endposition.

Drittens wurde eine Machbarkeitsstudie mit radialer Cine-MRT durchgeführt, in
der "TransSin-UNet" vorgestellt wurde – ein neuartiges Deep-Learning-Framework im
Dual-Domain-Ansatz. Innerhalb des radialen k-Raum-Rekonstruktionsfensters wurden
die weit reichenden räumlich-zeitlichen Abhängigkeiten in der Sinogramm-Darstellung
der Speichen durch ein Transformer-Encoder-Subnetzwerk modelliert, gefolgt von
einem UNet-Subnetzwerk im Ortsraum zur Verfeinerung auf Pixelebene. Das Netzwerk
wurde auf Datensätzen mit unterschiedlichen azimutalen Inkrementen der radialen
Profile trainiert und umfassend evaluiert. Im Vergleich zur konventionellen direk-
ten Bildrekonstruktion erforderte TransSin-UNet nur zusätzliche 4,8 ms pro Bild zur
Kompensation von bewegungsverfälschten Speichen. Es übertraf konsistent Architek-
turen, die ausschließlich auf Transformer-Encodern oder UNets basierten, in sämtlichen
Vergleichsstudien und führte zu einer deutlichen Verbesserung der Bildqualität und
Zielpositionierungsgenauigkeit. Der normalisierte Root Mean Squared Error (NRMSE)
sank um 50 % vom ursprünglichen Mittelwert von 0,188, während der mittlere DSC
des GTV in den untersuchten Testfällen von 85,1 % auf 96,2 % anstieg. Darüber hinaus
konnten die Ground-Truth-Positionen anatomischer Strukturen mit ausgeprägten Defor-
mationen präzise bestimmt werden.

Diese Arbeit stellt einen bedeutenden Fortschritt auf dem Weg zur klinischen
Umsetzung von Strategien zur Reduktion von Tracking-Fehlern in Cine-MRT dar und
unterstützt ein verbessertes Echtzeit-Bewegungsmanagement in der MRgRT.
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Abstract

Radiotherapy in the presence of intra-fractional motion can significantly benefit from
real-time magnetic resonance imaging (MRI) guidance, owing to its superior soft tissue
contrast and the absence of ionizing radiation. However, motion-related imaging errors
have been identified as the primary contributor to overall loop latency in MR-guided
radiotherapy (MRgRT), leading to residual geometric tracking errors and subsequently
affecting the effectiveness of active motion management. This thesis explores the
feasibility of reducing these errors in MRgRT through deep learning-based intra-frame
motion compensation techniques.

Firstly, a motion-dependent k-space sampling simulation procedure was devel-
oped to investigate dynamic MR imaging behavior and motion-related imaging errors.
Building upon this, a methodology for intra-frame motion dataset creation and augmen-
tation was proposed, pairing the motion-corrupted data with its real-time ground-truth
counterpart, with a primary focus on rapid anatomical changes. Specifically, based
on a coarse-to-fine grid-scale representation of patient-specific motion data, 4D MRI
digital anthropomorphic phantoms were generated to model lung cancer patients,
and a dedicated intra-frame motion model was constructed using a piecewise linear
approximation between consecutive control points. Additionally, a motion pattern
perturbation scheme was introduced to comprehensively explore potential anatomical
structure positions and enhance the diversity of intra-frame motion trajectories.

Secondly, a proof-of-concept study in Cartesian cine-MRI was conducted, demon-
strating that UNet models can effectively compensate for intra-frame motion by esti-
mating the final-position image at the end of frame acquisition from motion-corrupted
input. Quantitatively, in the testing dataset for gross tumor volume (GTV) contouring,
the median Dice similarity coefficient (DSC) increased from 89% to 97%, while the 95th
percentile Hausdorff distance (HD95) decreased from 4.1 mm to 1.4 mm. Geometric
errors in targets undergoing considerable intra-frame deformations were successfully
corrected, exhibiting close agreement with the ground truth in terms of both target
shape and position. The saliency maps indicated that the model predominantly focused
on the later-acquired k-space components for inference and, correspondingly in the
spatial domain, the edges of the moving structures at their real-time final positions.

Thirdly, a proof-of-concept study in radial cine-MRI was conducted, proposing
"TransSin-UNet", a novel dual-domain deep learning framework. Within the radial
k-space reconstruction window, the long-distance spatial-temporal dependencies among
the sinogram representation of the spokes were modeled by a transformer encoder sub-
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network, followed by a UNet subnetwork operating in the spatial domain for pixel-level
refinement. The network was trained and extensively evaluated across datasets with
varying azimuthal radial profile increments. TransSin-UNet required only an additional
4.8 ms per frame for compensation compared to conventional direct image recon-
struction using motion-corrupted spokes. It consistently outperformed architectures
relying solely on transformer encoders or UNets across all comparative evaluations,
leading to a noticeable enhancement in image quality and target positioning accuracy.
The normalized root mean squared error (NRMSE) decreased by 50% from the initial
average of 0.188, whereas the mean DSC of GTV increased from 85.1% to 96.2% in
the investigated testing cases. Furthermore, the ground-truth positions of anatomical
structures experiencing substantial deformations were precisely derived.

This work constitutes a substantial advancement toward the clinical implemen-
tation of cine-MR tracking error reduction strategies to support enhanced real-time
motion management in MRgRT.
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Chapter 1

INTRODUCTION AND MOTIVATION

1.1 Radiotherapy

Cancer ranks as the second leading cause of death globally, following cardiovascular
diseases, responsible for approximately 9.6 million deaths, or one in six deaths, in
2018 [1]. It is characterized by the uncontrolled proliferation of tumor cells, caused by
defects in the cellular reproduction cycle, which invades nearby tissues and potentially
spreads to distant places in the body, a process known as metastasis [2].

The current treatment of cancer encompasses both isolated or combined modalities,
with the three main ones being surgery, systemic therapy (such as chemotherapy or
hormonal therapy), and radiation therapy (RT). It is widely reported that around a
quarter of all cancer patients ultimately receive RT, while recommendations aimed
at enhancing overall survival suggest increasing this proportion to fifty percent, with
external beam radiation therapy (EBRT) recognized as the best practice care in about
half of all cancer cases. [3–5]. This thesis will focus exclusively on radiotherapy,
specifically EBRT, as a non-invasive and non-pharmacological method to target and
eradicate tumor cells.

The primary mechanism through which radiation kills cells is by causing double-
strand breaks in the deoxyribonucleic acid (DNA), which are challenging for the cell
to repair and may result in its inability to replicate. The effectiveness of radiation
therapy relies on the different response of malignant and normal tissues to ionizing
radiation exposure, characterized by the tumor control probability (TCP) and normal
tissue complication probability (NTCP), respectively [6]. The difference between TCP
and NTCP as a function of the delivered dose defines a therapeutic window [7], as
illustrated in Fig. 1.1, facilitating the prescription of an optimal radiation dose that
maximizes the likelihood of tumor control while minimizing toxicity to surrounding
healthy tissues to acceptable levels [8].
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Chapter 1 INTRODUCTION AND MOTIVATION

Figure 1.1: Schematic representation of the therapeutic window. The dose response
curves of TCP and NTCP are modeled using sigmoid functions.

The narrow therapeutic window places stricter demands on the delivery accuracy
of a prescribed dose, as dosimetric uncertainties lead to either reductions in TCP or
increases in NTCP relative to the optimized expected value, both of which worsen the
clinical outcome. Notably, at the steepest portions of the the most critical dose-response
curves, a 5% variation in dose can produce 10-20% changes in TCP and 20-30% changes
in NTCP [9]. For external photon beam radiotherapy, the International Commission
on Radiation Units and Measurements (ICRU) Report 50 recommends a target dose
uniformity within +7% and -5% of the dose delivered to a well-defined prescription
point within the target [10,11].

1.2 Motion management and real-time motion
monitoring

Geometric uncertainties translate into dosimetric uncertainties, resulting in potential
underdosage of the target region and/or overdosage in nearby organs at risk (OAR),
making them critical considerations in RT. These uncertainties can stem from var-
ious factors, including treatment machine specifications and tolerances, simulation
and treatment setup, anatomical alterations between fractions (inter-fractional vari-
ations) [12] and shorter-term patient or organ motion during a treatment session
(intra-fractional motion) [9]. With the advancement of delivery techniques in EBRT,
such as intensity-modulated radiation therapy (IMRT) [13] and volumetric-modulated
arc therapy (VMAT) [14], which are designed to achieve highly conformal dose distri-
butions shaped around the planning target volume (PTV), accurate target and OAR
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1.2 Motion management and real-time motion monitoring

localization becomes even more relevant [9].
Image-guided radiation therapy (IGRT) [15] has become a cornerstone of modern

precision radiation oncology, playing a crucial role in reducing geometric uncertainties,
particularly those introduced by patient positioning and inter-/intra-fraction motion.
With the application of advanced in-room imaging, patient setup can be verified and
adjusted prior to each fraction to ensure that the target volume aligns correctly with the
treatment-planning position. Moreover, the baseline treatment plan can be re-optimized
to adapt to the daily anatomical-pathological situation in the treatment position, effec-
tively accounting for the inter-fractional changes [16]. Furthermore, advancements in
real-time imaging of moving targets provide a foundation for developing strategies to
manage intra-fractional motion during irradiation [17], such as breathing and heart-
beat, spontaneous motion [18], and baseline drifts [19].

As highlighted in the report of the American Association of Physicists in Medicine
(AAPM) Task Group (TG) 76 [20], intra-fractional motion is an issue of growing sig-
nificance in the era of IGRT. Certain types of motion, particularly respiratory motion,
can be patient-specific, difficult to predict, irregular, and vary over time. Additionally,
the motion variations associated with tumor location and pathology result in distinct
individual patterns in displacement, direction, and motion phase. Their assessment and
accommodation are therefore of critical importance.

In clinical practice, techniques for intra-fractional motion management are gen-
erally classified into passive and active approaches [21, 22]. Margins are a widely
employed passive approach aiming at ensuring target coverage in the presence of intra-
fractional motion. This can involve defining an internal target volume (ITV) that encom-
passes the full extent of tumor motion as observed in the treatment-planning stage, or
applying a statistical margin recipe, such as the mid-ventilation approach [23–25]. Nev-
ertheless, these approaches often result in larger irradiated volumes, subjecting close-by
OARs to higher doses [17,26], and may still fail to provide adequate target coverage,
particularly when tumor drift occurs. By contrast, active real-time motion management
approaches, including gating and tracking, offer enhanced targeting accuracy and
facilitate a safe margin reduction [27–29]. Gating activates the beam only when the
target moves inside a predefined boundary [30], while tracking ensures continuous
synchronization between the beam and the moving target [31–33]. When comparing
these active approaches in the context of respiratory motion management, gating during
free-breathing decreases the duty cycle while gating in breath-hold requires patient
compliance. Tracking, on the other hand, is more efficient but involves greater technical
complexity and is currently limited to specialized commercial platforms [34].

Extensive studies have reported convincing evidence in favor of active motion man-
agement from the perspectives of geometric accuracy, dosimetric precision, and clinical
outcomes [21,27,35–37]. The AAPM TG76 report recommends implementing active
motion management when respiratory motion exceeds an amplitude of 5 mm, if it can
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significantly enhance OAR sparing, or when necessary to meet clinical objectives [20].
Real-time motion monitoring is essential for active motion management to trigger

the beam on/off signal during gating or maintain continuous beam-target realignment
in the tracking feedback chain. Additionally, real-time motion monitoring is particularly
crucial for stereotactic body radiotherapy (SBRT) [38], which delivers highly collimated
beams to the lesion at significantly higher doses and with much greater precision
than traditional EBRT, necessitating tight margins for OAR sparing [21]. Furthermore,
time-resolved motion monitoring data can be utilized to estimate accurate dose accu-
mulation for each fraction [39, 40], thereby facilitating treatment adaptation if the
tumor coverage is inadequate or OAR constraints are violated [41,42].

The long-term goal of the RT community to ‘see what we treat, as we treat’
and adapt treatment in real-time has driven the advancement and widespread im-
plementation of numerous online motion monitoring and mitigation techniques [17].
Infrared-based or optical surface monitoring [43,44], kilovoltage (kV) or megavoltage
(MV) X-ray imaging [45,46], magnetic resonance imaging (MRI) [32,47], etc., have
been extensively integrated into treatment delivery devices, such as linear accelerators
(linac), and are now routinely utilized in clinical practice. For a more comprehensive
review and comparison of the current real-time intra-fractional motion monitoring
techniques in EBRT, please refer to [17].

1.3 MRgRT

Cone beam computed tomography (CBCT) is a widely used imaging modality, which has
increasingly become the standard method for IGRT in recent years [48,49]. Nonetheless,
CBCT presents several inherent shortcomings. First, the poor soft tissue contrast [50]
makes it challenging to distinguish tumors from surrounding tissues. Second, CBCT
produces suboptimal image quality. The area detector captures scattered radiation from
all directions, with nonlinear attenuation further contributing to image degradation and
increased noise [51]. Third, while CBCT generally delivers lower radiation doses than
conventional CT, the additional imaging dose [52] to radiosensitive organs remains
a consideration, potentially leading to side effects. This is particularly concerning
for real-time intra-fractional motion monitoring. Fourth, CBCT can significantly un-
derestimate target motion ranges, raising concerns about its suitability for motion
management [16,53].

In light of these limitations, MRI, with its high soft tissue contrast, absence of
ionizing radiation, functional imaging capabilities, and versatile modalities, emerges
as an ideal alternative for implementing IGRT. MR-guided radiotherapy (MRgRT) is
widely regarded as a game changer for numerous tumor sites [54], marking a new era
of precision treatment. The superior soft tissue contrast of MRI significantly enhances
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delineation precision during treatment planning and holds great potential for improving
localization accuracy of moving targets during beam delivery. The dose-free nature
of MRI allows for frequent verification of treatment adaptation strategies and con-
tinuous, long-term monitoring of intra-fractional anatomical variations. Additionally,
functional quantitative MRI techniques [55], such as dynamic contrast-enhanced (DCE)
and diffusion-weighted (DW) MRI [56], integrated into multi-parametric analyses,
have the potential to enhance the entire RT workflow [57]. These contributions span
diagnosis [58,59], contouring [60], dose optimization [61], treatment monitoring [62],
and response assessment [63], thereby advancing treatment personalization [64].

Over the past decade, substantial research and commercial efforts have been
dedicated to integrating onboard MR scanners with treatment units [30,65–69]. Ta-
ble 1.1 summarizes the existing MRgRT approaches employing linear accelerators
(MR-Linac systems), which feature varying configurations regarding magnetic field
strength, radiation source and energy, as well as the orientation of the static magnetic
field relative to the radiation beam [70]. Among these, the ViewRay MRIdian [71],
Elekta Unity [72], and Aurora-RT [73] are currently available for commercial use. The
world’s inaugural MRgRT treatment was carried out with the Cobalt-60-based MRIdian
system in 2014 [74], followed by the first MRI-Linac patient treatment utilizing Unity
in 2017 [75].

Table 1.1: Configurations of representative MR-Linac systems. The data were compiled
from seminal publications in the field.

System Company/Institute* Radiation source Field orientation Field strength

MRIdian ViewRay 60Co / 6 MV perpendicular 0.35 T

Unity Elekta 7 MV perpendicular 1.5 T

Aurora-
RT

MagnetTx 4/6 MV parallel 0.56 T

Australia Ingham* 6 MV parallel/perpendicular 1.0 T

Real-time monitoring of tumor and OAR motion in today’s clinical MR-Linac sys-
tems is achieved through online 2D+t cine-MR imaging. During irradiation, cine-MR
frames are continuously acquired with rapid imaging sequences, such as balanced
Steady State Free Precession (bSSFP) [76] and spoiled gradient echo [77], at frame
rates of a few Hz. In the clinical setup of the ViewRay MRIdian MR-Linac system, the
bSSFP sequence employing a Cartesian k-space readout trajectory achieves a temporal
resolution of 4 Hz, while a radial k-space readout variant provides an enhanced tempo-
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ral resolution of 8 frames per second (FPS).
A 4D-CT scan of the moving anatomy is typically acquired to evaluate the extent

of respiratory-induced motion, forming a key component of conventional radiother-
apy treatment planning for the thoracic and abdominal regions, such as lung tumors.
However, due to challenges like the inherent trade-off between spatial and temporal
resolution, 4D-MRI—including the respiratory-correlated 4D-MRI (rc-4D-MRI) and
real-time 4D-MRI (rt-4D-MRI)—is not yet offered by MR-Linac vendors [54]. Despite
this, interest in both approaches has grown steadily in recent years due to their potential
applications in MRgRT [78,79]. Specifically, rc-4D-MRI holds promise for improving
treatment planning, whereas rt-4D-MRI could enhance real-time target and OAR lo-
calization during beam delivery, particularly when significant out-of-plane motion is
present in 2D+t cine-MRI [16].

The vendor’s cine-MRI data are highly effective in facilitating active intra-fractional
motion management, with clinical studies already published [32,80–84]. Gating treat-
ment for mobile targets has become a routine practice in clinical applications on the
ViewRay MRIdian MR-Linac. A gating boundary is defined prior to treatment as an
expansion of the target contour. During irradiation, the system employs an optical
flow deformable image registration (DIR) algorithm [85] to deform the target contour
from the reference image to each cine-MR frame, enabling real-time localization of
the target position. The relative overlap between the real-time target contour and
the gating boundary is then evaluated, referred to as the target out percentage, and
compared to a predefined threshold, typically set between 5% and 10%. Beam delivery
occurs only when the target out percentage remains below the threshold (classified as
target in); otherwise, the beam is automatically paused. The Elekta Unity MR-Linac
facilitates multi-leaf collimator (MLC)-tracking for moving targets. The system reshapes
and repositions the radiation beam using a 160-leaf MLC with optically encoded leaf
positions. While the treatment head remains stationary, the MLC leaves move along the
International Electrotechnical Commission (IEC) x-direction, dynamically adapting in
real-time to ensure the radiation beam continuously follows the time-dependent tumor
position [32].

MR-Linacs enable beam delivery with greater conformality compared to conven-
tional IGRT, and the research community has demonstrated a rapidly increasing interest
in the role of MRI in radiotherapy as well as its applications in motion management.
For a detailed review of MRgRT, including its current status and future roadmap, please
refer to [16,79].
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1.4 Latency and motion-related imaging errors in
MRgRT

1.4.1 Characterization and impacts

Despite the aforementioned advantages of MRgRT, its status as a relatively new technol-
ogy indicates ongoing potential for optimization. Given the sensitivity of TCP and NTCP
to the prescribed dose, achieving higher precision in dose delivery remains essential.
Consequently, the gating and tracking performance of MR-Linacs has become a primary
focus.

Latency serves as a key indicator for evaluating the accuracy of beam gating and
MLC tracking. Gating latency refers to the delay between the target’s status change and
the corresponding beam resumption or cessation. It is typically divided into beam-on
latency, the delay between the target entering the gating window and the initiation of
treatment, and, more importantly, beam-off latency, the delay between the target exiting
the window and the beam being switched off. Kim et al. [80] measured the latency
for the ViewRay MRIdian MR-Linac, reporting a largest measured beam-off latency of
302 ± 20 ms with 8-FPS cine MRI, with average values ranging from 128–243 ms for 4
Hz Cartesian acquisition and 47–302 ms for 8 Hz radial acquisition. The end-to-end
MLC-tracking latency can be defined as the delay between a moving target reaching
a specific position and the center of the MLC leaves following that target arriving at
the same position. Glitzner et al. [32] conducted a technical study on the Elekta Unity
MR-Linac and reported MLC-tracking latencies of 347.45 ms at 4 Hz imaging and 204
ms at 8 Hz. Liu et al. [33] from the Australian MR-Linac project measured a time delay
of 328± 44 ms in the MLC beam-repositioning response. These latencies lead to gating
and tracking errors, which are especially critical when rapid target motion occurs due
to respiration or cardiac activity. As they represent a root cause of dose coverage loss,
such latencies should be minimized as much as possible [32,86,87].

The sources of overall loop latency in the gating or tracking workflow with an
MR-Linac can generally be categorized according to the stages of the process: imag-
ing latency, image processing (e.g., contouring or target tracking algorithms), and
machine control (e.g., MLC leaf repositioning and beam triggering latency). Imaging
latency is defined as the delay between the occurrence of a physical change and its
representation in the reconstructed image [88]. This latency can be further broken
down into components associated with data acquisition, as well as the time required for
non-zero data transfer and reconstruction. According to the above-mentioned latency
experiments reported in the literature, MR imaging latency has been identified as the
largest contributor to the total end-to-end latency in real-time MRI-based adaptive
radiotherapy. Liu et al. [33] measured it as 194± 43 ms, with 69± 42 ms attributed to
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reconstruction and data transfer, and 125± 5 ms due to acquisition; Glitzner et al. [32]
concluded that MLC delays are negligible, as the latency and geometric tracking errors
induced by MR imaging exceed the MLC-related errors by several factors. They further
confirmed that optimizing the MRI acquisition process offers the greatest potential
for advancing real-time motion management in MRgRT. Additionally, with continued
advancements in reconstruction algorithms and computing capabilities, the relative
impact of data transfer and reconstruction—already minor contributors—can be further
diminished. Although techniques such as partial Fourier and undersampling have been
adopted to accelerate image acquisition [89], the latency contribution from this stage,
being the largest component, remains a central concern.

Imaging latency associated with the acquisition process can be viewed as a mani-
festation of motion-related imaging errors. Unlike static imaging, real-time MR imaging
employed for motion monitoring (cine-MRI in contemporary MR-Linacs) captures dy-
namic anatomical structures. Given that the acquisition time for a single cine-MR frame
is comparable to the timescale of physiological motion, the finally acquired k-space
incorporates signals of the target at varying positions. This manifests in the image
domain as motion-induced errors, which differ in origin from static imaging errors,
such as blurring from limited spatial resolution or artifacts due to undersampling.

Motion-related imaging errors in cine-MR frames can be approached from two
perspectives: image blurring and target positioning errors. The extent of motion-
induced image blurring or artifacts is generally discernible and can be readily assessed
by domain experts. In contrast, inaccuracies in target positioning reflect a lack of
real-time responsiveness in the imaging process, indicating that the apparent position
or geometry of the object derived from the image lags behind its actual position or
geometry at the end of acquisition, irrespective of image reconstruction. These errors
correspond to the contribution of imaging latency related to the acquisition process.
Compared to image blur, target positioning errors are more difficult to perceive or
detect, making them prone to being overlooked [90]. Previous motion correction
techniques for conventional MR systems [91–94] have primarily focused on mitigating
image blur for diagnostic purposes. However, target positioning errors are particularly
relevant in the context of MR-guidance for active motion management, where accurate
and up-to-date localization of organ position and geometry is crucial.

Hereinafter, the physical motion of objects occurring within a single cine-MR frame
acquisition is referred to as intra-frame motion in this work. Organ motion due to
respiration has been extensively measured [20]. Published results indicate that fast
anatomical variations within a single breathing cycle can be expected, particularly in a
deep breathing mode, where diaphragm motion amplitudes of up to 101 mm along the
superior-inferior (SI) direction have been observed [95]. Additionally, cardiac activity
has been found to substantially contribute to rapid positional changes of lung tumors,
mediastinal lymph nodes, or liver tumors [96–98]. Observations on lung tumor motion
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showed that the speed can reach up to 72.6 ± 22.5 mm/s [99]. Given the relatively
long time span of the acquired k-space data points, effective intra-frame motion can be
involved, leading to appreciable motion-related imaging errors. Moreover, to achieve
potential heart dose reduction [100], real-time motion monitoring of the heart is re-
quired, imposing higher demands on dynamic imaging performance owing to the rapid
anatomical deformation induced by cardiac activity.

1.4.2 Current solutions and mitigation strategies

To account for system latencies, motion prediction techniques [101–103] have been
developed to forecast future organ positions based on previously observed motion
states, with particular focus on respiratory motion. However, as stated in the AAPM
TG76 report, "There are no general patterns of respiratory behavior that can be as-
sumed for a particular patient prior to observation and treatment" [20]. The individual
characteristics and natural variability of respiration present intrinsic challenges for
motion prediction, especially in accurately capturing the turning points of the motion
amplitude curve. Additionally, recent studies have demonstrated that predicting 2D
geometries, such as tumor contours, is more challenging than predicting the 1D position
of tumor centroids [104]. As a result, mitigating residual geometric tracking errors in
imaging of large deformable targets remains a critical challenge.

Borman et al. [88] aimed to mitigate imaging latency associated with the acqui-
sition process by altering the phase-encoding order in Cartesian readouts. However,
the proposed effective high-low ordering scheme can introduce more significant eddy
current artifacts, necessitating additional compensation strategies. Moreover, in high-
low orderings, larger discrepancies in the higher frequency components (HFC) between
the obtained motion-corrupted image and the ground-truth final-position image can
arise, as these components are acquired earlier. This may still pose challenges to image
quality, since HFCs carry valuable semantic information that can be leveraged by certain
algorithms for contouring [105–107].

Radial trajectories are robust to a certain level of azimuthal undersampling, en-
abling sliding window reconstruction at nearly arbitrary frame rates. However, motion-
related imaging errors are independent of the frame rate and instead correlate with
the temporal span of spokes within the reconstruction window. Highly undersampled
image reconstruction [108,109] is a common technique for reducing imaging errors
in radial cine-MR, involving image restoration through approaches such as artificial
intelligence (AI) algorithms under the constraint of a narrower reconstruction window.
However, this technique is limited to a certain acceleration factor, as higher factors
demand more semantic reasoning about the input [110]. Borman et al. [88] applied
a spatial-temporal (k-t) filter in golden-angle sequences, retrospectively downscaling
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the lower-frequency components (LFC) of previously acquired spokes while preserving
HFCs. This approach reduced the imaging latency by approximately 50%, demonstrat-
ing room for further optimization.

1.5 Specific aims and thesis outline

Object motion-induced deterioration of image quality in radiography have been thor-
oughly studied and mathematically characterized using impulse responses, which are
subsequently represented by the modulation transfer function (MTF) formalism to
combine both spatial and temporal degradation of the imaging system [111,112]. For
example, uniform motion at a given velocity smears a point into a line, resulting in
a box-function impulse response, in which case the system’s spatial MTF needs to be
multiplied by a sinc function. However, MR imaging is essentially different, as the
raw signal is acquired in the Fourier domain. Therefore, dedicated efforts are required
to address this dynamic imaging behavior and to mitigate residual tracking errors
of MR-guidance, particularly in cases of fast breathing or for anatomical structures
affected by the heartbeat.

