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ABSTRACT \

Abstract

Supervised deep learning models have successfully enabled the automation of processes
and the discovery of valuable insights within large datasets, exceeding the capabilities
of humans in analyzing and managing the constantly growing volumes of data. How-
ever, the effectiveness of these models largely depends on the availability of sufficient
high-quality annotated training data. While collecting unlabeled data is often possible
with comparably low effort, labeling it is laborious, time-consuming, and costly. In many
domains, such as medical or industrial applications, providing accurate annotations re-
quires specialized expertise, which is both scarce and expensive. It is, therefore, essential
to reduce the necessity for manual labeling wherever possible.

In this thesis, we address the challenge of insufficient and costly annotations. In par-
ticular, we contribute to the field of deep active learning. Unlike traditional approaches
that passively rely on pre-labeled data, active learning employs an iterative process alter-
nating between training and labeling. By utilizing the model to decide which instances
are most useful for its learning process, the performance is enhanced with a smaller
amount of labeled data. Semi-supervised learning is a related field dealing with limited
labeled data, which aims to improve models by leveraging both labeled and unlabeled
data. Our contributions include new methods and insights into active learning as well as
its combination with semi-supervised learning to exploit the strength of both.

Modern deep active learning strategies typically combine model uncertainty with
sample diversity to avoid labeling data with redundant information. However, ensuring
diversity by calculating distances in learned representations is computationally expen-
sive, particularly for complex, high-dimensional neural networks. Our first contributions
address this limitation. We propose using the prediction probabilities to simultaneously
select diverse and uncertain instances, substantially accelerating query selection and re-
turning a qualitative query set. Our method proves effective for both tabular and image
classification, being superior to competitors in label and time efficiency.

Our next contribution focuses on active learning for node classification. The edges in
a graph provide valuable insights into both the importance of individual nodes and the
overall graph structure. Hence, it is essential to consider them when actively selecting
the most useful instances for labeling. In our work, we introduce a novel active learning
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method for node classification that leverages diffusion-based graph heuristics in multiple
ways for graph learning as well as actively querying nodes for labeling. In contrast to
existing methods, our approach demonstrates robust performance across diverse datasets
and consistently surpasses random sampling. Moreover, due to pre-computations, it is
faster than competitors.

Finally, we turn our attention to the task of image classification with a particular fo-
cus on the combination of techniques from semi-supervised learning and active learning.
Our first contribution in this domain proposes a novel active pseudo-labeling approach.
We show that false pseudo-labels often occur during the initial iterations where label
information is particularly sparse, resulting in long-term negative effects due to confir-
mation bias. To mitigate this, we propose a solution to refine the pseudo-labels produced
by a model based on their consistency with predictions of a second model, considerably
improving prediction accuracy. In our last contribution, we analyze the effects of confir-
mation bias in semi-supervised learning when faced with datasets comprising challenging
characteristics as they appear frequently in real-world data. In particular, we consider a
high imbalance within and between classes as well as a high similarity between classes.
We demonstrate the limitations of semi-supervised methods in overcoming confirmation
bias when the data is randomly and passively labeled. By choosing better data samples
through active learning, we discuss how confirmation bias can be mitigated, showcasing
the potential of combining semi-supervised learning and active learning in the presence
of common real-world data challenges.
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Zusammenfassung

Supervised Deep Learning Modelle haben erfolgreich die Automatisierung von Prozessen
und die Entdeckung wertvoller Erkenntnisse in grof3en Datensdtzen ermoglicht. Sie
tibertreffen damit die Fahigkeiten des Menschen bei der Analyse und Verwaltung der
stindig wachsenden Datenmengen. Die Effektivitit dieser Modelle hangt jedoch weit-
gehend von der Verfiigbarkeit einer ausreichenden Anzahl qualitativ hochwertiger an-
notierter Trainingsdaten ab. Wahrend die Erhebung von nicht gelabelten Daten oft mit
vergleichsweise geringem Aufwand moglich ist, ist das Labeling miihsam, zeitaufwandig
und kostspielig. In vielen Bereichen, wie beispielsweise in medizinischen oder indus-
triellen Applikationen, erfordert die Bereitstellung praziser Annotationen spezielles Fach-
wissen, welches sowohl knapp als auch teuer ist. Daher ist es wichtig, die Notwendigkeit
der manuellen Annotationen so weit wie moglich zu reduzieren.

In dieser Arbeit befassen wir uns mit dem Problem von unzureichenden und kost-
spieligen Annotationen. Insbesondere leisten wir einen Beitrag zum Bereich des Deep
Active Learning. Im Gegensatz zu traditionellen Ansétzen, die sich passiv auf zuvor gela-
belte Daten verlassen, wird beim Active Learning ein iterativer Prozess eingesetzt, bei
dem sich Training und Labeling abwechseln. Indem das Modell entscheidet, welche In-
stanzen fiir seinen Lernprozess am niitzlichsten sind, wird die Leistung mit einer gerin-
geren Menge an annotierten Daten verbessert. Semi-supervised Learning ist ein ver-
wandtes Gebiet, das sich ebenfalls mit wenig annotatierten Daten befasst und darauf
abzielt, Modelle zu optimieren, indem sowohl gelabelte als auch ungelabelte Daten
genutzt werden. Unsere Beitrdge umfassen neue Methoden und Einblicke in Active
Learning sowie dessen Kombination mit Semi-supervised Learning, um die Starken bei-
der Verfahren zu nutzen.

Moderne Strategien fiir Deep Active Learning kombinieren in der Regel Modellun-
sicherheit mit Diversitit, um die Annotation von Daten mit redundanten Informationen
zu vermeiden. Die Sicherstellung der Diversitat durch die Berechnung von Distanzen
in gelernten Reprasentationen ist jedoch rechenintensiv, insbesondere bei komplexen,
hochdimensionalen neuronalen Netzen. Unsere ersten Beitrdge befassen sich mit dieser
Einschrankung. Wir schlagen vor, die Vorhersagewahrscheinlichkeiten eines neuronalen
Netzes zu verwenden, um gleichzeitig vielfaltige und unsichere Instanzen auszuwdahlen,
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was die Abfrageauswahl erheblich beschleunigt und eine qualitative Abfragemenge
liefert. Unsere Methode erweist sich sowohl fiir die Klassifizierung von tabellarischen
Daten als auch von Bildern als effektiv und ist in Bezug auf Labeling- und Zeiteffizienz
der Konkurrenz iiberlegen.

Unser nachster Beitrag konzentriert sich auf Active Learning fiir die Klassifizierung
von Knoten in einem Graphen. Die Kanten eines Graphen bieten wertvolle Einblicke
sowohl in die Bedeutung einzelner Knoten als auch in die Gesamtstruktur des Graphen.
Daher ist es wichtig, sie bei der aktiven Auswahl der niitzlichsten Instanzen fiir das
Labeling zu beriicksichtigen. In unserer Arbeit stellen wir eine neuartige Active Learn-
ing Methode fiir Knotenklassifizierung vor, die diffusionsbasierte Graphenheuristiken auf
vielfaltige Weise fiir das Training und die aktive Abfrage von Knoten nutzt. Im Gegensatz
zu existierenden Methoden zeigt unser Ansatz eine robuste Leistung iiber verschiedene
Datensatze hinweg und tbertrifft durchweg eine zufillige Auswahl. Auf3erdem ist er
aufgrund von Vorberechnungen schneller als bisherige Verfahren.

SchlieRlich wenden wir uns der Aufgabe der Bildklassifizierung zu, wobei wir uns
besonders auf die Kombination von Techniken des Semi-supervised Learning und des Ac-
tive Learning konzentrieren. Unser erster Beitrag in diesem Bereich schligt eine neuar-
tige Kombination aus Active Learning und Pseudo-Labeling vor. Wir zeigen, dass falsche
Pseudo-Labels oft wahrend der ersten Iterationen auftreten, wenn die annotierten Daten
besonders spérlich sind, was zu langfristigen negativen Effekten aufgrund des soge-
nannten Confirmation Bias fiihrt. Um dies zu entschirfen, schlagen wir eine Losung
vor, bei der die Pseudo-Labels auf der Grundlage ihrer Konsistenz mit den Vorhersagen
eines zweiten Netzwerks verfeinert werden, wodurch die Vorhersagegenauigkeit erhe-
blich verbessert wird. In unserem letzten Beitrag analysieren wir die Auswirkungen von
Confirmation Bias beim Semi-supervised Learning, wenn es mit Datensédtzen konfron-
tiert wird, die schwierige Merkmale enthalten, wie sie haufig in realen Daten vorkom-
men. Insbesondere betrachten wir ein hohes Ungleichgewicht innerhalb oder zwischen
den Klassen oder eine hohe Ahnlichkeit zwischen den Klassen. Wir zeigen die Grenzen
von Semi-supervised Learning bei der Uberwindung von Confirmation Bias, wenn die
Daten zuféllig und passiv annotiert sind. Durch die Auswahl besserer gelabelter Daten
durch Active Learning erortern wir, wie Confirmation Bias abgemildert werden kann, und
zeigen das Potenzial der Kombination von Semi-supervised Learning und Active Learning
in der Gegenwart von realistischen Datenherausforderungen auf.
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Chapter 1

Introduction

Over the past decades, artificial intelligence (AI) has attracted substantial attention and
has become a part of our daily lives. Particularly, the subfields of supervised machine
learning and deep learning have demonstrated a remarkable ability to learn from large
amounts of data to solve complex tasks, both in research and in various applications,
including healthcare [72], automotive [67], finance [45]], and agriculture [50]. How-
ever, their performance often depends on the availability of sufficient high-quality train-
ing data. This observation was also pointed out by Andrew Ng: “Data is the food of
AI” [83]]. Studies report that data collection, preparation, and cleansing can take up
to 80% of the activities when developing machine learning methods for real applica-
tions [83],104]. As a result, data-centric Al emerged as a whole branch of research. In
contrast to the model-centric approach of developing new model architectures and algo-
rithms, data-centric Al focuses on improving the data quality and quantity to enhance
model performance [57,[117].

A central part of the data collection pipeline is data labeling. Supervised models
learn from labeled training data consisting of input-output pairs to recognize patterns
and make predictions on new, unseen data. The outputs are known as labels or annota-
tions. To exploit the full potential of many deep learning methods, a sufficient amount
of such labeled training data is required. In today’s digital age, we experience rapid
growth of data generated by individuals and industries, and in many scenarios, col-
lecting unlabeled data is unproblematic and relatively inexpensive [23, [30]. However,
humans usually have to assign annotations manually. This poses a severe challenge for
developing and deploying deep learning since manual labeling is time-consuming and
expensive, especially if domain experts are required to provide accurate annotations. For
example, labeling medical images can only be done by qualified doctors, or the detec-
tion of defects in industrial machines requires the expertise of specialized engineers. The
associated labor and costs of manual labeling limit the applicability of deep learning in
real-world applications. Therefore, methods enabling the training of strong models with
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fewer labels, such as active learning and semi-supervised learning, are essential.

The idea of active learning is to label only the most valuable data instances in a large
unlabeled pool that bring the greatest benefit to the learning progress of a model. It
alternates between model training and annotating the most informative data instances
until a predefined budget or model performance is reached. Through this process, only
a small portion of the available data is labeled, effectively reducing annotation costs.
Over the past years, numerous different active learning strategies have been devel-
oped and successfully applied to various domains, such as computer vision [17, 48],
graph learning [12] 69} [77], natural language processing [5, [93, [121]], or audio pro-
cessing [70, |84, 85]]. Active learning research is largely concerned with designing new
query methods that decide which instances are worth labeling and which are not. Ac-
tive learning strategies can be divided into uncertainty-based, representativeness-based,
diversity-based, and hybrid methods [[61]. Uncertainty sampling assumes that instances
with high model uncertainty contain a particularly large amount of new information and
are, therefore, valuable for the model. Representativeness-based sampling is based on
the assumption that typical instances are valuable because they are similar to many other
unlabeled instances in the data. Diversity sampling focuses on minimizing redundancies
in the labeled data to approximate the overall distribution of the data. Most of the re-
search focuses on hybrid techniques combining several query types into one selection, as
these have been shown to yield more robust results for varying and unique characteristics
of datasets and tasks [1}, 16, 24, (80, [82].

Semi-supervised learning is a related machine learning paradigm that addresses the
challenge of high annotation costs. In addition to utilizing the limited labeled data,
semi-supervised learning seeks to automatically extract information from a large pool of
unlabeled data and integrate it into the training process to enhance model performance.
Common techniques involve pseudo-labeling, where the model produces artificial labels
for unlabeled data, or consistency regularization, where the model enforces slightly dif-
ferent versions of the same input to produce similar outputs [23]. Active learning and
semi-supervised learning propose different strategies to address a similar problem and
can naturally be combined. While active learning improves the quality of supervision by
extending the labeled pool with a few particularly valuable instances, semi-supervised
learning automatically derives knowledge from the large unlabeled pool to improve the
model performance.

The scope of this thesis and the included contributions lie within the above-described
areas of active and semi-supervised learning. In the following section, the research scope
of the contributions is introduced in more detail.
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1.1 Research Scope

The goal of a deep active learning method is to improve model performance with fewer
labels, also referred to as label efficiency. However, existing methods often neglect the
query time needed to determine the set of instances sent to the annotator. In partic-
ular, common diversity-based methods targeted at image classification often use high-
dimensional latent features to measure distances between all instances in the unlabeled
pool, which is computationally demanding [10, 56]]. However, large query times can
be prohibitive, for instance, when experts are only available for a limited time. To ad-
dress this problem, we present two contributions in this thesis. First, we investigate the
acceleration of established diversity-based methods by exchanging latent features with
prediction probabilities [37]]. Second, we propose a novel query method named FAL-
CUN [41] that combines uncertainty and diversity in the probability space and yields
time- and label-efficient results on various tabular and image classification tasks. The
contributions are explained in more detail in Section

Next, we consider active learning for node classification. In graph active learning,
it is common to utilize the graph structure to derive information on the usefulness of
nodes. To yield robust results on diverse datasets, an ongoing challenge is to combine
graph-specific selection criteria with other powerful query types, such as uncertainty and
diversity-based techniques. However, existing approaches for node classification often
rely on hyperparameters, treat the data sampling and training as separate steps, or nar-
row their focus to limited selection criteria. As a result, they often do not yield consistent
results across datasets. Moreover, utilizing multiple query types can negatively affect
the runtimes of active learning methods. To address these limitations, we present a
novel active learning method for node classification called DiffusAL [39] and present its
key contributions in Section DiffusAL utilizes diffusion-based heuristics for graph
learning and for querying valuable instances for annotation. Experiments on node clas-
sification benchmarks show that our approach is more label-efficient and, due to various
pre-computations, also more time-efficient than existing methods.

Finally, we turn our attention to the combination of active learning and semi-
supervised learning for image classification. A known challenge in semi-supervised learn-
ing is confirmation bias, where the model repeatedly enforces information it has learned
wrong, resulting in degraded model performance [3, [106]. The problem occurs when
the model makes unreliable predictions. This can also hinder the effective combination
with active learning since the initial labeling information is scarce [27]. In our contribu-
tion discussed in Section we address this challenge and propose a novel algorithm
called VERIPS that combines active learning with pseudo-labeling [38]]. VERIPS uses
a verification step to filter pseudo-labels based on a second network. This mechanism
discards many wrong pseudo-labels at the beginning of the active learning loop, thereby
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effectively mitigating confirmation bias.

Our final contribution [40], discussed in Section investigates the applicability
of active learning and semi-supervised learning when facing different kinds of challeng-
ing datasets. In our contribution, we identify three relevant challenges for combining
active and semi-supervised methods that are present in many real-world data sets. Ex-
isting research mainly overlooked these challenges since it focused on specific bench-
mark data that is distinctly different from data encountered in many real-world appli-
cations. More specifically, we identified the following challenges: between-class imbal-
ance (BCI), between-class similarity (BCS), and within-class imbalance (WCI). Then, we
demonstrate how semi-supervised learning methods fail on these challenges because of
confirmation bias when the labeled data is collected randomly. Moreover, we provide a
proof-of-concept showcasing how the usage of active learning instead of random sam-
pling can help to overcome confirmation bias.

1.2 Thesis Structure

The remainder of this dissertation is structured as follows: Chapter |2| introduces rele-
vant background knowledge. First, the fundamentals of machine learning are presented
in Section This includes an introduction to the notation, a brief discussion of the
tasks relevant to this thesis, some basics about deep neural networks, and an overview of
machine learning with limited labeled data. In Section we discuss semi-supervised
learning and relevant approaches. Section [2.3]introduces active learning, addresses con-
siderations relevant to deep active learning, and provides an overview of different query
types and related work. Section concludes the second chapter and discusses the
combination of active and semi-supervised learning. Chapter 3| first gives an overview
of the publications that are included in this thesis and subsequently explains their main
contributions in more detail in separate sections (Sections to[3.4). To conclude this
thesis, we give a brief summary of our contributions and indicate directions for future
research in Chapter |4 The original publications that are subject to this dissertation and
corresponding supplements are included in the appendix.



Chapter 2

Background

In this chapter, we provide an overview of the relevant background essential for un-
derstanding the main contributions and situating them within existing literature. We
begin by giving a short introduction to machine learning in Section In the remain-
ing sections, we discuss different subfields of limited labeled learning. First, we give
an overview of semi-supervised learning in Section Then, we shift our focus to ac-
tive learning in Section Finally, we briefly discuss the combination of active and
semi-supervised learning in Section

2.1 Fundamentals of Machine Learning

This section first introduces the notation used throughout the thesis and provides an
overview of the machine learning tasks addressed. Then, we present the basics of deep
neural networks, which are primarily used to solve the targeted problems. Finally, we
define the problem of machine learning with limited labeled data. In this broad field, we
specifically focus on the two areas of active and semi-supervised learning.

2.1.1 Notation and Tasks

Machine learning tasks can be categorized by the amount of available label information
or the data input types. In a fully supervised learning setting, the entire available data
set consists of pairs (x,y) € X x ), where X is the input data space and ) is the output
data space. In other words, for each instance x, we also have access to a label y. This
contrasts with unsupervised learning, where no label information is given, and the goal
is to reveal patterns in the unlabeled data without supervision. However, in this thesis,
our focus lies on tasks formulated as supervised problems. One of the most common
supervised tasks is classification. In this task, the label y can take one of C discrete
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(a) Image classification. (b) Tabular classification. (c) Node classification.

Figure 2.1: Multi-class classification tasks considered in the thesis. Exemplarily, we show a 3-
class classification problem where the colors blue, orange, and green represent different
classes. The goal is to learn from the given examples and give accurate predictions for
the data marked by question marks. In image and tabular classification, the colored,
labeled data is utilized for training, and the test data is unseen. In node classification,
the whole graph comprising labeled and unlabeled nodes is utilized in training to pre-
dict labels of the nodes marked by a question mark.

values with Y = {1,2,...,C}. If C = 2, this would be called a binary classification
problem. In this thesis, we focus on multi-class classification problems with C' > 2. The
goal in classification tasks is to learn a function, also referred to as classification model
f : X — Y from the available set of observed training pairs that can accurately predict
the label y for a given input x. Formally, this can be expressed as: § = f(x, f). We use 0 to
denote the classification model’s parameters, learned from the data using an appropriate
optimization algorithm. Classification tasks can be categorized based on which data is
classified. In this thesis, we consider three tasks, namely image classification, tabular
classification, and node classification.

Image classification In image classification, the inputs are images. Each image x is
represented as a tensor of pixel values. For a colored image, this tensor is of the form
x € RE>*WxC 'where H is the height of the image, W is the width, and C is the number
of color channels (usually 3 for RGB images). There are various application areas, such
as the classification of X-rays [47] or CT [107] scans for disease diagnosis in a medical
context or traffic sign recognition [71]] as an aid for autonomous driving. We consider
image classification tasks in an inductive setting, where the model is trained on a labeled
dataset and then used to predict labels for new, unseen images. An illustration with
examples of DermaMNIST, which consists of dermatoscopic images categorizing different
diseases [113]], is shown in|2.1a

Tabular classification In tabular classification, the input features are structured in a
tabular format. Each row in the table represents a sample x, and columns correspond to
different features x = (z!,22,...,2M), where M is the number of features. This task is
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common in many domains, such as finance, healthcare, or marketing, where data is often
stored in relational databases [99]. Features can be numerical, categorical, or a mix of
both. When considering tabular data, it might be necessary to pre-process features into a
format that can be used by the learning model, such as transforming categorical features
into numerical values. Similar to image classification, we consider tabular classification
in an inductive setting, where the model is trained on known data and then applied to
new samples during inference (See[2.1).

Node classification Node classification is one of the core tasks within the context of
graph data. In this task, the dataset is represented as a graph G = (V, E), where V
is the set of nodes and F denotes the set of edges connecting these nodes with £ C
V x V. Additionally, we assume that each node v € V is associated with attributes
represented as an M -dimensional feature vector x € RM, The objective is to predict
the nodes’ labels based on their features and the graph structure. This task is studied in
various areas where relations between nodes are crucial, such as social network analysis
or molecular biology [[7]. Node classification is often conducted in a transductive setting,
i.e., the model is trained and tested on the same graph, leveraging both labeled and
unlabeled nodes during training to improve performance (See[2.1d). During training, a
combination of supervised learning on labeled nodes and unsupervised learning using
the edges to unlabeled nodes is utilized, and therefore, this setting can be seen as a
special type of semi-supervised learning [15].

2.1.2 Deep Neural Networks

The classification models used in this dissertation are deep neural networks, so we briefly
derive some important basics in the following. For a more detailed introduction, we refer
the reader to the book of |Goodfellow et al. [42]. Deep neural networks form a special
group of machine learning models and are widely used to solve the above-described
classification tasks due to their capability of processing high-dimensional data and the
power of learning arbitrarily complex, non-linear functions.

The most essential architecture, often a building block for more complex network
architectures, is the Multi-Layer Perceptron (MLP) [42]]. An MLP is a parametric function
that maps a set of inputs to outputs by chaining many parametric functions. Each sub-
function is called a layer of the network, where the first layer is called the input layer,
the intermediate layers are called hidden layers, and the last layer is called the output
layer. Each layer consists of neurons, which are the most basic unit in an MLP, and each
neuron in a layer is connected to every neuron in the subsequent layer. One neuron takes
a vector x as input, multiplies it with a weight vector w, and adds a bias b. This results
in a scalar value 2’ = x - w + b. w and b are trainable parameters, meaning they will be
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optimized during the training process. To introduce non-linearity, an activation function
o is applied to the output z’. Popular choices are the sigmoid function given as - +el,z/
or ReLu given as max(z,0). The output of a neuron, which is then passed onto the next

neuron, is given as:

z=0(x-w+Db) 2.1

We can easily extend the output of a single neuron to a layer-wise expression. Given
an MLP comprising K layers, the output of the k-th layer in the network consisting of dj,
neurons is denoted as:

zH) = o(WWZE=D L pk)y, (2.2)

where z*~1 is the output vector of the previous layer (or the input vector x in case of

the input layer), W*) ¢ R%>*-1 is the weight matrix where the i-th row corresponds
to the weight vector w of the i-th neuron, b € R% is the bias vector of the k-th layer,
and the activation function ¢ is applied element-wise. The dimensionality of the output
layer corresponds to the number of classes C of the classification task, and the activation
function is usually the softmax function that transforms the outputs into a probability
distribution. We denote the predicted probabilities for an input x forwarded through the
network as /

ePi

S e
where p’ is the output of the output layer before applying the softmax function. The

final prediction 7 of the network is the class that received the highest predicted proba-
bility, i.e., § = f(x,6) = argmax p, where § = {W®H W W& b1 b H}
c

p = softmax(p’) = (2.3)

represents the model parameters.

The MLP is the simplest form of a neural network, and many other forms designed
for certain tasks or data types have been introduced. Many of them try to utilize certain
assumptions, also referred to as inductive bias, to better generalize to novel data and not
only memorize the observations on which they are trained. For instance, Convolutional
Neural Networks (CNNs) [59] are a specialized type of neural architecture particularly
suited for processing grid-like data, such as images. A typical CNN architecture includes
convolutional layers, pooling layers, and fully connected layers. The convolutional layer
assumes that local areas of pixels in images are highly correlated and applies a set of
learnable filters (or kernels) across the input matrix to produce feature maps. After the
convolutional layer, it usually follows a pooling layer, which reduces the dimensionality
of the feature map, emphasizing dominant features within specific regions. Other ar-
chitectures are recurrent neural networks [92], for modeling sequential data, or graph
neural networks (GNNs) [43] 9] [16]], which are suited for graph data. However, our con-
tributions are more concerned with a data-centric view rather than a model-centric one,



2.1 Fundamentals of Machine Learning 9

and therefore, giving a more detailed overview of different architectures is out of scope
for this thesis. We refer to [42] for an in-depth overview of deep learning and different
network architectures.

Training

Training a neural network usually involves forward propagation to compute predictions
and backpropagation to update model parameters based on the prediction error. The
forward step is passing an input x through the network f(x, #), which finally returns the
prediction p. Then, the prediction error between the model prediction p and the true
target y is calculated by using a suitable, differentiable loss function /(p,y). A common
choice for the loss function used in multi-class classification is the cross-entropy loss,
which is defined as:

c
lop(p,y) ==Y 1y = i) log(pi), (2.4)
i—1

where 1(y = ) is the indicator function which equals 1 if the true class label y is equal
to class ¢ and 0 otherwise. During the backward pass, the model adjusts its weights
and biases according to the errors made in the prediction. More precisely, the partial
derivatives (or gradients) of the loss function with respect to the model parameters ¢
comprising the weights and biases are calculated using the chain rule. Then, the param-
eters are updated by the negative gradient, thereby minimizing the loss function. This
process is then repeated until convergence or reaching a predefined number of training
iterations.

Learned Representations

Before the era of deep learning, most machine learning applications required manually
designed features. However, manual feature engineering for complex tasks requires spe-
cialized knowledge and is time-consuming and laborious [42]]. In contrast, a central
and important advancement of neural networks is that representations are automatically
learned in such a way that they represent the input space better for solving the spe-
cific task. The modular structure of neural networks allows us to extract intermediate
outputs, which we can interpret as new representations of the original input data [42].
These features capture higher-level representations of the input data, and they can be
useful on their own. This includes visualization, similarity calculations between objects,
and further analysis. For example, in a CNN for image classification, the activations of
the last convolutional layer often represent abstract features learned by the network,
such as textures or object parts. These learned representations are commonly used to
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Figure 2.2: Overview of the machine learning types covered in the thesis at the intersection of
supervised and unsupervised learning, illustrated in an example. We consider settings
of incomplete supervision where only a small subset of the available data is labeled:
Active learning and semi-supervised learning. They lie at the intersection of supervised
learning, where all data is labeled, and unsupervised learning, where no labels are
given. Active learning increases the labeled pool by annotating the most informative
instances. Besides labeled data, semi-supervised learning utilizes the unlabeled data
for training, e.g., by pseudo-labeling instances of high model confidence.

compare instances to make implications for enhanced training routines, e.g., consistency
regularization in semi-supervised learning or to derive information on which instances
are important to be labeled for active learning.

