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Zusammenfassung

Radon ist eine der bedeutendsten Ursachen für Lungenkrebs nach dem Rauchen. In dieser
Dissertation wird das Lebenszeitrisiko für den Lungenkrebstod infolge von Radonexposi-
tion untersucht � ein zentrales Maÿ zur Bewertung der Schädlichkeit von Radon für den
Menschen. Das Lebenszeitrisiko allgemein ist eine statistische Gröÿe, die die Wahrschein-
lichkeit beschreibt, im Laufe des Lebens an einer bestimmten Krankheit zu erkranken oder
zu sterben. Lebenszeitrisiken für Lungenkrebs durch Radon nehmen im Strahlenschutz
eine zentrale Rolle ein, beispielsweise bei der Radon-Dosiskonversion, und können maÿge-
blich zur Festlegung gesetzlicher Radongrenzwerte und damit zum Schutz der ö�entlichen
Gesundheit beitragen. Das Lebenszeitrisiko für Lungenkrebs durch Radon ist eine zusam-
mengesetzte Gröÿe, die mehrere, unabhängig voneinander durchgeführte Analysen zu Mor-
talitätsraten und zum Radon-Risiko kombiniert. Diese Dissertation adressiert bestehende
De�zite bei der Schätzung solcher Lebenszeitrisiken und der damit verbundenen Unsicher-
heiten, mit besonderem Fokus auf beru�iche Radonexposition. Der Schwerpunkt liegt
dabei auf der Berechnungsmethodik, der Identi�kation ein�ussreicher Komponenten sowie
der Bewertung und Quanti�zierung relevanter Unsicherheiten. Die Dissertation basiert auf
vier wissenschaftlichen Verö�entlichungen und enthält ergänzende Hintergrundinformatio-
nen, um diese in einen breiteren fachlichen Kontext einordnen zu können.

Eine zentrale Komponente bei der Berechnung von Lebenszeitrisiken für Lungenkrebs
durch Radon sind die verwendeten Risikomodelle, die die aus Uranbergarbeiter-Kohorten
abgeleitete Expositions-Wirkung-Beziehung zwischen Radon und Lungenkrebs abbilden.
In Kreuzer et al. (2023) wurden aktualisierte Risikomodelle auf Basis der deutschen Wis-
mut Uranbergarbeiter-Kohortenstudie mit Follow-up bis 2018 entwickelt � der weltweit
gröÿten Einzelkohorte von Uranbergarbeitern. Die abgeleiteten Risikomodelle bestätigten
und präzisierten die etablierte Beziehung zwischen Radonexposition und einem erhöhten
Lungenkrebsrisiko. Diese verbesserten Risikomodelle bilden eine entscheidende Grundlage
für genauere Schätzungen von Lebenszeitrisiken für Lungenkrebs durch Radon und tragen
damit auch zur internationalen Diskussion über die Radon-Dosiskonversion bei.

Mit Sommer et al. (2025) wurden umfassende Sensitivitätsanalysen durchgeführt, um
die Auswirkungen verschiedener Berechnungskomponenten auf das Lebenszeitrisiko für
Lungenkrebs durch Radon systematisch zu untersuchen. Zudem wurde eine standard-
isierte Methodik zur Berechnung dieser Lebenszeitrisiken etabliert. Die Analysen zeigten,
dass das verwendete Risikomodell � mit der zugrunde liegenden Kohorte � sowie die
angenommenen Mortalitätsraten für Lungenkrebs maÿgeblich die Schätzung des Lebens-
zeitrisikos beein�ussen. Andere Komponenten, wie das gewählte beru�iche Radonexposi-
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tionsszenario oder das spezi�sche Lebenszeitrisikomaÿ, hatten einen vergleichsweise gerin-
gen Ein�uss. Die Studie unterstreicht somit die Bedeutung einer sorgfältigen Auswahl
ein�ussreicher Berechnungskomponenten und liefert eine praxisorientierte Grundlage für
zukünftige Berechnungen von Lebenszeitrisiken im Strahlenschutz. Insbesondere legt diese
Arbeit das Fundament für eine gezielte Quanti�zierung von statistischen Unsicherheiten
im Lebenszeitrisiko.

In Kreuzer et al. (2024) wurden Lebenszeitrisiken für Lungenkrebs unter Verwendung
von Risikomodellen berechnet, die aus der Pooled Uranium Miners Analysis (PUMA)-
Studie abgeleitet wurden � der weltweit gröÿten gepoolten Studie zu Uranbergarbeitern,
die sieben Einzelkohorten aus Kanada, Tschechien, Frankreich, Deutschland und den USA
umfasst. Zusätzlich wurden Schätzer für Lebenszeitrisiken auf Basis früherer, teilweise in
PUMA integrierter Studien, präsentiert � darunter insbesondere die aktualisierten Risiko-
modelle der deutschen Wismut-Kohorte (Kreuzer et al., 2023). Der Einsatz eines stan-
dardisierten Berechnungsverfahrens ermöglichte einen direkten und methodisch konsisten-
ten Vergleich der Lebenszeitrisiken aus den verschiedenen Studien. Die Analyse zeigt,
dass Lebenszeitrisiken ein geeignetes Maÿ zur Bewertung der Expositions-Risiko-Beziehung
zwischen Radon und Lungenkrebs in unterschiedlichen Kohorten darstellen � selbst bei er-
heblichen Unterschieden in Radonexposition und Modellstruktur. Mit den abgeleiteten
Lebenszeitrisiken liefert diese Arbeit eine fundierte, epidemiologisch gestützte Grundlage
für die laufende wissenschaftliche Diskussion zur Radon-Dosiskonversion.

In Sommer et al. (2024) wurden Ansätze zur statistischen Modellierung von Unsicherheiten
im Lebenszeitrisiko mittels 95%-Unsicherheitsintervallen vorgestellt, basierend auf früheren
Erkenntnissen. Am Beispiel der deutschen Wismut-Kohorte zeigte die Analyse, dass Un-
sicherheiten der Risikomodellparameter maÿgeblich zur Gesamtunsicherheit des Lebens-
zeitrisikos beitragen. Auch Unsicherheiten in den Mortalitätsraten wurden berücksichtigt,
deren Ein�uss jedoch geringer ist. Für ein Gesamtverständnis der Unsicherheit in Lebens-
zeitrisiken genügt meist die Quanti�zierung der Risikomodellparameter-Unsicherheiten.
Zwei methodische Ansätze wurden entwickelt: Ein auf Likelihood-Konzepten basierender
Ansatz (Approximate Normality Assumption, ANA) sowie ein Bayes'scher Ansatz. Die re-
sultierenden 95%-Unsicherheitsintervalle stimmen gut mit der in der Literatur beschriebe-
nen Variation von Lebenszeitrisiken aus verschiedenen Studien überein, was die Validi-
tät der Ergebnisse unterstreicht. Der ANA-Ansatz erweist sich für anwendungsorientierte
Zwecke im Strahlenschutz als zuverlässige Methode zur Quanti�zierung von Unsicherheiten.
Der �exiblere Bayes'sche Ansatz ermöglicht eine di�erenziertere Bewertung und Integration
von Vorwissen, ist jedoch komplexer und weniger anwendungsfreundlich, was die breitere
Anwendbarkeit einschränkt. Diese Arbeit leitete erstmals Unsicherheitsintervalle für das
Lebenszeitrisiko von Lungenkrebs durch beru�iche Radonexposition ab und schlieÿt damit
eine zentrale methodische Lücke. Frühere Studien lieferten lediglich Punktschätzungen
ohne direkte Vergleichbarkeit. Die vorgestellte Methode ermöglicht den systematischen
Vergleich von Lebenszeitrisiken und trägt wesentlich zur wissenschaftlichen Bewertung,
Risikokommunikation und regulatorischen Entscheidungs�ndung bei.



Summary

Exposure to radon is one of the most important causes of lung cancer after smoking. This
dissertation investigates the lifetime risk of lung cancer death related to radon exposure
� a central metric for assessing the health e�ects of radon. In general, a lifetime risk is
a statistical quantity that describes the probability of developing or dying from a speci�c
disease over the course of a lifetime. Lifetime lung cancer risks related to radon play a
crucial role in radiation protection, such as in radon dose conversion, and can inform the
setting of regulatory limits for radon exposure, thus contributing to public health protec-
tion. A lifetime lung cancer risk estimate depends on several calculation components and
is a composite quantity combining multiple, independently conducted analyses, particu-
larly on mortality rates and radon risk. This dissertation addresses existing de�cits in
the estimation of such lifetime risks and corresponding uncertainties, with a special em-
phasis on occupational radon exposure. The focus is on the development and evaluation
of calculation methodologies, the identi�cation of in�uential calculation components, and
the evaluation and quanti�cation of uncertainties in the lifetime risk estimation process.
This cumulative dissertation is based on four scienti�c publications and provides additional
context and background to embed the �ndings in a broader scienti�c framework.

A key component in the estimation of lifetime lung cancer risk from radon is the risk
model employed, which shapes the exposure-risk relationship derived from uranium miners
cohort data. In Kreuzer et al. (2023), updated lung cancer risk models were derived from
the German Wismut uranium miners cohort with follow-up 2018 � the largest single cohort
of uranium miners worldwide. These updated risk models con�rmed and re�ned the well-
established association between radon exposure and lung cancer risk. They serve as a key
basis for more accurate lifetime risk assessments and are an important contribution to the
international discourse on radon dose conversion.

In Sommer et al. (2025), comprehensive sensitivity analyses were conducted to systemat-
ically assess the impact of various calculation components on lifetime risk estimates for
radon-related lung cancer. Furthermore, a standardized methodology for calculating life-
time risks was developed. The analyses revealed that the choice of risk model � including
the underlying cohort � and assumptions about baseline lung cancer mortality rates have
the greatest in�uence on the estimated lifetime risk. Other components, such as the oc-
cupational exposure scenario or the speci�c lifetime risk metric used, were found to have
relatively minor e�ects. This study highlights the importance of carefully selecting key
calculation components and provides a practical basis for future lifetime risk estimations
in radiation protection. Moreover, it lays the groundwork for a targeted quanti�cation of
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statistical uncertainties, as further elaborated in Sommer et al. (2024).

In Kreuzer et al. (2024), lifetime lung cancer risks were calculated based on risk models
derived from the Pooled Uranium Miners Analysis (PUMA) study � the largest pooled
uranium miners cohort worldwide, comprising seven individual cohorts from Canada, the
Czech Republic, France, Germany, and the USA. Additionally, lifetime risk estimates based
on risk models from previous studies were presented, some of which were included in PUMA
(e.g., updated Wismut models (Kreuzer et al., 2023)). The use of a standardized calculation
methodology enabled consistent comparisons of lifetime risk estimates across di�erent risk
models. The analyses demonstrate that lifetime risks are a suitable measure for evaluating
exposure�response relationships across various cohorts, even when exposure levels and
model structures di�er considerably. The derived variation of lifetime risk estimates across
di�erent risk models provides a robust epidemiological foundation for ongoing scienti�c
discussions on radon dose conversion.

Finally, Sommer et al. (2024) introduced advanced statistical approaches for quantifying
uncertainty in lifetime risk using 95% uncertainty intervals building on previous �ndings
(Sommer et al., 2025). Using data from the German Wismut cohort, this analysis illus-
trates that uncertainties in the risk model parameters account for a major share of the
overall quanti�able uncertainty in lifetime risks. Uncertainties in mortality rates were also
considered, although their in�uence is generally smaller in comparison. For a compre-
hensive understanding of uncertainty in lifetime risks, quantifying risk model parameter
uncertainty is usually su�cient. Two methodological approaches were developed for this
purpose: one based on maximum likelihood concepts (Approximate Normality Assumption,
ANA), and a more �exible Bayesian approach. The resulting 95% uncertainty intervals
align well with the variability of lifetime risks observed in the literature from di�erent miner
studies, thereby supporting the validity of the methods and results. The ANA approach
proves to be a suitable and reliable method for quantifying uncertainties in most cases �
particularly for practical applications in radiation protection. The more �exible Bayesian
approach allows for a more nuanced assessment and integration of prior knowledge, but it
is more complex and less user-friendly, which limits its broader applicability. This work
is the �rst to derive uncertainty intervals for lifetime risk estimates of lung cancer due
to occupational radon exposure, thereby addressing a key methodological gap. Previous
studies typically reported point estimates without any assessment of comparability. The
uncertainty quanti�cation presented here enables systematic comparisons between di�er-
ent lifetime risk estimates � for example, by examining interval overlap � and makes an
important contribution to scienti�c risk evaluation, risk communication, and regulatory
decision-making.



Abbreviations and notation

This thesis frequently uses the following abbreviations for international institutions and
organizations:

Short form Long form
IARC International Agency for Research on Cancer
ICRP International Commission on Radiological Protection
NRC National Research Council of the United States
OECD Organisation for Economic Co-operation and Development
UNSCEAR United Nations Scienti�c Committee on the E�ects of Atomic Radiation
WHO World Health Organization

In addition, the following abbreviations are used to denote commonly applied functional
forms to calculate excess lifetime risks (so called lifetime risk measures):

Short form Long form
ELR Excess lifetime risk
LEAR Lifetime excess absolute risk
RADS Radiation attributable decrease of survival
REID Risk of exposure-induced death
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The mathematical symbols listed below represent calculation components and related quan-
tities used in this thesis in the context of lifetime risk estimation:

Symbol Meaning
r0(t) Baseline lung cancer mortality rate at age t
rE(t) Lung cancer mortality rate at age t under radiation exposure
EAR(t; Θ) Excess absolute risk of dying of lung cancer at age t
ERR(t; Θ) Excess relative risk of dying of lung cancer at age t
Θ Generic risk model parameter vector to be estimated
Θ̂ Estimate of parameter Θ
q0(t) Baseline all-cause mortality rate at age t
qE(t) All-cause mortality rate at age t under radiation exposure
S(t) Generic survival function at age t
S(t|a) Generic survival function at age t, conditioned on attaining age a
S0(t) Survival function at age t in the absence radiation exposure
SE(t) Survival function at age t under radiation exposure
X Cohort data
1(x) Indicator function: 1(x) is 1 if x is true and 0 otherwise
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Part I.

Foundations and context



1. Introduction

This work explores the concept and importance of lifetime risks, with a particular focus
on lifetime risks for lung cancer due to radon exposure. The topic is highly relevant to
radiation epidemiology and public health. This introductory chapter lays the foundation
by motivating the need for improved lifetime risk estimation, clarifying the goals and
scienti�c contributions of the dissertation. Additionally, an overview of the structure of
this dissertation is provided.

1.1. Motivation and background

Exposure to the radioactive gas radon and its decay products (radon progeny) is a leading
cause of lung cancer worldwide and represents a considerable public health concern (World
Health Organization [WHO], 2023). Accurately assessing the health risks associated with
radon exposure is essential for developing e�ective mitigation strategies and public health
guidelines.

Radon risk assessments are primarily based on large-scale cohort studies of underground
miners, who were exposed to high concentration levels of radon and its radioactive de-
cay products (United Nations Scienti�c Committee on the E�ects of Atomic Radiation
[UNSCEAR], 2021a). These studies form the basis for deriving risk models that describe
the relationship between radon exposure and lung cancer risk (exposure-risk relationship).
These models, while central to risk estimation, are often complex and not easily inter-
pretable.

Lifetime risks are an intuitive and interpretable metric that incorporate risk models and,
importantly, facilitates the comparison of model results across miner studies with di�ering
characteristics. They are a statistical quantity and describe the probability of developing
(or dying of) a speci�c disease (here: lung cancer death related to radon exposure) in the
course of a lifetime (Thomas et al., 1992; Vaeth & Pierce, 1990).1 In the context of this
dissertation, lifetime lung cancer risks related to radon exposure are a measure of the harm
of radon relevant to public health.2

1The actual calculation of lifetime risks is outlined in Section 3.1.
2More detailed information on radon and its health risks is presented in Chapter 2.
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In particular, such lifetime risks play a central role in the current international discussion
on converting radon exposure, expressed in Becquerel per cubic meter (Bq/m³) or in the
context of miners often in Working Level Months (WLM), into an e�ective dose in millisiev-
ert (mSv), a process known as "radon dose conversion" (Marsh et al., 2021). This relies on
a dose conversion coe�cient that links radon activity concentration and the resulting dose
in the human body. By applying this coe�cient, one can estimate the potential health
risks associated with radon exposure, contributing to the implementation of appropriate
radon mitigation measures (Marsh et al., 2010).3

International organizations like the International Commission on Radiological Protection
(ICRP) and the United Nations Scienti�c Committee on the E�ects of Atomic Radiation
(UNSCEAR) recognize this and awaited the calculation of lifetime lung cancer risks for
the German uranium miners cohort study (Wismut cohort), the largest single cohort of
uranium miners worldwide (Kreuzer et al., 2009). The Wismut cohort and correspond-
ing lifetime risks contribute to the Pooled Uranium Miners Analysis (PUMA) study, the
worldwide largest pooled study of uranium miners conducted to-date (Rage et al., 2020).
The Federal O�ce for Radiation Protection in Germany is responsible for maintaining and
regularly updating the Wismut cohort data, from which comprehensive statistical analyses
are derived. This vast cohort size provides exceptional statistical power for investigating
the health e�ects related to occupational radon exposure. Further, lifetime risks are em-
ployed to derive the "radiation detriment", a concept developed by the ICRP to quantify
the burden of in particular radon exposure to the human population (International Com-
mission on Radiological Protection [ICRP], 2022). Note that throughout this dissertation,
the term "lifetime risk" speci�cally refers to the lifetime risk of lung cancer death related
to (occupational) radon exposure, unless otherwise stated. In most cases, this speci�cally
includes the commonly used lifetime excess absolute risk (LEAR) and other functional
forms for estimating excess lifetime risks, collectively referred to as (excess) lifetime risk
measures (see Section 3.1).

Despite the outlined relevance of lifetime risks, previous studies have mostly reported single
point estimates for speci�c combinations of calculation components, without addressing
the variability or statistical uncertainty inherent in these estimates. This limits scienti�c
interpretation and comparability: while di�erent studies may report varying lifetime risks,
the lack of a clear understanding of the in�uential calculation components or associated
uncertainty intervals, makes it unclear whether such di�erences are statistically relevant.
This absence of uncertainty assessment represents a critical methodological gap.

3Further details on these units and on radon dose conversion are provided in Section 2.1 and Section
6.2.1.
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1.2. Aim and scienti�c contribution of the dissertation

This dissertation addresses the above-mentioned gaps by investigating how variability and
uncertainties in lifetime lung cancer risk estimates due to radon exposure can be assessed
and quanti�ed. The main objectives are:

� To estimate lifetime risks for lung cancer due to occupational radon exposure, using
particularly recent data from the German Wismut cohort.

� To systematically evaluate how calculation components and assumptions � such as
radon exposure scenarios, risk models, and other inputs � a�ect lifetime risk estimates
(sensitivity analysis).

� To develop and apply novel statistical methods to quantify lifetime risk uncertainties
with 95% uncertainty intervals.

The key scienti�c contribution of this dissertation lies in introducing the �rst compre-
hensive quanti�cation of statistical uncertainty in lifetime risk estimates for occupational
radon exposure. This marks a considerable advancement as previously mostly point es-
timates were reported in the literature, limiting comparability and interpretability. As
a crucial preparatory step, comprehensive sensitivity analyses were conducted to identify
the main drivers of lifetime risk results. These analyses clari�ed which input components
require careful consideration and which have only minor in�uence. This insight improves
transparency and guides future model development and regulatory focus. Building on this,
by deriving statistical uncertainty intervals, this dissertation enables formal comparison of
lifetime risks across studies � for example, by assessing overlap between intervals. This di-
rectly improves the interpretability, comparability, and credibility of lifetime risk estimates
in radiation epidemiology and regulatory decisions.

Although focused on occupational radon exposure, the methodological framework and in-
sights gained are also transferable to non-occupational (e.g., residential) radon risk assess-
ments and can inform general lifetime risk calculations in other contexts.

1.3. Structure of the dissertation

This cumulative dissertation, together with the attached scienti�c publications in the sec-
ond part, is structured to provide a comprehensive understanding of lifetime risks associ-
ated with radon exposure with a particular focus on occupational settings and inherent un-
certainties. While the �rst part of this dissertation provides essential background, context,
and methodological explanations, quantitative analyses are presented in the contributing
publications (second part).

This introduction, which establishes the research context, is followed by a section explain-
ing the element radon and its associated risks. Thereafter, the basic methodology for
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calculating lifetime risks is outlined, followed by a brief literature overview of existing
relevant studies in this context.

Each subsequent chapter is dedicated to one of the scienti�c publications contributing to
this cumulative thesis (Table 1.1). The chapters start with a concise overview of the moti-
vation, main �ndings, and implications of the publication followed by comprehensive back-
ground information and additional insights that complement the respective studies.

The �rst part of the dissertation ends with a conclusive chapter summarizing key �ndings,
discussing study limitations, and suggesting directions for future research in the context of
lifetime risks. The second part provides the full text of the relevant publications listed in
Table 1.1 with a corresponding declaration of contribution.

Publication title cited as

Contribution 1 Updated risk models for lung cancer due to radon ex-
posure in the German Wismut cohort of uranium min-
ers, 1946�2018

(Kreuzer et al., 2023)

Contribution 2 Lifetime risks for lung cancer related to occupational
radon exposure: a systematic analysis of estimation
components

(Sommer et al., 2025)

Contribution 3 Lifetime excess absolute risk for lung cancer due to ex-
posure to radon: results of the pooled uranium miners
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2. Radon

While the public is aware of radiation risks from sources like medical treatments and nuclear
accidents, other harmful sources, such as radon exposure, are less recognized despite their
relevance to public health (Cori et al., 2022; Esan et al., 2020). This thesis focuses on
radon and its role in lung cancer risk.

This chapter introduces the element radon, highlighting its relevance to lung cancer risk
through its radioactive properties and the risk assessment derived from studies of miners.
It includes a brief summary of the history of radon risk assessment and concludes with
an interlude on residential radon exposure, as the thesis otherwise primarily focuses on
occupational radon exposure.

2.1. Radon exposure and lifetime cancer risk

The chemical element radon is an invisible, odourless, and tasteless radioactive noble gas
that naturally occurs as a decay product of uranium. It appears in di�erent isotopes, with
Radon-222 being the most common, and is found everywhere, in varying concentrations
in soil, rock, and water. Outdoors, radon mixes well with air resulting in low concentra-
tions. However, in indoor environments (homes) it can accumulate to high concentrations,
especially in poorly ventilated spaces (WHO, 2023). Continuous exposure to radon and
its radioactive decay products, called radon progeny or radon daughters, causes lung can-
cer, as was shown by several studies (J. B. Little, 2000; National Research Council [NRC],
1999; The International Agency for Research on Cancer [IARC], 1988; UNSCEAR, 2021a).
Radon and radon progeny are particularly alpha-particle emitters, damaging sensitive lung
tissue when inhaled. Polonium-218 and polonium-214 are major contributors to health ef-
fects among radon daughters. By inhaling radon, the decay products, whether attached
to aerosol particles or not, tend to deposit on the surface of the respiratory tract. These
decay products then undergo a continuous radioactive decay up to stable lead (Figure 2.1).
The energetic alpha and associated gamma radiation emitted during decay a�ect lung cells
(Degu Belete & Alemu Anteneh, 2021). After smoking, radon exposure is a leading cause
of lung cancer (WHO, 2023).1 Further, lung cancer is one of the most frequent cancer-
related deaths in both men and women (Ferlay et al., 2019), making radon mitigation and
risk assessment a critical public health issue (Riudavets et al., 2022).

1Smoking itself is recognized as the most important risk factor for lung cancer (Pesch et al., 2012; IARC,
2004).
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Figure 2.1.: Illustration of the decay chain from Radon-222 to stable Lead-206 with half-
life times and arrows corresponding to the type of emitted radiation: alpha
radiation is represented by α, and beta radiation by β.

Note that radon exposure corresponds to so-called "High-LET" (Linear Energy Transfer)
radiation exposure. In general, the terms "High-LET" and "Low-LET" radiation describe
the amount of energy transferred to biological tissue per unit distance travelled. High-
LET radiation, such as alpha particles and neutrons, deposits a large amount of energy
in a small area. This can result in substantial biological damage, including direct DNA
breaks, making it more harmful even at lower doses. In contrast, low-LET radiation,
including gamma rays and X-rays, transfers energy more sparsely across a larger area.
While low-LET radiation also causes direct biological damage, such as single-strand DNA
breaks, it is less e�cient at doing so compared to high-LET radiation. Low-LET radiation
primarily adverse e�ects through indirect mechanisms, such as the generation of unstable
atoms potentially damaging organs (free radicals) (Grdina, 2022; Pearson, 2021). The
di�erentiation between high-LET and low-LET radiation is important for understanding
their di�erent biological consequences and the associated risks.
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The risk assessment for radon exposure comes in particular from cohort studies of under-
ground miners typically exposed to elevated levels of radon and radon progeny (and other
pollutants), resulting in a signi�cantly higher risk of lung cancer compared to the general
population. Such miner studies indicate a well-understood linear relationship between cu-
mulative occupational radon exposure and lung cancer risk. This e�ect is in�uenced by
factors like attained age, time since exposure, age at exposure, and exposure rate (Kreuzer
et al., 2023; NRC, 1999).

However, risk assessment methods, assumptions, and the explicit modelling of exposure�risk
relationships for radon and lung cancer (risk models) vary between studies. Lifetime risk
calculations allow for the comparison of di�erent risk models from di�erent cohorts and give
a quantitative interpretation of the harm of radon. In particular, lifetime risk estimates
enable clear risk communication to the public. For lifetime lung cancer risks related to oc-
cupational radon exposure, one is mostly concerned with exposure in units of WLM. This
unit is typically used in the risk assessment of occupational radon exposure and corresponds
to an exposure of 1 Working Level (WL) (1.3 × 105 Mega electron-volt (MeV) potential
alpha energy per litre air) over 170 working hours (monthly working time) (Bundesamt für
Strahlenschutz [BfS], 2024).

WLM is a historical unit used to quantify radon exposure speci�cally in the context of
mining, accounting for both radon gas and its decay products. The conversion between
units of activity concentration as Becquerel per cubic meter (Bq/m³), speci�cally how many
radon atoms decay per second in a cubic meter of air, and exposure in WLM involves several
factors. These include the equilibrium factor between radon and its progeny (typically
assumed to be 0.4 in indoor environments), the duration of exposure, and assumptions
about the time a person spends in the environment, typically 2,000 hours per year in a
workplace or 7,000 hours in a residential setting (e.g., at home). For instance, continued
exposure to a radon concentration of 300 Bq/m³ corresponds to an annual exposure of 0.38
WLM at work and 1.32 WLM at home (ICRP, 1993, Table 3).

Both Bq/m³ and WLM are units regarding radon exposure. It is important to understand
the di�erence between exposure units, e.g. WLM, and a dose unit as the e�ective dose in
mSv: exposure in WLM describes the exposure to radon and radon decay products and
is directly measurable, while e�ective dose in mSv is a measure of the potential biological
e�ect resulting from that exposure, considering the type and energy of the radiation, the
speci�c tissues or organs exposed, and their sensitivity to radiation (Stabin, 2008, The
E�ective Dose Concept). The conversion between WLM (or Bq/m³) and mSv is partic-
ularly challenging and remains a subject of ongoing debate ("radon dose conversion").
While various units are introduced here, the primarily focus is on WLM throughout this
dissertation.

Corresponding lifetime risk calculations are concerned with low to moderate radon exposure
scenarios to represent nowadays realistic exposures, especially in homes. Extreme exposure
scenarios with over 1000 WLM cumulative radon exposure as they occurred in the early
years of mining, are not of concern anymore (Kreuzer et al., 2009).
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2.2. History of radon risk assessment

The history of radon risk assessment is characterized by a series of key events spanning sev-
eral centuries (George, 2008; Mc Laughlin, 2012). In the 16th century, underground silver
miners in the Ore Mountains Germany (Erzgebirge) experienced unusually high mortality
from respiratory diseases. Paracelsus described the disease as "Bergsucht" (Paracelsus,
1567). In hindsight, the diagnosis "Bergsucht" must be understood as a generic term for
a variety of (fatal) respiratory diseases, including lung cancer among miners (Schüttmann,
1993). In the 19th century an increased incidence of a certain type of "Bergsucht" occurred
among miners in Schneeberg, Saxony. Due to the clear geographic origin of this type
of "Bergsucht", German physicians developed the term "Schneeberger Lungenkrankheit"
(Schneeberg lung disease) (Schüttmann, 1993). By 1879, the disease was identi�ed as lung
cancer (Härting & Hesse, 1879), where 75% of the miners in the Schneeberg region died
from it since the beginning of the 19th century (Schüttmann, 1993).2 The discovery of
radioactivity (Becquerel, 1896; Curie & Curie, 1898) and the identi�cation of radon (Dorn,
1901) provided a new explanation for the high incidence of lung cancer cases. Radon was
identi�ed as a cause of lung cancer during the �rst half of the 20th century, marking a
milestone in understanding the health risks associated with radon exposure and the �rst
epidemiological studies of miners on the health e�ects of radiation exposure started in the
1960s (Samet, 2020). In 1988, the International Agency for Research on Cancer (IARC)
o�cially classi�ed radon as a human carcinogen, based on studies of underground miners
exposed to high levels of radon (IARC, 1988). In 1994, a pooled analysis of 11 underground
miner studies provided additional evidence of the link between radon exposure and lung
cancer. Building on this, in 1999 the in�uential BEIR VI (Biological E�ects of Ionizing
Radiation) report by the U.S. National Research Council (NRC), titled "Health E�ects
of Exposure to Radon", thoroughly addressed and quanti�ed the health risks associated
with radon exposure (NRC, 1999). After that, from 2004 to 2006, pooled studies for indoor
radon exposure were conducted including studies from Europe, North America, and China,
elaborating on the lung cancer risk related to radon exposure in homes (Darby et al., 2005).
In 2019, the global Pooled Uranium Miner Analysis (PUMA) study � the largest pooled
cohort study to date � was launched. It involves uranium miner studies from Canada,
the USA, the Czech Republic, France, and Germany focusing on lung cancer risk from
occupational radon exposure (Kelly-Reif et al., 2023; Rage et al., 2020; Richardson et al.,
2022). Among the studies contributing to PUMA is the German Wismut cohort study,
the largest single cohort of uranium miners worldwide (Kreuzer et al., 2009). The data
from this cohort is the backbone for a substantial part of the analyses presented in this
dissertation and contributing publications. A detailed description of the Wismut cohort is
provided in Section 4.2.1.

2While detailed records of total miner fatalities from lung cancer are not readily available, Härting and
Hesse (1879) report that between 1869 and 1877, 150 miners died from the disease, with an average of
650 miners employed.
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Ongoing research and analysis have led to a deeper understanding of the health risks as-
sociated with radon exposure, ultimately contributing to the development of strategies to
mitigate these risks and protect public health. Today, the International Commission on
Radiological Protection (ICRP) and the United Nations Scienti�c Committee on the Ef-
fects of Atomic Radiation (UNSCEAR) are two prominent international bodies responsible
for assessing the risks associated with radiation exposure and guiding radiation protection.
The ICRP provides recommendations and guidance on all aspects of protection against ion-
izing radiation. UNSCEAR conducts scienti�c assessments of the health e�ects of ionizing
radiation, including radon, and provides the scienti�c basis for ICRP's work on radiation
protection. Both regularly publish reports. Their research and recommendations help
governments and organizations worldwide formulate policies and regulations to protect
public health from, in particular, radon-induced lung cancer (ICRP, 2014; UNSCEAR,
2021a).

2.3. Interlude on residential radon exposure

This thesis primarily explores the health e�ects of radon exposure in occupational settings,
with a particular focus on uranium miner cohorts. While the �ndings are most directly
applicable to occupational exposure, they are also relevant to residential radon risk. Al-
though the e�ects of residential radon exposure are not the main focus of this work, a brief
overview of the lung cancer risks associated speci�cally with residential radon exposure is
provided here, given the public relevance of this topic:

While studies of miners provide valuable insights, directly extrapolating these �ndings to
residential radon exposure involves challenges. Occupational and residential radon expo-
sures di�er not only in magnitude � residential levels are considerably lower � but also in
measurement methods, environmental factors, and confounding variables such as smoking,
exposure duration, and ventilation practices (NRC, 1999; Pavia et al., 2003). Additionally,
the units of measurement di�er: occupational exposure is often expressed in WLM, which
accounts for radon decay products and working conditions. The unit was based on the
energy that inhaled progeny would deposit in the lung. In old uranium mines, the ventila-
tion was often poor and the limited air�ow allowed radon progeny to accumulate to levels
close to equilibrium with the radon gas (ICRP, 1993). In contrast, residential exposure
is typically measured in Bq/m³, based on long-term average concentrations of radon gas
and progeny in indoor air, usually measured over periods of several months (Darby et al.,
2005).

Note that analyses of miners with lower cumulative exposure (<100 WLM) have shown
consistent patterns of risk, suggesting that the extrapolation to residential exposure sce-
narios is valid, though the risk per unit exposure may di�er (Lane et al., 2019; Lubin et al.,
1997). This supports using occupational data to inform residential radon risk assessments,
despite challenges in extrapolation and confounding factors.



2.3 Interlude on residential radon exposure 11

Due to the mentioned di�erences, dedicated studies are necessary to assess the risks as-
sociated with residential radon exposure. However, these studies face unique challenges.
This is, among other reasons, due to the considerably lower levels of radon concentration
in homes. Speci�cally, a case-control study is often preferred over a cohort study, as the
latter would need to be excessively large to contain enough lung cancer cases.

Despite these challenges, residential radon studies demonstrate a signi�cant lung cancer
risk. The relative risk of lung cancer increases with residential radon concentrations,
demonstrating a clear, presumably linear, exposure-risk relationship (Darby et al., 2005).
Studies estimate that indoor radon exposure is responsible for 3�20% of all lung cancer
deaths worldwide (Kim et al., 2016). In Germany, recent studies indicate that 6.3% of
lung cancer cases are attributable to residential radon, which translates to around 2, 800
lung cancer deaths per year (Heinzl et al., 2024). Reducing radon levels in homes un-
der recommended action levels could decrease lung cancer deaths by 2-4% according to
earlier research (Lubin et al., 1995). This con�rms that residential radon exposure is an
important risk factor for lung cancer, highlighting the need for corresponding protective
measures.



3. Methods and literature

Here, the basic underlying methodology for lifetime risk calculations performed in this
dissertation is outlined. Further, an overview is given of the research landscape concerning
lifetime risks, both in general and for lung cancer related to occupational radon exposure,
establishing the context for this thesis and contributing publications.

3.1. Basic methodology

3.1.1. Lifetime risk calculation

Typically, one is interested in the excess lifetime risk imposed from radiation exposure
compared to the baseline lifetime risk in the absence of exposure. Di�erent functional forms
to calculate excess lifetime risks (lifetime risk measures) are employed in the literature for
various causes of death and radiation types, including � but not limited to � lung cancer
related to radon exposure (M. P. Little et al., 2008; Thomas et al., 1992; Ulanowski et al.,
2019; Vaeth & Pierce, 1990). All of them are following a similar approach:

Excess lifetime risks are calculated as the di�erence between the lifetime risk under expo-
sure LRE(a) and the baseline lifetime risk LR0(a) for a certain cause of death. A lifetime
risk is calculated as the cumulative sum of age-speci�c (years) mortality rates weighted
by the survival probability to attain each age. A baseline lifetime risk LR0(a) without
exposure is expressed as

LR0(a) =

∫ ∞

a

r0(t)S0(t|a) dt, (3.1)

where

� a is the attained age or minimum age at risk, typically a = 0,

� r0(t) is the baseline cause-speci�c mortality rate at age t in absence of exposure,

� S0(t|a) is the conditioned all-cause survival function in the absence of exposure,
de�ned as S0(t|a) = P(T ≥ t|T ≥ a) = P(T≥t ∩ T≥a)

P(T≥a)
= S0(t)/S0(a) with T ≥ 0 the

unknown random retention time until the event of death and unconditioned all-cause
survival function with S0(t) = S0(t|0) = P(T ≥ t).
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The corresponding lifetime risk under exposure LRE(a) is written as

LRE(a) =

∫ ∞

a

rE(t)SE(t|a) dt, (3.2)

where rE(t) is the cause-speci�c mortality rate at age t under exposure with corresponding
all-cause survival function SE(t). The �nal excess lifetime risk estimate is the di�erence
LRE(a)− LR0(a).

This general formulation applies to any cause of death (typically cancer) and exposure
type. In this work, it is applied speci�cally to lung cancer risks from (occupational) radon
exposure, where the rate rE(t) is projected as

rE(t) = r0(t)(1 + ERR(t)), (3.3)

where ERR(t) = rE(t)−r0(t)
r0(t)

is the excess relative risk of dying of lung cancer at age t. The
ERR(t) term is parametrized by a set of M parameters Θ = (θ1, . . . , θM). To emphasize
this dependence, the notation ERR(t; Θ) will be used in the following, which is equivalent
to ERR(t). Note that for other cause of deaths and radiation types, the risk projection
rE(t) = r0(t) + EAR(t; Θ) via the excess absolute risk EAR(t; Θ) = rE(t)− r0(t) is often
used in the literature (ICRP, 2007). However, in the context of lung cancer related to
chronic (occupational) radon exposure, excess relative risk projections are typically used.
EAR models are not established in the literature for occupationally radon-exposed miners
(UNSCEAR, 2021a).

Further, it is not speci�cally di�erentiated between mortality rates (number of deaths in a
speci�c period relative to the population) and mortality risks (probabilities) here. Mortal-
ity risks are typically approximated with mortality rates and there are speci�c methods to
obtain risk estimates from corresponding rates (Eisenmenger & Emmerling, 2011; Flaskäm-
per, 1962). However, such methods are beyond the scope of this thesis and we rely on using
mortality rates.

Assuming no protective e�ect of radon exposure, consistent with the Linear-No-Threshold
(LNT) model for an exposure-risk relationship (Laurier et al., 2023), it holds rE(t) ≥ r0(t)
and ERR(t; Θ) ≥ 0 for all ages t. Note that assuming the LNT model is consistent with
the position of major radiation protection authorities, including international bodies like
UNSCEAR (2021b) and the ICRP (2007), as well as in�uential committees like BEIR VII
(NRC, 2006).

The modelling of SE(t|a) and S0(t|a) varies across studies. However, typically and also
here, the survival functions are modelled as

S0(t|a) = exp

{
−
∫ t

a

q0(u) du

}
, (3.4)

SE(t|a) = exp

{
−
∫ t

a

qE(u) du

}
, (3.5)
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with baseline all-cause mortality rate q0(u) at age u and corresponding all-cause mortality
rate qE(u) under exposure. The application of survival functions depends on the chosen life-
time risk measure. For example, the commonly used excess lifetime risk measure LEAR(a)
ignores radiation e�ects in the survival function and applies S0(t) in the calculation of both
LRE(a) and LR0(a), resulting in

LEAR(a) =

∫ ∞

a
rE(t)S0(t|a) dt−

∫ ∞

a
r0(t)S0(t|a) dt =

∫ ∞

a
r0(t)ERR(t; Θ)S0(t|a) dt. (3.6)

Among other minor components, estimates for (excess) lifetime lung cancer risk related to
radon depend on three central components:

� Baseline lung cancer and all-cause mortality rates r0(t), q0(t) for every age t, respec-
tively,

� Risk model structure and parameter estimates Θ̂ derived from cohort data shaping
ERR(t; Θ̂),

� Individual radon exposure scenario with annual exposure levels in units of WLM
in�uencing ERR(t; Θ) at every age t.

Note that throughout this dissertation the term "risk model" refers to the combination
of model structure, i.e. the functional form of the ERR(t; Θ) term, and cohort data used
to estimate the model parameters Θ. This distinction is important, as di�erences in risk
models and corresponding lifetime risks often arise from variations in the underlying cohort
data rather than from the speci�c model structure themselves.1

For the calculation of (excess) lifetime lung cancer risks, baseline lung cancer and all-cause
mortality rates, r0(t) and q0(t), respectively, and corresponding survival functions, are typ-
ically derived from population data or obtained from ICRP reference rates (ICRP, 2007).
Further, the functional form of the ERR(t; Θ) term and the components of the parameter
vector Θ are chosen based on experience, international practices, expert knowledge, and,
most importantly, a su�ciently good �t to the cohort data. The parameters are estimated
using statistical methods, such as maximum likelihood estimation, based on regression
analysis of data from radiation-exposed populations, such as uranium miners. The radon
exposure scenario is either a reference occupational scenario to resemble average working
conditions (e.g. 2 WLM from age 18-64 years) or inspired by individual miner exposure
histories.

1For example in (Kreuzer et al., 2023) Table 2, the variation of lifetime risk estimates is larger across the
cohorts than across the model structures.
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3.1.2. Risk model parameter derivation

The risk models used in this thesis are derived from cohort data on (uranium) miners occu-
pationally exposed to radon and radon progeny.2 Here, Poisson regression on the number
of lung cancer deaths is applied to a grouped dataset from the underlying miners cohort
data to estimate risk model parameters. The corresponding likelihood function L(∆,Θ|X)
with risk model parameter vector Θ = (θ1, . . . , θM) and baseline strati�cation parameter
vector ∆ = (δ1, . . . , δK), given grouped cohort data X, is based on the assumption that
the number of lung cancer deaths Ci in group i for i = 1, . . . , N is Poisson-distributed
via

Ci ∼ Poi
(
PYie

ηi(∆) (1 + ERRi (Θ))
)
, (3.7)

with person-years at risk PYi and excess relative risk ERRi (Θ). The speci�c shape of
ERRi (Θ) depends on the prescribed risk model structure. The baseline risk predictor
ηi(∆) = δ1 +

∑K
k=2 δk1{k}(xi), where xi is a categorical variable with K levels, describes

the baseline strati�cation with K levels.

Although the full likelihood model includes both the parameters ∆ and Θ, typically only
the important maximum likelihood estimates for Θ are shown. This likelihood function
and detailed parameter estimation is investigated further in Section 4.2.2.

While the actual computation of lifetime risks involves further complexities, this overview
provides a framework for understanding the basic process. All lifetime risk calculations
for this thesis were performed with the statistical software R (R Core Team, 2023) and
the programming environment RStudio (Posit team, 2023). To meet the speci�c needs of
this research, we developed and implemented a comprehensive, custom-built R solution
for these calculations. The �tting of risk model parameters is mostly carried out with the
specialized software Epicure (Preston et al., 1993) or, when explicitly stated, with another
tailored R implementation.

3.2. Literature overview on lifetime risks

The following literature overview aims to brie�y summarize key advancements in lifetime
risk assessments in general and speci�cally for lung cancer related to radon exposure. Pub-
lications directly contributing to this dissertation are not listed here. More detailed assess-
ments of existing research are provided in the introductions of the respective contributing
articles.

This thesis focuses on the (excess) lifetime risk of lung cancer death related to radon
exposure, primarily based on uranium miner cohort studies. Lifetime risks in general
are a widely used metric for quantifying cancer risk from ionizing radiation (NRC, 2006;
UNSCEAR, 2021b). They are also applied to other indoor air pollutants, such as benzene

2Note that risk models for other types of radiation are for example derived from the atomic bomb survivors
Life-Span Study (LSS) (Preston et al., 2007).
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(WHO Regional O�ce for Europe, 2010). However, radon typically results in substantially
higher lifetime risks compared to other chemicals considered, emphasizing its importance
as a major carcinogenic air pollutant.

Early investigations addressing lifetime risk estimation methods in general was provided
by Vaeth and Pierce (1990) and Thomas et al. (1992), who introduced the basic methodol-
ogy to compute lifetime risks, that remain relevant today. Over time, several lifetime risk
measures were introduced and applied, including Excess Lifetime Risk (ELR), Risk of Ex-
posure Induced Death (REID), Lifetime Excess Absolute Risk (LEAR) (Hunter et al., 2015;
Kellerer et al., 2001; Thomas et al., 1992), and more recently, the Radiation-Attributed
Decrease of Survival (RADS) (Ulanowski et al., 2019).

Kellerer et al. (2001) discussed and evaluated the lifetime risk calculation methodology
and identi�ed �aws such as the sensitivity to demographic assumptions, and the lack of
standardized computational conventions. A thorough application of lifetime risk assess-
ments to various types of radiation-induced cancer have been presented by M. P. Little
et al. (2008, 2020). In the context of radon and dose conversion, a rich body of literature
exists, including multiple ICRP publications (ICRP, 1993, 2007, 2010). These assessments
often rely on risk models derived from the atomic bomb survivors LSS (Preston et al.,
2007).

Speci�cally for lung cancer related to occupational (chronic) radon exposure, lifetime risk
calculations derived from miner studies led to a new proposal for the epidemiological
approach for radon dose conversion coe�cients (Tomá²ek, Rogel, Laurier, & Tirmarche,
2008). This was a step forward since miners (chronic exposure) have di�erent exposure
characteristics compared to atomic bomb survivors (acute exposure), as in the LSS. Subse-
quent studies examined model assumptions, particularly smoking behaviour, and conducted
sensitivity analyses across di�erent miner cohorts and applied lifetime risk calculations to
speci�c populations (Chen et al., 2017; Hunter et al., 2015; Tomá²ek, 2020). The analyses
underscore the substantial impact of risk model structure, reference population choice, or
smoking behaviour on lifetime risk estimates.

The understanding of the exposure-risk relationship for radon and lung cancer improved
over the years, speci�cally by pooling of miner cohorts, leading to re�ned risk models
and corresponding lifetime risk estimates. Notable mentions are the established BEIR
VI and recent PUMA risk models (Kelly-Reif et al., 2023; NRC, 1999; Richardson et al.,
2022).

While uncertainties in lifetime cancer risk estimates have been well studied for acute ra-
diation exposure (NRC, 2006; UNSCEAR, 2021b; Xue & Shore, 2001), and are quanti�ed
through software tools as "RadRAT" (Berrington de Gonzalez et al., 2012) and "CONFI-
DENCE" (Walsh et al., 2020), comparable evaluations for lung cancer related to occupa-
tional (chronic) radon exposure are limited (Pawel & Puskin, 2003; Tomá²ek, 2020).



4. Updated risk models for lung

cancer due to radon exposure in

the German Wismut cohort of

uranium miners, 1946�2018

4.1. Publication overview

Context and motivation

The underlying publication (Kreuzer et al., 2023) follows the recommendation of UN-
SCEAR to focus on more contemporary uranium miners for research of lung cancer risk
at low radon exposures or exposure rates (UNSCEAR, 2021a). It presents updated and
re�ned risk models derived from the German uranium miners cohort study (Wismut co-
hort), which shape the exposure�risk relationship for lung cancer due to occupational radon
exposure and enable more precise lifetime risk estimates.

Key �ndings and scienti�c relevance

The updated Wismut risk models derived with the software Epicure con�rm and re�ne the
established association between radon exposure and increased lung cancer risk. Speci�cally
the sub-cohort of miners �rst hired in 1960 or later (1960+ sub-cohort), characterized by
low radon exposure and exposure rates with high-quality exposure assessment, provides
now, through the extended follow-up to 2018, risk estimates consistent with other inter-
national 1960+ sub-cohorts. This all together makes the 1960+ sub-cohort risk model the
preferred model to estimate lung cancer risk at low exposure and exposure rate levels.

Risk models are essential for estimating lifetime risks. Employing updated and re�ned
risk models enhances the accuracy of these estimates, which also contributes to the in-
ternational discussion on radon dose conversion coe�cients. This is especially true when
using the updated risk models �t on the 1960+ sub-cohort with its high-quality exposure
data. The updated methodology, in line with other international results, contributes to
the comparability of results between miner studies.
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Outlook and future directions

Continued follow-up of the cohort is expected to reduce statistical uncertainty, especially at
older ages within the 1960+ sub-cohort. This will provide a robust basis for future radon-
related lung cancer risk assessment. More modern risk modelling approaches such as excess
hazard models, may o�er certain advantages over methods from the established Epicure
software, see e.g. (Aÿenmacher et al., 2019). However, Epicure itself remains a highly
regarded and widely used tool within the radiation epidemiology community, continues to
be maintained, and regularly receives updates.

