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Summary

The cosmological wavefunction is one of the central objects when one is considering the
formulation and computation of cosmological observables in inflation. In recent years,
the wavefunction has gained further interest when it was found that its diagrammatic
expansion, at each order in perturbation theory, can be understood combinatorially in
terms of geometric objects, cosmological polytopes. To each Feynman diagram in the
wavefunction there is one correspondent polytope whose volume form is the integrand of
the associated Feynman integral (cosmological integrals).

In this thesis, we explore the analytic properties of these integrals by developing a frame-
work to compute their divergences. This framework is heavily dependent on mathematical
objects, Newton polytopes, which capture the asymptotic structure of the integrand; as
well as, the understanding of the geometry of the loop measure for a general cosmological
integral. This allows us to understand the divergent structure of any loop cosmological
integral. As well as computing their leading and sub-leading divergences in terms of a
series expansion in an analytic regulator. This, in turn, permitted the development of a
diagrammatic scheme that constructs infrared safe computables. Furthermore, we were
able to explore computational methods for the one loop wavefunction, having computed
the one loop two-site wavefunction and showed that the function space for the one-loop
three-site wavefunction consists of Elliptic iterated integrals. Finally, we discuss the rele-
vance of these tools to tackle a long standing issue in inflationary cosmology, the existence
of infrared divergences for light scalar fields in expanding backgrounds. As well as possible
phenomenological applications.

Afterwards, we turn to the combinatorial structure of the wavefunction. We start by
providing an alternative combinatorial picture for each graph in the wavefunction, the
graph associahedron. This new combinatorial picture has the advantage of being able to
easily combine every single graph associahedron to build a new polytope, the Cosmohedron.
This encodes all the contributions to the wavefunction. We describe how to obtain the
wavefunction from of the cosmohedron. And we further show the generalisation of the
Cosmohedron for the loop wavefunction. Additionally, we use the same ideas to construct
the polytope for the correlator. Finally, we discuss how the cosmohedron may provide a
path towards a stringy formulation of cosmological correlators.
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Zusammenfassung

Die kosmologische Wellenfunktion ist eines der zentralen Objekte, wenn es um die For-
mulierung und Berechnung kosmologischer Observablen in der Inflation geht. In den letzten
Jahren hat die Wellenfunktion weiter an Interesse gewonnen, als man herausfand, dass ihre
diagrammatische Ausdehnung bei jeder Ordnung in der Störungstheorie kombinatorisch
in Form von geometrischen Objekten, den kosmologischen Polytopen, verstanden werden
kann. Zu jedem Feynman-Diagramm in der Wellenfunktion gibt es ein entsprechendes
Polytop, dessen Volumenform der Integrand des zugehörigen Feynman-Integrals ist (kos-
mologische Integrale). In dieser Arbeit erforschen wir die analytischen Eigenschaften dieser
Integrale, indem wir einen Rahmen entwickeln, um ihre Divergenzen zu berechnen. Dieser
Rahmen ist stark abhängig von mathematischen Objekten, Newton-Polytopen, die die
asymptotische Struktur des Integranden erfassen, sowie vom Verständnis der Geometrie des
Schleifenmaßes für ein allgemeines kosmologisches Integral. Dies ermöglicht es uns, die di-
vergente Struktur jedes kosmologischen Schleifenintegrals zu verstehen. Außerdem können
wir ihre führenden und untergeordneten Divergenzen in Form einer Reihenentwicklung in
einem analytischen Regulator berechnen. Dies wiederum ermöglichte die Entwicklung eines
diagrammatischen Schemas, das infrarotsichere berechenbare Größen konstruiert. Darüber
hinaus waren wir in der Lage, Berechnungsmethoden für die Ein-Schleifen-Wellenfunktion
zu erforschen, indem wir die Ein-Schleifen-Zwei-Seiten-Wellenfunktion berechneten und
zeigten, dass der Funktionsraum für die Ein-Schleifen-Drei-Seiten-Wellenfunktion aus el-
liptischen iterierten Integralen besteht. Schließlich diskutieren wir die Relevanz dieser
Werkzeuge, um ein seit langem bestehendes Problem in der inflationären Kosmologie zu
lösen: die Existenz von Infrarot-Divergenzen für leichte Skalarfelder in expandierenden
Hintergründen. Außerdem diskutieren wir mögliche phänomenologische Anwendungen.
Danach wenden wir uns der kombinatorischen Struktur der Wellenfunktion zu. Wir begin-
nen mit einem alternativen kombinatorischen Bild für jeden Graphen in der Wellenfunktion,
dem Graphen-Assoziahedron. Dieses neue kombinatorische Bild hat den Vorteil, dass jedes
einzelne Graphenassoziaeder leicht kombiniert werden kann, um ein neues Polytop, das
Kosmoeder, zu bilden. Dieses kodiert alle Beiträge zur Wellenfunktion. Wir beschreiben,
wie man die Wellenfunktion aus dem Kosmoeder erhält. Außerdem zeigen wir die Ver-
allgemeinerung des Cosmoeders für die Schleifenwellenfunktion. Außerdem verwenden wir
die gleichen Ideen, um das Polytop für den Korrelator zu konstruieren. Schließlich disku-
tieren wir, wie das Kosmoeder einen Weg zu einer stringy Formulierung kosmologischer
Korrelatoren bieten kann.
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Chapter 1

Introduction

Over the past century, the understanding of the beginning of the universe has rapidly
improved. Guided by a deep understanding of particle physics, through the Standard
Model, and of gravity, through general relativity, cosmologists have a beautifully working
picture of the evolution of the universe from the first 10−10 seconds until the present day,
which we call the ΛCDM model. One key catalyzer for this revolution in our understanding
of the universe was Einstein’s paper on general relativity in 1916. This new theory of
gravity was crucial to the first proposal of the Big Bang model a few years later in 1927 by
Lemaître, which was further developed over the next decades. In the Big Bang model the
universe started in hot dense state nearly 13.8 billion years ago, and expanded (and cooled)
until its current state. Strong evidence of this expansion quickly appeared when, in 1929,
Edwin Hubble experimentally verified what later became known as Hubble-Lemaître’s
law. He demonstrated that galaxies are moving away from us at speeds proportional to
their distance [2]. This was a crucial piece of evidence that the universe was expanding
in concordance with Lemaître’s model. Further evidence for the Big Bang model came
in 1964, when Arno Penzias and Robert Wilson first discovered the cosmic microwave
background (CMB) [3], which is pictured in figure 1.1. The CMB is the light emitted at
the surface of last scattering. This is the period when photons decoupled from matter,
and travelled freely across spacetime until they reach us today. Thus, it is one of the
experimental cornerstones of modern cosmology, as it is on of the strongest evidences
of the Big Bang model. However, at this point there were a few puzzles in this model,
namely the Horizon problem, the flatness problem, the super-horizon correlations in the
CMB and the magnetic monopole abundance problem in grand unified theories (in the
next section we will explain these problems in more detail). This lead to the proposal of
the inflationary universe in the beginning of the decade of 1980, by Guth [4], and later it
was further developed by Linde [5], Albrecht and Steinhardt [6] and Starobinski [7], among
many others. The theory of inflation describes the beginning of the universe as being a
period of exponentially fast expansion of spacetime where the quantum fluctuations of a
scalar field get stretched to super-horizon scales and seed the initial conditions for the early
universe. These perturbations are in principle related to the temperature perturbations
we see in the CMB, which later evolve to form the distribution of galaxies as we observe
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Figure 1.1: The cosmic microwave background (CMB) [1].

today in the large scale structure. Furthermore, we will see later that inflation resolves
the puzzles mentioned above. At around the same time, observations of the large scale
structure of universe led to the proposal that besides baryonic matter (matter described by
the standard model of particle physics), there was a much bigger abundance of dark matter,
and dark energy. This lead to the formulation of the ΛCDM model [1] which parametrises
the abundance of the different forms of energy/matter in the universe, and thus correctly
models the evolution of the universe from the period after inflation until the present day.
Since then more accurate measurements of the CMB, for example the experiments COBE,
WMAP and Planck [1, 8–12], supported the ΛCDM model predictions of the composition
and geometry of the universe.

In this thesis, we will focus in the study of several aspects related to the quantum
fluctuations during the inflationary period. To understand how these fluctuations arise, it
is first important to understand why inflation is needed and what is the basic underlying
physics that describes it, in what follows we will have a qualitative discussion about this.
For more detailed discussions on this topic we refer the reader to [13–19].

1.1 Inflation

Recent observations of the early universe exhibit three problems that, without inflation,
had been left unaddressed - the Horizon problem, the flatness problem, and the super-
horizon correlations. Starting with the Horizon problem, the key concept is the co-moving
particle horizon, dh. This is the co-moving distance that light can travel in the period
t− ti, and determines the region that the observer has causal contact with. We can define
it as:

dh =
∫ t

ti

dt

a(t) =
∫ a

ai

d log a 1
aH

, (1.1)
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where the function a(t) is the scale factor that usually defines a FLRW (Friedmann-
Lemaître-Robertson-Walker) spacetime, which has a metric of the type: ds2 = −dt2 +
a(t)dx2. The parameter H = ȧ

a
is the Hubble parameter, and it is the physical energy

scale that characterises a FLRW spacetime. The quantity (aH)−1 is the co-moving Hubble
radius, and in the literature, is often referred to as the horizon, due to the fact that, in
standard cosmological settings, dh ∼ (aH)−1. Thus the Hubble radius provides the region
that is causally connected within one expansion time, H−1.

Given this, the horizon problem stems from the fact that one can find patches of
the CMB whose particle horizons (considering a standard matter or radiation dominated
cosmology) do not overlap at the big bang singularity. Yet, we find that the temperature
of the CMB is extremely homogeneous. Fluctuations around the average temperature have
magnitudes of 10−5. This is hard to explain if we believe that these patches have never
come into causal contact, and defines the horizon problem. The flatness problem of the
early universe is related to the fact that our measurements of the curvature of the early
universe, yield that the universe was essentially flat, to a great accuracy. However, when we
consider a standard cosmological model consistent with our universe, we find that equations
of state lead to value zero of the curvature to be an unstable fixed point. We would require
an extreme amount of fine tuning in order to have a flat spacetime. Finally, in the CMB
we find that the density fluctuations in different points in the CMB are correlated, in fact
they are correlated even at different points which are in principle causally disconnected.

Inflation addresses these problems by providing a mechanism in which the Hubble radius
shrinks for a certain period in the very beginning of the universe, and thus at the time of
the CMB the particle horizon is much larger than the Hubble radius. This provides an
explanation to all the problems mentioned above. It resolves the horizon problem because
at the beginning of inflation the Hubble radius was much larger and then shrank during
the inflationary period. Thus regions which are not in causal contact at the CMB time,
could have been before during the initial stages of inflation. Similarly, one can understand
super-horizon correlations in the same way, during the period where the Hubble radius
was larger there could have been processes that were causally allowed, yet as their length
scale became larger than the Hubble radius (since this shrank, this is usually referred to
as exiting the horizon) they can be observed today as super-horizon correlations.

One fundamental idea in inflation is that the Hubble radius shrinks during this period,
so in practice, we want that:

d

dt

( 1
aH

)
= −1

a

(
1 + Ḣ

H

)
< 0 , (1.2)

where we define ε ≡ − Ḣ
H

. For the inequality to hold true, we need that ε < 1. Furthermore
current observations of scale invariance of the power-spectrum require that ε ≪ 1 [1]. Thus
the expansion factor H must be nearly constant and this means that a ≈ eHt, which is
the de Sitter scale factor. In other words, we need that the inflationary background is
described by a quasi-de Sitter spacetime.
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In order to realize this, in inflation one usually considers a scalar field, ϕ, with an action:

S =
∫
dtdx

√
−g

(
M2

Pl
2 R − 1

2(∂ϕ)2 − V (ϕ)
)
, (1.3)

this action leads to the following equation of motion and Friedmann equation, respectively:

ϕ̈+ 3Hϕ̇+ dV

dϕ
= 0

H2 = 1
3M2

Pl

(1
2 ϕ̇

2 + V
)
.

(1.4)

From these equations we can find ε:

ε = ϕ̇2

2M2
PlH

2 . (1.5)

Therefore, in order to obtain our condition ε ≪ 1, we must have that the potential energy
must be much larger than the kinetic energy. And, for inflation to continue for a sufficient
amount of time, we must have that the kinetic energy does not increase very fast, thus the
second derivative of the field must be small. These conditions pose constraints on the type
of potential that is allowed, however there are still infinitely many choices for potentials.

We discussed how this scalar field can drive the exponentially fast expansion of space-
time, and thus driving inflation, which can provide an explanation for the horizon and
flatness problems. However, we still have not fully addressed the super-horizon correla-
tions, namely we have to understand how the fluctuations in the CMB were created in the
first place. The answer comes from the fact that the scalar field can have quantum fluctu-
ations which are stretched by the expansion and become of the scale of the universe. To
understand these fluctuations, we will consider a quantum field theory for a massive scalar
in a fixed power-law FLRW spacetime. That is, a spacetime background with metric:

ds2 = −dt2 + a(t)2dx = a(η)2(−dη2 + dx) , (1.6)

where η =
∫ t′

0
dt
a(t′) is conformal time. By power-law FLRW we mean that a(η) = − 1

(Hη)γ ,
for example γ = 1 is de Sitter spacetime and γ = 0 is Minkowski. And by fixed background
we mean that we will not be considering a dynamical gravity setup, and it is simply a scalar
field in an expanding background with at most self-interactions. This is the underlying
setup of the entire thesis.

Then, before we delve into the complexities of interacting quantum field theory, it is
necessary to understand the quantization of the free theory first. With that in mind, let
us consider the action for a massive scalar field in a power-law FRW background, given by

S[φ] =
∫
dη d3x

√
−g

(
−1

2(∂φ)2 − 1
2(m2 + ξR)φ2

)
. (1.7)

Note that our mass term has an additional term (ξR) when compared to Minkowski space-
time actions for scalar fields, which denotes the coupling to the background. Henceforth,
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we will re-define the mass to be µ2 ≡ m2 + ξR. There will be two particular values of
interest throughout this thesis, the massless minimally coupled scalar field (µ = 0), and
the conformally coupled scalar field (µ2 = 2H2 for dS). From the action we can derive the
equations of motion:

∂2
ηφk + ȧ

a
∂ηφk + (k2 + µ2a(η)2)φk = 0 , (1.8)

where we have already performed a spatial Fourier transform. Specializing the form for the
scale factor, a(η) = − 1

(Hη)γ , we then obtain a differential equation for general massive states
in general power law FLRW cosmologies. We will solve it in two limits, for a massless field
for general power γ, and the massive field in de Sitter (γ = 1). Of course, in the Minkowski
limit we obtain the standard Klein-Gordon equation. In these limits, the equation (1.8)
can be transformed into a Bessel equation, and we can write the solution in the following
from:

φk(η) = H
√
kη

1
2 +γ

(
c1H

(1)
ν (−kη) + c2H

(2)
ν (−kη)

)
. (1.9)

And:

ν = 1
2 + γ , (µ = 0,FRW) ,

ν =
√

9
4 − µ2

H2 , (µ, γ = 1) .
(1.10)

Now, we need to fix the constants c1 and c2. In order to do that, we will pick the
vacuum of the theory to be Bunch-Davies [20]. This vacuum is de Sitter invariant for
massive states [21], and it implies that the mode functions for very short wavelengths or
very far away from the future boundary (η → 0) reduce to a standard Minkowski mode
function. This adheres to our naive expectations that very short wavelength modes do not
feel the curvature. Using the known behavior of Hankel functions when −kη → ∞, we find
that the mode functions become:

φk(η) = H

√
π

4 e
− i

4π(1+2ν)(−η) 1
2 +γH(2)

ν (−kη) . (1.11)

An interesting exercise to consider is to take the limit of the mode functions when η → 0,
in a de Sitter spacetime, for example. Physically, this means that the fields are approaching
the future boundary of de Sitter. We find that the massive fields all vanish in this limit,
and only massless fields reach the boundary. This has very interesting implications, since it
means when considering correlation functions in inflation, massless fields are more relevant
external states since in principle those are the ones that reach the boundary and produce
observables.

As mentioned above, we will be particularly interested in massless conformally coupled
scalars in de Sitter. For these, the mode functions are simpler, taking the limit:

φk(η) = H
(−η)√

2
eikη , µ2 = 2H2 , (1.12)
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as you can see the mode functions are very similar to plane waves. This is an extremely
useful observation, since as we will see later on it allows connecting the flat space observ-
ables to FLRW observables with conformally coupled scalars, which can then be related to
states with different masses in FLRW.

1.2 Cosmological Correlators
Cosmological observable is an all-encompassing term, but the natural first observable to
consider is a correlation function of fields at different points in the future boundary of
inflation [22–28], henceforth called cosmological correlator. Here, we will have a quick
overview of how to compute this correlation functions.

Cosmology is an observational science, since all the experiments have already happened.
To measure any inflationary observable, all we have access to, is a space-like surface at the
future boundary of inflation. Therefore, unlike in particle physics where we can prepare
the incoming states and measure the asymptotic out-going states, in inflation we can only
assume that the state evolved from the vacuum at past infinity to a some state on the
boundary. Computationally, this means that, instead of in-out correlation functions, we
are interested in evolving a state from the vacuum until the boundary and then evolve
it back to the vacuum. This is called the Schwinger-Keyldish contour [29, 30], and the
correlators are in-in correlation functions. In practice, we can write

⟨ϕ(t, x⃗1) · · · ϕ(t, x⃗n)⟩ := ⟨0|T̄{ei
∫ 0

−∞ dt′HI }ϕ(t, x⃗1) · · · ϕ(t, x⃗n)T{e−i
∫ 0

−∞ dt′HI }|0⟩ , (1.13)

where HI stands for the interaction Hamiltonian, and T̄ is the anti-time ordering operator.
In principle, one can use this picture to compute the expectation value for any operator, not
just n-point correlation functions. This is referred to in the literature as in-in formalism.

However, in this thesis we will focus on a different way to compute correlation func-
tions. As we are used to, from quantum mechanics, we can compute expectation values of
operators by integrating against the norm square of the wavefunction

⟨Φ (x⃗1) · · · Φ (x⃗n)⟩ =

∫
DΦ Φ (x⃗1) · · · Φ (x⃗n) |Ψ[Φ]|2∫

DΦ |Ψ[Φ]|2
, (1.14)

where the wavefunction Ψ[Φ] is the solution to the functional Schrödinger’s equation. And
it is simply the transition amplitude from the Bunch-Davies vacuum to a field configuration
at the future boundary of inflation. It is defined in terms of the Feynman path integral:

Ψ[Φ] =
ϕ(0)=Φ∫

ϕ(−∞(1−iϵ))=0

Dϕ eiS[ϕ] . (1.15)

Naturally, unlike the correlator, it is not invariant under field redefinitions. Nevertheless,
as we will see it has a remarkably simple structure. In the next chapter of the thesis we will
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go further in this formalism, but for now we will just write the saddle point approximation
of the above integral:

log Ψ [Φ, tf ] =
∑
n=2

1
n!

∫ d3k1 · · · d3kn
(2π)3n Φk⃗1

· · · Φk⃗n
(2π)3δ

(
k⃗1 + · · · + k⃗n

)
ψn
(
k⃗N
)
. (1.16)

Where here we are considering the Fourier transforms of the fields in position space,
ψn
(
k⃗N
)

are called wavefunction coefficients, and as we will see, we can generally write
them as integrals over rational functions of the kinematics. It turns out that these ratio-
nal functions have a very interesting combinatorial and mathematical structure, as shown
in [31]. This is the main reason why we solely focus on the wavefunction formalism to
compute cosmological observables.

The correlation functions can be computed in terms of wavefunction coefficients (we
will show the derivation in more detail in the next section), for example the three-point
function:

⟨Φp⃗1Φp⃗2Φp⃗3⟩ = δ(p⃗1 + p⃗2 + p⃗3)
Reψ3(p⃗1, p⃗2, p⃗3)

Reψfree
2 (p⃗1)Reψfree

2 (p⃗2)Reψfree
2 (p⃗3)

. (1.17)

At present, our best measurements of the CMB [1, 11, 12], and large scale structure
surveys [32] are only able to probe the two-point function. The observation of a scale
invariant and gaussian power-spectrum is in full agreement with a weakly coupled theory
in a quasi de Sitter background, which is the underlying setup of inflation. Nevertheless,
inflation predicts a small deviation from gaussianity by having a non-vanishing three-point
function and beyond. Therefore, future more accurate measurements of the CMB pertur-
bations that could actually probe these non-gaussianities could provide key evidence for
inflation [33]. On the other hand, and even though we do not go into detail on this, besides
the scalar perturbations paremeterized by the field ϕ1, we also have tensor perturbations of
the metric. These induce a special polarization pattern in the CMB radiation, the so-called
B-mode pattern [34], which if measured, allows us to probe the tensor perturbations which
are a key prediction of the inflationary model.

Therefore, the main subject of this thesis is the study these correlation functions that
can be computed when considering a scalar field with polynomial interactions in a quasi-
de Sitter background. In particular, we will be studying their combinatorial and analytic
properties.

1.3 Context and Results
The study of mathematical structures, and the computation of cosmological observables
has a interesting theoretical motivation, as we will discuss in this section. Understanding
how simple physical concepts must be imprinted in cosmological observables is a natural

1One can use a gauge transformation to parametrize the scalar perturbations with the scalar mode of
the metric
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question if one is looking for a more fundamental picture that governs inflation than that of
a quantum field theory in a curved background. In particular, here we look for combinato-
rial and geometric formulations that could help us understand what this picture looks like.
On the other hand, understanding the analytical properties of these observables, either
by computing them directly, or through a regulated expansion, can help us connect the
perturbative picture of inflation, with the non-perturbative regime, tied with large super-
horizon fluctuations. This is a natural concern from the perspective of a self-consistent
theory, but can also provide us with new phenomenological predictions to test. In the next
paragraphs, we discuss these ideas in more detail, and how the results obtained in this
thesis tie into them.

A bootstrap approach to scattering amplitudes and cosmology In inflationary
physics, when it comes to experimental verifications, all we have access to are correlation
functions on the CMB, which, in principle, we can relate to correlation functions at the
final boundary of inflation. If we go back in time, starting at the boundary, we will reach
a singularity in time, the big bang. Therefore, it is reasonable to think that we should
construct a theory which avoids time evolution altogether, since we expect this concept to
breakdown at very early times. The expectation is that all the physics of our theory is
somehow imprinted in the correlation functions that we can measure at the future boundary
of inflation. Assuming that our observables must satisfy basic physical principles that we
are familiar with, such as symmetries, locality, unitarity and causality, one can, in principle,
fix the correlation functions for various processes. For the study of scattering amplitudes
this approach has been carried out with great success [35–63], allowing the computation
of higher loop Feynman diagrams, as well as bootstrapping the full amplitude.

Unfortunately, in de Sitter physics these concepts are much less well understood. We
do understand the unitary irreducible representations of the de Sitter isometry group,
SO(1, 4), and since it is isomorphic to the Euclidean conformal group one can import ideas
from Anti-de Sitter to bootstrap cosmological correlators in de Sitter [64–74]. However, as
we have seen an inflationary background is not exactly de Sitter, and therefore we expect
these symmetries to be approximate.

For the case of locality, where for scattering amplitudes we expect that they will have
only poles and branch cuts which directly correspond to the local exchange of a particle.
This stems directly from cluster decomposition, from which we expect that the correlation
functions in position space are suppressed by the increasing distance between the different
points. For sufficiently light states in de Sitter, cluster decomposition does not hold glob-
ally, instead two-point correlation functions grow logarithmically with the distance. On
the other hand, we can still demand that a theory with a local interaction cannot have
singularities in the external energies. This is the Manifest locality test [75].

For the case of unitarity, we can comprehend it in terms of the Cosmological Optical
theorem [76], which is really a perturbative statement since its precise form has to be
derived for each order individually. A non-perturbative formulation of unitarity is still
elusive, but recent developments in constructing a S-matrix for de Sitter may help shed
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some light on this [77,78].
Causality is the least well understood of the three, and it is clear why, since typically

we see it from the non-vanishing of commutation relations of fields at time-like or null
distances. Since we can only have access to equal time correlation functions, then we can’t
access this information. One way in which we can understand causality at the level of
scattering amplitudes is that their singularity structure obey the Steinmann relations. At
the level of the wavefunction, these Steinmann relations do exist, however it is unclear how
these conditions relate back to causality [79,80]. However, very recently in [81], the authors
have shown that imposing causal propagation on the co-moving curvature perturbation in
the EFT of inflation, imposes significant constraints on Wilson coefficients of the theory.

Understanding these principles is very useful for scattering amplitudes, where locality
and unitary allow us to predict the poles and factorization structure of tree-level scattering
amplitudes, and generalized unitarity allowed understanding the branch cut structure of
one-loop amplitudes, and gives some insights at higher loops. For the wavefunction, or
cosmological correlators, we know what poles and factorization properties to expect, see
for example [82–91]. We know that the singularities of the wavefunction correspond to the
total energy of the process, or partial energies of sub-processes. Additionally, the residue
of the total energy singularity is the corresponding flat-space scattering amplitude. For
other singularities the residue is a factorization of the corresponding lower-point scattering
amplitude and a linear combination of wavefunctions (this will described in detail later).
Indeed, this knowledge can be used to bootstrap the wavefunction and cosmological corre-
lators [82, 87–90]. However, we do not fully understand how these structures relate to the
basic physical principles described above.

A combinatorial and geometric approach to cosmology A different way in which
we can see how the singularity structure entirely defines the integrand of the wavefunction,
was formulated in terms of cosmological polytopes [83]. A polytope can be defined in terms
of the linear inequalities that bound it, the definition of cosmological polytope is that the
singularities (which are linear in the kinematics) of the wavefunction form hyperplane in-
equalities that bound a polytope. To this polytope we can associate a volume form (also
referred to as canonical form) which matches the rational integrand of a wavefunction coef-
ficient (defined in the previous section). This statement is very powerful since it provides a
first principle formulation of the integrand of the wavefunction which avoids any reference
to time evolution. Again, this follows the approaches undertaken for scattering amplitudes
where discoveries such as the Amplituhedron [92], the ABHY Associahedron [93], among
many others [94–104]. However, these examples are typically for the sum of Feynman dia-
grams, unlike a graph-by-graph description. Studying the sum of graphs directly has been
known to lead to remarkable simplifications. The most notorious example being in the
study of tree-level gluon amplitudes. When summing over all Feynman diagrams in the
appropriate parameterization (in this case the spinor-helicity formalism), the answer be-
comes incredibly simple when compared to the Feynman diagram approach, as was shown
by the Parke-Taylor formula [35]. Hence, the motivation to find a picture that deals with
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the full amplitude.
For example, the Amplituhedron is a positive geometry whose canonical form gives

us the scattering amplitude of N = 4 Supersymmetric Yang-Mills (at tree-level, and the
integrand at loop level), and physical principles such as locality and unitarity are emergent
from the geometry.

Additionally, let us consider the ABHY associahedron for Tr[ϕ3] for example. Here the
full scattering amplitude of a given process in Tr[ϕ3] (at tree level, or the integrand at loop-
level) emerges as the canonical form associated to the respective polytope. Furthermore,
the polytope contains the full information on the factorization properties of the amplitude
when one takes one of the internal particles on-shell. But the particularly interesting fea-
ture of the ABHY associahedron is that its canonical form can be obtained from a stingy
integral (which called this way as it shares many important properties of string ampli-
tudes) [105,106]. This provided a direct connection between particle and string amplitudes.
Recently, in [107–111], the authors showed that different deformations of this stringy inte-
gral representation of Tr[ϕ3], allow obtaining amplitudes for non-supersymmetric gluons,
and scattering amplitudes of the non-linear sigma model.

In cosmology, as explained above, there is still only a graph-by-graph combinatorial
description, not for the full wavefunction, or the correlator. In this thesis, we solve this
problem. We develop a novel combinatorial formulation for the Bunch-Davies wavefunction
of the universe. It turns out, the integrand of the wavefunction can be fully encoded in a
polytope, which we called the Cosmohedron, and it is fully described in the chapter 5. We
show that the Cosmohedron can be obtained by the ABHY associahedron by “blowing-
up” its faces. The Cosmohedron also provides a natural formulation of new geometry for
individual graphs, the graph associahedron, as well as a recursive formulation for the full
wavefunction. We also find the polytope which encodes the full correlator. Given the close
connection between the Cosmohedron and the associahedron, it is natural to speculate
whether a stringy representation of the cosmological wavefunction is attainable, and from
here, whether we can establish similar connections with other realistic theories beyond
Tr[ϕ3].

Computing cosmological correlators The previous discussion was mostly centred
around obtaining the integrand of the wavefunction, or correlator, from physical principles
or deeper geometric ideas. Indeed, it is possible in some cases to also obtain the integrated
object, but that is a much more difficult task [112–117]. In this thesis, we also devote a
lot of effort in the direct computation of the integrated function, which being generally
a divergent function needs to be analytically regulated, and then computed in terms of a
series expansion of the regulator. Also, here we will import ideas from the study of Feynman
integrals, in chapter 3 we will use ideas developed in the context of algebraic geometry to
identify and compute the leading and subleading divergences in the integrals appearing
in the wavefunction, or correlator. In chapter 4, we will use the method of differential
equations [118] to compute the one loop bubble integral and identify the function space of
the one loop triangle integral.
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Large fluctuations and infrared divergences Besides the phenomenological applica-
tions of computing cosmological correlators, the understanding of loops in inflation is deeply
tied with the emergence of infrared divergences in the perturbative structure of cosmologi-
cal observables in general. This issue has been noted decades ago and the literature on the
subject is vast [119–165]. In inflation divergences coming from the long-wavelength spec-
trum have contributions from different effects. When one has minimally coupled massless
states in a fixed de Sitter background2, the correlators not only have an infrared divergence
coming from the loop integration. But they also have a secular growth coming from the
time integration, which at late times leads to a breakdown of the perturbative expansion,
where each order contributes with the same magnitude. This second effect comes from the
accumulation of super-horizon modes (long wavelength) at late times.

Therefore, understanding the infrared effects in inflation is of great relevance to have a
self consistent theory. And although it is unclear to what extent they can also be relevant
from a phenomenological perspective, since the length scales of these contributions can be
larger than the observable universe, these effects are physical and can have measurable
contributions to the correlator [166–169]. Then, the framework used to deal with these
long wavelength modes, stochastic inflation, forms the basis to describe eternal inflation
[170–173]. Finally, we expect that the dynamics of the sub-leading contributions from
the infrared spectrum contain interesting information relative to the de-coherence of the
quantum fluctuations. The literature on the subject is long, and over the years several
ways of re-summing the infrared effects have been discussed. It was shown to be possible
to re-sum the secular effects, through a dynamical renormalisation group [163], or using
the δN formula [174–180]. On the other hand, the infrared divergences coming from the
loop integration could also be re-summed in Euclidian de Sitter [132,141], and one expects
this to be analytically continued to Lorentzian de Sitter.

But in recent years, it is was shown in a variety of ways that all of these effects get
re-summed through the formalism of stochastic inflation [7, 177,181,182]. By treating the
long wavelengths as a system in a thermal bath (similar physical systems are described by
Brownian motion for example), then it is known that the probability distribution function
governing these modes follows a Fokker-Planck equation. From this regime it is possible
to compute the probability distribution function, which in turn one can obtain correlation
functions of the modes. It has been shown that this formalism correctly reproduces the
leading order logarithms that appear in perturbative computations [147–150, 164]. Typ-
ically, this is done by formulating an effective description of the long-wavelength modes
by integrating out modes which are inside a co-moving scale which is larger than the de
Sitter horizon. These different field-theoretic approaches have since then been extended to
compute corrections to the Fokker-Planck equation, see for example [147,153,154].

All of this progress clearly shows that perturbation theory in a fixed de Sitter back-
ground is well defined at least in some cases. However, these formalisms usually restrict to
de Sitter space, and most of the time ϕ4 interactions. It would be interesting to understand

2These effects arise in more general scenarios, here we are focusing on massless fields in fixed back-
grounds.
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the resummation of infrared effects on a more general setting, for example general poly-
nomial interactions in quasi-de Sitter spacetimes, and have a systematic computational
formalism to obtain the sub-leading corrections to Stochastic inflation.

In this thesis, we take a step in this direction [165, 183], in chapter 3 we take the gen-
eral parameterization of the wavefunction/correlators in terms of cosmolgogical integrals,
provide a formalism to split the integration region into different regions (sectors) and ex-
tract the divergences as a series expansion in analytic regulators coming from the different
sectors. Our formalism has several interesting features. Firstly, the parameterisation of
cosmological integrals allows studying different power-law FRW cosmologies, and different
states including a discrete set of massive states. We find that it makes obvious the effects
which are contributing to the divergences, where it either is a secular divergence, a loop
divergence, or a mix. In fact, we can identify the same regions proposed in [184]. The fact
that our parameterisation is so general, allows putting the wavefunction and the correla-
tors on the same footing, and even different types of observables. At the end of chapter
3 we discuss the formulation of infrared finite computables, akin to similar formulations
in the quantum field theory literature [185]. Furthermore, it becomes also very obvious to
show that the disconnected parts of the correlator are the ones that carry the leading order
infrared effects which are re-summed by stochastic inflation, as was proved in [156]. The
question that remains, which we leave for future work, is how our computational frame-
work can be incorporated in the current re-summation formalisms mentioned earlier, or
whether it makes natural the construction of a different way in which the re-summation
can be formulated.

1.4 Outline
The outline of this thesis is as follows:

In chapter 2 we introduce the derivation of the cosmological wavefunction, and our
preferred parametrisation of cosmological integrals for different states, both massless and
massive. We then discuss the singularity and factorization structure of the wavefunction,
introduce cosmological polytopes which is the graph-by-graph combinatorial formulation
of the wavefunction, and introduce graphical rules to compute the correlators from the
wavefunction. We conclude the section by describing a different parametrisation of the
wavefunction in terms of the momentum polygon.

In chapter 3 we discuss the computation of infrared divergences, in tree and loop in-
tegrals of cosmological observables, as well as formulating an infrared finite computable.
This work is based on the papers [165,183,186].

In chapter 4 we discuss the integration of cosmological integrals using the method of
differential equations, this chapter heavily relies on the preceding chapters. This work is
heavily based on [187].
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In chapter 5 we discuss a novel combinatorial formulation of the full wavefunction, the
cosmohedron, and the correlator. This work is heavily based on [188].