2.1.3 Machine Learning with Limited Labeled Data

One of the biggest limitations of fully supervised learning is that it requires access to a
completely labeled dataset. However, labeling the complete training data is challeng-
ing in practice. For instance, certain tasks may require special domain expertise, such
as finding potential diseases in medical images [17, [79]. Other annotation tasks are
time-intensive due to more complex labeling types, such as box-level or pixel-level an-
notations, in contrast to image-level annotations [62]]. Unlike images, other data types,
such as tabular data or nodes in a graph, are not as visually intuitive and, hence, may be
more difficult and time-consuming to annotate. Consequently, due to the high manual
effort and resulting costs, annotations should be reduced whenever possible. To mitigate
the necessity of vast amounts of manual annotations, weakly supervised learning aims to
"weaken” the dependence on supervision. Weakly supervised learning can be further cat-
egorized into incomplete, inaccurate, and inexact supervision [124]. Incomplete refers to
a setting where labels are only partially available, inaccurate indicates that labels might



2.2 Semi-Supervised Learning 11

be faulty, and inexact refers to the setting where the label is coarse-grained [88]]. In this
thesis, we focus on incomplete supervision. Here, the goal is to train an accurate ma-
chine learning model f with only a limited amount of labeled data. In such scenarios, we
distinguish between the labeled dataset £ of size [V, consisting of labeled data pairs (x, y)
and the unlabeled dataset &/ = X' \ L of size N, where only the data sample x is given
without any label. Note that the labeled pool is usually much smaller than the unlabeled
pool, i.e., N; < N,. The contributions presented in this thesis are mainly concerned
with active learning and partly with combinations with semi-supervised learning, both
paradigms within the broader field of limited labeled learning. In semi-supervised learn-
ing, a fixed number of labels is given in advance, and the aim is to utilize both labeled
and unlabeled data in conjunction to train a strong classifier'| In contrast, active learning
identifies the most beneficial instances and incrementally increases the number of labels
over multiple rounds. The primary goal of both active learning and semi-supervised
learning is to improve model performance with fewer labeled instances, i.e., to increase
label efficiency. An overview of the addressed machine learning types and an illustrative
example is shown in Figure[2.2] In the following sections, we will discuss semi-supervised
learning and active learning, as well as their combination, in more detail.

2.2 Semi-Supervised Learning

Semi-supervised learning (SSL) lies at the intersection of unsupervised and supervised
learning and leverages a small labeled pool together with a large unlabeled data pool to
train models [23]]. The goal is to reveal patterns within the unlabeled data to improve
model performance beyond plain supervision without extending manual annotation ef-
forts. A core aspect of most SSL techniques is that they build upon the following three
main assumptions [109]:

1. Smoothness assumption: Two instances xi, x, that are close within a region of high
density have similar labels y, 5.

2. Low-density assumption: The decision boundary of the classifier f(x, #) should pass
through low-density regions.

3. Manifold assumption: The high-dimensional input space consists of multiple lower-
dimensional manifolds and instances x;, x, that lie on the same manifold and have
similar labels ¥, y.

!Note that there is a wide field of semi-supervised tasks. For instance, in semi-supervised or constraint-
based clustering, the task is formulated from an unsupervised perspective, and supervised information
comes in the form of pairwise constraints. However, in this thesis, we focus on semi-supervised classifica-
tion, where the labels are instance-level class assignments.
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Figure 2.3: Illustration of pseudo labeling. A Train the classifier using the labeled pool L. (B
Pseudo-label unlabeled data where prediction exceeds threshold. (C) Update classifier
using labeled and pseudo-label data. Repeat pseudo-label selection and model-refitting
until convergence.

Existing SSL techniques utilize one or more of these assumptions to derive meaningful
insights from the unlabeled data to gradually update the model without requiring more
manual labels.

2.2.1 Methods

In this thesis, we focus on modern SSL approaches that are based on deep neural net-
works. In particular, we will explain pseudo-labeling, consistency regularization, and
hybrid methods, which have been studied extensively over the past few years, especially
in image classification, and are most relevant to our contributions. A thorough overview
of other SSL methods can be found in the comprehensive SSL surveys of [23] and [109].

Pseudo-Labeling

Pseudo-labeling (sometimes referred to as self-training) is one of the earliest SSL tech-
niques. Though the idea has been around for many decades [94, 28| 2] before the era
of deep learning, it is still frequently used and combined in recent approaches due to
its simplicity and effectiveness. In pseudo-labeling, the model uses its own predictions ¢
on the unlabeled data i/ as if they were real annotated targets. These so-called pseudo-
labels are then treated as ground truth and involved in further training of the model.
illustrates the general approach of pseudo-labeling. After fitting an initial model on the
labeled dataset £ (step &), the model is used to pseudo-label some of the unlabeled data,
for instance using a confidence threshold (step ®)). Then, the model is updated using the
labeled and pseudo-labeled data (step (). After re-fitting the model, new pseudo-labels
are generated, and the process is repeated until reaching a certain stopping criterion.
The general idea of pseudo-labeling has been translated to deep learning in the work



2.2 Semi-Supervised Learning 13

of [60]. Many variants and combinations to improve the pseudo-label selection and
assignment have been proposed since then. A common approach is to pseudo-label in-
stances x € U whose most likely prediction probability p(g;) = max(p) exceeds a prede-
fined threshold 7. Many approaches gradually increase the impact of the pseudo-labels
by adjusting the weighting of the pseudo-labeled loss [60, 13, [106]]. Other approaches to
select more reliable pseudo-labels involve utilizing more sophisticated uncertainty met-
rics [89] or class-specific, flexible thresholds [[119].

Consistency Regularization

Consistency regularization is based on the smoothness assumptions or the manifold as-
sumption [[114], i.e., slightly perturbed versions of the same input should yield consistent
predictions. Consistency regularization techniques enforce the network to model this re-
lation. This can be achieved by applying perturbations such as data augmentations or
noise to the input data and ensuring the model’s predictions remain stable by adding
a dedicated consistency loss to the final loss term. Concretely, given an unlabeled in-
stance x € U and a perturbed version of the instance X, the objective is to minimize
d(f(x), f(X)), where d(-, -) is a suitable distance function measuring the discrepancy be-
tween the two model outputs [76]. Popular choices are the mean squared error, the
Kullback-Leibler divergence, or the Jensen-Shannon divergence [78]].

The II-Model [58] exploits the fact that neural networks can produce different out-
puts for the same instance during training due to common regularization techniques such
as dropout or adding noise. There, an additional loss term weighted by a hyperparame-
ter is added. This additional loss calculates the mean squared error between the different
outputs for each instance in the unlabeled pool produced by the same model. However,
the different stochastic predictions of the II-Model may be unstable due to rapid changes
over the training course [76]. To stabilize predictions, the mean teacher [[106] approach
utilizes a student and a teacher model to obtain different outputs for the same input
and match the predictions for training. The student network is the primary network,
and the teacher model maintains an exponential moving average of the parameters from
previous training steps. Another popular and powerful technique to create different ver-
sions of the same input, especially in SSL for computer vision, is data augmentation.
Common data augmentations are scaling, rotation, random noise, or flipping. For ex-
ample, VAT [74] applies a perturbation to the original input instance to obtain different
predictions instead of relying on the stochasticity of the neural network and enforcing
consistency between them. MixUp [[120] proposes to generate new training samples by
linearly interpolating between pairs of inputs and their corresponding labels. However,
data augmentations may not be straightforwardly applicable to other data types, such
as text or tabular data, or special domain expertise might be required to maintain the
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meaning of the original data [89].

Hybrid

Hybrid methods combine different concepts into a single, holistic framework to improve
performance. MixMatch [14] guesses labels for each unlabeled instance by averaging
several predictions of their augmented versions and subsequent sharpening. Then it uses
MixUp [[120] to create augmented versions of the instances and their guessed labels, and
includes these mixed-up samples in a standard supervised training. ReMixMatch [13] is
an improvement of MixMatch. The advancement involves distribution alignment, pro-
moting the marginal distribution of predictions on unlabeled data to closely match the
marginal distribution of true labels, and augmentation anchoring, which ensures that
the model produces similar outputs for multiple strongly augmented versions of an in-
put instance as a weakly augmented version of it. One of the most popular methods of
the past years is FixMatch [102]. FixMatch obtains pseudo-labels for weakly augmented
images whose most likely prediction exceeds a threshold and assigns the pseudo-label to
strongly augmented versions of the same image using cross-entropy. Using a fixed user-
defined threshold for all classes can be suboptimal. Therefore, FlexMatch [[119] employs
a curriculum pseudo-labeling technique which flexibly adjusts class-specific thresholds as
an extension to FixMatch.

2.2.2 Confirmation Bias

Confirmation bias in SSL refers to the model’s tendency to reinforce its own incorrect
predictions during the learning process [3], [106]]. For instance, pseudo-labels are hypo-
thetical labels produced by the model and, therefore, may be wrong. This wrong infor-
mation is then propagated to subsequent training iterations and can lead to a downward
spiral. In severe cases, confirmation bias can even lead to SSL models being less effective
than plain supervised learning without using unlabeled data. The problem of confir-
mation bias specifically occurs in SSL since the training procedure builds upon certain
assumptions introduced at the beginning, and these assumptions can be broken. Rea-
sons for that involve a too small labeled pool, the lack of high-quality labeled samples,
or generally if the model is overconfident [3]]. Another challenge is the class distribution
mismatch when the labeled data does not contain all classes that are part of the unla-
beled data [76]. To avoid the inclusion of incorrect information, several strategies can
be employed, such as confidence thresholding [60, [102]], class-specific thresholds [119]],
ensuring pseudo-labels are consistent under different data augmentations and pertur-
bations [3]], or curriculum learning [20]. However, there is a trade-off between fully
exploiting the unlabeled data and cautiously avoiding the risk of reinforcing incorrect
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predictions through confirmation bias. Developing effective methods that automatically
adapt to diverse datasets with varying levels of complexity is difficult. Thus, it remains
an ongoing challenge to effectively mitigate confirmation bias without diminishing the
potential of leveraging unlabeled data.

2.3 Active Learning

Active learning (AL) addresses the issue of high annotation costs and limited labeled data
by intelligently allocating annotation efforts. A central assumption is that not all data is
equally important for training. Therefore, the learner can be improved more quickly if it
is allowed to choose the data it learns from [96]. Annotation efforts should be focused
on instances that contribute the most to model performance, while irrelevant samples
should be left unlabeled. Three typical active learning scenarios are considered in the
literature: pool-based active learning, stream-based active learning, and membership query
synthesis [[96]. In pool-based active learning, a large unlabeled pool is given in advance,
and the active learner queries instances by searching for the most useful ones in that
pool. In stream-based active learning, the instances continuously arrive at different time
stamps, and one must individually decide whether to label an instance or to discard it.
Membership query synthesis refers to the generation of synthetic instances to augment
the labeled pool rather than relying exclusively on instances that are already part of the
given data source.

In this thesis, we focus on pool-based active learning, the primary area of ongoing
research, and detail the general framework in the following subsection. Then, we will
highlight key differences between traditional AL and AL in a deep learning context. The
last part of this section categorizes different query types, i.e., the function of an active
learner that determines which data is labeled and gives an overview of related work.

2.3.1 Pool-based Active Learning

Figure depicts the general framework of pool-based active learning. Initially, two
distinct pools of data are available for use: an unlabeled pool, denoted as U/, and a
labeled pool, denoted as £. In an iterative process, the objective is to label a subset of
the unlabeled pool that best enhances the classifier’s generalization performance. The
first step is to train a classifier using £ (step A). Subsequently, the query strategy, which
comprises the logic of which instances are considered most beneficial, returns a set of @
query objects from the unlabeled pool by extracting valuable knowledge of the previously
trained classifier. The selected query objects are then forwarded to the oracle, which is
usually a human annotator (step B). The annotator subsequently provides a label for
each instance, and the objects are moved to the labeled pool (step C). This process is
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Figure 2.4: Overview of pool-based active learning. Three steps are repeated until a certain stop-
ping criterion is reached: Q) Train the classifier on the labeled pool L. (B) Use the
classifier to query instances from the unlabeled pool U and send them to the annotator.
(© Receive labels for queried instances and move them to the labeled pool L.

repeated until a predefined stopping criterion is met. In practice, this criterion is usually
either the exhaustion of a predefined labeling budget B or the achievement of a desired
model accuracy.

2.3.2 Deep Active Learning

Compared to traditional active learning methods, some aspects are specifically relevant
to active learning being applied in conjunction with deep neural networks. In the follow-
ing, we will explain the most important differences.

Dynamic features

In traditional AL, the features used to measure similarity between inputs are usually
fixed or pre-processed. They do not change throughout the course of AL selection. In
contrast, in deep AL, features are jointly learned with the classification model. Thus,
they dynamically change during the AL process [[87]. These learned representations are
more expressive and discriminative towards the downstream task than the original input
features [42]]. Consequently, they are preferred to calculate similarity for representative-
ness or diversity-based methods. However, this involves similarity calculations that are
not pre-computed. Instead, they are re-computed between AL selections, resulting in
increased computational costs [[61,[118].
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Pre-training and Continual Training

Many AL methods fail to outperform random sampling at the beginning of the AL process
where the labeling budget is really small. This effect is also referred to as the cold
start problem [108] |61]]. To avoid the cold start, pre-trained models trained on related
domains [32] or using self-supervised pre-training [22] can be used to improve AL in
early iterations [75] |61]]. Instead of re-training the deep learning model from scratch
between AL rounds, concepts of transfer learning can be used to fine-tune the model with
the novel instances [80,61]]. While this can effectively reduce training times between AL
selections, undesired effects can arise that make learning unstable. For instance, early
learned concepts can be forgotten over the course [25]. Therefore, continual training
must be considered cautiously.

Batch-Mode

Earlier works often assume the model is updated after selecting and labeling only one
single instance [108]]. The batch-mode setting refers to selecting multiple instances
in batches and sending them to the annotator in parallel. The batch-mode setting be-
came particularly popular in deep active learning since updating the model serially after
each annotated instance individually is computationally prohibitive for data-greedy and
training-intensive deep learning procedures [87, |6]. Moreover, sending batches of data
also allows the labeling process to be parallelized, enabling the simultaneous work of
multiple annotators [56]. Although batch acquisition has many benefits, it also intro-
duces new challenges. Since the model is not updated after every chosen instance, AL
methods need to make assumptions about how different combinations of chosen samples
might influence the importance of other query points. Otherwise, the chosen query set
might contain highly similar instances with repetitive information. For example, con-
sider two identical images that both result in the highest uncertainty scores. A strategy
based solely on uncertainty would select both for labeling, but doing so would waste
valuable annotation resources. Therefore, diversity-enhancing mechanisms to reduce re-
dundancy and information overlap within the query batch are important [[6]. We will de-
tail common diversity-based and hybrid techniques in Section and in Section
respectively.

2.3.3 Query Types

The main distinguishing characteristic between active learning strategies is their acqui-
sition functions, i.e., the function that determines which instances are worth consuming
the labeling budget and which are left unlabeled. In the literature, different categoriza-
tions of query types (or acquisition types) exist. In the following, we will discuss the
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most important concepts used throughout the literature, which are closely aligned with
the taxonomy used in [108] and [61]. Namely, we distinguish between uncertainty-
based, representativeness-based, diversity-based, and hybrid techniques. An illustrative
example for comparing the query types is shown in Figure

Uncertainty-based Sampling

The idea of uncertainty-based sampling is based on principles of information theory and
assumes that instances about which the model is most uncertain regarding its prediction
will provide the most novel information when added to the training data [96]]. The
naive approach computes an uncertainty score u given the model’s predicted probability
distribution p for each instance in the unlabeled pool. Then the most uncertain or the
top-k most uncertain instances are selected. Given the prediction probability p for an
instance x € U, typical uncertainty estimates are:

* Least confidence selects points with the smallest posterior probability for their most
likely label p(y;). Least confidence uncertainty is defined as: w;..(p) := 1 — p(v1) €
[5,1] [96].

* Margin (also known as breaking ties (BT) or best-vs-second-best (BvSB)) selects
points that have the smallest difference between the two most likely classes p(;)
and p(y2). Margin uncertainty is defined as: wu,,(p) := 1 — (p(¥1) — p(¢a)) €
[0, 1] [90]. Larger values indicate higher uncertainty of the model that its predicted
class p(y;) is correct.

* Entropy selects points that maximize Shannon entropy [[98]. Entropy uncertainty
is defined as: u.(p) := — 3., p(i) log(p(#:)) € [0,logC] [96]. The higher the
entropy, the more uncertain the model is about the prediction for a sample x.

These uncertainty-based techniques are easy to understand and implement. Due to their
effectiveness and simplicity, they are often combined with other query types and thus
play an important role in many state-of-the-art approaches [82, |49].

Query-by-committee (QBC) approaches measure uncertainty by combining predictions
from an ensemble of classifiers (the "committee”). A high disagreement among the pre-
dictions of an instance indicates a high uncertainty. QBC methods aim to reduce the
reliance on potentially unreliable predictions from a single network [97, 29, [11]]. Typi-
cal approaches include selecting instances with the largest mean standard deviation over
all classes [51], calculating the Kullback-Leibler divergence [118], or applying one of
the previously introduced uncertainty heuristics to the mean prediction of all commit-
tee members [11]. However, training multiple networks to form a committee greatly
increases computational costs.
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Figure 2.5: Illustration of different query types. Uncertainty sampling (left) favors instances close
to the decision boundary. (b) Representativeness sampling (middle) favors instances in
dense/central regions. (c) Diversity sampling (right) favors instances that are different
from each other or other labeled instances.

Bayesian methods use probabilistic modeling through Bayesian inference to model
uncertainty instead of using multiple classifiers. A prominent Bayesian method is
BALD [32], which uses dropout at inference to obtain a distribution over the model
weights (called Monte Carlo dropout [[31]) and selects samples that are expected to
maximize the information gained from the model parameters. BatchBALD [55] and
PowerBALD [56] are diversity-aware extensions of BALD to adapt it to batch mode se-
lection. However, since Monte Carlo dropout requires multiple forward passes of the
unlabeled pool and convergence of dense dropout layers, it does not scale well to large
learning problems and is drastically slower than simple uncertainty metrics [[116].

Representativeness-based/Density-based Sampling

Representativeness- or density-based methods target instances from highly populated
areas that are typical and representative of the underlying data distribution (see also
Figure [108]. The queried objects should reflect the main characteristics and pat-
terns within the data to better represent other unlabeled instances. By learning from
these representative examples, the model often generalizes better to unseen instances
from the same data distribution. In contrast to uncertainty-based methods, which might
select outliers or rare edge cases, the primary goal is to choose instances in central or
dense regions.

Choosing typical instances instead of uncertain ones can be particularly beneficial in
the low-budget regime where neural networks are not sufficiently trained and produce
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unreliable uncertainty scores [[44,[118]]. A crucial aspect of measuring representativeness
is having access to expressive features that accurately capture the underlying structure of
the data. The raw input features might not always be suitable for this purpose [22]. The
learned internal features are also not very expressive when the network is poorly trained
in low-budget situations. Some methods for image classification propose leveraging self-
supervised representation learning to generate more meaningful features, which can
then be utilized to select instances from dense regions of the feature space [22] 144, [115].
In the context of graph active learning, where input data is not i.i.d., it is common to
exploit the inherent graph topology to explore the relationship between instances [30].
For instance, the degree of a node or PageRank centrality can be used to focus on nodes
with higher connectivity [[19, [34]. Representativeness-based methods are often paired
with diversity-enhancing mechanisms to select a single instance from a certain dense or
central region as representative of many instances in their neighborhood.

Diversity-based Sampling

Diversity-based methods encourage annotating instances that are different from each
other to cover a broad and varied subset of the data instead of concentrating on small
regions [61]. A common way to ensure diversity is to consider the interaction between
points, as shown in the example in Figure Especially in batch mode selection, di-
versity is important to minimize the likelihood of choosing similar instances [6]. One
of the most important baselines here is the Coreset approach [95]], which continuously
selects the instance furthest away from already labeled instances in the latent feature
space until the query budget is exhausted as a greedy solution to constructing a core-
set (also known as k-center-greedy). The aim is that the labeled set yields maximum
coverage to form a good surrogate of the data distribution. The work inspired several
other diversity-aware approaches [1, 53] [115]]. Another approach is training an adver-
sarial network [[101}, 52] to discriminate between labeled and unlabeled data and query
instances more similar to unlabeled data to ensure diversity. However, these methods
are computationally very expensive due to the additional training costs [10]. To diver-
sify the query batch within each AL iteration, many methods perform k-means clustering
on learned representations. Then samples are drawn from each cluster to ensure de-
cent diversity between the candidates [80), [82, 123} 165] 19} (34} [22]. Since k-means does
not directly return a real instance, k-medoid can be used as an alternative [65) [111].
Another approach is to use the k-means++ initialization [4], which iteratively accounts
for the interaction of selected query candidates to ensure diversity. Such diversity-based
methods that explicitly consider the interaction of selected query objects are popular
but often have high computational complexity [[56]. To address the high computational
costs, stochastic approaches, such as [8],56]], have been introduced.
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Hybrid Approaches

Hybrid methods combine multiple of the above-described query types to form the query
batch [|61]. Each of the introduced query types has certain weaknesses when considered
in isolation. For instance, uncertainty sampling might result in a highly biased set dif-
fering from the actual data distribution, or in the low-label regime, uncertainty scores
may be unreliable [44]]. Representativeness sampling can be advantageous in ambiguous
datasets or low-label regimes. However, spending labels only on typical instances may
waste annotation efforts on easy-to-learn and less informative examples [118]. Diversity-
based selection might also sample insufficient informative instances, select many irrel-
evant outliers, or, in general, not consider task-specific aspects such as high imbalance
or that some classes are generally harder to learn and require more labeling informa-
tion. However, since it is hard to know which selection scheme works best for a new
dataset, many state-of-the-art AL strategies unify several query criteria for a more robust
selection [118]].

In the following, we will explain the most important approaches, which are mainly
evaluated on image classification, one of the most active areas of deep AL. Combining
uncertainty with clustering-based diversity is very popular [82, (123, [80, [24] [105] 24].
For instance, CLUE [82] is an established method that uses entropy uncertainty as sam-
ple weights for k-means clustering. Then it selects instances closest to the centroids
as queries for labeling. The sample weights ensure that the clusters are moved toward
uncertain regions, resulting in a diverse and uncertain query set. Another popular ap-
proach is Alfamix [80], which considers instances as candidates for selection if their
predictions for interpolated features are inconsistent. Similar to CLUE, Alfamix clusters
the candidate set and selects instances closest to the centroids as final query objects for
labeling. Other techniques first filter the most uncertain objects based on a hyperparam-
eter before selecting instances from each cluster as query objects [105] [123]]. However,
pre-filtering by a hyperparameter is problematic as performance is sensitive to its choice.
Moreover, these methods perform k-means clustering on the latent features, which is
computationally expensive for large unlabeled pools and high-dimensional latent fea-
tures. One of the most established approaches over the past years is BADGE [6], which
uses k-means++ initialization on the gradients of the last layer to query instances. The
idea is that the gradients of uncertain instances have larger magnitudes and are favored
by the k-means++ selection, thus selecting uncertain and diverse instances. However, as
the size of the gradient-based embeddings is proportional to the number of classes times
the dimensionality of the latent features, BADGE’s runtimes can be really high [10].

Determining which subset of data will provide the greatest benefit when labeled to
enhance the model’s performance is challenging, particularly because datasets can vary
significantly, and their unique characteristics might be unknown in advance in real-world
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scenarios [[61, (108, 68]]. Thus, many state-of-the-art active learning methods rely on the
combination of different query types to increase the robustness for varying settings and
transferability to new datasets [61), [118]].

2.4 Combining Active and Semi-Supervised Learning

Active learning and semi-supervised learning are naturally related, since they both ad-
dress the challenge of high annotation efforts by learning with limited labeled data. Both
concepts try to extract knowledge from unlabeled data to make informed decisions on
how to best improve the model in further steps. However, they tackle the problem from
opposite directions [96]]. On one side, semi-supervised learning directly utilizes unla-
beled data as an additional unsupervised training source to improve the model beyond
plain supervision. On the other side, active learning successively increases the labeled
pool by integrating a human in the loop and allocating the labeling efforts to the most
valuable instances. An advantage of SSL is that it assumes a fixed labeled pool and ex-
tends training capabilities beyond labeled information without requesting new labels.
On the other hand, AL offers greater flexibility to improve the quality of the labeled
dataset tailored to the task-specific learning challenges faced by a model. The concepts
are compatible, and it is worth exploring their combination into a unified framework to
exploit the strengths of both.

To integrate SSL into the AL loop, we extend the training phase by leveraging the
labeled and unlabeled data. In the training phase, we can utilize any of the previously
explained semi-supervised methods to train the classifier. Then the normal AL proce-
dure continues, where the query strategy returns the most relevant instances from the
unlabeled pool and sends them to the annotator. After they are annotated, the model is
re-trained in a semi-supervised manner as in the beginning. The overall framework of
combining AL and SSL is visualized in Figure Within the framework, the model is
jointly optimized by utilizing labeled and unlabeled data and increasing the labeled pool
with instances from which it most benefits.

Combining these two paradigms has been subject to research in several works [33]
46,164,91,/95,[125]]. CEAL [110] combines threshold-based pseudo-labeling and entropy
sampling and shows its effectiveness over other active learning methods for image classi-
fication. The authors of [103] show that combining Mixmatch [[14] and margin sampling
yields better results than random labeling. [I35] proposes a consistency-based approach
not only for training, as is often done in SSL, but also for measuring uncertainty for ac-
tive selection. They demonstrate the effectiveness of their proposed combination of SSL
and AL on various image classification benchmarks.

However, given the high computational complexity of many SSL approaches [[76], us-
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Figure 2.6: Overview of combining active and semi-supervised learning. @A) Train the classifier
using the initially labeled pool L and the unlabeled pool U in a semi-supervised way.
Select instances from the unlabeled pool via a query strategy and send them to the
human annotator. (C) Receive labels for queried instances and move them to the labeled
pool L. Repeat until the stopping criterion is reached.

ing SSL in every AL round may be impractical or prohibitive in scenarios with time limi-
tations [64]]. Moreover, without careful consideration, the combination may not always
yield better results than standard AL, which does not incorporate unlabeled data [27]].
This can be attributed to the fact that SSL methods may suffer from confirmation bias,
especially when supervision is really scarce or the learning task is very difficult [106) [3].