The primary aim of this thesis is to investigate motion-related errors in real-time
MR imaging and explore the feasibility of reducing these errors through deep learning-
based intra-frame motion compensation techniques. Unlike previous motion correction
methods, which primarily aim to restore motion-blurred images, the proposed com-
pensation techniques also focus on addressing target positioning errors to enhance the
real-time responsiveness of MRI. In contrast to motion prediction methods, the compen-
sation approach aims to directly extract and derive the implicit real-time position from
the given input, rather than forecasting based on prior knowledge. For radial sampling,
as opposed to high-undersampling techniques, the compensation methods are expected
to retain an adequate reconstruction window width, thereby preserving more semantic
information for high image fidelity, based on the hypothesis that earlier-acquired spokes
still contribute to the estimation. In line with these objectives, this thesis is structured
as follows:

Chapter 2 provides the basic physical and technical background of MRI, linear
accelerators, and the MR-Linac system, offering a general understanding of MR imaging
principles and MRgRT.

Chapter 3 presents the development and validation of a simulation framework for
motion-dependent MRI sampling, designed to support a fundamental understanding of
motion-related imaging errors. The simulation reveals that frequency-domain informa-
tion corresponding to each temporal position is spatially and temporally encoded within
the k-space of motion-corrupted images. Based on this insight, an inverse problem is
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formulated to recover the real-time final-position image, corresponding to the end of
the frame acquisition, directly from the motion-corrupted data.

Over recent years, deep-learning algorithms have played an increasingly important
role in MRI or MRgRT across various applications, including motion correction [93,94],
image segmentation [113,114], synthetic CT generation [115] and online treatment
planning [116]. Numerous studies have highlighted the transformative potential of
deep learning in these areas [117]. By learning a mapping function from the input space
to the output space, neural networks emerge as a prominent solution for addressing
the inverse problem central to this thesis.

A key determinant of the network’s success lies in the creation of a suitable training
dataset. Accordingly, Chapter 3 details the methodology for generating intra-frame
motion datasets based on digital phantoms, with the simulation procedure serving as
a generator for labeled training pairs. The process involves the development of 4D
MRI digital anthropomorphic phantoms, followed by the introduction of an intra-frame
motion model and a motion pattern perturbation scheme.

Given the distinct characteristics of Cartesian and radial k-space readout trajec-
tories, each sampling pattern requires a network architecture uniquely designed to
accommodate its specific needs. Chapter 4 and Chapter 5 conduct a proof-of-concept
study on reducing imaging errors through the implementation of deep learning-based
intra-frame motion compensation techniques, with a focus on Cartesian and radial
cine-MRI, respectively.

Chapter 4 begins by discussing the rationale for selecting a UNet architecture
tailored to Cartesian sampling. The network’s performance is subsequently evaluated
on both fully sampled and undersampled Cartesian datasets. Furthermore, to enhance
interpretability, saliency maps are analyzed in both the image and Fourier domains,
highlighting the regions in the motion-corrupted image or k-space that contribute most
significantly to the model’s inference.

In Chapter 5, a novel intra-frame motion compensation network, TransSin-UNet, is
introduced to address the challenges of radial k-space sampling without compromising
the reconstruction window width. The network operates in both the projection and
spatial domains, where long-range spatial-temporal dependencies among the sinogram
representations of the radial spokes are modeled by a transformer encoder subnetwork,
followed by a UNet subnetwork for pixel-level fine-tuning in the spatial domain. The
network is then trained and extensively evaluated across datasets characterized by
varying azimuthal radial profile increments.

The thesis is concluded by Chapter 6, where the main research findings are sum-
marized, and future research perspectives are outlined.
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Chapter 2

PHYSICAL AND TECHNICAL
BACKGROUND

2.1 Nuclear magnetic resonance

2.1.1 Spin angular momentum and magnetic moment

MRI is based on nuclear magnetic resonance (NMR). The magnetism of the nucleus
originates from its magnetic moment, which in turn arises from the spin angular
momentum of the nucleus.

Spin is the quantum mechanical property of elementary and composite particles
that is associated with their intrinsic angular momentum. The total nuclear angular
momentum J is quantized and can be written as:

J = ℏ
√
I(I + 1) (2.1)

where ℏ is the reduced Planck constant, given by ℏ = h/2π; I refers to the spin quantum
number, I = n/2, where n can be any non-negative integer. When the atomic mass
number A is odd, I takes half-integer values. For example, for 1H (proton), 13C, 15N,
19F, etc., I = 1/2; for 7Li, 9Be, 23Na, etc., I = 3/2. When the mass number A is even
and the atomic number Z is odd, I takes integer values. For example, for 2H, 14N, I = 1.
When both the mass number and atomic number are even, I = 0, as seen in 4He, 12C,
which do not have spin angular momentum.

The magnetic moment is directly related to the spin angular momentum vector as
follows:

µ = γJ (2.2)

The proportionality constant γ in Eq. 2.2 is called the gyromagnetic ratio and depends
on the particle or nucleus. For the proton, its value is found to be:

γ = 2.675× 108rad/s/T (2.3)
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While MRI can theoretically be performed with all nuclei with a non-zero spin,
proton NMR is mainly exploited in clinical routine, due to the high concentration of
hydrogen atoms in the human body (88 mol/L) [118], as well as the relatively large
gyromagnetic ratio, which provides a higher detectable signal.

2.1.2 Macroscopic magnetization

In the absence of an external magnetic field, spin orientations are randomly distributed.
However, when placed in a strong external magnetic field B0, oriented along the z-
direction, the spin experiences a torque. Constrained by the laws of quantum mechanics,
the magnetic moment cannot align exactly with the B0 direction, but instead maintains
a specific angle, subjecting it to a constant torque. This torque induces the magnetic
moment to precess counter-clockwise around the main field B0 with a constant angular
frequency, known as the Larmor frequency ω0, computed as:

ω0 = γB0 (2.4)

The angular momentum component along the z-axis, Jz, is quantized:

Jz = ℏIz = ℏm; m = −I,−I + 1, ..., I − 1, I (2.5)

Here, m is the magnetic quantum number, which can take on 2I + 1 possible values,
corresponding to 2I + 1 magnetic energy levels Em:

Em = −µ ·B0 = −µzB0 = −γℏIzB0 = −γℏmB0 (2.6)

This phenomenon is known as the Zeeman effect. Consequently, for a proton with
I = 1/2, there are only two possible states, defined by m = ±1/2. The lower-energy
state is almost aligned with the main field, referred to as spin-up or parallel. The other
higher-energy state, known as spin-down or anti-parallel, is aligned almost opposite to
the external field. The energy difference between these two states is calculated as:

∆E = γℏB0 (2.7)

In thermal equilibrium, the number of particles Pm in each state follows the
Boltzmann distribution:

Pm ∝ exp(−Em/kT ) (2.8)

where k is the Boltzmann constant, k = 1.380649× 10−23J/K; and T is the thermody-
namic temperature. Therefore, the net magnetization M0 in a given volume V sample
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containing N nuclear spins is given by:

M0 =
N

V
⟨µz⟩ =

N

V
· γℏ

I∑
m=−I

m exp
(
γB0mℏ

kT

)
I∑

m=−I

exp
(
γB0mℏ

kT

) [M0] = J T−1m−3 (2.9)

where ⟨µz⟩ is the expectation value of z-component of the magnetic moment. Since
γℏB0 ≪ kT at body temperature and clinical field strengths, it is appropriate to
perform a Taylor series expansion of the Boltzmann exponential function and apply

the first-order approximation. Note that
I∑

m=−I

m = 0,
I∑

m=−I

m2 = I(I + 1)(2I + 1)/3 and

I∑
m=−I

1 = 2I + 1. Substituting these expressions, Eq. 2.9 can thus be simplified as:

M0 =
N

V

γ2ℏ2I(I + 1)

3kT
B0 (2.10)

It can be found that the lower-energy state is slightly favored, causing the direction of
the net magnetization to align exactly in parallel with the main field B0.

For the proton, replacing N/V with the proton density ρ, the net magnetization
M0 becomes:

M0 =
ργ2ℏ2B0

4kT
(2.11)

2.1.3 Resonance transition

To measure a signal, a radio frequency (RF) pulse is applied to induce transitions
between the two states, tipping M0 to have a component in the x-y transverse plane.
For a transition to occur, the RF energy must match the difference between the two
energy states, ∆E = ℏω0. Therefore, the oscillation frequency of the RF pulse should
satisfy the resonance excitation condition, which means it must be equal to the Larmor
frequency, ω0. For an MR-Linac with a magnetic field strength of 0.35 T, the resonance
frequency, f = ω0/2π = 14.90 MHz, while for B0 = 1.5 T, f = 63.87 MHz. These
frequencies fall within the radio wave range and are far lower than the frequencies of
ionizing radiation.

The RF pulse is produced either linearly or circularly polarized and creates a fixed
magnetic field B1 along the x-axis in the ωrot rotating frame, where ωrot denotes the
frame’s rotation frequency. The temporal evolution of the magnetization M in the
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rotating frame is given by:(
dM

dt

)
rot

= γM×
((

B0 −
ωrot

γ

)
êz +B1êx

)
= γM×B1êx (2.12)

provided by ωrot = ω0. In this rotating frame, the magnetization M rotates about the
x-axis until the RF pulse is switched off; in the fixed laboratory frame, this corresponds
to a spiraling motion away from the z-axis.

The flip angle α, achieved at the end of the RF pulse with a duration tp, is given by:

α = γB1tp (2.13)

When α = 90◦, the RF pulse is referred to as a 90◦-pulse, which rotates the magnetiza-
tion into the transverse plane.

After the RF pulse application, the magnetization vector M precesses around the
z-axis with the Larmor frequency ω0, with a longitudinal component Mz =Mcosα and
a transverse component Mxy =Msinα. The transverse component induces a voltage in
the receiver coil. The signal amplitude decays exponentially to zero within only a few
milliseconds as the protons rapidly dephase with respect to each other. This signal is
known as the free induction decay (FID) signal (Section 2.3).

2.2 Relaxation

For MR imaging, it is essential to differentiate tissues, ensuring that identical tissues
produce the same signal values, while distinct tissues yield different values. This can
be achieved by exploiting tissue-specific parameters, including the proton density ρ, as
well as the longitudinal and transverse relaxation times, T1 and T2.

Having excited the protons, the magnetization begins to relax back to the equi-
librium position as soon as the RF pulse is switched off. The temporal evolution of
the magnetization during excitation and relaxation can be described by the Bloch
equations:

dM

dt
= γM×B = γ

MyBz −MzBy

MzBx −MxBz

MxBy −MyBx

 (2.14)
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Therefore, during relaxation, the variations of longitudinal and transverse components
can be written as:

dMz(t)

dt
=
M0 −Mz(t)

T1

dMxy(t)

dt
= −Mxy(t)

T2

(2.15)

The solution to Eq. 2.15 in the rotating frame is:

Mz(t) =M0 − (M0 −Mz(0)) · exp
(
− t

T1

)
Mxy(t) =Mxy(0) · exp

(
− t

T2

) (2.16)

Mxy and Mz correspond to different relaxation features. The recovery of the
magnetization along the z-axis is referred to as spin-lattice relaxation, or T1 recovery,
which results from the interaction of protons with the surrounding environment (the
lattice). In this process, the spin system loses excess energy from the RF pulse and
returns to the thermal equilibrium state. Let t = T1 and Mz(0) = 0 in the first
equation of Eq. 2.16, it can be found that T1 is the time required for the longitudinal
magnetization component to recover from 0 to 63% of its equilibrium value.

The exponential decay of magnetization in the transverse plane is referred to as
spin-spin relaxation, or T2 decay, and arises from the dephasing of spins after the RF
pulse. This dephasing occurs due to slight variations in the precession frequencies of
spins, which are induced by random interactions between spins that generate internal
field inhomogeneity. When two protons are in close proximity, the magnetic moment
of one proton either enhances or diminishes the local magnetic field experienced by
the other. There is no net energy loss of the spin system in this process. Let t = T2 in
the second equation of Eq. 2.16, it can be found that T2 is the time required for the
transverse magnetization component to decay to 37% of its initial value. In human
tissues, T2 is always shorter than T1.

In practical MR imaging, the transverse magnetization decays at a rate of 1/T∗
2,

which is significantly faster than 1/T2. In addition to internal field inhomogeneities,
external field inhomogeneities also contribute to dephasing. This effect is characterized
by a distinct relaxation time T′

2. Unlike T2 decay, T′
2 decay can be recovered by creating

an echo. The overall transverse relaxation time, T∗
2, is expressed in terms of T2 and T′

2:

1

T∗
2

=
1

T2

+
1

T′
2

(2.17)
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and Mxy(t) in Eq. 2.15 becomes:

Mxy(t) =Mxy(0) · exp
(
− t

T∗
2

)
(2.18)

The proton density and relaxation times can lead to variations in the transverse
magnetization across different tissues, even when their elemental composition is similar,
which explains the high soft tissue contrast of MRI.

2.3 Free induction decay and echo creation

Corresponding to the representation in the rotating frame described by Eq. 2.18, the
transverse magnetization in the fixed laboratory frame can be expressed in complex
form as:

Mxy(t) =Mxy(0) · exp
(
jω0t−

t

T∗
2

)
(2.19)

which generates a measurable time-dependent FID signal, S(t), in the receiver coil:

S(t) =

∫
Mxy(r, t) d

3r (2.20)

where r = (x, y, z) represents the position vector in three-dimensional space. The signal
exhibits a damped oscillatory behavior, characterized by the Larmor frequency ω0 and
an exponentially decreasing amplitude.

As mentioned earlier, spin-spin relaxation caused by external field inhomogeneities,
described by T′

2, is a reversible mechanism that can be compensated by generating an
echo. In MR imaging, there are two types of echoes: spin echo (SE) and gradient echo
(GE).

For SE, after the excitation RF pulse, a 180◦-pulse is applied at time TE/2, causing
the spins to rotate 180◦ about the x-axis and flip to the mirror position. After an
additional TE/2, the transverse components of the spins rephase again, which reverses
the T′

2 decay process. At this moment, the resulting echo peak is :

MSE =Mxy(0) · exp
(
−TE

T2

)
(2.21)

After reaching its peak, the echo undergoes further decay according to T∗
2, similar to

the FID signal, as expressed by:

Mecho(t) =

(
Mxy(0) · exp

(
−TE

T2

))
· exp

(
−t− TE

T∗
2

)
(2.22)
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In GE, a magnetic gradient field is applied immediately after the excitation RF
pulse, superimposed on the main field. This introduces spatial variations in the Larmor
frequency, causing the transverse magnetization to dephase more rapidly than the FID
signal. After a defined period, this dephasing is counteracted by applying an inverted
gradient field of equal strength but opposite polarity. At echo time TE, the spins rephase,
forming a gradient echo, with the echo peak given by:

MGE =Mxy(0) · exp
(
−TE
T∗

2

)
(2.23)

The MR imaging sequences (Section 2.6) commonly employed in clinical practice
are derived from the basic SE and GE pulse sequences.

2.4 Spatial Encoding

This section uses 2D Cartesian k-space sampling (Section 2.5), the most common and
conventional MRI signal acquisition method, as an example to introduce the principles
of MRI spatial encoding.

For MR imaging, it is essential to represent magnetization using gray-scale values as
a function of spatial coordinates, i.e., Mxy(x, y, z). The signal in Eq. 2.20 corresponds to
the integral of transverse magnetization over all excited regions within the volume. To
obtain the spatial distribution of Mxy and reconstruct an MR image, spatial encoding is
implemented by applying magnetic gradient fields that are superimposed onto the main
magnetic field B0. These gradient fields are oriented parallel to B0 and vary linearly in
strength along the x-, y-, and z-axis, with slopes of Gx, Gy, and Gz, respectively. Each
gradient enables a distinct form of spatial encoding: slice selection, phase encoding and
frequency encoding. All spatial encoding relies on the fact that the Larmor frequency is
proportional to the magnetic field strength (see Eq. 2.4).

2.4.1 Slice selection

The slice-selective gradient, such as Gz, confines the excited region to a slice of finite
thickness. In the presence of Gz, the Larmor frequency ω at position z is:

ω = γ (B0 +Gz · z) (2.24)

When an RF pulse with a bandwidth BW is applied during the presence of Gz, a specific
slice is excited with a thickness ∆z, given by:

∆z =
BW · 2π
γGz

(2.25)
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The location of the excited slice can be controlled by adjusting the center frequency of
the RF pulse or modifying the amplitude offset of Gz.

2.4.2 Phase and frequency encoding

After the slice selection, the transverse magnetization at each location in the x-y
plane is obtained by repeatedly modulating the integrated signal, introducing spatially
varying phases to the spins across different positions. This approach is inspired by the
two-dimensional discrete Fourier transform (DFT):

S(kx, ky) =
Nx−1∑
x=0

Ny−1∑
y=0

Mxy(x, y) · exp
[
−j
(
2π

Nx

kxx+
2π

Ny

kyy

)]
(2.26)

where kx and ky are the spatial frequencies along the x and y directions, respectively;
and 2π

Nx
kxx and 2π

Ny
kyy correspond to the phase shifts, which can be further expressed

as:
2π

Nx

kxx = φx(x) = γGxx∆tx

2π

Ny

kyy = φy(y) = γGyy∆ty

(2.27)

Thus, the variables kx and kycan be manipulated either by fixing Gx or Gy and varying
the respective gradient durations ∆tx or ∆ty, or by keeping ∆tx or ∆ty constant while
varyingGx orGy. The specific configuration depends on the assignment of the frequency
and phase encoding directions to the respective axes.

Assume a configuration where frequency encoding is applied along the x-axis
and phase encoding along the y-axis. Accordingly, along the y-axis, phase encoding
is performed by activating the gradient field Gy for a duration of ∆ty. During this
period, spins at different y-positions precess at slightly different Larmor frequencies.
Once the gradient field is switched off, the transverse magnetization vectors at different
y-positions return to the same frequency value but have accumulated distinct phase
shifts φy. Along the x-axis, frequency encoding is performed by activating the gradient
field Gx during the signal readout for a duration of ∆tx. Spins at different x-positions
precess at slightly different Larmor frequencies, resulting in transverse magnetization
vectors with position-dependent phase shifts φx.

To reconstruct an MRI image, signals corresponding to different kx and ky values
must be acquired. In this encoding configuration, multiple kx values can be sampled
within a single signal readout evolution by adjusting the sampling time to obtain
distinct ∆tx values. In contrast, different ky values are controlled by varying Gy, which
requires multiple signal readout iterations. Each iteration employs a unique Gy to
sample a specific ky value. Consequently, the temporal scale associated with the kx
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axis is negligible compared to that of ky. Given a repetition time TR, which defines the
duration of each signal readout iteration, the total MRI slice acquisition time Tacq is
determined by the number of pixels Np along the phase encoding direction:

Tacq = Np · TR (2.28)

2.5 k-space

The k-space matrix is the repository for discretized spatial frequency signals acquired
during the evolution and decay of the echo, which is equivalent to the Fourier space of
spatial frequencies. After shifting the direct current (DC) component to the center, the
frequency axes become symmetric about the center of k-space, spanning from −kmax to
+kmax.

The strength and direction of the magnetic field gradient can be rapidly modulated
over time, allowing for different possible trajectories to acquire the k-space, such as
Cartesian, spiral, and radial. Fig. 2.1 illustrates the Cartesian and radial sampling pat-
terns, which are commonly used in conventional 2D cine-MRI. In a Cartesian trajectory,
sampling points are arranged in a uniform grid along the Cartesian coordinate system,
with each readout iteration filling a horizontal line of k-space, corresponding to one
phase encoding step. In contrast, radial sampling distributes points along radial profiles,
known as spokes, that pass through the center of k-space. Upon completion of the
current readout iteration, the gradient field shifts the acquisition to the next Cartesian
line or radial spoke. Compared to Cartesian trajectories, radial sampling is less sensitive
to motion artifacts and offers greater robustness against a certain level of azimuthal
undersampling, thereby enhancing temporal resolution. Additionally, it enables sliding
window reconstruction at a nearly arbitrary frame rate. These properties make the ra-
dial readout trajectory a preferred choice for imaging dynamic physiological processes,
but it requires relatively more complex reconstruction techniques (see Section 2.7.1).

Since the spatial and frequency domains are related by the Fourier transform (see
Eq. 2.26), each data point of k-space represents the signal amplitude contributed by all
MR image voxels corresponding to that specific spatial frequency components. Fig. 2.2
illustrates an 11× 11 matrix that visualizes the image patterns associated with signals
at different k-space spatial frequency coordinates (kx, ky), where the real part of the
signal values is considered. It is evident that as the location moves from the center to
the periphery of k-space, the number of line pairs per unit distance increases along the
kx- and ky-axes.
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Figure 2.1: Illustration of (a) Cartesian and (b) radial k-space sampling trajectories.
Each line corresponds to a signal readout evolution, where dots indicate acquired
samples and arrows denote the sampling direction. In the Cartesian trajectory, each
readout iteration fills a horizontal line of k-space, whereas in the radial trajectory, it
fills a radial profile passing through the center, known as a spoke. Upon completion of
the current iteration, the gradient shifts the trajectory to the next line.

Figure 2.2: Image patterns (real part) associated with signals at different k-space
spatial-frequency coordinates. From the center to the periphery, the number of line
pairs per unit distance increases along the kx- and ky-axes.
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2.6 Imaging sequences

2.6 Imaging sequences

An MR imaging sequence is a prescribed arrangement of RF excitation pulses and
magnetic field gradient applications, designed to achieve spatial encoding and signal
readout for producing images with specific characteristics.

Fig. 2.3 presents a schematic of imaging sequences for 2D Cartesian and radial
acquisitions. During the application of the RF pulse, the slice selection gradient GSS

is activated, followed by a free precession period. For a Cartesian acquisition, during
this period, a ky-value is encoded by the phase-encoding gradient GPE. The transverse
magnetization is dephased and rephased by the read-out gradient GRO with opposite
polarities, leading to the formation of a gradient echo after the echo time TE. In
contrast, for a radial acquisition, gradient fields along the x and y directions, Gx and
Gy, are applied simultaneously, following:

Gx = GRO · cos θ
Gy = GRO · sin θ

(2.29)

where θ represents the angle between the current radial spoke and the x-axis. The
magnetization is dephased by a spoiler gradient before the pulse sequence is repeated
after the repetition time TR. In the Cartesian acquisition, this repetition occurs with
a different GPE for the next phase-encoding step, while in the radial acquisition, it
proceeds with a different θ value for the next spoke sampling.

Figure 2.3: Illustrative representation of imaging sequences. (a) Gradient echo se-
quence for Cartesian acquisition. (b) Imaging sequence for radial acquisition. RF: radio
frequency pulse. SS: slice selection. PE: phase-encoding. RO: read-out (frequency-
encoding). TE: echo time. TR: repetition time.
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The strength of the MRI signal depends on both sequence-specific parameters, such
as TR, TE, the flip angle α, the RF bandwidth, the gradient strengths, the inversion time
TI (used in inversion recovery sequences [119]), as well as tissue-specific parameters,
including the proton density ρ and T1 and T2 relaxation times. By designing the imaging
sequence and varying sequence-specific parameters, different k-space sampling schemes
and multiple MRI modalities with distinct tissue contrast can be achieved, enabling
a range of clinical applications, such as the acquisition of T1-weighted, T2-weighted,
or proton density weighted images, or the suppression of signals from specific tissues
using additional preparation pulses.

2.7 Image reconstruction and acceleration techniques

2.7.1 Image reconstruction

An MR image reflects the distribution of transverse magnetization Mxy and as indicated
by Eq. 2.26, image reconstruction for Cartesian sampling patterns can be performed
using a simple inverse Fourier transform (IFT) of the acquired k-space data, with its
discrete form given by:

Mxy(x, y) =
Nx−1∑
kx=0

Ny−1∑
ky=0

S(kx, ky) · exp
[
j

(
2π

Nx

kxx+
2π

Ny

kyy

)]
(2.30)

The fast Fourier transform (FFT) along with its inverse (IFFT) constitutes an ef-
ficient algorithm for computing the discrete Fourier transform and its inverse. By
recursively breaking down the DFT into smaller DFTs and exploiting symmetries in
the transform, the FFT significantly reduces the computational complexity from O(N2)

(which results from directly applying the DFT definition) to O(N logN), where N is the
number of data points, thereby minimizing redundant calculations.

For non-Cartesian sampling patterns, such as radial and spiral, reconstruction
methods based on inverse non-uniform fast Fourier transform (NUFFT) [120,121] are
required. The basic idea of NUFFT is to interpolate Cartesian samples from adjacent
non-uniformly acquired data points, as illustrated in Fig. 2.4. Gridding is a widely
adopted approach that first convolves the acquired data with a kernel and then resam-
ples it onto an oversampled uniform grid. Finer sampling in spatial frequency helps
shift the sampling replicas further outward, forming a transition band that mitigates
aliasing artifacts. The oversampling factor is typically chosen between 1.25 and 2 [122].
Among various kernel choices, the shift-invariant Kaiser-Bessel kernel is widely pre-
ferred in the MR community due to its effectiveness in minimizing aliasing errors [123].
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The apodization effect introduced by the gridding kernel can be corrected by dividing
the reconstructed data by the inverse transform of the kernel. Density correction is
necessary because the sample density typically varies in non-Cartesian acquisitions. The
density can be estimated based on analytical or numerical models, such as assigning
an area to each sample [122], which can then be used as the density correction factor
(DCF) to scale the sample value.

Figure 2.4: Illustration of the NUFFT reconstruction method. (a) Gridding kernel
convolution and resampling (subfigure adapted from [122]). (b) Flowchart of the
NUFFT process. "non-unif" denotes non-uniformly spaced samples, while "unif" denotes
uniformly spaced samples.

