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Zusammenfassung

Die zunehmende horizontale Auflösung numerischer Wettervorhersagemodelle macht den
dreidimensionalen (3D) Strahlungstransport zwischen den einzelnen vertikalen Säulen dieser
Modelle immer relevanter. Allerdings sind 3D-Strahlungstransportlöser nach wie vor sehr
rechenintensiv, was ihren Einsatz in der operationellen Wettervorhersage bis heute verhindert.
Um dieses Problem anzugehen, entwickelten Jakub and Mayer (2015) den TenStream-Löser.
Er erweitert die etablierte Zweistrommethode auf drei Dimensionen, indem er zehn statt
zwei Ausbreitungsströme verwendet, um den Transport von Strahlung durch die Erdatmo-
sphäre zu beschreiben. Aufbauend auf dieser Methode stellt diese Arbeit den dynamischen
TenStream-Löser vor, der eine weitere Beschleunigung des ursprünglichen TenStream-Modells
darstellt. Im Vergleich zu herkömmlichen Lösern wird die Rechenzeit dabei vor allem durch
drei Methoden reduziert. Erstens wird die Strahlung nicht bei jedem Aufruf des Modells
neu berechnet, sondern mithilfe eines Zeitschrittverfahrens auf Basis der Ergebnisse des
vorherigen Zeitschritts aktualisiert. Zweitens wird die Konvergenz in Richtung der neuen
Lösung durch eine Optimierung des Iterationsverfahrens durch das zugrundeliegende lineare
Gleichungssystem beschleunigt. Da sich das aktualisierte Strahlungsfeld zudem nicht grundle-
gend von dem vorherigen unterscheiden sollte, werden drittens nur die ersten Schritte des
Iterationsverfahrens durchgeführt; der Algorithmus wird also bewusst abgebrochen, bevor
vollständige Konvergenz erreicht ist. Dieser Ansatz ermöglicht die Berechnung der ausge-
henden Strahlungsflüsse einer jeden Gitterbox allein auf Basis der eingehenden Flüsse aus
benachbarten Gitterboxen, wodurch der Strahlungstransport näher an die Behandlung von
Advektion im dynamischen Kern eines Wettermodells heranrückt und sich zudem erheblich
leichter parallelisieren lässt.

Anhand einer vorberechneten Zeitreihe flacher Cumulusbewölkung wird dieser neue Löser
anschließend sowohl hinsichtlich seiner Rechenzeit als auch bezüglich seiner Genauigkeit
evaluiert. Hinsichtlich seiner Rechenzeit zeigt sich, dass der dynamische TenStream-Löser etwa
dreimal langsamer als eine klassische 1D-δ-Eddington-Näherung, jedoch deutlich schneller
als andere 3D-Löser ist. Um seine Genauigkeit zu beurteilen, werden die Ergebnisse des neuen
Lösers mit einer klassischen 1D-δ-Eddington-Näherung, dem ursprünglichen TenStream-
Löser und dem 3D-Monte-Carlo-Modell MYSTIC verglichen, wobei letzteres als Benchmark
fungiert. Auf Gitterboxebene zeigt sich dabei, dass die durch den dynamischen TenStream-
Löser berechneten Heizraten sowie Nettobestrahlungsstärken am Boden und am Oberrand der
Atmosphäre den Ergebnissen des ursprünglichen TenStream-Lösers sehr nahe kommen und
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somit den MYSTIC-Benchmark sehr viel besser abbilden als die 1D-δ-Eddington-Näherung.
Indem der dynamische TenStream-Löser im Vergleich zur 1D-δ-Eddington-Näherung weniger
oft aufgerufen wird, ergibt sich zudem, dass der neue Löser deutlich genauere Ergebnisse
liefert als eine 1D-δ-Eddington-Näherung bei vergleichbarem Rechenaufwand. Allerdings
führt eine solche Reduktion der Aufrufe im Laufe der Zeit auch zu einem zunehmenden Bias
gegenüber der vollen TenStream-Lösung, der umso größer wird, je seltener der neue Löser
aufgerufen wird.

Um die Auswirkungen des neuen Lösers auf die Entwicklung von Wolken in Wettermodellen
zu untersuchen, wird dieser zudem noch auf eine Grobstruktursimulation angewandt. Dabei
zeigt sich, dass sich die Wolken dort ähnlich wie in der Simulation mit dem ursprünglichen
TenStream-Löser zu Wolkenstraßen organisieren, die senkrecht zum Einfallswinkel der Sonne
ausgerichtet sind. In der von 1D-Strahlung angetriebenen Simulation tritt hingegen keiner-
lei derartige Organisation auf. Außerdem wird gezeigt, dass von 3D-Strahlung angetriebene
Wolken tagsüber horizontal größer und vertikal mächtiger als ihre von 1D-Strahlung angetriebe-
nen Pendants werden und zudem über einen höheren Flüssigwassergehalt verfügen. Nachts
hingegen sind die Wolken im direkten Vergleich dünner und enthalten weniger Flüssigwasser.
Es werden zwei Mechanismen identifiziert, die diese Unterschiede mit Merkmalen des 3D-
Strahlungsfelds in Verbindung bringen. Zum einen befinden sich die Wolken in den 3D-
Simulationen über Regionen mit erhöhter solarer Nettobodenstrahlung, anstatt — wie in der
1D-Simulation — direkt über ihrem eigenen Schatten positioniert zu sein, was die mit den
Wolken verbundenen Aufwinde verstärkt, anstatt sie abzuschwächen. Zum anderen zeigt
sich auch, dass die horizontal gemittelte thermische Nettoabstrahlung des Bodens in den von
3D-Strahlung angetriebenen Simulationen geringer ausfällt, wobei das daraus entstehende
Ungleichgewicht in der Strahlungsbilanz des Bodens hauptsächlich durch eine Erhöhung des
horizontal gemittelten latenten Wärmeflusses ausgeglichen wird, was zu einer verstärkten
Freisetzung von Wasserdampf in die Atmosphäre führt. Beide Mechanismen werden sowohl
vom ursprünglichen, als auch dem dynamischen TenStream-Löser erfasst, was eindrucksvoll
die Fähigkeit des letzteren demonstriert, 3D-Strahlungseffekte und deren Einfluss auf Wolken
auch mit deutlich reduziertem Rechenaufwand effektiv abzubilden.



Abstract

The increasing horizontal resolution of numerical weather prediction (NWP) models makes
inter-column three-dimensional (3D) radiative transfer more and more important. However,
3D radiative transfer solvers are still computationally expensive, largely preventing their use in
operational weather forecasting. To address this limitation, Jakub and Mayer (2015) developed
the TenStream solver. It extends the well-established two-stream method to three dimensions
by using ten instead of two streams to describe the transport of radiative energy through Earth’s
atmosphere. Building upon this method, this thesis presents the dynamic TenStream solver,
a further acceleration of the original TenStream model. Compared to traditional solvers, its
speed-up is achieved through three main concepts. First, instead of recalculating radiation
from scratch every time the model is called, a time-stepping scheme is used to update the
radiative field based on the result from the previous radiation time step. Second, convergence
toward the new solution is accelerated by optimizing the iteration procedure through the
underlying system of linear equations. And third, since the updated radiative field should not
be markedly different from the previous one, just the first few steps of an iterative scheme
toward convergence are performed, essentially exiting the algorithm before full convergence
is reached. With this concept, the outgoing radiative fluxes of each grid box can be updated
by taking only incoming fluxes from neighboring grid boxes into account, aligning radiative
transfer more closely with the treatment of advection in the dynamical core of an NWP model
and facilitating model parallelization.

Using a precomputed shallow cumulus cloud time series, the performance of this new solver
is evaluated in terms of both speed and accuracy. In terms of speed, the dynamic TenStream
solver is shown to be about three times slower than a classical 1D δ-Eddington approximation,
but noticeably faster than currently available 3D solvers. To evaluate the accuracy of the new
solver, its results, as well as calculations carried out with a 1D δ-Eddington approximation
and the original TenStream solver, are compared to benchmark calculations performed with
the 3D Monte Carlo model MYSTIC. At the grid box level, the dynamic TenStream solver is
shown to calculate heating rates as well as net irradiances at the surface and at the top of the
atmosphere that closely match those obtained by the original TenStream solver, thus providing
a much better representation of the MYSTIC benchmark than the 1D δ-Eddington results. By
calling the dynamic TenStream solver less frequently than the 1D δ-Eddington approximation,
the new solver is furthermore shown to produce significantly more accurate results than a 1D
δ-Eddington approximation carried out with a similar computational demand. At these lower
calling frequencies, however, the incomplete solves in the dynamic TenStream solver also lead
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to a buildup of bias over time, which becomes larger the lower the calling frequency is.
To assess its impact on cloud development, the new solver is furthermore coupled to a

large-eddy simulation with an interactive land surface. Similar to simulations driven by the
original TenStream solver, daytime clouds driven by the dynamic TenStream solver are shown
to organize into cloud streets oriented perpendicular to the angle of solar incidence, unlike the
random positioning observed with 1D radiation. Additionally, clouds driven by 3D radiation
are demonstrated to grow larger, become thicker and contain more liquid water during the day,
but get thinner and contain less liquid water at night compared to their 1D-driven counterparts.
Two mechanisms are identified that link these differences to features of the 3D radiative field.
First, the clouds in the 3D simulations are shown to be positioned above areas of enhanced
solar net surface irradiance rather than above their own shadows, strengthening rather than
weakening the associated updrafts. Second, the domain-averaged net thermal emission at the
ground is shown to be smaller in simulations driven by 3D radiation, with the resulting surface
energy imbalance primarily compensated by an increase in the domain-averaged latent heat
flux, leading to a greater release of water vapor into the atmosphere. Both of these mechanisms
are captured by both the original and the dynamic TenStream solver, demonstrating the latter’s
ability to reproduce 3D radiative effects and their influence on clouds at a significantly lower
computational cost.
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Chapter 1

Introduction

Radiation is the main driver of atmospheric dynamics, shaping it across a variety of length
scales. Already on the global scale, Earth’s spherical nature causes significant differences in
the radiative energy received at different latitudes. While equatorial regions are intensely
heated, the poles receive far less energy, establishing a temperature gradient that underpins
the entire global atmospheric circulation. But also on smaller scales, radiation drives a range of
atmospheric processes. By heating near-surface air masses, it initiates convection, causing the
warmed air to rise, cool, and eventually condense into clouds. These clouds, in turn, reshape
the distribution of radiative energy in the atmosphere by scattering incoming sunlight and
casting shadows on the ground, thereby influencing the subsequent evolution of the convective
cells. At night, the absence of solar radiation cools the surface, facilitating condensation near
the ground and enabling fog formation. A shared characteristic of all these processes is their
initiation by radiation-induced temperature changes, with sources of radiative energy heating
air masses and sinks cooling them.

This impact on temperature directly links radiation to the primitive equations of atmo-
spheric dynamics — the set of nonlinear partial differential equations at the heart of modern
numerical weather prediction (NWP). Based on initial conditions, these equations enable
the prediction of the atmosphere’s future evolution. Because they have no known analytical
solution, they are solved numerically, for instance by dividing the atmosphere into grid boxes
and discretizing the equations in both space and time. One of the key variables integrated
forward in time in this process is temperature, whose tendencies are partially governed by the
aforementioned sources and sinks of radiative energy. For each grid box, these contributions —
quantified by heating rates and net surface irradiances — are calculated using radiative transfer
models that, ideally, account for full three-dimensional (3D) transport of energy, ensuring that
the radiation-induced temperature changes are captured as accurately as possible.

Depending on scale, two distinct regimes of this 3D transport of energy can be identified.
At the model grid scale, 3D radiative transfer accounts for the horizontal and vertical transport
of radiative energy between neighboring grid boxes. At the sub-grid scale, it addresses the 3D
transport of radiative energy within a single heterogeneous grid box, capturing the effects of
internal variability, such as the presence of both cloudy and clear-sky regions within a single
cell. The computation of both of these effects is computationally expensive, which has largely
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Figure 1.1: Comparison of radiative transfer calculations performed with a 1D δ-Eddington approximation
(panels (a)–(c)) and the 3D solver MYSTIC (panels (d)–(f)). Panels (a) and (d) show xz cross sections of heating
rates in the solar spectral range, whereas panels (c) and (f) depict these heating rates in the thermal spectral range.
In the middle, panels (b) and (e) illustrate the net surface irradiance in the solar spectral range. The simulations
assume the Sun shining from the east at a zenith angle of 50°. The colorbars for each pair of plots are provided
directly underneath them: logarithmic for panels (a) and (d), linear for panels (b) and (e), and a combination of
logarithmic (for values exceeding 1 or below -1 K d−1) and linear (in between) for panels (c) and (f).

prevented their inclusion in operational weather forecasting. As a result, most NWP models
continue to rely on one-dimensional (1D) independent-column approximations (ICAs), such as
the Monte Carlo Independent Column Approximation (McICA; Pincus et al. (2003)), currently
employed at the Deutscher Wetterdienst (DWD) and the European Centre for Medium-Range
Weather Forecasts (ECMWF) (DWD, 2021; Hogan and Bozzo, 2018). These models assume that
radiative transfer between grid boxes only takes place in the vertical and neglect any horizontal
energy transport — both between and within individual grid boxes.

However, both grid-scale and sub-grid-scale 3D effects have been shown to be important
for the correct calculation of radiative transfer in the atmosphere. While sub-grid-scale 3D
effects primarily arise at coarser resolutions, where individual grid boxes encompass both
cloudy and clear-sky regions and cannot be treated as homogeneous, the increasing horizon-
tal resolution of NWP models makes especially inter-column radiative transfer increasingly
important (O’Hirok and Gautier, 2005). To illustrate this, Fig. 1.1 compares radiative transfer
calculations performed with a conventional 1D solver and a full 3D solver at a relatively high
horizontal resolution of 100 m. Panels (a) and (d) show xz cross sections of solar heating rates.
The yellowish areas above 900 hPa indicate clouds, which act as relatively strong absorbers
and therefore as strong net sources of radiative energy in the solar spectral range, whereas
the dark areas beneath the yellowish areas indicate the shadows of these clouds. In the 3D
simulation in panel (d), these shadows are displaced to the west, consistent with the angle of
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solar incidence, whereas in the 1D simulation in panel (a), they are cast directly underneath
the clouds. This shadow displacement is one of the most prominent 3D radiative effects and
becomes increasingly important as the horizontal resolution of the models increases, since
at finer resolutions, shadows extend across a growing number of vertical columns instead of
being confined to one. The effect can also be observed in panels (b) and (e), which illustrate
the impact of 3D radiation at the surface. For instance, the shadow in the lower right of the 1D
simulation appears much further west — at approximately x = 4 km — in the 3D simulation.
Apart from this displacement, the surface plots also reveal that shadows are significantly darker
in the 3D simulation, whereas the areas surrounding them are noticeably brighter. This occurs
because, with 1D radiation, scattered light remains confined to the same column as the cloud
shadow, whereas with 3D radiative transfer, it is also scattered into areas surrounding the
cloud shadows (Gristey et al., 2020). The amount of radiative energy in these areas is further
increased by radiation scattered from cloud sides (Hogan and Shonk, 2013), as well as radiation
entering through gaps between clouds, which subsequently becomes trapped between the
clouds and the surface (Hogan et al., 2019). These effects, which cannot be accounted for with
1D radiation, result in net surface irradiances outside the cloud shadows that clearly exceed
the clear-sky values of the 1D simulation. But also in the thermal spectral range, 3D radiative
transfer plays an increasingly important role. Comparing panels (c) and (f), we can for example
see that with 1D radiation, thermal shadows cast by clouds are much more pronounced, as
they cannot be weakened toward the ground through interactions with neighboring columns.
Additionally, while clouds cool at the top and warm at the base in 1D radiative transfer calcu-
lations, 3D radiation also accounts for cloud-side cooling, significantly reducing the amount
of cloud-bottom warming. As with the other 3D effects discussed, this cloud-side cooling
becomes increasingly important at higher resolutions, where clouds occupy more than a single
grid box, allowing these finer-scale processes to be resolved.

Consequently, the impact of 3D radiative transfer has mainly been investigated using
large-eddy simulations (LESs), numerical models operating at hectometer-scale horizontal
resolutions and below. Within these high-resolution models, 3D radiation has been shown
to strongly influence both the organization and evolution of clouds. Klinger et al. (2017), for
example, found that incorporating 3D radiative transfer in the thermal spectral range results
in systematically larger cooling and stronger organizational effects compared to simulations
performed with 1D radiative transfer approximations. Similarly, Jakub and Mayer (2017)
demonstrated that inter-column 3D radiative transfer in the solar spectral range can foster the
formation of cloud streets that are not observed to the same extent in 1D simulations. And
focusing on cloud characteristics, Veerman et al. (2020, 2022) and Tijhuis et al. (2024) showed
that clouds in daytime LES runs coupled to 3D radiative transfer become thicker, grow larger in
horizontal extent, and exhibit higher domain-averaged liquid water paths than their 1D-driven
counterparts. Nonetheless, despite this demonstrated impact on cloud development, the
implications of 3D radiative transfer on weather forecasts remain largely unexplored, primarily
due to its high computational cost.

To address this issue, in recent years, considerable effort has been put into making 3D
radiative transfer models computationally more feasible. For sub-grid-scale 3D effects, the
Speedy Algorithm for Radiative Transfer through Cloud Sides (SPARTACUS; Schäfer et al.,
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2016; Hogan et al., 2016), for example, provides a fast method to capture 3D radiative effects
at the resolutions of currently employed global atmospheric models. It does so by adding
terms to the well-established two-stream approach that account for the radiative transport
between cloudy and clear regions within a single heterogeneous model column. Meanwhile,
significant work has also gone into the acceleration of inter-column radiative transport at
subkilometer-scale horizontal resolutions, where model grid boxes can be gradually treated as
homogeneous. Many such models simplify the expensive angular component of 3D radiative
transfer calculations by considering only a discrete number of angles (e.g., Lovejoy et al., 1990;
Gabriel et al., 1990; Davis et al., 1990). Most recently, the TenStream solver (Jakub and Mayer,
2015) built upon this idea. It is capable of calculating 3D radiative fluxes and heating rates in
both the solar and thermal spectral ranges by extending the 1D two-stream formulation to
ten streams, thereby allowing for horizontal transport of energy. Similarly, the neighboring
column approximation (NCA; Klinger and Mayer, 2016, 2020) offers a fast analytical method for
computing inter-column 3D heating rates in the thermal spectral range. To do so, it estimates
cloud side effects by taking only the immediate neighbors of a specific grid box into account.
Apart from these two approaches, significant progress has also been made in accelerating
highly accurate 3D Monte Carlo solvers for the use in LES models, with Veerman et al. (2022),
for example, speeding up the method by utilizing graphics processing units (GPUs). This
allowed them to perform LES runs driven by a full Monte Carlo solver for the first time ever.

Despite these advances, 3D solvers remain too slow to be used operationally. For instance,
the GPU-accelerated Monte Carlo solver of Veerman et al. (2022) is still at least 6.4 times slower
than the two-stream model it was compared to — and that only when using just 32 photons
per spectral band and model column. At this low photon count, however, results remain
notably noisy, both in irradiances and heating rates. Achieving substantially more accurate
results, with root-mean-square errors of 6.88 W m−2 in irradiances and 0.17 K d−1 in heating
rates, requires increasing the photon count eightfold to 256 photons per spectral band and
model column, which raises the computational cost to 18.5 times that of the two-stream model.
This high computational burden continues to prevent the use of 3D solvers in operational
weather forecasting, especially given that radiation is already called far less frequently than the
dynamical core in NWP models.

To overcome these limitations, this thesis takes first steps toward a new, "dynamic" 3D
radiative transfer model: the dynamic TenStream solver. Currently designed for subkilometer-
scale horizontal resolutions, where model grid boxes can be treated as homogeneous, it builds
upon the original TenStream solver while introducing a novel approach that is speeding up
inter-column radiative transfer by treating radiation more like model dynamics. Specifically,
inspired by how NWP models integrate their primitive equations over time, the solver does
not recalculate radiation from scratch each time it is called but instead updates the radiative
field based on the result from the previous radiation time step. Starting from this updated
field, it then performs only the first few steps of an iterative scheme toward the new solution,
thereby limiting interactions to neighboring grid boxes. This approach not only enables a
significant acceleration of radiative transfer calculations, but also facilitates the otherwise
tedious parallelization of 3D radiative transfer methods, which typically require information
from all parts of the domain. The primary objective of this thesis is to demonstrate the
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feasibility of this new solver in computing heating rates and net surface irradiances at a
noticeably faster speed than other 3D solvers, while also providing a significant improvement
in terms of accuracy over currently employed 1D schemes. Additionally, this work investigates
how coupling the new solver to model dynamics affects cloud evolution, assessing whether
it produces clouds that more closely resemble those driven by full 3D radiation than those
coupled to 1D radiation, while also exploring the mechanisms responsible for these differences.

To this end, the remainder of this thesis is structured as follows: Chapter 2 introduces the
most important theoretical aspects of radiative transfer and its interaction with numerical
weather prediction models. Chapter 3 then presents a detailed description of the new dynamic
TenStream solver, beginning with an overview of the original TenStream model. Chapter 4
evaluates the performance of this new solver in terms of both speed and accuracy by comparing
it to a conventional 1D solver, the original TenStream model, and a benchmark simulation
provided by the 3D Monte Carlo solver MYSTIC (Mayer, 2009). In Chapter 5, the dynamic
TenStream solver is then coupled to a large-eddy simulation model to examine its impact on
cloud evolution compared to simulations driven by 1D radiation and the original TenStream
solver, thereby also investigating links between the different radiative fields and the clouds
they produce. Chapter 6 concludes the thesis with a summary and outlook.



6 1. Introduction



Chapter 2

Theoretical background

The aim of this thesis is to develop a three-dimensional (3D) radiative transfer solver that is
both fast and accurate, to evaluate its performance based on these criteria, and to explore
its impact on clouds when coupled to a fully interactive numerical simulation. This chapter
outlines the theoretical foundations required for these tasks. It begins with a brief overview of
the basic principles of numerical weather prediction, with a particular focus on its coupling to
radiation, before introducing key aspects of radiative transfer theory relevant to this work.

2.1 Numerical weather prediction

2.1.1 The primitive equations

Already in the early twentieth century, Bjerknes (1904) proposed the fundamental idea that still
forms the backbone of modern numerical weather prediction (NWP). In his work, he identified
a set of seven nonlinear partial differential equations — known as the primitive equations —
which describe the conservation of momentum, mass, energy, and water in the atmosphere
and together constitute an initial value problem. This means that if the initial state of the
atmosphere at a given time is known with sufficient accuracy, these equations enable the
prediction of the atmosphere’s future evolution (Bjerknes, 2009). In particular, they describe
the future development of seven key meteorological variables: the zonal (u), meridional (v)
and vertical (w) components of the wind vector v⃗ ; temperature (T ); pressure (p); density (ρ);
and the water vapor mixing ratio (qv ), or related quantities. The corresponding equations can
be expressed as follows:

dv⃗

dt
=− 1

ρ
∇⃗p −2

(
Ω⃗× v⃗

)+ g⃗∗+ F⃗ (momentum equation), (2.1)

dρ

dt
=−ρ∇⃗ · v⃗ (continuity equation), (2.2)

dT

dt
= Rd T

cp p

dp

dt
+ q̇

cp
(thermodynamic equation), (2.3)



8 2. Theoretical background

dqv

dt
= q̇v (water vapor equation), (2.4)

p = ρRd T (ideal gas law). (2.5)

In addition to the variables already introduced, these equations contain time (t); Earth’s
rotation vector (Ω⃗); effective gravity (g⃗∗); friction (F⃗ ); the specific gas constant for dry air (Rd );
the specific heat capacity of air at constant pressure (cp ); and the sources and sinks of specific
heat (q̇) and water vapor (q̇v ) in the atmosphere. In the form given above, these equations were
adapted from Martin (2006) (momentum equation), Coiffier (2011) (thermodynamic equation),
and Inness and Dorling (2012) (continuity equation, water vapor equation, and ideal gas
law). Six of the equations are prognostic, meaning they describe the temporal evolution of
their respective quantities, while the seventh — the ideal gas law — is diagnostic, as it does
not involve a time derivative. To clarify the role of each primitive equation and highlight
their coupling to radiation, let us break them down. Unless cited otherwise, the following
information is taken from Martin (2006), Coiffier (2011) and Inness and Dorling (2012).

The momentum equation

Equation (2.1), also referred to as the equations of motion, is directly derived from Newton’s
second law. This law states that a body remains at rest or in uniform motion unless acted upon
by an external force. When such a force is applied, the rate of change of momentum is equal
to the sum of all forces acting on the body. In the atmosphere, these "bodies" are air parcels
— imaginary volumes of air large enough for macroscopic quantities such as pressure to be
meaningfully defined, yet small enough for these properties to be roughly uniform within them.
Newton’s second law enables the calculation of the acceleration of these air parcels — that is,
the change in v⃗ over time — by summing all forces per unit mass acting upon them, namely

(a) The pressure gradient force: This is the primary force responsible for initiating motion of
air in the atmosphere. It accelerates air parcels toward regions of lower pressure, i.e., in
the opposite direction of ∇⃗p. The acceleration a⃗p resulting from this force F⃗p is given by

a⃗p = F⃗p

m
=− 1

ρ
∇⃗p ,

where m denotes the mass of the air parcel and ρ its density.

(b) Gravity: A fundamental force that pulls air parcels toward Earth’s center.

(c) Friction: As air parcels interact with Earth’s surface, momentum is dissipated through
turbulent friction. This frictional effect is transmitted upward through the atmosphere
via shear stress, decelerating air parcels and generating turbulent eddies that transport
momentum between them, with additional momentum transport by convective eddies.
The combined momentum change of these processes per unit mass is represented by F⃗ .

Since Newton’s second law assumes an inertial frame of reference, additional apparent forces
must be considered to account for Earth’s rotation. These include:
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(a) The Coriolis force: This force accounts for the apparent deflection of air parcels due
to Earth’s rotation. A common analogy is a ball pushed toward the edge of a rotating
disk. When viewed from above, the ball’s motion does not follow a straight line because
the counterclockwise-rotating disk deflects the ball to the right. In the atmosphere,
a prominent example is the trade winds, which move air from high-pressure regions
in the subtropics toward low-pressure areas near the equator. Due to Earth’s rotation,
these winds are deflected westward in the Northern Hemisphere. This deflection results
from the interaction between Earth’s rotation vector Ω⃗, which points outward from
Earth’s center in the Northern Hemisphere, and the initial southward-facing wind vector
v⃗ . Together, they lead to an apparent westward acceleration of air parcels, which is
described by

a⃗c =−2
(
Ω⃗× v⃗

)
.

(b) The centrifugal force: This force accounts for the apparent outward acceleration of air
parcels away from Earth’s axis of rotation. It is expressed as

a⃗cf =−Ω⃗× (
Ω⃗× r⃗

)
,

where r⃗ is the position vector perpendicular to the axis of rotation, with a magnitude
equal to the distance from a given point on Earth’s surface to the rotational axis. Since
the centrifugal force primarily weakens the gravitational pull, it is typically combined
with gravity to form the effective gravitational acceleration g⃗∗.

The sum of these real and apparent forces ensures the conservation of momentum in the
atmosphere and constitutes Eq. (2.1), which describes the future motion of air parcels and,
consequently, the temporal evolution of the three components of the wind vector as

dv⃗

dt
= a⃗p + a⃗c + g⃗∗+ F⃗ =− 1

ρ
∇⃗p −2

(
Ω⃗× v⃗

)+ g⃗∗+ F⃗ .

The continuity equation

Equation (2.2) ensures the conservation of mass in the atmosphere. It is typically derived for a
stationary control volume, such as a fixed cube of air. For such a fixed volume, a net inflow of
air increases its density, while a net outflow decreases it. Using the mass flux density j⃗m = ρv⃗ ,
this relationship can be formulated as

∂ρ

∂t
=−∇⃗ · (ρv⃗

)
. (2.6)

This equation quantifies the change in density at a specific location, representing an Eulerian
perspective. To derive the expression for a moving air parcel (a Lagrangian perspective), we
must consider that the parcel’s density is a function not only of time t but also of its time-
dependent position (x(t), y(t), z(t)): ρ(t , x(t), y(t), z(t)). The total derivative of density with
respect to time is then given by

dρ

dt
= ∂ρ

∂t
+ ∂ρ

∂x

dx

dt
+ ∂ρ

∂y

dy

dt
+ ∂ρ

∂z

dz

dt
= ∂ρ

∂t
+u

∂ρ

∂x
+ v

∂ρ

∂y
+w

∂ρ

∂z
= ∂ρ

∂t
+ v⃗ · ∇⃗ρ. (2.7)
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This relationship, which connects the local and total derivatives of a quantity (here, the density)
with respect to time, generally applies to all total derivatives in Eqs. (2.1) to (2.4). It is a
fundamental relationship that must be applied whenever switching from an Eulerian to a
Lagrangian perspective, and vice versa. Rearranging Eq. (2.7) for the local change in density,
∂ρ
∂t , shows that this local tendency is influenced both by the intrinsic changes experienced by
the moving air parcels themselves and by the advection of the quantity by the wind, since

∂ρ

∂t
= dρ

dt
− v⃗ · ∇⃗ρ . (2.8)

To better understand this relationship, let us consider the following limiting cases:

(a) No wind (v⃗ = 0): In the absence of wind, the local change in density is solely determined
by the intrinsic changes in density that the stationary air parcels experience, following
the relationship

∂ρ

∂t
= dρ

dt
.

(b) Constant density in moving air parcels ( dρ
dt = 0): When the density of the moving air

parcels remains constant, the local change in density is driven purely by the advection of
air parcels with different densities. For example, consider a purely westerly flow (u > 0,

v = w = 0) where air to the west has a lower density (∂ρ∂x > 0). In this case, lower-density
air is advected, leading to a decrease in local density over time, which is described by

∂ρ

∂t
=−u

∂ρ

∂x
< 0.

In general, Eq. (2.8) states that the local change in density results from both intrinsic changes
within moving air parcels, and the advection of density by the wind. Using the identity

∇⃗(
ρv⃗

)= v⃗ · ∇⃗ρ+ρ∇⃗ · v⃗ , (2.9)

this relationship can now be used to formulate the conservation of mass for a moving air parcel.
This continuity equation in Lagrangian form is exactly the expression provided in Eq. (2.2) and
can be derived as follows:

dρ

dt
(2.7)= ∂ρ

∂t
+ v⃗ · ∇⃗ρ (2.6)= −∇⃗ · (ρv⃗

)+ v⃗ · ∇⃗ρ (2.9)= −ρ∇⃗ · v⃗ .

The thermodynamic equation

Equation (2.3) expresses the conservation of energy in the atmosphere. It is based on the first
law of thermodynamics, which states that the change in internal energy U of an air parcel is
equal to the sum of the heat Q added to it and the work W done on it. Mathematically, this is
expressed as

∆U =Q +W. (2.10)
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This definition, along with the other thermodynamic relationships used in this sub-subsection,
follows Schroeder (2000). To understand how the first law of thermodynamics is connected to
Eq. (2.3), we apply it to the atmospheric context. In this setting, the work done on an air parcel
is typically compression work. An infinitesimal amount of this work is given by δW =−p dV ,
where V represents the parcel’s volume. For an infinitesimal change in internal energy dU , we
can use this expression along with the relationship dU =Cv dT , where Cv is the heat capacity
at constant volume, to rewrite Eq. (2.10) as

Cv dT = δQ −p dV. (2.11)

To express dV in this equation in terms of T and p, we apply the ideal gas law,

pV = nRT, (2.12)

where n is the number of moles of gas and R = 8.31 J mol−1 K−1 is the universal gas constant.
Taking the total differential of this expression for an air parcel with a fixed number of moles
and solving for p dV gives

d(pV ) = nR dT =V dp +p dV ⇒ p dV = nR dT −V dp . (2.13)

Substituting Eq. (2.13) into Eq. (2.11), and using the relationship Cp = Cv +nR for the heat
capacity at constant pressure, we obtain

Cv dT = δQ −nR dT +V dp ⇒ (Cv +nR) dT =Cp dT = δQ +V dp . (2.14)

Now, using another variant of the ideal gas law, pV = mRd T , and the mass-specific quantities

cp = Cp

m and δq = δQ
m , Eq. (2.14) can be rewritten as

cp dT = δq + V

m
dp = δq + Rd T

p
dp . (2.15)

Finally, converting the total derivative to a time derivative and using q̇ = δq
dt , we obtain the

form of the first law of thermodynamics provided in Eq. (2.3), which is given by

dT

dt
= Rd T

cp p

dp

dt
+ q̇

cp
.

The first term on the right-hand side of this equation describes the temperature changes that
an air parcel experiences due to compression and expansion. Since no heat is exchanged in
such processes, they are referred to as adiabatic. The second term, on the other hand, mostly
accounts for temperature changes due to diabatic processes, where heat is transferred to or
from the air parcel. This includes sensible and latent heat fluxes, which arise from temperature
differences (sensible heat) or phase changes such as condensation and evaporation (latent
heat). The latter can also occur entirely within the air parcel, representing an example where
q̇ ̸= 0 and no heat is exchanged with the environment. Beyond that, sources and sinks of
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radiative energy are the primary contributors to this term, making it the direct link between the
primitive equations and radiation. The radiative transfer models used to quantify these sources
and sinks of radiative energy typically compute heating rates, which represent temperature
changes over time. Hence, they account for the entirety of the second term and not just q̇ .

Oftentimes, Eq. (2.3) is expressed not in terms of temperature, but in terms of potential
temperature

θ = T

(
p0

p

)Rd
cp

. (2.16)

It represents the temperature an air parcel with temperature T and pressure p would have
if it were brought dry adiabatically to a reference pressure of p0 = 1000 hPa. Taking the total
differential of this expression gives

dθ =
(

p0

p

)Rd
cp

dT +T p
Rd
cp

0

(
−Rd

cp

)
p
−Rd

cp
−1

dp = θ

T
dT − θRd

cp p
dp . (2.17)

When converting this total derivative to a time derivative and solving for dT
dt , we obtain

dθ

dt
= θ

T

dT

dt
− θRd

cp p

dp

dt
⇒ dT

dt
= T

θ

dθ

dt
+ Rd T

cp p

dp

dt
. (2.18)

Substituting Eq. (2.18) into Eq. (2.3) finally results in

dθ

dt
= θ

T

q̇

cp
. (2.19)

This is the thermodynamic equation in terms of potential temperature. Since θ is by definition
conserved in adiabatic processes, Eq. (2.19) lacks the first term of Eq. (2.3), which accounts
for temperature changes due to compression work. As a result, and provided that no phase
changes occur inside the parcel, an air parcel’s potential temperature evolves solely through
diabatic processes, with radiative heating and cooling being the dominant contributors. This
conservative property is also the main reason why the use of θ is often preferred in meteorology.

The water vapor equation

Equation (2.4) ensures the conservation of water in the atmosphere. It states that for any air
parcel, the change in water vapor mixing ratio qv — defined as the mass of water vapor per
unit mass of dry air — is equal to the net sources (evaporation) and sinks (condensation) of
water vapor within the parcel. This relationship can be expressed as

dqv

dt
= q̇v .

At first glance, this equation appears independent of the other primitive equations, as it
does not explicitly contain shared variables such as temperature or wind speed. However,
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the net source term q̇v is inherently linked to other atmospheric variables. To demonstrate
this connection, we follow Wallace and Hobbs (2006b) and introduce additional moisture
parameters that govern the sources and sinks of water vapor in Eq. (2.4). One such quantity is
the water vapor pressure e, given by

e = ρv Rv T, (2.20)

where ρv is the density of water vapor and Rv = 461.51 J kg−1 K−1 is its specific gas constant.
Physically, e represents the partial pressure that water vapor exerts within an air parcel. Thus,
Eq. (2.20) is simply the ideal gas law applied to water vapor. Alongside the partial pressures of
all other atmospheric gases, e contributes to the total pressure of the air parcel. To illustrate
its role in governing the sources and sinks of qv in Eq. (2.4), let us consider an initially dry air
parcel placed above a water surface. As water molecules evaporate from the surface, this parcel
gains water vapor, increasing e. At the same time, some water molecules condense back into
the liquid phase. As long as evaporation exceeds condensation, the air remains unsaturated.
However, once both processes reach equilibrium, the air is said to be saturated with respect to
water. The corresponding saturation vapor pressure e∗

w depends on temperature and can be
approximated using empirical formulas such as

e∗
w = 6.112hPa exp

(
17.62ϑ

243.12◦C+ϑ
)

, (2.21)

where ϑ is the temperature in degrees Celsius (WMO, 2025). Since e∗
w increases exponentially

with temperature, cooling an air parcel lowers its saturation vapor pressure, while warming
raises it. This directly influences the relative humidity of the air parcel, defined as

RH = e

e∗
w

. (2.22)

When cooled, e∗
w decreases much more rapidly than e does, causing the relative humidity

to rise. Once it reaches 100%, condensation occurs, providing a net sink of water vapor
for Eq. (2.4). Conversely, when a saturated air parcel warms, its saturation vapor pressure
increases exponentially, leading to evaporation and creating a net source of water vapor. This
dependence on temperature illustrates how Eq. (2.4) is indeed fundamentally coupled to the
other primitive equations.

The ideal gas law

The final primitive equation is the ideal gas law, which states that the atmosphere behaves as
an ideal gas. Starting from its usual form p V = m Rd T , where Rd = 287 J kg−1 K−1 is the specific
gas constant for dry air, the density ρ = m

V is introduced to obtain the form provided in Eq. (2.5),
which is given by

p = ρRd T .