The authors of [100] report that AL generally benefits from utilizing unlabeled data
at model training, but the ranking of the best query methods is not consistent. In [[73],
the marginal benefit of AL compared to the relatively large performance gain of SSL is
criticized. The authors argue that data augmentations are one of the key drivers of the
success of SSL. However, designing label-preserving data augmentations often requires
domain expertise [[89]. Moreover, SSL techniques are often evaluated using a reasonably
large validation set to tune their hyperparameters, which is contrary to the limited label
scenario [76]. Contrary to the claims of [[73], the results reported in [68] show that AL
is particularly useful in class-imbalanced settings, where popular SSL methods such as
Fixmatch [102] struggle.

To summarize, existing research in this field is not always consistent, making it dif-
ficult to determine the practical effectiveness of combining SSL and AL in real-world
scenarios. While the potential benefits have been demonstrated, it remains challenging
for practitioners to assess under which conditions the combination is truly advantageous.
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Chapter 3

Contributions

In this chapter, we provide an overview of the contributions included in this thesis and
discuss each of them in more detail in the following sections. The published works,
including supplements and a description of the author’s contributions, can be found in
Appendices [A] to [E| This thesis involves five publications [37, |41}, 39, 38, [40]. The code
for all our contributions is publicly available. All publications are situated in the field
of deep active learning. Overall, we propose three new AL algorithms for diverse multi-
class classification tasks, which are explained in Sections to An overview of
the key features of each of the proposed algorithms is given in Table Moreover,
the contribution discussed in Section |3.4] investigates the combination of AL and SSL
for image classification on three realistic data challenges, providing valuable insights to
researchers and practitioners.

Table 3.1: Overview  of proposed algorithms and  distinguishing  characteristics
(“Unc”=Uncertainty, “Rep”=Representativeness, “Div”’=Diversity).

: Data Type Efficiency Query Type
Algorithm Image Tabular Graph | Label Time | Unc Rep Div SSL
FALCUN [41] v v v v v v
DiffusAL [39] v v v v v o v |V
VERIPS [38] v v v v

Section comprises two publications. In [37], we show that diversity sampling in
the prediction probability space benefits time efficiency. We utilize these findings and
propose a novel AL method named FALCUN [41] which leverages the probability space
to query uncertain and diverse instances for labeling. Our experiments on image and
tabular benchmarks demonstrate FALCUN’s superiority in terms of label and time effi-
ciency. Section [3.2|summarizes the key contributions of DiffusAL [39], an active learning
method for node classification on graph data. DiffusAL combines diversity, representa-
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tiveness, and uncertainty by exploiting information about the graph topology. Besides
strong results regarding label efficiency, DiffusAL is also time efficient due to several pre-
computations that accelerate training and the calculation of metrics for the acquisition.
The training involves utilizing the labeled and unlabeled nodes and is, therefore, con-
sidered semi-supervised. In the remaining sections, we look closer at the combination of
AL with SSL in the context of image classification. First, we discuss our proposed algo-
rithm named VERIPS [38]] in Section VERIPS combines uncertainty sampling with
semi-supervised pseudo-labeling. summarizes our contribution on how AL can help
mitigate issues related to confirmation bias in SSL when facing three types of challenging
datasets [40]. In the following, we will explain each contribution in more detail.

3.1 Sampling in the Probability Space for Faster
Acquisitions

To reduce computational overhead, deep active learning is usually conducted in a batch
mode, where multiple samples are queried and forwarded to the annotator at once, as ex-
plained in Section Popular diversity-sampling techniques account for the interac-
tion of instances within each AL round to avoid selecting instances with high information
overlap. These methods commonly utilize latent feature vectors to measure similarities
and ensure that the instances chosen for labeling are distant in the latent space. How-
ever, using these latent features to measure instance similarity can be computationally
intense due to the high dimensionality of the hidden layers of neural networks. This
becomes even worse when the available unlabeled data pool is very large, which is often
the case since the collection of unlabeled data can usually be automated and requires
less manual effort [23]].

Accelerating Diversity Sampling

In this work, we address the problem of slow query times of diversity-based techniques
by proposing a simple yet effective modification: we operate on the output probability
vector instead of the latent features to measure instance similarity [[37]. Since the output
probabilities with a size equal to the number of classes usually have a much smaller
dimensionality than the latent embeddings, the acquisition time is drastically reduced.
We empirically demonstrate this by conducting experiments on MNIST [59] and using an
MLP with a hidden dimensionality of 256 in its final layer, a commonly used architecture
for this task [6]. We utilize three particularly popular diversity-enhancing techniques:
(1) k-means-center (e.g., [82]80,123]]), which performs k-means clustering with & equal
to the query size () and subsequently selects the closest point to each cluster center. (2)
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Figure 3.1: Distribution of margin uncertainty of queried instances returned by several diversity-
based methods when taking the prediction probability (blue), the latent features (or-
ange), or the latent features after reducing dimensionality with PCA (green), demon-
strated on MNIST. Without a dedicated uncertainty-enhancing mechanism, diversity
sampling in the probability space automatically returns instances of higher uncertainty.
This behavior influenced the design of our novel AL method called FALCUN.

k-center (e.g., [95,1,/53]), which iteratively selects instances that are furthest away from
currently labeled data. (3) k-means++ (e.g., [6]), which iteratively selects instances with
a probability proportional to their distance from previously selected samples. We apply
each of the methods using the latent features, a reduced version of the features using
Principal Component Analysis (PCA), and the output probabilities. As expected, the
query time for each method is greatly reduced by utilizing the output probabilities. For
instance, k-means-center is accelerated by a factor of 8 with our approach. A common
assumption is that latent features are more expressive and contain important information
that is lost when replacing them with the prediction probabilities, resulting in decreased
label efficiency. However, our empirical findings show contrary effects and that this
modification positively influences label efficiency. In fact, we show that all methods
yield roughly 4% better accuracy on average when performing them on the prediction
probabilities. We assume that diversity sampling in the probability space automatically
also returns informative objects. We investigate this hypothesis in more detail in a follow-
up work, which is explained in the next paragraph.

FALCUN

Figure shows the distribution of uncertainty scores among 100 queried objects when
sampled with different diversity sampling techniques operating on the output probabil-
ities (“prob”, blue), the latent embeddings of the penultimate layer (“latent”, orange),
or on a PCA-reduced version thereof (“pca”, green) as a baseline to accelerate the diver-
sity sampling. The experiment was performed on MNIST with an experimental setting
similar to that explained above. As the illustration shows, applying diversity sampling
techniques in the probability space automatically selects instances with higher uncer-
tainty. This is because instances far apart in the latent space are close in the probability
space if the model is highly confident that they belong to the same class. Hence, by
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focusing on diversity in the probability space, we automatically target diverse and un-
certain areas, avoiding oversampling confident and irrelevant instances since these are
naturally grouped together. In contrast, measuring diversity in the latent space would
require an extra step to filter out these uninteresting samples, adding additional com-
plexity to the process. We utilize these findings and propose a novel hybrid AL method
named FALCUN [41].

In one AL round, FALCUN iteratively selects instances based on an additive relevance
score 7(x) = u(x) + d(x), where u(x) and d(x) denote an uncertainty score and an adap-
tive diversity score, respectively. We use margin for the uncertainty score and reuse it to
initialize the diversity score, i.e., u(x) := 1 — (p(41) — P(¥2)) and d;,;(x) := u(x), where
p(v1) and p(ys,) are the probabilities of the most and second most likely class. After every
chosen query object x,, we dynamically update the current distance score of an instance
x with d(x) « min(d(x), dist(px, Px,)), where the distance dist(-,-) is the L1 norm. We
apply min-max normalization to scale the values into the range [0, 1], aligning them with
u(x). Initializing the diversity score with margin uncertainty ensures that confident sam-
ples are assigned low priority. As diversity scores can only decrease, these instances
maintain a low selection priority throughout the query round. Moreover, we show that
margin uncertainty is better suited for initializing diversity as it naturally emphasizes
more diverse regions than entropy or least confidence uncertainty. Since a completely
deterministic selection could potentially be less robust across varying datasets, we choose
the next query instance x, based on the probability z, ~ %, where y is a param-
eter controlling the degree of randomness (7 = 0 would resemble random sampling). In
our experiments, we show that FALCUN is largely insensitive to the choice of v for values
larger than or equal to 5. As the query batch fills, the algorithm gradually shifts from the
most uncertain instances toward exploring more diverse concepts.

FALCUN has some advantages over other hybrid methods that also account for the
interaction of instances in their diversity sampling. For instance, previous methods of-
ten treat diversity and uncertainty estimation separately. To unify both metrics, they
require certain predefined parameters, such as certain thresholds or other parameters
balancing the trade-off between uncertainty and diversity [80, 82, [105]. Moreover, as
explained previously, existing methods measuring distances in the latent space are often
computationally expensive due to the high dimensionality of the latent embeddings [56].
Concretely, the time complexity of the acquisition is often dominated by O(N,,- D), where
N, is the size of the unlabeled pool and D is the dimensionality of the penultimate layer.
For instance, the time complexities for the popular methods BADGE [6]] and CLUE [82]
are O(Q - N, -C-D)and O(Q - N, - i - D), respectively, where () is the query batch size,
i is the number of cluster rounds, and C is the number of classes. In contrast, FALCUN’s
time complexity is O(Q - N, - C), where usually C' <« D. Our experiments on several
benchmarks for tabular classification and image classification demonstrate that FALCUN
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outperforms compared methods in terms of label and time efficiency. Furthermore, we
show in a separate experiment that FALCUN achieves stable results even on highly re-
dundant datasets despite the omission of comparisons in the feature space.

3.2 DiffusAL

When considering AL for graph data, a major difference compared to image or tab-
ular data, where data is usually i.i.d., is the availability of relations between the in-
stances [34]. These edges, i.e., the connection between nodes in the graph, pro-
vide meaningful information about the graph structure and the relevance of each
node. As such, they not only offer possibilities for developing special graph mod-
els but also provide valuable information for developing dedicated graph AL strate-
gies [[19,134,111},[122]. However, it remains challenging to use this information to design
an approach that consistently outperforms random selection. Some existing approaches
focus on limited selection aspects [65, 186, 111}, [122]] and outperform random sampling
only on certain graphs. Other methods combine query types but are sensitive to hyper-
parameters [[19, [34]. In addition, many methods use a graph convolutional network
(GCN)[54] for training and acquisition. However, GCNs couple the learning of latent
node features with neighborhood aggregation, which increases the time complexity of
the active learning procedure. To address these limitations, we propose a novel graph
AL method called DiffusAL [39] that leverages diffusion-based graph learning [36] for
training and active selection. Graph diffusion overcomes certain disadvantages of con-
ventional graph neural networks, such as the restriction to k-hop neighborhoods [18]]
or oversmoothing problems [63] [112]. Moreover, the neighborhood aggregation step
can be pre-computed and is decoupled from learning latent node features, which makes
them more efficient [18].

Model architecture Following previous works [18] 36], we pre-compute diffused fea-
tures by calculating the personalized page rank (PPR) matrix over multiple scales de-
noted by P and multiplying it by the original node features X. These diffused features
are then used as input to our classification model. To stabilize predictions, especially in
early training phases or when labeling information is sparse, we propose to use a query-
by-committee (QBC) comprising an ensemble of MLPs. Since committee approaches
require the training of multiple classifiers, they are usually less desirable in terms of
training efficiency. However, since the expensive diffusion step only needs to be per-
formed once in advance and not repeatedly within the AL framework and training, our
ensemble is trained faster than GCNs, which are commonly used for other graph AL
methods [19,[111], as shown in the experiments. Each member of the ensemble has the
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same architecture, and they only differ in their initializations. For the final prediction,
we sum over the individual predictions of all members and apply softmax to get the
predicted probability distribution.

Active selection We propose a combination of uncertainty, diversity, and representa-
tiveness to query instances for annotation since a single query type might not be capable
of yielding robust results for many datasets. As the uncertainty score sync(x), we utilize
Shannon entropy [98] over the prediction probability of the model committee and ap-
ply L1-normalization over all unlabeled nodes. As a result, the range is bound between
[0,1] and aligns with the other scores. For diversity, we perform k-means clustering on
the pre-computed diffused features with & equal to the query batch size. Within each
iteration, the diversity score keeps track of how many labeled instances are in each clus-
ter and assigns higher weights to instances of currently underrepresented clusters. More
precisely, the diversity score is defined as sg;y(x) = 1— %, where [¢;yqin| and |Viqin| de-
note the number of labeled nodes in the cluster ¢ that instance x was assigned to, |V, qin|
represents the number of labeled training nodes in the current AL round. After every
selection round, the number of |¢;4in| @and |Vi,q4in| change. However, since we utilize the
pre-computed diffused features, we do not recalculate the clustering in every iteration in
contrast to other methods [[65]. For representativeness, we compute a node importance
score for each instance x by reusing the PPR matrix P. An entry F;; in the PPR matrix can
be interpreted as the importance of node j for node i, and the column-wise sum gives
a proxy for the overall influence of the node in the graph. Concretely, the importance
score of the j-th instance x is given by: simp(x) = >, F;;. Again, our approach does
not require any recalculations during the AL rounds. The final score s(x) of an instance x
is defined as the product of the individual scores, i.e., s(x) = Sunc(X) - Sdiv(X) - Simp(x). For
the final acquisition, we calculate s(x) for all instances in the unlabeled pool and select
the nodes with the largest values for annotation.

Utilizing diffusion-based heuristics for training and active acquisition of nodes yields
strong results, as experiments on several benchmarks demonstrate. Statistically, DiffusAL
is the only method that outperforms random sampling in all experiments. We conduct
ablation studies to understand the impact of the individual components and reveal that
the performance of DiffusAL does not depend on just one single component but is the
result of combining several components. Moreover, despite the combination of many
selection criteria and a QBC approach, DiffusAL has fast acquisition and training times.
In fact, it is often among the fastest approaches.
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3.3 VERIPS

In AL, uncertain instances are considered to carry novel and valuable information and are
thus favored for labeling. In contrast, pseudo-labeling selects the most confident samples
to artificially increase the labeled pool. Both techniques can be combined into a unified
framework to fully exploit the perceived knowledge of a model. For example, CEAL [110]
is an established method integrating pseudo-labeling into the AL framework. It chooses
the most uncertain instances estimated by entropy for labeling and the most certain ones
for pseudo-labeling. CEAL uses two hyperparameters: a pseudo-label threshold and a
decay rate that updates the threshold over the AL course to balance the selection of
pseudo-labels. While the potential of combining these two paradigms is large and it is
very appealing due to the simplicity and natural fit, naive approaches, like CEAL, fail
when the initial model performs poorly [27]. Especially early in the AL cycle, where
labeled information is particularly sparse, there is a high risk of producing many wrong
pseudo-labels, resulting in confirmation bias.

To overcome this problem and stabilize the combination of pseudo-labeling and AL,
we propose VERIPS (VERIfied Pseudo-label Selection for active learning). In particular,
our method consists of a two-step approach where pseudo-labels are first selected based
on a threshold following common pseudo-labeling standards and then only retained if
the model’s prediction matches the prediction of a second, similar model trained with-
out pseudo-labeling. The second network provides an additional view to refine pseudo-
labels. Concretely, given two networks, where the task network fr is trained on £ and
U by pseudo-labeling and the verifier network fy is only trained supervised on L, we
simply discard a pseudo-labeled instance § = fr(x,6r) if it does not match the predic-
tion of the verifier network § = fy (x, 6y ), i.e., y # 7. Our experiments show that CEAL
often performs worse than baselines that do not use pseudo-labeling at all. In contrast,
VERIPS significantly outperforms CEAL in the first AL cycles (by up to 27%). Even in the
last round, VERIPS demonstrates up to 10% better accuracy. The performance of VERIPS
is consistent among the tested data sets.

Furthermore, we show that VERIPS consistently achieves a higher proportion of cor-
rect pseudo-labels across all iterations. Especially in early rounds, VERIPS effectively
discards many wrong pseudo-labels, yielding up to 20% higher pseudo-label correct-
ness. Since VERIPS employs a filter mechanism to discard pseudo-labels, one could
assume that CEAL involves significantly more pseudo-labels during training. However,
since the training is stabilized after a few rounds, the proportion of instances falling over
the threshold increases rapidly. As a result, after exhibiting the whole labeling budget,
VERIPS not only has a better correctness ratio of pseudo-labels but also incorporates a
similarly high amount of pseudo-labels as CEAL. Moreover, VERIPS only requires a sin-
gle hyperparameter, i.e., the pseudo-label threshold, and we show that VERIPS is less
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sensitive to its choice.

3.4 How to Overcome Confirmation Bias in
Semi-Supervised Image Classification by Active
Learning

Although AL has succeeded in various tasks and can significantly outperform random
sampling, concerns have been raised about its trustworthiness and applicability in real-
world situations for image classification [73, 66, 21]]. When implementing AL on a new,
largely unlabeled dataset, it is particularly difficult to assess which query method works
best since one would have to label and compare data points along each AL trajectory.
This is contrary to the ambition of reducing labeling costs. This challenge is known as the
validation paradox [68]. Moreover, the authors in [[73] state that SSL yields a greater rel-
ative performance improvement than deciding on the best query method. Furthermore,
some works show the effectiveness and potential of combining AL and SSL [14,[110]. In
our contribution [40], we aim to gain more insights into the applicability of AL and its
combination with SSL. We find that most of the existing research has been conducted on
benchmark datasets that do not resemble the challenges that are often present in real-
world datasets. To provide insight into the topic, we analyze the combination of SSL and
AL on realistic dataset challenges.

Therefore, we first identify three common real-world data challenges: between-class
imbalance (BCI), between-class similarity (BCS), and within-class imbalance (WCI). BCI
refers to a high imbalance concerning the number of examples over the different classes.
It is the most well-known and studied problem among the three challenges, but in terms
of combining SSL and AL, it is understudied. BCS refers to datasets that exhibit a high
proportion of instances that are hard to distinguish between classes. The reason might
be that two or more classes share similar or overlapping concepts or that the inherent
noise in the data indicates a high aleatoric uncertainty [26]. WCI refers to the imbalance
that can occur within classes in real-world datasets. Uncleaned real-world data might
have huge amounts of very similar instances, but only a few instances carry diverse and
rare aspects that could help the model better distinguish between classes. An illustrative
example of these data challenges is shown in Figure

To shed some light on how SSL performs under the aforementioned conditions, we
then conduct experiments to study these challenges. We construct three versions of the
MNIST task exhibiting the introduced data challenges. Then, we randomly label a few
data points with varying budgets and perform pseudo-labeling [60]], Fixmatch [102],
and Flexmatch [119]. Our results show that these powerful SSL. methods suffer from
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Figure 3.2: Illustrative example of the three data challenges between-class imbalance (BCD),
between-class similarity (BCS), and within-class imbalance (WCI) visualized by sam-
ple images taken from MNIST. Different colors indicate different classes. For BCI, the
class distribution is imbalanced. In the case of BCS, the class of instances in the over-
lapping region is ambiguous. For WCI, there are many similar versions of the digit “1”
and only a few different ones.

confirmation bias in all studied challenges. In the case of BCI, the imbalance is confirmed
repeatedly, increasing the class distribution mismatch, and the SSL methods partially
even perform worse than the fully supervised baseline. For BCS, wrong pseudo-labels
are produced frequently, resulting in worse performance than supervised learning. For
WCI, the performance stagnates, and only already known concepts are confirmed.

With the insights of the failing SSL methods, we lastly investigate if AL could help to
overcome the observed confirmation bias problems. We repeat the experiments on BCI,
WCI, and BCS with the SSL methods, but instead of sampling data randomly, we use sev-
eral AL methods to choose the data. We use four baseline AL methods in our experiments
as representatives of different query categories: uncertainty-based, coverage-based (or
diversity-based), representativeness-based, and a baseline that enhances class balance.
Uncertainty and coverage-based sampling can improve the performance on BCI by up
to 20%. BCS can be improved by up to 10% by annotating representative and typical
instances rather than confusing, uncertain ones. On WCI, by sampling diverse instances,
the SSL method almost yields the same performance as on the original MNIST (increas-
ing accuracy by almost 10%).

To summarize, existing SSL techniques often suffer from confirmation bias, especially
in the presence of the aforementioned real-world challenges. To overcome this problem,
SSL research mainly focused on developing techniques where wrong model outputs have
less impact or are identified as more reliable. In our work, we take a different perspective
and show that guiding the quality of supervised information is a promising option to
improve results. Our results indicate that confirmation bias can be mitigated by selecting
more valuable samples through AL.
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Chapter 4

Conclusion

To conclude this thesis, we give a short summary of our contributions in Section 4.1 and
discuss limitations as well as potential future research directions in Section

4.1 Summary

In this thesis, we presented various advances in the field of deep active learning. Further-
more, we also contributed to successfully integrating active and semi-supervised learn-
ing.

We proposed three deep AL algorithms for image, tabular, and node classification
tasks. FALCUN is an AL method for image and tabular classification. It yields com-
petitive and robust results on different datasets by carefully balancing uncertainty and
diversity in the probability space. For node classification, we proposed DiffusAL, a novel
method that unifies diffusion-based heuristics for model training and for actively se-
lecting uncertain, representative, and diverse instances for labeling. Our experiments
demonstrate that DiffusAL is the only method consistently better than random sampling.
VERIPS combines uncertainty sampling and pseudo-labeling for image classification. By
only considering pseudo-labels that are verified by a separate network, VERIPS discards
false pseudo-labels and mitigates confirmation bias. As a result, VERIPS yields higher
model accuracy than existing approaches.

Besides label efficiency, some of our contributions focus on time efficiency. For in-
stance, FALCUN performs diversity sampling in the usually lower-dimensional probability
space instead of the latent space. As a result, FALCUN has faster acquisition times than
existing diversity sampling methods that consider the interaction between query objects.
DiffusAL uses various pre-calculations that are reused for training and acquisition, and
thus do not burden the runtime during the AL rounds. Saving time in the training or ac-
quisition phase of the AL loop helps to deliver results quicker, making approaches more
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appealing, and potentially saving annotator costs.

The problem of confirmation bias is further addressed in our contribution in Sec-
tion Here, we show that confirmation bias hinders the effectiveness of popular SSL
methods when trained on a randomly labeled pool and facing three particularly difficult
data challenges. We further demonstrate that actively selecting the labeled dataset is a
viable tool to mitigate confirmation bias in SSL for the evaluated challenging datasets.
Our research reveals important insights into the potential of combining AL and SSL and
the conditions under which their integration is beneficial.

4.2 Limitations and Future Work

Most existing works on graph active learning, including our algorithm DiffusAL [39],
have concentrated on graphs with high homophily, where the assumption is that closely
connected nodes belong to similar classes. However, many real-world graphs have the
opposite property, called heterophily, where connected nodes are dissimilar in features
or labels [81]]. Heterophilous graphs may demand fundamentally different strategies for
labeling instances. Suboptimal labeling could potentially hinder the model from captur-
ing the heterogeneous patterns. DiffusAL combines multiple selection criteria that may
make it more robust to such a setting than other AL methods. However, so far, Dif-
fusAL has been evaluated on datasets with a high degree of homophily. Investigating the
performance of heterophily settings presents an interesting avenue for future research.

Our last contribution [40] provides valuable insights into the potential and difficulties
of using active semi-supervised learning when faced with challenges present in many
datasets. In our research, we focused on evaluating baseline AL methods to understand
which query types are generally beneficial for which challenge. Moreover, the evaluation
is limited to variants of MNIST to specifically examine the effect of each challenge. In
future work, we aim to do an extensive evaluation on real-world datasets that exhibit
the introduced challenges. This will allow us to give concrete recommendations for
practitioners regarding the choice of AL and SSL for certain data challenges.

Moreover, we aim to include our methods, FALCUN [41] and VERIPS [38]], in this
benchmark. Since both emphasize uncertainty in their selection, they might struggle
with datasets exhibiting high between-class similarity, as many confusing instances may
be chosen. A possible way to overcome this could be to extend them to methods that
distinguish between aleatoric and epistemic uncertainty. Aleatoric uncertainty refers to
the inherent noise or randomness in the data that can not be reduced by adding more
data. In contrast, epistemic uncertainty refers to uncertainty that comes from the lack of
knowledge of a model [26]]. Moving the focus towards epistemic uncertainty might help
identify uncertain instances from which the model can learn better. However, even if it
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is known which algorithms perform well for which data characteristics, it might be chal-
lenging to make an appropriate choice in settings where the exact dataset characteristics
are unknown in advance. Therefore, another interesting direction for future work is to
focus on designing robust methods that perform well across all challenges rather than
performing well only on datasets exhibiting one of the challenges.
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Abstract. Selecting diverse instances for annotation is one of the key
factors of successful active learning strategies. To this end, existing meth-
ods often operate on high-dimensional latent representations. In this
work, we propose to use the low-dimensional vector of predicted proba-
bilities instead, which can be seamlessly integrated into existing meth-
ods. We empirically demonstrate that this considerably decreases the
query time, i.e., time to select an instance for annotation, while at the
same time improving results. Low query times are relevant for active
learning researchers, which use a (fast) oracle for simulated annotation
and thus are often constrained by query time. It is also practically rel-
evant when dealing with complex annotation tasks for which only a
small pool of skilled domain experts is available for annotation with
a limited time budget. Our code is available at: https://github.com/
sobermeier/low-dim-div-sampling.

Keywords: Active Learning - Diversity Sampling

1 Introduction

Deep neural networks are the dominant choice for solving complex tasks, such as
image classification. Their great success depends in large part on the availability
of a sufficient amount of labeled data. Especially in domains with scarce pub-
licly available data, such as medical or industrial applications, annotations can
become prohibitively expensive due to the need for skilled domain experts. The
field of active learning thus aims at reducing the number of required annotations
by intelligently selecting instances for labeling. Since modern networks require a
significant amount of training time, the traditional setting where instances are
selected one after the other [13,15,20] has become infeasible [17], and a batch-
setting is commonly applied, where a fixed number of instances is selected for
annotation.

State-of-the-art approaches [3,9,18,19,16] follow two different paradigms (or
a mixture thereof): In uncertainty-based methods [4,5,10], those instances are
selected for which the model is the least certain about the prediction. In contrast,
diversity methods [3,6,7,16,18,19,22] focus on selecting a representative subset
of instances and avoid re-labeling similar instances. In this work, we focus on
the second class.

(© 2022 for this paper by its authors. Use permitted under CC BY 4.0.
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Diversity-based methods often rely on high-dimensional representations ex-
tracted from the model’s last layers [3,6,7,8,11,16,18,22,21]. In the presence of
a large pool of unlabeled data, processing these representations can become a
bottleneck of the approaches resulting in increased query times. While these can
often be neglected when the annotation is delegated to a large pool of on-demand
crowd workers, in settings where domain experts are required, there is often only
a small number of available annotators with tight schedules. In these settings,
it is desirable to reduce the query time in addition to only requesting useful in-
stances for annotation. Similarly, in active learning research, where a simulated
oracle is used for annotation, the computational bottleneck is often the instance
selection.