4.2. Background on material and methods

Here, additional background information on the German uranium miners cohort study
and the corresponding Wismut company is presented. Further, the methodology of risk
model �tting on miners cohort data is explained in more detail. This chapter emphasizes
the importance of employing valuable, robust, and sound radon-related risk assessment
models for estimating corresponding lifetime risks.

4.2.1. The German uranium miners cohort study

The German uranium miners cohort study (Wismut cohort) is a cohort study that was
started in the 1990s by the German Federal O�ce for Radiation Protection and comprises
almost 59, 000 male miners employed at the Wismut AG between 1946 and 1989, with 2.5
million person-years at risk, and 4, 329 con�rmed lung cancer deaths, with current passive
mortality follow-up 1946-2018 (Kreuzer et al., 2023). It is the largest single study of miners
occupationally exposed to radon and radon progeny worldwide. In addition, this cohort
has a long follow-up period of 42 years on average and a low percentage of loss-to-follow-up
with 3% (Kreuzer et al., 2023). The database contains information about di�erent miner-
speci�c endpoints such as (among others) radon exposure in WLM for every calendar year
between 1946 and 1989, date of beginning and end of employment at the Wismut company,
annual working days, and (if available) cause of death. Every 5 years a passive mortality
follow-up on the cohort with updated vital statuses and causes of death for the miners is
performed. The information is taken from death certi�cates and autopsy �les. Until now,
results from �ve passive mortality follow-ups from 1946 up until the year 1998, 2003, 2008,
2013, and 2018 were published (Grosche et al., 2006; Kreuzer et al., 2010, 2015, 2018,
2023).

The goal of the Wismut cohort study is to investigate health e�ects associated with em-
ployment in the Wismut company and veri�cation of established estimates of radon-related
lung cancer risk with an independent data set. Besides the e�ect of inhalation of radon
and radon progeny, the study investigates the health e�ects of multiple pathogens like
inhalation of uranium dust, �ne dust, silica dust, and arsenic dust, and exposure to exter-
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nal gamma radiation (Kreuzer et al., 2009). Among other results, this study contributed
to exposure-risk relationship insights on lung cancer and other cancers related to radon
(Fenske et al., 2025; Kreuzer et al., 2023), lung cancer by silica dust (Sogl et al., 2012),
and silicosis by silica dust (Kreuzer et al., 2013).

During the total period of uranium mining by the Wismut company from 1946-1989, three
di�erent periods are distinguished: In the period 1946-1954, working conditions were poor
with no radiation or work protection, only natural ventilation, and dry drilling for uranium
ore. There was no radon measurement and miners were exposed to high concentrations
of dust and radiation. From 1955-1970 the working conditions improved with radon mea-
surements, begin of radiation protection measures, several ventilation measures leading
to a decrease in radon concentration, and the introduction of wet drilling decreasing the
exposure by less swirled-up radon and dust particles in the drilling process. After 1970
international standards for radiation protection and occupational safety were introduced,
as well as individual radon measurements. Due to these improved protective measures, the
mean radon exposure reduced from 1955 on over the years reaching low exposure levels of
international radiation protection standards in the 1970s. The uranium mines were closed
with the German reuni�cation in 1990 (Grosche et al., 2006; Kreuzer et al., 2009).

Due to missing exact radon measurements in the early years of mining, the full cohort suf-
fers from high exposure uncertainty in these early years. Radiation exposure assessment
was carried out by using a detailed job-exposure matrix (JEM) which includes information
on radiation for each calendar year of employment between 1946-1989, each place of work
(underground, milling/processing, and surface), and each type of job. For the period from
1946 to 1954 without radon measurements, radon concentrations were derived retrospec-
tively by an expert judgment based on measurements from 1955. Information on the other
pathogens as dust and silica is also based on a similar job-exposure matrix (Kreuzer et al.,
2009). The 1960+ sub-cohort includes roughly 26, 000 miners and is characterized by low
radon exposure of high quality, o�ering a strong basis for lung cancer risk estimation at
low radon exposures and low exposure rates.

In total, more than 400, 000 persons were employed at the Wismut company between 1946
and 1989 with roughly 8, 000 compensations for radiation induced cancer as an occupational
disease by the end of 1999 (Schröder et al., 2002).

The corresponding mines were located in Eastern Germany in Saxony and Thuringia in the
Ore Mountains (Erzgebirge). Shortly after the Second World War, previously shut down
mines were re-opened by order of the Soviet Union to extract uranium, a material needed
for the construction of nuclear weapons. For that cause, the corporation Wismut AG was
founded with the code name WISMUT1 to disguise the nuclear intention of the company.
The operation was presented as bismuth and cobalt mining to mask uranium extraction.
Due to rich uranium deposits in the Ore Mountains, the Wismut AG quickly became the
main contributor of uranium in the Soviet Union. Today, the successor company Wismut

1Wismut is the German word for the mineral bismuth.
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GmbH (headquartered in Chemnitz) is a federal company entrusted with the restoration
and renaturation of the legacies of the Wismut mining industry. For further reading, the
thorough German source by Hiller and Ducke (1999) is recommended.

4.2.2. Risk model parameter estimation and software

The relationship between lung cancer risk and radon exposure is modelled using a relative
risk approach, as previously introduced (Section 3.1). The shape of the excess relative
risk term is de�ned by a preselected risk model structure. These risk model structures
are based on experience, international practices, and expert judgment. Studies on miners
have established that the relative risk of lung cancer increases approximately linearly with
cumulative exposure to radon and radon progeny. Additionally, e�ect-modifying variables
such as attained age, time since exposure, and exposure rate further in�uence this risk
(UNSCEAR, 2021a). Risk models contain (to be estimated) parameters accounting for
those e�ect-modifying variables.

Risk model parameter estimation theory

The risk model parameter estimates Θ̂ =
(
θ̂1, . . . , θ̂M

)
stated in the underlying publication

are computed with the established software Epicure (Preston et al., 1993) using maximum
likelihood methods with the theory and notation introduced in Section 3.1.2. A baseline
strati�cation parameter vector ∆ = (δ1, . . . , δK) with K = 720 strata is used.2 The
number of risk model parameters M depends on the chosen model and ranges from M = 1
to M = 12. For reference, the total number of groups N in the grouped dataset depends
on the complexity of the assumed categories and ranges approximately from 5, 000 to
500, 000.

The likelihood function L(∆,Θ|X), given grouped cohort dataX, with baseline risk predic-
tor ηi = ηi(∆) = δ1 +

∑K
k=2 δk1{k}(xi) and assuming independent and identically Poisson-

distributed observations, is expressed as:

L(∆,Θ|X) =
N∏

i=1

(
PYie

ηi(∆)(1 + ERRi (Θ))
)Ci e−PYie

ηi(∆)(1+ERRi(Θ))

Ci!
, (4.1)

216 categories for age, 15 categories for calendar year, and 3 categories for duration of employment results
in 16× 15× 3 = 720 di�erent baseline risk predictor estimates ηi.
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with log-likelihood

ℓ(∆,Θ|X) = logL(∆,Θ|X) =
N∑

i=1

Ci (logPYi + ηi(∆) + log (1 + ERRi (Θ)))

−
N∑

i=1

PYie
ηi(∆) (1 + ERRi (Θ))−

N∑

i=1

logCi!

∝
N∑

i=1

Ci (logPYi + ηi(∆) + log (1 + ERRi (Θ)))−
N∑

i=1

PYie
ηi(∆) (1 + ERRi (Θ)) .

This log-likelihood ℓ(∆,Θ|X) can then be optimized with usual optimization procedures to
obtain maximum-likelihood estimates (MLEs) Θ̂ and ∆̂. Note that the classical regularity
conditions to ensure an asymptotically normally distributed likelihood function are ful�lled
here, compare (Amemiya, 1985, Chapter 4).

The baseline strata vector ∆ is typically high-dimensional and simultaneously optimizing
for Θ̂ and ∆̂ is computationally expensive. Luckily, one can analytically deduce

∂

∂δ1
ℓ(∆,Θ|X) = S − eδ1

(
T1 +

K∑

k=2

Tke
δk

)
!
= 0, (4.2)

∂

∂δk
ℓ(∆,Θ|X) = Sk − Tke

δ1+δk !
= 0 for k = 2, . . . , K, (4.3)

where S =
∑N

i=1Ci, Sk =
∑

i|xi=k Ci and Tk =
∑

i|xi=k PYi (1 + ERRi(Θ)). Solving equa-
tion (4.3) for δk and plugging the result in equation (4.2) solving for δ1 yields

δ1 = log

(
S −

K∑

k=2

Sk

)
− log(T1),

δk = log(Sk)− log(Tk)− δ1 for k = 2, . . . , K.

With this analytical result, the optimal baseline strata parameters ∆ = ∆(Θ) are a func-
tion of the risk model parameter Θ and numerically deriving the MLEs Θ̂ and ∆̂ is reduced
to �nding Θ̂ because the baseline strata MLEs are obtained by evaluating ∆ at the MLE

Θ̂, i.e. ∆̂ = ∆
(
Θ̂
)
.

Besides parameter point estimates, corresponding con�dence intervals are of particular
interest. To derive these, standard errors of point estimates (i.e., the covariance matrix)
are obtained from the inverse of the Fisher information matrix I (∆,Θ) with

I (∆,Θ) =

[
P Q′

Q R

]
∈ R(K+M)×(K+M),
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where

P = (pk,k′)k,k′=1,...,K ∈ RK×K , pk,k′ = − ∂2

∂δk∂δk′
ℓ(∆,Θ|X),

Q = (qm,k)m=1,...,M ;k=1,...,K ∈ RM×K , qm,k = − ∂2

∂θm∂δk
ℓ(∆,Θ|X),

R = (rm,m′)m,m′=1,...,M ∈ RM×M , rm,m′ = − ∂2

∂θm∂θm′
ℓ(∆,Θ|X),

and Q′ denoting the transposed matrix of Q. The inverse of the Fisher information ma-
trix I (∆,Θ) evaluated at the ML estimate is an estimator for the asymptotic covariance
matrix (Rüger, 1998). One is particularly interested in the standard errors for the risk
model parameters Θ. The covariance matrix for the important risk model parameters Θ
is (R−QP−1Q′)

−1. This results from the inverse of the block matrix I (∆,Θ), see e.g.
(Lu & Shiou, 2002). In particular, it is insu�cient to derive R−1. Although the baseline
strata parameter estimates are not numerically derived, the covariance matrix for Θ must
be adjusted for the estimation of ∆.

Classical (1− α) · 100% con�dence intervals for the risk model parameter estimates θ̂m for
all m = 1, . . . ,M are derived via

θ̂m ± 1.96z1−α/2 ·
(
R−QP−1Q′)−1

mm
, (4.4)

where z1−α/2 is the standard-normal quantile at 1− α/2.

This estimation process is similarly explained in (Higueras & Howes, 2018) and contributed
to understanding the mechanisms behind the �tting process in Epicure. In particular,
the notation is adapted here. Note that this likelihood structure is di�erent from a usual
generalized linear models (GLM) (Nelder & Wedderburn, 1972) and typical tools for GLMs
cannot be applied here. In general, there is no suitable link function unless the ERR model
structure is simple (Higueras & Howes, 2018).

Software

Cohort studies in radiation epidemiology involve complex data structures with time-varying
variables and non-standard regression models, necessitating the use of specialized software
like Epicure (Preston et al., 1993). This software facilitates the grouping of datasets and the
use of internal Poisson regression to model excess relative risks as explained above.

The risk modelling software Epicure is often used in radiation epidemiology instead of R
(R Core Team, 2023) or similar modern statistical software because Epicure was devel-
oped in the 1980s explicitly for research questions emerging from radiation epidemiology
and corresponding data analysis. The development was motivated by the need for models
explaining excess relative risks, which were more suitable in describing exposure-risk rela-
tionships and e�ect modi�cations compared to Cox proportional hazard models. Further,
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Epicure provided solutions to create detailed person-year tables and the explicit modelling
of time-dependent variables. Epicure quickly became the standard for modelling radiation
health e�ects and found extensive application in various �elds including medicine, public
health, epidemiology, and economics. With over 1,000 citations in research papers, Epicure
remains an established tool in epidemiological research and data analysis.3 With Epicure
being recognized in the radiation epidemiology community, there was no demand for R
solutions. The agreement to one software for risk assessment supports the comparability
of results within the community. However, from today's perspective, the user experience
with Epicure is rather dated and in comparison, R o�ers a more intuitive and �exible
programming experience.

Epicure consists of a module for the creation of person-year or risk tables (grouped dataset),
including time strati�cation. Further there are speci�c modules for Poisson regression for
rates or counts, Cox regression for survival data, and binomial regression for case-control
data. The risk model parameter �tting process for this publication involves the modules for
the creation of person-year tables (grouped dataset) and the subsequent Poisson regression
as follows:

First, the raw cohort data is transformed, generating and storing time-varying variables
such as cumulative exposure or age at median exposure. A grouped dataset is then con-
structed by de�ning speci�c categories (or intervals) for various factors, such as radon
exposure, age, and duration of employment. This grouped dataset forms a matrix with
N rows for every combination of categories and columns for every category group (expo-
sure, exposure rate, age, calendar year, number of lung cancer cases, etc.). Within each
matrix cell, the person-time weighted mean value is calculated. Additionally, the sum of
lung cancer deaths and total person-years at risk is stored for each category combination.
Lastly, the Poisson regression module is applied to the grouped dataset for various risk
model structures ERR(t; Θ) (equation (3.7)) to obtain parameter estimates Θ̂.

While Epicure provides a powerful framework for risk modelling, certain limitations must
be acknowledged. The structure and dimension of the grouped dataset, particularly the
number of rows N , may be in�uenced by the chosen risk model speci�cation. For exam-
ple, models �tted to the 1960+ sub-cohort use fewer exposure rate categories compared to
models �tted to the full cohort (compare Table 2 and Table 3 in (Sommer et al., 2025)),
resulting in considerably smaller grouped datasets. This also applies to models of varying
complexity within the same cohort: simpler models may exclude e�ect modi�ers like age
at median exposure or time since exposure, which could lead to discarding seemingly irrel-
evant categories when constructing the grouped dataset. However, omitting such "empty"
categories can in�uence �nal estimates. Similarly, the choice of how to de�ne category
boundaries can in�uence results (Richardson & Loomis, 2004). Thus, even with identical
underlying raw cohort data, subjective choices in data grouping process prior to model
�tting can introduce biases or variability.

3This claim is based on information provided by Hirosoft, the developers of Epicure, available at https:
//hirosoft.com/epicure_short/ (accessed January 17, 2025).

https://hirosoft.com/epicure_short/
https://hirosoft.com/epicure_short/


5. Lifetime risks for lung cancer

related to occupational radon

exposure: a systematic analysis of

estimation components

5.1. Publication overview

Context and motivation

Lifetime risks for lung cancer related to occupational radon exposure play a key role in
several areas of radiation protection as in the epidemiological approach for radon dose
conversion (ICRP, 1993, 2007, 2010) or in the concept of radiation detriment (ICRP,
2022). Typically, such estimates are based on one speci�c combination of calculation
components (Tomá²ek, Rogel, Laurier, & Tirmarche, 2008), yet the sensitivity of lifetime
risks to variations in calculation components has not been thoroughly examined.

Key �ndings and scienti�c relevance

The underlying study (Sommer et al., 2025) systematically assessed the in�uence of various
calculation components on lifetime risk estimates, with particular focus on the LEAR per
unit of exposure WLM. It employed a custom-built, modular R solution to allow e�cient
recalculations under varying input assumptions. The analysis identi�ed the choice of risk
model with underlying miners cohort and baseline lung cancer mortality rates as major
drivers of lifetime risk variation, while showing that the radon exposure scenario � within
occupationally relevant bounds � has only a limited e�ect. In particular, there is no bene�t
from choosing complex scenarios over the internationally typical scenario of 2 WLM from
age 18-64 years to represent an occupational radon exposure scenario.

By emphasizing the importance of carefully selecting high-impact components, this study
contributes to a better understanding of the main drivers of lifetime risks. The validation
of the typical occupational exposure scenario, along with the practicable LEAR measure,
provides a practical framework for calculating lifetime risks, thereby simplifying method-
ological decisions for researchers and policymakers alike. The discovered strong impact
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of risk models and baseline lung cancer rates lays the groundwork for reasonable and fo-
cused lifetime risk uncertainty quanti�cation, as further explored in (Sommer et al., 2024)
(Chapter 7).

Outlook and future directions

Looking ahead, the substantial in�uence of baseline lung cancer mortality suggests that
future studies should consider country-speci�c lifetime risk calculations to better re�ect
regional health contexts. Additionally, the insights gained from this work motivate a more
targeted approach to uncertainty assessment in lifetime risk estimation.

5.2. Background on material and methods

Here, additional information related to in�uential lifetime risk calculation components as
the utilized mortality data and risk model cohorts is presented.

5.2.1. Mortality rate data

A lifetime risk estimate for lung cancer related to radon exposure depends (among other
components) on all-cause and lung cancer baseline mortality rates and the corresponding
choice of mortality data. For sensitivity analyses here, data from the World Health Or-
ganization (WHO) Mortality Database (WHO, 2022) were utilized. This database is a
comprehensive freely accessible online data repository managed by the WHO. It collects
and collates population and mortality data since 1950 from over 100 countries worldwide,
enabling analysis and comparison of death rates and causes across di�erent regions and
calendar years. It includes information on population size, deaths by cause, sex, age, and
year, with the causes of death classi�ed according to the International Classi�cation of Dis-
eases (ICD). This data is transmitted from national civil registration and vital statistics
systems. All mortality data is reported annually by WHO member states, maintaining high
standards for data quality and reliability to support cross-national comparisons. Despite
its extensive coverage, the database faces challenges such as timely data submission and
varying completeness of data sets, which can a�ect the overall data accuracy and usability.
This valuable database provides essential data for comparative epidemiological studies and
is often utilized by researchers. In addition, the WHO provides various tools that ease the
retrieval and analysis of data, supporting the use of the database.

It is important to note that the WHO database does not include data on potential con-
founders such as smoking behaviour, a signi�cant factor in lung cancer mortality. Given
this, additionally information from the Organisation for Economic Co-operation and De-
velopment (OECD, 2023) Health Statistics on tobacco consumption (% of the population
aged 15+ who are daily smokers) by country and year is integrated to derive the heavy- and
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light-smoker population mortality rates. Note that rankings of smoking prevalence might
vary depending on the measures and sources of smoking behaviour data used. Another
notable comprehensive resource also providing extensive information on global smoking
behaviour is The Tobacco Atlas (2022).

In parallel, the OECD Health Statistics o�ers an extensive and comprehensive set of data
speci�cally focused on health and healthcare systems across the OECD member states, as
well as some key partners and additional nations. The database covers a wide range of
health indicators including life expectancy, hospital beds, health workforce, health risks
like tobacco consumption and obesity rates, total health spending, and patient-reported
indicators among others. Regularly updated, these statistics are valuable for performing
comparative epidemiological analyses.

5.2.2. Risk models and cohorts

This work compares existing and established models for the excess relative risk ERR(t; Θ)
at all ages t across di�erent miner cohorts. Note that excess absolute risk models are not
typically applied for modelling lung cancer risks related to occupational radon exposure
(UNSCEAR, 2021a).

A distinction is made between categorical and parametric (continuous) risk models. Cat-
egorical models are characterized by factors that can change abruptly based on input
variables. For example, one factor might apply to the age group 55-59 and a di�erent fac-
tor to the age group 60-64 years indicating a sharp change transitioning from age 59 to 60.
In such categorical models, distinct factors are used for di�erent categories of input vari-
ables. Conversely, parametric (continuous) models do not have abrupt changes in factors.
Instead, they employ a continuous relationship by applying a uniform factor to the input
variable. For instance, a speci�c factor might be multiplied by the attained age, ensuring
a smooth transition without abrupt changes. Note that, although technically both model
types use parameters estimated from cohort data, the radiation epidemiology community
has adopted the term "parametric" to speci�cally refer to continuous models.

Categorical risk models

Jacobi model

To recognize work-related illnesses, employers' liability insurance associations introduced
in the 1990s the task of calculating the probability of lung cancer causation due to occupa-
tional radiation exposure among previous uranium miners in Eastern Germany at Wismut
AG. Therefore, Jacobi (1993) developed a risk model (Jacobi model) to calculate the excess
relative risk of lung cancer death with the primary objective to evaluate the probability of
causation of lung cancer in these miners (ICRP, 1993, A.3.3 (A23)). The developed model
considerably advanced the understanding of radon-induced lung cancer risk in the early
1990s, and was later adopted by the ICRP in their report 65, where it is referred to as the
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"GSF model" (ICRP, 1993). This model extends earlier approaches that combined epi-
demiological and dosimetric methods as in the ICRP publication 50 (ICRP, 1987) and the
BEIR IV report (NRC, 1988). Jacobi's work represented a more sophisticated integration
of these techniques.

Jacobi's approach incorporated data from six key miner cohorts: uranium miners in Bo-
hemia (former Czechoslovakia), the Colorado Plateau (USA), New Mexico (USA), Ontario
(Canada), and Eldorado (Canada), as well as from iron ore miners in Malmberget (Swe-
den). All mines were followed up between 1948 and 1985. In total, the cohort consists
of around 30,000 miners with 600,000 person-years at risk and 912 observed lung cancer
deaths. This comprehensive inclusion of diverse cohorts enhanced the model's applica-
bility across di�erent mining contexts and exposure scenarios. The model considered the
physical behaviour of radon and radon progeny in the respiratory tract, estimated doses
to di�erent parts of the lung and accounted for varying radiosensitivity of lung cell types.
This biophysical basis provided a nuanced understanding of the exposure-risk relationship
(Jacobi, 1993). In addition to cumulative radon exposure, the Jacobi model incorporates
factors for age at exposure and time since exposure.

The ICRP's adoption of the Jacobi model in the ICRP report 65 adjusted the model by
a uniform factor of 0.83 to account for risk overestimation and standardized radon risk
assessment internationally, providing a framework for setting action levels in homes and
workplaces. It enabled the calculation of dose conversion factors and integrated radon
protection into the broader system of radiological protection (ICRP, 1993). This adjusted
Jacobi model was used to compute initial factors for radon dose conversion factors and
continues to be a reference for legal decision-making in Germany up to today (Strahlen-
schutzverordnung [StrlSchV], 2021).

BEIR VI model

The BEIR VI report is a thorough scienti�c study conducted by the National Research
Council (NRC) of the United States, focusing on the health risks associated with exposure
to radon and other sources of ionizing radiation (NRC, 1999). Published in 1999, the
report is part of a series of BEIR reports that examine the e�ects of low-level radiation
exposure on human health. It is well-established from previous studies on uranium min-
ing and residential exposure that radon and radon progeny increase the risk of lung cancer
(Lubin, 1994; UNSCEAR, 1994). However, due to the uncertainties at lower levels of radon
exposure, such as in living rooms and buildings in general, these risks were re-evaluated
with the BEIR VI report. For this purpose, information on lung cancer was collected from
miners who were mostly exposed to high levels of radon, as risk estimates from studies in
homes alone were inadequate. In total, the analysis includes data from 11 di�erent epi-
demiological studies: miner studies from China, former Czechoslovakia, Colorado (USA),
Ontario (Canada), Newfoundland, Sweden, New Mexico (USA), Beaverlodge (Canada),
Port Radium (Canada), Radium Hill (Australia), and France. Together, these studies en-
compass approximately 60, 000 miners, with a total of 900, 000 person-years at risk and
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2, 674 observed lung cancer deaths. The study recommends two similar categorical models:
the exposure-age-concentration and the exposure-age-duration model, both only di�er in
the consideration of exposure concentration (exposure rate) or exposure duration. Both
models incorporate factors for cumulative exposure, time since exposure, and attained age.
The �nal model parameter estimates were derived by �tting the complex model structure
to the data of 11 epidemiological studies.

The BEIR VI report and the associated risk models contributed essentially to the un-
derstanding of radon-related health risks and had a considerable impact on public health
policies and radiation protection standards, such as mitigation strategies implemented
by the Environmental Protection Agency (EPA) in the United States (Pawel & Puskin,
2003).

PUMA models

The Pooled Uranium Miners Analysis (PUMA) risk models follow the BEIR VI exposure-
age-concentration model structure but parameter estimates are derived by �tting the model
structure to the PUMA cohort data (full cohort and 1960+ sub-cohort). The PUMA cohort
is the largest cohort of uranium miners worldwide, with the Wismut cohort representing
approximately half of all miners in the PUMA cohort (Rage et al., 2020). It encompasses
several large and important miner cohorts and re�ects the latest advancements in radiation
risk modelling. Hence, risk estimates derived from this cohort are highly relevant. More
details about the PUMA cohort are found in Section 6.2.2.

Parametric risk models

Joint Czech-French model

This model originates from (Tomá²ek, Rogel, Tirmarche, et al., 2008) and considers, in
addition to the cumulative exposure in WLM, also the e�ect-modi�ers age at median expo-
sure and time since median exposure. The model is based on data observed from Czech and
French uranium miner studies until 1995. Both cohorts consist of nearly 5, 000 individuals
and are characterized by low exposure over a prolonged period. Motivated by a European
project, this study aimed at a better understanding of the exposure-risk relationship for
radon-related lung cancer at low exposures (Tirmarche et al., 2003). Accurate quanti�-
cation based on occupational exposure in miners was still required to estimate the risk
and factors that modify the dependence on cumulative exposure. Therefore, new analyses
based on a cohort of miners with low levels of exposure, low exposure rate, and good qual-
ity of exposure estimates were conducted. Similar to the other mentioned models, age at
exposure and time since exposure are signi�cant e�ect modi�ers in this study, in addition
to cumulative exposure.
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Wismut models

The Wismut models from Kreuzer et al. (2018) also aim to determine the risk factors at
low exposures and low exposure rates. Here, the large Wismut cohort study with around
60, 000 uranium miners, 2.3 million person-years at risk, and 3, 942 observed lung cancer
deaths was used as a data basis. The Wismut cohort characteristics are explained in
detail in Section 4.2.1. Note that the underlying publication employs slightly older risk
models from the Wismut cohort follow-up 1946-2013 for lifetime risk sensitivity analyses
instead of follow-up 1946-2018. The older models were chosen because they o�er greater
heterogeneity in the range of selected models. Analogous to the Joint Czech+French cohort
model, in addition to cumulative exposure, the e�ect modifying variables recommended
by UNSCEAR (2021b), age at median exposure and time since median are signi�cant
factors.

5.2.3. Exposure scenario data

The exposure scenario de�nes the radon exposure at every age t in units of WLM. Since
most e�ect modi�ers in the considered risk models are sensitive to changing (cumulative)
exposure, the magnitude of the excess relative risk term ERR(t; Θ) is notably in�uenced by
the chosen exposure scenario at every age t. Here, exposure scenarios with chronic exposure
over several years to represent occupational exposure scenarios were chosen. Note that
also (high) acute exposure scenarios at one speci�c time point are important, especially for
detriment calculations (ICRP, 2022). However, they are of lesser relevance in occupational
settings and are brie�y examined in the supplement of the publication.

The chosen exposure scenarios are the international standard choice of 2 WLM per year
from age 18-64 years, compare (Tomá²ek, Rogel, Laurier, & Tirmarche, 2008). Further
with the rich data on miner exposures in the Wismut cohort study, three di�erent ex-
posure scenarios representing very high, high, and low occupational radon exposure were
constructed from real exposure data (compare Section 4.2.1). Exposure data are reported
in calendar years. To enable age-speci�c analyses, individual ages at exposure were derived
using birthdates of miners.

One major advantage of the constructed Wismut exposure scenarios is the non-homogeneity
in exposure across ages in contrast to the homogeneous exposure of 2 WLM from age 18-64
years. This allows analysing age at exposure e�ect in the LEAR (and other lifetime risk
measures) in more detail.
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6.1. Publication overview

Context and motivation

Lung cancer risk from radon exposure remains a key concern in radiation epidemiology.
To improve the precision and comparability of risk estimates, the Pooled Uranium Miners
Analysis (PUMA) study was initiated to get more precise estimates of the lung cancer
risk associated with radon based on standardized statistical analyses of established miner
cohorts (Rage et al., 2020). Previous PUMA publications have addressed various aspects of
the pooled cohort, including the cohort pro�le (Rage et al., 2020), standardized mortality
ratios among miners (Richardson et al., 2021), and radon-related lung cancer mortality for
both the 1960+ sub-cohort (Richardson et al., 2022) and the full cohort (Kelly-Reif et al.,
2023).

The underlying study (Kreuzer et al., 2024) builds upon these e�orts by determining the
LEAR per unit of exposure (LEAR per WLM) using risk models derived from PUMA
data, while also incorporating established models from earlier uranium miner studies, in-
cluding the recently updated Wismut cohort models (Kreuzer et al., 2023). The use of
a standardized calculation methodology enhances the comparability of LEAR estimates
across cohorts. Further, the quantity LEAR per WLM is employed for the "epidemio-
logical" approach for radon dose conversion coe�cients (Section 6.2.1) and there has been
ongoing scienti�c controversy regarding the most appropriate value for this dose conversion
coe�cient (Harrison, 2021; Laurier et al., 2020; Marsh et al., 2021).
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Key �ndings and scienti�c relevance

The derived lifetime risks in this study are consistent with previous results based on smaller
studies and the derived range of estimates is also compatible with the dosimetric approach
for radon dose conversion coe�cients (Harrison, 2021). This analysis con�rms that life-
time risk are a suitable metric to compare risk models across cohorts, despite substantial
di�erences in exposure levels and risk model structure. Further it demonstrates, across
multiple cohorts, that risk models derived from the 1960+ sub-cohort translate to con-
siderably higher excess relative risks and corresponding lifetime risks. Overall this shows
that current risk models describing radon-risk mechanisms are well understood and the
international expertise on this topic is steadily increasing.

This PUMA paper addressing questions related to radon dose conversion has a consider-
able impact on the radiation protection community. The identi�ed range of LEAR per
WLM estimates provides a clear and evidence-based answer to previously open questions
regarding the epidemiological approach for radon dose conversion. As the range aligns well
with the dosimetric approach (Harrison, 2021; ICRP, 2017), this study also strengthens
the scienti�c foundation of dose conversion practices. Further, this work complements sen-
sitivity analyses conducted in (Sommer et al., 2025) by systematically comparing multiple
heterogeneous risk models derived from di�erent cohorts.

Outlook and future directions

Future work incorporating extended follow-up of individual PUMA studies will allow for
further re�nement of risk estimates, particularly for the 1960+ sub-cohorts. Alongside
steadily improving statistical methods, continued research may enhance the detection of
radon-related risks and potentially reveal reliable evidence for health e�ects beyond lung
cancer, including other cancers and non-cancer diseases (Fenske et al., 2025; Henyoh et al.,
2024).

6.2. Background on material and methods

Here, the important topic of radon dose conversion and its implications are introduced,
followed by an overview of the PUMA cohort.

6.2.1. Radon dose conversion

The following description is based in parts on documents and materials from the German
Federal O�ce for Radiation Protection. Corresponding information can also be found in
(Breckow, 2018; Marsh et al., 2021; Schnelzer & Fenske, 2019).
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Introduction

Radon dose conversion coe�cients are employed to convert radon exposure � calculated
as the product of radon activity concentration and exposure time � into a dose quantity,
such as e�ective dose (Stather, 2004). These coe�cients re�ect the relationship between
the activity concentration of radon and its decay products in a given environment and the
resulting dose received by an individual over time. They account for the speci�c radiological
properties of radon, and the physiological response of human tissues and organs to radon
exposure.

Central authorities in the �eld of radiation protection like ICRP and UNSCEAR hold di-
vergent views on the optimal use of radon dose conversion coe�cients. The question of
which factors should be employed in such conversions is a complex and internationally
debated topic (Harrison, 2021; Müller et al., 2016). This has several reasons: Firstly,
the determination of radon dose coe�cients is inherently complex. There are two distinct
concepts and calculation methods associated with the "epidemiological" and "dosimet-
ric" approaches, both of which are subject to considerable uncertainty. Additionally, the
magnitude of the coe�cients has practical implications for radiation protection and public
health: for example, by an increase in the radon dose coe�cient for both radon in homes
and radon in workplaces, the same radon exposures lead to higher e�ective doses. At
workplaces, this means that the requirements of occupational radiation protection have
to be met more frequently and the limit values for the e�ective dose are exceeded more
often. Accordingly, the pressure to implement costly measures to reduce the radon activity
concentration would increase considerably.

In Germany, radon exposure is regulated under the Strahlenschutzgesetz (StrlSchG, En-
glish: Radiation Protection Act). The StrlSchG sets a reference level for the averaged
annual radon activity concentration of 300 Bq/m³ for indoor workplaces and recreation ar-
eas. If radon levels exceed this limit, reduction measures must be implemented (StrlSchV,
2021). Should concentrations remain high despite these measures, the e�ective dose is
calculated using the radon dose coe�cient to determine further action. The StrlSchG also
mandates that occupational radiation protection requirements must be met if the e�ective
dose exceeds 6 mSv per calendar year due to radon exposure.

Approaches to determine dose coe�cients

There are two main approaches for converting radon exposure into radon dose: the epi-
demiological and the dosimetric approach. Both approaches are outlined and compared in
this paragraph.

Epidemiological approach

The epidemiological approach is based on the following idea: radon exposure associated
with a certain increase in health risk is equated with the e�ective dose that leads to the
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same increase in risk. This makes it possible to derive which radon exposure corresponds to
which dose and how these quantities can be converted into each other. The risk estimates
are derived from epidemiological studies (Beck, 2017; Marsh et al., 2010).

The approaches to calculate the risk per exposure unit and per dose unit di�er considerably.
Firstly, completely di�erent risk measures are calculated: The lifetime excess absolute risk
is calculated per exposure unit (LEAR per WLM), while the so-called "detriment" is cal-
culated per dose unit, in which loss of quality of life, relative loss of lifetime and heritable
e�ects are also taken into account. While the LEAR per exposure unit only considers the
risk of lung cancer, the detriment per dose unit includes 13 other types of cancer in addition
to lung cancer. Furthermore, the study populations based on which the risks were deter-
mined also di�er: the LEAR per exposure unit is calculated based on miner studies (only
men, heavy work), whereas the detriment per dose unit is essentially determined based
on the atomic bomb survivors Life Span Study in Japan (general population) (Preston
et al., 2007). The exposure situations therefore di�er notably: the miners were exposed to
chronic, internal exposure (i.e. within the body) to high-LET radiation for many years.
The radiation energy was mainly absorbed by the lungs. The atomic bombings, on the
other hand, exposed people to acute, external low-LET radiation. The radiation energy
a�ected not only the lungs but the entire body. In addition, the risk models show clear
di�erences. Overall, the epidemiological approach is based on many assumptions and pa-
rameters, and the resulting conversion factors are associated with great uncertainties.

Dosimetric approach

The dosimetric approach is concerned with the calculation of radiation doses within the
human body (Hofmann & Winkler-Heil, 2011; Porstendörfer & Reineking, 1999). Bioki-
netic models track the duration of radionuclides from a certain exposure remaining within
speci�c body regions. For example, the "Human Respiratory Tract Model" is utilized for
radon and its progeny in lung tissues (ICRP, 1994). These models also estimate the num-
ber of nuclear transformations that release energy in di�erent body regions. Dosimetric
models then employ radiation transport programs, typically based on Monte Carlo meth-
ods, to determine the average absorbed dose by the organs, accounting for various types of
radiation (alpha, beta, gamma) (ICRP, 2016). The sum of the absorbed doses for an organ
weighted with radiation weighting factors yields the organ equivalent dose. Finally, the
e�ective dose is calculated as the sum of these organ equivalent doses, weighted by tissue
weighting factors (D. R. Fisher & Fahey, 2017; McCollough & Schueler, 2000). In general,
e�ective doses derived with the dosimetric approach are model-based estimates subject to
large uncertainties. This is because many essential variables are unknown and assumptions
have to be made, compare e.g. (Makumbi et al., 2024). Consequently, the dose is depen-
dent to a considerable extent on the often insu�ciently known initial assumptions (e.g.,
the size and solubility of the inhaled particles). Furthermore, many of the metabolic and
physiological processes involved can only be described approximately.
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Comparison of both approaches

Both approaches are associated with large uncertainties that are challenging to compare.
Still, the epidemiological and dosimetric approaches provide estimates of radon dose coe�-
cients that are of approximately the same order of magnitude, although the two approaches
are independent of each other and are based on completely di�erent assumptions (Marsh
et al., 2021; Stather, 2004). The epidemiological approach is supported by the fact that
risk estimates per exposure unit and per dose unit are based on extensive and reliable epi-
demiological studies. It is reasonable to conclude that both risk estimates are well-founded
in their own right. Nevertheless, the idea of equating the two risk estimates is questionable
due to the discrepancies in methodology and data sources. The results of the comparison
are also highly dependent on the choice of risk models derived from miner studies, including
e�ect-modifying variables and the assumptions for the exposure scenario and population
structure. One argument in favour of the dosimetric approach is that it is already used for
all other radionuclides, thus ensuring a uniform approach.

Contribution of this study to dose conversion

This study calculated the lifetime risks related to radon exposure as part of the PUMA
project and made a considerable contribution to determining and validating these lifetime
risks across multiple international cohort studies. It serves as the basis for the epidemio-
logical approach to dose conversion, demonstrating results that are consistent with those
obtained using the dosimetric approach in (ICRP, 2017). Further, the currently applied
dose conversion coe�cients e.g. in Germany � 4 mSv/WLM for homes and public settings,
and 5 mSv/WLM for workplaces (StrlSchV, 2021) � fall at the lower end of the derived range
of coe�cients. Consequently, the ICRP proposes higher conversion coe�cients (dosimetric
approach), which is supported by results from this study (epidemiological approach).

6.2.2. PUMA cohort description

PUMA is a cohort mortality study that represents the largest study of uranium miners
conducted to date, encompassing 119,709 miners, including open pit miners, underground
miners, and surface workers, totalling 4.3 million person-years at risk, and 7,754 reported
lung cancer deaths (Kreuzer et al., 2024). The miners, mostly men, were hired between
1942 and 1996 and followed up between 1946 and 2013. The study size is achieved by
pooling eight cohorts of uranium miners from Canada, Europe, and the United States.
In particular, it advances upon the established pooled study from the BEIR VI report
from the late 1990s (NRC, 1999). PUMA consolidates data from several of the largest
epidemiological cohort studies of uranium miners worldwide (Rage et al., 2020).

The PUMA study found a strong positive association between cumulative radon exposure
and lung cancer across all cohorts, with lung cancer accounting for approximately half of all
cancer-related deaths. Lung cancer mortality was consistently elevated relative to national
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or regional reference rates, with the magnitude varying for di�erent radon exposure levels
(Rage et al., 2020). However, associations between radon exposure and cancers other
than lung cancer remain inconclusive, likely due to the much lower absorbed doses to
other organs compared to the lungs, making any excess risk small (Fenske et al., 2025).
Large studies like PUMA are needed to detect such associations, but results across cohorts
for cancers such as larynx, brain, kidney, stomach, and leukaemia, as well as non-cancer
diseases like circulatory system diseases, remain mixed.

The PUMA study's main advantages include its exceptionally large sample size, the largest
of its kind, long-term follow-up, high-quality quantitative exposure data, particularly for
more recent miners, and the ability to assess radon-related risks across a wide range of
exposure conditions. This allows for more precise analyses of lung cancer and other health
outcomes. Additionally, the study addresses confounding factors like diesel and arsenic
exposure.

However, the study's reliance on mortality data instead of incidence data and historical
exposure misclassi�cation, especially in older cohorts, pose limitations. Further, the poten-
tial heterogeneity between included cohorts (e.g., di�erences in exposure levels and mining
practices), may introduce biases.

In summary, the PUMA studies provide an extensive database that includes thousands of
miners and years of follow-up, enabling the precise estimation of cancer risks associated
with di�erent levels and durations of radon exposure. By pooling data from multiple studies
across countries, PUMA o�ers a broader and more accurate assessment of radon-related
health risks compared to smaller, individual studies.



7. Methods to derive uncertainty
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radon exposure

7.1. Publication overview

Context and motivation

Lifetime lung cancer risk estimates related to occupational radon exposure can in�uence
regulatory decisions on radon mitigation strategies to protect the public from excessive
exposure (compare to detriment (Breckow & Emami, 2016) or dose conversion in Section
6.2.1). However, uncertainties associated with these estimates are hardly quanti�ed in the
literature (Pawel & Puskin, 2003; Tomá²ek, 2020), despite their relevance for informed
decision-making and e�ective risk communication. The underlying study (Sommer et al.,
2024) aims to �ll this gap by systematically deriving and discussing reliable uncertainty
intervals for lifetime risk estimates in particular based on risk models from Kreuzer et al.
(2023), using the German Wismut uranium miners cohort as a practical example. In gen-
eral, uncertainty intervals convey how precise or reliable single estimates are, contributing
to scienti�c integrity. Here, it contributes to a more complete understanding of the risks
associated with radon exposure.

Key �ndings and scienti�c relevance

This work showed that risk model parameter sampling uncertainty describes an adequate
representation of overall lifetime risk uncertainty and introduced two methods to derive
corresponding uncertainty intervals. The proposed Approximate Normality Assumption
(ANA) approach proves to be both practical and suitable for radiation protection purposes.
In addition, an alternative Bayesian approach was explored o�ering greater �exibility and a
more intuitive interpretation of uncertainty. However, this approach requires considerable
computational resources and relies on subjective prior assumptions (Ferson, 2005). While
uncertainties in baseline mortality rates are also relevant, they play a comparatively less
critical role here. The derived uncertainty intervals correspond well to the range of lifetime
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risk estimates from miner studies in the literature, thus lifetime risk variability derived by
both methods are mutually con�rmed (Kreuzer et al., 2024).

Given its practicality and transparency, the ANA approach remains the preferred choice
to derive uncertainty intervals for most applications in radiation protection. Nonetheless,
the Bayesian approach may o�er substantial advantages by providing a �exible framework
to integrate results and combine knowledge from distinct miner cohorts, provided that the
choice of priors is well-justi�ed.

Overall, the introduced methods expand the methodological toolbox for uncertainty as-
sessment by providing the �rst comprehensive quanti�cation of statistical uncertainty in
lifetime risk estimates related to occupational radon exposure. These uncertainty inter-
vals enable formal comparisons between di�erent lifetime risk estimates, especially across
miner studies, for example by examining interval overlap, thereby enhancing the inter-
pretability and credibility of such estimates in radiation protection and regulatory decision-
making.

Outlook and future directions

Despite promising methodological developments, certain areas remain to be explored. The
applied risk models are speci�c to the Wismut cohort, and results may di�er for other
miner cohorts with varying characteristics. More consistent data grouping and model
�tting practices across miner studies could improve comparability and reduce ambiguity in
risk estimates (Richardson & Loomis, 2004). Improved reporting standards and accessible
R packages for model development and uncertainty analysis, as proposed by Higueras and
Howes (2018) and Lee et al. (2022), could enhance reproducibility and methodological
clarity. Longer follow-up, especially of the 1960+ Wismut sub-cohort, o�ers potential
to reduce uncertainties and strengthen evidence, as this sub-cohort bene�ts from more
accurate exposure data compared to the earlier years of mining (Kreuzer et al., 2009).
Future work may explicitly explore country-speci�c mortality uncertainties, account for
smoking behaviour once reliable models are developed (Rage et al., 2020; Zhang et al.,
2020), and explore other �exible survival modelling techniques such as Cox proportional
hazard or Accelerated-Failure-Time (AFT) models (Aÿenmacher et al., 2019). To support
informed decision-making, uncertainty quanti�cation should accompany point estimates,
as it provides a more complete understanding of lifetime risk estimates.

7.2. Perspective on lifetime risk uncertainties

This section provides an overview of uncertainty in statistics and epidemiology, including
types of uncertainties and methods for their assessment. It also examines speci�c un-
certainties in estimating lifetime risks for lung cancer due to radon exposure, detailing
statistical inference and speci�c uncertainties in calculating these risks.
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7.2.1. Fundamental concepts

What are uncertainties in epidemiology and statistics

In the �eld of pure mathematics, for example, a strictly prede�ned set of assumptions
can be undoubtedly proven to imply a result. A correct mathematical proof is free of
uncertainty because, by de�nition, there is complete knowledge about the assumptions
and the behaviour of mathematical objects. In contrast, epidemiological investigations are
subject to the inherent complexity of biological systems and variability among individuals.1

Gathered data (observations, measurements) may deviate from the true underlying value,
and proposed relationships may fail to re�ect the true causal mechanisms (Rothman et al.,
2008).

The di�erence between an estimate of a quantity and its true (but unknown) value is re-
ferred to as the "error", which itself cannot be directly observed or quanti�ed (UNSCEAR,
2015, II A. Statistical concepts of uncertainty). The derivation of probability distributions
for such errors is called "uncertainty analysis" or "uncertainty assessment", while express-
ing uncertainty in numbers (e.g. through uncertainty intervals) belongs to "uncertainty
quanti�cation".

Most statistical analyses begin with data (i.e. observations, measurements) extracted from
dynamic, complex, and often incomplete systems. This introduces multiple sources of er-
ror and uncertainty. Especially in epidemiology, data is often limited due to feasibility
constraints, ethical considerations, or historical context. Modelling assumptions � such as
those regarding smoking behaviour or exposure patterns � are often simpli�cations. As a
result, statistical models may not fully capture the complexity of the underlying processes.
This limits their explanatory power and complicates both interpretation and inference:
understanding relationships between observed variables and drawing conclusions about
potential causes is inherently uncertain. A central challenge lies in appropriately char-
acterizing and accounting for these uncertainties in both models and their interpretation
(Bonita et al., 2007; Clayton & Hills, 1993).

Establishing causal e�ects in epidemiology and statistical analyses is particularly di�cult.2

The broader problem of inferring causation from observational data has been widely studied
(Hernán, 2004; Pearl & Mackenzie, 2019; Rothman & Greenland, 2005; Spirtes et al.,
2001).

Occurrence of di�erent types of uncertainties

Recognizing uncertainties is crucial for accurately interpreting the �ndings of scienti�c
studies, while accounting for uncertainties improves the reliability of the results. On the

1For example, Clayton and Hills (1993) refers to epidemiological models as "stochastic" in contrast to
"deterministic" models that describe predictable phenomena.

2The often cited "Bradford Hill Criteria" (Fedak et al., 2015; Hill, 1965) comprises nine principles to aid
in establishing evidence for a causal e�ect in epidemiological research.
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level of statistical analysis, one is confronted with the limitation of data, data measurement
error (for continuous data) and data misclassi�cation (for categorical variables) (Gustafson,
2003), uncertainty in statistical estimates that results from drawing a sample from the en-
tire population (sampling uncertainty), and uncertainty in choosing and deriving a suitable
model structure (model uncertainty). On an individual level, cognitive biases a�ect statis-
tical reasoning, decision-making, and therewith risk communication. For example, the ten-
dency to rather publish signi�cant than non-signi�cant results (publication bias) (Rosen-
thal, 1979; Rothstein et al., 2005), or the proneness to favour information that con�rms
their pre-existing beliefs while disregarding or downplaying information that contradicts
them (con�rmation bias) (Nickerson, 1998). Such tendencies are prone to "p-hacking",
the manipulation of statistical analyses and data to achieve statistically signi�cant results
(p-values), often by conducting multiple tests or selectively reporting �ndings (Head et al.,
2015). Further, especially in the �eld of public health and epidemiology, the goal is of-
ten risk mitigation and risk education (e.g. smoking and lung cancer (Pesch et al., 2012;
IARC, 2004)). However, the interpretation of risk in the target group is not always rational
(Kahneman, 2012; Slovic et al., 2004).

Overall, quantifying uncertainties may involve assessing the extent of missing knowledge
in the data, sampling variation, limitations in capturing the true underlying mechanisms
(model uncertainty), and decisions made during the estimation process, many of which are
invisible to the target group, and cognitive biases in general.