2.7.2 Image acceleration

Accelerating data acquisition has been a long-standing goal in MRI. A straightforward
approach is to collect fewer k-space samples than required. Nonetheless, k-space un-
dersampling violates the Nyquist criterion and results in reconstruction artifacts. Over
the past few decades, various techniques have been developed to reconstruct images of
acceptable quality from undersampled data by exploiting intrinsic redundancies in MR
images to recover the missing information [124].
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Most clinically employed MRI protocols rely on partial Fourier and parallel imaging
techniques for acceleration. The partial Fourier technique [125] takes advantage of
the conjugate symmetry in the Fourier domain for real-valued images, where only a
portion (down to 50% and typically 75%, referred to as the partial Fourier factor)
of k-space is acquired instead of collecting the entire k-space. The missing data are
then retrospectively inferred during the reconstruction. Parallel imaging approaches
utilize multiple receiver coils in a phased-array setup, which assist with the spatial
localization of the MR signal based on the known placement and local sensitivity of
the different elements in the coils. This additional spatial information can be exploited
to mathematically reconstruct the object of interest from undersampled k-space data.
Reconstruction methods for parallel MRI with acceleration are mainly classified into two
categories: image-domain-based and frequency-domain-based reconstruction methods.
An example of the former class is the sensitivity encoding (SENSE) [126] method,
which first reconstructs coil-specific images with IFFT and then unfolds aliased images
based on the spatial sensitivity maps of the coils. The latter categories includes methods
such as the generalized autocalibrating partially parallel acquisition (GRAPPA) [127],
which first recovers the missing data in k-space based on, for example, auto-calibration
signal (ACS) lines fitting, and then reconstructs the image using IFFT. By exploiting
redundancies in the image domain or in k-space, partial Fourier and parallel imaging
techniques typically achieve acceleration factors of 2–4× for most applications [124].

Compressed sensing (CS) [128,129] has emerged as another powerful accelera-
tion technique by leveraging the sparsity of MR images in a transform domain (e.g.,
wavelets). It enables higher acceleration factors and high fidelity image recovery from
sparsely undersampled k-space data. However, its reliance on iterative reconstruction
imposes substantial computational demands, restricting its applicability for real-time
imaging.

Beyond these methods, deep learning has demonstrated significant potential in
undersampled MRI reconstruction. In particular, data-driven neural networks learn pri-
ors from pre-constructed training pairs of undersampled data and their corresponding
fully sampled counterparts, which serve as ground truth. This is achieved by itera-
tively updating the model parameters using an optimizer to minimize a predefined loss
function that quantifies the discrepancy between the network output and the ground
truth. The network can operate in the spatial domain, where it takes undersampled
images with aliasing artifacts as input. In this case, architectures well-suited for image
feature extraction, such as convolutional neural networks (CNN), have been widely
explored [130]. Alternatively, the network can function in the Fourier domain by
directly filling the undersampled k-space, where architectures designed to learn the
inductive biases of frequency spectrum are actively being investigated [131].

Image acceleration involves a trade-off between image fidelity and acquisition time. In
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general, reducing the amount of available data increases uncertainty, thereby imposing
a fundamental limit on the acceleration factor. Consequently, despite the availability of
these acceleration techniques, the inherent nature of MRI imaging results in persistent
imaging latencies, which manifest as motion-related imaging errors. Chapter 4 will
present a case study where the proposed approach integrates undersampling-based
acceleration with simultaneous motion-related imaging error reduction.

2.8 Main technical components

2.8.1 MR scanner components

Fig. 2.5 shows a schematic representation of the main technical components of an MR
scanner. The static magnetic field B0 is generated by the MR magnet. A superconduct-
ing magnet is one type that establishes an electric current in a loop of superconducting
coils at temperatures approaching absolute zero (-273.16◦C, 0 K), typically cooled with
liquid helium at 4 K. The magnets are usually cylindrical in shape, with the patient
placed inside the bore. Magnetic field gradients, Gx, Gy and Gz, used for spatial
encoding along the three directions, are generated by gradient coils mounted inside
the bore of the magnet.

The RF transmit coil generates appropriately shaped pulses of current at the Lar-
mor frequency, producing an alternating B1 field. The weak MR signal resulting from
transverse magnetization is detected by receiver coils. There are two types of receiver
coil: volume and surface. Volume coils completely encompass the region of interest
and are often used as combined RF transmit/receive coils. Surface coils are specifically
designed for different body sites and are placed close to the surface of the patient.
These coils are generally receive-only due to their inhomogeneous reception field, and
their sensitivity is dependent on the shape and arrangement of the individual coil
elements.

A Faraday cage encloses MRI scanner room to minimize RF contamination. Outside
the Faraday cage, computer systems are housed in a separate control room, where
pulse sequence prescription, signal processing, and image reconstruction are performed.
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Figure 2.5: Schematic representation of the fundamental components of an MR scanner.

2.8.2 Linear accelerator components

Fig. 2.6 illustrates the main technical components of a representative medical linear
accelerator. The electron gun generates electrons through thermionic emission, where a
heated cathode provides sufficient energy for electrons to overcome the material’s work
function. The electrons are then directed into the circular waveguide to be accelerated
by the RF pulses to a speed v ≈ c, with c being the speed of light [132]. The RF waves
are produced by a magnetron with an electromagnetic field. The kinetic energy of the
electrons Ekin, is related to the voltage U applied in the magnetron, as follows:

Ekin = e · U (2.31)

where e is the elementary charge of an electron. After exiting the waveguide, the
electrons enter the flight tube, where the beam is bent and focused by a set of magnets
to hit the target. The high-energy electron beam strikes a small tungsten target and
emits photons via Bremsstrahlung and characteristic radiation. The resulting X-ray
beam has an energy range of 4 to 25 megavolts (MV).

The ionization chamber is integrated to monitor the amount of radiation that
passes through. Following beam shaping and size-limiting by the primary collimator,
the multi-leaf collimator, composed of tungsten leaves, further shapes the radiation
beam to conform to the tumor contour and enables the decomposition of the treatment
field into smaller subfields. The gantry rotates around the patient, with the isocenter
defined as the intersection of the gantry’s rotation axis and the central axis of the
radiation beam.
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Figure 2.6: Main technical components of a representative medical Linac from Elekta
[133]. Figure adapted from [134] with permission.

2.8.3 Integration of MRI and Linacs: the MR-Linac

The mutual interference between a strong magnetic field and the field-sensitive compo-
nents of the linear accelerator presents a major challenge in integrating an MRI system
with a Linac into a single treatment device.

The effects of a magnetic field on Linac operation can be summarized as fol-
lows [70]: a standard clinical Linac has a magnetic field tolerance of 1 G (0.0001 T),
whereas the MRI system operates at field strengths of up to 1.5 T, posing a significant
challenge to the functionality of field-sensitive components. The primary concern is
the performance of the magnetic encoders in the MLC, which control the positioning of
motor-driven leaves. Additionally, the magnetic field can induce deviations of electrons
within the waveguide, leading to beam current loss. Moreover, the Lorentz force on the
secondary electrons—generated through photon interactions with matter—can alter
their paths. Specifically, when the static magnetic field is parallel to the radiation beam,
this results in an electron focusing effect (EFE), whereas a perpendicular orientation
leads to an electron return effect (ERE). These phenomena can potentially impact dose
distribution in specific tissues.

Conversely, Linac components also impact the MRI operation [70]: The RF noise
and heterogeneity of the main magnetic field, caused by the proximity of MLC, can
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degrade image quality and cause geometric distortions. Additionally, the RF receiver
coil in the path of the beam can attenuate the intended dose while increasing skin dose
via secondary electrons. It can also induce electronic disequilibrium in the conductors
or electronics, resulting in imaging artifacts.

Addressing these challenges requires dedicated efforts, including active shielding,
reduction in field strength, implementation of field-compatible components, and in-
corporation of Lorentz forces effects in dose calculations. Existing MR-Linac systems
demonstrate that different design strategies can be adopted to achieve an integrated
MRgRT delivery system [135]. Fig. 2.7 illustrates a solution from Viewray MRIdian
MR-Linac, which employs a low-field MRI scanner at 0.35 T with a split superconduct-
ing double-donut magnet. This system is installed at LMU University Hospital, where
it is used for both clinical treatments and research. The circular radiation gantry is
positioned within the gap between the magnet halves, allowing the treatment beam to
be emitted perpendicular to B0. Six shielding compartments are mounted on the gantry
to protect the internal Linac components and MLC from the magnetic field, while also
providing RF shielding for MR imaging during the Linac operation. Both the MRI and
Linac share the same isocenter.

Figure 2.7: (a) Photograph of the ViewRay MRIdian MR-Linac system. (b) Schematic
drawing of the system depicting the main hardware components: superconducting
double-donut magnet, circular radiation gantry and patient couch. (c) Schematic
drawing of the radiation gantry with linac components and MLC. Images courtesy of
ViewRay Inc. Figure adapted from [136].

Beyond addressing the mutual interference between the MRI magnetic field and field-
sensitive Linac components, the most critical challenge in this complex MR-Linac system
is geometric errors arising from latency, with MR imaging latency identified as the
dominant contributor. This work focuses on mitigating these MR imaging errors during
real-time motion monitoring in MRgRT through deep learning-based approaches. In the
following chapters, the motion-dependent k-space sampling process is first simulated,
followed by the introduction of the dataset creation methods for machine learning
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(Chapter 3). Chapters 4 and 5 then present solutions tailored for Cartesian and radial
readout trajectories, respectively.
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Chapter 3

SIMULATION OF MOTION-RELATED
IMAGING ERRORS AND DIGITAL
PHANTOM-BASED DATASET CREATION

3.1 Simulation of motion-related imaging errors

As outlined in Chapter 2, the raw MR signal is sampled in the frequency domain, with
k-space being progressively filled during the acquisition process. Since the acquisition of
a single cine-MR frame occurs over a duration comparable to the physiological motion
timescale, the corresponding k-space becomes populated with signals originating from
multiple target positions. When transformed into the spatial domain, these temporally
mixed signals give rise to motion-related imaging errors, which are a critical concern in
the context of real-time motion monitoring during MRgRT.

To effectively mitigate such errors, an in-depth understanding of how the moving
target is captured, or how the intra-frame motion is encoded, during MRI acquisition—
specifically in the raw k-space signal and its subsequent translation into image space—is
essential. Therefore, the motion-dependent k-space sampling process is simulated in
this section to facilitate a fundamental understanding of this dynamic MR imaging
behavior and to elucidate the origin and characteristics of motion-related imaging errors.
A dedicated simulation platform has been developed and validated, further serving
as the foundation for generating datasets suitable for training deep learning-based
intra-frame compensation models, as detailed in the subsequent sections.

3.1.1 Development of the simulation platform

Fig. 3.1 schematically summarizes the motion-dependent sampling in the simulation
procedure. In the Amplitude/Time curve, the black dots indicate the start/end time of
acquiring a specific cine-MR frame and the corresponding positions. The dotted line
connecting these black dots represents the intra-frame motion trajectories of the target.
Assume that the frame acquisition time is divided into ns steps (or shots), with each
step (shot) corresponding to a segment of k-space that can be approximated as being
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acquired simultaneously, such as a spoke in the radial trajectory or a phase-encoding
line in the Cartesian trajectory (Section 2.5). The simulation procedure consists of
three main modules: determination of the temporal images, definition of the k-space
readout trajectory, and reconstruction of the motion-corrupted image.

Figure 3.1: A schematic diagram of the motion-dependent k-space acquisition simula-
tion procedure. This diagram takes Cartesian sampling as an example, with 5 temporal
segments (ns=5) for easier visualization. In actual applications, a significantly larger
number of shots is employed. This figure was originally published in [137].

Determination of the temporal images
Assume that the acquisition of a frame begins at time t1, with the target initially po-
sitioned at p1. During the acquisition period, the target transitions through various
intermediate positions, ultimately reaching its final position pns by the time the acquisi-
tion concludes at tns. The images corresponding to these time steps are referred to as
temporal images (I1, I2, . . . , Ins), capturing ground-truth discrete anatomical positions.

Intra-frame motion data can be represented in various forms: including translation
or rotation parameters for rigid motion, control point movements for free-form defor-
mation (FFD), or, more commonly, displacement vector fields (DVF) for image warping,
where the displacement of each pixel or voxel in the image is specified. Motion at each
time step is characterized individually, resulting in a series of parameters for the entire
intra-frame motion sequence. Starting from the image at the initial position (I1) or the
final position (In) and utilizing the intra-frame motion data, the temporal images of
the target throughout the acquisition period can be established or derived by image
spatial transformations.

Definition of the k-space readout trajectory
In alignment with the k-space readout patterns commonly used in clinical MR-Linac
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systems, this study considers both Cartesian and radial acquisitions.
For Cartesian acquisitions, the phase or frequency encoding direction is first speci-

fied according to the requirements. The user can then customize the k-space profile
ordering as needed along the phase-encoding axis. Fig. 3.2 presents several examples
of Cartesian phase-encoding ordering schemes with partial Fourier [138] acceleration:
linear, where encoding proceeds from bottom to top; reverse-linear, where encoding
proceeds from top to bottom; and high-low, where, based on the frequency order, higher
frequencies are acquired first, followed by lower frequencies.

Figure 3.2: Schematic diagram of exemplary Cartesian phase-encoding ordering
schemes with a partial Fourier factor of 80%. linear: encoding proceeds from bottom
to top; reverse-linear: encoding proceeds from top to bottom; and high-low: based on
the frequency order in the phase encoding direction, higher frequencies are read first,
followed by lower frequencies.

As illustrated in Fig. 3.3, in radial trajectories, all spokes pass through the origin,
with the first spoke forming an angle of γ with the horizontal axis. Subsequent
spokes are placed using a successive azimuthal increment of ψ. Following real-world
applications, three types of radial trajectories are simulated and investigated in this
study based on the value of ψ: linear, golden angle, and tiny golden angle.

Radial sampling with a linear profile ordering takes ψ = ψlinear = π/ns, covering
k-space uniformly only after acquiring the complete set of ns spokes. To achieve a
nearly uniform profile distribution in k-space for an arbitrary number of radial spokes,
golden angle trajectories were proposed [139], employing

ψ = ψgold = π/τ (3.1)

where τ =
(
1 +

√
5
)
/2 represents the golden ratio. However, the large azimuthal

profile increment required by this method can cause strong eddy current artifacts due
to rapid gradient switching [140]. To address this issue, a surrogate tiny golden angle
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profile ordering, defined by

ψ = ψN = π/(τ +N − 1) where N = 3, 4, . . . (3.2)

was introduced [141] and has found widespread use in real-time MR imaging [142].
In the simulation procedure, the readout trajectories for radial sampling are

generated by defining the coordinates of each uniformly spaced sampling point on each
spoke using γ and ψ:

u(s, r) =

(
2π(r − 1)

Npoint
− π

)
· cos (γ + (s− 1)ψ) ,

v(s, r) =

(
2π(r − 1)

Npoint
− π

)
· sin (γ + (s− 1)ψ) ,

for s = 1, 2, . . . , Nspoke and r = 1, 2, . . . , Npoint

(3.3)

where u(s, r) and v(s, r) represent the horizontal and vertical coordinates of the r-th
sampling point on the s-th spoke, respectively; Nspoke and Npoint denote the total number
of spokes and the number of points along each spoke, respectively.

Figure 3.3: Schematics of radial sampling trajectories. From left to right: linear, golden
angle, and tiny golden angle. γ denotes the initial spoke angle; ψ, ψgold, and ψN indicate
the azimuthal increments of the radial profiles for the respective trajectories.

Reconstruction of the motion-corrupted image
Depending on the k-space sampling trajectories, either an FFT for Cartesian readouts
or a NuFFT for radial readouts (see Section 2.7.1) is performed to obtain the complex-
valued k-space data (F1, F2, . . . , Fns) of each temporal image. Their corresponding
components are then sequentially incorporated into the k-space arrays of the simu-
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lated motion-corrupted image over time. Specifically, the first shot extracts the 1
ns

-th
components of the k-space from the initial-position image. Subsequent shots extract
the i

ns
-th components of the k-space corresponding to the i-th temporal image, up to

the final time step, where the last components are extracted from Fns. This process
can be achieved by designing a tailored set of sampling matrices (S1, S2, . . . , Sns)
based on the k-space readout trajectories with respect to the shot number, where MRI
acceleration techniques like partial Fourier or parallel imaging methods [127, 138]
should be considered. These sampling matrices have only two values, 0 and 1, with 1
indicating that the corresponding part of the matrix will be sampled. Consequently, the
complex-valued k-space of the motion-corrupted image Fmotion is formulated as:

Fmotion =
ns∑
j=1

Fj ◦ Sj =
ns∑
j=1

F2 (Ij) ◦ Sj (3.4)

where j denotes the shot number; ◦ is the Hadamard product (element-wise product)
operator; and F2 is the 2D Fourier transform operator (FFT for Cartesian and NUFFT
for radial, see Section 2.7). In accordance with the real-world conditions, the finally
acquired k-space Fmotion consists of signals from the target at different positions.

Finally, the motion-corrupted image Imotion is reconstructed as a complex-valued
image using relevant image reconstruction techniques, such as inverse FFT/NuFFT,
GRAPPA, and others, as detailed in Section 2.7:

Imotion = F−1
2 (Fmotion) = F−1

2

(
ns∑
j=1

F2 (Ij) ◦ Sj

)
(3.5)

where F−1
2 denotes the 2D inverse Fourier transform operator.

Differences between Imotion and the ground-truth final-position image Ins reflect
the intra-frame motion deterioration effects, that is, the motion-related imaging errors.

3.1.2 Validation of the simulation platform

3.1.2.1 Validation based on theoretical analysis

The motion-dependent k-space sampling simulation procedure was first validated
through a theoretical analysis based on the translational and rotational properties
of the Fourier transform, with the corresponding proof provided in the Appendix A.
The translational property indicates that shifting an image f(x, y) by ∆x in the x-
direction and by ∆y in the y-direction induces a linear phase shift in the corresponding
Fourier domain, while the magnitude of the Fourier transform remains unchanged. Let
F̂ (u, v) and F (u, v) denote the Fourier transforms of the translated and original images,
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respectively. This relationship can be expressed mathematically as:

F̂ (u, v) = F (u, v) exp [−j2π(u∆x+ v∆y)] (3.6)

Furthermore, the rotational property asserts that a rotation in the spatial domain
corresponds to a rotation by the same angle in the frequency domain.

Leveraging these properties of the Fourier transform, a digital cross phantom of size
140× 140 pixels was constructed for validation purposes and mathematically defined
as:

f(i, j) = χ[35,105)(i) · δj,70 + δi,70 · χ[35,105)(j)− δi,70 · δj,70 ;

i, j ∈ {0, 1, 2, . . . , 140} (3.7)

where χ[m,n)(x) is the indicator function for the interval [m,n), and δx,a is the Kronecker
delta function, defined as:

χ[m,n)(x) =

{
1 if m ≤ x < n,

0 otherwise.
; δx,a =

{
1 if x = a,

0 otherwise.
(3.8)

The image and k-space of the cross phantom are presented in the "Initial-position"
column of Fig. 3.4. Notably, the magnitude of k-space is non-zero throughout, display-
ing a high-contrast horizontal and vertical line that are orthogonal to the origin.

In Fig. 3.4, the cross phantom was rotated 45◦ counterclockwise from its initial
position during frame acquisition. The simulated motion-dependent sampling process
was divided into ns = 10 shots, with each shot rotated by 5◦. A comparison between
the final-position image and the initial-position image reveals that the k-space was also
rotated 45◦ counterclockwise. Additionally, it is observed that the motion-corrupted
k-space sequentially captured segments of the Fourier data from the temporal images,
where each image was sequentially rotated by 5◦ counterclockwise relative to the shot
number, in both the spatial and frequency domains. This finding is consistent with
theoretical expectations.

The simulation procedure was further validated by examining the imaging behavior
of the cross phantom’s translation, where the relationship between F̂ (u, v) and F (u, v),
as described in Eq. 3.6, was verified. Since the phase of the complex number lies within
the interval (−π, π] and to avoid phase wrapping, rather than directly comparing the
phase or magnitude of the two terms, a transfer matrix M(u, v) was defined for the
cross phantom as:

M(u, v) =
F̂ (u, v)

F (u, v)
(3.9)

where F (u, v) was substituted with the complex-valued k-space data of the initial-
position phantom image, which was non-zero throughout; and F̂ (u, v) was replaced
by the corresponding k-space data of either the final-position image or the simulated
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motion-corrupted image. The magnitude and phase of M(u, v) were then computed as
the modulation transfer matrix and phase transfer matrix, respectively.

Figure 3.4: Rotation experiment of the cross phantom. The phantom has been rotated
45◦ counterclockwise from its initial position during frame acquisition, with ns = 10.
The figure displays images at the initial and final positions, as well as the simulated
motion-corrupted image, in both the spatial and frequency domains; the phase encoding
direction is vertical (up-down).

Fig. 3.5 presents the results of the translation experiments. To minimize potential
interpolation errors, each shot was configured to move the phantom by exactly one
pixel. In the first two experiments, the phantom was shifted 4 pixels downward and
4 pixels to the right from its initial position, respectively, with the simulated motion-
dependent sampling process divided into ns = 5 shots. In the third experiment, the
phantom was moved 9 pixels both downward and to the right simultaneously, with
ns = 10.

The results indicate that, aside from computational precision limits, the values
of the modulation transfer matrix for both the final-position image and the motion-
corrupted image were equal to 1 across all experiments. Moreover, the phase transfer
matrix derived from the final-position image exhibited a periodic pattern in the direction
of movement, with the number of phase cycles matching the displacement magnitude.
Specifically, Experiment 1 displayed 4 cycles of (−π, π] in the vertical direction, and
Experiment 2 showed 4 cycles in the horizontal direction; whereas in Experiment 3, the
pattern revealed 9 cycles in both the vertical and horizontal directions simultaneously.
Nevertheless, the frequency-domain information of the temporal images had been
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spatially and temporally encoded in the motion-corrupted k-space. The accumulation of
displacement over the acquisition time steps, reflected by the progressively increasing
number of cycles along the shift direction within the phase transfer matrix, is clearly
represented in the motion-corrupted image. This observation aligns with what was
theoretically anticipated based on Eq. A.4.

Figure 3.5: Translation experiments of the cross phantom. From left to right: Ex-
periment 1, the phantom is shifted 4 pixels downward with ns = 5; Experiment 2,
the phantom is shifted 4 pixels to the right with ns = 5; Experiment 3, the phantom
is shifted 9 pixels downward and to the right simultaneously, with ns = 10. The
modulation and phase transfer matrices derived from both the final-position image
and the motion-corrupted image are displayed; the phase encoding direction is vertical
(up-down).

3.1.2.2 Validation against literature: Imaging latency experiments

In the work by Borman and colleagues [88], the target positioning errors were character-
ized as imaging latency, further identified as the largest contributor to the total system
latency in MRgRT [32,33]. They measured MR imaging latency through simulations
and experiments using an MR-compatible motion platform (ModusQA,CA) in a 1.5T
MR-linac and a 3T MR scanner. By synchronizing machine-acquired images with the the
physical motion platform, and fitting the sinusoidal model, x(t) = A0 sin (2πf [t+ t0]),
to both the reference and MR-derived position traces, they estimated the latency for
Cartesian and radial acquisitions with various k-space profile orderings. In this section,
the proposed simulation procedure is validated against the findings of these imaging
latency experiments reported in the literature [88], ensuring that it is closely aligned
with real-world conditions.

Following Borman and colleagues’ work, where the simulated imaging latency was
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determined by tracking the movement of an analytical square during k-space filling,
a digital square phantom was constructed, as shown in Fig. 3.6 (a). Figs. 3.6 (b)
and (c) illustrate examples of motion-dependent Cartesian acquisition with a vertical
(up-down) phase encoding direction, where the phantom moved downward and to
the right, respectively. Compared to motion in a perpendicular direction, the motion-
corrupted image appeared slightly more blurred when the motion was parallel to the
phase encoding direction. However, target positioning errors were more pronounced,
emerging as the dominant factor in imaging errors. The center of mass (COM) of
the target was computed from the motion-corrupted images as the measured position,
while the reference position was determined from the actual target COM at the end of
the frame acquisition, corresponding to the final shot. By analyzing the target motion
speed and computing the distance between the measured and reference positions, the
imaging latency was estimated.

Figure 3.6: Square phantom for imaging latency experiments. (a) Phantom at the
initial position. Examples of simulated motion-corrupted images in the Cartesian
experiments are shown for the phantom moving downward (b) and to the right (c).
The red contours indicate the actual target positions at the end of the frame acquisition
(corresponding to the last shot); the phase encoding direction is vertical (up-down).

The Cartesian experiments were carried out with a range of partial Fourier factors,
defined as the ratio of sampled data to the full matrix, across the three phase-encoding
ordering schemes depicted in Fig. 3.2. The k-space phase encoding direction was
orthogonal to the primary direction of target motion. Fig. 3.7 compares the results
obtained from the literature [88] with those generated by the motion-dependent sam-
pling simulator developed in this study, revealing close agreement. For a given partial
Fourier factor and k-space profile ordering scheme, the ratio of imaging latency to frame
acquisition time remained relatively consistent across all experiments. Prior studies
have shown that, for Cartesian readout trajectories, the object position is primarily
determined by the moment at which the central k-space profile is acquired [143]. The
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simulation results reproduced this behavior, demonstrating that imaging latency can be
approximated as the time difference between the shot of acquiring the central k-space
profile and the last shot. Specifically, the linear phase-encoding ordering yields similar
imaging latency regardless of the partial Fourier factor; however, with the reverse linear,
the ratio of imaging latency to frame acquisition time remains unchanged as the partial
Fourier factor increases, thus showing a latency proportional to the acquisition time;
furthermore, the high-low scheme leads to the minimum imaging latency since the
central k-space profile is always the last to be acquired.

Figure 3.7: Results of Cartesian imaging latency experiments. (a) from Borman et
al. [88], featuring the 1.5T MR-Linac (left) and 3T MR scanner (right); (b) from the
simulation procedure developed in this study.

The radial experiments were conducted using linear and golden angle profile
orderings (illustrated in Fig. 3.3), with the corresponding results presented in Fig. 3.8
and Fig. 3.9. To vary the sampling fractions, the number of radial spokes was adjusted
proportionally. The oversampled central k-space of radial sampling, along with the
nearly uniform k-space coverage provided by the golden angle profile ordering, allows
for the application of various k-space data weighting schemes [144,145]. To reduce
the radial imaging latency, Borman et al. implemented a spatial-temporal (k-t) filter
that attenuated the low-frequency components of previously acquired spokes while
preserving the high-frequency components [88]. The k-t filter was defined as a function
of the spoke index s and the readout point k, and was mathematically expressed as:

f(k, s) = [1− S(s)]k2 + S(s), where S(s) =
1

1 + e−α(s−ns/2)
(3.10)

Here, ns was the total number of spokes, and α was a parameter determined via hy-
perparameter search. The filter employed a sigmoid function to distinguish between
earlier and later sampling of the spokes, while a quadratic function applied high-pass
weighting to the readout points along each spoke. For comparison, this study also
conducted experiments using this same filter.
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Figure 3.8: Results of radial imaging latency experiments with linear profile orderings.
(a) from Borman et al. [88], featuring the 1.5T MR-Linac (left) and 3T MR scanner
(right); (b) from the simulation procedure developed in this study.