In the conclusion we go over in more detail the main results of the thesis, and the
future directions which naturally arise from them.
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Chapter 2

The Cosmological Wavefunction

Usually, in particle physics where the quantum field theory sits in a Minkowski back-
ground we are interested in in-out correlation functions, and ultimately the S-matrix
(related through the LSZ reduction formula) and cross-sections of scattering processes,
which is what we actually measure. As motivated previously, in inflationary cosmology we
want to compute correlation functions at the future boundary of inflation, since in prin-
ciple we are able to connect them to correlations of temperature at the CMB. Earlier, we
learned that we can compute these correlation functions using the interaction picture and
the Schwinger-Keyldish contour. Already from quantum mechanics we know that we can
compute correlation functions of observables, by integrating them against a probability
distribution function given by the norm squared of the wavefunction. The wavefunction is
simply the transition amplitude from the vacuum at very early times to a state Φ at the
spacelike boundary of inflation, at some fixe time t∗. This makes it clear that this object
loses explicit Lorentz invariance due to breaking time translation invariance, and keeps
only spatial translation invariance. Obviously, this means that energy is not conserved,
only spatial momentum. Here we will focus on theories of scalars in FLRW backgrounds,
where the wavefunction has shown to have very interesting features. Remarkably, we will
see explicitly later in this section that the wavefunction contains the amplitude of the cor-
responding process, as a residue of a singularity given by the sum of all external energies
in the process. Which we refer to as total energy singularity. We will also see that, for a
certain class of scalar theories, the singularity structure of the wavefunction entirely defines
it, allowing us to bypass the usual lagrangian formulation of the theory, and instead we
can define the wavefunction purely with boundary information. This new formulation also
allows us to obtain the integrand of the wavefunction in a more efficient form, without
needing to do the time integration in the Feynman integrals every time. These features
make the wavefunction, albeit being a more primitive object than the correlator, a par-
ticularly interesting object to study, at least for scalar theories. Therefore, we will devote
this section to discuss the wavefunction, both in flat-space as well as power-law FLRW
cosmologies, and for different massive scalars. We will begin by defining the wavefunction
in these different theories, and then discuss the properties of the integrand. Afterwards,
we will discuss a combinatorial formulation of the integrand, and how to compute cosmo-
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logical correlators from the wavefunction. Finally, we will end with a discussion on a new
parameterization of the wavefunction which will become very useful in the later sections
of the thesis.

2.1 Definition
In this section, we go in detail on the cosmological wavefunction and its properties [31,84,90,
189–192]. The wavefunction here discussed is the solution to the functional Schrödinger’s
equation, and can be defined in terms of Feynman path integrals as follows:

Ψ[Φ] =
ϕ(0)=Φ∫

ϕ(−∞(1−iϵ))=0

Dϕ eiS[ϕ] ,

where the lower boundary is chosen such that we pick the Bunch-Davies vacuum state
(see section 1). And the upper boundary defines the state onto which we are projecting.
It is the transition amplitude between the vacuum state at past infinity, and the state Φ
at the space-like boundary at η = 0. Given the wavefunctional, we can compute n-point
correlation functions in the future space-like boundary by integrating the fields against a
probability distribution function given by the square of the wavefunction, this is simply
the Born rule:

⟨Φ (x⃗1) · · · Φ (x⃗n)⟩ =

∫
DΦ Φ (x⃗1) · · · Φ (x⃗n) |Ψ[Φ]|2∫

DΦ |Ψ[Φ]|2
. (2.1)

Throughout this thesis, we will be considering scalar theories with polynomial self
couplings in a fixed background, not necessarily flat, for example in inflation one expects
the background to be quasi-de Sitter. Therefore, the action can be written in conformal
time η, as:

S[ϕ] =
∫ 0

−∞
dη
∫
dx⃗

√
−g

1
2g

µν(∂µϕ)(∂νϕ) − 1
2m

2ϕ2 − ξRϕ2 +
∑
k≥3

λkϕ
k

 . (2.2)

Upon a field redefinition:

gµν → a(η)2gµν , ϕ → a(η)− d−1
2 ϕ , (2.3)

the action becomes,

S[ϕ] =
∫ 0

−∞
dη
∫
dx⃗

1
2(∂ϕ)2 − 1

2µ(η)2ϕ2 +
∑
k≥3

λk(η)ϕk
 . (2.4)

Where the mass and couplings are now time dependent, with the following relations:

µ(η) = m2a(η)2 + 2d
(
ξ − d− 1

4d

)[
∂η

(
ȧ

a

)
+ d− 1

2

(
ȧ

a

)2]
,

λk(η) = λk(a(η))2+ (d−1)(k−2)
2 . (2.5)
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For conformally coupled scalars, ξ = d−1
4d , the action becomes conformally equivalent to

that of a massless scalar in flat space. In this thesis, we will be interested in power law
cosmologies for which the scale factor is a(η) = 1

(Hη)γ , where γ = 1 is for de Sitter, and
γ = 0 is for Minkowski.

If we split the action into a free and interacting part, such as:

S[ϕ] = Sfree[ϕ] + SI[ϕ] , (2.6)
then, in general, our equations of motion do not have a closed analytic solution, but we
can still write the formal solution:

ϕ(x, η) =
∫
dx′√g̃ GB,∂(x,x′, η)Φ(x′, η) + i

∫
dx′dη′GB,B(x,x′, η, η′) dSI

dϕ

∣∣∣∣∣
ϕ=Φ

, (2.7)

where g̃ is the spatial metric. Therefore, we can apply the above solution recursively and
obtain the saddle point approximation for an interacting theory. After performing a spatial
Fourier transform, this allows us to write the wavefunction into the following form:

log Ψ [Φ, ηf ] =
∑
n=2

1
n!

∫ d3k1 · · · d3kn
(2π)3n Φk⃗1

· · · Φk⃗n
(2π)3δ

(
k⃗1 + · · · + k⃗n

)
ψn
(
k⃗N
)
, (2.8)

where ψn are the wavefunction coefficients, and can be organised diagrammatically in terms
of Feynman graphs:

ψn =
∑
G
ψG ,

where each coefficient ψG corresponds to an integral. To obtain the construction of the
respective Feynman integrals, the usual rules apply. For each vertex (also referred to
as site) in the corresponding diagram we attribute a coupling constant, λk(η). For each
external state we attribute a bulk-to-boundary propagator, which is just the solution of
the free equations of motion, GB,∂(Ek, η), with Ek being the norm of the momentum in
the external propagator. And for each internal edge we have a bulk-to-bulk propagator,
GB,B(ye, η, η′), with ye is the norm of the momentum running in the propagator, which is
a solution to the free two-point correlation function. For example, for a massless scalar in
flatspace it obeys the following differential equation:

(∂2
η − ye

2)GB,B(ye, η, η′) = δ(η − η′).

Then,

ψG =
∫ 0

−∞(1−iϵ)

∏
s∈V

dηsλ(ηs)
∏
k⃗i

GB,∂(Eki
, ηs)

 ∏
e∈E

GB,B(ye; ηs, ηs′) ,

where V denotes the set of sites s in the graph G (dots in the diagrams in figure 2.1), and
E denotes the set of edges e in the graph (lines not attached to the boundary, gray line, in
figure 2.1). The product over k⃗i is over all the external states attached to the site s (lines
attached from the dots to the boundary, gray line, in figure 2.1). However, here we are
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only doing the saddle point approximation which is valid in the ℏ → 0 limit. Therefore,
our derivation will only produce tree level contributions, and not closed loops (like the
rightmost graph in figure 2.1). In order to obtain loop contributions, which will concern
us a lot in this thesis, we need to expand around the classical value,

ϕ = ϕ◦ + φ , (2.9)

where ϕ◦ is the solution of the free classical equations of motion, with boundary value
ϕ◦(η = 0) = Φ, and φ is the fluctuation around the classical value with vanishing boundary
value, so it does not satisfy the equations of motion. Then, the action after integration by
parts becomes:

S[ϕ] =
∫
d3x Φ(∂ηϕ)|η=0 +

∫ ∞

0
dη
∫
d3xϕ(2 − µ2)ϕ+ SI [ϕ] , (2.10)

notice that the first term is a non-vanishing boundary term that comes from using inte-
gration by parts in the η integral. After plugging-in (2.9), the action becomes:

S[ϕ] =
∫
d3x Φ(∂ηϕ)|η=0 +

∫ ∞

0
dη
∫
d3xφ(2 − µ2)φ+ SI [ϕ◦, φ] . (2.11)

As we mentioned, ϕ◦ is the solution to the free equations of motion, and imposing the
correct boundary values it becomes:

ϕ◦(k⃗i, η) = Φk⃗i
GB,∂(|⃗ki|, η) . (2.12)

Now that we have a specific form for the action we can write the wavefunction to be:

Ψ[Φ] = e
i
2

∫
d3xΦ(∂ηϕ)|η=0

∫
Dφ e

i
2

∫∞
0 dη

∫
d3xφ(2−µ2)φ

( ∞∑
n=0

SI [ϕ◦, φ]n
n!

)
. (2.13)

Now that we factorized the boundary terms we can treat the path integral over φ in the
usual way, we insert a source terms and act with functional derivatives in order to generate
the terms downstairs in the sum of powers of SI . This will bring down powers of the inverse
of the operator (2 − µ2), which is our bulk-to-bulk propagator defined in (2.1). This will
turn (2.13) into the infinite sum:

Ψ[Φ] = e
1
2

∫
d3k⃗1d3k⃗2ψfree

2 Φ
k⃗1

Φ
k⃗2

1 +
∞∑
n=2

n∏
j=1

∫ d3kj
(2π)3 Φk⃗j

(2π)3 δ(k⃗1 + · · · + k⃗n)
n!

∞∑
L=0

ψ(L)
n

 ,

(2.14)
where again we performed a spatial Fourier transform. The wavefunction has exactly the
same form as the saddle point expression if we were to expand around a Gaussian distri-
bution in the weak coupling limit, except now we have to sum over all loop contributions
to ψn, which now can be written as:

ψn =
∞∑
L=0

ψ(L)
n =

∞∑
L=0

∑
G(L)

ψG(L) . (2.15)
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Figure 2.1: Examples of diagrams for the wavefunction. Gray line is the future boundary
onto which we are projecting. Any lines attached to the boundary correspond to external
states, in the integral they correspond to bulk-to-boundary propagators. Lines not attached
to the boundary correspond to bulk-to-bulk propagators in the respective integral. The
dots correspond to vertices (also called sites), and to each one we attribute a coupling
λk(ηs) in the respective integral.

The Feynman rules are essentially the same but now we have to integrate over the loop
momentum for graphs with closed loops. And the free two-point wavefunction is given by:

ψfree
2 = i(∂ηGB,∂(|⃗ki|, η))η=0 . (2.16)

Now that we established how to derive the wavefunction, we can compute the correla-
tors. The formula for correlators is given by the Born rule (2.1). In order to obtain the
concrete form for the correlators we insert a source term in (2.14), and act with functional
derivatives to lower Φ. Then, it is clear that the the inverse propagators that are lowered
this time are simply (2 Reψfree

2 )−1. And in the numerator we will obtain the linear combi-
nations of higher point wavefunction coefficients. For example, the three point correlator
is:

⟨Φp⃗1Φp⃗2Φp⃗3⟩ = δ(p⃗1 + p⃗2 + p⃗3)
Reψ3(p⃗1, p⃗2, p⃗3)

Reψfree
2 (p⃗1)Reψfree

2 (p⃗2)Reψfree
2 (p⃗3)

. (2.17)

In section 2.4 we discuss general diagrammatic rules to obtain the form of the correlators.
For the moment, let us consider that a flat-space background, then the mode functions

are plane waves, and we can write:

GB,∂(Ek, η) = eiEkη ,

GB,B(ye, η, η′) = 1
2ye

(
eiye(η′−η)Θ(η − η′) + eiye(η−η′)Θ(η′ − η) − eiye(η+η′)

)
, (2.18)

where the last term in the bulk-to-bulk propagator is to ensure it vanishes when taking one
of the edges to the boundary. And the coupling parameters are constant, λk(η) ≡ λk. With
this we can compute the wavefunction coefficients in flat-space, for example the three-point
contact diagram (see the first graph in figure 2.1), is given by:

ψ
(0)
3 (E1, E2, E3) = −iλ3

∫ 0

−∞(1−iϵ)
dη ei(E1+E2+E3)η = λ3

E1 + E2 + E3
, (2.19)
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where the lower boundary term is killed by the iϵ-prescription. The four-point exchange
diagram can be computed as follows:

ψ
(0)
4 =λ2

3

∫
dη1dη2e

i(E1+E2)η1ei(E3+E4)η2×

× 1
2y
(
eiy(η2−η1)Θ(η1 − η2) + eiy(η1−η2)Θ(η2 − η1) − eiy(η1+η2)

)
= λ2

3
2y(E1 + E2 + E3 + E4)(E3 + E4 + y) + λ2

3
2y(E1 + E2 + E3 + E4)(E1 + E2 + y)−

− λ2
3

2y(E1 + E2 + y)(E3 + E4 + y)

= λ2
3

(E1 + E2 + E3 + E4)(E1 + E2 + y)(E3 + E4 + y) , (2.20)

where Ei = |⃗ki| and y = |⃗k1 + k⃗2| = |⃗k3 + k⃗4|. More complex diagrams will simply have
more bulk-to-boundary propagators, and more bulk-to-bulk propagators, but in essence
the time integration can be easily done as it one is just integrating over simple exponential
functions. Further examples, are given by the five-point exchange diagram (in a cubic
theory):

ψ
(0)
5 = 1(

|⃗k1| + |⃗k2| + |⃗k3| + |⃗k4| + |⃗k5|
) (

|⃗k1| + |⃗k2| + |⃗k1 + k⃗2|
) (

|⃗k3| + |⃗k1 + k⃗2| + |⃗k4 + k⃗5|
)×

× 1
|⃗k4| + |⃗k5| + |⃗k4 + k⃗5|

(
1

|⃗k3| + |⃗k4| + |⃗k5| + |⃗k1 + k⃗2|
+ 1

|⃗k1| + |⃗k2| + |⃗k3| + |⃗k4 + k⃗5|

)
,

and by the two-point one-loop diagram:

ψ
(1)
2 =d⃗l 1(

|⃗k1| + |⃗k2|
) (

|⃗k1| + |⃗l | + |⃗k1 + l⃗ |
) (

|⃗k2| + |⃗l | + |⃗k1 + l⃗ |
)×

×
(

1
|⃗k1| + |⃗k2| + |⃗l |

+ 1
|⃗k1| + |⃗k2| + |⃗k1 + l⃗ |

)

The previous examples are for the flat-space wavefunction, if on the other hand we
want to consider an expanding background, like FLRW, then our coupling parameter will
be time dependent (see (2.5)). As such, our mode functions will, in general, be Hankel
functions, and performing the time integration becomes much more cumbersome,

GB,∂(Ep, η) =
√

−Ep η H (2)
ν (−Ep η),

where for massless conformally coupled scalars ν = 1/2, and for massless minimally coupled
scalars,

ν = 1
2 + d− 1

2 γ ,
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of course for general massive states in de Sitter we recover the result ν =
√
d2/4 −m2/H2.

In our discussion, we will be mainly concerned with states identified by ν = l + 1/2
with l ∈ Z+ ∪ {0}. The mode function of such states with arbitrary positive integers l is
related to the plane wave, corresponding to l = 0, via a differential operator:

GB,∂(Ep, η) = 1
(−Epη)l Ôl(Ep) eiEpη, Ôl(Ep) :=

l∏
r=1

[
(2r − 1) − Ep

∂

∂Ep

]
(2.21)

It is easy to see that for massless states in de Sitter (l = 1) this operator acting on the
exponential will yield the correct mode function: (1 + iEpη)eiEpη. This allows to derive
processes involving these states from massless scalars with time-dependent couplings in
flat-space. Using the relation (2.21) between the states with order parameter ν = l + 1/2
and the conformally coupled one (l = 0) and rescaling the bulk-to-bulk propagator via

GB,B(ye, η, η′) −→ (−ye η)−le(−ye η′)−leGB,B(ye; η, η′) (2.22)

the wavefunction ψ{lj , le}
G for internal and external states parameterized by an integer order

parameter, lj and le respectively, can be written as [189]

ψ
{lj , le}
G =

n∏
j=1

 1
E
lj
j

Ôlj (Ej)
 ∏
e∈E

[
1
y2le
e

]
ψ{le}

G (2.23)

with

ψ{le}
G =

0∫
−∞

∏
s∈V

[
dηs

λk(ηs)
(−ηs)ρs

eiXsηs
∏
e∈E

GB,B(ye; ηse , ηs′
e
)
]

(2.24)

where {le} indicates that each edge e has a state with order parameter le associated to
it. And ψ{le}

G indicates the re-scaled wavefunction coefficient with internal states with
parameter le, below we will see how it is recursively related to ψle − 1, {lē}

G (where the edge e
has its parameter le shifted by one unit). Xs is the sum of the external energies at the site
s, ρs is a function of the order parameters of both external and internal states at the site s

Xs :=
ks∑
j=1

Ej, ρs :=
ks∑
j=1

lj +
∑
e∈Es

le, (2.25)

where ks is the number of external states at the site s, Es ⊂ E the subset of edges incident
at the site s, while lj and le are the integer order parameters associate to the j-th external
state and to the edge e respectively.

Due to the time dependence of the couplings λks(ηs), as well as the additional 1/(−ηs)ρs ,
the time integration cannot be performed as for the flat-space counterpart. In order to
obtain a rational integrand, first one needs to perform a Fourier transformation on the
whole function λks(ηs)/(−ηs)ρs , as follows

λk(ηs)
(−ηs)ρs

=
∫ +∞

−∞
dzs e

izsηs f(zs). (2.26)
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The time-dependent coupling constant is given by

λk(ηs) = λk [a(ηs)]γ[2− (k−2)(d−1)
2 ] (2.27)

and for cosmologies described via the warp factor a(η) = − (1/Hη)γ, (2.26) becomes

λk(ηs)
(−ηs)ρs

= iβks,l(iλk)H−γ[2− (k−2)(d−1)
2 ]

∫ +∞

−∞
dzs e

izsηs zβks,l−1
s θ(zs) (2.28)

where βks,l := ρs + γ[2 − (k − 2)(d − 1)/2]. Hence, the wavefunction coefficient ψ̃{le}
G

associated to a graph G can be written as

(ψ{le}
G )FLRW =

+∞∫
Xs

∏
s∈V

[dxs f(xs −Xs)]ψ{le}
G ,

ψ{le}
G := (iλk)ns

0∫
−∞

∏
s∈V

[
dηs e

ixsηs

] ∏
e∈E

GB,B(ye; ηse , ηs′
e
)

(2.29)

where ns is the number of sites of the graph. And here we set zs = xs − Xs. This
representation allows encoding the details of the specific cosmology into the measure of
integration f(xs −Xs) and single out the information which is common to all cosmologies
and encoded into ψ{le}

G , which we refer to as wavefunction universal integrand. Then, from
the wavefunction with general internal states, parameterized by le, one can simply shift the
sum of external energies entering a site s by xs, and then integrate over the shift, providing
the kernel f(xs −Xs), one can obtain the wavefunction in power-law cosmologies in a very
simple fashion. To obtain the wavefunction integrand for general internal states, of integer
parameter le, it turns out that there is a simple recursion relation between the integrand
and an integrand with one internal state with one edge shifted by one unit, le − 1. The
proof of this recursion relation can be found in [189], and it is of the following form:

ψ{le}
G =

∑
e,ē∈E
ē ̸=e

Ôeψ
le − 1, {lē}
G , Ôe := 2(le − 1)∑

s∈V
xs

(
∂

∂xse

+ ∂

∂xs′
e

)
− ∂2

∂xse∂xs′
e

. (2.30)

Therefore, one can obtain the integrand for a process with all massless internal states from
the integrand with conformally coupled internal states by acting with the above operator
for each edge in the corresponding graph.

Note that ψ{le}
G (xs, ye) is a function of {xs, s ∈ V} and {ye | e ∈ E}, which parametrise

the kinematic space as well as the loop space in case of graphs with loops. It is then
possible to associate a weighted reduced graph to ψ{le}

G (xs, ye) by simply suppressing the
lines representing the external states and attaching a weight xs to each site s ∈ V and the
pair (ye, le) to each edge e ∈ E .



2.2 Singularities of the Integrand 23

Figure 2.2: Examples of singularity/tube correspondence.

At this point, we find it instructive to give an example of the integral we have in power-
law FRW cosmologies. Let us consider the four point function at tree level in theory with
cubic interactions, for conformally coupled scalars:

(ψ{0}
2-chain)FLRW =

∫ ∞

0
dx1

∫ ∞

0
dx2 x

α
1 x

α
2

(
1

(x1 + x2 +X1 +X2)(x1 +X1 + y)(x2 +X2 + y)

)
,

(2.31)
where X1 = E1 + E2, and X1 = E3 + E4, and we can similarly use the second graph in
2.1 to represent it. Then, the integrand (which is function in parenthesis in (2.31)) for
an all massless minimally coupled scalar process is obtained by acting on the integrand of
(2.31) with the operator ∂2

∂x1∂x2
, dividing it by 1/y2, changing the value of α accordingly,

and finally acting with the operator (2.21) four times, one for each of the external energies.

2.2 Singularities of the Integrand
If we consider a general diagram, G, then we can identify all the singularities of the in-
tegrand of ψG from the diagram. Each singularity has a one-to-one correspondence with
a sub-diagram of G, and is given by the sum of external energies in the sub-diagram. It
is useful to find a suitable representation of these sub-diagrams, and we can do this by
drawing tubes on the original diagram, see for example figure 2.2. Then, by drawing every
possible tube in the diagram, G, one can find the denominator of the integrand for the
wavefunction coefficients.

One interesting question about the integrand is, what happens when we localise in
one of the singularities of the integrand. From our knowledge of quantum field theory,
we know that scattering amplitudes factorize in products of lower-point scattering ampli-
tudes when we localize in a singularity. However, the wavefunction does not have such
a simple behaviour, in general, the residue of a singularity is the scattering amplitude of
sub-diagram corresponding to the singularity, times a linear combination of lower-point
wavefunctions. In particular, let us consider a general graph and divide it into a left and
right component connected by an edge. If we take the singularity of the left sub-process
then the factorization is as follows:

lim
EL→0

ψn(E1, · · · , En) = Ak+1 ψ̃n−k+1(EI , Ek+1, · · · , En)
EL

, (2.32)
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where EL = E1 + · · · + Ek + EI , and

ψ̃n−k+1(EI , Ek+1, · · · , En) = ψn−k+1(−EI , Ek+1, · · · , En) − ψn−k+1(EI , Ek+1, · · · , En)
2EI

.

(2.33)
For more general set ups, where there is no left and right sub-processes, but something more
intricate, the above formula generalizes accordingly (see for example [80]). For the case of
the total energy singularity the residue is the full scattering amplitude (corresponding to
the process represented by G):

lim
Et→0

ψn(E1, · · · , En) = An

Et
, (2.34)

this can be seen as restoring energy conservation, leads to a Lorentz invariant object. In this
sense, the wavefunction contains the information about the amplitude of the corresponding
process, as well as lower point processes.

Finally, in the above discussion we only addressed how to obtain the denominator of
the wavefunction from the tubes of the graph. To obtain the full integrand one can just
compute the time integral as discussed in the previous sub-section, but it is also possible
to obtain it from reading the tubes of the graph as well. The rule is simple, we consider
all maximal sets of tubes which are non-overlapping (where two tubes overlap if there is
partial overlap, and do not overlap if they are disjoint or one is fully contained by the
other), then the rational integrand is the sum of terms where each term corresponds to
one such set, its denominator is given by the singularities of the set, and the numerator is
one. To a maximal set of non-overlapping tubes we designate as a tubing, or colloquially
a Russian Doll. This representation is known as old-fashioned perturbation theory. To
understand this representation, let’s consider the time integral representation of a given
graph contributing to Ψ:

ψG =
∫ 0

−∞(1−iϵ)

[∏
v∈V

dηv

] [∏
v∈V

e
i

(∑
iv∈E′

v
Eiv

)
ηv

] [∏
e∈E

G(Eke ; ηe, ηe′)
]
, (2.35)

where V is the set of vertices in the graph, E is the set of internal edges of the graph, E ′
v

is the set of external states attached to the vertex v (and Eiv are the respective moduli
of the momenta), and Eke is the momentum flowing in the edge e. We now consider the
action of the operator:

∆ = −i
∑
v∈V

∂ηv ,

on the integrand of (2.35). We can start by applying integration-by-parts. The total
derivative vanishes, since the bulk-to-bulk propagators vanish at the upper boundary (see
(2.18) when sending η1 or η2 to zero), and on the other hand the iϵ prescription (Bunch-
Davies condition) ensures the integrand vanishes in the lower boundary. Then we consider
the action of ∆ separately in the external propagators, and in the product of bulk-to-bulk
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propagators, G(ye; ηe, ηe′). It is clear that,

∆
[∏
v∈V

e
i

(∑
iv∈E′

v
Eiv

)
ηv

]
=
∑
v∈V

∑
iv∈E ′

v

Eiv

[∏
v∈V

e
i

(∑
iv∈E′

v
Eiv

)
ηv

]
,

where the quantity in parentheses is the total energy of ψG. Then the action of ∆ on
the bulk-to-bulk propagators is essentially only the action on the boundary term, since
when acting on the time-ordered terms, these vanish. This is true because ∆ is the time-
translation operator, and the time-ordered terms are time translation invariant. Practically,
one can simply see that by acting with ∂η1 + ∂η2 on the time ordered terms in (2.18), that
the derivatives of the exponentials in η1 and η2 will cancel each other. Therefore, we can
say that:

∆
[∏
e∈E

G(ye; ηe, ηe′)
]

= −

∑
ẽ∈E

eiEkẽ
(ηẽ+ηẽ′ )

 ∏
e∈E/{ẽ}

G(Eke ; ηe, ηe′)
 .

Putting everything together, the exponentials in the expression above will be just like
bulk-to-boundary propagators. Then, we can write,

Et ψG(E1, ..., En) =
∑

e∈ETree

ψGL
(ELe ;Eke) ψGR

(ERe ;Eke) +
∑

e∈ELoop

ψG̃(E1, ..., En, Eke , Eke) .

(2.36)
Where in the first term we are summing over every edge that is not in a loop (the set ETree),
and GL and GR correspond to the subgraphs to the left and right of the edge e. ELe are
the external states of the left subgraph, and similarly for the right subgraph. Additionally,
both GL and GR also have an external state with the momentum of the edge e in G. In the
second term, we are summing over the remaining edges, which are part of a loop (the set
ELoop). G̃ stands for the graph obtained by cutting the edge e in the graph G. It will have
all the n external states plus two more, both with momentum of the edge e. Equation
(2.36), when applied recursively, allows us to construct the OFPT representation of the
wavefunction. In [193], the authors showed that there is one triangulation of the dual of
the cosmological polytope which yields the OFPT representation.

From (2.36), we have that in the sum on the right-hand side, each term will be a
product of singularities corresponding to tubes that do not overlap, either are fully inside
one another, or are disjoint. Applying this formula recursively, we can see that this property
will hold in the expansion of the different terms. Therefore, it becomes clear that we can
write the wavefunction as a sum of russian dolls.

2.3 Integrand from combinatorics
We have seen in the previous section, from the Russian doll rule, that the integrand of the
wavefunction can be entirely defined from the its singularity structure. In this section, we
will learn about a combinatorial formulation of the integrand, which is completely defined
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Figure 2.3: (Top) Diagrammatic representation of the terms contributing to the three-site
chain graph, in terms of tubings (collections of non-overlapping tubes). Here the graph
has the external states amputated for simplicity. (Bottom) The representation of the five
terms contributing to the four-site chain graph. Here we omitted the single site tubes and
the total energy tube since every single term contains them.

by its singularities. This formulation is given by (generalised) cosmological polytopes for
the Bunch-Davies wavefunction [80,83,189], or by the weighted cosmological polytopes for
cosmological correlators [194]. Here we give a brief description of these objects.

Let us consider a graph G endowed with its sets of site- and edge- weights, {xs, s ∈ V}
and {ye, e ∈ E} respectively. It is possible to associate a linear polynomial qg(Y) to each
subgraph g ⊆ G defined as the sum over the weights associated to the sites in g and the
weights of the edges departing from it. Let us consider both the site and edge weights
as the local coordinates in projective space Pns+ne−1, so that a generic point in it can be
written as Y := (x, y), x and y being a shorthand notation for x := (x1, . . . , xns) and
y := (ye1 , . . . , yene

) and ns, ne being the number of sites and edges respectively. The
polynomials qg(Y) =

∑
s∈Vg

xs +
∑
e∈Eext

g

ye, g ⊆ G


can be written as qg(Y) = YIW (g)

I where W (g) is a vector in the dual space of Pns+ne−1,
which is still indicated as Pns+ne−1 – we will refer to it as a co-vector. Then the inequalities
{qg(Y) ≥ 0} define a cosmological polytope PG, with the co-vector W (g) identifying a
hyperplane that intersects the cosmological polytope along its boundary only, containing a
facet (i.e. a codimension-1 face) PG ∩W (g). This means that a vertex ZI of the polytope PG
on the facet PG ∩ W (g) satisfies the condition ZIW (g) = 0. Given a cosmological polytope
PG ⊂ Pns+ne−1 there is a unique rational function Ω (Y ,PG)– up to an overall constant –,
named canonical function associated to it, such that:

• its only singularities are simple poles along the boundaries of the polytope PG;

• its residue of a given pole is a canonical function of a codimension-1 polytope asso-
ciated to the boundary identified by the pole;
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Figure 2.4: The diagrammatic representation of all the six terms contributing to the four-
site star graph. The graph has the external states amputated and we omitted the single
site tubes as well as the total energy tube.

• all its highest codimension singularities have the same normalisation, up to a sign;

It turns out that the canonical function Ω (Y ,PG) is the wavefunction universal integrand
associated to the graph G:

Ω (Y ,PG) = ψG(x, y). (2.37)

Then the boundaries of PG are associated to the residues of ψG(x, y). As the boundaries of
PG are identified by the co-vectors W (g), the canonical function Ω (Y ,PG) can be generically
written as

Ω (Y ,PG) = nδ(Y)∏
g⊆G

qg(Y)
(2.38)

where nδ(Y) is a homogeneous polynomial in Y of degree δ. From a geometrical perspective,
it provides the locus of the intersection of the hyperplanes {W (g), g ⊆ G} outside of PG
[79, 195]. Said differently, it is determined by the set of vanishing multiple residues of
(2.38), which determine the compatibility condition from the facets (i.e. which intersection
among the facets form a higher codimension face), and, from a physics perspective, they
determine Steinmann-like relations [79, 193]. The degree of the numerator is fixed by
projectivity: the differential form defined by equipping the canonical function (2.38) with
the canonical measure of Pns+ne−1, i.e. ⟨Ydns+ne−1Y⟩, is invariant under GL(1) rescaling,
fixing the degree δ of nδ in terms of the number of facets ν̃ of PG and the dimension of
projective space: δ = ν̃ − ns − ne. The locus nδ = 0 is the adjoint of PG, and its maximal
subspaces identified by the intersections of the hyperplanes containing the facets of PG
outside PG such that no vertex of PG lies on the intersection, can be used to triangulate
PG via a collection of polytopes {P (i)

G , i = 1, . . . ,m} whose elements’ facets are all facets
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of PG [195]. In terms of the canonical function, this reflects into its partial fractioning into
the sum of the canonical functions of all the elements of the collection {P (i)

G , i = 1, . . . ,m},
without introducing spurious poles1:

Ω (Y , PG) =
m∑
j=1

Ω
(
Y , P (j)

G

)
=

∏
g∈G◦

[
1

qg (Y)

] ∑
{Gc}

∏
g′∈Gc

[
1

qg′(Y)

]
, (2.39)

where G◦ is one of the maximal subspaces of the adjoint, Gc is a set of compatible graphs
– i.e. graphs that identifies singularities such that the sequential residue of the canonical
function along them is non-zero – disjoint from G◦, and the sum runs over all possible
of these subsets. Such triangulations, triangulate a cosmological polytope using an ex-
ternal lower-dimensional hyperplane, identified by the intersections of the codimension-1
hyperplanes corresponding to the elements of G◦, without introducing spurious boundaries.
Triangulations that only use the vertices of PG, introduce spurious boundaries, translating
into spurious poles in the partial fraction of the canonical function [83,86,196].

There is a generalisation of this construction – the generalised cosmological polytopes –
which has a rational function associated to it with multiple poles [189, 197]: this rational
function has still the form (2.38) but with multiple poles, and its singularities are still
associated to subgraphs.

A further generalisation – the weighted cosmological polytope P (w)
G – has additional

boundaries, with the special feature that both the half-planes identifies by the polynomial
associated to it, qge(Y) intersect the geometry [194]. This type of boundary is named
internal boundary [194, 198]. In the system of local coordinates associated to the weights
of the graph, the internal boundaries are given by {qge(Y) := YIW̃ (ge) = ye, e ∈ E}.
The canonical function associated to a weighted cosmological polytope P (w)

G provides the
universal integrand for the cosmological correlator associated to the graph G:

Ω
(
Y , P (w)

G

)
= CG(x, y) (2.40)

We will not go into any further details for any of these constructions. But ultimately it
should be clear that the cosmological polytope, being defined as the region bounded by the
hyperplane inequalities that are given directly by the singularities, in turn corresponding
to the sum of energies entering a sub-process of the diagram in question, fully defines the
integrand of the wavefunction. Later in the thesis we will see a different combinatorial
formulation of the integrand, which encompasses the full wavefunction at once.

2.4 Cosmological Correlators
The perturbative expansion of the Bunch-Davies wavefunction (2.8), and its diagrammatic
rules, together with the Born rule, allow extracting diagrammatic rules for the correlation

1Recall that the singularities are associated to the facets of the polytope: if the facets of each P(i)
G

are facets of PG , then each of the terms of the partial fraction shows only singularities which are also
singularities of the wavefunction.
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functions in terms of wavefunction graphs [80,194]. First, a n-point cosmological correlator
at L-loops can be written as

⟨
n∏
j=1

Φ(p⃗j)⟩ =
n∏
j=1

1
2Re{ψ2(Ej)}

∑
G⊂G(L)

n

C̃G, (2.41)

where G(L)
n is the set of graphs at L-loops with n external states, and CG is computed by

summing (twice the real part of) the wavefunction coefficient ψG associated to the graph
G with the contribution coming from all the possible ways of the edges and replacing
them with the inverse of the real part of two-point wavefunction ψ2. The edge deletion
operation and replacement by ψ2, can be graphically represented as a dash on the relevant
edge : then a cosmological correlator can be obtained by summing over all the
possible graph topologies with a fixed number of external states n and at a given loop
order L as well as over all the possible ways of dashing the edges of each of these graphs.
The function C̃G, which we will refer to simply as correlator, can then be written in terms
of wavefunction graphs as

C̃G =
ne∑
j=0

∑
{Gj}

ψGj
(2.42)

where Gj is the graph G with j edges deleted 2, {Gj}is the set whose elements are given by
all the possible ways of deleting j edges from G, and ψGj

are the wavefunction coefficients
associated to Gj – as Gj can be either connected or disconnected, ψGj

can represent either
contributions coming from connected and disconnected graphs.