Quantifying cognitive biases is hardly possible due to the inherent variability of human
reasoning processes (Bierema et al., 2021; Enke & Graeber, 2023). Quantifying missing
knowledge in the data and sampling uncertainty is achievable to some extent. Other sources
of uncertainty are challenging to quantify (Thomas et al., 1992). However, knowing of their
existence improves statistical reasoning. This overview shows that practically every step
from data generation (measurement), statistical analysis, presentation and interpretation
of results is prone to errors and biases.

Methods for uncertainty assessment

Here, an overview of common techniques to assess uncertainty in statistical analysis and
radiation epidemiology are presented. Those include methods to assess parameter uncer-
tainty, measurement errors and attempts to set up universal frameworks for statistical
analysis.

The two most commonly used methods for statistical inference are the frequentist inference
and the Bayesian inference (Held & Bové, 2021). Both rely on a statistical model (e.g. the
likelihood function) and unknown parameters to be �t to the data at hand. Here, statistical
inference is understood as the process of using observations y of a sample Y to draw
conclusions about the distribution of Y itself. Such inference relies heavily on underlying
distributional assumptions (Rüger, 1998). Both frequentist and Bayesian inference come
with a natural quanti�cation of parameter estimate uncertainty with con�dence intervals
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(frequentist) and credible intervals (Bayesian). More details on frequentist and Bayesian
inference and methods are provided in Section 7.3.1.

Speci�cally, measurement errors in the data, especially in epidemiology, are typically ac-
counted for with methods called "Simulated Extrapolation (SIMEX)" and "Calibrated
Regression" (Keogh et al., 2020; Wallace, 2020). For SIMEX, additional measurement er-
rors are added to the data in a controlled manner by simulation. Estimates are computed
from this manipulated data, establishing a trend between the estimates and the variance
of the added errors. Final SIMEX estimates are obtained by extrapolating this trend back
to the case of no measurement error (Cook & Stefanski, 1994; Hardin et al., 2003). For
regression calibration, the basic idea is to substitute the unobserved true exposure with
a predicted value from a calibration function with takes into account the observed data
and other covariates. Then, standard inference is applied to this predicted value. Finally,
standard errors are calculated, accounting for the prior substitution (Carroll et al., 2006;
Fuller, 1987; Spiegelman et al., 1997). In particular, the literature di�erentiates between
di�erent types of measurement errors and provides corresponding error correction methods
(Keogh & White, 2014).

For situations with more complex and numerous sources of uncertainty, modern "Hier-
archical Bayesian" methods are employed (Ellenbach et al., 2022; Khazaei et al., 2023).
A hierarchical model allows for the distinction of various levels of information and the
incorporation of multiple complex sub-models connected by conditional independence as-
sumptions.

Finally, Monte Carlo simulations are a powerful, �exible, and practical method able to ac-
count for various uncertainties (Robert & Casella, 2005). Monte Carlo techniques propose
probability distributions on model components and use repeated sampling from these distri-
butions (with the help of computers), to allow inference about the underlying model.

There are numerous statistical methods to tackle given research questions in epidemiology.
This induces further variability since di�erent methods imply di�erent decisions during the
analysis process. This impacts the results of statistical analysis on epidemiological data
but also a�ects the beforehand generation of epidemiological data (e.g. the construction
of cohorts). The resulting non-replicability of many research �ndings undermines scienti�c
trustworthiness and is an important issue. To increase replicability, there are attempts
to set up universal frameworks for observational studies (von Elm et al., 2007) and corre-
sponding statistical analyses (Ho�mann et al., 2021; Kümpel & Ho�mann, 2022).

7.2.2. Special case: Lifetime risks for lung cancer related to radon

exposure

Transitioning from the broader context of epidemiology and statistics, the following section
elaborates on uncertainties for the speci�c metric of lifetime risk for lung cancer related to
radon exposure.
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Particularities in lifetime risks: statistical inference

A direct application of frequentist (e.g. maximum likelihood) or Bayesian inference to life-
time risk measures like the LEAR is not feasible, as it requires a likelihood function based
on observations. However, such a likelihood does not exist for lifetime risks. Estimating
the lifetime risk of lung cancer related to radon exposure directly would require a cohort
in which each lung cancer death could be assigned with certainty to a speci�c radon expo-
sure. This is hardly possible due to general challenges in causal inference in epidemiology
(Rothman & Greenland, 2005) and the biological complexity of radon-induced lung cancer
(Truta-Popa et al., 2011). Hence, lifetime risks like the LEAR cannot be interpreted as di-
rectly estimable parameters, and classical Bayesian or frequentist methods are not directly
applicable.

Instead, lifetime risk estimates are composite quantities, derived from the combination of
various results obtained through separate analyses. For instance, the baseline lung cancer
mortality rates r0(t) and the survival function S(t) are estimated from population data
(e.g., the WHO mortality database (WHO, 2022)), independently of the excess relative
risk term ERR(t; Θ), which is based on data from miner cohorts.

To assess overall lifetime risk uncertainty, the uncertainties associated with each component
of the lifetime risk calculation are examined. These components are typically derived from
robust statistical methods, such as maximum likelihood. The uncertainty in lifetime risks
is construed as a function of the uncertainties associated with its components.

Uncertainties when calculating lifetime risks

As outlined by Thomas et al. (1992), lifetime risk calculations are subject to three principal
types of uncertainties:

� sampling uncertainty when deriving parameter estimates

� model uncertainty

� uncertainties that cannot be formally speci�ed with probability distributions: errors
in the source data (data preprocessing, measurement errors); validity of assumptions;
etc.

While sampling uncertainty can be formally addressed using statistical methods, model
uncertainty and other non-speci�able uncertainties are more di�cult to quantify (Ho�mann
et al., 2021; NRC, 1999).3

To provide a more comprehensive context for the quanti�cation of uncertainties, the fol-
lowing overview presents key sources of errors, uncertainties, and decision points that can

3A notable mention to reduce model uncertainty is "Multi-model inference" (Burnham & Anderson,
2002; Kaiser et al., 2012). This approach involves assessing risk by considering multiple plausible
models depending on their descriptive capabilities.
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in�uence lifetime risk estimation in the context of radon-induced lung cancer. This list is
inspired from the discussions in (NRC, 1999, pp. 100�104):

� Modelling and estimation of the risk model ERR(t; Θ) derived from miners cohort
data, in�uenced by

� Uncertainty about the true exposure of miners (Küchenho� et al., 2018; Pawel
& Puskin, 2003)

� Model uncertainty concerning the functional structure of ERR(t; Θ)

� Sampling uncertainty for the parameter estimate Θ̂

� Latency time L between age at exposure and age at actual risk ampli�cation
(Richardson et al., 2011)

� Data grouping processes necessary for applying Poisson regression on cohort
data (Richardson & Loomis, 2004)

� Internal baseline risk strati�cation

� Accounting for non-lung cancer e�ects potentially associated with radon expo-
sure (Fenske et al., 2025; Mozzoni et al., 2021)

� Risk transfer from the cohort population to the general population

� Accounting for confounders (e.g., smoking behaviour)

� Modelling and estimation of the baseline lung cancer and all-cause mortality rates
r0(t), q0(t)

� Estimation of the survival function S(t)

� Potential errors in the underlying mortality data used for estimation

� Choice of lifetime risk measure (LEAR is one of four measures discussed in the
literature (Thomas et al., 1992; Ulanowski et al., 2019))

� De�nition of baseline lifetime risks LR0 under the assumption of zero radon exposure,
although such conditions do not occur naturally

� Choice of the radon exposure scenario

� Discretization of the lifetime risk measure from a theoretical integral to a calculable
sum, constrained by data availability

� Correlation between calculation components and across attained ages

It should be noted that while this compilation is extensive, many of the listed elements
are either di�cult to quantify or have only a minor in�uence on the overall lifetime risk
estimates within the plausible range of values, as addressed in (Sommer et al., 2025).
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In the context of occupational radon exposure, literature addressing uncertainties for life-
time lung cancer risks is sparse (Pawel & Puskin, 2003; Tomá²ek, 2020). In contrast,
uncertainties for other radiation exposures have been extensively analysed in the litera-
ture, especially for the atomic bomb survivors (M. P. Little et al., 2008; Pierce et al., 1990;
Xue & Shore, 2001) with classical likelihood- (using regression calibration) and Bayesian
techniques (Darby et al., 2006). In the end, uncertainty not only arises in risk quanti�ca-
tion itself, but also in the interpretation and communication of risks by decision-makers
and the public (Hoti et al., 2020).

7.3. Background on material and methods

This section elaborates on the statistical inference framework used in the underlying pub-
lication to deduce uncertainty intervals accounting for risk model parameter uncertainty.
This is followed by an explanation of the algorithms employed in the context of Bayesian
inference and a brief discussion on the selection of prior distributions.

As risk model parameter uncertainty was identi�ed as the primary contributor to overall
lifetime risk uncertainty, this chapter focuses on providing further details and background
information on this component. Mortality rate uncertainty and other contributors are
su�ciently addressed in the underlying publication and its supplement.

Approach for uncertainty assessment in this study

The primary objective of the underlying publication is to derive reliable lifetime risk uncer-
tainty intervals using a practical methodology that emphasizes radiation protection, min-
imizes subjectivity, and avoids unnecessary complexity. Consequently, in�uential factors
such as risk model parameters and mortality rates, as identi�ed in (Sommer et al., 2025)
are prioritized, while components with negligible in�uence are not overemphasized.

Since lifetime risks are a composite measure and not a statistical parameter, approaches
such as SIMEX or calibrated regression are not applicable here. Further, it is important
to note that uncertainties in the cohort data underlying the risk model � such as those
arising from measurement error, disease misclassi�cation, confounders, or data grouping �
are inherited by the LEAR. Such uncertainties are not the primary focus of this study, as
they have been addressed elsewhere (Ellenbach et al., 2022; Küchenho� et al., 2018).

In the underlying publication, suitable probability distributions were assigned to the in�u-
ential calculation components for lifetime risk calculations. These were based either on the
asymptotic normal distribution of maximum likelihood estimates for risk model parame-
ters or derived from the large-scale WHO mortality database for mortality rates (WHO,
2022). Monte Carlo simulations were then employed to independently sample values from
these distributions and compute corresponding lifetime risk estimates. This process yields
a distribution of lifetime risks from which empirical uncertainty intervals are derived.
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This approach not only captures the composite nature of lifetime risks such as the LEAR
but also enables a transparent and �exible modelling of uncertainty contributions from
individual calculation components. Additional sensitivity analyses are presented in the
supplement of the publication to evaluate the credibility of the uncertainty assessment.
These include the e�ects of choosing di�erent probability distributions, varying the under-
lying datasets, and testing various modelling assumptions.

As a side note, the delta method for uncertainty assessment, which has been used in other
studies (see e.g. (Hoef, 2012; Xue & Shore, 2001)), is avoided here, as it introduces notable
subjectivity through the need to specify prede�ned variances.

7.3.1. Frameworks for statistical inference

This section introduces the idea behind frequentist and Bayesian inference, two fundamen-
tal yet distinct approaches for statistical inference and uncertainty quanti�cation. The
di�erences between these approaches reach deep into the foundation of probability, result-
ing in di�erent schools of thought. Frequentists understand the probability of an event as
its relative frequency over time, whereas Bayesians see probability as a measure of "degree
of belief" (de Elía & Laprise, 2005).

In the underlying publication, both frameworks are applied to derive probability distribu-
tions for risk model parameters, given their dominant role in overall lifetime risk uncer-
tainty. The frequentist framework is employed in the Approximate Normality Assumption
(ANA) approach which is derived from maximum likelihood methods, while the Bayesian
framework is used in the corresponding Bayesian approach.

By drawing samples from the resulting parameter distributions and computing correspond-
ing lifetime risk estimates, a distribution of lifetime risks is generated (Monte Carlo simu-
lation).

Frequentist inference

Frequentist inference, also known as classical inference, is a statistical framework that
relies on the frequency or proportion of data to estimate parameters. The underlying
interpretation, �rst systematically outlined by Richard von Mises in 1919 (Lehmann, 2008),
views probability as the relative frequency of events in an in�nite number of repeated trials
or samples (Von Mises, 1928; Young & Smith, 2005). The frequentist approach operates
under the assumption that the data being analysed is a random sample from a larger
population.

The principles of statistical inference, foundational to modern statistical analysis, were
further systematically formalized by R. A. Fisher (1925), where he developed key concepts
like maximum likelihood estimation (point estimation), hypothesis testing, signi�cance
levels, and p-values based on sample data.
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In point estimation, a single value, known as the estimator θ̂, is used to approximate
an unknown population parameter θ. The estimator is a function of the sample data.
Since sample data are random variables (drawn from the population), the estimator θ̂ is
also a random variable. Its distribution depends on the sampling distribution of the data
(Hespanhol et al., 2019). Interval estimation, on the other hand, involves constructing
con�dence intervals, that provide a range of values such that if the sampling process is
repeated many times and a con�dence interval is computed for each sample, a certain pro-
portion (e.g., 95%) of those intervals would contain the true parameter θ. In con�dence
intervals, "con�dence" refers to the randomness of the interval itself. Figure 7.1 shows
a visualization of frequentist con�dence intervals. The frequentist perspective treats the
unknown parameter as �xed, without a probability distribution, while the con�dence in-
terval bounds are considered random due to their dependence on random samples (Bland
& Altman, 1998). For the frequentist hypothesis testing, the probability of observing data
as extreme as (or more extreme than) the collected data, given the null hypothesis is true,
is calculated. This result, known as the p-value, indicates how likely the observed data
would be under the assumption of the null hypothesis (Fornacon-Wood et al., 2022).

Frequentist inference does not incorporate prior beliefs or information about parameters
before observing the data. Instead, it relies solely on the observed data, ensuring objec-
tivity and replicability (Rüger, 1998). This approach is widely used in various scienti�c
disciplines o�ering well-established methodologies. However, this approach requires careful
interpretation: a low p-value indicates that the observed data is unlikely under the null
hypothesis, but it does not measure the probability that the null hypothesis itself is true
or false.
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Figure 7.1.: Frequentist con�dence intervals: Each interval is computed from a di�erent
sample, with most intervals covering the true parameter value. The red dots
indicate parameter estimates from di�erent samples.
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Bayesian inference

Bayesian inference o�ers a distinct framework for statistical analysis, grounded in the
principles of Bayes' theorem. This approach integrates prior knowledge or beliefs about
parameters along with observed data to update the probability of observing the parameters.
Bayesian inference treats probabilities as a measure of belief or certainty about an event,
rather than long-term frequencies.

This approach is rooted in the work of Thomas Bayes, who introduced the idea of updating
probabilities based on new evidence in his posthumous essay "An Essay towards solving
a Problem in the Doctrine of Chances" (1763). The framework was later formalized and
extensively developed by Pierre-Simon Laplace in the early 19th century, establishing the
basis of modern Bayesian methods (Bayes, 1763; Laplace, 1812).

At the heart of Bayesian inference lies Bayes' theorem, which describes how to update
the probability of a hypothesis based on new evidence. The theorem is mathematically
expressed as:

P (θ | data) = P (data | θ)P (θ)

P (data)
,

where P (θ | data) is the posterior probability of the parameter θ given the observed data,
P (data | θ) is the likelihood of the data given θ, P (θ) is the prior probability of θ, and
P (data) is the marginal likelihood of the data (Held & Bové, 2021).

The prior distribution P (θ) captures any pre-existing knowledge or beliefs about the param-
eter before observing the data. The likelihood function P (data | θ) re�ects the probability
of the observed data given the parameter, based on a chosen statistical model. The pos-
terior distribution P (θ | data) combines these elements to provide an updated probability
distribution for the parameter, incorporating both the prior information and the observed
data.

One of the key advantages of Bayesian inference is its �exibility in incorporating prior
knowledge, which can be particularly valuable in situations with limited data or where ex-
pert knowledge is available. Additionally, Bayesian methods provide a coherent framework
for sequential updating, allowing for continuous re�nement of parameter estimates as new
data becomes available.

Bayesian inference also o�ers a natural way to handle uncertainty. Instead of deriving
con�dence intervals separately after calculating single-point estimates as in the frequentist
approach, Bayesian methods generate a full posterior distribution for the parameters, pro-
viding a more comprehensive picture of uncertainty. Point estimates along with credible
intervals are derived from this posterior distribution, carrying all information. Credible
intervals indicate the range within the parameter is likely to lie with a certain proba-
bility, typically 95%. In contrast to frequentist con�dence intervals, interval bounds from
Bayesian credible intervals are �xed and the unknown parameter itself is a random variable.
A visualization of Bayesian credible intervals is depicted in Figure 7.2.
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Figure 7.2.: Bayesian credible interval: The exemplary credible interval [0.5, 1.5] shows
where the parameter value θ falls with 95% probability given the data X and
some prior distribution P (θ). Correspondingly, the shaded red area covers 95%
of the distribution P (θ|X).

Despite its many advantages, Bayesian inference requires the speci�cation of prior dis-
tributions, which can introduce subjectivity. Moreover, the computational complexity of
Bayesian methods, particularly for high-dimensional models, can be challenging. However,
advances in computational techniques, such as Markov Chain Monte Carlo (MCMC) meth-
ods, have substantially expanded the feasibility and application of Bayesian approaches in
modern statistical analysis (Robert & Casella, 2005).
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7.3.2. Sampling techniques and prior selection in Bayesian

inference

Here two important sampling techniques are introduced, that are used in the underlying
study to obtain samples Θ from the risk model parameter posterior distribution P (Θ|X).
To maintain generality, the algorithms are described using a generic variable y and target
distribution p(y). This section is inspired by (Robert & Casella, 2005). Challenges that
come with choosing a prior distribution and corresponding ideas are brie�y elaborated
on.

Rejection sampling algorithm

The rejection sampling algorithm (Algorithm 1 with illustration in Figure 7.3), also called
acceptance-rejection method, is a Monte Carlo simulation technique to obtain samples
from a certain target probability distribution p(y) that is di�cult to sample from directly.
It works by employing a simpler distribution q(y), called the proposal distribution, which
is easier to sample from. A sample from the proposal q(y) is drawn and either accepted
as a representative for a sample from the target p(y) or rejected. The rejection sampling
algorithm requires knowing the target distribution density at every point y up to a multi-
plicative constant. Further, the proposal distribution q(y) must dominate p(y) such that
there exists a constant M , where

p(y) ≤ Mq(y), for all y.

The e�ciency of rejection sampling depends on the value ofM and how closely the proposal
distribution q(y) matches the shape of the target distribution. The unconditional sample
acceptance probability is 1/M (Martino et al., 2018). Note that this method is based on a
fundamental idea called the Fundamental Theorem of Simulation (Robert & Casella, 2005,
Theorem 2.15): simulating a random variable Y ∼ f(y) is equivalent to simulating the
pair

(Y, U) ∼ U {(y, u) : 0 < u < f(y)} ,
where U ∼ U [0, 1] is a uniform distributed random variable. So the simulation of Y ∼ f(y)
is reduced to generating uniform variables on the constrained set {(y, u) : 0 < u < f(y)}.
While rejection sampling is a straightforward and intuitive method, it has its drawbacks.
Besides its e�ciency depending on the proposal distribution q(y) and the constant M ,
sampling becomes exponentially more di�cult in high-dimensional spaces (see "curse of
dimensionality" (Bellman, 1957)). For such situations, alternative sampling methods like
the Metropolis-Hastings algorithm utilizing MCMC techniques may be more suitable.
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Algorithm 1 Rejection sampling algorithm

1: De�ne target distribution p(y), possibly not normalized.
2: Choose proposal distribution q(y) such that p(y) ≤ Mq(y) for some constant

M > 0.
3: repeat
4: Sample y∗ from q(y).
5: Generate uniform distributed u ∼ U [0, 1].
6: if u ≤ p(y∗)

Mq(y∗) then
7: Accept y∗.
8: else
9: Reject y∗.
10: end if
11: until desired number of samples obtained
12: if p(y) not normalized then
13: Normalize accepted samples if needed by dividing by the normalizing constant.
14: end if
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Figure 7.3.: Illustration of rejection sampling. The target distribution p(y) (solid blue
curve) is approximated using the proposal distribution q(y) (dashed red curve).
Accepted samples are shown with blue crosses, and rejected samples are indi-
cated with red dots.

For the analyses in the underlying publication, the rejection sampling method performed
well for the simple linear risk model with a uniform proposal distribution but was not appli-
cable for the more complex risk models with higher dimensional parameter vectors.
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Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm (Algorithm 2 with illustration in Figure 7.4) generalizes
the basic Metropolis algorithm, which adapts a random walk with an acceptance/rejection
rule to converge to a speci�c target distribution (Gelman et al., 2013). Therewith, it
allows obtaining random samples from probability distributions where direct sampling is
di�cult.

The algorithm is part of the broader family of MCMC methods (Karras et al., 2022). These
methods construct a Markov chain (yt)t≥0 whose stationary distribution is the desired
target distribution p(y). The initial state y0 for the Markov chain (yt)t≥0 can be a random
guess or drawn from a distribution related to p(y). The movement of the Markov chain
and the success of the Metropolis-Hastings algorithm depends on the choice of the proposal
distribution q(y∗|yt). Candidate samples from the proposal q(y∗|yt) are accepted as target
distribution samples with a certain probability, depending on the state of the Markov
chain. The algorithm balances between exploring high-probability regions and allowing
occasional jumps to less probable regions, which helps avoid being trapped in local modes
of the distribution. Once the chain has reached its stationary distribution, samples drawn
from the chain can be considered as approximate samples from the target distribution
p(y).

Note that the stationarity and the Markov chain property (i.e. "memorylessness") are key
to the algorithm's behaviour. Further, a poorly chosen proposal can result in very slow
convergence to the stationary distribution. Since the early samples of the Markov chain
may not adequately represent the target distribution, a certain fraction of these initial
samples are typically discarded to account for a so-called "burn-in period" (Gelman et al.,
2013).

The Metropolis-Hastings algorithm is a widely used and �exible MCMC method because
it can be applied to almost any distribution. It is especially useful in high-dimensional
problems and Bayesian inference. In particular, unlike for rejection sampling, the algo-
rithm does not require the target distribution to be bounded by a scaled version of the
proposal distribution. For more theory on Markov chains see Durrett (2016) with advanced
applications in Levin and Peres (2017).
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Algorithm 2 Metropolis-Hastings sampling algorithm

1: De�ne target distribution: Specify the target distribution p(y), possibly not nor-
malized.

2: Choose proposal distribution: Select a proposal distribution q(y∗|yt) that is easy
to sample from, which proposes new states y∗ based on the current state yt.

3: Initialize Markov chain: Choose an initial state y0 for the Markov chain (yt)t≥0.
4: repeat
5: Generate candidate point: Sample a candidate y∗ from q(y∗|yt).
6: Calculate acceptance probability:

α = min

(
1,

p(y∗)q(yt|y∗)
p(yt)q(y∗|yt)

)

7: Generate uniform random number: Draw u ∼ U [0, 1].
8: if u ≤ α then
9: Accept y∗ by setting yt+1 = y∗.
10: else
11: Reject y∗ and keep yt+1 = yt.
12: end if
13: until the desired number of samples is obtained
14: Burn-in period (optional): Discard initial samples to ensure the chain has reached

its stationary distribution.

y

Proposal distribution q(y∗|yt)

y0

y

Target distribution p(y)

Figure 7.4.: Illustration of the Metropolis-Hastings algorithm. On the left, the proposal
distribution q(y∗|y0) with Markov chain starting value y0 is shown (dashed
curve). The Markov chain path is illustrated with accepted points forming a
chain and rejected samples in dashed circles. On the right, the target distribu-
tion p(y) is shown (solid curve), with histogram of accepted samples, showing
converges towards the target distribution.
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In the underlying publication, the Metropolis-Hastings algorithm was applied to sample
from the Bayesian marginal posterior distribution P (Θ|X) for the risk model parame-
ter vector Θ, given cohort data X (equation (7.4) below). Inspired by the approach
from Higueras and Howes (2018), P (Θ|X) was analytically deduced from the full pos-
terior P (Ω|X) ∝ P (Ω)L(Ω|X) with parameter vector Ω = (Θ,∆) incorporating base-
line strata parameters ∆ = (δ1, δ2, . . . , δK). Assuming independence between the baseline
strata and the risk model parameters, and speci�cally adopting non-informative priors
for the strata parameters δk for all k = 1, . . . , K, the full posterior P (Ω|X) with prior
P (Ω) = P (Θ)

∏K
k=1 P (δk) ∝ P (Θ) and likelihood L(Ω|X) reads

P (Ω|X) ∝ P (Ω)L(Ω|X) (7.1)

∝ P (Θ) exp

(
Sδ1 − eδ1

n∑

i=1

PYie
∑K

k=2 δk1{k}(xi) (1 + ERRi (Θ))

)
(7.2)

·
n∏

i=1

(
PYie

∑K
k=2 δk1{k}(xi) (1 + ERRi (Θ))

)Ci

, (7.3)

with lung cancer cases Ci, person-years at risk PYi and excess relative risk ERRi (Θ) and
S =

∑n
i=1Ci. The likelihood structure is based on the assumption that the number of

lung cancer deaths follows a Poisson distribution, as detailed in Section 3.1.2 and 4.2.2.
The corresponding marginal posterior P (Θ|X) for the important risk model parameters
Θ is

P (Θ|X) =
P (Θ)

[∏n
i=1 (1 + ERRi (Θ))Ci

] [∑
i|xi=1 PYi (1 + ERRi (Θ))

]−S1

M0

∏K
k=2

[∑
i|xi=k PYi (1 + ERRi (Θ))

]Sk
, (7.4)

with lung cancer cases in strata k, Sk =
∑

i|xi=k Ci for k = 1, . . . , K, and normalizing
constant M0.

Choosing prior distributions

The Bayesian framework enables incorporating prior beliefs and updating them based
on observed data (Stau�er, 2007). A central challenge is selecting suitable prior distri-
butions, which can strongly in�uence the posterior distribution and subsequent analyses
(Bustamante et al., 2023). Appropriate priors can substantially improve the accuracy and
reliability of estimates, especially when prior knowledge � whether from previous analyses
or expert opinion � is available (Tian et al., 2023; Wilson & Fronczyk, 2017).

Prior selection is often subjective, shaped by the analyst's background and assumptions
(Can�eld & Teed, 1977). When prior knowledge is limited, uninformative or vague priors
can be used. Flat priors carrying no information such as uniform distributions are common,
though they are not invariant under reparametrization.
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As an alternative, "Je�rey's prior", based on the Fisher information, is non-informative
and robust to parameter transformation (Kass & Wasserman, 1996; Stau�er, 2007). Im-
proper priors (i.e. priors that do not integrate to a �nite number), may be employed in
certain cases, but care must be taken to ensure that the resulting posterior distribution is
proper (Bernardo, 2005; Kass & Wasserman, 1996). Another pragmatic approach avoiding
external information is the empirical Bayes method, where prior parameters are estimated
from the observed data (Robert, 2007).

In some cases, conjugate priors � those from the same distributional family as the likelihood
� are chosen as they allow deriving a closed-form expression of the posterior distribution
and hence, easy sampling (Rai�a & Schlaifer, 1961).

Informative priors are used when reliable prior knowledge exists, typically taken from ex-
pert judgement, previous studies, or both. This approach corresponds to the "subjective
Bayesian approach" (Goldstein, 2006) and may incorporate personal beliefs and opinions.
This idea, while powerful, can introduce biases: experts, despite their domain knowl-
edge, are susceptible to cognitive biases (Kahneman & Klein, 2009). Such tendencies, as
the availability heuristic4, can lead to systematic errors in judgment and decision-making
(Kahneman, 2012; Tversky & Kahneman, 1974). For further discussions on choosing prior
distributions see (Gelman et al., 2013; Kass & Wasserman, 1996; Stau�er, 2007).

In the underlying publication, prior distributions for the risk model parameters Θ were
selected based on two goals: (a) to obtain posterior distributions P (Θ|X) that are mini-
mally in�uenced by prior assumptions (e.g., uniform priors), and (b) to assess the Bayesian
framework's ability to integrate results from distinct cohort studies. In the latter case (b),
informative prior distributions were chosen such that their modes aligned with parameter
estimates from other cohorts. The distribution choice, e.g. the gamma distribution as a
prior for the β parameter that substantially shapes the exposure-risk relationship between
radon and lung cancer, can be interpreted as expert judgement. Gamma distributions are
appropriate to model (excess) risks and rates (Devianto et al., 2023; Havulinna, 2011), and
they guarantee non-negative samples consistent with the assumption that no protective
e�ect5 is expected for radon exposure (Shore et al., 2018).

Overall, in the context of Bayesian risk model assessment, e�ectively integrating true prior
knowledge based on external cohorts is a major challenge. Cohorts and corresponding risk
models often di�er substantially in design, population, and model structure, making it di�-
cult to treat their results as prior knowledge in the classical Bayesian sense. Consequently,
rather than attempting to encode prior knowledge, the Bayesian framework serves as a
useful tool to combine results from heterogeneous cohorts, as done in the underlying pub-
lication. The choice of prior distribution and its parameters serves to calibrate the degree
of integration between cohorts, together with the corresponding likelihood function.

4The tendency to judge the probability of events based on how easily examples come to mind.
5Sometimes called �radiation hormesis�, compare (Macklis & Beresford, 1991).



8. Summary and �nal thoughts

8.1. Summary

This cumulative dissertation, comprising four published scienti�c articles, has collectively
contributed to a comprehensive examination and re�nement of lifetime risk assessment for
lung cancer related to radon exposure. The work involved deriving and applying advanced
risk models, establishing uni�ed methodologies, and conducting an extensive uncertainty
assessment. This assessment included sensitivity analyses, broad comparisons across inter-
national miner studies, and rigorous statistical quanti�cation of uncertainties. Overall, this
thesis enhances the interpretability, comparability, and credibility of lifetime risk assess-
ments and thereby contributes to more informed risk communication and decision-making
in radiation protection and public health.

� The work presented in Kreuzer et al. (2023) provided updated risk models derived
from the German Wismut uranium miners cohort, the largest single cohort of ura-
nium miners. The derived risk models con�rmed and further sharpened the under-
standing of the radon-risk relationship. Acknowledging that risk models are a crucial
and highly in�uential component of lifetime risk calculations makes this publication
the foundation for sound lifetime risk estimates and corresponding uncertainty or
variability assessments, as addressed in the subsequent publications.

� In Sommer et al. (2025), sensitivity analyses of various components of lifetime risk
calculations clari�ed that risk models and baseline lung cancer mortality rates are
highly in�uential compared to other components. The development of a uni�ed
calculation methodology allows for consistent calculations of lifetime risks, thereby
improving comparability across di�erent miner studies. The identi�cation of the main
lifetime risk drivers provides a practical basis for future lifetime risk estimations in
radiation protection and targeted uncertainty quanti�cation.

� The work in Kreuzer et al. (2024) o�ers a comprehensive overview and comparison of
lifetime risk estimates across various international miner studies, utilizing the uni�ed
calculation methodology from Sommer et al. (2025). This comparison enhances the
understanding of lifetime risk variability and con�rms that lifetime risks are a suitable
metric for evaluating exposure�risk relationships for radon and lung cancer across
cohorts with varying exposures and model structures. The observed variation in
lifetime risk estimates across risk models provides a solid epidemiological basis for
current discussions on radon dose conversion.
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� Ultimately, in Sommer et al. (2024), lifetime risk uncertainties are discussed and
quanti�ed with 95% uncertainty intervals using advanced statistical methods. The
derived uncertainty intervals correspond well to the range of excess lifetime risks
across miner studies in the literature (see (Kreuzer et al., 2024)), thus mutually con-
�rming uncertainties derived by both approaches. This work expands on ideas from
Sommer et al. (2025), and is the �rst to derive such intervals for lifetime risk esti-
mates of lung cancer due to occupational radon exposure. Previous studies typically
reported point estimates only, limiting comparability and interpretability. The un-
certainty quanti�cation presented here enables systematic comparisons across studies
and makes an important contribution to scienti�c risk evaluation, risk communica-
tion, and regulatory decision-making.

8.2. Outlook and future research

This work has contributed to a deeper understanding of lifetime lung cancer risks associ-
ated with radon exposure, particularly in occupational settings. Building upon this, future
research may bene�t from incorporating more detailed population datasets, particularly
regarding smoking behaviour � a key factor in lung cancer risk � and its interaction with
radon exposure, once such datasets and corresponding risk models become more widely
available. Lifetime risk assessments are subject to limitations from the underlying risk
models, particularly when adjusting for smoking-related radon risk. Future studies utiliz-
ing updated follow-up data from miner cohorts will naturally improve the precision and
reliability of miner risk models and corresponding lifetime risk estimates.

Another natural extension of this work lies in the targeted application of the developed
methodologies to residential radon exposure scenarios, including the use of risk models
derived from residential radon studies. Many of the presented methods and insights are
equally relevant tor residential exposure and already enhance the understanding of as-
sociated lifetime risks. This broader application would further strengthen the practical
relevance of radon risk assessments for public health and regulatory decisions.

Overall, continued progress in data collection, model development, and analytical tech-
niques are expected to further strengthen the quality of radon risk assessments, particularly
regarding its interaction with smoking, and extend their applicability to residential and
other non-occupational settings. The methods and insights presented in this thesis provide
a strong foundation for such developments and support future e�orts to better quantify
and communicate radon-related health risks.
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Abstract
UNSCEAR recently recommended that future research on the lung cancer risk at low radon exposures or exposure rates 
should focus on more contemporary uranium miners. For this purpose, risk models in the German Wismut cohort of uranium 
miners were updated extending the follow-up period by 5 years to 1946–2018. The full cohort (n = 58,972) and specifically the 
1960 + sub-cohort of miners first hired in 1960 or later (n = 26,764) were analyzed. The 1960 + sub-cohort is characterized by 
low protracted radon exposure of high quality of measurements. Internal Poisson regression was used to estimate the excess 
relative risk (ERR) for lung cancer per cumulative radon exposure in Working Level Months (WLM). Applying the BEIR VI 
exposure-age-concentration model, the ERR/100 WLM was 2.50 (95% confidence interval (CI) 0.81; 4.18) and 6.92 (95% CI 
< 0; 16.59) among miners with attained age < 55 years, time since exposure 5–14 years, and annual exposure rates < 0.5 WL 
in the full (n = 4329 lung cancer deaths) and in the 1960 + sub-cohort (n = 663 lung cancer deaths), respectively. Both 
ERR/WLM decreased with older attained ages, increasing time since exposure, and higher exposure rates. Findings of the 
1960 + sub-cohort are in line with those from large pooled studies, and ERR/WLM are about two times higher than in the 
full Wismut cohort. Notably, 20–30 years after closure of the Wismut mines in 1990, the estimated fraction of lung cancer 
deaths attributable to occupational radon exposure is still 26% in the full Wismut cohort and 19% in the 1960 + sub-cohort, 
respectively. This demonstrates the need for radiation protection against radon.

Keywords Radon · Lung cancer · Epidemiology · Cohort · Risk

Introduction

The United Nations Scientific Committee on the Effects of 
Atomic Radiation (UNSCEAR) has recently reviewed the 
radon-related lung cancer risk in epidemiological studies 
(UNSCEAR 2020). They concluded that in miners studies 
the relationship between cumulative exposure to radon and 
relative risk of lung cancer is approximately linear and that 
the linear increase is additionally modified by time since 
exposure, attained age and exposure rate. The preferred risk 
model is thus a model including these three modifiers. The 
lifetime excess absolute risk (LEAR) of lung cancer per 
WLM was calculated for several cohort studies of miners 
based on the BEIR VI exposure-age-concentration model, 
using a mixed male/female population and exposure scenario 

of 2 WLM from age 18 to 64 years (UNSCEAR 2020). The 
resulting LEARs ranged from 2.4 (Wismut cohort) to 7.5 
(Eldorado cohort) ×  10−4 per WLM, and represent an impor-
tant database for the epidemiological approach for radon 
dose conversion. The variability of LEARs across the stud-
ies offers different possibilities of dose conversion, which 
led to some controversial discussions in the International 
Commission on Radiological Protection (ICRP) (Harrison 
et al. 2020, 2021; Laurier et al. 2020; Marsh et al. 2021). 
The LEARs from epidemiological studies depend—among 
other factors—to a large extent on the risk model derived 
from the different studies of miners. In order to improve 
risk models, UNSCEAR (2020) recommended that future 
research on the lung cancer risk at low radon exposure or 
exposure rates should focus on time periods with the best 
available exposure assessment to reduce measurement error 
and should consider age- and time-related effect modifiers, 
exposure rate and, if possible, potential confounders.

For this purpose, the 1960 + sub-cohort of German ura-
nium miners (Wismut miners) was updated; this sub-cohort 
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includes only miners hired in 1960 or later with protracted 
exposure to low radon concentrations, which has been 
assessed based on radon measurements. In previous risk 
analyses this sub-cohort (Kreuzer et al. 2015, 2018) was 
characterized by a relatively young age, which hampered a 
valid estimation of effect modifiers at older ages or longer 
times since exposure. Due to the extended mortality follow-
up by 5 years to the end of 2018, the proportion of deceased 
individuals in this sub-cohort increased from 19.3% to 
25.1%, and the number of lung cancer deaths from 495 to 
663. The larger number of deaths, longer time since expo-
sure and older attained age together with the availability of 
data on important confounders (e.g. smoking, occupational 
exposure to silica dust and external gamma radiation) allow 
to further improve risk models at low exposures and expo-
sure rates. Two types of risk models were estimated for the 
1960 + sub-cohort and for comparison with previous results 
also for the full cohort: (1) parametric models including 
time since median exposure and age at median exposure as 
continuous variables and exposure rate as categorical vari-
able (Tomasek et al. 2008; Kreuzer et al. 2018), (2) the cat-
egorical BEIR VI exposure-age-concentration model as used 
in the pooled study of the 11 miners cohorts (NRC 1999), 
UNSCEAR (2009, 2020) and the new PUMA study (Pooled 
Uranium Miners Analysis) (Richardson et al. 2022; Kelly-
Reif et al. 2023). For both types of models, the relative risk 
was predicted for the exposure scenario of 2 WLM at age 18 
to 64 over attained age up to 94 years as in other publications 
(Tirmarche 2010; UNSCEAR 2020) and the correspond-
ing LEARs were calculated. In addition, differences in risk 
estimates between the full cohort and the 1960 + sub-cohort 
were discussed.

Methods

Study population

The German cohort of uranium miners has been described 
previously (Kreuzer et  al. 2010, 2018). The full cohort 
includes 58,972 men employed for at least 180 days in 
the Wismut company in former Eastern Germany in the 
operation period from 1946 to 1990, the 1960 + sub-cohort 
includes 26,764 men hired for the first time in 1960 or later. 
Mortality follow-up has been extended by 5 years to the 
end of 2018 (i.e., 31/12/2018). Vital status was provided 
by local registration offices. Causes of death were obtained 
from death certificates and autopsy files from the Wismut 
pathology archive. In addition to new follow-up data, 359 
previously missing causes of death from 1955 to 2013 were 
successfully traced through extensive searches in archival 
documents, many of them from the 1960s. In the present 
analyses, the cohort entry date was defined as the date of 

first employment plus 180 days (inclusion criterion), and 
the exit date was defined as the earliest date of death, loss to 
follow-up, or end of follow-up.

The early period of mining (1946–1955) at the Wismut 
company was characterized by high radon exposures due 
to lack of radiation protection measures and lack of radon 
measurements. In 1955, ambient air measurements of radon 
gas started in the different mines and from 1955 to 1958 
the radon concentrations sharply decreased due to introduc-
tion of ventilation measures in the mines (Appendix Fig. 1). 
Annual cumulative exposure to radon progeny in Working 
Level Months (WLM: concentration of short-lived radon 
progeny per litre of air that gives rise to 1.3 ×  105 MeV of 
alpha-particle energy after complete decay for 1 month 
(170 h) = 3.5 mJ h  m−3) was retrospectively assessed for 
each miner via a comprehensive job-exposure matrix (JEM). 
For each mining facility, workplace (underground, open pit, 
milling or surface) and calendar year the exposure to radon 
progeny in WLM was determined by an expert group for 
scientific purposes (HVBG 2005). The JEM was based on 
ambient measurements, if available, or, for years without 
measurements (particularly for the early mining period from 
1946 to 1954), on expert ratings considering the first avail-
able ambient measurements of radon gas in later years, ura-
nium deposit and delivery, ventilation and mine architecture 
over time.

Information on smoking habits were extracted from the 
Wismut health archives, mainly based on data from the regu-
lar medical check-ups which had been introduced in 1970. 
In these documents, the current smoking habits were given 
in predefined categories for each year. This only allows the 
definition of three rough smoking categories for risk analy-
ses in the 1960 + sub-cohort: “non-smoker” (in all years 
“non-smoker”), “moderate/heavy smoker” (if in any year 
the classification “more than 5 years of smoking or more 
than 10 cigarettes smoked per day” was indicated) and “light 
smoker” (for all other specifications such as “occasional 
smoker”, “less than 5 years or less than 10 cigarettes smoked 
per day”, “cigar/pipe smoked”). In order to be comparable 
to previous risk analyses (Kreuzer et al. 2015, 2018) and 
due to the small number of lung cancer deaths among non-
smokers, the categories non-smoker and light smoker were 
combined. Data on smoking were available for 56% of the 
1960 + sub-cohort.

Statistical modelling

Typical statistical methodology was applied to model radon-
related lung cancer risks by internal Poisson regression 
(NRC 1999; Kreuzer et al. 2018; Richardson et al. 2022; 
Tomasek et al. 2008; Walsh et al. 2010), and two different 
model types were fitted: parametric models with continu-
ous age- and time-related effect-modifying variables and the 
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BEIR VI exposure-age-concentration model. For this pur-
pose, individual data was first converted into grouped data-
sets to tabulate person-years at risk and lung cancer deaths 
in categories. Two grouped datasets were created, one for 
each model type. The following basic cross-classifications 
were used in both datasets: age a in 16 categories (0–14, 
15–19, 20–24, …, 85 + years), calendar year in 15 catego-
ries (1946–1949, 1950–1954, …, 2005–2009, 2010–2014, 
2015–2018), duration of employment d in three categories 
(0− < 5, 5– < 15, ≥ 15 years) calculated in a time-varying 
way, and start of employment in two categories (1946–1959, 
1960–1989) to allow separate modelling of the 1960 + sub-
cohort. Further categorization was model-specific and is 
described below.

For both model types, lung cancer mortality rates were 
assumed to follow an excess relative risk (ERR) model with 
the general structure:

Here, the mortality rate r(a,y,d,w,…) depends on attained 
age a, calendar year y, cumulative 5 year lagged exposure to 
radon progeny w, and potential further variables (indicated 
by “…”). It is expressed as the internal baseline mortality 
rate r0 (a,y,d) stratified by age, calendar year and duration 
of employment, multiplied by an excess relative risk term 
ERR(w,…). Note that technically an excess relative rate is 
modelled here, which is called excess relative risk in the 
following for simplification purposes. This term varied 
according to complexity and type of considered models. 
95% Wald-type confidence intervals were calculated for the 
model parameters. All models were fitted for both, the full 
cohort and the 1960 + sub-cohort. Grouping of the datasets 
and statistical modelling was performed with the Epicure 
software.

Parametric models

In the first type of models, age- and time-related effect modi-
fication was modelled based on continuous variables. The 
grouped dataset was additionally cross-classified by cumu-
lative 5 year lagged exposure to radon progeny w in nine 
categories (0, > 0– < 10, 10– < 50, 50– < 100, 100– < 200, 
200– < 500, 500– < 1,000, 1,000– < 1,500, ≥ 1,500 WLM), 
exposure rate er in six categories (0– < 0.5, 0.5– < 1, 1– < 2, 
2– < 4, 4– < 10, ≥ 10 WL), age at median exposure e in 
nine categories (0–19, 20–24, …, 55 + years), and time 
since median exposure t in 10 categories (0– < 5, 5– < 10, 
10– < 15, …, ≥ 45 years) as in Kreuzer et al. (2018). Age at 
median exposure and time since median exposure referred 
to the point in time when one-half of the exposure cumu-
lated up to a given date was reached and thus varied over 
time. Exposure rate was calculated as the total cumulative 

r(a, y, d,w, ...) = r0(a, y, d) × [1 + ERR(w, ...)]

exposure (with a lag) divided by the total individual duration 
of exposure in months up to a given date, and thus repre-
sented a time-varying “average” exposure rate. In each cell 
of the grouped dataset, person-time weighted mean values 
of cumulative exposure, age at and time since median expo-
sure were calculated and used as continuous variables in the 
parametric models.

Parametric models of different complexity were fitted:

In all models, ß quantifies the excess relative risk per unit 
of cumulative exposure to radon progeny w (and is in the fol-
lowing abbreviated with ERR/WLM or, in case of other scal-
ing, with ERR/100 WLM). Model 1 denotes the “simple” 
linear ERR model. Model 2 contains exponential modifying 
effects for age at median exposure e (centered at 30 years) 
and time since median exposure t (centered at 20 years), 
with choice of centering values for comparability with pre-
vious results. Model 3 additionally contains exposure-rate 
specific estimates ßj for cumulative exposure split based on 
six categories of exposure rate, these were defined by binary 
variables erj for j = 1,…,6. The models were selected and 
compared based on their deviances and likelihood ratio tests, 
as for example described in Richardson et al. (2022).

BEIR VI exposure‑age‑concentration model

The BEIR VI exposure-age-concentration model is based 
on categorical effect-modifying variables. For this model 
type, the grouped dataset contained cumulative 5  year 
lagged exposure to radon progeny split into four variables 
w5–14, w15–24, w25–34 and w35+, each with nine categories 
(0, > 0– < 10, 10– < 50, 50– < 100, 100– < 200, 200– < 500, 
500– < 1000, 1000– < 1500, ≥ 1500 WLM), reflecting cumu-
lative exposures received 5–14, 15–24, 25–34 and 35 and 
more years prior to a considered date, respectively. Exposure 
rate er was calculated in a similar way as described above, 
and classified in six categories (0– < 0.5, 0.5– < 1, 1– < 3, 
3– < 5, 5– < 15, ≥ 15 WL) as in the pooled BEIR VI study 
(NRC 1999).

The following model was fitted:

where ß represents the ERR/WLM in the reference category, 
since θ1 = 1 by definition. Parameters θ2, θ3 and θ4 quantify 

(Model 1)ERR(w) = � w

(Model 2)
ERR(w, e, t) = � w × exp [� ( e − 30) + � (t − 20)]

(Model 3)
ERR(w, er, e, t) =

∑6

j=1
�j erj w × exp [� (e − 30) + �(t − 20)]

( Model 4)

ERR(w, a, er) =� (�1 w5−14 + �2 w15−24 + �3 w25−34

+ �4 w35+)�age �rate
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effect modification by time since exposure. The parameters 
ϕage and γrate denote effect-modifying factors based on the 
representation of categorical variables with multiple binary 
variables and describe effects of categories of attained age 
(< 55, 55–64, 65–74 and 75 + years) and of exposure rates, 
respectively.

LEAR calculations

The lifetime excess absolute risk (LEAR) is the difference 
in lifetime risks for an individual from an exposed popula-
tion LRE compared with an individual from an unexposed 
population LR0 and is here approximated by

where S
�

a�amin
�

= exp(−
∑a−1

u=amin
q0(u)) is the probability to 

survive until age a given survival to age amin with all-cause 
mortality rates q0(a) at age a . r0(a) is the baseline lung can-
cer mortality rate at age a in absence of exposure. Likewise, 
rE(a) corresponds to the lung cancer mortality rate at age a 
under exposure.

For the calculation of LEARs, attained age amin is set to 0 
to account for the full lifetime of an individual. The baseline 
lung cancer mortality rates r0(a) and all-cause mortality rates 
q0(a) are taken from the ICRP Euro-American-Asian mixed 
population (ICRP 2007) with amax = 94 . The exposure sce-
nario is 2 WLM from age 18 to 64 with a lag of L = 5 years 
between age at exposure and age at actual risk amplification 
as used in Tomasek et al (2008). The terms for ERR(⋅) were 
chosen as described above. Note that the total LEAR can be 
obtained by multiplying the value for the LEAR per WLM 
with 94. All LEAR calculations were performed with the 
statistical software R (R Core Team 2022).