Unlike the other primitive equations, Eq. (2.5) does not describe the temporal evolution of
one of the seven key atmospheric variables. Instead, it is a diagnostic equation connecting the
pressure, density and temperature in an air parcel.
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2.1.2 The basic principle of numerical weather prediction

With the exception of the ideal gas law, all primitive equations are prognostic, meaning they
describe the temporal evolution of one of the seven key atmospheric variables. Thus, given the
initial state of the atmosphere at a given time, these equations enable the prediction of its future
evolution. However, they do not form a fully closed system of equations, because the sources
and sinks of momentum, heat, and water vapor in Eqs. (2.1), (2.3), and (2.4) must be specified
in advance before starting with the forward integration (Inness and Dorling, 2012). Since
the heat source term is primarily governed by radiative heating and cooling, this once again
highlights the crucial role of radiation in weather prediction: Starting from its contribution to
the heat source term, it directly influences the temperature field. Through the ideal gas law,
these temperature tendencies then modify the pressure field, creating pressure gradients that
subsequently drive atmospheric motion via Eq. (2.1). Some of this motion results in the upward
transport of air masses to lower-pressure regions, where they expand and cool according to
Eq. (2.3). As they cool, their saturation vapor pressure, described by Eq. (2.21), decreases,
eventually leading to saturation and the condensation of water vapor into clouds. This is just
one example of how radiation drives atmospheric dynamics and how the primitive equations
collectively describe the resulting atmospheric evolution. Despite this theoretical framework,
however, weather forecasts remain imperfect. This is due to two fundamental limitations:

1. As previously noted, the primitive equations constitute an initial value problem, meaning
that accurately specifying the initial atmospheric state is crucial for producing reliable
forecasts (Inness and Dorling, 2012). This becomes even more critical due to the chaotic
nature of the primitive equations, where even small differences in the initial conditions
can lead to vastly different future atmospheric states — a phenomenon often referred
to as the butterfly effect (Lorenz, 1963; Motter and Campbell, 2013). However, the state
of the atmosphere can never be captured in full detail, as observations do not provide
complete coverage, and measurement instruments always have finite accuracy. To miti-
gate these limitations, modern weather forecasting relies heavily on data assimilation,
where model output is combined with observational data to construct the best possi-
ble estimate of the initial conditions (Inness and Dorling, 2012). Yet, no matter how
sophisticated this process is, initial conditions will always contain some degree of error,
inevitably causing forecasts to diverge from reality over time. This imposes an inherent
limit on the predictability of the weather, with the study of Selz et al. (2022) indicating a
maximum forecast horizon of approximately two weeks.

2. Recalling that

dv⃗

dt
= ∂v⃗

∂t
+ (

v⃗ · ∇⃗)
v⃗ , (2.23)

the equations of motion contain terms that are quadratic in terms of their prognostic
variables. Due to this nonlinearity, they have no known analytical solution and must be
solved numerically (Holton and Hakim, 2013), for example, by dividing the atmosphere
into grid boxes and discretizing the equations in both space and time. In this case, the grid
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spacing determines which processes can be explicitly resolved and which cannot. For
instance, global atmospheric models such as the high-resolution deterministic forecasts
of the European Centre for Medium-Range Weather Forecasts (ECMWF), which operate
at a horizontal resolution of 9 km (Hogan and Bozzo, 2018), lack the resolution needed to
explicitly simulate convective clouds, which requires a grid spacing of 4 km or less (Prein
et al., 2015). The effects of these convective clouds and other sub-grid-scale processes
such as turbulence on the resolved scales must therefore be accounted for by so-called
parameterizations (Bauer et al., 2015). Since many of the underlying processes are highly
complex and not yet fully understood, they are generally represented using simplified
models. They then enter the primitive equations via the source terms of turbulent
friction (F⃗ ), heat (q̇), and water vapor (q̇v ) in the momentum, thermodynamic, and
water vapor equations. One of the key processes that must be parameterized is radiative
transfer, which is the main focus of this thesis and will be discussed in detail in Sect. 2.2.
Other commonly parameterized processes include convection, cloud microphysics, and
surface and boundary layer processes. To get an idea of these processes and the spatial
scales they act at, let us quickly break them down. Unless cited otherwise, the following
descriptions are adapted from Inness and Dorling (2012):

• Convection accounts for the vertical transport of heat, water vapor, and momen-
tum within convective cells, as well as the formation of clouds and precipitation
associated with them. The corresponding parameterizations aim to formulate
the statistical effects of these processes rather than explicitly predicting individual
clouds (Arakawa, 2004). Since convective processes typically act up to the kilometer-
scale, models with grid spacings of tens of kilometers or more must parameterize
the entire convection process. At kilometer-scale horizontal resolutions, however,
parts of the convective cells become resolved, introducing additional complexity
regarding which processes still require parameterization and which can be explicitly
simulated.

• Cloud microphysics describes the formation and growth of cloud droplets and ice
crystals on the scale of individual droplets and ice crystals. Since these scales are
much smaller than the grid spacing of nearly all current numerical models, the
corresponding parameterizations are largely the same for global atmospheric and
regional high-resolution models.

• Surface and boundary layer processes account for two main effects: First, the dis-
sipation of momentum due to turbulent friction, which must be parameterized
because models cannot explicitly resolve every hill, building, or vegetation ele-
ment at Earth’s surface. Second, the transport of momentum, heat, and moisture
by turbulent and convective eddies within the boundary layer. Both effects oper-
ate across a wide range of spatial scales, making their parameterization strongly
resolution-dependent.

Although necessary to specify the sources and sinks of momentum, heat, and water
vapor in Eqs. (2.1), (2.3), and (2.4), all of these parameterizations share the problem that



16 2. Theoretical background

Table 2.1: Overview of atmospheric model types, including their typical grid spacings and the extent to which
they explicitly resolve convection and turbulence.

Model type Abbrev. Grid spacing Convection resolving Turbulence resolving

General circulation model GCM O (10 km) No No

Regional or limited-area model LAM O (1 km) Partially No

Cloud-resolving model CRM O (100 m) Yes No

Large-eddy simulation LES O (10 m) Yes Partially

Direct numerical simulation DNS O (1 mm) Yes Yes

they approximate the influence of unresolved processes on the resolved scales using
simplified models, thereby introducing additional uncertainties into numerical weather
forecasts.

Taken together, these two challenges — the chaotic nature of the primitive equations and the
fact that they can only be solved numerically — highlight the two fundamental steps required
for numerical weather prediction: first, determining the initial atmospheric state as accurately
as possible; and second, integrating the primitive equations forward in time to predict the
atmosphere’s future evolution, thereby accounting for the effects of unresolved processes on
the resolved scales. The basic principle of numerical weather prediction can therefore be
summarized as follows:

1. Determination of the initial atmospheric state: First, the initial state of the atmosphere
must be determined as accurately as possible. To achieve this, data assimilation methods
combine observational data with model output to construct the best possible estimate
of the current atmospheric state.

2. Numerical integration of the primitive equations: Once the initial state of the atmosphere
is determined, the primitive equations must be integrated forward in time to predict
its future evolution. Since they have no known analytical solution, this integration is
performed numerically. However, the spatial discretization required for this numerical
solution prevents certain atmospheric processes from being explicitly resolved. The
effects of these sub-grid-scale processes on the resolved scales must therefore be ac-
counted for through parameterizations, which provide the necessary source terms to the
primitive equations, allowing the system to be advanced despite not being fully closed.

2.1.3 Types of atmospheric models

As noted in the previous subsection, the spatial resolution of an atmospheric model determines
which processes can be explicitly resolved and which must be parameterized. Consequently,
based on their spatial resolution, these models can be categorized into different types. Table 2.1
provides an overview of this categorization. Based on this table, let us briefly examine each
model type and clarify how the large-eddy simulations used in this thesis are positioned within
them:
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• General circulation models (GCMs) solve the primitive equations on a global scale. They
typically operate at horizontal grid spacings of tens of kilometers. For instance, the
operational models of the ECMWF and the Deutscher Wetterdienst (DWD) currently use
grid spacings of 9 km (Hogan and Bozzo, 2018) and 13 km (Reinert et al., 2025, p. 19),
respectively. At these resolutions, neither convection nor turbulence can be explicitly
resolved, requiring both of these processes to be parameterized.

• Regional and limited-area models (LAMs) provide higher-resolution forecasts over spe-
cific regions. They are typically nested within larger-scale models, which provide their
initial and boundary conditions. LAMs refine the coarse information from these models
by generating smaller-scale atmospheric features at their higher resolutions (de Elía
et al., 2002), enabling more detailed predictions for specific regions such as individual
countries. They typically operate at kilometer-scale horizontal resolutions, with the
DWD ICON-D2 model for example employing a 2.1 km grid spacing (DWD, 2025). At
this resolution, these models are considered convection-permitting, meaning that some
aspects of the convective process can be explicitly resolved rather than parameterized.

• Cloud-resolving models (CRMs) aim to explicitly resolve cumulus convection, eliminating
the need for convection parameterizations. Instead, clouds are simulated using more
sophisticated microphysics parameterizations that account for the formation and growth
of cloud droplets and ice crystals on the microphysical scale. CRMs typically operate at
subkilometer-scale resolutions, with horizontal grid spacings on the order of hundreds
of meters. Recently, advances in computing power have enabled the development of
global cloud-resolving models (GCRMs), which, for research applications, enable the use
of cloud-resolving simulations on the global scale (Satoh et al., 2019).

• Large-eddy simulations (LESs) provide an explicit representation of large-scale turbulent
motions, while a turbulence model parameterizes the effect of unresolved small-scale
eddies (Mason, 1994). Hence, LES models resolve convection and parts of the turbulent
flow, making them a valuable tool for studying transport processes in the atmospheric
boundary layer (Stoll et al., 2020). LES models typically operate at horizontal grid spac-
ings ranging from 10 m to 100 m (Satoh et al., 2019). In Chapter 5 of this thesis, the LES
model PALM (Raasch and Schröter, 2001; Maronga et al., 2015, 2020) is employed to
investigate how the radiative transfer solver developed in this work affects cloud devel-
opment. A LES model operated at a horizontal resolution of 100 m was chosen for this
study, as this spatial scale allowed sub-grid-scale cloud variability to be neglected, and
grid cells to be treated as either fully cloudy or cloud-free.

• Direct numerical simulations (DNSs) eventually solve the full equations of motion by
explicitly resolving the entire turbulent flow (Moin and Mahesh, 1998). To achieve this,
they must capture even the smallest turbulence scales characterized by the Kolmogorov
length scale (Remmler et al., 2014), which is typically on the order of millimeters for
atmospheric flows (Vallis, 2017), making these models computationally extremely expen-
sive. As a result, DNS models are primarily used for fundamental turbulence research,
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with recent advances in computing power even enabling their use in studying individual
clouds. Simulations of larger atmospheric regions, however, remain computationally
infeasible with this type of model (Satoh et al., 2019).

2.1.4 Convective cloud formation

Before concluding this section on numerical weather prediction, let us examine the formation
of convective clouds in numerical models that are capable of explicitly resolving this process.
This discussion provides essential background information for Chapter 5, where a simulation
is set up in which shallow cumulus clouds develop over the course of the day. Unless stated
otherwise, the content in this section is adapted from Wallace and Hobbs (2006b).

As discussed earlier, convection begins with the warming of air masses near Earth’s surface.
Since small-scale pressure differences adjust almost instantaneously at the speed of sound,
the pressure of this warmed air can be assumed to be in equilibrium with the surrounding air.
According to Eq. (2.5), this implies that the density ρ′ of the warmed air parcels is lower than
the density ρ of the surrounding air. As a result, the warmed air parcels experience an upward
acceleration, which is the result of two counteracting forces:

(a) The gravitational force Fg , which pulls the warmed air parcels with mass m′ and volume
V ′ down toward the ground and is given by

Fg =−m′ g =−ρ′V ′ g . (2.24)

(b) The buoyant force Fb , which, according to Archimedes’ principle, acts upward with a
magnitude equal to the gravitational force acting on the ambient air displaced by the
parcels. It can be expressed as

Fb = ρV ′ g . (2.25)

The primes in these equations indicate that the corresponding quantities refer to the air parcel
rather than to the surrounding air. Summing both forces and applying Newton’s second law
yields the vertical acceleration of the air parcels, which is given by

m′ dw

dt
= ρ′V ′ dw

dt
= Fb +Fg = (ρ−ρ′)V ′ g ⇒ dw

dt
= ρ−ρ′

ρ′ g . (2.26)

Using the ideal gas law (ρ = p
Rd T ) and assuming pressure equilibrium (p = p ′), this acceleration

can be rewritten in terms of the temperature difference between the air parcels (T ′) and the
surrounding air (T ), so that Eq. (2.26) becomes

dw

dt
= ρ−ρ′

ρ′ g =
1
T − 1

T ′
1

T ′
g = T ′−T

T
g . (2.27)

This demonstrates that the upward motion of the warmed air parcels depends on both T ′(z)
and T (z). As long as the parcels remain warmer than their environment (T ′ > T ), they continue
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to ascend. However, once their temperature equals that of the surrounding air (T ′ = T ), the
parcels reach a state of neutral buoyancy and eventually stop rising. Thus, to understand the
vertical motion of warmed air masses — and consequently the formation of convective clouds
— it is necessary to examine both the temperature evolution within the rising air parcels and
the ambient temperature profile.

Temperature changes in a rising air parcel

Let us start with the temperature evolution in rising air parcels. Since vertical air motions occur
on relatively short timescales, these movements are generally treated as adiabatic processes,
meaning that no heat is exchanged with the environment. In such cases, the potential temper-
ature is a particularly useful quantity, as it is by definition conserved in adiabatic processes,
provided that no phase changes occur in the air parcel. To demonstrate this, we recall Eq. (2.17)
and express it as a derivative with respect to z, which yields

dθ′

dz
= θ′

T ′
dT ′

dz
− θ′ Rd

cp p

dp

dz
. (2.28)

To obtain an expression for dT ′
dz , we convert Eq. (2.15) to a derivative with respect to z and

assume a purely adiabatic process without any phase changes in the air parcel, i.e., δq = 0,
which results in

dT ′

dz
= Rd T ′

cp p

dp

dz
. (2.29)

Substituting Eq. (2.29) into Eq. (2.28) then shows that

dθ′

dz
= θ′

T ′
Rd T ′

cp p

dp

dz
− θ′ Rd

cp p

dp

dz
= 0, (2.30)

as expected from the conservation of potential temperature in adiabatic processes. The actual
temperature of a rising air parcel, however, does change with height. To determine this
change, we can use the fact that, to first order, the atmosphere is in hydrostatic balance — an
equilibrium between the downward-facing gravitational force and the upward-facing pressure
gradient force, which can be expressed as

− 1

ρ

∂p

∂z
− g = 0 ⇒ ∂p

∂z
=−ρ g . (2.31)

Note that this equation describes the pressure change with height in the surrounding air,
whereas the rising air parcel itself is certainly not in a static state. However, since pressure
differences between the parcel and its environment adjust almost instantaneously, we can
apply this pressure change to the air parcel as well. This allows us to substitute Eq. (2.31) into

Eq. (2.29), thereby also applying the relation 1
ρ′ = Rd T ′

p , giving

dT ′

dz
= Rd T ′

cp p

dp

dz
=− ρ

ρ′
g

cp
. (2.32)
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Figure 2.1: Schematic illustration of the three atmospheric stability regimes. An example of the potential
temperature profile for each case is shown in gray. Using these profiles, the plots depict how the potential
temperature of a vertically displaced air parcel, initially in perfect equilibrium with its surroundings, compares to
that of the environment. To this end, the blue dot represents the air parcel in its initial state, while the dotted blue
arrows indicate its potential temperature evolution when displaced upward or downward.

When assuming that the density of the rising air is not much different from that of the sur-
rounding air, i.e., ρ ≈ ρ′, this expression can be further simplified to

dT ′

dz
=− g

cp
=−9.8Kkm−1 . (2.33)

In the last step, we used g = 9.81 m s−1 and cp = 1004 J kg−1 K−1. Equation (2.33) is known as
the dry adiabatic lapse rate. It describes the temperature change in an air parcel lifted without
condensation. However, as the air parcel rises and cools, it eventually reaches its saturation
vapor pressure, leading to condensation. This process releases latent heat, which partially
counteracts the cooling due to expansion, resulting in a reduced lapse rate known as the satu-
rated adiabatic lapse rate. The magnitude of this lapse rate depends on the parcel’s moisture
content and is always less negative than the dry adiabatic lapse rate. In the limit of all the water
vapor condensed out, it converges toward the dry adiabatic lapse rate again. Apart from these
considerations, it is important to note that Eq. (2.33) remains an approximation that assumes
small density differences between the parcel and its surroundings. The more fundamental
result is given by Eq. (2.30), which states that the potential temperature is conserved during
dry adiabatic lifting.

Influence of atmospheric stability on rising air parcels

Having examined the temperature evolution within a rising air parcel, we can now turn to the
second key factor governing the vertical motion of air masses: the temperature profile of the
surrounding air. To explore this, we consider an air parcel initially in perfect equilibrium with
its environment, meaning it has the same temperature and pressure as the surrounding air. We
then analyze its response to small vertical displacements. Figure 2.1 illustrates this process
for three different ambient potential temperature profiles. Regardless of the profile, Eq. (2.30)
states that the potential temperature is conserved within the air parcel. Consequently, in all
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three cases, the parcel’s potential temperature evolution follows the same trajectory, as visual-
ized by the blue dotted arrows in each panel. The parcel’s response to these displacements,
however, depends strongly on the potential temperature profile of the surrounding atmosphere.
A crucial point to recall here is that, due to the pressure equilibrium between the air parcel
and its environment, differences in potential temperature correspond directly to differences
in actual temperature at the same height. Specifically, if the air parcel has a higher potential
temperature than its surroundings (θ′ > θ), then its actual temperature (T ′) will also be higher
than the surrounding temperature (T ). Using this relationship and Fig. 2.1, we can identify the
three different atmospheric stability regimes:

(a) Neutral stratification (∂θ∂z = 0): The atmosphere is said to be neutrally stratified when
the potential temperature remains constant with height. In this case, the air parcel’s
potential temperature — and consequently, its actual temperature — stays equal to
that of the surrounding air at all heights. According to Eq. (2.27), this means the parcel
experiences no net acceleration; it neither rises further nor returns to its original position,
instead remaining in equilibrium at its new height.

(b) Stable stratification (∂θ
∂z > 0): The atmosphere is said to be stably stratified when the

potential temperature increases with height. A lifted air parcel in such an atmosphere
remains cooler and denser than its surroundings (θ′ < θ), resulting in a downward
buoyant force that drives it back toward its original position. Similarly, if displaced
downward, it becomes warmer and less dense, generating an upward buoyant force that
pushes it back up. In both cases, any displacement is counteracted, ensuring that the air
parcel returns to equilibrium.

(c) Unstable stratification (∂θ∂z < 0): The atmosphere is said to be unstably stratified when the
potential temperature decreases with height. Here, a lifted air parcel remains warmer
and less dense than its surroundings (θ′ > θ), leading to continued upward acceleration.
Conversely, if displaced downward, it stays cooler and denser, resulting in further down-
ward acceleration. This means that any initial displacement is amplified, moving the
parcel progressively away from its original height.

These stability regimes, combined with the previously derived temperature evolution inside a
rising air parcel, allow us to describe the vertical motion of a warmed air parcel at the surface.
From Eq. (2.27), we know that such a warmed air parcel experiences an upward buoyant
force. In addition, Eq. (2.30) states that its potential temperature remains constant during
ascent. As a result, the upward motion of the parcel is primarily governed by the stability of the
surrounding atmosphere. In neutrally or unstably stratified atmospheric regions, the potential
temperature of the surrounding air remains constantly lower or even decreases relative to
that of the warmed air parcel, allowing it to rise continuously. In stably stratified atmospheric
regions, on the other hand, the potential temperature increases with height. Consequently, the
rising air parcel eventually reaches a level where its potential temperature equals that of the
surrounding air, bringing its ascent to an end. On average, the atmosphere is in such a stably
stratified state (Andrews, 2010), with an average temperature decrease of about −6.5 K km−1 in
the troposphere (Wallace and Hobbs, 2006a).
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Figure 2.2: Schematic illustration of convective cloud formation in an initially stably stratified atmosphere. The
gray line represents the initial temperature profile, where no convection occurs. As near-surface air warms (red
arrow), the formation of a convective cloud is illustrated in three steps, each represented by a distinct shade of
blue and labeled with an encircled number:

1. Initial stable state: Before warming occurs, the air at the surface is in equilibrium with its surroundings
and experiences no buoyant force. If displaced upward, its temperature follows the dry adiabatic lapse
rate, as indicated by the dotted turquoise line, making it colder and denser than the surrounding air. The
resulting negative buoyancy forces the air back to the surface, preventing convection.

2. Onset of convection: As the surface air warms, it becomes buoyant and begins to rise. Since the air is
initially assumed to be unsaturated, it follows the dry adiabatic lapse rate during this ascent. The warmer
the surface air gets, the higher it rises before reaching a level where its temperature equals that of the
surrounding air, gradually deepening the convective layer.

3. Cloud formation: Once surface warming reaches a critical convective temperature (25°C in this example),
the rising air reaches the convective condensation level (CCL), where it becomes saturated. From this point
onward, condensation occurs and a cloud starts to form. In this process, latent heat is released, altering
the parcel’s lapse rate to the saturated adiabatic lapse rate, which is less steep than the dry adiabatic lapse
rate. The air continues to rise until reaching the level of neutral buoyancy (LNB), where its temperature
matches that of the surrounding air, marking the cloud top.

Formation and quantitative description of convective clouds

Building on this understanding, we can now examine the formation of convective clouds
in the atmosphere. Figure 2.2 presents a schematic illustration of this process. Just as in
the global average, the temperature profile in this example (shown in gray) features a lapse
rate of −6.5 K km−1, with the temperature decreasing from 20°C at the surface to 0°C slightly
above 3 km height. Above this level, a capping inversion is introduced, with the temperature
increasing at a rate of 3 K km−1, to promote shallow rather than deep convection. Based on this
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temperature profile, the formation of a convective cloud from initially unsaturated air parcels
at the ground is illustrated in three steps, each visualized in a different shade of blue:

1. Initial stable state
In the first stage, the surface air has not yet been heated and is still in equilibrium with
its surroundings. If lifted, it would cool at approximately −9.8 K km−1, following the
dry adiabatic lapse rate quantified in Eq. (2.33). This cooling is visualized by the dotted
turquoise line in Fig. 2.2. Along this path, the lifted air becomes progressively cooler and
denser than the surrounding air, which, according to Eq. (2.27), results in a downward
buoyant force that returns the parcel back to its original position.

2. Onset of convection
However, as solar heating warms the near-surface air masses, they become warmer than
the surrounding environment. This initiates convection, as the warmed air parcels now
experience an upward buoyant force. As they rise, the initially unsaturated air masses
follow the dry adiabatic lapse rate, cooling more rapidly with height than the surround-
ing air, which cools at only −6.5 K km−1 in this example. Consequently, the rising air
eventually reaches a height where its temperature matches that of the environment,
marking the upper boundary of the convective layer.

3. Cloud formation
As surface warming continues, the rising air parcels reach progressively greater heights,
gradually deepening the convective layer, until eventually, the convective temperature
(see, e.g., Peppler and Lamb, 1989) of 25°C in this example is reached. At this point,
the rising air cools enough to reach a height where its water vapor pressure equals the
saturation vapor pressure, leading to condensation. This height is referred to as the
convective condensation level (CCL; see, e.g., Peppler and Lamb, 1989) and marks the
lower end of the cloud that now begins to form. Because condensation releases latent
heat, the rising air now cools at the saturated adiabatic lapse rate instead of the dry
adiabatic lapse rate, resulting in a much slower cooling rate. This allows the rising air to
reach significantly greater heights than before. Eventually, however, the temperature of
the rising air masses equals that of the surrounding air again. This height is also referred
to as the level of neutral buoyancy (LNB; see, e.g., Wang et al., 2020). The difference in
height between this LNB and the CCL determines the vertical extent of the convective
cloud that has formed.

In summary, convective clouds thus form when the near-surface air warms sufficiently for
rising air parcels to exceed the convective condensation level, allowing their water vapor to
condense into clouds. To describe the structure and evolution of these clouds, let us now finally
introduce some key quantities that will be used throughout the remainder of this thesis. Just
like in the example presented in Fig. 2.2, we will focus on shallow convective clouds for that,
although the radiative transfer solver introduced in this work can theoretically handle deep
convection as well. These shallow cumulus clouds typically remain below the 0°C isotherm and
consist solely of liquid water, which is why they are also referred to as warm clouds (Wallace and



24 2. Theoretical background

Hobbs, 2006c). In numerical models, the microphysical structure of these clouds is represented,
among other things, by the spatial distribution of the cloud water mixing ratio across the grid
boxes occupied by the cloud. Similar to the water vapor mixing ratio, this cloud water mixing
ratio qc is defined as the mass mw of liquid water per unit mass md of dry air:

qc = mw

md
. (2.34)

In addition to that, the total water mixing ratio q specifies the combined mass of water in all
three phases (water vapor, liquid water, and ice) per unit mass of dry air. Furthermore, and
as an alternative to qc , the liquid water content (LWC) is often used. It expresses the mass of
liquid water per unit volume V of air (Wallace and Hobbs, 2006c) and is therefore defined as

LWC = mw

V
. (2.35)

The liquid water content and qc are related via the air density ρ, following the relationship

LWC = mw

V
= ρ mw

md
= ρ qc . (2.36)

The vertically integrated liquid water content finally defines the liquid water path

LWP =
∫ ∞

0
LWC(z)dz . (2.37)

It quantifies the total column-integrated liquid water per unit area and is therefore strongly
dependent on cloud thickness. Together with other, purely geometric quantities such as cloud
depth, these measures will be used to characterize cloud fields driven by different radiative
transfer models in Chapter 5, as well as to describe any cloud field considered in the remainder
of this thesis.

2.2 Radiative transfer

The importance of radiation for atmospheric dynamics has already been emphasized in various
parts of this work. In the introduction, for example, radiation was identified as the main driver
of both large-scale atmospheric motions, such as the global atmospheric circulation, and
smaller-scale processes like convection. While the former results from the differential heating
of Earth at different latitudes, the latter is initiated by the warming of air masses near Earth’s
surface. It was consequently pointed out that a common characteristic of all these processes
is their initiation through radiation-induced temperature changes, with sources of radiative
energy heating air masses and sinks cooling them. In the preceding section on numerical
weather prediction, it was then shown that these sources and sinks of radiative energy are also
exactly the means by which radiation enters the primitive equations — the set of nonlinear
partial differential equations describing the atmosphere’s future evolution. When discussing
their forward integration in NWP models, it was further noted that radiation is among the
processes not explicitly resolved by these models, requiring parameterization instead. Since
radiation is the main focus of this thesis, the following section now provides an overview of key
aspects of radiative transfer theory and its parameterization in NWP models.
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2.2.1 Electromagnetic radiation

To describe radiative transfer in the atmosphere, we first introduce fundamental properties of
electromagnetic radiation along with key radiative quantities required to characterize it. Unless
stated otherwise, the content of this subsection is adapted from Petty (2006a) and Wallace et al.
(2006).

Radiative transfer generally describes the transport of radiative energy through a medium.
In classical physics, this process is modeled using electromagnetic waves, which consist of
oscillating electric and magnetic fields oriented perpendicular to each other and propagating
in a direction perpendicular to both fields. In a vacuum, these waves propagate at the speed of
light, c = 299792458 m s−1, whereas in a medium with refractive index n, their speed is reduced
to c

n . Furthermore, the frequency f of the oscillating waves determines their wavelength λ,
following the relationship

λ= c

f
. (2.38)

However, not all properties of electromagnetic radiation can be explained through its wave
nature alone. A famous example is the photoelectric effect, which describes the emission of
electrons from a material exposed to electromagnetic radiation. According to classical wave
theory, this emission should depend solely on the intensity of the incoming light. An electron
should therefore be dislodged once enough energy has accumulated to free it, with sufficiently
dim light causing a delayed emission. However, experimental results show that electron
emission depends not on light intensity but solely on frequency, with electrons dislodged only
if a certain threshold frequency is exceeded. If the frequency of the incoming radiation is
below this threshold, no electrons are emitted, regardless of intensity. Einstein (1905) famously
demonstrated that this behavior can be explained by interpreting light not as a wave but rather
as discrete packets of energy — photons. The radiative energy Q of each of these photons is
given by

Q = h f = h
c

λ
, (2.39)

where h = 6.62607015×10−34 J s is Planck’s constant, a fundamental physical constant. Adapt-
ing this particle-like behavior, individual photons must exceed a certain frequency to provide
enough energy to dislodge an electron, thus explaining the photoelectric effect. In this the-
sis, we primarily adopt this quantum perspective, treating electromagnetic radiation as an
ensemble of photons.

Using this perspective, we can now introduce the quantities needed to quantitatively de-
scribe electromagnetic radiation in the atmosphere. To this end, we consider a surface, such
as Earth’s surface or any imaginary surface within Earth’s atmosphere, exposed to electro-
magnetic radiation. The total amount of energy received by this surface over a given time
can theoretically be determined by summing the energy Q of all photons passing through
it during that period. Yet, to capture the radiative field in full detail, one must also account
for variations in incoming radiation over time, such as changes in the Sun’s incidence angle.
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Figure 2.3: Schematic illustration of spectral radiance, which is defined as the amount of radiative energy per unit
time and unit wavelength interval arriving from a given direction and passing through a unit area normal to that
direction (shaded in dark purple). The direction of the incoming radiation is specified by the zenith angle θ and
azimuth angle φ, with the corresponding infinitesimal solid angle spanned by the differential angle elements δθ
and δφ. Reprinted from Fig. 4.3 in Wallace et al. (2006), with permission from Elsevier.

Moreover, different parts of the surface will likely receive varying amounts of energy, as some
areas may be shadowed while others are directly exposed to the Sun. For each infinitesimal
surface element, the incoming radiative energy also depends on direction. A surface element
directly exposed to the Sun, for example, receives most of its radiation from the Sun’s direction,
whereas other parts of the sky contribute far less to the total energy received. Additionally,
different wavelengths contribute varying amounts to the total received radiative energy. Hence,
in the most fundamental terms, the radiative field is characterized by the spectral radiance Lλ,
also known as monochromatic or spectral intensity, which is defined as

Lλ =
dQ

dt cosθdA dΩdλ
. (2.40)

It specifies the amount dQ of radiative energy per unit time dt and unit wavelength interval
dλ arriving from a given direction dΩ and passing through a unit area cosθdA normal to that
direction. Figure 2.3 provides a schematic illustration of this definition. Using this figure, we
can see that the direction the spectral radiance refers to is described using a solid angle. Just
as a conventional angle is defined as the arc length it spans on a circle divided by the circle’s
radius, a solid angle is defined as the surface area it spans on a sphere divided by the square of
the radius, which can be expressed as

Ω= A

r 2
. (2.41)

Hence, the solid angle covering an entire sphere, with A = 4πr 2, is equal to 4π steradian (sr),
with the steradian being the dimensionless unit of the solid angle. Similarly, the infinitesimal
solid angle spanned by the differential angle elements dθ and dφ is given by

dΩ= r dθ r sinθdφ

r 2
= sinθdθdφ . (2.42)
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Figure 2.4: Schematic illustration of the relationship between an infinitesimal surface element dA and the
projected area dA′ normal to the direction of incidence used in the definition of spectral radiance.

The direction (θ,φ) that dΩ refers to is usually specified in terms of the unit vector Ω̂. Besides
this directional dependence, Fig. 2.3 also highlights the area dA′ used in the definition of Lλ,
which is shown in dark purple. Figure 2.4 illustrates the relationship between this area and the
surface element dA the spectral radiance is actually calculated for. It takes the form

dA′ = cosθdA , (2.43)

explaining the presence of cosθ in Eq. (2.40). By combining all the information so far, we can
also obtain the unit of spectral radiance, which is commonly expressed as W m−2 sr−1 µm−1

in atmospheric sciences. The "µm" in this unit emphasizes the dependence on wavelength,
distinguishing it from the m2 term associated with the surface area, explicitly accounting for
the typical wavelength range of atmospheric radiation, which extends from approximately
0.1 µm in the ultraviolet to about 100 µm in the infrared.

Although spectral radiance is fundamental for modeling radiative transfer in the atmo-
sphere, it is often more practical to consider the total radiation passing through a surface,
irrespective of its directionality. This leads to the definition of the spectral irradiance Eλ, which
quantifies the radiative energy dQ per unit time dt and unit wavelength interval dλ passing
through an infinitesimal surface element dA and is given by

Eλ =
dQ

dt dA dλ
=

∫
Ω

Lλ cosθdΩ
(2.42)=

∫ φ1

φ0

∫ θ1

θ0

Lλ cosθ sinθdθdφ . (2.44)

It is typically expressed in units of W m−2 µm−1 in atmospheric sciences. As shown in Eq. (2.44),
it can be obtained by integrating the spectral radiance over a specified solid angleΩ. This solid
angle is typically given by one of two hemispheres. Downward spectral irradiance E↓

λ
accounts

for radiation arriving at the surface from above, integrating Lλ over the upper hemisphere
where θ0 = 0 and θ1 = π

2 . Conversely, upward spectral irradiance E↑
λ

accounts for radiation
passing through the surface from below, integrating Lλ over the lower hemisphere where θ0 = π

2
and θ1 =π. In both cases, the azimuthal integration limits are given by φ0 = 0 and φ1 = 2π.

Since atmospheric radiation spans a broad range of wavelengths rather than a single
monochromatic value, spectral irradiance is often not a particularly practical quantity. Instead,
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Table 2.2: Overview of all the radiative quantities defined in this section. Apart from the name and symbol, both
the differential definition and the unit of each quantity are provided.

Quantity Symbol Differential definition Unit

Radiative energy Q — J

Radiative flux Φ
dQ
dt W

Irradiance E dQ
dt dA W m−2

Radiance L dQ
dt cosθdA dΩ W m−2 sr−1

broadband quantities such as the irradiance are used, which is obtained by integrating spectral
irradiance over a finite wavelength range [λ1,λ2] of the electromagnetic spectrum and therefore
takes the form

E =
∫ λ2

λ1

Eλdλ= dQ

dt dA
. (2.45)

It is expressed in units of W m−2. In the context of the radiative transfer solver developed in
this thesis, we are furthermore interested in the total radiative energy per unit time crossing
the different finite-sized faces of a model grid box. To obtain this quantity, irradiance must be
integrated over all infinitesimal surface elements dA forming the corresponding surface. This
defines the radiative flux Φ, sometimes also referred to as radiative power, which is given by

Φ=
∫

A
E dA = dQ

dt
. (2.46)

Φ is typically expressed in units of W. Table 2.2 finally summarizes all the radiative quantities
introduced in this section. It lists only broadband quantities, while the corresponding spectral
counterparts can be obtained by differentiating each quantity with respect to wavelength.

2.2.2 Radiative transfer in the atmosphere

Using these radiative quantities, this subsection now provides an overview of radiative transfer
in the atmosphere. Unless cited otherwise, its content follows Petty (2006b, 2006c) and Wallace
et al. (2006).

To describe radiative transfer in the atmosphere, we must first note that any object with
a temperature T > 0 K emits electromagnetic radiation. An idealized example is that of a
blackbody, an object that completely absorbs all incident radiation. To maintain thermal
equilibrium and avoid indefinite energy accumulation, such a perfect absorber must also be a
perfect emitter. The corresponding spectral radiance emitted by such a blackbody is described
by Planck’s law, which is given by

Bλ(T ) = 2hc2

λ5

1

exp
(

hc
λkB T

)
−1

. (2.47)
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Figure 2.5: Spectral radiance emitted by a blackbody at different temperatures as a function of wavelength.
Reprinted from Fig. 4.6 in Wallace et al. (2006), with permission from Elsevier.

Here, kB = 1.380649×10−23 J K−1 is the Boltzmann constant, another fundamental physical
constant. Equation (2.47) uses Bλ instead of Lλ as a symbol for spectral radiance to indicate
that this spectral radiance specifically refers to blackbody emission. Apart from that, the equa-
tion shows that Bλ(T ) is independent of θ and φ, meaning that blackbody radiation is isotropic.
Figure 2.5 illustrates Bλ(T ) for three different temperatures as a function of wavelength. Ex-
amining the three curves, we can see that the emission spectra at different temperatures do
not intersect. Apart from that, they are all characterized by a distinct peak, a sharp drop-off
toward shorter wavelengths and a more gradual decline toward longer wavelengths. The peak
wavelength λmax is inversely proportional to the temperature of the blackbody and can be
determined using Wien’s displacement law, which is given by

λmax = 2897µmK

T
. (2.48)

In general, however, most objects are not perfect blackbodies but rather graybodies, meaning
they absorb only part of the incident radiation, while the remainder is reflected, transmitted, or
scattered. At any wavelength λ, such a graybody is characterized by its absorptivity αλ, which
is defined as the fraction of the incident spectral radiance that is absorbed by the object:

αλ =
Labsorbed
λ

Lincident
λ

. (2.49)

It is important to note that a graybody does not necessarily have to be a solid object; for
example, every part of the atmosphere also behaves as a graybody, with correspondingly low
absorptivities in the visible spectrum — otherwise, solar radiation would not reach the surface.
However, as long as αλ > 0 and T > 0 K, a graybody also emits electromagnetic radiation. This
is described by Kirchhoff’s law, which states that, at any wavelength λ, the absorptivity αλ(θ,φ)
of an object for radiation arriving from a given direction is equal to its emissivity ϵλ(θ,φ) in the
same direction. Mathematically, this can be written as

αλ(θ,φ) = ϵλ(θ,φ) . (2.50)
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Figure 2.6: Panel (a) shows the blackbody emission spectra representative of the Sun (left) and Earth (right) as a
function of wavelength λ. The y-axis of this plot represents spectral radiance Bλ multiplied by wavelength λ, with
the curves normalized so that the area under both is equal. Panel (b) depicts the absorptivity of the atmosphere
above 11 km height, whereas panel (c) shows the total absorptivity of the entire atmosphere. Reprinted from
Fig. 4.7 in Wallace et al. (2006), with permission from Elsevier.