We can now compute the contribution of the second diagram in figure 2.1 to the re-
spective four point correlator for the massless field in flatspace is:

⟨Φ1Φ2Φ3Φ4⟩ = λ2
3

8k1k2k3k4

ψ(0)
4 + ψ

(0)
3 (k1, k2, |⃗k1 + k⃗2|)ψ(0)

3 (k3, k4, |⃗k1 + k⃗2|)
|⃗k1 + k⃗2|

 (2.43)

where the wavefunction coefficients corresponding ψ
(0)
3 , and ψ

(0)
4 have been computed in

(2.19) and (2.20), respectively. Here we are considering only the s-channel contribution, the
other contributions follow the same structure, and we dropped the momentum conserving
delta function.

2.5 Parametrizing with Sub-polygons
In this section, we discuss an alternative way to tubes and tubings for the representation of
the singularities of the wavefunction. In order to do this we need to introduce the concept
of momentum polygon. In general, in many of the systems one is considering in quantum
field theory there is momentum conservation. For scattering amplitudes we have four-
momentum conservation, and for the wavefunction we have spatial momentum conservation

2Hence G0 = G and Gne
is the disconnected graph given by the union of all the sites of G
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Figure 2.5: Momentum polygon for a six particle process.

(3-momentum). Then, a very trivial exercise one can make is to draw all momenta vector
as a sum of vectors. It is clear that this sum should close in a polygon, which we will call
momentum polygon. This object is useful since we can say that its triangulations are dual
to a Feynman graph with cubic vertices. In general, by considering poly-angulations one
can get the dual representation to Feynman graphs with general polynomial interactions.
For our purposes, we will just consider cubic theories when discussing the momentum
polygon. To see this duality, one simply needs to triangulate the momentum polygon and
associate a node to each triangle, connect the nodes between themselves and finally, draw
a line from the node that crosses the external cords of the triangles (cords which are part
of the original momentum polygon). An example of this is in figure 2.5.

Now that we have established the definition of the momentum polygon, and in what
sense it is dual to a Feynman graph, we can see that it tells us about natural variables
to parametrize the wavefunction. These variables are the perimeters of the sub-polygons
in the momentum polygons. If we label a sub-polygon by the numbers of the vertices it
contains (see fig. 2.5), the perimeter will be Pi...j. For example, the triangle sub-polygons
in figure 2.5, will be:

P123 = |⃗k1| + |⃗k2| + |⃗k1 + k⃗2| , P134 = |⃗k1 + k⃗2| + |⃗k3| + |⃗k1 + k⃗2 + k⃗3| ,
P145 = |⃗k1 + k⃗2 + k⃗3| + |⃗k4| + |⃗k5 + k⃗5| , P134 = |⃗k5| + |⃗k6| + |⃗k5 + k⃗6| .

But we can keep going, and consider larger sub-polygons, for example squares and pen-
tagons:

P1345 = |⃗k1 + k⃗2| + |⃗k3| + |⃗k4| + |⃗k5 + k⃗6| , P12345 = |⃗k1| + |⃗k2| + |⃗k3| + |⃗k5| + |⃗k5 + k⃗6| .

At this point, it should be clear that the perimeters precisely match the singularities
of the integrand of the wavefunction. This is generally true, to each singularity of the
wavefunction one can find a representation in terms of a perimeter of sub-polygon in the
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Figure 2.6: Sub-polygons of the momentum polygon and their perimeters, below there is
the direct correspondence in terms of tubings.

momentum polygon of interest. Therefore, there is also a direct correspondence between
tubes of the graph and perimeters of sub-polygons. This is illustrated in figure 2.6. The
triangles are equivalent to single site tubes, squares are equivalent to tubes which enclose
two nodes, pentagons equivalent to tubes which enclose three nodes, and so on. Naturally,
one can then re-define the concept of tubings/russian-dolls. Now a tubing is now defined
to be a maximal set of non-overlapping sub-polygons (where non-overlapping has the same
definition as before, two polygons are either disjoint or one is fully contained in the other).
And the full wavefunction is defined to be the sum over all of these sets (see figure 2.7).
Mathematically, we can write:

Ψ =
∑
P

∏
P⊂P

1
PP

. (2.44)

So far we have given more emphasis to the tree-level case, but all of the above discussion
extends to all loops. Already at tree-level, we can replace the momentum n-gon by a disk
with n marked points on the boundary (following the appropriate color-ordering), and
where each boundary component is assigned a momentum k⃗i. The subpolygons were then
defined by collections of boundary edges and internal chords, whose perimeter was just
the sum of the length of each of these. In the disk case, the subpolygons correspond to
subsurfaces bounded by boundary components as well as internal curves going from marked
points to marked points. We can determine the perimeter of the subsurfaces as the sum of
the absolute values of the curves/boundary components bounding the subsurface, where
the momentum associated to a given curve is read by homology. But as with the story of
“surface kinematics" [107] for amplitudes on surfaces, it is fruitful to think of more general
kinematic variables associated with the curve on the surface (in general, up to homotopy),
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Figure 2.7: Five-point wavefunction in terms of russian dolls from sub-polygons.

instead of relating it to a set of momenta. In the context of the wavefunction at tree-
level, this means that we can think of the perimeters of each subpolygon as independent
variables.

At n-points one-loop, the surface we get is instead a punctured disk with n-marked
points. In this case, to provide a basis of homology on top of assigning momentum to the
boundary components of the disk, we also have to give momentum to one of the curves
starting in a boundary marked point and ending on the puncture – this corresponds to the
spatial loop momentum. Once we have done this, we can again read off the momentum of
any curve, k⃗C , on the surface by homology. Finally, just like at tree-level, we can list all
possible cubic graphs by considering all the possible triangulations of the punctured disk,
and the wavefunction is then given as a sum over all russian dolls – which are now maximal
collections of non-overlapping subsurfaces – where to each subsurface we get a factor of its
perimeters – the sum of |⃗kC | for each curve C bounding the subsurface. The same picture
holds at all orders in the topological expansion, where for each order we have a different
surface. And again, we will consider more general kinematic variables for the wavefunction
as being labelled by subsurfaces of the surface bounded by curves up to homotopy, which
can be specialized to the perimeters when written in terms of momenta determined by
homology. Most of this note will focus on the tree-level wavefunction, but in section 5.4
we explain how our results extend to loop-level.

Finally, there is an obvious recursive expression for the wavefunction [199], trivially
generalizing the recursive expression as a sum over cuts for single graphs given in [31]. We
can phrase this at any loop order in terms of the perimeters PS for any surface S, as

ΨS = 1
PS

∑
curves C

ΨS/C (2.45)

where we sum over all curves C, and S/C is the simpler surface obtained by cutting S
along C. Since every P includes the triangles of a triangulation, we can also write this as
a sum over all diagrams/triangulations T , together with a sum over all the “russian dolls"
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associated with the diagram RT , as

Ψ =
∑
T

∑
RT

∏
P⊂RT

1
PP

. (2.46)

It should be clear the advantage of defining singularities in terms of sub-polygons instead
of tubes, the momentum polygon provides a platform to discuss different graphs. Later in
the thesis this will allow us to find combinatorial structures for the sum of graphs.

2.5.1 Flat Space → Cosmological Wavefunction
As explained above, for the case where the cubic coupling has some general time-dependence
λ3(η), it is useful to analyze each Fourier mode, λ3(ε), separately. In which case, for each
cubic vertex, λ3(ε) produces a shift in the energies entering the vertex by ε. So, for a
general graph, we have that the energies associated to each cubic vertex are shifted by the
energies εi associated to the couplings. This can be rephrased in terms of the perimeters
of subpolygons as follows: the perimeters associated to the triangles, ti entering the trian-
gulation are shifted by the respective energy, Pti → Pti + εi, and for a generic subpolygon,
P , we have PP → PP +∑

ti⊂P εi.
Therefore, having obtained the wavefunction for a single graph, G, it is easy to obtain

the corresponding cosmological wavefunction, in the following way

ΨCosm
G =

∫ ∞

−∞

 ∏
triangles ti

dεi λ3(εi)
ΨFlat

G

PP → PP +
∑
ti⊂P

εi

 , (2.47)

where we associate a shift εi with all the (n− 2) triangles ti in the triangulation, and shift
every perimeter PP of a sub-polygon P by the sum of the εi for all the triangles ti contained
in P , as described earlier. The precise form of λ3(ε) depends on the time-dependence that
we are interested in studying, but already here we see that the combinatorics associated
to the flat-space wavefunction coefficients port literally to those of the cosmological wave-
function, with the difference that for the latter we need to further perform this shift and
integral.

We can now describe the same procedure for the full wavefunction, given by the sum
over all graphs. The obvious challenge is that the shifts εi seem to be different from graph-
to-graph, and this doesn’t give us a universal (n− 2) dimensional “ε integrand” we simply
integrate to get the cosmological wavefunction.

Fortunately, there is a beautiful solution to this problem, which also arose in labeling
general interactions for colored Lagrangians in [200]. Let us choose a base triangulation
that defines our surface, and label the triangles in this base triangulation as (t1, · · · , tN).
Then, as explained in [200], every other triangle on the surface is canonically associated
with one of these ti. In a similar way, any subpolygon P is associated with a collection
of triangles, Ti, that triangulate it, that can ultimately map it to a collection of triangles
in the base triangulation. Therefore, having made a choice of base triangulation, we can
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unambiguously associate a εi shift to every subpolygon, and we find

ΨCosm =
∫ ∞

−∞

 ∏
triangles ti

dεiλ3(εi)
ΨFlat

PP → PP +
∑
Ti⊂P

λi

 (2.48)

where here we can choose any triangulation of the subpolygon P we like, as the sum∑
Ti⊂P λi will be the same for all of them.



Chapter 3

Perturbative Structure of
Cosmological Observables

In this chapter we develop a formalism to compute cosmological observables as an expansion
in the appropriate analytic regulator. We start by defining cosmological integrals as large
class of integrals where the integrand is given by the canonical form of the cosmological
polytope, defined in the previous chapter, and a measure which is where we turn most of
our attention in the beginning of the chapter. In particular, with this formalism we are
interested in the leading terms of the expansion, which account for the divergent parts. We
make use of this formalism in order to find infrared finite computables, which is described
towards the end of the chapter.

3.1 Cosmological Integrals
In this section, we define cosmological integrals. We have shown in the previous section
how the wavefunction can be computed perturbatively in terms of wavefunction coefficients,
which in turn are integrals over rational functions. We have also seen that cosmological
correlators, which are the objects closest to our observables, can be computed as functions
of these wavefunction coefficients. Therefore, there is a large class of integrals which are
important in the study of cosmological observables in inflation, we call them cosmological
integrals. Most of the examples so far, have been focused on the integrand of cosmological
integrals, and also mostly up to tree level. However, when we want to consider loop level
contributions, we need to parameterize these integrals, and it turns out the measure and
integration region require some careful attention. Thus, the next sub-section is focused on
describing in full generality this class of integrals, both at tree- and loop-level.

A general graph G contributing to the perturbative observables has associated an inte-
gral, whose general form – irrespectively of the topology of G – is given by

IG[α, β; X ] =
∫

Rns
+

∏
s∈V

[
dxs
xs

xαs
s

] ∫
Γ

∏
e∈E(L)

[
dye
ye

yβe
e

]
µd(ye; X ) nδ(z, X )∏

g⊆G
[qg(z, X )]τg

(3.1)
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where z := (x, y) is a vector whose entries are given by the integration variables x :=
(xs)s∈V and y := (ye)e∈E(L) ; X indicates the set of rotational invariants parametrising the
kinematic space; E (L) ⊆ E is the subset of the edges of the graph G associated to loops 1,
the integrations over {ye | e ∈ E (L)} parametrise the loop integration in terms of, at most,
n(L)
e := dim{E (L)} y-variables, µd(ye) is the measure of integration which turns out to be

always positive within the domain of integration Γ and zero at its boundaries; the set of
parameters, {

σ := (α, β) ∈ Rn
∣∣∣α := (αs)s∈V ; β := (βe)e∈E(L) , n := ns + n(L)

e

}
depend on the cosmology as well as on the states at the site sj (for α), and on those
propagating along the loop edges (for β); qg(z, X ) is a linear polynomial associated to the
subgraph g,

qg(z, X ) =
∑
s∈Vg

xs +
∑

e∈Eext
g, L

ye + Xg, Xg :=
∑
s∈Vg

Xs +
∑
e∈Eext

g, 0

ye , (3.2)

τg is generally an integer number associated to the subgraph g whose value depends on the
states propagating along the edges; nδ(z; X ) is a polynomial of degree δ < τ := ∑

g⊆G τg
– i.e. the integrand vanishes as z−(τ−δ) as z −→ +∞ – which is fixed by compatibility
conditions among the subgraphs g [193].

An important aspect of cosmological integrals is that the integrand is always non-
negative in the integration contour. The rational function which comes from the cosmolog-
ical polytope, where the singularities, qg, are linear polynomials with positive coefficients.
This clearly never becomes singular unless the integration variables are either made to be
very large, or very small, since from the contour of integration they are always non-negative
as well. The measure µd turns out to also be always positive by definition, as we will see
below, since the region of integration will be defined to be the region where µd is positive.
And as we will see, µd is just the volume of a simplex raised to a half-integer power, and
the region of integration Γ, is given by demanding that the volume is non-negative. So at
most, our integrand will become singular at the boundaries of the region of integration.
This is a very important point, as we will see it allows us to use Newton polytopes to
fully capture the divergent regions of a cosmological integrals Then, natural regularisation
parameters for the integral (3.1) are given by suitably analytic continuing the parameters
(α, β, τ) in the spirit of analytic regularisation [201] 2.

In the next sections, we will be concerned with the study of the infra-red/ultraviolet
behaviour of the class of integrals (3.1), which need to be regularised. Such a regularisation
is implemented by analytically continuing the parameter vector σ, as well as τg, to arbi-
trary complex values [201], and also consider the suitable iϵ-prescription – for an extended
discussion, see [202]. The infrared regions for physical kinematics are obtained for large

1Said differently, there is no integration over the y-variables associated to purely tree subgraph. These
y-variables instead parametrise the angles among external states.

2This usually comes with the introduction of a regularisation scale. We will be sloppy with it, as we
will just focus on the analysis itself of the asymptotic behaviour of the cosmological integrals.



3.1 Cosmological Integrals 37

xs’s and/or small ye’s – importantly, as we will see later on, at most L edge variables,
associated to different loops, can be taken to be simultaneously small.

Before digging into the infra-red/ultraviolet behaviour of (3.1), there is one more in-
gredient that deserves a bit of discussion: the loop integration measure µd(y, X ) and the
loop integration contour Γ. They turn out to have a beautiful geometrical interpretation.

A cosmological integral of the form (3.1) is the Mellin transform 3 over the x-variables,
and the integral over the space of loop y-variables of a rational function, which is the
canonical function of a cosmological polytope [83], generalised cosmological polytope [197]
or a weighted cosmological polytope [194]. Its numerator nδ(z, X ) being the adjoint surface
of the relevant geometry, and the denominators {qg(z, X ), g ⊆ G} identify their bound-
aries and are associated to the subgraphs {g, g ⊆ G}. It turns out that the loop measure
µd(ye, X ) and the loop contour of integration have an interesting geometrical interpreta-
tion.

Let us begin with considering G to be a one-loop graph. For d ≥ n(1)
e , the standard measure

ddl in loop space can be then written in terms of l⃗2 as well as n(1)
e −1 scalar products (⃗l · q⃗j),

where the vectors q⃗j’s are a basis in the space spanned by the n(1)
e − 1 linearly independent

momenta at each site of the graph. This decomposition can be obtained by splitting the
loop momentum vector, l⃗, into a component which is parallel to the vector space generated
by the external momenta, q⃗i, and another component which perpendicular to this space.
Then, the measure relative to the perpendicular component can be treated in terms of
spherical coordinates, where the norm of the perpendicular component can be given as the
square root of the ratio of the volume of the simplex formed by the full loop momentum
vector and the external momenta vectors, and the volume of the simplex formed just
by the external momenta vectors. These volumes can be computed in terms of Gram
determinants. The measure of the parallel part can be computed by changing variables
into the axes formed by the external momenta vectors. These axes, in general, do not
form an orthonormal basis of the vector space they generate, thus the measure requires
a normalisation given as a volume of the simplex formed by the vectors of the external
momenta. This is again given by a Gram determinant. Then, our integration variables
are thus the scalar products of loop momenta and the external momenta, which can be
linearly related to the square of the y-variables in the loop. Thus, the full Jacobian of this
change of variable is given in terms of a Gram-determinant in momentum space

ddl = dV
d−n(1)

e

∏
e∈E(1)

[
dy2

e

] [
G(q⃗1, . . . , q⃗n(1)

e −1)
]− 1

2

G(⃗l, q⃗1, . . . , q⃗n(1)
e −1)

G(q⃗1, . . . , q⃗n(1)
e −1)


d−n

(1)
e −1
2

, (3.3)

where dV
d−n(1)

e
is the volume form for a (d− n(1)

e )-dimensional sphere, and G(v⃗1, . . . , v⃗n) is
the Gram determinant whose (i, j)-entry is given by v⃗i · v⃗j. The contour integration Γ can

3Let us stress that the appearance of an ns-dimensional Mellin transform is just a consequence of
the choice of focusing on power-law cosmologies – the measure of integration is related to the choice of
cosmologies
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be expressed as a positivity condition on the Gram determinants

Γ =
G(⃗l, q⃗1, . . . q⃗n(1)

e −1)
G(q⃗1, . . . , q⃗n(1)

e −1)
≥ 0. (3.4)

As a basis for the space spanned by the external momenta at the sites of G, let us takeq⃗j = P⃗2...j+1 :=
j+1∑
k=2

p⃗k, j = 1, . . . , n(1)
e − 1

 . (3.5)

Interestingly, the integration variables in IG parametrise precisely the scalar products
among the loop momentum and the external ones, and allow writing each Gram deter-
minant in terms of a Cayley-Menger determinant

G(⃗l, q⃗1, . . . q⃗n(1)
e −1) = (−1)n

(1)
e +1CM(y2

i,i+1, P
2
2...j+1) (3.6)

where,

CM(y2
i,i+1, P

2
2,j+1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 . . . 1 . . . 1
1 0 y2

12 y2
23 . . . y2

i, i + 1 . . . y2
n

(1)
e , 1

1 y2
12 0 P 2

2 . . . P 2
2 . . . i . . . P 2

2 . . . n
(1)
e

1 y2
23 P 2

2 0 . . . P 2
3 . . . i . . . P 2

3 . . . n
(1)
e... ... ... ... . . .

... . . .
...

1 y2
n

(L)
e , 1

P 2
2 . . . n

(1)
e

P 2
3 . . . n

(1)
e

. . . P 2
i + 1 . . . n

(1)
e

. . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (3.7)

with Psj
= Xsj

if there is just one external state at the site sj. The Gram determinant
is given by G(q⃗1, . . . , q⃗n(1)

e −1) = (−1)n
(1)
e CM(2, 2), where the index indicates the (2, 2)-minor

of the Cayley-Menger determinant (3.7). The condition (3.4) is just the statement that
the space is Euclidean. From the perspective of the Cayley-Menger determinant, the
Euclidean space condition is reflected into the matrix (3.7) being a matrix with non-
negative entries which can be associated to Euclidean distances. The determinant (3.7)
is therefore proportional to the squared volume of a ne-dimensional simplex Σ

n
(1)
e

whose
squared side lengths are given by the non-zero entries, with the condition that the squared
volume is positive [203]

(−1)n
(1)
e +1CM(y2

i, i + 1, P
2
2 . . . j + 1) = (n(1)

e !)2Vol2{Σ
n

(1)
e

} ≥ 0 (3.8)

Another way of stating that the space is Euclidean, is that the distance matrix D, defined as
D :=

{
Dij, i, j = 1, j = 1, . . . , ne + 1

∣∣∣Dij :=
√

CM(1, 1)
ij ≥ 0

}
, is embeddable in Euclidean

space. Let Ik and Jk be a set of n(1)
e − k rows and a set of n(1)

e − k columns of CM in (3.7),
then a necessary and sufficient condition for the associated matrix D to be embeddable in
Euclidean space is that for all sets Ik and Jk and for all k = 1, . . . , n(L)

e then

(−1)k+1CM(Ik, Jk) ≥ 0 (3.9)
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CM(Ik, Jk) is the minor of CM obtained from the latter erasing the rows in Ik and the
columns in Jk [203]. Recalling that G(q⃗1, . . . q⃗n(1)

e
) = (−1)n

(1)
e CM(2, 2), then the embed-

dability of D in Euclidean space guarantees (3.4). Said differently, the integration region
is given by the non-negativity condition on the volume of a ne-simplex with side lengths
given by the non-zero entries of the distance matrix D.

The boundary of the integration region is given by the vanishing of the Cayley-Menger
determinant, i.e. by the condition that the volume of Σne vanishes. This implies that
the vertices of Σ

n
(1)
e

lie in a proper affine subspace of Rn
(1)
e [203]. The Cayley-Menger

determinant is in general an irreducible multivariate polynomial, except for n(1)
e = 2 [204].

The integral (3.1) can then be rewritten as

IG = c
d,n

(1)
e

∫
Rns ∪Σ

n
(1)
e

[
dz

z

] Vol2{Σ
n

(1)
e

(y, P2. . . j)}
Vol2{Σ

n
(1)
e −1(P2. . . j))}


d−n

(1)
e −1
2

nδ(z, X )∏
g⊆G

[qg(z, X )]τg
(3.10)

where the overall factor c
d,n

(1)
e

is a function of the external data P 2
2. . . j ant its explicit

expression is given by

c
d,n

(1)
e

= c
d,n

(1)
e

(P 2
2. . . j) := 2n

(1)
e (n(1)

e )d−n(1)
e −2 (n(1)

e !) π
d−n

(1)
e

2

Γ
(
d−n(1)

e +1
2

)Vol
{
Σ
n

(1)
e −1(P2 . . . j)

}−1
.

(3.11)

Let us now move to the measure for the multi-loop integrals. Proceeding as before, for
each loop momentum {ll | l = 1, . . . L} we can write:

ddll = dVd−nel
−L+l

∏
e∈E(L)

l

[
dy2

e

] [
CM(Q2

i . . . j)
]− 1

2 [CM(y2
e , Q

2
2. . . j)]

d−ns−1−L+l
2

[CM(Q2
i . . . j)]

d−nsl
−L+l

2

(3.12)

where the Q’s appearing in the Cayley-Menger determinants refer to the moduli of the
momenta external to the l-th loop, i.e. some of them can be related to actual external
momenta, Q2 . . . j = P2 . . . j, while others can depend on the edge weights associated with
other loops (or, which is the same, on momenta running in the other loops). Thus, a
L-loop integral IG associated to a graph G acquires the form

IG =
L∏
l=1

 π
d−nsl

−L+l

2

Γ
(
d−nsl

−L+l
2

) ∫
Γl

∏
el∈E(1)

l

[dy2
el

]
[CM(y2

el
, Q2

i. . . j(y̸el
)]

d−nsl
−1−L+l

2

[CM(Q2
i . . . j(y̸el

)]
d−nsl

−L+l

2

 nδ(ye)∏
g⊆G

qg(ye)
(3.13)

where y̸el
is associated to an edge which is not in El, and the contour Γl for the l-th loop

is given by

Γl :=
{

CM(y2
el
, Q2

i. . . j(y̸el
))

CM(Q2
i...j(y̸el

)) ≤ 0
}
. (3.14)



40 3. Perturbative Structure of Cosmological Observables

x1 x2

ya

yb

x1

x2 x3

y12

y23

y31 x1 x2
yb

ya

yc

Figure 3.1: Examples of loop graphs. The associated loop integrals are ne-fold if ne < d,
and the integration measure is proportional to the squared volume of a simplex in Pns+ne−2.

Such an expression can be further manipulated to get

IG = c
d,n

(L)
e ,L

∫
Rns

+ ∪Γ

[
dz

z
zσ−1

] [
Vol2(ye, P 2

i...j)
Vol2(P 2

i . . . j)

] d−ns−L
2 nδ(z, X )∏

g⊆G
qg(z, X )

(3.15)

where the integration region Γ is determined by the intersection among all the contours Γl.

Γ =
L⋂
l=1

Γl (3.16)

and the coefficient cd,ne,L is given by

c
d,n

(L)
e ,L

:= π
d−ns+L(L−1)/2

2

L∏
l=1

Γ
(
d− nsl

− L+ l

2

)2n
(L)
e (n(L)

e )d−ne−L−2 (n(L)
e !) Vol{Σ̃(Pi...j)}−1 (3.17)

As a final remark, the representation of the measure of integration in terms of the Cayley-
Menger determinant allows for a geometrical interpretation in terms of volumes of a simplex
in Pne , with all the edge weights and the moduli {ps, s ∈ V} of the momenta of the external
states4 at each site s associated to the edges of the simplex, and the boundaries of the region
of integration determined by projecting its vertices on a lower-dimensional hyperplane.

3.2 Examples
Two-site one-loop graph – Let us begin with the simplest non-trivial one-loop example,
the two-site one-loop graph – see Figure 3.1. Let P := {p⃗j, j = 1, . . . , n} be the set of
external spatial momenta. The external kinematics can be parametrised via

X1 :=
∑
p⃗∈P1

|p⃗|, X2 :=
∑
p⃗∈P2

|p⃗|, P :=
∣∣∣∣ ∑
p⃗∈P1

p⃗

∣∣∣∣ =
∣∣∣∣ ∑
p⃗∈P2

p⃗

∣∣∣∣ (3.18)

4Importantly, if at a site s more than one external state is attached, then Ps parameterise the angle
among them. If instead just a single external state is attached to it, then Ps = Xs.
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where P1, P2 ⊂ P such that P1 ∪ P2 = P and P1 ∩ P2 = ∅ – i.e. P1 and P2 are the
sets of external momenta at the two vertices of the graph. The loop space can instead be
parametrised as

ya := |⃗l|, yb := |⃗l + P⃗ |, P⃗ :=
∑
p⃗∈P1

p⃗. (3.19)

For d ≥ 2, i.e. the number of spatial dimension greater than the number of edges of
the graph, then the loop integration is a two-fold integral in ya and yb. From (3.10),
the measure can be written in terms of the squared volume of a triangle in P2, whose
boundaries’ volumes are given by the triple (ya, yb, P ) and that is proportional to (minus)
the Cayley-Menger determinant CM(y2, P 2):

Vol2{Σ2(y, P )} ∼ −CM(y2, P 2) = −

∣∣∣∣∣∣∣∣∣
0 1 1 1
1 0 y2

a y2
b

1 y2
a 0 P 2

1 y2
b P 2 0

∣∣∣∣∣∣∣∣∣ =
[
(ya + P )2 − y2

b

] [
y2
b − (ya − P )2

]

(3.20)
The proportionality factor in the measure depends on the (2, 2)-minor of (3.20), which
returns the volume of the codimension-1 boundary of the triangle that purely depends on
the external kinematics, i.e CM(2, 2)(y2, P 2) = 2P 2. The case (3.20) is the only one in which
the Cayley-Menger determinant is factorisable. The non-negativity of (3.20) as well as of
the individual integration variables ya and yb as well as of the external kinematic parameter
P defines the contour of integration Γ to be,

Γ2 :=
{[

(ya + P )2 − y2
b

] [
y2
b − (ya − P )2

]
≥ 0, ya ≥ 0, yb ≥ 0

}
. (3.21)

This geometrical picture also allows to straightforwardly understand the behaviour of the
measure as certain limits are taken. For example, as any of the elements of the triple
(ya, yb, P ) are taken to zero, the triangle associated to the measure gets mapped into a
segment by collapsing two of its vertices onto each other:

ya

P

yb
yb = P

ya −→ 0
ya = P

yb −→ 0

yb = ya

P −→ 0

If the graph is characterised by just an external state for each site, then spatial momentum
conservation implies that X := X1 = X2 and P = X. In this case, as ya ∼ ρX 5, the
triangle volume also vanishes.

The full integral corresponding to the 2-site 1-loop graph then acquires the form

I (1)
2 = π

d−2
2

Γ
(
d−2

2

) +∞∫
0

dx1

x1
xα1

+∞∫
0

dx2

x2
xα2

∫
Γ2
dy2

a dy
2
b

[((ya + P )2 − y2
b )(y2

b − (ya − P )2)] d−3
2

P d−2 Ω (x, y)

(3.22)
5This is nothing but the collinear limit l⃗ −→ ρP⃗ .
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where Ω (x, y) is the universal integrand provided by the combinatorial picture of standard
/ generalised / weighted cosmological polytopes. Note that for d = 2 – when the number
of spatial dimensions is the same as the number of edges of the graph, the squared volume
of the triangle appears in the denominator and its vanishing – that typically occurs at the
boundary of the integration region – might imply the appearance of a singularity from the
measure which does not appear for d > ne = 2. However, this is not the case, as the factor
yayb cancels such potential divergence.

For d < ne = 2, i.e. d = 1, then the edge weights are not independent, and the loop
space is parameterised by one of them only. In the simple case under discussion, such a
space is 1-dimensional and can be parameterised by any of the two edge weights. Without
loss of generality, it is possible to take ya. Then yb = ya + P and dl = dya, with the
integration region being just the positive real axis R+. The integral associated to two-site
one-loop in d = 1 can then be written as

I (1)
2

∣∣∣
d=1

= δ (X2 −X1)
+∞∫
0

dx1

x1
xα1

+∞∫
0

dx2

x2
xα2

+∞∫
0

dya

+∞∫
0

dyb δ (yb − ya − P ) Ω (x, y) ,

(3.23)
where the overall delta function simply enforces the two external states to have the same
energy, and we kept the integration over yb but constrained by the delta function in such a
way that the integrand can be still written in terms of the canonical function of the relevant
polytope – then integrating it out is geometrically equivalent to a covariant restriction 6 of
the relevant geometry on to the hyperplane yb − ya − P = 0.

Three site, one loop graph – Let us turn now to the next-to-simplest case, the three-site
one-loop graph – see Figure 3.1. The external kinematics is parametrised as

Xj :=
∑
p⃗∈Pj

|p⃗|, Pj :=
∣∣∣∣ ∑
p⃗∈Pj

p⃗
∣∣∣∣, j = 1, 2, 3 (3.24)

where {Pj, j = 1, 2, 3} are such that P1 ∪ P2 ∪ P3 = P and {Pi ∩ Pj = ∅, ∀ i ̸= j i, j =
1, 2, 3} – they are the sets of momenta at the vertices 1, 2, 3. Notice that in case the graph
has one momentum for each vertex, then {Xj = Pj, ∀ j = 1, 2, 3}. The loop momentum
can be parametrised in terms of

y12 := |⃗l|, y23 := |⃗l + P⃗2|, y31 := |⃗l − P⃗1|, (3.25)

where
P⃗j :=

∑
p⃗∈Pj

p⃗, j = 1, 2, 3. (3.26)

For d ≥ 3, the loop momentum is a three-fold integral over the variables (3.25). The loop

6For a general definition and discussion of the covariant restriction, see [197].
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integration measure is now given in terms of the squared volume of a tetrahedron in P3:

Vol2
{
Σ3
(
y2, P 2

)}
= +CM

(
y2, P 2

)
=

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 0 y2

12 y2
23 y2

31
1 y2

12 0 P 2
2 P 2

1
1 y2

23 P 2
2 0 P 2

3
1 y2

31 P 2
1 P 2

3 0

∣∣∣∣∣∣∣∣∣∣∣∣
(3.27)

As for the previous case, the proportionality factor depends on the volume of the simplex
in one dimension less give by the (2, 2)-minor of (3.27), i.e. a triangle whose sides’ volumes
are given by the triple (P1, P2, P3)

P1

y12

P2

y23

P3

y31

P1

P2

P3

The contour of integration is then given by

Γ3 :=
{
(−1)k+1CM(Ik, Jk) ≥ 0,∀ (Ik,Jk) k = 1, . . . 3

}
(3.28)

where Ik and Jk are sets of 3 − k rows and 3 − k columns respectively. In words, all the
minors of CM(y2

j,j+1, P
2
j ), including the full Cayley-Menger determinant, with the appro-

priate (-1) factors have to be non-negative, with the equality for (−1)4CM(y2
j,j+1, P

2
j ) = 0

establishing the boundary of the region of the integration. The Cayley-Menger determi-
nant (−1)4CM(y2

j,j+1, P
2
j ) proportional to the squared volume of a tetrahedron whose sides

have lengths {y12, y23, y31, P1, P2, P3}. The boundary of the contour of integration im-
plies that the four vertices of the tetrahedron become co-planar. As in the previous case,
this geometrical picture makes manifest the behaviour of the measure as several limits are
taken. In particular, as any of the {yi,i+1, i = 1, 2, 3} is taken to zero, the tetrahedron is
mapped into a triangle.

The full integral corresponding to the 3-site 1-loop graph then acquires the form

I (1)
3 = 2π d−3

2

Γ
(
d−3

2

) 3∏
j=1

 +∞∫
0

dxj
xj

xαj

 ∫
Γ3

∏
e∈E

dy2
e

[(−1)4 CM (y2, P 2)]
d−4

2

[(−1)3 CM(2, 2) (P 2)]
d−3

2
ΩG(x, y) (3.29)

For d < ne = 3, not all the edge weights are independent and, hence, the integral is d-fold
integral.