Interaction of radon and smoking

As in previous analyses (Kreuzer et al. 2018; UNSCEAR 
2020; Leuraud et al. 2011), the following geometric mixture 
model (GMM) was fitted:

where γ describes the parameter associated with smoking 
category s. Depending on the choice of the mixing parameter 
λ, this model incorporates an additive (λ = 0) and a multi-
plicative model (λ = 1), as well as supra-additive/sub-multi-
plicative models (0 < λ < 1) and supra-multiplicative models 
(λ > 1). Here, models for a grid of values 0 ≤ λ ≤ 1.5 were 
compared based on the model deviances.

LEAR = LRE − LR0 ≈

amax
∑

a=amin

rE(a)S
(

a|amin
)

−

amax
∑

a=amin

r0(a)S
(

a|amin
)

r(a, y, d,w, s) = r0 (a, y, d) × [(1 + � w) exp (� s)]� × [� w + exp (� s)]1−�

Sensitivity analyses

Sensitivity analyses in the models of the full cohort and the 
1960 + sub-cohort considered (1) restriction to duration of 
employment for at least 5 years and (2) exclusion of open pit 
miners and millers. Potential confounding in the 1960 + sub-
cohort was investigated by adjustment for cumulative expo-
sure to external gamma radiation in mSv in an additive way 
and for smoking in a multiplicative way (Kreuzer et al. 
2018). For sensitivity analyses, grouped datasets contained 
additional cross-classifications for workplace (four catego-
ries), 5 year lagged cumulative exposure to gamma radia-
tion (eight categories) and smoking (three categories, as 
described above).

Results

Table 1 provides a description of the cohorts. The mean 
duration of follow-up was 41.7 years and 39.6 years and cor-
responding person-years at risk 2,461,269 and 1,058,712 in 
the full cohort and 1960 + sub-cohort, respectively. While in 
the full cohort 57% of all cohort members were deceased by 
end of follow-up, this proportion was 25% in the 1960 + sub-
cohort. The number of lung cancer deaths in the full cohort 
is appreciably higher than in the 1960 + sub-cohort (4329 
versus 663). Notable is the more than fifteen times higher 
mean cumulative radon exposure in the full cohort compared 
to the 1960 + sub-cohort (280 WLM versus 17 WLM). This 
is mainly due to the extremely high average annual radon 
exposures in the years of operation before 1960 as illustrated 
in Appendix Fig. 1.

In Table 2, risk estimates based on parametric models 
(models 1–3) are given. Using a simple linear model, the 
ERR/100 WLM is 0.18 (95% CI 0.16; 0.21) in the full cohort 
and 1.34 (95% CI 0.75; 1.93) in the 1960 + sub-cohort, 
respectively. There is no overlap in both confidence inter-
vals, indicating heterogeneity. The same holds true when 
model 2 was applied that takes additionally the two modi-
fiers age at and time since median exposure into account. 
Model 2 provides a statistically significantly better fit than 
the simple linear model in both cohorts and is thus preferred. 
The ERR/WLM decreased with increasing age at median 
exposure and time since median exposure. Additional con-
sideration of exposure rate in six categories in model 3 pro-
vides the best fit in the full cohort and is the finally preferred 
model for the full cohort, while no improvement of fit was 
found in the 1960 + sub-cohort, indicating that model 2 is 
the finally preferred model for the 1960 + sub-cohort. The 
inclusion of exposure rate has a strong influence on the lung 
cancer risk due to radon in the full cohort, showing a clear 
decrease in the ERR/100 WLM with increasing exposure 
rate, the so-called “inverse exposure-rate effect”. Although 
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Table 1  Description of the 
full Wismut cohort and the 
1960 + sub-cohort of miners 
first hired in 1960 or later, 
1946–2018

WLM working level months
a Time-varying average exposure rate, calculated as the total cumulative exposure (without lag) divided by 
the total individual duration of exposure in months up to a given date

Variable Full cohort 1960 + sub-cohort

Persons, n 58,972 26,764
Person-years at risk 2,461,269 1,058,712
Mean duration of employment in years 13.4 10.1
Mean age at death in years 68 58
Mean age at end of follow-up 67 61
Mean duration of follow-up in years 41.7 39.6
Vital status, n (%)
 Alive at end of follow-up 23,330 (39.6) 19,457 (72.7)
 Deceased 33,794 (57.3) 6719 (25.1)
 Lost to follow-up 1848 (3.1) 588 (2.2)

Availability of cause of death, n (%) 32,411 (95.9) 6534 (97.2)
Lung cancer deaths, n 4329 663
Radon exposed miners, n (%) 50,759 (86.1) 22,571 (84.3)
 Mean (Max) cumulative exposure in WLM 280 (3224) 17 (334)
 Mean (Max) exposure  ratea in WL 2.95 (26.66) 0.23 (4.65)

Table 2  Radon-related lung 
cancer risk estimates according 
to parametric models applied 
to the Wismut full cohort and 
1960 + sub-cohort

Values of LEAR per WLM (×  104) (bold)
ERR excess relative risk, CI confidence interval, WLM working level months, WL working level
p-value of likelihood ratio test between two nested models
LEAR lifetime excess absolute risk (exposure of 2 WLM from age 18 to 64 years, maximum age 94 and 
ICRP Euro-American-Asian mixed population)
Baseline stratified by attained age, calendar year and duration of employment
a ERR/100 WLM for age at median exposure of 30 years and time since median exposure of 20 years

Parameter Full cohort 1960 + sub-cohort

Lung cancer deaths 4329 663
Person-years at risk 2,461,269 1,058,712
Model 1
 ERR/100 WLM (95% CI) ß 0.18 (0.16; 0.21) 1.34 (0.75; 1.93)
 LEAR per WLM (×  104) 0.82 6.09

Model 2
 ERR/100  WLMa (95% CI) ß 0.53 (0.40; 0.66) 4.66 (1.71; 7.62)
 Age at median exposure exp(10α) 0.64 (0.54; 0.76) 0.74 (0.44; 1.26)
 Time since median exposure exp(10ε) 0.53 (0.46; 0.61) 0.47 (0.30; 0.73)
 p-value (Model 2 vs. 1)  < 0.001  < 0.001
 LEAR per WLM (×  104) 0.79 7.13

Model 3
 ERR/100 WLM (95% CI)
   < 0.5 WL ß1 2.83 (1.57; 4.09) 5.38 (1.76; 8.99)
  0.5–1 WL ß2 1.58 (0.91; 2.25) 4.66 (1.08; 8.23)
  1–2 WL ß3 1.13 (0.74; 1.52) 2.87 (< 0; 6.02)
  2–4 WL ß4 0.90 (0.63; 1.16) –
  4–10 WL ß5 0.75 (0.55; 0.96) –
  10 + WL ß6 0.48 (0.33; 0.63) –

 Age at median exposure exp(10α) 0.60 (0.51; 0.72) 0.70 (0.41; 1.21)
 Time since median exposure exp(10ε) 0.48 (0.41; 0.55) 0.47 (0.30; 0.74)
 p-value (Model 3 vs. 2)  < 0.001 0.417
 LEAR per WLM (×  104) 3.62 7.83



420 Radiation and Environmental Biophysics (2023) 62:415–425

1 3

not statistically significant, this effect was also indicated 
in the 1960 + sub-cohort. The use of model 3 reduces het-
erogeneity between full cohort and 1960 + sub-cohort. The 
ERR/100 WLM at < 0.5 WL, centred at age at median expo-
sure 30 years and time since median exposure 20 years is 
2.83 (95% CI 1.57; 4.09) in the full cohort and 5.38 (95% CI 
1.76; 8.99) in the 1960 + sub-cohort; both confidence inter-
vals overlap, but the risk estimates differ by a factor of two. 
The LEARs per WLM for the finally preferred models are 
3.62 ×  10–4 (model 3) versus 7.13 ×  10–4 (model 2) for the 
full and the 1960 + sub-cohort, respectively. The correspond-
ing risk predictions for the exposure scenario of 2 WLM per 
year from age 18 to 64 years are given in Fig. 1.

Table 3 shows the results of the risk analyses using 
the BEIR VI exposure-age-concentration model (model 
4). The ERR/100  WLM at 5–14  years since expo-
sure, < 55 years of attained age and < 0.5 WL exposure 
rate was 2.50 (95% CI 0.81; 4.18) in the full cohort com-
pared to 6.92 (95% CI < 0; 16.59) in the 1960 + sub-
cohort. The ERR/100 WLM decreased with increasing 
time since exposure, attained age and exposure rate in both 
cohorts. However, in the full cohort more than 25 years 
after exposure and more than 65 years of attained age no 
further decrease in risk was observed. This is also illus-
trated in Fig. 1. In the 1960 + sub-cohort, the confidence 
intervals of parameter estimates were very wide and did 
not indicate statistical significance. The estimated LEAR 
per WLM was about two times higher in the 1960 + sub-
cohort compared to the full cohort with 6.10 ×  10–4 and 
3.13 ×  10–4, respectively.

Table 4 provides information on the estimated fraction of 
lung cancer deaths attributable to occupational radon among 
exposed miners by category of cumulative radon exposure, 

Fig. 1  Excess relative risk 
predicted for different mod-
els in the full cohort and the 
1960 + sub-cohort for the 
exposure scenario of 2 WLM 
from age 18 to 64 up to age 
94 assuming a 5 year lag with 
corresponding total LEAR in 
brackets in figure legend (para-
metric full cohort: model 3, 
parametric 1960 + sub-cohort: 
model 2, BEIR VI full cohort 
and 1960 + sub-cohort: model 
4, exposure-age-concentration 
model)

Table 3  Radon-related lung cancer risk according to BEIR VI expo-
sure-age-concentration model (model 4) applied to the Wismut full 
cohort and 1960 + sub-cohort

Baseline stratified by attained age, calendar year and duration of 
employment
Values of LEAR per WLM (×  104) (bold)
ERR excess relative risk, CI confidence interval, WLM working level 
months, WL working level, LEAR lifetime excess absolute risk (expo-
sure of 2 WLM from age 18 to 64 years, maximum age 94 and ICRP 
Euro-American-Asian mixed population)

Full cohort 1960 + sub-cohort

Lung cancer deaths 4329 663
Person-years at risk 2,461,269 1,058,712
ERR/100 WLM (95% CI) 2.50 (0.81; 4.18) 6.92 (< 0; 16.59)
Time since exposure (years)
 5–14 1.0 1.0
 15–24 0.96 (0.47; 1.46) 0.95 (< 0; 2.40)
 25–34 0.64 (0.30; 0.97) 0.36 (< 0; 0.92)
 35 + 0.61 (0.27; 0.94)

Attained age (years)
  < 55 1.0 1.0
 55–64 0.44 (0.27; 0.70) 0.83 (0.24; 2.84)
 65–74 0.33 (0.20; 0.55) 0.34 (0.08; 1.52)
 75 + 0.34 (0.19; 0.60) 0.09 (0.01; 5.89)

Exposure rate (WL)
  < 0.5 1.0 1.0
 0.5–1.0 0.60 (0.36; 0.99) 0.90 (0.50; 1.64)
 1.0–3.0 0.40 (0.26; 0.61) 0.57 (0.20; 1.62)
 3.0–5.0 0.34 (0.22; 0.53) –
 5.0–15 0.28 (0.18; 0.44) –
 15 + 0.15 (0.08; 0.26) –

LEAR per WLM (×  104) 3.13 6.10
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calendar year of death and attained age based on the BEIR 
VI model. In the full cohort, a total of 47% of all lung cancer 
deaths are estimated to be attributable to occupational radon 
exposure, i.e. 1853 out of 3956 lung cancer deaths could 
have been avoided without this exposure. In the 1960 + sub-
cohort the attributable fraction is 31%. The attributable frac-
tion increases with increasing cumulative radon exposure; 
for example, in the exposure category 1500 WLM or more 
91% of the observed lung cancer deaths are estimated to be 
attributable to occupational radon. There is a clear decrease 
of attributable lung cancer deaths with increasing calendar 
year of death and increasing age in both, the full cohort 
and the 1960 + sub-cohort, reflecting the decrease in risk 
with increasing time since exposure and attained age. Impor-
tantly, 1 in 4 lung cancer deaths in the full cohort (26%) 
are still estimated to be attributable to occupational radon 
exposure and 1 in 5 lung cancer deaths of miners first hired 
in 1960 or later (19%) (see Appendix Fig. 2).

Some information on smoking is available for 56% of the 
1960 + sub-cohort. Among those with known smoking sta-
tus, 42% were non-/light smokers and 58% moderate/heavy 
smokers, the corresponding numbers among lung cancer 
deaths were 10% (n = 33), and 90% (n = 297), respectively. 
In a separate analysis among both groups, with the simple 
linear model, the ERR/100 WLM was 1.77 (95% CI < 0; 
5.04) and 1.06 (95% CI 0.28; 1.85) among non-/light and 
moderate/heavy smokers, respectively. The slightly higher 
ERR/100 WLM for non/-light smokers compared to moder-
ate/heavy smokers indicates a sub-multiplicative interaction 
of radon and smoking. The nature of this interaction was 
investigated in more detail by fitting GMM models for dif-
ferent values of the mixing parameter λ that determines the 
type of interaction as in Kreuzer et al. (2018). The minimum 
deviance was achieved for λ = 0.6, indicating a sub-multipli-
cative interaction (Fig. 2).

Table 4  Estimated excess lung 
cancer deaths due to radon 
exposure according to the BEIR 
VI exposure-age-concentration 
model (model 4) applied to 
the full cohort and 1960 + sub-
cohort

WLM working level months
a 5 year lagged
b Small deviations in totals possible due to rounding

Full cohort 1960 + sub-cohort

Lung cancer deaths Excess nb Observed n Attributa-
ble fraction

Excess nb Observed n Attribut-
able frac-
tion

0 WLM 0 373 – 0 112 –
 > 0  WLMa 1853 3956 46.8 171 551 31.0
Cum. radon exp. (WLM)
 > 0–10 12 442 2.7 15 179 8.4
 10–50 63 442 14.3 75 230 32.6
 50–100 59 242 24.4 51 98 52.0
 100–500 387 912 42.4 30 44 68.2
 500–1000 602 964 62.4 – – –
 1000–1500 430 623 69.0 – – –
 1500 + 300 331 90.6 – – –

Calendar year of death
  < 1960 8 15 53.3 – – –
 1960–1970 145 197 73.6 – – –
 1970–1980 378 577 65.5 5 8 62.5
 1980–1990 453 816 55.5 17 29 58.6
 1990–2000 432 949 45.5 36 71 50.7
 2000–2010 290 838 34.6 65 191 34.0
 2010–2018 146 564 25.9 48 252 19.0

Attained age (years)
  < 45 72 113 63.7 14 27 51.9
 45–55 309 461 67.0 34 80 42.5
 55–65 566 1166 48.5 79 218 24.8
 65–75 566 1391 40.7 40 183 21.9
 75 + 339 825 41.1 3 43 7.0
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Discussion

The updated findings of the Wismut cohort of uranium 
miners confirmed the previously observed linear relation-
ship between the relative lung cancer risk and cumulative 
exposure to radon progeny, which was modified by time 
since exposure, attained age and exposure rate in the full 
cohort (Kreuzer et al. 2018). The ERR/WLM decreased 
with increasing time since exposure, attained age and expo-
sure rate, both for parametric and BEIR VI-type models. 
For the first time, a statistically significant effect modifica-
tion of the ERR/WLM by attained age and time since expo-
sure was found in the 1960 + sub-cohort. Notably the ERR/
WLM and corresponding LEAR per WLM were about two 
times higher in the 1960 + sub-cohort compared to the full 
cohort in models including effect modifiers. For example, 
when the BEIR VI exposure-age-concentration model was 
applied, the ERR/100 WLM among miners with attained 
age < 55 years, time since exposure 5–14 years, and annual 
exposure rates < 0.5 WL was 2.50 (95% CI 0.81; 4.18) com-
pared to 6.92 (95% CI < 0; 16.59) in the full cohort and in 
the 1960 + sub-cohort, respectively. The same was true for 
the parametric model (model 3). Here, the ERR/100 WLM 
was 2.83 (95% CI 1.57; 4.09) compared to 5.38 (95% CI 
1.76; 8.99), respectively, for exposure rates below 0.5 WL, 
30 years of age at median exposure and 20 years of time 
since median exposure.

Comparison with previous Wismut findings

Previous estimates of lung cancer risk in the Wismut cohort 
had been slightly lower compared to those of the current 

analyses for both the full cohort and the 1960 + sub-cohort 
(Kreuzer et al. 2015, 2018). One of the reasons for this is 
that previously no baseline stratification for duration of 
employment was applied. Consistent with findings in the 
PUMA analyses (Kelly-Reif et al. 2023; Richardson et al. 
2022) this stratification was added in the current analyses 
and led also here to an increase in risk estimates. For exam-
ple, for the BEIR VI model in the full cohort, the refer-
ence ERR/100 WLM with and without additional stratifi-
cation was 2.50 versus 1.62 and the corresponding LEAR 
per WLM 3.13 ×  10–4 versus 2.08 ×  10–4, respectively (see 
Appendix Table 1). This effect was also present in the 
1960 + sub-cohort, here the ERR/100 WLM in the simple 
linear model was 1.34 (95% CI 0.75; 1.93) versus 0.94 (95% 
CI 0.51; 1.37) with and without stratification for duration of 
employment (Appendix Table 2), and the LEAR per WLM 
in the finally preferred parametric model 2 (including two 
modifiers) 7.13 ×  10–4 and 4.12 ×  10–4, respectively. An 
explanation for the strong effect of stratification by duration 
of employment could be the healthy worker survivor effect 
(Keil et al. 2015), which means that healthy workers are 
more likely to work for a long time underground and thus 
accumulate high radon exposures compared to those who 
have health problems and change their workplace, e.g. from 
underground to surface or elsewhere. This could artificially 
lead to lower risks among long-term workers compared to 
short-term workers. The Wismut cohort is characterized by 
a wide range of employment durations, around 25% of the 
cohort members worked for more than 20 years and 13% for 
more than 30 years in the company.

Due to the young age of the 1960 + sub-cohort, no statis-
tically significant effect modification of the ERR/WLM by 
attained age or time since exposure has been found previ-
ously (Kreuzer et al. 2015, 2018). Such an effect modifi-
cation was demonstrated in the large PUMA 1960 + sub- 
cohort (Richardson et al. 2022), and now also in the current 
extended follow-up until 2018 in the Wismut 1960 + sub-
cohort. However, even in the current follow-up there are only 
43 lung cancer deaths among radon exposed miners with an 
age above 75 years (see Table 4), therefore risk estimates for 
longer times since exposure and higher attained ages involve 
uncertainties. There is some evidence that exposure rate 
might be an additional modifier in the 1960 + sub-cohort, 
although the model including this factor was not statisti-
cally significantly better than the model without this factor 
(Table 2, model 3 vs. model 2).

Differences in risk between full Wismut cohort 
and 1960 + sub‑cohort

There are two to three times higher risk estimates at low 
exposures and exposure rates in the 1960 + sub-cohort com-
pared to the full cohort, which require further clarification. 

Fig. 2  Deviance obtained when modelling the interaction of radon 
exposure and smoking related to lung cancer mortality depending on 
mixing parameter λ, based on geometric mixture models (GMM)
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Several reasons may account for this. Firstly, uncertainties in 
the assessment of radon exposure in the early years may have 
led to an underestimation of the true risk in the full cohort. 
The job-exposure matrix was based on expert rating rather 
than measurements in the early years of mining in the Wis-
mut company, thus bias due to exposure measurement error 
is of concern. In some uranium miners cohort studies risk 
estimates were higher when focussing on miners in more 
recent years compared to earlier years (Tomasek et al. 2008; 
UNSCEAR 2020; Lane et al. 2019). This fact has sometimes 
been attributed to lower quality of exposure assessment and 
a potentially higher impact of measurement error on the risk 
estimation in the early years. Currently, a research project 
(Küchenhoff et al. 2018; Ellenbach et al. 2023) is running 
to investigate sources, magnitude and potential effects of 
exposure measurement error in the Wismut cohort. Similar 
investigations have been performed in the Colorado Plateau 
(Stram et al. 1999), Ontario (Navaranjan et al. 2019) or 
French (Hoffmann et al. 2017) cohort of uranium miners.

Secondly, the mortality follow-up was rather incomplete 
in the early years. For example, the proportion of loss to 
follow-up was 10% versus 2% for those with end of employ-
ment before 1960 or later, respectively; this was mainly 
because the persons could no more be identified by the regis-
tration offices under the last known address from the 1950s. 
The proportion of missing causes of death before 1970 was 
44% compared with 3.5% later; the main reason was that 
copies of death certificates from before 1970 were often no 
more available. For the early years in the full cohort, the 
incomplete mortality follow-up concerned particularly min-
ers with young age at death and short time of follow-up—the 
factors associated with the highest risk. Thirdly, in the early 
mining years, exposures to both silica dust and radon were 
extremely high, therefore the risk of lung cancer may be 
underestimated in the full cohort due to the competing risk 
of dying from silicosis (e.g. a total of 1,067 miners died from 
silicosis as underlying cause of death in the full cohort, in 
contrast to only 11 silicosis deaths in the 1960 + sub-cohort).

Another reason for differences in risk estimates between 
the full and 1960 + sub-cohort could be overestimation of 
risk in the 1960 + sub-cohort. Time since exposure turned 
out to be a strong modifier in most studies of miners, show-
ing that the ERR/WLM is highest 5–15 years after exposure 
and decreases with increasing time since exposure (NRC 
1999; UNSCEAR 2009, 2020). In the 1960 + sub-cohort, the 
duration of follow-up is shorter than for miners hired prior 
to 1960. In addition, average age is appreciably younger 
(Table 1). Consequently, the decrease in risk with increas-
ing time since exposure and attained age cannot be com-
pletely described by the data of the 1960 + sub-cohort. This 
is illustrated in the 1960 + sub-cohort when risk estimates 
from the BEIR VI model are compared for end of follow-up 
by 2013 and 2018. In analyses with end of follow-up in 2013 

an increase in risk is observed in age category 75 + years 
(Appendix Table 3), which is also seen in risk predictions 
in Appendix Fig. 4. These findings indicate that the higher 
LEAR per WLM of 9.22 ×  10–4 in analyses based on data 
with end of follow-up in 2013 compared to 6.10 ×  10–4 with 
end of follow-up in 2018 (Appendix Table 3), resulted from 
a lack of decrease in risk after 75 years of age.

Comparison with PUMA findings

The PUMA study includes seven uranium cohorts of miners 
from Europe and North America, among them the Wismut 
cohort with mortality follow-up by end of 2013 excluding 
millers (Rage et al. 2020; Richardson et al. 2021). Two 
papers on the lung cancer risk by radon have been published 
by now, one on the full cohort (Kelly-Reif et al. 2023) and 
one on the 1960 + sub-cohort (Richardson et al. 2022). In 
the full PUMA cohort, a reference ERR/100 WLM of 4.68 
(95% CI 2.88; 6.96) was observed for the BEIR VI exposure-
age-concentration model (Kelly-Reif et al. 2023). However, 
a statistically significant heterogeneity between cohorts was 
present, which was in part attributable to the comparably 
lower risk in the full Wismut cohort, which forms about half 
of the PUMA cohort. The PUMA 1960 + sub-cohort did not 
show such heterogeneity between study cohorts, here the 
corresponding reference ERR/100 WLM was 6.98 (95% CI 
1.97; 16.15) (Richardson et al. 2022), which is consistent 
to the estimates of the updated Wismut 1960 + sub-cohort 
of 6.92 (95% CI< 0, 16.59), of the pooled 11 miners study 
of 7.68 (NRC 1999) and others (Lane et al. 2010, 2019). 
Lifetime risk calculations for lung cancer and radon within 
PUMA are planned by the PUMA consortium in a separate 
paper.

Interaction of radon and smoking

The present analysis indicated a sub-multiplicative inter-
action of radon and smoking in the 1960 + sub-cohort via 
GMM modelling. This finding is supported by the results of 
a simple linear model separately for both smoking groups, 
here the ERR/100 WLM in non-/light smokers was slightly 
higher compared to moderate/heavy smokers (1.77 versus 
1.06). Previous analyses based on the last Wismut follow-
up (Kreuzer et al. 2018) also found higher ERR/100 WLM 
among non-/light smokers compared to moderate/heavy 
smokers (2.0 versus 1.2), however at that time GMM model-
ling indicated rather a multiplicative to supra-multiplicative 
interaction. Statistical uncertainty due to a small number of 
lung cancer deaths among non-/light smokers (n = 33) is still 
of concern. Further follow-up may bring more insights into 
the interaction of radon and smoking. A sub-multiplicative 
interaction is compatible with the findings from most other 
miner studies, while in residential radon studies, no obvious 
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deviation from a multiplicative interaction has been consist-
ently observed (UNSCEAR 2020).

Strengths and weaknesses of the study

The Wismut cohort is unique due to its large size, long fol-
low-up period from 1946 to 2018, wide range of exposures 
and availability of individual data not only on radon expo-
sure, but also on silica dust, long-lived radionuclides and 
external gamma radiation as well as in the 1960 + sub-cohort 
in part on rough data on smoking. Detailed investigation 
of potential confounding of the radon-related lung cancer 
risk by these factors have been performed previously in the 
full cohort (Walsh et al. 2010) and in a nested case–control 
study on lung cancer with smoking data (Schnelzer et al. 
2010). Overall, none of the above-mentioned variables led 
to major confounding, except for silica dust, here a 25% 
decrease in lung cancer risk estimates was observed after 
including silica dust in the risk model (Walsh et al. 2010). In 
the 1960 + sub-cohort, confounding could be even more rel-
evant due to the lower occupational radon exposure and thus 
smaller radon-related lung cancer risk. As shown in Appen-
dix Table 2 additional adjustment for smoking and external 
gamma radiation in model 2 resulted in slight decreases in 
the risk estimates and thus no major confounding. The mean 
cumulative occupational silica dust exposure was 1.0 mg/
m3-years in the 1960 + sub-cohort in contrast to 6 mg/m3-
years in the full cohort or even 12 mg/m3-years among min-
ers first hired between 1946 and 1954, and is thus far below 
the threshold of 10 mg/m3, above which a silica dust related 
lung cancer risk was observed in the full Wismut cohort 
(Sogl et al. 2012).

The Wismut study includes next to underground and sur-
face workers also millers and open pit miners, which differ 
by working conditions and are characterised by very low 
radon exposures. Exclusion of millers and open pit miners 
did not lead to a major change in risk, as shown in the sen-
sitivity analysis presented in Appendix Table 1. Short-term 
workers (< 5 years of duration of employment) may differ 
in risk from long-term workers, as reflected by the healthy 
worker survivor effect. In addition to baseline stratification 
by duration of employment, excluding this group in sensitiv-
ity analyses showed virtually no change in risk (Appendix 
Tables 1 and 2). Exposure measurement error in the early 
years is an issue, as noted above, and the potential influence 
on risk is currently investigated.

Conclusion

The updated Wismut cohort study shows an increased 
lung cancer risk by radon for former miners even 20 to 
30 years after the mines were closed and occupational radon 

exposures ended. The estimated lifetime excess absolute 
risk (LEAR per WLM) to die from lung cancer per unit of 
cumulative radon exposure in WLM varies between 3 and 
7 ×  10–4 depending on model and (sub-) cohort, i.e. among 
100 people with a cumulative occupational radon exposure 
of 100 WLM between 3 and 7 additional (excess) lung can-
cer deaths would occur due to this exposure during lifetime. 
The 1960 + sub-cohort is characterized by low protracted 
radon exposure of high quality and provides now, through 
the extension of follow-up to end of 2018, a good basis for 
the estimation of lung cancer risks at low radon exposures 
and low exposure rates. Risk estimates from the 1960 + sub-
cohort are consistent with those from 1960 + sub-cohorts 
of large pooled studies. The Wismut 1960 + sub-cohort is 
thus preferred to the full Wismut cohort in order to esti-
mate lung cancer risks at low protracted exposure rates for 
more contemporary miners, although the statistical power 
is lower than in the full cohort. Further follow-up of the 
Wismut 1960 + sub-cohort and pooled analyses of updated 
individual cohorts of PUMA will increase precision, par-
ticularly for attained ages above 75 years and longer times 
since exposure, this will lead to a better understanding of the 
lung cancer risk at low radon exposures and exposure rates.
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Sommer M, Heinzl F, Scholz-Kreisel P, Wollschläger D,
Heumann C, Fenske N. Lifetime Risks for Lung Cancer due
to Occupational Radon Exposure: A Systematic Analysis of
Estimation Components. Radiat Res. 203, 175–187 (2025).

Lifetime risk estimates play a key role in many areas of
radiation research. Here, the focus is on the lifetime excess
absolute risk (LEAR) for dying from lung cancer due to
occupational radon exposure based on uranium miners
cohort studies. The major components in estimating LEAR
were systematically varied to investigate the variability and
uncertainties of results. Major components of the LEAR cal-
culation are baseline mortality rates for lung cancer and all
causes of death, risk model and exposure scenario. Sex-
averaged mortality rates were chosen from a mixed Euro-
American-Asian population, in addition to mortality rates to
represent heavy and light smokers. Seven radon-related lung
cancer risk models derived from different uranium miners
cohorts were compared. As exposure scenarios, occupational
exposure of two working level months (WLM) from age 18–
64 years was considered, and three scenarios from the
German uranium miners cohort. Further components were
modified in sensitivity analyses. The LEAR was compared
to other lifetime risk measures. With a range from less than
0.6 3 1024 to over 8.0 3 1024, LEAR per WLM estimates
were influenced heavily by the choice of risk models.
Notably, mortality rates, particularly lung cancer mortality
rates, had a strong impact on LEAR per WLM across all
models. The LEAR per WLM exhibited only low variation to
changes in exposure scenarios for all risk models, except for
the BEIR VI model fitted on the pooled 11 miners study. All
assessed lifetime risk measures displayed a monotonically
increasing relationship between exposure and lifetime risk at
low to moderate exposures, with minor differences between
ELR, REID, and LEAR (all per WLM). RADS yields the
largest lifetime risk estimates in most situations. There is
substantial variation in LEAR per WLM estimates depend-
ing on the choice of underlying calculation components.
Reference populations and mortality rates should be selected
with care depending on the application of lifetime risk calcu-
lations. The explicit choice of the lifetime risk measure was
found to be negligible. These findings should be taken into

consideration when using lifetime risk measures for radiation
protection policy purposes. � 2025 by Radiation Research Society

INTRODUCTION

Lifetime risk measures reflect the probability of developing
(or dying from) a specific disease of interest over a lifetime.
Lifetime risk measures are highly relevant for different areas of
radiation research to quantify the lifetime excess risk due to
radiation exposure. For example, they are part of the detriment
calculation (1) with the calculation of nominal risks or the epi-
demiological approach for radon dose conversion (2–4). Here,
lung cancer related to occupational radon exposure will be con-
sidered. The calculation of (excess) lifetime risks is typically
based on one specific combination of calculation components,
and in the final estimate, no uncertainties are reflected. The
objective of this analysis was to vary the components of the
lifetime risk calculation systematically to assess their impacts
on the lifetime risk estimate. Therefore, this exploratory analy-
sis contributes to quantifying uncertainties and sensitivities in
the lifetime risk of lung cancer related to radon exposure.
Radon exposure is one of the most important causes of lung

cancer aside from smoking (5). This was demonstrated in ura-
nium miners and residential radon studies (6–8). Uranium
miners studies have shown a linear relationship between occu-
pational radon exposure and excess lung cancer mortality risk
which is modified by age, time since exposure and exposure
rate. The risk models are complex and differ between studies.
Risk model parameter estimates between cohorts are therefore
difficult or even impossible to compare. Lifetime risk mea-
sures provide a possibility for comparison and interpretation.
Hence, such measures can also contribute to clearer and more
comprehensible risk communication.
Different measures for excess lifetime risks include lifetime

excess absolute risk (LEAR), risk of exposure-induced death
(REID) and excess lifetime risk (ELR) (9, 10). Tomasek et al.
(11) calculated the LEAR of dying from lung cancer due to
radon exposure for different risk models, among them an
updated risk projection model for the pooled Czech and
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French cohort of uranium miners. These updated lifetime risk
calculations were considered in the epidemiological approach
for radon dose conversion by ICRP (4). ICRP eventually rec-
ommended new factors for radon dose conversion (1). Even if
the ICRP now recommends the dosimetric approach, the epi-
demiological approach using the LEAR is still relevant for
comparison purposes (4, 12).
Understanding the importance and consequences of neces-

sary choices when implementing lifetime risk calculations
requires elaborating on the sensitivity of the lifetime risk con-
cept and its underlying calculation components. For example,
Hunter et al. (13) performed a thorough sensitivity analysis on
the REID for U.S. mortality rates focusing on effects of risk
models from studies of occupational and residential radon
exposure and differences in sex and smoking behavior. Chen
et al. (14) conducted a sensitivity analysis for indoor radon
for the Canadian population. A comparison of LEAR, ELR
and REID for a linear risk model can be found in Kellerer
et al. (9). Ulanowski et al. (15) introduced radiation-attributed
decrease of survival (RADS) as another lifetime risk measure
aimed to be less sensitive to the choice of background rates.
Besides sensitivity analyses, uncertainties in lifetime risks
have been investigated and quantified only rarely (16, 17).
Existing literature on sensitivity analysis of lifetime risks
often focuses on a subset of components and selected lifetime
risk measures. This highlights a research gap for structured
sensitivity analyses incorporating all calculation components
and a likewise structured comparison between lifetime risk
measures, especially for lung cancer related to radon.
We contribute to this by systematically varying (excess) life-

time risk calculation components and quantifying their impact
on the corresponding lifetime risk measure. In particular, we
consider different risk models, and multiple heterogeneous
exposure scenarios and construct different sex-averaged refer-
ence populations to account for a variety of situations and indi-
viduals, specifically for lung cancer related to occupational
radon exposure. Focusing on the LEAR, we also compare
results to ELR, REID and RADS. Further methodological
issues are considered and discussed.

METHODS

Lifetime Risk Definition

There are various definitions for excess lifetime risks (10, 15). All
considered definitions emerge from the difference between risk under
exposure and the baseline risk without exposure. Here we focus on
the lifetime excess absolute risk (LEAR), sometimes also referred to
as lifetime attributable risk (LAR), e.g. (9). The LEAR is defined as

LEARE að Þ¼ LRE að Þ � LR0 að Þ¼
ð1
a

rE tð Þ � r0 tð Þð ÞS tjað Þ dt

¼
ð1
a

r0 tð ÞERR tð ÞSðt j aÞ dt (1)

with lifetime risk of dying from a specific disease of interest (here:
lung cancer) under exposure LRE að Þ¼ Ð1

a
rE tð ÞS tjað Þ dt, baseline

lifetime risk LR0 að Þ¼ Ð1
a

rE tð ÞS tjað Þ dt, minimum age at risk a,
baseline lung cancer mortality rates r0ðtÞ and lung cancer mortality

rates under exposure rEðtÞ at age t. Sðt j aÞ is the conditional sur-
vival function with Sðt j aÞ: ¼ PðT $ t j T $ aÞ and T $ 0 the
unknown random retention time until death. Sðt j aÞ describes the
probability to survive until age t given the survival to age a. We set
SðtÞ: ¼ Sðt j 0Þ¼PðT $ tÞ and model the survival function as

S tð Þ¼ e
�
Ð t

0
q0 uð Þdu

with baseline mortality rates for all causes of death
q0ðtÞ. ERRðtÞ denotes the excess relative risk at age t. In Eq. (1), the
following risk projection model is assumed:

rE tð Þ ¼ r0 tð Þð1þ ERR tð ÞÞ: (2)

Established risk models for lung cancer from radon exposure fol-
low such an ERR structure (8, 18). The ERR(t) depends not only on
age t but on further variables such as cumulative lagged exposure to
radon progeny, time since exposure or exposure rate. The exact com-
position and complexity of the ERR(t) depends on the specific risk
model.

Lifetime Risk Calculation and Choice of Components

In the computation of LEAR, we distinguish between major and
minor components. Minor components are defined with limited freedom
of choice or possess minimal influence on the resulting LEAR. Major
components, on the other hand, necessitate further decision-making
because they are less constrained, and their choice is consequential.

The LEAREðaÞ relies on three major components: mortality rates,
risk models, and exposure scenarios. The first component encompasses
mortality rates for lung cancer r0ðtÞ and all-cause mortality rates q0ðtÞ,
at each age t. The relative risk projection model shapes ERRðtÞ at each
age. The exposure scenario involves yearly exposure to radon progeny
in working level months (WLM) and has an impact on ERRðtÞ for every
age t. Minor components include minimum age at risk a, maximum age
amax, minimum latency time L between exposure and risk amplification,
and the chosen approximation approach for the survival function SðtÞ.

The LEAR is subsequently estimated and calculated through the
following approximation:

LEARE að Þ �
Xamax
t¼a

r0 tð ÞERR tð ÞeS t j að Þ; (3)

where the approximation eS t j að Þ¼ e�
Pt�1

u¼ a
q0ðuÞ is utilized for the sur-

vival function Sðt j aÞ. This approximation is based on the Nelson-
Aalen estimator of the cumulative hazard rate (19).

The minimum age at risk a was set to a¼ 0 to account for the full
lifetime of an individual. The maximum age amax was set to amax ¼ 94
for comparability to previous studies (20). For readability, we write
LEAR¼ LEAREð0Þ. For the latency period L between exposure to radon
progeny and death from lung cancer, the cumulative exposures were
lagged by L¼ 5 years since all considered risk projection models also
assume L¼ 5. LEAR estimates were computed and compared for differ-
ent combinations of major calculation components: three sex-averaged
reference populations, seven risk models and four exposure scenarios,
resulting in 3 3 7 3 4 ¼ 84 distinct LEAR estimates. Besides the total
LEAR, the LEAR per WLM (LEAR/WLM) is considered, defined as
the LEAR divided by total cumulative exposure accrued over the entire
exposure scenario in WLM. All statistical or numerical analyses were
conducted with the statistical software R (21).

Mortality Rates

The following sex-averaged mortality rates were chosen: ICRP
reference rates reflecting a mixed Euro-American-Asian population
derived from population data from the years 1993–1997 (3, 22); rates
from Greece 2018, the Netherlands 2018 and Norway 2016 based on
population data provided by the WHO Mortality Database (23)
reflecting a heavy smoker reference population; and rates from Costa
Rica 2019, USA 2019 and Sweden 2016 reflecting a light smoker popu-
lation. The country selection was based on smoking behavior following
the OECD Health Statistics (24) on tobacco consumption (percentage of
the population aged 15þ who are daily smokers) from the year 2000 to
account for a latency of around 20 years between smoking and the
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development of lung cancer. This latency time was chosen based on sev-
eral studies (25–27). The three countries with the highest percentage of
daily smokers aged 15 and older (32–35%) were chosen to represent the
heavy smoker population, while the three countries with the lowest per-
centage of daily smokers (12–19%) were chosen to represent the light
smoker population. Further, the countries were chosen with the objec-
tive to employ complete and recent data.

The rates of heavy and light smokers were constructed by aggregating
death cases di and population sizes ni from different countries and sexes,
where i¼ 1; . . . ; N indexes both the country and sex for every age:

m¼
PN

i¼ 1 diPN
i¼ 1 ni

: (4)

If d corresponds to lung cancer deaths at age t, this yields the baseline
rate m¼ r0ðtÞ, and if d denotes all-cause death counts at age t,
m¼ q0ðtÞ. The full derivation of Eq. (4) is shown in the Supplementary
Materials, Section A (https://doi.org/10.1667/RADE-24-00060.1.S1).2

Figure 1 shows the difference in lung cancer deaths (panel A) and all-
cause deaths (panel B) per 100,000 persons for all three sex-averaged
reference populations (exact numerical values in the Supplementary
Table S1; https://doi.org/10.1667/RADE-24-00060.1.S1). Population
data is given in 5-year age intervals. Light smoker and heavy smoker
populations are similar in all-cause deaths per 100,000, with visible dif-
ferences only at ages 85þ. The ICRP reference population shows con-
siderably more all-cause deaths per 100,000 compared to the smoker
populations until age 85. There are notably more lung cancer deaths per
100,000 for heavy smokers than for light smokers (as expected). How-
ever, at ages 85þ heavy smoker lung cancer deaths per 100,000
decreased whereas for light smokers, they stayed approximately con-
stant. The ICRP reference population yields relatively many lung cancer
deaths, comparable to the heavy smoker population.

Unless explicitly stated otherwise, all lifetime risk estimates are
calculated with mean mortality rates for males and females (sex-
averaged mortality rates). Lifetime risks with male-specific mortality
rates are analyzed in Supplementary Materials, Section B (https://
doi.org/10.1667/RADE-24-00060.1.S1).

Risk Models and Cohorts

The LEAR calculation is based on a risk projection model and
data from a cohort study, on which the risk model was fitted. Estab-
lished risk models for lung cancer due to radon exposure in uranium
miners cohort studies are based on the general structure in Eq. (2)
and are fitted with internal (or sometimes also external) Poisson
regression on grouped data. The preferred risk model contains a

linear relationship between cumulative occupational radon exposure
in WLM and excess relative risk of lung cancer, which is additionally
modified by time since exposure, attained age or age at exposure,
and in some cases also exposure rate (8). Recently, more focus has
been given to more recent periods with low-radon exposures or expo-
sure rates (“sub-cohorts 1960þ”) (28–30).

Here, the considered risk models are the categorical BEIR VI
exposure-age-concentration model fitted on the pooled 11 miners
cohort (BEIR VI model) (6) as well as on the Pooled Uranium Min-
ers Analysis (PUMA) cohort (PUMA model) (18, 28), the adjusted
Jacobi model fitted on six cohort studies (2, 31), and parametric risk
models fitted on the German Wismut cohort (7) as well as on the
Joint Czech and French miners cohort (32).

These models were selected for the following reasons. The initial
factors for radon dose conversion were computed using the Jacobi
model (2). The Joint Czech and French risk model, along with the
BEIR VI model fitted to the pooled 11 miners cohort, contributed to
a novel radon dose conversion proposal by ICRP (4). The German
Wismut cohort is the world’s largest single cohort of uranium miners.
Notably, this extensive cohort was not included for the BEIR VI risk
model (as the cohort was only established later). Suitable parametric
models are used for both the Wismut 1960þ sub-cohort and full
cohort, containing a continuous exposure rate effect for the full
cohort that contrasts with the categorical exposure rate considerations
in the BEIR VI and PUMA models. Note that we deliberately
included Wismut models from the follow-up period 1946–2013 (7)
rather than from the latest follow-up 1946–2018 (29) to ensure a
broader variety of risk model structures for sensitivity analyses.
While the more recent models offer slightly more precise estimates,
such as by additionally stratifying the baseline by duration of
employment, they are structurally similar to the other models com-
pared here and do not contribute to the diversity of our model selec-
tion. The PUMA study is the largest uranium miners cohort
worldwide, encompassing twice as many uranium miners and
roughly three times as many lung cancer deaths (33) as the pooled
11 miners cohort (6). In particular, it includes the German Wismut
cohort.

The generic categorical BEIR VI exposure-age-concentration
model at age t reads

ERR tð Þ¼b W5�14 tð Þ þ h15�24W15�24 tð Þ þ h25þW25þ tð Þð Þ/agecz; (5)

where W5�14; W15�24; W25þ is the cumulative radon exposure in the
windows 5–14, 15–24 or 25þ years before age t with corresponding
parameters h15�24; h25þ and /age and cz are factors for attained age

and exposure rate, respectively. We refer to Eq. (5) as the “BEIR VI”
model when fitted to the pooled 11 miners cohort, and as “PUMA
full” or “PUMA sub” when fitted to the full PUMA cohort or to the
1960þ sub-cohort, respectively, the latter comprising miners hired in
1960 or later. Note that in PUMA models the exposure rate factor cz

FIG. 1. Lung cancer deaths (panel A) and all-cause deaths (panel B) per 100,000 persons by age in the sex-averaged ICRP reference popu-
lation (3) and in the constructed reference populations for heavy and light smokers.

2 Editor’s note. The online version of this article (DOI: https://doi.
org/10.1667/RADE-24-00060.1) contains supplementary information
that is available to all authorized users.
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accounts for the annual exposure rate, whereas in the classical BEIR
VI model cz corresponds to the cumulative exposure rate.

The adjusted Jacobi model is the classical Jacobi model in (31)
adjusted by the factor 0.83 to account for overestimation (2). It reads
with time since exposure TE, age at exposure AE¼ t � TE, and
cumulative exposureWðtÞ in WLM at age t in years,

ERR tð Þ ¼ 0:83
X
TE#t

a AEð Þh TEð ÞW AEð Þ; (6)

with AE-specific parameters aðAEÞ and TE-specific parameters
hðTEÞ. Note that although this model is based on six cohorts, the
modifying effect structure of time since exposure and age at exposure
was estimated solely from the Czech cohort. The parameter estimates

in a AEð Þ are adjusted to match the meta-estimate for ERR per WLM
derived from all six cohorts (31).

The generic parametric risk models for ERR at age t read,

ERR tð Þ¼ bW tð Þexp a AME tð Þ � 30ð Þ þ e TME tð Þ � 20ð Þ� �
; (7)

ERRðtÞ¼ bWðtÞexpfaðAMEðtÞ � 30Þ þ eðTMEðtÞ � 20Þ
þ wðERðtÞ � 3Þg (8)

with cumulative exposure WðtÞ in WLM and continuous effect modi-
fiers age at median exposure AMEðtÞ in years, time since median
exposure TMEðtÞ in years and cumulative exposure rate ERðtÞ in WL
with corresponding parameters b; a; e and w. We consider Eq. (7)
fitted on two different cohorts, namely the joint Czech and French
and the German uranium miners sub-cohort with miners hired in
1960 or later (Wismut 1960þ sub-cohort). Equation (7) fitted on the
joint Czech and French cohort is referred to as the “Joint CZþF” risk
model. We call Eq. (7) fitted on the Wismut 1960þ sub-cohort with
follow-up 2013 “Wismut sub”, whereas Eq. (8) was fitted to the full
German uranium miners cohort and is referred to as ‘Wismut full”.
The parameter estimates differ between cohorts and only Wismut full
incorporates an exposure rate effect with w 6¼ 0.

All considered risk models include unknown parameters (indicated
by Greek letters) which are estimated using Maximum-Likelihood
methods based on miners cohort data. In total, we consider four cate-
gorical risk models (BEIR VI, PUMA full, PUMA sub, adjusted
Jacobi) and three parametric continuous risk models (Joint CZþF,
Wismut full, Wismut sub) (Table 1). Here, the terms “categorical”
and “parametric/continuous” refer to the categorical or continuous
nature of the effect-modifying variables. Among all seven considered
models, three categorical models (BEIR VI, PUMA full, PUMA sub)
and one parametric model (Wismut full), account for an exposure
rate effect. The explicit parameter estimates for all risk models can
be found in Supplementary Materials, Section C (https://doi.org/10.
1667/RADE-24-00060.1.S1) or the corresponding references. For the
actual calculation of lifetime risk estimates, parameter estimates are
plugged into the corresponding risk model structure.

Exposure Scenario

As exposure scenarios, we consider the internationally well-
accepted default choice for LEAR calculation with occupational
exposure of 2 WLM from age 18–64 (94 WLM total cumulative
exposure over lifetime (WLM/life), moderate exposure) as used in
(11). Furthermore, we use three scenarios calculated from mean
exposures during employment of miners from the Wismut cohort
depending on the period of begin of employment (1946–1954: 1,750
WLM/life, “very high exposure”; 1955–1970: 352 WLM/life, “high
exposure”; and 1971–1989: 54 WLM/life, “low exposure”). The
mean exposure was determined by averaging the annual exposures of
miners (with WLM . 0) by age. The constructed exposure scenarios
differ considerably in shape and yearly exposure (Fig. 2).