The emissivity ϵλ in this expression quantifies the amount of spectral radiance an object emits
relative to a blackbody at the same temperature and is defined as

ϵλ =
Lemitted
λ

Bλ(T )
. (2.51)

Just like αλ, the emissivity ϵλ of an object ranges between 0 and 1, with ϵλ = 1 indicating
that the object behaves like a blackbody at the corresponding wavelength. Combined with
Eq. (2.50), Eq. (2.51) can be used to quantify the spectral radiance emitted by any object with
an absorptivity αλ and a temperature T > 0 K. For graybodies, where αλ = ϵλ < 1, this emitted
spectral radiance is always greater than zero but remains lower than that of a blackbody at the
same temperature.

Building on this foundation, the two primary sources of radiative energy in the atmosphere
can be identified, each associated with a distinct wavelength regime, as illustrated in Fig. 2.6:

(a) Solar radiation (also referred to as shortwave radiation) originates from the Sun and
enters the atmosphere at its upper boundary. It can be approximated by the radiation
emitted from a blackbody at the Sun’s effective surface temperature of 5780 K, as shown
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by the left spectrum in panel (a). Solar radiation covers wavelengths from approximately
0.1µm in the ultraviolet to 4µm in the near-infrared, with a significant portion falling
within the visible band (0.38µm–0.78µm). The peak emission occurs at around 0.5µm
wavelength. Examining panels (b) and (c), we can also see that the atmosphere is largely
transparent in this spectral range, allowing much of the incoming solar radiation to reach
the surface. This also explains why, as discussed earlier in Sect. 2.1.4, solar radiation
primarily warms near-surface air masses.

(b) Thermal radiation (also referred to as longwave radiation), on the other hand, is emitted
by Earth and its atmosphere. It can be approximated by the radiation emitted from
a blackbody at a temperature of 255 K, as shown by the right spectrum in panel (a).
Thermal radiation spans wavelengths from approximately 4µm in the near-infrared
to 100µm in the infrared, with a maximum at around 11µm. Unlike solar radiation,
it does not pass through the atmosphere as easily, with the atmosphere being far less
transparent in this spectral range, as one can see in panel (c), indicating that radiative
transfer in the solar and thermal spectral ranges is dominated by different processes.

Examining panel (a) of Fig. 2.6 more closely, one might wonder why the y-axis displays λBλ

instead of the spectral radiance Bλ alone. The reason lies in the logarithmic scaling of the
x-axis. By plotting λBλ instead of Bλ, any area under the curves in the plot, given by λBλdlnλ,
still correctly represents the corresponding broadband radiance dB , since

dB = Bλdλ= Bλλdlnλ with dlnλ=λ−1 dλ . (2.52)

Another aspect that might seem surprising is that the two blackbody spectra intersect at around
4µm wavelength, despite Fig. 2.5 clearly showing that such an intersection does not occur. This
apparent contradiction arises because the spectra in Fig. 2.6 are normalized so that the total
area under each curve is equal. Without this normalization, the terrestrial blackbody spectrum
would be barely visible in comparison to the solar one, as its emitted spectral radiance is
significantly lower across all wavelengths. Despite this difference, however, thermal radiation
is just as important for Earth’s global energy budget as its solar counterpart. From the Sun’s
perspective, Earth simply spans only a tiny solid angle, meaning that only a small fraction of
the Sun’s total emitted radiation reaches Earth. Earth, on the other hand, compensates for
the corresponding net intake of solar radiation by emitting thermal radiation isotropically in
all directions. On a global and temporal average, the net outgoing thermal radiation must
equal the net incoming solar radiation — otherwise, Earth’s temperature would continuously
rise or fall. The key takeaway from Fig. 2.6, however, is that while solar radiation is primarily
concentrated at wavelengths between 0.1µm and 4µm, thermal radiation dominates in the
range from 4µm to 100µm. This clear spectral separation allows for an independent treatment
of solar and thermal radiative transfer in most atmospheric applications.

With this foundation, we can now finally discuss the main aspects of radiative transfer in
the atmosphere. To this end, Fig. 2.7 presents a schematic representation of Earth’s global mean
energy budget, illustrating all major radiative interactions in the atmosphere. Starting in the top
left, we can see that, on a global and temporal average, 340 W m−2 of solar radiation enters the
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Figure 2.7: Schematic representation of the global mean energy budget of the Earth. Numbers indicate best
estimates for the magnitudes of the globally averaged energy balance components in W m−2 together with their
uncertainty ranges in parentheses (5–95% confidence range), representing climate conditions at the beginning of
the 21st century. Figure 7.2 (upper panel) from Forster et al. (2021).

atmosphere at its upper boundary. As it propagates downward, an average of 23.5% (80 W m−2)
of this incoming solar radiation is absorbed by the atmosphere, while 22.1% (75 W m−2) is
reflected back to space, primarily by clouds. Upon reaching the surface, an additional 13.5%
(25 W m−2) of the remaining 185 W m−2 is reflected back to space, leaving 160 W m−2 to be
absorbed by the surface. Overall, solar radiation is thus primarily affected by scattering and
absorption as it travels through the atmosphere. However, as shown earlier in panel (c) of
Fig. 2.6, the atmosphere is also relatively transparent in this spectral range, allowing 54.4% of
the incoming solar radiation to reach the surface.

At the surface, this net intake of solar radiation is then balanced by three main mechanisms:
First, surface heating establishes a sensible heat flux of 21 W m−2 into the atmosphere. Second,
the evaporation of water results in a latent heat flux of 82 W m−2. The remaining 57 W m−2 —
except for 0.7 W m−2, which account for the ongoing energy imbalance driving global warming
— are eventually balanced through thermal radiative transfer. In this spectral range, both the
Earth and the atmosphere emit radiation. However, while Earth’s surface emits an average
of 398 W m−2, the comparatively colder atmosphere emits only 342 W m−2 back toward the
surface. This results in a net radiative loss of 56 W m−2, closing the surface energy budget.
Beyond that, Fig. 2.7 also highlights that the atmosphere is far less transparent to thermal
radiation than it is to solar radiation, with only a small fraction of the surface-emitted radiation
escaping directly into space, while the majority is absorbed and re-emitted by the atmosphere.
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Unlike solar radiation, which is primarily scattered, transmitted, and only to some extent
absorbed by the atmosphere, the transport of thermal radiation is thus primarily governed
by absorption and emission throughout all parts of the atmosphere. Ultimately, 239 W m−2

of thermal radiation are emitted to space, leaving a small imbalance of 0.7 W m−2 compared
to the net solar energy input of 240 W m−2 — which, as mentioned before, drives the ongoing
global warming.

Besides illustrating all these major radiative interactions, Fig. 2.7 also highlights the funda-
mental role of clouds in Earth’s global mean energy budget and their contrasting effect across
the two different atmospheric wavelength regimes. In the solar spectral range, the figure clearly
shows that clouds primarily reflect a substantial fraction of the incoming solar radiation back
to space, thereby cooling the surface. In the thermal spectral range, however, clouds act as
strong absorbers, as shown in panel (c) of Fig. 2.6, which highlights the significant contribution
of water to the overall atmospheric absorptivity in this spectral range. Following Kirchhoff’s
law, strong absorbers are also strong emitters, meaning that clouds contribute significantly
to the 342 W m−2 of thermal radiation emitted toward the surface. This also explains why
temperatures drop significantly more during clear-sky nights, where the absence of clouds
leads to substantially lower thermal downward radiation and, consequently, a greater overall
energy loss at the surface.

2.2.3 The radiative transfer equation

Having introduced all major radiative interactions in the atmosphere, this subsection now
develops a quantitative description of these processes. To this end, we consider the change
dLλ(Ω̂) in spectral radiance along an infinitesimal path segment ds. Along this path, spectral
radiance can decrease due to photon absorption or scattering out of the direction of interest
and increase due to photon emission or scattering from other directions into the direction of
interest. In the following, quantitative expressions for each of these processes are developed,
ultimately leading to the radiative transfer equation (RTE). Unless cited otherwise, the content
of this subsection is adapted from Petty (2006d, 2006e, 2006f, 2006g) and Wallace et al. (2006).

Extinction

Absorption and scattering out of a given direction are collectively termed extinction, since both
processes effectively reduce the spectral radiance along a given path segment. To quantify
this reduction, we must recall that the atmosphere is a mixture of various gaseous, liquid
and solid components. This includes molecular gases such as nitrogen, oxygen, water vapor,
and trace gases, as well as aerosols and the water droplets and ice crystals forming clouds.
The extinction caused by any one of these constituents can be analyzed using Fig. 2.8, which
illustrates a small volume element dV = A ds along a path segment ds, containing Ni particles
of a given species. Each of these particles is associated with an extinction cross-section σext,λ,i ,
representing the effective area it presents for removing photons from the incident beam via
absorption or scattering. The probability that a photon is extinguished within this volume
is then given by the total extinction cross-section of all particles, Ni σext,λ,i , relative to the
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Figure 2.8: Schematic illustration of the change in spectral radiance Lλ,i (Ω̂) along an infinitesimal path segment
ds due to extinction by a single atmospheric constituent. Within the corresponding volume element dV = A ds, the
probability of a photon being extinguished is determined by the sum Ni σext,λ,i of the extinction cross-sections
σext,λ,i of the Ni particles in the volume, divided by the total cross-sectional area A. Inspired by Fig. 7.16 in
Demtröder (2015).

total cross-sectional area A. Introducing the number density ni = Ni
V = Ni

A ds of species i , the
corresponding reduction dLλ,ext,i (Ω̂) in spectral radiance along the infinitesimal path segment
ds can be formulated as

dLλ,ext,i (Ω̂) =−Ni σext,λ,i

A
Lλ(Ω̂) =−ni σext,λ,i Lλ(Ω̂)ds . (2.53)

Defining the extinction coefficient βext,λ,i of species i as βext,λ,i = ni σext,λ,i , we can then obtain
the total extinction along the path by summing the contributions expressed via Eq. (2.53) over
all M atmospheric constituents, which yields

dLλ,ext(Ω̂) =
M∑

i=1
dLλ,ext,i (Ω̂) =−

M∑
i=1

βext,λ,i Lλ(Ω̂)ds =−βext,λLλ(Ω̂)ds . (2.54)

Here, βext,λ represents the total extinction coefficient due to all atmospheric components,
which is defined as

βext,λ =
M∑

i=1
βext,λ,i =

M∑
i=1

ni σext,λ,i . (2.55)

It is often decomposed into the contributions from different atmospheric species, such as
molecular gases, aerosols, and clouds, or, alternatively, into the contributions from the two fun-
damental processes governing extinction: absorption and scattering. These are characterized
by the absorption coefficient βabs,λ and the scattering coefficient βsca,λ, so that

βext,λ =βabs,λ+βsca,λ . (2.56)
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Figure 2.9: Scattering regimes of radiation interacting with spherical particles of radius r as a function of
wavelength λ. The dashed lines mark the boundaries between the different scattering regimes, each labeled
with the corresponding value of the size parameter x. Additionally, various atmospheric constituents associated
with specific particle radii are listed on the right, whereas the spectral regions corresponding to the different
wavelengths are indicated at the top. Figure 12.1 from Petty (2006g), used with permission from the author.

While βabs,λ is governed by the absorption spectra of the various atmospheric components
and therefore is strongly wavelength-dependent, βsca,λ is determined by the scattering regime
that radiation of wavelength λ is subject to when interacting with particles of radius r . These
regimes are characterized by the dimensionless size parameter

x = 2πr

λ
. (2.57)

Depending on the value of x, the scattering falls into one of four regimes illustrated in Fig. 2.9:

(a) If x ⪅ 0.002, scattering by the corresponding species is negligible compared to that by
other atmospheric components. While this does not apply to any atmospheric con-
stituent in the solar spectral range, air molecules in the thermal spectral range fall into
this regime. This explains why scattering plays an insignificant role in most parts of the
atmosphere in this spectral range, as previously noted in Sect. 2.2.2.

(b) If 0.002 ⪅ x ⪅ 0.2, the incoming radiation undergoes Rayleigh scattering, which is an
approximation of the Mie theory discussed below for size parameters x ≪ 1. In this
regime, the scattering coefficient exhibits a strong wavelength dependence, given by
βsca,λ∝λ−4, meaning that shorter wavelengths are scattered much more efficiently than
longer ones. Rayleigh scattering primarily governs the interaction of solar radiation with
air molecules, explaining why the cloud- and aerosol-free sky appears blue — shorter
(blue) wavelengths are simply scattered much more than longer (red) ones are. As
illustrated in Fig. 2.10, Rayleigh scattering at x = 0.1 exhibits a relatively uniform angular
distribution, with maxima in both the forward and backward directions and minima
perpendicular to the incident direction.
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Figure 2.10: Angular distribution of the scattering probability for radiation coming from the left, shown for various
values of the size parameter x. Figure 12.8 from Petty (2006g), used with permission from the author.

(c) If 0.2 ⪅ x ⪅ 2000, the radiation is subject to Mie scattering, which governs the interac-
tion of solar radiation with cloud droplets and aerosols, such as the dust, smoke and
haze mentioned in Fig. 2.9. Compared to Rayleigh scattering, Mie scattering exhibits a
much weaker wavelength dependence, with an approximate scaling of βsca,λ∝λ−1.3 for
aerosols (Reuter et al., 2001, p. 152), though the exponent actually varies between 0 and
2 depending on particle size (Steinacker and Umdasch, 2014). This weak wavelength
dependence explains why clouds appear white in the solar spectral range — all wave-
lengths are simply scattered to a similar extent. Looking at Fig. 2.10, we can further see
that scattering in the Mie regime at x = 10 is characterized by a strong forward-scattering
peak that is so dominant that it even extends beyond the figure’s scale. As x increases,
this peak becomes even more pronounced, eventually approaching a delta function in
the forward direction. Apart from this strong forward peak, Mie scattering also exhibits a
much more complex angular dependence compared to Rayleigh scattering. At x ⪆ 500,
for instance, two distinct peaks emerge at scattering angles of approximately 137° and
130° in the backward direction, corresponding to light scattered into the primary and
secondary rainbows, respectively. The exact angles of these peaks exhibit a slight wave-
length dependence, producing the characteristic color transitions from blue to red in
the primary rainbow and from red to blue in the secondary rainbow. Apart from that,
another notable feature of the Mie regime is a pronounced enhancement of scattering at
approximately 180° in the backward direction, known as the glory.

(d) For x ⪆ 2000, Mie scattering gradually transitions into the geometric optics regime. This
applies, for example, to raindrops in the solar spectral range. In this regime, classical
ray optics provide an effective framework for explaining optical phenomena such as
the rainbow. However, certain effects, such as the strong forward-scattering peak that
persists in this range, cannot be fully accounted for with this theory.
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Figure 2.11: Two-dimensional schematic illustration of radiation scattered from an incident direction Ω̂′ into the
direction of interest Ω̂. As radiation passes through the infinitesimal spherical volume element dV = 4

3 π( ds
2 )3,

a fraction of the spectral radiance Lλ(Ω̂′), determined by the scattering coefficient βsca,λ, is scattered into all
directions. The portion scattered into Ω̂, indicated by the blue arrow, contributes to an increase in the spectral
radiance Lλ(Ω̂) in that direction.

Scattering

Having established that scattering reduces the spectral radiance Lλ(Ω̂) along a given path
segment ds, this section now examines how radiation scattered from other directions into the
direction of interest contributes to an increase in Lλ(Ω̂) along the same path. To quantify this

contribution, we consider an infinitesimal spherical volume element dV = 4
3π

(ds
2

)3
centered

along ds, as illustrated in Fig. 2.11. Within this infinitesimal volume, the scattering coefficient
βsca,λ can be assumed constant. Additionally, due to the spherical symmetry of the volume,
radiation arriving from any direction, specified by the unit vector Ω̂′, traverses the volume along
equally long paths. Taken together, this implies that the spectral radiance Lλ(Ω̂′) from any given
direction Ω̂′ is scattered by the same fraction βsca,λds within the volume. The corresponding
decrease in Lλ(Ω̂′) is given by

dLλ,sca(Ω̂′) =−βsca,λLλ(Ω̂′)ds . (2.58)

To quantify the fraction of this scattered radiation that is redirected into the direction of interest
Ω̂, we introduce the scattering phase function p(Ω̂′,Ω̂). This probability density function (PDF)
describes the angular distribution of radiation scattered from an incident direction Ω̂′. Unlike
conventional PDFs, however, the integral of p(Ω̂′,Ω̂) over all possible directions Ω̂′ is not
normalized to 1, but instead equals 4π, which can be expressed by∫

4π
p(Ω̂′,Ω̂)dΩ′ = 4π (2.59)

for each direction of interest Ω̂. As a result, the fraction of scattered radiation originally

propagating in direction Ω̂′ that is redirected into Ω̂ is given by p(Ω̂′,Ω̂)dΩ′
4π . Using this, the
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Figure 2.12: Three-dimensional rendering of the scattering phase function p(Ω̂′,Ω̂) for Rayleigh scattering. The
vector Ω̂′ represents the direction of the incident radiation. Slightly modified Figure 12.3 from Petty (2006g), used
with permission from the author.

increase dLλ,sca,Ω̂′→Ω̂ in Lλ(Ω̂) due to scattering from Ω̂′ into Ω̂ can be expressed as

dLλ,sca,Ω̂′→Ω̂ =βsca,λLλ(Ω̂′)ds︸ ︷︷ ︸
amount of Lλ(Ω̂′)
that is scattered

into any direction

· p(Ω̂′,Ω̂)dΩ′

4π︸ ︷︷ ︸
fraction of the

scattered radiation
that is scattered into Ω̂

= βsca,λ

4π
p(Ω̂′,Ω̂)Lλ(Ω̂′)dΩ′ds . (2.60)

To determine the total increase in Lλ(Ω̂) due to scattering from all possible directions Ω̂′ into
Ω̂, we integrate Eq. (2.60) over the entire sphere, which yields

dLλ,sca(Ω̂) = βsca,λ

4π

∫
4π

p(Ω̂′,Ω̂)Lλ(Ω̂′)dΩ′ ds . (2.61)

The scattering coefficient in this equation is often expressed in terms of the extinction co-
efficient βext,λ. To this end, the single-scattering albedo ω0,λ is introduced, which is defined
as

ω0,λ =
βsca,λ

βext,λ
= βsca,λ

βabs,λ+βsca,λ
. (2.62)

By substituting Eq. (2.62) into Eq. (2.61), we obtain

dLλ,sca(Ω̂) = ω0,λβext,λ

4π

∫
4π

p(Ω̂′,Ω̂)Lλ(Ω̂′)dΩ′ ds . (2.63)

This is the standard expression for the increase in spectral radiance Lλ(Ω̂) along a path segment
ds due to scattering from all directions Ω̂′ into the direction of interest Ω̂. The scattering phase
function p(Ω̂′,Ω̂) in this equation describes exactly the angular distribution of scattered radia-
tion discussed in the preceding section on extinction. When scattering occurs at spherical or
randomly oriented particles, this function is rotationally symmetric, as illustrated in Fig. 2.12,
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which presents a three-dimensional rendering of p(Ω̂′,Ω̂) for Rayleigh scattering. In such
cases, the scattering probability depends only on the scattering angleΘ between the incident
direction Ω̂′ and the scattered direction Ω̂, allowing p(Ω̂′,Ω̂) to be expressed as p(Θ) and repre-
sented in two dimensions without any loss of information, as shown in Fig. 2.10. Consequently,
both Fig. 2.12 and the plot for x = 0.1 in Fig. 2.10 illustrate the key characteristics of Rayleigh
scattering with equal amounts of forward and backward scattering, maxima in both of these
directions, and minima perpendicular to the incident direction. The symmetry required for
this simplification of the phase function applies to many atmospheric constituents, such as
cloud droplets, air molecules, and small aerosols, even though air molecules and aerosols
are generally non-spherical. However, they lack a preferred orientation and can therefore be
treated as randomly oriented. In contrast, larger particles such as falling raindrops, snowflakes,
or ice crystals do exhibit preferred orientations, necessitating more complex scattering phase
functions instead.

Emission

Finally, we examine the increase in spectral radiance Lλ(Ω̂) along an infinitesimal path segment
ds due to photon emission. To quantify this contribution, we first recall that the reduction in
Lλ(Ω̂) along ds due to absorption is given by

dLλ,abs(Ω̂) =−βabs,λLλ(Ω̂)ds . (2.64)

Following Eq. (2.49), this implies that the absorptivity αλ of the medium along ds can be
expressed as

αλ
(2.49)= Labsorbed

λ

Lincident
λ

= −dLλ,abs(Ω̂)

Lλ(Ω̂)
= βabs,λLλ(Ω̂)ds

Lλ(Ω̂)
=βabs,λds . (2.65)

Now, according to Kirchhoff’s law specified in Eq. (2.50), the absorptivity of a medium is equal
to its emissivity ϵλ. Following the definition of ϵλ from Eq. (2.51), we can then quantify the
spectral radiance emitted along ds, and thus the increase dLλ,em(Ω̂) in Lλ(Ω̂) due to emission
as follows:

dLλ,em(Ω̂)
(2.51)= ϵλBλ(T )

(2.50)= αλBλ(T )
(2.65)= βabs,λBλ(T )ds . (2.66)

Similar to Eq. (2.61), the absorption coefficient βabs,λ in this equation is often expressed in
terms of the extinction coefficient βext,λ. To achieve this, we rewrite the single-scattering
albedo ω0,λ as

ω0,λ
(2.62)= βsca,λ

βext,λ
= βabs,λ+βsca,λ−βabs,λ

βabs,λ+βsca,λ
= 1− βabs,λ

βext,λ
⇒ βabs,λ = (1−ω0,λ)βext,λ . (2.67)

Substituting Eq. (2.67) into Eq. (2.66) then yields the standard expression for the emission term
in the radiative transfer equation, quantifying the increase in spectral radiance Lλ(Ω̂) along ds
due to photon emission as

dLλ,em(Ω̂) = (1−ω0,λ)βext,λBλ(T )ds . (2.68)
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Since at typical atmospheric temperatures, Bλ(T ) is predominantly concentrated in the wave-
length range from 4µm to 100µm, this emission term only provides significant contributions
to radiative transfer in the thermal spectral range.

Having quantified all atmospheric interactions that either increase or decrease the spectral
radiance Lλ(Ω̂) along a given path segment ds, we can now combine the three terms specified
in Eqs. (2.54), (2.63), and (2.68) to obtain the total change dLλ(Ω̂) in Lλ(Ω̂) along ds, which is
given by

dLλ(Ω̂) = dLλ,ext(Ω̂)+dLλ,sca(Ω̂)+dLλ,em(Ω̂)

=
(
−Lλ(Ω̂)+ ω0,λ

4π

∫
4π

p(Ω̂′,Ω̂)Lλ(Ω̂′)dΩ′+ (1−ω0,λ)Bλ(T )

)
βext,λds . (2.69)

Rearranging for dLλ(Ω̂)
βext,λds , we finally arrive at the standard form of the radiative transfer equation

(RTE), as presented, for example, in Mayer (2009):

dLλ(Ω̂)

βext,λds
=−Lλ(Ω̂)+ ω0,λ

4π

∫
4π

p(Ω̂′,Ω̂)Lλ(Ω̂′)dΩ′+ (1−ω0,λ)Bλ(T ) . (2.70)

Given appropriate boundary conditions specifying Lλ(Ω̂) at the edges of the domain — such
as the extraterrestrial solar radiance entering Earth’s atmosphere at the top — this integro-
differential equation theoretically allows for the determination of Lλ(Ω̂) for all directions Ω̂,
wavelengths λ, and locations within a domain. In the context of weather forecasting, however,
the primary interest is not in solving for Lλ(Ω̂), but in deriving the resulting sources and sinks
of heat in the atmosphere, as these provide essential input for the thermodynamic equation
(Eq. (2.3)) within the primitive equations, which govern the atmosphere’s future evolution. The
heating and cooling rates determining this heat source term are obtained from net irradiances
at the boundaries of atmospheric volume elements, which, in turn, can be computed from
the spectral radiances Lλ(Ω̂). To demonstrate this, we consider an infinitesimal atmospheric
volume element dV = dx dy dz. Each of its six faces is associated with two irradiances: one
accounting for radiation entering the volume — the incoming irradiance — and one accounting
for radiation leaving the volume — the outgoing irradiance. At the upper surface element
of dV , given by dA = dx dy , for example, the incoming irradiance is given by the downward
irradiance E↓, which accounts for all the radiation passing through dA from above — that is,
radiation arriving from zenith angles θ ∈ [0, π2 ] and azimuth angles φ ∈ [0,2π]. It can therefore
be calculated as

E↓ =
∫ ∞

0

∫ 2π

0

∫ π
2

0
Lλ(θ,φ) cosθ sinθdθdφdλ . (2.71)

Similarly, the outgoing irradiance is given by the upward irradiance E↑, which accounts for
all the radiation passing through dA from below — that is, from zenith angles θ ∈ [π2 ,π] and
azimuth angles φ ∈ [0,2π]. It can be obtained through

E↑ =
∫ ∞

0

∫ 2π

0

∫ π

π
2

Lλ(θ,φ) cosθ sinθdθdφdλ . (2.72)
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These irradiances can then be used to compute the heating rate ∂T
∂t within the volume element

dV , which quantifies the desired local temperature change over time due to radiative heating
or cooling and is given by

∂T

∂t
= 1

ρ cp
∇⃗ · E⃗net = 1

ρ cp

(
∂Enet,x

∂x
+ ∂Enet,y

∂y
+ ∂Enet,z

∂z

)
(2.73)

(Mayer, 2018). In here, the vertical net irradiance, for example, is given by Enet,z = E↓−E↑. To
illustrate the meaning of this equation, let us consider a simplified case where horizontal net
irradiances are negligible (Enet,x = Enet,y = 0). In this case, the heating rate is solely determined
by the change in the vertical net irradiance with height, following the relationship

∂T

∂t
= 1

ρ cp

∂Enet,z

∂z
. (2.74)

Now, let us assume that more radiation enters the volume than exits it from both above and
below. This is the case when both the downward flux at the top (E↓

top) and the upward flux at

the bottom (E↑
bottom) of the volume are larger than their respective counterparts, i.e.,

E↓
top > E↑

top ⇒ Enet,z,top = E↓
top −E↑

top > 0 and

E↓
bottom < E↑

bottom ⇒ Enet,z,bottom = E↓
bottom −E↑

bottom < 0.

In this case, the vertical net irradiance is positive, since

∂Enet,z

∂z
= Enet,z,top −Enet,z,bottom

dz
> 0,

which leads to ∂T
∂t > 0. Thus, Eq. (2.73) simply states that if more radiative energy enters the

volume than exits it, the temperature in the volume increases. Conversely, if more radiation

exits than enters, cooling occurs. This heating rate thus provides exactly the source term q̇
cp

required in Eq. (2.3) of the primitive equations, demonstrating how the solution of the RTE is
coupled to atmospheric dynamics.

2.2.4 Approximate solutions to the radiative transfer equation

Unfortunately, the full radiative transfer equation has no known analytical solution. This is
primarily due to its second term, which quantifies the increase in spectral radiance due to
scattering from other directions into the direction of interest. Through this term, the spectral
radiance Lλ(Ω̂) in any given direction Ω̂ is coupled to the spectral radiances Lλ(Ω̂′) of all other
directions Ω̂′. As a result, solving Eq. (2.70) requires considering all directions simultaneously,
making an analytical solution infeasible (Mayer, 2009). However, solving the full RTE is not
always necessary. In the solar spectral range, for instance, the thermal emission term can be
neglected, whereas in the thermal spectral range, scattering is insignificant throughout large
parts of the atmosphere, as noted in Sect. 2.2.3. It is particularly this omission of scattering
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that allows for a significant simplification of the RTE, known as Schwarzschild’s equation. It
follows directly from Eq. (2.70) by setting the scattering coefficient to zero (βsca,λ = 0), which in
turn reduces the extinction coefficient to the absorption coefficient (βext,λ =βabs,λ) and results
in a single-scattering albedo of zero (ω0,λ = 0). Additionally, since all quantities now refer to
the same direction, we can omit the explicit angular dependence of Lλ and instead emphasize
the dependence on the path coordinate s along direction Ω̂. This yields the following form of
Schwarzschild’s equation (Wallace et al., 2006):

dLλ(s)

ds
=−βabs,λ(s) (Lλ(s)−Bλ(T, s)) . (2.75)

Unlike the full RTE, this differential equation has a well-known analytical solution. Namely,
given an initial spectral radiance Lλ(s0) at s = s0, Lλ(s) at a distance s along the path is given by

Lλ(s) = Lλ(s0)e−∫ s
s0
βabs,λ(s′)ds′ +

∫ s

s0

βabs,λ(s′)Bλ(T, s′)e−∫ s
s′ βabs,λ(s′′)ds′′ ds′ (2.76)

(Wallace et al., 2006). Although this expression may seem complex at first, its meaning becomes
clear when examining its two components separately:

• The first term, Lλ(s0)e−∫ s
s0
βabs,λ(s′)ds′ , is known as the Beer–Bouguer–Lambert extinction

law and represents the gradual absorption of the initial spectral radiance Lλ(s0) as it
propagates from s0 to s. To this end, the exponent of the exponential function accounts
for the cumulative absorption along the path by integrating the absorption coefficients
βabs,λ(s′) over all infinitesimal path segments ds′. The longer the path and the larger the
absorption coefficients, the greater the reduction of the initial spectral radiance.

• The second term,
∫ s

s0
βabs,λ(s′)Bλ(T, s′)e−∫ s

s′ βabs,λ(s′′)ds′′ ds′, on the other hand, accounts
for radiation emitted along the path from s0 to s, as well as its partial absorption before
reaching s. To understand its different parts, we recall that according to Eq. (2.66), the
spectral radiance emitted along a path segment ds′ is given by

βabs,λ(s′)Bλ(T, s′)ds′ .

However, not all of this emitted radiation reaches s, since a fraction is also absorbed
again along the remaining path from s′ to s. The fraction that survives this absorption is

given by the exponential factor e−∫ s
s′ βabs,λ(s′′)ds′′ . Thus, the contribution from radiation

emitted at s′ to the spectral radiance at s can be expressed as

βabs,λ(s′)Bλ(T, s′)e−∫ s
s′ βabs,λ(s′′)ds′′ ds′ .

By integrating this expression over all path segments ds′ from s0 to s, we obtain the total
contribution of emission to the spectral radiance at s, as expressed in the second term of
Eq. (2.76).
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Even though Eq. (2.76) provides a general solution for radiative transfer in the absence of
scattering, it remains impractical for calculating atmospheric heating rates, as these require
broadband irradiances rather than spectral radiances. To obtain these irradiances, Lλ must
be computed for a sufficient number of solid angles covering the entire corresponding hemi-
sphere and for enough wavelength bands to adequately resolve the atmospheric absorption
spectrum, resulting in a substantial number of calculations for even one such value. Each
of these calculations further requires a different form of the integrals in Eq. (2.76), as each
solid angle traverses a distinct atmospheric region with varying extinction coefficients and
ambient temperatures. In a 1D atmosphere, where properties vary only with height, these
pathways remain manageable, allowing for a relatively fast radiative transfer solver based on
Schwarzschild’s equation. In a fully 3D atmosphere, however, they become significantly more
complex, as radiation traverses different grid boxes instead of the same atmospheric layers
at each solid angle. Additionally, the number of required calculations increases substantially,
as more solid angles are needed to properly capture the horizontal heterogeneity of the at-
mosphere, and spectral irradiances must be computed for all faces of a grid box rather than
just its top and bottom. Beyond these computational aspects, the neglect of scattering makes
Eq. (2.76) unsuitable in the solar spectral range, further emphasizing the need for alternative
solutions to the RTE in a fully 3D atmosphere.

In the context of NWP models, a major challenge in developing such solvers is paralleliza-
tion. Due to their high computational cost, NWP models typically distribute their calculations
across multiple processing cores, with each core responsible for a specific atmospheric subdo-
main. Vertically, these subdomains usually span the entire atmosphere, whereas horizontally,
they cover only a fraction of the full domain. While this decomposition generally works well
for advancing the primitive equations forward in time — since air parcels move only limited
distances between time steps — it poses a significant challenge for radiative transfer, which
operates across much larger spatial scales due to its interaction at the speed of light. To illus-
trate this, consider a cloud casting a shadow at Earth’s surface. If the Sun is positioned at an
angle, this shadow may fall in a different subdomain than the cloud itself, demonstrating how
radiative transfer can easily break model parallelization.

Because of all these complexities, radiative transfer is usually not fully solved but rather
handled using approximate solutions. This subsection introduces three such methods, all of
which will be used in the remainder of this thesis: the δ-Eddington approximation, the Monte
Carlo method, and the TenStream solver. Unless cited otherwise, the following information is
adapted from Zdunkowski et al. (2007), Mayer (2009) and Jakub and Mayer (2015).

The 1D δ-Eddington approximation

Among the three approximate solutions discussed in this subsection, the 1D δ-Eddington
approximation is the simplest, yet also the most widely used. It is based on the plane-parallel
approximation, which assumes that the optical properties of the atmosphere vary in the vertical
direction but remain constant in the horizontal. This assumption makes it well-suited for
cloudless skies or homogeneously overcast conditions, where the atmosphere exhibits little to
no horizontal variation. The approximation breaks down, however, when numerous individual
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Figure 2.13: Schematic illustration of the two-stream method. In this 1D approximation, the radiative transfer
through the different layers of an atmospheric column is described by the diffuse downward spectral irradiances
E↓
λ,i (dark blue arrows) and the diffuse upward spectral irradiances E↑

λ,i (light blue arrows). Additionally, direct
solar radiation that has not yet interacted with the medium is treated separately using the direct spectral irra-
diances Edir,λ,i (red arrows). The radiative transfer within each atmospheric layer i is governed by the layer’s
transmissivity (ti ), reflectivity (ri ), direct transmissivity (tdir,i ), as well as the upward (rdir,i ) and downward (sdir,i )
scattered fractions of the direct radiation. At the upper and lower domain limits, boundary conditions must be
specified, with the ground albedo Ag determining surface reflectivity.

clouds shape the sky, introducing substantial horizontal variability into the atmosphere’s
optical properties. In early NWP models, this was not an issue. With horizontal grid spacings
of about 100 km in the 1990s (e.g., Cullen, 1993), these models simply lacked the resolution
needed to explicitly resolve cumulus clouds and other smaller-scale atmospheric features,
making the plane-parallel assumption reasonably valid. Today, however, horizontal resolutions
have improved significantly, with current regional models featuring grid spacings on the order
of a few kilometers (e.g., DWD, 2025), enabling them to resolve individual convective clouds
and the associated horizontal variability in the atmospheric optical properties. Yet, despite
these advancements, the plane-parallel approximation remains widely used, primarily because
of its computational efficiency.

To apply this approximation, the originally three-dimensional atmosphere is reduced to
a collection of independent vertical columns, each composed of horizontally infinite layers.
Consequently, each grid box can only interact with its upper and lower neighbors in this ap-
proximation, but not in the horizontal direction. Two-stream methods, such as the δ-Eddington
approximation discussed here, further simplify this interaction by considering only two direc-
tional components, namely upward and downward spectral irradiances. Figure 2.13 presents a
schematic illustration of this concept in an atmospheric column composed of Nz +1 layers.



2.2 Radiative transfer 45

The characteristic two streams of the method are shown in blue, with the dark blue arrows
denoting downward spectral irradiances E↓

λ,i and the light blue arrows indicating upward

spectral irradiances E↑
λ,i . In addition to these two streams, direct solar radiation that has not

yet interacted with the atmosphere is treated separately using the direct spectral irradiances
Edir,λ,i , which are illustrated by the red arrows in Fig. 2.13. In contrast to this direct radiation,
E↓
λ,i and E↑

λ,i are also referred to as diffuse downward and upward spectral irradiances, since
they describe radiation that has already interacted with the medium. This separation into
direct and diffuse radiation is necessary because the directionally integrated quantities used in
two-stream methods — namely, E↓

λ,i , E↑
λ,i , and Edir,λ,i — cannot accurately represent both the

highly collimated, beam-like character of direct radiation and the broader angular distribution
of diffuse radiation within a single variable. Using these streams, the propagation of radiation
through any given layer i — highlighted in orange in Fig. 2.13 — can then be described by the
same fundamental processes that shape the full RTE:

(a) Transmission: Absorption and scattering out of the stream of interest (direct, diffuse
downward, or diffuse upward) reduce the spectral irradiance as it propagates through
the layer. The fraction of the incoming radiation that ultimately exits the layer in the
same direction is determined by the layer’s transmissivity. For direct radiation (Edir,λ,i+1),
this transmitted fraction is given by tdir,i , whereas for diffuse radiation (E↓

λ,i+1 and E↑
λ,i ),

it is governed by ti .

(b) Scattering: Scattering from other streams into the stream of interest increases the spectral
irradiance as it propagates through the layer. Radiation is scattered both from the direct
stream into the diffuse ones and between the two diffuse streams. The fractions of the
incoming direct radiation (Edir,λ,i+1) scattered into the upward (E↑

λ,i+1) and downward

(E↓
λ,i ) diffuse streams are given by rdir,i and sdir,i , respectively. Similarly, the fraction of

the incoming diffuse streams (E↓
λ,i+1 and E↑

λ,i ) that is scattered into the opposite outgoing
stream is determined by the layer’s reflectivity ri .

(c) Emission: Thermal radiation emitted by the layer increases the outgoing diffuse spectral
irradiance in both directions. Since each atmospheric layer behaves as a graybody with a
temperature T > 0 K, this contribution is given by the layer’s emissivity,

ei = ai = 1− ti − ri , (2.77)

multiplied by the effective spectral blackbody irradiance Beff,λ,i emitted in the corre-
sponding direction.