Two-site, two-loop graph – Let us conclude with a two-loop example, the two-site
two-loop graph – see Figure 3.1. Its kinematics can be parametrised as

X1 :=
∑
p⃗∈P1

|p⃗|, X2 :=
∑
p⃗∈P2

|p⃗|, P :=
∣∣∣∣ ∑
p⃗∈P1

p⃗
∣∣∣∣ =

∣∣∣∣ ∑
p⃗∈P2

p⃗
∣∣∣∣ (3.30)
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where P1, P2 ⊂ P such that P1 ∪ P2 = P and P1 ∩ P2 = ∅. The edge weights of the
graph instead parametrise the loop space via

ya := |⃗l1|, yb := |⃗l1 + l⃗2 + P⃗ |, yx := |⃗l2|. (3.31)

Let us proceed one loop at a time, as described in the main text, focusing on the loop
subgraph with edge weights ya and yb. It can be taken to have external kinematics to be
given by yd = |⃗l2 + P⃗ | – from a graph perspective this is equivalent to open up one of the
sites into two:

x1 x2
yb

ya

yc

x1 x2

yd
yb

ya

yc

with white site not carrying any weight. Then, a measure µ(1)
d (ya, yb, yd) gets associated

to the 2-site 1-loop subgraph being constitutes by the white site and the black one with
weight x2. A second measure is associated to the graph obtained by replacing the previous
1-loop subgraph by an edge with weight yd (i.e. the modulus of the momentum flowing
through the deleted subgraph):

x1 x2

yd
yb

ya

yc

x1 x2

yd

yc

The measure associated to the 2-site 2-loop graph can be written as

µ(2)
d (y, P ) :=

∫
dy2

d µ
(1)
d (ya, yb, yd)µ(1)

d (yd, yc, P ) (3.32)

with µ(1)
d being the measure for the 2-site 1-loop graph computed earlier. The contour of

integration is then given by Γ = Γ1
⋂Γ2 where

Γ1 =
{
(−1)k+1CM(Ik, Jk)(ya, yb, yd) ≥ 0, ∀ (Ik,Jk) , k = 1, 2

}
,

Γ2 =
{
(−1)k+1CM(Ik, Jk)(yd, yc, P ) ≥ 0, ∀ (Ik,Jk) , k = 1, 2

} (3.33)

The integral associated to 2-site 2-loop graph acquires the form

I (2)
2 ∼

+∞∫
0

dx1

x1
xα1

+∞∫
0

dx2

x2
xα2

∫
Γ

∏
e∈E∪{ed}

dy2
e µ

(1)
d (ya, yb, yd)µ(1)

d (yd, yc, P ) ΩG (x, y) (3.34)

where ∼ indicates the omission of factors which are irrelevant to the present discussion,
and ed is the edge with weight yd. Note that the integrand ΩG(x.y) does not depend on the
additional variable yd which, consequently, can be integrated out returning a measure that
depends only on the edge weights of the original graph as well as its external kinematics.
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3.3 The asymptotic structure of cosmological inte-
grals

It is useful to summarise the salient features of the general cosmological integral (3.1)
associated to a given graph G:

• its integrand ΩG(x, y) is a rational function whose denominator is a degree-ν̃ fac-
torisable polynomial, whose factors are ν̃ linear polynomials which are in 1 − 1 cor-
respondence with subgraphs of G and individually identifies a facet of the relevant
polytope;

• the numerator of ΩG(x, y) is a polynomial of degree ν̃ − ns − ne that identifies the
adjoint surface of the relevant polytope, and it’s fixed by compatibility conditions
among singularities [79,193] and, in the case of a correlation function, by additional
conditions on the residues [?];

• the integral (3.1) can be seen as a Mellin transform of ΩG(x, y) over the site weights,

and over
L∏
l=1

min{n(l)
e , d}-dimensional edge-weight space whose measure can be ex-

pressed in terms of squared volume of simplices;

• the integration measure in the edge-weight space is always positive in the interior of
the integration region, and vanishes just on its boundary.

Because of all these features, the integral (3.1) can show divergences when the graph
weights become large or small. Such a behaviour is controlled by the powers in the site
and edge weights in the integrand ΩG(x, y) and in the weight integration measure. It is in
turn codified in the combinatorics of the Newton polytope associated to it, which controls
the convergence of the integral [205,206], allow identifying the divergences and isolate them
via sector decomposition [207–213].

Newton polytopes and asymptotic behaviour – In order to fix the ideas, let us
consider the following toy integral

I[σ] :=
∫
Rn

+

[
dz

z
zσ
]

nδ(z)
[pm(z)]τ (3.35)

where z := (z1 . . . zn) ∈ Rn
+, σ := (σ1, . . . , σn) ∈ Cn. While pm(z) and nδ(z) are multivari-

ate polynomials in z of degrees m ∈ Z+ and δ ∈ Z+ respectively. Such an integral falls
into the class of cosmological integrals given in (3.1), in particular all tree-level cosmolog-
ical integrals are of this form. Let us begin with the case for which the numerator is a
degree-zero polynomial. The integral (3.35) will diverge when pm(z) vanishes for z inside
the integration region, Rn

+, or when the integration variables z either become very large
or very small, in other words when some of them go to infinity or to zero, respectively.
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Therefore, when the polynomial pm(z) does not vanish inside the integration region, for
some domain in the space of exponents σ ∈ Cn, the integral will converge. For polynomials
with real coefficients (which is our case of interest) this will happen when the coefficients
are positive. This region in σ-space is bounded in the real directions and unconstrained in
the imaginary directions, thus we can call it a tube domain. Then, the integral can only
have singularities when z becomes very large, or very small. And this singular behaviour
is determined by the powers σ, τ and the exponents in each monomial of pm(z). A ge-
ometric object which encodes this asymptotic behaviour of polynomials like pm(z) (with
real, positive coefficients) is the Newton polytope. It is simply defined by considering the
space ρ ∈ Rn of the powers of the monomials in pm(z), assigning a point (ρ1, ..., ρn) for
the monomial zρ1

1 · · · zρn
n , then the Newton polytope is the convex hull of the set of points

we have from pm(z). Intuitively, the faces of this polytope tell us which monomials are
leading when we take certain z’s to be very large or very small. Thus, we can learn the
possible divergent directions of the integral. Then, we say that the region in σ-space where
the integral converges and defines an analytic function in σ is obtained by requiring that
(Reσ1, · · · ,Reσn) lies in the interior of the Newton polytope of pm(z) [205]. Let’s consider
a simple example to better understand the above discussion. Take the integral,

I[σ1, σ2] =
∫
R2

+

dz1

z1

dz2

z2
zσ1

1 z
σ2
2

1
1 + z1 + z2

.

The polynomial pm(z) ≡ p1(z1, z2) = 1 + z1 + z2, and we can identify the points in ρ-space
to be (0, 0), (1, 0), and (0, 1), and therefore the Newton polytope is a triangle, with these
points as the vertices. This example provides us with a simple intuition on how the Newton
polytope encodes the asymptotic structure of the polynomial pm(z). If we consider the limit
z1 → ∞, then the leading monomial in p1 is z1, and is identified with the vertex (1, 0). If
we were to consider the direction z1 → ∞, and z2 → ∞, then p1 → z1 +z2 and is identified
with the boundary line with vertices (1, 0), and (0, 1). On the other hand, by looking into
the direction z1 → 0, and z2 → 0, then p1 → 1, and we can identify this limit with the
vertex (0, 0). From this quick analysis, we see how the boundaries of the Newton polytope
inform us of the behaviour of the respective polynomial, in the asymptotic directions of
its variables. In turn, this makes it very clear how to identify the domain of convergence
of the integral I[σ1, σ2]. In the lower boundary of the integral, (z1 = 0, z2 = 0), for the
integral to converge we need {Reσ1 > 0,Reσ2 > 0} since in this limit p1(z1, z2) → 1 and
for non-positive values of σ we would have logarithmic singularities in I[σ1, σ2]. These two
inequalities in σ are precisely two of the boundaries of the Newton polytope. Similarly, we
can perform the same analysis on the third boundary to find that Reσ1 + Reσ2 − 1 < 0,
and thus we find the bounded region of the real values of σ, and in turn the tube domain
of convergence of I[σ1, σ2].

Now that we have looked at a simple example that illustrates the usefulness of the
Newton polytope in identifying the convergence region of integrals of the type (3.35), lets



3.3 The asymptotic structure of cosmological integrals 47

consider a more general setup. Take the multivariate polynomial pm(z) written as,

pm(z) :=
m∑

ρ1...ρn=0
ρ1+...+ρn≤m

aρ1···ρn

n∏
j=1

z
ρj

j ≡
∑
ρ∈Zn

ρ1+...+ρn≤m

aρz
ρ

where z := (z1, . . . , zn), ρ := (ρ1, . . . , ρn), and aρ1···ρn ∈ Cn. It is possible to associate a
collection of vertices,Z := (1,Re{ρ}) ∈ Pn

∣∣∣∣∣∣ Re{ρ} ∈ Zn,
n∑
j=1

ρj ≤ m


in Pn. Then, the convex hull of the set of points defined above is the Newton poly-
tope N [pm(z)] associated to pm(z). If the polynomial pm(z) is factorisable, i.e. pm(z) =
pm1(z) · · · pmt(z) with m1 + . . .+mt = m, then the Newton polytope N [pm(z)] is given by
the Minkowski sum of the Newton polytopes associated to each {pmj

(z), j = 1, . . . , t, m1 +
. . .mt = m}:

N [pm(z)] =
t⊕

j=1
N
[
pmj

(z)
]
. (3.36)

with ⊕ indicating the Minkowski sum. The Minkowski sum between two polytopes can
be computed by summing every vertex in one polytope, with every vertex in the other
polytope, then the convex hull of the resultant set of points is the Minkowski sum of the
two polytopes. Finally, if the polynomial factorises as pm(z) := [pm1(z)]τ1 · · · [pmt(z)]

τmt ,
with τ1m1 + . . .+ τmtmt = m and {τj ∈ C | j = 1, . . . , t}, then its Newton polytope can be
written as the weighted Minkowski sum of the individual polynomials

{
pmj

(z), j = 1, . . . , t
}

with the weights given by {Re {τj} ≥ 0, j = 1, . . . t}:

N [pm(z)] =
t⊕

j=1
Re {τj} N

[
pmj

(z)
]
. (3.37)

Interestingly, the combinatorial structure of (3.37) does not depend on the weights.
Note that the monomial zσ appearing in the measure of the Mellin transform in (3.35)

can be included in the definition of Newton polytope:

N [I(σ)] := −σ
t⊕

j=1
Re {τj} N

[
pmj

(z)
]
.

As it just identifies a point in the space of powers, its only effect would be a translation
of the polytope N [pm(z)] that depends on Re{σ}. Thus, the combinatorial structure of
N [I(σ)] is the same as N [pm(z)].

What occurs when the numerator is a polynomial of degree greater than zero? The
convergence of the integral (3.35) can be effectively analyzed by expanding the numerator
nδ(z) in terms of monomials. This allows us to transform (3.35) into a series of integrals
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that all share the same denominator [pm(z)]τ . Each integral has a numerator equal to one,
differing only in their Mellin transform parameters, which are shifted in distinct ways. The
nature of these shifts is determined by the powers present in the monomials of nδ(x, y):

I[σ] =
∑
r=0

r1+...+rn≤δ

a(n)
r I[σ + r] =

∑
r=0

r1+...+rn≤δ

a(n)
r

+∞∫
0

[
dz

z
zσ+r

]
1

[pm(z)]τ (3.38)

The asymptotic behavior of the entire integral is still defined by the Newton polytope
linked to the denominator, which is common across all integrals in the sum (3.38), albeit
with different shifts for each integral. It turns out that each separate integral (3.38)
converges if the point (1, Re{σ} + r) resides within the interior of the pertinent Newton
polytope. Additionally, the overall integral (3.35) converges in the region where these
Newton polytopes overlap [205].

The condition for each individual integral can be alternatively verified by examining
the facets of the corresponding Newton polytope along with the co-vectors in the dual
space that define them. It is important to note that this set {W (j)

I } of co-vectors in the
dual space 7 is represented by,

W (j)
I = (−1)j(n−1)ϵIK1 . . . Kn

ZK1
aj+1

. . .ZKn
aj+n1

,

where ϵIK1 . . . Kn
denotes the anti-symmetric (n+ 1)-dimensional Levi-Civita symbol. Since

the vectors that define the vertices are of the form Z = (1, ρ) with ρ ∈ Zn, the co-
vectors W exhibit the structure W = (λ, ω). Here, λ = λ(Re{σ},Re{τ}) is dependent on
the parameters Re{σ} and Re{τ}, while ω is an n-vector that does not depend on these
parameters. The function λ can be expressed explicitly as

λ(σ, τ ; ω) = Re{σ} · ω − Re{τ}
∑
{ρ}

max{ρ · ω} (3.39)

and indicates how the direction pointed by ω is approached 8. Moreover, understanding
the co-vectors enables the tiling of the integration region into sectors ∆Wc [207–213], each
characterized by a set of adjacent co-vectors Wc,

Rn
+ =

⋃
{Wc}

∆Wc , (3.40)

and the integral (3.35), with a degree δ = 0 numerator, can then be written as

I[σ] =
∑

{Wc}

∫
∆Wc

[
dz

z
zσ
]

nδ(z)
[pm(z)]τ ≡

∑
{Wc}

I∆Wc
[σ].

7The dual space will still be denoted as Pn.
8In the context of Feynman integrals where tropical geometry techniques are applied, the function

λ(σ, τo; ω) is known as a tropical function, often denoted as Trop – see [105,213–217]
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The knowledge of the co-vectors identifying a given sector ∆Wc also provides a change of
variables to suitably parametrise the integral I∆Wc

[σ]

zj −→
∏
ω∈ωc

ζ−ej ·ω
ω , ζω ∈ [0, 1], ∀ω ∈ ωc (3.41)

∀ j ∈ [1, n], where {ej ∈ Rn, j = 1, . . . , n} represents the canonical basis in Rn, and
ωc denotes the set of n-vectors in W that are part of the collection of compatible facets
identified by Wc. With this change of variables, the integral I∆Wc

[σ] takes on the form

I∆Wc
=
∫ 1

0

[
dζ

ζ
ζ−λ

]
1

[pm(ζ)]τ

where ζ := (ζω)ω∈ωc and λ := (λω)ω∈ωc . In this way, the divergences can be isolated from
one another, and the Laurent expansion of one of the λω receives contribution from just
a subset of integrals. Notably, it was demonstrated in [213] that if the complete λ is set
to zero, for instance by rescaling it with a smallness parameter ϵ (λ −→ ϵλ), then as
ϵ −→ 0, all sectors will contribute, and the leading divergence coefficient corresponds to
the canonical function of the Newton polytope associated with pm(z).

To consolidate the above discussion, we can illustrate the ideas with an example. Let
us consider a example of an integral of the type (3.35)

I[σ] :=
∫ +∞

0

dx1

x1
xs1

1

∫ ∞

0

dx2

x2
xs2

2
1

(XG + x1 + x2)τ
≡
∫ +∞

0

[
dz

z
zσ
]

1
(XG + e12 · z)τ (3.42)

where z := (x1, x2), σ := (s1, s2) ∈ C2 and e12 := (1, 1) ∈ R2. The potential asymptotic
divergent directions, along with the manner in which they are approached, are represented
by the Newton polytope associated with the polynomial 1 + e12 · z, shifted by −Re{σ}.
This polytope takes the form of a simple triangle, with its facets defined by the co-vectors:

W ′(1) =
(

−Re{s1}
−e1

)
, W ′(2) =

(
−Re{s2}

−e2

)
, W (12) =

(
Re{s1} + Re{s2} − Re{τ}

e12

)
(3.43)

where, as before, {ej ∈ R2, j = 1, 2} is the canonical basis for R2. Being a triangle, all its
facets are compatible with each other, and thus, the region of integration can be tiled into
three sectors, identified by the three pairs of co-vectors (3.43).

The behaviour in each sector is made manifest via the change of variables(
W ′(2), W ′(1)

)
: x1 = (ζ ′

2)
−e1·ω′

2 (ζ ′
1)

−e1·ω′
1 = ζ ′

1, x2 = (ζ ′
2)

−e2·ω′
2 (ζ ′

1)
−e2·ω′

1 = ζ ′
2,(

W ′(1), W (12)
)

: x1 = (ζ ′
1)

−e1·ω′
1 (ζ12)−e1·ω12 = ζ ′

1
ζ12

, x2 = (ζ ′
1)

−e2·ω′
1 (ζ12)−e2·ω12 = 1

ζ12
,

(
W (12), W ′(2)

)
: x1 = (ζ12)−e1·ω12 (ζ ′

2)
−e1·ω′

2 = 1
ζ12

, x2 = (ζ12)−e2·ω12 (ζ ′
2)

−e2·ω′
2 = ζ ′

2
ζ12

(3.44)
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W ′(1)

W ′(2)

W(12)

0

x2

x11

1

Figure 3.2: On the left: Newton polytope associated to (3.42). Its facets are identified by
W ′(1) := (−Re{s1}, −1, 0)T, W (12) := (Re{s1 + s2 − τ}, 1, 1), W ′(2) := (−Re{s2}, 0, −1)
and divide the region of integration in three sectors, each of which bounded by a pair
of co-vectors associated to the facets. On the right: Decomposition into sectors of the
domain of the integration in the original integration variables. The blue square is the
sector identified by the pair

(
W ′(2), W ′(1)

)
– it is the only sector containing the possible

infra-red divergences. The red and the green areas instead single out the sector identified
by

(
W ′(1), W ′(12)

)
and

(
W (12), W ′(2)

)
.

and the integral (3.42) can be written as

I[σ] = [XG]s1+s2−τ
∫ 1

0

dζ ′
1

ζ ′
1

(ζ ′
1)
s1
∫ 1

0

dζ ′
2

ζ ′
2

(ζ ′
2)
s2 1

(1 + ζ ′
1 + ζ ′

2)
τ +

+ [XG]s1+s2−τ
∫ 1

0

dζ ′
1

ζ ′
1

(ζ ′
1)
s1
∫ 1

0

dζ12

ζ12
(ζ12)τ−s1−s2 1

(1 + ζ ′
1 + ζ12)τ

+

+ [XG]s1+s2−τ
∫ 1

0

dζ12

ζ12
(ζ12)τ−s1−s2

∫ 1

0

dζ ′
2

ζ ′
2

(ζ ′
2)
s2 1

(1 + ζ ′
2 + ζ12)τ

(3.45)

where the three integrals correspond to three sectors as in (3.44) – it is straightforward to
check that, upon the change of variables in (3.44), the region of integration R2 is split into
the domains ∆′ := {x1 ∈ [1, +∞[, x2 ∈ [1, +∞]}, ∆1′2 := {x1 ∈ [0, x2], x2 ∈ [1, +∞]}
and ∆12′ := {x1 ∈ [1, +∞[, x2 ∈ [0, x1]} as shown in Figure 3.3, where they respectively
correspond the blue, red and green regions. The three integrals in (3.45) are convergent
for different values of the parameters (s1, s2, τ), concretely: (Re{s1} > 0, Re{s2} > 0),
(Re{s1} > 0, Re{τ − s1 − s2} > 0) and Re{τ − s1 − s2} > 0, (Re{s1} > 0).

Let us examine the limit in which both s1 and s2 approach zero. This is equivalent to
allowing both directions W (1) and W (2) to diverge. In this case, the leading contribution is
provided solely by the first integral in (3.45):

I∆′ [σ] ∼
∫ 1

0

dζ ′
1

ζ ′
1

(ζ ′
1)
s1
∫ 1

0

dζ ′
2

ζ ′
2

(ζ ′
2)
s2 + . . . = 1

s1s2
+ . . . , (3.46)
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where I∆′ [σ] is the integral in the first line of (3.45), without the pre-factor [XG]s1+s2−τ .
In order to extract all subleading divergences, one can rewrite (1 + ζ ′

1 + ζ ′
2)−τ as a double

Mellin-Barnes integral
1

(1 + ζ ′
1 + ζ ′

2)
τ = 1

Γ(τ)

∫ +i∞

−i∞
dξ1 (ζ ′

1)
ξ1
∫ +i∞

−i∞
dξ2 (ζ ′

2)
ξ2 Γ(−ξ1)Γ(−ξ2)Γ(τ + ξ1 + ξ2)

such that the integrations over {ζ ′
j, j = 1, 2} take the same form as (3.46), but with

shifted powers, (s1, s2) −→ (s1 + ξ1, s2 + ξ2). These integrals can be evaluated, yielding
the factor [(s1 + ξ1)(s2 + ξ2)]−1. The contour integral can then be computed by closing
both integration contours in the positive half-plane, resulting in a series representation for
I∆′ , which can safely be expanded as (s1, s2) −→ (0, 0) to produce:

I∆′(σ) ∼ 1
s1 s2

− τ (2τ 2 − 3τ + 31)
36

( 1
s1

+ 1
s2

)
+ . . .

Indeed, contributions to the subleading divergences are given by the other two sectors as
well

I∆1′2 [σ] ∼ 1
s1

×
∫ 1

0

dζ12

ζ12
(ζ12)τ

1
(1 + ζ12)τ

,

I∆12′ [σ] ∼ 1
s2

×
∫ 1

0

dζ12

ζ12
(ζ12)τ

1
(1 + ζ12)τ

with the leftover integral which evaluate to a Gaussian hypergeometric function.
A similar treatment can be carried out in the other limits. In particular, the infra-red

behaviour of I[σ] is encoded into the direction W (12). It becomes divergent for τ−s1−s2 −→
0 and receives contribution from both I∆1′2 [σ] and I∆12′ [σ]. Indicating both of them as
I∆1′2′ [σ], their leading behaviour can be written as,

I∆1′2′ [σ] ∼
∫ 1

0

dζ12

ζ12
(ζ12)τ−s1−s2 ×

∫ 1

0

dζ ′
j

ζ ′
j

(
ζ ′
j

)sj 1(
1 + ζ ′

j

)τ =

= 1
τ − s1 − s2

×
∫ 1

0

dζ ′
j

ζ ′
j

(
ζ ′
j

)sj 1(
1 + ζ ′

j

)τ
with the integral evaluating to a Gaussian hypergeometric function. In the infra-red limit,
the integral factorises into two integrals, one containing the divergence, which manifests
itself as the pole in τ−s1 −s2 – signalling a logarithmic divergence – and the other integral
is finite.

With this understanding of how the asymptotic structure of the integrals is encoded in
the combinatorial properties of the Newton polytopes, the following subsection will focus
on the explicit analysis of the cosmological integrals. Although the overarching concept
remains unchanged regardless of the topology of the graphs, we find it beneficial to address
tree and loop graphs separately. Mainly, because in loop integrals the measure associated
with the loop integration introduces considerable complexity into the problem, and we
build on the analysis done at tree level to tackle it.
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3.3.1 The perturbative structure of the tree-level wavefunction
In this section, we will use the ideas discussed in the previous section, namely the Newton
polytope and sector decomposition, in order to compute the tree level cosmological integrals
as Laurent series in the analytic regulators αs. In practice, we are interested in extracting
the leading and sub-leading divergences of these integrals. In general, we can write a
tree-level integral associated to a graph G as follows:

I (0)
G [α, τ, X ] =

+∞∫
0

∏
s∈V

[
dxs
xs

xαs
s

]
nδ(x, X )∏

g⊆G
[qg(x,X )]τg

≡
∫
Rn

+

[
dz

z
zα
]

nδ(z, X )∏
g⊆G

[qg(z, X )]τg
(3.47)

where x := (xs)s∈V , α := (αs)s∈V , while nδ(x) and {qg(x), ∀ g ⊆ G} are inhomogeneous
polynomials in x of degree δ = ν̃ − ns − ne and 1 respectively. It is useful to recall the
explicit expression for the linear polynomial qg

qg(x) :=
∑
s∈Vg

xs + Xg

where Vg denotes the set of sites in g, and Xg parameterizes the kinematic invariant asso-
ciated with g. As previously mentioned, the asymptotic behavior of the integral (3.47) is
encoded in the Newton polytope related to the denominator factors qg(x). For a generic
tree graph with ns sites, it resides in Pns . As discussed earlier, the convergence of the
integral (3.47) can be examined by considering the weighted Minkowski sum of the New-
ton polytopes N [g] corresponding to the individual factors qg(x), shifted by the vector
Zα,r := (1,Re{α} + r), which is associated with the Mellin transform and the monomials
of the numerator nδ(x). We will revisit this shift later:

N (Zα,r)
G = −Zα,r ⊕ NG NG :=

⊕
g⊆G

Re{τg}N [g]

where Re{τg} > 0. As emphasised earlier, the vector Zα,r, and the positive weights Re{τg}
do not affect the combinatorial structure of N (Zα,r)

G , however they determine the asymptotic
behaviour.

In order to do a general analysis of the Newton polytope associated to the tree-level
integrand, it is useful to organize the connected subgraphs g of G in different sets, K(ng

s),
where each set is contains only subgraphs with the same number of sites. Then, it is
clear that the union of the sets K(ng

s) is equal to the set which contains all the connected
subgraphs g,

{g, g ⊆ G} =
ns⋃
k=1

K(k) (3.48)

with K(ns) = {G}, i.e. it contains a single element which is the whole graph G, K(2)
containing ne = ns − 1 9 elements given by all the 2-site subgraphs constituting G, and

9This relation between number of edges and sites of a graph holds at for tree graphs only.
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Figure 3.3: Newton polytope associated to a two-site graph G. It is constructed as a
Minkowski sum of the Newton polytopes associated to its subgraphs g, i.e. a triangle
and two segments respectively for g = G and the two subgraphs containing a single site
only– see the triple of pictures on the left. The final Newton polytope can be realised as
a truncation of the triangle based on the underlying graph and the tubings corresponding
to the single-site graphs, and hence its facets are associated to tubings of the graph.

K(1) containing the ns graphs constituted by a single site. Furthermore, as qg(x) is a linear
polynomial dependent on all the site weights {xs, s ∈ Vg}, the associated Newton polytope
N [g] is a simplex Σ[g] in Pn

g
s ⊆ Pns . This should be clear since we have seen already that

the polynomial which we associate to each singularity of the graph is linear in the x- and
y-variables. So the set of points generated to build the Newton polytope are all of the form
where only one component is non-zero, and that component is one. This is obviously a
simplex.

The sum in (3.48) then becomes a Minkowski sum over simplices in Pn
g
s (ng

s = 1, . . . , ns)
embedded into Pns :

NG :=
⊕
g⊆G

Re{τg}Σ[g] (3.49)

Because of (3.49), these polytopes constitute a special class of nestohedra, with the latter
being introduced in [218, 219]. The combinatorial structure of (3.49) does not depend
on the choice of the powers Re{τg} [219]. The Minkowski sum (3.49) is performed by
starting with the highest dimension simplex, which corresponds to the Newton polytope
of the full graph N [G], then the other terms in the sum will be some of the faces of N [G],
given that also these are simplices which can be identified with the Newton polytopes
of smaller subgraphs. These lower dimensional simplices will be faces of co-dimension
ns − ng

s [220,221].
Let us denote the graph as g = G and consider the associated simplex ΣG. This simplex

has facets that correspond to certain tubings of the graph, one of them being the full graph
and the other facets can be identified with tubings which include ns − 1 sites. Keep in
mind that a tubing can be composed of several tubes, so in figure 3.4 the bottom facet of
the simplex on the top left is identified with a tubing made of two single site tubes.

When we refer to a site ̸ s, we mean the one site that is not included in a particular
tubing configuration. This means that all the vertices on the facet of Σg corresponding to
this tubing will have a zero value for their ̸ s component. As a result, these vertices lie on
a hyperplane of codimension-1, which is defined by the co-vector W (̸s). This co-vector has
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Figure 3.4: Newton polytope associated to the denominators of the three-site graph G. It is
constructed as a Minkowski sum of the simplices corresponding to all connected subgraphs
of G (on the left). It can be realised by truncating the top-dimensional simplex, based on
all the allowed tubings, which corresponds to a subset of the facet of the simplex itself (on
the right).

all components equal to zero except for the ̸ s component, which is set to −1. 10

The facet that corresponds to the tube including all sites is represented by a vector
where all components are equal to 1.

In the context of the Minkowski sum (3.49), the other simplices that appear are the
codimension-k faces of ΣG for k ∈ [1, ne − 1]. These faces are identified by connected tubes
that relate to the higher-dimensional faces of the simplex.

To construct the Newton polytope associated with the entire graph G, one can iter-
atively truncate the top-dimensional simplex ΣG using the lower codimension simplices
that correspond to connected subgraphs. The new facets that arise from this process are
labeled by overlapping among the tubes related to the simplices contributing to the overall
structure. This iterative truncation process retains the original facets of ΣG while adding
new ones.

The original facets are characterized by the co-vectors
{
W ′(j) := (0, −ej)T , j = 1, . . . ns

}
and W (j1 . . . jns ) := (λ(j1 . . . jns ), e1...ns)

T. Here, {ej ∈ Rns , j = 1, . . . , ns} represents the canon-
ical basis in Rns , and e1...ns is a vector with all entries equal to 1.

As the new facets are derived from truncating the top-dimensional simplex ΣG through

10The minus sign is just a consequence of the convention that the co-vectors W that identify the facets
are directed outwards with respect to the polytope. It is possible to equivalently choose the opposite
convention. In this case, the expression (3.39) would change as well, with the minimum replacing the
maximum.
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its codimension-1 allowed tubings, they are represented by co-vectors of a specific form:

W
(j1 . . . j

n
(g)
s

)
=
λ(j1 . . . j

n
(g)
s

)

ej1...j
n

(g)
s

 ,

where the set
{
ej1...jng

s
, jk ∈ [k, ns − ng

s + k], k ∈ [1, ng
s]
}

. The entries of ej1...jng
s

are all zero
except in the components labeled by the indices (e.g. if we are considering a three-site
graph then a possible vector is e12 = (1, 1, 0)). And each of these non-zero components
corresponds directly to one of the single site tubes of the corresponding facet. From the
perspective of the graph, these entries are linked to the overlaps between different tubes.
For a fixed value of ng

s, these entries specifically identify the overlaps that contain ng
s

single-site tubes. This relationship is illustrated in Figures 3.3 and 3.4.
Additionally, the function λ

(j1 . . . j
n
g
s

) is defined as (minus) the number of overlapping
tubes that correspond to the facet identified by W

(j1 . . . j
n

(g)
s

)
.

This formulation clarifies that the total number of facets of the Newton polytope NG
can be counted as

ν̃ [NG] = 2ns +
ns∑

n
(g)
s =2

(
ns
n(g)
s

)
= 2ns + ns − 1,

with the first term providing the dimension of the collection {W (j), W ′(j) ∈ Pns , j =
1, . . . , ns}, while each term in the sum counts the number of co-vectors {W

(j1 . . . j
n

(g)
s

)
} for

fixed n(g)
s ∈ [2, . . . , ns]. Interestingly, the number of facets ν̃ [NG] is independent on the

topology of the graph G for a fixed number of sites ns. Finally, two facets identified by
any two of the co-vectors {W

(j1 . . . j
n

(g)
s

)
, n(g)

s = 1, . . . , ns} of the Newton polytope NG turn
out to be compatible if they correspond to tubings that can be mapped into each other by
erasing or adding a single tube or nested tubings (but not erase and add simultaneously).

The knowledge of the compatible facets, allows dividing the domain of integration into
sectors ∆Wc , Wc being a given set of compatible facets:

Rns
+ :=

⋃
{Wc}

∆Wc .

Besides for the two-site line graph contributing to the wavefunction for conformally coupled
scalars, the rational integrand in (3.47) has a numerator which is a polynomial of degree
higher than zero. As discussed earlier, for such cases, it is useful to consider the integral
I (0)

G as a sum of integrals that are a Mellin transform, whose parameters are shifted, of a
rational function whose denominator is the same as the original integral, while its numer-
ator is a constant. Alternatively, it is convenient to express the integrand via one of the
triangulations of the underlying cosmological-type polytope in such a way that no spurious
boundary is added [189,193], e.g.

I (0)
G [α, τ ′,X ] =

∑
{Gc}

∫
Rns

+

[
dz

z
zα
] ∏

g′∈Gc

1
[qg′(z,Xg′)]τ

′
g′

∏
g∈G◦

1
[qg(z,Xg)]τ

′
g
, (3.50)
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Figure 3.5: Newton polytope associated to the two integrals with numerator of degree 0 in
which the three-site graph can represent, and their overlap. They both can be constructed
via a truncation of the top-dimensional simplex via lower dimensional simplices associated
to the underlying subgraphs in such a way that iteratively connected subgraphs are taken.
Their overlap (right) represents the convergence of the full integral associated to the three-
site tree graph, with its combinatorial structure identical to the nestohedron in Fig. 3.4.

where G◦ is a set of k subgraphs that identifies a subspace of the adjoint surface, while Gc is
a set of (ns+ne−k) compatible subgraphs which are not in G◦. One of these representations
can be expressed as a sum of all the possible ways of taking connected subgraphs [83,189]
11 and hence the Newton polytope associated to each term is still a nestohedron: it can
be realised as a truncation of the top-dimensional simplices via lower-dimensional ones
associated to these nested subgraphs – see Figure 3.5.

The representation (3.50) has the virtue of guaranteeing that no spurious possible
divergent directions are added, and the intersection of the different Newton polytopes
provides the convergence of the full integral.

As described above, once the compatible co-vectors are identified, the integral in each
sector defined by them can be conveniently parametrised as

IG|∆Wc
:= I∆Wc

=
∫ 1

0

∏
W∈Wc

[
dζW

ζW
ζ−λW

W

]
nδ(ζ,X )∏

g⊆G
[qg(ζ,X )]τg

, (3.51)

with the variables ζW defined according to (3.41) as

xj −→
∏

W∈Wc

ζ
−ej ·ωW
W .

The infra-red behaviour is encoded in those sectors which are bounded by the co-vectors{
W (j1 . . . j

n
(g)
s

)
, n(g)

s = 1, . . . , ns
}
.

11Such a recursion relation was found in the context of the Bunch-Davies wavefunction [83,189], it is still
applicable for the cosmological correlators: one of the triangulation of the weighted cosmological polytope
provides a representation in terms of wavefunction graphs [194], to which the above-mentioned recursion
relation can be applied.
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Which sectors actually contribute depend on which λW ≥ 0. Note that as the actual value
of lambda is related to the number of tubings that identify the associated facet of the
Newton polytope, there is a hierarchy among the directions, with λ

(j1 . . . j
n

(g)
s

)
> λ

(j1 . . . j
ñ

(g)
s

)

for n(g)
s > ñ(g)

s . Hence, λ(1 . . . ns) is the highest possible value.

Logarithmic divergences – For λ(1 . . . ns) −→ 0, then the sectors contributing to the
divergence are all those containing W (1 . . . ns) – all the other sectors contains co-vectors such
that the related λ is negative. In this case, the divergence is logarithmic and the integral
in one of the divergent sector can be written as

I (0)
∆Wc

∼
∫ 1

0

dζW(1...ns)

ζW(1...ns)
ζ−λ(1 . . . ns)

W1...ns ×
∫ 1

0

∏
W∈Wc\{W(1...ns)

[
dζW

ζW

]
nδ(ζ)∏

g⊆G
[qg(ζ)]τg

+ . . . (3.52)

The first integration decouples and provides a pole in λ(1 . . . ns), while the remaining in-
tegrations show an integrand which is nothing but the original integrand computed at
ζW(1 . . . ns) = 0. As this behaviour is common to all sectors sharing W (1 . . . ns) and all the
other sectors are well-behaved, the integral I (0)

G can be written in terms of the original site
weights as

I (0)
G ∼ 1

−λ(1...ns)

∫
Rns

+

∏
s∈V

[
dxs
xs

xαs
s

]
1

Vol{GL(1)}
nδ(x,X = 0)∏

g⊆G
[qg(x,Xg = 0)]τg

+ . . . (3.53)

This integral is truly a (ns − 1)-dimensional integral – as from (3.52), it decouples into
a one-dimensional integral, that provides the divergences, and the remaining integrations.
However, it is possible to write it in a ns-dimensional fashion by introducing a GL(1)-
redundancy, which is specified by Vol{GL(1)}.