Comparison of Lifetime Risk Measures

Three additional lifetime risk measures were calculated: The risk of
exposure-induced death REID [first introduced in (34) and employed in
(13, 35)], the excess lifetime risk ELR (36) and the radiation attributable
decrease of survival RADS (15). The central difference of the additionally
considered lifetime risk measures compared to the LEAR is the explicit
accounting for radon exposure in the survival function. The LEAR
approach assumes that radon exposure affects only the explicit lung can-
cer risk but not the survival function. Survival under exposure shall be
denoted by SEðt j aÞ and baseline survival by S0ðt j aÞ¼ Sðt j aÞ, empha-
sizing that S0ðt j aÞ does not depend on exposure. It holds,

REIDE að Þ¼
ð1
a

rE tð ÞSE tjað Þ dt �
ð1
a

r0 tð ÞSE tjað Þ dt

¼
ð1
a

r0 tð ÞERR tð ÞSE tjað Þ dt;

ELRE að Þ¼
ð1
a

rE tð ÞSE tjað Þdt �
ð1
a

r0 tð ÞS0 tjað Þdt;

RADSE að Þ¼ lim
t!1

S0 tjað Þ � SEðt j aÞ
S0ðt j aÞ ¼ 1� lim

t!1
SE tjað Þ
S0 tjað Þ :

As for the LEAR, we investigate a¼ 0 and write REID ¼
REIDEð0Þ; ELR¼ELREð0Þ and RADS¼RADSEð0Þ. To calculate
these additional lifetime risk measures, assumptions on the survival
function affected by exposure are necessary. Analogously to

S0 tð Þ¼ e
�
Ð t

0
q0 uð Þ du

we set SE tð Þ¼ e
�
Ð t

0
qE uð Þ du

where qEðu) describes
the all-cause mortality rate at age u affected by exposure. For compu-

tation of SEðtÞ we employ the approximation eSE tð Þ¼ e�
Pt�1

u¼ 0
qEðuÞ

and assume that radon exposure only influences the risk for lung

TABLE 1
Overview of all Considered Risk Models and Associated Cohort Data

Model name Reference Cohort Equation Miners PYR*

Lung
cancer
deaths

BEIR VI NRC 1999 (6) Pooled cohort of 11 studies (5) 67,897 1,155,453 2,799

PUMA full Kelly-Reif et al. 2023 (18) PUMA cohort (5) 119,709 4,125,533 7754

PUMA sub Richardson et al. 2022 (28) PUMA 1960þ sub-cohort (5) 57,873 1,887,092 1217

(Adjusted) Jacobi Jacobi 1993 (31) Pooled cohort of 6 studies (6) 28,702 584,072 912

Joint CZþF Tomasek et al. 2008 (32) Pooled Czech and French cohort (7) 10,100 248,782 574

Wismut full Kreuzer et al. 2018 (7) German uranium miners cohort (8) 58,974 2,332,008 3,942

Wismut sub Kreuzer et al. 2018 (7) German uranium miners 1960þ sub-cohort (7) 26,765 956,776 495

* PYR, person-years at risk.
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cancer mortality. Therewith, qEðuÞ differs from q0ðuÞ by an increased
lung cancer mortality rate. Hence, qEðuÞ¼ q0ðuÞ þ r0ðuÞERRðuÞ and

eSE tð Þ¼ eS0 tð Þe
�
Xt�1

u¼ 0

r0 uð ÞERRðuÞ
:

Employing the same approximation as for the LEAR, the final
approximated formulas for all considered lifetime risk measures are

LEAR �
X
t$0

r0 tð ÞERR tð ÞeS0 tð Þ;

REID �
X
t$0

r0 tð ÞERR tð ÞeSE tð Þ;

ELR �
X
t$0

r0 tð Þ 1þ ERR tð Þð ÞeSE tð Þ �
X
t$0

r0 tð ÞeS0 tð Þ;

RADS � 1� e
�
X
t$0

r0 tð ÞERR tð Þ
:

RESULTS

All possible variations of considered mortality rates, risk

models and exposure scenarios result in 3 3 7 3 4 ¼ 84

different LEAR and LEAR per WLM estimates (Table 2

and Fig. 3). Note that LEAR estimates are obtained from

LEAR per WLM estimates by multiplying the LEAR per

WLM by the scenario-specific cumulative exposure in

WLM. The LEAR estimates themselves vary heavily from

0.45% to 151.27% and increase monotonically with expo-

sure (as would be expected). Notably, LEAR estimates

exceeding 100% are observed for the PUMA sub-risk

model and the very high-exposure scenario for all three

reference populations. Although absolute risks (i.e., proba-

bilities) are typically bounded by 100%, the LEAR

methodology allows for unbounded values, reflecting sub-

stantial risk increases under extreme exposure scenarios

(see discussion). The LEAR per WLM spans from 0.58 3
10�4 to 8.80 3 10�4. Roughly, this implies that among

100 individuals with a cumulative occupational radon

exposure of 100 WLM, there would be an additional 0.58

to 8.80 (excess) lung cancer deaths attributed to this expo-

sure over their lifetime.

Effects of Reference Populations

The LEAR per WLM estimates for the population of

heavy smokers closely align with those of the ICRP refer-

ence population, whereas light smokers consistently yield

lower estimates. The heavy smoker population (baseline

lifetime risk of 5.27%), exhibits higher LEAR per WLM

estimates than light smokers (baseline lifetime risk of

FIG. 2. Exposure to radon progeny in WLM per year by age for the four considered exposure scenarios with total cumulative exposure in
parentheses (panel A). Panel B differs in the scale of the y-axis only and gives a more focused view on lower exposures per year.

TABLE 2
Results for LEAR per WLM 3 104 Estimates for All Considered Exposure Scenarios, Reference Populations and Risk Models

Exposure scenario Population BEIR VI PUMA full PUMA sub Adj. Jacobi Joint CZþF Wismut full Wismut sub

Very high Heavy smokers 2.13 4.82 8.64 2.75 4.64 0.81 3.75

ICRP 2.10 4.47 8.06 2.61 4.67 0.80 3.56

Light smokers 1.54 3.70 6.50 2.07 3.36 0.58 2.81

High Heavy smokers 3.70 5.08 8.80 2.75 4.33 0.87 3.45

ICRP 3.57 4.80 8.36 2.60 4.36 0.87 3.28

Light smokers 2.73 3.89 6.60 2.09 3.14 0.63 2.59

Moderate Heavy smokers 6.15 5.38 7.98 3.41 4.68 1.17 4.50

ICRP 5.97 5.74 7.50 3.20 4.58 1.13 4.21

Light smokers 4.42 4.39 6.02 2.56 3.41 0.85 3.40

Low Heavy smokers 6.25 5.55 8.51 3.19 4.80 1.14 4.28

ICRP 6.12 5.24 8.04 3.01 4.74 1.12 4.03

Light smokers 4.50 4.23 6.40 2.39 3.48 0.83 3.22

Note. Minimum and maximum values are bolded.

LIFETIME RISKS FOR LUNG CANCER DUE TO OCCUPATIONAL RADON EXPOSURE 179

Downloaded From: https://bioone.org/journals/Radiation-Research on 06 Mar 2025
Terms of Use: https://bioone.org/terms-of-use



4.12%). For comparison, the baseline lifetime risk of the

ICRP reference population is 4.83%. The differences

between reference populations can be explained when the

factors r0ðtÞ and SðtÞ are interpreted as weighting factors

r0ðtÞSðtÞ for the ERRðtÞ in the LEAR calculation [Eq. (3)]

since these weights completely depend on mortality rates

(Fig. 4). The weights r0ðtÞSðtÞ are notably lower for light

smokers than for heavy smokers and ICRP reference at all

ages except for ages 80þ. This characteristic roughly trans-

lates to the age-specific contributions r0ðtÞSðtÞERRðtÞ to

the final LEAR estimate. Thus, the population of light

smokers produces lower LEAR per WLM estimates

because lung cancer rates are lower among light smokers,

whereas the results for the ICRP reference population and

the heavy smoker population are almost similar. Using

male-specific compared to sex-averaged mortality rates

results in higher lifetime risk estimates across all reference

populations, risk models, exposure scenarios, and lifetime

risk measures (Supplementary Materials, Section B; https://

doi.org/10.1667/RADE-24-00060.1.S1).

Effects of Risk Models and Exposure Scenarios

Despite large differences in the four considered expo-
sure scenarios, the resulting respective LEAR per WLM is
notably constant (reading Fig. 3 horizontally). Only esti-
mates with BEIR VI deviate considerably and exhibit an
increasing trend with decreasing exposure. Notably, this
does not apply to PUMA models, although they have a
very similar model structure. Generally, the risk models
influence LEAR estimates essentially (Fig. 5). There are
large differences in age-at-exposure effects and the mag-
nitude and shape of ERRðtÞ; depending on the chosen risk
model. All risk models peak at different ages at exposure.
The Joint CZþF and Wismut sub model exhibit distinct
ERRðtÞ patterns, despite originating from an identical risk
model structure [Eq. (7)]. This affects the age-specific
contribution r0ðtÞERRðtÞSðtÞ to the LEAR (Fig. 5B). Mul-
tiplying the ERRðtÞ (Fig. 5A) with r0ðtÞSðtÞ at every age t
yields the curves from Fig. 5B. Integrating these curves
over all ages t yields the LEAR estimate for each risk
model.

FIG. 3. LEAR per WLM 3 104 for the four considered exposure scenarios and all considered risk models. Results of different smoker pop-
ulations in different plots (panel A: light smokers, panel B: heavy smokers). A plot for the ICRP population is omitted here as it closely mir-
rors the heavy smokers panel.

FIG. 4. Illustration of the influence of the three reference populations on LEAR calculation. Panel A: Product of baseline lung cancer mor-
tality rates r0ðtÞ and survival SðtÞ 3 103; panel B: age-specific contribution to the LEAR, r0ðtÞERRðtÞSðtÞ 3 103; both for every age t with
the BEIR VI risk model and the moderate exposure scenario of 2 WLM from age 18–64 years.
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In the Supplementary Materials, Section D (https://doi.org/
10.1667/RADE-24-00060.1.S1), further sensitivity analysis on
the effects of varying annual exposure and differences between
single acute and protracted homogeneous exposure across age
are shown for all lifetime risk measures and risk models.
Results show stable or slightly declining lifetime risk estimates
per WLM for varying annual exposure for all risk models,
except for the BEIR VI risk model. Comparing acute exposure
at different ages to protracted homogeneous exposure across
age reveals substantial differences in lifetime risk estimates
especially influenced by the consideration of exposure rate in
risk models. Depending on age at acute exposure, the excess
lifetime risks (per WLM) differ roughly by a factor of two for
all risk models and all lifetime risk measures.

Comparison of Lifetime Risk Measures

Excess lifetime risks were calculated for three additional
lifetime risk measures for all combinations of reference
populations, risk models and exposure scenarios (Fig. 6
and Table 3 for moderate exposure). There are only slight
differences in results for ELR, REID and LEAR, except for
very high exposures. RADS estimates are larger than
results for the other three measures. We observe the mono-
tonicity ELR � REID � LEAR � RADS (per WLM) for

all combinations except for the very high-exposure scenario.

At this very high exposure, the monotonicity between lifetime

risk measures is ELR � REID � RADS � LEAR (per

WLM) for all reference populations and risk models.

DISCUSSION

Lifetime risk estimates depend on several calculation

components and assumptions, each being potentially the

source of variability and uncertainty. The extensive varia-

tion in the calculated LEAR and LEAR per WLM across

different reference populations, risk models and exposure

scenarios highlight the complexity of assessing the health

risks associated with radon exposure. In case of the LEAR

for lung cancer related to occupational radon exposure, the

observed LEAR per WLM estimates range from 0.58 3
10�4 to 8.80 3 10�4, underscoring the considerable impact

of the calculation components. We identified mortality

rates and risk models as the most influential components.

LEAR per WLM exhibits only low variation across differ-

ent exposure scenarios for all risk models except for the

BEIR VI model.
Tomasek et al. (11) contributed to understanding the

variability of LEAR estimates by comparing effects of

FIG. 5. Excess relative risks of different risk models (panel A: categorical models, panel B: parametric models) and their age-specific con-
tribution to the LEAR, r0 tð ÞERR tð ÞS tð Þ 3 103 (panels C and D, respectively) for the moderate exposure scenario of 2 WLM from 18–64 years
and the ICRP reference population. For readability, data points are displayed only for every third age.
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different risk models from uranium miners studies and their
impact on the radon dose conversion factor. For the REID,
Hunter et al. (13) performed a sensitivity analysis by addi-
tionally accounting for differences in exposure, sex and

smoking behavior in the risk model for a U.S. population.
The lifetime risk measures LEAR, ELR and REID for
occupational exposure were compared for a simple linear
risk model in Kellerer et al. (2001) showing clear differences

FIG. 6. Excess lifetime risk estimates per WLM 3 104 for different lifetime risk measures and the four considered exposure scenarios (panels A–D)
were calculated with the ICRP reference population.

TABLE 3
Results for Excess Lifetime Risks per WLM 3 104 for Different Lifetime Risk Measures, Reference Populations and Risk

Models for the Moderate Exposure Scenario of 2 WLM from Age 18–64 Years

Lifetime risk measure Population BEIR VI PUMA full PUMA sub Adj. Jacobi Joint CZþF Wismut full Wismut sub

RADS Heavy smokers 7.34 7.84 10.43 4.54 5.66 1.45 6.04

ICRP 7.69 8.27 10.92 4.78 5.98 1.53 6.34

Light smokers 5.99 7.03 9.23 3.96 4.64 1.19 5.30

LEAR Heavy smokers 6.15 5.74 7.98 3.41 4.68 1.17 4.50

ICRP 5.97 5.38 7.50 3.20 4.58 1.13 4.21

Light smokers 4.42 4.39 6.02 2.56 3.41 0.85 3.40

REID Heavy smokers 5.96 5.57 7.66 3.35 4.57 1.16 4.40

ICRP 5.79 5.22 7.20 3.15 4.47 1.13 4.11

Light smokers 4.32 4.28 5.82 2.52 3.35 0.85 3.34

ELR Heavy smokers 5.72 5.38 7.37 3.23 4.39 1.11 4.24

ICRP 5.56 5.04 6.94 3.04 4.30 1.08 3.98

Light smokers 4.17 4.15 5.63 2.45 3.23 0.82 3.23

Note. Minimum and maximum values are bolded for every lifetime risk measure.
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only at higher exposures (9). In the analysis at hand, for the
first time variability in the lifetime risk estimates were inves-
tigated by directly comparing four lifetime risk measures
ELR, REID, LEAR and RADS for different reference popu-
lations, risk models and heterogeneous occupational exposure
scenarios from real data (German uranium miners cohort).

Effect of Mortality Rates and Reference Populations

Smoking is the greatest risk factor for lung cancer (37,
38) and the interaction effect of smoking and radon on lung
cancer is not yet fully understood (8). We investigated
whether strong differences in the smoking behavior of ref-
erence populations are reflected in the corresponding
LEAR estimates by constructing a sex-averaged light and
heavy smoker reference population. For comparison, the
widely accepted ICRP sex-averaged reference population
from (3) was also considered. In the Supplementary Materials
(Section B; https://doi.org/10.1667/RADE-24-00060.1.S1),
lifetime risk sensitivities with male-specific mortality rates
are additionally investigated.
This analysis clearly showed that employing a smoking

reference population results in elevated LEAR per WLM
estimates. This confirms the results published in the litera-
ture (39) that smoking behavior in a reference population
influences lifetime risk estimates heavily. This can be
explained by acknowledging that smoking amplifies baseline
lung cancer risk r0ð�Þ, which enters the LEAR calculation
linearly. In particular, the risk models used are not adjusted
for smoking, resulting in the implicit assumption of a multi-
plicative interaction between smoking and radon on the lung
cancer risk here, in line with the findings (8, 40). However,
other epidemiological studies suggest a sub-multiplicative
(6, 7, 30, 41) or additive interaction (42). While we retain
the multiplicative model due to the heterogeneous nature of
smoking adjustments in the existing literature and compati-
bility issues with our heavy- and light-smoker reference
rates, exploring lifetime risk estimates with smoking-
adjusted risk models could offer interesting insights.
In that manner, if a LEAR for a smoker is of interest, it

may be reasonable to compute smoking-specific LEAR esti-
mates with mortality rates from smoker populations and risk
models fitted on suitable cohorts of smoking persons with
comparable smoking behavior. Especially between countries
heavy differences in lung cancer mortality rates may occur
not only due to smoking behavior, but also because of vari-
able health care and medical standards (43, 44). Likewise, if
a LEAR for a specific country and sex is of interest, country-
and sex-specific lifetime risk estimates with corresponding
sex-specific mortality rates should be calculated, as similarly
recommended for detriment calculations (45). Additional
analyses (Supplementary Materials, Section B; https://doi.
org/10.1667/RADE-24-00060.1.S1) showed an overall
increased lifetime risk when calculated with male-specific
baseline mortality rates, with lifetime risk variability closely
aligning with results obtained using sex-averaged rates. It is
expected that lifetime risks calculated with female-specific

mortality rates would be lower correspondingly. However,
calculating lifetime risks with female-specific rates and risk
models derived from male uranium miners amplifies the risk
transfer issue, which is why we excluded female-specific
analyses in this study.
This analysis further revealed that the ICRP reference pop-

ulation results in remarkably similar LEAR estimates as
when using the heavy smoker population and produces gen-
erally high LEAR and LEAR per WLM estimates, too. The
same result was observed for male-specific reference popu-
lations (Supplementary Materials, Section B; https://doi.org/
10.1667/RADE-24-00060.1.S1). This indicates that ICRP
reference rates rather represent smokers than non-smokers.
In particular, LEAR estimates with the ICRP reference pop-
ulation overestimate absolute risks for non-smokers and
underestimate (but to a lesser extent) risks for smokers, com-
pare (2). However, smoking behavior has evolved over the
years and the smoking population rates in this analysis are
derived from population data from more recent years (2016–
2019) compared to the ICRP reference rates (1993–1997).
This may contribute to explaining the results obtained for
the ICRP population. Hence results incorporating ICRP rates
must be interpreted with care.

Effect of Risk Models

Varying risk models lead to a large variability in LEAR
estimates. This becomes clear when interpreting the LEAR
as a weighted average of the ERR(�) term (which depends
on risk models) with weights r0 �ð ÞSð�Þ. Even risk models

with identical ERR(�) term structures (Joint CZþF and
Wismut sub) inherit different parameter estimates and
result in distinct LEAR estimates. The BEIR VI model
imposes high variation of the LEAR per WLM for different
exposure scenarios due to its strong inverse exposure rate
effect. The PUMA models use fewer categories for expo-
sure rate and annual exposure rate instead of cumulative
mean exposure rate compared to the BEIR VI model. This
explains the lower variability of results from PUMA mod-
els for different exposure scenarios despite the structural
model similarity to BEIR VI. Although Wismut full also
incorporates an inverse exposure rate effect, the impact on
LEAR per WLM is considerably weaker because of the
continuous nature of the model. In considered risk models
without exposure rate effect modifiers, the ERR(t) (and
therefore the LEAR) increases linearly when the exposure
is increased. This results in remarkably stable LEAR per
WLM estimates (Fig. 3).
The Wismut full risk model results in remarkably small

lifetime risk estimates, particularly compared to the PUMA
full model. This is a direct consequence of the fact that
parameter estimates of Wismut full are also comparatively
small. Compared to other cohorts in PUMA, the Wismut
full cohort is characterized by longer duration of employ-
ment combined with rather high-cumulative radon expo-
sure at low-exposure rates [(20) see table 1]. These
structural differences might result in the substantial
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differences between parameter and lifetime risk estimates
from PUMA full and Wismut full risk models, despite the
fact that the Wismut cohort makes up over half of the
PUMA study data (2.3 out of 4.1 million person-years at
risk) (33). In models from the 1960þ sub-cohorts (Wismut
sub, PUMA sub), differences between parameter and life-
time risk estimates are less pronounced, which supports
that uncertainties in exposure assessment in the early years
of the Wismut cohort might also play an important role.
Exposure assessment in the early years of uranium min-

ing relied on expert ratings rather than on direct measure-
ments, increasing the potential for measurement error (20).
Inconsistencies in exposure assessment across different
periods can lead to differences in risk estimates. Improved
exposure assessment quality, such as in the 1960þ sub-
cohorts of PUMA and Wismut, reduces measurement error
and yields more accurate risk estimates at low exposures
and exposure rates. Ongoing research explores the effects
of measurement error in the early years within the Wismut
cohort (46, 47). Measurement errors are one of many possi-
ble explanations for the differences in risk estimates at
low exposures and exposure rates between the full and
the 1960 þ sub-cohort (29).
Note that the inverse exposure-rate effect, also known as

the protraction enhancement effect, plays a critical role in
the observed LEAR variability. This effect describes a
decrease in (excess) relative risk for higher exposure rates
and was demonstrated in many miners studies (6, 8). How-
ever, this effect diminished when the analyses were limited
to miners with low levels of cumulative exposure in WLM
or those employed in more recent times (30, 32), but it was
shown to be statistically significant for the first time at
such exposure levels in the PUMA 1960þ sub-cohort (28).
Generally, variations in LEAR and LEAR per WLM

depending on the choice of risk model emerge from differ-
ences in underlying cohorts, risk model structures and
assumptions for the fitting process of risk model and
cohort. Especially decisions in the necessary data grouping
process prior to applying Poisson regression on cohort data
are highly susceptible to influencing risk model estimates
(48). Also, the design of baseline stratification, e.g. with
the statistical software Epicure (49), influences risk model
parameter estimates and corresponding lifetime risk esti-
mates (50). In categorical risk models, ERR(t) curves might
exhibit abrupt changes at specific ages, times since expo-
sure, and exposure rates as given by the model. This raises
concerns about the discontinuity of these models. On the other
hand, parametric risk models, which also incorporate effect
modifiers, provide a smoother and more intuitive transition
over age. Therefore, it seems more reasonable and plausible
to use parametric risk models (or generally models with a
continuous structure), such as those fitted on a representative
cohort (cf. (28)), for calculating LEAR estimates. Especially
for the BEIR VI model, there were attempts to use a smooth
version of this categorical risk model by employing spline
functions, see e.g. (51).

While our analyses focus on established excess relative risk
(ERR) models, we acknowledge that lifetime risk estimates
incorporating excess absolute risk (EAR) results for lung can-
cer related to occupational radon exposure are available, as in
the electronic attachment of (8). The EAR approach offers an
alternative perspective on lifetime risk assessment, although
comprehensive application across all our studied cohorts is
technically constrained. Future research may explore further
EAR models, where possible, potentially enriching the inter-
pretation of radon-related risks.

Effect of Exposure Scenario

In the early years of uranium mining at Wismut after
1945, miners were exposed to high levels of radon and its
progeny, and had very different exposure situations than
miners later. Due to improved measures for occupational
safety like air ventilation, the mean exposure at the Wismut
reduced constantly from 1955 and reached levels of inter-
national radiation protection standards in the 1970s (52).
The large size of the Wismut cohort study enabled us to
construct realistic occupational exposure scenarios with
heterogeneous exposure rates over age (low, high, and very
high exposure) additional to the default choice of 2 WLM
from age 18–64 years (moderate exposure). In particular,
the exposure scenario reflecting begin of employment in
1946–1954 (very high exposure) shows very high expo-
sures at early ages due to missing protective measures in
the mines. Likewise, but to a considerably lesser extent,
this holds for the exposure scenario with begin of employ-
ment 1955–1970 (high exposure). On the other hand, the
scenarios for begin of employment 1970–1989 (low expo-
sure) and the ICRP default (moderate exposure) show
homogeneous exposure over age without clear peaks.
Despite substantial differences in exposure scenarios, the

LEAR per WLM remains relatively constant for all risk
models except for BEIR VI with a threefold increase from
highest to lowest exposure scenario.
The LEAR per WLM tends to slightly increase (except

for the PUMA sub-model) for the two exposure scenarios
with moderate and low cumulative exposure compared to
the other two exposure scenarios. Regarding risk models
without an exposure rate effect modifier (Adj. Jacobi, Wis-
mut sub and Joint CZþF), this is because of the more
homogeneous exposure in age in these two scenarios – in
contrast to the other two scenarios with high and very high-
cumulative exposure where the majority of exposure is at
earlier ages. At these earlier ages, LEAR and LEAR per
WLM are less affected by exposure (see Fig. 4). However,
the effect is small. On the other hand, risk models with an
exposure rate modifier (BEIR VI, Wismut full, PUMA full
and PUMA sub) are additionally affected by variable
cumulative exposure. LEAR estimates with the BEIR VI
model are heavily affected by this categorical-inverse-
exposure rate effect as mentioned before. PUMA sub
behaves differently because of its unique feature of an
increasing factor for time since exposure 25–34 years
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ago Supplementary Materials, Section C; https://doi.org/
10.1667/RADE-24-00060.1.S1). This parameter estimate
is likely an artifact stemming from the reduced statistical
power of the PUMA sub-cohort compared to the PUMA
full cohort.
Note that stable LEAR per WLM estimates translate to a

roughly linear relationship between LEAR and exposure,
e.g. a doubling in yearly exposure roughly doubles the
LEAR as well. The LEAR measure is technically
unbounded and may result in unreasonable large values for
extreme exposure scenarios. LEAR estimates exceeding
100% are to be interpreted cautiously.
Combining risk models derived from low-exposure

cohorts with extreme exposures may not seem reasonable
at first glance. Risk models without an exposure rate effect
modifier tend to be suitable only for low-exposure scenar-
ios (7, 53). However, the goal of this sensitivity analysis
was to particularly investigate and combine extreme cases
for a better understanding of LEAR drivers.
In summary, the stability of LEAR per WLM for changing

exposure scenarios implies no benefit from employing com-
plex over simple exposure scenarios when calculating life-
time risks for realistic exposures. This confirms the default
exposure scenario of 2 WLM from age 18–64 years for a
working population as a suitable and reasonable choice.

Effect of Lifetime Risk Measures

Comparisons between the different lifetime risk mea-
sures ELR, REID, LEAR and RADS, provide valuable
insights. The monotonicity observed for all combinations
of major components except for the very high-exposure
scenario, i.e. ELR � REID � LEAR � RADS (per WLM),
underscores the relationship between these measures.
All four measures preserve mostly the behavior as seen

for the LEAR regarding risk model and reference popula-
tion effects. RADS is the only measure where estimates
with ICRP mortality rates are higher than estimates with
the heavy smoker reference population. This is because
RADS estimates are independent of all-cause mortality
rates in contrast to ELR, REID and LEAR.
The three measures ELR, REID and RADS (per WLM)

are more severely affected by the very high-exposure sce-
nario than the LEAR because these measures account for
excess risk in the survival function.
This can be observed by comparing LEAR to, for exam-

ple, RADS (per WLM) across varying exposure scenarios,
moving from lower to higher levels (Fig. 6). For the very
high-exposure scenario, LEAR per WLM stands out as it is
barely affected by exposure. RADS per WLM decreases
considerably for higher levels of exposure. This confirms
the stability of LEAR per WLM in capturing the exposure-
response relationship for varying exposure scenarios.
The observed relation ELR � REID � LEAR (per WLM)

can be mathematically proven to hold for all combinations of
calculation components. Assuming a harmful effect of radon
exposure, it holds rE tð Þ$ r0ðtÞ and SE tjað Þ# S0ðt j aÞ for

all t; a $ 0. Evidence shown in Supplementary Materials,
Section E (https://doi.org/10.1667/RADE-24-00060.1.S1),

ELR að Þ # REID að Þ # LEAR að Þ per WLMð Þ;

REID að Þ # RADS að Þ per WLMð Þ:
For moderate excess absolute risks, it even holds ELR �

REID � LEAR � RADS (per WLM). At higher exposures
the indefinite growth of LEAR exceeds RADS, breaking the
inequality.
A critical aspect in estimating ELR, REID, and RADS is the

modeling choice of SEðtÞ: Since there is currently no reliable
evidence that radon can cause diseases other than lung cancer
(54, 55), we assume that radon exposure affects solely the lung
cancer risk, i.e. qE uð Þ ¼ q0 uð Þ þ r0 uð ÞERR uð Þ for all ages u.
LEAR exhibits linear growth for increase in lung cancer

mortality rates r0 or yearly exposure whereas the other three
measures grow sublinear due to the additional exponential term
in the survival function. This mathematical elegance makes the
LEAR particularly appealing (Supplementary Materials, Sec-
tion D; https://doi.org/10.1667/RADE-24-00060.1.S1). Further,
for low lung cancer mortality rates r0 or yearly exposure, val-
ues for LEAR, REID and ELR (per WLM) are similar, while
RADS values deviate. The similarity of REID, ELR and
LEAR is also observed in detriment calculations (45).
We conclude that LEAR and REID are the most practicable

lifetime risk measures, in accordance with previous findings
(9, 10). Both quantities behave very similar for low to moder-
ate exposures and the LEAR is easier to compute since it
avoids the ambiguous radiation-affected survival SEðtÞ. The
ELR has a convenient statistical interpretation but is not linear
in increase in lung cancer mortality rates r0 or yearly exposure
and may even turn negative. We recommend sticking with the
LEAR approach for its broad applicability across most expo-
sure scenarios encountered today. However, for notably higher
exposures, the linearity of LEAR and its indefinite growth is
unrealistic, and we recommend employing the REID for such
situations. RADS serves well as a comparative tool between
risk models, by being less influenced by external baseline mor-
tality rates compared to the other lifetime risk measures (15).

Calculation Components with Minor Influence

Prior analyses showed that latency time L, minimum age
at risk a, the choice of approximation formula for the sur-
vival curve SðtÞ and maximum age amax have negligible
impact on lifetime risk estimates similar to results of sensi-
tivity analyses on radiation detriment (45). However, in our
lifetime risk calculations for lung cancer related to radon
exposure the choices of the lag time L¼ 5 and minimum
age at risk a¼ 0 are predetermined by the risk model and
to not discard early years of life, respectively.

Strengths and Limitations

For the first time in a sensitivity analysis on excess life-
time risks for lung cancer related to radon, new reference
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populations mirroring smoking behavior were constructed

from WHO data. Further, realistic exposure scenarios derived

from the Wismut cohort study were employed in the calcula-

tion. This provides a more accurate representation of the

actual conditions and radon concentrations that individuals

experience in their working environments, and enhances the

reliability of risk assessments.
Since no confidence intervals are presented, it is difficult

to evaluate whether the presented lifetime risk estimates are

statistically compatible. Further, variations in risk models

emerge from differences in the underlying cohort and model

structure. Smoking is not accounted for in the risk models

and thus, any effects of smoking behavior come from ampli-

fied baseline lung cancer risks r0. In that manner, also the

risk transfer from miners cohorts to reference populations

stays ambiguous [multiplicative risk transfer (56)].
Likewise, it is not accounted for sex-specific risks or fur-

ther individual characteristics. Data for radon effects on

females are sparse. Based on the published literature (57)
we assumed the same ERR for females and males.

Future Perspectives

The results on the large impact of reference lung cancer
mortality rates on the LEAR encourage to calculate

country-specific lifetime risk estimates in future work.

Moreover, quantitative estimates for the underlying uncer-

tainty of lifetime risk estimates will sharpen the under-

standing of variability in lifetime risk estimates.

CONCLUSION

In the calculation of lifetime risk measures, the choice of
lifetime risk measure itself and the specific exposure sce-

nario is considerably less important than the used reference

population and risk model. The current study confirms the

LEAR as a suitable lifetime risk measure for low and moder-

ate exposures and adds evidence that the LEAR is substan-

tially affected by mortality rate changes, especially for lung

cancer mortality rates. Thus, reference populations and mor-

tality rates should be selected with care depending on the

application of lifetime risk calculations. Further, the interna-

tionally typical moderate exposure scenario of 2 WLM from

age 18–64 years to represent a working population is further

confirmed as a suitable choice. These findings should be

considered when using and interpreting lifetime risk mea-

sures for radiation protection policy purposes.

SUPPLEMENTARY MATERIALS

Section A: Mortality rates and mixing of populations.
Section B: Lifetime risks for male-specific mortality rates.
Section C: Risk models.
C1: BEIR VI exposure-age-concentration risk model.
C2: PUMA exposure-age-concentration risk model.
C3 Adjusted Jacobi risk model.
C4: Parametric risk models.

Section D: Comparison of lifetime risk measures and

additional analyses.
Section E: Mathematical proofs from main paper

statements.
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Abstract
The Pooled Uranium Miners Analysis (PUMA) study is the largest uranium miners cohort with 119,709 miners, 4.3 million 
person-years at risk and 7754 lung cancer deaths. Excess relative rate (ERR) estimates for lung cancer mortality per unit of 
cumulative exposure to radon progeny in working level months (WLM) based on the PUMA study have been reported. The 
ERR/WLM was modified by attained age, time since exposure or age at exposure, and exposure rate. This pattern was found 
for the full PUMA cohort and the 1960 + sub-cohort, i.e., miners hired in 1960 or later with chronic low radon exposures 
and exposure rates. The aim of the present paper is to calculate the lifetime excess absolute risk (LEAR) of lung cancer 
mortality per WLM using the PUMA risk models, as well as risk models derived in previously published smaller uranium 
miner studies, some of which are included in PUMA. The same methods were applied for all risk models, i.e., relative risk 
projection up to <95 years of age, an exposure scenario of 2 WLM per year from age 18–64 years, and baseline mortality 
rates representing a mixed Euro-American-Asian population. Depending upon the choice of model, the estimated LEAR 
per WLM are 5.38 ×  10−4 or 5.57 ×  10−4 in the full PUMA cohort and 7.50 ×  10−4 or 7.66 ×  10−4 in the PUMA 1960 + sub-
cohort, respectively. The LEAR per WLM estimates derived from risk models reported for previously published uranium 
miners studies range from 2.5 ×  10−4 to 9.2 ×  10−4. PUMA strengthens knowledge on the radon-related lung cancer LEAR, 
a useful way to translate models for policy purposes.

Keywords Uranium miners · Cohort study · Lung cancer · Radon · Mortality · Lifetime risk

Introduction

Radon is an established lung carcinogen and an impor-
tant occupational and environmental cause of lung cancer 
(UNSCEAR 2020). This was demonstrated in residential 
radon studies in the general population and in studies of ura-
nium and other radon-exposed underground miners. Cohorts 
of uranium miners continue to form an important basis for 
radiation protection standards for radon progeny. They con-
sistently show that the excess relative rate (ERR) of lung 
cancer mortality increases linearly with increasing cumula-
tive exposure to radon progeny (in the following abbreviated 
to “radon”) in WLM and that the ERR/WLM is modified by 
attained age, time since exposure or age at exposure, and 
exposure rate (NRC 1999, UNSCEAR 2020). The calcula-
tion of the lifetime excess absolute risk (LEAR) allows the 
comparison of estimates of the ERR/WLM obtained from 
different studies with different characteristics while using 
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the same exposure scenario and baseline mortality rates. 
Such estimates are also useful for policy considerations. The 
LEAR of lung cancer related to exposure to radon for exam-
ple has been used in the past as the basis for the dose conver-
sion convention for radon (ICRP 1993, 2010). This method 
has been used to convert measured radon activity concen-
trations into an effective dose in mSv, which is important 
to check the compliance with occupational radiation limits 
given in mSv. In this "epidemiological" approach of dose 
conversion, the LEAR of lung cancer per unit of exposure 
to radon progeny is divided by the detriment (representing 
the harm) per unit of effective dose (ICRP 2010). Determin-
ing the most appropriate value of this dose conversion coef-
ficient has been the subject of much controversy in recent 
years (Harrison et al. 2020, 2021; Laurier et al. 2020; Marsh 
et al. 2021).

While previously an LEAR of 2.8 ×  10−4 per WLM was 
assumed based on risk models derived from a meta-analy-
sis of 7 miners cohort studies (ICRP 1993), this value was 
revised to 5 ×  10−4 per WLM by the International Com-
mission on Radiological Protection (ICRP) in 2010 (ICRP 
2010) based on new risk models from a pooled analysis of 
11 miners studies (BEIR VI study) (NRC 1999) and a pooled 
Czech/French study (Tomasek et al. 2008a). Both LEAR 
calculations used a mixed male/female Euro-American-
Asian population for baseline rates of lung cancer mortality 
(ICRP 2007) and assumed an exposure scenario of 2 WLM 
per year between age 18 and 64 years. In 2020, the United 
Nations Scientific Committee on the Effects of Atomic 
Radiation (UNSCEAR) reviewed epidemiological studies 
and calculated the LEAR per WLM for death from lung 
cancer in a similar manner using data from four miners stud-
ies (UNSCEAR 2020; Tomasek 2020), among them for the 
first time the large German Wismut cohort (Kreuzer et al. 
2018). The LEAR ranged from 2.4 (Wismut cohort) to 7.5 
(Eldorado cohort) ×  10−4 per WLM. Heterogeneity in radia-
tion risk estimates between studies may explain differences 
in the LEAR and could be due to several factors: differences 
in the range of cumulative exposure and exposure rate, con-
comitant exposures to other lung cancer carcinogens, dura-
tion of follow-up and employment, methods of mortality 
follow-up, composition of the study population, existence 
and control for potential confounders, measurement error, 
loss to follow-up and competing risks for mortality, statisti-
cal power, and also statistical methods.

A major step forward was therefore the worldwide pool-
ing of uranium miners studies, the Pooled Uranium Miners 
Analysis (PUMA) study (Rage et al. 2020; Richardson et al. 
2021), which aims to get more precise estimates of the lung 
cancer risk associated with radon based on standardized sta-
tistical analyses of existing cohorts. PUMA includes twice 
as many uranium miners and about three times as many lung 
cancer deaths (Rage et al. 2020) as the pooled BEIR VI 

study (NRC 1999). The majority of included studies have an 
updated mortality follow-up and all studies follow a com-
mon study protocol and statistical methods. Recently, two 
papers on radon-lung cancer mortality associations among 
men in PUMA have been published, addressing: (1) the 
1960 + sub-cohort of miners hired in 1960 or later (Rich-
ardson et al. 2022) with chronic low radon exposures and 
exposure rates mostly based on measurements, and (2) the 
full PUMA cohort (Kelly-Reif et al. 2023) including very 
high radon exposures from the early years of mining and low 
radon exposures in the later years.

The aim of the present paper is to calculate the LEAR 
per WLM for death from lung cancer using the new risk 
models based on the pooled data of the PUMA study and the 
risk models of previously published uranium miners stud-
ies, including the recently updated German Wismut cohort 
(Kreuzer et al. 2023), while using the same methods for all 
analyses. To be comparable to previous LEAR calculations 
as in UNSCEAR (2020) and ICRP (2010), the exposure sce-
nario was defined as 2 WLM per year from age 18–64 years, 
and baseline mortality rates of the ICRP mixed Euro-Amer-
ican-Asian population (ICRP 2007) were chosen.

Methods

PUMA data

The PUMA study includes seven cohorts from Canada, the 
Czech Republic, France, Germany, and USA, which have 
been previously described in detail (Rage et al. 2020; Rich-
ardson et al. 2022; Kelly-Reif et al. 2023). The ERR/WLM 
was estimated in analyses of men included in PUMA based 
on the BEIR VI exposure–age–concentration model (NRC 
1999, UNSCEAR 2020) and an alternative risk model (i.e., 
the BEIR VI model, but with age at exposure instead of time 
since exposure). The corresponding statistical methods and 
findings have been published for the full cohort (Kelly-Reif 
et al. 2023) and the PUMA 1960 + sub-cohort of miners 
hired in 1960 or later (Richardson et al. 2022). Main char-
acteristics of both cohorts are described briefly in Table 1.

Statistical methods

Lifetime risks reflect the probability of developing or dying 
from a specific disease of interest (here: lung cancer mortal-
ity) in the course of a lifetime. The lifetime excess absolute 
risk (LEAR) is defined as the difference between the lifetime 
risk LRE for an individual with exposure E (here: exposure 
to occupational radon) and the lifetime risk LR0 for an indi-
vidual without exposure
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with survival function S(a) = e
−

a∫
0

q0(u)du describing the prob-
ability to survive until age a , and baseline mortality rates 
for all causes of death q0(a) and for lung cancer r0(a) at age 
a in absence of exposure. The lung cancer mortality rate 
rE(a) at age a under exposure is assumed to follow the typi-
cal general model structure rE(a) = r0(a)(1 + ERR(a)) with 
excess relative risk term ERR(a) . Based on this assump-
tion, the LEAR can be approximated and finally technically 
calculated by

LEAR = LR
E
− LR0

=

∞

∫
0

r
E(a)S(a)da −

∞

∫
0

r0(a)S(a)da,

where S̃(a) = e
−

a−1
∑

u=0

q0(u) approximates the survival function 
S(a) . The ERR(a) depends on an exposure pattern and a 
specific risk model, e.g., with a structure as in the BEIR VI 
exposure–age–concentration model, and a lag time. The final 
summary result is reported as the LEAR per WLM, obtained 
by dividing the calculated LEAR by the cumulative exposure 
accrued over the entire exposure scenario (here: 94 WLM). 
For example, an LEAR for lung cancer mortality per WLM 
of 5 ×  10–4 means that among 100 people with a cumulative 
occupational radon exposure of 100 WLM five additional 
(excess) lung cancer deaths would occur due to this exposure 
during lifetime.

LEAR ≈

amax
∑

a=0

rE(a)S̃(a) −

amax
∑

a=0

r0(a)S̃(a)

=

amax
∑

a=0

r0(a)ERR(a)S̃(a),

Table 1  Characteristics of the PUMA full cohort and PUMA 1960 + sub-cohort of miners hired in 1960 or later

More detailed information can be found in Rage et al. (2020) and Richardson et al. (2022)
WLM Working level months; WL Working level
*Non-exposed miners (i.e., with WLM = 0) were excluded from calculation of mean values
# miners hired in 1960 or later

Period of follow-up Number of 
miners

Number of lung 
cancer deaths

Mean duration of 
employment (years)

Mean cumulative radon 
exposure (WLM)*

Mean annual expo-
sure rate (WL)*

Full cohort (Rage et al. 2020, Tables 1 and 2)

Eldorado (Canada) 1950–1999 13,574 517 2 122 8.3
Ontario (Canada) 1954–2007 28,546 1246 5 31 0.9
Czech (Czech Rep.) 1952–2014 9978 1176 8 73 0.8
France (France) 1946–2007 5086 213 17 37 0.8
Colorado (USA) 1960–2005 4137 612 4 579 11.7
New Mexico (USA) 1957–2012 3469 231 9 90 9.6
Wismut (Germany) 1946–2013 54,919 3759 14 304 1.9

PUMA total 119,709 7754 10 191 2.9
PUMA without Wismut 64,790 3995 6 98 3.7

1960 + sub-cohort# (Richardson et al. 2022, Tables 1 and 2)

Eldorado (Canada) 1960–1999 6593 91 2 7 0.2
Ontario (Canada) 1960–2007 15,810 299 6 6 0.4
Czech (Czech Rep.) 1960–2014 5532 228 6 7 0.2
France (France) 1960–2007 2159 19 17 12 0.1
Colorado (USA) 1960–2005 175 16 2 193 7.5
New Mexico (USA) 1960–2012 2537 94 9 39 4.7
Wismut (Germany) 1960–2013 25,067 470 10 18 0.3

PUMA total 57,873 1217 8 13 0.5
PUMA without Wismut 32,806 747 6 10 0.7
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Lag time

A lag is assumed between exposure to radon and any 
observed change in the lung cancer mortality rate. In the risk 
models employed here, the lag is either directly described 
by the model structure (e.g., BEIR VI exposure–age–con-
centration model with ERR(a) = 0 for TSE(a) < 5 ) or by 
the data grouping process prior to any model fit as for the 
parametric risk models with continuous effect modify-
ing variables (e.g., for the Czech/French cohort, Tomasek 
et al. 2008b). In that analysis, a miner’s exposure is lagged 
a priori by L = 5 years. A lag assumption may be incor-
porated in the LEAR calculation by calculating ERR(a) at 
age a only with information about radon exposure until age 
a − L . However, doing so would violate the important equa-
tion a = AME(a) + TSME(a) , with AME being the time-
varying age at median exposure and TSME the time since 
median exposure. This is technically solved by consider-
ing AME(a − L) and TSME(a − L) + L in the calculation of 
ERR(a).

LEAR calculations

For the calculation of LEAR, the maximum age was 
set to amax = 94 , i.e., the LEAR was calculated up to 
age < 95 years. The baseline lung cancer mortality rates r0(a) 
and all-cause mortality rates q0(a) were taken from the ICRP 
mixed Euro-American-Asian population (ICRP 2007) to be 
comparable with previous publications (UNSCEAR 2020, 
Tomasek et al. 2008b). According to UNSCEAR (2020) 
and other LEAR calculations (ICRP 2010, Tomasek et al. 
2008b), the exposure scenario was defined as 2 WLM per 
year from age 18 to 64 years with a lag of L = 5 years.

To compare LEAR estimates for mortality from lung can-
cer of the PUMA study with those from previous studies, the 
LEAR per WLM for all published risk models of uranium 
miners studies that include time- and age-related effect mod-
ifiers have been re-estimated, while using the same exposure 
scenario, baseline rates, and survival function. For this rea-
son, some estimates may slightly differ from previously pub-
lished LEAR values. The coefficients describing the relative 
risk model were the values as reported in the original papers, 
and are described in Tables 2 and 3 for the PUMA study and 
in Supplementary Tables 1–3 for other studies. The LEAR 
for the complete exposure scenario (i.e., 2 WLM per year 
from age 18 to 64 years, resulting in a cumulative exposure 
of 94 WLM) can be obtained by multiplying the value for the 
LEAR per WLM with 94. All LEAR calculations were per-
formed with the statistical software R (R Core Team 2022).

Results

Table 2 shows the radon-related lung cancer risk in the full 
PUMA cohort and in the PUMA 1960 + sub-cohort based 
on the BEIR VI exposure–age–concentration model with 
categorical effect modifiers time since exposure, attained 
age, and annual exposure rate. The ERR/100 WLM at 
attained age < 55 years, 5–14 years since exposure, and 
exposure rate < 0.5 WL was 4.68 (95% CI: 2.88, 6.96) and 
6.98 (95% CI: 1.97, 16.15) in the full cohort (Kelly-Reif 
et al. 2023) and 1960 + sub-cohort (Richardson et al. 2022), 
respectively. The estimated ERR/100 WLM decreased with 
increasing attained age, radon exposure rate and time since 
exposure, the latter decrease, however, is only present in 
the full cohort and not the 1960 + sub-cohort. The estimated 
LEAR per WLM is slightly higher in the 1960 + sub-cohort 
compared with the full cohort (7.50 ×  10−4 vs 5.38 ×  10−4, 
respectively). This is also illustrated in Fig. 1 (upper part) 
where the ERR(a) is plotted as a function of attained age, a , 
under the exposure scenario of interest (i.e., 2 WLM per year 
from age 18 to 64 years). Notably, using the model coeffi-
cients derived for the 1960 + sub-cohort, the ERR/100 WLM 
increases slightly after age 75 years, which is mainly due to 
the value of the parameter estimate for the effect modifier 
time since exposure. The estimated value of the coefficient 
for this modifier was highest for the category 5–14 years 
after exposure (reference category 1.0), decreased for the 
category 15–24 years after exposure to 0.64, and increased 
again for the category 25 years or more after exposure to 
0.89. The bottom part of Fig.  1 shows the correspond-
ing age-specific contribution to LEAR, r0(a)ERR(a)S̃(a) 
for each age a . Within the full PUMA cohort, the largest 
LEAR contribution is observed at ages 70–75 years, which 
is 5–10  years after the maximum cumulative exposure 
is reached. From age 75 years onwards, there is a strong 
decrease in the age-specific contribution to the LEAR which 
reflects the decreasing baseline lung cancer mortality rates 
r0(a) , the decrease in ERR(a) with increasing time since 
exposure, and the decreasing fraction of the cohort who 
remains at risk of lung cancer (Supplementary Fig. 1). For 
the PUMA 1960 + sub-cohort, a similar pattern is observed; 
however, the peak in the contribution to LEAR is between 
60 and 65 years, thus 10 years earlier than in the full PUMA 
cohort.