2 Diversity Sampling on Low-Dimensional
Representations

In this work, we present a simple yet effective approach to accelerate diversity-
based methods, which replaces the high-dimensional latent features x € R¢
by the vector of predicted class probabilities p € R®, where usually ¢ < d.
The approach can be applied to most diversity-based methods without large
modifications and effectively reduces the instance selection times.

We empirically evaluate our approach with multiple different diversity-based
active learning heuristics. Note that we do not consider uncertainty in this work
and focus only on underlying diversity concepts. However, the selected diversity
methods are key concepts of various popular active learning strategies, such
as [1,3,16,18,22].

1. KMeansCenter selects the points closest to the centroids of k-means cluster-
ing [14] with k& = ¢ clusters for annotation, where ¢ denotes the query size.
As a recent example, CLUE [16] uses k-means clustering as diversity concept
enriched by uncertainty weighting.

2. KCenterGreedy iteratively selects the sample with the largest minimum dis-
tance to any already labeled instance. It is also known as CoreSet [18] and
one of the first solely diversity-based active learning methods.

3. KMeans++ [2] iteratively samples instances with probability proportional to
the minimum distance to already selected points in the current acquisi-
tion round. BADGE [3] is a prominent example using KMeans++ on high-
dimensional vectors.

For the iterative KCenterGreedy and KMeans++ algorithms, we keep an array
of minimum distance to already labeled samples, and update it whenever we
add another sample for labeling. The time complexity of selecting one batch of
queries is given in Table 1. Notice that for all heuristics, the time complexity
linearly depends on the vector dimension.

We empirically evaluate the MNIST [12] dataset of handwritten digits with
10 classes and a simple 2-layer fully-connected network with embedding dimen-
sionality 256 as in [3] for a proof-of-concept. The learning rate is set to 0.01,
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Table 1. Time complexity of a single acquisition round of the different diversity-based
heuristics. ¢ denotes the query size, i.e., number of instances to select for labeling, n; /n,,
the number of labeled /unlabeled samples (n; < n,), d the vector dimensionality, and
i the number of iterations until convergence.

Algorithm Time Complexity
KMeansCenter O(q-ny - 1-d)
KCenterGreedy Oy -nu-d+q-ny)
KMeans++ O(q-ny - d)

and we train the network from scratch for 10 epochs in each iteration. The ini-
tial pool contains 100 randomly chosen samples, and we select additional 100
instances per active learning iteration until a budget of 2,500 samples is ex-
hausted. We investigate three different input features x of the samples as input
to the heuristics:

1. the full-dimensional latent features, i.e., x € R?,

2. the vector of predicted class probabilities, i.e., x € R¢, where ¢ = 10 denotes
the number of classes,

3. PCA-reduced features, i.e., x € Rd/, where d’ < d is the reduced dimension.
For comparability, we use the same dimensionality d’ = ¢ = 10 for PCA.

Our results are shown in Fig. 1. The first column shows the accuracy vs.
the number of acquired labels. We observe that using the vector of predicted
probabilities not only maintains the performance of full-dimensional latent fea-
tures but also surpasses it for all three investigated diversity-based heuristics. In
contrast, PCA-reduced latent features result in comparable performance. The
third column compares the number of acquired labels against the cumulative
query time. Using the vector of predicted probabilities generally shows the low-
est cumulative runtime. Compared to using the output vectors, PCA requires an
extra step and is therefore somewhat weaker in terms of query times. However,
using full-dimensional latent features can lead to more than four-fold increased
cumulative query time depending on the heuristic, even in this relatively small
toy setting. The second column then combines both plots and shows the accu-
racy vs. the cumulative query time, demonstrating that both label efficiency and
query times benefit from our proposed method.

3 Conclusion

In this paper, we proposed to use the vector of predicted probabilities instead of
the high-dimensional latent features as input to diversity-based active learning
methods. As a proof-of-concept, we demonstrated on one dataset that for several
diversity-based heuristics, we could strongly reduce the query time while at the
same time improving the performance. Since the predicted probabilities of the
unlabeled data are usually exploited anyway during the active learning process,
no additional computations are required.
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Fig. 1. Comparison of the different techniques for three different acquisition functions.
The first column shows the accuracy w.r.t. the number of labels, the second column
accuracy vs. cumulative query time, and the last column the cumulative query time
vs. the number of acquired labels.

For future work, we would like to investigate this promising direction fur-
ther, particularly how well the insights transfer to other datasets and how to
best combine it with uncertainty-based methods. As an interesting observation,
using samples with diverse predicted probabilities might also implicitly lead to
selecting points of diverse uncertainty.
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Abstract. We propose FALCUN, a novel deep batch active learning
method that is label- and time-efficient. Our proposed acquisition uses
a natural, self-adjusting balance of uncertainty and diversity: It slowly
transitions from emphasizing uncertain instances at the decision bound-
ary to emphasizing batch diversity. In contrast, established deep active
learning methods often have a fixed weighting of uncertainty and diver-
sity, limiting their effectiveness over diverse data sets exhibiting different
characteristics. Moreover, to increase diversity, most methods demand
intensive search through a deep neural network’s high-dimensional latent
embedding space. This leads to high acquisition times when experts are
idle while waiting for the next batch for annotation. We overcome this
structural problem by exclusively operating on the low-dimensional prob-
ability space, yielding much faster acquisition times without sacrificing
label efficiency. In extensive experiments, we show FALCUN’s suitability
for diverse use cases, including medical images and tabular data. Com-
pared to state-of-the-art methods like BADGE, CLUE, and AlfaMix,
FALCUN consistently excels in quality and speed: while FALCUN is
among the fastest methods, it has the highest average label efficiency.

Keywords: Deep Active Learning - Supervised Learning - Diversity
and Uncertainty Sampling

1 Introduction

Deep neural networks have proven their worth in various fields and are widely
used for solving complex tasks. Their great success depends largely on the avail-
ability of labeled data. However, while large volumes of unlabeled data are often
easily accessible, the labeling process remains time-consuming and costly, par-
ticularly in domains like medicine and industry, where experts are essential.
Active learning (AL) strategies mitigate annotation efforts by iteratively
selecting and labeling the most informative instances to enhance model per-
formance. However, the batch setting in deep AL, where multiple instances are

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-70352-2_25.
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Fig. 1. Each simplex illustrates the probability space of a three-class subset of MNIST.
The highest probabilities are in the corners (implied by darker colors). Small black and
white dots are objects in £ and U, respectively. Red dots are instances selected by an
AL method. FALCUN acquires objects very fast and returns a meaningful selection:
gray borders imply worse quality than FALCUN.

sent to the annotator simultaneously to meet the higher data demands of deep
learning and reduce re-training times, poses new challenges [2]. Specifically, the
question of how to select the most informative instances while minimizing redun-
dancy is an ongoing research topic.

To assess diversity and uncertainty, established approaches often treat the
probability and latent spaces separately [14,15], requiring an additional step to
merge the extracted information into a coherent acquisition. However, achiev-
ing a smooth combination of these disparate aspects can be difficult, poten-
tially overemphasizing either uncertainty or diversity. Furthermore, a subsequent
combination may rely on additional parameters [25] that are hard to select in
advance. As a result, such methods might not outperform random sampling
consistently, which is crucial for active learning approaches. Lastly, merging
information from distinct spaces may result in highly complex methodologies,
undermining their practical applicability in active learning contexts.

Moreover, using the latent representations of a deep neural network to mea-
sure diversity [2,15,18,25] can be computationally intensive due to the high
dimensionality of learned features. E.g., the dimensionality of the last hid-
den layer for commonly used architectures (see [2,10,14]) is 512 in ResNet18,
2048 in ResNet50, and 4096 in VGG16. Thus, searching the feature space can be
very time-intensive, leading to acquisition times of up to several days. Starting
the labeling process on multiple days instead of requiring only one session can
drive up costs immensely, e.g., if domain experts or laboratory equipment are
required. Unnecessarily long computation times are also prohibitive from an
ecological point of view.

We address these challenges and propose FALCUN (Fast Active Learning by
Contrastive UNcertainty). As illustrated in Fig. 1, FALCUN queries instances
that yield high-quality results for deep learning while also being faster than com-
parative methods. Our method exclusively operates on the output probabilities
to calculate uncertainty and batch diversity. In a unified and coherent acqui-
sition, FALCUN begins by proposing instances around the decision boundary
and gradually shifts focus to diverse areas as regions of high uncertainty are
increasingly explored.
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The main benefits of FALCUN are:

— Label efficiency and robustness: Across varying datasets, AL settings, and
model architectures, FALCUN is always among the most label-efficient meth-
ods. Among all experiments, FALCUN outperforms random sampling most
often (> 70%) while never performing statistically worse.

— Speed and scalability: Among competitors reaching similar accuracy, FAL-
CUN is the fastest. FALCUN is more scalable than methods operating on the
latent embeddings of a neural network.

— Diversity: Even on high-redundancy data sets, FALCUN finds a diverse set
of instances.

— Explainability and simplicity: FALCUN is easy to understand and imple-
ment and, therefore, attractive for practitioners and researchers. OQur code is
available under https://github.com/sobermeier/falcun.

2 Related Work

AL techniques can be grouped into the following categories.

Uncertainty-based methods estimate the informativeness of an instance based
on the model’s predictive ambiguity. Common uncertainty estimates are margin
uncertainty [16], entropy [20] or least confidence [19]. Labeling such instances
should help to effectively refine the decision boundary and enhance generaliza-
tion performance if included in the training [19]. Uncertainty-based sampling is
widely used for its simplicity and effectiveness, especially when querying sin-
gle instances or small batches at once. However, in the batch setting common
for deep AL, where multiple instances are queried simultaneously, simple rank-
based techniques become less label-efficient since they tend to select redundant
instances. E.g., in Fig. 1, Entropy [22] as a non-diversity aware method selects
highly repetitive instances.

Query-by-committee (OBC) refers to using a committee of classifiers and cal-
culating statistical information over the varying outputs [4]. Due to the need for
multiple classifiers, QBC approaches have a computational overhead and are less
attractive for deep neural networks and big datasets. Deep Bayesian AL meth-
ods can be seen as a more elegant way to imitate a QBC. By using stochasticity
in the prediction of a network, diverse outputs can be produced and used to
calculate variations in the differing predictions for the same input. For instance,
BALD [5] uses Monte-Carlo Dropout over multiple inference steps and calculates
mutual information to assess the worthiness of an object. Still, such an approach
requires multiple forward passes, which do not scale well to large unlabeled pools.
Moreover, QBC methods also suffer from problems similar to uncertainty-based
sampling in batch-setting.

Diversity-based techniques [18,21] minimize the information overlap within
a batch. KCENTERGREEDY [18] iteratively selects the sample with the largest
minimum distance to any labeled instance in the latent space to achieve decent
coverage over the data space. However, only focusing on coverage can lead to
selecting outliers or uninteresting instances that do not improve the performance.
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Lastly, hybrid approaches [2,10,15] combine paradigms to overcome the chal-
lenges of solely uncertainty or diversity-based methods. Many methods perform a
thorough search in the latent feature space to determine a sufficiently diverse set.
E.g., BADGE [2] performs k-Means++ sampling on so-called gradient embed-
dings where large gradients indicate uncertainty. However, these gradient embed-
dings depend on the number of classes and the hidden dimensionality of the
penultimate layer and thus get very high-dimensional. Other methods perform
weighted k-Means clustering on the latent representations [15,25] where the
weights are an uncertainty estimate and select the most central point from each
cluster for annotation. Due to the repeated clustering, these methods are also
computationally expensive.

AlfaMix [14] also performs k-means clustering on latent representations. In
contrast to other methods, only clusters on a candidate pool determined by
interpolating features in the latent space are considered. Depending on the size
of the candidate pool, this increases the computational efficiency. However, as
shown in Fig. 1, AlfaMix has a strong emphasis on the decision boundary, which
can be problematic for highly repetitive datasets.

CDAL [1] uses a similar approach as KCenterGreedy but works on the out-
put probabilities. It selects instances where the predicted probability is furthest
away from already labeled instances. However, a problem is that some concepts
in the data might be harder to learn than others. If instances get labeled, but
the model needs more information in such a region, CDAL would not choose
instances in the region. Task-specific hard-to-learn concepts might be ignored.

BatchBALD [10] extends BALD to the batch-setting, but has exponential
time-complexity [17], making it unsuitable for our setting. Sampling from the
power distribution of an uncertainty score [3,9] instead of a deterministic top k
selection to increase diversity is a faster alternative. However, finding the optimal
power value is hard. Small values are close to random sampling and too large
values lead to a redundant selection. Thus, these methods are highly dependent
on a good parameter choice.

In contrast, FALCUN uses the powering method to stay close to the original
distribution instead of increasing diversity in general: it uses a dedicated diversity
mechanism to be robust against parameter selection.

In summary, the main direction of deep AL research focuses on hybrid meth-
ods in the practically relevant batch setting, finding a set of informative instances
with small information overlap. However, how to best combine uncertainty and
diversity is an ongoing challenge.

3 Methodology of FALCUN

3.1 Notation

Our task is multi-class classification on an input space X of size N and a set
of labels Y = {1,...,C} for C classes. We consider pool-based AL, where a
small initial labeled set £ C X is uniformly drawn from the unlabeled data
distribution. The remaining data objects belong to the unlabeled set U = X'\ L of
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Latent Space Prediction Space
B p € RS, with C < D

Fig. 2. FALCUN selects diverse and uncertain instances (colored circles) in the proba-
bility space (see 3-class simplex on the right). In the latent space on the left, they cover
the most informative regions (yellow) while being highly diverse and stemming from
different clusters. Red, white, blue imply ground truth classes. (Color figure online)

size N,. At each AL round, () samples are selected for annotation and retraining
of the model. A classification model f(z;0) — RS with parameters # maps a
given input x € X to a C-dimensional vector. Correspondingly, f(z;0~1) — RP
denotes the D-dimensional latent representation w.r.t. the penultimate layer of
the classifier. The softmax function applied on the model output given by f(x;6)
for an object = returns the output probability vector p(z) € [0,1]. We use a
standard cross-entropy loss to optimize the parameters over the labeled pool,
denoted by Eg[lee(f(z:0),y)].

3.2 Overview

Figure2 gives an overview of FALCUN. Instead of exploiting the latent space
for diversity and the probability space for uncertainty independently, FALCUN
directly uses the probabilities to select diverse and uncertain instances. The
original data inputs (left) are forwarded through the network. The second and
third columns visualize the latent and the probability space in a 2D t-SNE
visualization. The colors indicate uncertainty, with yellow, lighter regions indi-
cating higher uncertainty. On the right, the 3-dimensional simplex S is given by
S = {(p1,p2,p3)|lpi = 0,p1 + p2 + p3 = 1}, where p, p2, p3 denote the poste-
rior probability for classes 1, 2, and 3, respectively. The corners indicate a high
confidence for a certain class, as reflected by a darker color. The center corre-
sponds to a uniform posterior distribution over all classes. Small black and white
dots indicate objects in £ and U, respectively. Larger blue, red, and white circles
indicate instances selected by FALCUN: they are prevalently in very informative
regions in the latent space while being highly diverse.

3.3 Acquisition

Uncertainty Component. For uncertainty, we use the margin uncertainty, i.e.,
the difference between the probabilities of its two most probable classes:

u(z) := 1= (p(x)[c1] = p(w)[ez]) € [0, 1], (1)
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Fig. 3. Uncertainty Considerations (Left): In contrast to least confidence and
entropy, the margin estimate focuses on the class boundaries between all class pairs,
covering a more diverse spectrum. Diversity Considerations (Middle): Maximizing
diversity in the probability space automatically covers diverse and uncertain regions,
whereas using latent features for diversity makes a harmonic combination with uncer-
tainty harder. Final (Right): FALCUN prefers instances at the decision boundary
with a smooth transition to diverse regions.

where 0 < u(x) < 1. Margin is a common choice for uncertainty [3,8,16] and nat-
urally captures class boundaries. As illustrated in Fig. 3, margin (C) emphasizes
diverse regions to be of equal interest and naturally captures more dissimilar
concepts than comparable other uncertainty estimates such as entropy (A) or
least confidence (B) [19]. The reason is that the margin’s extremal function has
no global optimum, but its optima lie on the pairwise class boundaries in the
probability space. Thus, margin uncertainty is powerful [3,8,25] and allows an
intuitive combination with diversity, as we show in the following.

Diversity Component. To estimate diversity, we follow a similar notion as [1],
measuring class-wise, contextual diversity in the probability space rather than
feature-wise diversity in the possibly very high-dimensional embedding space
where we might run into curse-of-dimensionality issues or computational over-
head. More precisely, we measure the distances between two instances x; and x5

based on their probabilities using the L1 norm || - ||1:
c

dist(p(z1), p(x2)) := [[p(21) — P(x2)[l1 = D _ [pi(1) — pi(2)] (2)
i=1

Calculating distance in the probability space accelerates computation without
neglecting generalization performance [6]. Moreover, maximizing diversity in the
probability space as visualized in Fig.3 - D, automatically covers diverse and
uncertain regions. In contrast, using latent features for diversity makes a har-
monic combination with uncertainty harder, potentially resulting in suboptimal
coverage of the probability space (see Fig.3 E and G).

However, without careful initialization, which is hard when the query batch
is still empty, maximizing diversity in the probability space also targets uninfor-
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Algorithm 1. Our AL Algorithm FALCUN

Input: Unlabeled data pool U, initially labeled data pool £, number of acquisition
rounds R, query-size @, model f(x;0), relevance factor

1: Train initial weights 6y on £ by minimizing Ez[lce(f(x;0),y)]

2: forr=1,2,...,R do

3:  Initialize empty query set: Q = {}

4:  Vz € U : Compute class probabilities p(x)

5. Vz € U : Initialize u(z) and d(z) with Equations (1) and (3)
6: forg=1,...,Q do

7 Va € U : Calculate relevance score r(z) with Equation (5)
8: Sample according to Equation (6)

9: Q=0Uux,

10: Vx € U : Update diversity values d(x) using Equation (4)
11: end for
12: Receive new labels from oracle for instances in Q

13: L=LUQ,U=U\Q

14:  Train new model 6, from scratch on £ by minimizing Ez[lce (f(z;0),y)]
15: end for

16: return Final parameters 6z obtained in round R

mative samples in the class corners. A good starting point is to focus on instances
that provide different context-specific information to already well-distinguishable
concepts. This can be seen as a way of diversity to the confident class corners
in the simplex. The margin estimate gives us a good starting point for such
diversity. Instances that receive the highest scores are (1) farthest away from
the highly confident corners and (2) close to other classes. Without the second
proximity consideration, focusing solely on maximizing distance to corners could
bias towards the central region where all classes are equally probable (Revisit
A, B, and C in Fig.3). Margin uncertainty is high for instances from concepts
that are diverse from concepts that the model can already classify confidently
and, thus, naturally incorporates a diversity aspect.

Further details on the correlation between margin uncertainty and the dis-
tance to confident classes can be found in the supplementary material. Thus,
we initialize the diversity score with the pre-calculated margin uncertainty and
iteratively update it with each selected sample z,:

dipie(2) =u(x)  (3)  d'(z) + min(d'(z),dist(p(z),p(zq))  (4)

As diversity values can only decrease, the initialization in Eq. (3) ensures
that the closer objects are to the confident corners, the less likely they will be
selected. By updating the diversity score using Eq. (4), instances near objects
in the current query batch receive lower scores and are less likely to be selected.
Finally, we linearly normalize the values to [0, 1] to align them with the uncer-
tainty scores using min-max-normalization.
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Final Relevance Score. For every point x, we calculate a relevance score 0 <
r(z) < 2, which changes over the course of each AL round. We combine the
uncertainty and the diversity component by defining r(x) as the sum of the
uncertainty u(x) and the normalized adaptive diversity score d(x):

r(z) == u(x) + d(x). (5)

Note that the values in u(x) are static within one acquisition, but the diver-
sity scores d(z) are updated with every chosen query instance. Thus, the diver-
sity slightly overshadows when the regions with the highest uncertainty are
exhausted. When there is decent coverage in the probability space and diver-
sity scores denote a uniform distribution, the focus is more on uncertainty.
Hence, there is always a natural balance between uncertain and diverse selection
depending on the current query batch. We choose x as the next query sample
x4 with probability

r(z)
eru T(.’L‘)'V '
where 7y is a parameter that controls the influence of the relevance scores. v = 0
corresponds to a uniform selection, and larger values for + result in a stronger
focus on the calculated relevance scores getting more and more deterministic
(rich values get richer). Thus, v controls the trade-off between exploration (more
randomness) and exploitation (more focus on larger values in r(x)). See also
Fig. 4, which shows the selection probabilities of points depending on their rel-
evance scores for different values of 7. Note that we do not need ~ to ensure
diversity as in [3]. We use it to reduce the risk of an overly biased selection. We
analyze the effect of v and show the importance of a dedicated diversity scheme
in our ablation study in Fig. 13. By combining uncertainty and diversity with our
initialization, we can exploit the probability space in a harmonic way as shown
in Fig.3 F. One AL round stops when the batch @ contains B samples and
returns the query batch Q, which will be sent to the oracle for annotation. The
pseudo-code is shown in Algorithm 1.

(6)

.’quN

0.10]
2
E
©0.051
e
o
00975 0.5 1.0
r(x)

Fig. 4. Selection probability of an instance x for different v values as a function of its
relevance score r(x).
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Table 1. Data set properties: number of
points N, number of classes C, and number DermaMNIST
of input features F'.

Type|Data set N C F
MNIST 60,000 10  28x28
g > |[RMNIST 60,000 10  28x28
& ‘S . BloodMNIST
El) FashionMNIST 60,000 10  28x28 - elelelele
EMNIST 131,600 47  28x28 4
,-®0/00e
~ SVHN 73,257 10 32x32x3 g : 2 9 > ;
go S BloodMNIST 11,959 8 28x28x3 db
£ O DermaMNIST 7,007 7 28x28x3 . LI K
CIFAR10 60,000 10 28x28x3
Fig. 5. Exemplary images of the two
5 OpenML-6 16,000 26 17 medical datasets.
E OpenML-156 800,000 5 11
& |OpenML-155 829,201 10 11

4 Experiments

We evaluate the effectiveness of established AL methods and FALCUN regard-
ing quality and acquisition runtime in isolation as well as in combination to get
a complete picture. We use a broad range of datasets including grayscale images
(MNIST [12], FashionMNIST [23], and EMNIST), colored images (CIFAR10 [11],
SVHN [13], BloodMNIST, DermaMNIST [24]), and tabular datasets from the
OpenML benchmark! suite (Ids: 6, 155, 156). BloodMNIST and DermaM-
NIST are challenging medical image datasets showcasing a task where labeling
experts are limited and costly. Figure5 shows some examples. Within a class,
images can be very similar, s.t. their information is redundant. A good AL strat-
egy should avoid selecting such repetitive instances to optimize label efficiency.
To further assess the capabilities to sample a diverse subset, we include redun-
dant versions of MNIST named RMNIST containing duplicate images (compara-
ble to [10]). We randomly keep 10% unique original images and fill the rest with
duplicated versions with added Gaussian noise. We vary the redundancy ratio in
an extra experiment. Table 1 summarizes the data properties. For grayscale data
we use a LeNet, a learning rate of 0.01 and train for 20 epochs. For colored data
we use pre-trained Resnet18, and ResNet50, a learning rate of 0.001 and stop
when a training accuracy of 99% is reached. We investigate whether the results
are similar without pre-trained weights and when initializing the model with the
weights from the previous round as proposed in [14]. For tabular data we use a
simple multi-layer-perceptron (MLP) with two layers as proposed in [2] (hidden

! https://www.openml.org/.
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Fig. 6. Average test accuracy vs labeling budget for all active learning methods eval-
uated on greyscale (a, d), RGB (b, e) and tabular data (c, f).

dimensionality 1024), a learning rate of 0.0001 and use early stopping when a
training accuracy of 99% is reached. We use an Adam optimizer. All experi-
ments are performed five times with different seeds. We compare to state-of-the-
art hybrid methods: BADGE [2], CDAL [1], CLUE [15], and ALFAMIX [14].
We include a diversity baseline: KCENTERGREEDY [18], an uncertainty base-
line: ENTROPY sampling [19], and the passive baseline RANDOM sampling. For
FALCUN, we set v = 10. Further details are given in the publicly available code
base.

4.1 Label Efficiency

Figure 6 shows the learning curves of diverse architectures and query sizes for
evaluated datasets. The x-axis depicts the labeling budget, and the y-axis gives
the average accuracy for varying AL methods. We see that FALCUN is among the
best-performing methods for varying query sizes, data types, and model archi-
tectures. FALCUN also yields the strongest results on the tabular data: in con-
trast to all other competitors, it consistently outperforms random sampling on
the Openml-156 dataset. Note that the ranking of the best-performing meth-
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Table 2. Avg. Accuracy on CIFAR10 with varying architectures and settings. BB =
backbone model, P = Pre-trained weights are used, Ctl = Continual setting where
weights are not reset after each AL round, B=Labeling budget. FALCUN has most
often best (bold) or second best performance (underlined).

BB CtlP B CLUEBADGE CDAL AlfaMix Random FALCUN
Resnetb0 v 6000 |71.7 72.1 71.9 718 71.3 72.3
v 10000(74.5 75.3 75.5 75.6 74.0 76.0
v’ 6000 [52.0 51.9 51.4 51.6 51.1 52.0
v 10000/57.5 58.6 59.3 58.3 57.4 58.5
Resnetl8 v 6000 [70.1 69.9 69.8 69.9 69.4 70.2
v/10000/73.6 74.0 73.5 73.6 72.3 73.5
v’ 6000 [54.8 55.6 55.2  55.8 54.7 55.9
v 10000/60.5 60.7 61.0 60.5 59.2 60.9

Table 3. Avg. Accuracy on CIFAR10 with pre-trained Resnet50 using initial pool sizes
(I) and query sizes (QS). We report budgets (B) after the first and last acquisition.
FALCUN performs well with varying AL settings.