It is important to note that the subgraphs {gsj
, j = 1, . . . , ns} containing a single site

contributes via qgsj
(xsj

, X = 0) := xsj
. Hence, the divergent part in (3.53) can be written

as,

I (0)
G ∼ 1

−λ(1 . . . ns)

∫
Rns

+

∏
s∈V

[
dxs
xs

xαs−τgs
s

]
1

Vol{GL(1)}
nδ(x,X = 0)∏

g⊆G\{gs}
[qg(x,X = 0)]τg

+ . . .

where the integrand can be interpreted as coming from the original graph by iteratively
contracting the pairs of sites onto each other and assigning the sum of their weights to
the site obtained from such a contraction [183]. From a combinatorial-geometrical point
of view, the integrand can be seen as being:

• for a (generalised) cosmological polytope PG, the covariant restriction [197] of its
canonical function Ω (Y , PG) onto the hyperplane H :=

⋂
e∈E

W̃ (ge) defined as the in-

tersection of the hyperplanes {W̃ (ge), e ∈ E} containing the building blocks of the



58 3. Perturbative Structure of Cosmological Observables

construction – i.e. the triangles associated to the 2-site tree graphs in which a gen-
eral graph can be decomposed:

Ω(ns) (YH, PG ∩ H) =
∮

H

⟨Ydns+ne−1Y⟩
(2πi)ne

Ω (Y , PG)∏
e∈E

(
Y · W̃ (g)

) (3.54)

• for a weighted cosmological polytope P (w)
G , the hyperplane H defined above contains

a codimension-ne face [194], and hence the integrand – that will still be indicated as
Ω(ns)

(
Y , P (w)

G

)
is encoded in the canonical function of such a face P (w)

G ∩ H:

Ω(ns) (YH, PG ∩ H) = 1∏
e∈E

(
Y · W̃ (ge)

) Ω
(
YH, P (w)

G ∩ H
)

This provides a clear geometrical interpretation for the leading logarithmic infra-red diver-
gences, which can know be directly extracted from the cosmological-like polytope descrip-
tion.

Power-law divergences – If λ(1 . . . ns) > 0, then all the sectors defined via W (j1 . . . j
n

(g
s )

) such
that λ(j1 . . . j

n
(g)
s

) ≥ 0 contribute to the divergences. Said differently, as λ(j1 . . . n
(g)
s ) > λ(j1 . . . ñ

(g)
s )

for n(g)
s > ñ(g)

s , all the sectors defined via (some of) the co-vectors
{
W (j1 . . . j

n
(g)
s

)
, n(g)

s ∈ [ñ(g)
s + 1, ns]

}
,

with ñ(g)
s being the highest value for which λ

(j1 . . . j
ñ

(g)
s

)
< 0. Let Wdiv be the collection of

co-vectors satisfying such a condition. From the structure of the integral (3.51) in a given
sector ∆Wc , it is straightforward to see that the leading divergence is given by the sectors
containing the highest number, namely ν̃div, of elements of Wdiv. Then, the integrals in
these sectors develop a pole of multiplicity ν̃div and its coefficient is a (ns − ν̃div)-fold in-
tegral. The subleading divergences, instead, will take contribution from a higher number
of sectors: at order ν̃div − k (k ∈ [0, ν̃div − 1]), the sectors contributing are all those with a
number of elements of Wdiv greater or equal to ν̃div − k.

For each sector, the leading and subleading divergences can be conveniently organised
by expressing the integrand in terms of a (multiple) Mellin-Barnes representation, and map-
ping the integral in a (multiple) sum whose argument shows the poles in the λ(j1 . . . j

n
(g)
s

)’s.

Summary: At this point, we can summarise the procedure to obtain the leading and
sub-leading divergences from any tree-level cosmological integral:

• Begin by identifying all possible tubings which encode facets of the Newton polytope
of your respective graph. These can be divided in two categories, first we have the
tubings which identify with the original facets of the top dimensional simplex and
they are all the tubes, and disconnected tubings, which enclose all but one site. The
second category are the nested tubings which are composed by all tubes which enclose
some subset of sites (this subset can contain any number of sites, from one to all of
them).
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• The respective co-vectors are then: W ′(j) and W
(j1 . . . j

n
(g)
s

)
, respectively for each cat-

egory. The first one has a λ-function which is zero, and the remaining components
are given by a vector which is zero on all components except the j-component which
is −1 (the j component is the one corresponding to the site not enclosed by a tube).
The second category has a λ-function given by (minus) the number of tubes in the
tubing, and the remaining components are a vector that has entry 1 in all the com-
ponents for which the tubing has single site tubes (given by the ji’s in the label of
the co-vector), and zero for all other components.

• From the tubings that correspond to each facet, one can list which facets are com-
patible with one another. Maximal sets of mutually compatible facets, mean these
facets form a vertex, thus we say that the respective co-vectors associated with these
sets form sectors. These sectors will tile the integration region.

• From the λ-function of each co-vector we can identify the divergent directions of the
integral. Thus applying the change of variables (3.3.1) to each sector that has a
divergent direction will make the computation of the Laurent series in the regulator
a straightforward task.

Example – It is instructive to fix the ideas with a concrete example. Let us consider the
cosmological integral associated to the two-site line graph:

I (0)
2 [α] :=

∫ ∞

0

dx1

x1
xα1

∫ ∞

0

dx2

x2
xα2

1
(x1 + x2 + XG)(x1 + Xg1)(x2 + Xg2) . (3.55)

As discussed earlier, the asymptotic structure of I (0)
2 is captured by a nestohedron in P2

constructed from the triangle (the top-dimensional simplex in P2) and truncating via the
segments corresponding to two of its side and corresponding to one single tubing each – see
Figure 3.3. Such a nestohedron is a pentagon whose facets are identified by the co-vectors

W ′(1) =

−αR

−1
0

 , W ′(2) =

−αR

0
−1

 , W (1) =

αR − 2
1
0

 , W (2) =

αR − 2
0
1

 , W (12) =

2αR − 3
1
1

 ,
where αR := Re{α}. The region of integration R2

+ can thus be divided into five sectors,
each of which is determined by a pair of adjacent co-vectors – see Figure 3.6. The integral
(3.55) is divergent along a given W

(j1 . . . j
n

(g)
s

)
if λ(j1 . . . j

n
(g)
s

) ≥ 0. Hence, depending on the
divergences of interest, it is possible to focus on a subset of the sectors only. The integral
(3.55) is divergent in the infra-red if λ(12) := 2αR − 3 ≥ 0 vel λ(j) : 2 −αR ≥ 0 – the equality
signals a logarithmic divergence, while the strict positivity signals a power law divergence.
If the divergence is logarithmic, it receives a contribution from two sectors, both of them
sharing the co-vector W (12) and differing by W (j) (j = 1, 2). Let {∆(j)

IR , j = 1, 2} indicate
these two sectors. In each of them, the integral can be parametrised as

I∆(j)
IR

=
∫ 1

0

dζj
ζj

(ζj)−λ(j)
∫ 1

0

dζ12

ζ12
(ζ12)−λ(12) 1

(1 + ζj + XGζ12ζj)
(
1 + Xgj+1ζ12

) (
1 + Xgj

ζ12ζj
)

(3.56)
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W ′(2)

W ′(1)

W (2)

W (1)

W (12)

0

x2

x11

1

Figure 3.6: On the left: Newton polytope corresponding to the two-site tree graph. It has
five possible divergent directions that divide the domain of integration in five sectors. On
the right: Sectors in which the domain of integration is decomposed in the original site
weights parametrisation.

with
{
xj := ζ

−ej ·ω12
12 ζ

−ej ·ωj

j , j = 1, 2
}
. If λ12 −→ 0, then the integral over ζj is finite and

the divergence come just from the integration over ζ12. The divergent contribution is then
given by,

I∆(j)
IR

=
∫ 1

0

dζj
ζj

(ζj)−λ(j)

(1 + ζj)
×
∫ 1

0

dζ12

ζ12
(ζ12)−λ(12)

+ . . .

= 1
2

[
ψ(0)

(
−λ(j) + 1

2

)
− ψ(0)

(
−λ(j)

2

)]
× 1

−λ(12)
+ . . .

where ψ(0)(z) is the digamma function. As λ(12) := 2αR − 3 −→ 0, then λ(j) := αR − 2 −→
−1/2: the divergence is a simple pole and its coefficient becomes π/2. As discussed above,
the integral can be recast as

I∆(j)
IR

= 1
−λ(12)

∫
R+

2

∏
s∈V

1
Vol{GL(1)}

[
dxs
xs

xα−1
s

]
1

x1 + x2

where αR = −λ(j) + 1 = 3/2. The integrand can be thought of a graph made of a single
site with weight x1 + x2.

For power-law divergences, the divergences come from four out of the five sectors.
Taking, for the sake of argument, λ(12) −→ 1, then λ(j) −→ 0. Two sectors defined by
(W (2), W (12)) and (W (12), W (1)) shows both double and simple poles, while the other two
just single poles: in order to correctly compute the subleading divergences, it is neces-
sary to consider all these contributions. A way to organise them is via a Mellin-Barnes
representation for the integrand Ω(ζ,∆(j)

IR ) in (3.56):

Ω(ζ,∆(j)
IR ) =

∫ +∞

−i∞

3∏
r=1

[dξrΓ(−ξr)Γ(1 + ξr)] (XG)ξ1
(
Xgj+1

)ξ2 (Xgj

)ξ3 (ζj)ξ3+ξ1 (ζ12)ξ1+ξ2+ξ3

(1 + ζj)ξ1
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The integral I∆IR (j) then becomes

I∆IR (j) =
−Xgj+1

(−λ(12) + 1) (−λ(j)) + 1
−λ(12) + 1

−XG

∫ 1

0

dζj
ζj

ζ−λ(j)+1
j

1 + ζj
+

−Xgj

−λ(j) + 1

 +

+ 1
−λ(j)

 1
−λ(12)

+
∑
m≥2

(
−Xgj

)m
Γ(1 +m) (−λ(12) +m)

 + . . .

As a final comment, this approach is completely general and allows tackling leading and
subleading divergences in arbitrary power-law FRW cosmologies. While this example as
well as all the discussion in this section was devoted to tree-level, the combinatorics of the
nestohedra turns out to encode the asymptotic behaviour of loop integral as well, as we will
discuss in the next section. Despite it is possible to treat all divergences, what is still missing
in this story is a full-fledge combinatorial understanding of the subleading divergences:
while the leading one is understood as the restriction of the polytope associated to a given
graph onto a special codimension-ne hyperplane, an understanding for the subleading ones
along similar lines is still not available, and we leave it for future work.

3.3.2 The perturbative structure of the Loop-level wavefunction
The preceding analysis demonstrated how the asymptotic behavior of tree-level contribu-
tions to cosmological observables is governed by the combinatorial structure of a nestohe-
dron. Its realization as sequential truncations of a top-dimensional simplex, formed by a
collection of lower-dimensional simplices corresponding to a subset of its faces, facilitates
the straightforward determination of all the directions along which they may diverge, as
well as the degree of these divergences. The compatibility condition on the facets, formu-
lated in terms of tubings on the underlying graph, enables the identification of the sectors
in which, such directions partition the domain of integration. This, in turn, permits the
extraction of all divergences in any of the aforementioned directions.

Let us turn now to the loop contributions to cosmological observables. Given an arbi-
trary graph G with ns sites, ne edges – of which n(L)

e are loop edges – and L loops, it has
associated an integral I (L)

G of the form

I (L)
G [α, β] :=

∫
Rns

+

∏
s∈V

[
dxs
xs

xαs
s

] ∫
Γ

∏
e∈E(L)

[
dye
ye

yβe
e

]
µd(ye,X ;ns)

nδ(x, y; X )∏
g⊆G

[qg (x, y; Xg)]τg
(3.57)

with:

• E (L) being the set of loop edges;

• µd being the measure of the loop integration;

• Γ being the contour of integration;
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• Xg parametrising the external kinematics associated to the subgraph g ⊆ G;

This class of integrals is nearly Mellin-type: integration over x-variables acts as a Mellin
transform, while integration over y-variables follows a contour defined by the non-negative
volume of a top-dimensional simplex in Rne and its faces. The integration boundary is set
by the vanishing volume.

The rational integrand is determined by the combinatorics of cosmological polytopes,
with linear polynomials qg tied to subgraphs of G and facets of the polytopes. The degree-δ
polynomial nδ provides the adjoint surface.

The integration measure, a polynomial related to the volume of simplices in y-space,
introduces a new feature absent in tree graphs. Its power, dependent on spatial dimension
and edge count, can be integer or half-integer. Integer powers theoretically allow expansion
over measure monomials, but this is often impractical due to complexity.

For small y, the integration contour’s non-negative condition requires only one y per
loop to be arbitrarily small, simplifying divergence analysis and dictating infrared behavior.
For large y, uniform largeness across loops simplifies ultraviolet behavior analysis.

Despite the complex integration domain, identifying divergences is straightforward. The
integration measure’s polynomial, derived from a determinant, has negative coefficients
but remains positive in the integration region, vanishing only at boundaries. This allows
unmodified asymptotic analysis.

With this information available, it is thus feasible to analyse the asymptotic behaviour
of the integral in the same way we did for tree graphs, while keeping in mind the non-
negative condition imposed by the previously described contour of integration.

Let us begin with the x-integration only. The Newton polytope associated to a loop
graph G then lives in Pns , and still has the structure of a nestohedron. It can be obtained
as the Minkowski sum of simplices, as in the tree case. The main differences with the lat-
ter are constituted by: i) the weight for the top-dimensional simplex as, for a loop graph,
there are ne + 1 subgraphs which include all the sites of G, i.e. G itself and the ne sub-
graphs obtaining by erasing one edges 12; ii) the collection of simplices in co-dimension-k
(k ∈ [1, ns−1]) on which the Minkowski sum runs, is larger than for the tree case. For the
2-site L-loop graphs (L ≥ 1), just i) holds, while ii) is as for the tree graphs – this implies
that the set of co-vectors {W ′(j1), W (j1 . . . j

n
(g)
s

) ∈ Pns , j
n

(g)
s

= 1, . . . , ns, ng
s = 1, . . . , ns} is

the same, up to their component λ(j1 . . . j
n

(g)
s

) which is affected by the weights. Said differ-
ently, the divergent directions for all 2-site L-loop graphs are the same, and what changes
is the way in which they are approached.

Let us now consider the y-integration only – this is relevant when either there is no site
weight integration at all (e.g. a conformally-coupled scalar with conformal interactions),
or when it can be replaced by a derivative operator (e.g. when the real part of the Mellin

12To be precise, the statement as formulated is valid for graphs such that all the edges are in a loop. If
there are also tree edges, then the number of such subgraphs is n(L)

e
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Figure 3.7: Newton polytope associated to the edge weight integration only for a three-site
one-loop graph. On the left: The simplices building blocks and their tubings. On the
right: The Newton polytope is a nestohedron which can be realised by truncating the top-
dimensional simplex (a tetrahedron) via the tubings associated to the underlying graph.

parameter is negative – it is related to metric warp factor of the type a(η) ∼ ηγ, with
γ > 0). For the sake of simplicity, let us consider graphs with no tree substructure, in such
a way that the number of loop edges is the number of total edges. At one-loop, the poles of
the canonical function of the relevant polytope can depend on either one or two y-variables
(since the rule for the linear polynomial, qg, tells us that it has the y’s that the tube cuts
in the graph). Consequently, the Newton polytope associated to a one-loop graph is given
by a weighted Minkowski sum of triangles and segments, irrespectively of the dimension.
This implies that just the two-site one-loop graph involves the top-dimensional simplex.
Nevertheless, as for the tree graphs, it is possible to realise this nestohedron starting with
the top-dimensional simplex, and truncating based on tubings on the underlying subgraphs
– see Figure 3.7. The facets are then identified by the co-vectors

W ′(j) =
(

0
−ej

)
, W (j1 . . . j

n
(g)
e

) =
λ(j1 . . . j

n
(g)
e

)

ej1...j
n

(g)
e

 ,
where n(g)

e = 1, . . . , ne, with λ(j1 . . . j
n

(g)
e

) being given by the number of tubings associated to
a given facet, as in the tree case.

The loop integration can also be considered as the Mellin transform of an integrand
(3.57), and hence the Newton polytope get shifted by the vector (1, β) – β := (βe)e∈E –
made out by the Mellin parameters, which reflects into the co-vectors identifying the facets
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by the shift

λ
′(j) −→ λ̃

′(j) = −βej

λ
(j1 . . . j

n
(g)
e

) −→ λ̃
(j1 . . . j

n
(g)
e

) = λ
(j1 . . . j

n
(g)
e

) +
∑
e∈Eext

g

βe,

where, as usual, E ext
g is the set of edges departing from the subgraph g – if βe = β, ∀e ∈ E ,

then the shift becomes simply λ
(j1 . . . j

n
(g)
e

) −→ λ̃
(j1 . . . j

n
(g)
e

) = λ
(j1 . . . j

n
(g)
e

) + n(g)
e β. For the

sake of simplicity, let us focus on one-loop graphs.
The infra-red behaviour of the integrals associated to them, according to the nestohe-

dron analysis, is encoded into the sector identified by
{
W ′(j), j = 1, . . . , ne

}
. Note that

the change of variables dictated by this sector map the y’s into themselves. Hence, the
integral in this sector is the very same original integral but with the domain of integra-
tion which is bounded by an arbitrary cut-off according to the contour of integration Γ.
As we argued earlier, the non-negativity condition imposed by the contour of integration,
make the integral divergent just when one of the edge variables approaches zero. In or-
der to determine the degree of divergence along the directions {W ′(j), j = 1, . . . ne} it is
necessary to understand how the measure contributes. As for the time being we are re-
stricting ourselves to one-loop and to graphs with no tree substructure, the graphs are all
polygons – thus they have the same number of sites and edges. It is convenient to label
the edge connecting the site sj to the site sj+1 with yj,j+1. Firstly, as we argued earlier,
the non-negative condition selects which divergent direction can be taken simultaneously.
This implies that even in a given sector identified by a set of compatible co-vectors of the
Newton polytope, the singularity that would be reached along two (or more) directions
cannot be accessed. It is therefore convenient to separate them by considering any given
sector where this phenomenon occurs as a union of sectors, each of which contains just the
directions which are allowed by the non-negative condition from the integration contour.
For example, let us consider the sectors which contains the singularity at y12 −→ 0. The
further split highlighted above can be obtained via the change of variables

y12 = P23
ω

1 + ω
, yj,j+1 = P2...j + 2ωj,j+1

ω

1 + ω

Under this change of variable, the edge-weight integration measure acquires the form13

µd
(
y2, P 2

)
=
[

ω

(1 + ω)2

]d−ne−1

µ̃d (ω, ωij)

In this case, the singularity for y12 −→ 0 is separated from the others that are pushed to
infinity:

I (1)
∆ =

∫ +∞

0

dω

ω
ωβ+d−3

∫
Γ′

∏
e∈E

dωe

[
P2...je + P23ωe

ω

1 + ω

]βe−1
µ̃d(ω, ωe)Ω (ω, ωe; X ) ,

13This is straightforward to see considering that the Cayley-Menger determinant which characterises it
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where factors of (1 + ω) have been absorbed into µ̃d(ω, ωe). Having the directions which
are not compatible with y12 −→ 0 be pushed to infinity, the sector ∆ can be further
decomposed in two sectors, one containing the divergence at y12 −→ 0 only:

I (1)
∆ =

∫ 1

0

dω

ω
ωβ+d−3

∫
Γ′

∏
e∈E

dωe

[
P2...je + P23ωe

ω

1 + ω

]βe−1
µ̃d(ω, ωe)Ω (ω, ωe; X )

In this form, the extraction of the leading and subleading divergences proceeds as discussed
in the previous sections.

The second subsector contains divergences that occur when other y’s approach zero.
However, polygons are symmetric objects, so the results for these divergences can be ob-
tained from the one for y12 via a simple relabelling.

For the ultraviolet divergences, the domain of integration forces all of the y’s to approach
infinity in the same way, which means that only the direction W (1 . . . ne) becomes divergent.
Similarly, one can focus on the sectors which are bounded by the co-vector W (1 . . . ne), and
separate the related singularities from the others via the following change of variables

y12 = ω12, yj,j+1 = ω12 + Pj,j+1ωj,j+1

For higher loops, a similar strategy applies: it is possible to construct the Newton
polytope in a similar fashion, and then restrict the divergent directions allowed by the
non-negative condition from the contour of integration. In order to impose such a condi-
tion, it is convenient to proceed in a loop by loop fashion – which is also a way in which
both measure and contour of integration are constructed. This also allows working recur-
sively, applying the lower-loop treatment to the higher loop graphs.

Let us now consider both x and y integration at the same time. This allows under-
standing the interplay between divergences coming from the loop modes (y-integration),
and the ones coming from the expansion of the universe (x-integration).

In this case, it is possible to determine the possible divergent directions in an uncon-
strained fashion from the analysis of the full Newton polytope, and, as in the previous

can be written as:

CM(y2
i,i+1, P 2

2...j+1) = ω2CM( P 2
2...j+1) + 1

4

n−1∑
i=1

{[
(−1)i(ω2 + P 2

i i+1 − (Pi i+1 − ω ωi i+1)2)
]
×

×
n−1∑
j=1

(−1)j+1(ω2 + Pj j+1 − (Pj j+1 + ω ωj j+1)2)Gσj

}

= ω2CM( P 2
2...j+1) + ω2

4

n−1∑
i,j=1

(−1)i+j+1 {(ω(1 − ω2
i i+1) − 2 ai i+1Pi i+1)×

×(ω(1 − ω2
j j+1) − 2 ωj j+1Pj j+1)CMσj

}
where CMσj is the determinant of a minor of the total Cayley-Menger matrix, which contains only entries
depending on Pe.
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0

yb

ya
P

P

Figure 3.8: On the left: The Newton polytope associated to the edge weight integration for
the two-site one-loop graph is a nestohedron whose facets are identified by certain tubings.
They correspond to directions in which the integral might diverge. The number of tubings
instead correspond to how these directions are approached. A subset of these directions
are selected by the integration contour. On the right: The knowledge of compatible facets
of the Newton polytope allows to decompose R2

+ in sectors, which can be restricted onto
the domain of integration via the non-negativity condition which defines it.

discussion, constrain them with the non-negative conditions from the edge-weight integra-
tion contour.

In this case, the Newton polytope remains a nestohedron situated in Pns+ne . Although
the top-dimensional simplex does not match any of the linear polynomials found in the
denominators, it can still be represented as a sequential truncation derived from the under-
lying graph of the top-dimensional simplex. The top-dimensional simplex, which lacks any
associated tubing, undergoes sequential truncation through simplices in Pn

(g)
s +next

e , where
n(g)
s denotes the number of sites within the subgraph g ⊆ G, and next

e represents the num-
ber of edges emanating from it. All facets correspond to tubings in a manner consistent
with the descriptions provided in the preceding sections. Since the top-dimensional sim-
plex does not correspond to any denominator, it is devoid of associated tubing and thus
does not influence the asymptotic behaviour, serving solely for the construction itself. The
subsequent analysis follows from the discussion regarding y integration.

3.3.3 Example: The two-site one-loop graph

It is instructive to illustrate the procedure discussed above in some concrete, simple, but
yet non-trivial and illustrative example, the bubble integral. This integral can be explicitly
written as:
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I (1)
G =

∏
s∈V

[
dxs
xs

xα
] ∫

Γ

∏
e∈E

[
dye
ye

yβe

]
[−CM(y2, P 2)]

d−3
2

P d−2 Ω (x, y; X ) (3.58)

where Ω (x, y; X ) is the canonical function of the (generalised/weighted) cosmological poly-
topes associated to this graph, and the contour of integration is:

Γ :=
{
x ∈ R2

+, y ∈ R2
+ | − CM(y2, P 2) ≥ 0

}
.

Note that for d = 3 the measure of integration simplifies, with the only novelty with respect
to the previous case given by the contour of integration Γ. As discussed previously, the
contour of integration selects a subset of possible divergent directions that would come
from the analysis of the integrand alone. In particular, the edge weights can get to zero
just once at a time – as ya −→ 0 then yb −→ P , and vice versa, when yb −→ 0, ya −→ P
–, while they have to approach infinity simultaneously.

Let us look at the asymptotic structure by first considering the Newton polytope asso-
ciated to the integrand Ω (x, y; X ). In order to give a general account, let us consider the
following form

Ω (x, y; X ) = nδ(x, y; X )
[qG (x, y; X )]τG [qga (x, y; X )]τga [qgb

(x, y; X )]τgb [qg1 (x, y; X )]τg1 [qg2 (x, y; X )]τg1

where

qG := x1 + x2 + XG, qga := x1 + x2 + 2ya + XG, qgb
:= x1 + x2 + 2yb + XG

qg1 := x1 + ya + yb + Xg1 , qg2 := x2 + ya + yb + Xg2

Let us begin with consider solely the loop integration – as mentioned earlier this is sensible
for those cases in which the integration over the site weight is absent. The Newton polytope
then lives in P2 and it is a nestohedron built via sequential truncation of a triangle via
two segments corresponding to two of its sides – combinatorially it is the same polytope
obtained in the two-site tree graph:

W ′(1) =

−βR

−1
0

 , W ′(2) =

−βR

0
−1

 , W (1) =

λ
(1)

1
0

 , W (2) =

λ
(2)

0
1

 , W (12) =

λ
(12)

1
1

 ,

where λ(1) := β−τga −τg1 −τg2 , λ(2) := β−τgb
−τg1 −τg2 and λ(12) := 2β−τga −τgb

−τg1 −τg2 .
The restriction onto the contour of integration allows three out of these five direc-

tions: W ′(1), W ′(2) and W (12). So the sectors contributing to the infra-red divergences are
∆2′1′ , ∆1′2 and ∆12′ , which are respectively identified by (W (2′), W (1′)), (W ′(1), W ′(2)) and
(W (1), W ′(2)); while the sectors ∆2,12 an ∆12,1 – respectively bounded by (W (2), W (12)) and
(W (12), W (1)) – codify the ultraviolet divergences. In the sector ∆2′1′ , the integral acquires
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the form14

I∆2′1′ =
∫ P

0

dζ ′
1

ζ ′
1

(ζ ′
1)
β
∫ P

P−ζ′
1

dζ ′
2

ζ ′
2

(ζ ′
2)
β [CM(ζ ′2, P 2)]

d−3
2

P d−2 Ω (x, ζ ′; X ) (3.59)

where Ω (x, ζ ′; X ) can be thought to be expresses via one of its triangulation with physical
poles only.

This sector contains two singularities which cannot be taken simultaneously. It is useful
to make the contour of integration independent of any integration variable

I∆2′1′ =
∫ +∞

0

dω1

ω1

ωβ+d−1
1

(1 + ω1)2(β+(d−3))+1

∫ 0

−1
dω2 (1 + ω1(1 + ω2))β−1 µ̃(ω1, ω2) Ω (ω1, ω2,X )

(3.60)
where µ̃(ω1, ω2) := [(1 − ω2)(1 + ω2)(2 + (1 + ω2)ω1)(2 + (3 + ω2)ω1)](d−3)/2 – it is achieved
via ζ ′

1 = Pω1(1 + ω1)−1, ζ ′
2 = P (1 + ω2ω1(1 + ω1)−1). In this form the two divergences,

originally approached as ya −→ 0 and yb −→ 0 separately, are clearly separated: the former
is reached as ω1 −→ 0 while the latter as ω1 −→ +∞.

The integral (3.60) can be further decomposed into two subsectors ∆2′1′ := ∆2′ ∪ ∆1′ ,
each of which containing just one of the two divergences. For example,

I∆2′ =
∫ 1

0

dω1

ω1

ωβ+d−3
1

(1 + ω1)2(β+(d−3))+1

∫ 0

−1
dω2 (1 + ω1(1 + ω2))β−1 µ̃(ω1, ω2) Ω (ω1, ω2,X )

and the divergent terms can be extracted expanding around ω1 −→ 0

I∆2′ = a

β + d− 3Ω(0,X ) + . . .

– at leading order, the canonical function becomes independent on ω2, and a represents
the integral over ω2 which is just a number. As we observed at tree-level, also at loops the
coefficient of the leading divergence can be obtained by restricting the canonical function
onto a special hyperplane.

The other divergence along the other infrared divergence can be deduced from this
one, as the original integral is completely symmetric under the exchange of the two edge
weights.

Finally, let us comment on the analysis of both the site- and edge-weight integration
simultaneously. In this case, the Newton polytope lives in P4. Constructing, as usual,
the nestohedron as a truncation based on the underlying graph, and considering a generic

14A peculiarity of this case is that it is the only one in which the Cayley-Menger determinant factorises
in a product of linear polynomials

−CM(y2, P 2) = (ya + yb + P )(ya − yb + P )(ya + yb − P )(−ya + yb + P )

with the zeroes reached at the boundary of the domain of integration. Consequently, it is possible to have
an explicit form for the contour of integration, with ya ∈ R+ and yb ∈ [|ya − P |, ya + P ] or, which is the
same ∆IR ∪ ∆UV ≡ {ya ∈ [0, P ], yb ∈ [P − ya, ya + P ]} ∪ {ya ∈ [P, +∞[, yb ∈ [ya − P, ya + P ]]}
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point in a system of local coordinates in P4 of the form (t1, ta, tb, t2) labelling the powers
of (x1, ya, yb, x2) respectively, its facets are given by

W ′(j) =
(
λ

′(j)

−ej

)
, W (j) =

(
λ(j)

ej

)
, W (23) =

(
λ(23)

e23

)
, W (1 . . . 4) =

(
λ(1 . . . 4)

e1...4

)
where

λ
′(1) = −αR = λ’(4), λ

′(2) = −βR = λ’(3),

λ(1) = αR − τG − τga − τgb
− τg1 , λ(2) = βR − τga − τg1 − τg2 ,

λ(3) = βR − τgb
− τg1 − τg2 , λ(4) = αR − τG − τga − τgb

− τg2 ,

λ(23) = 2βR − τga − τgb
− τg1 − τg2 , λ(1 . . . 4) = 2(αR + βR) − τG − τga − τgb

− τg1 − τg2 .

Some comments are now in order. First, note that the collection of co-vectors {W ′(j), W (j), W (23)}
constitute the five possible divergent directions emerging from the analysis of the sole edge
weight integration. The non-negativity condition imposed by the contour of integration,
prevents the integral to become divergent along more than one direction {W ′(j), j = 2, 3}
and {W (j), j = 2, 3}. Hence, those sectors involving more than one of these directions can
be further split, as we saw earlier. Secondly, the infra-red behaviour is encoded into the
{W ′(j), j = 2, 3} for internal low energy modes, while {W (j), j = 4, 1} codify the ones due
to the expansion of the universe. Finally, λ(1 . . . 4) encodes the effect of internal high energy
modes as the universe expands.

Finally, let us consider a sector ∆41 containing both W (1) and W (4) and take either of
the two to be divergent, . i.e. λ(1) ≥ 0 or λ(4) ≥ 0. Then, following what discussed above
for the site-weight integration, and taking λ(j) −→ 0 the integral factorises into an integral
over the remaining site-weight integration and an integral over the edge weight only

I∆41 = 1
−λ(j)

∫ +∞

0

∏
s∈V

[dxs]
1

Vol{GL(1)} Ω (x, y = 0; X = 0) × I (E)
∆41

where I (E)
∆41

can be cast in the terms of the usual loop momentum as

I (E)
∆41

:=
∫
ddl

1
lβ
(⃗
l + P⃗

)β .
Interestingly enough, the contribution from the site-weight integration is related to the re-
striction of the relevant cosmological polytopes along a special hyperplane

⋂
e∈E

W̃ (ge), while

the edge weight integration can be recast in a flat-space loop integral associated to the
same graph.

3.4 λϕ4 examples at loop level
Typically, when discussing infrared divergences in de Sitter, the most worked example is
a minimally coupled massless scalar field with a quartic self-interacting coupling. Here



70 3. Perturbative Structure of Cosmological Observables

x

y

W ′(2)

W ′(1)

W (2)

W (1)

Figure 3.9: On the left: The one-site one loop graph. Center: the realisation of the
Newton polytope for the integral (3.61) associated to the one-site one-loop graph in terms
of tubings. On the right: Possible divergent directions for the integral (3.61).

we discuss contributions to the two-point function, at one- and two-loops. We start with
the first loop level contribution, which comes from the tadpole diagram. It’s integral
representaton is:

I (1)
G =

∫ ∞

0

dx

x
xα
∫ ∞

0

dy

y
yβ

∂2

∂x2
1

(x+XG)(x+XG + 2y) , (3.61)

where the parameters α and β are analytically continued to regularise the integral, which
has the form of a usual Mellin transform of a rational function. The Newton polytope
is the weighted Minkowski sum of a triangle and a segment in P2 and can be realised
as sequential truncation of the triangle – see Figure 3.9. Therefore, it has four possible
divergent directions, given by the co-vectors associated to the tubings:

W ′(1) =

−αR

−1
0

 , W ′(2) =

−βR

0
−1

 , W (2) =

βR − 3 × 1
0
1

 , W (12) =

αR + βR − 3 × 2
1
1

 ,
(3.62)

where in the first entries of W (1) and W (2) has been emphasised the contribution of the
weight τR and the number of tubings n(g) as τ × n(g). Note also that for the time being,
the numerator of (3.61) has not been taking into account. It is a second order polynomial
with 6 monomials. So, we could split the integral into a sum of integrals according to the
monomial expansion of the numerator: for each term, the Newton polytope is the same
as in Figure 3.9 but shifted by the powers of the relevant monomial. Then, the integral is
convergent in the overlap among these Newton polytopes. Then, the co-vectors have the
same form as (3.62), but with

(αR, βR) −→ (αR, βR) + (ρx, ρy) ,

where:
(ρx, ρy) = {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (1, 2)} .
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Alternatively, we could decompose the integrand according to a triangulation of the
generalised cosmological polytope with physical poles only,

I (1)
G =

∫ +∞

0

dx

x
xα
∫ +∞

0

dy

y
yβ

[
2

(x+XG)3(x+XG + 2y) + 2
(x+XG)2(x+XG + 2y)2 + 2

(x+XG)(x+XG + 2y)3

]
.

Each term shows the same Newton polytope arising, but with different weights, while the
Mellin parameters are unchanged.

Therefore, the integration domain is divided into four sectors ∆2′,1′ , ∆1′,2, ∆2,12 and
∆12,2′ , which are respectively bounded by (W ′(2),W ′(1)), (W ′(1),W (2)), (W (2),W (12)), and
(W (12),W ′(2)).