By combining these contributions, the radiative transfer through a single layer i of the vertical
column can be expressed asE↑

λ,i+1

E↓
λ,i

Edir,λ,i


︸ ︷︷ ︸
=E⃗λ,out,i

=
ti ri rdir,i

ri ti sdir,i

0 0 tdir,i


︸ ︷︷ ︸

=Tλ,i

·

 E↑
λ,i

E↓
λ,i+1

Edir,λ,i+1


︸ ︷︷ ︸

=E⃗λ,in,i

+

ei B↑
eff,λ,i

ei B↓
eff,λ,i
0


︸ ︷︷ ︸

=B⃗λ,i

. (2.78)
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The vector E⃗λ,out,i on the left-hand side of this matrix equation contains all spectral irradiances
exiting layer i . On the right-hand side, the matrix Tλ,i contains all the transport coefficients
governing the absorption and scattering of the incoming radiation E⃗λ,in,i as it propagates
through the layer. Additionally, the vector B⃗λ,i accounts for the thermal radiation emitted into
the two diffuse streams.

With boundary conditions specified at the top and bottom of the domain, the combined
equations for all Nz +1 layers of the atmospheric column form a system of coupled linear
equations, which can be solved using various numerical methods. The required boundary
conditions are determined by the incoming solar radiation at the top of the column and by
surface reflection and emission at the bottom and are therefore given by

Edir,λ,Nz+1 = E0,λ cosθinc (2.79)

(incoming direct solar radiation at the top),

E↓
λ,Nz+1 = 0 (2.80)

(no incoming diffuse radiation at the top), and

E↑
λ,0 = Ag (E↓

λ,0 +Edir,λ,0)+ (1− Ag )πBλ(Tg ) (2.81)

(reflection and emission at the ground),

where E0,λ is the extraterrestrial solar spectral irradiance, θinc the solar zenith angle, Ag the
ground albedo, and πBλ(Tg ) the spectral irradiance emitted by a blackbody at ground temper-
ature Tg .

The transport coefficients ti , ri , tdir,i , rdir,i and sdir,i required for solving the two-stream
linear equation system depend on the optical properties of each layer. In the δ-Eddington
approximation, they are obtained from the Eddington approximation, an analytical solution of
the RTE assuming that the spectral radiance Lλ takes the form

Lλ = Lλ,0 +µLλ,1, (2.82)

where µ= cosθ. This implies that Lλ consists of an isotropic component (Lλ,0) and an addi-
tional linear term (Lλ,1) that introduces directionality, making Lλ most intense in the vertical
direction (θ = 0◦,180◦), and weakest in the horizontal (θ = 90◦). Under this assumption, the
Eddington approximation provides analytical expressions for each layer’s reflectivity ri , trans-
missivity ti , direct transmissivity tdir,i , as well as the upward (rdir,i ) and downward (sdir,i )
scattered fractions of the direct radiation, that depend only on four parameters:

(a) the solar incidence angle µ0 = cosθinc,

(b) the optical depth ∆τ=βext,λ∆z of the layer,

(c) the single-scattering albedo ω0,λ, and

(d) the asymmetry parameter g , which characterizes the preferred scattering direction within
the layer. It is defined as

g = 1

2

∫ 1

−1
cosΘp(cosΘ)dcosΘ (2.83)
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and represents the average value of cosΘ for a given phase function p(cosΘ), whereΘ
specifies the angle between the incident direction Ω̂′ and the scattered direction Ω̂ (Petty,
2006f). The value of g ranges from −1 to 1. A value of g = 0 corresponds to equal amounts
of radiation scattered into the forward and backward directions. When g > 0, radiation is
preferentially forward-scattered, with g = 1 indicating that all radiation continues exactly
in the incident direction. Conversely, when g < 0, radiation is preferentially backward-
scattered, with g =−1 meaning that all radiation is scattered directly backward.

Although these quantities can be inserted directly into the expressions for the transport coeffi-
cients provided by the Eddington approximation, the resulting coefficients become inaccurate
when scattering in the layer is dominated by the Mie regime. This is because the assumption in
Eq. (2.82) causes the Legendre expansion of the phase function p(cosΘ) to be truncated after
the linear term. As a result, the strong forward-scattering peak characteristic of Mie scattering,
as discussed in Sect. 2.2.3, cannot be accurately represented in this approximation, leading to
substantial inaccuracies in the computed transport coefficients. To address this issue, the large
forward-scattered fraction of radiation is no longer treated as part of the scattered radiation
but rather as transmitted radiation. To achieve this, the δ-scaled scattering phase function
pδ(Ω̂′,Ω̂) is introduced, which is given by

pδ(Ω̂′,Ω̂) = pδ(µ′,φ′,µ,φ) = 4π f δ(µ−µ′)δ(φ−φ′)+ (1− f )p∗(µ′,φ′,µ,φ) (2.84)

= pδ(cosΘ) = 2 f δ(1−cosΘ)+ (1− f )p∗(cosΘ) . (2.85)

Here, the fraction f of the scattered radiation that remains in the forward direction is handled
separately using two Dirac delta functions, which sharply peak at µ = µ′ and φ = φ′. The
remaining fraction, 1− f , which accounts for scattering into all other directions, can then be
described by a much smoother phase function p∗(µ′,φ′,µ,φ) that no longer needs to capture
the sharp forward peak. Since the phase function is often expressed in terms of the scattering
angle Θ, Eq. (2.85) provides an equivalent formulation of Eq. (2.84), written as a function of
cosΘ instead of the directional unit vectors (Ω̂′,Ω̂) = (µ′,φ′,µ,φ). By substituting Eq. (2.84) into
the RTE without the emission term, while also using Eq. (2.42) along with µ= cosθ, we obtain

dLλ(µ,φ)

ds
=−βext,λLλ(µ,φ)+ ω0,λβext,λ

4π

∫ 2π

0

∫ 1

−1
pδ(µ′,φ′,µ,φ)Lλ(µ′,φ′)dµ′dφ′ (2.86)

=−βext,λLλ(µ,φ)+ ω0,λβext,λ

4π

(
4π f

∫ 2π

0

∫ 1

−1
δ(µ−µ′)δ(φ−φ′)Lλ(µ′,φ′)dµ′dφ′

+ (1− f )
∫ 2π

0

∫ 1

−1
p∗(µ′,φ′,µ,φ)Lλ(µ′,φ′)dµ′dφ′

)
=−(

1− f ω0,λ
)
βext,λLλ(µ,φ)+ (1− f )ω0,λβext,λ

4π

∫ 2π

0

∫ 1

−1
p∗(µ′,φ′,µ,φ)Lλ(µ′,φ′)dµ′dφ′

=−β∗
ext,λLλ(µ,φ)+

ω∗
0,λβ

∗
ext,λ

4π

∫ 2π

0

∫ 1

−1
p∗(µ′,φ′,µ,φ)Lλ(µ′,φ′)dµ′dφ′ . (2.87)

In the last step of this calculation, the δ-scaled extinction coefficient β∗
ext,λ and the δ-scaled
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single-scattering albedo ω∗
0,λ have been defined as

β∗
ext,λ =

(
1− f ω0,λ

)
βext,λ and ω∗

0,λ =
(1− f )ω0,λ

1− f ω0,λ
. (2.88)

By examining Eq. (2.87), we see that when using the δ-scaled scattering phase function defined
in Eq. (2.84) along with the definitions for β∗

ext,λ and ω∗
0,λ, the RTE retains the same form as

the original RTE without emission provided in Eq. (2.86). However, the forward-scattered
fraction of the radiation is now incorporated into the extinction term, while the second term —
describing radiation scattered from other directions (µ′,φ′) into the direction of interest (µ,φ)
— is governed solely by the smoothed phase function p∗(µ′,φ′,µ,φ), which no longer includes
the strong forward peak. And since Eq. (2.87) maintains the same structure as Eq. (2.86),
the delta-scaled quantities ∆τ∗ = β∗

ext,λ∆z, ω∗
0,λ, and g∗ can be used to calculate transport

coefficients from the Eddington approximation whenever certain atmospheric constituents of
a layer are subject to Mie scattering, with the δ-scaled asymmetry parameter g∗ given by

g∗ = g − f

1− f
. (2.89)

This expression is obtained by inserting Eq. (2.85) into Eq. (2.83). For completeness, note
that the emission term was omitted in this derivation, as the Eddington approximation only
describes the transport of radiation through an atmospheric layer, and not its source terms.

All in all, such a two-stream method that derives its transport coefficients from the Edding-
ton approximation using δ-scaled optical properties is called a δ-Eddington approximation
(Joseph et al., 1976). Unlike direct solutions of the RTE, it computes only upward and downward
spectral irradiances, bypassing the expensive angular dependence of radiative transfer calcula-
tions. This omission not only reduces computational cost but also allows heating rates to be
obtained directly using Eq. (2.74). Additionally, because the spectral irradiances in any given
layer i depend only on those within the same vertical column, each atmospheric column can
be treated independently. This structure facilitates model parallelization, further enhancing
the δ-Eddington approximation’s computational efficiency and explaining why it is still widely
used in NWP models. However, as a 1D approximation, it does not account for horizontal
energy transport and therefore neglects all 3D radiative effects.

Monte Carlo radiative transfer

A fundamentally different approach to solving the RTE is provided by Monte Carlo radiative
transfer. Instead of seeking an analytical or deterministic solution, this method adopts a statis-
tical perspective. To this end, individual photons are traced along their random paths through
the atmosphere, from their emission or entry point until they are either absorbed or escape
into space. Figure 2.14 shows the trajectory of one such photon on its way through a cloud field
used in Chapter 4 of this work. Given a sufficiently large number of these trajectories, Monte
Carlo radiative transfer enables the computation of both spectral radiances and irradiances
in arbitrarily complex, inhomogeneous 3D atmospheres. In the following, the key elements
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Figure 2.14: Visualization of a Monte Carlo-simulated photon originating from the Sun on its random path
through the first cloud field of the shallow cumulus time series used in Chapter 4 of this work. The cloud field is
illustrated using the liquid water content (LWC) of the individual grid boxes, with all grid boxes below a threshold
of 10−10 g m−3 hidden. The photon trajectory is shown color-coded by height, with arrows indicating the direction
of propagation. Additionally, four key events along the path are annotated: the photon’s initialization at z = 2.5 km
with a zenith angle of 50◦ and an azimuthal direction toward the west; the first scattering event; the point where
the photon is reflected at the surface; and its escape back to space. Note that the atmosphere was intentionally
limited to a shallow domain with an upper boundary at z = 2.5 km for this visualization.

of this photon-tracing approach are summarized, outlining both how individual photons are
traced on their way through the atmosphere and how an ensemble of the resulting trajectories
can be used to compute various radiative quantities.

Let us begin by describing how individual photons are traced. Similar to other radiative
transfer methods, Monte Carlo simulations are performed on a grid that divides the atmosphere
into a set of finite volumes with constant optical properties. Within this grid, the tracing of
photons begins with their generation, where each photon is assigned an initial location and
direction, both depending on the corresponding atmospheric wavelength regime. In the solar
spectral range, the photons originate from the Sun and enter the atmosphere at its upper
boundary. Accordingly, they are initialized at random locations along the top of the grid, with
a propagation direction determined by the Sun’s zenith and azimuth angles. The photon in
Fig. 2.14, for instance, is initialized at a height of z = 2.5 km, with a zenith angle of 50◦ and an
azimuthal direction toward the west. In the thermal spectral range, on the other hand, Earth
and its atmosphere serve as the photon sources. Photons are therefore initiated at random
locations within the atmosphere, with probabilities determined by both local emissivity and
temperature, so that more photons are emitted from regions with higher temperatures and
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larger emissivities. And since thermal emission is isotropic, the initial direction of these
photons is chosen randomly.

Once generated, the photons then propagate in their initial direction until they are either
scattered or absorbed — a process collectively referred to as extinction. The key point of the
Monte Carlo method is that this distance to extinction is chosen randomly for each photon,
based on the extinction probability along its path. This probability can be derived by integrating
Eq. (2.54), which governs the change dLλ,ext in spectral radiance due to extinction, over a finite
path from s0 to s, assuming Lλ(s0) = Lλ,0, which leads to∫ Lλ

Lλ,0

dL′
λ

L′
λ

=−
∫ s

s0

βext,λ(s′)ds′ ⇒ Lλ(s) = Lλ,0 exp

(
−

∫ s

s0

βext,λ(s′)ds′
)
= Lλ,0 exp(−τ) . (2.90)

In the last step of this derivation, the optical depth has been defined as

τ=
∫ s

s0

βext,λ(s′)ds′ . (2.91)

Eq. (2.90) is known as the Beer–Bouguer–Lambert extinction law and describes the exponential
reduction of an initial spectral radiance Lλ,0 along a path through a medium characterized by

the extinction coefficient βext,λ(s). The ratio Lλ(s)
Lλ,0

gives the fraction of transmitted to initial

spectral radiance, which, for a single photon, can be interpreted as its survival probability Psur =
exp(−τ). Conversely, the function Pext(τ) = 1−exp(−τ) denotes the extinction probability of
the photon. As a cumulative distribution function, it converges toward a probability of 100%
for large optical depths. Solving this function for τ and inserting uniformly distributed random
numbers P ∈ [0,1] yields random optical path lengths given by

τ=− ln(1−P ) , (2.92)

which collectively follow the Beer–Bouguer–Lambert extinction law. Hence, these optical path
lengths provide exactly the random distances that photons travel before extinction occurs. To
determine the extinction location of a photon based on such a random optical path length,
the optical depth is accumulated along the photon’s trajectory until it matches the sampled
value. In the example shown in Fig. 2.14, this point is reached after the photon enters one of the
clouds in the southwestern part of the domain. The fate of the photon is then determined using
another random number P ′ ∈ [0,1]. If P ′ >ω0,λ, the photon is absorbed and no longer traced.
If P ′ ≤ω0,λ, it is scattered, which is the case encountered by the photon in our example. In
that case, a new direction must be assigned to the photon. This direction is sampled from the
scattering phase function p(θ′,φ′,θ,φ), which specifies the probability that a photon arriving
from direction (θ′,φ′) is scattered into direction (θ,φ). Once this new direction has been
assigned, a new τ is drawn using Eq. (2.92), and the photon continues to propagate until it is
again either absorbed or scattered. This process is repeated until the photon either escapes the
domain or is absorbed, resulting in trajectories like the one shown in Fig. 2.14.

A special case arises when the photon reaches the surface before extinction occurs. In this
case, its fate is determined by another random number P ′′ ∈ [0,1] and the ground albedo Ag . If
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P ′′ > Ag , the photon is absorbed by the surface; otherwise, it is reflected and assigned a new
direction. Such a surface reflection also occurred for the photon depicted in Fig. 2.14, after
it escaped the cloud where it experienced its first scattering event. Similar to the scattering
direction discussed earlier, the new direction assigned to such a reflected photon is sampled
from the bi-directional reflectance distribution function BRDF(θi ,φi ,θo ,φo) of the surface,
which quantifies the probability of reflection into direction (θo ,φo) based on the incoming
direction (θi ,φi ).

Ultimately, all photons are either absorbed or escape into space. The photon in Fig. 2.14 is
an example of the latter, as it was eventually scattered back into space. To calculate radiative
quantities from the resulting photon pathways, a large number of photons must be traced
and counted whenever they pass through the desired location. For example, to calculate the
downward spectral irradiance E↓

λ
at the top of a given grid box in the solar spectral range, all

photons crossing the top face of that grid box from above must be counted. The number Ns of
these photons per surface area As , divided by the total number Nt of photons launched across
the top of the domain with area At , then defines the fraction of the extraterrestrial solar spectral
irradiance E0,λ cosθinc passing through that grid box from above — and thus the downward
spectral irradiance at that point, which is therefore obtained through

E↓
λ
= E0,λ cosθinc

At

Nt

Ns

As
. (2.93)

With the Monte Carlo method, these spectral irradiances can be calculated for every face of a
grid box, enabling the computation of fully three-dimensional heating rates using Eq. (2.73)
— something not possible in 1D solvers such as the δ-Eddington approximation discussed
previously. Additionally, the algorithm can incorporate arbitrarily complex scattering and sur-
face reflection processes into the calculation of these quantities, provided the corresponding
probability distributions for sampling new directions are known. Moreover, since the optical
path lengths determining photon propagation are evaluated using local extinction coefficients
βext,λ, the method naturally extends to fully vertically and horizontally inhomogeneous do-
mains, making Monte Carlo radiative transfer suitable for solving the full RTE in arbitrarily
complex 3D atmospheres.

However, as a statistical method, Monte Carlo simulations are also inherently noisy. This
noise can be reduced by increasing the number of photons used in the simulation, which
comes at the cost of increased computational demand but also enables arbitrarily precise
results in the limit of an infinite number of photons. More specifically, the standard deviation
σ of a radiative quantity with mean value µ can be shown to be inversely proportional to the
square root of the number Ns of photons contributing to the result, provided that this number
is much smaller than the total number Nt of photons used in the simulation (Ns ≪ Nt ). In this
case, σ can be approximated by

σ

µ
≈ 1p

Ns
. (2.94)

This behavior follows directly from the statistical nature of the Monte Carlo simulations, which
can be viewed as a series of yes/no experiments in which individual photons either contribute
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to the estimate of a given radiative quantity or not. Specifically, Eq. (2.94) resembles the result
of a Poisson distribution with parameter λ = p Nt = Ns , where p denotes the probability of
a photon contributing to the result, provided that Nt is sufficiently large so that the number
of contributing photons is given by Ns = p Nt . For such a Poisson distribution, the standard
deviation σ=p

λ scales with the square root of the mean µ=λ (Feller, 1950), just as expressed
in Eq. (2.94), with λ= Ns . A consequence of this relationship is that to double the accuracy of a
result, four times as many photons are needed. The number of photons required to achieve a
given level of accuracy can therefore become substantial. For instance, assume that about half
the photons are absorbed before reaching the surface, as indicated by the solar component
of Fig. 2.7, and that one aims for a 1% relative uncertainty in the downward solar spectral
irradiance at the surface. Then roughly Ns = (1/0.01)2 = 10000 photons would need to reach
the surface per vertical column, implying that approximately Nt ≈ 2Ns Nx Ny = 20000 Nx Ny

photons must be launched. For a model domain consisting of 100000 vertical columns, this
would already require tracing two billion photons, illustrating that highly accurate Monte Carlo
simulations can be extremely expensive in terms of computational cost. Yet in the limit of a
large number of photons, they also yield the most accurate solutions possible and are therefore
ideally suited for benchmark calculations — which is also exactly what they are used for in this
thesis.

The TenStream solver

The final approximate solution to the RTE discussed in this subsection is the TenStream solver.
It extends the two-stream method presented earlier to three dimensions by using ten diffuse
streams instead of two, and three direct streams instead of one, to represent the transport
of radiative energy through the atmosphere. Like two-stream methods, it directly computes
spectral irradiances, thereby avoiding the expensive angular component of radiative transfer
calculations. Furthermore, as a 3D solver, the TenStream method computes irradiances for
all faces of a grid box rather than just its top and bottom, enabling the calculation of fully
three-dimensional heating rates using Eq. (2.73). As an approximate solution to the full 3D RTE,
the TenStream solver further offers greater accuracy than the 1D δ-Eddington approximation,
while remaining significantly less computationally demanding than a Monte Carlo simulation
performed with a sufficiently large number of photons. The TenStream solver thus provides
a trade-off between accuracy and computational cost. Since it also forms the foundation of
the dynamic TenStream solver developed in this thesis, it is not discussed in detail here, but
instead introduced more thoroughly in the following chapter.



Chapter 3

Toward dynamic treatment of radiation

From here on, the entirety of this thesis will be centered around the development of a fast, yet
accurate three-dimensional radiative transfer solver, its evaluation, and the demonstration
of its use in subkilometer-scale numerical simulations. The development of this new solver
was driven by two main constraints: On the one hand, it should compute radiative fluxes and
heating rates at a significantly faster speed than other inter-column 3D solvers. On the other
hand, it should also provide a noticeable improvement in terms of accuracy over currently
employed 1D schemes. However, any three-dimensional radiative transfer solver that aims
toward the speed of currently employed 1D approximations, while also attempting to capture
the full 3D solution as accurately as possible, will naturally have some limitations unless it
is based on computational breakthroughs. This also holds up for the work presented in this
thesis, which is based on the TenStream solver, an already relatively fast 3D method for the
calculation of radiative fluxes and heating rates, which achieves its speed by simplifying the
expensive angular part of 3D radiative transfer calculations. Based upon this work, this chapter
presents the dynamic TenStream solver, the central development of this thesis, which aims
to provide an even more attractive speed-accuracy trade-off by introducing a time-stepping
scheme and incomplete solves.

The content of this chapter was published in Sect. 2 of Maier et al. (2024).

3.1 The original TenStream model

We build upon the TenStream model (Jakub and Mayer, 2015), which extends the established
two-stream formulation to three dimensions. Figure 3.1 shows the definition of its streams,
i.e., radiative fluxes (in units of W), for a single rectangular grid box, with the indices (i , j ,k)
indicating the position of the box in a Cartesian grid of size Nx ×Ny ×Nz .

Ten streams (Φ0, Φ1, . . . , Φ9; depicted in blue) are used to describe the 3D transport
of diffuse radiation. As in the two-stream formulation, two of them (Φ0 (upward) and Φ1

(downward)) characterize the transport in the vertical, whereas four additional streams are
introduced to describe the transport in each of the two additional horizontal dimensions. The
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Figure 3.1: Schematic illustration of all fluxes entering and exiting a rectangular grid box (i , j ,k) in the TenStream
solver and their respective indices. Diffuse fluxes are shown in blue, while fluxes of direct radiation are displayed
in red. Fluxes entering the grid box are shown in a darker tone than the ones exiting. The two pairs of diffuse fluxes
on each of the sideward-oriented faces of the cuboid point into and out of the upper and lower hemispheres,
respectively. Fluxes at the sides of the cuboid facing to the north and west are not visible.

transport of direct radiation, i.e., radiation originating from the Sun that has not yet interacted
with the atmosphere, is treated separately using the three additional streams S0, S1 and S2,
one for each dimension (shown in red in Fig. 3.1). Using these streams, the radiative transport
through a single grid box (i , j ,k) in the case of the Sun shining from the southwest can be
expressed by the following matrix equation:



Φ0, i , j , k+1

Φ1, i , j , k
...

Φ9, i , j+1, k

S0, i , j , k

S1, i+1, j , k

S2, i , j+1, k


︸ ︷︷ ︸

=Φ⃗out,i , j ,k

=



a00,i , j ,k . . . a09,i , j ,k b00,i , j ,k b01,i , j ,k b02,i , j ,k

a10,i , j ,k . . . a19,i , j ,k b10,i , j ,k b11,i , j ,k b12,i , j ,k
...

...
...

...
...

a90,i , j ,k . . . a99,i , j ,k b90,i , j ,k b91,i , j ,k b92,i , j ,k

0 . . . 0 c00,i , j ,k c01,i , j ,k c02,i , j ,k

0 . . . 0 c10,i , j ,k c11,i , j ,k c12,i , j ,k

0 . . . 0 c20,i , j ,k c12,i , j ,k c22,i , j ,k


︸ ︷︷ ︸

=T i , j ,k

·



Φ0, i , j , k

Φ1, i , j , k+1
...

Φ9, i , j , k

S0, i , j , k+1

S1, i , j , k

S2, i , j , k


︸ ︷︷ ︸

=Φ⃗in,i , j ,k

+



e0,i , j ,k ·Beff,0,i , j ,k

e1,i , j ,k ·Beff,1,i , j ,k
...

e9,i , j ,k ·Beff,9,i , j ,k

0
0
0


︸ ︷︷ ︸

=B⃗i , j ,k

.

(3.1)

Note the following about this equation:

• The vector Φ⃗in,i , j ,k consists of all the radiative fluxes entering grid box (i , j ,k). For reasons
of clarity, will use the expressionΦin,m,i , j ,k to address an individual entry m of this vector,
implying that, for example,Φin,10,i , j ,k equals S0,i , j ,k+1 in the case of the Sun shining from
the southwest.

• The matrix Ti , j ,k describes the scattering and absorption of the ingoing radiation Φ⃗in,i , j ,k

on its way through the grid box, with a00,i , j ,k , for example, quantifying the fraction
of the upward flux entering the grid box at the bottom (Φ0,i , j ,k ) that exits the box in
the same direction through the top (Φ0,i , j ,k+1). While the “a” coefficients describe the
transport of diffuse radiation, the “b” coefficients quantify the fraction of direct radiation
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that gets scattered, thus providing a source term for the 10 diffuse streams. The “c”
coefficients describe the amount of direct radiation that is transmitted through the grid
box without interacting with the medium. All of these transport coefficients depend on
the optical properties (optical thickness, single-scattering albedo, asymmetry parameter,
grid-box aspect ratio and angle of solar incidence) of the particular grid box. They are
precomputed using Monte Carlo methods and stored in lookup tables (Jakub and Mayer,
2015). We will use the expression tmn,i , j ,k to refer to the entry in row m and column n of
the full matrix Ti , j ,k .

• The vector B⃗i , j ,k quantifies the amount of thermal radiation that is emitted in the direc-
tion of every one of the 10 diffuse streams. Its entries Bm,i , j ,k are calculated by multiplying
the black-body radiation that is emitted in the corresponding direction (Beff,m,i , j ,k ) by the
emissivity of the grid box in that direction. According to Kirchhoff’s law, this emissivity of
a grid box in a certain direction is the same as the absorptivity of radiation coming from
that direction, which, in turn, is 1 minus the transmittance in that direction. For example,
the emissivity e0,i , j ,k of grid box (i , j ,k) in the upward direction is equal to the fraction of
the downward-facing radiative fluxΦ1,i , j ,k+1 that is absorbed on the way through that
grid box, which, in turn, is 1 minus the sum of all fractions an1,i , j ,k of Φ1,i , j ,k+1 exiting
grid box (i , j ,k), i.e.,

e0,i , j ,k = 1−
9∑

n=0
an1,i , j ,k ,

where an1,i , j ,k refers to the corresponding entries in the second column of matrix Ti , j ,k .

• The vector Φ⃗out,i , j ,k consists of all radiative fluxes exiting the grid box (i , j ,k). For every
stream, it contains all the radiative energy that has not interacted with the grid box on
its way through plus, in case of the diffuse streams, the radiative energy that has been
scattered and emitted in that direction along that way. Similar to the ingoing flux vector,
we use the expressionΦout,m,i , j ,k to refer to an entry m of the full vector Φ⃗out,i , j ,k .

Combined, the equations for all the Nx ×Ny ×Nz grid boxes make up a large system of coupled
linear equations that must be provided with boundary conditions at the edges of the domain.
At the top and surface, these are determined by the incoming solar radiation on one side and
by ground reflection and emission on the other. Specifically,

S0,i , j ,Nz+1 = E0 cosθinc∆x∆y

(incoming solar radiation at the top) and

Φ0,i , j ,0 = Ag (Φ1,i , j ,0 +S0,i , j ,0)+ (1− Ag )πBg ∆x∆y

(reflection and emission at the ground).

Here, E0 denotes the extraterrestrial solar irradiance (in units of W m−2), θinc the solar zenith
angle, Ag the ground albedo, Bg the emitted black-body radiance of the ground (in units of
W m−2 sr−1), and ∆x and ∆y the horizontal grid box lengths (in units of m). The boundary
conditions employed at the sides of the domain depend on the model configuration and can be
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either cyclic or provided by neighboring subdomains. The resulting system of linear equations
can then be solved by various numerical methods. In the original TenStream solver, they are
provided by the parallel linear algebra library PETSc (Balay et al., 2023).

3.2 Introducing time-stepping and incomplete solves:
the dynamic TenStream solver

However, solving this large system of linear equations is a difficult task, especially when it needs
to be parallelized for large NWP simulations. The main reason behind this difficulty is the
fundamentally different approaches to how radiation and dynamics are treated in numerical
models. On the one hand, solving the equations of motion that govern advection in the
dynamical core of an NWP model represents an initial value problem that has no known
analytical solution. Hence, these equations are discretized in space and time and solved by
a time-stepping scheme, where model variables are gradually propagated forward in time
by applying the discretized equations to values obtained at previous time steps (Holton and
Hakim, 2013). An individual grid box thereby only needs information about itself and its
nearby surroundings, facilitating model parallelization. Radiative transfer, on the other hand,
is treated as a boundary value problem, where information is not gradually propagated through
the domain but rather spreads almost instantaneously at the speed of light, involving the entire
model grid. Three-dimensional radiative transfer can thus easily break model parallelization,
as a radiative flux at any position in the domain can theoretically depend on all other radiative
fluxes throughout the domain. This can be seen by looking at the coupled structure of the
equations in the original TenStream solver in Eq. (3.1).

3.2.1 The Gauß–Seidel method

We tackle this problem by treating radiation similarly to initial value problems. To this end,
we build upon the TenStream linear-equation system revisited in Sect. 3.1 and examine its
solution with the Gauß–Seidel method, as described in, e.g., Wendland (2017). According to
this iterative method, a system of linear equations must be transformed in such a way that one
equation is solved for every unknown variable. This form is given by the equations in Eq. (3.1),
with the unknown variables being all the radiative fluxes in the entire domain. Providing first
guesses for all of these variables, one then iterates through all these equations and sequentially
updates all the radiative fluxes on the left-hand sides of the equations by applying either the
first guess or, if already available, the updated values to the corresponding variables on the
right-hand sides of the equations. Applied to the TenStream equations, this means that one
gradually iterates through all the grid boxes of the entire domain. For every grid box, one then
calculates updated values for the outgoing fluxesΦ(l+1)

out,m,i , j ,k on the left-hand side of Eq. (3.1)

by applying either the already updated ingoing fluxesΦ(l+1)
in,m,i , j ,k or, if those are not yet available,

their values Φ(l )
in,m,i , j ,k from the previous Gauß–Seidel iteration step to the variables on the
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right-hand sides of the equations. This is mathematically expressed as

Φ(l+1)
out,m,i , j ,k =

9+3∑
n=0

tmn,i , j ,k

{
Φ(l+1)

in,n,i , j ,k ifΦ(l+1)
in,n,i , j ,k has already been calculated

Φ(l )
in,n,i , j ,k otherwise

+Bm,i , j ,k .

(3.2)

Here, the indices m and n denote an individual entry of the outgoing flux vector Φ⃗out,i , j ,k , the
ingoing flux vector Φ⃗in,i , j ,k or the thermal source vector B⃗i , j ,k , whereas l quantifies the Gauß–
Seidel iteration step and tmn,i , j ,k refers to the corresponding entry in matrix Ti , j ,k in Eq. (3.1).
Completing this procedure for all the grid boxes and boundary conditions accomplishes one
Gauß–Seidel iteration. One can then repeat this procedure with the updated radiative fluxes
serving as the new first guess until the values eventually converge to the solution of the linear-
equation system. The thermal source terms are not part of the first guess and have to be
calculated from scratch, following the pattern outlined in Sect. 3.1, before starting with the
Gauß–Seidel algorithm.

3.2.2 Dynamic treatment of radiation

To significantly speed up 3D radiative-transfer calculations, we apply the Gauß–Seidel method
in combination with two main concepts: a time-stepping scheme and incomplete solves.

To introduce the time-stepping scheme, we make use of the fact that the Gauß–Seidel
algorithm requires us to choose an initial guess for where to start. So, instead of solving the
whole TenStream linear-equation system from scratch every time, we use the result obtained
at the previous call of the radiation scheme as a starting point for the algorithm. Assuming that
the field of optical properties determining the radiative fluxes has not changed fundamentally
between two calls of the radiation scheme, this first guess should already be a good estimator
of the final result. However, for the very first call of the radiation scheme, we cannot use a
previously calculated result. In order to choose a reasonable starting point of the algorithm
for this first call as well, we could use a full TenStream solve. However, such a solve would
be computationally expensive and rely on numerical methods provided by the PETSc library,
which we want to get rid of with our new solver to allow for easier integration into operational
models. So, instead of performing a full TenStream calculation, we decided to solve the
TenStream linear-equation system for a clear-sky situation as a starting point. This is the
spin-up mentioned in Fig. 3.2. Since there is no horizontal variability in the cloud field in a
clear-sky situation and our model does not feature any horizontal variability in the background
atmosphere, we can perform this calculation for a single vertical column at a dramatically
increased speed compared to a calculation involving the entire model grid. We cannot use a
1D solver for that, however, because we also need to pass initial values to the sideward-facing
fluxes in the TenStream equation system. Assigned to the radiative fluxes of all vertical columns
in the entire domain, these values then provide first guesses for all the TenStream variables
that can be assumed to be much closer to the final result than starting with values of zero —
even if the background atmosphere was not horizontally homogeneous and we would have to
take the average of that background first.
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Figure 3.2: Schematic illustration of the dynamic treatment of radiation compared to the classic treatment.
Instead of performing full 1D solves from scratch every time the radiation scheme is called, we use the result
obtained at the last call as a starting point for an incomplete 3D solve, adjusting the previously calculated radiative
fluxes toward the new full 3D solution.

Based on the idea that the radiative field does not fundamentally change between two
calls of the radiation scheme, we furthermore just perform a limited number N of iterations of
the Gauß–Seidel algorithm every time the radiation scheme is called, essentially not letting
it fully converge. Unless the radiative fluxes have changed dramatically compared to the last
calculation, adjusting the variables toward the new solution should already provide a good
approximation of the full solution, especially since it incorporates inter-column 3D effects,
unlike the 1D independent-column solutions used nowadays.

The combination of these two efforts is visualized in Fig. 3.2. Instead of calculating a full 1D
solution from scratch every time radiation is called, our dynamic approach uses the previously
obtained result as the starting point of a new incomplete 3D solve. This treatment of radiation
puts it much closer to the way initial value problems like advection in the dynamical core of
an NWP model are handled. Both use previously calculated results to update their variables.
And, looking at an individual grid box, updating the outgoing fluxes by applying Eq. (3.2) only
requires access to the fluxes entering that exact same grid box and thus only to neighboring
values, just like in the discretized equations describing advection in the dynamical core of an
NWP model.

But, even though the calculation of updated outgoing fluxes only requires access to fluxes
entering the exact same grid box, this update process can indeed involve more distant grid
boxes, since their calculation uses ingoing fluxes calculated in the very same Gauß–Seidel
iteration wherever possible. And, since these ingoing fluxes are outgoing fluxes of a neighboring
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Figure 3.3: Two-dimensional schematic illustration of the first four steps of a Gauß–Seidel iteration, showing
both diffuse and direct TenStream fluxes in the case of the Sun shining from the west or left-hand side. As
one sequentially iterates through the grid boxes, ingoing fluxes are used to update the outgoing fluxes of the
corresponding grid box (highlighted in gray). Gray arrows, in contrast to black arrows, indicate fluxes that have
not yet been updated in this Gauß–Seidel iteration. Ingoing fluxes at the domain borders are dependent on the
type of boundary conditions used. For this schematic, we applied periodic boundary conditions in the horizontal
direction, while fluxes entering at the top of the domain are updated right from the beginning.

grid box that may have also been calculated using already updated radiative fluxes, information
can spread across the domain wherever possible, involving, e.g., entire subdomains in NWP
models. This is visualized in Fig. 3.3, which shows the first few steps of a Gauß–Seidel iteration
in two dimensions only. Looking, for example, at the third step, outgoing fluxes of the upper-
right grid box (highlighted in gray) are updated using the corresponding ingoing fluxes. Thereby,
the ingoing flux of direct radiation entering the grid box on the left-hand side, for example,
already contains radiative transfer through the two grid boxes on its left-hand side. This shows
that the iteration direction through the grid boxes within a Gauß–Seidel iteration is crucial, as
information can spread much faster in the direction one iterates through the grid boxes. Since
the Gauß–Seidel algorithm allows us to freely choose the order in which to proceed through the
system of linear equations, we can use this order to our advantage. First, we use the fact that,
whereas diffuse radiation spreads into all directions simultaneously, direct radiation clearly
propagates in the direction of the Sun. Hence, for the solar spectral range, we first iterate
through the grid boxes in the direction given by solar incidence in the horizontal and then from
top to bottom in the vertical, as indicated by the dashed brown arrow in Fig. 3.3. In contrast to
this 2D example, both horizontal dimensions are affected by the position of the Sun in the fully
3D case, of course. If the Sun is shining from the southwest, for example, we would hence first
iterate from south to north and from west to east in the horizontal before iterating from top to
bottom. In the thermal spectral range, however, emitted radiation is larger in the lower part of
the domain due to the vertical temperature gradient in the atmosphere. Hence, we iterate from
bottom to top in the vertical there. Independent of the spectral range, however, we still need
to consider that diffuse radiation spreads in all directions simultaneously, which we do not
account for by using a fixed iteration direction. Thus, every time we finish iterating through
all the grid boxes, which completes a Gauß–Seidel iteration step, we reverse the direction of
iteration in all three dimensions to not favor the propagation of information in one direction.

Combined, these efforts should allow us to very efficiently calculate radiative transfer in
three dimensions. First, the time-stepping scheme enables us to already start with a reliable
first guess instead of calculating everything from scratch. Next, we speed up the rate of
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convergence by choosing a proper order in which to proceed through the linear-equation
system, taking parameters such as the current angle of solar incidence into account. Since
the updated solution should not be markedly different from the previous one, we furthermore
only perform a limited number of Gauß–Seidel iterations, essentially exiting the algorithm
before full convergence is reached, noting that an incomplete 3D solution should still be
better than a 1D solution that neglects all 3D effects, as we will also see later on (in Chapter 4).
And, finally, updating the outgoing radiative fluxes of any grid box within a Gauß–Seidel
iteration just requires access to the fluxes entering the exact same grid box, which facilitates
model parallelization. Implemented into the method, incomplete dynamic TenStream solves,
each with N Gauß–Seidel iterations, would then be calculated in parallel for the different
subdomains, with communication between these subdomains ideally taking place just once
afterward, at the end of the radiation scheme call. In this case, the spread of information would
be limited to the scopes of the individual subdomains for every call of the radiation scheme.