I QS B CLUEBADGE CDAL AlfaMix Random FALCUN
100010002000 [63.4 63.4 63.4 62.9 63.2 63.7
10000(74.5 75.3 75.5 75.6 74.0 76.0
200020004000 68.4 68.4 68.5 69.3 69.5 68.8
10000(74.9 75.3 75.0 757 717 75.0
5000500010000(74.6  75.0 74.2  75.0 74.0 75.3
20000/78.6  78.8 79.3 79.3 76.9 79.3
5000750012500(75.2  75.9 75.2 764 75.1 76.4
22500(78.0 79.6 79.8 79.3 77.9 79.6

ods is not the same over varying settings. E.g., Entropy, an only uncertainty-
based technique, yields good results on BloodMNIST but underperforms on cer-
tain other datasets such as EMNIST, RMNIST or Openml-156. In contrast,
KCenterGreedy, a solely diversity-based approach, only yields fairly good results
on the highly redundant dataset RMNIST but performs poorly on Openml-156.
Not surprisingly, some datasets and settings benefit more from uncertainty, and
others might work better with diversity. Table 2 show results on CIFAR10 when
varying the backbone (BB), using pre-training or not (P) and using continual
training instead of starting from scratch after every AL round (Ctl) for vary-
ing budgets (B). Most often, FALCUN yields best or second best results. Table 3
shows results when varying the initial pool size (I) and query size (QS) for differ-
ent Budgets (B). Again, FALCUN yields best or second best results frequently.
All in all, FALCUN is robust across varying settings.
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Dealing with Redundancy. We especially want to emphasize that though only
operating on the output probabilities, FALCUN’s success is not diminished on
RMNIST. Figure8 shows how the performance of all AL methods drops for
varying redundancy ratios of the RMNIST dataset. Besides Entropy sampling,
AlfaMix’s quality decreases rapidly for highly redundant datasets. We hypoth-
esize this is due to oversampling the decision boundary, as visualized in Fig. 1.
We provide all learning curves in the supplementary materials.
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KCenterGreedy 0.90
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Ent
niropy Redundancy (%)
Random
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Fig. 7. Dueling matrix: The last col-
umn gives the percentage of wins of

—A— BADGE —@- KCenterGreedy —#— CDAL —@— FALCUN

Fig. 8. Final average test accuracy for
varying redundancy ratios.

the respective method. The last row
gives the percentage of losses.

Dueling Matriz Over All Experiments. Designing a robust method is hard when
the characteristics of a dataset are unknown in advance. Moreover, in AL, it is
hard to compare all learning curves from all experiments, and sometimes, a clear
winner is hard to find. Hence, similar to previous works [2,7,14], we provide a
dueling matrix for a comprehensive analysis of the methods’ overall performance.
The column-wise entries in the matrix in Fig. 7 show the amount of losses, and
the row-wise entries indicate the amount of wins against each other method (in
%). A win means that for a specific experimental setting, i.e., a specific dataset,
acquisition round, query size, and model architecture, comparing the results of
5 runs, a method has statistically better accuracy than the other method (with
p-value=0.05).

A loss is defined analogously. Losses and wins do not necessarily sum up
to 100% as the two methods can perform comparably well with no statistical
difference. When discussing the quality of an AL method, it is hence important
to evaluate the wins and losses. The bottom row and the rightmost column
denote the average losses and wins over all experiments compared to all other AL
methods. FALCUN is consistently strong over a wide range of datasets, as the
dueling matrix in Fig. 7 shows. FALCUN has the most wins (highest numbers in
every column) compared to every other method and the most wins over random
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Fig. 9. Average cumulated acquisition times (y-axis) on a log-scale vs. annotated sam-
ples (x-axis) over varying unlabeled pool sizes N (first row), query sizes @ (second
row), and dimensionality of the penultimate layer D (third row).

sampling. Simultaneously, it has the fewest losses. Only FALCUN is never worse
than random sampling, one of the most important criteria for successful AL
methods.

4.2 Query Time Efficiency

The training for the grayscale image datasets and tabular datasets is arguably
fast (around 1min for the last AL round). For the colored image data, training
takes around 75 min in the last round. In such situations, the limiting factor for
the overall runtime is the query time. We systematically analyzed the scalability
of all tested methods by varying dataset size, query size, and hidden dimen-
sionality of the multilayer perceptron evaluated for the largest of all datasets
(i.e., Openml-156). We stopped each experiment after ten days (e.g. CLUE).
The results are shown in Fig. 9. FALCUN denotes fast and robust runtimes over
varying settings, being comparably fast as CDAL and particularly robust to vary-
ing hidden dimensinoality. We summarize these extensive experiments by giving
the smallest and largest average query times among the scalability analysis in
Table 4. Moreover we provide runtime complexities for all methods. Note that the
runtime complexity of our acquisition is dependent on the size of the unlabeled
pool, the query size, and the number of classes (O(Q- N, -C')) but not on the hid-
den dimensionality D. BADGE, one of the strongest competitors regarding label
efficiency, has a worse runtime complexity with O(Q- N, -C) € O(Q- N, -C- D).
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Table 4. Time Complexity w.r.t. query size @), Dimensionality of latent features D,
unlabeled pool size N,, number of classes C, labeled pool size N;, number of cluster
rounds ¢, and a method-specific candidate pool in AlfaMix N, with N, < N,,., final
min. and max. average cumulated query time among the scalability analysis.

AL Strategy  Time Complexity min max
Entropy O(Ny) 1.8 sec 21min
CDAL O(N;-Ny,-C+@-Ny)lmin 80min
FALCUN O(Q- N, -C) 1.5min 97 min
AlfaMix O(Q-Nep-i-D) 7.3min 175min
KCenterGreedy O(N; - Ny, - D+ Q - N,,)11.8 min25 h
BADGE O(Q- N, -C-D) 31.5min208 h
CLUE O(Q Ny -i-D) 92min >227 h

That leads to multiple times higher run times compared to FALCUN (208hrs in
the worst case for BADGE vs 97minutes for FALCUN). CDAL, followed closely
by FALCUN, is the fastest among all tested methods. In the fastest setting,
when the unlabeled pool contains 20,000 objects, FALCUN is only half a minute
slower than CDAL. In the most challenging setting with a latent dimension of
4096, FALCUN is only 17% slower.

[0 FALCUN [0 BADGE [ AlfaMix [0 CDAL CLUE [ KCenterGreedy Uncertainty Il Query Time
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Fig. 10. Runtimes (black bars, smaller is better) and improvement over random sam-
pling in average test accuracies (colored bars, larger is better) for all acquisition
rounds for tabular data (Openml-155 and Openml-156) and grayscale data (RMNIST,
EMNIST).

Considering quality and runtime together, Fig. 10 shows the improvement
over random sampling in terms of average accuracy per method (colored bars)
and the corresponding query time in minutes in a certain acquisition round
(black thin bars) for all tested methods. Large accuracy bars are better whereas
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smaller time bars are better. FALCUN (red bars) has strong performance on all
datasets and never has worse average accuracy than random sampling (i.e., val-
ues smaller than zero). CLUE and especially BADGE perform on par in some
settings, but their query times are much higher, in some cases up to > 200 hours.
AlfaMix is fast and has good quality on Openml-155 and decent performance on
EMNIST. However, AlfaMix is prone to duplicates: it performs even worse
than random sampling on RMNIST in many acquisition rounds. CDAL is quite
fast but performs worse than random sampling more often, especially for small
budgets on EMNIST and Openml-156. Entropy is fast, but not label-efficient.
KCenterGreedy is fast for smaller datasets (e.g., RMNIST and EMNIST) but
does not scale well to larger datasets (see Openml-156) and is only comparably
label-efficient for the redundant dataset RMNIST because it has the strongest
emphasis on maximizing diversity. FALCUN has a robust performance across all
datasets and low query times (never above 10 min).

class accuracy

0.6

(c) 10" Query. (d) 100" Query.

(a) Openml-156.

(b) BloodMNIST.

Fig.11. Exemplary course of rele- Fig.12. Hue in the t-SNE visual-

vance scores r(z) and their dependency
of selected queries (red) on 3-class
MNIST, t-SNE visualization. (Color
figure online)

4.3 Qualitative Evaluation

Figure 11 illustrates the selection of instances and the course of FALCUN’s rel-
evance scores r(x) over one acquisition round on a 3-class MNIST task (also

izations indicates the predictive accu-
racy of the model on the respec-
tive class. Initially sampled objects
are blue, samples chosen by FAL-
CUN in the first acquisition round are
red. FALCUN selects diverse instances
favoring classes that are harder to
distinguish by the current model:
“darker” classes contain more red dots.
(Color figure online)
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used for the visualization in Fig.2) for better interpretability. Yellow regions
indicate a high relevance score promoting regions of high interest. Initially, all
instances with high uncertainty, primarily located at the decision boundary,
receive higher scores (see Fig. 11a). The score in the surrounding of the selected
instance (red circle) gets darker as the objects located close to it receive a smaller
diversity score (see Fig. 11b). In the first iterations, uncertain, but still diverse
instances are preferred. In Fig. 11d we derive a diverse set located in all three

clusters mainly consisting of objects from uncertain areas.

In Fig.12, we analyze FALCUN’s selection on Openml-156 (Fig.12a) and
BloodMNIST (Fig. 12b). It effectively finds instances majorly located in regions
where the classifier has more confusion (darker areas) while still enhancing diver-
sity and not oversampling certain regions. E.g., on the right, most instances

are chosen from the two most uncertain classes (~ 55% accuracy). In contrast,

only two objects are selected from the most confident class where the model

already achieves ~ 99% accuracy.
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Fig. 13. Ablation Study on RMNIST (top row) and BloodMNIST (bottom row).

4.4 Ablation

Effect of ~. In Figs. 13a and 13d, we vary 7, where smaller values lean towards
uniform selection and larger values lean towards deterministic selection, includ-
ing a completely deterministic selection (det.). While a random selection (v = 0,
blue line) is always worst, we see that the exact choice of v does not largely
affect the performance. Having a value between 5 and 20 yields very robust
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and consistent results. A deterministic selection seems similarly strong despite
a few fluctuations. However, we argue that we should stick to our probabilistic
selection so as not to end up in a failure mode due to highly biased selection.

Effect of Scores. Figures13b and 13e show the results when switching off
either the uncertainty or the diversity component to calculate the final relevance
score. For RMNIST, considering uncertainty without diversity yields the worst
results. Hence, powering similar to [3] without a dedicated diversity function is
less effective for highly redundant datasets. BloodMNIST benefit more from
uncertainty than from diversity. In general, our experiments show that some-
times uncertainty and sometimes diversity are more important. However, know-
ing which type is needed in a real-world scenario is notoriously hard when there
is almost no information. In contrast, our combined score is always among the
best, and due to the robustness across datasets, it is a highly attractive choice.

Effect of Diversity Features. Lastly, we investigate the performance when calcu-
lating diversity on the latent embeddings instead of the final output probabili-
ties. As a simple baseline we also perform PCA on the latent features and use
the result as input for the diversity component (see Figs. 13c and 13f). Inter-
estingly, using latent features is worst in many situations. We assume this is
due to curse-of-dimensionality issues. Furthermore, using the probability vector
is almost always the best method. We hypothesize that using the probability
space for uncertainty and diversity leads to a more harmonized selection. Our
diversity in the probability space also indirectly covers uncertain regions, and
the margin uncertainty function indirectly covers diverse concepts. Combining
two isolated scores can be tricky since it could unintentionally set a too strong
focus on one or the other component.

5 Conclusion

We introduced FALCUN, a novel deep AL method that employs a natural tran-
sition from emphasizing uncertain instances at the decision boundary towards
enhancing more batch diversity. This natural balance ensures robust label effi-
ciency on varying datasets, query sizes, and architectures, even on highly redun-
dant datasets. As FALCUN only operates on the output probability vectors, it
achieves faster acquisition times than many established methods performing a
search through the high-dimensional embedding space of a neural network.
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A Connection of Uncertainty and Initial Diversity

The margin uncertainty estimates the uncertainty of a model about its prediction
p(x) of an instance x and is defined as

u(z) :=1— (p(z)[c1] — p(x)[c2]) € [0,1]. (1)

It has the smallest values, i.e., the highest confidence, when the prediction for one
class is 1, and the highest scores, i.e., the highest uncertainty, at the decision
boundary. Despite assessing the model’s uncertainty, we can interpret margin
uncertainty as an estimate of an instance’s diversity relative to the concepts al-
ready learned by the model regarding the predicted class. In other words, margin
uncertainty can be seen as the distance of an instance’s prediction probability
from the one-hot encodings of the two most probable classes, as shown below.
Let p be a one-hot encoding p; = §;k of p(z) where §;k is the Kronecker Delta
function and k = arg max(p(x)) is the index of the most probable class. Further,
(&

let P2 be a one-hot encoding p(x) with ps; = k2 where ko = arg maxs(p(x))
c

is the index of the second most probable class.

dinit(v) =1 — 1/2- | dist(p, p(z)) — dist(P2, p(z)))| (2)
Distance to most  Distance to 2nd most
probable class probable class

C C
141 <_Z =) = 2lpe —m(x)l)

c c
:1+1/2'<1 )ler +Z # k)pi(r) — (1 p(z Z # ko)pi(x ))
=1+12-(2-(1—p(@)[a]) —2- (1 - p(@)[c]) =1 - (p(@)[c1] — p()[c2]) = u(x)

Therefore, we initialize the diversity score with the uncertainty estimate: d;,;+(z) :=
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B Experimental Details

The implementation is in Python and uses PyTorch [1], NumPy, and scikit-
learn [2|. Our experiments have been evaluated on GPUs (NVIDIA GeForce
RTX 2080 Ti) in an Ubuntu 20.04.2 LTS environment. For more details, we refer
to our publicly available code base. BloodMNIST contains images from different
normal cells belonging to eight classes, and DermaMNIST consists of dermato-
scopic images categorizing seven different diseases [3]. We rescale images from
the medical datasets from 28x28 to 32x32 with nearest-neighbor interpolation.
More details can be found in the publicly available code base.

C All Learning Curves

In the following, we report all learning curves for all tested datasets and settings,
including grayscale data with varying query sizes (see Figure 2), RGB data with
varying model architecture (see Figure 3), redundant data (see Figure 5), and
tabular data (see Figure 6).
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Abstract. Node classification is one of the core tasks on attributed
graphs, but successful graph learning solutions require sufficiently labeled
data. To keep annotation costs low, active graph learning focuses on select-
ing the most qualitative subset of nodes that maximizes label efficiency.
However, deciding which heuristic is best suited for an unlabeled graph
to increase label efficiency is a persistent challenge. Existing solutions
either neglect aligning the learned model and the sampling method or focus
only on limited selection aspects. They are thus sometimes worse or only
equally good as random sampling. In this work, we introduce a novel active
graph learning approach called DiffusAL, showing significant robustness
in diverse settings. Toward better transferability between different graph
structures, we combine three independent scoring functions to identify the
most informative node samples for labeling in a parameter-free way: i)
Model Uncertainty, ii) Diversity Component, and iii) Node Importance com-
puted via graph diffusion heuristics. Most of our calculations for acqui-
sition and training can be pre-processed, making DiffusAL more efficient
compared to approaches combining diverse selection criteria and similarly
fast as simpler heuristics. Our experiments on various benchmark datasets
show that, unlike previous methods, our approach significantly outper-
forms random selection in 100% of all datasets and labeling budgets tested.

Keywords: active learning - node classification - graph neural
networks

1 Introduction

Graph representation learning [17] and, especially, Graph Neural Networks
(GNNs) [2,5,16] have been adopted as a primary approach for solving machine
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learning tasks on graph-structured data, including node classification [18], graph
classification [21], and link prediction [41]. Applications range from quantum
chemistry [16] over traffic forecasting [44] to cyber-security [6].

However, supervised GNN models require sufficient training labels and usu-
ally assume that such labels are freely available. But, in reality, while unlabeled
data is usually abundant, it is laborious and costly to provide annotations. Graph
active learning has emerged as a promising direction to reduce labeling costs by
carefully deciding which data should be labeled to increase label efficiency. Under
a limited budget, e.g., a fixed number of data samples to be labeled or time spent
labeling by a domain expert, active learning aims to annotate an optimized set
of training data iteratively. Hence, a key aspect of graph active learning is iden-
tifying the most informative instances in the abundance of unlabeled data for
labeling. In particular, the goal is to be consistently more label-efficient than ran-
dom labeling. Since random sampling is arguably the fastest and least complex
method, active learning methods that are not significantly better than random
sampling are not worthwhile.

However, since graphs can vary widely, it is very difficult to design an
approach significantly better than random sampling across different labeling
budgets and graph structures. Existing graph-active learning approaches reach
their limits for various reasons: Some approaches focus only on limited selection
aspects [23,28] and outperform random selection only on certain graphs. Oth-
ers focus on one-shot selection without iterative re-training and active selection
and can therefore not exploit model-related uncertainty scores [37,43]. Other
methods try to include various criteria in the selection but are sensitive to user-
defined hyper-parameters or are not deliberately aligned with the used model
architecture [8,15]. Moreover, many methods use a GCN [18] for training and
acquisition. However, GCNs learn latent node features and perform neighbor-
hood aggregation in a coupled fashion, which can negatively influence the time
needed for the active learning procedure. In contrast, Graph diffusion is a promis-
ing direction tackling limitations such as restriction to k-hop neighborhoods [7]
or over-smoothing, where neighborhood aggregation and learning are decoupled.

In this work, we use diffusion-based heuristics to combine graph learning with
active learning. In particular, we propose DiffusAL, a novel graph active learning
method that leverages graph diffusion for highly accurate node classification
and efficiently re-uses the computed diffusion matrix and diffused node feature
vectors in the learning procedure.

We introduce a new scoring function for identifying a node’s utility which
consists of three factors: i) Model Uncertainty, i) Diversity Component, and iii)
Node Importance. DiffusAL combines these scores in a parameter-free scoring
function that naturally adapts to consecutively learning iterations.

Specifically, for i) Model Uncertainty, we exploit a state-of-the-art scoring
that has shown an improving impact on the selection of nodes [32]. Next, the
il) Diversity Component refers to the variability of node features and, there-
fore, their respective labels. For that, we apply a clustering method on the pre-
computed diffusion matrix where diversity is reached by picking samples from
underrepresented communities. Finally, for computing iii) Node Importance, we
exploit the information given by diffusion matrix based on the Personalized
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Fig. 1. DiffusAL pipeline consisting of the original input graph and corresponding
node features (grey box), pre-computed static model-independent scores, such as the
propagated feature matrix and derived node importance (green box), a dynamic, model-
independent score based on the composition of the labeled pool (Diversity/Balance), as
well as a dynamic, model-dependent informativeness score (Uncertainty). These scores
are combined into a final node rating (white box) to select the most useful instances
for annotation. (Color figure online)

i
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PageRank (PPR), which provides information about the relative importance of
nodes in a graph w.r.t. a particular seed node. The high-level key concepts of
DiffusAL are illustrated in Fig. 1.

We evaluate DiffusAL on five real-world benchmark datasets, demonstrating
its superiority over a variety of competitors. Notably, DiffusAL is the only com-
petitor to outperform random selection with statistical significance in 100% of
the evaluated datasets and labeling budgets. In a series of ablation studies, we
show that DiffusAL works consistently well on all benchmark datasets, analyze
which components contribute to its performance, and investigate its efficiency.

In summary, our contributions are as follows:

— Enhancing the selection of influential nodes by using diffusion-based node
importance and utilizing pre-computed clustering on diffused features to pre-
vent oversampling a particular region.

— Combining three complementary node scoring components in a parameter-
free way.

— Achieving high efficiency by propagating statically pre-computed features
stored in a diffusion matrix.

2 Related Work

Early works on graph active learning [3,24] exploit the graph structure for
selecting nodes for querying without graph representation learning. More recent
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approaches [8,15,23,28,38] use GCNs to exploit the graph structure as well as
learned features. FeatProp [38] leverages node feature propagation followed by
K-Medoids clustering for the selection of instances. By defining the pairwise node
distances between the corresponding propagated node features, the model selects
nodes being closest to the cluster representatives yielding a diverse set over the
input space. However, the diversity scoring function in our model puts more
weight on underrepresented clusters yielding a more balanced view of the avail-
able data space and, therefore, is more suitable for imbalanced data. In [43],
the authors proposed GRAIN, a model inspecting social influence maximiza-
tion for data selection. Their objective is a diversified influence maximization
by exploiting novel influence and diversity functions. In contrast to their work,
we focus on an iterative active learning setting [10] since it directly enables
exploiting the uncertainty scores entangled to a model which is known to be
valuable for query selection. The most related work to our approach is presented
in [8] where the authors propose Active Graph Embedding (AGE) using as selec-
tion heuristic a weighted sum of information entropy, information density, and
graph centrality defined on direct neighborhoods. For the latter, they propose
to use PageRank centrality. The time-sensitive coefficients of the weighted sum
are chosen from a beta distribution using the number of training iterations as
input. We overcome these limitations related the restriction on direct neighbor-
hoods aggregations used in standard GNNs [2,5,16] by leveraging continuous
relationships via graph diffusion [7,20]. In [15], ANRMAB is proposed. It uses
a multi-armed bandit mechanism for adaptive decision-making by assigning dif-
ferent weights to different criteria when constructing the score to select the most
informative nodes for labeling. The model LSCALE [23] exploits clustering-
based (K-Medoids) active learning on a designed latent space leveraging two
properties: low label requirements and informative distances. For the latter, the
authors integrate Deep Graph Infomaz [36] as an unsupervised model. Therefore,
in contrast to our approach, the model utilizes a purely distance-based selection
heuristic. The method GEEM [29] maximizes the expected error reduction to
select informative nodes to label.

To the best of our knowledge, we are the first to leverage the power of
diffusion-based heuristics for the computation of node importance, being an inte-
gral part of our scoring function, combining three complementary components
to compute the nodes yielding the highest utility scores. Moreover, our novel
scoring function uncouples from any parameter presets, being a critical choice
without any a priori knowledge about the input data.

3 DiffusAL

3.1 Preliminaries

Notation. We consider the problem of active learning for node classification. We
are given a graph G = (V, F) represented by an adjacency matrix A € {0,1}"*"
along with a node feature matrix X € R"*¢. Each node v € V belongs to
exactly one class ¢, € {1,...,C}, where C is the number of classes present
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in the dataset. A budget constraint B denotes the maximum number of nodes
for which the active learning algorithm may request the correct labels from the
oracle. The main goal is to select a subset of nodes S C V such that |S| = B and
the accuracy of a classification model trained on these nodes is maximized. In
a batch setting, b denotes the number of nodes selected within each acquisition
round.

Recap: Feature Diffusion. In contrast to conventional GNN architectures
[18,35,39] that learn latent node features and perform neighborhood aggrega-
tion in a coupled fashion, graph diffusion effectively decouples the two steps
to address certain shortcomings of conventional GNN architectures, includ-
ing the restriction to k-hop neighborhoods [7] and issues related to over-
smoothing[14,22,26,40]. The general effectiveness of diffusion, when paired with
conventional GNN architectures, was shown in [20]. In general, a parametric
diffusion matrix can be defined as

P=> 0;T", (1)
k=0

where T is a transition matrix and 0 are weighting parameters. A popular choice
is Personalized PageRank (PPR) [4,7,11,12,19], where T = AD~! is the ran-
dom walk matrix, D is the diagonal degree matrix, and 6, = a(1 — a)*. Intu-
itively, P;; corresponds to the probability that a random walk starting at node
1 will stop at node j and can be interpreted as the importance of node j for
node i. The restart probability « € [0,1] controls the effective size of a node’s
PPR-neighborhood. An approximation of the PPR matrix can be pre-computed
in time O(n) using push-based algorithms [7]. This approximation requires a
second hyper-parameter € > 0 that thresholds small entries and, thus, has a
sparsification and noise reduction effect. Once computed, the PPR matrix can
replace the adjacency matrix used by conventional message-passing networks for
neighborhood aggregation [7,19].

3.2 Model Architecture

For DiffusAL, we propagate the original node features such that the propagated
node features don’t depend on any learned transformations and can be pre-
computed as well. We propose a query-by-committee (QBC) approach [33], where
the propagated node features are connected to an ensemble of MLP classifiers to
robustify uncertainty estimation during the sample selection process compared
to a commonly used single MLP. Additionally, features are diffused over multiple
scales by varying the hyper-parameter o controlling the effective neighborhood
size over which features are aggregated. In particular, the model predictions are
given as

Y = predict Z trans form, Z pled x , (2)
jefi.,M} ie {1, K}
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where K denotes the number of scales, and M denotes the number of MLPs in
the classification ensemble. The pre-computed diffused features are aggregated
over multiple scales using the sum function and fed to the hidden layer of each
MLP. The learned representations are then aggregated using the sum function
and passed to the shared prediction layer. All ensemble members share the same
architecture and only differ in the random initialization of their weights and
biases. The QBC can be trained very efficiently with gradient descent, and, in
particular, the expensive diffusion step needs to be performed only once as a
pre-processing step.

3.3 Node Ranking and Selection

In addition to facilitating highly effective and efficient prediction, the previously
computed diffusion matrix P = Zie{l K} P(*) and diffused features PX are
reused to calculate expressive ranking scores for active node selection.

Model Uncertainty. For measuring model uncertainty, we utilize the QBC
defined above. In particular, we compute the Shannon entropy over the softmax-
ed output distribution to determine the uncertainty score for node i:

Sunc(?) = — Z Yij log yi;.- (3)

je{lC)

The scores are L1l-normalized over all unlabeled nodes to [0, 1], so all scoring
functions share the same scale and can be sensibly combined.

While this score is inspired by the classical query-by-committee [33] approach,
it differs in the sense that it doesn’t average the softmax outputs of the individual
committee members but rather considers the softmax output of a single shared
prediction layer applied to aggregated latent representations. Thereby, differing
predictions become more distinct in the softmax output.

Diversity Component. For the diversity component, we perform k-Means
clustering on the diffused features with k = b and assign each node a pseudo-
label based on the clustering result. Note that we pre-compute these cluster
assignments such that no re-computations are necessary at query time, in con-
trast to other approaches (e.g., based on GCNs), where updated node features
would change the clustering.

The cluster-based pseudo labels are used to ensure decent coverage of the
feature space. At each iteration, each node i receives a diversity score

|Ctrain |
4
|%rain| ’ ( )

Sdiv(i) =1-

where ¢ € C denotes the cluster node i was assigned to, |¢trqin| denotes the
number of nodes in the currently labeled training set belonging to cluster ¢, and
|Virain| is the number of currently labeled training nodes. In short, each node in
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the unlabeled pool is weighted by the relative size of its cluster in the training set,
such that nodes from currently underrepresented clusters receive a higher score.
In contrast to only focusing on avoiding redundancy in the current batch [1],
our diversity score can also be interpreted as a balancing score ensuring that no
region is over-sampled within the labeled pool.

Some existing works on graph active learning [8,15] ignore the limitations
of a randomly initialized labeled pool and ensure class balance. However, this
simplification is rather unrealistic in a real-world active learning setting. To
overcome this limitation, we again exploit the k-Means clustering used for the
diversity score and select nodes closest to centroids for the initial pool, inspired
by clustering-based sampling approaches [23,37] and existing work on initial pool
selection [9].