Consistent with the Cartesian experiments, the radial imaging latency estimated
using the proposed procedure closely aligns with the findings reported in the literature.
The latency was approximately 50% of the total frame acquisition time, indicating that
each radial spoke plays an equal role in determining the target position within the
image. Fig. 3.9 demonstrates that retrospectively weighting the radial k-space data
with a k-t filter for golden angle sequences, as defined by Eq. 3.10, can effectively halve
the imaging latency.

Figure 3.9: Results of radial imaging latency experiments with golden angle profile
orderings, with (red) and without (blue) k-t filter. (a) Adapted from Borman et al. [88],
measured on a 3T MR system; (b) Obtained from the simulation procedure developed
in this study.

The results of both Cartesian and radial experiments validated the accuracy of the
motion-related imaging error simulation procedure developed in this study.
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3.2 Formulation of the inverse problem and deep
learning solution for intra-frame motion
compensation

The observation of motion-related imaging errors underscores the practical significance
of compensating for intra-frame motion, particularly in cases involving rapid anatomical
variations.

The motion-dependent k-space acquisition process, together with the simulated
motion-corrupted images and k-space representation in Fig. 3.4 and Fig. 3.5, demon-
strates that part of the frequency domain information from each temporal image is
spatially and temporally encoded within the k-space of the obtained motion-corrupted
image. The encoding is uniquely dictated by the predefined k-space readout trajectory.
As a result, an inverse problem can be formulated to recover the implicit real-time
final-position image (i.e., the last-shot temporal image) from the motion-corrupted
image or its k-space, thereby compensating for the intra-frame motion:

Ins = TI (Imotion)

Fns = TF (Fmotion)
(3.11)

where TI and TF denote the transformations that aim to derive the final-position image
and k-space, respectively, from their motion-corrupted counterparts. Owing to the
information loss and non-uniqueness induced by intra-frame motion-dependent k-space
acquisition, the problem is inherently ill-posed. To obtain a stable and reliable solution,
appropriate regularization terms or learned priors should be incorporated.

A neural network, by learning a mapping function between the input and output
spaces, provides a compelling data-driven solution to address the inverse problem.
In particular, supervised learning is widely adopted for such tasks, where the net-
work is trained to minimize the discrepancy between predicted and reference outputs.
Accordingly, the optimization problem associated with Eq. 3.11 is given by:

minθI

∑
i

L
(
NI(I

(i)
motion; θI), I

(i)
ns

)
minθF

∑
i

L
(
NF (F

(i)
motion; θF ),F

(i)
ns

) (3.12)

where L denotes the loss function (e.g., ℓ1 or ℓ2 norm). NI and NF denote the neural
networks that approximate the transformations TI and TF in Eq. 3.11, respectively.
θI and θF represent the trainable weights of the networks, and i indexes the training
samples.

Through deep learning, the network can be trained to extract relevant information
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from the later-acquired portions of motion-corrupted data and leverage this informa-
tion to correct earlier acquired components, thereby aligning the reconstructed image
with the target’s final-position reference. Given the unique characteristics of Cartesian
and radial k-space readout trajectories, the network architecture must be specifically
tailored to accommodate each sampling pattern. Moreover, constructing a suitable
training dataset is crucial to ensure the network’s effectiveness.

3.3 Motivation for creating datasets using simulated
phantoms

To enable supervised data-driven learning, the creation of labeled datasets is essential.
In this study, this involves pairing each motion-corrupted image with its corresponding
ground-truth final-position image for the moving target.

However, in clinical practice, cine-MR frames are often already contaminated by
the intra-frame motion of the target, leading to errors in target positioning and shape
representation. Determining the ground truth for motion-related imaging error reduc-
tion in the clinic is more challenging compared to other AI application scenarios in
MRgRT, such as image segmentation, where training pairs consist of clinically acquired
images as inputs and ground-truth contours, generated and approved by radiation
oncologists, as outputs [114]. This increased difficulty arises because imaging errors
are often harder for domain experts to detect than segmentation errors [90]. A similar
setup to synchronize the machine-acquired images with the physical motion platform
may be required, as implemented in Borman et al.’s work [88]. Nonetheless, typical
MR motion phantoms [146] are often overly simplistic in geometry, and are restricted
to the rigid motion of small targets, which is inadequate for building comprehensive
training datasets. More suitable alternatives include anthropomorphic phantoms or
relatively complex phantoms, such as the porcine lung phantom [147].

While the physical MRI-compatible anthropomorphic moving phantom incurs
significant costs in both time and financial investment, and the complexity of clinical ex-
periments demands considerable and dedicated efforts, digital phantoms have emerged
as a practical solution to address the lack of in vivo ground truth [148,149]. This is
supported by the following considerations:

Firstly, the signal acquisition simulator can be designed to closely replicate real
machine conditions. As demonstrated in the previous section (Section 3.1.2.2), the
imaging latency results obtained from the simulation procedure developed in this study
show negligible differences compared to those reported by Borman et al. [88] in clinical
experiments conducted on the 1.5T MR-Linac and 3T MR scanner.

Secondly, compared to clinical experimental data, simulated data offer precise
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final-position images and target segmentation for ground truth and evaluation, remain-
ing unaffected by other sources of imaging uncertainty.

Thirdly, sufficient spatial resolution is a prerequisite for studying intra-frame mo-
tion. Digital phantoms overcome the spatial resolution limitations typically encountered
in clinical cine-MR images, which may be insufficient for investigating positioning accu-
racy. They also enable complex-valued image reconstruction with various dedicated
k-space readout trajectories and noise models, facilitating exploratory research.

Finally, as indicated in the literature, respiratory motion exhibits patient-specific
characteristics, making it unpredictable, irregular, and subject to temporal variation.
Variations influenced by tumor location and pathology result in unique patterns of
displacement, direction, and motion phase. This study focuses particularly on rapid and
uncommon anatomical changes. In real-world scenarios, most cases involve small or
moderate motion; nevertheless, although rapidly moving targets are less common, they
require compensation more urgently. Simulated data facilitates the creation of deep
breathing motion scenarios and enables the customization of arbitrary motion patterns,
both of which are highly relevant and central to the study of intra-frame motion com-
pensation. Additionally, extreme motion scenarios, which are uncommon or unlikely in
real-life conditions, can be incorporated to introduce a significant deviation between
the network’s input and output, forcing the model to focus on dynamic mechanisms
and avoid potential extrapolation errors related to motion amplitude.

Therefore, to conduct a proof-of-concept study on the deep learning-based intra-
frame motion compensation technique and to demonstrate its feasibility and real
potential in reducing cine-MR imaging errors, simulated data will initially be utilized
for dataset creation, facilitating some principle results and evidence.

3.4 Digital phantom-based dataset creation

High-quality datasets play a critical role in the successful application of deep learning-
based techniques. This section outlines the process of creating labeled datasets specifi-
cally for deep learning-based intra-frame motion compensation.

The primary consideration when establishing the database is the development
and integration of various types of motion data. Fig. 3.10 illustrates the two-scale
discretization of the motion trajectory throughout this work, capturing anatomical
variations at both coarse and fine levels of granularity. This coarse-to-fine strategy
underpins the two main steps in the dataset creation process: (i) the generation of 4D
MRI digital anthropomorphic phantoms to represent key anatomical positions during
breathing, and (ii) the synthesis of intra-frame motion data for determining temporal
images, as described in Section 3.1.
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Figure 3.10: Coarse-to-fine grid scale representation of patient-specific motion data.
The upper panel shows a coarse temporal grid (red) sampling key respiratory positions
at time points T1, T2, ..., Tnf , aligned with the overall breathing motion curve (gray
dotted line). Superimposed is a fine temporal grid (blue ticks) that densely samples
within each coarse interval. The lower panel zooms in on one such interval [Ti, Ti+1]
illustrating the intra-frame motion curve (blue dotted line) sampled by the fine grid [t1,
t2, ..., tns].

In the first step (corresponding to Section 3.4.1), time-resolved volumetric MRI
data are created, capturing key anatomical positions of human organs throughout
the respiratory cycle. The breathing motion curve is discretized into nf phases, each
corresponding to one of the nf frames in the sequence on the coarse grid [T1, T2, ...,
Tnf].

In the second step (corresponding to Section 3.4.2), the intra-frame motion trajec-
tory is depicted on a finer temporal grid, which subdivides the time intervals between
consecutive coarse grid points into ns finer steps ([t1, t2, ..., tns]), corresponding to
the ns temporal images. An intra-frame motion model, coupled with a motion pattern
perturbation scheme, is introduced to enable a comprehensive representation of the
real-world complexity, thoroughly exploring the potential anatomical variations during
the frame acquisition period.

With the frames selected from the time-resolved volumetric MRI and the intra-
frame motion data design method, it is possible to customize arbitrary synthetic yet
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realistic breathing motion curve, including a dedicated intra-frame motion trajectory.
Subsequently, the simulation procedure introduced in Section 3.1 acts as the dataset
generator, producing paired motion-corrupted images and ground-truth final-position
images as needed.

3.4.1 4D MRI digital anthropomorphic phantom generation

3.4.1.1 Workflow

The 4D extended cardiac-torso (XCAT) phantom was developed to simulate realistic,
highly detailed whole-body human anatomies for use in medical imaging research, en-
compassing thousands of anatomical structures. It incorporates parameterized models
for both cardiac and respiratory motions, and provides users with significant flexibility
to customize anatomical and motion variations [150]. In this section, the MRI version
of the extended 4D XCAT phantom, referred to as the 4D MRI digital anthropomorphic
phantom, is generated. The step-by-step workflow for this process is outlined in Fig.
3.11.

Figure 3.11: Workflow of 4D MRI digital anthropomorphic phantom generation. The
phantom was schematically binned into 5 phases for each breathing cycle, but in
the actual application, more breathing phases were used. This figure was originally
published in [137].
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Patient at initial position (3D CT) The workflow begins with a static representa-
tion of the virtual patient at the starting position of the breathing cycle, providing a
baseline 3D CT volume of the anatomical structures. The complex shapes of real human
organs are realistically modeled by setting detailed anatomical parameters in XCAT.

Spherical tumor at initial position (3D CT) Alongside the static virtual patient, a
spherical tumor is positioned within a 3D CT volume, aligned with its initial position in
the breathing cycle. The physical coordinates of the corresponding voxels for both the
patient and tumor CTs are matched to ensure spatial consistency between the tumor
and surrounding anatomy. This spherical tumor serves for localizing and propagating
the centroid of a realistic tumor during motion, with the centroid—determined from its
simplified geometric shape—acting as the reference for tumor motion tracking.

Motion Curve Design This step corresponds to defining motion on a coarse grid,
as described in Fig. 3.10. In XCAT, respiratory motion is governed by two time-resolved
curves: one indicating the variation in diaphragm height and the other describing the
degree of chest expansion. This study defines these two curves by applying amplitude
amplification coefficients (AAC) to a patient-specific respiratory motion waveform.
Specifically, several types of motion waveforms are designed with amplitudes ranging
from −10 to 0 mm (with negative values representing relative positions along the
SI axis), indexed by frame number, to mimic both regular and irregular respiratory
trajectories throughout the breathing cycle. Different AACs are then assigned to scale
the waveform, characterizing the superior-inferior (SI) diaphragm motion and anterior-
posterior (AP) chest-wall expansion. Additionally, tumor motions are categorized as
either moving in sync with the surrounding lung tissues, or being guided by user-defined
motion curves based on the waveform.

The beating heart motion in XCAT is defined by establishing parameters for the
heart period, the timing of the cardiac cycle, and left ventricle volume at key phases:
end-diastole, end-systole, the beginning of the quiet phase, the end of the quiet phase,
and during reduced filling. The interaction between the cardiac and respiration motions
is also accounted for [150]. By adjusting the translation or rotation parameters for
heart respiratory motion, the extent of heart movements in specific directions during
breathing can be tuned.

Patient with Realistic Tumor (4D CT) The motion curves are then applied to
both the patient’s anatomy and the spherical tumor, generating Patient (4D CT) and
Spherical Tumor (4D CT), respectively. Realistic tumors are initially segmented from
treatment planning 4D CT scans of non-small cell lung cancer patients, relying on
the exhale phase [151]. By aligning the centroid of a static 3D realistic tumor with
the centroid positions extracted from the 4D CT of the spherical tumor, a 4D CT of
the realistic moving tumor (Realistic Tumor (4D CT)) is obtained and subsequently
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integrated into the anatomical image (Patient with Realistic Tumor (4D CT)).

4D MRI Once the 4D CT phantom has been established, the anatomical data from
the 4D CT is converted into 4D MRI data. This conversion is carried out by mapping
the attenuation coefficient to the corresponding MRI signals of the same tissues. bSSFP
pulse sequences, such as true fast imaging with steady-state precession (TrueFISP),
which are typically performed for high-speed imaging, are of particular interest in this
study for MRI signal simulation. The signal intensity in bSSFP (SbSSFP), with the RF
pulses alternated by 180◦, is generally believed to be expressed as [89,152]:

SbSSFP ∝ ρ sinα
1− e−TR/T1

1− (e−TR/T1 − e−TR/T2) cosα− (e−TR/T1) (e−TR/T2)
e−TE/T2 (3.13)

where α is the flip angle; T1, T2, and ρ are tissue-specific values for longitudinal
relaxation, transverse relaxation, and proton density, respectively; To maintain signal
stability and reduce the sensitivity of the sequence to magnetic field inhomogeneities, a
very short TR interval (a few milliseconds) is used for bSSFP [153]. Therefore, TR ≪
T1 and TR ≪ T2, TR/T1 and TR/T2 approach 0. By evaluating the limit according to
L’Hôpital’s rule, Eq. 3.13 can be simplified as:

SbSSFP ∝ ρ sinα
1

1 + cosα + (1− cosα)(T1/T2)
e−TE/T2 (3.14)

Tissue-specific parameters are determined following the reported values in the
literature [89,149,151,154], as summarized in Table 3.1.This study considers α = 60◦

and TE = 1.27ms to match the acquisition parameters typically employed in the Viewray
MRIdian [136] at LMU University Hospital. By converting the attenuation coefficient
values in the 4D CT to the bSSFP signals for each tissue based on the corresponding T1,
T2, and ρ maps, ideal noiseless 4D MRI phantoms are generated.

4D MRI with Noise To create more realistic MRI images, inherent noise present
in real-world MRI acquisitions is simulated by adding independent and identically
distributed (i.i.d.) complex Gaussian noise into the k-space F(kx, ky) of the noiseless
4D MRI, processed slice by slice. This results in additive Rician-distributed noise in the
magnitude of the image domain:

Ĩ = F−1
2 (F (kx, ky) + δRe + jδIm) ; δRe, δIm ∼ N

(
0, σ2

)
(3.15)

where Ĩ denotes the noisy MR slices; F−1
2 represents the inverse 2D Fourier transform

operator; and σ is the standard deviation of the Gaussian distribution, which can be
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derived from the predefined signal-to-noise ratio (SNR) using:

σ =
∥F (kx, ky)∥2√

M
× 10−

SNR
20

√
2

(3.16)

where M is the total number of elements of the k-space matrix.
The simulated time-resolved volumetric MRI phantoms effectively capture key

anatomical positions throughout the breathing cycle, as represented in the coarse
grid defined previously (Fig. 3.10). By altering the order of the frames in the se-
quences, it becomes possible to customize arbitrary complex breathing motion patterns.
Therefore, 2D+t cine MR sequences can be obtained by extracting specific slices from
these phantoms, enabling further investigation into the intra-frame motion of the target.

Table 3.1: Tissue-specific T1, T2, and ρ values used in calculating the bSSFP signal
intensity. The values for ρ are reported in arbitrary units, relative to water. This table
was originally published as supplementary material in [137].

Background Air lung Adipose Water Red Bowel Pancreas Muscle Kidney
/Bowel marrow /Lesion

T1 (ms) 0 0 376 376 276 122 909 825 921
T2 (ms) 0 0 30 30 13 8 28 28 40
ρ (a.u.) 0.00 0.00 1.00 1.00 0.32 0.09 0.85 2.39 1.48

Heart Liver Spleen Blood Thyroid Cartilage
Spine
bone

Skull
Rib

bone

T1 (ms) 1032 506 1466 1500 376 588 753 753 753
T2 (ms) 20 30 52 20 30 16 36 36 36
ρ (a.u.) 1.01 1.51 1.07 9.56 1.00 0.82 0.78 0.78 0.78

3.4.1.2 Basic information and motion data assignment for the simulated patients

According to the workflow outlined in the previous section (Section 3.4.1.1), a total
of 25 4D MRI digital phantoms from lung cancer patients were generated, comprising
11 female, 11 male, and 3 adolescent subjects. Ten types of motion waveforms were
designed using the amplitude-versus-frame-number curves, as shown in Fig. 3.12. In
healthy adults at rest, the typical respiratory rate ranges from 12 to 15 breaths per
minute, regulated by the respiratory center—typically involving an inhalation phase
lasting approximately two seconds and an exhalation phase lasting around three seconds
[155]. Considering the frame rate of cine-MR in currently commercially available MR-
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Linac systems, the breathing cycle was binned in nf = 20 phases, approximating a
5-second breathing cycle period captured at around 4 FPS with cine-MR imaging.

Figure 3.12: Ten types of designed patient-specific respiratory motion waveforms.
These waveforms are scaled by amplitude amplification coefficients (AAC) to charac-
terize the time-resolved motion of the diaphragm and chest wall. Intra-frame motion
trajectories are excluded from this process.

Table 3.2 lists the basic information, assigned motion waveform types, and ampli-
tude amplification coefficients for the simulated 25 patients. This study predominantly
focused on fast motion, with most tumors located in the middle or lower lobes of the
lung, where intra-frame motion is anticipated to be more pronounced. Based on pub-
lished observations of respiratory motion in the investigated patients, the diaphragm
can move up to 101 mm along the SI direction in a deep breathing mode [20]; the
peak-to-peak lung tumor motion amplitude ranges 0 ∼ 50 mm in the SI direction and
0 ∼ 24 mm in the AP direction [20], while the maximum tumor speed is 72.6 ± 22.5
mm/s [99]. The motion parameter settings were designed based on these reported data,
accounting for both typical and rapid movements. Table 3.3 summarizes the generated
tumor motion data, including peak-to-peak and intra-frame motion values. Notably,
Patient 10 exhibits the most significant tumor motion, with the largest peak-to-peak
amplitude (56.4 mm) and the highest intra-frame displacement and speed (7.3 mm
and 29.4 mm/s on average, respectively). It is important to note that these motion
data represent only the position information of the anatomical structure at the exact
beginning and end moment of each frame acquisition in the original sequence. A
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more detailed information of intra-frame motion trajectories will be presented in the
following sections.

The length of the heart beating cycle was set to 1.0 second for all the patients.
Specifically, the duration from end-diastole to end-systole was defined as 0.5 seconds,
from end-systole to beginning of quiet phase was 0.192 seconds, the quiet phase lasted
0.115 seconds, and from end of quiet phase to reduced filling was 0.193 seconds. The
cardiac motion during respiration was modeled as a rigid translation of 0.5 cm in the
AP direction and 2 cm in the SI direction, with no rotational component.

Fig. 3.13 presents examples of cine-MR frames obtained from the simulated
patients (Patient 15 and Patient 17). The left panel displays the end-diastole and
end-systole cardiac phases, extracted from the breath-hold process, as depicted in the
Type C waveform (see Fig. 3.12). The right panel illustrates the end-expiration and
end-inspiration phases, during which the tumor exhibits motion in synchrony with lung
deformation. Due to out-of-plane displacement, the tumor is not visible in the current
axial and coronal slices at the end-inspiration phase.

Figure 3.13: Examples of simulated cine-MR frames from Patient 15 (left) and Patient
17 (right). The selected cardiac and respiratory phases include end-diastole, end-systole,
end-expiration, and end-inspiration, presented in axial (top), coronal (middle) and
sagittal (bottom) views. In the right panel, the reference lines intersect at the tumor in
the end-expiration positions.
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Table 3.2: Basic information and the breathing motion curve assignment for the
simulated patients. Tumor location in the lung is presented as R-Right, L-Left/ l-lower,
m-middle, u-upper(lobe) / P-Posterior, A-Anterior, M-Middle; AAC indicates amplitude
amplification coefficient.

Patient Gender Age Weight Height BMI Tumor Waveform Diaphragm Chest-wall

ID (kg) (cm) location type AAC AAC

01 F 63 81.3 153 34.73 R/l/P A 2 -1.2

02 F 65 78.6 161 30.32 L/l/P B 3 -1.1

03 F 57 105.8 165.1 38.81 R/m/M E 4 -1.3

04 F 65 56 164.7 20.64 L/l/A D 3 -1.2

05 F 56 69.6 166.76 25.03 R/m/M B 5 -1

06 M 63 72.1 170 24.95 L/l/M A 4 -1.6

07 M 70 100.4 173.7 33.28 R/l/A E 2 -0.9

08 M 52 60.75 173 20.30 L/l/P D 4 -1.2

09 M 67 89.9 178.5 28.22 R/m/A C 5 -1.4

10 M 50 120 177.8 37.96 L/l/P F 6 -1.5

11 F 27 55.6 172.7 18.64 R/l/A H 4 -1.9

12 F 37 78.7 169.5 27.39 R/m/P G 3 -1.2

13 F 49 105.1 172 35.53 L/u/M J 5 -1

14 F 51 68.2 175 22.27 L/l/A I 3 -0.9

15 F 40 75.4 160 29.45 R/l/P C 2 -1

16 F 52 86 153 36.74 R/m/P F 4 -1.3

17 M 31 77.9 185.2 22.71 R/m/P J 6 -2

18 M 58 117 180 36.11 L/l/A H 4 -1.3

19 M 18 62 176 20.02 L/l/A I 5 -1.7

20 M 63 75.6 167.7 26.88 R/l/P G 6 -1.8

21 M 64 84.15 180 25.97 L/u/A A 4 -1.1

22 M 60 88 190 24.38 L/l/A J 5 -1.8

23 F 16 59.9 173.5 19.90 L/l/A F 3 -0.9

24 M 14 67.4 181.06 20.56 R/m/M E 2 -0.6

25 F 11 31.1 135.1 17.04 R/u/P C 3 -0.8
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Table 3.3: Tumor motion characteristics for the simulated patients, detailing both peak-
to-peak motion amplitudes and intra-frame motion. Intra-frame motion displacement
and average speed values are presented as mean [max] over all 20 frames, covering a
full breathing cycle. The patient exhibiting the most significant tumor motion is shown
in bold.

Patient ID

Peak-to-peak motion Intra-frame motion

Amplitude (mm) Displacement (mm) Avg. speed
(mm/s)

SI AP Total SI AP Total

01 15.8 9.5 18.5 1.6 [2.9] 1.0 [1.7] 1.9 [3.4] 7.6 [13.7]

02 23.9 8.8 25.5 2.5 [6.3] 0.9 [2.3] 2.6 [6.7] 10.5 [26.8]

03 27.1 7.6 28.1 2.7 [8.1] 0.8 [2.0] 2.8 [8.3] 11.3 [33.3]

04 24.9 10.6 27.0 2.7 [8.6] 1.1 [3.7] 2.9 [9.3] 11.7 [37.3]

05 29.8 6.0 30.4 3.0 [7.8] 0.6 [1.6] 3.1 [8.0] 12.4 [31.8]

06 37.7 12.7 39.8 3.9 [7.2] 1.3 [2.5] 4.1 [7.6] 16.5 [30.3]

07 17.4 8.0 19.2 1.8 [5.3] 0.8 [2.3] 1.9 [5.8] 7.8 [23.1]

08 31.2 9.4 32.5 3.5 [10.9] 1.0 [3.2] 3.6 [11.3] 14.5 [45.3]

09 41.5 13.2 43.5 4.3 [10.1] 1.4 [3.2] 4.5 [10.6] 17.9 [42.2]

10 55.5 10.1 56.4 7.2 [19.0] 1.3 [3.5] 7.3 [19.3] 29.4 [77.1]

11 33.3 16.0 36.9 4.5 [11.5] 2.2 [5.5] 5.0 [12.8] 20.1 [51.1]

12 23.3 7.7 24.5 2.4 [7.5] 0.8 [2.5] 2.5 [7.9] 10.1 [31.5]

13 36.8 8.0 37.7 3.7 [9.3] 0.8 [2.0] 3.7 [9.5] 15.0 [38.0]

14 26.0 8.0 27.2 2.7 [10.1] 0.8 [3.1] 2.9 [10.6] 11.5 [42.4]

15 17.0 7.3 18.5 1.8 [4.7] 0.8 [2.0] 1.9 [5.1] 7.7 [20.6]

16 31.2 9.3 32.6 3.2 [10.7] 0.9 [3.2] 3.3 [11.2] 13.3 [44.6]

17 49.4 16.9 52.2 4.9 [12.5] 1.7 [4.3] 5.2 [13.2] 20.7 [52.7]

18 34.0 10.7 35.7 4.6 [11.8] 1.5 [3.7] 4.9 [12.3] 19.4 [49.4]

19 44.8 14.6 47.1 4.7 [17.5] 1.5 [5.7] 5.0 [18.4] 19.9 [73.7]

20 52.8 14.1 54.7 5.4 [17.0] 1.5 [4.5] 5.6 [17.5] 22.4 [70.2]

21 28.1 9.7 29.8 2.9 [5.3] 1.0 [1.8] 3.1 [5.6] 12.3 [22.4]

22 46.5 16.9 49.5 4.6 [11.7] 1.7 [4.3] 4.9 [12.5] 19.6 [49.9]

23 26.6 7.6 27.6 2.7 [9.1] 0.8 [2.6] 2.8 [9.5] 11.3 [37.9]

24 16.9 5.2 17.6 1.8 [6.2] 0.5 [1.9] 1.9 [6.5] 7.4 [26.1]

25 21.5 5.7 22.3 2.2 [6.0] 0.6 [1.6] 2.3 [6.2] 9.2 [25.0]

Avg. 31.7 10.1 33.4 3.4 [9.5] 1.1 [3.0] 3.6 [10.0] 14.4 [39.9]
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3.4.2 Intra-frame motion data

In this section, intra-frame motion data is represented as displacement vector fields.
To design the DVFs and comprehensively capture the coverage of potential trajectories
across the full range of anatomical positions, an intra-frame motion model and a
dedicated motion pattern perturbation scheme are proposed.