3.2.3 Calculation of heating rates

In the end, though, we are not just interested in calculating radiative fluxes. We are especially
interested in computing 3D heating rates. They quantify local changes in temperature with
time due to sources and sinks of radiative energy in the atmosphere and can be calculated
using the net irradiance divergence, following the relationship

∂T

∂t
= 1

ρ cp
∇⃗ · E⃗net = 1

ρ cp

(
∂Enet,x

∂x
+ ∂Enet,y

∂y
+ ∂Enet,z

∂z

)
(3.3)

(Mayer, 2018). Here, T denotes the temperature, t the time, ρ the air density, cp the specific
heat capacity of air at constant pressure and E⃗net the net irradiance (in units of W m−2), with
components Enet,x , Enet,y and Enet,z when expressed in Cartesian coordinates. When applied
to the TenStream fluxes (in units of W) outlined in Sect. 3.1, we have to find expressions for
the net flux in all three dimensions and then divide these by the area of the grid box surface
they refer to. For the calculation of net fluxes, we have to recall that TenStream features two
streams to describe the transport of diffuse radiation on each of its sides. Since these two
streams describe the flux entering and exiting a grid box in the upper and lower hemispheres,
respectively, the total flux entering or exiting a grid box on one of its sides is given by the sum
of these two streams. The net flux in any of the three dimensions is thus given by adding up all
diffuse and direct fluxes entering the grid box in that dimension and subtracting those exiting
it in the very same dimension. The heating rate of a grid box can thus be expressed as(

∆T

∆t

)
i , j ,k

= 1

ρ cp

[
1

∆x

1

∆y∆z

( 5∑
m=2

(
Φin,m,i , j ,k −Φout,m,i , j ,k

)
︸ ︷︷ ︸

net diffuse radiative flux
in x direction

+ (
Φin,11,i , j ,k −Φout,11,i , j ,k

)
︸ ︷︷ ︸

net direct radiative flux
in x direction

)

+ 1

∆y

1

∆x∆z

( 9∑
m=6

(
Φin,m,i , j ,k −Φout,m,i , j ,k

)
︸ ︷︷ ︸

net diffuse radiative flux
in y direction

+ (
Φin,12,i , j ,k −Φout,12,i , j ,k

)
︸ ︷︷ ︸

net direct radiative flux
in y direction

)
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+ 1

∆z

1

∆x∆y

( 1∑
m=0

(
Φin,m,i , j ,k −Φout,m,i , j ,k

)
︸ ︷︷ ︸

net diffuse radiative flux
in z direction

+ (
Φin,10,i , j ,k −Φout,10,i , j ,k

)
︸ ︷︷ ︸

net direct radiative flux
in z direction

)]

= 1

ρ cp

1

∆x∆y∆z

12∑
m=0

(
Φin,m,i , j ,k −Φout,m,i , j ,k

)
, (3.4)

with ∆x, ∆y and ∆z quantifying the size of the grid box. However, this formula raises some
problems when used in combination with the incomplete solves introduced in Sect. 3.2.2. To
explain this, we once more look at Fig. 3.3. While, for example, fluxes exiting the upper-left grid
box are updated in the very first step, the diffuse flux entering that exact same grid box from the
bottom is updated much later in the fourth step. Hence, when the whole Gauß–Seidel iteration
is completed, the fluxes exiting a certain grid box do not necessarily match the ones entering it
anymore; i.e., the fluxes are not consistent anymore. This can lead to heating rates that are
unphysically large or negative in the solar spectral range. To avoid this problem, we have to
rephrase the outgoing fluxes in Eq. (3.4) in terms of ingoing fluxes, as given by the equations in
Eq. (3.1), resulting in(

∆T

∆t

)
i , j ,k

= 1

ρ cp

1

∆x∆y∆z

12∑
m=0

(
Φin,m,i , j ,k −

12∑
n=0

tmn,i , j ,kΦin,n,i , j ,k −Bm,i , j ,k

)
. (3.5)

Since this expression incorporates the radiative transfer throughout the corresponding grid
cell, it ensures that all fluxes involved in the calculation of the heating rate are consistent with
each other and thus provides physically correct 3D heating rates.
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Chapter 4

Evaluation of the dynamic TenStream solver
decoupled from model dynamics

After the previous chapter described the functionality of the dynamic TenStream solver, this
chapter will present the first part of its evaluation. For this first part, the performance of the
new solver is evaluated decoupled from model dynamics. In contrast to that, radiation and
dynamics are normally tightly coupled to one another in numerical weather prediction models,
as the radiative transfer model determines the sources and sinks of radiative energy in the
atmosphere, which then drive the model dynamics, leading to a new atmospheric state, which
in turn leads to updated sources and sinks of radiative energy. This coupling, however, results
in different atmospheric states depending on the radiative transfer model used. Therefore,
to evaluate just the performance of the different radiative transfer models, it is helpful to
decouple radiation from dynamics by applying the different models onto an atmospheric time
series that has been simulated in advance. By doing so, one can investigate the differences
between the different radiative transfer solvers when applied to the very same atmospheric
states and thus to the very same clouds in particular. This chapter will thus first introduce the
precomputed shallow cumulus cloud time series used in this evaluation, before presenting the
different radiative transfer solvers applied to it, which the new dynamic TenStream solver was
consequently compared with. After outlining the different methods used for the evaluation,
the second part of this chapter will then discuss the results of this evaluation.

The content of this chapter was published in Sect. 3 and 4 of Maier et al. (2024).

4.1 Methodology

The dynamic TenStream solver outlined in Chapter 3 was implemented in the libRadtran library
for radiative transfer (Emde et al., 2016; Mayer and Kylling, 2005), allowing the performance of
the new solver to be tested with respect to other solvers using an otherwise identical framework.
Using this environment, our goal is to demonstrate that the new dynamic TenStream solver
produces more accurate results than 1D independent-column solvers employed nowadays
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while still being noticeably faster than typical 3D solvers. Therefore, this section will first
introduce our test setup as well as the solvers we compare dynamic TenStream with. Then, we
will explain how we determine its performance in terms of both speed and accuracy. Since 3D
solvers are computationally much more demanding than 1D solvers, in this analysis, special
emphasis will also be placed on the calling frequency of the radiative-transfer calculations in
order to elaborate whether the dynamic TenStream solver still performs better when operated
with a similar computational demand to current 1D solvers.

4.1.1 Cloud and model setup

Our test setup is centered around a shallow cumulus data set with 3D cloud output data
prepared by Jakub and Gregor (2022), which was computed using the University of California,
Los Angeles (UCLA) large-eddy simulation (LES) model (Stevens et al., 2005). The dynamics
in this LES simulation were driven not by radiation but by a constant net surface flux, as
described in the corresponding namelist input files. Originally, the data set features both a
high temporal resolution of 10 s and 256×256 grid boxes with a high spatial resolution of 25 m
in the horizontal. It is 6 h long and characterized by a continuously increasing cloud fraction,
starting with a clear-sky situation and ending up with a completely overcast sky. In addition, a
southerly wind with a speed between 3 and 4.7 m s−1 transports the clouds through the domain
(Gregor et al., 2023).

We have chosen this data set for two reasons. First, the high temporal resolution allows us
to investigate the effect of incomplete solves in the dynamic TenStream solver with regard to
the calling frequency of the solver. As we outlined in Sect. 3.2.2, we expect these incomplete
solves to perform best if the cloud field that mainly determines the radiative field does not
change much in between two radiation time steps. Due to the high temporal resolution, we can
investigate how well the incomplete solves perform if we call the solver less often by comparing
runs with low calling frequencies to runs with the highest possible calling frequency of 10 s. On
the other hand, we need the high spatial resolution of the data, since the dynamic TenStream
solver does not yet take sub-grid-scale cloud variability into account. However, we may not
need a horizontal resolution of 25 m for that. Thus, to test the dynamic TenStream solver on
a resolution that is closer to that of operational weather models without having to account
for sub-grid-scale cloud variability, we decided to reduce the horizontal resolution of the
cloud fields to 100 m. To avoid problems with an artificially low liquid-water content (LWC)
at cloud edges when averaging the cloud field to that resolution, we constructed these less-
resolved cloud fields by simply using the data for just every fourth grid box in both horizontal
dimensions. The resulting time series still features a temporal resolution of 10 s, but the cloud
data grid is reduced to 64×64 grid boxes with a resolution of 100 m in the horizontal. In the
vertical, the modified cloud data set consists of 220 layers with a constant height of 25 m, thus
reaching up to a height of 5.5 km. Using this modified grid, the shape of the grid boxes is also
closer to the one in NWP models, with their horizontal extent being larger than their vertical
extent.

For our test setup, we focus on the 100 time steps between 8000 and 9000 s into the simu-
lation, where the shallow-cumulus-cloud field has already formed but has not yet reached a
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Figure 4.1: First time step of the shallow-cumulus-cloud field used in the evaluation. Panel (a) shows a 3D visual-
ization of the liquid water content in the cloud field, whereas (b) and (c) display the vertically and horizontally
integrated liquid-water content for the same cloud field, respectively.

very high cloud fraction, as neither a clear nor a completely overcast sky are beneficial for 3D
cloud-radiative effects. Figure 4.1 shows the modified cloud field for the very first time step
in this time frame. Looking at the vertically integrated liquid-water content in panel (b) in
particular, one can see that our reduced horizontal resolution of 100 m allows us to still resolve
the structure of the clouds.

Apart from the cloud field, the 1976 US standard atmosphere (Anderson et al., 1986) interpo-
lated onto the vertical layers given by the cloud data grid serves as the background atmosphere.
Above the cloud data grid, the native US standard atmosphere levels provided by libRadtran
are used, so that the full grid features 264 layers in the vertical up to a height of 120 km. In both
the solar and the thermal spectral ranges, the simulations are carried out using the molecular
absorption parameterization from Fu and Liou (1992, 1993). In the solar spectral range, the
Sun is placed at a constant zenith angle of 50° and in the east. The zenith angle was chosen
to be quite low so that 3D effects such as cloud side illumination and shadow displacement
are more pronounced, representing a typical morning scene. Furthermore, the surface albedo
in the solar spectral range is set to 0.125, resembling the global mean value of Trenberth et al.
(2009), whereas the ground emissivity is set to 0.95 in the thermal spectral range.

4.1.2 Overview of the radiative-transfer solvers

We apply four different radiative-transfer solvers to the aforementioned shallow-cumulus-
cloud time series: the newly developed dynamic TenStream solver, the original TenStream
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solver, a classic 1D δ-Eddington approximation and a fully 3D Monte Carlo solver.
Let us discuss the setup of the dynamic TenStream solver first. As we outlined in Sect. 3.2.2,

it has to be provided with a first guess the very first time it is called, due to the unavailability of a
previously calculated result at this point in time. To evaluate the performance of the new solver,
it is a good idea to use the best-possible solution for this first guess. This way, one can examine
whether the results obtained from there on using dynamic TenStream featuring incomplete
solves diverge from those retrieved by the original TenStream solver using full solves. Hence,
we initially perform 2000 iterations for the clear-sky spin-up described in Sect. 3.2.2, followed
by N0 = 500 Gauß–Seidel iterations that also involve the cloud field to ensure that the radiative
field is fully converged at the beginning of the time series. These two steps are visualized by
the spin-up and the arrow with the first N0 Gauß–Seidel iterations in Fig. 3.2. From there on,
we just use a minimum of two Gauß–Seidel iterations every time the solver is called. Using
two instead of just one iteration ensures that the iteration direction mentioned in Sect. 3.2.2
is altered at least once per call. In this way, we guarantee that information is not preferably
transported in one specific direction. Furthermore, to investigate the effect of using more than
just two Gauß–Seidel iterations per call, we also performed nine additional runs with integer
multiples of two Gauß–Seidel iterations, i.e., with 4, 6, . . . , 20 Gauß–Seidel iterations per call.

Since the dynamic TenStream solver is based on the original TenStream solver, reproducing
its results despite applying incomplete solves is the best outcome that we can expect. Thus,
the original TenStream solver (Jakub and Mayer, 2015) serves as a best-case benchmark for our
new solver. On the other hand, our goal is to significantly outperform currently employed 1D
independent column approximations. Consequently, the δ-Eddington solver incorporated
into the libRadtran radiative-transfer library serves as a worst-case benchmark for our new
solver that we should definitely surpass.

Finally, we also apply the 3D Monte Carlo solver MYSTIC (Mayer, 2009) to the shallow-
cumulus-cloud time series. When operated with a large-enough number of photons, it allows
us to determine the most accurate 3D heating rates possible. Hence, these results can be
used as a benchmark for all the other solvers. For our MYSTIC simulations, we used a total of
400 000 000 photons for every time step, which is about 100 000 per vertical column, resulting
in domain-average mean absolute errors in both heating rates and irradiances that are not
larger than 1 % of their respective domain averages. For the exact libRadtran input files used
for each of these solvers, the reader is referred to Appendix A of this work.

4.1.3 Speed and accuracy evaluation

As we mentioned earlier, our goal is to evaluate the performance of the dynamic TenStream
solver in terms of both speed and accuracy. However, in particular, determining the speed of
a solver with respect to others is not a straightforward task, as it is highly dependent on the
environment the code is executed in. Since the dynamic TenStream solver is still in an early
stage of development and this work is primarily focused on demonstrating the feasibility of the
main concepts of the solver, we wanted to keep the speed analysis as simple as possible. We
decided to perform three radiative-transfer computations for each of the previously mentioned
solvers on the same workstation for the first cloud field in our time series. The average of
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these three run times for every solver should at least provide a rough estimate of the speeds
of the different solvers relative to each other. All calculations were performed on a single
core. We compare the computational time for incomplete dynamic TenStream solves with
two Gauß–Seidel iterations per call, which is the same setup as the one we will use for the
investigation of the performance of the new solver later on, to run times for full solves by the
1D δ-Eddington approximation, the original TenStream solver and MYSTIC. This comparison
is not entirely fair for the original TenStream solver, though, as this solver can be run in a
time-stepping scheme as well, thus relying on previously calculated results, which noticeably
increases its speed compared to the calculations from scratch that we are using. However, this
time-stepping option for the original TenStream solver is not yet available within libRadtran.

To assess the accuracy of the dynamic TenStream solver, we study the entire time series.
We focus our analysis on how well the solvers perform in determining 3D heating rates and net
irradiances at the upper and lower domain boundaries. As mentioned in Sect. 4.1.2, values
derived by MYSTIC serve as benchmark values. We evaluate the performance of the other three
solvers compared to MYSTIC using two different error measures: a mean absolute error (MAE)
and a mean bias error (MBE). The mean absolute error describes the amount by which the
heating rate or net irradiance of an individual grid box deviates from the benchmark solution
on average and is given by

MAE =
〈∣∣ξ−ξref

∣∣〉 , with ξ ∈
{(
∆T

∆t

)
i , j ,k

;∆Enet,i , j ,sfc;∆Enet,i , j ,TOA

}
, (4.1)

∆Enet,i , j ,sfc =
(
S0,i , j ,0 +Φ1,i , j ,0 −Φ0,i , j ,0

)
∆x∆y, and

∆Enet,i , j ,TOA = (
S0,i , j ,Nz+1 +Φ1,i , j ,Nz+1 −Φ0,i , j ,Nz+1

)
∆x∆y.

Here, 〈. . .〉 denotes a spatial average, whereas the subscript “ref” refers to a reference value, i.e.,
the MYSTIC values in our case. For the definition of the other quantities, you may refer back to
Sec. 3.1 and 3.2.3. Since the mean absolute error is sensitive to how the values of an individual
grid box deviate from the benchmark solution, it is a measure of whether a solver gets the
overall heating rate or net irradiance pattern right. It is sensitive to double-penalty errors;
i.e., it gets large when local minima and maxima in this pattern are displaced between the
benchmark solution and the investigated solver. We have chosen an absolute error measure
rather than a relative one here because individual heating rates or net irradiances can be close
to zero and thus blow up a relative error measure. The mean bias error, on the other hand, is an
error measure targeted toward the domain mean heating rate or net irradiance and is defined
as

MBE = 〈ξ〉−〈ξref〉 , with ξ ∈
{(
∆T

∆t

)
i , j ,k

;∆Enet,i , j ,sfc;∆Enet,i , j ,TOA

}
. (4.2)

In contrast to the MAE, the MBE compares domain-average values to each other and is thus a
measure of whether we get the domain-average heating rate or net irradiance right. It is not
sensitive to the spatial pattern of these quantities; rather, it tells us whether there is, on average,
too much or too little absorption in the domain compared to the benchmark solution. Domain
averages of heating rates and net irradiances are usually not close to zero, so we can also take a
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look at the relative mean bias error (RMBE) here, which is given by

RMBE = 〈ξ〉−〈ξref〉
〈ξref〉

, with ξ ∈
{(
∆T

∆t

)
i , j ,k

;∆Enet,i , j ,sfc;∆Enet,i , j ,TOA

}
. (4.3)

Applied to the shallow-cumulus-cloud time series at its full temporal resolution of 10 s, these
two error measures allow us to determine the accuracy of the dynamic TenStream, the original
TenStream and the δ-Eddington calculations compared to the MYSTIC benchmark run at any
point in time. We can also ensure that the benchmark solution itself has a significantly smaller
error than the other solvers when compared to this benchmark. Therefore, we use the standard
deviation σref, which can be determined for every single MYSTIC value. However, this standard
deviation describes the mean squared deviation of a MYSTIC value from its mean, whereas the
MAE that we are using looks at the mean absolute deviation. For normally distributed random
variables, however, the mean absolute deviation is simply given by

MAD =
√

2

π
σ, (4.4)

with σ being the standard deviation (Geary, 1935). We can assume that the benchmark run is
of sufficient quality if this MAD of the MYSTIC values is much smaller than the corresponding
mean absolute deviations between MYSTIC and the values of the other solvers. Hence, we can
use the domain-average MAD of the benchmark solution to quantify the domain-average MAE
of the benchmark solution at any point in time, following

MAEref =
〈√

2

π
σref

〉
. (4.5)

We cannot provide a number for the MBE of the benchmark solution, though, as we only know
how much the individual MYSTIC values are scattered around their mean, not whether this
mean has an inherent bias. Hence, we simply have to assume that our benchmark simulation
is unbiased.

So far, this evaluation would only tell us the accuracy of the different solvers compared
to the benchmark run when operated at the same highest-possible calling frequency of 10 s.
However, radiation is usually called far less often than the dynamical core of the model. Also,
3D radiative-transfer solvers are computationally much more demanding than 1D solvers,
raising the question of how well dynamic TenStream performs when operated with a similar
computational demand to the 1D δ-Eddington approximation. To address these questions, we
also investigate the effect of the radiation calling frequency on the temporal evolution of the
aforementioned error measures.

In order to explain our approach to this, we take a look at Fig. 4.2. The figure demonstrates
how we determine the aforementioned error measures for a solver operated at a lower calling
frequency of 30 s with respect to the MYSTIC benchmark run, which is computed at the highest-
possible calling frequency of 10 s. At t = 8020 s (that is, 20 s into our time series), these error
measures are given by comparing the not-yet-updated solution that was originally calculated
at t = 8000 s to the values of the benchmark solution obtained at exactly t = 8020 s. In this
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Figure 4.2: Schematic illustration of how we determine the error of a solver operated at a lower calling frequency
of ∆trad = 30s compared to the benchmark solution computed at the highest-possible calling frequency of
∆trad = 10s at any point in time. To this end, the circles in the figure indicate the results of the corresponding
solvers at any given time, with the colors symbolizing the time step at which these results have been calculated
and the dotted circles, in contrast to the full circles, indicating results that have not been updated at that point in
time. The color of a dotted circle is thus equal to that of the corresponding last full circle.

way, we can investigate how the error metrics of a not-updated radiative field grow until it
is eventually updated again. This investigation is particularly important for the dynamic
TenStream solver, as it just performs incomplete solves every time it is called. As we expect
these to work best if the overall properties determining the radiative field have not changed
much in between two calls of the solver, this method allows us to investigate whether our new
solver still converges toward the results of the original TenStream solver when operated at
lower calling frequencies. For this investigation, we decided to take calling frequencies of 10,
30 and 60 s into account. These calling frequencies are still very high for operational weather
forecasts, where the radiation time step is typically around 1 h (Hogan and Bozzo, 2018), but
we have to consider that our cloud field also features a significantly higher spatial resolution
of 100 m in the horizontal compared to 2.1 km in the DWD ICON-D2 model (DWD, 2025) and
9 km in the ECMWF high-resolution deterministic forecasts (Hogan and Bozzo, 2018). At the
LES resolution of 100 m that we use for our evaluation, the Weather Research and Forecasting
(WRF) model, for example, recommends using a radiation time step as high as 1 min km−1 of
horizontal resolution (UCAR, 2025), resulting in a suggested radiation time step of 6 s for our
test case. This ensures that air moves less than a grid box distance between two calls of the
radiation scheme for typical wind speeds of |v⃗ | ≈ 10 m s−1. Our highest calling frequency of 10 s
is at least close to that number, with the other two calling frequencies of 30 and 60 s definitely
representing scenarios where radiation is called less often than recommended.

4.2 Discussion of the results

4.2.1 Solver speed

The relative speeds of the different radiative-transfer solvers introduced in Sect. 4.1.2 compared
to the run time of the 1D δ-Eddington approximation are shown in Table 4.1. As we described
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Table 4.1: Computing times of the different solvers (names in bold font) relative to those of the 1D δ-Eddington
approximation, taken as an average over three runs performed on the same workstation for the very first time
step of the LES cloud time series.

Solar spectral range Thermal spectral range

δ-Eddington
1D two-stream solver

1.0 1.0

dynamic TenStream
incomplete 3D solver with two Gauß–Seidel iterations

3.6 2.6

original TenStream
full 3D solver

50.8 24.1

MYSTIC
full 3D benchmark solver using 400 000 000 photons

1068.9 1611.3

in Sect. 4.1.3, all solvers used in this test were executed on a single core of the same workstation
and were therefore in a very similar environment. This workstation featured an Intel Xeon W-
2245 CPU and 64 GB RAM, with performance primarily limited by the network storage, where
all the data were placed. We can see that in this experiment, the newly developed dynamic
TenStream solver with two Gauß–Seidel iterations is 3.6 times slower than the 1D δ-Eddington
approximation in the solar spectral range and just 2.6 times slower in the thermal spectral
range. Comparing these numbers to the findings in Jakub and Mayer (2016), they are in line
with what we could have expected in terms of the speed of the new solver. According to this
paper, retrieving the coefficients of the TenStream linear-equation system from the lookup
tables in both the solar and thermal spectral ranges takes about as long as performing one
δ-Eddington calculation. On top of that, we have to calculate the fluxes for every grid box of the
domain, just as in a δ-Eddington calculation. However, for the dynamic TenStream calculation,
we have to determine fluxes for 10 instead of 2 streams per grid box and calculate all these
fluxes twice, as we perform two Gauß–Seidel iterations whenever the solver is called. And, even
though the number of streams (in particular) will most likely not scale linearly with run time,
we can thus certainly expect that the new solver will be at least twice as slow as a δ-Eddington
approximation. The factors of 3.6 and 2.6 are in line with these expectations.

Although the dynamic TenStream solver is thus noticeably slower than a 1D solver, it is still
significantly faster when compared to other 3D solvers executed under similar circumstances
— namely the original TenStream and MYSTIC solvers in Table 4.1. The original TenStream
solver, for example, is at least 24 times slower in this experiment than the 1D δ-Eddington
approximation, with MYSTIC being even slower. As we pointed out earlier, this comparison
is not entirely fair for the original TenStream solver, though, as it can also be run in a time-
stepping scheme. Jakub and Mayer (2016) showed that, in this case, the original TenStream
solver can be up to only a factor of 5 slower than 1D δ-Eddington solves, which, however, is
still noticeably slower than the dynamic TenStream solver presented here.
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Figure 4.3: Temporal evolution of the mean absolute error in heating rates for the 1D δ-Eddington approximation
(blue lines), the original TenStream solver (dashed green lines) and the newly developed dynamic TenStream
solver (dash–dotted red lines) with respect to the MYSTIC benchmark run at calling frequencies of 10, 30 and 60 s
(different shades of the corresponding color) for both the solar (a) and thermal (b) spectral ranges. Due to the
statistical nature of Monte Carlo simulations, the MYSTIC benchmark run itself is subject to some uncertainty.
The corresponding MAE calculated using Eq. (4.5) is visualized by the dotted black line. For reasons of visual
clarity, we show only the first half of the time series here.

4.2.2 Performance in determining heating rates

Next, let us have a look at how the dynamic TenStream solver performs in calculating heating
rates. Since we are primarily interested in its performance in the surroundings of the con-
tinuously evolving clouds, we only use the LES part of the domain for this evaluation, i.e.,
the part between the surface and 5.5 km height. As mentioned in Sect. 4.1.3, the analysis will
be centered around two different error measures: a mean absolute error and a mean bias
error. Figure 4.3 shows the temporal evolution of the MAE for the different solvers at calling
frequencies of 10, 30 and 60 s. At this point, we should recall that the mean absolute error is a
measure of how well a solver performs on average in determining the heating rate for a certain
grid box.

When operated at the highest-possible calling frequency of 10 s, we can see that the MAE is
relatively constant over time for all the solvers, as we compare radiative-transfer calculations
carried out at a certain point in time to benchmark calculations obtained at the exact same
time step. The MAE in this case is solely determined by the error generated by the solvers
themselves when applied to relatively similarly structured shallow cumulus clouds, so this
behavior is expected. Looking at the magnitude of the MAE for the different solvers, we can see
that for both spectral regions, the δ-Eddington approximation (dark-blue line) performs worst,
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whereas the 3D TenStream solver is a noticeable improvement. Pleasingly, the MAE of our
dynamic TenStream solver at a calling frequency of 10 s (dark-red dash–dotted line) is almost
on par with the error obtained with the original TenStream solver. It is only in the thermal
spectral range that the error gets slightly larger with time. This shows that, in this example,
at a calling frequency of 10 s, just two Gauß–Seidel iterations per call are already sufficient to
almost reproduce the results of the original TenStream solver.

At lower calling frequencies, the radiative field is not updated at every time step of the cloud
time series anymore. Consequently, the MAE of each solver rises until the solver is called again.
The resulting sawtooth structure can be observed in the MAE time series of all the solvers at
calling frequencies of 30 and 60 s. In case of the traditional solvers, a full solve is performed
every time they are called. Thus, the MAE at lower calling frequencies always reduces to the
value obtained at a calling frequency of 10 s when the corresponding solver is called. This is not
necessarily true for the dynamic TenStream solver, however, as it only performs an incomplete
solve involving two Gauß–Seidel iterations every time it is called. If this incomplete solve is not
sufficient, it could lead to a divergent behavior of the MAE time series for this solver. Looking
closely, we can also see that for both of the lower calling frequencies, the MAE of the dynamic
TenStream solver does not always match the errors obtained at a calling frequency of 10 s
when updated. However, even at a calling frequency of 60 s, we cannot observe a divergent
behavior, and the newly developed solver is almost able to reproduce the results of the original
TenStream solver whenever called.

Moreover, we have seen that our new solver is about 3 times slower than a traditional 1D
δ-Eddington approximation. Looking at Fig. 4.3, we can now see that, on average over time,
dynamic TenStream even performs better than the δ-Eddington approximation at a calling
frequency of 10 s (bold blue line) when it is operated at a calling frequency of 30 s (dash–dotted
bold red line), and thus with a similar computational demand to the 1D solver, in both the
solar and thermal spectral ranges.

Switching to the other error measure, Fig. 4.4 visualizes the temporal evolution of the mean
bias error for the different solvers. In contrast to the MAE discussed before, this error metric
describes whether we get the domain-average heating rate right. As we can clearly see, the MBE
is, again, largest for the 1D δ-Eddington approximation and, once more, significantly smaller
for the original TenStream model. When operated at the highest-possible calling frequency
of 10 s, the mean bias error of the dynamic TenStream solver is also very similar to that of
the original TenStream model. However, at lower calling frequencies, we can clearly see that
the bias increases with time, although it never gets larger than the bias of the 1D results. It
is also clearly visible that the bias is more negative than the original TenStream bias (dashed
green lines) in the solar spectral range, whereas it is less positive in the thermal spectral range.
Since the domain-average heating rate in the solar spectral range is positive, this implies that
our new solver underestimates absorption in this spectral range, especially compared to the
original TenStream solver it is based on. This underestimation gets larger the less the dynamic
TenStream solver is called. As the liquid-water content in the domain gradually increases with
time and more liquid water in the clouds leads to more absorption, this could imply that the
dynamic TenStream solver does not fully take this increase into account. This does not explain
the behavior of the new solver in the thermal spectral range, though, where domain-average
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Figure 4.4: Temporal evolution of the mean bias error in heating rates for the different solvers with respect to the
MYSTIC benchmark run at calling frequencies of 10, 30 and 60 s for both the solar (a) and thermal (b) spectral
ranges. A run with no bias is visualized by the dotted black line.

heating rates are negative. Hence, the positive MBE values observed for both the original as
well as the dynamic TenStream solver imply that the heating rates are not as negative there
as they should be. But, in contrast to the solar spectral range, these heating rates get more
negative the less the dynamic TenStream solver is called, so the dynamic TenStream solver
overestimates the magnitude of these thermal heating rates when compared to the original
TenStream solver it is based on. Using this and the results obtained from the MAE time series,
we can draw our first few conclusions:

1. For an individual grid box, our new solver is able to determine heating rates much more
accurately than current 1D solvers, even when operated with a similar computational
demand.

2. When looking at domain averages, the dynamic TenStream solver begins to develop a bias
compared to the original TenStream solver it is based on. This bias becomes larger the
lower the calling frequency is, but it remains smaller than the bias of the 1D δ-Eddington
calculations at any point in time.

4.2.3 Performance in determining net irradiances at the upper and lower
domain boundaries

Besides heating rates, we are also interested in how well dynamic TenStream performs in
determining net irradiances at the top and bottom of its domain. We will start by looking
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Figure 4.5: Temporal evolution of the mean absolute error in the net surface irradiance for the different solvers
with respect to the MYSTIC benchmark run at calling frequencies of 10, 30 and 60 s for both the solar (a) and
thermal (b) spectral ranges. The MAE of the MYSTIC benchmark run itself is visualized by the dotted black line.

at the results for the net surface irradiances and thus absorption at the ground. Figure 4.5
shows the temporal evolution of the MAE for this quantity in an otherwise similar fashion to
Figs. 4.3 and 4.4. As for the heating rates, we can see that the 1D δ-Eddington approximation
(blue lines) performs worst, with the original TenStream solver (dashed green lines) being a
noticeable improvement once more, remaining significantly below the errors of all 1D runs
throughout the entire time series, even at lower calling frequencies. Again, our newly developed
dynamic TenStream solver (dash–dotted red lines) is able to almost maintain the MAE of
the full TenStream calculations at the highest-possible calling frequency of 10 s, whereas its
error slightly increases with time for the two lower calling frequencies. However, this slight
divergence from the original TenStream MAE quickly stabilizes and also remains significantly
below every single δ-Eddington run, even when the solver is only called every 60 s. What is
interesting, though, is that the temporal evolution of the MAE in the thermal spectral range
does not show a sawtooth structure at lower calling frequencies, in contrast to all other plots
involving the MAE so far. As we discussed earlier, this sawtooth structure is mainly caused by
the fact that at lower calling frequencies, we do not update the radiative field for some time
steps while the clouds are still moving through the domain, resulting in gradually increasing
double-penalty errors. The fact that this behavior is not observed in the thermal spectral range
indicates that the net surface irradiance field does not feature such small-scale structures in
the thermal.

To conclude the analysis for the surface, let us once more also have a look at the MBE.
Again, in contrast to the MAE, this error measure does not tell us how well dynamic TenStream
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Figure 4.6: Temporal evolution of the mean bias error in the net surface irradiance for the different solvers with
respect to the MYSTIC benchmark run at calling frequencies of 10, 30 and 60 s for both the solar (a) and thermal
(b) spectral ranges. A run with no bias is indicated by the dotted black line.

performs in determining the net surface irradiance for a single grid box, but rather whether we
get the domain-average surface absorption right. The corresponding plot is shown in Fig. 4.6
and reveals a current weakness of both the original TenStream solver as well as our new solver,
as we can clearly see that the MBE is almost always larger for these two solvers than it is for the
1D δ-Eddington approximation. And, as we have already seen in the results for the heating rates,
the lower the calling frequency, the more the MBE of the dynamic TenStream solver diverges
from the MBE of the original TenStream solver. Here, however, this behavior is more severe than
it was for the heating rates, since the benchmark for our new solver — the original TenStream
solver — already performs a bit worse than the 1D solver. Its MBE of about −2.5Wm−2 in the
solar and 5Wm−2 in the thermal spectral range translates to an RMBE of about −0.5 % and
−6 %, respectively (not shown here), compared to numbers of around 0Wm−2 (0 %) in the solar
and −4Wm−2 (5 %) in the thermal spectral range for the δ-Eddington approximation. However,
it should be noted that the almost non-existent MBE of the δ-Eddington approximation in the
solar spectral range is primarily caused by two counteracting 3D radiative effects that happen
to cancel each other out at almost exactly the solar zenith angle of 50° used here, whose choice
was motivated in Sect. 4.1.1.

To show that, Fig. 4.7 visualizes the MBE for both the δ-Eddington approximation and
the original TenStream solver as a function of the solar zenith angle for the first time step of
our time series. By looking at the blue line, we can see that the δ-Eddington approximation
underestimates the mean net surface irradiance for solar zenith angles below 50°, while it
overestimates it for angles above 50°. Following the reasoning of Gristey et al. (2020), this is
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Figure 4.7: Mean bias error in the net surface irradiance as a function of the solar zenith angle for both the 1D
δ-Eddington approximation (blue line) and the original TenStream solver (green line), evaluated at the first time
step of the shallow-cumulus-cloud time series.

most likely because at low solar zenith angles, 1D solvers cannot account for the scattering of
light at clouds into surrounding clear-sky columns, leading to an underestimation of the mean
net surface irradiance. At high solar zenith angles, on the other hand — that is, when the Sun is
close to the horizon — 1D solvers severely underestimate the size of cloud shadows, as they cast
them directly underneath the clouds instead of at a slant angle, leading to an overestimation
of the mean net surface irradiance. As we can see in Fig. 4.7, both of these effects cancel out
at an angle of about 50°, which is the one used here, resulting in the near-zero MBE of the
δ-Eddington approximation in the solar spectral range in Fig. 4.6. Despite this coincidence,
however, Fig. 4.7 also shows that the original TenStream solver performs slightly worse than
the δ-Eddington approximation for any zenith angle below about 50°. However, the difference
in MBE between the two solvers is quite small, and the magnitudes of their respective RMBEs
do not get much larger than −1 % for any angle below 50° (not shown here).

The dynamic TenStream solver, however, underestimates surface absorption in the solar
spectral range even more than the original TenStream solver does, with the effect increasing
the less frequently the new solver is called. Looking at the runs with calling frequencies of 10
and 30 s, however, one can clearly see that this divergence from the original TenStream MBE
quickly stabilizes itself at values around −5Wm−2 (−1 %) and −12Wm−2 (−2 %), indicating
that the bias will not grow continuously. The same behavior can be observed in the thermal
spectral range, except that, similar to the behavior of the heating rates, the buildup of the bias
compared to the original TenStream solver actually improves the MBE of the new solver at
lower calling frequencies there. Since net surface irradiances in the thermal spectral range
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Figure 4.8: Temporal evolution of the mean absolute error in the net irradiance at TOA for the different solvers
with respect to the MYSTIC benchmark run at calling frequencies of 10, 30 and 60 s for both the solar (a) and
thermal (b) spectral ranges. The MAE of the MYSTIC benchmark run itself is visualized by the dotted black line.

are negative, the positive MBE values for the original TenStream solver in Fig. 4.6 indicate an
underestimation in the net surface irradiance, i.e., values that are not negative enough, with
the dynamic TenStream solver counteracting this bias the less often it is called — although this
is, of course, more of a coincidence.

Finally, coming to the upper boundary of our domain, Fig. 4.8 shows the temporal evolution
of the MAE in the net irradiance at the top of the atmosphere (TOA) in an otherwise similar
fashion to Fig. 4.5. Again, the incomplete solves in the dynamic TenStream solver lead to a
slight divergence of the MAE of this solver (red lines) compared to the original TenStream solver
(green lines) in both spectral ranges. However, this divergence remains small compared to the
difference between the 3D TenStream solver and the 1D δ-Eddington approximation, even at
the lowest investigated calling frequency of 60 s. This indicates that the dynamic TenStream
solver is also much better in capturing the spatial structure of the net irradiances at TOA than
the traditional δ-Eddington approximation is.

Similar to the surface, however, this does not fully apply in terms of domain averages.
The corresponding temporal evolution of the MBE is shown in Fig. 4.9. Starting with the
thermal spectral range displayed in panel (b), our new solver again shows only a comparatively
small divergence from the original TenStream solver with time and performs significantly
better than the δ-Eddington approximation throughout the entire time series, regardless of
the calling frequency used. In the solar spectral range, however, the original TenStream solver
already performs a bit worse than the δ-Eddington approximation does, with time-average
MBEs of about −4Wm−2 for the TenStream solver compared to −3Wm−2 for the 1D solver.
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respect to the MYSTIC benchmark run at calling frequencies of 10, 30 and 60 s for both the solar (a) and thermal
(b) spectral ranges. A run with no bias is indicated by the dotted black line.

More noticeably though, the incomplete solves in the dynamic TenStream solver lead to a
fairly pronounced divergence in terms of the MBE from the original TenStream solver when
compared to the difference between the 1D and original TenStream solvers. However, for every
calling frequency investigated, this divergent behavior peaks at values that translate to RMBEs
of no larger than 1.25 % (not shown here). Taking both domain boundaries into account, we
can thus draw similar conclusions to those for the heating rates:

1. At the grid box level, our new solver determines far better net irradiances at both the
surface and TOA than current 1D solvers do, even when operated at much lower calling
frequencies.

2. Looking at domain averages, however, the incomplete solves within the dynamic Ten-
Stream solver lead to a buildup of bias with time. In terms of magnitude relative to the
original TenStream solver, this bias becomes larger the lower the calling frequency and
exceeds the bias of current 1D solvers, especially in the solar spectral range.