The leading infra-red divergence is captured by the sector ∆12,2′ , with the two directions
(W (12),W (2)) becoming simultaneously divergent for λ(12) := αR +βR −(τg+τG)−ρx−ρy ≥ 0
and λ

′(2) := −βR−ρy ≥ 0, and developing a double pole when these conditions are satisfied
simultaneously. More precisely, this sector captures the simultaneous divergence from the
infinite volume (i.e. x −→ +∞) and from the low energy mode in the loop (i.e. y −→ 0).

Subleading divergences are taken into account by supplementing this sector with ∆1′,2
and ∆12,2′ , where the two directions (W ′(2),W ′(1)) diverge individually.

Let us explicitly consider an integral in the sector ∆2′,1′

I∆12,2′ = 21−β [XG]α−4
∫ 1

0

dζ12

ζ12
(ζ12)−λ(12)

∫ 1

0

dζ ′
2

ζ ′
2

(ζ ′
2)

−λ′(2) 1
(1 + ζ12)τG (1 + ζ12 + ζ ′

2)
τg

(3.63)
where x and y have been rescaled by XG and XG/2 respectively, and (x, y) = (ζ−1

12 , ζ
′
2ζ

−1
12 ).

If (λ(12), λ
′(2)) −→ (0, 0), the divergence is logarithmic and can be readily extracted to be

I∆12,2′ = 21−β⋆ [XG]α⋆−4
∫ 1

0

dζ12

ζ12
(ζ12)−λ(12)

∫ 1

0

dζ ′
2

ζ ′
2

(ζ ′
2)

−λ′(2)
+ . . .

= 21−β⋆ [XG]α⋆−4 1
(−λ(12))(λ′(2)) + . . .

(3.64)

where (α⋆, β⋆) are the values of the Mellin parameters computed at (λ(12), λ
′(2)) = (0, 0).

For power-law divergences as well as to extract the subleading contribution from this
sector, as we discussed earlier, it is convenient to express the integrand via a Mellin-Barnes
representation, allowing to perform the integration and mapping I∆12,2′ into a double sum

I∆12,2′ = 1
Γ(τg)

∑
k≥0

(−1)k
Γ(k + 1)

∑
m≥0

(−1)m
Γ(m+ 1)

Γ(τg +m)
Γ(τG + τg +m)

Γ(τG + τg +m+ k)
(k − λ(12))(m− λ′(2)) (3.65)

One can readily see that the integral develops poles when (λ(12), λ
′(2)) are non-negative

and makes it straightforward to extract the information for the specific values of interest,
obtaining both the information about double and simple poles.

The leading ultraviolet divergence is along W (2) and therefore is captured by the two
sectors ∆2,12 and ∆1′,2′ , and can be extracted in a similar fashion.
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From equation (3.63), we see the generality of this procedure. At no point we have in-
troduced any information about the specific theory we have. In the subsequent equations
there is the underlying assumption that the theory must have logarithmic divergences in
(3.64), or power law divergences (3.65), but that is it. We can use the above results to com-
pute the leading terms for a theory with quartic couplings (φ4), in de Sitter, and massless
scalars. We will apply this to the correlator, in particular to the disconnected component,
for which the total energy singularity is replaced by a factor of 1/y, thus (τG, τg) = (0, 4),
and (α⋆, β⋆) = (4, 0), in this case the numerator is still one, so (ρx, ρy) = (0, 0). This means
that we are in the case where (λ(12), λ

′(2)) = (0, 0), and the result (3.64) applies directly.
From this we learn that we have two logarithmic divergences. One of the divergences
coming from the x-integration, which in the related literature is referred to as secular di-
vergence. The other logarithmic divergence comes from the massless state running in the
loop, and this is a standard infrared divergence. The coefficient of the leading divergence
is also proportional to p−3, where p is the external momentum. All of this agrees with
the literature on the subject, check [147]. In the above discussion, we considered only the
disconnected component contributing to the correlator. For this process, there are only two
contributions to the correlator, the disconnected part and the wavefunction. To compute
the contribution from the wavefunction, we have the total energy singularity but one less
factor of y in the denominator. Then, (λ(12), λ

′(2)) = (−1,−1) which means we have no
divergences anymore. This is a verification of the fact that the disconnected components
contributing to the correlator are the most divergent, and thus contribute with the leading
divergences. This has been noted in the literature, and in particular one can check [156]
for a detailed discussion on this. We hope that this simple example has motivated the
generality of our method, we can use it to compute leading and sub-leading divergences,
for the different terms in the correlator, as well as for different theories and cosmologies.
It becomes particularly simple to compare different theories, as the Newton polytope is
the same for a given process, and we just need to change the parameters on which the
λ-function depends on.

The two-site two-loop graph

Let us now look at the contribution for two-loop level, given by the two-site two-loop
graph – see Figure 3.10. As for the one-loop case discussed above, we consider the following
general form for the integral associated to this graph

I (2)
G =

∫
R2

+

∏
s∈V

[
dxs
xs

xαs

] ∫
Γ(2)

∏
e∈E

dye
ye

yβ−1
e ΩG (x, y; X )

where

ΩG (x, y; X ) = nδ(x, y; X )

[qG]τG

 ∏
e=a,b,c

[qge ]
τge

 ∏
(e1,e2)

[
qg(e1,e2)

]τg(e1,e2)

  ∏
j=1,2

[
qgj

]τgj


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x1 x2
yb

ya

yc

Figure 3.10: Two-site two-loop graph. The associated Newton polytope is lives in P5 and
characterised by 16 facets. They signal the possible divergent direction, which are further
limited by the non-negativity condition from the integration contour.

where ga/b/c is the subgraph with the edge labelled by a/b/c departing from it, g(e1,e2) is the
subgraph with the pair (e1, e2) of edges departing from it (where (e1, e2) = {(a, b), (b, c), (c, a)}),
and as usual gj is the subgraph made out of the site sj only. The linear polynomials
{qg, g ⊆ G} are then explicitly given by

qg :=
∑
s∈Vg

xs +
∑
e∈Eext

g

ye + Xg

First, note that were we to consider the site integration only, the associated nestohedron
would be the very same as for the other two-site graphs examined, with the W ’s differing
only by their λ-component: the possible divergences are the same, what differs is the way
that such divergences are approached.

The edge weight integration is more interesting. It can be recast in the form of an
iterated integral with two-site one-loop graphs. Thus, we can easily use the lesson from
the analysis in the previous example: for each loop integration, the non-negative condition
imposed by the contour of integration restrict the number of possible divergent directions.
Hence, we can perform a full Newton polytope analysis, decompose the integral according
to these sectors, and each sector involving directions that cannot become simultaneously
divergent because of the contour non-negativity condition, can be split in subsectors each
of which contain only the directions which can become divergent simultaneously.

The Newton polytope for the full integral lives in P5 with a generic point given by,
(ρ1, ρa, ρb, ρc, ρ2) which are respectively the powers of (y1, ya, yb, yc, x2). Its facets are
given by

W ′(j) =
(
λ

′(j)

−ej

)
, W (j) =

(
λ(j)

ej

)
, W (j1, j2) =

(
λ(j1, j2)

ej1,j2

)
,

W (234) =
(
λ(234)

e234

)
, W (1 . . . 5) =

(
λ(1 . . . 5)

e1...5

)

where (j1, j2) = {((2, 3), (3, 4), (4, 2))}. While in the one-loop case the integration contour
was forbidding to take simultaneously two divergences both identified by one of the W ’s
co-vectors, in this case some of them are allowed, e.g. W ′(2) and W ′(4) – they belong to
different loop subgraphs.
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The above example would give us the contribution to the correlator coming from the
wavefunction coefficient corresponding to two-point, two-loop sunrise diagram. Which
would be very sub-leading. Let us now think what is the contribution for the leading
divergence in the two-loop two-point correlator. One feature that is made more apparent
from the wavefunction and from this formalism, is that the disconnected component of the
correlator gives the leading divergence. This is the case, because every time we delete an
edge we increase the power of the singularity 1/y of the corresponding edge, thus making
the integral more singular. Simultaneously, we decrease the number of singularities in the
denominator given that there are less sub-diagrams when once we delete an edge. Here, the
disconnected component is the product of two contact four point wavefunction coefficients.
Therefore, from the previous calculation, where a single contact four-point wavefunction
came from the disconnected component, and gave us a simple pole in α, this time we will
obtain a double pole, 1/(α−α∗)2. An interesting feature of the leading divergence, is that
the x-variable (site) integration and the y-variable (loop) integration factorized. We have
just discussed the site integration, now we turn to the loop integration. The fact that it
factorized, means that the factor from the loop integration, is just the two-loop integrals
over 1/(yaybyc)3−β. The measure of each loop integral will contribute with yd−1, thus, when
in d = 3 we will have precisely two logarithmic divergences coming from each loop integral,
and we will obtain a double pole in β. This precisely agrees with [147,156].

From this discussion we learn that the leading divergences, coming from the fully dis-
connected part of the correlator, given that they are just products of contact wavefunction
coefficients and momentum integrals, can be just as easily computed in our formalism.
At the same time, we believe that our techniques allow for a much more tracktable com-
putation the sub-leading terms, in particular when we still have a factorization of the
momentum integral, and other tree-level integrals which are not contact terms, which in
general, using other methods, can be very hard to compute.

3.5 Infrared Finite Computables
The above discussion establishes a general and systematic method to compute divergences
in cosmological integrals. In this section, we discuss a systematic approach that eliminates
these divergences, and constructs infrared finite quantities.

3.5.1 Tree-level subtractions
As in general the canonical function of a polytope is a rational function with a non-trivial
numerator, it is convenient to consider one of its triangulations with no spurious boundaries
and study the asymptotic behaviour of the integral of each simplex following what it has
been discussed in the previous section.

Each simplex in the canonical form triangulation is isomorphic to the others and can
be transformed into one another through a local coordinate transformation [86]. This
characteristic is mirrored in the structure of the corresponding nestohedra, which can
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likewise be mapped into one another. This implies that the nestohedra associated to
the simplices can also be mapped into each other and, consequently, they show the same
divergent directions, with their co-vectors {W (g), g ⊆ G} that differ just for the projective
component, i.e. for the degree of divergence along the same directions, which is fixed by
the number of tubings associated to the relevant facets. As a consequence, the polytope
identified by the overlap of the nestohedra is identified by the covectors

W ′(j1) =
(
λ

′(j1)

−ej1

)
, W (j1 . . . j

n
(g)
s

) =
min{λ(j1 . . . j

n
g
s

)}
ej1...j

n
(g)
s

 (3.66)

with the min{λ(j1 . . . j
n

(g)
s

)} being the minimum taken among all the nestohedra for the cov-
ectors with the same ej1...j

n
(g)
s

.
Let us separately focus on each integral emerging from the canonical form triangula-

tion of the cosmological polytope, by taking the one returning the OFPT representation.
Despite this choice not being necessary, it allows for a more straightforward formulation
of the subtraction rules as diagrammatic operations 15.

Let us also treat separately logarithmic and power-law divergences, as in the discussion
of the infrared asymptotics.

Logarithmic divergences – As we saw in the previous section, the infrared logarithmic
divergences are encoded in all the sectors containing the covector W (1 . . . ns) which can be
written all together as

I (0)
G◦

∣∣∣
div

[α,Gc] = 1
−λ(1 . . . ns)

∫
Rns

+

∏
s∈V

[
dx

x
xα−τgs

]
1

Vol{GL(1)}
1

[qG(x,XG = 0)]τG
∏

g∈Gc\{gs}

[
qg(x,Xg=0)

]τg
=
∫
Rns

+

∏
s∈V

[
dx

x
xα−τgs

]
1

[qG(x,XG = 0)]τG
∏

g∈Gc\{gs}
[qg(x,Xg = 0)]τg

(3.67)

where we have restored the full integration by rewriting the pole 1/(−λ(1 . . . ns)) an integral
form.

The sum over {Gc} has then the very same divergent structure of the integrals associated
to the graphs obtained by all possible forms of collapsing two adjacent sites, assigning to
the newly generated sites a weight given by the sum of the weight of the sites that have
been collapsed, shifting the Mellin parameter associated to such site-weight integration by
the related −τg, and summing over all possibilities with a sign given by −1 to the power

15Indeed, as the asymptotic analysis does not depend on the specific triangulation chosen, the same
holds for the procedure that leads to the finite quantity. Also, using tubings and markings as in [195], it
is possible to assign graphical rules also for the subtractions starting from other triangulations. However,
as the main point of this work is to provide a proof of concept, we leave this to future work.
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of number of edges collapsed, nc,

I (0)
G

∣∣∣
ct

= (−1)nc
∑
e∈E

∫
Rns−2nc

+

[
dx

x
xα
] ∫

R2nc
+

[
dxe
xe

xα−τe
e

]
Ω ({xs̄}; X ) (3.68)

with [
dxe
xe

xα−τe
e

]
:= dxse

xse

xα−τse
se

×
dxs′

e

xs′
e

x
α−τs′

e
s′

e

and s̄ ∈ {V \ {se, s′
e}} ∪ {se + s′

e}. Diagrammatically:

ge ḡe

xse + xs′
e

I (0)
G

∣∣∣
ct

=
∑
e∈E

(3.69)

where ge and ge are the two subgraphs of G separated by the edge e, and ■ is the site,
with weight xse + xs′

e
obtained by collapsing the two sites se and s′

e.
Then, an infrared finite computable can be defined as

x1 x2

x3

x4

x5

x6

=
x1 x2

x3

x4

x5

x6

− x1 + x2

x3

x4

x5

x6

−

x1

x2 + x3

x4

x5

x6

− − . . .

(3.70)

where the thick graph on the left-hand side is the infrared finite computable, while the
graphs on the right-hand-side are given by the original graph itself to which an explicit
form of (3.69) is subtracted – the ellipses represent all the other possible ways of collapsing
two adjacent sites.

Power-law divergences – Power-law divergences are a little more intricate. There is
a larger number of sectors which contribute to the divergent behaviour of the integral,
concretely the ones identified by the adjacent covectors {W (j1 . . . j

n
(g)
s

)} such that λ(j1 . . . j
n

(g)
s

) ≥
0. Recall that there is a hierarchy among the λ’s such that is larger the one associated
to larger n(g)

s . This implies that it is enough to identify the smaller positive λ or which of
them vanish to know all the covectors that bound the sectors containing the divergences.
As mentioned above, for each sector the divergences can be extracted by representing
the integrand via a Mellin-Barnes representation – for more detail see [165] as well as
the two-site tree example in the appendix. This implies that, depending on the degree
of divergences along the relevant directions. For integer values of (at least some of the
λ’s) multiple poles in the regulator can arise. The general logic follows what discussed
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in the above paragraph about the logarithmic divergences: one considers the integrals
with trivial numerators obtained via a canonical form triangulation of the cosmological
polytope, for each of these integrals perform the asymptotic analysis via the underlying
nestohedron and identifies the sectors containing the divergences, and for each sector single
out the divergences via a (multiple) Mellin-Barnes representation of the integrand. The
precise structure indeed changes depending on the degree of divergence and the sector
contributing.

The behaviour from the sectors identified by {W (j1 . . . j
n

(g)
s

)}, can also be captured by
graphs obtained by collapsing two adjacent sites, similarly as for the logarithmic diver-
gences – this can be understood as all such sectors contain the infinite region for all the
site weights.

When sectors are identified by both {W (j1 . . . j
n

(g)
s

)} and {W ′(j)}, the related infrared di-
vergences are captured by disconnected graphs. This can be straightforwardly understood,
as these sectors contain the infinite region for just a subset of the site-weights.

The infrared finite thick graph is given by

x1 x2

x3

x4

x5

x6

=
x1 x2

x3

x4

x5

x6

− x1 + x2

x3

x4

x5

x6

−

x1

x2 + x3

x4

x5

x6

− − . . .

x1 x2

x3

x4

x5

x6

− − . . .

(3.71)

where now both the collapsing and the cut operations, respectively indicated by ■ and
contains an operator whose explicit expression depends on the degree of divergences

of the relevant divergent directions – see the appendix for an explicit example.

3.5.2 Loop-level subtractions
Let us now consider loop graphs. The integration now is over both the site and (loop) edge
weights. As briefly reviewed earlier, the edge weight integration is over a region Γ defined
by the positivity conditions on the volume of simplices (and their faces at all codimensions)
whose sides are given by the loop edge themselves as well as by the external kinematics
{Ps s ∈ V} 16 [165]. Let us recall that the contour of integration Γ restricts the asymptotic
regions: in the infrared, just one edge weight per loop can be taken to be soft, while in the
ultraviolet, they ought to be taken to infinity simultaneously.

16For graphs with just one external state for each site, Ps = Xs ∀ s ∈ V.
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Let us consider our integrals just over the loop momenta, with the {xs, s ∈ V}
parametrising the actual external kinematics – this occurs, for example, for the conformally
coupled scalars with conformal interactions. One can construct the associated nestohedron
and consider the covectors compatible with the integration contour Γ. Then, the previous
statement about the asymptotic structure translates in the statement that: in the ultravi-
olet the covector W (1 . . . ne) is the only divergent direction, and the sectors defined through
it are the only one contributing to such a divergence; in the infrared instead the directions
{W ′(j)} corresponding to the same loop ought to be taken separately.

Let us now consider just the integration over the site weights. This is relevant for
example in the case the loop integration is finite both in the infrared and in the ultraviolet
– an example in the cosmological context is given by the one-loop box graph contribution
to the wavefunction in d = 3. Then the construction of the thick graphs can follow
the tree-level discussion. However, a comment is in order. Both graphs contributing to
the wavefunction and the ones contributing to the in-in correlators show a total energy
singularity and, when it is approached upon analytic continuation outside the physical
sheet, its coefficient for both quantities is the high energy limit of the flat-space scattering
amplitude. When with the subtractions we define an infrared finite quantity, ideally it
would be desirable that its flat-space limit returns a flat-space infrared finite quantity. It
has been long known that, in the case of the flat-space one-loop box integral, subtracting it
by the triangles obtained by collapsing two vertices and replacing the suppressed propagator
by the Mandelstam invariant associated to that channel, returns an infrared finite quantity
– see [222] and references there in. Even in flat-space, how to consistently construct such
infrared finite quantities is not generally known at all order perturbation theory. Here,
rather than plainly mimicking the procedure outlined at tree-level, as a proof of concept,
we address the question about which infrared-finite cosmological computable returns an
infrared-finite flat-space quantity, in the case of the one-loop graph contribution to the
wavefunction.

The one-loop box integral we are interested in is given in the OFPT representation by

x1

x2 x3

x4

y12

y23

y34

y41

=
∫ +∞

0

[
dx

x
xα
] ∫

Γ4
[dy y]µd(y,X )×

× 1
qG
∏
s∈V

qgs

{
1

qg[2,1]

[
1

qg[2,4]

(
1
qg23

+ 1
qg34

)
+ 1
qg23qg41

+

+ 1
qg[3,1]

(
1
qg34

+ 1
qg41

)]
+ cycl. perms

}
(3.72)

where q[j,k] := xj + . . .+ xk + yj−1,j + yk,k+1 + X[j,k] and X[j,k] := Xj + . . .+Xk, and Γ4 is
the integration contour obtained from the positivity conditions on the volume of a simplex
in P4 and of all its faces – see [165]. The leading divergent direction in the site weight
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integration is identified by W (1 . . . 4) := (4α− 8, e1...4)T for each of the simplices and hence
it possesses a logarithmic singularity for α = 2. Were we to follow the analysis from sector
decomposition, as for the tree-level case discussed earlier, then the associated thick graph
would be defined by subtracting all the possible way of collapsing two adjacent sites, where
the collapsing operation as defined for the tree case

x1

x2 x3

x4

y12

y23

y34

y41

=

x1

x2 x3

x4

y12

y23

y34

y41

−

x3

x4

x1 + x2

y23

y34

y41

x1 x4

x2 + x3

y12 y34

y41

− −

x1

x2

x3 + x4
y12

y23

y41

−

x2 x3

x4 + x1

y23

y34y12

x1 + x2 x3 + x4+

x2 + x3

x1 + x4

+

(3.73)

Some comments are now in order. First, note that each triangle diagram depends just
on three edge weights, rather than the original four, but the integration is still over the four
edge weights: the integration along this missing edge weight can be performed returning the
integration measure and the integration contour of a triangle graph – see [165]. Secondly,
this thick graph stays ultraviolet finite both in the site and edge weight integrations.
Furthermore, as anticipated, were we to take the flat-space limit, we would not obtain
the known flat-space infrared safe combination among box and triangle diagrams: the
collapsing operation implies a shift by one of the Mellin parameter in the integration
measure for the weights associated to the two sites that have been collapsed (maintaining
the correct dimensionality). So this procedure returns a computable that is infrared finite
at a generic point in the physical kinematic region but develops infrared divergences due
to soft and collinear limits in the edge weights in the flat-space limit.

Alternatively, we can take into account the behaviour of the integral outside the physical
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region and design a subtraction which is still finite in the flat-space limit:

x1

x2 x3

x4

y12

y23

y34

y41

=

x1

x2 x3

x4

y12

y23

y34

y41

− 1
s23s41


x3

x4

x1 + x2

y23

y34

y41

−

x1

x2

x3 + x4
y12

y23

y41

−

x1 x4

x2 + x3

y12 y34

y41

− 1
s12s34

 −

x2 x3

x4 + x1

y23

y34y12


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x2 x3

x4
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y23

y34

y41

−
( 1
s41
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x1

x2 x3

x4

y12

y23

y34

y41

+ 1
s23s41
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x3

x4

x1 + x2

y23

y34

y41

+ 1
s23s34s41

 +

x3

x4

x1 + x2

y23

y34

y41

+ perm

x1 + x2 x3 + x4+ 1
s12s23s34s41

+ perm

(3.74)
where sij := xi + xj + Xi + Xj + Pij, Pij := |p⃗i + p⃗j|, the red dashed circle indicate
that the singularity associated to the subgraph it identifies has been removed, and the
permutations indicated with perm. are for the term appearing immediately before. Note
that the introduction of the bubble introduces a spurious singularity in the ultraviolet. It
can be removed via the introduction of further terms. It is straightforward to check that,
in the flat-space limit, just the first five terms in the right-hand-side contribute, returning
the flat-space infrared finite combination of Feynman graphs.

Let us close this section with a comment on (3.74). It represents a proof of concept that
a quantity which is both infrared finite in an expanding universe stays infrared finite in its
flat-space limit. Comparing with (3.73), if one side it has the nice feature just mentioned
that (3.73) does not have, on the other side it is utterly more complicated, and it would
be desirable to have a simpler object with an infrared-finite flat-space limit. If such a
computable exists, a similar analysis to the one discussed in this paper but for unphysical
kinematics, i.e. allowing for some energies to be negative, would be a systematic approach
to definte it. However, it would require some extra care because, for unphysical kinematics,
the polynomial appearing in the integrand are no longer all sums of positive quantities and
at least some loci given by the vanishing of the polynomials in the denominators, intersect
the integration contour. We leave this to future work.

3.5.3 Examples
The two-site tree graph – Let us consider the two-site tree graph integral:

I (2)
2 =

∫
R2

+

[
dx

x
xα
]

1
(x1 + x2 + XG)(x1 + Xg1)(x2 + Xg2) (3.75)
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W ′(2)

W ′(1)

W (2)

W (1)

W (12)

Figure 3.11: Nestohedron associated to the two-site tree graph. It shows divergences along
the normal vectors {W (12), W (j), W ′(j), j = 1, 2} that identify its facets. The potential IR
divergences are captured by the sectors containing W (12), W (1), W (2).

It can diverge along the following directions [165] – see Figure 3.11:

W (12) =
(

2α− 3
e12

)
, W (j) =

(
α− 2
ej

)
, W ′(j) =

(
−α
−ej

)
(3.76)

with j = 1, 2. The integral is well-defined for values of α that identify a point inside the
nestohedron, which implies that all the λ’s ought to be strictly negative, i.e. for α ∈]0, 3/2[.
It shows a logarithmic divergence in the IR for λ(12) := 2α − 3 = 0, which is captured
by the two sectors ∆2,12 and ∆12,1, respectively delimited by the pairs (W (2), W (12)) and
(W (12), W (1)).

Then, an IR-finite quantity can be defined by subtracting the graph obtained by col-
lapsing the two sites onto each other, assigning to the newly generated site the weight given
by the sum of the weights of the two sites that have been collapsed

x1 x2
=
x1 x2

−
x1 + x2 (3.77)

The collapsing operation implies a shift by one of the Mellin parameters in the integration
measure, such that

x1 + x2
=
∫
R2

+

[
dx

x
xα−1

]
1

x1 + x2 + XG (3.78)
Note that this rule provides a subtraction scheme at integrand level. Then, the double line
two-site tree graph corresponds to the integral

x1 x2
= −

∫
R2

+

[
dx

x
xα−1

]
Xg2x1 + Xg1x2 + Xg1Xg2

(x1 + x2 + XG)(x1 + Xg1)(x2 + Xg2) (3.79)
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Figure 3.12: Convergence polytope associated to the two-site tree thick graph. It is given
the overlap of the Newton polytopes of the integrals in which it can be decomposed as
a sum, with in this case is a square – it is indicated by the shaded blue region. Left:
The integral is decomposed according to the monomials in the numerator. Center: The
numerator is decomposed as Xg2x1 + Xg1(x2 + Xg2). Right: The numerator is decomposted
as Xg1x2 + Xg2(x1 + Xg1).

As a check, we can study the asymptotic behaviour of (3.79). As discussed in [165,205], we
can partial fraction the integrand, study separately the integrals in the resulting sum, and
finally obtain the region of convergence by overlapping the Newton polytopes associated
to them – see Figure 3.12.

Irrespectively of the partial fraction chosen, the convergence region is given by a square
with vertices {(1, 1 − α, 1 − α), (1, 1 − α, 2 − α), (1, 2 − α, 2 − α), (1, 2 − α, 1 − α)}, whose
facets are identified by the co-vectors

W (j)
c =

(
α− 2
ej

)
, W ′(j)

c =
(

1 − α
−ej

)
, (3.80)

where j = 1, 2. The double-line two-site tree graph thus converges for α ∈ ]1, 2[. The point
for α = 3/2, which in the original two-site graph generated a logarithmic divergence, now
lies inside the Newton polytope of the double-line two-site graph. Note that for α = 3/2,
(3.79) stays UV finite.

Finally, note that for α ≥ 2 the double-line two-site tree graph graph diverges in the
infrared: this corresponds to a power-law divergence in the original two-site tree graph,
to which the leading divergence has been subtracted. This is manifest in the Newton
polytope picture (Fig. 3.12): it is a square with the same divergent directions as the
pentagon associated to the original graph, except for e12.

Let us now consider the case of a power-law divergence. For definiteness let us consider
the case α = 2, i.e. λ(12) = 1 and λ(j) = 0. The infrared divergences are now encoded into
four sectors, namely {∆2,12, ∆12,1, ∆1′,2, ∆1,2′} – i.e. those respectively identified by the
pairs of covectors {(W (2),W (12)) , (W (12),W (1)) , (W (1′),W (2)) , (W (1),W (2))}. In the sector
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∆2,12, the integral acquires the form

I∆2,12 =
∫ 1

0

dζ12

ζ12
ζ−λ(12)

12

∫ 1

0

dζ2

ζ2
ζ−λ(2)

2 ×

× 1
(1 + ζ2 + XGζ2ζ12)(1 + Xg1ζ12)(1 + Xg2ζ2ζ12)

(3.81)

where x1 = ζ−1
12 and x2 = ζ−1

2 ζ−1
12 . As discussed in [165], the divergent terms can be isolated

via a Mellin-Barnes representation for the integrand, yielding

I∆2,12 =
∫ 1

0

dζ12

ζ12
ζ−λ(12)

12

∫ 1

0

dζ2

ζ2

ζ−λ(2)

2
1 + ζ2

−

− Xg1

∫ 1

0

dζ12

ζ12
ζ−λ(12)+1

12

∫ 1

0

dζ2

ζ2

ζ−λ(2)

2
1 + ζ2

−

− Xg2

∫ 1

0

dζ12

ζ12
ζ−λ(12)+1

12

∫ 1

0

dζ2

ζ2

ζ−λ(2)+1
2
1 + ζ2

−

− XG

∫ 1

0

dζ12

ζ12
ζ−λ(12)+1

12

∫ 1

0

dζ2

ζ2

ζ−λ(2)+1
2

(1 + ζ2)2 + . . .

(3.82)

Repeating this analysis for all the sectors, gathering all the terms together, and restoring
the original variables, it is easy to see that this divergent structure is captured by

I (0)
2

∣∣∣
ct

=
∫ ∞

0

2∏
j=1

[
dxj
xj

xα−1
j

](
1 + XG

∂

∂XG
− Xg1

x1
− Xg2

x2

)
1

x1 + x2 + XG

+
∫ +∞

0

2∏
j=1

[
dxj
xj

xα−2
j

]
x1X 2

g2 + x2X 2
g1

(x1 + Xg1)(x2 + Xg2)

(3.83)

and the infrared finite thick graph can be defined as

x1 x2
=
x1 x2

−
x1 + x2

−
x1 x2 (3.84)

where now the collapsing operation includes the operator in the first term in (3.83), while
the second term in (3.83) can be represented via a cut operation 17. As stressed in the main
text, while these rules are general – the thick graph can be defined in terms of collapsing
and cuts –, the explicit form relies on the degree of divergence (as well as on whether (some
of) the λ’s are integer or not).

Three-site tree graph – In this case, the integrand has a non-trivial numerator. Con-
sidering its OFPT representation, the convergence of its Mellin transform is given by the

17The formula (3.83) is presented in a somewhat compact way – expanding it according to the monomials
in the numerator, it becomes manifest that this contribution is factorised.
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overlap between the two nestohedra associated to each of the OFPT terms – see Figure
3.4. Following the procedure outlined above, for logarithmic divergencies, one can obtain
a finite term by subtracting from the original graph the sum of the graphs obtained by
collapsing all the pairs of sites connected by an edge, assigning to the newly generated
site the sum of the weights of the sites that have been collapsed and shifting the Mellin
parameter by −1 in the site weight integration related to the sites that have been collapsed:

x1 x2 x3
=
x1 x2 x3

−
x1 x2 + x3

−
x1 + x2 x3 (3.85)

where

x1 x2 + x3
=
∫
R+

dx1

x1
xα1

∫
R2

+

[
dx

x
xα−1

]
×

× 1
(x1 + x2 + x3 + XG)(x1 + Xg1)(x2 + x3 + Xg23) (3.86)

and similarly for the third term in the right-hand-side of (3.85).

Four-site tree graph – As one last example of the subtraction scheme at tree level,
we can consider a bigger chain where we need to add back a term which has two pairs
of contracted vertices, see the diagrammatic expression (3.87). Naturally, the explicit
expressions become too large to write down here, however a simple counting exercise shows
that the number of terms matches. From the normal four-chain graph we have five terms
in OFPT representation, then we have to subtract six three chains, and we know that each
of them has two terms in OFTP representation, then we must add one back which comes
from the contracting two pairs at the same time and we get a simple two chain, which is
only one term. So in the end we have that 5 − 6 + 1 = 0. This provides a quick check
that the algorithm works. What is happening is that the second and fourth terms in the
expression (3.87) are counting the same term twice, which corresponds to the tubing, in
the russian doll picture, where we have to disjoint tubes one enclosing the x1 and x2 sites,
and another one enclosing the x3 and x4 sites. Naturally, this is added back by contracting
the two pairs of sites at once.

x1 x2 x3 x4
=
x1 x2 x3 x4

−
x1 + x2 x3 x4

−
x1 x2 + x3 x4

−
x1 x2 x3 + x4

+
x1 + x2 x3 + x4 (3.87)

3.6 Discussion
In this chapter we introduced a novel formalism to compute infrared divergences for a large
class of scalar field theories in FLRW backgrounds. This formalism makes use of tropical
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geometry ideas in order to compute any cosmological integral as a Laurent series in the ap-
propriate analytic regulator. Using this knowledge we formulated a class of infrared finite
computables, by constructing a subtraction scheme which takes advantage of the OFPT
representation of the wavefunction. The whole chapter is highly technical but establishes
a formalism for computing divergences that differs significantly from what has been done
so far in the literature. Firstly, it is based on the computation of cosmological correlators
through the wavefunction, instead of in-in formalism. The wavefunction turns the compu-
tation of leading diverges into a far simpler problem, given that the leading divergence will
be given by the product of multiple contact wavefunction coefficients, times a flat-space-
like Feynman integral, as we shown in the λϕ4 examples. Secondly, there is a reason why
the resummation of sub-leading divergences has very little discussion in the literature, it
simply a very technically difficult problem. Our formalism, turns the computation of the
sub-leading divergences of the correlator into a more tractable problem. It is in fact sim-
ply a straightforward, albeit cumbersome, computation. But unlike leading computations,
where we can easily keep track of them because of their simple structure in terms of contact
diagrams, sub-leading divergences produce in general complicated expressions which will
depend on wavefunction coefficients other than contact diagrams, or the very sub-leading
may have non-trivial contributions from other regions, other than the region where the
loop integration and the vertex integration decouple. Nevertheless, the first sub-leading
contributions are given by disconnected contributions for the correlator where the only
tree-level coefficients contribute, and the loop integration factorizes. Here, our Newton
polytope analysis can become quite useful still as the leading divergence for each of these
terms will have the simple form given by (3.53). What we did not address in this chapter is
the re-summation mechanism which one can use to compute the non-perturbative effects.
From all the literature on the subject, we have learned, in different ways, that stochastic
inflation reproduces the leading logarithms from perturbation theory. This is usually done
by introducing a cut-off regulator, to obtain a theory for the long wavelength spectrum of
the theory, and then match with the computations from stochastic inflation. The fact that
our approach to computing these divergences uses an analytic regulator, and a different
parameterization of the wavefunction/correlator, makes it less obvious how to match with
the computations of stochastic inflation. Therefore, one issue that we leave to solve in the
future is how to formulate a renormalization scheme for the long wavelength modes that
allows us to connect with the results of stochastic inflation, and hopefully this will provide
a framework to re-sum the sub-leading contributions, or at least provide a criteria that the
divergence coefficients have to obey such that re-summation is allowed, and the theory is
well behaved.
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Chapter 4

Towards integrating cosmological
integrals

The computation of cosmological correlators has mainly two motivations. One is phe-
nomenological, for example the leading contribution to the coupling of the inflaton to
fermions appears at one loop [223–226]. The second one follows from the previous section,
where we have already discussed the importance of loop contributions in order to under-
stand the stability of perturbation theory, and ultimately the consistent of the underlying
theory. Therefore, below we will study the integrated wavefunction using the method of
differential equations. We integrate the one-loop two-site wavefunction coefficient for gen-
eral FLRW cosmologies, and study the integrated wavefunction coefficient for the one-loop
three-site graph, we prove that it’s function space goes beyond Goncharov polylogarithms
and also includes elliptic iterated integrals. Finally, we discuss the simplicity of the corre-
lator with respect to the wavefunction and prove that the elliptic integrals cancel in the
correlator, and its function space can only be built out of Goncharov polylogarithms.