3.4.2.1 Intra-frame motion model

The intra-frame motion model is constructed with a piecewise linear approximation
between consecutive control points. Specifically, the overall frame acquisition time step
interval, [1, ns], is subdivided into multiple consecutive intervals, with the endpoints
referred to as control points. Motion between control points is represented by DVFs
derived from corresponding images and subsequently discretized over time steps. The
optical flow-based DIR algorithm [85] is employed to estimate the DVFs.

To minimize errors introduced by optical flow and obtain the most accurate possible
final-position image as ground truth, intra-frame motion data (DVFm) and temporal
images Ij (j = i, i+ 1, . . . , i+m) for a specific sub-interval [i, i+m] within [1, ns] are
determined as follows:

DVFm = argminMSE (Ii+m ⊕ dvf, Ii) ,

where dvf ∈ {DVFi+m→i, −DVFi→i+m} ;

Ij = Ii+m ⊕
(
i+m−j

m
× DVFm

)
, j = i, i+ 1, . . . , i+m.

(3.17)

where the symbol ⊕ denotes the image deformation based on the given DVF; MSE(, )
refers to the mean squared error (MSE) computation between two images; Ii+m is
the image at control point i + m, and Ii is the image at control point i; DVFi+m→i

represents the DVF from Ii+m to Ii, while DVFi→i+m represents the DVF from Ii to
Ii+m. Theoretically, DVFi+m→i and −DVFi→i+m should be identical; however, due to
limitations in the accuracy of the optical flow algorithm, the DVF yielding the lower
residual MSE (i.e., a better Ii restoration) after registration is selected.

3.4.2.2 Intra-frame motion pattern perturbation scheme

Once the 2D+t cine MR sequences have been selected from the 4D MRI data (detailed
in Section 3.4.1), nf key anatomical positions throughout each breathing cycle are
identified. An intra-frame motion pattern perturbation scheme is then introduced to
determine the images at the control points, as discussed in Section 3.4.2.1.

First, nf key-frame sets and the corresponding images are defined and labeled
from the original 2D+t cine MR sequences. To achieve this, four additional frames
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are interpolated between two consecutive frames in the original sequence. Fig. 3.14
presents a schematic view of this step: the k-th frame in the original sequence (k =

1, 2, . . . , nf) is labeled as k1 (black dot in the figure). Images at k2, k3, k4, and k5 are
generated based on linear interpolation of the DVFs between the corresponding frames
of k1 and (k+1)1. The five images are thus considered to fall within the k-th key-frame
set, comprising k1 from the original sequence and four interpolated frames k2, k3, k4,
and k5. This process can also be seen as an efficient way to increase the temporal
resolution of the original cine-MR sequence by a factor 5, avoiding the significant
time required to directly generate 4D MRI phantoms with 5× temporal resolution. It
effectively enhances the diversity of anatomical positions for the ground truth and
introduces randomness within a specified range for each control point in the following
step.

Figure 3.14: Schematic illustration of the definition of the k-th key-frame set on the
original 2D+t cine MR sequences.

Next, intra-frame motion trajectories are manipulated by varying the number or
order of control point images: first, the number of control points governing the intra-
frame motion trajectory is specified; then for each control point, one of nf key-frame
sets is assigned, followed by randomly selecting one image from the chosen set of five
as the control point image. The overall motion extent can be controlled by adjusting
the key-frame set indices for consecutive control points, based on their positions in the
original sequence.

Consequently, the original intra-frame motion pattern of the cine-MR sequence,
utilizing linear DVF decomposition between consecutive frames in relation to the time
step, is expanded to include a variety of patterns as required. Table 3.4 lists the
configurations of the proposed motion patterns, several of which will be applied in
subsequent chapters to create datasets that support intra-frame motion compensation
in Cartesian and radial cine-MRI. The proposed patterns incorporate two, three, or four
control points to progressively enhance the degrees of freedom, thereby accommodating
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increased motion irregularity.

Table 3.4: Configurations of the designed intra-frame motion patterns. The letter "S"
indicates a sudden application of the rigid motion, while "L" denotes a linear application.

Pattern
Number of
control points

Key-frame set index Apply rigid
motion

Identical
control point
images

First
control
point

Middle
control
point(s)

Last
control
point

01 2 k – k No Yes
02 2 k – k + 1 No No
03 2 k – k − 1 No No
04 3 k k k + 1 No No
05 3 k k + 1 k + 1 No No
06 3 k k + 1 k − 1 No No
07 3 k k − 1 k No No
08 3 k k − 2 k No No
09 3 k k + 1 k + 2 No No
10 3 k k − 2 k − 2 No No
11 3 k k + 2 k + 4 No No
12 3 k k + 4 k + 3 No No
13 3 k k − 3 k − 5 No No
14 3 k k − 1 k + 1 Yes / S No
15 3 k k + 2 k Yes / S No
16 3 k k k + 1 Yes / L No
17 3 k k − 1 k Yes / L No
18 3 k k k Yes / S No
19 4 k k + 1, k k − 2 No No
20 4 k k− 1, k+1 k + 2 No No

Motion patterns with two control points adopt i = 1 and m = ns− 1 in Eq. 3.17,
with Pattern 2 corresponding to the original intra-frame motion pattern. It is essential
to emphasize that, in the case of a static scenario (Pattern 1), the control point images
remain identical to ensure the absence of intra-frame motion. In this context, the
output image produced by the compensation model is anticipated to be the same as the
input.

For patterns with three or four control points, random insertion moments are
chosen for the middle control points, effectively dividing [1, ns] into two or three
sub-intervals of random lengths. To simulate an overall target drift during the frame
acquisition, an additional rigid motion is applied in the second sub-interval (denoted
as [mp, ns], with the middle control point represented as mp) in specific cases involving
three control points (Pattern 14 ∼ 18). The parameters for the rigid transformation
are determined by selecting a random value for the rotation angle within the range
[−π/20, π/20], and a translation extent along each axis within the range [−1, 1] pixels.
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Two methods are considered for applying the rigid motion: a sudden application and a
linear application. Let IR represent the image obtained after applying a rigid transfor-
mation to image I. In the case of a sudden application, the control point images for the
sub-interval [mp, ns] are IRmp and IRns; whereas, in the case of a linear application, they
are Imp and IRns.

In summary, three degrees of freedom are incorporated in the motion pattern per-
turbation scheme: randomly selection of images from the key-frame sets, the insertion
moments of the middle control points, and the rigid motion parameters. These elements
introduce randomness into the database, allowing a comprehensive exploration within
the domain of potential anatomical structure positions. Some extreme scenarios, which
may never occur in reality, are crafted to create lager differences between motion-
corrupted and ground-truth final-position images, compelling the potential network to
focus more on the dynamic mechanisms and remain robust against variations in motion
amplitude.

Using the determined control point images as inputs, intra-frame motion data
and corresponding temporal images are generated leveraging the motion model ex-
pressed in Eq. 3.17. The simulation procedure introduced in Section 3.1 functions as
the dataset generator, effectively producing input-output training pairs (intra-frame-
motion-corrupted images and ground-truth final-position images corresponding to the
last shot of the frame acquisition) as required for the labeled dataset.

3.4.3 Examples of motion-corrupted images

This section presents several examples of generated motion-corrupted images for Pa-
tient 02 and Patient 08, as they moved from the initial position to the final position
during frame acquisition, with corresponding images shown in Fig. 3.15. Patient 02
was inhaling throughout the k-space sampling, causing the tumor to shift generally
downwards, while Patient 08 was exhaling, resulting in an upward tumor movement.

In Fig. 3.15, motion-corrupted images were simulated following motion Pattern
02, with a linear Cartesian phase encoding direction orthogonal to the main direction
of intra-frame motion. Reference lines mark the upper and lower boundaries of the
tumors’ ground-truth position at the conclusion of the frame acquisition.

It is evident that the tumor positions derived from motion-corrupted images lagged
behind the actual final positions, clearly indicating noticeable imaging latency. Quanti-
tatively, the latency was approximately 50% of the frame acquisition time, consistent
with the conclusions discussed in Section 3.1.2.2. Compared to target positioning
errors, the impact of motion artifacts (or image blur) was negligible in the overall
imaging errors. In Fig. 3.15, the anatomical geometry remained well-preserved in the
motion-corrupted images. This observation differs from imaging systems acquiring
signals directly in the image domain, such as fluoroscopy, where the detector may
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capture the target’s entire path (passing pixels) during acquisition.

Figure 3.15: Examples of generated motion-corrupted images for (a) Patient 02 and
(b) Patient 08. Each panel displays the patient’s progression from the initial position
(left) to the final position (middle) according to motion Pattern 02. The resulting
motion-corrupted image is shown in the right column. Enlarged views of the tumor,
captured at identical coordinates, are provided with reference lines marking the upper
and lower boundaries of the ground-truth final position. The linear Cartesian phase
encoding direction is anterior-posterior (AP) in (a), and left-right (LR) in (b).

In current clinical practice with MR-Linac, online anatomy tracking or beam gating
is achieved based on target deformation using DVFs, estimated through deformable
image registration from a reference frame to live cine-MR frames [30]. Fig. 3.16
demonstrates visually the errors in DVF determination caused by cine-MR intra-frame
motion. The selected initial- and final- position frames (I1 and Ins) were the same as
those in Fig. 3.15. The motion-corrupted image Imotion was also simulated according to
motion Pattern 02 from I1 to Ins, with different k-space phase encoding directions being
considered. The measured DVF, derived from Imotion, was compared to the ground truth,
which was obtained from Ins. To facilitate an intuitive comparison, the reference frame
Iref for image registration was specifically selected as the ground-truth final-position
image: Iref = Ins. Under this condition, the ground-truth DVF was set to 0, and the DVF
from I1 to Ins, which reflects intra-frame motion, should have the same magnitude as
the DVF from Iref to I1 but in the opposite direction.

The results indicated residual intra-frame motion components in the measured
DVF, highlighting substantial errors in DVF determination due to intra-frame motion
deterioration effects. The dominant component of the intra-frame anatomical changes
occurred along the SI direction. Qualitatively, compared to an orthogonal phase en-
coding direction, slightly greater errors were appreciable when phase encoding was
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applied in the SI direction.

Figure 3.16: Displacement vector fields for Patient 02 (top) and Patient 08 (bottom).
From left to right: DVF from the reference frame to initial-position image (Iref → I1);
DVF of the intra-frame motion (I1 → Ins); Ground-truth DVF (Iref → Ins); Measured
DVF (Iref → Imotion), with linear Cartesian phase encoding direction either orthogonal
(AP/LR) or parallel (SI) to the main direction of intra-frame motion. This figure is
adapted from material originally published in [137].

Fig. 3.17 shows examples of motion-related imaging errors across various motion
patterns and phase encoding directions in a linear Cartesian trajectory, with the selected
initial and final positions consistent with those in Fig. 3.15. The results demonstrate
that intra-frame motion patterns significantly impact the extent of image degradation,
resulting in variations in anatomy tracking accuracy. Specifically, an insertion moment
at 65% of the acquisition time (mp = 65% ns) in motion pattern 04 (I1 → I1 → Ins) led
to poorer image quality. This is consistent with expectations, as the lower frequency
components of k-space, which are of a much higher magnitude and primarily determine
the target position in Cartesian readout trajectories—originate predominantly from
the initial-position image in this scenario. Similar to the conclusions drawn from the
DVF analysis, the choice of phase encoding direction qualitatively has a minor effect
on contouring accuracy, with the SI direction exhibiting slightly more motion artifacts
compared to the other direction. Nevertheless, the contribution of image blur to the
overall imaging errors is negligible when considering the more significant factor of the
target positioning errors.

For radial sampling, Fig. 3.18 presents examples of motion-induced imaging errors
from Patient 02, simulated using the same initial and final position images as in Fig.
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3.15. This figure compares the effects of applying various motion patterns (Pattern
02 and Pattern 04) and k-space readout trajectories, including linear (ψlinear), golden
angle (ψgold) and tiny golden angle (ψ5, ψ10). In each trajectory, the starting angle of the
first spoke, γ, was set to a random value. The results reveal negligible variations in
anatomy positioning accuracy across different radial trajectories, though slight artifacts
are perceptible in the linear case. Motion Pattern 04 resulted in larger imaging errors
than Pattern 02, but the difference between them is relatively small in comparison to
those presented in Fig. 3.17. The findings indicate a uniform contribution from each
spoke to the reconstruction of the target position in the presence of intra-frame motion,
regardless of its spatial orientation or distribution within the radial trajectory.

Figure 3.17: Examples of motion-related imaging errors resulting from various motion
patterns and phase encoding directions in a linear Cartesian trajectory. Displayed are
difference images and tumor contouring errors between the training pairs, specifically
motion-corrupted images and their corresponding ground-truth final-position images,
for (a) Patient 02 and (b) Patient 08. The difference values are calculated as the motion-
corrupted minus the ground-truth. Phase encoding directions are indicated in brackets,
including anterior-posterior (AP), superior-inferior (SI) and left-right (LR). For motion
Pattern 04, the middle-point insertion moment occurs at 65% of the acquisition time
(mp = 65% ns). This figure is adapted from material originally published in [137].
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Figure 3.18: Examples of imaging errors with (a) Motion Pattern 02 and (b) Motion
Pattern 04, under varying azimuthal profile increments in radial k-space sampling
trajectories. From left to right: ψlinear, ψgold, ψ5, ψ10. The starting angle of the first spoke,
γ, was set randomly in each trajectory. Displayed are difference images between training
pairs from Patient 02, specifically motion-corrupted images and their corresponding
ground-truth final-position images. The difference values are calculated as the motion-
corrupted minus the ground-truth. For motion Pattern 04, the middle-point insertion
moment occurs at 65% of the acquisition time (mp = 65% ns).
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Chapter 4

INTRA-FRAME MOTION
COMPENSATION FOR CARTESIAN
CINE-MRI

4.1 Method and materials

4.1.1 Model

The selection of the network architecture should account for the specific characteristics
of the inverse problem that need to be addressed. Fig. 4.1 shows an example of a
motion-corrupted image decomposition experiment for Cartesian sampling. The image
was simulated according to Motion Pattern 18 (see Section 3.4.2.2), with linear phase
encoding applied along the AP direction. Under these conditions, the later-acquired
data correspond to the higher frequency components on the right-hand side of the
Fourier domain. A sudden 9◦ rotation was introduced at the middle-point insertion
moment, occurring at 70% of the acquisition time.

In the figure, the motion-corrupted image retains the same anatomical position as
the initial location, which is expected to be corrected to align with its corresponding
final-position image by the compensation model. The decomposition of the motion-
corrupted image reveals that the final-position contour is encoded in the motion-
corrupted k-space. However, due to the orders-of-magnitude difference in values
between the low- and high-frequency components, these true-position details are ob-
scured by the dominant lower-frequency information, making them difficult to discern
visually in the spatial domain.

Therefore, the intuitive concept of an intra-frame motion compensation model is
to detect and extract information from the later-acquired data, which can subsequently
guide the processing of the earlier-acquired components. For a linear Cartesian sam-
pling trajectory, this process is akin to determining the final-position contour—often
imperceptible from the motion-corrupted image—and filling the contour with the cor-
rected LFC-associated patterns.
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Figure 4.1: Motion-corrupted image decomposition experiment for linear Cartesian
sampling. (a) The motion-corrupted image and corresponding k-space, simulated
according to Motion Pattern 18, with the phase encoding direction along the AP
direction. A sudden 9◦ rotation is introduced at the middle-control-point insertion
moment, which occurs at 70% of the acquisition time. Initial and final position images
and their corresponding k-space are shown on the left. The matrix size of the images is
256 × 256. (b) Decomposition of the motion-corrupted k-space/image at three specific
temporal positions (220th, 180th, and 140th time steps), displaying the preserved
frequency components (left) and the corresponding reconstructed images (right). The
blank regions in the k-space represent zero-valued areas. The images are normalized to
the range [0, 1], and the k-space is represented on a logarithmic scale.

The properties of convolutional neural networks make them promising models to
fulfill these requirements. By utilizing a series of building blocks such as convolutional
layers, pooling layers, and fully connected layers, CNNs are structured to automatically
and adaptively learn spatial hierarchies of features through backpropagation [156],
making them powerful models for feature extraction in pattern recognition, semantic
image segmentation, and various other tasks. Recently, CNN functionality has become
more interpretable through explanation techniques involving frequency component
decomposition [157]. Wang et al. observed CNNs’ ability to capture HFCs in images,
which are largely indiscernible to human perception [158].

The architecture of CNN models can be highly flexible. In the context of intra-
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frame motion compensation in linear Cartesian k-space trajectories, later-acquired data
correspond to the HFCs and must be preserved, while the patterns associated with
the LFCs are processed. Therefore, the UNet architecture [159], initially designed
for biomedical image segmentation, was employed to enable end-to-end training
for directly deriving the final-position image from the motion-corrupted input. The
concatenative skip connections in UNet transfer features from encoder to decoder at
the same dimensionality, supporting the recovery of fine-grained details lost during
down-sampling.

Fig. 4.2 shows the typical 5-level UNet architecture exploited in this study. The
real and imaginary parts of the input and output images are represented as separate
channels. Each level of the network comprises a double convolution block using
3× 3 convolution kernels, followed by batch normalization and ReLU activation. The
first level has 64 feature channels, nch1 = 64, which are then sequentially doubled
in the subsequent levels. A 2 × 2 max pooling operation with stride 2 is applied for
down-sampling in the contracting path, while “up-convolution” (also referred to as
transposed convolution) is implemented for up-sampling in the expansive path followed
by concatenation. A 1× 1 convolutional layer is set as the final layer of the network,
which ultimately provided the output image.

Figure 4.2: UNet architecture: Blue boxes represent multi-channel feature maps, while
white boxes indicate copied feature maps. The symbol nch1 denotes the number of
feature map channels at the first level.

Three loss functions were explored to quantify the discrepancy between the model’s
predicted output and the actual target (ground truth). Specifically, metrics of mean
absolute error (MAE) and mean squared error (MSE) were employed to measure the
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L1 or L2 distance in either the spatial or frequency domain.
The loss function measuring the L1 distance in the image domain, LImg-L1, is defined

as:

LImg-L1 =
1

N

N∑
i=1

|Ins − Îns| (4.1)

where Ins and Îns represent the ground-truth and network-estimated final-position
images, respectively; N is the total number of image pixels. The loss function measuring
the L1 distance in the Fourier domain, LF-L1, is defined as:

LF-L1 =
1

N

N∑
i=1

|F2 (Ins)−F2

(
Îns
)
| (4.2)

where F2 is the 2D Fourier transform operator. The loss function measuring the L2
distance, LL2, is defined as:

LL2 =
1

N

N∑
i=1

(
Ins − Îns

)2
(4.3)

According to Parseval’s theorem, and assuming all other training settings are constant,
the L2 loss in both the image and Fourier domains should theoretically be equivalent.

For convenience, the UNet models trained with the three loss functions, LImg-L1,
LF-L1, and LL2, are indicated as NNImg-L1 , NNF-L1, and NNL2, respectively.

4.1.2 Cartesian dataset

The main objective of this chapter is to validate the feasibility of deep learning-based
intra-frame motion compensation techniques for reducing motion-related imaging er-
rors in Cartesian cine-MRI. Therefore, the discussion and demonstration primarily focus
on fully sampled linear Cartesian dataset as a case example, with only single-channel
MRI included for simplicity.

In clinical practice, Cartesian MRI scanning can be accelerated by selectively skip-
ping certain phase encoding lines in k-space to address the motion-related imaging
errors, as scan time is approximately proportional to the number of time-consuming
phase-encoding steps in k-space (see Chapter 2). Considerable efforts in undersampled
MRI reconstruction have been directed toward mitigating aliasing artifacts [130], a
major issue arising from violations of the Nyquist criterion [160] due to such omissions.
To better reflect clinical realities in Cartesian cine MRI, this chapter further investi-
gates the potential of the network’s applicability for simultaneous undersampled MRI
reconstruction and intra-frame motion compensation. Accordingly, a dataset for motion
compensation in undersampled linear Cartesian MRI was generated.
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The sub-Nyquist k-space sampling strategy was implemented following the specifi-
cation outlined by Hyun, Chang Min, et al. [130]. First, uniform undersampling was
applied in k-space along the phase-encoding axis, with a predefined acceleration factor,
acc. The Poisson summation formula indicates that the T -periodic summation of a
function f is expressed as discrete samples of its Fourier transform f̂ with the sampling
distance 1/T :

∞∑
n=−∞

f(x− nT ) =
1

T

∞∑
n=−∞

f̂
(n
T

)
e2πi(n/T )x (4.4)

Consequently, for an N ×N image matrix I(x, y), k-space subsampling by a factor of
acc along the phase-encoding axis (i.e., y-axis), equivalent to a sampling interval of
acc/N , produces the following fold-over image:

Iacc-fold(x, y) =
acc−1∑
j=0

I(x, y +
jN

acc
) (4.5)

To address localization uncertainties caused by image folding, additional low-
frequency lines were subsequently acquired. Fig. 4.3 illustrates reconstructed images
obtained using different Cartesian sampling strategies. In Fig. 4.3 (a), a fully sampled
coronal slice is presented, with the tumor located in the lower left lung. Fig. 4.3 (b)
displays undersampled images with acceleration factors of acc = 2 and acc = 4, both
with and without the inclusion of low frequency lines. Zero-padding is applied to the
missing phase encoding lines. In the folded image produced by uniform undersampling,
the tumor appears in both the left and right lungs, with the instance in the right lung
being a folded artifact. As a result, the fold-over image corresponds to multiple plau-
sible fully sampled images, with the tumor appearing on the left side, the right side,
or both. Consequently, uniform undersampling can create uncertainty in identifying
the true target location. This ambiguity introduces uncertainty in determining the
true tumor location, which is intrinsically unresolvable by a neural network. The
incorporation of a small number of low-frequency lines effectively circumvents this
problem, as demonstrated in the far-right column of Fig. 4.3, where the reconstructed
images clearly indicate the correct tumor position.
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Figure 4.3: Cartesian sampling strategies. (a) Fully sampled image and corresponding
k-space. (b) Undersampled k-space and images; the left columns show uniform under-
sampling with acceleration factors of acc = 2 and acc = 4, respectively, while the right
columns show uniform undersampling with added low-frequency components.

The first 10 simulated patients were selected to create Cartesian datasets (see
Section 3.4.1). For each patient, four original 2D+t cine-MR sequences were chosen
from the 4D MRI digital anthropomorphic phantom: two sagittal and two coronal
slices. One sagittal and one coronal slice containing the tumor centroid were selected.
To enhance slice diversity, the other two slices were taken from non-tumor regions
and specifically chosen to have distinct anatomical structures compared to the slices
containing the tumor centroid. All frames were normalized by dividing them by their
maximum magnitude values. The phase encoding was performed along the AP direction
for sagittal slices and the left-right (LR) direction for coronal slices, both orthogonal to
the main direction of intra-frame motion. The k-space matrix was filled from left to
right with respect to the time steps.

For the fully sampled Cartesian dataset, the image matrices were generated as
512 × 512-pixel arrays, with a spatial resolution of 1 mm × 1 mm. The number of
shots was set to 64 (ns = 64), i.e., the target was considered to remain stationary (or
motion was negligible) while acquiring every 8 phase-encoding lines. To enable both
the intra-frame motion compensation and denoising capabilities simultaneously, the
input was the SNR = 10dB motion-corrupted image, used to predict the corresponding
noiseless final-position image as output.

To more closely represent clinical conditions, for the undersampled Cartesian
dataset, the image matrices were generated as 256 × 256-pixel arrays, with a spatial
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resolution of 1.5 mm×1.5 mm. The acceleration factor was acc = 4, with 18 additional
low-frequency lines acquired, as demonstrated by an example in the bottom right of
Fig. 4.3. The number of shots was set to 82 (ns = 82), each shot corresponding to one
single phase-encoding line. To enable intra-frame motion compensation, undersampled
image reconstruction, and denoising simultaneously, the input-output pair was the
SNR = 10dB motion-corrupted undersampled image and the corresponding noiseless
final-position image.

A total of 14 intra-frame motion patterns were applied to simulate motion-corrupted
frames based on each original cine-MR sequence. Consequently, the datasets included
11200 (10 patients × 4 slices × 20 frames × 14 patterns) input-output pairs, with data
from eight randomly selected patients used for training (Patient 01, 03, 04, 05, 07,
08, 09) and validation (Patient 10), and the remaining 2 patients (Patient 02, 06) for
testing. The images were represented as complex numbers and normalized by dividing
them by the maximum magnitude value of the input before being fed into the network.

4.1.3 Evaluation Method

The effectiveness of the models was evaluated by comparing their outputs to the ground
truth. Image quality enhancements were quantitatively assessed using MSE and MAE.
Additionally, to evaluate target localization accuracy, the gross tumor volume (GTV)
contours were generated for all sagittal frames containing tumors in the testing datasets,
following the clinical MR-Linac procedure for online structure tracking.

In clinical practice, a preview cine MRI scan is acquired before treatment to select
a tracking reference frame, denoted as Iref. During treatment, live cine MRI frames are
aligned to Iref using deformable image registration, and the GTV contour defined in the
reference frame is propagated [30]. Similarly, in this work, Iref and its corresponding
GTV segmentation were defined: Iref was directly selected from the original sequences,
while its GTV was obtained by identifying the corresponding slice and frame from the
4D CT realistic tumor files and further processing it into a binary image. The DVF from
Iref to the floated frame was then computed utilizing the optical-flow algorithm [85].
Finally, the GTV was obtained by deforming the GTV of the reference frame based on
the computed DVF.

The GTV contours were quantitatively compared using the Dice similarity coeffi-
cient (DSC) and the 95th percentile Hausdorff distance (HD95) [161]. The DSC between
two finite point sets, A and B, is defined as:

DSC =
2 · |A ∩B|
|A|+ |B|

(4.6)
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where |A∩B| represents the number of elements in the intersection of sets A and B; |A|
and |B| denote the total number of elements in sets A and B, respectively. DSC values
close to 1 indicate a better overlap of the GTV contours. The HD95 is expressed as:

HD95(A,B) = max {h95(A,B), h95(B,A)} (4.7)

where h95 represents the 95th percentile of the distances from all points in A to their
nearest neighbor in B, and is defined as:

h95(A,B) = percentile95

{
min
b∈B

∥a− b∥
∣∣∣∣a ∈ A

}
(4.8)

Here, ∥a− b∥ is the Euclidean distance between points a and b. A lower HD95 signifies
closer alignment of the GTV contour to the ground truth.