Node Importance. Graph diffusion allows for a natural way to quantify node
importance. Since the weights P;; used for neighborhood aggregation can be
interpreted as importance scores, summing up the importance of a node ¢ for all
other nodes j yields a measure of the general importance of node 7, measuring
its total influence on the predictions for other nodes. Since the columns of S are
stochastic, this procedure yields consistently scaled overall importance scores.
In particular, the importance score of node i is given by the row-wise sum

Simp (1) = Z Pij. (5)
jev

Since the importance scores for all nodes can be computed directly from the
PPR matrix, they can be pre-computed before the active learning cycle starts.
Our node importance score is a proxy for how much influence a node has on
other nodes, where nodes with higher scores are assumed to carry more valu-
able information about many other nodes as well. Node importance could be
interpreted as a novel representativeness measure, which has been quantified
via density- or center-based selection within previous (graph) active learning
approaches [8,15,42]. However, we do not need to recompute a clustering on
learned representations after each selected sample, nor do we require good repre-
sentations since we can extract the information directly from the graph topology.
Further, our importance score of a node directly reflects the influence of that
node on the model’s predictions, since the weights from which we compute the
scores are directly used for neighborhood aggregation. This is not the case for
alternative existing measures.

Score Combination and Node Selection. In summary, the uncertainty score
assigns higher weights to nodes about which the committee is most uncertain,
the diversity score assigns higher weights to nodes belonging to underrepresented
clusters, and the node importance score assigns higher weights to nodes with a
higher influence on the predictions for other nodes. The individual scores for a
node are combined in a multiplicative fashion to determine the node’s utility:

5(%) = Sunc(7) - Sqiv(?) * Simp (7)- (6)
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(a) Sum aggregation: Isolines are (b) Multiplicative aggregation: Iso-
straight due to fixed weighting. lines are curved, favoring similar values
over diverging ones.

Fig. 2. Score aggregation: for two arbitrary scores on the x and y axes (e.g. uncertainty
and representativeness), the corresponding aggregated score is depicted as an isoline,
i.e., each point on the line corresponds to the same final value.

As illustrated in Fig. 2, the intuition behind the multiplicative combination is to
slightly favor nodes displaying a well-rounded distribution of scores over those
with a strong imbalance when the sum of the scores is identical while still allowing
extraordinarily important or uncertain nodes to be selected. Existing works use
slightly different variations of time-sensitive weighted sums, thereby gradually
shifting the focus from representativeness to uncertainty [8,42]. A disadvantage
of time-sensitive weighting is that the performance of the selection algorithm
depends on the choice of good hyper-parameters, which is difficult in a real-world
active learning setting. In contrast, our multiplicative approach is parameter-
free and naturally time-sensitive. In the early stages of training, the classifiers
essentially guess predictions more or less uniformly, leading to roughly similar
uncertainty scores for most nodes. Consequently, the uncertainty score is close
to a constant factor applied equally to all nodes, thus naturally making the
model-free scores the deciding ones in the final score. However, uncertainty scores
become increasingly important once the classifiers become more confident in their
predictions. The combined utility score is determined for each unlabeled node in
each active learning cycle. Afterward, the unlabeled nodes are ranked according
to their utility, and the nodes with the highest utility scores are labeled.

4 Experiments

To demonstrate the effectiveness and efficiency of DiffusAL, we conduct a series
of experiments. In particular, we investigate three research questions:

R1 - How does DiffusAL perform compared to state-of-the-art methods?
R2 - How does each of DiffusAL’s components contribute?
R3 - How is the training and acquisition efficiency?

4.1 Experimental Setup

Datasets. We evaluate DiffusAL on several well-established benchmark datasets
for node classification, namely the citation networks Citeseer [30], Cora [30] and

APPENDIX
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Table 1. Dataset statistics (only considering the largest connected component).

Dataset #Nodes | #Edges | #Features | #Classes
Citeseer 2120 3679 | 3703 6
Cora 2485 5069 | 1433 5
Pubmed 19717 44324 | 500 3
Co-author CS 18333 81894 | 6805 15
Co-author Physics | 34493 247962 | 8415 5

Pubmed [25], as well as the co-author networks Computer Science (CS) [34] and
Physics [34], summarized in Table 1. For each dataset, only the largest connected
component is used, and features are L1-normalized.

Implementation Details. All experiments were implemented using PyTorch
[27] and PyTorch Geometric [13] and run on a single Nvidia Quadro RTX 8000
GPU. For more details, we refer to our publicly available codebase!.

Competitors. We compare DiffusAL with random sampling, entropy sam-
pling [32], and coreset [31] as graph-independent uncertainty-aware and
diversity-aware active learning strategies, respectively. Furthermore, we include
degree sampling as a graph-based representativeness-based baseline, selecting the
highest degree nodes, as well as the state-of-the-art graph-specific active learning
methods AGE [8], FeatProp [37], LSCALE [23] and GRAIN [43].

As proposed in [8,23,37,43], all baselines use GCNs as classifiers, except
LSCALE, which uses the proposed distance-based classifier. Our proposed
method DiffusAL uses the introduced QBC as a classifier, and we provide com-
prehensive experiments showing the influence of the prediction model.

Hyperparameters. We use the same hyper-parameters having a hidden layer
size of 16, a dropout rate of 0.5, a learning rate of 0.01, and L2-regularization
of 5 x 10~% as proposed in [37]. For DiffusAL, we select a and ¢ as suggested in
[7]. We follow a batch selection and retrain from scratch after each acquisition
round. However, to ensure more diverse uncertainties (and because the other two
scores are static), we follow the setting of [8] and also incrementally train the
model for one epoch between instance selection within one acquisition round.
The evaluation in Sect.4.4 shows that this does not impair our efficiency. To
provide a meaningful evaluation without the effects of an under-trained model or
randomness factors, we report test accuracy for all approaches using a validation
set of size 500 and early stopping. However, the validation set is only part of
the evaluation, not the procedure itself. We set the size of the initial pool to 2C
(cf. 3.1) and report results up to a budget of 20C with step sizes also twice the
number of classes. To simulate a fairly realistic active learning scenario, the initial
pool is sampled randomly without guaranteeing class balance for the baseline
approaches without a specific initialization method. All experiments report an
average of ten random seeds.

! https://github.com /Imu-dbs/diffusal.
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Fig. 3. Active learning curves with the number of labeled nodes on the x-axis and
average accuracy (over 10 random seeds) on the y-axis.

4.2 RI1 - Performance Comparison

Figure 3 depicts the active learning curves for all budgets and datasets. DiffusAL
(blue) is among the best-performing methods on all datasets. Especially on Cora
and Coauthor-CS, we reach the highest mean accuracy for all labeling budgets
and are the only competitor to reach a final accuracy of 83.6% and 92.4%,
respectively. On Pubmed, GRAIN is similarly strong for the first two iterations.
However, afterward, DiffusAL outperforms all methods for the remaining bud-
gets and reaches a final average accuracy of 81.4%. In comparison, LSCALE, the
second-best performing method with respect to the final budget, only reaches
79.9%.

On Citeseer and Physics?, GRAIN and LSCALE are similarly strong as Dif-
fusAL. For both datasets, the learning curves converge to similar accuracies
above a certain labeling budget for some methods such that a clear winner can
no longer be pronounced. Therefore, Fig.4 provides a comprehensive dueling
matrix indicating how often each strategy has won and lost against the other
strategy in a similar fashion as was proposed in [1]. We apply a two-sided t-test
with a p-value of 0.05 to the classification accuracies over 10 random seeds to
count whether one method outperformed another with statistical significance.

2 On Physics, Degree underperformed considerably and is therefore omitted for better
presentation.
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ticularly interesting when evaluating the success of an active learning method.

In summary, the dueling matrix reveals the following insights:

DiffusAL has the fewest losses (0.2%, see first column) and the most
wins (71%, see first row).

— DiffusAL wins over random sampling most often (100%).

— Concerning wins over random sampling, GRAIN is the second-best method
(90%). However, DiffusAL statistically never loses against GRAIN.

The only strategy that can outperform DiffusAL is LSCALE. However, we
beat LSCALE in 62% of experiments and lost only 2% of experiments.

4.3 R2 - Analysis of Contributing Factors

The selected datasets vary widely in terms of the number of nodes, edges, fea-
tures, classes, and class distribution, making it difficult to develop an approach
that can perform well across the spectrum. In the following, we analyze which
components contribute most to DiffusAL’s success and why it is so strong over
a broad range of datasets. Table 2 shows the performance of DiffusAL (bottom
row) and DiffusAL when switching off individual parts of the acquisition func-
tion, i.e., the diversity component (D), the uncertainty score (U) and the impor-
tance score (I) and exchanging the model architecture (middle rows) for 2C, 6C,
and 12C labeling budgets on all datasets where C is the number of classes. Red,
bold numbers indicate the smallest accuracy, indicating the largest influence of a
switched-off component, and blue, bold numbers indicate the highest accuracy.
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We exchange the classifier with a single network variant (MLP) and with a GCN
taking the raw features as input instead of diffused features (GCN). Furthermore,
we report results when using an additive score instead of a multiplicative score.

Table 2. Comparison of DiffusAL with ablated variants. Blue, bold num-
bers indicate the highest, i.e. best, accuracy. Red, bold numbers indicate the
lowest, i.e. worst, accuracy and hence the component with largest influence.

‘ Cora Citeseer Pubmed Cs Physics

D U 1|20 6C 12¢| 20 6c 12| 2¢ 6Cc 120 | 2¢  6C 12C | 2¢  6C  12C
v |55 778 80.6|43.3 638 607|563 68.0 69.8|7L0 817 822|719 89.8 93.8

v | 45.5 76.1 80.1|43.3 65.5 70.0 | 56.3 70.6 75.4 | 7.9 83.3 90.8 | 71.9 89.6 93.1

v v |455 785 817|433 69.8 71.3 |56.3 753 80.0 |7L9 89.3 91.4 | 719 92.4 93.9

v | 745 76.0 | -  67.6 711 | -  64.6 76.5 | 89.4 904 | - 864 871
v v | 76.4 805 | - 677 71.0| - 772 79.9 | - 875 87.3| - 915 92.4
v v | 78.6 81.9 | - 691 71.0| - 749 771 - 905 91.6| - 883 90.9
Additive - 788 813| - 70.8 71.3| - 701 80.2| - 910 92.1| - 917 927

MLP  62.0 788 81.8|527 70.6 71.8|64.1 78.8 79.0|87.8 904 901.2|804 9014 936
GCN  61.8 77.5 80.7 | 40.8 69.3 71.3 | 64.5 76.5 T78.5 | 83.3 89.6 01.2 | 82.7 91.6 93.1

DiffusAL 68.0 79.9 82.3|58.2 69.9 71.8|65.9 80.0 81.4|88.5 90.8 91.8|82.3 92.6 94.1

The importance, uncertainty, and additive scoring have no influence on the
initial pool selection, so we leave out numbers there. Our QBC robustifies the
accuracy, especially in the first iteration, compared to the other two variants
(MLP, GCN). The performance difference between the models gets smaller with
increasing label information. In particular, when label information is sparse,
the committee stabilizes the prediction. However, the diversity component has
the largest impact on the initial set for all datasets. When switching off diversity
(first three rows), the accuracy drops between 9.6% (Pubmed) and 22.5% (Cora).
Other approaches, such as FeatProp or LSCALE, also use clustering in the first
iteration. However, our sampling directly operates on the diffused features, which
subsequently directly influence the training and thus results in a very strong
initial performance.

In general, switching off two scores yields worse results than only switching
off one score, which indicates that the other two scores stabilize the results. But
there is not one most important score over all datasets, supporting our claim that
a robust selection benefits from diverse criteria. For instance, the accuracy drops
the most when switching off uncertainty and diversity on Citeseer (by 2.1%)
and especially on Coauthor-CS (by 9.6%). However, the performance on Cora
and Physics primarily needs uncertainty and importance. In contrast, Pubmed
benefits most from diversity and importance. Interestingly, some of our findings
might give an indication of the performance of other methods. For instance, we
found that importance, i.e., representativeness, is not beneficial on Coauthor-
CS. LSCALE, which mainly focuses on representativeness sampling, yields the
worst performance on this dataset. On Pubmed, however, uncertainty seems
not to work well. Entropy and AGE both include uncertainty sampling and
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Fig. 5. Average time in seconds (x-axis) required for one active learning round com-
pared to the average final accuracy (y-axis) for all methods (color). (Color figure online)

Table 3. Average time in seconds required for acquisition (acq), training (train), and
in total (37) within one active learning iteration. Bold and underlined numbers indicate
the fastest and second fastest methods, respectively. In total, DiffusAL is the fastest
method on Physics and Pubmed, and the second fastest method on Cora and Citeseer.

CS Citeseer Cora Physics Pubmed
acq train | Y acq |train | ), acq |train | acq train | acq |train | ),
AGE 41.271 1 1.849 |43.120 | 1.177 | 0.665 |1.842 | 1.409 |0.544 |1.953 |4.506 |3.366 |7.873 |0.952 |0.679 |1.631

Coreset |5.191 |1.797 |6.988 |0.344 | 0.615 | 0.960 |0.537 | 0.616 |1.154 |0.572 |3.258 |3.830 |0.138 |0.675 | 0.813
Entropy |0.005 |1.831 |1.836 | 0.002|0.605 |0.607 | 0.002 0.665 |0.667 |0.011 |3.358 |3.369 |0.002|0.674 | _0.676
LSCALE | 2.649 |0.317|2.966 |0.019 |0.249 0.269 | 0.042|0.250|0.292|12.7220.258 | 12.980 | 4.121 |0.247 | 4.368
DiffusAL | 2.567 |1.282 |3.849 |0.183 |0.356 | 0.539 |0.268 |0.339 |0.608 |0.357 |2.863 |3.220 |0.043 |0.361 | 0.404

yield worse results. On Cora, where uncertainty and representativeness seem
effective, Coreset and FeatProp, which mainly focus on diversity, are among the
worst-performing methods.

Using an additive score instead of a multiplicative score yields slightly worse
results in general. From 10 comparisons, summing up the scores only yields three
times slightly better results. However, the maximum difference is 0.9% (Citeseer
6C), whereas using the multiplicative in DiffusAL, the additive score is up to
1.4% (Physics 12C) better.

4.4 R3-Acquisition and Training Efficiency

Figure 5 shows the total average time (in seconds) for one active learning step
on the x-axis (smaller is better) and the final accuracy after all 20C labels are
selected on the y-axis (larger is better) for all methods (color).

We focus on an iterative AL selection where re-training between acquisition
steps is necessary to get new uncertainty scores. In contrast, GRAIN, FeatProp,
degree sampling, and random sampling select all instances for labeling at once
and do not require re-training. Therefore, their average time is set to zero, and
their accuracy is plotted for comparison. However, these methods are generally
less label-efficient since they are not directly coupled to the current learning
model. Except for Citeseer, DiffusAL is always on the Pareto-front, yielding the
best final average accuracy while still being fairly time-efficient. In Table 3, we
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split the total time into the acquisition and the training time for the iterative
methods. All GCN-based methods (Coreset, AGE, Entropy) denote fairly similar
training times. Despite using an ensemble, DiffusAL is slightly faster than the
GCN-based methods since the features are pre-computed. AGE and Coreset both
require a longer time for acquisition. AGE can exploit pre-calculated centrality
scores. However, the uncertainty score and especially the density score must be
freshly calculated in each round. Especially for the very large graph data CS,
AGE requires over 40s for one active learning iteration. Coreset extracts the
latent representations from the current model and requires the computation of
a pairwise distance matrix. Compared to that, DiffusAL only needs to calculate
the uncertainty scores derived from the QBC model since the other scores are
pre-computed. Only the entropy-based selection scheme has a faster acquisition
time since it only needs one forward pass through the network.

LSCALE, which also defined a dedicated network towards a unified learn-
ing and selection framework, has the fastest training times out of all methods.
However, depending on the dataset, the acquisition time is much larger than
DiffusAL’s acquisition time. As such, the overall time needed for one active
learning round varies considerably between datasets. For instance, on Citeseer
and Cora, LSCALE is the fastest method out of all iterative methods. Still, on
the much larger graphs Pubmed and Physics, it is the slowest method due to
larger acquisition times (4.4s and 12.7s, respectively). Overall, even though we
use an ensemble method, our training and acquisition times are fairly stable
across datasets and, in total, comparably good as plain uncertainty sampling
with a GCN.

5 Conclusion

The annotation of unlabeled nodes in graphs is a time-consuming and costly
task and, accordingly, it is of great interest to advance label-efficient methods.
Motivated by the success of diffusion-based graph learning approaches, we pro-
pose DiffusAL, a novel active learning strategy for node classification. DiffusAL
uses diffusion to predict node labels accurately and compute meaningful utility
scores consisting of model uncertainty, diffused feature diversity, and node impor-
tance for active node selection, such that training and data selection cooperate
toward label-efficient node classification. DiffusAL is significantly better gener-
alizable over a wide range of datasets and is, in terms of statistical significance,
not beaten by any other method in 99.8% of all experiments. Moreover, it is the
only method that significantly outperforms random selection in 100% of the eval-
uated settings. Due to pre-computed features stored in a diffusion matrix, our
model can efficiently compute a node’s utility for training and acquisition. Our
extensive ablation study shows that each component of DiffusAL contributes to
different datasets and active learning stages, making it robust in diverse graph
settings.
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A Diffusion and Node Importance

We provide further analysis on the node importance scores since they are a key
property of DiffusAL.

Class Distribution of Important Nodes Figure 1 displays the class distribution of
the top k most important nodes for the citation networks. The last bar indicates
the original class distribution comprising all nodes. On Pubmed, the minority
class is heavily underrepresented in the top 60 most important nodes, leading
the node importance score in our active selection to favor samples from the other
two majority classes. On Citeseer, a similar but weaker trend can be observed.
In contrast, on Cora, the distribution of the top k most important nodes rapidly
approximates the actual class distribution.
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(a) Cora. (b) Citeseer. (c¢) Pubmed.

Fig. 1: Class distribution of the most important nodes: the x-axis represents
various budgets of nodes, the y-axis measures the fraction that each class makes
up in the given labeled set. Colors indicate the respective classes.
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Fig. 2: DiffusAL (blue) compared to a purely 2-hop-based alternative (orange).

Node Importance vs. Degree As already discussed, the intuitive interpretation of
the importance score for a given node 4 is the probability of a random walk that
starts at a random node j to end at node 4. Consequently, a valid assumption
is that important nodes tend to have an above-average degree since high-degree
nodes are more likely to be visited during a random walk. Here, we analyze how
the degree differs from node importance since common centrality measures, such
as degree centrality, have already been established as active learning criteria
in related work. Figure 3 displays the overlap of the most important nodes
compared to the highest degree nodes for different budgets up to 20C for each
dataset. Cora has the highest average overlap for the considered budgets with
over 90%. However, for the other datasets, this overlap is a lot smaller at only
around 75% on average, indicating that node degree, while still seemingly a large
one, is not the only influencing factor determining the importance of a node.
Furthermore, a general insight is that the overlap for the topmost important
nodes is the largest and decreases afterward.

Node Importance and Diffusion vs. 2-hop We further analyze the influence of dif-
fusion on sampling and graph learning and drop all diffusion-related content to
demonstrate the advantages. We replace every aspect concerned with diffusion
with comparable components entirely based on k-hop (2-hop) neighborhoods.
Instead of using the PPR matrix to compute propagated features, the original
adjacency matrix (squared and symmetrically normalized) is used. Furthermore,
these features serve as the basis for the labeled pool initialization, cluster affil-
iation, and classifier training. Additionally, instead of the PPR matrix, we con-
sider the column-wise sum of the adjacency matrix for the importance score. The
results, depicted in Figure 2, reveal the advantages of diffusion. Test accuracy
decreases for all three citation networks when using the 2-hop-based replacement
scores while variability increases, as can be seen from the wider error bands.

B Further Explanation on DiffusAL vs. AGE

Among all competitors, AGE is arguably the most related one. However, there
are some important differences regarding the concrete realization of the acqui-
sition function. AGE uses a density score as well as a centrality score. Both
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Fig. 3: Overlap of most important and highest degree nodes for a given budget -
x: various sampling budgets, y: the fraction of nodes appearing in both respective
sets of nodes.

are common choices for representativeness. As such, there might be a strong
tendency to favor very representative instances from the graph. In contrast, we
use a diversity score and node importance as representativeness estimate. The
only purpose of the diversity score is to ensure that no region is oversampled.
However, the node importance ensures that influential points are selected. A key
difference to the centrality score used in AGE is that node importance not only
considers the local neighborhood but takes the whole graph structure into ac-
count. Furthermore, our selection and training both exploit expressive features in
a consistent fashion. That is, the training directly makes use of the precomputed
features. These features are also used for clustering, directly ensuring the diver-
sity that is known to the model. The node importance directly corresponds to
nodes that are most influential. Lastly, DiffusAL does not use any time-sensitive
weighting parameters.

C Hyperparameter Variations

We further have conducted experiments to show the robustness of DiffusAL
regarding the hyper-parameters for model training. For all datasets, DiffusAL
denotes quite stable learning curves. Only on CS, hidden size, dropout, and
weight decay seem to have a larger impact.
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Abstract—Active learning has the power to significantly reduce
the amount of labeled data needed to build strong classifiers.
Existing active pseudo-labeling methods show high potential in
integrating pseudo-labels within the active learning loop but heav-
ily depend on the prediction accuracy of the model. In this work,
we propose VERIPS, an algorithm that significantly outperforms
existing pseudo-labeling techniques for active learning. At its
core, VERIPS uses a pseudo-label verification mechanism that
consists of a second network only trained on data approved
by the oracle and helps to discard questionable pseudo-labels.
In particular, the verifier model eliminates all pseudo-labels for
which it disagrees with the actual task model. VERIPS overcomes
the problems of poorly performing initial models, e.g., due to
imbalanced or too small initial pools, where previous methods
select too many incorrect pseudo-labels and recovering takes long
or is not possible. Moreover, VERIPS is particularly insensitive
to parameter choices that existing approaches suffer from. Our
code is available at https://github.com/Imu-dbs/VERIPS.

Index Terms—active learning, pseudo-labeling, image classifi-
cation

I. INTRODUCTION

High labeling costs are a major challenge for many real-
world applications, while vast amounts of unlabeled data are
available almost for free. One approach to reduce annotation
costs is active learning, which alternates between model train-
ing, sample acquisition, and manual annotation to find the most
informative and meaningful set of data possible.

Active learning algorithms for image classification tasks
vary between searching for the most informative samples [1],
a diverse subset [2] or both [3].

However, most of them miss the opportunity to exploit the
rich information hidden in the unlabeled data. In contrast,
exploiting unlabeled data is the key idea of semi-supervised
learning. A lot of semi-supervised research focuses on con-
sistency regulation [4]-[7] and yield great successes. Key
concepts from this direction have already been considered
in semi-supervised active learning [8]-[10]. However, these
approaches depend on domain-specific data augmentations and
are computationally intensive. On the other hand, pseudo-
labeling is a universally applicable concept with compara-
tively low computational complexity. The idea of pseudo-
labeling is simple: the model provides artificial labels for data
samples that yield high confidence scores and incorporates
those samples as additional data into the classifier’s training.
A natural observation is that confidence scores also play a
crucial role in active learning, except that the opposite side

of the scale is more relevant. In particular, samples with high
predictive uncertainty are considered very informative and are
subsequently sent to the oracle for an accurate label. Since
active learning and pseudo-labeling have a similar ambition
to determine the uncertainty of a model but look at different
ends of the same scale, their combination is very elegant and
possible without much additional effort.

A popular approach to combining pseudo-labels with active
learning is CEAL [11]. The method successfully employs
entropy-based pseudo-labels with threshold decay and shows
promising results. However, CEAL needs two hand-crafted
parameters for selecting pseudo-labels: a confidence threshold
and a decay rate that adapts this threshold over the active
learning loop. Since the selection of pseudo-labels is directly
dependent on the threshold parameter, a sub-optimal choice
can lead to the selection of many wrong artificial labels,
especially in the early stages of active learning.

A sub-optimal initial pool, i.e., there are not enough samples
of one category present or the pool is too small in general,
can also lead to poorly calibrated initial models misguiding
the pseudo-label selection [9], [12]. However, it is not trivial
to determine an optimal size or composition of the initial
pool [13], so it is often selected randomly in practice. Too
large pools depict an under-utilization of active learning, which
harms the sample efficiency. Given this challenge, pseudo-
labeling is either a powerful tool to advance knowledge
or decrease the generalization performance if the model is
continuously built on incorrect predictions [14].

In this work, we discuss these open challenges of com-
bining active learning with pseudo-labeling and propose a
novel method that uses a verification mechanism aiming at
automatic identification and subsequent elimination of ques-
tionable pseudo-labels to exploit the power of pseudo-labeling
safely.

Figure 1 illustrates the overall concept of our novel method
VERIPS: VERIfied Pseudo-label Selection for deep active
learning. The key idea is to employ a verification mecha-
nism using a second so-called verification model, which only
learns from oracle-approved data and thus does not receive
possibly misleading, artificially labeled training samples. The
verification model refines the pseudo-labeled pool in case of
disagreement with the target model. However, an omniscient
verifier capable of discerning true pseudo-labels is not required
here. For our mechanism, it is not crucial whether the target
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annotations Q). @ A verification network is trained on the oracle-approved labeled data. 3 If the verification model does not
agree on the artificially chosen label provided by the target model, the corresponding sample is sent back to the unlabeled
pool. ® The target model retrains on both the labeled and pseudo-labeled data.

or verification model is correct or not. Rather, it is a matter
of preferring to play it safe and discarding more pseudo-
labels than keeping potentially false ones. This mechanism
is intended to provide support for the target model, erasing
many pseudo-labels while the labeled pool is still too small
to actually trust the model predictions and bypass this critical
early phase safely. A valuable benefit of our approach is that
the influence of a handcrafted confidence threshold parameter
is reduced, and we do not need other parameters. VERIPS is
elegant and simple and compatible with any active learning
strategy in its base form. In extensive experiments evaluated
on image classification tasks, we show that VERIPS ensures
robust learning behavior along all stages of the active learning
cycle, outperforming existing active learning strategies with
and without pseudo-labels.

In summary, our main contributions are the following:

« We propose VERIPS, a novel active learning algorithm
that uses pseudo-labeling. In particular, we introduce a
verification component, which significantly reduces the
selection of false pseudo-labels and thus increases label
efficiency.

o In particular, we propose two manifestations of VERIPS
and demonstrate their superiority over common active
strategies with and without pseudo-labeling in extensive
experiments on benchmark image classification tasks. Our
method is insensitive to parameter choices, which existing
active pseudo-labeling methods suffer from.

II. RELATED WORK

Active learning aims at reducing labeling costs by intelli-
gently choosing the data that should be labeled. Active learn-
ing has been explored on various tasks, such as applications
including graph data [15]-[20] or text [21]-[24]. However,
in this work, we mainly consider approaches evaluated on

image classification. For a detailed and thorough summary of
applications and approaches, we point to [25] or one of [26],
[27] for a deep learning oriented portrayal.