Table 3 presents the LEAR per WLM based on an alter-
native risk model for the PUMA study with categorical 
effect modifiers age at exposure, attained age, and expo-
sure rate (i.e., the BEIR VI model, but with age at exposure 
instead of time since exposure). The ERR/WLM decreases 
with increasing attained age and increases with increasing 
age at exposure in both cohorts. The corresponding LEAR 
per WLM is 7.66 ×  10−4 in the 1960 + sub-cohort and 
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Table 2  Lifetime excess 
absolute risk (LEAR) estimates 
obtained using a model with 
effect modifiers defined by 
categories of time since 
exposure, attained age, and 
annual exposure rate (BEIR VI 
exposure–age–concentration 
model) in the full PUMA cohort 
and the PUMA 1960 + sub-
cohort

ERR Excess relative rate; CI Confidence interval; LEAR Lifetime excess absolute risk; PUMA Pooled ura-
nium miners analysis; WLM Working level months, WL Working level; n.d. Lower bound not determined

PUMA full cohort
Kelly-Reif et al. (2023)

PUMA 1960 + sub-cohort
Richardson et al. (2022)

Lung cancer 
deaths (n)

Estimate (95% CI) Lung cancer 
deaths (n)

Estimate (95% CI)

ERR/100 WLM 7754 4.68 (2.88, 6.96) 1217 6.98 (1.97, 16.15)
Time since exposure (years)
5–14 1.0 1.0
15–24 0.77 (0.56, 1.05) 0.64 (0.17, 2.43)
25–34 0.54 (0.38, 0.76) 0.89 (0.34, 3.01)
35 + 0.39 (0.26, 0.58) –
Attained age (years)
 < 55 1380 1.0 302 1.0
55–64 2568 0.55 (0.38, 0.82) 490 0.64 (0.25, 1.68)
65–74 2640 0.38 (0.25, 0.57) 351 0.22 (0.06, 0.67)
75 + 1166 0.40 (0.24, 0.66) 74 0.17 (n.d., 0.85)
Annual exposure rate (WL)
 < 0.5 1.0 1.0
0.5–1.0 0.60 (0.31, 1.08) 1.00 (0.38, 2.36)
1.0–5.0 0.42 (0.31, 0.64) 0.29 (0.11, 0.68)
5.0 + 0.17 (0.12, 0.25) –

LEAR per WLM (×  104) 5.38 7.50

Table 3  Lifetime excess 
absolute risk (LEAR) estimates 
obtained using a model with 
effect modifiers defined by 
categories of age at exposure, 
attained age, and annual 
exposure rate in the full 
PUMA cohort and the PUMA 
1960 + sub-cohort

ERR Excess relative rate; CI Confidence interval; LEAR Lifetime excess absolute risk; PUMA Pooled ura-
nium miners analysis; WLM Working level months, WL Working level; n.d. Lower bound not determined
*Reference category is ≥ 35 years (i.e., categories 50 + and 35–49 years are combined)

PUMA full cohort
Kelly-Reif et al. (2023)

PUMA 1960 + sub-cohort
Richardson et al. (2022)

Lung cancer 
deaths (n)

Estimate (95% CI) Lung cancer 
deaths (n)

Estimate (95% CI)

ERR/100 WLM 7754 6.47 (3.39, 10.06) 1217 8.38 (3.30, 18.99)
Age at exposure (years)
50 + 1.0 1.0*
35–49 0.83 (0.54, 1.39) 1.0*
 < 35 0.55 (0.36, 0.92) 0.59 (0.30, 1.20)
Attained age (years)
 < 55 1380 1.0 302 1.0
55–64 2568 0.40 (0.28, 0.59) 490 0.55 (0.24, 1.30)
65–74 2640 0.21 (0.15, 0.31) 351 0.20 (0.06, 0.53)
75 + 1166 0.19 (0.12, 0.29) 74 0.14 (n.d., 0.64)
Annual exposure rate (WL)
 < 0.5 1.0 1.0
0.5–1.0 0.57 (0.29, 1.00) 1.23 (0.49, 2.77)
1.0–5.0 0.39 (0.28, 0.58) 0.33 (0.13, 0.75)
5.0 + 0.15 (0.11, 0.22) -

LEAR per WLM (×  104) 5.57 7.66
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5.57 ×  10−4 in the full cohort, respectively, and thus com-
parable to that based on the BEIR VI exposure–age–con-
centration model. Again, the estimated LEAR is higher in 
the 1960 + sub-cohort compared to the full cohort. Supple-
mentary Fig. 2 (upper part) shows that the ERR(a) is highest 
at younger attained ages, however no further decrease in 
ERR(a) is observed after age 65 years in the full cohort or 
after age 75 years in the 1960 + sub-cohort. Supplementary 
Fig. 2 (bottom part) provides a similar pattern as for the 
BEIR VI model. Again, in the full PUMA cohort, there is an 
increase in the age-specific contribution to LEAR up to age 
70–75 years and then a strong decrease. This corresponding 
peak in the 1960 + sub-cohort is again at ages 60–65 years.

To compare the LEAR per WLM of the PUMA study 
with those estimated in the previous studies, the LEAR 
per WLM for all published risk models of uranium miners 
studies that include time- and age-related effect modifiers 
have been re-estimated. Table 4 provides an overview of 

these studies, their characteristics, and related LEAR per 
WLM. The very first published study providing a relative 
risk model was a meta-analysis of 7 cohorts, the so-called 
“Jacobi study” (ICRP 1993; Chmelevsky et al. 1994) with a 
re-estimated LEAR per WLM of 3.20 ×  10−4 based on 1047 
lung cancer deaths and 31,486 miners. The cohort included 
a wide range of exposures and exposure rates; however, risk 
models did not account for exposure rate. This may have 
introduced an underestimation of true risk at low exposures 
due to ignoring the well-established inverse exposure-rate 
effect (NRC 1999, UNSCEAR 2020). In 1999, the results 
of the pooled analyses of the 11 miners cohort study were 
published (NRC 1999), including more than twice the num-
ber of miners (n = 67,897) and three times more lung cancer 
deaths (n = 2787) than the Jacobi study. In addition, as a new 
model, the BEIR VI exposure–age–concentration model was 
developed and applied (NRC 1999). For this risk model, the 

Fig. 1  LEAR components 
by attained age (Upper part: 
ERR(a) , Bottom part: age-
specific contribution to LEAR, 
r0(a)ERR(a)S̃(a) ) predicted in 
the full PUMA cohort (Kelly-
Reif et al. 2023, solid line) and 
the PUMA 1960 + sub-cohort 
(Richardson et al. 2022, dashed 
line) for the exposure scenario 
of 2 working level months 
(WLM) per year from age 18 to 
64 up to age < 95 years, assum-
ing a 5-year lag for the BEIR 
VI exposure–age–concentra-
tion model, and using baseline 
mortality rates derived from the 
ICRP mixed Euro-American-
Asian population (ICRP 2007)
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estimated LEAR per WLM was 5.97 ×  10−4 and thus two 
times higher compared to the Jacobi study.

The BEIR VI pooled analysis did not include the newly 
established large German Wismut cohort (Grosche et al. 
2006). The full Wismut cohort comprises 58,974 workers 
and 3942 lung cancer deaths at end of follow-up in 2013 
(Kreuzer et al. 2018) and resulted in an LEAR per WLM of 
2.50 ×  10−4. With the extended mortality follow-up to end 
of 2018 and additional baseline stratification by duration of 
employment like in the PUMA cohort, the LEAR per WLM 
increased to 3.13 ×  10−4 (Kreuzer et al. 2023). Two smaller 
individual studies, the Czech (UNSCEAR 2020) and Eldo-
rado (Lane et al. 2010) cohorts, showed LEAR estimates 
per WLM of 4.22 ×  10−4 and 8.20 ×  10−4, respectively. The 
PUMA full cohort is currently the largest study with 119,709 
miners and 7754 lung cancer deaths and integrates most of 
the updated studies included in BEIR VI and the Wismut 
cohort. The estimated LEAR per WLM of 5.38 ×  10−4 or 
5.57 ×  10−4 (depending on choice of model) is consistent 
with that of the BEIR VI study and two times higher than 
that for the full Wismut cohort.

Table 4 additionally provides information on cohorts 
restricted to chronic low exposures and exposure rates. The 
estimated LEAR per WLM was around 4.6 ×  10−4 for two 
smaller studies, the pooled analyses of full Czech and French 
cohorts with restriction of person-years at risk to measured 
radon exposure (Tomasek et al. 2008a) and of the Czech, 
French and Eldorado sub-cohorts with restriction to more 
recent years and exposures less than 100 WLM (Lane et al. 
2019). The LEAR in the Wismut 1960 + sub-cohort with 
end of follow-up 2013 and 2018 (Kreuzer et al. 2023) were 
9.22 ×  10−4 and 6.10 ×  10−4, respectively. Among these low 
exposure/exposure-rate studies, the PUMA 1960 + sub-
cohort is by far the largest study (57,873 miners and 1217 
lung cancer deaths) and involves the lowest average radon 
exposure (13 WLM), the corresponding LEAR was around 
7.50 ×  10−4. Compared to the respective full cohorts, the 
LEAR of the 1960 + sub-cohorts of the PUMA and the Wis-
mut study were somewhat higher.

Discussion

PUMA provides the largest and most informative database 
to date to estimate the risk of death from lung cancer due 
to cumulative radon exposure in studies of uranium miners. 
The LEAR per WLM is estimated to lie between 5.38 ×  10−4 
and 7.66 ×  10−4 depending on the choice of model and the 
use of the full cohort or the 1960 + sub-cohort with a focus 
on more recent periods of chronic low exposure. While the 
choice of model within a given cohort has a nearly negligible 
effect on the resulting LEAR, the consideration of either the 
full cohort or 1960 + sub-cohort makes a difference, with 

somewhat higher LEAR results for the latter cohort. In con-
trast to the PUMA full cohort, in the 1960 + sub-cohort the 
estimated parameters of the relative risk model have less het-
erogeneity between studies, but wider confidence intervals.

Comparison of results from full 
and 1960 + sub‑cohorts

In the full PUMA cohort, heterogeneity in risk estimates 
between studies has been reported by Kelly-Reif et  al. 
(2023), which was in part attributed to the Wismut study, 
which forms half of the data of PUMA (2.2 out of 4.3 mil-
lion person-years at risk). The PUMA full cohort excluding 
the Wismut study would result in an LEAR per WLM of 
8.78 ×  10−4. This restricted cohort differs from the PUMA 
Wismut cohort in some characteristics, e.g., appreciably 
lower exposures and shorter duration of employment (see 
also Table 1). For example, within the full PUMA study, 
82% of the person-years at risk accrued from radon expo-
sures above 250 WLM and about 70% of all person-times 
at risk with duration of employment more than 10 years 
are from the Wismut cohort (Kelly-Reif et al. 2023 Suppl. 
Table 1), respectively. It is unclear whether this difference 
has some influence on the risk estimates. The overview on 
LEAR estimates from published uranium miners studies in 
Table 4 shows that the findings of the full Wismut cohort 
are at the lower end of the range of all calculated LEAR. 
Possible reasons for this observed lower estimated risk like 
competing risk of silicosis, measurement error in exposure 
assessment, or possibly incomplete follow-up in the very 
early years (1946–1960) were addressed in detail in Kreuzer 
et al. (2023).

In contrast to the analyses based on full cohorts (Kelly-
Reif et al. 2023), PUMA analyses of the 1960 + sub-cohorts 
did not provide any evidence of heterogeneity in risk 
estimates between studies (Richardson et al. 2022). The 
1960 + sub-cohorts allow direct estimation of health effects 
of chronic exposure to low radon concentrations at low 
exposure rates which is of interest for radiation protection 
today. It also allows to exclude miners with extreme lev-
els of exposure (estimated effective doses for some miners 
employed in the early years could reach several hundreds 
or thousands of mSv per year) (Laurier 2020). In addition, 
no complex modeling of exposure rate is necessary as com-
pared to the full cohort; in several of the component studies, 
exposure rates were one or two orders of magnitude higher 
in the early years compared to 1960 or later. Furthermore, 
exposure assessment in these later years was often based on 
measurements rather than on expert rating. A higher quality 
of exposure assessment decreases measurement error and 
thus the potential for underestimation of risk. However, the 
1960 + sub-cohorts involve lower statistical power due to 
smaller size, high uncertainty in parameter estimates, shorter 
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duration of follow-up, and younger age compared to the full 
cohorts. The observed increase in ERR at older ages in the 
PUMA 1960 + sub-cohort (Fig. 1 upper part) and particu-
larly in the Wismut 1960 + sub-cohort with end of follow-up 
2013 (Kreuzer et al. 2023, Supplementary Fig. 3) seems 
implausibly high. In these young 1960 + sub-cohorts, lung 
cancer deaths are still rare at ages over 75 years and at more 
than 35 years since exposure (see Tables 2 and 3). Conse-
quently, it is likely that the decrease in ERR/WLM with 
increasing time since exposure and attained age cannot be 
completely described by the data of 1960 + sub-cohorts. For 
example, in the Wismut 1960 + sub-cohort, the extension 
of end of follow-up from 2013 to 2018 led to a decrease of 
LEAR per WLM from 9.22 to 6.10 ×  10−4 (Kreuzer et al. 
2023 Suppl. Table 3). Thus, further follow-up of individual 
PUMA studies will allow refining risk estimates derived 
from 1960 + cohorts in the future.

Strengths and limitations

The current calculations of the LEAR for lung cancer due 
to radon from various uranium miners studies offer several 
strengths. First, similar methods have been used, and thus, 
LEAR values based on different studies and relative risk 
models are directly comparable. Second, for the first time, 
LEAR was calculated based on the worldwide largest and 
most informative study PUMA. More than 4.3 million per-
son-years at risk and nearly 8000 lung cancer deaths with a 
long duration of follow-up form the basis for PUMA (Rage 
et al. 2020; Richardson et al. 2021, 2022; Kelly-Reif et al. 
2023). This large database allows—in contrast to many indi-
vidual studies—for detailed consideration of relevant effect 
modifiers age, time since exposure and exposure rate in the 
risk model, a recommendation that was recently reinforced 
by UNSCEAR (2020). Third, the LEAR were determined 
for cohorts restricted to low exposures and exposure rates 
including all three effect modifiers in the risk models.

A limitation of the current LEAR analyses is that many 
factors with potential influence on the LEAR have not yet 
been evaluated. This concerns (1) the use of different and 
more suitable baseline mortality rates as well as evaluation 
of effects of the increasing survival trend for lung cancer, 
(2) consideration of smoking (interaction of smoking with 
radon, change of smoking patterns over time), (3) appli-
cation of other scenarios from occupational or residential 
radon exposure, (4) consideration of annual instead of aver-
age exposure rates in risk models (Tomasek 2020), (5) use 
of different risk projection models (relative/additive/mixed), 
and (6) evaluation of uncertainties associated with LEAR 
estimates (e.g., confidence intervals). A general limitation 
of all the uranium miners studies considered in this paper is 
that they include only men and that only mortality and no 
incidence data for lung cancer are available.

Conclusion

PUMA clearly strengthens evidence on the shape of the 
exposure–response relationship between radon exposure and 
lung cancer mortality in uranium miners and thus the estima-
tion of the LEAR. The range of currently available LEAR 
values for lung cancer at low exposures and exposure rates 
derived from different models and previous publications 
based on smaller studies is 2.5 to 9.2 ×  10–4 per WLM, with 
the current PUMA findings (5.4 up to 7.7 ×  10−4 per WLM) 
being in the upper half of this range. Continued mortality 
follow-up of the studies included in PUMA, particularly of 
the 1960 + sub-cohorts, is expected to provide additional 
insights and is therefore strongly recommended.
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Abstract

Introduction

Lifetime risks are a useful tool in quantifying health risks related to radiation exposure and play an
important role in the radiation detriment and – in the case of radon – for radon dose conversion. This
study considers the lifetime risk of dying from lung cancer related to occupational radon exposure.
For this purpose, in addition to other risk measures, the lifetime excess absolute risk (LEAR), is
mainly examined. Uncertainty intervals for such lifetime risk estimates are only hardly presented in
the literature.

Objectives

The objective of this article is to derive and discuss uncertainty intervals for lifetime risk estimates for
lung cancer related to occupational radon exposure.

Methods

Based on previous work, uncertainties of two main components of lifetime risk calculations are modelled:
uncertainties of risk model parameter estimates describing the excess relative risk for lung cancer and of
baseline mortality rates. Approximate normality assumption (ANA) methods derived from likelihood
theory and Bayesian techniques are employed to quantify uncertainty in risk model parameters. The
derived methods are applied to risk models from the German "Wismut" uranium miners cohort study
(full Wismut cohort with follow-up 2018 and 1960+ sub-cohort with miners first hired in 1960 or
later). Mortality rate uncertainty is assessed based on information from the WHO mortality database.
All uncertainty assessment methods are realized with Monte Carlo simulations. Resulting uncertainty
intervals for different lifetime risk measures are compared.

Results

Uncertainty from risk model parameters imposes the largest uncertainty on lifetime risks but baseline
lung cancer mortality rate uncertainty is also substantial. Using the ANA method accounting for
uncertainty in risk model parameter estimates, the LEAR in % for the 1960+ sub-cohort risk model
was 6.70 with a 95% uncertainty interval of [3.26; 12.28] for the exposure scenario of 2 Working level
Months from age 18-64 years, compared to the full cohort risk model with a LEAR in % of 3.43 and
narrower 95% uncertainty interval [2.06; 4.84]. ANA methods and Bayesian techniques with a non-
informative prior yield similar results. There are only minor differences across different lifetime risk
measures.

Conclusion

Based on the present results, risk model parameter uncertainty accounts for a substantial and sufficient
share of lifetime risk uncertainty for radon protection. ANA methods are the most practicable and
should be employed in the majority of cases. The explicit choice of lifetime risk measures is negligible.
The derived uncertainty intervals are comparable to the range of lifetime risk estimates from uranium
miners studies in the literature. These findings should be accounted for when developing radiation
protection policies which are based on lifetime risks.

Keywords: radon, lung cancer, epidemiology, uncertainty, risk analysis
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1 Introduction

Lifetime risks describe the probability of developing or dying from a specific disease (here: lung cancer
death related to radon exposure) in the course of one’s lifetime and play an important role in the epi-
demiological approach for radon dose conversion [1–3] and radiation detriment [4]. Valid lifetime risk
estimates are crucial for effective radiation protection strategies. A lifetime risk estimate depends on
several components, each imposing possible errors or uncertainties on the result. Lifetime lung cancer
risk estimates related to radon exposure depend on (a) the exposure scenario, (b) baseline mortality
rates for all causes of death and lung cancer, and (c) complex risk models describing the shape of the
exposure-response relationship between radon exposure and lung cancer mortality. For occupational
radon exposure, these risk models are derived from uranium miners cohorts. We focus on the latter
two components (b) and (c) in the upcoming analysis, as own previous work [5] demonstrated their
major influence on lifetime risk estimates.

Exposure to radon and radon progeny is a recognized leading cause of lung cancer. This association
has been confirmed in uranium miners and residential radon studies [6–8]. Both uranium miners and
residential radon studies have demonstrated a linear relationship between radon exposure and lung
cancer risk, which is in case of uranium miners studies additionally influenced by factors like age, time
since exposure, and exposure rate. The intricate nature of these models can make comparisons across
different cohorts challenging. Lifetime risk estimates offer a valuable tool for comparison and interpre-
tation of risk models and enable clearer public risk communication. However, current literature often
lacks uncertainty intervals for lifetime risk estimates. Lifetime Excess Absolute Risk (LEAR) estimates
derived from various international miners studies range from 2.5×10−4 to 9.2×10−4 per working level
month (WLM) as reported by the large pooled uranium miners study PUMA [9]. The present study em-
ploys advanced statistical methods to quantify lifetime risk uncertainty with 95% uncertainty intervals.

Uncertainty intervals together with point estimates provide a more complete and more nuanced pic-
ture, allowing for informed decision-making, meaningful comparisons, and transparent communication.
Uncertainty assessment for lifetime risks is a complex endeavor because final lifetime risk estimates are
composite quantities depending on multiple, independently derived results.

The literature addressing lifetime risk estimation uncertainty for lung cancer related to radon exposure
based on uranium miners cohorts is limited and generally does not prioritize uncertainty quantifi-
cation [10, 11]. Existing studies typically employ Monte Carlo simulation techniques, incorporating
various distributional assumptions for calculation components. For example, [10] investigated the
LEAR and assumed a multivariate normal distribution for risk model parameters, while in the EPA
Report [11] additionally a complex distribution for average residential radon exposure is assumed. A
comparison of uncertainties across different lifetime risk measures could not be found in the literature.
Uncertainties in risk measure estimates similar to lifetime lung cancer risks due to radon exposure, like
“attributable cases”, are better understood: In the BEIR VI report [6], Monte Carlo simulations are
used to comprehensively quantify uncertainties for “attributable cases”, similar to methods for lifetime
lung cancer risks in [10].

Several software tools have been developed for calculating lifetime cancer risks and associated uncer-
tainties. These tools, however, primarily rely on risk models derived from the Atomic Bomb Survivors
Life-Span Study (LSS) [12], which involves acute external exposure to different radiation types, funda-
mentally different from the chronic internal exposure to radon progeny in occupational uranium miners
studies. Notable among these tools are “CONFIDENCE” [13], “RadRAT” [14], and “LARisk” [15].
“CONFIDENCE” is a European software designed for cancer risk assessment post-radiation exposure
from nuclear accidents. “RadRAT”, a free tool based on the BEIR VII report [16], estimates life-
time cancer risks for the US population based on a user-specific exposure scenario. “LARisk” extends
“RadRAT” by adding flexibility, such as modified baseline incidence rates, to tailor risk calculations
for specific populations. While “CONFIDENCE” and “RadRAT” rely on Monte Carlo simulations
and sampling from probability distributions for uncertainty assessment, “LARisk” employs parametric
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bootstrap methods.

Despite these advanced tools, there is a notable gap in the literature regarding the uncertainty quantifi-
cation of lifetime risks for lung cancer specifically related to occupational radon exposure. Addressing
this, our study places special emphasis on refining the understanding of these uncertainties, utilizing
risk models derived from uranium miners cohorts. We specifically focus on the LEAR measure while
also examining alternative excess lifetime risk measures: Risk of Exposure Induced Death (REID),
Excess Lifetime Risk (ELR), [17,18] and Radiation-Attributed Decrease of Survival (RADS) [19]. We
elaborate on sources of uncertainty for lifetime risks, discuss existing techniques, and introduce ad-
vanced methods to quantify these uncertainties by calculating 95% uncertainty intervals.

To derive such intervals, both frequentist methods derived from likelihood theory and Bayesian tech-
niques, chosen for their flexibility, are employed to quantify uncertainty in risk model parameter esti-
mates. These methods are applied to risk models derived from the German Wismut uranium miners
cohort study as a practical example. Mortality rate uncertainty is assessed based on information from
the WHO mortality database [20]. All uncertainty assessment methods are realized through Monte
Carlo simulations.

By systematically analyzing and advancing the methodologies for quantifying uncertainties in lifetime
risk estimates, this study aims to contribute to a more stable basis for radon protection strategies
and provide a more comprehensive assessment of lifetime risks, especially for lung cancer related to
occupational radon exposure.

2 Methods

2.1 Lifetime risk definition and computation

For a lifetime risk measure of choice, we employ the Lifetime Excess Absolute Risk (LEAR). This
measure is often used [10,18,21–23] and is defined as

LEARE = LRE − LR0 =

∫ ∞

0
(rE(t)− r0(t))S(t) dt =

∫ ∞

0
r0(t)ERR(t; Θ)S(t) dt. (1)

The lifetime risk of dying from a specific disease (here: lung cancer) under exposure (here: radon and
radon progeny) is LRE =

∫∞
0 rE(t)S(t) dt and LR0 =

∫∞
0 r0(t)S(t) dt is the corresponding baseline

lifetime risk without exposure. r0(t) is the baseline lung cancer mortality rate and rE(t) is the lung
cancer mortality rate under exposure at age t. S(t) = P (T ≥ t) is the survival function and describes
the probability to attain age t with T ≥ 0 the unknown random retention time until death. The
survival function is modeled as S(t) = e−

∫ t
0 q0(u) du with baseline mortality rates q0(u) at age u for

overall death (all-cause mortality rates). ERR(t; Θ) specifies the excess relative risk at age t with
unknown parameter set Θ. Overall, we assume the following risk projection model:

rE(t) = r0(t) (1 + ERR(t; Θ)) . (2)

The exact structure and complexity of the ERR(t) := ERR(t; Θ) term depends, in addition to age t,
on the chosen risk model with parameters Θ and its included effect-modifying variables. The LEAR
from equation (1) is estimated and finally calculated with the approximation

LEAR ≈
tmax∑

t=0

r0(t)ERR(t; Θ̂)S̃(t). (3)

For lifetime risk calculations, parameter estimates Θ̂ are plugged into the corresponding risk model
structure. S̃(t) = e−

∑t−1
u=0 q0(u) approximates the true survival function S(t) and is based on the Nelson-

Aalen estimator of the cumulative hazard rate [24]. The maximum age tmax was set to tmax = 94 for
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comparability with previous studies on lifetime risks [22, 23].

A lifetime risk estimate further depends on the chosen risk model shaping ERR(t; Θ), the mortality
rates r0(t), q0(t) for all ages 0 ≤ t ≤ tmax and the assumed radon exposure in WLM for all ages
0 ≤ t ≤ tmax (exposure scenario). In line with all considered risk models, the latency time L in risk
models, i.e. the minimal time between age at exposure and age at lung cancer risk amplification, was
chosen as L = 5 years.

Here, a generic lifetime risk estimate for a given risk model without uncertainty quantification is always
calculated with an exposure scenario of 2 WLM from age 18-64 years (94 WLM total cumulative
exposure over lifetime) to represent an occupational scenario, in line with the literature [10, 23, 25]
and fixed mortality rates r

(ICRP )
0 (t), q

(ICRP )
0 (t) for all ages 0 ≤ t ≤ 94 from the Euro-American-Asian

mixed reference population as presented in ICRP publication 103 [2]. Such a lifetime risk estimate does
not reflect uncertainties and is referred to as “reference estimate (ICRP 103)” or simply “ref. estimate”
in the following. Further, for enhanced readability, lifetime excess risk estimates such as LEAR are
presented as percentages (LEAR in %, i.e. LEAR ×100).

2.2 Data and risk models

To estimate the risk models associated with the German uranium miners cohort, this analysis employs
cohort data, including cumulative radon exposure, age, and other variables of individual miners. This
cohort data provides the basis for modeling and assessing the developed parametric (continuous) and
categorical risk models, particularly for the quantification of uncertainties. All considered risk mod-
els include unknown parameters (indicated by Greek letters) which are estimated using Maximum-
Likelihood methods. Access to the German uranium miners cohort data allows for re-fitting the
subsequent described risk models and thereby for an uncertainty assessment of the resulting lifetime
risks.

The following parametric (continuous) risk models are considered:

ERR(t;β1, β2, . . . , β6, α, ε) =

6∑

j=1

erjβjW (t) exp {α (AME(t)− 30)) + ε (TME(t)− 20)} , (4)

ERR(t;β, α, ε) = βW (t) exp {α (AME(t)− 30)) + ε (TME(t)− 20)} , (5)
ERR(t;β) = βW (t), (6)

with cumulative radon exposure W (t) at age t in WLM and continuous effect-modifying variables age
at median exposure AME(t) at age t in years, time since median exposure TME(t) at age t in years,
and binary variables erj for j = 1, . . . , 6 for six categories of exposure rate at age t in units of working
level (WL). Further, categorical BEIR VI exposure-age-concentration models (cf. [6]) are considered:

ERR(t; θ(1), ϕage, γrate, β) = β (θ5−14W5−14 + θ15−24W15−24 + θ25−34W25−34 + θ35+W35+)ϕageγrate, (7)

ERR(t; θ(2), ϕage, γrate, β) = β (θ5−14W5−14 + θ15−24W15−24 + θ25+W25+)ϕageγrate, (8)

with θ(1) = (θ5−14, θ15−24, θ25−34, θ35+), θ(2) = (θ5−14, θ15−24, θ25+), and where W5−14, W15−24, W25−34,
W25+, W35+ is the cumulative radon exposure in WLM in windows 5-14, 15-24, 25-34, 25+ or 35+
years ago and ϕage and γz are factors for attained age in years and exposure rate in WL, respectively.

All presented risk models are derived from the German Wismut cohort of uranium miners with follow-up
2018 and have been initially introduced in [23]. These models are used in this study as an application
example of the subsequent introduced methods to quantify risk model parameter uncertainty. The
models (5) “Parametric 1960+ sub-cohort”, (6) “Simple linear 1960+ sub-cohort”, and (8) “BEIR VI
1960+ sub-cohort” are derived from the Wismut sub-cohort with miners hired in 1960 or later (1960+
sub-cohort) and the models “Parametric full cohort” (4) and “BEIR VI full cohort” (7) are derived
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from the corresponding full Wismut cohort. The derived parameter estimates are shown partly in the
Supplement or can be inspected in the source paper [23]. The simple linear model (6) is included
in this analysis for comparability. All other models were chosen because they showed the best fits
for the corresponding cohort. The chosen risk models (categorical / BEIR VI structure, parametric
/ continuous with effect modifying variables, and simple linear risk model) offer a diverse range of
risk models. Here, the terms “categorical” and “parametric / continuous” refer to the categorical or
continuous nature of the effect-modifying variables.

All considered risk model parameters are estimated with maximum likelihood (ML) methods based
on internal Poisson regression applied to grouped cohort data. The corresponding Likelihood function
is based on the assumption that the number of lung cancer deaths Ci in cell i with i = 1, . . . , n are
Poisson-distributed via

Ci ∼ Poi
(
PYie

δ1+
∑K

k=2 δk1{k}(xi) (1 + ERRi (Θ))
)

(9)

with offset for person-years at risk PYi, excess relative risk ERRi (Θ) and unknown parameter vector
Θ. The specific shape of ERRi (Θ) depends on the prescribed risk model structure. The baseline
risk predictor ηi = δ1 +

∑K
k=2 δk1{k}(xi) describes the stratified baseline with K levels, where xi is

a categorical variable with K levels. Each level represents a unique combination of conditions or
classifications that are relevant variables in assessing the baseline risk. Here, the levels correspond
to different groups categorized by age, calendar year, and duration of employment. Setting ∆ =
(δ1, δ2, . . . , δK), the likelihood model consists of the parameters Ω = (∆,Θ).

2.3 Uncertainty assessment

2.3.1 Uncertainty intervals for lifetime risks

Uncertainties for a parameter of interest are quantified by deriving 95% uncertainty intervals, which
is a range of values that is calculated to cover the true unknown parameter value with 95% certainty.
It consists of a lower and an upper bound, enclosed in parentheses. The precise interpretation of the
uncertainty interval depends on the underlying statistical inference system (frequentist or Bayesian).
Lifetime risks are composite quantities depending on multiple, independently derived results. Hence,
we rely on sampling techniques to derive lifetime risk uncertainty intervals.

Here, uncertainties are determined by quantifying the variability in statistical estimates that results
from drawing a sample from the entire population (sampling uncertainty). Risk model parameter
uncertainties and mortality rate uncertainties are considered here. Depending on the investigated
lifetime risk calculation component, previously fixed values for calculation components are replaced by
random variables. The uncertainty quantification is carried out with Monte Carlo simulations. Here,
we focus on the excess lifetime risk measure LEAR. N = 100,000 samples from the underlying assumed
probability distribution are drawn independently and a LEAR is calculated for each sample resulting in
N independent LEAR estimate samples. The two-sided 95% uncertainty interval is the span of observed
LEAR samples by disregarding the 2.5% lowest and 2.5% highest samples. All upcoming methods
use this approach to derive uncertainty intervals unless explicitly stated otherwise, but differ in the
calculation component analyzed and the assumed probability distribution. Corresponding probability
density functions for the LEAR distribution are derived from the histogram of LEAR samples with
a kernel density estimate. Note that for lifetime risks, we additionally present the relative span of
the uncertainty interval in brackets, calculated as the interval span divided by the reference estimate
(relative uncertainty span). This enables easier comparison across various estimates irrespective of
their absolute values.
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2.3.2 Mortality rates

Uncertainties in the mortality rates r0(t), q0(t) are assessed by assuming gamma distributions for all
ages t,

r0(t) ∼ G
(
a
(r0)
t , b

(r0)
t

)
, (10)

q0(t) ∼ G
(
a
(q0)
t , b

(q0)
t

)
. (11)

with age-dependent shape parameters a
(r0)
t , a

(q0)
t and rate parameter b

(r0)
t , b

(q0)
t (SC Table 7). The pa-

rameter estimates a
(r0)
t , b

(r0)
t , a

(q0)
t , b

(r0)
t are derived from data from the WHO Mortality Database [20]

with maximum-likelihood (ML) methods. Observations from all available countries from Europe,
America, and Asia for females and males from the years 2001, 2006, 2011, 2016, and 2021 are used.
The derivation of probability distributions for mortality rates in (10) and (11) from WHO data is inde-
pendent of the ICRP Euro-American-Asian reference mortality rates r(0(ICRP ))(t) and q

(
0(ICRP ))(t).

However, the geographical alignment of the chosen WHO data with the ICRP mortality rates ensures
the appropriateness of the data for estimating mortality rate variability. An observation used for fitting
models (10) and (11) is characterized as the mortality rate d

n where d are the number of lung can-
cer deaths for r0 or all-cause deaths for q0 and n is the mid-year population size. Each observation is
uniquely defined by a specific country (out of 153 countries), sex, and calendar year. Only observations
with a positive number of individuals at risk n and a positive number of cases d were considered. To
obtain uncertainty intervals for lifetime risks, independent samples from the above described gamma
distributions (10) and (11) are drawn (Monte Carlo simulation), analogously to drawing samples in
the ANA approach for risk model parameters.

2.3.3 Risk models - ANA approach

The idea behind the Approximate normality assumption (ANA) approach is the following: Risk model
parameter estimates Θ̂0 are obtained by fitting the ERR(t; Θ) model to miners cohort data with ML
methods assuming Poisson-distributed numbers of lung cancer cases (9). The ML method provides
statistically efficient estimates, meaning they tend to be close to the true values on average given a
sufficiently large sample size. The estimated parameters are subject to sampling uncertainty. By sta-
tistical theory, under mild regularity conditions met in our case [26], the parameter estimator Θ̂ in a
given risk model is asymptotically (for an infinitely large cohort size) normally distributed with expec-
tation equal to the unknown true parameter value Θ and covariance matrix equal to the inverse Fisher
information, see [27, Equation (5.14)] or [28, Theorem 9.7]. The true parameter Θ is approximated
with the cohort-specific maximum likelihood estimate (MLE) Θ̂0. The inverse Fisher information can
be approximated by an estimate Σ̂0 of the parameter covariance matrix.

The ANA approach follows the frequentist inference where the true risk model parameter Θ is treated
as a fixed but unknown value. The parameter estimator Θ̂ is considered as a random variable subject
to variability depending on the specific sample used in the estimation process. The estimate Θ̂0 is
a realization of Θ̂ by applying specific sample data. Following this framework, risk model parameter
uncertainty is quantified by assuming a multivariate-normal distribution on the parameter estimator
Θ̂,

Θ̂ ∼ N
(
Θ̂0, Σ̂0

)
(12)

with cohort-specific ML estimate Θ̂0 and covariance matrix estimate Σ̂0. By generating a large number
of samples from this approximate distribution, and calculating the corresponding lifetime risks for each
sample, the distribution of lifetime risk estimates reflects the inherited parameter sampling uncertainty.
This approach is called the “Approximate normality assumption” (ANA) approach. In this study, we
employ the Epicure software [29] to obtain parameter estimates Θ̂0 and their associated covariance
matrix estimate Σ̂0. Note that this method implicitly incorporates knowledge from the estimation
of baseline parameters ∆, as the covariance estimate Σ̂0 is adjusted accordingly [29]. Importantly,

7



after this theoretical introduction, the manuscript simplifies notation by referring to estimates using
Θ̂ without further distinguishing the estimator notation. Note that the ANA approach requires access
to the ML estimate Θ̂0 and covariance matrix estimate Σ̂0., but no access to underlying cohort data
since a re-estimation of parameters is not necessary.

2.3.4 Risk models - Bayesian approach

In contrast to frequentist inference underlying the above ANA approach, in the Bayesian approach
(Bayesian inference) the unknown parameter Θ is interpreted as a random variable itself. To apply
Bayesian statistics to account for prior information about the risk model parameters we assume the
generic Bayesian framework

P (Ω|X) =
P (Ω)L(X)∫

Ω L (X|Ω)P (Ω) dΩ
∝ P (Ω)L(X), (13)

where P (Ω|X) is the posterior probability density function of observing the parameter Ω given cohort
data X. P (Ω) is the prior probability density for Ω and L(X) = L(X|Ω) is the likelihood function. Here
Ω = (∆,Θ), compare (9). Using concepts from [30] allows to derive the marginal posterior distribution
P (Θ|X) for risk model parameters Θ of interest analytically. This requires assuming independence
between prior distributions for ∆ and Θ and a non-informative prior for ∆. The resulting marginal
posterior given cohort data X reads

P (Θ|X) =
P (Θ)

[∏n
i=1 (1 + ERRi (Θ))Ci

] [∑
i|xi=1 PYi (1 + ERRi (Θ))

]−S1

M
∏K

k=2

[∑
i|xi=k PYi (1 + ERRi (Θ))

]Sk
(14)

with lung cancer cases in strata k, Sk =
∑

i|xi=k Ci for k = 1, . . . ,K and normalizing constant M .
Parameter estimats are derived as the values that maximize the posterior distribution (mode), denoted
as Mod(P (Θ|X)) = Θ̂, analogously to the ANA approach. Note that the Bayesian approach requires
a re-estimation of parameters and therefore access to the original cohort data in contrast to the ANA
approach.

This approach is applied to the 1960+ sub-cohort models (6) and (5). Identical model structures were
used in [25], which we employ as prior information. Due to increasing computational complexity, it
was not feasible to apply this approach to full cohort risk models (4), (7) and the sub-cohort model
(8), which involve larger cohort data size and/or more parameters. Non-informative, uniform prior dis-
tributions for Θ are applied to obtain the true marginal likelihood. Otherwise, the prior information
about β in the simple linear risk model (6) is modelled with a gamma distribution β ∼ G

(
a, a−1

β̂CZ+F

)

with β̂CZ+F = 0.016 from [25]. The prior information about β, α and ε for model (5) is mod-

elled as β ∼ G

(
a, a−1

β̂′
CZ+F

)
, and normal distributions α ∼ N

(
α̂CZ+F , σ

2
)
, ε ∼ N

(
ε̂CZ+F , σ

2
)

with

β̂′
CZ+F = 0.042, α̂CZ+F = −0.06539, ε̂CZ+F = −0.07985 from [25]. Adjustments to the certainty of

the prior information are achieved by modifying the gamma shape parameter a for η and the standard
deviation σ for α and ε. . By construction, the modes of the marginal prior distributions align with
the corresponding parameter estimate from [25]. All three components are assumed to be independent
in the prior, i.e. P (Θ) = P (β) ·P (α) ·P (ε). Importantly, estimates from [25] are not assumed as true
“prior” knowledge, but illustrate integrating diverse cohort information using Bayesian methods (see
Discussion).

For the simple linear model with (6), Rejection Sampling [27] was applied to obtain N = 100,000
samples of the posterior distribution of β with uniform proposal distribution U(0, 0.04). For the more
complex risk model (5), Markov Chain Monte Carlo (MCMC) techniques via the Metropolis-Hastings
algorithm were applied [31]. The approximate multivariate normal distribution (12)) was chosen as the
proposal distribution. The log acceptance ratio for a proposal sample for Θ ∼ P (Θ|X) was calculated
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as the difference of the log marginal posterior evaluated at the proposal sample and the current sample.
The initial proposal sample for Θ was chosen in proximity of the cohort-specific ML estimate Θ̂. N
= 100,000 samples of the posterior distribution are used for uncertainty assessment after generating
110,000 samples and discarding the first 10,000 samples to account for a burn-in period. Overall, the
resulting MCMC sample paths of risk model parameters indicate rapid convergence to stationarity,
likely due to an effective proposal distribution. Here, the presented 95% LEAR uncertainty intervals
are derived by choosing the narrowest interval that covers 95% of the derived LEAR samples, which
we refer to as the Highest Posterior Density Interval (HPDI).

2.3.5 Joint effect of risk model and mortality rate uncertainty

The joint effect of risk model parameter estimate uncertainty and mortality rate uncertainty on LEAR
estimates is assessed by simultaneously sampling from gamma distributions for the mortality rates
r0(t) for all ages t according to (10), and from multivariate normal distributions for the risk model
parameter estimator Θ̂ according to the ANA approach (12), independently. Note that q0(t) variability
is here not accounted for as initial analysis showed a negligible impact (see Results). Analogous to
the general Monte Carlo simulation approach, N = 100,000 LEAR samples are calculated from N =
100,000 sets of sampled values for r0(t) for all ages t and Θ̂. All computations were carried out with
the statistical software R [32].

2.4 Sensitivity analysis

The Supplemental Section A details uncertainties for other lifetime risk measures besides LEAR. Like-
wise, an explorative uncertainty assessment derived from a simple interpretation of lifetime risks based
on the Kaplan-Meier estimator for survival curves [33] is explored (Suppl. Section B).

Sensitivity analyses (Suppl. Sections C to E) explore the impact of assuming different probability
distributions on lifetime risk uncertainties. Additional insights on risk model parameter uncertainty is
shown in Suppl. Section C.1 and C.3. Furthermore, the Bayesian approach for risk model parameter
uncertainty quantification is applied to the simple linear risk model (6) with log-normal priors for β
(Suppl. Section C.2). Analyses for the specific influence of all-cause mortality rate uncertainties are
conducted (Suppl. Section D.1). An alternative Bayesian approach to assess mortality rate uncertainty
employing the WHO data is found in the Suppl. Section D.2. Log-normal distributed mortality rates
(Suppl. Section D.3) and sex-specific uncertainties regarding mortality rate and risk model effects are
investigated (Suppl. Section E). Exposure scenario uncertainty is briefly investigated in the Suppl.
Section F.

3 Results

3.1 Effect of mortality rates

Introductory analyses revealed that all-cause mortality rates q0(t) impose considerably less uncertainty
on the LEAR than lung cancer rates r0(t) for all risk models (Suppl. Section D.1). The empirical dis-
tribution of LEAR samples for gamma-distributed q0(t) is considerably narrower compared to the
empirical distribution for gamma-distributed r0(t), which is also reflected in the 95% uncertainty in-
tervals. The relative uncertainty span of 95% uncertainty intervals is very similar across all considered
risk models with roughly 0.10 for uncertainties in all-cause rates q0(t) and roughly 0.50 for uncertainties
in lung cancer rates r0(t) and joint uncertainties r0(t), q0(t), (Suppl. Table 10). Hence, all-cause mor-
tality rate uncertainty can be reasonably neglected when assessing overall mortality rate uncertainty,
as addressed in the subsequent analyses.

3.2 Effect of risk model parameter uncertainty

LEAR estimates derived from full cohort risk models are notably lower than estimates derived with
1960+ sub-cohort models [9]. This discrepancy is particularly pronounced for the Wismut cohort
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and primarily comes from the significantly lower estimates for Excess Relative Risk per 100 WLM
(ERR/100 WLM) observed in the full cohort [23]. The variation between these ERR/100 WLM
estimates is similarly reflected in the LEAR calculations.

3.2.1 Approximate normality assumption (ANA) approach

Table 1 shows the resulting 95% uncertainty intervals. For risk models fit on the full cohort the resulting
intervals are comparable although the model structures differ considerably: The relative uncertainty
span is 0.81 and 1.03 for the parametric (4) and the BEIR VI risk model (7), respectively. For the
1960+ sub-cohort models, however, the results vary relatively widely. Especially risk model (8) implies
very wide LEAR uncertainty intervals with a relative uncertainty span of 6.27 and a notable portion
of implausible negative LEAR samples. The model (5) implies considerably less uncertainty compared
to the model (8) with a relative uncertainty span of 1.34, although both models are derived from the
1960+ sub-cohort. Visually (Figure 1), the empirical distribution of LEAR samples resembles approx-
imately a normal distribution for risk model parameter estimates derived from the full cohort (models
(4) and (7)). Conversely, the empirical distribution of LEAR samples with parameter estimates derived
from the 1960+ sub-cohort inherit considerably heavier tails and a slight right skewness. The 1960+
sub-cohort is smaller and comparably young with less person-years at risk and less lung cancer deaths.
This results in higher statistical uncertainty which is reflected in wider LEAR uncertainty intervals.

Note that, for the simple linear risk model (6) we obtain analytically, without sampling, a normal
distribution

LEAR ∼ N
(
0.0571, 1.65× 10−4

)

with corresponding 95% uncertainty interval [3.18; 8.22] and relative uncertainty span of 0.88 for LEAR
in %. By definition, this uncertainty intervals is proportional to the 95% confidence intervals [0.75; 1.93]
for β̂0 × 100 = 1.34 from [23] by a factor of 4.27 here. The underlying theory is explained in Suppl.
Section C.1.

3.2.2 Bayesian approach

Computational limitations restricted the applicability of this approach to models (5) and (6). For the
simple linear model (6), analogous to the ANA approach, LEAR uncertainty is directly proportional
to β uncertainty. The posterior mode of P (β|X) with 95% uncertainty intervals (HPDIs) for varying
certainty in the prior information is shown in Table 3 with corresponding plots in Figure 3. The
resulting HPDI with a uniform prior are comparable to the conventional 95% confidence interval for
the estimate β̂. However, the lower bound of the HPDI is notably higher than that of the classical
confidence interval for β̂. Further, the relative uncertainty span of the uncertainty interval decreases
with increasing certainty in the prior information (increasing a) from 0.94 for a = 2 up to 0.48 for
a = 50.

The resulting 95% HPDIs for the more complex model (5) are shown in Table 2 for the special choice
of a standard deviation σ = 0.02 in the prior distributions for α and ε (Suppl. Section C.3 for more
choices for σ and histograms of parameter samples). The corresponding distribution of LEAR samples
is shown in Figure 2 (Plot a). As expected, increasing the prior certainty (increasing shape parameter
a) shrinks the uncertainty interval and moves the reference estimate (ICRP 103) of LEAR in % from
6.74 (95% HPDI [2.96; 11.09]) without prior influence towards the prior LEAR in % estimate of 4.30
derived with the Joint Czech+French risk model. For example, a = 50 results in a LEAR in % of 4.99
and a 95% HPDI of [3.14; 7.26]. A very similar effect is observed for decreasing the standard deviation
σ for a fixed shape parameter a = 10 (Figure 2 Plot b).

3.3 Joint effect of mortality rate and risk model parameter uncertainty

The empirical distribution of resulting LEAR samples, along with the corresponding 95% uncertainty
intervals, varies depending on the underlying risk model and its parameters, especially for the 1960+
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sub-cohort models (Figure 1, Table 1), last column). Risk model complexity and cohort size directly in-
fluence LEAR uncertainty intervals, as seen in the separate analyses. In contrast, the 95% uncertainty
intervals from uncertain r0(t) are overall narrower compared to those from uncertain risk model pa-
rameters and consistent across all risk models with a relative uncertainty span of roughly 0.5. The joint
effect of uncertain risk model parameters and uncertain lung cancer mortality rates is with a relative
uncertainty span of roughly 1 almost similar to the effect with only uncertain risk model parameters.
Only the 95% uncertainty interval [-9:91; 23.17] of the joint effect with relative uncertainty span of 5.76
for the BEIR VI 1960+ sub-cohort model (8) remains implausible, although slightly narrower. Overall,
accounting for lung cancer mortality rate uncertainty in addition to risk model parameter uncertainty
has low impact on the overall LEAR uncertainty interval.