4.1 Differential Equations for Twisted Period Inte-
grals

In this section we discuss the differential equations method, which has been used to great
success in the computation of Feynman integrals [227, 228], and more recently for the
integration of tree level cosmological correlators [229,230]. The purpose of this discussion
is to in the later sections employ this method in the computation of loop cosmological
integrals. Firstly, we outline the method:

• Define the family of integrals;

• Find the integration by parts identities, relating different integrals in the family;

• Solve the system of linear equations, to find a basis of master integrals;
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• Derive the linear differential equations for the master integrals;

• Choose a basis of master integrals where the differential equations are in canonical
form;

• Find the boundary values;

• Solve the differential equations;

We will go over each of these steps in the following text. For a generic family of integrals
of the form:

Ia0,··· ,an [ϵ, c,X ] =
∫

Γ
dkx κb0+ϵc0

1
Db1+ϵc1

1 · · ·Dbn+ϵcn
n

, (4.1)

where Di are linear polynomials, and κ is a general polynomial, which depend on x =
{x1, · · · , xk} integration variables, and the kinematic invariants X . The lables ai = bi+ ϵci
The regulators ϵ, and c = {c0, · · · , cn} are such the Ia0,··· ,an [ϵ, c,X ] converges in the domain
of integration. And the integration region, Γ, is such that the integrand when evaluated on
the boundaries vanishes. Finally, the parameters ai are integers. We also are considering
that n ≥ k.

One can consider even more generic families of integrals, however for the purposes of
studying cosmological integrals we find that, (4.1), is sufficiently general for both tree and
loop integrals that appear in cosmological correlators.

4.1.1 Integral Identities and basis of Master Integrals
Firstly, we discuss partial fraction identities. Remember that the fact that the number of
variables of integration is equal or less than the number of linear denominators, Di, means
that we can always write any linear function of the variables of integration as a linear
combination of k denominators, Di’s, plus some function of the kinematics. This includes
the n− k denominators. More concretely we can write:

Dj =
∑
i

tiDi + f(X ) , (4.2)

where the sum on the right is over a subset of k denominators, and Dj on the left is part of
the subset of denominators excluded from the k Di’s we choose as a basis. The coefficients
ti are numbers. And the function f(X ) is whatever is needed to make the equality correct,
provided it depends solely on the external kinematics. Using (4.2), we can easily translate
it into an equality between different integrals of the type (4.1). It turns into:

Iaj−1 =
∑
i

ti Iai−1 + f(X )I , (4.3)

where in the labels we just write the parameters which are shifted, Ia0,··· ,aj−1,··· ,an ≡ Iaj−1.
We call the identities of the type (4.3), partial fraction identities.
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Now we discuss how to obtain other linear identities which relate integrals labeled by
different integers ai. If we consider the assumption that the integrand vanishes at the
boundaries of Γ, then in general, we can say that the action of a total derivative simply
vanishes: ∑

i

∫
Γ
dkx ∂xi

{
κa0+ϵc0

Ni

Db1+ϵc1
1 · · ·Dbn+ϵcn

n

}
= 0 . (4.4)

Here, we are considering a general numerator, Ni, for purposes which will later be more
clear. Of course, one can always write the numerator as a polynomial function of the
denominators, and then expand it to shift the parameters, ai, and relating the initial
integral to a sum of integrals of the type (4.1). Then, if we act with the derivative we
obtain:
∑
i

∫
Γ
dkx

{
b0 + ϵc0

κ
(∂xi

κ)Ni + (∂xi
Ni) +Ni

∑
σk

(−bσk
+ ϵcσk

)D′
σk

Dσk

}
κb0+ϵc0∏n
j=1 D

bj+ϵcj

j

= 0 .

(4.5)
Now, we could choose a constant numerator, for example Ni = 1, and it is clear that (4.5)
generates an identity (similar to (4.3)) which relates different integrals in the family (4.1)).
However, we can also go a step further and pick a numerator such that:∑

i

(∂xi
κ)Ni = h0κ . (4.6)

This leads to simpler identities which relate only integrals with the same value of a0. To
find a polynomial Ni such that (4.6) is true, we can simply make an ansatz for Ni and
h0, and then fix their form by demanding (4.6) (this is in fact very simple and fast to
implement). Or, we can make use of the more formal ideas related to Groebner bases, and
find the the Groebner basis for the polynomial ideal:

⟨∂xi
κ, · · · , ∂yk

κ, κ⟩ . (4.7)

This will give us a basis to construct polynomials Ni for which (4.6) is true. And thus the
first term in (4.5) becomes simpler [231,232].

Now that we know how to find linear equations which relate different elements of the
family (4.1), we can find the basis of master integrals. If we think of every integral in the
family defined above to be a point in a vector space, then we expect that this vector space
has a basis. It turns out, that the existence of integration by parts identities generally
means that this basis is finite. By solving the linear equations derived from IBPs (using
Gaussian elimination), we can write any integral in the family as a linear combination of
a finite basis of elements in the family, these are usually referred to as master integrals. In
practice, one can find a basis by generating a large number of identities for a large set of
integrals of the family, and then use the Laporta algorithm to reduce every element of this
set to the basis. In principle, if the set is sufficiently large then the basis should be the
correct one. To prove what is the correct number of master integrals of the family, then
one needs to use the formalism of twisted cohomology which we will not go in depth here,
and just refer the reader to the literature on intersection theory and twisted cohomology.
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4.1.2 Differential Equations for Master Integrals
Finding the differential equations for the basis of master integrals is straightforward. Sim-
ilarly to the above discussion, if we act with a derivative with respect to the external
kinematics on the integral Ia0,··· ,an [ϵ, c,X ], then we will obtain a linear combination of in-
tegrals of the same family. From the previous discussion, we can write any integral of this
family in terms of a basis of master integrals, thus we can write the derivative of a master
integral in terms of a linear combination of other master integrals. More concretely, let us
consider a vector of n master integrals,

f⃗(X , ϵ, c) = {I1, · · · , In} , (4.8)

then the above statement is simply that we can write the derivative with respect to an
external kinematic parameter, Xi, of a master integral as a linear combination of all the
master integrals, that translates into the form:

∂Xi
f⃗ = AXi

f⃗ , (4.9)

where A is a n×n matrix whose entries depend on the regulators, and external kinematics.
However, there are infinitely many bases of master integrals, and depending on which one,
naturally, the matrix A will have a different form. When the kernel of all the elements in
the basis is logarithmic, a particular useful basis is one that leads to a canonical form for
the differential equations, where A has the dependence in the regulator ϵ factorised, and
we can write:

∂Xi
f⃗ = ϵAXi

(X , c) f⃗ , (4.10)

where here, f⃗ is a different choice of basis which leads to the canonical form for the
differential equations. Furthermore, we can combine the different differential equations
(one per kinematic invariant) to write:

df⃗ = ϵ(dÃ)f⃗ , (4.11)

where the operator d = ∑
i dXi∂Xi

, and ∂Xi
Ã = AXi

. Then, the solution of these differential
equations can be formally written as a path ordered exponential,

f(X , ϵ, c) = P exp
{
ϵ
∫

C
dÃ(X , c)

}
f(X0, ϵ, c) . (4.12)

Here the vector f(X0, ϵ, c) defines the boundary conditions, at the point X0 in kinematic
space. The ϵ factorization allows writing the above exponential as an expansion in ϵ, and
each term in the series is an iterated integrals over a logarithmic kernel [233], which means
the answer can be expressed in terms of multi-polylogarithms. In particular,

f(X , ϵ, c) =
(
I + ϵ

∫
C
dÃ+ ϵ2

∫
C
dÃ

∫
C
dÃ+ . . .

)
f(X0, ϵ, c) . (4.13)

In general, the difficult task is to find a basis of master integrals which leads to a canonical
form for the differential equations. And then find the boundary conditions which allow
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integrating over the contour C to the physical kinematical space X . In the following
sections we will go through some examples of the application of this algorithm, for loop
level integrals. At the end, we will look at an example of an integral where the basis
integrals do not always have logarithmic kernels, but some of them have elliptic kernels.
In order to identify the function space of the solutions of differential equations it is useful
to introduce the Picard-Fuchs operator.

In general, differential equations have a block-triangular structure, whose homogeneous
sector univocally determines the space of functions appearing in its solution. In particular,
each homogeneous block of dimension k × k can be equivalently rewritten as a single kth-
order differential equation for a single master integral Ii, as:

LkIi = 0 , Lk = ∂k

∂X k
+

k−1∑
j=0

cj(X ) ∂j

∂X j
, (4.14)

with cj(X ) rational functions in the kinematic variable X . In the multivariate case, given
{Xi}mi=1 kinematic variables, this can be achieved by first making the change of variables
Xi → aiλ, setting ak = 1, and then constructing the higher order operator with respect to
λ. This operator is known as Picard-Fuchs operator [234], and by studying its factorization
property it is possible to determine the geometries of the appearing integrals [234,235]: if
it factorizes in differential operators of order 1, only polylogarithms [236, 237] appear, for
r > 1 instead we can have the appearance of Calabi-Yau (r-1)-folds [238–240].

4.2 Differential equations for one loop cosmological
integrals

In this section, we apply the method of differential equations to evaluate loop cosmological
integrals. The evaluation of loop cosmological correlators is still very underdeveloped when
comparing with the evaluation of loop Feynman integrals. Here, we believe we make a step
forward in this direction. We compute the one loop two-site wavefunction coefficient for
general power-law FLRW cosmologies. Furthermore, we compute the differential equations
for the one-loop three-site integral, and show that this family of integrals contains elliptic
polylogarithms in its function space.

4.3 Integrals over the one-loop measure
Before diving into specific one-loop integrals, we will discuss the integral family associated
just to the integration measure, in the case where no denominators are present, namely
considering integrals of the type:

I (ns, 1; 0)
{1} :=

∫
Γ

∏
e∈E(1)

[dye] µd(y; X ) = κ0

∫
Γ
κγ(y) , (4.15)
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where µd was given in the previous chapter. One can relate the integration measure of
one-loop n-sites cosmological integrals, with that obtained from the Baikov polynomial
[241, 242] of one-loop n-points Feynman integrals with different masses on external legs
and with massless propagators, in Euclidean space, by considering {y2

e , e ∈ E (1)}. This
property is relevant, because the number of master integrals for these Feynman integral
families admits a recursive formula, given by:

ν(FI)
n =

n∑
k=2

n!
k! (n− k)! = 2n − (n+ 1) , (4.16)

where exactly 1 master integral per sector appears. Integration by parts identities will
shift powers of denominators by integer units, relating integrals on different sub-sectors.
Rewriting equation (4.15) in Baikov variables, one obtains a family of one-loop n-points
Feynman integrals with variables raised to half-integer powers:

I (ns, 1; 0)
{1} = κ0

2n
∫ ∏

e∈E(1)

dy2
e

∏
e∈E(1)

[
y2
e

]1/2

[
κ(y2

e)
]ϵ
, (4.17)

which in momentum space correspond to:

I (ns, 1; 0)
{1} = 1

2n
∫
Rn
d⃗l

1∣∣∣⃗l∣∣∣ ∣∣∣⃗l + P⃗1

∣∣∣ · · ·

∣∣∣∣∣∣l⃗ +
ns−1∑
j=1

P⃗j

∣∣∣∣∣∣
. (4.18)

In general, such integral belongs to the integral family:

I (ns, 1; 0)
{τg} :=

∫ ∏
e∈E(1)

dy2
e∏

e∈E(1)

(
y2
e

)τe

[
κ(y2)

]ϵ
(4.19)

=
∫
Rns

d⃗l
1

[(⃗l)2]τ12 · · · [(⃗l + P⃗1 + . . .+ P⃗ns−1)2]τns,1
(4.20)

with τe ∈ Z + 1/2, e ∈ E (1). Integrals of the type of equation (4.17) cannot be related to
subsectors where some denominators do not appear, and for each master Feynman integral
appearing with k external legs, we have a sector with ν(FI)

k master cosmological integrals.
The total number of master integral of the zero sector is:

ν(CI)
ns

=
ns∑
k=2

ns!
k!(ns − k)! ν

(FI)
k , (4.21)

where the various subsectors are appearing in the with differential equations blocks of
dimension ν(FI)

k . Summing the series, we obtain:

ν(CI)
ns

= 3ns − 2ns−1(2 + ns) . (4.22)
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x1 x2

y12

y21

Figure 4.1: One-loop two-site diagram. The corresponding integrand has 5 denominators,
each corresponding to a connected subgraph of the above graph. Two subgraphs enclose
each of the two sites, then two subgraphs enclose both sites and cut one edge twice and
finally there is the full graph which corresponds to the total energy pole.

4.3.1 One-loop Two-site graph
In this section, we discuss how to apply the method of differential equations in the simplest
case of the one-loop two-site integral, for the flat-space wavefunction, and allows us to get
insights on the integrated function, – see Figure 4.1.

Let us consider the following representation for this integral:

I(2, 1) =
∫
R2

+

∏
s∈V

[
dxs
xs

xαs

]
I (2, 1)

{1} , (4.23)

I (2, 1)
{1} = κ0

∫
Γ

∏
e∈E(1)

[dye ye]
κχ

qGqg1qg2

(
1
qG12

+ 1
qG21

)
(4.24)

where E (1) := {e12, e21} is the set of the two edges connecting the sites s1 and s2, and:

κ =
[
(y12 + P )2 − y2

21

] [
y2

21 − (y12 − P )2
]
, (4.25)

and κ0 = P−1. While gj identifies the subgraph containing just the site sj (whose weight
is xj + Xj) and Gij := G \ {eij} is the subgraph obtained from G by deleting the edge
between the sites si and sj – in this simple case where there are only two sites, the two
edges are indicated by reversing the order of the labels of the sites they connect. The linear
polynomials associated to these subgraphs can be explicitly written as,

qG = x̃1 + x̃2,

qg1 = x̃1 + y12 + y21,

qg2 = x̃2 + y12 + y21,

qG12 = x̃1 + x̃2 + 2y12,

qG21 = x̃1 + x̃2 + 2y21.

(4.26)

where for simplicity we denoted x̃i = xi +Xi.
Loop edge weight integration – Upon exploiting the invariance of the integrand

under the y12 ↔ y21 exchange, and the partial fraction relations emerging from the identity:

qg1 − qg2 = x̃1 − x̃2 , (4.27)
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the integral I (2, 1)
{1} , appearing in (4.24), can be recast as a combination of twisted period

integrals (4.1), corresponding to two sets of two denominators, namely {qg1 , qG12} and
{qg2 , qG21}. The latter set can be mapped onto the former, by exchanging x̃1 ↔ x̃2. There-
fore, the computational complexity of the problem reduces remarkably to the evaluation
of just one type of period integrals, defined as:

I (2, 1)
τg1τG12

:=
∫

Γ
κχ φτg1τG12

, φτg1τG12
:= dy12dy21

q
τg1
g1 q

τG12
G12

. (4.28)

By writing down the integration by parts identities, as explained in the beginning of
this chapter and more concretely in equation (4.5), and then solving for a basis, we can
identify that the number of master integrals to be 6. And the basis can be chosen as:
I = {I00, I10, I01, I02, I−11, I11}.

As described in section 4.3, the sector without denominators contains ν(CI)
2 = 1 master

integrals, which has been chosen as I00, and in momentum space it can be rewritten
as a massless one-loop two point function with massive external momenta, belonging to
the integral family Iτg1τg2

, with denominators raised to with half-integer exponents, in
Euclidean space:

Iτg1τg2
:=
∫ dℓ⃗

[(ℓ⃗)2]τg1 [(ℓ⃗+ P⃗ )2]τg2
, τgj

∈ Z + 1
2 . (4.29)

With a change of basis J = R.I, through the rotation matrix R,

R =



(2ϵ+1)2

P 2 0 0 0 0 0
0 ϵ(2ϵ+1)

P
0 0 0 0

0 0 ϵ(4ϵ+1)
P

ϵ(x̃1+x̃2)
P

0 0
0 0 0 −ϵ 0 0

− ϵ(2ϵ+1)
2P (x̃1+x̃2) 0 − ϵ(2ϵ+1)(x̃1−x̃2)

2P (x̃1+x̃2) 0 ϵ(2ϵ+1)
P (x̃1+x̃2) 0

0 0 0 0 0 ϵ2


(4.30)

it is possible to find a family of master integrals:

J1 = (1 + 2ϵ)2

P 2 I00 ,

J2 = ϵ(1 + 2ϵ)
P

I10 ,

J3 = 1
P

(
ϵ(1 + 4ϵ) I01 + ϵ(x̃1 + x̃2) I02

)
,

J4 = − ϵ I02 ,

J5 = ϵ(1 + 2ϵ)
2P (x̃1 + x̃2)

(
I−11 − I00 + (x̃2 − x̃1) I01

)
,

J6 = ϵ2 I11 , (4.31)
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obeying a canonical system of differential equations [118, 243, 244], as defined in (4.10),
where the total differential matrix,

dA = Âx̃1dx̃1 + Âx̃2dx̃2 + ÂP dP

=
8∑
i=1

Mi d log(wi) , (4.32)

is in d log form: Mi are the constant matrices:

M1 =



4 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 0 0 0
0 0 0 0 2 0
0 0 0 0 0 0


, M2 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−1
2 0 0 2 0 0

0 0 0 0 2 0
0 0 0 0 0 0


,

M3 =



0 0 0 0 0 0
1
2 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1

4
1
2

1
2 1


, M4 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1

2 −1
4 −1

2
1
2 1


,

M5 =



0 0 0 0 0 0
0 0 0 0 0 0
1
2 0 1 2 0 0
1
4 0 1

2 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, M6 =



0 0 0 0 0 0
−1

2 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −1

4
1
2 −1

2 1


,

M7 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −1

2
1
4 −1

2 −1
2 1


, M8 =



0 0 0 0 0 0
0 0 0 0 0 0

−1
2 0 1 −2 0 0

1
4 0 −1

2 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,

(4.33)

whereas the letters wi ∈ {P, x̃1 + x̃2, x̃1 +P, x̃2 +P, x̃1 + x̃2 +2P, x̃1 −P, x̃2 −P, x̃1 + x̃2 −2P}
(the last three entries correspond to spurious singularities) form a rational alphabet. The
system of differential equations admits a solution in terms of iterated integrals, as shown
in (4.12), which in this case give rise to generalized polylogarithms [236, 237, 245, 246].
The analytic expression for our master integrals up to order O(ϵ2) is obtained after fixing
boundary conditions as follows:
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• J1,J5 can be obtained by direct integration, since in momentum space they appear as
massless two-points functions Ga1,a2 with half-integer exponents in Euclidean space,
of the type of equation (4.29) whose solution is known [247].

• J2,J4,J6 can be fixed order by order in ϵ imposing regularity conditions in the spu-
rious poles, at the point (x̃1, x̃2, P ) = (1, 1, 1).

• J4 can be fixed by matching with the direct integration at (x̃1, x̃2, P ) = (0, 0, 1),
which at this point becomes of the form of integral of equation (4.29).

Using the results of the master integrals and inputing them in the result obtained for the
flat-space wavefunction coefficient as a linear combination of the basis, I (2, 1)

{1} reads as,

I (2, 1)
{1} = − 1

ϵ(x̃1 + x̃2)
+ (−2 log(P ) − γE + 2 − log(4π))

x̃1 + x̃2

+ 2
x̃2

1 − x̃2
2

[
x̃2 log

(
P + x̃1

P

)
− x̃1 log

(
P + x̃2

P

)]

− 1
P

[
π2

6 + Li2
(
P − x̃2

P + x̃1

)
+ Li2

(
P − x̃1

P + x̃2

)

+ 1
2 log2

(
P + x̃1

P + x̃2

)]
. (4.34)

This result agrees with what is known in the literature.
Site weight integration – The integration over the x-variables of equation (4.23) can

be performed directly in terms of known Mellin transforms [248], and via the Method of
Brackets [249, 250]. Such method is based on Ramanujan’s master theorem which states
that given a complex valued function g(x), which can be Taylor expanded around x → 0
as:

g(x) =
∞∑
k=0

G(k)
k! (−x)k , (4.35)

then its Mellin transform is given by
∫ ∞

0
xs−1g(x)dx = Γ(s)G(−s) . (4.36)

The final result, which is symmetric under the exchange of X1 ↔ X2, can be expressed as
a linear combination of Hypergeometric functions 2F1 and 3F2 and logarithms, and reads
as:
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I(2, 1) =
2−3−2απ3/2(X1 + X2)1+2α csc(πα)2Γ

(
−1

2 − α
)

Γ[−α]

(
2 − 1

ϵ
− log(4πeγE P 2)

)
+π3/2 csc2(πα)

8(α + 1)2P

[
−4

√
π
(
(P + X1)α+1 − 2 (X1 − P )α+1

)
(P + X2)α+1

−
4−αΓ

(
−α − 1

2

)
(X1 + X2)2α+2

Γ (−α) 2F1

(
1, −2( α + 1); −α; P + X1

X1 + X2

)]
+π2 csc(πα) csc(2πα)(P + X1)α

4α + 2

[
−2(P + X1) ((P − X2)α + (−1)α(P + X2)α)

+(−1)α(X1 − X2)(P + X1)α 2F1

(
1 − α, −2α; 1 − 2α; X1 − X2

P + X1

)
+(X1 + X2)(P + X1)α 2F1

(
1 − α, −2α; 1 − 2α; X1 + X2

P + X1

)]
−π5/24−α−1 csc(πα) csc(2πα)

Γ(−α )Γ
(
α + 3

2

)
(P + X1)

[
(−1)α(X1 − X2)2α+2

3F2

(
1, 1, α + 2; 2, 2 α + 3; X1 − X2

P + X1

)

+(X1 + X2)2α+2
3F2

(
1, 1, α + 2; 2, 2α + 3; X1 + X2

P + X1

)]
+π5/22−2α−1 csc(πα) csc(2π α)

(
(−1)α (X1 − X2)2α+1 + (X1 + X2)2α+1)

Γ (−α)Γ
(
α + 3

2

) log
(

P + X1
P

)
+(X1 ↔ X2).

4.3.2 One-loop three-site graph

Let us move on to the next-to-simplest one-loop case, constituted by the one-loop three-
site integral – See Fig. 4.2. As we will show, it has some distinctive features which were
absent in the previous case. The easiest to spot is the fact that now the volumes in the
loop integral measure are higher degree polynomials that no longer factorize in a product
of linear polynomials. Actually, such a factorization occurs for the one-loop two-site case
only.

In what follows, we restrict ourselves to the case in which there is just one external
state at each site, so that |P⃗i| → Xi. Reducing the number of scales from six to three
simplifies the problem while still capturing all the essential complexities.

The representation for the integrand coming from one of the signed triangulations of the
underlying cosmological polytope, which corresponds to the choice G◦ = {G, g1, g2, g3}, is
given in terms of the sum of six simplices. Interestingly, it is enough to focus on the study
of the differential equations for one of them, as the others can be derived through permu-
tations of integration variables and external kinematics. Explicitly, such representation for
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the integrand yields the following form for the integral I (3, 1)
{1} :

I (3, 1)
{1} = κ0

∫
Γ

∏
e∈E(1)

[dye ye]
κχ

qG

3∏
j=1

qgj

[
1
qG12

(
1
qg23

+ 1
qg31

)
+

+ 1
qG23

(
1
qg31

+ 1
qg12

)
+ 1
qG31

(
1
qg12

+ 1
qg23

)] (4.37)

where κ is:

κ =

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 0 y2

12 y2
23 y2

31
1 y2

12 0 P 2
2 P 2

1
1 y2

23 P 2
2 0 P 2

3
1 y2

31 P 2
1 P 2

3 0

∣∣∣∣∣∣∣∣∣∣∣∣
, (4.38)

κ◦ is:

κ◦ =

∣∣∣∣∣∣∣∣∣
0 1 1 1 1
1 0 P 2

2 P 2
1

1 P 2
2 0 P 2

3
1 P 2

1 P 2
3 0

∣∣∣∣∣∣∣∣∣ , (4.39)

and χ = d−4
2 . Furthermore, for regularization purposes, we can consider d = 3 + 2ϵ. The

set of edges E (1) is given by E (1) := {e12, e23, e31}. Finally, it is useful to write here the
explicit expression for the linear polynomials {qg, g ⊆ G}, whose associated subgraphs
follow the same conventions introduced in the previous section with gs1...sñs

being the
connected subgraph containing the sites s1, . . . sñs , while Gij := G \ {eij} is the subgraph
obtained from G by deleting the edge eij connecting the sites si and sj:

qG =
3∑
i=1

Xi,

qgj
= yj−1,j +Xj + yj,j+1,

qGj,j+1 =
3∑
s=1

Xs + yj,j+1 ,

(4.40)

with j = 1, 2, 3.
Partial fraction identities allows focusing only on subsets of three denominators: the

evaluation can then be split into two types of contributions, separating the calculation of
the sectors with denominators {qgj

, j = 1, 2, 3} ∪ {qg23}, and of ones containing qG12 and
the pairs {(qgj

, qgj+1), (qgj
, qg24); j = 1, 2, 3}.

Polylogarithmic sector – Let us begin with the sector identified by {qgj
, j = 1, 2, 3}∪
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x1

x2 x3

y12

y23

y31

Figure 4.2: One loop three-site diagram. The corresponding integrand has 10 denomina-
tors, each corresponding to a connected subgraph of the above graph. Three subgraphs
which enclose a single site, three which enclose two sites at a time, three which enclose
all three sites but cut each edge twice and finally the full graph which corresponds to the
total energy singularity.

{qg23}. The associated integrals can be written as

Iτg1τg2τg3τg23
=
∫

Γ
µd φτg1τg2τg3τg23

,

φτg1τg2τg3τg23
=

∏
e∈E(1)

dye

qτg1
g1 q

τg2
g2 q

τg3
g3 q

τg23
g23

.

(4.41)

As described earlier, writing down the integration by parts identities (4.5) and solving for
a basis, we find that the integral family has 15 master integrals, whose master forms can
be chosen as:

e1 = φ0000 , e2 = y2
12φ0000 , e3 = y2

23φ0000 ,

e4 = y2
31φ0000 , e5 = y12φ0000 , e6 = y23φ0000 ,

e7 = y31φ0000 , e8 = φ1000 , e9 = φ0100 ,

e10 = φ0010 , e11 = y23φ0001 , e12 = y31φ0001 ,

e13 = y12φ0001 , e14 = φ0002 , e15 = φ1110 . (4.42)

As described in section 4.3, the sub-sector without denominators contains ν(CI)
3 = 7 master

integrals, and its differential equations are shown in figure 4.3. Heuristically, this large
number can be motivated by rewriting the measure of the integral in momentum space,
which belongs to the integral family:

I (3, 1; 0)
τ1τ2τ3 =

∫
R3
d⃗l

1
[(⃗l)2]τ1 [(⃗l + P⃗1)2]τ2 [(⃗l + P⃗1 + P⃗2)2]τ3

, (4.43)

where τi ∈ Z + 1/2. The integral in equation (4.43) is the one-loop three-point function
with massive external momenta of mass Pi and with massless denominator raised to half-
integer powers, in Euclidean spacetime. Integration by parts in ye will mix integrals with
denominators raised to half-integer powers with those raised to integer ones, a property that
does not hold for momentum space integration by parts identities, and which effectively
increases the number of master integrals.
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Figure 4.3: Zero sector of the one-loop three-site-graph. The first four integrals form a
4 × 4 homogeneous diagonal block, corresponding to the one-loop three point function
with denominator raised to half-integer powers, and each of the subsequent three integrals
form a 1 × 1 diagonal block, and can be identified with one-loop two-point functions with
denominators raised to half integer powers.

It is possible to find a ϵ-factorized form for the differential equation matrices obeyed by
these integrals [243,251–254]. Also in this case, the total differential can be written in dlog
form, indicating that the space of functions consists of generalized polylogarithms, and the
alphabet for this sector, together with the equivalent sectors in the remaining three similar
integrals (obtained by replacing qg23 with qj,j+1, j ̸= 2), reads:

W = {X1, X2, X3, X1 +X2, X2 +X3, X1 +X3,−X3 +X1 −X2, X3 +X1 −X2,

−X3 +X1 +X2, X3 +X1 +X2} . (4.44)

In the generic case of multiple external legs, in which xi ̸= Pi, the basis of this sector
increases to 34. The function space consists only of generalized polylogarithms, but alge-
braic letters appear in the alphabet.

Elliptic sector – Let us now turn our attention to the sectors containing the denom-
inator qG12 :

Iτgτg′τG12
=
∫

Γ
µd φτgτg′τG12

,

φτgτg′τG21
=

∏
e∈E(1)

dye

q
τg
g q

τg′
g′ q

τG12
G12

,

(4.45)

where (g, g′) takes values in the set of pairs {(gj, gj+1), (gj, g23)}.
The sub-sector containing only the denominator qG12 , has 9 master integrals, that can

be chosen as follows:

e1 = y23y31φ001 , e2 = y23φ001 , e3 = y23φ002 ,

e4 = y31φ001 , e5 = y31φ002 , e6 = φ002 ,

e7 = φ001 , e8 = y2
23φ001 , e9 = y2

31φ001 , (4.46)

and whose shape of the differential equation is shown in Fig.4.4. Constructing the Picard-
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Figure 4.4: Homogeneous sector of the one-loop three-site graph with denominator qa.
There are a total of 9 master integrals, which decouple in blocks of dimensions 1 × 1, 2 ×
2, 2 × 2, 4 × 4. In the last block, the elliptic family appears.

Fuchs operators for each homogeneous block of the differential equation in d = 3, where
we used the change of variables: X1 → a1λ, X2 → λ, X3 → 1, we found a differential
operator of third order L3, corresponding to the sector formed by the last 3 master integrals
of equation (4.46), which factorizes [255] in one operator of first order and one of second
order, as L3 = L1L2. The operator L2 reads:

L2 = d2

dλ2 + 5 (a2 − 1)2
λ4 − 6 (a2 + 1)λ2 + 1

(a2 − 1)2 λ5 − 2 (a2 + 1)λ3 + λ

d

dλ

+ 3 (a2 − 1)2
λ2 − 2 (a2 + 1)

(a2 − 1)2 λ4 − 2 (a2 + 1)λ2 + 1
, (4.47)

and its solution is an elliptic function:

ψ1,2(K2) , K2 = (a− 1)2λ2 − 1
(a+ 1)2λ2 − 1 . (4.48)

Remarkably, the space of functions gets richer already at one-loop level with respect to the
Feynman integral case. As a consistency check of our result, we expect the elliptic function
to disappear in the flat spacetime limit, in which qG → 0. With the change of variables:
qG = ∑3

i=1 Xi, qm = X1 − X2, the flat spacetime singularity becomes manifest, and with
the additional change, qG = λGaG and qm = λ, one can again find the reparametrization
of equation (4.47) in the variables (as, λ). Sending qg → 0, the second order Picard-Fuchs
operator factorizes in two linear differential operators:

L1 = d

dλ
+ 2λ4 + 5λ2 − 1

(λ− 1)λ(λ+ 1) (λ2 + 1) , (4.49)

L1 = d

dλ
+ λ

(λ− 1)(λ+ 1) . (4.50)

Consistently with the known answer of the one-loop three-site integral computation in
flat space, as a non-trivial check, it is nice to verify that indeed, in the flat space limit,
the elliptic subsector simplifies into polylogarithms. In the study of this sector, algebraic
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letters appear of the form (P +
√
Q)/(P −

√
Q), with

Q = 3X4
1 + 4X3

1 (X2 +X3) − 2X2
1

(
7X2

2 + 2X2X3 + 3X2
3

)
+ 4X1(X2 − 3X3)(X2 +X3)2

+ (3X2 − 5X3)(X2 +X3)3 . (4.51)

4.4 Correlator versus Wavefunction
So far the two examples we discussed are integrals contributing to the wavefunction. It is
interesting to understand what happens when we consider the correlator. Because as we
apply the Born rule, it will lead to the cancellation of some singularities in the integrand.
Let us first consider the bubble diagram. The correlator for the bubble can be explicitly
written as:

⟨ϕk1ϕk2⟩1−loop = 2ψ(1)
2 (k1, k2) + 2ψ(0)

4 (k1, y12, y12, k2)
2y12

+ 2ψ(0)
4 (k1, y21, y21, k2)

2y21
+

2ψ(0)
3 (k1, y12, y21) 2ψ(0)

3 (k2, y12, y21)
2y212y12

= x1 + x2 + y12 + y21 + k1 + k2

y12y21(x1 + x2 + k1 + k2)(x1 + y12 + y21 + k1)(x2 + y12 + y21 + k2)
.

(4.52)

Where remarkably, the singularities (x1 + x2 + 2y12), and the equivalent one fore the
other edge, cancel out in the sum, and we have two other singularities instead y12, and
y21. This means we cannot simply obtain the correlator from the wavefunction, but we
need to consider a larger integral family, which accounts for the two new singularities.
But it has more interesting implications for the triangle integral, where the corresponding
singularities also cancel in the correlator, that is, the singularities (x1 + x2 + x3 + 2y12),
(x1 +x2 +x3 +2y23) and (x1 +x2 +x3 +2y31) cancel, and we have new singularities, y12, y23
and y31. We will not write the full expression for the triangle as it is too cumbersome. This
is remarkable, as we find that the elliptic sector contributing to the wavefunction comes
precisely from these singularities. Therefore, it is possible that the correlator is simpler
than the wavefunction, although the introduction of new singularities may lead to a new
elliptic sector. We leave the study of the correlator for future work.