4.2.4 Dependence on the number of Gauß–Seidel iterations

So far, we have just looked into dynamic TenStream runs performed with only two Gauß–Seidel
iterations whenever the solver is called. We focused on this computationally affordable setup
as it already led to promising results. To investigate how the results presented so far change
when applying more than two Gauß–Seidel iterations, we have performed nine additional
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Table 4.2: Computing times of dynamic TenStream runs with N Gauß–Seidel iterations per call relative to those
with two Gauß–Seidel iterations, taken as an average over three runs performed on the same workstation for the
very first time step of the LES cloud time series.

Number N of Gauß–Seidel iterations 2 4 6 8 10 12 14 16 18 20

Solar spectral range 1.0 1.2 1.4 1.6 1.7 1.9 2.1 2.3 2.5 2.6

Thermal spectral range 1.0 1.1 1.3 1.4 1.5 1.6 1.8 1.9 2.0 2.2

runs using integer multiplies of two Gauß–Seidel iterations, i.e., up to 20 iterations per call.
Following the explanation given in Sect. 4.1.2, we use integer multiples of 2 instead of 1 in
order to ensure that information is not preferably transported into one specific direction of the
domain.

In order to evaluate the improved performance of these additional runs, it is important to
have a rough estimate of their additional computational cost. Therefore, we have measured the
computing times of these runs exactly as we did it in Sect. 4.2.1 for all the other solvers. Table 4.2
shows these computing times relative to a calculation with two Gauß–Seidel iterations per call.
As we can see, using four instead of two iterations does not double the computational cost, as
there is a considerable amount of overhead that always takes the same amount of time before
even starting with the Gauß–Seidel iterations, such as retrieving the TenStream coefficients
from the corresponding lookup tables. However, apart from this offset, computing time scales
roughly linearly with the number of Gauß–Seidel iterations, as two more iterations always add
about 10 % to 20 % of the baseline cost of a calculation with two Gauß–Seidel iterations to the
computing time. This fraction is smaller for the thermal spectral range because of a larger
overhead due to the additional calculation of thermal emission.

Having this additional computational burden in mind, we can now have a look at Fig. 4.10.
Panels (a) and (b) in this figure show the time- and domain-average MAE in heating rates from
the dynamic TenStream solver for the shallow-cumulus-cloud time series as a function of the
number N of Gauß–Seidel iterations. Correspondingly, the values at N = 2 on the far left are
the time averages of the sawtooth curves in Fig. 4.3 for the corresponding calling frequencies.
The dashed lines represent the temporal mean MAEs for the original TenStream solver. The
MAEs of the dynamic TenStream solver converge toward these dashed lines in the limit of a
large number of iterations. For lower calling frequencies, this limit that the dynamic TenStream
solver is converging to is larger than it is for higher calling frequencies because the solver is
called less often, leading to the buildup of a large MAE with time until the solver is eventually
called again, as we have seen in Fig. 4.3. Since the MAEs of the dynamic TenStream solver were
already almost on a par with the original TenStream solver when just two Gauß–Seidel iterations
were used, the MAE is already nearly converged at N = 2 and does not greatly improve when
using more iterations. It is only in the thermal spectral range and at lower calling frequencies
that we see a slight improvement in the mean MAE when applying more iterations, especially
when doubling the number of iterations from two to four.

In contrast to the MAE, however, we observed a noticeable buildup of bias with time for the
dynamic TenStream solver that increases the less the solver is called. Consequently, the MBE
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Figure 4.10: Time- and domain-average mean absolute error (a, b) and mean bias error (c, d) in heating rates with
respect to the MYSTIC benchmark run as a function of the number of Gauß–Seidel iterations used in the dynamic
TenStream solver for both the solar (left panels) and thermal (right panels) spectral ranges. The three different
colors show the errors for calling frequencies of 10 s (blue), 30 s (purple) and 60 s (orange). Solid lines connect the
values for the dynamic TenStream solver, while the dashed lines with constant MAE or MBE represent the errors
of a full TenStream solve at the corresponding calling frequency, toward which the dynamic TenStream values are
converging. In panels (a) and (b), the MAE of the MYSTIC benchmark run itself is visualized by the dotted black
line.

in panels (c) and (d) of Fig. 4.10 starts at values that are significantly far from convergence at
N = 2, especially for the lowest two calling frequencies. The more Gauß–Seidel iterations we
apply, the more this difference in bias compared to the original TenStream solver disappears.
We can also see that the initially better bias of our new solver in the thermal spectral range at a
calling frequency of 60 s quickly converges toward the bias of the original TenStream solver,
as dynamic TenStream is based on this solver. To evaluate whether it is worth decreasing the
magnitude of the MBE compared to the original TenStream solver by applying more iterations,
let us have a look at the additional computational cost of these iterations in Table 4.2. Using
four instead of two Gauß–Seidel iterations adds only 10 % to 20 % to the total computational
time while leading to a noticeable decrease in both the MAE and (especially) the MBE. In
this regard, one could even think about calling dynamic TenStream less frequently but with
more Gauß–Seidel iterations. As we have seen in Sect. 4.2.1, using our new solver at a calling
frequency of 30 s is about as expensive as calling a δ-Eddington approximation every 10 s.
Taking Table 4.2 into account, we can see that using N = 20 instead of N = 2 iterations is a bit
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Figure 4.11: Time- and domain-average mean absolute error (a, b) and mean bias error (c, d) in the net surface
irradiance with respect to the MYSTIC benchmark run as a function of the number of Gauß–Seidel iterations at
calling frequencies of 10, 30 and 60 s. Solid lines connect the values for the dynamic TenStream solver, while the
constant dashed lines represent the errors of a full TenStream solve at the corresponding calling frequency. In
panels (a) and (b), the MAE of the MYSTIC benchmark run itself is visualized by the dotted black line.

more than twice as expensive. Hence, we could argue that a dynamic TenStream configuration
with N = 20 at a lower calling frequency of 60 s also imposes about the same computational
cost as a δ-Eddington approximation at a calling frequency of 10 s. However, while such a
setup would lead to a better time-average MBE than our configuration with N = 2 and a calling
frequency of 30 s, it would also lead to a very noticeable increase in the mean MAE. To put it
figuratively, using more iterations at a lower calling frequency reduces the bias at the expense
of the spatially correct representation of the heating rates. In terms of these heating rates, we
can thus draw two main conclusions:

1. Using more Gauß–Seidel iterations per call primarily counteracts the buildup of a bias
with time, as the incomplete solves with two Gauß–Seidel iterations per call already
resemble the spatial structure of the full TenStream results very accurately.

2. When using more Gauß–Seidel iterations but a lower calling frequency in order to main-
tain the total computational cost, one improves the representation of domain averages
at the expense of the spatial structure of the results.

Especially at the surface, though, one should definitely think about using more than just two
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Gauß–Seidel iterations per call. To motivate that, Fig. 4.11 shows the same plots as Fig. 4.10 but
for net surface irradiances instead of heating rates. As for the heating rates, we can see that
the use of more than two Gauß–Seidel iterations per call primarily counteracts the buildup
of the MBE with time. In contrast to the heating rates, however, lower calling frequencies
do not impact the magnitude of the MAE as much. This indicates that, even at lower calling
frequencies, the dynamic TenStream solver is able to adequately capture the spatial structure
of the net surface irradiances. Consequently, using our new solver with N = 20 iterations at
a calling frequency of 60 s leads to better results than achieved with N = 2 and a 30 s calling
frequency here — both in the solar as well as in the thermal spectral range.

We can thus conclude that, even though the computationally most affordable runs using
just two Gauß–Seidel iterations per call lead to promising results, it might be beneficial to use
configurations involving slightly more iterations, as they add a comparatively small additional
computational cost to the solver while significantly counteracting the buildup of a bias with
time. The results for the net irradiance at TOA only underline the statements for the surface
and are thus not shown in here.

4.2.5 Visualization of dynamic TenStream heating-rate fields

We want to conclude this first part of the evaluation by visually comparing the dynamic
TenStream results to those calculated by the other solvers introduced in Sect. 4.1.2. In contrast
to the previous subsection, we restrict ourselves to dynamic TenStream runs with just two
Gauß–Seidel iterations per call here. A special focus of this comparison will be on how well
dynamic TenStream performs visually in updating the radiative field depending on the calling
frequency. To make this comparison as hard as possible for our new solver, we decided to look
at the last time step at which the radiative field is simultaneously updated for all three calling
frequencies that we consider; that is, at t = 8960 s. Instead of this point in time, we could, of
course, also take a look at a point in time where the different dynamic TenStream solves have
just not been updated. By doing so, one would focus more on how closely not-yet-updated
radiative fields still resemble the benchmark result. Here, however, we want to focus more on
how well our new solver performs in updating the radiative field depending on how much it
has changed between two calls of the radiation scheme. From this point of view, t = 8960 s is
the last point in time where all three dynamic TenStream runs have just been updated. Hence,
they are subject to the most incomplete solves and furthest away from the initial spin-up
there, increasing the chance of potential artifacts in the radiative field because the TenStream
linear-equation system has not been fully solved for quite a while.

Figure 4.12 shows xz cross sections for this point in time for the solar spectral range, with
the colors indicating the heating rates along the cross section using a logarithmic color scale —
except for the lowermost row in all the panels, which visualizes the net surface irradiance. In
general, the bright yellow areas with correspondingly large heating rates indicate the position
of clouds, while the dark areas signify shadows below the clouds. Right from the start, we
can see that the largest visual differences do not occur in between the different incomplete
dynamic TenStream solves but between the 1D δ-Eddington approximation in panel (a) and
the 3D solvers in panels (b)–(f). As 1D radiation does not allow for the horizontal transport of



4.2 Discussion of the results 83

0 1 2 3 4 5 6

800

850

900

950

1000

p 
(h

Pa
)

(a)
-Eddington

0 1 2 3 4 5 6

800

850

900

950

1000

(b)
TenStream

0 1 2 3 4 5 6

800

850

900

950

1000

(c)
MYSTIC

0 1 2 3 4 5 6
x (km)

800

850

900

950

1000

p 
(h

Pa
)

(d)
dynamic TenStream ( trad = 10.0 s)

0 1 2 3 4 5 6
x (km)

800

850

900

950

1000

(e)
dynamic TenStream ( trad = 30.0 s)

0 1 2 3 4 5 6
x (km)

800

850

900

950

1000

(f)
dynamic TenStream ( trad = 60.0 s)

100 101

heating rate (K d 1)

0 100 200 300 400 500 600 700 800
net surface irradiance (W m 2)

Figure 4.12: xz cross section of the heating-rate fields obtained by the different radiative-transfer solvers in the
solar spectral range at t = 8960 s. Heating rates are visualized by a logarithmic color scale for the δ-Eddington
(a), original TenStream (b) and MYSTIC (c) solvers as well as for the dynamic TenStream solver when operated
at calling frequencies of 10 s (d), 30 s (e) or 60 s (f). Additionally, the horizontal line at the bottom of each plot
visualizes the corresponding net surface irradiances obtained by the solver.

energy, in panel (a), shadows cannot be cast according to the angle of solar incidence; they are
only cast right underneath the clouds. This also affects absorption at the ground, with regions
of low surface absorption located right below the clouds rather than being displaced like in the
MYSTIC benchmark run. We can see that the visual structure of this benchmark result is much
better resembled by the TenStream solver shown in panel (b). Here, clouds are also illuminated
at their sides, and horizontal transport of energy allows shadows to be cast in the direction of
the solar incidence angle. However, we can see that both these shadows and the regions of low
surface absorption are much more diffuse than in the MYSTIC benchmark run — although
they are still a much better representation of the benchmark than the 1D solution.

Having these characteristics in mind, we can now discuss the results for the new dynamic
TenStream solver, which are shown in the last row of Fig. 4.12. The three panels show the
results for the new solver when it has been called every 10 s (panel d), 30 s (panel e) or 60 s
(panel f) before. At first glance, we can see that the results for the new solver are very similar to
those obtained by the original TenStream solver in panel (b), even when operated at the low
calling frequency of 60 s. Remember that, in this run, just two Gauß–Seidel iterations toward
convergence were carried out at only (8960–8000)/60 = 16 points in time since the spin-up.
Since our solver is based on the TenStream solver, this is almost the best result we could have
obtained. We can see that, just like the TenStream solver, dynamic TenStream allows for full 3D
transport of energy, with shadows and regions of low surface absorption being cast not just
directly underneath clouds. Looking closely, one can, however, see differences between the
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Figure 4.13: xz cross section of the heating rate fields obtained by the different radiative-transfer solvers in the
thermal spectral range at t = 8960 s. The structure of the plot is identical to Fig. 4.12, except that the color scale is
logarithmic for heating rates both above 1 and below −1K d−1 and linear in between.

results obtained at different calling frequencies. Panel (d), which shows the results for a calling
frequency of 10 s, most accurately resembles the original TenStream result, which becomes
most visible within the shadows cast by the clouds on the right-hand side of the domain. They
are overestimated by both lower-calling-frequency runs between about 5 and 6 km in the x
direction, with heating rates being too low there compared to the original TenStream result.
Also, surface absorption differs quite a bit between the different dynamic TenStream runs. The
structure obtained by the original TenStream solver is again most accurately resembled by the
dynamic TenStream run with a calling frequency of 10 s, whereas the surface absorption is
overestimated a bit around 5 km in the x direction in the 30 s run and features a much more
pronounced region of high absorption at around 2 km in the 60 s run.

Before we make a closing statement, let us also have a look at the results in the thermal
spectral range shown in Fig. 4.13. Again, we can see that the result for the 1D δ-Eddington
approximation in panel (a) features the most differences when compared to all the other panels
showing results obtained by 3D solvers. Compared to the MYSTIC benchmark run, we can
see that the thermal shadows cast by the clouds are much more pronounced in 1D and not
weakened in direction of the ground due to interactions with neighboring columns. This also
leads to a very distinct pattern of strongly negative and not so negative net-surface-irradiance
areas at the ground in the 1D results, whereas the net surface irradiance is almost uniform in
the MYSTIC benchmark result. This also provides proof for our observation in Sect. 4.2.3, where
we have noted that the benchmark results for the net surface irradiance in the thermal spectral
range should be pretty uniform in order to avoid the sawtooth pattern in the MAE time series
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that we typically saw when evaluating solvers at lower calling frequencies. Furthermore, we
can also see that the 1D δ-Eddington approximation is not able to consider cloud-side cooling
due to its lack of horizontal transport of energy, leading to much more pronounced cloud
bottom warming in the 1D results than in the MYSTIC benchmark. The original TenStream
solver depicted in panel (b) is able to consider almost all of these 3D effects and is therefore,
once more, visually close to the MYSTIC result. Looking closely, we can, however, see that the
thermal shadows are a bit more pronounced there, which also leads to regions where the net
surface irradiance is a bit weaker below the clouds, in contrast to the very uniform pattern
produced by the MYSTIC benchmark solver.

Comparing these results to those of our newly developed dynamic TenStream solver, we
can see that it is also almost able to reproduce the results of the original TenStream solver in
the thermal spectral range, even when operated at lower calling frequencies. However, the
result obtained with a calling frequency of 10 s shown in panel (d) clearly resembles the original
TenStream result most closely. At lower calling frequencies, we can see small artifacts, most
noticeably in the form of larger or completely floating thermal shadows (the white areas in
the plots) that do not seem to belong to any cloud at all, whereas they are normally placed
directly underneath them. These regions are residual shadows of already dissolved clouds
which the incomplete solves have not been able to get rid of yet. Evidence for this hypothesis is
provided by looking at the same plot at previous time steps (not shown here). These residual
shadows also influence the net surface irradiance pattern, which is most prominently visible
between 1 and 2 km in panel (f). In total, these residual shadows are minor artifacts, though,
as we have to consider that we were only able to visualize them by using a logarithmic color
scale. And, we also have to keep in mind that, in particular, panel (e), which shows the results
achieved at a calling frequency of 30 s, was obtained using a similar computational demand to
performing 1D δ-Eddington calculations every 10 s. In contrast to these results, however, the
dynamic TenStream result features horizontal transport of radiative energy, resulting in much
more realistically distributed heating rates and net surface irradiance patterns.

In summary, we can hence say that for both the solar and thermal spectral ranges, dynamic
TenStream is able to visually almost reproduce the results obtained by the original TenStream
solver, even when operated at lower calling frequencies. At those frequencies, however, minor
artifacts like residual shadows are introduced. The reason for these artifacts is the incomplete
solves, which can delay lower-order 3D effects, such as feedback effects from other clouds or
the surface. The term “feedback effects” refers to the fact that the 3D radiative effects of a cloud
can theoretically alter the conditions determining the 3D radiative effects of any other cloud
in the domain. Because these feedback effects require multiple back-and-forth transports
of information, they cannot be fully accounted for when solving radiation incompletely. For
example, incomplete solves can perfectly consider 3D radiative effects of an emerging cloud at
the location of the cloud itself, but the feedback on these heating rates due to lower upward-
facing radiative fluxes from the shadow this cloud casts may be delayed to a later call of the
scheme if the two Gauß–Seidel iterations that we perform per call are not sufficient to transport
this feedback back to the cloud itself.
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Chapter 5

Effects of using the dynamic treatment of
radiation in large-eddy simulations

The previous chapter showed that the dynamic TenStream solver is capable of determining
radiative fluxes and heating rates much more accurately than a classical 1D δ-Eddington
approximation, especially in terms of the spatial structure of the results — even when the
dynamic TenStream solver is operated at a lower calling frequency than the 1D solver, so that
their computational costs are comparable. To demonstrate this, the new solver was applied to a
pre-calculated shallow cumulus cloud time series, which enabled its performance to be tested
relative to other solvers using the exact same cloud fields. While this approach allowed for easy
point-to-point comparisons between the different solvers, it did not show how the use of 3D
radiative transfer, in contrast to traditional 1D solvers, changes the evolution of the atmosphere
and its clouds, nor whether the dynamic treatment of radiation introduced in Chapter 3 is able
to reproduce these 3D-related changes. To investigate this aspect as well, this chapter presents
the second part of the evaluation of the dynamic TenStream solver, in which it is coupled to
large-eddy simulations performed with the Parallelized Large-Eddy Simulation Model (PALM;
Raasch and Schröter (2001); Maronga et al. (2015, 2020)). Based on these simulations, this
chapter examines the impact of the incomplete solves in the dynamic TenStream solver on
the evolution of the atmosphere and its clouds compared to simulations performed with a
classical 1D approximation on the one hand, and full 3D TenStream solves on the other. To this
end, this chapter first introduces the model setup and methods used for the evaluation, before
presenting and discussing its results.

5.1 Methodology

5.1.1 Simulation setup

All simulations discussed in this chapter were performed with PALM (Raasch and Schröter,
2001; Maronga et al., 2015, 2020). Similar to the pre-calculated cloud fields used in the previous
chapter, the aim was to perform simulations in which shallow cumulus clouds develop over the
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course of the day. The purpose of this subsection is to provide an overview of how PALM was set
up in order to generate these shallow cumulus cloud fields, as well as which simulations were
ultimately performed. Therefore, the first part of this subsection briefly outlines the domain
used, before the second part describes how the model was initialized. The third part of this
section then introduces the different radiative transfer solvers that were applied. Finally, the
last part gives a detailed overview of all the different PALM simulations that were carried out.

Domain size

In terms of horizontal domain size, all simulations were perfomed with the same 100 m grid
spacing that was used in Chapter 4. Unlike there, however, 256×256 grid boxes were used,
resulting in a 25.6×25.6 km2 large domain — that is sixteen times the size of the domain in
the previous chapter. This should lead to much better statistics when investigating cloud
characteristics dependent on the radiative transfer model used. In the vertical, however, the
grid was reduced to just 80 grid boxes with a spacing of 50 m, resulting in a domain that
extends up to 4 km height. This lower vertical resolution was chosen in order to reduce the
storage demand of the simulation results. One should note that this vertical resolution however
still ensures that the z-x-aspect ratio of the grid boxes is smaller than 1, just like in a typical
numerical weather prediction model.

Model initialization

The simulations were set up to take place at the location of Munich, that is at 48.1°N and 11.6°E,
but at an altitude of 0 m, i.e., at sea level with a surface pressure of 1013.25 hPa. They were
initially started on 14 June 2023 at 22:00 UTC, which corresponds to exactly midnight local
time (00:00 CEST on 15 June 2023).

In addition to location and time, PALM is initialized by specifying vertical profiles for po-
tential temperature, total water mixing ratio, and zonal and meridional wind speed. Figure 5.1
shows the relatively simple profiles that were provided as initial conditions for these variables.
Let us discuss the setup for the potential temperature profile first. Normally, nocturnal cooling
would probably lead to a very stably stratified layer close to the surface at midnight. However,
for simplicity — and because the model is given enough time to adjust before sunrise — the
atmosphere was assumed to be initially well mixed up to a height of 800 m, with constant
values of θ = 288 K for the potential temperature and q = 7 g kg−1 for the total water mixing ratio,
as shown in panels (a) and (b), respectively. This results in relative humidity values starting
at 62.2 % at the surface and reaching up to 93.6 % at 800 m height. In order to prevent clouds
from forming right at the beginning of the simulations, a thin, stably stratified layer with a
1 K 100 m−1 increase in potential temperature was then added directly above this well-mixed
layer, between 800 m and 850 m height. Clouds can then form easily once the surface heats
up after sunrise, as the then warmer air parcels at the surface will have the ability to cross this
stably stratified layer and thus reach the convective condensation level. By assigning another
neutrally stratified layer between 850 m and 1300 m height, these clouds can also easily reach a
certain depth. Above 1300 m, a 1 K 100 m−1 increase in potential temperature was specified
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Figure 5.1: Initial profiles of the PALM simulations for potential temperature (a), total water mixing ratio (b), and
zonal wind speed (c). The smaller graph in panel (c) shows a zoomed-in detail of the zonal wind speed profile
between the surface and 100 m height. The temporal evolution of these profiles across the different simulations
evaluated in this chapter is provided in Appendix D of this work.

again, ensuring that the clouds cannot easily grow up to the top of the domain at 4 km height.
In contrast to this potential temperature profile, the total water mixing ratio profile illus-

trated in panel (b) was initialized a bit differently. Above the first well-mixed layer, it decreases
at a rate of 2 g kg−1 100 m−1 up to a height of 1000 m. This decrease ensures that the water vapor
pressure does not reach supersaturation after relative humidity values have risen to 93.6 % at
800 m altitude. Above 1 km height, the total water mixing ratio was then set to a constant value
of 3 g kg−1, which, together with the potential temperature profile, results in relative humidity
values that slowly decrease from about 52 % at 1300 m height to 45 % at the top of the domain.

In terms of wind, the simulations were initialized with a purely westerly flow, i.e., the
meridional wind component was set to 0 m s−1 at each height, whereas the zonal component
was initialized with a logarithmic wind profile up to a height of 100 m. This logarithmic wind
profile is shown in the inset figure of panel (c). It starts with a wind speed of 0 m s−1 at the
surface and ends with a wind speed of 7.5 m s−1 at an altitude of 100 m. Note, however, that a
grid spacing of only 50 m was used in the vertical, so that this logarithmic wind profile consists
of just three values in the simulations: that is, 0 m s−1 in the lowermost layer, 7.2 m s−1 in the
second and 7.5 m s−1 in the third. Above, the zonal component of the wind vector was set to a
constant value of 7.5 m s−1 for all heights, as shown in the main plot of panel (c). To maintain
this westerly flow throughout the entire model run, the Coriolis force was further disabled,
since otherwise the mean wind kept rotating clockwise.

In addition to these vertical profiles, the land–surface model of PALM was also used and
therefore had to be initialized. Regarding the soil type, the simulations were performed over
a flat, short grassland surface, ensuring conservation of water across the combined soil–
atmosphere system. The remaining setup of the soil model was largely based on an example in
the PALM documentation (PALM, 2025a), with only the soil temperature profile modified to
match the rest of the model initialization. To this end, the soil temperature at the surface was
set to 288 K, consistent with the potential temperature, and gradually decreased with depth to
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a deep soil temperature of 280 K across the soil layers. Additionally, the soil moisture was set to
0.18 m3 m−3 in all layers, which is somewhere between the wilting point (0.13 m3 m−3) and the
saturation moisture (0.43 m3 m−3) of the medium-fine soil type used (PALM, 2025b).

For further details and to ensure that the simulations performed in this thesis can be easily
reproduced, you may refer to the parameter file that was used for all the model runs, which is
provided in Sect. B.1 of this thesis.

Radiative transfer solvers

The main goal in terms of the setup was to perform different PALM simulations that vary
only in the radiative transfer model used. To achieve this, use was made of the fact that
the TenStream framework had been coupled to PALM in the past. Similar to the libRadtran
library employed in Chapter 4, this framework allows for the application of different radiative
transfer solvers using an otherwise identical environment. Besides offering a classical 1D
δ-Eddington approximation and the original TenStream solver, all the main features of the
dynamic TenStream solver presented in Chapter 3 have also been included into the TenStream
framework — among them, the ability to perform incomplete solves, the correct calculation of
3D heating rates in this case, and the speed-up in convergence by properly iterating through
the underlying system of linear equations. In addition to that, the TenStream framework is fully
parallelized, unlike the libRadtran implementation used so far. It should be noted, however,
that the TenStream implementation of the dynamic TenStream solver also differs from the
libRadtran version in some respects. Most notably, the TenStream implementation requires
the use of the parallel linear algebra library PETSc (Balay et al., 2023), which the libRadtran
version was specifically designed to avoid. But also the spin-up method and the execution of
the Gauß–Seidel iterations differ slightly between the two implementations.

To highlight these differences, but to also show that the TenStream implementation be-
haves almost identically to the libRadtran version when used with certain options, an analysis
provided in Appendix C compares the two versions of the dynamic TenStream solver in the
libRadtran library, where both of them are implemented. The analysis shows that when half
as many Gauß–Seidel iterations are used for the calculation of direct radiative fluxes, the Ten-
Stream implementation performs nearly identically to the libRadtran version used in Chapter 4.
The only significant difference between the two implementations is shown to lie in the spin-up
procedure used when performing radiative transfer calculations from scratch. This difference,
however, is irrelevant for the PALM simulations conducted in this chapter, since similar to the
setup in Chapter 4, a full TenStream solve will be performed at the very first call of the dynamic
TenStream solver, followed by incomplete solves with just two Gauß–Seidel iterations every
time the radiation module is called thereafter. And since these follow-up incomplete solves
use the results from the corresponding previous radiation time step as a first guess, the initial
spin-up method is not important at all. For the purposes of this setup, both implementations
can therefore be safely regarded as equivalent, as long as in the TenStream implementation,
half as many Gauß–Seidel iterations are used for direct radiation as for diffuse radiation.

With this knowledge, the TenStream framework can be used to perform PALM simulations
that differ only in the radiative transfer solver employed, including simulations with the newly
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developed dynamic TenStream solver. Specifically, and similar to the evaluation in Chapter 4,
the following radiative transfer solvers have been applied:

1. A 1D δ-Eddington approximation
This 1D approximation represents the type of radiative transfer scheme used in most
models today and serves as a worst-case benchmark for evaluating the new dynamic
TenStream solver.

2. The dynamic TenStream solver
The TenStream implementation of the dynamic TenStream solver introduced in Chap-
ter 3 is the main focus of this evaluation. For the PALM simulations in this chapter, it was
configured to perform a full TenStream solve on its first use. After that, it is operated with
a minimum of just two Gauß–Seidel iterations (and one for direct solar radiation) each
time it is called. Since the TenStream implementation of the dynamic TenStream solver
is fully parallelized, these iterations are performed independently on each subdomain,
with communication between the cores occurring only once at the end of each radiation
scheme call. The motivation behind this setup mirrors that in Chapter 4: by applying
a full 3D solve in the beginning, one can assess whether subsequent incomplete solves
lead to different results than simulations using full TenStream solves throughout. Fur-
thermore, as explained in Sect. 4.1.2, using two iterations instead of one ensures that the
iteration direction mentioned in Sect. 3.2.2 is altered at least once per call.

3. The original TenStream solver
Simulations performed with the original TenStream solver, also referred to as TenStream
reference solver from here on, serve as benchmark simulations. Since the dynamic
TenStream solver is based on this original TenSteam model, reproducing its results
despite using incomplete solves represents the best possible outcome.

The exact tenstream.options files used for the simulations with each of these solvers can be
found in Sect. B.2. Regardless of the radiative transfer solver applied, the atmospheric trace
gas concentrations were provided by the 1976 US standard atmosphere (Anderson et al., 1986).
Furthermore, all PALM simulations were carried out with a radiation time step of 30 s, as this
proved to be a good speed-accuracy trade-off for the radiative transfer calculations in the
previous chapter, which were performed with the same horizontal grid spacing of 100 m.

Overview of the PALM simulation setup

Using these radiative transfer solvers, we can now discuss the different PALM simulations that
were performed with them. A schematic overview of the setup is provided in Fig. 5.2. It shows
that initially, two different simulations were conducted: a main run and a statistically indepen-
dent but otherwise identical control run. Both of these simulations were started on 14 June
2023 at 22:00 UTC using the model initialization described earlier. The only difference between
the two simulations is that, at certain times (every 150 s in our runs), different random seeds
of perturbations were applied to their horizontal wind fields until a predefined perturbation
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Figure 5.2: Schematic illustration of all PALM simulations discussed in this chapter. On 14 June 2023 at 22:00
UTC, two simulations, a main run and a statistically independent, but otherwise identical control run (both
shown in gray here), were started. These two initial model runs were driven by 1D radiation and restarted every
30 minutes, as visualized by the unfilled circles in their respective timelines. Starting at 09:00 UTC on 15 June
2023, three additional restart runs were started from each of the two initial runs. All these in total six restart runs
were calculated in one go. They only differed in the radiative transfer model applied: the blue runs were driven
by a 1D δ-Eddington approximation, the red ones by the dynamic TenStream solver, and the green ones by the
original TenStream solver. Filled circles, as opposed to unfilled circles, visualize the start and end points of every
PALM simulation.

energy limit was reached. This limit was set to the default value of 0.01 m2 s−2. The resulting
slightly different wind fields in the main and control run represent the uncertainties in the
initial conditions of the setup and effectively create a two-member ensemble, enabling an
estimation of whether certain features in the main run are robust or fall within the simulation’s
inherent uncertainty.

From these slightly differently perturbed initial states, both simulations then ran for 29
hours, ending on 16 June 2023 at 03:00 UTC. During this time, the simulations were first given
enough time to spin up and adjust their initial state until the Sun rose on 15 June 2023 at 03:13
UTC. After sunrise, both model runs then encompassed almost a full diurnal cycle, including
sunset at 19:15 UTC and ending shortly before the next sunrise on 16 June 2023 at 03:12 UTC.
Throughout this entire time, both initial runs were driven by 1D radiation and restarted every
30 minutes. At each of these restart points, visualized by the unfilled circles in Fig. 5.2, PALM
stopped the simulation and saved its current state, before restarting it from exactly this saved
atmospheric state.

Now, remember that our objective was to conduct different PALM simulations that vary
only in the radiative transfer model used. The restart mechanism allows such simulations
to be initiated from any intermediate time step shown in Fig. 5.2 by restarting the model
run from the corresponding saved atmospheric state with modified runtime parameters, i.e.,
different radiative transfer solvers in this case. For this evaluation, the simulations were
restarted from 09:00 UTC, i.e, 11:00 a.m. local time. At this point in time, shallow cumulus
clouds have just started to form in the domain, making it a suitable moment for investigating
how the subsequent development of these clouds and the surrounding atmosphere differs



5.1 Methodology 93

depending on the radiative transfer solver used. Consequently, starting from 09:00 UTC, three
different restart runs were performed for both the main and the control run, each of them
coupled to one of the three different radiative transfer solvers introduced in the previous
sub-subsection: either the 1D δ-Eddington approximation (shown in blue in Fig. 5.2), the
dynamic TenStream solver (red), or the original TenStream solver (green). These restart runs
form the main foundation of this evaluation. Performing them for both the main and the
control run was important, as it will allow us to estimate whether differences between runs
driven by different radiative transfer solvers are statistically significant or not. Apart from that,
all restart runs were conducted in one go, i.e., without further restarts. They ran exactly as
long as the two initial runs, i.e., until 16 June 2023 at 03:00 UTC, that is 05:00 a.m. local time,
covering approximately ten hours of daytime and eight hours of nighttime, thereby providing a
robust dataset for analyzing both of these regimes.

In terms of the general runtime configuration, all simulations were performed with a model
time step of 5 s, which is significantly smaller than the radiation time step of 30 s. However, this
shorter time step was necessary to satisfy the Courant–Friedrichs–Lewy (CFL) condition for
maximum wind speeds of u = 20 m s−1 in the horizontal and w = 10 m s−1 in the vertical, given
the horizontal and vertical grid spacings of ∆x = 100 m and ∆z = 50 m, respectively, since the
condition requires

u ·∆t
!<∆x and w ·∆t

!<∆z (5.1)

(Courant et al., 1928). Moreover, all simulations were executed on 64 CPU cores, using an 8 × 8
grid of subdomains, each containing 32 × 32 vertical columns. This domain decomposition
is particularly important for the dynamic TenStream solver, since its incomplete solves are
performed for each of the subdomains in parallel, with interaction between subdomains
occurring only once at the end of each radiation scheme call. Information can thus only spread
within individual subdomains during the radiative transfer calculations, and propagation to
neighboring subdomains is delayed to subsequent calls of the scheme.

Regarding the cloud model, the built-in "morrison" scheme was applied, which uses two-
moment cloud microphysics according to Seifert and Beheng (2005), Khairoutdinov and Kogan
(2000), Khvorostyanov and Curry (2006) and Morrison and Grabowski (2007). Lastly, the data
output for all the model runs was written at a temporal resolution of 60 s. This is considerably
coarser than the 10 s resolution used in Chapter 4, but a necessary reduction in terms of the
overall storage size of the simulations. Although this means that output is only available
for every second radiation time step, Sect. 5.2.2 will show that the domain-averaged cloud
characteristics primarily analyzed in this chapter vary on much longer temporal scales, making
this reduced output frequency also a scientifically acceptable compromise.

5.1.2 Evaluation methods

The entire evaluation in this chapter is focused on the six restart runs that were just introduced,
i.e., the simulations shown in color in Fig. 5.2, which, started from either the main or control
run of the setup, are driven by the 1D δ-Eddington approximation, the dynamic TenStream
solver, or the original TenStream solver. For simplicity, they will be referred to as "δ-Eddington
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(control)", "dynamic TenStream (control)" and "TenStream reference (control)" runs from here
on. Using these simulations, the primary objective in this chapter is to investigate whether,
starting from the same atmospheric state, the atmosphere and its clouds develop differently in
these simulations, depending on whether 1D or 3D radiation is applied. Additionally, and even
more important for this work, the aim is to assess whether the dynamic treatment of radiation
in the dynamic TenStream solver is able to reproduce these potential 3D-related differences.

Accuracy evaluation

One way to investigate the aforementioned differences is by comparing the temporal evolution
of certain model quantities across simulations driven by different radiative transfer solvers.
Since the solvers fully interact with the model dynamics in these simulations, we cannot just
look at radiative quantities for this analysis, but also have the opportunity to evaluate the
impact on other model variables, such as the cloud water mixing ratio. And since all of these
variables are subject to a diurnal cycle, it is already instructive to study the time series of the
respective domain-averaged values. In addition, differences with respect to a benchmark
solution are of particular interest. For this evaluation, the TenStream reference run serves as
the benchmark simulation. At any point in time, for a given quantity ξ, the accuracy of another
simulation with respect to this benchmark run can be quantified using the mean bias error
(MBE), which is given by

MBE = 〈ξ〉−〈ξref〉 = 〈ξ−ξref〉. (5.2)

If, for given mean bias errors, the relative values 〈ξ−ξref〉/〈ξref〉 remain well-defined and do
not become overly sensitive to 〈ξref〉 approaching zero, the relative mean bias error (RMBE)
can also be considered, which is defined as

RMBE = 〈ξ〉−〈ξref〉
〈ξref〉

. (5.3)

Note that small values of 〈ξref〉 are not problematic per se for this error measure. Rather, it is
time series in which 〈ξref〉 varies strongly throughout the day — as is the case, for example, for
net solar surface irradiance — that can cause the RMBE to fluctuate wildly or even become
undefined, despite the underlying mean bias errors remaining largely unchanged. In such
cases, the MBE provides a more stable and interpretable measure.

Unlike in Chapter 4, point-based error measures, such as the mean absolute error or root-
mean-square error, are not utilized in this evaluation. This is because simulations coupled to
different radiative transfer solvers lead to diverging atmospheric states, particularly in terms of
clouds. Hence, even if two simulations featured clouds with nearly identical characteristics,
slight positional differences could result in substantial errors when using point-based error
metrics. And since this evaluation prioritizes cloud characteristics over exact locations, such
error measures have not been applied. By contrast, the two bias quantities introduced above
are based on domain-averaged values and are therefore unaffected by these double-penalty
errors. Hence, it is these two metrics that are used to examine whether the general temporal
evolution of a variable ξ differs depending on the radiative transfer model used. At this point,
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it should also be noted that within this simulation setup, a model run driven by a particular
radiative transfer solver can only be assumed to be worse than the benchmark run if its MBE is
much larger than the MBE of the TenStream reference control run, which can be interpreted
as the bias of the benchmark simulation itself. Likewise, the MBE of a simulation driven
by a particular radiative transfer solver can only be assumed to be different from that of a
simulation driven by another solver if the difference between their MBEs is much larger than
the differences between their respective main and control run biases.

Quantification of cloud characteristics

Apart from the temporal evolution of the mean bias error in certain model quantities, a par-
ticular interest lies in how the clouds in the simulations develop depending on the radiative
transfer solver used. Therefore, inspired by the work of Tijhuis et al. (2024), three quantities
are used to characterize the cloud fields at any point in time: cloud cover, average liquid water
path (LWP) in cloudy columns, and average cloud depth. Following the approach in Lim and
Hoffmann (2023), a grid box is defined as cloudy if its cloud water mixing ratio qc exceeds
0.01 g kg−1. The application of this threshold is necessary because many grid boxes in the
simulations are subject to very small qc values, often as low as 10−35 g kg−1. While physically
negligible, the large number of these very small values strongly influences quantities such as
cloud cover, so they are excluded from the analysis by applying the aforementioned threshold.
The three cloud characteristics measures can then be defined as follows:

1. Cloud cover
At any point in time, the cloud cover is given by the fraction of vertical columns in the
domain that contain at least one grid box with qc > 0.01 g kg−1.