4.1.4 Saliency map

The interpretability of deep neural networks [162] is particularly critical in high-stakes
domains, such as healthcare, as discussed in this study. One approach to facilitate
explanation in image processing is to identify pixels that are particularly influential, by
calculating the gradient of the loss function w.r.t individual pixels x of the input image:

Ms(x) =
∂L(x)
∂x

(4.9)

The resulting saliency map, Ms(x), assesses whether the model behaves as expected
and can potentially provide insights into the underlying mechanisms.

Hence, to visualize which regions in the motion-corrupted image or k-space con-
tribute most to the model’s inference, saliency maps were generated in both the image
and Fourier domains for the networks. Specifically, saliency maps in the image domain
were computed using the SmoothGrad technique [163], which sharpens the saliency
map through stochastic approximation:

M̄s(x) =
1

n

n∑
1

Ms(x+ δ); δ ∼ N (0, σ2)) (4.10)

where n represents the number of samples; δ denotes noise randomly sampled from a
standard Gaussian distribution and added to the input pixel x of the motion-corrupted
image; and M̄s(x) refers to the resulting average saliency map. To obtain saliency
maps in the Fourier domain, input motion-corrupted image tensors were converted
to the frequency domain and loaded onto the device (GPU) for gradient computation.
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These tensors were then converted back to the image domain before being fed into the
network.

4.1.5 Implementation details

The model was built with the PyTorch library [164], trained, and tested on an NVIDIA
Quadro P5000 GPU with 16 GB of memory. A hyper-parameter search was conducted
to determine the optimal initial learning rate for each model, sampling from the set
{1× 10−3, 1× 10−4, 1× 10−5}. The selected learning rates were 1× 10−4 for NNImg-L1,
1× 10−3 for NNF-L1, and 1× 10−4 for NNL2. The learning rate was reduced by a factor
of 0.8 if no improvement was observed over 12 consecutive epochs. The Adam [165]
optimizer was employed for all training processes, with a consistent batch size of 6 for
all models.

4.2 Results

Unless otherwise specified, the results in this section are based on the fully sampled
dataset.

To evaluate the network’s inference speed, the average time required to estimate
the final-position image was measured across the testing dataset, resulting in a mea-
surement of 6.3 ms per frame.

Fig. 4.4 illustrates the training and validation losses for the UNet with three
different loss functions, where the L2 loss is plotted on a logarithmic scale to highlight
subtle differences. NNF-L1 demonstrates a relatively larger discrepancy between the
training and validation datasets compared to the other models. However, all validation
loss curves eventually converge to a steady, horizontal line by the end of the training
process. During the inference stage, the weights from Epoch 100 of all three models
were loaded for testing.

To assess the models’ performance from multiple perspectives, intra-frame motion
was categorized into three scenarios: (i) Static, where the target remains stationary
throughout the entire acquisition period; in this case, an ideal model should not intro-
duce any positional changes to the target and should focus solely on image denoising;
(ii) Normal, where the average intra-frame motion speed falls within the range of the
published motion observations and remains below the maximum lung tumor speed
reported to be 72.6 ± 22.5 mm/s [99] in the literature; (iii) Extreme, which is unlikely
to occur in reality but was constructed to compel the network to prioritize the dynamic
mechanism and prevent potential extrapolation regarding the motion amplitude.
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Figure 4.4: Training and validation loss curves for NNImg-L1 , NNF-L1, and NNL2. Note:
LL2 values for NNL2 are plotted on logarithmic scale. This figure is adapted from
material originally published in [137].

A comparison of the MSE and MAE values obtained from all testing frames is
presented in Fig. 4.5, grouped by the three scenarios. Overall, the models significantly
reduced imaging errors when compared to the ground truth across the testing dataset.
NNImg-L1 demonstrated a slight tendency towards a superior performance over the
others in terms of both MAE and MSE. The results under the Static scenario highlight
the models’ denoising capabilities. For the Normal motion scenarios, applying NNImg-L1,
NNF-L1, and NNL2 resulted in a decrease of median MSE (MAE) to 4.7% (10.5%), 6.2%
(15.9%), and 12.0% (21.8%) of their initial values, respectively. In the Extreme scenario,
a wider range of MAE or MSE variations was observed as anticipated. Nonetheless, all
three models performed comparably well, with median MSE (MAE) values reduced
to below 10% (18%) of their initial values, indicating the effective mitigation of intra-
frame motion deterioration effects.

Fig. 4.6 and Fig. 4.7 present a comparison between representative motion-
corrupted images and the network-estimated final-position images obtained from the
testing dataset. The results indicate that applying UNets significantly improved image
quality, with the network-estimated target positions demonstrating superior accuracy
compared to those derived from the motion-corrupted images, particularly in the tumor,
cardiac regions, and abdominal structures. The image noise was substantially mitigated.
Among the models, NNImg-L1 exhibited better image contrast restoration than NNF-L1

and NNL2, with pixel values more closely matching the ground truth in adipose and
muscle tissues. Nevertheless, compared to imaging errors (target positioning errors
and imaging blur), contrast inaccuracies were not considered critical in MRgRT and
could be easily addressed by adjusting the intensity histograms.
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Figure 4.5: Box plots comparing the MSE (top) and MAE (bottom) of all testing frames
before and after intra-frame motion compensation. Testing frames are categorized into
three motion scenarios: Static, Normal and Extreme. Note: all images are normalized to
the range [0, 1], and the y-axis scales vary across subfigures. This figure is adapted
from material originally published in [137].

In particular, the tumor position in Fig. 4.6 was accurately corrected by the
networks and was in close agreement with the ground truth. By comparing the motion-
corrupted image to the reference final-position image in Fig. 4.6 and Fig. 4.7, it
is evident that the cardiac regions experienced substantial intra-frame deformation
during the frame acquisition. Nonetheless, all three compensation models were able to
estimate the precise anatomical structure positions and shapes corresponding to the
moment when the acquisition was completed. Additionally, the reduction in k-space
discrepancies relative to the ground-truth also reflects a successful compensation of
intra-frame motion by the models.

Target localization accuracy was evaluated with the slices in the testing dataset
where the tumor centroid was located. The results were classified into three categories
according to the GTV center of mass (COM) shift of the motion-corrupted image from
the ground-truth: Small, for COM shift ≤ 2 mm; Medium, for 2 mm < COM shift ≤ 5
mm; Large, for 5 mm < COM shift < 8 mm. Cases where the COM shift > 8 mm were
excluded, as in these cases, the intra-frame tumor motion speed exceeds the highest
velocity observed in clinical studies, which is not realistic.

Fig. 4.8 and Table 4.1 present the evaluation results for all testing slices containing
tumors, where the GTV contours of motion-corrupted and network-output images are
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compared with the ground truth using DSC and HD95. The findings underscore the
clear benefits of applying intra-frame motion compensation. All models achieved a
significant improvement in DSC, with medians in each category exceeding 95%. The
overall median DSC increased by 7 percentage points, from an initial value of 89%.
Among the three models, NNImg-L1 exhibited slightly better performance in the Small
and Medium categories, while NNF-L1 demonstrated a marginally higher median DSC
in the Large category. Moreover, the networks reduced the median HD95 from 4.1
mm to 1.4 mm. These results indicate that, despite minor performance variations
across different categories of intra-frame motion amplitude, all models are effective
in compensating intra-frame motion, showcasing strong potential to eliminate target
positioning errors within Cartesian cine-MRI for real-time motion management.

Figure 4.6: Comparison of representative sagittal frames before and after intra-frame
motion compensation. From top to bottom: original image, zoomed-in cardiac region,
magnified tumor area with reference lines marking the upper and lower boundaries
of the ground-truth position, and image difference relative to the ground truth. This
figure is adapted from material originally published in [137].
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Figure 4.7: Comparison of representative coronal frames before and after intra-frame
motion compensation. From top to bottom: original image, zoomed-in cardiac image,
image difference, and the magnitude of k-space difference relative to the ground truth.
The differences were computed by subtracting the ground truth. This figure is adapted
from material originally published in [137].

Figure 4.8: Box plot comparing target localization accuracies of the testing slices before
and after intra-frame motion compensation. GTV contours of motion-corrupted and
network-output images are quantitatively evaluated against the ground truth using
DSC. Testing subjects are classified into three categories based on the GTV centroid
shift: Small, Medium, and Large. This figure was originally published in [137].
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Table 4.1: Quantitative evaluation of the measured GTV contours before and after
intra-frame motion compensation. Median and [IQR] (interquartile range) of DSC and
HD95 are reported for all testing slices containing tumors.

DSC (%) HD95 (mm)

Motion-
Corrupted

NNImg-L1 NNF-L1 NNL2
Motion-
Corrupted

NNImg-L1 NNF-L1 NNL2

Small 92.7
[5.4]

97.5
[2.2]

97.5
[2.5]

97.2
[2.6]

2.8
[2.1]

1.0
[0.4]

1.0
[0.4]

1.0
[1.0]

Medium 88.0
[4.4]

96.9
[2.1]

96.6
[2.3]

96.5
[2.2]

4.5
[2.3]

1.4
[1.0]

1.4
[1.0]

1.4
[1.2]

Large 80.8
[4.4]

95.0
[2.3]

95.5
[2.4]

95.2
[2.7]

7.1
[2.0]

2.0
[1.4]

2.0
[1.4]

2.0
[1.4]

Total
89.4
[8.1]

96.9
[2.6]

96.8
[2.6]

96.6
[2.7]

4.1
[3.3]

1.4
[1.0]

1.4
[1.0]

1.4
[1.2]

By altering the order of the frames in the original cine-MR sequences and utilizing
the intra-frame motion pattern perturbation scheme proposed in Section 3.4.2.2, it is
feasible to customize arbitrary synthetic yet realistic breathing motion curves, including
dedicated intra-frame motion trajectories. Using this approach, GTV centroid motion
curves were constructed for sagittal slices of Patient 02 and Patient 06 from the testing
dataset, as shown by the red line in Fig. 4.9, which serves as the ground truth. The
absolute GTV centroid positions derived from motion-corrupted images and the network-
estimated final-position images are compared to the ground truth. As illustrated in the
figure, motion-corrupted results show that most frames exhibited an imaging latency of
approximately 50% of the frame acquisition time. However, a longer time delay was
evident for certain frames of Patient 06, particularly Frames 10, 11, and 13. This can
be attributed to the potential degradation of image quality caused by motion artifacts
and noise, which adversely affects the accuracy of the optical flow algorithm. The
three network-estimated results overlap well with the ground truth across all cases,
effectively correcting GTV position offsets. The only exception occurred in Frame 13
for Patient 06, where the optical flow algorithm failed to precisely contour the tumor in
the NNImg-L1 and NNF-L1 estimated images. The target positioning errors were negligible
or completely absent in cases with a very shallow breathing mode, such as in Frame 13
to 18 for Patient 02.
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Figure 4.9: GTV centroid position comparison curve. The constructed breathing motion
curves, including intra-frame motion trajectories, are depicted by the red line, while
the red dots indicate the ground-truth GTV centroid position at the moment the frame
acquisition is terminated. Results before and after motion compensation are displayed:
motion-corrupted results are shown in blue, NNImg-L1 in yellow, NNF-L1 in green, and
NNL2 in purple. The difference curves relative to the ground truth are presented in the
lower panels. This figure was originally published in [137].

To identify the regions in the input motion-corrupted image or k-space that exert
the greatest influence on the model’s inference, saliency maps of the loss function with
respect to the input were generated in both the image and Fourier domains for the three
models. The overlaid saliency maps of representative testing patients are shown in Fig.
4.10. On the one hand, the right part of k-space corresponding to the later-acquired
data is highlighted in the heat map, representing a large contribution to the final results;
on the other hand, saliency maps in the image domain indicate a primary focus on
the edges of the moving structures. In particular, the models are capable of detecting
the edges at their final positions during the frame acquisition, which are imperceptible
to humans, as evidenced by the coronal slice, where the model-highlighted liver edge
deviates from the edge perceived by visual observation.

Fig. 4.11 illustrates representative examples of imaging error reduction in un-
dersampled Cartesian cine-MRI, where the network was tasked with simultaneously
performing intra-frame motion compensation, undersampled image restoration, and
image denoising. NNL2 was selected as the correction model, and the corresponding
input motion-corrupted undersampled images are compared with the images processed
by the network. The results demonstrated significant advantages of implementing NNL2:
aliasing artifacts caused by sub-Nyquist k-space sampling were effectively suppressed;
structural localization was accurately corrected, as observed in tumor regions and other
anatomies affected by respiratory motion; and image noise reduction was appreciable.
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Consistent with the observations in Fig. 4.6 and Fig. 4.7, NNL2 generated images
exhibited minor contrast inconsistencies with the ground-truth. While this discrepancy
was far less critical for MRgRT than imaging errors, it could be effectively resolved
through histogram matching techniques. The difference images demonstrated values
that converge more closely to zero after this correction.

Figure 4.10: Overlaid saliency map in the image (left) and Fourier (right) domain for
model NNImg-L1 (top), NNF-L1 (middle) and NNL2 (bottom). This figure is adapted from
material originally published in [137].

Figure 4.11: Imaging error reduction in undersampled Cartesian cine-MRI. Motion-
corrupted undersampled images (left) are compared with NNL2 processed images, both
with (right) and without (middle) histogram matching. Difference images (bottom)
were computed by subtracting the ground truth.
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4.3 Discussion

This chapter investigates the feasibility of reducing imaging errors in Cartesian cine-MRI
by implementing deep learning-based intra-frame motion compensation techniques.

The motion-corrupted image decomposition experiment depicted in Fig. 4.1 reveals
that, despite being obscured by dominant LFC information, the contours of the struc-
tures’ ground-truth real-time positions are encoded within the motion-corrupted images,
corresponding to the later acquired HFCs in the Fourier domain. This finding suggested
the selection of a convolutional neural network for the task, given its exceptional
capability in extracting frequency-domain information. Considering the application
scenario involving linear phase encoding Cartesian k-space sampling trajectories, a
suitable compensation model must preserve the later-acquired HFCs while processing
the LFC-associated patterns. The UNet architecture, with its skip connections that
enable the reuse of fine-grained deep features, stands out as a particularly promising
model for this purpose.

To this end, UNet models were trained using the generated Cartesian datasets
to estimate the final-position image directly from the motion-corrupted inputs. The
models provided simultaneous intra-frame motion compensation, image denoising, and
mitigation of aliasing artifacts for undersampled images. Three types of loss functions
were investigated for performance comparison.

The inference time plays a vital role in enabling the practical implementation of
this technique for real-time motion management. The network required approximately
6.3 ms to complete the motion compensation for a 512×512 image, which was clinically
acceptable, as it was significantly shorter than current clinical Cartesian cine-MR frame
acquisition time, such as 4 Hz (i.e., 250 ms/frame) in the ViewRay MRIdian system [30].
Furthermore, this speed is highly dependent on the hardware configuration and the
matrix size of the input: with ongoing advancements of GPU computing power, the
actual processing time is expected to be further reduced.

The models were comprehensively evaluated on the testing dataset, demonstrating
their ability to significantly reduce imaging errors. This was reflected in improved
image quality metrics such as MSE or MAE, as well as enhanced GTV contour measures,
including DSC and HD95. Specifically, for the testing dataset analyzed in GTV contour-
ing, the median DSC increased from 89% to 97%, while the HD95 dropped from 4.1
mm to 1.4 mm. Additionally, in Fig. 4.6 and Fig. 4.7, substantial deformations in the
cardiac region were observed within a single cine-MR frame acquisition. Nonetheless,
the models exhibited the capability to accurately estimate the anatomical structure at
the moment the acquisition was completed, highlighting their potential advantages for
real-time MR imaging of cardiac function.

The three models exhibited slight performance variations across different motion
amplitude categories: NNImg-L1 excelled in the Small and Medium cases, whereas NNF-L1
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demonstrated a bit higher median DSC values in the Large category. This outcome
aligns with expectations, as the input-output image pairs of the network are normalized,
limiting the absolute prediction errors to less than 1 per pixel. Consequently, the L2
loss is less sensitive to outliers compared to the L1 loss.

In Fig. 4.9, the GTV centroid position derived from the motion-corrupted image
generally corresponds to the position at half of the frame acquisition time. This is
consistent with the findings of Borman et al. [88] and Riederer et al. [143], which
demonstrate that the target position is primarily determined by the moment when the
central k-space profile is acquired. As a result, a linearly and fully acquired Cartesian
readout k-space trajectory leads to an imaging latency of approximately 50% of the
acquisition time. Notably, the network-estimated positions overlap well with the ground
truth, showing a clear benefit.

The saliency maps of the motion-corrupted input in Fig. 4.10 highlight the far
right region of k-space as well as the edges of the moving anatomical structures, with
these detected edges representing their final positions, which may differ from those
observed visually. This makes it more transparent that the models have learned to
identify and extract information from the later-acquired frequency components, which
in turn guides the alignment of the corresponding image features acquired earlier. This
behavior is noteworthy and particularly important for addressing concerns regarding
the potential and reliability of deep learning approaches for clinical implementation.

In addition to reducing motion-related imaging errors, the network is highly ver-
satile, demonstrating the ability to perform multiple tasks simultaneously. This is
exemplified by the undersampled Cartesian MRI experiment (see Fig. 4.11), where the
model effectively carried out intra-frame motion compensation, suppressed aliasing
artifacts, and denoised the image. Depending on clinical needs, other functionalities
can be incorporated, such as training the model to directly output segmentation results
for GTVs or OARs without localization errors.

4.4 Conclusions

This chapter explores the potential of deep learning-based intra-frame motion com-
pensation techniques to reduce imaging errors in Cartesian cine-MRI. UNets with
three types of loss functions were successfully trained to estimate the exact noiseless
final-position image from the motion-corrupted input. The models led to an evident
image quality and GTV position accuracy enhancement, confirmed by a decreased
image MSE/MAE and an improvement in terms of GTV DSC and HD95. Saliency maps
indicated that the models learned to utilize later-acquired frequency components to
improve the convergence of the earlier-acquired corresponding image features. The
networks’ versatility was further demonstrated in the undersampled Cartesian MRI
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experiment, where the aliasing artifacts were effectively mitigated. These findings high-
light the promising capability of deep learning-based intra-frame motion compensation
techniques to improve imaging accuracy in Cartesian cine-MRI, paving the way for their
application in real-time motion management.
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Chapter 5

INTRA-FRAME MOTION
COMPENSATION FOR RADIAL
CINE-MRI

5.1 Method and materials

5.1.1 Overall workflow

As schematically depicted in Fig. 5.1, radial MR sequences enhance the frame rate by
reducing the stride of the sliding reconstruction window. However, the imaging latency
manifested by target positioning errors is independent of the frame rate and instead
correlates with the temporal coverage of spokes within the reconstruction window.
Due to single-frame acquisition and the physiological motion occurring on similar time
scales, the acquired k-space data within the window may comprise signals from the
target at varying positions. For instance, window M + 3 in Fig. 5.1 consists of ns radial
spokes corresponding to time steps from t1 to tns. Throughout the acquisition period,
the target transitions from positions p1 to pns. By utilizing a tailored set of sampling
matrices specific to the online radial k-space readout trajectory, this motion-dependent
data acquisition process can be simulated with the procedure outlined in Section 3.1,
where corresponding complex-valued radial spokes in the frequency domain are se-
quentially incorporated into the k-space arrays constructed over the time steps.

Conventionally, the acquired samples within the reconstruction window are directly
reconstructed into an image with 2D inverse NuFFT, resulting in imaging errors, as
depicted by the motion-corrupted image in Fig. 5.1. Unlike existing work on highly
undersampled image reconstruction that addresses this issue by reducing the window
width, it is hypothesized that the spokes sampled earlier, regardless of their temporal
distance from the last time step tns, still contribute to the precise recovery of the im-
age. In this study, without compromising the window width, the intra-frame motion
compensation model TransSin-UNet attends over all spokes as well as their associated
spatial and temporal information in the k-space, and derives the final-position image at
the time of the last shot.
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Figure 5.1: Schematic diagram of the motion-dependent radial sampling and the
overall framework of the proposed method. This figure is adapted from material
originally published in [166].

5.1.2 Intra-frame motion compensation network: TransSin-UNet

5.1.2.1 TransSin-UNet model

Convolutional neural networks excel at identifying information associated with specific
frequency ranges, making them particularly effective for Cartesian problems. Unlike
Cartesian cine-MRI, where later acquired data are concentrated in specific high- or low-
frequency regions (along the phase encoding direction) of the k-space, such as HFC in
linear sampling and LFC in high-low sampling, radial sampling presents fundamentally
different complexities.

Firstly, each spoke in the radial trajectory passes through the origin and uniformly
spans both high and low frequencies in the Fourier domain. Secondly, the sliding win-
dow approach introduces variability, as the first spoke within a reconstruction window
can originate at any arbitrary position, defined by its starting angle γ, resulting in
unique trajectory coordinates for each frame. Furthermore, in contrast to linear radial
trajectories, where temporally close spokes are also spatially close, (tiny) golden angle
acquisitions interleave newly acquired spokes with previously acquired ones. Conse-
quently, the talks among the spokes must be modeled with consideration of both spatial
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and temporal adjacency. However, CNNs typically leverage spatial locality by restricting
neuron connections to neighboring regions, resulting in a limited receptive field that is
inadequate for attending long-distance interactions. To address the complexities of the
radial problem, alternative architectures are required. Attention mechanisms, which
can be viewed intuitively as a sophisticated form of CNN with adaptive and learnable
receptive fields, have emerged as a promising solution.

Therefore, in this work, TransSin-UNet is proposed as an intra-frame motion com-
pensation model especially tailored to reduce motion-related imaging errors in radial
cine-MRI. As shown in Fig. 5.2, the model integrates a sinogram transformer encoder
(referred to as SinTE) and a UNet to perform dual-domain operations. On the one
hand, imaging errors caused by intra-frame motion of the target originate in the Fourier
domain, therefore, an intuitive strategy to mitigate these errors involves processing
the acquired data directly in the k-space, aligning the temporal spokes with those of
the ground-truth image. This sequence-to-sequence regression is facilitated by the
transformer encoder, the prominent architecture of choice in establishing long-range
dependencies among the input, leveraging its self-attention mechanism. On the other
hand, given that the downstream tasks of MRgRT rely on cine-MR image data, the UNet
refines the reconstruction through a pixel-level fine-tuning within the image domain,
facilitated by its exceptional capacity to capture intricate local details.

Figure 5.2: TransSin-UNet model. The architecture integrates a sinogram transformer
encoder (SinTE) with a UNet to perform dual-domain processing. SinTE learns spatial-
temporal dependencies among sinogram representations of radial spokes, performing
sequence-to-sequence regression in the projection domain to align the temporal spokes
with the ground-truth; The UNet performs pixel-level fine-tuning within the image
domain. This figure is adapted from material originally published in [166].
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As illustrated in Fig. 5.2, the complex-valued radial spokes are first reorganized
sequentially based on their acquisition time steps. Considering the power spectrum
characteristics of medical images, where the central k-space exhibits significantly higher
energy than the peripheral regions, the values along each spoke span a wide range
of magnitudes. Directly using these values as input may lead to poorly conditioned
gradients of the non-linear activation functions in the transformer encoder, potentially
hindering convergence. To address this, a mapping of the spoke data from the frequency
domain to the projection domain is considered, based on the Fourier projection-slice
theorem.

The theorem states that a slice of the 2D Fourier transform of a function, taken
along a line passing through the origin, is equivalent to the Fourier transform of the
projection of the 2D function onto a parallel line. Therefore, it follows that:

F−1
1 S(ω cos θ, ω sin θ) =

∫ ∞

−∞
S(ω cos θ, ω sin θ)e2πipωdω = Rθ[f ](p) (5.1)

where F−1
1 represents the inverse 1D Fourier transform operator; S(ω cos θ, ω sin θ)

signifies the radial k-space spoke at angle θ; and Rθ[f ](p) denotes the Radon transform,
which computes line integrals and projects the image onto the line at angle θ.

Fig. 5.3 illustrates the conversion relationships between the spatial, projection and
frequency domains as described by the Fourier projection-slice theorem. In the spatial
domain, the projection axis (p-axis) forms an angle θ with the x-axis. The projection
of the image onto the p-axis is computed by applying the Radon transform along a set
of parallel lines perpendicular to the p-axis (blue lines). The result of this process is
visualized in the projection domain as a graph of Rθ[f ](p), providing the line integral
values as a function of position along p-axis. Rθ[f ](p) further corresponds to a line
in the sinogram space, which compiles projections over a range of angles. A radial
spoke at angle θ in k-space, represented along the ω-axis (parallel to the p-axis), can
be viewed as a slice through the frequency domain. Since Rθ[f ](p) and S(ω) are 1-
dimensional Fourier transform pairs, the frequency components can be mapped back to
the projection domain, converting the spoke signal values to a scale range comparable
to the original image intensity values.

Consequently, each spoke is inversely Fourier transformed to yield a representation
in the projection domain of the image along its angle, known as its sinogram represen-
tation. This process reduces the dominance of central k-space values, ensuring a more
balanced magnitude distribution across all input dimensions. With np representing the
number of readout points sampled along each spoke, the real and imaginary parts of
the sinogram representation for each spoke are stacked into a 2np-dimensional vector,
which is treated as a token of the input sequence. The token vectors then pass through
the sinogram transformer encoder, which models their spatial-temporal correlations
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and generates the corrected sinogram as output. Afterward, each row of the output
sinogram is converted to complex form and translated back to k-space using a 1D
Fourier transform. Subsequently, the process involves simultaneous and parallel image
reconstruction with (i) the original k-space spokes to obtain the motion-corrupted
image, and (ii) transformer-encoder corrected spokes to obtain the SinTE-corrected
image. The reconstruction is realized by 2D inverse NuFFT based on the individual
k-space trajectory of each frame. Finally, with the real and imaginary parts represented
as separate channels, the two complex-valued images are concatenated and fed into
the UNet to estimate the real-time final-position image.