4 Discussion

This work provides a considerable methodological contribution in radiation protection research by suc-
cessfully deriving uncertainty intervals for radon-induced lifetime lung cancer risk estimates. These
intervals are grounded in a sound statistical framework, shifting the approach from solely assessing sin-
gle lifetime risk estimates to quantifying the uncertainties around these estimates. For a comprehensive
assessment of lifetime risks, it is advisable to consider both the point estimate and the uncertainty in-
tervals. From this perspective, we investigate two key contributors to uncertainties: baseline mortality
rates and risk models. We introduce advanced methods for quantifying these uncertainties, facilitating
their application in radiation-related research questions. Our results confirm the BEIR VII report find-
ing that risk model uncertainty is a major driver of overall lifetime risk uncertainty [16]. Accounting for
risk model parameter uncertainty in risk models from the Wismut cohort study as a practical example
yields plausible lifetime risk uncertainty intervals that encompass the range of reported lifetime risk
estimates from miners studies in the literature, as summarized in [9, Table 4].

This study specifically addresses quantifying uncertainties in lifetime lung cancer risks associated
with protracted occupational radon exposure. Existing tools like “CONFIDENCE”, “RadRAT”, and
“LARisk”, predominantly employ risk models derived from the Atomic Bomb Survivors Life-Span Study
and focus on acute radiation exposure [12]. The latter two build on methods from the BEIR VII re-
port [16] to quantify lifetime cancer risk uncertainties. Those methods consider sampling variability
in risk model parameters similar to our ANA approach, uncertainties in the risk transfer between
populations, and uncertainties in the dose and dose-rate effectiveness factor (DDREF) using the delta
method [34, 35]. However, subjective variance inputs are needed for risk transfer and DDREF uncer-
tainty assessment, which our study avoids. Results from the BEIR VII report differ from the results
here due to different study populations and exposure metrics, but the span of uncertainty intervals are
of comparable magnitude.

Moreover, in the context of occupational radon exposure, the present study adds to methods used in
the BEIR VI report [6], the EPA report [11] and [10], all of which use sampling techniques similar to
the ANA approach here to address risk model parameter uncertainty. Although [10] does not provide
direct lifetime risk uncertainty intervals, they can be derived from the results therein and align well
with our findings. Overall, this adds credibility to both approaches. However, the methodology to
derive uncertainty intervals has not been extensively introduced, discussed, and compared with other
approaches so far, as was done in the present study.

4.1 Sources of lifetime risk uncertainty

Following [17], three types of uncertainties arise in lifetime risk calculations: sampling uncertainty,
uncertainty in choosing and deriving a suitable model structure (model uncertainty), and unspeci-
fied uncertainties like data errors and validity of assumptions, that cannot be formally specified with
probability distributions. Quantifying uncertainties beyond sampling uncertainty is challenging, as
acknowledged elsewhere [6, 36]. This analysis focuses on quantifiable sampling uncertainty. For a
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comprehensive overview of uncertainties, decisions, and potential errors associated with lifetime risk
calculations see [6, Table 3-13].

The risk model defining ERR(t; Θ) is a crucial component of LEAR calculations with inherent un-
certainties, arising from factors such as disease classification, statistical power limitations, potential
confounding, and particularly from exposure assessment – a major challenge in radiation research and
risk model derivation [37]. Potential measurement errors, especially from early years of uranium mining
are subject of ongoing research, e.g. exploring their effects within the Wismut cohort [38,39]. Assessing
uncertainties in risk model derivation is beyond the scope of this study.

Different risk model structures (categorical or parametric) fitted to the same cohort data result in com-
parable lifetime risk estimates [9]. The non-parametric reference mortality rates r(ICRP )

0 (t), q
(ICRP )
0 (t)

and the corresponding survival function S(t) avoid parameter uncertainty and leverage available pop-
ulation data. The discretization of lifetime risks from a theoretical integral to a calculable sum is
mandated by data availability. In the scope of generic lifetime risk calculation, this all suggests low
model uncertainty or limited model flexibility, allowing us to concentrate on quantifiable sampling
uncertainty.

Preliminary sensitivity analyses indicate that many factors (e.g. the choice of the lifetime risk measure,
latency time L or the maximum age tmax) have only limited impact on lifetime risk variability [5].
Likewise, variability in the annual radon exposure is only briefly investigated (Suppl. Section F)
since the exposure scenario is fixed for most lifetime risk applications, especially for the important
dose conversion considerations. Thus, the present study focuses on the most influential components:
sampling uncertainty in risk model parameters Θ and baseline mortality rates r0(t), q0(t).

4.2 Risk model parameter uncertainty

4.2.1 Approximate normality assumption (ANA) approach

The ANA approach approximates the true underlying likelihood function for estimating risk model
parameters using a normal distribution and follows the frequentist approach. The covariance matrix
estimate Σ̂0 describes the amount of sampling uncertainty, which decreases as cohort size increases,
resulting in narrower uncertainty intervals for lifetime risks. This explains why lifetime risk estimates
with risk model parameters derived from the smaller, younger 1960+ sub-cohort have wider uncer-
tainty intervals compared to those derived from the Wismut full cohort. This is particularly evident
for models with BEIR VI structure [6], with dedicated parameters for miners data at higher age ranges.

The ANA method requires only parameter estimates and their covariance matrix to derive uncertainty
intervals via Monte Carlo simulations. This makes the ANA approach practical and efficient, especially
when complete access to cohort data is not available. While not entirely new, the idea of approximating
the underlying likelihood function is rooted in earlier work [40] later coined to the term "Approximate
Bayesian Computation (ABC)" [41, 42]. A similar method for uncertainty quantification of lifetime
thyroid cancer risk related to radiation exposure was used in [43].

4.2.2 Bayesian approach

In contrast to the frequentist method, Bayesian statistics incorporates prior knowledge or beliefs about
model parameters through probability distributions, providing an alternative perspective on uncer-
tainty.

Since the statistical software Epicure [29] does not support Bayesian methods, we implemented a solu-
tion in R [32]. Although R can be computationally slower than Epicure, which is specifically optimized
for fitting ERR(t; Θ) risk model structures, individual R solutions allow greater control over cohort
data and model fitting. We calculate the marginal posterior distribution of risk model parameters,
inspired by [30]. Computing the full posterior is computationally expensive due to numerous baseline
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stratification parameters, but focusing on the marginal posterior simplifies this by reducing the param-
eter set to just the risk model parameters. Compared to [30], this technique is here extended to handle
more complex risk models and protracted low exposure scenarios. Sampling from the true marginal
posterior yields more nuanced uncertainty intervals that are not reliant on approximating asymptotic
behavior as in the ANA approach.

A key strength of the Bayesian approach is the ability to integrate prior knowledge – e.g. the results
from previous miners studies – through the selection of prior distributions. However, selecting these
priors involves subjective judgment [44]. Decisions on prior distributions, in particular the degree of
influence on the likelihood, have to be thoroughly considered, compare [45] . Non-informative priors,
like uniform distributions, have minimal influence on the posterior and lead to uncertainty intervals
similar to the ANA approach, especially for large cohorts, while informative priors enable a more
adaptive integration of diverse cohort data. Note that labeling estimates from the Joint Czech+French
cohort as "prior knowledge" is a structured test of the methodology’s adaptability and effectiveness
of combining different cohort information rather than a strict integration of prior results. Users can
tailor the approach to their needs, but selecting appropriate priors is a separate consideration beyond
this discussion.

Although Bayesian methods offer flexibility and deeper insights, they require full access to cohort data
and significant computational resources, especially for complex models with many parameters. While
sampling methods like MCMC are efficient in this case due to high acceptance rates by choosing the
approximate (asymptotic) normal distribution as a proposal density, the computational challenge lies
in calculating the marginal posterior distribution itself.

4.3 Mortality rate uncertainty

Mortality rates also introduce notable uncertainty to lifetime risk estimates. Unlike for risk model
parameter estimates, which are derived through a rigorous statistical framework (likelihood theory),
the ICRP mixed Euro-American-Asian reference mortality rates r

(ICRP )
0 (t), q

(ICRP )
0 (t) are presented

as plain numbers sourced from a database. These mortality rates do not result from a statistical esti-
mation process, requiring careful consideration when imposing probability distributions. We assessed
this uncertainty by applying gamma distributions to baseline mortality rates r0(t) and q0(t) for all ages
t incorporating observed variability in mortality rates across countries in Europe, America, and Asia
from WHO data [20], which aligns geographically with ICRP reference rates. The gamma distribution
was finally chosen as it fits the observed rates for numerous age groups well. This allowed us to quantify
how mortality rate uncertainty influences lifetime risk estimates. In the described method, each rate
derived from WHO data is assigned equal weight. Consequently, observations from smaller countries
are given the same weight as those from larger countries. The focus is on estimating the variability
of mortality rates themselves, irrespective of the population size. Alternatively, a population-weighted
approach is applied in Suppl. Section D.2.

Our analysis confirmed that uncertainties in all-cause mortality rates have negligible impact [5], while
lung cancer mortality rate uncertainties resulted in uncertainty intervals similar to those from full
cohort risk model parameter uncertainty.

The derivation of parameter estimates in (10) and (11) from WHO data is independent from ICRP ref-
erence rates r

(ICRP )
0 (t) and q

(ICRP )
0 (t). Using a centered distribution with the expected value (mean)

set equal to the ICRP rates had low effect on lifetime risk estimates and according uncertainties (Suppl.
Section D.1.2), so we retained the un-centered distribution for Monte Carlo simulations to avoid con-
straining parameter estimation.

Here, lung cancer mortality rates introduce uncertainty comparable to that of full cohort risk model
parameters for the Wismut cohort study. However, including both sources of uncertainty has little
effect on the uncertainty intervals compared to just considering risk model parameters. Therefore,
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focusing solely on risk model parameter uncertainty is sufficient. Although unintuitive, this effect can
be explained by acknowledging the product structure of ERR(t; Θ) and lung cancer rates r0(t) in
the LEAR calculation. The variance of products of (independent) random variables is not necessarily
larger than the variances of single factors [46].

4.4 Interpretation of uncertainty intervals

Uncertainty intervals capture the variability in lifetime risk estimates. For risk model effects, un-
certainty intervals derived with ANA methods reflect sampling variation in estimated risk model pa-
rameters and may be referred to as (approximate) Wald-type confidence intervals. Bayesian credible
intervals, such as Highest Posterior Density Intervals (HPDIs), represent the probability (e.g., 95%)
that the true value lies within the interval, incorporating prior beliefs in risk model parameters.

While both methods provide uncertainty intervals, their interpretations differ. ANA confidence in-
tervals are less interpretable than Bayesian credible intervals. However, this theoretical distinction is
practically less relevant for purposes in radiation protection research. In particular, credible intervals
with non-informative priors are often similar to confidence intervals derived with the ANA approach.

Mortality rate uncertainty intervals are more difficult to interpret due to their dependence on external
data and chosen distributions. They reflect sampling variability by accounting for observed mortality
rate variation and can be considered as subjective confidence intervals, similar to [16]. They provide a
valuable quantitative sense on mortality rate variability.

The derived uncertainty intervals for lifetime risks like the LEAR reflect the expectable range of
potential values that arise from the inherent variability in each calculation component. In particular,
as lifetime risks are not directly estimated from data with sampling uncertainty, the intervals should
not be interpreted as classical confidence intervals.

4.5 Comparison with lifetime risk variation in the literature

The uncertainty in risk model parameters significantly contributes to the overall uncertainty in lifetime
risk estimates. Our analysis using the ANA approach applied to risk models from the Wismut cohort
study reveals uncertainty intervals that align well with the literature: in the context of the PUMA
study [9], LEAR values from various studies were recalculated and summarized. Thereby, a range for
the LEAR per WLM of 2.50 × 10−4 to 9.22 × 10−4 was reported across all published risk models of
uranium miners studies that include time- and age-related effect modifiers. This range translates to
an equivalent range for the LEAR in % of 2.35 to 8.65. The 95% uncertainty intervals derived in this
study for the parametric 1960+ sub-cohort models, particularly [3.26; 12.28] for the best-fit model
(5) and [3.19; 8:22] for the simple linear model (6), correspond well to the range of point estimates
reported by the PUMA study group. To convert the reported LEAR per WLM values to the total
LEAR, each value was multiplied by 94 (total cumulative exposure in WLM). The derived intervals
for the full Wismut cohort exhibit a weaker alignment with this range: [2.06;4.84] for the parametric
model (4) and [1.27;4.30] for the categorical model (7). However, the 1960+ sub-cohort Wismut models
are preferred to full Wismut cohort models in order to estimate lung cancer risks at low protracted
exposures due to high quality exposure assessment [23].

Heterogeneity in radiation risk estimates between studies may explain differences in the LEAR and
can likely be attributed to diverse factors such as structural differences in cumulative exposure range,
duration of employment, and methods in mortality tracking and data analysis [9].

While uncertainty intervals depend on the chosen confidence level (here 95%), the close alignment of
our derived intervals with literature values supports the reliability and appropriateness of our approach.
This is especially remarkable as our results are solely derived from the Wismut miner cohort data as
a practical example. The consistency across recognized miner studies confirms the reliability of the
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ANA methodology in assessing uncertainties in lifetime lung cancer risks from radon exposure. Further
follow-up years for miners cohorts will refine our understanding of risk models and lifetime risks for
radon-induced lung cancer and associated uncertainties.

4.6 Strengths and weaknesses

Our work benefits from the strengths of the German uranium miners cohort (Wismut cohort), the
largest single cohort of uranium miners worldwide representing roughly half of all miners in the pooled
PUMA cohort [47]. This large cohort (cf. [48]) allows us to achieve reliable estimates for risk model
effects on lifetime risk uncertainties.

Furthermore, the present study pioneers the application of the comprehensive WHO mortality database
[20] to assess mortality rate uncertainties in radon-induced lung cancer lifetime risks. These innovative
approaches, along with the implementation of advanced Bayesian techniques, expand the method-
ological toolbox for uncertainty assessment in this field. To facilitate the application of the Bayesian
technique, we developed a R procedure for data grouping and model fitting, overcoming the limitations
of existing software for this specific analysis. Transparency in reporting, with detailed descriptions of
methods, statistical analysis, and results, facilitates replicability.

Both methods for assessing risk model uncertainties are reliable due to statistically grounded assump-
tions and show broad applicability. The ANA approach requires minimal assumptions, making it
versatile. While the Bayesian approach with the analytical computed marginal Posterior distribution
offers stronger rigor, it has specific data needs (Poisson-distributed numbers of lung cancer deaths).
However, its concept of marginal posterior distributions likely extends beyond lifetime risk assessments.
These techniques, given appropriate data, can be applied in radiation epidemiology to analyze various
quantitative figures derived from likelihood functions, encompassing different exposures, health out-
comes, and risk models.

However, limitations are acknowledged. The uncertainty intervals depend on the baseline mortality
rates applied, the choice of risk model and the data used to estimate the risk models. The Bayesian
approach, while statistically rigorous and contributing to the reliability of results, was here limited
in applicability to models with few parameters due to computational constraints. However, generally,
better computing power allows for the analysis of more complex models. This study prioritizes the
development of methodology for uncertainty assessment. In particular, lifetime risk calculation inherits
methodological limitations of risk model estimation, such as the incorporation of detailed smoking
behaviour. Data for radon effects on females are sparse. Based on findings from residential radon
studies in [49] we decided to assume the same ERR(t; Θ) for females and males. Finally, the analysis
does not account for uncertainties arising from transferring risk estimates from miners cohorts to the
general population (here: multiplicative risk transfer [7,50]. Aligning mortality rates with the specific
characteristics of the cohort data, such as using national mortality rates relevant to the cohort’s
origin, can help partially mitigate the risk transfer issue. The overall composite nature of a lifetime
risk estimate depending on multiple independently conducted analyses, limits an all-encompassing
uncertainty assessment.
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5 Conclusion

Uncertainty quantification is crucial for a comprehensive understanding of lifetime risk estimates. This
study demonstrates that uncertainty from risk model parameter estimates explains a substantial frac-
tion of overall lifetime risk uncertainty. Two advanced methods to derive uncertainty intervals are
developed and applied. The simple ANA approach proves to be a suitable and reliable uncertainty
assessment technique for most cases. The more flexible Bayesian approach offers a more nuanced view
of uncertainty. However, the approach is computationally more demanding and requires full access to
grouped cohort data, limiting its wider applicability. From a practical perspective, additionally ac-
counting for uncertainties in mortality rates is less critical. The explicit choice of lifetime risk measures
is negligible for uncertainty assessment. The uncertainty intervals derived in this study correspond to
the range of LEAR values from different miners studies in the literature, thus uncertainties derived by
both methods are mutually confirmed. The introduced methods allow for a more complete comparison
of lifetime risk estimates across uranium miners studies. These findings should be accounted for when
developing radiation protection policies which are related to lifetime risks.
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6 Tables

Risk model Equation LEAR in % Effect of risk model Effect of r0(t) Joint effect

Parametric full cohort (4) 3.43 [2.06; 4.81] (0.80) [2.57; 4.17] (0.47) [1.88; 4.99] (0.91)
Parametric 1960+ sub-cohort (5) 6.70 [3.26; 12.28] (1.34) [4.96; 8.11] (0.47) [3.00; 11.98] (1.34)
Simple linear 1960+ sub-cohort (6) 5.71 [3.19; 8.22] (0.88) [4.02; 6.66] (0.46) [2.77; 8.14] (0.94)
BEIR VI full cohort (7) 2.95 [1.27; 4.31] (1.03) [2.18; 3.47] (0.44) [1.15; 4.28] (1.06)
BEIR VI 1960+ sub-cohort (8) 5.74 [−10.55; 25.42] (6.27) [4.29; 7.36] (0.53) [−9.91; 23.17] (5.76)

Table 1: Results from ANA approach. LEAR in % estimates with corresponding 95% uncertainty
intervals (relative uncertainty span in brackets) for uncertain risk model parameters, lung cancer
mortality rates r0(t) or both independently, in correspondence to Figure 1 Lung cancer rates r0(t) are
sampled from a Gamma distribution according to Suppl. Table 7. Reference estimates for LEAR in %
are calculated with ICRP Euro-American-Asian mixed reference mortality rates [2] and an exposure
scenario of 2 WLM from age 18-64 years.

Prior information LEAR in % Relative uncertainty span

Uniform Prior 6.74 [2.96; 11.09] 1.20
a = 2 5.56 [2.76; 8.98] 1.12
a = 5 5.41 [2.82; 8.45] 1.04
a = 10 5.27 [2.89; 8.15] 1.00
a = 20 5.13 [2.99; 7.58] 0.89
a = 50 4.99 [3.14; 7.26] 0.83

Table 2: Results from Bayesian approach. LEAR in % estimate with 95% highest posterior density
interval (HPDI) and relative uncertainty span for uncertain risk model parameters for risk model
(5) derived from sampling from the posterior distribution P (Θ|X). The prior distribution P (Θ) =
P (β)P (α)P (ε) for gamma-distributed β for varying shape parameter a and normally distributed α, ε
with standard deviation σ = 0.02 in correspondence to Figure 2. The LEAR in % calculated with risk
model parameters from the Joint Czech + French cohort [25] is 4.30.
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Prior information β̂ × 100 LEAR in % Relative uncertainty span

Likelihood with Wald-type CI 1.34 [0.71; 1.97] 5.72 [3.03; 8.41] 0.94
Uniform Prior 1.34 [0.79; 2.08] 5.72 [3.37; 8.90] 0.96
a = 2 1.35 [0.81; 2.07] 5.77 [3.44; 8.84] 0.94
a = 5 1.38 [0.87; 2.06] 5.90 [3.72; 8.82] 0.86
a = 10 1.42 [0.94; 2.02] 6.06 [4.00; 8.64] 0.76
a = 20 1.46 [1.03; 1.99] 6.25 [4.41; 8.48] 0.65
a = 50 1.52 [1.18; 1.91] 6.50 [5.05; 8.17] 0.48

Table 3: Parameter estimate β̂ = Mod (P (β|X)) of posterior distribution P (β|X) with LEAR calcu-
lated with the risk model (6) and corresponding 95% highest posterior density interval (HPDI) and
relative uncertainty spans for varying prior parameter settings. The gamma-distributed prior P (β) is
centered at the corresponding parameter estimate from [25] for different values of prior gamma shape
parameters a in correspondence to Figure 1. Wald-type confidence intervals (CI) are also shown for
comparison and are calculated as β̂ ± 1.96× 0.003005, where 0.003005 represents the parameter stan-
dard error as stated in [23].

19



7 Figures

Figure 1: Results from ANA approach. Histograms of 100,000 resulting LEAR samples with kernel
density (solid lines) for different risk models (Plot title a-e) and varying uncertain components in
correspondence to Table 1. Risk model parameters (Effect of risk model) are assumed to follow a
multivariate normal distribution (ANA approach). Lung cancer mortality rates r0(t) (Effect of r0)
are assumed to follow a gamma distribution with parameters as in Suppl. Table 7. The joint effect
(Effect of risk model and r0) results from independent sampling from both corresponding probability
distributions. 95% uncertainty interval are presented in the legend.
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Figure 2: Results from Bayesian approach. Kernel density estimate of LEAR posterior distribution
with uncertain risk model parameters Θ = (β, α, ε) (model (5)) derived from sampling from the pos-
terior distribution P (Θ|X) with prior P (Θ) = P (β)P (α)P (ε) for gamma distributed β and normally
distributed α, ε centered at the corresponding parameter estimate from [25] for different shape pa-
rameters a and standard deviations σ in correspondence to Table 2. The plots illustrate the effect of
increasing prior certainty in parameter β (Plot a) and in parameters α, ε (Plot b). Vertical dashed
lines indicate the reference estimate (ICRP 103) with the risk model fit on the Wismut or the Joint
CZ+F cohort, respectively.

Figure 3: Gamma-distributed prior P (β) centered at the parameter estimate from [25] for different
shape parameters a and of corresponding posterior distributions LEAR for the simple linear 1960+
sub-cohort risk model (6) in correspondence to Table 3. The vertical dashed lines represent the β
estimate from [25] and the correspondingly derived reference LEAR estimate.
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Supplementary information

In this Supplement, additional information, alternative modeling approaches, and derivations of quan-
tities from the main manuscript are presented regarding uncertainties in the lifetime risk for lung cancer
related to occupational radon exposure. In particular, the basic methodology is identical to the main
paper approach. For a comprehensive overview of the conducted analyses, see Supplementary Table 1.

Component Methods Sensitivities Section

Mortality rates Non-weighted regression
Gamma distribution Main paper, Suppl. D.1
Log-normal distribution Suppl. D.3
Sex-specific Suppl. E.1

Weighted Poisson regression (Bayesian) Varying prior certainty Suppl. D.2

Risk model parameters
ANA - Main paper, Suppl. C.1

Bayesian Varying prior certainty Main paper, Suppl. C.2, Suppl. C.3
Sex-specific Suppl. E.2

Exposure scenario Log-normal annual exposure Exposure variability Suppl. F

Other lifetime risk measures
ANA - Suppl. ABayesian Varying prior certainty
Kaplan-Meier Windows of cumulative exposure Suppl. B

Supplementary Table 1: Overview of lifetime risk uncertainty assessment by investigated component,
methods, conducted sensitivity analyses, and where it is to find in the documents.

Overview

In Suppl. Section A, we derive uncertainty intervals for other lifetime risk measures (ELR, REID,
and RADS) using ANA and Bayesian techniques. Across all measures, the relative uncertainty spans
are comparable. Therefore, for practical purposes, relying on the LEAR measure is sufficient. RADS
estimates are notably larger compared to the other measures.

We also present an exploratory Kaplan-Meier survival curve analysis [33], stratified by cumulative
exposure in categories (Suppl. Section B, Suppl. Fig. 3). This approach relies on hardly any assump-
tions, using only miners cohort data, yields plausible uncertainty intervals and is useful for visual risk
assessments.

Suppl. Section C shows additional insights for risk model parameter uncertainty. Particularly, the
Bayesian approach for risk model parameter uncertainty for the simple risk model (24) showed only
slight differences between log-normal and gamma priors for β (Suppl. Section C.2).

Suppl. Section D further explores mortality rate uncertainties: An alternative Bayesian approach using
Poisson-distributed numbers of lung cancer deaths for population-weighted mortality rate uncertainty
(Suppl. Section D.2) provided minimal new insights, as the extensive WHO data results in a highly
peaked Likelihood function indicating low uncertainty in the parameter estimates and consequently
overruled the prior’s influence. In Suppl. Section D.3, we compare log-normal and gamma distribu-
tions for mortality rates, showing similar uncertainty intervals but with slightly larger upper bounds
for log-normal distributions. Both distributions fit the WHO data comparably well. This indicates
that accounting for mortality rate uncertainty in lifetime risks involves a degree of subjectivity, influ-
enced by the researcher’s methodological decisions and the need for careful interpretation of resulting
uncertainty intervals.

For sex-specific lifetime risks with mortality rates derived from sex-specific WHO data (Suppl. Sec-
tion E.1), estimates for males are roughly twice those of females due to overall higher male baseline
all-cause and lung cancer mortality, though the relative uncertainty span remains similar. Lifetime
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risk estimates calculated with mortality rates from females must be interpreted cautiously, as the un-
derlying excess relative risk term is based on male miners cohorts. Sex-specific LEAR estimates using
sex-specific ICRP reference rates (Suppl. Section E.2) accounting for risk model parameter uncertainty
for the parametric 1960+ sub-cohort risk model (21) with the Bayesian approach further confirm this
pattern, with male LEAR values being twice as high, while the relative uncertainty remains similar.

Finally, Monte Carlo simulations accounting for uncertainties in radon exposure scenarios (Suppl.
Section F) showed that lifetime risks become approximately normally distributed across all risk models
and lifetime risk measures under low exposure uncertainty, with prescribed annual exposure variability
strongly affecting results but maintaining consistent relative uncertainty intervals.

A Comparison and results for other lifetime risk measures

Besides the LEAR, further (excess) lifetime risk measures are used in the literature. Here, we compare
the LEAR to three additional lifetime risk measures: the Risk of Exposure Induced Death (REID)
(first introduced in [51] and employed in [52, 53]), the Excess Lifetime Risk (ELR) [21] and the Ra-
diation Attributable Decrease of Survival (RADS) [19]. All considered excess lifetime risk definitions
emerge from the difference between a risk under exposure and a risk in the absence of exposure. Ex-
cept for RADS, the lifetime risk is the sum of annual lung cancer risks weighted by a certain survival
probability, see e.g. [17]. Note that RADS is special as it is the only measure that describes no risk per
se but rather a relative change in the survival function. In particular, it is the only measure calculated
without all-cause mortality rates. However, we will see that all four quantities are connected. Before
comparing uncertainty intervals, we introduce the additional lifetime risk measures shortly.

A.1 Definition

The central difference of the additionally considered lifetime risk measures compared to LEAR is the
explicit accounting for radon exposure in the survival function S(t). Survival under exposure shall be
denoted by SE(t) and baseline survival by S0(t), It holds,

REID =

∫ ∞

0
rE(t)SE(t) dt−

∫ ∞

0
r0(t)SE(t) dt =

∫ ∞

0
r0(t)ERR(t)SE(t) dt, (15)

ELR =

∫ ∞

0
rE(t)SE(t) dt−

∫ ∞

0
r0(t)S0(t) dt, (16)

RADS = lim
t→∞

S0(t)− SE(t)

S0(t)
= 1− lim

t→∞
SE(t)

S0(t)
. (17)

To calculate these additional lifetime risks, assumptions on the survival function affected by radon are
necessary. Analogously to S0(t) = e−

∫ t
0 q0(u) du ≈ S̃0(t) = e−

∑t−1
u=0 q0(u), we set

SE(t) = e−
∫ t
0 qE(u) du ≈ S̃E(t) = e−

∑t−1
u=0 qE(u),

where qE(u) describes the all-cause mortality rate at age u under exposure. Since there is currently no
reliable evidence that radon can cause diseases other than lung cancer, we assume that radon exposure
influences solely the lung cancer risk [54]. Hence qE(u) = q0(u) + r0(u)ERR(u) for all ages u and

SE(t) = S0(t)e
−

∫ t
0 r0(u)ERR(u) du ≈ S̃E(t) = S̃0(t)e

−∑t−1
u=0 r0(u)ERR(u). (18)

Employing the same approach as for the LEAR, the final approximations for all considered lifetime

27



risk measures read

LEAR ≈
∑

t≥0

r0(t)ERR(t)S̃0(t),

REID ≈
∑

t≥0

r0(t)ERR(t)S̃E(t),

ELR ≈
∑

t≥0

r0(t)(1 + ERR(t))S̃E(t)− r0(t)S̃0(t),

RADS ≈ 1− e−
∑

t≥0 r0(u)ERR(u).

Without assuming a protective effect of radon exposure [2,55], it holds rE(t) ≥ r0(t) and SE(t) ≤ S0(t)
for all ages t ≥ 0. Therewith one can easily deduce (proof in [5]),

ELR ≤ REID ≤ LEAR. (19)

The inequality (19) is universal and holds for all choices and combinations of calculation components.
For realistic excess absolute risks r0(t)ERR(t) (e.g. for moderate exposures observed in mines and
reasonable lung cancer mortality rates) one can further deduce

ELR ≤ REID ≤ LEAR ≤ RADS. (20)

The relationship (20) is observed for the majority of reasonable exposure scenarios. However, techni-
cally LEAR can exceed RADS, which is naturally bounded by one.

A.2 Uncertainty assessment

In the following, we employ the Bayesian approach and the approximate normality assumption (ANA)
approach to assess risk model parameter effects in lifetime risk uncertainties across different previ-
ously introduced lifetime risk measures. We expand results from the main manuscript and give further
insights. As in the main manuscript, a generic lifetime risk estimate without any uncertainty quan-
tification is called "Reference estimate (ICRP 103)" or simply "ref. estimate". In addition to the
95% uncertainty intervals we often present the span of uncertainty intervals relative to the reference
estimate (relative uncertainty span).

A.2.1 Bayesian approach for risk model parameter effects

For this Bayesian risk model parameter uncertainty assessment, we consider the parametric 1960+
sub-cohort risk model from [23],

ERR(t;β, α, ε) = βW (t) exp {α(AME(t)− 30) + ε(TME(t)− 20)} (21)

with parameter set Θ = (β, α, ε) and estimates β̂ = 0.0466, α̂ = −0.0301, and ε̂ = −0.0755. The
prior assumptions are analogous to those described in the Methods section of the main paper. Note
that we do not investigate the simple linear risk model here, as it provides a poorer fit to the miner data.

Supplementary Figure 1 shows sample distributions across different lifetime risk measures obtained
by drawing risk model parameter samples from the posterior distribution P (Θ|X) ∝ P (Θ)L(X|Θ)
for varying prior certainty. The reference estimate with corresponding 95% highest density posterior
intervals (HPDI) is shown in Suppl. Table 2. The results are overall very similar and only RADS
estimates are considerably larger. However, the relative uncertainty spans are similar across all lifetime
risk measures. As expected, the reference estimates shift towards the lifetime risk estimates calculated
using point estimates of the risk model parameters derived from the Joint Czech-French cohort. This
behavior reinforces the reliability of the Bayesian methods employed in this analysis. For comparison,
the ELR, REID, LEAR, and RADS in % calculated with risk model parameters (21) derived from
this cohort are 4.04, 4.20, 4.30, and 5.62, respectively.
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Supplementary Figure 1: Distribution of excess lifetime risk measures ELR, REID, LEAR and RADS
with risk model (21) and parameter samples drawn from the posterior distribution with prior P (Θ) =
P (β)P (α)P (ε) for different combinations of gamma-distributed marginal prior for β and normally
distributed marginal priors for α and ε for different shape parameters a and standard deviations σ
in correspondence to Suppl. Table 2. The reference estimate (ICRP 103) corresponds to the excess
lifetime risk measures evaluated at the mode Θ̂.

Prior information ELR in % REID in % LEAR in % RADS in %

Uniform prior 6.25 [2.80; 10.04] (1.16) 6.49 [2.89; 10.40] (1.16) 6.74 [2.96; 11.09] (1.21) 8.98 [3.57; 14.56] (1.23)
a = 20, σ = 0.02 4.79 [2.83; 7.00] (0.87) 4.98 [2.94; 7.26] (0.87) 5.13 [2.99; 7.58] (0.89) 6.74 [3.98; 10.22] (0.93)
a = 50, σ = 0.005 4.33 [3.16; 5.27] (0.49) 4.43 [3.32; 5.53] (0.50) 4.43 [3.34; 5.66] (0.52) 5.82 [4.40; 7.40] (0.52)

Supplementary Table 2: Excess lifetime risk measures evaluated at the mode Θ̂ of risk model parameters
and their 95% highest posterior density interval (HPDI) (relative uncertainty span in brackets) with
prior P (Θ) = P (β)P (α)P (ε) for different values of prior gamma shape parameters a and standard
deviations σ in correspondence to Suppl. Figure 1.
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Note that lifetime risks evaluated at the mode Θ̂ of the risk model parameter distribution (reference
estimate) do sometimes not align with the sample distribution mode in Suppl. Figure 1. This dis-
crepancy arises because a lifetime risk evaluated at a specific parameter estimate Θ̂ is essentially a
non-linear parameter transformation of Θ̂. This affects the distribution characteristics. Here, the ex-
ponential nature of the employed risk model structure shifts the distribution mode slightly leftward
depending on the magnitude of σ.1 A comparable effect is observed in the upcoming analysis with the
ANA approach.

A.2.2 Approximate normality assumption (ANA) approach

Analyses with the ANA approach showed that the resulting differences in lifetime risk measures are
comparably low for all considered risk models (Suppl. Figure 2, Suppl. Table 3). Again, only RADS
estimates are considerably larger, which is also reflected in the wider uncertainty intervals. However,
the relative uncertainty span is similar across all considered lifetime risk measures.

The BEIR VI 1960+ sub-cohort risk model exhibits excessive parameter uncertainty. This is reflected
in a high proportion of implausible (negative) LEAR samples, likely due to the inherent uncertainty
in parameters for greater ages fit on a young cohort. This holds across all considered lifetime risk
measures. However, the exponential nature of RADS amplifies negative parameter samples, resulting
in a considerably wider lower uncertainty bound compared to other lifetime risk measures. Overall,
the excessive uncertainty in BEIR VI 1960+ sub-cohort risk model parameters makes corresponding
uncertainty quantification currently impractical. With additional follow-up data, the uncertainty in
risk model parameters, especially at higher ages, will decrease, leading to more reliable estimates for
the 1960+ sub-cohort.

Risk model ELR in % REID in % LEAR in % RADS in %

Parametric full cohort 3.24 [1.96; 4.51] (0.79) 3.37 [2.04; 4.69] (0.79) 3.43 [2.06; 4.81] (0.80) 4.62 [2.83; 6.55] (0.81)
BEIR VI full cohort 2.80 [1.22; 4.06] (1.01) 2.89 [1.26; 4.20] (1.02) 2.95 [1.27; 4.31] (1.03) 4.74 [2.10; 7.11] (1.06)
Parametric 1960+ sub-cohort 6.21 [3.08; 11.04] (1.28) 6.45 [3.20; 11.44] (1.28) 6.70 [3.26; 12.28] (1.35) 8.88 [4.41; 17.10] (1.43)
BEIR VI 1960+ sub-cohort 5.34 [−10.90; 20.77] (5.93) 5.56 [−11.26; 21.31] (5.86) 5.74 [−10.55; 25.42] (6.27) 7.07 [−18.86; 40.96] (8.46)
Simple linear 1960+ sub-cohort 5.35 [3.03; 7.60] (0.85) 5.52 [3.12; 7.84] (0.86) 5.72 [3.19; 8.26] (0.89) 9.98 [5.69; 14.09] (0.84)

Supplementary Table 3: Excess lifetime risks (reference estimates) with 95% uncertainty interval (rel-
ative uncertainty span in brackets) from the 100, 000 risk model parameter estimates drawn from a
multivariate normal distribution (ANA approach) for different lifetime risk measures and risk models
in correspondence to Suppl. Figure 2.

In summary, the uncertainty intervals for the measures ELR, REID, and LEAR are similar for both
the ANA and the Bayesian approach. Notable differences between measures ELR, REID, and LEAR
are expected to occur only at higher exposures as they primarily differ in how they model the survival
function, using either S0(t) or SE(t). However, low exposure scenarios are particularly prevalent today
and therefore play a major role in radiation protection purposes. Therewith, regarding uncertainties, no
clear difference or benefit between the three lifetime risk measures is observed. RADS being generally
larger results in likewise shifted uncertainty intervals. The relative uncertainty span is similar across all
lifetime risk measures. The BEIR VI 1960+ sub-cohort model results in peculiar uncertainty intervals
and should, to date, be employed with care for uncertainty assessment.

1For example, the mode of exp {Y } for a normal distribution Y ∼ N
(
µ, σ2

)
is exp

{
µ− σ2

}
instead of exp {µ}.
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Supplementary Figure 2: Density from the histogram of 100, 000 excess lifetime risk estimates cal-
culated with risk model parameter estimates drawn from a multivariate normal distribution (ANA
approach) for different lifetime risk measures and risk models in correspondence to Suppl. Table 3.
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B Explorative uncertainty assessment: Kaplan-Meier lung cancer
survival curves

We present a simple, explorative approach to deducing uncertainty intervals for lifetime risks. This
approach requires minimal assumptions and is in particular independent of the typical (excess) lifetime
risk structure incorporating ERR risk models. Further, it only employs knowledge from miner cohorts
and does not rely on external inputs like mortality rates or exposure scenarios.

B.1 Introduction and definition

Excess lifetime risks employed in the literature are the difference between a risk under exposure and
a risk in the absence of exposure. In particular, for the LEAR this relationship is expressed as
LEAR = LRE − LR0 (see Methods section in the main manuscript for comparison). By interpreting
1−LRE and 1−LR0 as (unknown) lifetime lung cancer survival probabilities, the excess lifetime risk
can also be understood as a difference in survival probabilities, i.e.,

LEAR = LRE − LR0 = (1− LR0)− (1− LRE) =: S0 − SE . (22)

We present a simple approach to calculate estimates for lung cancer survival curves S0 and SE for
different radon exposures with uncertainty intervals.

Kaplan-Meier survival curves are such simple non-parametric estimates for survival probabilities in
time-to-event analyses [33]. Using Kaplan-Meier survival curves to estimate the difference in lung
cancer survival S0 − SE has little in common with the original definition of LEAR. While a LEAR
can be calculated for any explicit exposure scenario, the Kaplan-Meier survival curves rely on more
rough windows of cumulative exposure. The resulting lifetime risk estimates are referred to as (naive)
LEAR estimates for simplicity. Here, Kaplan-Meier lung cancer survival functions are calculated for
miners at Wismut with follow-up 1946-2018 stratified by certain exposure windows. The time axis is
age t in years whereas the event is lung cancer death. Due to the large number of miners in the Wismut
cohort, we can calculate reliable Kaplan-Meier estimates Ŝ(t) for S(t) for different radon exposures.
Radon exposure is categorized into seven groups ("No exposure", 0-10, 10-50, 50-100, 100-500, 500-
1000, and 1000+ WLM), and for each group, survival curves are calculated. For Kaplan-Meier survival
estimates, it holds for the probability of not dying of lung cancer until age t,

Ŝ(t) =
∏

tk≤t

(
1− dk

nk

)

with number of lung cancer deaths dk and individuals at risk nk at time point tk.

Here, a confidence interval for Ŝ(t) is constructed with Greenwood’s formula [56] via

V̂ ar
(
Ŝ(t)

)
= Ŝ(t)2

∑

tk≤t

dk
nk(nk − dk)

(23)

and the asymptotically normal distribution of Ŝ(t) yields the symmetric point-wise confidence interval
at level 1− α/2,

Ŝ(t)± z1−α/2

√
V̂ ar

(
Ŝ(t)

)
.

Note that Greenwood’s formula provides point-wise confidence intervals at each age t, suitable for
our analysis. However, researchers seeking simultaneous confidence intervals across the entire survival
curve might consider using Hall-Wellner confidence bands [57] or equal probability bands [58]. Detailed
methodologies are available in [59, Chapter 4.4], with a practical implementation by the "km.ci" R
package [60].
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For each miner, we calculate the exact age at the end of follow-up (either 12/31/2018 or before, in case
of death or loss-to-follow-up) in days in units of years: e.g. a person dying of lung cancer 10 days after
its 85th birthday results in age at the end of follow-up of 85 + 10

365.25 = 85.03. Every observed lung
cancer death marks a time point tk. Hence dk = 1 in most cases. Rarely, multiple individuals died of
lung cancer at the exact same age, resulting in dk > 1.

B.2 Results

Lung cancer survival curves were constructed for individuals with different levels of cumulative radon
exposure (Suppl. Figure 3). The three curves for no exposure, low exposure with at most 10 WLM, and
slightly higher exposure with 10 to 50 WLM are close together and only the 50 to 100 WLM curve is
notably below (left-hand side plot). Although the curve for 50-100 WLM is notably below the survival
for unexposed individuals at practically all time points, the effect is not statistically significant as the
point-wise 95% uncertainty interval for the unexposed overlaps with the point-estimate for the 50-100
WLM curve. Likewise, there are age sections where the 0-10 WLM and the 10-50 WLM curves show a
slightly higher survival probability than the "No exposure" curve. However, incorporating uncertainty
intervals, this effect is not statistically significant. Note that the uncertainty bands for positive expo-
sure groups in the low exposure plot are not shown for readability. The right-hand side plot shows
survival curves for considerably higher exposures. There, the survival probabilities are all statistically
significantly different at the 95% confidence level. However, at the age of 95, the uncertainties increase
resulting in overlap for the category 500− 1000 WLM and > 1000 WLM.

To calculate lifetime risks from these survival curves according to (22), setting a maximum age t is
necessary. Here, we refer to the calculated lifetime excess risk as LEAR for simplicity. Here, the naive
LEAR estimate is the vertical distance between a survival curve for a certain exposure and the "No
exposure" survival curve at t = 85 (Suppl. Table 4), i.e.

LEAR = S0(85)− SE(85).

The naive LEAR confidence interval bounds are constructed by comparing the "No exposure" curve
S0 with the corresponding exposed survival curve SE . The lower bound is the difference between the
lower bound of the "No exposure" curve and the upper bound of the exposed survival curve. The
upper bound is the difference between the upper bound of the "No exposure" curve and the lower
bound of the exposed survival curve. LEAR increases for higher exposure with large uncertainties at
lower exposure. In particular, the LEAR for exposures below 100 WLM is not statistically significantly
different from zero. For higher exposures, the confidence intervals get narrower relative to the reference
estimate (relative uncertainty span). Note that in the German uranium miners cohort, the majority
were smokers. This results in a presumably lower baseline survival probability compared to a general
unexposed population.

This simple and naive approach to deriving uncertainty intervals for lifetime risks yields plausible re-
sults. Note that Log-Rank tests (compare [61]) confirmed that most survival curves in Suppl. Figure
3 are statistically significantly different from the "No exposure" curve at the 95% confidence level,
i.e. p-values below 0.05. Only the "(0,10) WLM" and "[10,50) WLM" curves are not statistically
significantly different from the "No exposure" curve with a p-value of 0.7 and 0.4, respectively.

Although the obtained intervals are rough, plotting the survival curves serves particularly well for an
interpretable visual risk assessment to grasp the impact of radon exposure on lung cancer survival.
Further, this approach can easily be applied to other endpoints than radon-induced lung cancer.

33



Supplementary Figure 3: Kaplan-Meier lung cancer survival curve estimates for miners from the Wis-
mut cohort for different windows of total cumulative exposure in WLM. The corresponding dashed
lines represent the point-wise upper and lower bound of the 95% uncertainty interval. A vertical line
at age 85 indicates the cut-point for lifetime risk calculations. The left-hand side plot shows lung can-
cer survival curve estimates for lower exposures, whereas the right-hand side plot shows lung cancer
survival curve estimates for higher exposures.

WLM interval Cohort size ŜE(85) in % L̂RE(85) in % LEAR in %

No exposure 8,213 (50.15%) 89.55 [88.28; 90.84] 10.45 [9.16; 11.72] -

(0, 10) 16,544 (30.31%) 89.52 [88.28; 90.78] 10.48 [9.22; 11.72] 0.03 [−2.50; 2.56]

[10, 50) 11,185 (39.16%) 89.47 [88.12; 90.81] 10.53 [9.19; 11.88] 0.09 [−2.54; 2.71]

[50, 100) 3,314 (57.51%) 86.86 [84.67; 89.05] 13.14 [10.95; 15.33] 2.69 [−0.78; 6.17]

[100, 500) 8,979 (72.81%) 83.12 [81.97; 84.27] 16.88 [15.73; 18.03] 6.43 [4.01; 8.87]

[500, 1000) 6,039 (80.54%) 74.42 [72.81; 76.04] 25.58 [23.94; 27.19] 15.13 [12.22; 18.03]

[1000,∞) 4,698 (85.89%) 66.58 [64.55; 68.61] 33.42 [31.39; 35.45] 22.97 [19.67; 26.29]

Supplementary Table 4: Values for Kaplan-Meier lung cancer survival estimates ŜE(85), L̂RE(85) =

1− ŜE(85) and LEAR as L̂RE(85) minus the baseline S0(85) for different windows of total cumulative
exposures in WLM with corresponding 95% uncertainty interval in correspondence to Suppl. Figure 3.
For reference, the corresponding cohort size is shown, with the fraction of individuals deceased before
age 85 in brackets.
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C Risk model parameter uncertainty

This supplementary analysis on risk model parameter uncertainty presents the ANA approach for the
simple linear risk model and extends the Bayesian approach for the parametric 1960+ sub-cohort model
by incorporating a wider range of prior information combinations. Further, the Bayesian approach is
applied to the simple linear risk model using gamma-distributed and log-normally distributed priors
for β.

C.1 ANA approach for the simple linear 1960+ sub-cohort risk model - analytical
solution

For the simple linear risk model,
ERR(t; β̂) = β̂W (t), (24)

which is derived from the Wismut 1960+ sub-cohort, the ANA approach employs:

β̂ ∼ N
(
β̂0, σ̂

2
0

)
(25)

with β̂0 = 0.0134 and σ̂0 = 0.003005 as reported in [23]. Sampling from this distribution (25) is not
necessary, as it holds

LEAR ≈
∑

t≥0

r0(t)ERR(t; β̂)S̃(t) = β̂
∑

t≥0

r0(t)W (t)S̃(t) =: β̂ · C, (26)

with C =
∑

t≥0 r0(t)W (t)e−
∑t−1

u=0 q0(u). Hence approximately, LEAR ∼ N
(
β̂0 · C, σ̂2

0 · C2
)

with con-
fidence bands at level α,

β̂0 · C ± z1−α/2 · σ̂0 · C, (27)

where z1−α/2 is the standard-normal quantile at level 1 − α/2. It holds C = 4.27 for ICRP reference
mortality rates r

(ICRP )
0 (t), q

(ICRP )
0 (t) for all ages t and an exposure scenario of 2 WLM from age 18-

64 years. For this simple linear model, (27) yields the estimate 5.71 with 95% uncertainty interval
(α = 0.05), [3.18; 8.22] for LEAR in %, as stated in the main manuscript.

C.2 Bayesian approach for the simple linear 1960+ sub-cohort risk model

Here, we investigate risk model parameter uncertainty and its influence on LEAR estimates within
the Bayesian framework for the simple linear risk model (24). The general methodology and notation
are analogous to the main manuscript. To assess the influence of prior choices on the inference of β,
we explore choosing a log-normal distribution as a prior in contrast to the gamma distribution in the
main manuscript. To test this framework, again the "prior" information is the β estimate from [25]
with β̂CZ+F = 0.016. The corresponding "prior" LEAR in % estimate calculated with β̂CZ+F is 6.83.
We assume for the prior distribution P (β) of the risk model parameter β,

β ∼ LN
(
log
(
β̂CZ+F

)
+ σ2, σ2

)
(28)

such that again Mod(β) = elog(β̂CZ+F )+σ2−σ2
= β̂CZ+F to match the mode with the prior information.

The variance is controlled via σ. Compared to a gamma distribution, this distribution is characterized
by heavier right tails.