2. Average liquid water path in clouds
This quantity is defined as the mean LWP of all vertical columns that contain at least one
grid box with qc > 0.01 g kg−1.

3. Average cloud depth
For every cloudy column (i , j ), the index of the highest (kmax,i , j ) and lowest (kmin,i , j ) grid
box with qc > 0.01 g kg−1 is determined. The cloud depth in this column is then given by

∆zcld,i , j =
(
kmax,i , j +1−kmin,i , j

)
∆z , (5.4)

where∆z is the vertical grid spacing. The average cloud depth is subsequently calculated
as the mean of ∆zcld,i , j across all cloudy columns. Note that this method assumes only
one cloudy layer per column, as cloud depths are calculated from the vertical extent
between the highest and lowest cloudy model level in each column, ignoring any cloud-
free layers in between. This assumption, however, is valid for the shallow cumulus clouds
used in this evaluation.

At this point, it is important to note that all these quantities describe general characteristics of
cloud fields rather than properties of individual clouds. However, similar to the work of Tijhuis
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et al. (2024), this is precisely the goal, as the objective of this work is to identify systematic
differences between cloud fields driven by 1D and 3D radiation. And unlike the work of Tijhuis
et al. (2024), the present evaluation also accounts for radiative transfer in the thermal spectral
range, enabling the investigation of these differences during nighttime as well.

5.2 Discussion of the results

5.2.1 Simulation overview

Before delving into details, let us first take a look at the general evolution of the clouds in
the different simulations. To this end, Figs. 5.3 and 5.4 show ten snapshots of the temporal
evolution of the LWP in the simulations driven by the 1D δ-Eddington approximation, the
dynamic TenStream solver, and the original TenStream model. For this overview, only simula-
tions started from the main run of the setup are shown. Plots of the LWP are used because this
quantity provides a good measure of both cloud position and thickness.

Starting with the first row of panels, we can see that initially, all simulations were indeed
started from the same cloud field, allowing differences in their subsequent development to
be observed depending on the radiative transfer solver used. Results are shown for 09:01 UTC
instead of 09:00 UTC for this first time step, as model output is not immediately available
after the simulations start at 09:00 UTC. Two hours later, at 11:00 UTC, the clouds coupled
to the different radiative transfer solvers have already developed differently. While they all
increased in size compared to the plots at 09:00 UTC, we can clearly see that their organization
differs between the simulation driven by 1D radiation shown in panel (d) and the one driven
by the original TenStream model shown in panel (f). The clouds in panel (d) are still pretty
unorganized. In panel (f), however, we can observe the build-up of cloud streets, just as
they were proposed in Jakub and Mayer (2017). These cloud streets are supposed to form
perpendicular to the angle of solar incidence and parallel to the mean wind flow. The latter is a
constant westerly flow, whereas the Sun is positioned at an azimuth angle of 172° at 11:00 UTC,
i.e., roughly in the south. And indeed, the clouds are oriented perpendicular to that direction,
forming streets with an east–west orientation, which is particularly visible in the upper part of
panel (f). The cloud streets are also visible in the simulation coupled to the dynamic TenStream
solver shown in panel (e), providing the first proof of a 3D-related effect that is captured by the
dynamic treatment of radiation in that solver.

Moving on to panels (j)–(l), four hours later, the cloud streets in the simulations coupled to
3D radiative transfer have become markedly more pronounced. Because the Sun moved to an
azimuth angle of 262° in the meantime, which is almost exactly in the west, the cloud streets
are oriented from north to south now, still perpendicular to the angle of solar incidence. In
contrast to that, clouds in the simulation driven by 1D radiation are still more or less randomly
positioned. This absence of organization in the simulation driven by 1D radiation together
with organization perpendicular to the mean westerly flow in the simulations coupled to 3D
radiative transfer indicates that the cloud streets in these simulations are not dynamically
induced, but really driven by radiation. Apart from these organizational aspects, we can also
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Figure 5.3: First part of the temporal evolution of the liquid water path (LWP) in the PALM simulations driven by
the 1D δ-Eddington approximation (left), the dynamic TenStream solver (middle), and the original TenStream
model (right), shown for five time steps between 09:01 and 17:00 UTC. To enhance the contrast of the plots, the
maximum LWP value for the colorbar was set to 50 g m−2 instead of the global maximum value of 363 g m−2.
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Figure 5.4: Second part of the temporal evolution of the LWP in the PALM simulations driven by the 1D δ-
Eddington approximation (left), the dynamic TenStream solver (middle), and the original TenStream model (right),
shown for five time steps between 17:00 and 03:00 UTC the following day. To enhance the contrast of the plots,
the maximum LWP value for the colorbar was set to 50 g m−2 instead of the global maximum value of 363 g m−2.
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see that individual clouds in both panels (k) and (l) are noticeably larger and thicker than
in panel (j), although the increased thickness is not as apparent in the plots because the
maximum value for the colorbar was set to a value well below the global LWP maximum to
enhance contrast. Apart from that, however, this development of larger and thicker clouds
during daytime in simulations driven by 3D radiative transfer is consistent with findings in
other studies (Veerman et al., 2020; Tijhuis et al., 2024).

As the day proceeds, the organization of clouds in the simulations driven by 3D radiative
transfer starts to break down and is no longer visible in plots (q) and (r) at 19:00 UTC. However,
this is also just minutes before sunset at 19:15 UTC, with the Sun being at an elevation of
only 2°. It is also around this point in time that the cloud cover starts to noticeably increase
across all simulations. Experiments with the model initialization showed that this behavior
is strongly influenced by the initial soil moisture content assigned to the simulations. When
reducing its value from 0.18 m3 m−3 to 0.16 m3 m−3, which is still well above the wilting point
of 0.13 m3 m−3, clouds start to dissolve around sunset rather than fully covering the domain.
While this dissolution in the evening may be more realistic for shallow cumulus clouds on a
typical summer day, the presence of clouds at nighttime allows differences between simulations
driven by 1D and 3D radiative transfer to be examined after sunset as well, when only radiative
transfer in the thermal spectral range plays a role. And as we can see, there is a noticeable
change in the characteristics of the clouds in that part of the day that could be observed
across a variety of simulation setups experimented with. Namely, it are now the clouds in the
simulation driven by 1D radiation that are becoming noticeably thicker than their 3D-driven
counterparts, as can be seen starting with panels (p)–(r). This overall structure then remains
largely unchanged throughout the rest of the night: all simulations continue to be overcast
with clouds and it is only their thickness that further increases throughout the night, with the
simulation driven by 1D radiation maintaining the thickest clouds.

Apart from all of this, Figs. 5.3 and 5.4 demonstrate that, at least visually, the clouds in the
dynamic TenStream run show very similar characteristics to the ones in the TenStream refer-
ence run. Unlike the simulation driven by the 1D δ-Eddington approximation, the dynamic
TenStream solver is able to reproduce 3D-related features such as cloud streets and the develop-
ment of larger and thicker clouds during daytime. However, if the solves produced by the two
3D solvers were identical, they would also lead to the exact same cloud fields in this setup. That
said, the fact that the simulations, starting from the same cloud field, develop differently when
compared point by point, shows that the small deviations between the solvers highlighted in
the previous chapter lead to differently positioned clouds when coupled to model dynamics.
These slightly different positioned clouds, however, still represent the reference solution far
better than the simulation coupled to the 1D δ-Eddington approximation does.

5.2.2 Effects of radiation on cloud characteristics

Next, let us quantify these observed differences in the cloud fields. To this end, Fig. 5.5 shows
the temporal evolution of the cloud characteristics quantities introduced in Sect. 5.1.2 for the
six PALM simulations that are considered in this evaluation. Let us discuss the results during
daytime first. Panel (a) shows that in this time period, the cloud cover is at around 45% for the
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Figure 5.5: Temporal evolution of cloud cover (a), average liquid water path in clouds (b), average cloud depth (c),
and cloud top and base heights (d) for the six restart runs introduced in Sect. 5.1.1. The vertical line in all the plots
indicates the sunset time. To improve readability, a 15-minute running mean was applied to the data.

simulations driven by 3D radiative transfer (shown in red and green), whereas it is noticeably
higher, mostly above 50%, for the simulations driven by 1D radiation (shown in blue). The
cloud cover also remains relatively constant over time in the 3D simulations, whereas it steadily
increases in the 1D cases. This differs from findings in earlier studies, which usually found
similar cloud cover in simulations driven by 1D and 3D radiative transfer (e.g., Jakub and
Mayer, 2017; Veerman et al., 2020; Tijhuis et al., 2024). However, the overall cloud cover in
these studies was usually much lower. And for values above approximately 30%, Tijhuis et al.
(2024) actually also found mostly lower cloud cover in simulations coupled to 3D radiation, in
good agreement with the results shown here (see their Fig. 3).

Apart from that, panels (b) and (c) show that the clouds in simulations coupled to 3D
radiative transfer also become thicker and feature a higher domain-averaged liquid water path
during daytime than their 1D-driven counterparts, similar to how it was shown in other studies
(Veerman et al., 2020, 2022; Tijhuis et al., 2024). Both effects are not very large, but still bigger
than the differences between the respective main and control runs, and thus significant. To
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Figure 5.6: Panel (a) shows the temporal evolution of the domain-averaged cloud water mixing ratio qc in
cloudy pixels, i.e., for grid boxes with qc > 0.01 g kg−1. Panel (b) visualizes the differences in this time series
relative to the TenStream reference run, with the legend providing temporal mean values (the numbers for the
corresponding control runs are provided in brackets). As in Fig. 5.5, results are shown for all six (five in panel (b))
PALM simulations considered in this evaluation, with the vertical line in both plots marking the time of sunset. To
enhance readability, a 15-minute running mean was applied to the data.

put it in numbers, the average LWP in clouds during daytime is 25.5 g m−2 in the δ-Eddington
main run, whereas it is 28.5 g m−2 in the dynamic TenStream main run and 29.3 g m−2 in the
TenStream reference main run. In terms of depth, these numbers are given by 169.6 m, 178.5 m
and 180.8 m, respectively. Hence, the clouds in the simulations coupled to 3D radiation are
about 5–7% thicker and feature an about 12–15% larger LWP during the day, with similar
numbers for the control run. As we can see in Fig. 5.6, this increase in LWP is also not only
caused by the increased depth of the clouds, but also by a higher overall cloud water mixing
ratio, i.e., more liquid water per kilogram of air in the clouds coupled to 3D radiation.

Switching to nighttime, panel (a) of Fig. 5.5 shows that all simulations converge toward
a completely overcast sky after sunset. However, the corresponding increase in cloud cover
occurs significantly earlier in the 1D simulations. Alongside this, the cloud characteristics
change substantially. Now, it is the clouds coupled to 1D radiation that become thicker and
contain more liquid water. As shown in panel (d) of Fig. 5.5, this increased thickness is primarily
due to the cloud base height stabilizing earlier in the 1D simulations, while the cloud top height
develops similarly across all simulations. Together, this results in thicker clouds in the simula-
tions driven by 1D radiation, although the development at night itself is not much different
from the other simulations. Hence, the thicker clouds at night might actually be related to
the higher cloud cover before sunset and the correspondingly reduced radiative energy at the
surface, which could lead to an earlier suppression of convection. However, similar model runs
with lower initial soil moisture, which did not feature a comparable increase in cloud cover
near sunset, still lead to the development of the same nighttime cloud characteristics, i.e., the
development of thicker clouds that contain more liquid water in simulations coupled to 1D
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Figure 5.7: Comparison of domain-averaged cloud characteristics between the δ-Eddington and the TenStream
reference run (top row), as well as between the dynamic TenStream and the TenStream reference run (bottom
row). The individual scatter plots show these comparisons for the cloud cover (a, d), average LWP in clouds (b, e)
and average cloud depth (c, f). Every data point is color-coded with respect to time. In addition to that, in each
panel, the data point at sunset is highlighted with a star. Only data of the simulations performed from the main
run are shown.

radiative transfer, which suggests that these features are fairly robust overall.

At this point, the top row of Fig. 5.7 summarizes the results discussed so far using an
alternative visualization motivated by the work of Tijhuis et al. (2024). As it is shown in panel (a),
we saw that simulations coupled to the original TenStream solver feature a considerably
lower cloud cover than those coupled to 1D radiation, although this might only apply to
simulations with cloud covers above about 30%. We have also seen that in terms of liquid
water path and cloud depth, we need to distinguish between day and night. During the day,
simulations coupled to the original TenStream solver produce thicker clouds with more liquid
water. Correspondingly, in panels (b) and (c), all data points before approximately 18:00 UTC
lie to the left of the identity line. After sunset, however, these characteristics change, as clouds
in the TenStream reference run become thinner and contain less liquid water than their 1D-
driven counterparts. Consequently, all post-sunset data points in panels (b) and (c) shift to the
right of the identity line.
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Up to this point, the discussion has primarily focused on differences between simulations
driven by 1D and 3D radiative transfer, without addressing whether the incomplete solves
in the dynamic TenStream solver can adequately reproduce these 3D-related differences. To
evaluate this, the bottom row of Fig. 5.7 compares the domain-averaged cloud characteristics
between the simulation driven by the dynamic TenStream solver and the original TenStream
model. The plots show that the cloud characteristics agree pretty well between the two solvers,
with small differences between daytime and nighttime. During the day, the clouds driven by the
two solvers exhibit nearly identical characteristics, with differences falling within the variability
of the simulations themselves, as one can see by going back to Fig. 5.5. At night, however, the
incomplete solves in the dynamic TenStream solver slightly underestimate cloud cover, average
liquid water path in clouds, and cloud depth. Nonetheless, these discrepancies remain small
compared to those observed in the δ-Eddington runs and suggest that the incomplete solves
effectively capture all relevant 3D-related effects in terms of cloud characteristics.

It is important to note, however, that the performance of the dynamic TenStream solver
is highly dependent on the simulation setup, and particularly on factors such as resolution,
domain decomposition, and cloud cover. The relatively high cloud cover in the simulations
here, for example, is very beneficial for its performance, as the clouds are relatively close to each
other. This proximity reduces the distance — measured in grid boxes — over which information
crucial for 3D radiative transfer must be transported. When the overall cloud cover drops below
30% — which is common for shallow cumuli, with Neggers et al. (2003), for instance, reporting
cloud covers between 10% and 20% on a prototypical shallow cumulus day — the performance
of the solver weakens, as the increased spacing between clouds requires information to traverse
more grid boxes, and potentially even multiple subdomains. At this point, performing just two
Gauß–Seidel iterations per radiation scheme call may not be sufficient anymore. However, the
dynamic TenStream solver was developed with numerical weather prediction models in mind.
At their kilometer-scale resolution, clouds are inherently closer together in terms of grid box
distance, which should significantly mitigate this issue.

5.2.3 Differences in cloud–radiation interactions

So far, the analysis has primarily focused on the different development of clouds in simulations
driven by 1D and 3D radiative transfer, showing that the dynamic TenStream solver successfully
captures most of the 3D effects on clouds, despite relying on incomplete solves. However, the
causes of these differences have not yet been investigated. Identifying them is challenging, as
the clouds in the fully interactive PALM simulations are not only shaped by the corresponding
radiative fields but also actively influence them, making it difficult to separate cause from
effect. Nevertheless, this section still aims to identify at least some of the connections between
the different radiative fields and the resulting cloud characteristics.

Regarding the differences in the radiative fields, we have already seen in Sect. 4.2.5 that
sources and sinks of radiative energy in the atmosphere — i.e., heating rates — are distributed
very differently in simulations driven by 1D and 3D radiative transfer. This also affects the
radiation at the ground, which we will focus on now. To this end, Fig. 5.8 shows five time steps
of the temporal evolution of the solar net surface irradiance for the three simulations coupled
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Figure 5.8: Temporal evolution of the net surface irradiance in the solar spectral range for the simulations driven
by the δ-Eddington approximation (left), the dynamic TenStream solver (middle), and the original TenStream
solver (right), shown for five time steps between 09:01 UTC and 17:00 UTC. Only simulations performed from the
main run of the setup are shown.
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to the three different radiative transfer solvers considered in this evaluation. Similar to the
other results so far, we can directly see distinct differences between the fields produced by the
1D solver (left panels) and those created by the 3D solvers (middle and right panels).

To discuss these differences, let us first look at panels (d)–(f), which show the net surface
irradiance fields at 11:00 UTC. Starting with panel (d), remember that in 1D radiative transfer
calculations, the atmosphere is divided into independent vertical columns. If such a column
contains a cloud, it casts a shadow directly beneath it. These are the purple pixels in panel (d),
which perfectly match with the corresponding cloud field, as you can confirm by going back to
panel (d) in Fig. 5.3. The remaining columns are all subject to very similar clear-sky conditions,
resulting in the pretty uniform background color in that panel. In contrast to that, the surface
irradiance field of the original TenStream solver, shown in panel (f), is far more complex.
Cloud shadows in this simulation are displaced according to the angle of solar incidence. At
11:00 UTC, the Sun is positioned at an azimuth angle of 172°, or roughly in the south. The
cloud shadows are thus shifted slightly to the north of the clouds. Additionally, the net surface
irradiance values in the shadows are lower than in panel (d), which is due to the thicker clouds
that contain more liquid water in this simulation, as well as generally darker cloud shadows
in simulations coupled to 3D radiation (e.g., Gristey et al., 2020). Even more striking are the
bright areas at the southern edges of the shadows, where the net surface irradiance exceeds
the clear-sky values in panel (d). These so-called cloud enhancements (Tijhuis et al., 2022)
occur because radiation coming from the cloud sides or entrapped between the surface and
the cloud bases enhances the diffuse downward radiation (Hogan and Shonk, 2013; Hogan
et al., 2019). Examining the plot at different times confirms that these cloud enhancements
consistently appear at the sunward edges of the cloud shadows. For instance, in panel (c), the
Sun is positioned at an azimuth angle of 121° (i.e., in the east–south–east), whereas in panel (l),
it is at an angle of 262° (i.e., in the west), causing the enhancements to appear to the east of the
shadows in panel (c) and to the west of them in panel (l).

The dynamic TenStream solver in the middle panels of Fig. 5.8 successfully reproduces
all these features, although it slightly overestimates the size of the cloud enhancements. This
overestimation can be at least partially attributed to the delayed interaction between radiative
fluxes at the clouds and the surface when using incomplete solves, especially when this interac-
tion spans multiple subdomains. In such cases, radiative enhancements caused by a cloud may
persist at a specific location on the ground even after the cloud has moved on with the mean
wind flow, enlarging the associated features on the surface. Following this argumentation,
these artifacts are expected to be most pronounced when the solar zenith angle is low, resulting
in interactions that involve multiple subdomains, and when the clouds move away from the
direction of solar incidence and thus away from their radiatively enhanced areas. And indeed,
the overestimation is relatively small in panel (b), where the clouds are moving toward the Sun,
but become much more pronounced in panel (k), where the Sun is at a zenith angle of 51° and
the clouds move away from the direction of solar incidence, allowing the cloud enhancement
areas to increase in size.

By providing a close-up of panel (e), Fig. 5.9 highlights another artifact of the incomplete
solves. In this magnification of the net surface irradiance field, we can clearly identify the
underlying domain decomposition into 8 × 8 subdomains through discontinuities at the
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Figure 5.9: Magnified version of panel (e) in Fig. 5.8, highlighting the discontinuities between subdomains in the
dynamic TenStream solver.

respective domain boundaries. These discontinuities occur because the incomplete solves
in the dynamic TenStream solver are performed independently for all the subdomains, with
interactions between them taking place just once at the end of each radiation scheme call. As a
result, the individual subdomains have not yet updated their radiative fluxes based on the new
boundary conditions at the end of each call, leading to the observed artifacts. However, these
discontinuities are relatively small and do not significantly impact the representation of any
one of the 3D effects discussed previously.

Now, let us examine how these effects might relate to the differences in cloud characteristics
observed in the previous section. To this end, we compare panels (j)–(l) in Fig. 5.8 with
panels (j)–(l) in Fig. 5.3. Fig. 5.10 facilitates this comparison by projecting the outlines of
the corresponding clouds onto the underlying net surface irradiance fields. Starting with
panel (a), we can see that in the simulation coupled to 1D radiation, cloud shadows are
unsurprisingly placed directly below the corresponding clouds. This placement of shadows,
however, suppresses the updrafts responsible for cloud formation, thereby reducing both the
size and lifetime of the clouds (e.g., Schumann et al., 2002; Horn et al., 2015). In contrast, the
original TenStream solver in panel (c) shows a displacement of the shadows to the east of the
corresponding clouds. Beneath them, we instead observe regions of increased net surface
irradiance that even exceed the clear-sky values in panel (a). Panel (b), which illustrates the
results for the dynamic TenStream solver, shows a similar positioning of the clouds above areas
with enhanced net surface irradiance. However, unlike in panel (c), the clouds in panel (b)
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Figure 5.10: Positioning of the clouds relative to the net solar surface irradiance fields at 15:00 UTC in the
simulations coupled to the δ-Eddington (a), dynamic TenStream (b) and original TenStream (c) solvers. To this
end, the white contour lines in each plot enclose areas where the vertical columns above each grid point contain
at least one grid box with qc > 0.01 g kg−1, classifying them as cloudy. To improve the overall contrast of the plots,
the maximum value of the colorbar was set to the highest net surface irradiance across the three panels, rather
than the global maximum from all simulations, as it was done in Fig. 5.8.

clearly extend into the shadowed areas as well. This behavior can again be attributed to the
incomplete solves, which delay the interaction between radiative fluxes at the clouds and
the surface. Specifically, as the clouds move eastward, both the response of the surface to
the clouds and the subsequent radiative feedback from the surface back to the clouds can
lag behind. Despite this lag, however, substantial portions of the clouds remain positioned
over regions of increased net surface irradiance. The enhanced surface heating in these areas
subsequently likely strengthens, rather than weakens, the corresponding updrafts, potentially
explaining why the clouds in both 3D simulations are larger and thicker compared to those in
the 1D simulation during daytime.

Ultimately, this hypothesis is difficult to prove, as the clouds are not only shaped by the
corresponding radiative fields but also actively influence them through their evolving charac-
teristics. However, at least some evidence that the observed changes in cloud characteristics
are primarily driven by the radiative field can be found in panels (a)–(c) of Fig. 5.8, where the
clouds have not yet evolved but are already subject to the discussed effects. Of course, this it
is not enough to prove our hypothesis, though. Exactly these challenges associated with the
coupling of radiation and model dynamics were also highlighted by Tijhuis et al. (2024), who
investigated a similar hypothesis. They came to comparable conclusions, although their more
statistical approach found the wind–sun angle to be an even more important factor for the
development of larger and thicker clouds during daytime than just the shadow displacement.
The mechanism behind this dependence on the wind–sun angle is that clouds driven by 3D
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Figure 5.11: Temporal evolution of the domain-averaged net surface irradiance in the solar (a) and thermal (b)
spectral ranges for the six simulations considered in this evaluation. Panels (c) and (d) show the corresponding
differences to the TenStream reference run, with temporal mean differences for the simulations coupled to the
different solvers listed in the legends (values for the control runs are given in brackets). To improve readability, a
15-minute running mean was applied to the data in (c) and (d). The vertical line in each plot indicates the time of
sunset.

radiation cannot significantly outgrow their 1D counterparts if they move into their own shad-
ows, as this suppresses their updrafts, similar to what occurs in 1D simulations. Conversely,
if the clouds do not move into their own shadows, the updrafts can persist or even intensify,
allowing the clouds to live longer and grow larger (Tijhuis et al., 2024). In the qualitative
analysis presented here, no such strong dependency on the wind–sun angle is observed, since
the clouds continue to grow even when moving into their own shadows, starting with the
panels at 13:00 UTC in Fig. 5.8. However, this does not necessarily negate the existence of this
mechanism. Instead, it suggests that in the simulations here, the surface response to cloud
movements may be rapid enough to maintain the updrafts in sunlit regions. Otherwise, the
results align with those of Tijhuis et al. (2024), although the connection between the clouds and
areas of increased net surface irradiance has been emphasized much more strongly here. The
representation of these cloud–enhanced areas relies on unique 3D effects, such as cloud–side
escape (Hogan and Shonk, 2013) and entrapment (Hogan et al., 2019), which can only be
accounted for with full 3D radiative transfer, underscoring the importance of 3D radiative
transfer for the correct representation of cloud characteristics in numerical models.

Up to this point, our analysis has primarily focused on differences in the spatial structure
of the net surface irradiance fields and their potential relation to the differences in cloud
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characteristics observed in Sect. 5.2.2. What remains to be investigated, however, is whether
the simulations coupled to the δ-Eddington approximation or the dynamic TenStream solver
exhibit inherent biases when compared to the TenStream reference solution. To investigate
this aspect as well, we turn to Fig. 5.11, where panel (a) illustrates the temporal evolution of
the domain-averaged net surface irradiances presented in Fig. 5.8. Despite the substantial
differences in the spatial structure of the corresponding fields, we can see that the domain
averages evolve quite similarly across all simulations. Panel (c) quantifies the deviations to
the TenStream reference run, showing that for most of the day, both the δ-Eddington and
the dynamic TenStream runs differ by less than 10 W m−2 from the reference solution. It is
only after about 14:00 UTC that the δ-Eddington run becomes subject to larger deviations,
peaking at around 25 W m−2. However, going back to Fig. 5.5, we can see that this divergence
coincides with a noticeable increase in cloud cover in the 1D simulations after 14:00 UTC,
which naturally reduces the net surface irradiance compared to the 3D simulations, where the
cloud cover remains lower. Apart from this specific difference, we can conclude that neither
the δ-Eddington approximation nor the dynamic TenStream solver introduces a substantial
bias into the net surface irradiance in the solar spectral range. In particular, no significant
accumulation of bias over time is observed when using the dynamic TenStream solver, unlike
in Sect. 4.2.3. It is worth noting, however, that this bias accumulation mostly remained below
10 W m−2 in Fig. 4.6, and hence within the variability of the bias seen in panel (c) of Fig. 5.11.

Before comparing these results to those of other studies, let us first recall which differences
in terms of the domain-averaged solar net surface irradiance we generally expect between
1D and 3D radiative transfer solvers. As illustrated in Fig. 4.7, 1D radiative transfer tends to
underestimate the net surface irradiance at small solar zenith angles, as it cannot account
for cloud-side escape and entrapment, which both enhance the diffuse downward radiation.
Conversely, at large solar zenith angles, 1D solvers typically overestimate the net surface
irradiance, because they cannot cast shadows at slant angles, thereby underestimating their
size. In the fully interactive PALM simulations, however, especially the underestimation at
small solar zenith angles is counteracted by the development of larger and thicker clouds in
the 3D simulations, which increase absorption and backscattering to space, as explained in
Tijhuis et al. (2024). As a result, and consistent with their findings, no substantial differences
in the domain-averaged net surface irradiance are observed between simulations coupled to
1D and 3D radiation. This underscores that, at least in the solar spectral range, 3D radiative
transfer is primarily important to accurately model the spatial structure of the radiative fields.
However, it does not substantially affect the domain-averaged properties of these fields.

This is slightly different in the thermal spectral range. Panel (b) of Fig. 5.11 shows the
temporal evolution of the domain-averaged net surface irradiance for the different simulations
in this spectral range. We can see that initially, the simulations coupled to 1D radiation
experience systematically stronger cooling, similar to what we observed earlier in Fig. 4.6.
This is most likely because the increased thermal emission of clouds affects not only the
cloudy columns themselves when using 3D radiative transfer, but also neighboring ones due
to the horizontal transport of energy in these solvers. Especially early on, when the surface
temperature — which primarily determines the upward thermal irradiance at the surface — is
still similar across all simulations, the correspondingly increased downward irradiance at the
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Figure 5.12: Temporal evolution of the domain-averaged sensible (a) and latent (b) heat fluxes for all six simu-
lations considered in this evaluation. Panels (c) and (d) show the corresponding differences to the TenStream
reference run, with temporal mean differences for the simulations coupled to the different solvers listed in the
legends (values for the control runs are provided in brackets). To improve readability, a 15-minute running mean
was applied to the data in panels (c) and (d). The vertical line in each plot marks the time of sunset.

surface is likely the main factor explaining the systematically weaker net cooling observed with
3D radiation. This pattern changes, however, at around 15:00 UTC, when the cloud cover in
the 1D simulations noticeably increases. Along with this shift in cloud cover, the net thermal
emission in the 1D simulations decreases and becomes lower than in the 3D simulations. As
shown in Sect. 4.2.5, net thermal emission is significantly reduced below clouds when using
1D radiative transfer, explaining this noticeable decrease in net thermal emission as the cloud
cover starts to rise. In contrast, the simulations coupled to the dynamic TenStream solver
show much smaller deviations from the reference run, with differences staying below 5 W m−2

throughout the entire time, as one can see in panel (d) of Fig. 5.11. This once more indicates
that the dynamic TenStream solver, despite its use of incomplete solves, is still able to capture
all the key features of the full 3D solutions.

Since the temporal evolution of the domain-averaged net solar surface irradiance showed
only minor differences between the solvers, the observed differences in the domain-averaged
net thermal surface irradiance must be balanced by other components of the surface energy
budget. In general, the net solar irradiance at the ground is balanced by net thermal emission,
the ground heat flux, and the release of sensible and latent heat into the atmosphere. Hence,
the observed differences in the net thermal irradiance can result in changes in any of the latter
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three components. To investigate which of them compensates for the observed differences,
Fig. 5.12 illustrates the temporal evolution of the sensible and latent heat fluxes across all
simulations considered in this evaluation. Looking at panels (a) and (b), first note that the
Bowen ratio — i.e., the ratio of the sensible to the latent heat flux (Bowen, 1926) — is larger than
one in all simulations. This is rather unusual for vegetated surfaces such as the flat grassland
used here, and more characteristic of urban environments or semi-arid regions (e.g., Stull, 2006;
Kotthaus and Grimmond, 2014), suggesting that the soil in the model is relatively dry. Apart
from this general remark, panel (a) of Fig. 5.12 shows that the sensible heat flux evolves quite
similarly across all simulations until about 15:00 UTC. At that point, the simulations coupled
to 1D radiation begin to slightly diverge from those using 3D radiation. As discussed earlier,
this divergence coincides with a substantial increase in cloud cover in the 1D simulations at
that time, subsequently leading to a reduction of the net solar surface irradiance. Panel (a)
indicates that this reduction in solar energy input also affects the release of sensible heat into
the atmosphere, which is subsequently reduced by up to 8 W m−2 in the 1D simulations, as we
can see in panel (c).

A much more striking difference between the 1D and 3D simulations is revealed in panel (b),
which shows that the domain-averaged latent heat flux is considerably higher in the simulations
coupled to 3D radiation, accompanied by a slightly faster decrease in soil moisture in these
simulations (not shown here). This finding suggests that the reduced thermal emission in the
3D simulations observed in Fig. 5.11 — which could be balanced by a decrease in net solar
irradiance, or by increases in the ground, sensible, or latent heat fluxes, or a combination
thereof — is primarily offset by an increased release of water vapor into the atmosphere. In
PALM, this latent heat flux is parameterized as

LE =− ρ lv

ra + rs

(
qv

(
∆z

2

)
−qv,sat(T0)

)
, (5.5)

where ρ is the density of dry air, lv = 2.5×106 J kg−1 is the specific latent heat of vaporization,
ra and rs are the aerodynamic and surface resistances (in units of s m−1), qv

(
∆z
2

)
is the water

vapor mixing ratio at height z = ∆z
2 , with ∆z denoting the vertical grid spacing, and qv,sat(T0)

is the saturation vapor mixing ratio at the radiative temperature T0 of the surface skin layer
(Maronga et al., 2020). An investigation of the individual components of this expression showed
that the higher latent heat flux in the 3D simulations is most likely caused by an increase in
qv,sat(T0), and thus in the radiative temperature T0 of the surface skin layer. This increase in T0,
in turn, is governed by imbalances in the ground energy budget, following the relationship

C0
dT0

dt
= Rn −H −LE −G , (5.6)

where C0 denotes the heat capacity of the surface skin layer (in units of J m−2 K−1), Rn is the
net radiative intake at the surface, H is the sensible heat flux, and G is the ground heat flux
(Maronga et al., 2020). In the 3D simulations, Rn is increased across both spectral ranges, while
H , LE , and G initially remain unchanged. This explains the increase in T0 in these simulations,
which subsequently leads to increases in H , LE , and G . Since qv,sat is directly proportional to
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the saturation vapor pressure e∗
w , which itself depends exponentially on T0 (see Eq. (2.21)), even

small increases in T0 can lead to substantial increases in qv,sat(T0) and, consequently, in LE ,
explaining why the elevated skin layer temperature affects the latent heat flux more strongly
than the sensible one. Overall, the increased latent heat flux in the 3D simulations provides
another potential explanation for why clouds grow thicker and larger during the day than their
1D-driven counterparts, as more water vapor is released into the atmosphere with 3D radiation.
And looking at panel (d), we can see that the simulations coupled to the dynamic TenStream
solver also capture this effect, with deviations from the TenStream reference solution remaining
below 4 W m−2 compared to deviations of more than 10 W m−2 for the 1D simulations.

All in all, two potential links have now been identified between radiation and cloud char-
acteristics that help explain why clouds in simulations coupled to 3D radiative transfer grow
larger, become thicker, and contain more liquid water during the day than their 1D-driven
counterparts:

1. First, clouds in simulations coupled to 3D radiative transfer turned out to be positioned
above areas of increased net surface irradiance, rather than above their own shadows.
This placement causes the associated updrafts to persist or even strengthen instead of
weakening.

2. Additionally, 3D radiative transfer reduces the domain-averaged net thermal emission
at the ground, most likely because the increased thermal emission of clouds enhances
the downward longwave radiation not only in cloudy, but also in neighboring columns.
This reduction in net thermal surface irradiance affects the ground energy budget and
appears to be primarily balanced by an increase in the domain-averaged latent heat flux,
resulting in a greater release of water vapor into the atmosphere.

Both of these effects are captured not only by the full original TenStream model but also by
the newly developed dynamic TenStream solver. This demonstrates that the radiative transfer
solver proposed in this thesis offers a computationally efficient approach that not only captures
the essential features of 3D radiative fields, but also reproduces most of the resulting cloud
characteristics in fully interactive PALM simulations. These include the development of larger
and thicker clouds containing more liquid water during the day, as well as thinner clouds with
less liquid water at night. The causes of these nighttime cloud characteristics, however, are
more difficult to explain and not addressed in this thesis.

Before concluding this chapter, it should also be noted that the original TenStream solver
used as a reference in this chapter is an approximation itself. The differences between this
approximation and highly accurate 3D radiative transfer solvers such as the Monte Carlo
model MYSTIC have been discussed in Chapter 4 and are mostly much smaller than the
3D radiative effects and their subsequent influences on cloud development observed in this
chapter. Especially the results during daytime have furthermore been shown to be in good
agreement with those of Tijhuis et al. (2024), which were obtained with a GPU-accelerated
Monte Carlo ray tracer. Thus, while the exact magnitude of some of the effects discussed in
this chapter might slightly vary when using a highly accurate 3D radiative transfer model such
as MYSTIC, the key features and underlying mechanisms are expected to remain unchanged.



Chapter 6

Summary and outlook

As numerical weather prediction (NWP) models move toward higher horizontal resolutions,
inter-column three-dimensional (3D) radiative effects become increasingly important. Already
at cloud-resolving scales, cloud shadows, for instance, are no longer confined to the vertical
model columns of their respective clouds, but can extend into several neighboring ones.
Additionally, radiation scattered from cloud sides can enhance the diffuse downward radiation
in adjacent cloud-free columns (Hogan and Shonk, 2013), whereas radiation entering through
gaps between clouds can become trapped between them and the surface, thereby increasing
the diffuse downward radiation below clouds as well (Hogan et al., 2019). In the thermal
spectral range, higher-resolution models feature a more pronounced cloud-side cooling, as
clouds are resolved by a larger number of grid boxes, consequentially allowing for a more
detailed representation of this effect. Together, all of these 3D radiative effects influence the
spatial distribution of sources and sinks of radiative energy in the atmosphere, which in turn
drive the weather. Accurately capturing these effects is therefore crucial for predicting future
atmospheric states. However, due to the high computational cost of 3D radiative transfer
solvers, most NWP models still treat radiation as a one-dimensional (1D) process, limiting
interactions to the vertical and neglecting any horizontal transport of energy.

To address this issue, Jakub and Mayer (2015) developed the TenStream solver, a 3D radiative
transfer approximation that, compared to other 3D solvers, is relatively fast. It extends the
well-established two-stream method to three dimensions by introducing additional streams
that account for the horizontal transport of energy through Earth’s atmosphere. Building upon
this method, this thesis introduced the dynamic TenStream solver, a further acceleration of
the original TenStream model. Currently designed for the use at subkilometer-scale horizontal
resolutions, where model grid boxes can be assumed homogeneous, it relies on the idea that the
radiative field does not totally change between two consecutive calls of the radiation scheme.
Based on this idea, it introduces a dynamic treatment of radiation, which is based on three main
concepts: First, radiation is not calculated from scratch every time the solver is called. Instead, a
time-stepping scheme is used to update the radiative field based on the result from the previous
radiation time step. Second, starting from this previously calculated result, convergence
towards the new solution is accelerated by optimizing the iteration procedure through the
underlying system of linear equations, taking parameters such as the angle of solar incidence
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into account. And third, since the updated solution is not expected to be radically different
from the previous one, only a limited number of iterations towards convergence are performed,
essentially exiting the algorithm before full convergence is reached. This last concept in
particular allows the radiative transfer calculations to be performed independently for each
grid box within a single iteration, as each grid box only needs to take the ingoing radiative
fluxes from its neighbors to determine updated outgoing ones. Through multiple iterations or
sequential execution across a model subdomain, information can still be propagated through
multiple grid boxes, enabling the transport of radiation across entire subdomains within a
single call of the model. At its core, however, each update step remains local, relying only on
input from neighboring cells. This brings radiative transfer much closer to the treatment of
advection in the dynamical core of an NWP model, as both use previously calculated results
to update their variables and thereby only require access to neighboring grid boxes. And
compared to traditional 3D radiative transfer models, where the calculation of any radiative flux
generally depends on all other radiative fluxes in the domain, this also significantly simplifies
model parallelization.