Figure 5.3: The relationship between the spatial, projection and frequency domains
as described by the Fourier projection-slice theorem. Rθ[f ], F1 and F−1

1 represent the
Radon transform, 1D Fourier transform (FT), and 1D inverse Fourier transform (IFT)
operators, respectively. This figure was originally published in [166].

5.1.2.2 Joint loss function

To guide a stable training process of the network, a joint loss function L is defined as a
weighed linear combination of the sinogram loss Lsin and the reconstructed image loss
Limg:

L = α× Lsin + Limg (5.2)
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where α is the weight parameter. In this work, the L1 loss is used to quantify the
discrepancy between the network output and the ground truth. Consequently,

Lsin =
∑
θ,p

|T [Rfmotion (θ, p)]−Rfref (θ, p)| ;

Limg =
∑
x,y

|fout (x, y)− fref (x, y)|
(5.3)

where T represents the sinogram transformer encoder; Rfmotion(θ, p) signifies the
motion-corrupted sinogram, i.e. the input of T; fout(x, y) is the output image of the
TransSin-UNet/UNet; and Rfref(θ, p) denotes the reference sinogram calculated from
the ground-truth final-position image fref (x, y).

5.1.2.3 Subnetwork: Sinogram transformer encoder (SinTE)

The architecture of SinTE is outlined in Fig. 5.4, consisting of the positional encoding,
N = 8 identical transformer encoder blocks, and a linear output layer.

Figure 5.4: The architecture of the Sinogram Transformer Encoder. This figure is
adapted from material originally published in [166].

Theoretically, positional encoding should be implemented to provide the trans-
former encoder with the position information of the spokes in both the spatial and
temporal dimensions, which is closely tied to their dependencies. The relative or abso-
lute temporal positions of the spokes within each frame are intuitively encoded based on
their acquisition time step. However, in the spatial dimension, the absolute positions of
the spokes are influenced by the random starting angle γ of the first shot for each frame.
To simplify the encoding process, the spatial and temporal positional encodings are
unified by considering only the relative spatial positions of the spokes, which depend
exclusively on their acquisition time step under the condition of a constant angular
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increment of ψ between temporally consecutive spokes. To this end, based on the
properties of sinusoidal functions, the position encoding matrix PE is defined as [167]:

PE (idx, 2i) = sin
(
idx/100002i/dmodel

)
PE (idx, 2i+ 1) = cos

(
idx/100002i/dmodel

) (5.4)

where idx ∈ [1, 2, ..., ns] is the time step index of the token; 2i and 2i + 1 denote the
dimensions; dmodel is the total dimensionality of each spoke vector, which is set to
dmodel = 2np in this work. The generated positional encoding matrix is visualized in Fig.
5.5. The function (Eq. 5.4) is hypothesized to enable the model to easily attend to the
relative positions of the spokes. As for a fixed offset s, PE(idx+ s) can be represented
as a linear transformation of PE(idx). The obtained positional encoding values are
directly added to their corresponding input tokens.

Figure 5.5: Visualization of the positional encoding matrix generated with sinusoidal
functions.

Each identical block in the encoder comprises two sub-layers: a multi-head self-
attention mechanism and a position-wise fully connected feedforward network (FFN).
A residual connection is employed around each of the two sub-layers. To ensure
stable gradient behavior during initialization and avoid issues such as exploding or
vanishing, the pre-LN structure [168] is adopted, placing the layer normalization inside
the residual connection.

In the self-attention mechanism, the input tokens are related through attention
scores to compute a contextualized representation of the sequence. The attention
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operation for each head is defined as [167]:

Attention(Q,K,V) = Softmax

(
QK⊤
√
dk

)
V. (5.5)

where the query matrix Q = XWq, key matrix K = XWk, and value matrix V = XWv

are linear projections of the input X (formed by all input tokens), with X, Q, K,
V ∈ Rns×dmodel. To allow the model to jointly attend to information from different
representation subspaces across different positions, multi-head attention was employed:

MultiHead(Q,K,V) = Concat( ˙head1, ..., headh)W
O

where headi = Attention(QWQ
i ,KWK

i ,VWV
i )

(5.6)

where WQ
i , WK

i ,WV
i ∈ Rdmodel×dk , and WO ∈ Rhdk×dmodel are parameter matrices for

the projection; h represents the number of attention heads, which is set to h = 8 in this
work; dk = dmodel/h.

FFN consists of two linear transformations with a non-linear activation function in
between. The inner-layer has the dimensionality of dff = 1024.

5.1.2.4 Subnetwork: UNet

The UNet subnetwork adopts a 4-level architecture. Each level, linking the contracting
and expansive paths via skip-connections, comprises a double convolution block with
3× 3 convolution kernels, followed by batch normalization and LeakyReLU activation.
As previously detailed, the UNet processes concatenated inputs, consisting of the
motion-corrupted image and the image reconstructed from the SinTE-corrected spokes,
to generate the estimated final-position image. The real and imaginary parts of all
complex-valued images are separated into two distinct channels, resulting in input and
output channel numbers of 4 and 2, respectively.

The first level contains 32 feature channels, which are doubled sequentially at
each subsequent level. Down-sampling within the contracting path is performed using
2× 2 max pooling with a stride of 2, while up-sampling in the expansive path employs
up-convolution [169] followed by concatenation. A 1× 1 convolution operation layer
serves as the linear output layer of the network.

5.1.2.5 Decomposition of online radial trajectories

The spatial-temporal information of the acquired data is recorded by the online radial
k-space sampling trajectory, where consecutive spokes are arranged with a successive
angular increment ψ. In this Chapter, ψ is set to either the golden angle ψgold or the tiny
golden angle ψN .
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The use of a sliding window, where the first shot within a given reconstruction
window may begin at any arbitrary position (represented by γ), results in each frame
possessing a distinct sampling trajectory. As depicted in Fig. 5.6, instead of storing the
online trajectory coordinates for each frame individually, a unified default trajectory—
starting at 0◦ and determined solely by ψ—is used in conjunction with the frame-specific
random starting angle γ. The 2D inverse NuFFT employed in the model requires density
correction factors specific to the trajectory to ensure uniform k-space sampling density.
However, the online calculation of DCFs can be computationally expensive. With the
default trajectory, the corresponding default DCFs can be precomputed. Consequently,
the samples are populated onto the default k-space trajectory, and the image is recon-
structed, which is equivalent to a counterclockwise rotation in the frequency domain.
According to the rotational invariance property of the Fourier transform (Appendix
A.2), the true image can then be recovered by simply rotating γ clockwise in the spatial
domain.

Figure 5.6: Decomposition of online radial trajectory coordinates and image reconstruc-
tion with 2D inverse NuFFT. This figure is adapted from material originally published
in [166].

5.1.3 Radial dataset

All 25 simulated lung cancer patients were utilized to generate the radial dataset (see
Section 3.4.1). For each patient, six original 2D+t radial cine-MR sequences were
chosen from the 4D MRI phantom, covering sagittal, coronal and axial planes, with
each plane containing two slices. The image matrices were produced with dimensions
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of 256× 256-pixel arrays, featuring a spatial resolution of 1.5 mm × 1.5 mm. The SNR
was configured to SNR = 10dB. All images were normalized by dividing them by their
maximum magnitude values.

Following the methodology outlined in Chapter 3, 14 intra-frame motion patterns
were employed to generate motion-corrupted frames from each original cine-MR se-
quence. For each pair of slices from the same plane, one slice was randomly assigned 7
out of the 14 patterns, while the other slice received the remaining 7. A total of 176
spokes were acquired for each frame, corresponding to ns = 176 shots, with np = 340

readout points sampled per spoke.
For each frame, motion-corrupted radial k-space spokes with a random starting

angle γ for the first shot were acquired as input, and the corresponding final-position
image served as the ground truth. The radial k-space spokes associated with the ground-
truth image were also saved to facilitate the calculation of the sinogram loss Lsin.

With ψ set to the golden angle ψgold ≈ 111.24◦, and two tiny golden angles,
ψ5 ≈ 111.24◦ and ψ10 ≈ 16.95◦, three radial datasets were generated for network train-
ing. Each dataset comprised 16800 (20 patients × 6 slices × 20 frames × 14 patterns
× 1/2) input-output sample pairs for training (18 patients) and validation(2 patients),
with the remaining 5 patients reserved for testing purposes.

5.1.4 Comparative Architectures and Implementation Details

To enable a comparative analysis against the TransSin-UNet, networks were also trained
with architectures relying solely on a SinTE of N = 12 identical blocks and a 5-level
UNet, using Lsin and Limg, respectively. The first 4 levels of UNet matched those in
the TransSin-UNet, except for the input channel number, as only the motion-corrupted
image was fed into it.

It is worth noting that the configurations of these comparative architectures, such
as the number of layers, were determined following the typical designs of Transformer
and UNet models commonly used in the field [159,167]. Given the critical importance
of inference time in real-time motion management applications, a balance between
performance and computational efficiency was pursued. Consequently, the TransSin-
UNet in this study was designed with a more compact yet sufficiently deep architecture,
incorporating an 8-layer Transformer Encoder and a 4-level UNet. Preliminary exper-
iments were conducted and indicated that varying the number of layers had only a
marginal impact on their performance. Fig. 5.7 shows a comparison of the training and
validation loss curves across these different experimental conditions.
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Figure 5.7: Training and validation loss curves for comparative architectures with vary-
ing numbers of layers. The notations "TransSin_n-UNet_m", "SinTE_n" and "UNet_m"
refer to TransSin-UNet, SinTE and UNet models, respectively, where n indicates the
number of SinTE blocks and m denotes the number of UNet layers. The dashed lines
represent the validation loss, while solid lines correspond to the training loss. This
figure was originally published as appendix material in [166].

The effectiveness of the models in image quality enhancement was quantitatively
evaluated via a range of metrics, including structural similarity (SSIM), MAE, MSE or
the normalized root mean squared error (NRMSE), which is normalized by the average
Euclidean norm of the ground-truth image. The SSIM between two images x and y is
formulated as [170]:

SSIM(x, y) =

(
2µxµy + C1

µ2
x + µ2

y + C1

)
·
(

2σx,y + C2

σ2
x + σ2

y + C2

)
(5.7)

where µx and µy are the mean values of x and y; σ2
x and σ2

y represent the variance; σx,y
is the covariance between x and y. C1 = (K1L)

2 and C2 = (K2L)
2 are constants used to

stabilize the division when the denominator is weak, with L being the dynamic range
of the pixel-values. Typically K1 = 0.01, K2 = 0.03, and L = 2#bits per pixel − 1.

To quantitatively assess the target positioning accuracy of the models, GTV con-
tours were generated for all sagittal frames containing tumors in the testing datasets,
following the process detailed in Section 4.1.3. The DSC and average Hausdorff dis-
tance (HDavg) were calculated to compare the GTV contour with the ground truth. The
HDavg is defined as:

HDavg(A,B) =
1

2

(
1

|A|
∑
a∈A

min
b∈B

∥a− b∥+ 1

|B|
∑
b∈B

min
a∈A

∥b− a∥

)
(5.8)

where ∥a− b∥ is the Euclidean distance between points a and b. Consequently, a lower
HDavg signifies that the GTV contour is closer to the ground truth.
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Inaccuracies or complete failures in GTV contouring with the optical-flow algorithm
were observed in the radial testing datasets, as illustrated representatively in Fig. B.1
of the appendix. To alleviate this issue, a criterion was established for each comparison
group:

A (GTVref )−A (GTVtrue) ≤ 10%×A (GTVref ) (5.9)

where A represents the area calculator; GTVtrue denotes the GTV contour obtained
from the ground-truth final-position image via the optical-flow algorithm; and GTVref

denotes the GTV contoured on the reference frame. This criterion is grounded on the
assumption that tumor motion primarily follows a rigid pattern along the superior-
inferior and anterior-posterior directions within the sagittal plane. Comparison groups
with ground-truth GTVs that failed to fulfill this criterion were filtered out and excluded
from the quantitative GTV positioning accuracy evaluation process.

To analyze whether there were statistically significant differences among (i) the
performance of the three models, or (ii) the three datasets, Kruskal-Wallis tests were
conducted with a significance level set at 0.01. If the Kruskal-Wallis test revealed a sig-
nificant difference, a post-hoc Dunn test was performed to enable pairwise comparisons
and further examine the specific variations.

NuFFT in TransSin-UNet was implemented using the torchkbnufft toolkit [171].
All the networks were developed with the PyTorch library [164], and were trained
and tested on an NVIDIA A40 GPU with 48GB of memory, with a batch size of 16.
The AdamW optimizer [172] was employed throughout the training process. For
TransSin-UNet and SinTE, the learning rate was adjusted with a cosine annealing
schedule [173], ranging from 10−4 to 5× 10−6; the training and validation loss curve
approached stability after 500 epochs. For UNet, the learning rate started at 10−4 and
was reduced by a factor of 0.8 if no improvement was observed in 12 epochs; the best
validation loss was obtained at epoch 151. The weight parameter α in the joint loss
function (Equation 5.2) was set to 10 to balance the two components.

5.2 Results

5.2.1 Inference time

The time consumed by the intra-frame motion compensation models is of vital im-
portance in the application scenario of this study. Table 5.1 summarizes the average
computational time of the models on the testing dataset. Notably, in the TransSin-
UNet, the motion-corrupted image and the SinTE-corrected image are reconstructed in
parallel before being fed into the UNet. Therefore, all compensation models involve
one round of image reconstruction time, which remains constant compared to the
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conventional approach involving direct image reconstruction with motion-corrupted
spokes in the reconstruction window. To ensure a fair comparison, data transfer and
image reconstruction time costs were excluded from the analysis. Instead, the focus
was placed solely on assessing the additional time required to compensate for the
intra-frame motion.

It is demonstrated that all models can process one frame within a few milliseconds
(ms), significantly shorter than the time span within the reconstruction window. Among
them, the TransSin-UNet took an average of 4.87 ms. This outcome highlights the
efficient performance of the TransSin-UNet, making it well-suited for real-time motion
compensation applications.

Table 5.1: Inference time (mean ± std.) of intra-frame motion compensation models
across the testing dataset, excluding data transfer and image reconstruction time. This
table was originally published in [166].

TransSin-UNet UNet SinTE

Subnetwork:
SinTE(N=8)

Subnetwork: UNet
(4-level)

Total (5-level) (N=12)

Time per frame
(ms)

3.14± 0.47 1.73± 0.28 4.87± 0.76 1.97± 0.40 4.28± 0.61

5.2.2 Performance Evaluation

Table 5.2 lists the quantitative testing results before and after intra-frame motion
compensation with different models across the three datasets. Compared with other
models, TransSin-UNet achieved the most substantial reduction in NRMSE and improve-
ment in SSIM: on average, NRMSE was halved, and SSIM increased by 10.1%. The
UNet was quantitatively less effective than TransSin-UNet, yet it was found to perform
slightly better than SinTE across all investigated test subjects. The resulting p-values
of Kruskal-Wallis tests and post-hoc Dunn tests within each dataset were consistently
below 0.01, indicating statistically significant differences among the performances of
the three models.

Table 5.2 also demonstrates minimal variations in results across different test sets.
Further analysis to explore statistically significant differences among the three datasets
was conducted using Kruskal-Wallis tests on metrics of MSE, MAE and SSIM, both
before and after intra-frame motion compensation with each model. As shown in Table
B.1 in the Appendix, no significant difference among the three datasets was observed,
except for SinTE, which yielded significantly different results among the datasets in
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terms of SSIM. Post-hoc Dunn tests for SSIM values obtained with SinTE indicate
significant differences between ψ10 and the other datasets. The specific p-values are
provided in Table B.2 in the Appendix.

Table 5.2: Quantitative comparison of testing frames pre- (Motion-Corrupted) and post-
intra-frame motion compensation. NRMSE and SSIM (Median [IQR]) are reported
for each dataset; Mean values across all datasets are provided. The best results are
highlighted in bold. This table was originally published in [166].

NRMSE SSIM (%)

ψgold ψ5 ψ10 Mean ψgold ψ5 ψ10 Mean

Motion-Corrupted
0.147

[0.160]
0.146

[0.160]
0.146

[0.158]
0.188

77.6
[32.6]

77.3
[32.3]

77.5
[32.7]

72.9

TransSin-UNet
0.094

[0.059]
0.092

[0.054]
0.091

[0.056]
0.092

82.2
[16.4]

82.1
[15.7]

82.2
[16.2]

83.0

UNet
0.130

[0.119]
0.133

[0.122]
0.134

[0.124]
0.144

79.8
[20.3]

79.4
[19.8]

79.4
[20.5]

79.4

SinTE
0.150

[0.051]
0.150

[0.050]
0.148

[0.050]
0.159

70.8
[8.7]

70.7
[8.9]

71.6
[8.9]

69.6

Similar to the Cartesian experiments (in Section 4.2), intra-frame motion in the
radial testing set was also categorized into three scenarios: Static, Normal, and Extreme.
Fig. 5.8 compares the MSE of the testing frames across these motion scenarios before
and after intra-frame motion compensation, while Fig. 5.9 depicts the GTV positioning
accuracy of all sagittal frames containing tumors.

It is apparent from the results in Fig. 5.8 that, in the Static scenario, where the
target remains stationary throughout the reconstruction window, the image before
compensation is identical to the ground truth. TransSin-UNet and UNet exhibited
comparable performance in this scenario, with the original data showing marginal
changes after being processed by either of these two models. Notably, TransSin-UNet
displayed slightly better stability, as indicated by its smaller interquartile range (IQR)
in terms of image MSE. In contrast, SinTE appeared relatively weaker in maintaining
image fidelity: the MSE exhibited noticeable increases, and numerous outliers were
found in DSC, suggesting that the degradation of image quality could potentially impact
the effectiveness of the applied optical-flow registration approach.
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Figure 5.8: Box plot comparing the MSE of the testing frames pre- (Motion-Corrupted)
and post- intra-frame motion compensation across three motion scenarios: Static,
Normal and Extreme.The whiskers boundaries are based on 1.5 IQR. Note: in the Static
scenario, the image before compensation is motion-corruption-free but is still labeled
as "Motion-Corrupted" for convenience. Figure adapted from [166].

Figure 5.9: Box plot comparing target positioning errors pre- (Motion-Corrupted) and
post- intra-frame motion compensation across three motion scenarios: Static, Normal
and Extreme. DSC of GTV in all the sagittal testing frames containing tumors. The
whiskers boundaries are based on 1.5 IQR. Note: in the Static scenario, the image
before compensation is motion-corruption-free but is still labeled as "Motion-Corrupted"
for convenience. Figure adapted from [166].

TransSin-UNet outperformed the other two models in both Normal and Extreme
scenarios, effectively compensating for all kinds of intra-frame motion. This was evi-
denced by a remarkable reduction in image MSE and improvement in the median DSC
of GTV: from 89.4% and 65.4% to 97.6% and 94.9% in Normal and Extreme scenarios,
respectively. The UNet model surpassed SinTE in terms of image MSE among the
Normal cases, while both achieved similar accuracy regarding GTV contour positioning.
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Nevertheless, SinTE exhibited greater potential in eliminating Extreme intra-frame
motion deterioration effects compared to UNet.

Since a tail of very low DSC values was observed in Fig. 5.9, a separate analysis
was conducted on the outliers identified in the boxplot. Through individual inspections,
it was determined that, apart from two cases listed in Table 5.3 attributed to sudden
rapid motion of the target during the final stages of signal acquisition within the recon-
struction window, all other DSC outliers of TransSin-UNet were a result of inaccuracies
or even complete failures in the optical-flow algorithm. Despite filtering out comparison
groups with incorrectly contoured ground-truth GTVs following Eq. 5.9, there were
cases, such as "Wrong Case 1-3" and "Wrong Case 3" in Fig. B.1 of the Appendix,
where the area of the ground-truth GTV met the criterion, but the optical-flow failed to
contour the GTV on TransSin-UNet images or misplaced it entirely. Notably, these cases
were deemed completely acceptable upon visual inspection, particularly in the Static
scenario where the images and GTV contours of TransSin-UNet and UNet exhibited no
perceptible differences from the ground truth.

Table 5.3: Outliers in TransSin-UNet performance attributed to sudden rapid motion
of the target during the final stages of frame acquisition. This table was originally
published in [166].

Patient
ID

Scenario Dataset
Initial/Final
GTV
centroid
position

Extremum
GTV
centroid
position

Time
step of
extremum

DSC (%)

Motion-
Corrupted

TransSin-
UNet

UNet SinTE

2 Normal ψ10 178.2 mm 181.7 mm 136 77.8 83.1 69.4 78.6

2 Normal ψ5 178.2 mm 181.7 mm 136 77.5 85.6 62.3 78.2

The two cases in Table 5.3 originate from the same frame, experiencing identical
intra-frame motion trajectories but differing in azimuthal radial profile increments.
It can be observed that during the acquisition of the first 136 spokes, the GTV COM
moved by 3.5 mm from its initial position and rapidly retracted back over the course of
the remaining 40 spokes’ acquisition (around 22.7% of the overall acquisition time).
This indicates that the instantaneous velocity of the target significantly exceeded 72.6
mm/s, which should be regarded as an Extreme scenario. Nevertheless, TransSin-UNet
obtained the highest DSC value among the models in these cases.

Fig. 5.10 presents representative sagittal and coronal frames from the testing
patients breathing in Normal conditions, showcasing their imaging errors. These
instances were chosen without bias towards selecting models exhibiting either favorable
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or unfavorable performance. The patient was inhaling and lung tumor was generally
moving downwards during the acquisition of the sagittal frame. Conversely, the coronal
frame was acquired during exhalation, with the tumor moving upwards. However, the
position derived from the motion-corrupted image lagged behind the ground-truth final
position of the tumor corresponding to the last shot within the reconstruction window.
Substantial errors were appreciable around the edges of the moving structures in the
motion-corrupted image, indicating evident imaging latency.

Figure 5.10: Image comparison pre- and post- intra-frame motion compensation.
Exemplary sagittal (left) and coronal (right) frames are selected from the Normal
motion cases of the testing patients. From top to bottom: Original image; Zoom-in
image of the tumor taken from identical coordinate positions highlighted by the red
box in the original image, with horizontal reference lines added to aid in perceiving
the position; Error map, depicting the image difference with respect to the reference
(calculated by subtracting the ground-truth); Intensity profile of the line along the
yellow arrow in the original image. Figure reprinted from [166].

Among the models, TransSin-UNet demonstrated the closest tumor position and
shape to the ground-truth, while UNet and SinTE tended to locate the tumor between
the motion-corrupted and the ground-truth, offering only a partial compensation. By
employing TransSin-UNet, the error map, as well as the intensity profile along an
exemplary line in the motion-corrupted image, was effectively corrected, achieving
the highest agreement with the ground-truth. While SinTE displayed slightly better
performance over the UNet model in preserving the tumor shape, particularly in the
coronal example, it exhibited a tendency to produce more blur in the output images.

A few failure cases of the UNet were observed. Fig. 5.11 shows one example
where the errors in the UNet-generated image exceed those in the motion-corrupted
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input. This indicates that the primary focus of the UNet lies in enhancing the clarity of
the blurred structural edges by refining intensity, but it may have misinterpreted the
anatomical structures corresponding to these areas. In contrast, SinTE and TransSin-
UNet prioritize target positioning, and TransSin-UNet also demonstrates a high capacity
for deblurring.

Figure 5.11: Representative example where UNet failed to provide effective compen-
sation. From top to bottom: Original image; Zoomed-in image of the tumor taken
from the same coordinate positions highlighted by the red box in the original image,
with horizontal reference lines added to aid in perceiving the position; Error map,
depicting the image difference relative to the reference (calculated by subtracting the
ground-truth).

An additional target positioning accuracy evaluation was conducted, focusing on
sagittal test subjects experiencing Normal motion conditions from all the datasets. These
subjects were categorized into three subgroups based on the GTV COM shift of the
motion-corrupted image from the ground-truth: Small (COM shift ≤ 1.5 mm), Medium
(1.5 mm < COM shift ≤ 4.5 mm) and Large (COM shift > 4.5 mm). In Table 5.4, the
GTV structures before and after intra-frame motion compensation were compared to
the ground-truth via the DSC and HDavg. The results from the motion-corrupted images
underscored the importance of implementing compensation in radial cine-MR, given
that the intra-frame motion in Medium and Large groups yielded median DSC values as
low as 78.3% and 62.2%, respectively.
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Table 5.4: GTV positioning accuracy of test subjects moving in a Normal scenario, pre-
(Motion-Corrupted) and post- intra-frame motion compensation. Median [IQR] of DSC
and HDavg are reported for the Small, Medium and Large subgroups, respectively. Mean
values across all subgroups are provided. The best results are highlighted in bold. This
table was originally published in [166].

DSC (%) HDavg (mm)

Small Medium Large Mean Small Medium Large Mean

Motion-Corrupted
96.1
[6.8]

78.3
[9.4]

62.2
[14.0]

85.1
0.039

[0.069]
0.341

[0.266]
1.111

[0.650]
0.389

TransSin-UNet
98.4
[2.1]

95.8
[5.0]

94.1
[5.0]

96.2
0.016

[0.021]
0.042

[0.051]
0.062

[0.049]
0.047

UNet
97.1
[4.4]

92.4
[7.3]

84.6
[26.0]

92.0
0.028

[0.045]
0.080

[0.092]
0.323

[0.761]
0.192

SinTE
97.2
[2.8]

90.9
[6.1]

86.7
[10.5]

92.9
0.028

[0.028]
0.094

[0.074]
0.163

[0.213]
0.125

Within each group, TransSin-UNet emerged as the most powerful model in re-
ducing the target positioning errors. It improved the median DSC by 17.5% in the
Medium group and by 31.9% in the Large group, while reducing the median HDavg by
approximately 59%, 88%, and 94% from the initial values of 0.039, 0.341, and 1.111
mm in the Small, Medium, and Large groups, respectively. Moreover, the decrease in
IQR demonstrated the stability of its performance.

Less effective than TransSin-UNet, UNet and SinTE delivered similar outcomes in
Small and Medium groups: they drove the median DSC to over 97.1% in the former
group and over 90.9% in the latter; additionally, they brought a decrease in the median
HDavg to 0.028 mm in the Small and below 0.094 mm in the Medium group. Neverthe-
less, SinTE demonstrated superior performance compared to UNet in the Large group,
increasing DSC by 24.5% and reducing HDavg by 0.948 mm (around 85% of the initial
value).