Uncertainty-based methods rank the unlabeled instances
based on the uncertainty of the model regarding its predictions
to estimate the informativeness of instances. Popular estimates
are least confidence, margin [25], and entropy [28]. Query-by-
committee [25], [29] describes a group of methods favoring
instances where several models disagree about the class. In line
with the idea of committee approaches, BALD [1] attempts to
exploit disagreement over multiple different predictions using
only one neural network by applying dropout at inference time
and thus getting a distribution over the weights. The batch-
setting, where multiple instances are sent to the oracle instead
of one at a time, led to the emergence of diversity-based
methods [2], [30]-[32] that seek to minimize redundancies
within an acquisition round. A prominent hybrid approach
with a novel notion of uncertainty is BADGE [3]. Uncertainty
is based on so-called gradient embeddings, i.e., the magnitude
of the gradient of a sample with respect to the final layer.
However, the so far mentioned approaches in this section do
not exploit the unlabeled pool.

In contrast, VERIPS is a novel active learning method with
the main focus on safely integrating pseudo-labels and is
therefore also related to semi-supervised learning, in particular
to pseudo-labeling [33]. Pseudo-labeling can be successfully
used in combination with consistency regulation, which aims
at training models that are invariant to different data aug-
mentations [6], [7], [34]. Such techniques have already been
considered in some active semi-supervised works. One idea
is to use data augmentations to determine uncertainty [8],
[9], [35]. Others directly use advanced semi-supervised mod-
els [10] in the active learning loop. However, these methods
rely on domain-specific data augmentations. Such adequate
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augmentations might not be known or applicable. In contrast,
our method is universally applicable and does not require
domain-specific augmentations.

CEAL [11] is a well-cited active pseudo-labeling approach
that uses entropy to estimate the confidence ranking and selects
samples above a time-weighted threshold as pseudo-labeled
training instances. Though the approach shows promising re-
sults, there are open challenges. Conventional pseudo-labeling
often underperforms due to uncalibrated models providing
noisy label suggestions [12]. In particular, neural networks
often tend to be overconfident [36], [37] leading to high
confidence scores for wrong pseudo-labels [12]. However, in
active learning, we start with a very limited budget enforcing
the problem of noisy predictions. As a result, CEAL selects
many false artificial labels, which in turn leads to slow model
convergence [9] since the model overfits on incorrect pseudo-
labels [14]. We hypothesize that there is a lot of potential
in combining pseudo-labeling with active learning, but using
an uncertainty-aware selection scheme is not sufficient to
overcome the problem of poorly performing initial models.

This work combines active learning with pseudo-labeling
and proposes a novel component that alleviates the problem
of selecting wrong and, thus, misleading information from
artificially chosen labels.

III. PROPOSED METHOD VERIPS

In this section, we describe the building blocks of our
approach and outline how they fit into the active learning
cycle. Suppose we are given a large amount of unlabeled
images U = {z}}, and a small amount of labeled images
L = {(xi,y;)} which is randomly drawn from /. We want
to solve multi-class classification with C' categories. A clas-
sifier denoted by 6 learns a mapping from images to labels.
P(y|z;0) denotes the probability given the model 6 and a
sample z that x belongs to class y. We introduce a pseudo-
labeled pool P containing instances of the form (z, y*) where
y+* denotes an artificially chosen label.

A. Verification Mechanism

The core of our method is the verification mechanism to
refine the pseudo-label pool. The main goal is to keep pseudo-
labels where the target model has assigned the correct class
and to detect and eliminate false pseudo-labels. The problem
is that the true class is unknown, so the model confidence
is usually used as an indicator. However, relying on the
prediction of a single network, especially if it was only trained
on a small amount of data, is risky since neural networks tend
to be overconfident [36], [37].

We suggest incorporating another network that gives a
second opinion on the pseudo-labels. We call this the second
network verification model, and in contrast to the actual
task model, the verification model does not see potentially
misleading artificial labels during training. The verifier and
target models use the same backbone and training parameters;
the only difference is the data they see during the training
process. Specifically, a pseudo-label is discarded if:

arg maxP(y|a; 07%,) # arg maxP(ye|z; 077%,), (1)
(& c

where 05«‘?" are the model weights derived from the target
model and 87 from the verification model in a specific round
rd respectively. In other words, no matter how uncertain one of
the models is about its current prediction, we discard a pseudo-
labeled sample if they disagree on the same label. This is a
straightforward yet effective check to reveal discrepancies and
clean the pseudo-label pool.

We emphasize that we do not expect the verification model
to be more reliable than the target model. The verification
network acts as a discussion partner for the target model. It
does not matter that the verification model itself does not
yield very accurate predictions in the beginning. Especially
at early iterations, they are very likely to disagree on most
decisions. This puts more focus on the actual labels released
by the oracle, ensuring healthy training until model confidence
rises and an agreement among the models is established. The
influence of the pseudo-labeling is thus automatically adjusted
to the training state of the models and does not rely solely
on the perfect selection of the threshold parameter or the
predictive performance of a single model.

B. Selection of Pseudo-Labels

Suppose we receive an uncertainty estimate u(xz) for an
instance x where larger values denote higher uncertainty. We
decide whether to derive a one-hot encoded pseudo-label yx
of a sample = and add it to the pseudo-labeled pool P by:

argmaxP(yc|z; Orar) if u(z) > A
c

yx = 2)

0 if u(z) < A

where ) is a threshold parameter that intuitively tells us at
which point we allow to trust the prediction. VERIPS does not
use a decay rate to update the threshold since the verification
mechanism already is an automatism that controls the selection
of pseudo-labels.

C. Algorithm

Our goal is to iteratively retrain the model 67 to obtain
a strong classifier in the end. To accomplish this, we start
the active learning loop and repeat the following steps until
the required number of rounds R have been executed: First,
we perform an acquisition step a(U, O74,) of a predefined
active learning strategy using the current target model 07,
and the unlabeled pool U. The oracle annotates the returned
samples, and we move them to the labeled pool £. Then we
train the verification model 6y, on the increased labeled pool
L. Additionally, we select samples exceeding the threshold \"¢
following Eq. (2) and move them together with their one-hot
encoded most probable class label from U/ to P. Next, we visit
each sample in the pseudo-labeled pool P and move it back to
the unlabeled pool U if the verification model disagrees with
the target model on the artificially chosen class label. The
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Algorithm 1 VERIPS
Input: Unlabeled data pool I/, initially labeled data pool L,
pseudo-labeled pool P = (), number of acquisition rounds R,
AL batch-size B, initialized model 6%, acquisition strategy
a(-,-), threshold A.
1: for rd =0,1,2,...,R do
2: Obtain label for B samples based on a(U, 6% ) and
move them from U to L.
3 Move confident samples exceeding A"¢ from U to P
based on Eq. (2).

4 Train verification model 67%, using L.

5. for x € P do

6: Remove z from P if it does not hold Eq. (1).
7:  end for

8  Retrain 672 using £LUP.

9: end for

10: return Final model parameters 6% obtained in round R

verification model only learns from oracle-approved samples
and has already seen the new labeled instances. However, we
do not compare uncertainty estimates in the verification step;
we only care about discrepancies in the class label’s vote.
Both the pseudo-labeled pool P as well as the labeled pool
L comprise the training data for the target model 6r1,,.. The
loop finishes after a fixed number of rounds R, and we finally
return the target model 07@M. The complete algorithm is shown
in Algorithm 1.

D. VERIPSy and VERIPSE

We propose two explicit variants of VERIPS: (a)
VERIPSy uses margin as uncertainty estimate for both ac-
tive acquisition and pseudo-labeling, i.e., u(z) = 1 —
(P(y1|x;0) — P(y2|x; 0)), where y. ranges over the classes,
and (b) VERIPSg analogously uses entropy, i.e., u(x) :=
— > P(ye|x; 0) log P(yc|z;0). Both uncertainty estimates
are commonly known and popular choices in the active learn-
ing community. Towards a simple and intuitive design, we use
the same heuristic for active selection and pseudo-labeling and
do not mix them. We follow a rank-based selection scheme
without diversity sampling. VERIPS could be used with any
uncertainty heuristic and active learning strategy. However,
we only focus on the proposed two variants due to space
limitations and leave further combinations open for future
investigations.

IV. EXPERIMENTS

We evaluate our approach on benchmark datasets for im-
age classification, namely SVHN [38], CIFARIO0 [39] and
MNIST [40].

a) Training and Model: For SVHN and CIFAR10, we
use a VGG16 [41]. For BALD [1] we use two dropout layers
with dropout rate 0.5. We use early stopping on training
accuracy when a value of 0.99 is reached with a maximum of
200 epochs and a learning rate of 0.001. For the rather simple
dataset MNIST we only use a single-layered neural network

with a hidden dimensionality of 256. All experiments can be
reproduced using our publicly available code base.

b) Active Learning and Pseudo-Labeling: The initial
pool contains 100 labeled images for CIFAR10 and SVHN
and only 20 images for MNIST, and we add additional 1,000
images per active learning iteration for the former and 100
per iteration for MNIST. We repeat all experiments five times
and report average test accuracy as well as the standard
deviation. We consider the following active learning strate-
gies: BADGE [3], BALD [1], MARGIN and ENTROPY [25].
Additionally, we include CEAL [11] as a direct competitor
using pseudo-labels. We follow the original implementation
of CEAL and set the decay rate dr = 0.0033, the starting
threshold Ao = 0.05. For our proposed variants VERIPSg and
VERIPS) we also use a threshold of Ay = 0.05.

A. Results of VERIPS

Fig. 2 depicts the learning curves of the selected active
learning methods evaluated on MNIST, SVHN, and CIFAR10
with the average test accuracy on the y-axis and the number of
labeled samples on the x-axis. Table I denotes exact results for
different annotation budgets. Bold numbers indicate the best
and underlined numbers indicate the second best performing
methods. For all datasets, our method VERIPSy yields the
strongest results for all labeling budgets. VERIPSg yields
similar results for CIFAR10 and SVHN. However, for MNIST
VERIPSg performs similar to the plain ENTROPY sampling
baseline without pseudo-labels until roughly 500 labels are
reached and cannot reach the strong performance of VERIPSy
until the final budget. We assume this is because MNIST is
a rather simple dataset where the power of pseudo-labeling
is not necessarily needed. However, of the three entropy-
based active learning methods, VERIPSE is nonetheless the
strongest. However, VERIPSy is always superior, and on both
CIFAR10 and SVHN, there is quite a gap between our methods
and the others. Especially for the most challenging task on
CIFAR10, we observe up to 10% more accurate predictions
and superior performance for all budgets. The result of BALD
on SVHN is quite interesting; for one particular run, the
performance dropped drastically at some point, resulting in this
large standard deviation. We hypothesize that the instability
only occurs for BALD since it uses two additional dropout
layers as described previously. However, probably most inter-
estingly, CEAL does not perform very well across all datasets
despite the additional use of pseudo-labels. CEAL often needs
several iterations to outperform the active learning baseline
(CIFAR10, SVHN) and, for MNIST, performs worst out of
all strategies. For example, on CIFAR10 CEAL needs over
7,000 samples to get better accuracy than ENTROPY. Even
the random sampling baseline outperforms CEAL, especially
at the beginning. Moreover, both VERIPS variants have fewer
fluctuations across multiple runs with different seeds, which
implies that our method is generally more stable.

We assume that CEAL underperforms due to many wrong
pseudo-labels in the early active learning stages. The model
learns incorrect mappings, which leads to unjustified high



D VERIPS: Verified Pseudo-label Selection for Deep Active Learning

111

o

©
o
©

o

®
o
®

—&— Random
—<— Entropy
—-
—

e
S

Margin
BADGE
BALD
CEAL

—m— VERIPS;

—e— VERIPSy

600 800 1000 1200 1400
size of labeled pool

(a) MNIST

o
S

o

>

testing accuracy
testing accuracy

o
@

o
e

0 200 400 0 1000 2000

3000
size of labeled pool

(b) SVHN

s
[

e
<

Random

Random —
—<— Entropy
-
—

-
—— Entropy
RS
i/

4
>

Margin
BADGE
BALD
CEAL

Margin
BADGE
BALD
CEAL

o
@

testing accuracy

o
=

—®— VERIPS; —=— VERIPSg
—e— VERIPSy —e— VERIPSy
2000 5000 035 2000 2000 8000 10000

6000
size of labeled pool

(¢) CIFAR10

Fig. 2: Test accuracy (y-axis) for different active learning methods at each acquisition round (x-axis) evaluated on different
datasets. Our method VERIPSy yields better test accuracy than CEAL and all active learning baselines on all datasets.

TABLE I: Average test accuracy and standard deviation of active learning methods for different labeling budgets and datasets.
Bold numbers indicate best performing methods and underlined second best. Our methods (bottom) perform best.

Dataset MNIST SVHN CIFAR10
Actively chosen data 500 1,000 1,500 1,000 3,000 5,000 2,000 6,000 10,000
RANDOM 859 +04 884+02 85+£03 | 717+ 1.6 84.1 £ 0.8 863+ 0.6 | 540+ 13 687 +08 729 +0.8
ENTROPY 783+ 05 877+03 91.1£02 | 741 £ 1.6 83.0 £ 1.9 87.7 + 1.1 543+ 17 674+£1.1 701+ 0.6
MARGIN 88.6 205 924 +£02 940+0.0 | 743 £ 3.1 825+ 1.7 88.0 04 | 528 09 69.1 £09 717 £0.8
BADGE 886 £04 920+03 933+£03 | 749 +21 845+ 1.3 88.1+12 | 553 £09 69.0+06 72.0+038
BALD 859+ 04 884+02 895+03 | 709+18 705+244 8794+12 | 521+14 680+£06 71712
CEAL 785+ 40 815+37 845+33 | 477 £6.7 79.4 £+ 0.6 895+ 1.0 | 438 41 674+40 765+22
VERIPSE 81.0 £ 02 909 £02 935+0.1 714 £33 88.9 + 0.3 918 £03 | 557 4+£02 769 +£0.1 799 4+ 0.2
VERIPSM 89.1 04 929 +01 948 +0.2 | 753 +£2.5 89.5 £+ 0.6 913 £ 14 | 589 £ 13 769 + 0.6 80.2 + 04
e . I ness ratio for the different acquisition steps in Fig. 3a. We
o8 // focus on VERIPSE to ensure better comparability between
fos the two methods. VERIPSg (green line) consistently depicts
go4 a higher correctness ratio, reaching almost 95% accuracy
02 / . " ¢ 2000kebel | | - of the artificially chosen samples in the last iteration, with
/ e » ommer "™ ] only minor variations over multiple runs. In contrast, CEAL
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(a) Correctness Ratio. (b) Varying thresholds.

Fig. 3: Left: Correctness ratio of pseudo-labels (y-axis) derived
with CEAL and VERIPS at each acquisition round (x-axis).
Right: Sensitivity of VERIPSg (solid) and CEAL (dashed) to
threshold A for different labeling budgets (colors).

confidence scores for other unlabeled samples, which are then
chosen for the pseudo-labeled pool. This leads to a downward
spiral from which the model has difficulty recovering. In the
end, the model has seen many confusing and contradicting
samples from the oracle-approved annotations and the pseudo-
labeled pool and thus does not achieve the test accuracy
reached by the other strategies. Our interim conclusion is that
the use of pseudo-labeling in conjunction with active learning
has high potential but can also be fragile. In the following
subsections, we will provide more investigations to study the
observed behavior of the active pseudo-label methods.

B. Pseudo-label Correctness

To better understand the reasons for the large performance
gap between the pseudo-label methods CEAL and our method
VERIPS, we take a closer look at the pseudo-label correct-

(orange line) only reaches around 90% in the end and also has
higher fluctuations across several seeds. As intended, VERIPSg
successfully increases the correctness ratio resulting in strong
results straight from the beginning.

C. Sensitivity Analysis

Fig. 3b shows how the average test accuracy (y-axis) of
CEAL and VERIPSg changes with varying thresholds A (x-
axis) evaluated on CIFARI10. Different line colors indicate
different labeling budgets, and the shaded area indicates the
standard deviation. For better comparability, we fix the decay
rate to the originally proposed setting of CEAL and again
use our entropy-based variant. The test accuracy of VERIPSg
is fairly stable across all parameters, clearly visible by the
parallelism to the x-axis. In contrast, CEAL is susceptible to
the threshold, especially when the threshold is set too large
since there is no mechanism filtering wrong pseudo-labels.
This dependency can not be solved trivially since the optimal
threshold can vary between different training settings and
datasets. However, VERIPSg yields robust and superior test
accuracies mostly insensitive to the selected threshold.

V. CONCLUSION AND FUTURE WORK

To summarize, we have discussed the challenges of combin-
ing active learning with pseudo-labeling. When there is hardly
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any labeled data available, pseudo-labels are often incorrect
due to unreliable model predictions. On the other hand, it
is hard to determine the optimal starting point for including
pseudo-labels. As a solution, we presented VERIPS, a novel
active learning approach capable of safely exploiting the
power of pseudo-labeling. The key idea is to use a dedicated
verification network that helps identifying incorrect artificial
labels and reduces the dependence on external parameters. Our
experiments demonstrate the effectiveness and stability of our
proposed method on various image classification datasets.

We leave further investigation on whether we can omit
the threshold parameter completely and how applicable and
successful our verification component is in combination with
other active learning strategies open for future work.
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APPENDIX

A. Further Details on the Pseudo-label Selection

As shown in Figure la, VERIPS has higher pseudo-label
correctness than CEAL. Intuitively one could think that for
VERIPSg the amount of pseudo-labels that are kept for training
is smaller than for CEAL due to the intended filtering of
pseudo-labels. However, Fig. 1b reveals that VERIPS (green)
almost selects as many pseudo-labels as CEAL (orange) over
the whole active learning course. The bars indicate the total
amount of pseudo-labels and labeled samples for each class
incorporated in training. In Figure 1c, we illustrate the pseudo-
label selection behavior of VERIPS (green) and CEAL (or-
ange). The line styles in the bars indicate the amount of kept
correct pseudo-labels (lines directed right), kept incorrect
pseudo-labels (stars), removed correct pseudo-labels (lines
directed left), and removed incorrect pseudo-labels (grid).
CEAL does not remove pseudo-labels and does not have
“remove” bars.

Both methods would choose a similar number of pseudo-
labels in the first and second iterations. However, VERIPS
discards many of them, and fewer wrong pseudo-labels are
kept for training. As a result, the model gets more confident,
and more pseudo-labels fall over the threshold at the third and
subsequent rounds. To summarize, CEAL and VERIPSg both
select similarly many pseudo-labeled samples in total, but the
fraction of correct pseudo-labels is much better for VERIPS.

B. Effect of Imbalanced and Small Initial Pools

The initial pool, which is usually drawn randomly, can
affect the performance of the active learner [1]. For instance,
imbalanced or too small initial pools can lead to poorly
trained models in the early iterations, leading to unreliable
uncertainty scores and pseudo-labels. To analyze how sensitive
VERIPS is regarding such situations, we conduct additional
experiments with different initial pool settings. Fig. 2 depicts
the performance of VERIPSg and CEAL on CIFARI10 using
an imbalanced initial data distribution (50% of the classes are
not included in the initial pool) (Fig. 2a) and a smaller initial
pool with only 50 samples (Fig. 2b). VERIPSg is largely not
affected by the imbalanced initial set and the small starting set
and yields stable results in the long term. In contrast, CEAL
yields unstable and worse results.
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Fig. 1: Effect of pseudo-label refinement with VERIPS.
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Fig. 2: Robustness of VERIPS and CEAL regarding a smaller
or an imbalanced initial pool. Dashed lines indicate the ma-
nipulated version of the data and solid lines the data used in
the main experiments.

TABLE I: Average test accuracy and standard deviation of ac-
celerated and original VERIPS, active learning without pseudo-
labeling (in %) and CEAL evaluated on CIFAR10.

Budget 2,000 4,000 8,000 10,000

Margin

Accelerated | 53.5 £1.0 694 £1.0 79.1£03 80.2+ 04

VERIPS M 589 +13 717+ 13 792+02 802+ 04

w/o PL 528 £09 66.6+05 709+£06 71.7+0.8
Entropy

Accelerated | 519 £ 1,7 674 +07 767+ 17 779 +£13

VERIPSE 557+£25 71.0+£06 79.1 £04 799 02

w/o PL 543 £ 17 632+17 680=£08 70.1+0.6

CEAL 438 £41 590+33 732+£25 76522

C. Accelerated VERIPS

In VERIPS, the verification step in acquisition round rd
utilizes the updated verification model trained on the instances
chosen by the target model in that round. Thereby, always the
newest instances are included in the verification to enhance
the pseudo-label selection. However, this handling requires
training the verification model before we can update the target
model. Utilizing more than a single network for acquisition has
been done in previous works [2]-[4]. However, it negatively

affects the training times and computational costs within the
AL process. To overcome this, we can consider an accelerated
variant of VERIPS. In this variant, in round rd, the pseudo-
labels produced by the task model 65¢  are verified by com-
paring them with the pseudo label suggestions produced by
the verification model of the previous round 6"%;1. That way,
we can parallelize the training of the verification and target
model in the current round and do not have to wait for the
updated verification model. We compare the test accuracy of
the accelerated version, the original version, and the baseline
without pseudo-labeling for the entropy and margin-based
methods in Table I. The accelerated version of VERIPS does
not reach the same accuracy as the original versions of VERIPS
in the earlier stages, but it yields similar results in later
rounds. Moreover, accelerated VERIPS outperforms CEAL in
all iterations. It also outperforms the baselines without pseudo-
labels except for the very first iteration of the entropy-based
variant. To summarize, which variant is best suited depends on
the circumstances. Accelerated VERIPS is a good choice if the
training time is a limiting factor. However, it does not yield the
same robustness as VERIPS in early iterations. We recommend
using the original version when the dataset is highly complex
or the initial pool is suboptimal.
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Abstract. Do we need active learning? The rise of strong deep semi-
supervised methods raises doubt about the usability of active learning
in limited labeled data settings. This is caused by results showing that
combining semi-supervised learning (SSL) methods with a random selec-
tion for labeling can outperform existing active learning (AL) techniques.
However, these results are obtained from experiments on well-established
benchmark datasets that can overestimate the external validity. However,
the literature lacks sufficient research on the performance of active semi-
supervised learning methods in realistic data scenarios, leaving a notable
gap in our understanding. Therefore we present three data challenges
common in real-world applications: between-class imbalance, within-class
imbalance, and between-class similarity. These challenges can hurt SSL
performance due to confirmation bias. We conduct experiments with SSL
and AL on simulated data challenges and find that random sampling does
not mitigate confirmation bias and, in some cases, leads to worse per-
formance than supervised learning. In contrast, we demonstrate that AL
can overcome confirmation bias in SSL in these realistic settings. Our
results provide insights into the potential of combining active and semi-
supervised learning in the presence of common real-world challenges,
which is a promising direction for robust methods when learning with
limited labeled data in real-world applications.

1 Introduction

The success of supervised deep learning models largely depends on the avail-
ability of sufficient, qualitative labeled data. Since manual annotation is time-
consuming and costly, various research directions focus on machine learning with
limited labeled data. While Active Learning (AL) [5,40] aims to label only
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the most informative and valuable data intelligently, semi-supervised learning
(SSL) [8,13,41] aims to exploit the information in the unlabeled pool without
asking for new labels. Given the complementary nature of SSL and AL, it is
intuitive to explore their integration within a unified framework to maximize the
utilization of the available data. However, the effectiveness of AL has been ques-
tioned recently [7,11,31,33]. Some works show that other learning paradigms
capable of exploiting the unlabeled data do not experience added value from
biased and intelligent data selection through AL [11].

However, these findings are mainly based on experiments on well-established,
clean benchmark datasets. But, an excessive emphasis on benchmark perfor-
mance can result in diminishing returns where increasingly large efforts lead to
ever-decreasing performance gains on the actual task [29,45]. As a result, an
exclusive evaluation of such benchmarks can raise concerns about the transfer-
ability of these results to challenges in real-world applications. Therefore, we
review the literature on AL to understand which datasets are commonly used
for evaluation and to what extent AL has been combined with SSL.

Toward a better understanding, we first categorize existing AL methods
into four groups, namely uncertainty sampling, representativeness sampling,
coverage-based sampling, and balanced sampling. Second, we introduce the fol-
lowing three real-world challenges: (1) Between-class imbalance (BCI), where
the distribution over class instances is non-uniform, (2) within-class imbalance
(WCI), where the intra-class distribution is non-uniform, and (3) between-class
similarity (BCS), where the class boundaries are ambiguous. In our experiments,
we demonstrate that each of these real-world challenges introduces confirmation
bias reinforcing biased or misleading concepts toward SSL. Moreover, randomly
increasing the labeled pool may not effectively address the posed challenges. In
fact, the results stagnate early or are even worse than plain supervised learning.
In contrast, we evaluate simple AL heuristics on the introduced challenges and
show that active data selection leads to much better generalization performance
in these cases. This provides empirical evidence of the benefits of incorporating
AL techniques to mitigate the impact of real-world challenges in SSL.

Our main contributions are:

— We provide a thorough literature review on the real-world validity of current
evaluation protocols for active and semi-supervised learning. We find that the
combination is especially understudied in real-world datasets.

— We explore well-established SSL methods in three real-world challenges and
find that confirmation bias in SSL is a problem in all studied challenges and
leads to degraded performance.

— We show that, in contrast to random selection, actively increasing the labeled
pool can mitigate these problems.

2 Related Work

The advantages of AL have been questioned due to the strong performance of
methods exploiting knowledge available in unlabeled data [7,11,33].
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Given AL aims to increase model performance while decreasing annotation
efforts, it is important not to focus on AL in isolation when other training
techniques can lead to improvements in model performance. This makes the
evaluation of AL challenging [32] as there are many ways to configure AL, and
it can be hard to know upfront what works in a real-world scenario.

Our focus is specifically on three realistic data scenarios that can lead SSL
to underperform due to confirmation bias.

2.1 Real World Considerations in Machine Learning

The evaluation of the algorithmic progress on a task can be separated into
internal validity and external validity [29]. When benchmark results are inter-
nally valid, the improvements caused by an algorithm are valid within the same
dataset. However, the overuse of the same test sets in benchmarks can lead to
adaptive overfitting where the models and hyperparameters yielding strong per-
formance are reused, and the improvements are not necessarily caused by algo-
rithmic improvements. On the other hand, external validity refers to whether
improvements also translate to other datasets for the same task. It has been
observed that an excessive emphasis on benchmark performance can result in
diminishing returns where increasingly large efforts lead to smaller and smaller
performance gains on the actual task [29,45]. To improve the validity of bench-
mark results, it is important that the datasets used for evaluation reflect the
data challenges that occur in real-world scenarios.