To demonstrate the feasibility of this new concept, the dynamic TenStream solver was
implemented into the libRadtran library for radiative transfer (Emde et al., 2016; Mayer and
Kylling, 2005) and applied to 100 time steps of a shallow cumulus cloud time series prepared by
Jakub and Gregor (2022). The performance of the new solver, operated with just two iterations
toward convergence per call, was then evaluated in terms of both speed and accuracy by
comparing it to three other, well-established radiative transfer models: a 1D δ-Eddington
approximation, the original TenStream solver and the Monte Carlo model MYSTIC (Mayer,
2009), which served as a benchmark. Using these models, the dynamic TenStream solver was
shown to be about three times slower than the 1D δ-Eddington approximation, but noticeably
faster than the other two 3D solvers in the comparison, which were at least a factor of five
slower. To evaluate the accuracy of the different solvers, their calculations of heating rates
and net irradiances at the upper and lower domain boundaries were compared against the
MYSTIC benchmark solution. Since all solvers were uncoupled from model dynamics for this
evaluation, they did not influence the evolution of the clouds in the time series, enabling direct
point-to-point comparisons between the different solvers. The high temporal resolution of
the time series further allowed for an assessment of the performance of the new solver across
different calling frequencies, from the highest possible frequency of 10 s to lower ones, where
the radiative field changes more rapidly in between different radiation time steps. In terms
of the spatial structure of the results, the dynamic TenStream solver was shown to closely
resemble the MYSTIC benchmark results, capturing both heating rates and net irradiances
at domain boundaries much more accurately than the 1D δ-Eddington approximation does.
When called less often and averaged over time, the new solver was also shown to outperform δ-
Eddington calculations carried out with a similar computational demand. At these lower calling
frequencies, however, the incomplete solves in the dynamic TenStream solver also caused an
increase in bias over time, whose magnitude got larger the lower the calling frequency was.
However, even at the lowest calling frequency investigated, this build-up of bias eventually
stabilized and, with respect to heating rates, stayed below the bias of any 1D run at any point in
time. In addition to that, increasing the number of iterations toward convergence was shown
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to notably reduce the magnitude of this bias, with only a minor increase in computational cost.
Altogether, the performance evaluation clearly demonstrated the ability of the dynamic

TenStream solver to especially capture the spatial structure of 3D radiative fields. Given the
markedly different structure of these fields compared to their 1D counterparts, the next step
was to investigate whether simulations coupled to the dynamic TenStream solver produced
clouds that were substantially different from those in 1D simulations and more similar to those
in full 3D simulations. To explore this, PALM (Raasch and Schröter, 2001; Maronga et al., 2015,
2020) was used to set up a large-eddy simulation with an interactive land surface, in which
shallow cumulus clouds developed over the course of the day. Once the clouds had formed,
three restart runs of this simulation were performed, each coupled to a different radiative
transfer model: either a classical 1D δ-Eddington approximation, the original TenStream
model, or the new dynamic TenStream solver. Starting from the same cloud field, this setup
then enabled a comparison of how the clouds in the simulation develop depending on the
radiative transfer model used. To analyze the differences between the three simulations, a
distinction was made between daytime and nighttime conditions. During the day, clouds in
the 3D simulations were shown to organize into cloud streets aligned perpendicular to the
angle of solar incidence, consistent with the findings of Jakub and Mayer (2017), whereas in the
1D simulation, they remained more or less randomly positioned. Additionally, the clouds in
the 3D simulations grew larger, became thicker, and contained more liquid water than those in
the 1D simulation, in agreement with Veerman et al. (2020, 2022) and Tijhuis et al. (2024). After
sunset, however, these characteristics changed. Now, the clouds in the 1D simulations became
thicker and contained more liquid water than their 3D-driven counterparts. Throughout
both day and night, the dynamic TenStream solver successfully captured all these 3D effects,
with discrepancies from the original TenStream model remaining small compared to the
differences observed for the 1D simulation. In contrast to these domain-averaged cloud
characteristics, the positioning of the individual clouds in the two 3D simulations however
indeed differed over time, illustrating that even the small differences in their corresponding
radiative fields influenced individual cloud development over time, despite sharing very similar
overall characteristics.

Building on these observations, this thesis then sought to identify the mechanisms driving
the described differences in cloud characteristics, with a particular focus on the daytime
regime. A comparison of the corresponding net solar surface irradiance fields revealed first
key differences. As expected, cloud shadows in the 3D simulations were displaced according
to the angle of solar incidence, in contrast to the 1D simulation, where they were positioned
directly beneath the corresponding clouds. At the sunward edges of the shadows, furthermore,
areas of enhanced net surface irradiance were identified in the 3D simulations, with values
even exceeding those in the clear-sky columns of the 1D simulation. Unlike their 1D-driven
counterparts, the clouds in the 3D simulations turned out to be located above these areas of
enhanced net surface irradiance. This positioning likely caused the associated updrafts to
persist rather than weaken, promoting the observed differences in cloud characteristics. In
addition, 3D radiative transfer was found to reduce the domain-averaged net thermal emission
at the ground, most likely because the increased thermal emission of clouds enhances the
downward longwave radiation not only in cloudy, but also in neighboring columns with
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this type of solver. This reduction in net thermal surface irradiance affected the ground
energy budget in these simulations and appeared to be primarily balanced by an increase in
the domain-averaged latent heat flux, resulting in a greater release of water vapor into the
atmosphere. Together, both of these effects helped explain why clouds in the 3D simulations
grew larger, became thicker, and contained more liquid water during the day than those in
the 1D simulation. And even more importantly, both the original TenStream model and the
dynamic TenStream solver captured them, further underscoring the latter’s ability to capture
3D radiative effects at a significantly lower computational cost.

Overall, these results clearly demonstrated the capabilities of the dynamic TenStream solver
introduced in this thesis. Not only was it shown that the new method can compute heating rates
and radiative fluxes that closely align with 3D benchmark results — while offering a notable
improvement over 1D solvers operated with a similar computational demand — but also that,
when coupled to model dynamics, it successfully reproduces all the cloud characteristics
observed in simulations using full 3D solvers. These findings become even more interesting
when considering recent advancements in the field of another major computational bottleneck
in radiative transfer calculations, namely the number of spectral bands required for accurate
integrated longwave and shortwave heating rates. For the speed evaluation in Sect. 4.2.1,
for instance, the wavelength parameterization by Fu and Liou (1992, 1993) was used, which
features a total of 54 and 67 spectral bands in the solar and thermal spectral ranges, respectively
(Oreopoulos et al., 2012). That is already a relatively low number considering that most models
currently use the RRTMg parameterization (Mlawer et al., 1997; AER, 2025), which incorporates
a total of 112 and 140 spectral bands in the solar and thermal spectral ranges, respectively.
Recent developments have shown, however, that these numbers can be dramatically reduced
without a significant loss in precision in the calculation of both radiative fluxes and heating
rates. de Mourgues et al. (2023), for example, demonstrated that in the thermal spectral
range, even 30 spectral bands are sufficient to calculate heating rates very similar to those
obtained by a line-by-line calculation. Compared to RRTMg, this is more than four times less
spectral bands. Similarly, Hogan and Matricardi (2022) showed that just 32 spectral bands
in both the solar and thermal spectral ranges yield very accurate irradiances and heating
rates, with additional spectral bands providing little to no increase in precision. These more
efficient spectral parameterizations, combined with the speed improvements achieved with
the dynamic TenStream solver, could accelerate 3D radiative transfer toward the speed of
currently employed 1D solvers, potentially enabling the use of 3D radiative transfer in NWP
models for the first time ever.

That said, the potential speed-up from reducing the number of spectral bands depends
strongly on how radiative transfer is implemented in these models. Since calculations for
different spectral bands are independent of each other, they can be performed in parallel. In
that case, reducing the number of bands does not necessarily decrease the total computa-
tional time of the radiation scheme. Instead, reductions in computational cost would need to
come from other components of the solver — for example, by optimizing the retrieval of the
coefficients for the TenStream linear equation system from the lookup tables, which currently
accounts for about one third of the total runtime of dynamic TenStream calculations. But also
beyond such optimizations, further development of the solver is required before the vision
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of performing 3D radiative transfer at the cost of current 1D solvers can become reality. First
of all, performance tests should be extended to include multiple-layer cloud fields — e.g.,
shallow cumulus clouds with cirrus clouds above — as well as deep convective clouds in order
to investigate whether two iterations toward convergence per call, as used in most parts of
this thesis, are still sufficient under these circumstances, as more complex cloud fields also
involve more radiative interactions in the vertical. Earlier simulations with the dynamic Ten-
Stream solver have shown that incomplete solves can lead to “ping-pong” effects in these cases,
where distant grid boxes update radiative influences on each other back and forth in between
different dynamic TenStream calls. While these ping-pong effects were vastly reduced by the
use of the Gauß–Seidel method, it will be interesting to see whether vertically more complex
cloud fields pose a greater challenge for the solver. In addition, the development of a rule for
how many Gauß–Seidel iterations to use to ensure reliable results depending on the model
setup is another main future target. In this context, it would also be worthwhile to explore
whether occasional full solves could be a computationally feasible means of ensuring that the
results of the dynamic TenStream solver remain close to those of the original TenStream solver.
Additionally, the investigation of more sophisticated first guesses for the incomplete solves
could further improve performance. One possibility would be to advect the radiative field from
the previous radiation time step along with the other atmospheric fields. Since the radiative
field is not expected to drastically change between two calls of the radiation model, such a
first guess should already better account for the updated position of the clouds, enabling the
incomplete solves to focus primarily on correcting for the changed optical properties of the
clouds, which would likely speed up convergence. Finally, when shifting to the NWP scale,
one will certainly need to consider sub-grid-scale cloud variability, for example by extending
the TenStream lookup tables to also account for cloud fraction. This would finally enable the
application of the dynamic TenStream solver at the scale it was originally intended for, paving
the way toward answering the open question of how 3D radiative transfer affects weather
forecasts.
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Appendix A

Bash scripts for the libRadtran simulations

This appendix provides the bash scripts that were used to perform the libRadtran simulations
discussed in Chapter 4 of this work. These scripts were necessary because libRadtran does
not natively support a time-stepping scheme, which is, however, essential for the dynamic
TenStream solver, as it relies on the radiative field from a previous radiation time step as
the starting point for its incomplete solves. To nevertheless simulate such a time-stepping
scheme, the bash script was used to sequentially call the dynamic TenStream solver for the
different cloud fields in the time series employed in Chapter 4. Additionally, a history mode
was implemented into the solver, which saves the irradiance field for every wavelength band
at the end of each run. These saved irradiances can then be read by the dynamic TenStream
solver during subsequent calls, allowing it to initialize its incomplete solves from the previously
computed solution. This appendix now presents the script implementing this time-stepping
scheme for the dynamic TenStream calculations, as well as the scripts used for the δ-Eddington,
original TenStream, and MYSTIC simulations also presented in Chapter 4.

A.1 Bash script for the dynamic TenStream simulations

The following script was used to perform the dynamic TenStream simulations in the solar
spectral range. It is intended to be placed in the folder SPECIFIC_DATA_PATH/Bash_Scripts,
where SPECIFIC_DATA_PATH must point to the working directory containing the folders Bash_
Scripts, Cloudfiles, and Results. Additionally, LIBRADTRAN_PATH must point to the loca-
tion of the libRadtran installation used for the simulations.

TSTART=8000
TEND=9000

for DT_RAD in 10 30 60
do

for ts in $(seq $TSTART $DT_RAD $TEND)
do
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if [ $ts -gt $TSTART ]; then
it=2

else
it=500

fi

cat > $SPECIFIC_DATA_PATH/Bash_Scripts/input_solar.inp << eof
# background atmosphere
atmosphere_file $SPECIFIC_DATA_PATH/afglus_modified_interpolated.dat
data_files_path $LIBRADTRAN_PATH/data
mc_basename ../Results/Dynamic_TenStream/dts.dtrad_$DT_RAD.ts_$ts.it_$it
source solar

# position of the sun
sza 50.0
phi0 270.0

# surface albedo
albedo 0.125

# wavelengths and absorption parametrization
wavelength_index 1 6
mol_abs_param FU

# radiative transfer solver settings
rte_solver dynamic_tenstream
dynamic_tenstream_iterations $it
dynamic_tenstream_heat_unit K_per_day
dynamic_tenstream_history

# cloud
wc_file 3D $SPECIFIC_DATA_PATH/Cloudfiles/dat/cloudfile.t${ts}.dat

output_process sum
zout all
eof

$LIBRADTRAN_PATH/bin/uvspec < $SPECIFIC_DATA_PATH/Bash_Scripts/input_solar.inp
done

for band in $(seq 0 1 5)
do
rm $SPECIFIC_DATA_PATH/Bash_Scripts/E_diffuse_iv_${band}_*
rm $SPECIFIC_DATA_PATH/Bash_Scripts/E_direct_iv_${band}_*
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done
done

As specified by the values of TSTART and TEND at the beginning, this script applies the dynamic
TenStream solver to the cloud fields of the shallow cumulus cloud time series prepared by
Jakub and Gregor (2022) during the time period from 8000 s to 9000 s into the simulation. Three
different calling frequencies are considered: 10 s, 30 s, and 60 s, defined by the variable DT_RAD.
For each of these calling frequencies, the solver is sequentially called at every timestep between
TSTART and TEND, using increments of DT_RAD. During the first call (i.e., at ts = TSTART),
where no previously calculated irradiance field is yet available, 500 Gauß–Seidel iterations
(dynamic_tenstream_iterations) are performed to ensure that the radiative field is fully
converged. For all subsequent timesteps, only a minimum of two iterations are executed,
using the previously computed irradiance field as the starting point of the calculation. The
dynamic_tenstream_history flag ensures that these irradiance fields are saved for each
wavelength band at the end of every run and, if available, read at the beginning of the next
run. Once the entire time series has been processed for a given calling frequency, the saved
irradiance fields are deleted in the final loop of the script, so that the next set of simulations
starts from scratch. Apart from these time-stepping mechanics, the generated input file
includes all simulation settings described in Sect. 4.1.1. The background atmosphere is defined
by afglus_modified_interpolated.dat, the solar zenith angle is fixed at 50°, and the Sun is
assumed to be in the east (phi0 = 270.0). The surface albedo is set to 0.125, and the molecular
absorption is parameterized using the scheme of Fu and Liou (1992, 1993) (mol_abs_param
FU). Furthermore, the relevant cloud field for each timestep is loaded using the wc_file 3D
option, referring to the cloud file cloudfile.t${ts}.dat required at the current simulation
time.

The bash script for the dynamic TenStream simulations in the thermal spectral range
differs from the solar version only in a few respects. First, source solar is replaced by source
thermal. Moreover, the position of the Sun does not need to be specified in this spectral range,
and the albedo must be set to the thermal value of 0.05, as specified in Sect. 4.1.1. The final
difference is that Fu bands 7 to 18 are used instead of 1 to 6. Accordingly, the loop that deletes
the irradiance fields at the end of the script must be modified to span $(seq 6 1 17) instead
of $(seq 0 1 5). Everything else remains unchanged.

A.2 Input files for the other radiative transfer solvers

The other three radiative transfer solvers considered in the evaluation in Chapter 4 — namely,
the 1D δ-Eddington approximation, the original TenStream solver, and the Monte Carlo model
MYSTIC — all calculate the radiative field from scratch each time they are called. Hence, their
results depend only on the current time step and the corresponding cloud field, but not on
the calling frequency of the solver. As a result, the bash script does not require the first loop
over DT_RAD, nor does it explicitly need the loop over the timesteps (ts), as the solutions for
different timesteps are independent of one another and can be calculated in parallel. The
main difference between these solvers therefore lies in the input file, particularly in the section
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specifying the radiative transfer solver settings. For the 1D δ-Eddington approximation, this
section must be modified as follows:

# radiative transfer solver settings
ipa_3d
rte_solver twostrebe
heating_rate layer_fd
mc_forward_output heating K_per_day

Here, ipa_3d specifies that the originally three-dimensional atmosphere should be treated as a
set of independent vertical columns, whereas rte_solver twostrebe selects theδ-Eddington
approximation used in the evaluation. The option mc_forward_output heating K_per_day
indicates that, in addition to irradiances, also heating rates should be returned, with units of
K d−1. heating_rate layer_fd further specifies that these heating rates should be calculated
using forward differences of the irradiance across each layer, which is the default setting. In
contrast, the original TenStream solver requires the following configuration:

# radiative transfer solver settings
rte_solver mystic
mc_tenstream solver_3_10
mc_sample_grid 64 64
mc_forward_output heating K_per_day

The option rte_solver mystic appears here because the TenStream solver is implemented
within the MYSTIC framework in libRadtran. In addition to that, the number of grid boxes
in both horizontal dimensions must be specified for this solver. In the setup described in
Sect. 4.1.1, a grid of 64×64 boxes is used, so that mc_sample_grid is set to 64 64. Another
particularity of this solver is that it must be executed using uvspec_mpi instead of uvspec. The
corresponding execution command therefore reads:

$LIBRADTRAN_PATH/bin/uvspec_mpi $SPECIFIC_DATA_PATH/Bash_Scripts/input_solar.inp

Finally, for the MYSTIC solver, the relevant section of the input file must be modified as follows:

# radiative transfer solver settings
rte_solver mystic
mc_photons 4000000
mc_sample_grid 64 64
mc_forward_output heating K_per_day

Here, mc_photons 4000000 specifies the number of photons used in each individual simula-
tion. While actually a total of 400 000 000 photons was used per time step, this number was split
across 100 independent simulations with 4 000 000 photons each for computational efficiency.
This is why the value 4 000 000 appears in the excerpt shown above.
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Input files for the PALM simulations

This appendix provides the parameter namelist file that was used for all the PALM simulations
discussed in Chapter 5, as well as the TenStream options files that distinguish the various
restart runs introduced in Sect. 5.1.1.

B.1 Parameter file

The following parameter file (p3d file) was used for all the PALM simulations discussed in
Chapter 5, i.e., for the initial run and the restart runs of both the main and control run, except
for the following modifications:

• For the restart runs performed with the different radiative transfer solvers, the values of
both "dt_restart" and "restart_time" were set to 144000.0, i.e., the total simulation time
of the model. By doing so, these restart runs were carried out in one go.

• For the control runs, the option "ensemble_member_nr = 1" was enabled in order to
create a model run that is statistically independent from the main run.

Since all the simulations that that were run relied on the restart mechanism in PALM, an
additional parameter file for the restart runs (p3dr file) had to be provided. For our simulations,
this restart parameter file was identical to the one below, except that "initializing_actions" had
to be set to ’read_restart_data’.

!--------------------------------------------------------------------------------
!-- INITIALIZATION PARAMETER NAMELIST
! Documentation: https://palm.muk.uni-hannover.de/trac/wiki/doc/app/inipar
!--------------------------------------------------------------------------------

&initialization_parameters
!
!-- grid parameters
!--------------------------------------------------------------------------------
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nx = 255, ! number of gridboxes in x-direction (nx+1)
ny = 255, ! number of gridboxes in y-direction (ny+1)
nz = 80, ! number of gridboxes in z-direction (nz+1)

dx = 100.0, ! horizontal grid spacing in x-direction in m
dy = 100.0, ! horizontal grid spacing in y-direction in m
dz = 50.0, ! vertical grid spacing in m

!
!-- initialization
!--------------------------------------------------------------------------------
initializing_actions = ’set_constant_profiles’,

ug_surface = 0.0, ! u-comp of geostrophic wind at surface
vg_surface = 0.0, ! v-comp of geostrophic wind at surface

uv_heights = 0.0, 10.0, 20.0, 40.0, 60.0, 80.0, 100.0,
u_profile = 0.0, 5.0, 5.7, 6.5, 7.0, 7.3, 7.5,
v_profile = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

pt_surface = 288.0, ! initial surface potential temp
pt_vertical_gradient = 0.0, 1.0, 0.0, 1.0,
pt_vertical_gradient_level = 0.0, 800.0, 850.0, 1300.0,

humidity = .T.,
q_surface = 0.007,
q_vertical_gradient = 0.0, -0.002, 0.0,
q_vertical_gradient_level = 0.0, 800.0, 1000.0,

longitude = 11.6,
latitude = 48.1,

origin_date_time = ’2023-06-15 00:00:00 +02’,

!
!-- boundary conditions
!--------------------------------------------------------------------------------
bc_pt_b = ’dirichlet’,
bc_q_b = ’dirichlet’,

!
!-- numerics
!--------------------------------------------------------------------------------
fft_method = ’temperton-algorithm’, ! build-in fft method
!ensemble_member_nr = 1, ! produce statistically
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! independent simulation
!
!-- physics
!--------------------------------------------------------------------------------
omega = 0.0, ! no Coriolis force
/ ! end of initialization parameter namelist

!--------------------------------------------------------------------------------
!-- RUNTIME PARAMETER NAMELIST
! Documentation: https://palm.muk.uni-hannover.de/trac/wiki/doc/app/d3par
!--------------------------------------------------------------------------------

&runtime_parameters
!
!-- run steering
!--------------------------------------------------------------------------------
end_time = 104400.0, ! simulation time of the 3D model
dt_restart = 1800.0,
restart_time = 1800.0,

dt = 5.0,

create_disturbances = .TRUE., ! randomly perturbate horiz. velocity
dt_disturb = 150.0, ! interval for random perturbations
disturbance_energy_limit = 0.01, ! upper limit for perturbation energy

data_output_2d_on_each_pe = .FALSE., ! don’t do 2D output on each MPI rank

npex = 8, ! number of processors in x direction
npey = 8, ! number of processors in y direction

!
!-- Run-control/timeseries output settings
!-------------------------------------------------------------------------------
dt_run_control = 0.0, ! run control output after each timestep

!
!-- data output
!-------------------------------------------------------------------------------
netcdf_data_format = 5, ! use netCDF4 (HDF5) format

! with parallel I/O support
dt_data_output = 60.0, ! output interval for general data
dt_data_output_av = 60.0, ! output interval for averaged data
dt_dopr = 60.0, ! output interval for profile data
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data_output = ’u’, ’v’, ’w’,
’p’, ’q’, ’ql’, ’qc’, ’qr’, ’qv’, ’nc’, ’lwp*_xy’,
’prr’, ’prr_rain’, ’pra*_xy’,
’ta’, ’theta’, ’ta_2m*_xy’, ’tsurf*_xy’,
’m_soil’, ’t_soil’,
’shf*_xy’, ’qsws*_xy’,
’rad_lw_in’, ’rad_lw_out’,
’rad_sw_in’, ’rad_sw_out’,
’rad_lw_hr’, ’rad_sw_hr’,
’rad_net*_xy’,
’rad_lw_in*_xy’, ’rad_lw_out*_xy’,
’rad_sw_in*_xy’, ’rad_sw_out*_xy’,

data_output_pr = ’u’, ’v’, ’w’, ’p’, ’rho’, ’hyp’,
’q’, ’ql’, ’qc’, ’qr’, ’qv’, ’rh’,
’prr’, ’prr_cloud’,
’rad_sw_in’, ’rad_sw_out’,
’rad_lw_in’, ’rad_lw_out’,

section_xy = 0, 20, ! grid index for 2D XY cross sections
/ ! end of runtime parameter namelist

!--------------------------------------------------------------------------------
! cloud model
!--------------------------------------------------------------------------------
&bulk_cloud_parameters
cloud_scheme = ’morrison’,
cloud_water_sedimentation = .T.,
/ ! end of bulk cloud parameter namelist

!--------------------------------------------------------------------------------
! radiation model
!--------------------------------------------------------------------------------
&radiation_parameters
radiation_scheme = ’tenstream’,
albedo_type = 5, ! short grassland/meadow/shrubland
constant_albedo = .T.,
use_broadband_albedo = .T.,
dt_radiation = 30.0,
radiation_interactions_on = .F.,
/

!--------------------------------------------------------------------------------



B.2 TenStream options files 127

! land-surface model
!--------------------------------------------------------------------------------
&land_surface_parameters
surface_type = ’vegetation’,
vegetation_type = 3, ! short grass
soil_type = 3, ! medium-fine
conserve_water_content = .T.,
dz_soil = 0.01, 0.02, 0.04, 0.07, 0.15, 0.21, 0.72, 1.89,
root_fraction = 0.1, 0.2, 0.3, 0.2, 0.1, 0.05, 0.05, 0.0,
soil_temperature = 288.0, 286.0, 285.0, 284.0, 283.0, 283.0, 282.0, 282.0,
deep_soil_temperature = 280.0,
soil_moisture = 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18,
/

B.2 TenStream options files

As explained in Sect. 5.1.1, the three restart runs performed from each of the two initial PALM
simulations differ only in the radiative transfer solver used. Therefore, these simulations were
performed with different tenstream.options files, which are provided below.

File for the simulations with the 1D δ-Eddington approximation

-solver 2str

File for the simulations with the dynamic TenStream solver

-solver 3_10

-solar_dir_explicit
-solar_dir_ksp_max_it 1

-solar_diff_explicit
-solar_diff_ksp_max_it 1
-solar_diff_pc_sub_it 2

-thermal_diff_explicit
-thermal_diff_ksp_max_it 1
-thermal_diff_pc_sub_it 2

-accept_incomplete_solve

File for the simulations with the original TenStream solver

-solver 3_10
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-solar_dir_explicit
-solar_diff_explicit
-thermal_diff_explicit



Appendix C

Comparison of the two implementations of
the dynamic TenStream solver

While the analysis in Chapter 4 is based on the libRadtran implementation of the dynamic
TenStream solver, the large-eddy simulations in Chapter 5 rely on a different implementation
that is part of the TenStream framework. These two implementations differ in several aspects,
with the most notable being that the TenStream version is fully parallelized. Moreover, the
TenStream implementation requires the use of the parallel linear algebra library PETSc (Balay
et al., 2023), which the libRadtran version was specifically designed to avoid. Apart from that,
there are also some differences in the spin-up method and in the execution of the Gauß–Seidel
iterations between the two implementations.

To highlight these differences, but to also show that the TenStream implementation behaves
almost identically to the libRadtran version when used with certain options, this appendix
compares the two realizations in the libRadtran library, where both of them are implemented.
Since both implementations are based on the TenStream solver, they certainly produce the
same result in the limit of a large number of Gauß–Seidel iterations. They may however differ
in their convergence behavior leading to this result, depending on their implementation.
Hence, the goal of this appendix is to compare this convergence behavior for the libRadtran
and TenStream implementations of the dynamic TenStream solver. To this end, calculations
are performed that use the first time step of the shallow cumulus cloud field introduced in
Chapter 4 alongside the settings described in Sect. 4.1.1. Based on this cloud field, the idea is to
calculate the root-mean square error (RMSE) in heating rates of incomplete solves performed
with N Gauß–Seidel iterations with respect to the fully converged TenStream solution, with

RMSE =
√〈

(ξ−ξref)
2〉 and ξ=

(
∆T

∆t

)
i , j ,k

, (C.1)

where 〈...〉 denotes a spatial average, consistent with the definitions in Chapter 4. If this RMSE
as a function of the number N of Gauß–Seidel iterations is the same for both implementa-
tions, they can be considered equivalent. To this end, the TenStream version of the dynamic
TenStream solver was operated using the following tenstream.options file:
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-solar_dir_explicit
-solar_dir_ksp_max_it N/2
-solar_dir_ksp_complete_initial_run 0

-solar_diff_explicit
-solar_diff_ksp_max_it N
-solar_diff_ksp_complete_initial_run 0

-thermal_diff_explicit
-thermal_diff_ksp_max_it N
-thermal_diff_ksp_complete_initial_run 0

-accept_incomplete_solve
-initial_guess_from_last_uid 0

In there, N has to be replaced with the number of Gauß–Seidel iterations that are to be per-
formed. In addition to that, note the following about this file and the differences between the
two dynamic TenStream implementations:

1. The -solar_dir_explicit, -solar_diff_explicit and -thermal_diff_explicit
options ensure that the Gauß–Seidel method is used to solve the TenStream linear equa-
tion system. However, unlike the libRadtran implementation, the TenStream imple-
mentation separates the calculation of direct and diffuse radiation in the solar spectral
range. Direct radiation — that is the three lowermost equations in Eq. (3.1) — is always
calculated first before continuing with the calculation of diffuse radiation. In addition to
that, for direct radiation, the iteration direction described in Sect. 3.2.2 is not altered in
every Gauß–Seidel iteration, as direct radiation always propagates from top to bottom
in the vertical and in the direction of solar incidence in the horizontal. This separate
calculation of direct and diffuse radiation makes perfect sense for the original TenStream
solver, as the propagation of direct radiation is independent from the diffuse part and
can thus easily be treated separately with benefits for the calculation of both direct and
diffuse radiative fluxes: While the calculation of the direct fluxes can always follow the
direction of solar incidence that way, the calculation of the diffuse fluxes is provided with
up-to-date direct fluxes right from the beginning. The reason why this separation was
not implemented in the libRadtran version of the dynamic TenStream solver is that we
wanted to minimize the number of iterations through grid boxes by just iterating through
them once in every single Gauß–Seidel iteration.

To make the two implementations nevertheless comparable, only N /2 Gauß–Seidel
iterations are performed for the calculation of direct solar radiation in the TenStream
implementation (-solar_dir_ksp_max_it N/2), compared to N for diffuse radiation
(-solar_diff_ ksp_max_it N and -thermal_diff_ksp_max_it N), with N being an
even integer number, as it was motivated in Sect. 4.1.2. This way, the TenStream im-
plementation always performs the same number of Gauß–Seidel iterations for diffuse
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radiative fluxes as the libRadtran implementation, without outperforming it in terms
of direct radiation, since every second iteration in the libRadtran implementation is
performed alongside the diffuse fluxes from the bottom to the top of the domain and
opposite to the angle of solar incidence, thus providing hardly any updates for the direct
radiative fluxes — except for grid boxes at the domain boundaries, where boundary
conditions were previously applied. Note, however, that even this way, the two imple-
mentations will always slightly differ for even numbers N ≥ 4 of Gauß–Seidel iterations.
This is because while the two implementations may perform the same N /2 effective
iterations for direct radiation and the same N iterations for diffuse radiation, in the
TenStream implementation, all Gauß–Seidel iterations for direct radiation will still be
performed prior to any Gauß–Seidel iteration involving diffuse radiation, thus feeding
the calculation of diffuse radiation with already more precise source terms. We will
however soon see that this effect is not very large, as direct radiation converges relatively
quickly.

2. Unlike the libRadtran implementation, the TenStream implementation iterates through
the domain from top to bottom first in both the solar and thermal spectral ranges.

3. By default, the TenStream implementation effectively performs a full solve of the Ten-
Stream linear equation system the first time it is called. Since for this comparison, we
want to get an idea of the convergence behavior of the solver as a function of the number
of Gauß–Seidel iterations used, we do not want it to perform such a full solve that ignores
the prescribed number of iterations. Hence, the options ..._ksp_complete_initial_
run 0 disable this feature for the various parts of the solver. However, even with these
full solves disabled, the TenStream implementation still performs a spin-up, just like the
libRadtran implementation performs the single-column clear-sky spin-up introduced in
Sect. 3.2.2. Unlike this spin-up, however, the TenStream implementation uses the radia-
tive fluxes that it obtains for a spectral band as starting values for the calculation of the
next spectral band, even when the option -initial_guess_from_last_uid 0 is used.
While this spin-up certainly does not work as well as the single-column clear-sky spin-up
in the libRadtran implementation, it does not require any additional computations and
is certainly more efficient than starting the calculations of each spectral band from zero.

Besides the TenStream version, which was run with the settings listed above, the libRadtran
implementation of the dynamic TenStream solver was operated with two different setups
for this comparison. On the one hand, in its native setting, i.e., with the clear-sky spin-up
introduced in Sect. 3.2.2, followed by N Gauß–Seidel iterations using the iteration mechanism
outlined in the very same section. On the other hand, a modified version of the libRadtran
implementation was developed that also iterates through the domain from top to bottom first
in both spectral ranges and uses the spectral band spin-up of the TenStream version.

Figure C.1 finally shows the convergence behavior in terms of the RMSE in heating rates for
all of these implementations as a function of the number N of Gauß–Seidel iterations. Similar
to the evaluation in Sect. 4.2.2, only heating rates in the LES part of the domain are used for
the plot. As expected, we can see that all three implementations converge toward the full
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Figure C.1: RMSE in heating rates for both the native libRadtran (dark red lines) and TenStream (light red lines)
implementations of the dynamic TenStream solver for a calculation from scratch compared to the fully converged
TenStream solution as a function of the number N of Gauß–Seidel iterations. In addition to that, the dotted
medium red lines show the convergence behavior of a version of the libRadtran implementation using the same
spin-up method and iteration scheme as the TenStream implementation. Results are shown for both the solar (a)
and thermal (b) spectral ranges. Following the motivation in Sect. 4.1.2, only integer multiples of two Gauß–Seidel
iterations are used.

TenStream solution in the limit of a large number of iterations. Furthermore, we can clearly
see that the native libRadtran implementation that uses the clear-sky spin-up (dark red lines)
converges much faster than the TenStream implementation with the spectral band spin-up
(light red lines). And most importantly, the libRadtran implementation almost matches the
TenStream version when the same iteration mechanism and spin-up method are used (the
dotted medium red lines and the light red lines are basically on top of each other). We can
also see that despite the separate calculation of direct and diffuse radiation in the TenStream
implementation, which should improve the source term in the calculations of diffuse radiative
fluxes for N ≥ 4, the resulting RMSE values in the solar spectral range are not much different
from those of the modified libRadtran implementation.

When using half as many Gauß-Seidel iterations for the calculations of direct radiative
fluxes, it can therefore be safely assumed that the TenStream implementation works exactly as
the libRadtran implementation used in Chapter 4, especially since the spin-up is not relevant
for the PALM simulations. Similar to the setup in Chapter 4, the idea for these simulations
is to start with a fully converged solution at the very first call of the 3D solver, which is then
followed by incomplete solves using just two Gauß–Seidel iterations every time the radiation
module is called thereafter. These follow-up incomplete solves use the results obtained at the
corresponding previous radiation time step as a first guess anyway, so that the initial spin-up
method is not important at all. And apart from this spin-up (and the iteration direction in the
thermal spectral range), it has just been demonstrated that both implementations essentially
lead to the same results when used with the aforementioned options.
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Temporal evolution of the initial vertical
profiles in the PALM simulations

This appendix presents a figure showing the temporal evolution of the vertical profiles from
which the PALM simulations discussed in Chapter 5 were initialized. Specifically, it depicts the
temporal evolution of the profiles illustrated in Fig. 5.1 for the three simulations driven by the
1D δ-Eddington approximation, the dynamic TenStream solver, and the original TenStream
model, all initialized from the main run of the setup described in Sect. 5.1.1. The initial profiles
for potential temperature (θ), total water mixing ratio (q), zonal (u) and meridional (v) wind
speed, and liquid water mixing ratio (ql ) in each of these simulations are shown in gray and
correspond to the atmospheric state from which the main run of the setup was initially started
on 14 June 2023 at 22:00 UTC. After the three restart simulations were launched from this
main run on 15 June 2023 at 09:00 UTC, the subsequent evolution of the profiles is shown at
two-hour intervals, beginning at 09:01 UTC and continuing until the end of the simulations on
16 June 2023 at 03:00 UTC.

As seen in the first and second columns of Fig. D.1, the profiles are initially well-mixed with
respect to both θ and q up to a height of 800 m. As surface temperatures rise, all simulations
overcome the thin, stably stratified layer initially specified between 800 m and 850 m height
in the θ profile and gradually deepen their convective boundary layers throughout the day,
ultimately reaching heights slightly above 2 km — a development consistent with that of the
cloud top heights marked by the upper boundaries of the ql profiles in panels (e), (j), and (o).
The deepening of the convective boundary layer is also evident in the total water mixing ratio
profiles shown in panels (b), (g), and (l), which initially feature a sharp drop-off between 800 m
and 1000 m height. As the day progresses, this sharp gradient ascends markedly, consistently
aligning with the upper boundary of the convective layer in the θ profile. By the end of the day,
θ reaches values of approximately 292.5 K in the mixed layer, whereas q slowly decreases from
about 5.7 g kg−1 near the surface to around 5.0 g kg−1 near the top of that layer. After sunset
on 15 June 2023 at 19:15 UTC, a strongly stably stratified layer then forms near the surface
in all simulations, with near-surface θ decreasing to 288 K, similar to the value in the initial
state. Above this stably stratified layer, the atmosphere remains well-mixed in a layer that
continues to deepen slightly overnight — again in good agreement with the evolution of cloud
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top heights (see Fig. 5.5). In addition to θ and q , the third and fourth columns of Fig. D.1 show
that all simulations maintain a purely westerly flow throughout the simulation period, with
wind speeds in the boundary layer gradually decreasing over time due to surface friction.
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Figure D.1: Temporal evolution of the vertical profiles for potential temperature (first column), total water mixing
ratio (second column), zonal (third column) and meridional (fourth column) wind speed, and liquid water mixing
ratio (fifth column) in the PALM simulations driven by the δ-Eddington (top row), dynamic TenStream (middle
row), and original TenStream (bottom row) solvers. The gray profile in each panel shows the initial state as
illustrated in Fig. 5.1, whereas the colored profiles depict the temporal evolution of the quantities within the
respective simulation in steps of two hours. The timestamps corresponding to each color are indicated in the
legends below each column. Only simulations initialized from the main run of the setup are shown.
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