Targets and OARs have varying extents of structural deformation during MRgRT.
Besides assessing the models’ accuracy on small mobile targets, their performance
concerning large target deformation was further evaluated. This assessment can be
conducted by examining the axial slices where specific inter-slice motion can be inter-
preted as deformation in 2D, as shown in Fig. 5.12 and Fig. 5.13.

Comparing the motion-corrupted image with the ground truth, it can be inferred
that significant intra-frame deformation likely occurred in the lung, the liver, and
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around the heart within the time span of the reconstruction window.
In Fig. 5.12, the liver area derived from the motion-corrupted image appeared

notably diminished and the tumor was nearly imperceptible, reflecting substantial
geometric tracking errors of MR-guidance. All three compensation models were able
to successfully detect the presence of the tumor in the slice at the end of the frame
acquisition. Particularly noteworthy, TransSin-UNet closely mirrored the true shapes of
all the anatomical structures. Although UNet tended to produce a sharper tumor image
compared with SinTE, its performance in restoring the shapes of the liver and blood in
the cardiac region was inferior; conversely, SinTE excelled in capturing large structural
changes but was less effective in preventing image blurring.

In Fig. 5.13, the blood within the cardiac image underwent a notable shape trans-
formation during the time span of the reconstruction window. The shape distortion
in the motion-corrupted image was effectively rectified, and was aligned closely with
the ground-truth using TransSin-UNet. Moreover, SinTE also performed well in this
case, despite yielding blurred edges. This suggests that both models have gained the
ability of extracting the latent structural information of the final-position image from
the chronologically last few spokes in the window. However, the UNet model primarily
focused on deblurring the motion-corrupted image and enhancing the details, but was
incapable of delineating a correct structural shape.

Figure 5.12: Deforming target evaluation: Representative axial frames under Normal
motion conditions. From top to bottom: Original image; Zoomed-in view of the tumor,
highlighted by the red box in the original image; Error map showing the difference
with respect to the reference, calculated by subtracting the ground truth. This figure is
adapted from material originally published in [166].
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Figure 5.13: Deforming target evaluation: Representative axial frames under Normal
motion conditions. From top to bottom: Original image; Zoomed-in view of the cardiac
region, highlighted by the red box in the original image; Error map illustrating the
difference relative to the reference, computed by subtracting the ground truth. This
figure is adapted from material originally published in [166].

5.3 Discussion

This chapter investigates the feasibility of reducing imaging errors in radial cine-MRI
by implementing deep learning-based intra-frame motion compensation techniques.

Instead of compromising the reconstruction window width, this study hypothesized
that the radial spokes positioned earlier in the window could still provide effective
information for final-position image reasoning. TransSin-UNet was designed to op-
erate in both the projection and spatial domains. The SinTE subnetwork learns the
long-distance spatial-temporal dependencies between the sinogram representations
of the spokes, calibrating them to align with those of the ground-truth final-position
image. Furthermore, the UNet subnetwork is responsible for fine-tuning the local
details, enabling pixel-level enhancement in the spatial domain.

By mapping the spoke data from the frequency domain to the projection domain
based on the Fourier projection-slice theorem, the spoke signal values were converted
to a scale range comparable to the original image intensity values. This technique
successfully addresses the issue of large magnitude disparities inherent in k-space data,
thereby improving gradient behavior for the non-linear activation functions in the
transformer encoder and contributing to a more stable training process.

105



Chapter 5 INTRA-FRAME MOTION COMPENSATION FOR RADIAL CINE-MRI

The relative spatial and temporal positional encodings are unified in SinTE based
on the chronological order of acquired spokes, rendering the model agnostic to a
specific radial sampling trajectory. Consequently, for a given azimuthal radial profile
increment ψ, the model can accommodate trajectories with any arbitrary initial spoke
angle.

Inference time is a critical factor for the practical deployment of real-time motion
management. Given that the output of the SinTE subnetwork is from the same domain
as the input, unlike existing work on k-space transformer that retains both the en-
coder and decoder structures [108,131], TransSin-UNet only incorporates the encoder
component of the transformer. This design choice circumvents the potential time con-
sumption associated with an auto-regressive decoder. Additionally, the decomposition
of online radial trajectories eliminates the need for the time-consuming online DCF
computation. To date, in clinical MR-Linac systems, the frame rate of radial cine-MRI
is 8 Hz (i.e. 125 ms/frame) [32], which is related to the stride of the sliding window
shown in Fig. 5.1. As shown in Table 5.1, under the GPU configuration utilized in this
study, TransSin-UNet introduced only an additional 4.8 ms per frame compared to the
conventional approach—an overhead that is negligible when considering the duration
of the reconstruction window.

In Section 5.1.2, TransSin-UNet and architectures relying solely on UNet or SinTE
were compared through extensive quantitative and qualitative evaluations.

Compared to SinTE, UNet displayed notable advantages in edge sharpening and
image deblurring (refer to Fig. 5.10 ∼ Fig. 5.13); quantitative results depicted in Fig.
5.8 and Fig. 5.9 demonstrated that the MSE approached zero in the Static scenario
and was lower in the Normal scenario. Nevertheless, the UNet model showed limited
effectiveness in compensating for larger anatomical changes. It failed in several cases,
as representatively shown in Fig. 5.11, and performed the worst in the Extreme sce-
nario (Fig. 5.8 and Fig. 5.9) among the three models. The median DSC in the Large
group (Table 5.4) was 2.1% and 9.5% lower than those of SinTE and TransSin-UNet,
respectively. The previous chapter highlighted the effectiveness of UNet in Cartesian
experiments, emphasizing its particular adeptness at identifying information associated
with specific frequency ranges and efficiently alleviating imaging errors induced by
varying levels of intra-frame motion. However, in a radial MR trajectory, each spoke
crosses the origin and uniformly spans both high and low frequencies of the k-space.
As clearly shown in Fig. 5.12 and Fig. 5.13, larger intra-frame anatomical changes pose
significant challenges for UNet in fully leveraging its advantages and generating precise
final-position structural shapes.

SinTE, on the other hand, utilizes positional encoding to directly incorporate the
relative spatial and temporal information of the spokes. The results from the Extreme
scenario (Fig. 5.8 and Fig. 5.9), the Large group (Table 5.4), and the deforming target
(Fig. 5.12 and Fig. 5.13) demonstrated SinTE’s capability to capture relatively large
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anatomical changes. However, SinTE was found to be less sensitive to smaller changes,
which can be attributed to its operation in the image’s projection domain.

As expected, TransSin-UNet integrates the strengths of both subnetworks, showcas-
ing significantly superior image quality and enhanced accuracy in target positioning.
Across all comparisons, TransSin-UNet consistently outperformed UNet and SinTE,
irrespective of the motion trajectories or amplitudes, with metrics assessing image
disparities achieving optimal values. In Table 5.4, the mean DSC of GTV in the in-
vestigated testing cases significantly improved, rising from 85.1% to 96.2%, while
the median HDavg in the Large group was notably reduced by 94%. Additionally, the
decrease in IQR further emphasizes the stability of the model. The final-position images
of subjects experiencing considerable intra-frame deformations were precisely derived
from the motion-corrupted radial spokes. These findings underscore the efficacy of
TransSin-UNet in mitigating radial cine-MR imaging errors by effectively accounting for
the target motion within the reconstruction window.

Table 5.2 compares the quantitative outcomes across three distinct datasets charac-
terized by varying angular increments: ψgold, ψ5 and ψ10, revealing minimal variation
among them. Specifically, motion-corrupted images acquired with different profile or-
dering schemes demonstrated similar sensitivity to the intra-frame motion, as evidenced
by the non significant p-value in the Kruskal-Wallis tests (Table B.1). This behavior is
explicable considering the incoherence properties of these trajectories: unlike the linear
radial trajectory where temporally close spokes are also spatially close, the (tiny) golden
angle acquisition may interleave the newly acquired spokes with the previously acquired
ones. As a result, in a specific time step interval, motion-related data variations do not
concentrate in a specific high- or low- frequency region but rather uniformly disperse
throughout the entire k-space. Although the input tokens changed with respect to ψ,
SinTE was able to yield comparable regression results in terms of pixel-wise metrics by
establishing their spatial-temporal interactions. Nonetheless, structure discrepancies
introduced by it can be statistically significant (see Table B.2). Moreover, when taking
similar motion-corrupted images as input, UNet operates in the spatial domain, and no
significant differences were observed in the output. As evidenced by p-values larger
than the significance level in all evaluating metrics, TransSin-UNet demonstrated strong
robustness to the azimuthal profile increment of the radial trajectories.

5.4 Conclusions

This chapter proposes reducing errors in radial cine-MR imaging by implementing intra-
frame motion compensation techniques. A novel network (TransSin-UNet) was designed
and successfully trained with datasets characterized by varying azimuthal k-space radial
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profile increments in lung cancer cases. The model effectively derived the final-position
image of the subject corresponding to the end time of the reconstruction window.
Results showed that TransSin-UNet outperformed architectures relying solely on UNet
or SinTE across all the investigated comparative experiments, leading to significant
improvements in image quality and target positioning accuracy. In conclusion, TransSin-
UNet demonstrated great potential in continuously compensating for target motion
within the sliding window of radial cine-MR acquisition, thereby enhancing real-time
imaging accuracy for MRgRT.
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Chapter 6

SUMMARY AND OUTLOOK

6.1 Summary

Motion-related imaging errors have been recognized as the primary contributor to
overall loop latency of MRgRT, leading to residual geometric tracking errors and, conse-
quently, affecting the effectiveness of active intra-fractional motion management. To the
best of the author’s knowledge, this study represents the first attempt to investigate the
feasibility of mitigating motion-related errors in real-time MR imaging by implementing
deep learning-based intra-frame motion compensation techniques.

Since MRI raw signal data are acquired in the frequency domain, a dedicated
procedure was developed in this thesis to investigate the dynamic MR imaging behavior.
The motion-dependent k-space sampling simulation revealed that, as the acquisition
of a single cine-MR frame occurs on the same time scale as physiological motion, the
resulting k-space incorporates signals from the target at varying positions, leading
to effective motion-induced errors in the spatial domain. For both linearly and fully
acquired Cartesian readout, as well as radial readout trajectories, intra-frame motion
resulted in an imaging latency of approximately 50% of the time span of the sampled
k-space data used for image reconstruction. This underscored the practical value of
implementing intra-frame motion compensation, particularly in cases of rapid breathing
or for anatomical structures influenced by the cardiac motion. An ill-posed inverse
problem was then formulated to recover the implicit real-time final-position image,
corresponding to the end of the frame acquisition, from the motion-corrupted image or
k-space.

To address this issue, data-driven deep learning-based approaches have emerged
as the most prominent solution, leading to the development of a methodology for intra-
frame motion dataset creation and augmentation, with the simulation code serving as
the data generator and focusing on rapid anatomical changes. Based on coarse-to-fine
grid-scale representation of patient-specific motion data, 25 4D MRI digital anthro-
pomorphic phantoms were generated to model lung cancer patients, and a dedicated
intra-frame motion model was constructed with a piecewise linear approximation be-
tween consecutive control points. Additionally, a motion pattern perturbation scheme
was introduced to comprehensively explore the potential anatomical structure positions
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and enhance the diversity of intra-frame motion trajectories. This framework estab-
lishes a foundation for generating and augmenting intra-frame motion datasets from
physical experimental data, supporting future deep learning applications in clinical
practice.

The in silico proof-of-concept study for Cartesian cine-MRI was presented in Chap-
ter 4. The UNet models were successfully trained to estimate the final-position images
at the end of acquisition from the motion-corrupted input, demonstrating high effec-
tiveness in intra-frame motion compensation. Quantitatively, for the testing dataset
analyzed in GTV contouring, the median DSC increased from 89% to 97%, while the
HD95 decreased from 4.1 mm to 1.4 mm. Additionally, geometric errors caused by
intra-frame anatomical deformations in certain regions were successfully corrected, in
terms of both target shape and position.

The network’s versatility was demonstrated in the undersampled Cartesian MRI
experiment, where it simultaneously performed undersampling-based acceleration and
intra-frame motion compensation, effectively mitigating both aliasing artifacts and
residual geometric tracking errors. Furthermore, saliency maps of the motion-corrupted
input highlighted the major contribution of later-acquired k-space data to model infer-
ence and, correspondingly in the spatial domain, the edges of the moving anatomical
structures at their final positions. These behaviors are particularly relevant in address-
ing concerns regarding the feasibility and reliability of deep learning approaches for
clinical implementation.

The in silico proof-of-concept study for radial cine-MRI was presented in Chapter
5. It was noticed that while radial sampling allows for nearly arbitrary frame rates
with sliding window reconstruction, imaging latency is independent of the frame rate
and instead depends on the temporal coverage of spokes within the reconstruction
window. Compared to Cartesian sampling trajectories, radial sampling exhibits distinct
characteristics. Firstly, each spoke passes through the origin of k-space and spans
both high and low frequencies. Secondly, with the sliding window method, the first
spoke within a specific window can be positioned at an arbitrary angle, resulting in
unique trajectory coordinates for each frame. Moreover, (tiny) golden angle acquisitions
may interleave newly acquired spokes with previously acquired ones, leading to cases
where temporally close spokes are not necessarily spatially close. Consequently, the
interactions among the spokes were expected to be modeled with consideration given
to both spatial and temporal adjacency.

Instead of compromising the window width, a novel network, TransSin-UNet, was
proposed to accommodate the nature of radial k-space readout trajectories. The model
operates in both the projection and spatial domains, with a joint loss function defined
as a weighted linear combination of respective losses from each domain. Specifically, a
transformer encoder with its attention mechanism was employed to model the long-
range dependencies between the spokes, aligning them with the ground truth, followed
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by pixel-level fine-tuning in the spatial domain with a UNet.
The reason for operating in the projection domain rather than the frequency do-

main is related to another important consideration: the power spectrum characteristics
of medical images, where the center of k-space exhibits significantly higher energy
than the peripheral regions, and the values along each spoke span a wide range of
magnitudes. Directly using these values as input may lead to poorly suited gradients
for the non-linear activation functions in the transformer encoder, potentially imped-
ing convergence. To address this, the model converts each spoke into its sinogram
representation, which corresponds to a projection of the MR image along that spoke,
as described by the Fourier projection-slice theorem. This transformation reduces the
dominance of central k-space values, ensuring a more balanced magnitude distribution
across all token dimensions and thereby facilitating stable processing in the transformer
encoder.

TransSin-UNet combined the advantages of transformer encoders in capturing rela-
tively large intra-frame anatomical changes and UNet in edge sharpening. It consistently
outperformed architectures relying solely on transformer encoders or UNets across all
comparative evaluations, leading to a noticeable enhancement in image quality and
target positioning accuracy. The NRMSE decreased by 50% from an initial average of
0.188, while the mean DSC of GTV increased from 85.1% to 96.2% in the investigated
testing cases. Final-position images of anatomical structures undergoing substantial
intra-frame deformations were accurately derived from the motion-corrupted input.
Moreover, TransSin-UNet maintained robust performance across datasets with varying
azimuthal radial profile increments.

The inference time is critical to the research problem addressed in this thesis, which
directly determines the feasibility of the techniques in practical applications. This aspect
was a key focus of this thesis. TransSin-UNet was designed to incorporate only the en-
coder component of the transformer to circumvent the potential extensive computation
time associated with an auto-regressive decoder. Additionally, the online trajectory
coordinates of each frame were decomposed into the unified default trajectory with
the frame-specific starting angle, which conserved storage space and eliminated the
need for time-consuming online calculation of DCFs for reconstruction with NuFFT.
Compared to the conventional approach involving direct image reconstruction with
motion-corrupted k-space data, the models required only a few additional milliseconds
to complete the motion compensation. This inference time is negligible when compared
to the frame acquisition time or the reconstruction window duration.

In conclusion, this thesis introduced a novel concept of motion-related imaging errors
in MRgRT and proposed their reduction through deep learning-based intra-frame mo-
tion compensation techniques. A motion-dependent k-space acquisition simulation
procedure was developed, and a methodology for intra-frame motion dataset creation
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and augmentation was introduced, with a primary focus on rapid anatomical varia-
tions. Proof-of-concept studies were conducted on both Cartesian and radial cine-MRI
acquisitions, respectively. A novel model, TransSin-UNet, was proposed, specifically
tailored for radial sampling. An extensive in silico feasibility analysis was performed,
encompassing evaluations of image quality and target positioning accuracy, model
comparison, and studies on versatility, robustness, and interpretability to assess the
proposed approaches. The results highlight the significant potential of these methods
for continuous intra-frame motion compensation in clinical settings, improving the
accuracy of real-time MRI motion monitoring and further advancing intra-fractional
motion management in MRgRT.

6.2 Outlook

Experimental validation of this study in clinical settings constitutes a crucial next step
and is currently in progress. Nonetheless, obtaining paired motion-corrupted and
ground-truth final-position images from the MR-Linac remains challenging, as detailed
in Section 3.3. To address this limitation, this study proposes an approach termed
frame-merging for validation with real clinical data, building upon the presented intra-
frame motion dataset creation method.

Based on the findings of this work, patients undergoing breath-hold or very shallow
breathing exhibit negligible intra-frame motion, allowing the acquired MR frames in
these cases to be considered free of motion corruption. Images extracted from these
stages, corresponding to different inhale/exhale amplitudes, are referred to as stopping-
point frames. Patients or volunteers can be instructed to hold their breath at the middle
or end of inhale or exhale phase to acquire these frames.

In the frame-merging method, the MR-Linac frame acquisition time is assumed to
be increased by a factor of N , achieved by merging N − 1 consecutive frames preceding
the stopping-point frame into a single frame. Following the motion-dependent sam-
pling process, these N frames serve as the temporal images, with intra-frame motion
modeled as a function of their relative positions. Interpolation between these frames
can be applied to refine the motion trajectory. The merging process is performed in
k-space by extracting the corresponding components from the temporal frames and
incorporating them into the motion-corrupted k-space array, with the stopping-point
frame representing the last-shot position. The final merged image is treated as the
motion-corrupted image, while the stopping-point frame is considered the ground
truth. Furthermore, the presented motion pattern perturbation scheme enables dataset
augmentation for training purposes.

Currently, the motion-dependent signal acquisition simulation procedure has been
validated only through theoretical analysis and comparison with existing literature.
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Further verification through imaging latency experiments on MR-Linacs can be con-
ducted [32, 33, 88]. Other k-space trajectories, such as spiral, and MRI acceleration
techniques, including partial Fourier and parallel imaging methods, warrant further
investigation. The effects of these techniques have yet to be quantified, particularly
for acceleration methods that involve sharing k-space data across different coil images,
which may impact the extent of motion-related imaging errors.

One limitation of this study lies in the requirement to segment the GTV for quan-
titative validation. The extent to which the GTV positioning accuracy results were
influenced by optical flow-based segmentation has yet to be precisely determined.
Future investigations should include a supplementary uncertainty analysis specifically
tailored to this or consider alternative and potentially more reliable contouring strate-
gies, such as foundation models recently proposed for medical imaging tasks [174].

Given the exploratory nature of this proof-of-concept study, extensive hyperpa-
rameter tuning for the network was not conducted. Subsequent efforts necessitate a
comprehensive hyper-parameter searching grounded in the real clinical data to identify
the optimal network configurations. Exploring other multi-loss weighting approaches
for TransSin-UNet holds particular promise [175,176]. Additionally, while the spatial
and temporal positional encoding in TransSin-UNet is unified and based on the chrono-
logical order of acquired spokes, other methods or architectural variants that factorize
the spatial and temporal dimensions of the input tokens [177] could be explored.

The undersampled Cartesian MRI experiment demonstrated the versatility of the
UNet model, as it simultaneously reduced image noise, aliasing artifacts and motion-
related imaging errors. One of the next potential steps is to further explore the combina-
tion of intra-frame motion compensation and other tasks in MR imaging or MRgRT, such
as geometric distortion correction [178,179], synthetic CT generation [180,181]. Given
UNet’s strong capabilities in image segmentation, both it and TransSin-UNet could be
trained to directly generate segmented tumors or OARs as needed. Transfer learning,
such as patient-specific adaptation [114], could be explored. Further investigation into
the interpretability of the network and its generalization to out-of-distribution (OOD)
data would also be valuable.

Further research is warranted to explore the potential benefits of integrating the
proposed approach with other advanced techniques such as motion prediction [101].
Literature findings suggest that the efficacy of motion prediction algorithms improves
as the forecasted time span decreases [182,183]. As previously discussed, within the
total loop latency of the MR-Linac, the contribution of MLC-related delays is assumed
to be insignificant compared to the substantially greater latency introduced by MR
imaging [32]. The approaches developed in this study effectively account for imaging
latency, thereby significantly shortening the required prediction time span—an aspect
that presents a promising opportunity for improving the accuracy of subsequent pre-
diction algorithms. Moreover, recent studies indicate that predicting 2D tumor motion
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from cine-MRI frames is considerably more challenging than 1D centroid-based tumor
motion prediction [104]. The proposed intra-frame motion compensation models
operate in 2D, providing effective latency correction for anatomical variations in both
position and shape, which potentially contributing to improved 2D motion prediction.

An extension of the proposed method is envisioned for closely related applications,
such as real-time 4D-MRI and MR-integrated proton therapy (MRiPT) [184].

Signal acquisition in 3D generally takes longer than in 2D, and intra-frame motion
compensation could bypass the consequent issue of inadequate temporal resolution
in MR imaging. Therefore, generalizing this technique from 2D+t cine-MR to 3D+t
represents a promising avenue for future research [185].

Proton therapy, and more broadly particle therapy [186], holds promise for achiev-
ing superior dose conformity compared to X-ray therapy due to the finite particle range
and the presence of the Bragg peak [187]. However, particle therapy is more susceptible
to uncertainties encountered in clinical workflows, with range uncertainty [188] being
a major concern. Real-time MRI guidance in particle therapy represents a promising
advancement for enhancing treatment delivery precision through improved motion
monitoring and management [70]. In this context, motion-related imaging errors
become increasingly critical. The intra-frame motion compensation strategy proposed
in this work could therefore provide substantial benefits, making it a potential direction
for future development.
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Appendix A

Proof of the Translational and
Rotational Properties of the Fourier
Transform

A.1 Proof of the translational property of the Fourier
transform

The translational property of the Fourier transform states that a translation in spatial
domain results in a linear phase shift in the frequency domain. Given an image f(x, y)
and consider translating it by (∆x,∆y) in the spatial domain. The translated image can
be expressed as:

f̂(x, y) = f(x−∆x, y −∆y) (A.1)

The Fourier transform of this translated image, denoted by F̂ (u, v), is given by:

F̂ (u, v) =

∫∫ ∞

−∞
f(x−∆x, y −∆y) exp [−j2π(ux+ vy)] dx dy (A.2)

where, u and v are the frequency components in the Fourier domain, and i is the
imaginary unit. By Substituting x = x̂ + ∆x and y = ŷ + ∆y into the equation, the
Fourier transform of the translated image becomes:

F̂ (u, v) = exp [−j2π(u∆x+ v∆y)]

∫∫ ∞

−∞
f(x̂, ŷ) exp [−j2π(ux̂+ vŷ)] dx̂ dŷ (A.3)

The integral on the right is simply the Fourier Transform of the original image, denoted
by F (u, v). Thus, we have:

F̂ (u, v) = F (u, v) exp [−j2π(u∆x+ v∆y)] (A.4)

This result demonstrates that shifting the image by ∆x in the x-direction and by ∆y in
the y-direction introduces a phase shift of 2π(u∆x+ v∆y) in the Fourier domain, while

115



Appendix A Proof of the Translational and Rotational Properties of the Fourier
Transform

the magnitude of the Fourier Transform remains the same.

A.2 Proof of the rotational property of the Fourier
transform

The rotational property of the Fourier transform states that a rotation in the spatial
domain corresponds to a rotation by the same angle in the frequency domain. Specifi-
cally, consider rotating the image f(x, y) by an angle θ around the origin. The rotated
coordinates (x′, y′) can be expressed as:[

x′

y′

]
=

[
cos θ − sin θ

sin θ cos θ

] [
x

y

]
(A.5)

The Fourier transform G(u′, v′) of the rotated image g(x′, y′) is given by:

G(u′, v′) =

∫ ∞

−∞

∫ ∞

−∞
g(x′, y′) exp [−j2π(u′x′ + v′y′)] dx′ dy′ (A.6)

Substituting x′ and y′ with x and y, the Jacobian determinant of the transformation is
1, indicating that the transformation preserves area, and noting that g(x′, y′) = f(x, y),
the integral becomes:

G(u′, v′) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−j2π[u′(x cos θ−y sin θ)+v′(x sin θ+y cos θ)] dx dy (A.7)

Simplifying the exponent:

G(u′, v′) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−j2π[(u′ cos θ+v′ sin θ)x+(−u′ sin θ+v′ cos θ)y] dx dy (A.8)

This can be rewritten as:
G(u′, v′) = F (u, v) (A.9)

where [
u

v

]
=

[
cos θ sin θ

− sin θ cos θ

] [
u′

v′

]
(A.10)

Eq. A.9 shows that the Fourier transform of the rotated image is the Fourier transform
of the original image, but evaluated at the rotated coordinates (u′, v′).
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Supporting Information

Figure B.1: Representative cases of inaccuracies or complete failures observed in
the optical-flow algorithm for GTV contouring. The GTV segmentations generated
by the optical-flow algorithm are highlighted in yellow on both the ground-truth and
TransSin-UNet output images. This figure was originally published as appendix material
in [166].

Table B.1: P-values obtained from the Kruskal-Wallis test for comparing differences
among the three datasets (ψgold, ψ5, and ψ10). Results from metrics of MSE, MAE
and SSIM pre- (Motion-Corrupted) and post- intra-frame motion compensation with
different models are presented. Statistically significant values (p-value < 0.01) are
indicated by an asterisk. This table was originally published as appendix material
in [166].

Motion-Corrupted TransSin-UNet UNet SinTE

MSE 0.99 0.014 0.15 0.075

MAE 0.93 0.066 0.49 0.47

SSIM 0.81 0.41 0.58 8.5E-7*
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Table B.2: P-values obtained from the post-hoc Dunn test for pairwise dataset com-
parisons using the SSIM metric after intra-frame motion compensation with SinTE.
Statistically significant values (p-value < 0.01) are indicated by an asterisk. This table
was originally published as appendix material in [166].

ψgold and ψ5 ψgold and ψ10 ψ5 and ψ10

SSIM (SinTE) 0.48 5.2E-6* 6.3E-6*
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