To be comparable with the assumed certainty with the gamma-distributed prior in the main manuscript,
we assume an equal coefficient of variation between gamma- and log-normally distributed priors by pre-
scribing σ =

√
log
(
1 + 1

a

)
. This allows for comparison with the gamma prior while maintaining similar

variation (Suppl. Table 5). The values (2, 5, 10, 20, 50) for a translate to (0.64, 0.43, 0.31, 0.22, 0.14)
for σ. Log-normal priors lead to slightly narrower highest posterior density intervals (HPDIs) and a
tendency toward larger values compared to gamma priors. This difference diminishes with increasing
prior certainty (smaller σ).
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Prior information β̂ = Mod(P (β|X))× 100 LEAR in %

ML estimate with Wald-type CI 1.34 [0.71; 1.97] 5.72 [3.03; 8.41] (0.94)
Uniform prior 1.34 [0.79; 2.08] 5.72 [3.37; 8.90] (0.96)

Log-normal-distributed prior

σ = 0.64 1.37 [0.85; 2.07] 5.85 [3.62; 8.81] (0.89)
σ = 0.43 1.40 [0.90; 2.05] 5.97 [3.85; 8.75] (0.82)
σ = 0.31 1.43 [0.97; 2.03] 6.11 [4.16; 8.66] (0.74)
σ = 0.22 1.47 [1.06; 1.99] 6.29 [4.54; 8.50] (0.63)
σ = 0.14 1.53 [1.20; 1.92] 6.52 [5.13; 8.19] (0.47)

Supplementary Table 5: Mode β̂ of posterior distribution P (β|X) with LEAR calculated with the
model (24) and their corresponding 95% highest posterior density interval (HPDI) (relative uncer-
tainty span in brackets) for varying prior parameter settings. The log-normal-distributed prior P (β)
is centered at the corresponding parameter estimate from [25] for different values of prior standard
deviation parameters σ. Wald-type confidence intervals (CI) are also shown for comparison and are
calculated as β̂ ± 1.96 × 0.003005, where 0.003005 represents the parameter standard error as stated
in [23].

C.3 Bayesian approach for the parametric 1960+ sub-cohort risk model - addi-
tional details

Here, supplemental results are shown for the Bayesian approach to quantify uncertainties for the
parametric 1960+ sub-cohort risk model (5) from [23],

ERR(t;β, α, ε) = βW (t) exp {α (AME(t)− 30)) + ε (TME(t)− 20)} .

The approach is completely analogous to the main manuscript. However, a more detailed view of
results are shown with more choices for prior standard deviations σ. In particular, the derived risk
model parameter estimates with 95% HPDI are shown (Suppl. Table 6 and Figure4).

Supplementary Figure 4 shows scatterplots for risk model parameters samples for varying prior param-
eter choices. The marginal probability densities are on the sides. To read Suppl. Figure 4, the first row
shows the scattering of parameters for increasing certainty in the priors for β, α, ε. Varying gamma
shape parameter a affects the β prior and varying σ affects both the priors for α and ε. The second
row shows the effect of increased certainty in β without changing priors for α and ε. Analogously, the
third row visualizes the effect of increased certainty in α and ε without affecting β. Similar to the
simple linear risk model (24), we observe a concentration of samples for increased certainty in the prior
information which likewise affects uncertainty intervals. Further, increasing certainty in one parameter
barely affects the scattering for other parameters because the marginal prior distributions are mutually
independent.
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Prior information β̂ × 100 α̂× 100 ε̂× 100 LEAR in %

ML estimate with Wald-type CI 4.75 [1.60; 7.90] −3.07 [−8.16; 2.01] −7.63 [−11.80;−3.47] 6.74
Uniform prior 4.75 [2.13; 9.11] −3.07 [−9.36; 1.26] −7.63 [−12.89;−4.08] 6.74 [2.96; 11.09] (1.21)

Prior standard deviation σ = 0.1

a = 2 4.75 [2.37; 8.55] −3.25 [−9.05; 0.86] −7.70 [−12.57;−4.42] 6.59 [2.96; 10.57] (1.15)
a = 5 4.61 [2.40; 7.59] −3.17 [−8.83; 1.00] −7.57 [−12.05;−4.40] 6.52 [2.91; 10.26] (1.13)
a = 10 4.49 [2.66; 6.88] −3.08 [−8.66; 1.20] −7.45 [−11.59;−4.29] 6.46 [2.83; 10.14] (1.13)
a = 20 4.38 [2.93; 6.18] −3.01 [−8.58; 0.99] −7.35 [−11.41;−4.60] 6.40 [3.04; 10.07] (1.10)
a = 50 4.29 [3.25; 5.45] −2.95 [−8.57; 1.14] −7.25 [−11.23;−4.65] 6.35 [2.95; 9.91] (1.10)

Prior standard deviation σ = 0.05

a = 2 4.86 [2.41; 8.45] −3.78 [−8.89; 0.07] −7.96 [−12.16;−4.74] 6.32 [2.93; 10.19] (1.15)
a = 5 4.70 [2.55; 7.72] −3.71 [−8.92; 0.01] −7.82 [−11.79;−4.74] 6.22 [2.89; 9.89] (1.13)
a = 10 4.56 [2.79; 6.89] −3.64 [−8.67; 0.30] −7.70 [−11.51;−4.73] 6.12 [2.93; 9.66] (1.10)
a = 20 4.43 [2.92; 6.14] −3.58 [−8.60; 0.37] −7.58 [−11.32;−4.86] 6.04 [2.77; 9.23] (1.07)
a = 50 4.31 [3.28; 5.47] −3.52 [−8.50; 0.51] −7.48 [−10.96;−4.83] 5.96 [2.88; 9.20] (1.06)

Prior standard deviation σ = 0.02

a = 2 4.97 [2.55; 8.23] −5.17 [−8.37;−2.30] −8.36 [−11.26;−5.91] 5.56 [2.76; 8.98] (1.12)
a = 5 4.80 [2.72; 7.53] −5.16 [−8.41;−2.22] −8.27 [−11.11;−5.90] 5.41 [2.82; 8.45] (1.04)
a = 10 4.64 [2.81; 6.92] −5.15 [−8.31;−2.10] −8.17 [−10.86;−5.81] 5.27 [2.89; 8.15] (1.00)
a = 20 4.49 [3.08; 6.21] −5.16 [−8.27;−2.05] −8.10 [−10.67;−5.79] 5.13 [2.99; 7.58] (0.90)
a = 50 4.34 [3.30; 5.50] −5.16 [−8.39;−2.10] −8.01 [−10.60;−5.82] 4.99 [3.14; 7.26] (0.83)

Prior standard deviation σ = 0.01

a = 2 4.76 [2.67; 7.68] −6.02 [−7.91;−4.23] −8.24 [−10.08;−6.69] 5.00 [2.88; 8.13] (1.05)
a = 5 4.65 [2.76; 7.12] −6.03 [−7.88;−4.22] −8.21 [−10.06;−6.71] 4.90 [2.93; 7.53] (0.94)
a = 10 4.55 [2.90; 6.58] −6.04 [−7.83;−4.21] −8.17 [−9.85;−6.59] 4.79 [2.96; 7.03] (0.85)
a = 20 4.44 [3.05; 6.10] −6.05 [−7.88;−4.28] −8.14 [−9.77;−6.58] 4.68 [3.06; 6.63] (0.76)
a = 50 4.32 [3.32; 5.49] −6.06 [−7.83;−4.15] −8.11 [−9.78;−6.56] 4.57 [3.34; 6.17] (0.62)

Prior standard deviation σ = 0.005

a = 2 4.59 [2.79; 7.35] −6.40 [−7.36;−5.42] −8.07 [−9.03;−7.12] 4.73 [2.74; 7.44] (0.99)
a = 5 4.52 [2.70; 6.76] −6.39 [−7.36;−5.46] −8.07 [−9.05;−7.19] 4.66 [2.85; 7.06] (0.90)
a = 10 4.45 [3.01; 6.41] −6.39 [−7.34;−5.44] −8.06 [−8.98;−7.17] 4.59 [3.07; 6.57] (0.76)
a = 20 4.38 [3.11; 5.99] −6.40 [−7.35;−5.45] −8.05 [−8.95;−7.11] 4.52 [3.17; 6.27] (0.69)
a = 50 4.30 [3.30; 5.39] −6.40 [−7.39;−5.50] −8.04 [−8.94;−7.12] 4.43 [3.34; 5.66] (0.52)

Supplementary Table 6: Components β̂, α̂, ε̂ of the mode vector Θ̂ = Mod(P (Θ|X)) of the posterior
distribution P (Θ|X) with LEAR evaluated at mode Θ̂ and the corresponding 95% highest posterior
density interval (HPDI) (relative uncertainty span in brackets) for different values of prior gamma
shape parameters a and prior standard deviation σ. The LEAR in % with risk model parameter
estimates derived from the Joint Czech+French cohort is 4.30. The Wald-type confidence intervals
(CI) are calculated as θ̂ ± 1.96 × σ̂θ, where σ̂θ represents the parameter standard error from [23] for
θ = β, α, ε, respectively.
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Supplementary Figure 4: Scatterplots of 100, 000 parameter samples (β, α), (β, ε) and (α, ε) from
posterior distribution P (Θ|X) using Bayesian inference methods with marginal probability density
on the sides in correspondence to Table 6. The model parameters Θ = (β, α, ε) (model (5) are
estimated assuming prior distributions P (Θ) = P (β)P (α)P (ε) for gamma-distributed β and normally
distributed α, ε. The plots show the effect of increased certainty in all parameters β, α, ε (first row),
only β (second row), and α, ε (last row). The intersection of horizontal and vertical lines indicates the
optimal parameter values in the prior distribution (black) and the likelihood function (light grey).
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D Mortality rate uncertainty

In this section, only mortality rates are assumed to be uncertain, analogously to the main manuscript
(see uncertainty assessment in the Methods section). In particular, risk model parameters are fixed
and do not influence uncertainty intervals.

D.1 Preliminaries

This section investigates the effect of all-cause mortality rate uncertainty and the impact of centering
mortality rate distributions derived from sex-averaged WHO data around the ICRP reference value.
Both effects will be found to be negligible for upcoming analyses.

D.1.1 Influence of all-cause mortality rates

Here, we compare the uncertainties in all-cause mortality rates q0(t) and lung cancer mortality rates
r0(t) and their effect on the LEAR across various risk models.

As explained in the main manuscript, we assume a gamma distribution on both mortality rates for all
ages t as in (10) and (11),

r0(t) ∼ G
(
a
(r0)
t , b

(r0)
t

)
,

q0(t) ∼ G
(
a
(q0)
t , b

(q0)
t

)
,

with age-dependent shape parameters a
(r0)
t , a

(q0)
t and rate parameter b

(r0)
t , b

(q0)
t . The main manuscript

outlines the model fitting on WHO data with resulting parameter estimates shown in Suppl. Table 7
and the corresponding derivation of LEAR uncertainty intervals.

The analysis reveals that all-cause mortality rates q0(t) impose considerably less uncertainty on the
LEAR than lung cancer rates r0(t) for all risk models (Suppl. Figure 5). The empirical distribution of
sampled LEAR estimates for gamma-distributed q0(t) is considerably narrower compared to the empir-
ical distribution for gamma-distributed r0(t), which is also reflected in the 95% uncertainty intervals.
The reference LEAR estimate is on the far right of the calculated uncertainty interval accounting for
q0(t) uncertainty and even outside the interval for the BEIR VI 1960+ sub-cohort risk model. This
is possible because reference estimates (ICRP 103) are calculated with ICRP reference mortality rates
independent of WHO data. The combined effect of r0(t) with q0(t) is very similar to the effect when
only r0(t) is considered. The relative uncertainty span is very similar across all considered risk models
with roughly 0.45 for r0(t) uncertainties and joint uncertainties r0(t), q0(t), and roughly 0.10 for only
uncertain q0(t).

D.1.2 Centered gamma distributed mortality rates

The derivation of gamma distribution parameters estimates in (10) and (11) from WHO data is inde-
pendent of ICRP reference rates r

(ICRP )
0 (t) and q

(ICRP )
0 (t). In particular, the mean of the resulting

gamma distributions does not match the ICRP reference rates. To address this, we investigated a
centered gamma distribution with the expectation equal to the ICRP rate by setting

b̂
(r0)
t =

â
(r0)
t

r
(ICRP )
0 (t)

and

b̂
(q0)
t =

â
(q0)
t

q
(ICRP )
0 (t)
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Supplementary Figure 5: Histogram of 100, 000 resulting LEAR estimates with kernel density (solid
lines) for different risk models (plot title) and varying uncertainty in mortality rates (grayscale, different
histograms per plot). Lung cancer mortality rates r0(t) (Effect of r0) and all-cause mortality rates q0(t)
(Effect of q0) are assumed to follow gamma distributions with parameters as in Suppl. Table 7. The
joint effect (Effect of r0 and q0) results from independent sampling from both corresponding probability
distributions. 95% uncertainty intervals are presented in the legend.
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Lung cancer mortality All-cause mortality

Age t â
(r0)
t b̂

(r0)
t

â
(r0)
t

b̂
(r0)
t

× 105 r
(ICRP )
0 (t)× 105 â

(q0)
t b̂

(q0)
t

â
(q0)
t

b̂
(q0)
t

× 105 q
(ICRP )
0 (t)× 105

20− 24 0.97 244, 677.63 0.40 0.14 2.33 3, 952.30 58.95 51.48
25− 29 1.30 219, 930.33 0.59 0.32 2.26 3, 255.88 69.41 58.12
30− 34 2.56 248, 034.10 1.03 0.98 2.30 2, 568.26 89.55 76.26
35− 39 2.34 100, 097.58 2.34 2.64 2.38 1, 867.51 127.44 104.91
40− 44 2.03 30, 061.06 6.75 6.99 2.56 1, 278.99 200.16 160.86
45− 49 1.79 10, 422.60 17.17 14.86 2.80 878.12 318.86 238.39
50− 54 1.83 4, 940.48 37.04 29.98 2.99 592.00 505.07 363.15
55− 59 1.66 2, 448.62 67.79 56.76 3.29 424.11 775.74 589.27
60− 64 1.74 1, 595.66 109.05 107.21 3.60 302.02 1, 191.97 1, 044.14
65− 69 1.69 1, 078.86 156.65 174.41 4.13 222.12 1, 859.36 1, 717.99
70− 74 1.70 830.72 204.64 240.85 5.05 170.36 2, 964.31 2, 855.71
75− 79 1.69 690.09 244.90 284.17 5.88 121.95 4, 821.65 4, 618.33
80− 84 1.70 627.56 270.89 304.90 9.65 117.77 8, 193.94 7, 807.24
85− 89 1.47 594.61 247.22 274.92 6.85 48.92 14, 002.45 11, 369.96
90− 94 1.68 714.17 235.24 233.50 29.31 127.69 22, 954.03 20, 897.22

Supplementary Table 7: Estimates â
(r0)
t , â

(q0)
t and b̂

(r0)
t , b̂

(q0)
t with corresponding fraction (mean of the

distribution) for shape and rate parameter in the gamma distribution G
(
a
(r0)
t , b

(r0)
t

)
and G

(
a
(q0)
t , b

(q0)
t

)

based on observed lung cancer or all-cause mortality in the WHO data, respectively for different age
groups with the corresponding ICRP mortality rates r

(ICRP )
0 (t), q(ICRP )

0 (t).

for all ages t.2 Preliminary analyses revealed that this adjustment yielded only minor differences and
a negligible impact on lifetime risk estimates. For example, this can be inferred by comparing similar

results for the values r
(ICRP )
0 (t), â

(r0)
t

b̂
(r0)
t

and q
(ICRP )
0 (t), â

(q0)
t

b̂
(q0)
t

for the important groups of older ages in

Suppl. Table 7. Hence, we retained the un-centered gamma distributions for Monte Carlo simulations
in the main paper to avoid constraining parameter estimation. The same applies to the log-normal
distribution used in Section D.3. Note that this holds for sex-averaged mortality rates. For sex-specific
mortality rates (Section E.1), larger discrepancies justify explicitly analyzing centered mortality rate
uncertainties. Although centering may affect lifetime risk estimates, the relative uncertainty span is
not notably affected.

D.2 Poisson distributed lung cancer deaths

We present an alternative, but similar approach, to assess mortality rate uncertainty on lifetime risks
connecting ICRP reference mortality rates (Euro-American-Asian mixed population) with WHO mor-
tality data (Countries from Europe, America, and Asia from the calendar years 2001, 2006, 2011, 2016,
and 2021). Ultimately, this approach aims at a Bayesian assessment of mortality rate uncertainty:

Non-parametric Poisson regression on WHO lung cancer mortality data yields age-specific rates r0(t)
for all ages t (Suppl. Table 8). Only observations with a positive number of cases and a positive number
of individuals at risk were included. Focusing on lung cancer mortality (heavily influencing LEARs),
this approach is analogous to less influential all-cause mortality rates q0(t). Each data point (country,
sex, and calendar year) comprises deceased and alive individuals (mid-year population), interpreted as
cases and person-years for Poisson regression. Correlations between years and countries are neglected,
assuming independence between observations for simplicity.3

2The expectation of a generic gamma distribution G (at, bt) is at/bt.
3This is no major issue because the upcoming analyses reveal that also uncorrelated WHO data from a specific country

and year yield narrow LEAR uncertainty intervals.
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D.2.1 Likelihood

We employ Poisson regression assuming the number of lung cancer deaths Di for a certain age group
(compare e.g. Suppl. Table 7) follows a Poisson distribution with Di ∼ Poi(λi) = Poi(Nie

θ) for
WHO population data X = {Ni, di | i = 1, . . . ,M}. Here, θ is the unknown parameter, Ni are known
person-years at risk, and di are observed lung cancer cases for M observations. Each observation i is
uniquely defined by a specific country, sex, and calendar year.

Note that θ does not depend on the observations i. So, regardless of the country and year under
consideration, the expected number of deaths depends only on the number of people in that group.
Therefore, country- and calendar year-specific characteristics are only accounted for through the ran-
dom fluctuation of the Poisson distribution. This approach is applied for every age group separately.
Here we suppress the age dependency for simplicity, but later we write for the relevant parameter
θt = θ. The probability of di deaths with Ni person-years at risk is:

P (Di = di|X, θ) =

(
Nie

θ
)di

di!
e−Nie

θ
. (29)

The likelihood function L(X|θ) is then

L(X|θ) =
M∏

i=1

(
Nie

θ
)di

di!
e−Nie

θ
(30)

with log-likelihood ℓ (X|θ),

ℓ(X|θ) =
M∑

i=1

di (log (Ni) + θ)−Nie
θ − log (di!) ∝

M∑

i=1

di (log (Ni) + θ)−Nie
θ. (31)

The simple structure yields the maximum likelihood estimate for θ:

θ̂ = log

∑M
i=1 di∑M
i=1Ni

. (32)

This simplifies to eθ̂ = d
N with d =

∑M
i=1 di and N =

∑M
i=1Ni (estimates in Suppl. Table 8).

Notably, eθ̂ can be interpreted as a population-weighted average of single mortality rates di
Ni

with
weights wi =

Ni
N and N =

∑M
i=1Ni due to the Poisson likelihood. The weights wi correspond to the

relative size of each population at risk Ni compared to the total population N . Each di
Ni

is equivalent
to the maximum likelihood estimate for the probability of a single binomial experiment with known
population Ni and observed successes di. Larger populations contribute more to the parameter esti-
mation. This is a key difference to the other approach, utilizing a Gamma or Log-normal distribution,
where observed mortality rates are all equally weighted for parameter estimation. In the above Poisson
Regression, each observation is represented by the tupel (Ni, di), whereas in the applied Gamma (or
Log-normal) regression, it is defined by the ratio di/Ni. In the latter approach, the specific information
regarding the individual counts di,Ni is not accounted for.

The most suitable approach will depend on the assumptions made about the variance of the obser-
vations. If larger populations are assumed to lead to more precise estimates, the Poisson approach
may be preferable. Alternatively, if all observations are considered equal, gamma regression could be
a more appropriate choice.

D.2.2 Bayesian posterior

After setting up the Likelihood structure, we add the prior information for the Bayesian inference: A
normal prior N (µt, σ

2
t ) is assumed for θ = θt with µt = log(r

(ICRP )
0 (t)) incorporating ICRP reference
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Age Observations N × 10−6 d d
N × 106

Europe, America and Asia; 2001, 2006, 2011, 2016 and 2021

20− 24 118 195.89 326 1.66
25− 29 210 265.12 777 2.93
30− 34 259 285.62 2, 073 7.26
35− 39 313 300.78 6, 261 20.82
40− 44 352 302.67 18, 933 62.55
45− 49 378 293.17 46, 568 158.84
50− 54 380 274.87 93, 770 341.14
55− 59 383 245.26 155, 584 634.37
60− 64 384 213.69 220, 337 1, 031.10
65− 69 384 184.51 278, 720 1, 510.60
70− 74 386 154.22 313, 580 2, 033.39
75− 79 388 126.34 312, 099 2, 470.33
80− 84 372 86.59 238, 244 2, 751.36
85− 89 365 61.16 134, 348 2, 196.53
90− 94 167 8.99 21, 826 2, 428.93

Europe, America and Asia; 2016

20− 24 36 56.38 125 2.22
25− 29 60 72.29 261 3.61
30− 34 73 75.88 545 7.18
35− 39 88 77.21 1, 274 16.50
40− 44 100 76.85 3, 141 40.87
45− 49 107 76.36 7, 391 96.80
50− 54 108 71.80 16, 868 234.92
55− 59 109 64.94 32, 291 497.29
60− 64 109 56.95 50, 737 890.96
65− 69 109 51.64 68, 089 1, 318.62
70− 74 110 37.99 67, 823 1, 785.49
75− 79 111 32.71 68, 777 2, 102.52
80− 84 103 22.83 57, 269 2, 508.08
85− 89 104 15.10 37, 619 2, 491.16
90− 94 62 4.06 10, 072 2, 481.31

Germany; 2016

20− 24 2 4.58 3 0.65
25− 29 2 5.38 8 1.49
30− 34 2 5.19 26 5.01
35− 39 2 5.01 60 11.99
40− 44 2 4.91 208 42.40
45− 49 2 6.39 755 118.12
50− 54 2 6.97 2, 143 307.48
55− 59 2 6.13 4, 037 658.47
60− 64 2 5.24 5, 833 1, 112.81
65− 69 2 4.45 6, 832 1, 536.11
70− 74 2 3.81 7, 223 1, 894.77
75− 79 2 4.31 8, 535 1, 980.40
80− 84 2 2.61 5, 564 2, 132.05
85− 89 2 1.49 3, 415 2, 288.84
90− 94 2 0.60 995 1, 659.25

Supplementary Table 8: Sex-averaged lung cancer mortality rate estimates eθ̂ = d
N for all age groups

derived from WHO data with total observed deaths d > 0 and individuals at risk N > 0.
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lung cancer rates. Varying σ2
t controls the prior influence (visualized in Suppl. Figure 6 for ages 55-59

and different subsets of the WHO data). The likelihood dominates and differences between WHO rates
and ICRP rates are minor, resulting in near-normal posteriors with minimal uncertainty (confirmed
by Kolmogorov-Smirnov tests).

For the calculation of corresponding LEARs, the simple linear risk model ERR(t; β̂) = β̂W (t) with
β̂ = 0.0134 is used. While decreasing the WHO data influence increases the impact of the prior distri-
bution, the effect on LEAR uncertainty remains negligible (Suppl. Table 9) with relative uncertainty
spans of order 10−3. Increasing prior certainty narrows uncertainty intervals and shifts the mode to-
wards the LEAR calculated with ICRP rates (Suppl. Figure 7). The dominance of WHO data raises
questions about the overall benefit of this approach.

In conclusion, the integration of a population-weighted Poisson approach with the comprehensive WHO
dataset results in mortality rate estimates with little uncertainty. Likewise, employing a Bayesian ap-
proach with arbitrary prior encoding beliefs from other sources (i.e. ICRP reference rates) offers
minimal new insights. The extensive dataset provided by the WHO considerably diminishes the in-
fluence of prior assumptions on the analytical outcomes. Only when using unrealistically low prior
variances or substantially reducing the WHO data does any impact of the prior become noticeable.
However, the scientific value of such an approach for understanding mortality rate uncertainties is
limited. Instead, it is evident that the combination of the WHO database and the population-weighted
Poisson method yields low uncertainties, and the WHO rates align well with ICRP reference rates.

Prior LEAR in % (95% HPDI)

σt Full Full 2016 Germany 2016

Uniform prior 5.1218 [5.1182; 5.1254] 4.5565 [4.5500; 4.5629] 4.6553 [4.6351; 4.6743]
0.050 5.1226 [5.1190; 5.1261] 4.5647 [4.5581; 4.5710] 4.7274 [4.7083; 4.7463]
0.010 5.1402 [5.1369; 5.1437] 4.7126 [4.7068; 4.7186] 5.2523 [5.2392; 5.2654]
0.005 5.1900 [5.1869; 5.1932] 4.9800 [4.9748; 4.9849] 5.5342 [5.5258; 5.5425]
0.002 5.3885 [5.3860; 5.3909] 5.4482 [5.4450; 5.4514] 5.6856 [5.6818; 5.6893]

Supplementary Table 9: LEAR evaluated at the mode of the posterior distribution with 95% highest
posterior density interval (HPDI) (relative uncertainty spans of order 10−3) for the simple linear risk
model ERR(t;β) = βW (t) with β = 0.0134. The prior is modelled as log r0(t) ∼ N

(
µt, σ

2
t

)
and

µt = log
(
r
(ICRP )
0 (t)

)
. The LEAR in % with ICRP reference rates is 5.7222. "Full" corresponds to

WHO data from countries in Europe, America, and Asia from the calendar years 2001, 2006, 2011,
2016, and 2021.

D.3 Log-normal distributed mortality rates

Here, we compare utilizing a log-normal distribution for fitting sex-averaged mortality rates from WHO
data, instead of a gamma distribution as in the main manuscript. Specifically, we model the mortality
rates for all ages t as follows:

r0(t) ∼ LN
(
µ
(r0)
t ,

(
σ
(r0)
t

)2)
, (33)

q0(t) ∼ LN
(
µ
(q0)
t ,

(
σ
(q0)
t

)2)
. (34)

with age-dependent log-mean parameter µ
(r0)
t , µ

(q0)
t and log-standard deviation parameter σ

(r0)
t , σ

(q0)
t .

The parameters are fit on data from the WHO Mortality Database [20] with maximum-likelihood (ML)
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Supplementary Figure 6: Distribution of θt for 55 ≤ t ≤ 59 for varying prior standard deviation σt.
The first plot shows results using WHO data from all countries in Europe, America, and Asia with
available data from 2001, 2006, 2011, 2016, and 2021. The second plot is reduced to data from 2016
and the last plot only employs German rates from 2016. The vertical solid black (light gray) line
represents the prior (likelihood) mode.
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Supplementary Figure 7: Posterior distribution of LEAR in % for uncertain lung cancer mortality
rates and varying prior standard deviation σt (Bayesian framework). The first plot shows results using
WHO data from all countries in Europe, America, and Asia with available data from 2001, 2006, 2011,
2016, and 2021. The second plot is reduced to data from 2016 and the last plot only employs German
rates from 2016.
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methods, just as for the gamma distribution in the main manuscript.

Both gamma and log-normal distributions fit the WHO data comparably well (Suppl. Figures 8 and
9). Resulting 95% uncertainty intervals are similar (Suppl. Table 10), with log-normal distributions
yielding slightly wider intervals (Suppl. Figure 10). This is because log-normal distributions inherit
heavier tails (direct comparison in Suppl. Figure 11). The lower bounds are very similar but the upper
bounds are larger for log-normal mortality rates. All-cause mortality rates have minimal impact on
LEAR uncertainty, regardless of the chosen distribution, especially compared to lung cancer rates.

Acknowledging the impact of the chosen distribution on uncertainty intervals highlights the need for
cautious interpretation. Sampling results and the data source (here: WHO mortality database) influ-
ence the intervals. Therefore, the overall tendency of interval span provides more valuable information
than precise interval bounds. The computed intervals offer a quantitative sense of how mortality rate
variability can influence lifetime risk estimates.

Supplementary Figure 8: Histogram of lung cancer mortality rates for the ages 20−24, 40−44, 60−64
and 80− 84 derived from WHO data. For comparison, the reference lung cancer mortality rates from
the ICRP Euro-American-Asian mixed population are shown with a vertical dashed line. The dashed
(dotted) curve shows the density for a gamma (log-normal) distribution fitted to the histogram data.
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Supplementary Figure 9: Histogram of all-cause mortality rates for the ages 20− 24, 40− 44, 60− 64
and 80 − 84 derived from WHO data. For comparison, the reference all-cause mortality rates from
the ICRP Euro-American-Asian mixed population are shown with a vertical dashed line. The dashed
(dotted) curve shows the density for a gamma (log-normal) distribution fitted to the histogram data.

Risk model LEAR in % Distribution Effect of r0 Effect of q0 Effect of r0 and q0

Parametric full cohort 3.43
Gamma [2.57; 4.17] (0.47) [3.17; 3.44] (0.08) [2.47; 4.04] (0.46)
Log-normal [2.53; 4.85] (0.68) [3.16; 3.46] (0.09) [2.44; 4.70] (0.66)

BEIR VI full cohort 2.95
Gamma [2.18; 3.47] (0.44) [2.64; 2.97] (0.11) [2.06; 3.33] (0.43)
Log-normal [2.14; 4.02] (0.64) [2.63; 2.98] (0.12) [2.04; 3.86] (0.62)

Parametric 1960+ sub-cohort 6.70
Gamma [4.96; 8.11] (0.47) [6.16; 6.72] (0.08) [4.76; 7.85] (0.46)
Log-normal [4.88; 9.45] (0.68) [6.15; 6.74] (0.09) [4.69; 9.15] (0.67)

BEIR VI 1960+ sub-cohort 5.74
Gamma [4.29; 7.36] (0.53) [5.36; 5.73] (0.06) [4.14; 7.14] (0.52)
Log-normal [4.20; 8.58] (0.76) [5.35; 5.75] (0.07) [4.06; 8.36] (0.75)

Simple linear 1960+ sub-cohort 5.72
Gamma [4.02; 6.66] (0.46) [5.05; 5.79] (0.13) [3.76; 6.36] (0.45)
Log-normal [3.94; 7.81] (0.68) [5.02; 5.81] (0.14) [3.70; 7.47] (0.66)

Supplementary Table 10: Reference LEAR estimates in % with 95% uncertainty interval (relative
uncertainty span in brackets) derived from 100, 000 sampled values for different risk models and dis-
tributional assumptions on the mortality rates r0(t), q0(t) for all ages t derived from WHO data.

48



Supplementary Figure 10: Histogram of the 100, 000 sampled LEAR estimates with kernel density
estimate (solid lines) for different risk models and varying uncertainty in mortality rates by grayscale.
Lung cancer mortality rates r0(t) and all-cause mortality rates q0(t) are assumed to follow a log-
normal distribution with parameter estimates derived from WHO data. The joint effect results from
independent sampling from both corresponding probability distributions. The 95% uncertainty interval
is presented in the legend.
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Supplementary Figure 11: Comparison of densities based on the distribution of 100, 000 sampled LEAR
estimates for the parametric full cohort risk model and varying uncertainty in mortality rates derived
from WHO data by grayscale. The solid (dashed) lines show the distribution for gamma (log-normally)
distributed baseline mortality rates (lung cancer r0(t), all-cause q0(t) or both). The joint effect results
from independent sampling from both corresponding probability distributions. The 95% uncertainty
intervals are presented in the legend. The dashed vertical line indicates the reference LEAR in %
estimate.
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E Sex-specific uncertainty

This section examines sex-specific LEAR uncertainties by quantifying female- and male-specific mor-
tality rate uncertainties and their impact on LEAR estimates. Further, risk model parameter uncer-
tainties are quantified with the Bayesian approach for sex-specific ICRP reference mortality rates.

E.1 Mortality rate uncertainty

Sex-specific uncertainty in mortality rates r0(t), q0(t) and its impact on LEAR are examined by de-
riving gamma distributions fit to sex-specific mortality rates from WHO data. Risk model parameters
are fixed and not uncertain here.

Sex-specific mortality rates from the WHO data (Suppl. Figures 12 and 13) show higher mortality
for males across all ages compared to females. Both gamma and log-normal distributions fit the data
comparably well. We decided to use the gamma distribution for sex-specific mortality rate uncertainty
in LEAR estimates (Suppl. Figure 14) to be comparable to the main paper approach.

The heavy differences in mortality rates result in almost non-overlapping histograms between female-
and male-specific LEAR estimates. WHO data reveals lower female all-cause and lung cancer mortal-
ity rates compared to ICRP reference rates, resulting in LEAR estimates skewed leftward for females
(Suppl. Figure 14). This left-skewing is even more pronounced for male all-cause mortality, though
male lung cancer rates align with the male ICRP reference rates.

In contrast to the sex-averaged case, here large discrepancies between sample histogram means and
ICRP rates motivate analysis of centered4 mortality rates (Suppl. Figure 15). However, centering
minimally affects relative uncertainty spans. In particular, low all-cause rate variation results in a
negligible variation of LEAR estimates. Notably, male-specific uncertainty remains slightly larger
than female-specific uncertainty. The relative uncertainty span is similar for lung cancer rates between
sexes, but about twice as large for male all-cause rates. Overall, the combined effect of both mortality
rate uncertainties remains comparable between females and males.

This analysis showed that male-specific ICRP reference rates align better with observed male rates
from WHO data compared to corresponding female rates. The derived uncertainty intervals suggest
statistically significant differences in sex-specific LEAR estimates. However, the overall relative uncer-
tainty spans of LEAR (incorporating lung cancer and all-cause mortality rates) remains comparable
for both sexes. Notably, female-specific estimates have limited interpretability due to risk transfer
issues since our risk models from [23] are derived entirely from male miners cohort data.

4The centering is carried out by setting the mean of the gamma-distributed mortality rate equal to the corresponding
ICRP reference rate (compare Suppl. Section D.1.2).
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Supplementary Figure 12: Histogram of male and female lung cancer mortality rates for the ages
20 − 24, 40 − 44, 60 − 64 and 80 − 84 derived from WHO data. Every histogram is equipped with a
corresponding kernel density estimate. For comparison, the male and female lung cancer mortality
rates from the ICRP Euro-American-Asian mixed population are shown with a dashed vertical line.
The dashed (dotted) curve shows the density for a gamma (log-normal) distribution fitted to the
histogram data.
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Supplementary Figure 13: Histogram of male and female all-cause mortality rates for the ages
20 − 24, 40 − 44, 60 − 64 and 80 − 84 derived from WHO data. Every histogram is equipped with
a corresponding kernel density estimate. For comparison, the male and female all-cause mortality
rates from the ICRP Euro-American-Asian mixed population are shown with a dashed vertical line.
The dashed (dotted) curve shows the density for a gamma (log-normal) distribution fitted to the his-
togram data.
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Supplementary Figure 14: Histogram of the 100, 000 sampled LEAR estimates with kernel density
estimate (solid lines) for four risk models and varying uncertainty in sex-specific mortality rates by
grayscale. Lung cancer mortality rates r0(t) and all-cause mortality rates q0(t) are assumed to follow
a gamma distribution with parameter estimates derived from the histograms from Suppl. Figure 12
and Suppl. Figure 13, respectively. The joint effect results from independent sampling from both
corresponding probability distributions. The 95% uncertainty interval is presented in the legend.

54



Supplementary Figure 15: Histogram of the 100, 000 sampled LEAR estimates with kernel density
estimate (solid lines) for four risk models and varying uncertainty in sex-specific mortality rates by
grayscale. Lung cancer mortality rates r0(t) and all-cause mortality rates q0(t) are assumed to follow
a gamma distribution with parameter estimates derived from the histograms from Suppl. Figure 12
and Suppl. Figure 13 centered such that the mean is equal to the corresponding ICRP reference rate,
respectively. The joint effect results from independent sampling from both corresponding probability
distributions. The 95% uncertainty interval is presented in the legend.
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E.2 Risk model parameter uncertainty for sex-specific ICRP reference mortality
rates

ICRP reference mortality rates are sex-averaged (mean of male and female specific rates). We calculate
male- and female-specific LEAR estimates using the sex-specific mortality rates (Suppl. Figure 16).
Notably, male reference lung cancer rates are notably higher at older ages (important for LEAR). We
explore how these differences in mortality rates impact LEAR using the Bayesian approach for the
simple linear 1960+ sub-cohort risk model and the parametric 1960+ sub-cohort model, but without
introducing randomness on mortality rates themselves. Note that we do not apply the ANA approach
here because as other results here have shown, it yields results very similar to those of the Bayesian
approach with a uniform prior.

Supplementary Figure 16: Deaths and lung cancer deaths per 100,000 persons by age (i.e. q0(t) ×
105, r0(t) × 105 for all t) in the ICRP reference population [2] and specifically for males and females
only.

E.2.1 Simple linear 1960+ sub-cohort risk model

For the simple linear risk model structure ERR(t;β) = βW (t), sampling is not necessary to assess
differences in sex-specific risk model parameter uncertainties. It holds as in equation (26),

LEAR ≈
∑

t≥0

r0(t)ERR(t;β)S̃(t) = β
∑

t≥0

r0(t)W (t)e−
∑t−1

u=0 q0(u) = β · C, (35)

with C =
∑

t≥0 r0(t)W (t)e−
∑t−1

u=0 q0(u). ICRP reference sex-mixed mortality rates and an exposure of
2 WLM from 18 to 64 years yields C = 4.27. Sex-specific mortality rates give different values for C
with CM = 5.49 and CF = 2.67 for the male- and female-specific ICRP mortality rates, respectively.
Results for LEAR with the linear risk model are translated to a male or female ICRP reference
population by multiplying the results with CM/C = 1.29 or CF /C = 0.62 for males or females,
respectively. Hence, male-specific lifetime risk estimates are roughly twice as high as female-specific
lifetime risk estimates due to higher male baseline mortality rates. This directly translates to sex-
specific uncertainty intervals incorporating uncertain risk model parameters. However, by definition,
the span of uncertainty intervals relative to the reference estimate (ICRP 103) remains identical between
female- and male-specific LEAR uncertainty intervals. Note that this result does not depend on the
specific parameter estimate β̂.

E.2.2 Parametric 1960+ sub-cohort risk model

For the parametric 1960+ sub-cohort risk model Markov Chain Monte Carlo (MCMC) methods are
applied to obtain N = 100, 000 samples from the posterior distribution P (Θ|X) analogously to the
main paper approach. The overall higher baseline mortality for men directly shows in the LEAR
estimates and corresponding 95% HPDIs (Suppl. Table 11, Suppl. Figure 17). At very high prior
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certainty (a = 50, σ = 0.005) the 95% HPDIs do not intersect, indicating a statistically significant
difference between female- and male-specific LEAR estimates. However, it depends on subjective
reasoning on the prior information. Further, as seen for the simple linear risk model, the relative
uncertainty span is very similar between female- and male-specific LEAR uncertainty intervals.

Prior information Male LEAR in % Female LEAR in %

Uniform prior 8.78 [3.79; 14.40] (1.21) 4.34 [1.92; 7.09] (1.19)
a = 20, σ = 0.02 6.67 [3.89; 9.87] (0.90) 3.33 [1.99; 4.91] (0.88)
a = 50, σ = 0.005 5.76 [4.41; 7.42] (0.52) 2.89 [2.19; 3.69] (0.52)

Supplementary Table 11: Sex-specific LEAR estimate with 95% highest posterior density interval
(HPDI) (relative uncertainty span in brackets) for underlying Bayesian random risk model parameters
Θ = (β, α, ε) with posterior distribution P (Θ|X) for different values of prior gamma shape parameters
a and standard deviation σ. The male and female LEAR in % with the risk model derived from the
Joint Czech+French cohort (prior information) is 5.59 and 2.81, respectively.

Supplementary Figure 17: Distributions of LEAR estimates using ICRP reference male and female
mortality rates, respectively calculated from 100, 000 risk model parameter estimates drawn from the
posterior distribution. The risk model parameter prior P (Θ) = P (β)P (α)P (ε) is varied for different
combinations of gamma-distributed β and normally distributed α, ε for different shape parameters a
and standard deviations σ.

Overall, our analysis revealed that LEAR estimates differ roughly by a factor of two between female-
and male-specific mortality rates. However, the relative uncertainty span remained comparable across
sexes. Acknowledging that current lifetime risk calculations in the literature employ sex-mixed reference
mortality rates, shows that mortality rate uncertainty should not be underestimated. Although there
was no clear difference in sex-specific (relative) uncertainty, supporting the assessment of sex-mixed
mortality rate uncertainties, the inherent uncertainty associated with risk transfer uncertainty between
excess relative risk terms and female-specific mortality rates remains.
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F Radon exposure uncertainty

Although lifetime risks like LEAR related to radon exposure are often used with a fixed exposure sce-
nario (e.g. for dose conversion purposes 2 WLM from age 18-64 years), we briefly explore how exposure
uncertainty may affect lifetime risk estimates. This exploration aims to provide a more comprehensive
assessment of how variability in calculation components impacts lifetime risk variability. A typical
situation with exposure uncertainty arises for compensation claims, where an individual lifetime risk
is estimated based on given exposure data. However, for compensation claims for radiation-induced
cancer, the specialized software "ProZES" [50] is recommended and typically applied in Germany.

Inspired by results from [62] that errors in the Japanese atomic bomb dosimetry are approximately
log-normally distributed, we assume a log-normally distributed yearly exposure in WLM to explore its
impact on lifetime risk estimates for different lifetime risk measures and different risk models. Note
that also normal distributions are viable options [13, 63]. However, this is rather an explorative ap-
proach and results are interpreted with care.

The reference case is the exposure scenario of 2 WLM from age 18-64 years. Let w(t) be the exposure
in WLM at age t and W (t) =

∑t
u=0w(u) be the corresponding cumulative exposure in WLM at age

t. We assume for every age t,

w(t) ∼ LN
(
log(2)− σ2

2
, σ2

)
(36)

to guarantee that the mean of the distribution is at 2 WLM. The standard deviation σ governs the
uncertainty and 95% uncertainty intervals are obtained as the span of observed estimates via simula-
tions by calculating 10,000 estimates and discarding the 500 (2.5%) highest and lowest values (Suppl.
Table 12). For each lifetime risk estimate, w(t) is sampled from the log-normal distribution (36) for
all ages 18 ≤ t ≤ 64.

Risk model ELR in % REID in % LEAR in % RADS in %

Exposure variability σ = 1

Parametric full cohort 3.24 [2.24; 4.78] (0.78) 3.37 [2.33; 4.97] (0.78) 3.43 [2.36; 5.11] (0.80) 4.65 [3.21; 6.88] (0.79)
Parametric 1960+ sub-cohort 6.21 [4.08; 9.94] (0.94) 6.45 [4.24; 10.32] (0.94) 6.70 [4.34; 10.98] (0.99) 8.94 [5.82; 14.39] (0.96)
BEIR VI full cohort 2.80 [1.95; 4.06] (0.75) 2.89 [2.02; 4.20] (0.75) 2.95 [2.04; 4.31] (0.77) 4.85 [3.39; 7.02] (0.75)
BEIR VI 1960+ sub-cohort 5.34 [3.70; 7.70] (0.75) 5.56 [3.86; 8.03] (0.75) 5.74 [3.94; 8.40] (0.78) 7.11 [4.95; 10.24] (0.74)
Simple linear 1960+ sub-cohort 5.35 [3.75; 7.74] (0.75) 5.52 [3.87; 7.98] (0.74) 5.72 [3.97; 8.43] (0.78) 9.98 [7.04; 14.33] (0.73)

Exposure variability σ = 0.5

Parametric full cohort [2.77; 3.78] (0.31) [2.88; 3.93] (0.31) [2.92; 4.02] (0.32) [3.98; 5.43] (0.31)
Parametric 1960+ sub-cohort [5.17; 7.45] (0.37) [5.38; 7.74] (0.37) [5.54; 8.10] (0.38) [7.42; 10.77] (0.37)
BEIR VI full cohort [2.41; 3.24] (0.30) [2.49; 3.35] (0.30) [2.53; 3.42] (0.30) [4.18; 5.62] (0.30)
BEIR VI 1960+ sub-cohort [4.58; 6.20] (0.30) [4.77; 6.46] (0.30) [4.90; 6.69] (0.31) [6.12; 8.24] (0.30)
Simple linear 1960+ sub-cohort [4.61; 6.18] (0.29) [4.75; 6.37] (0.29) [4.91; 6.65] (0.30) [8.63; 11.49] (0.29)

Exposure variability σ = 0.1

Parametric full cohort [3.15; 3.34] (0.06) [3.27; 3.47] (0.06) [3.33; 3.54] (0.06) [4.52; 4.79] (0.06)
Parametric 1960+ sub-cohort [6.00; 6.43] (0.07) [6.23; 6.68] (0.07) [6.46; 6.94] (0.07) [8.63; 9.26] (0.07)
BEIR VI full cohort [2.72; 2.88] (0.06) [2.81; 2.97] (0.06) [2.86; 3.03] (0.06) [4.72; 4.99] (0.06)
BEIR VI 1960+ sub-cohort [5.19; 5.49] (0.06) [5.41; 5.72] (0.06) [5.57; 5.91] (0.06) [6.92; 7.32] (0.06)
Simple linear 1960+ sub-cohort [5.21; 5.50] (0.05) [5.37; 5.67] (0.05) [5.56; 5.89] (0.06) [9.72; 10.25] (0.05)

Supplementary Table 12: Lifetime risk estimates with 95% uncertainty intervals (relative uncertainty
span in brackets) derived from 10, 000 sampled estimates for log-normally distributed yearly exposure
in WLM (assumption (36)), with corresponding reference estimates for different risk models, lifetime
measures, and exposure variability σ. Reference estimates are only stated for σ = 1 as they do not
change with varying σ.

Similar to previous findings, differences between lifetime risk measures are minimal with only RADS
being considerably larger. Relative uncertainty interval spans are comparable across all lifetime
risk measures and risk models, except for the parametric 1960+ sub-cohort model (wider intervals).
Exposure-affected effect-modifying variables do not impose additional uncertainty (compare simple
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linear model to others, Suppl. Figure 18b). As expected, smaller σ leads to narrower and more sym-
metrical intervals due to less influence from right-skewed random exposure. This effect is stronger, the
larger σ. For small σ, the probability mass of log-normal random variables is very centered with less
heavy tails. The span of lifetime risk uncertainty intervals decreases proportionally with decreasing σ.

Lower exposure uncertainty (smaller σ) leads all lifetime risk measures (e.g., LEAR, Suppl. Figure 18a)
to resemble a normal distribution, regardless of the chosen risk model. This is because the assumed
log-normal distribution approximates normality for smaller σ, which translates to the lifetime risk
measures. After all, sums of independent normally distributed random variables are again normally
distributed. Notably, this applies even to complex risk models with non-linear exposure-risk relations.

Note that the observed magnitude of uncertainty does not translate to the LEAR per WLM, defined
as the LEAR divided by total cumulative exposure accrued over the entire exposure scenario in WLM.
The quantity LEAR per WLM is hardly affected by varying radon exposure [5]. In conclusion, account-

(a) LEAR densities for the simple linear risk model
ERR(t;β) = βW (t) with β = 0.0134 and different σ
values. A normal distribution fitted on the 10, 000
LEAR samples is shown for comparison (dashed
lines).

(b) LEAR densities for different risk models and fixed
log-normal standard deviation σ = 1.

Supplementary Figure 18: Density of LEAR estimates based on the distribution of 10, 000 sampled
values with random annual exposure in WLM from age 18-64 years (assumption (36)) for varying σ
and different risk models.

ing for uncertainties in annual radon exposure (on a simple scale) results in an approximately normally
distributed lifetime risk, regardless of the chosen lifetime risk measure or risk model. However, this
approach requires knowledge or assumptions on exposure errors directly influencing uncertainty inter-
vals. While this analysis can be extended to more complex exposure scenarios, it is beyond the scope
here as exposure uncertainty assessment is not a core focus for lifetime risk calculations. Nevertheless,
accurate exposure assessment and uncertainty quantification remain crucial for uranium miners cohorts
and risk model derivation [38,39].
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