Considering data challenges has been a well-studied field in machine learn-
ing. Lopez et al. [30] investigate how data intrinsic characteristics in imbalanced
datasets affect classification performance and specify six problems that occur in
real-world data. Both [42] and [50] also focus on imbalanced data and discuss
difficulty factors that deteriorate classification performance. [42] further demon-
strates that these factors have a larger impact than the imbalance ratio or the
size of the minority class. [14] investigates data irregularities that can lead to
a degradation in classification performance. However, to the best of our knowl-
edge studying data challenges in limited labeled scenarios has not yet been well
studied [32,35,49].

2.2 Evaluation of AL in the Literature

To get an understanding of the data commonly used for evaluation in limited
labels scenarios, we performed a literature overview of the papers published
in 13 top-venue conferences! within Artificial Intelligence, Machine Learning,
Computer Vision, Natural Language Processing and Data Mining between 2018
and 2022. We selected papers for screening if “active learning” occurs in the
title and abstract, resulting in 392 papers. When screening, we included papers
that empirically study the improvement of machine learning models for image

1 ACL, AAAI, CVPR, ECCV, ECML PKDD, EMNLP, ICCV, ICDM, ICLR, ICML,
LJCAL KDD, and NeurIPS.
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classification when expanding the pool of labeled data, as is common in AL
papers. Based on this inclusion criteria, we first screened the title and abstracts,
and if we could not exclude a study only on the title and abstract, we did a
full-text screening. Following this screening process, we identified 51 papers.
We find that 47 (94%) of the studies experimented on at least one benchmark
dataset, and 38 (75%) of the studies experiments solely on benchmark datasets?.
To understand how common it is to evaluate AL in more realistic data scenarios,
we count how many papers consider the data challenges BCI, WCI, or BCS or
experiments on non-benchmark datasets. We find that 23 (45%) papers consider
real-world data challenges or evaluate non-benchmark datasets. The most com-
mon data challenge is BCI which 15 (29%) of the papers are considering. As AL
can be improved with other training techniques, we look at how many papers
combine AL and SSL and find that this is done by 13 (25%) of the papers.
However, only 5 (10%) evaluate the performances in realistic scenarios.

3 Learning with Limited Labeled Data

Given an input space X and a label space Y, we consider the limited labeled
scenario where we assume a small labeled pool X! C X and a large unlabeled
data pool X* = X \ X!. We want to obtain a model f(z;0) — RY where
parameters 6§ map a given input x € X to a C-dimensional vector. Supervised
learning trains a model on X while SSL utilizes both X! and X*.

3.1 Semi-Supervised Learning (SSL)

Many approaches to leverage both labeled and unlabeled data have been sug-
gested in the literature [13,44]. More recently, the utilization of deep learning
in SSL has shown impressive performance, and especially different variants of
consistency regularization and pseudo-labeling have been studied [49].

Pseudo-labeling [25] uses the model’s prediction on the instances in X* to
filter highly confident samples and include those with their respective pseudo-
label in the next training iteration. Pseudo-labeling is a simple and powerful
technique for utilizing X“. However, a model producing incorrect predictions
reuses wrong information in training. This is known as confirmation bias [3] and
can greatly impact model performance.

Consistency Regularization [8,41] exploits X* by encouraging invariant
predictions when the input is perturbated, thereby making the model robust to
different perturbed versions of unlabeled data. Perturbations of the data can
be obtained by introducing random noise to the input data or utilizing data
augmentations [41]. Some methods rely heavily on data augmentations which
assume that label-preserving data augmentations are available when applying

2 We consider benchmark datasets as the well-established MNIST, CIFAR10/100,
SVHN, FashionMNIST, STL-10, ImageNet (and Tiny-ImageNet), as well as Caltech-
101 and Caltech-256.
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such methods in real-world use cases. Using consistency regularization in com-
bination with pseudo-labeling helps improve the generalizability through the
perturbed data, which can further enforce the confirmation bias if the model
predictions are wrong.

3.2 Active Learning (AL)

AL alternates between querying instances for annotation, and re-training the
model f(x;0) on the increased labeled pool until an annotation budget is
exhausted or a certain performance is reached. The so-called acquisition func-
tion of an AL strategy determines which instances in X“ are most valuable
and should be labeled to maximize the labeling efficiency. We use the following
taxonomy to distinguish between active acquisition types (Fig. 1).

Instance-Level Acquisition. Each unla-
beled instance z € X" is assigned a scoring

individually, independent of already selected AL Acquisition types

. .

instances, and enables a final ranking of all Instance-Level  Distribution-Level

i [ [

unlabeled 1gstances. . ‘ Uncertainty / Coverage /
Uncertainty sampling aims to query Representativeness Balance

instances carrying the most novel information

for the current learner. Popular estimates are Fig. 1. AL Acquisition Types

least-confidence, min margin, or max entropy

selection [40]. These methods usually query

near the class boundaries as illustrated in Fig.2a. The 2D t-SNE visualization
of MNIST shows a mapping of margin uncertainty, where red indicates high
and blue indicates low uncertainty. Other methods aim to measure model confi-
dence [18] and to distinguish between aleatoric and epistemic uncertainty [34].

Representative sampling assigns higher scores to instances representative of
their class or a certain local region. The central idea is not to select instances
to eliminate knowledge gaps in the current learning phase but to find instances
that have the highest impact on most other instances because, e.g., they are
representative of a class or they are similar to many other instances.

One way to define representativeness is to measure centrality, for instance,
by exploiting a preceding partitioning and selecting the most central instance of
each partitioning [37,55]. Another estimate for representativeness is density, i.e.,
how many (similar) instances are in the near surrounding of a data point [15,
47]. In Fig. 2b, the colors indicate the negative local outlier score [10] mapped
onto the 2D representation of MNIST, which is here used as an indicator for
representativeness. A representativeness selection strategy would favor instances
in the denser red regions in the center of the clusters.

Distribution-Level Acquisition. In contrast to instance-level, distribution-
level acquisition refers to selection strategies that do not consider individual
scores for each instance but strive to optimize the distribution of all selected
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Fig. 2. Exemplary illustration of different acquisition types.

instances. A clear ranking is usually not possible because the worthiness of the
next best instance depends on which instance(s) is (have been) selected before.

Coverage-based sampling, sometimes referred to as diversity sampling, aims
to cover the given data space to avoid overlap of information best. The goal is
to select as diverse instances as possible to maximize the richness of information
in the labeled dataset. The most prominent method of this category is k-Center-
Greedy which maximizes the distance in the feature space between the queried
and the labeled instances [39]. Coverage, or diversity, is a popular companion in
hybrid approaches to assist batch-selection acquisitions [4,23,37].

Balanced sampling aims to balance the number of samples per class and
is especially suited for imbalanced datasets. This subtype is often combined
with other acquisition types, as it does not necessarily select the most valuable
instances on its own [1,6,16]. Figure 2c depicts coverage sampling on an imbal-
anced version of MNIST where the data space is evenly covered. In contrast,
Fig. 2d shows balanced sampling where the selected class counts are uniformly
distributed.

There is an abundance of hybrid methods combining two or more of the
described concepts [4,17,23,37,52]. However, in this work, we focus on highlight-
ing the potential of AL in general and only consider disjoint baseline methods
from each category. For an overview of deep AL methods, we refer to [38,51,53].
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4 Three Real-World Data Challenges

In the following, we introduce three realistic data challenges. We then present
three datasets that implement these challenges on the well-known MNIST task,
which we later analyze in our experiments.

(a) t-SNE BCI-MNIST.  (b) t-SNE BCS-MNIST.  (c) t-SNE WCI-MNIST.

6000 10000

6000 5000 mm MNIST 8000 mmm MNIST
2 WCI-MNIST
5000 BCS-MNIST § 6000
& 4000 = 4000 % 4000
3 3 3000 3
g d000 8 g 2000
2000 2000 €
5
Q
1000 1000 o
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(d) Class distribution (e) Between-class distances (f) Within-class distances
BCI-MNIST. of BCS-MNIST vs. MNIST. of WCI-MNIST vs. MNIST.

Fig. 3. Three realistic challenges (BCI, BCS, WCI) demonstrated on MNIST.

4.1 Between-Class Imbalance (BCI)

Among our challenges, Between-Class Imbalance (BCI) is the most considered
in the literature and is a well-known challenge for supervised machine learning
models. Imbalanced class distributions pose a problem for SSLL methods where
unlabeled data is often assumed to be distributed similarly to the labeled data
and balanced class distributions. BCI can pose a problem for SSL when there is
a mismatch between the labeled and unlabeled class distributions [35] or simply
because some classes are generally underrepresented in both the unlabeled and
labeled pool [21]. However, class distributions in real-world datasets often follow
a long-tail distribution. While class imbalance has been studied for both AL
and SSL separately, an open question remains regarding how to leverage AL
techniques to address the negative effects of class imbalance in SSL.

4.2 Between-Class Similarity (BCS)

Another category of data challenges is Between-Class Similarity (BCS). In real-
world datasets, the boundaries between classes can be hard to draw. Instances
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within the same class can differ widely, and conversely, instances from different
classes can be very similar. High within-class diversity and similarity between
classes happens naturally in many image classification tasks, e.g., diatom or
plankton classification [46] or within histopathology [43].

Datasets with BCS are a challenge for techniques that rely on unlabeled
data for model training, since that contradicts the basic assumptions of SSL.
For instance, according to [12], Fixmatch exacerbates confusion when instances
across classes are similar. The degree of BCS determines whether it is advan-
tageous to sample from class boundaries while the classes can still be differen-
tiated or to prioritize selecting representative instances without ambiguity in
the class assignment. Consequently, this challenge presents an opportunity for
AL to identify and label such samples. This problem does not only occur on
hard-to-solve tasks with high aleatoric uncertainty. Ambiguous label informa-
tion can also occur due to the labeling procedure e.g. when data is labeled by
multiple annotators which can introduce labeling variations [36], or when labels
are acquired automatifcally [27,45]. Label noise can have a large impact on SSL
as the model is more prone to confirm learned mistakes leading to confirmation
bias [28].

Common usage of SSL methods for noisily labeled data is to simply remove
noisy labels and continue training with conventional SSL [2]. Alternatively, some
algorithms distinguish between cleanly labeled, noisily labeled, and unlabeled
data enabling the usage of a massive amount of unlabeled and noisy data under
the supervision of a few cleanly annotated data. However, directly coupling the
data selection actively to the training can be an easy and thus attractive solu-
tion to directly account for label noise or ambiguous class labels without post-
processing wrong labels or complex algorithms and wasted labeling efforts.

4.3 Within-Class Imbalance (WCI)

Imbalance is not only a problem across classes but also within classes [20,22].
Although instances might belong to the same class, they can have a high vari-
ability due to, e.g., pose, lighting, viewpoint, etc. To obtain a model with the
most discriminative capabilities, it must be exposed to the variation within the
class.

Within-class imbalance (WCI) occurs in many real-world problems. In med-
ical imaging, subgroups such as race or gender exist within classes and are often
imbalanced [48]. Similarly, in microscopic classification, the images might have
different viewpoints forming diverse [46] and imbalanced [26] subclusters. In
automatic defect detection for manufacturing systems, the different types of
defects are often all grouped into the same superordinate class and can be very
diverse and imbalanced [20]. It has also been shown that repetition of subclasses
containing highly similar samples occurs in commonly used image classifica-
tion benchmark datasets [9], leading to some subclasses that contain redundant
semantic information being overrepresented.

WCI, similar to BCI, leads to the minority subclass being exposed less in
the optimization process and contributing less to the final model. This leads
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to a bias towards the majority subclass and suboptimal performance of the
learned model. The difference between WCI and BCI lies in the lack of subclass
labels. This deems common solutions for BCI that rely on sampling or cost-aware
learning irrelevant for WCI as they rely on class labels.

4.4 Challenge Construction

To gain insights into how SSL and AL perform when the data challenges are
present, we construct three datasets based on MNIST to reflect the challenges.
We intentionally use MNIST as we can isolate any effects of the data challenges
instead of the potential complexity of the learning task.

BCI-MNIST. We construct a between-class imbalanced version of MNIST
(BCI-MNIST), where 50% of the classes only contain approximately 10% of
the instances. Figure 3a and Fig. 3d illustrate the distribution of the imbalanced
version in a 2D t-SNE plot, and a barplot respectively.

BCS-MNIST. Figure3b shows a 2D t-SNE-plot of an ambiguous version of
MNIST proposed in [34]. The dataset consists of normal MNIST and Ambigu-
ous MNIST, containing a large fraction of ambiguous instances with questionable
labels, thus increasing the class overlap. Figure 3e shows the similarities of each
instance to all instances not belonging to the same class. Compared to the origi-
nal MNIST, the similarity among instances across classes is much higher. In our

experiment, we select 5% of instances from the original MNIST dataset and 95%
of instances from Ambiguous MNIST and refer to it as BCS-MNIST.

WCI-MNIST. The WCI version of MNIST is constructed with the follow-
ing procedure: (1) For each class, we create a sub-clustering using the K-means
algorithm on the original input features with k& = 300. (2) For each constructed
within-class cluster, we select one instance as the underrepresented subclass
except for one majority subclass and remove the remaining instances. (3) We
copy all the instances within the majority subclass multiple times to restore the
original training set size and randomly add Gaussian noise to create slightly dif-
ferent versions. The 2D t-SNE representation is shown in Fig. 3c. While the class
boundaries are sharper than in Fig.3b, many subgroups within each class are
spread around all the data space. Figure 3f shows the summed distance of each
instance to the remaining instances of their respective class for MNIST (blue)
and our constructed WCI-MNIST (orange). WCI-MNIST has more highly simi-
lar instances, and the number of medium distances is much smaller, resulting in
a non-linear decrease in intra-class distances and higher within-class imbalance.
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5 Experiments

In this section, we evaluate established SSL methods combined with simple AL
heuristics on the previously described challenges that ostensibly occur in real-
world scenarios. We use the following experimental setup?.

Backbone and Training. For all experiments, we use a LeNet [24] as backbone
as is commonly used for digit recognition. We do not use a validation set as
proposed in [35] since it is unrealistic to assume having a validation set when
there is hardly any label information. Instead, we train the model for 50 epochs
and use early stopping if the model reaches 99% training accuracy following [4].
The learning rate is set to 0.001, and we do not use any scheduler.

SSL. We include pseudo-labeling [25] (PL) with a threshold of 0.95 as baseline
without consistency regularization. We further include Fixmatch [41] as it is a
well-established consistency regularization technique and Flexmatch [54] as a
strong method tackling confirmation bias [49]. Furthermore, we report results
on a plain supervised baseline (SPV).

Evaluation. We report average test accuracies over five random seeds for dif-
ferent labeling budgets. Initially, we select 20 labeled instances randomly. Then,
we increase the labeled pool to budgets of 50, 100, 150, 200, and 250 labels.

AL. We choose one representative from each of the described categories in
Sect. 3.2 to better assess the strength and weaknesses of each acquisition type. We
use margin uncertainty [40] as an uncertainty baseline. For representativeness, we
perform k-means clustering on the latent features and select the instance closest
to the centroid similar to [19,37]. As a coverage-based technique, we include the
k-Center-Greedy method proposed in [39]. For balanced sampling, we create a
baseline that selects instances proportional to the sum of inverse class frequencies
in the current labeled set and the corresponding prediction probability. Though
this might not be a strong AL baseline in general, we expect to see a slight
improvement in the BCI challenge.

Datasets. We use the three constructed datasets explained in Sect. 4.4 to form
the unlabeled pool, as well as the original MNIST. For testing, we use the original
MNIST test set to ensure comparable results.

5.1 Experiment “BCI-MNIST”

Figure4b depicts the average accuracy of supervised learning (SPV, blue),
pseudo-labeling (PL, green), Fixmatch (orange), and Flexmatch (red) for differ-
ent labeling budgets on MNIST (solid) and BCI-MNIST (dashed) with random

3 See also https://github.com/lmu-dbs/HOCOBIS-AL.
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Fig. 4. (a) t-SNE of BCI-MNIST challenge. (b) Average test accuracy of all learners
evaluated on BCI-MNIST (dashed) and MNIST (solid). In (d), we observe for BCI-
MNIST, the entropy over the selected pseudo-labels falling over the threshold for each
class is much smaller. This indicates that the distribution of selected pseudo-labels for
BCI-MNIST is more imbalanced, repeatedly confirming the imbalance. (d), (¢) and (f)
show the selected AL curves for Flexmatch, Fixmatch, and PL compared to random
sampling (black). (Color figure online)

labeling. BCI has a severe impact on the performance of all learners. However,
Fixmatch is affected most and even performs worse than SPV. Since training
takes much longer for SSL, [35] argue that these methods should clearly outper-
form SPV to be considered useful. This is no longer true in our experiment, even
on a simple task like MNIST. Figure 4c visualizes the entropy over the number
of pseudo-labeled instances per class that Fixmatch would choose for training
for BCI-MNIST (blue) and MNIST (orange). On MNIST the entropy is much
higher, indicating that the distribution over the classes is more uniformly dis-
tributed. The problem is not only that the selected labeled data is imbalanced,
but the chosen pseudo-labels repeatedly confirm the imbalance, such that the
underrepresented classes get even more underrepresented.

However, the AL curves in Figs.4e and 4f demonstrate that the choice of
data selection methods has a substantial impact on the performance of each
learner. Fixmatch largely benefits from coverage-based sampling, representative
sampling, and uncertainty sampling for later iterations. For the final budget of
250, the gap between coverage and uncertainty acquisition and random selection
is around 20%. PL and Flexmatch also greatly benefit from coverage and uncer-
tainty sampling. Coverage sampling is even able to restore the accuracy achieved
on MNIST with random sampling, yielding 88.3% for PL and 94.1% for Flex-
match. Interestingly, balanced sampling is not among the best active methods.
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Even though the performance is slightly better than random sampling, the other
methods are much stronger. This is probably because balanced sampling with-
out the combination of any other method does select less informative and more
redundant information.

5.2 Experiment “BCS-MNIST”

Figure 5b illustrates the learning curves for the learners on MNIST and BCS-
MNIST. All methods suffer, but Fixmatch clearly suffers the most and is no
longer better than plain supervision. In this scenario, there is no additional
benefit of exploiting the unlabeled pool, but the training times are multiple times
larger. Figure 5c illustrates the fraction of wrong pseudo-labels surpassing the
threshold when training Fixmatch on MNIST (orange) and BCS-MNIST (blue).
Over 40% of the predicted pseudo-labels over the threshold are wrong up to a
labeling budget of 200 instances. Figures 5e and 5f denote the learning curves of
Flexmatch, Fixmatch, and PL when increasing the labeled pool actively. Notably,
all learners benefit from coverage-based sampling. Representative sampling is
beneficial for Fixmatch. This method promotes instances representative of a
certain class or region and probably selects instances that are less ambiguous
for training. However, as expected, employing the uncertainty baseline in this
context proves to be a poor choice. The strategy lacks the ability to differentiate
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Fig. 5. (b) Average test accuracy of all learners with random selection for BCS-MNIST
(dashed) and MNIST (solid). (c) shows the amount of wrongly predicted pseudo-labels
falling over the threshold using Fixmatch for BCS-MNIST is much larger than for
MNIST. (d), (e) and (f) show the AL curves for Flexmatch, Fixmatch, and PL com-
pared to random sampling (black). (Color figure online)
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between aleatoric and epistemic uncertainty, leading to the selection of many
ambiguous instances, further misleading the training.

5.3 Experiment “WCI-MNIST”

Figure 6b shows that for WCI-MNIST, the accuracy of all learners stagnates
around 10% to 15% earlier compared to MNIST. Using random sampling does
not find the underrepresented diverse instances, and only the same concepts are
entrenched and further confirmed over the training procedure. Even though the
correctness ratio of the pseudo-labels surpassing the threshold using Fixmatch is
larger for WCI-MNIST than for MNIST, the achieved mean test accuracy stops
at roughly 82% (see Fig. 6c¢).

However, using AL, we can find more diverse and valuable instances than the
already known concepts and reach a better final accuracy overall for SSL (see
Figs. 6d to 6f). Especially coverage-based sampling seems to be a viable choice.
For PL, the final average accuracy using uncertainty-based and coverage-based
sampling on WCI-MNIST is even equally good as the performance on the original
MNIST using random sampling. In the early stages, uncertainty sampling is the
worst method probably because it lacks diversity aspects, and the predictions in
early iterations might not be very reliable. However, for the final budget, uncer-
tainty sampling matches or surpasses most other methods. The representative
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Fig. 6. (b) Average test accuracy of all learners for WCI-MNIST (dashed) and MNIST
(solid). In (d), we observe that even though more pseudo-labels are chosen correctly
using Fixmatch for WCI-MNIST (blue line), the test accuracy is much smaller (blue
markers) than for MNIST (orange) because only the same concepts are confirmed over
and over again. (d), (e) and (f) show the selected AL curves for Flexmatch, Fixmatch,
and PL compared to random sampling (black). (Color figure online)
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baseline focuses on instances that are most central in clusters, probably resulting
in only selecting the already known and easy-to-classify concepts lacking novel
information and does not outperform random sampling in most situations.

6 Key Findings

Table 1 shows the average test accuracies of SPV, Fixmatch, PL, and Flexmatch
on BCI-MNIST, BCS-MNIST, and WCI-MNIST for all AL heuristics compared
to random sampling, where bold and red numbers indicate best- and worst-
performing methods per column respectively for 50 and 250 labeled instances.
Our key findings can be summarized as follows:

— For all introduced data challenges, the SSL methods suffer from confirmation
bias. There is no consistent winner among all query strategies, but random
sampling is never the best query method for the SSL methods when faced
with BCS, WCI, and BCI. This provides empirical evidence that AL is a
useful tool to overcome confirmation bias in SSL.

— In the early stages, representative sampling is often beneficial. In contrast,
uncertainty sampling usually performs better in later iterations where model
predictions are more reliable. As expected, uncertainty sampling is not a good
choice for BCS since it queries from overlapping, confusing regions.

— Coverage sampling is often the best strategy for SSL methods. We assume
that is because more diverse queried instances bring in new aspects to the
data, and the easier concepts can already be learned by pseudo-labeling and
consistency regularization.

— Our balance baseline often performs on par with random selection. However,
for the BCI challenge, it yields slightly better results. We conclude that it
should mainly be used in combination with other selection heuristics.

— Overall, the most challenging dataset for SSL and AL is BCS-MNIST. By
using AL, we can mitigate confirmation bias more effectively for the challenges
BCI and WCI compared to random sampling.

Table 1. Average test accuracy for SPV, Fixmatch, PL, and Flexmatch for BCI-
MNIST, BCS-MNIST, and WCI-MNIST for all sampling methods and budgets 50
and 250 (L). Bold and red numbers indicate column-wise best- and worst-performing
methods, respectively.

Supervised Fixmatch Pscudo-Labeling Flexmatch

BCI BCS WCI BCI BCS WCI BCI BCS WCI BCI BCS WCI
L [50 [250 (50 [250 |50 [250 [50 [250 |50 250 |50 |250 |50 |250 |50 |250 |50 |250 |50 250 |50 |250 |50 |250
Rnd [49.4 [68.9 [48.6 [82.3 [59.3 [67.8 [51.2 [69.0 [38.1]71.3 [79.2 [85.1 [43.6 |74.3 [39.6 |75.9 [55.7]72.4 [50.5 [74.0 |34.3 |74.8 [76.4 |79.3
Unc |52.0 | 82.5|53.0 [80.5 |47.8 [70.0 |38.3 |90.1 [32.8|62.1 |71.5 |87.6 | 43.3 |88.3|33.8 [70.9 |44.5]89.7 |52.5 |94.1|33.2 |67.9 | 67.4 85.3
Cov [47.9 | 79.2 |55.2|83.8|63.0 | 87.6 | 57.4 |90.3 | 38.9| 78.2 | 75.8 |92.946.2 |86.4 | 43.4|84.0|53.0| 90.5 | 53.8|87.6 |34.7 |82.8| (7.0 |90.1
Bal [48.2 |68.7 [50.6 |78.5 |58.0 |64.1 |52.7 [70.2 |35.0 762 |81.8 |84.4 |48.8|77.6 38.0 |75.5 |56.5|G7.5 |51.5 |76.3 |31.0 |74.5 |75.7 |82.1
Rep |54.7|66.8 [47.7 | 75.8 | 61.6 |66.1 |58.8 |84.1 [39.0|73.9 |84.8|86.3 |48.2 |75.8 |41.2 |78.9 |45.7|78.7 |51.8 |83.3 |42.9|70.8 | 77.6 | 79.9
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7 Conclusion

In this work, we study the real-world transferability of critique points on the
combination of SSL and AL on benchmark datasets. Our experiments show
that AL is a useful tool to overcome confirmation bias in various real-world
challenges. However, it is not trivial to determine which AL method is most
suitable in a real-world scenario. This study is limited to providing insights
into confirmation bias in SSL when confronted with between-class imbalance,
between-class similarity, and within-class similarity and the potential of simple
AL heuristics. In the future, we intend to extend our experiments to a broader
range of datasets, with a strong focus on real-world examples. Moreover, we aim
to include existing hybrid AL methods in our evaluation and to design a robust
active semi-supervised method capable of consistently overcoming confirmation
bias in SSL on diverse challenges.
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Real-World Considerations

BCI WCI BCS SSL

Kothawade et al. [9]

Park et al. [15]

Elenter et al. [4]
Kirsch et al. [§]
Liang et al. [10]

Hacohen et al. [6]
Zhang et al. [22]
Beluch et al. [1]

Ning et al. [14]
Munjal et al. [12]
Zhang et al. [23]

Choi et al. [2]
Zhang et al. [20]
Gudovskiy et al. [5]
Wang et al. [18]
Ning et al. [13]
Sinha et al. [17]

Imbalance or rare classes, out-of-
distribution data, redundancy in the
unlabeled set

Open-set noise

Dataset redundancy in STL-10
Repetition in MNIST

Incorporation with natural language expla-
nation

An imbalanced subset of CIFAR-10
Extreme class imbalance

Highly class-imbalanced diabetic retinopa-
thy dataset (in medical diagnosis)
Open-set annotation problem

Class imbalance

Poor data utilization and missing informa-
tive sample in medical data

The heavily imbalanced NEU dataset
Class imbalance in Caltech-101

Biased class imbalance

Imbalanced data

Unexpected noise

Noisy data caused by an inaccurate oracle

Mullapudi et al. [11] Imbalanced data

Du et al. [3]
Yi et al. [19]
Kim & Shin [7]
Shao et al. [16]

Zhang et al. [21]

Class distribution mismatch

Imbalanced data, cold-start problem
Redundancy and highly similar samples
Highly imbalanced classes and cold-start
problem

Class imbalance

v

< ENENEN

ASENENEN

NN

v

v

Table A.1: Overview of studies evaluated in realistic scenarios. BCI is between-
class imbalance, WCI is within-class imbalance and BCS is between-class simi-

larity. SSL denotes if a study combines AL with SSL.
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