4.5 Discussion
In this section we employed the method of differential equations in order to compute loop
wavefunction coefficients. This method has shown to be quite effective at compute any
integral with a rational integrand, thus encompassing many useful classes of integrals in
physics, the most relevant one being Feynman integrals. For cosmological correlators,
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differential equations have been used to compute tree-level cosmological correlators, and
here we extend their application for loop level. We were able to compute the full two-point
one-loop wavefunction coefficient for conformally coupled states. When computing the
flat-space wavefunction coefficient for one-loop three point we found that the differential
equations contain elliptic sectors. This constitutes a significant hurdle in finding a canonical
form for the differential equations, as most of the strategies and methods rely on the
integrand being a logarithmic kernel, instead of elliptic. As we argued in the previous
section, the singularities producing the elliptic sector in the differential equations cancel
out in the correlator, and new singularities appear. It remains to be studied whether the
new singularities also give rise to an elliptic sector, and thus whether the correlator is
actually a simpler function than the wavefunction. However, computing the wavefunction
can still be a valuable endeavor given that using the Born rule one can compute any given
observable, and not just n-point correlation functions. Thus the wavefunction gives a
larger insight into the nature of loop cosmological observables. Given this discussion, the
significant difficulties that we found for the next to simplest one-loop example, as well as
the fact that loop contributions will be very hard to measure in the near future, due to
the fact that we expect them to very suppressed with respect to tree level, why should we
compute loop cosmological correlators? The argument is simple, even though tree-level is
what we can expect to measure in the near future, the whole theory we are working on
relies on the expectation that perturbation theory, under certain assumptions, works. Now,
if we were to find that there is some fundamental flaw in loop computations that whole
expectation would crumble. Such an example comes from the previous chapter, where we
studied the infrared divergences of these integrals. Therefore, here we are simply trying to
compute the simplest one-loop examples with the goal of studying their analytic structure
and how it differs from flatspace and the tree-level coefficients. From this work, there are
two natural directions to follow, one is to finish the triangle computation, but studying
the recent developments in integrating elliptic kernels. The other direction, is to study the
correlators directly and understand if the ellipticity is still there, and even if it is, whether
they are simpler than the wavefunction or not, as claimed in [113].
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Chapter 5

Combinatorial Structure of the
Wavefunction

In this chapter, we discuss a novel combinatorial description for the wavefunction. In par-
ticular, we describe a geometric object, called Cosmohedron, which encodes the integrand
of the full wavefunction, both a tree and loop level. This new geometric description departs
from the current geometric understanding of the wavefunction, which is encoded in cosmo-
logical polytopes [31], in several ways. Firstly, the cosmohedron gives the description of
the full wavefunction, as opposed to a graph-by-graph description. The cosmohedron also
introduces in itself a graph geometry, in terms of graph associahedra (which we describe
in section 5.1.1), that we will connect with the cosmological polytope in section ??. Then,
the cosmohedron relies on an entirely new parameterization of the wavefunction in terms
of sub-polygons of the momentum polygon. And finally, we hope that this new combina-
torial description of the wavefunction can help us connect the Trϕ3 scalar wavefunction to
other theories, such as those with pions and non-supersymmetric Yang-Mills. In the first
sections below, we will describe graph associahedra and their connection with cosmological
polytopes. Then, we will build on this to construct the cosmohedron, both combinatorially
as well as its embedding. We will then describe how to extract the wavefunction from the
geometry. Afterwards, we will describe how this picture generalizes for loops. And finally,
we will briefly describe the combinatorial picture for the correlator.

5.1 Combinatorial Wavefunction

5.1.1 Graph Associahedra
The cosmohedron, which is a geometry encoding the full wavefunction also implies a geome-
try for individual graphs, different from cosmological polytopes [31], which were introduced
in the second section. We call the single-graph geometry, graph associahedra, and we start
by describing this. As we have explained in section 2, from the old fashioned perturbation
theory representation of the integrand, the rational function can be decomposed into several
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Figure 5.1: 5(left) and 6(right) point graph associahedron. When drawing the graph we
omit the external legs to make manifest that for the purpose of the combinatorics of tubings
what matters is the topology of the graph with just the internal edges.

terms with numerator one and singularities corresponding to tubes which are not partially
overlapping between themselves. The graph as a polytope where each facet corresponds to
a tube, and a face of general dimension correspond to partial tubings τ , where by increas-
ing the co-dimension of the face the tubing will have a higher number of non-overlapping
tubes corresponding to it, such that its formal definition is:

τ ′ is a face of τ if τ ⊂ τ ′ , (5.1)

examples of graph associahedra a five, six and seven points can be found in figure 5.1 Its
facets have a well defined factorization structure, consider any single tube T of a graph G,
then we have

FacetT (AG) = AT × AG/T , (5.2)
where G/T is the graph obtained by shrinking all of T to a single point.

Examples

At 5-points, let us fix the triangulation to be that containing chords {(1, 3), (1, 4)} (all the
remaining triangulations are simply given by cyclic rotations of this one). In this case, we
can factor out from all the russian dolls a factor of 1/(EtP1,2,3P1,3,4P1,4,5), and after doing
this we get that the contribution to Ψ(5) coming from this graph is simply:

Ψ(5)
{(1,3),(1,4)} = 1

Et P1,2,3 P1,3,4 P1,4,5

(
1

P1,2,3,4
+ 1

P1,3,4,5

)
,

which means we only have two terms. Therefore, we can associate each term with the
boundary of a one-dimensional line-segment (see figure 5.1, left). Each vertex of the line
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segment is then associated with a tube which encloses either the left and middle sites, or
the right and middle sites.

At 6-points, there are now different types of triangulation to consider. Let us start with
the simplest analog of what we had at 5-points, i.e. the triangulation containing chords
{(1, 3), (1, 4), (1, 5)}. In this case, we have 5 different terms which we can write as:

Ψ(6)
{(1,3),(1,4),(1,5)} = 1

Et P1,2,3 P1,3,4 P1,4,5 P1,5,6

(
1

P1,2,3,4 P1,2,3,4,5
+ 1

P1,2,3,4 P1,4,5,6

+ 1
P1,4,5,6 P1,3,4,5,6

+ 1
P1,3,4,5 P1,3,4,5,6

+ 1
P1,3,4,5 P1,2,3,4,5

) (5.3)

so we see there are five different subpolygons entering inside the brackets – P1,2,3,4,P1,3,4,5,P1,4,5,6
squares and P1,2,3,4,5,P1,3,4,5,6 pentagons – each of which can be associated to an edge of a
pentagon, such that each of the five vertices where two edges meet gives one of the terms
inside brackets in (5.3) (see figure 5.1, center).

So we have that the graph associahedron for Ψ(6)
{(1,3),(1,4),(1,5)} is a pentagon. Obviously,

the same is true for all the six triangulations that are cyclic rotations of {(1, 3), (1, 4), (1, 5)}.
In addition, it is easy to check that the same is true for the 6 triangulations obtained by
cyclic rotations of triangulations {(1, 3), (3, 5), (1, 5)} and {(1, 3), (1, 4), (4, 6)}, i.e. that for
all these triangulations once we factor out Et and the perimeters of the triangles in the
triangulation, the rest of the wavefunction has precisely 5 terms that can be associated to
vertices of a pentagon in exactly the same way we did for the case of Ψ(6)

{(1,3),(1,4),(1,5)}. This
is ultimately because the associated dual graph for these triangulations where we omit the
external legs is also a chain (see figure 5.1, middle).

However, if instead we consider triangulation {(1, 3), (3, 5), (1, 5)} (or {(2, 4), (4, 6), (2, 6)})
we have that after we factor out the common part, we are still left with six terms:

Ψ(6)
{(1,3),(3,5),(1,5)} = 1

Et P1,2,3 P3,4,5 P1,5,6 P1,3,5

(
1

P1,2,3,5 P1,2,3,4,5
+ 1

P1,2,3,4,5 P1,3,4,5
+ 1

P1,3,4,5,6 P1,3,4,5

+ 1
P1,3,4,5,6 P1,3,5,6

+ 1
P1,3,5,6 P1,2,3,5,6

+ 1
P1,2,3,5,6 P1,2,3,5

)
,

(5.4)
therefore, for this type of triangulation the graph associahedron is given by a hexagon,
where each edge is associated with one of the six subpolygons appearing inside brackets
and each vertex associated to one of the terms in (5.4) (see figure 5.1, right). Indeed, in
this case, the dual graph (after removing the external legs) has a star topology which is dif-
ferent from that of the chain that we found for the remaining triangulations of the hexagon.

At 7-points, there are a total of 42 triangulations. These amount to 6 different cyclic classes
of triangulations. From these 6 cyclic classes (represented by one of its triangulations),
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Figure 5.2: (Left) 7-point graph associahedra for triangulations from the cyclic
classes {(1, 3), (1, 4), (4, 6), (1, 6)}, {(1, 3), (3, 5), (1, 5), (1, 6)}. (Right) 7-point graph
associahedra for triangulations from the cyclic classes {(1, 3), (1, 4), (1, 5), (1, 6)},
{(1, 3), (1, 4), (1, 5), (5, 7)}, {(1, 3), (1, 4), (4, 7), (5, 7)}, {(1, 3), (3, 7), (3, 6), (4, 6)}.

there are four,

{(1, 3), (1, 4), (1, 5), (1, 6)}, {(1, 3), (1, 4), (1, 5), (5, 7)},
{(1, 3), (1, 4), (4, 7), (5, 7)}, {(1, 3), (3, 7), (3, 6), (4, 6)},

which produce the graph topology corresponding to a chain with four nodes, for which the
graph associahedron we can see in the right of figure 5.2. If we pick Ψ(7)

{(1,3),(1,4),(1,5),(1,6)},
the wavefunction coefficient for this graph will have 14 terms. Two of these terms are
represented in figure 5.2 (two highlighted vertices), after factorizing Et and the perimeters
of the triangles, they are:

1
P134567 P1345 P1567

,
1

P134567 P13456 P1345
,

where the first term corresponds to the tubing at the top of the figure, and the second
term corresponds to the tubing in the middle. The triangulations coming from cyclic rota-
tions produce the same graph associahedron, as well as all the other triangulations in the
remaining 3 cyclic classes. Since now the facets of the associahedron are two-dimensional,
it is easier to illustrate the factorization properties of the facets. For example, the facets
associated to the pentagon subpolygons (the green tubes in figure 5.2) are squares, since
they are the product of a segment–the graph associahedron of three-site chain–with another
segment, seeing that when we shrink the green tubes to a node, we obtain three site chains.
All the other facets in figure 5.2 (right) are pentagons. Considering they always result from
the factorization of the five-site chain into a four-site chain, whose graph associahedron is
a pentagon, and a two-site chain whose graph associahedron is a point.



5.1 Combinatorial Wavefunction 109

Figure 5.3: associahedron (left) and cosmohedron (right) at 6-points

The other two cyclic classes,

{(1, 3), (1, 4), (4, 6), (1, 6)}, {(1, 3), (3, 5), (1, 5), (1, 6)},

produce the graph topology we see at the left in figure 5.2. The graph associahedron in
this case has 18 vertices, which match the number of terms in the wavefunction coefficient
associated with these type of triangulations.

5.1.2 The Cosmohedron
Now, we want to understand the combinatorics of the full wavefunction. We know from
amplitudes that the ABHY Associahedron [93] encodes the combinatorics of the full scat-
tering amplitude for a theory of colored cubic scalars. The associahedron is originally the
object that captures the combinatorics of triangulations of polygons. But, from section
2 we know that these triangulations are dual to Feynman graphs. In the associahedron,
each face corresponds to a partial triangulation of the polygon. For example, the facets
are labeled by partial triangulations with a single internal cord, and a co-dimension n face
is labeled by a triangulation with n internal cords. Then, the faces of a given facet are
refinements of the partial triangulation corresponding to the facet, and this refinement
keeps going as we increase the co-dimension of the faces. Ultimately, the vertices are full
triangulations and the sum of them corresponds to the full scattering amplitude. A more
detailed description of the ABHY associahedron can be found in appendix A.

Now, from the graph associahedron we know that a single graph of the n-point wave-
function has a corresponding n − 4 geometry. Whilst from the associahedron the single
graphs correspond to the vertices of the polytope. This suggests how to construct the cos-
mohedron from the associahedron. We should take each vertex in the associahedron and
“blow-up" into a facet. This inevitably forces that every other face of the associahedron is
similarly “blown-up" into a facet.
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Figure 5.4: (Left) associahedron (pentagon) and cosmohedron (decagon) at 5-points.
(Right) 5-point cosmohedron with respective labelling of facets in terms of relevant sub-
polygons.

For n = 5 the associahedron is a pentagon and we just “blow up” each vertex of the
n = 5 pentagon, into the graph associahedron, which is a segment. Naturally, we get a
decagon, whose vertices are now labeled by russian dolls for the n = 5 wavefunction, as
shown in figure 5.4.

For the cosmohedron, edges represent both partial and full triangulations. Each of
these triangulations includes a set of sub-polygons. The Russian doll configurations at a
given vertex consist of the sub-polygons present in the union of those on the edges meeting
at that vertex. The scenario for n = 6 presents additional complexity. As noted earlier, 12
of the 14 triangulations have graphs that form four-site chains, with their graph associahe-
dra being pentagons. The two triangulations {(1, 3), (3, 5), (1, 5)} and {(2, 4), (4, 6), (2, 6)}
have hexagons as their graph associahedra. To “blow up” these vertices into pentagons
and hexagons, the introduction of new faces is needed. It is not trivial that this procedure
necessarily works for this three dimensional case, but remarkably it works. This transfor-
mation from the six-point associahedron to the cosmohedron is shown in Figure 5.3. We
proceed to establish the combinatorial framework for the cosmohedron applicable to any
n. In the associahedron, faces were linked to sets of non-intersecting chords, adhering to
the structure defined by (A.4). A similar approach is taken for the cosmohedron. Rather
than sets of non-intersecting chords C, our focus shifts to sets of non-overlapping sub-
polygons P . Typically, two sub-polygons are considered non-overlapping if their chords
do not intersect; they may either be nested or entirely separate. Additionally, a “Russian
doll” condition is applied to the set P : for any sub-polygons X and Y in P where Y is
contained within X, X must be entirely encompassed by other sub-polygons within it.

Having defined our subsets P , the defining property of the cosmohedron is exactly as
it was for the associahedron. The cosmohedron has faces for all P , such that

P ′ is a face of P if P ⊂ P ′. (5.5)
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Figure 5.5: Cosmo6 with labelling of different codimension facets in terms of relevant
subpolygons

The interior of the cosmohedron can be thought as associated with P = (1, 2, · · · , n)
the full polygon. The co-dimension-1 facets of the cosmohedron are associated with P ′

that correspond to the sub-polygons in any partial triangulation of the n-gon. This com-
binatorial rule for the labelling of the faces is illustrated in figure 5.5 for n = 6 example.

A remarkable feature of the associahedron is how the factorization structure of scat-
tering amplitudes is fully encoded in the structure of its facets. For example, a facet
corresponds to a partial triangulation of a single internal cord, thus this cord splits the
momentum polygon into two subpolygons. The corresponding facet of the associahedron
will reflect that and it is exactly the product of the lower point associahedra corresponding
to the division of the momentum polygon given by the cord. This precisely reflects the
fact that the scattering amplitude, when approaching a singularity exactly factorizes into
the lower point scattering amplitudes. For the cosmohedron there is a similar picture.
Each facet is associated with a set of non-intersecting chords C, which provide a partial
triangulation of the n-gon. From this set C, we derive a collection of sub-polygons denoted
as {PC}. Additionally, we obtain a dual graph GC . This graph is constructed by plac-
ing a vertex at the center of each sub-polygon and connecting these vertices when their
corresponding sub-polygons share an edge. Then, we have

FacetC [Cosmon] =
∏

Pi⊂PC

CosmoPi
× AGC

. (5.6)
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Figure 5.6: (Left) ”Cosmologizing” the n = 6 associahedron fan to obtain the Cosmo6
fan. In light blue, we highlight the cone corresponding to the non-simple vertex. (Right)
Labelling of the four-facets meeting at the non-simple vertex, as well as the two possible
“blow up”s into simple vertices. In both cases, we create a new edge (marked in red) that
is already labelled by a full russian doll.

Given that our 6-point cosmohedron is three-dimensional, it serves as a useful example
for illustrating facet factorization. In Figure 5.3, the red facets represent full triangu-
lations. Consequently, these facets will precisely match the graph associahedron of the
corresponding graph, as all sub-polygons are triangles. The green facets correspond to
partial triangulations involving two chords. In this case, the sub-polygons consist of a
square and two triangles. This configuration allows for the insertion of three nodes within
each of the sub-polygons, forming a three-site chain as the only possible graph. Thus, the
facets will consistently be squares, given that the cosmohedron associated with the 4-point
wavefunction is a line interval, similar to the graph associahedron of the three-site chain.

Finally, we consider the blue facets, which relate to a partial triangulation with a single
chord. There are two categories of blue facets: one where the chord divides the hexagon
into a pentagon and a triangle, and another where the chord splits the hexagon into two
squares. For both categories, the dual graph is a two-site chain, whose graph associahe-
dron is a point. In the first category (darker blue), we observe the factorization of the
5-point cosmohedron and the 3-point (which is a point), resulting in decagonal facets cor-
responding to the 5-point cosmohedron. The second category (lighter blue) results from
the factorization into two 4-point cosmohedra, which are segments, leading to square facets.

5.2 Embedding
The fan of the cosmohedron can be obtained starting from the fan of the associahedron. The
g-vectors associated with the curves (i, j) of the associahedron, split the (n−3)-dimensional
g-vector space into cones, each representing a triangulation. The cosmohedron’s fan is
obtained from the associahedral fan by sub-dividing each cone, where the new rays are
obtained by summing all subsets of rays in a cone of the associahedron.
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Consider the example of the cone of the 6-point associahedron bounded by the curves
{(1, 3), (1, 5), (3, 5)}. Since we are only concerned with the direction of the rays, we can pro-
jectively represent this cone as a two-dimensional triangle with vertices at (g1,3, g3,5, g1,5),
as shown in Figure 5.6 (left, blue vertices only). To refine this cone, we start by adding
rays that correspond to all possible subset sums of the rays {(1, 3), (3, 5), (1, 5)} that bound
the parent cone. This includes the original rays g1,3, g3,5, g1,5, along with g1,3 + g3,5, g3,5 +
g1,5, g1,3 +g1,5 (in green), and g1,3 +g3,5 +g1,5 (in red). These additions introduce midpoints
and the barycenter of the two-dimensional triangle, which corresponds to the original cone.
We then construct new cones by connecting the vertices and midpoints of the triangle to
the barycenter, as illustrated in Figure 5.6. This process generates numerous new cones,
each corresponding to the Russian doll vertices of the cosmohedron. Notably, the central
ray (g1,3, g3,5, g1,5) is bounded by six cones. The corresponding facet of the cosmohedron
is a hexagon, which is the appropriate graph associahedron for the graph associated with
this triangulation. The scenario becomes more complex when considering a different tri-
angulation of the associahedron, such as one bounded by {(1, 3), (1, 4), (1, 5)}, where the
graph associahedron is a pentagon rather than a hexagon. We start again with the par-
ent rays and include all subset sums associated with them, providing us with the vertices
(g1,3, g1,4, g1,5), midpoints (g1,3+g1,4, g1,3+g1,5, g1,4+g1,5), and the barycenter g1,3+g1,4+g1,5
(see Figure 5.6, middle). To form the cones, we connect all these points to the barycenter,
except for the edge connecting g1,4 to g1,3 + g1,4 + g1,5, as highlighted in Figure 5.6. This
results in a cone bounded by four rays (g1,3 + g1,4, g1,4, g1,4 + g1,5, g1,3 + g1,4 + g1,5), meaning
the corresponding vertex of the cosmohedron belongs to four facets (as illustrated on the
right of Figure 5.6). This reflects the fact that the cosmohedron is not a simple polytope.
Additionally, there are five cones touching the central ray, so the facet of the cosmohe-
dron associated with the triangulation {(1, 3), (1, 4), (1, 5)} is a pentagon, which correctly
corresponds to the graph associahedron of the associated diagram.

The combinatorics for the full fans of the six-point associahedron and cosmohedron are
illustrated in Figure 5.7. The fan is three-dimensional, and the figure shows all the cones
of the fan, except for the cone in the back. For the associahedron (left of Figure 5.7), we
observe the familiar nine rays corresponding to the facets and 14 cones corresponding to
the vertices of the associahedron. The five cones meeting at a ray corresponding to the
pentagonal faces are shaded in dark blue, and the four cones meeting at a ray corresponding
to the square faces of the associahedron are shaded in light blue. For the pentagon, the
fifth cone is located on the back triangle and is not shaded to avoid clutter.

For the cosmohedron (right of Figure 5.7), we add the midpoints on all edges and
barycenters, connecting them with edges as shown. We have highlighted the collection of
cones that form the decagon (dark blue), hexagon (dark pink), pentagon (light pink), and
square (light blue and green) facets of the cosmohedron. Only eight of the ten cones of the
decagon are visible in the picture; the remaining two are on the back triangle of the fan
and are not shaded to avoid clutter.

In summary, we can obtain the cosmohedron fan by starting with the associahedron fan
as follows: look at a cone of the associahedron fan, which is defined by a collection of g-
vectors gC , each associated to a chord C entering the triangulation T dual to the cone, take
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Figure 5.7: (Left) Fan of the 6-point associahedron. (Right) Fan of the 6-point cosmohe-
dron that can be obtained by “cosmologizing” the associahedron one.

all possible subsets S = (C1, C2, · · · , Ck) with all Ci ∈ T , of any length k = 1, 2, · · · , n− 3,
and to each such subset add a ray:

gS =
∑
C ∈ S

gC . (5.7)

This defines all the rays of the cosmohedron fan, and therefore the facets of the cosmohe-
dron. Collections of these rays give us cones that specify the vertices of the cosmohedron.
But these cones are not always simplices – cosmohedra are not simple polytopes.

In the context of Cosmon, each facet corresponds to a partial triangulation defined by
a set of non-intersecting chords C. For each such set C, we establish an inequality:

∑
c∈C

Xc ≥ ϵC , (5.8)

where ϵC ≪ ci,j for any pair (i, j). Here, ci,j denotes the non-planar Mandelstam
variables that dictate the positioning of various facets in the associahedron’s embedding,
as detailed in Appendix A. This constraint ensures that the new inequalities only trim the
faces of the associahedron.

The parameters ϵC must satisfy specific relations and hierarchies to correctly embed
the cosmohedron. These relate ϵ values for sets C and C ′ to those of their union (C ∪ C ′)
and intersection (C ∩ C ′). Specifically, we require the following inequalities:

ϵC + ϵC′ < ϵC∪C′ + ϵC∩C′ , (5.9)
when C ∩C ′ is either empty or entirely to the left or right of C and C ′. Otherwise, we

enforce equalities:

ϵC + ϵC′ = ϵC∪C′ + ϵC∩C′ . (5.10)
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The equalities in (5.10) imply the existence of non-simple vertices. Since the facets
containing a given vertex involve at most (n − 3) variables Xi,j in their respective facet
inequalities (5.8), any non-simple vertex arises when more than (n − 3) facet inequalities
are saturated. This imposes an equality of the type in equation (5.10).

We can simplify conditions (5.10) and (5.9) further. The equalities are satisfied if we
express ϵC as a sum over variables δP associated with each sub-polygon of the partial
triangulation given by C. That is, we define:

ϵC =
∑

P of C
δP . (5.11)

In turn, the inequalities for ϵC are ensured by similar inequalities for δP :

δP + δP ′ < δP∩P ′ + δP∪P ′ . (5.12)
Additionally, we must ensure that the δ for the full polygon, δ(12···n), is set to zero. It

is straightforward to parameterize δP ’s that satisfy these constraints. For example, any
convex function of the number of edges (#P ) of P that vanishes when #P = n will satisfy
these inequalities. A simple choice is:

δP = δ(n− #P )2. (5.13)
Here, δ is a uniform small factor that can be made as small as necessary to ensure that

δP , and hence ϵC , are all much smaller than the ci,j defining the underlying associahedron.
This framework defines the embedding of the cosmohedron, inherently including an

embedding for the graph associahedra introduced in Section 5.1.1 to encode the combina-
torics of Russian dolls graph by graph. To explicitly determine the embedding, we simply
need to consider a facet corresponding to the full triangulation that is dual to the graph
of interest.

Embedding for the graph associahedron The graph associahedra are particular
facets of cosmohedra, corresponding to complete triangulations T of the n-gon. For a
given T , we can associate a dual graph G in the usual way. This facet of the cosmohedron
is associated with the inequality ∑XI ≥ ∑

δTi
, where XI are all the chords in the triangu-

lation and δTi
are associated with each triangle of the triangulation (as given in (5.8) and

(5.11)). By going on this facet, we are saturating this to the equality∑
I

XI =
∑
i

δTi
. (5.14)

In terms of the dual graph G, we can think of δTi
as associated with a small circle sur-

rounding the i-th vertex of G.
Obviously, the other facets of the cosmohedron that meet the one associated with T

must correspond to partial triangulations that are coarsenings of T . These will become
facets of the graph associahedron for T , so the inequalities cutting out the graph associa-
hedron are all of the form ∑

J XJ ≥ ∑
δp, with J depending on the partial triangulation
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we’re considering. We can denote these inequalities easily in the language of the tubes.
The partial triangulation gives a collection of non-overlapping sub-polygons p, which can
be denoted on G by a collection of non-overlapping tubes we will also label by p.

Then, ∑J XJ is the sum over all the edges of G that are cut by the tubes. Clearly,
the smallest tubes, which encircle a single vertex, corresponding to triangle sub-polygons,
are special. We can label our partial triangulation by specifying a collection of larger (not
triangle) tubes, P , and having done this, understanding that the vertices not encircled by
tubes, are encircled with small ones. The inequalities are then∑

e not in P

Xe ≥
∑

δP +
∑

δt , (5.15)

where the sum is over the edges e that are not contained in the interior of any big tube in
P , and t are the tubes encircling the single vertices not encircled by the set of big tubes
P .

But it is now trivial to see that the inequalities associated with more than one of these
larger tube are all redundant, following from those for single tubes. Consider the simple
example of the triangulation {(1, 3), (1, 4), (1, 5)} for n = 6. We are working on the support
of

X1,3 +X1,4 +X1,5 = δ1,2,3 + δ1,3,4 + δ1,4,5. (5.16)
The partial triangulations {(1, 3), (1, 4)} is associated with a single tube – corresponding
to square (1, 4, 5, 6)–, as is that for (14, 15), and the inequalities are

X1,3 +X1,4 ≥ δ1,2,3 + δ1,3,4 + δ1,4,5,6, X1,4 +X1,5 ≥ δ1,2,3,4 + δ1,4,5 + δ1,5,6. (5.17)

But adding these inequalities and using (5.16) we have that

X1,3 +X1,4 +X1,4 +X1,5 ≥ δ1,2,3 + δ1,3,4 + δ1,4,5,6 + δ1,2,3,4 + δ1,4,5 + δ1,5,6

⇒ X1,4 ≥ δ1,2,3,4 + δ1,4,5,6,
(5.18)

which is the two-tube inequality associated with the partial triangulation {(1, 4)}. This
obviously extends to any number of tubes: on the support of ∑J XJ = ∑

i δTi
, the sum

of the inequalities for single tubes implies the inequality for multi-tubes, and so these are
redundant.

We can naturally define the variables for the graph without referring to the underlying
triangulation. Thus, we associate variables Xe with the edges of G, and constants δP with
single tubes P . The graph associahedron is then cut out by the inequalities:∑

e not in P

Xe ≥ δP +
∑

v not inP
δv, (5.19)

where δv is associated to the small encircling of vertex v. The δP satisfy our ubiquitous
inequalities

δP + δP ′ < δP∪P ′ + δP∩P ′ (5.20)
where, as for the full cosmohedron, δall = 0.
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Figure 5.8: Realizations of cosmohedra. (Left) Embedding of Cosmo6 with pentagonal
facets highlighted in pink and hexagonal ones highlighted in yellow. (Right) Embedding of
the Cosmo1-loop

3 . The purple facets correspond to partial triangulations, and the pink and
yellow facets correspond to full triangulations.

It is amusing that the graph associahedron for linear chains are simply associahedra; in
this case, all the myriad properties of Tr(ϕ3) amplitudes following from the connection with
the associahedron are inherited by the wavefunction for these single graphs. Indeed, the
Minkowski sum decomposition and corresponding stringy integrals exist for all graph as-
sociahedra, so cousins of full stringy Tr(ϕ3) amplitudes exist, associated with single graphs
for the wavefunction! This gives an interesting entry-point into possible stringy formula-
tions for cosmological wavefunctions we leave to future work.

We will now illustrate the set of equalities and inequalities for the case of Cosmo6.

6-point Cosmohedron –For the 6-point cosmohedron, we have 44 different ϵC , and we
can form 105 sets {ϵC , ϵC′ , ϵC∪C′ , ϵC∩C′}. From these, 12 will be equalities1, for example:

ϵ{(1,3),(1,4)} + ϵ{(1,4),(1,5)} = ϵ{(1,4)} + ϵ{(1,3),(1,4),(1,5)} . (5.21)

Note that in this case we have C = {(1, 3), (1, 4)}, C ′ = {(1, 4), (1, 5)}, and C ∩ C ′ =
{(1, 4)}. So we have that (1, 4) divides the hexagon into two smaller squares and C fills
one of the squares (the one to the left of C ∩ C ′) while C ′ fills the other (the one to the
right of C ∩ C ′). Therefore, we have that C is to the left of C ∩ C ′ and C ′ is to the right
of C ∩ C ′, and therefore we must have an equality.

1There is one for each triangulation whose graph associahedron is a pentagon, as in all such cases we
have a non-simple vertex.
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This equality follows from saturating the four facet inequalities:

X(1,4) ≥ ϵ{(1,4)} , X(1,3) +X(1,4) +X(1,5) ≥ ϵ{(1,3),(1,4),(1,5)} ,

X(1,3) +X(1,4) ≥ ϵ{(1,3),(1,4)} , X(1,4) +X(1,5) ≥ ϵ{(1,4),(1,5)} ,
(5.22)

thus ensuring the existence of the vertex touched by the four facets (which is precisely
the one highlighted in figure 5.6). From figure 5.3, it is clear there are 12 such vertices
in total, which in the embedding come from the 12 equalities. The remaining 93 sets will
form inequalities, for example:

ϵ{(1,3)} + ϵ{(1,4)} < ϵ{(1,3),(1,4)} ,

ϵ{(1,3),(1,4)} + ϵ{(1,3),(1,5)} < ϵ{(1,3)} + ϵ{(1,3),(1,4),(1,5)} .
(5.23)

In the first case, we have that C ∩ C ′ = ∅, and therefore we have an inequality. In the
second case, we have that both C and C ′ are to the right of C ∪C ′ and so we also have an
inequality.

Finding ϵC which satisfy all 105 relations will ensure that the facet inequalities (5.8)
define the cosmohedron for the 6-point wavefunction. Finding such a solution is simpler if
we impose the map (5.11). For example,

ϵ{(1,3),(1,4)} = δ(1,2,3) + δ(1,3,4) + δ(1,4,5,6) , ϵ{(1,4),(1,5)} = δ(1,2,3,4) + δ(1,4,5) + δ(1,5,6) ,

ϵ{(1,4)} = δ(1,2,3,4) + δ(1,4,5,6) , ϵ{(1,3),(1,4),(1,5)} = δ(1,2,3) + δ(1,3,4) + δ(1,4,5) + δ(1,5,6) ,
(5.24)

which immediately satisfies (5.21), as all δP in the first line match the ones in the second
line. This mapping will take (5.23) to,

δ(1,3,4,5,6) + δ(1,2,3,4) < δ(1,3,4) + δ(1,2,3,4,5,6) ,

δ(1,4,5,6) + δ(1,4,5,6) < δ(1,3,4,5,6) + δ(1,4,5) ,

which are precisely of the form (5.12). This mapping imposed on all 105 relations will
satisfy all 12 equalities and will make several of the 93 inequalities linearly dependent
on each other. Thus, we will have only 57 inequalities of the form (5.12), which will be
satisfied if we parametrize the δP with the convex function (5.13),

δP = δ(6 − #P )2 .

Therefore, imposing the mapping (5.11) in the facet inequalities (5.8), with the parametriza-
tion (5.13), defines the 6-point cosmohedron. A picture of the embedded object is presented
on the right of figure 5.8.

Higher-point cosmohedra Beyond 6-points, the cosmohedron will be 4-dimensional,
or higher. Nevertheless, the construction of these polytopes follows exactly the same
procedure, and below we list the different F -vectors (i.e. the numbers of the different
codimension faces) of the cosmohedra up to 9-points:
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codim-1 codim-2 codim-3 codim-4 codim-5 codim-6
4-points 2 — — — — —
5-points 10 10 — — — —
6-points 44 114 72 — — —
7-points 196 952 1400 644 — —
8-points 902 7116 18040 18528 6704 —
9-points 4278 50550 194616 332664 262728 78408

Table 5.1: The F -vector of Cosmohedra up to 9-points.

codim-1 codim-2 codim-3 codim-4 codim-5 codim-6
4-points 2 — — — — —
5-points 5 5 — — — —
6-points 9 21 14 — — —
7-points 14 56 84 42 — —
8-points 20 120 300 330 132 —
9-points 27 225 825 1485 1287 429

Table 5.2: The F -vector of Associahedra up to 9-points.

where codim stands for the codimension of the faces.
As a comparison, we can list the F -vector for the associahedron of the respective

amplitudes:
As a quick check, one can add all the entries of the F -vector for one of the n-points

associahedron above, and confirm that will match the number of codimension-1 faces (i.e.
facets) in the corresponding cosmohedron. We know this is the case because the cos-
mohedron is obtained by “shaving” each face of the associahedron, and the facets of the
cosmohedron are associated to partial/full triangulations (which is precisely the informa-
tion encoded by the different codim faces of the associahedron).

Relation to cosmological polytopes Now that we understand the embedding for sin-
gle graphs, the graph associahedron, it is important to establish the connection with what
has been previously been known for single graph geometries, the cosmological polytope.
For the graph associahedra, we work with independent variables p associated to every tube.
But to compare with the standard wavefunction and with cosmological polytopes, we work
with the energy variables, x and y. Where the xv variables stand for the sum of the energies
entering each vertex, and ye for the energy of each internal edge of G. Of course, the x, y
variables determine the p associated with every tube, via

Pp =
∑
v in p

xv +
∑

e entering p
ye, (5.25)
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the sum over the energies of the vertices contained inside p together with the external edges
entering p – the familiar energy pole associated with the tube p. Note that this enforces
certain equalities between the Pp’s:

Pp + Pp′ = Pp∪p′ + Pp∩p′ . (5.26)

In fact, it is easy to see that we can work backwards – imposing these natural equal-
ities on the perimeters Pp implies that they can be expressed in terms of xv, ye variables
associated with the graph.

Let us now discuss the cosmological polytope for a graph with V vertices and E edges.
It is usually described as a projective polytope in E + V − 1 dimensions; of course this is
equivalently thought of as a cone over this polytope in E+V dimensions. This cone is cut
out by the simple inequalities, for every tube p

Pp ≥ 0, or
∑
v in p

xv +
∑

e entering p
ye ≥ 0. (5.27)

Now, in the story of the graph associahedron, we are factoring out the total-energy
singularity, as well as those associated with the small tubes encircling each vertex. Thus, it
is natural to expect that the relationship with the graph associahedron and the cosmological
polytope is revealed when we slice the cosmological polytope on the plane∑

v

xv = Et, xv +
∑

e connected to v
ye = tv, (5.28)

where we hold Et, tv > 0 as constants.
Indeed, as we now see, this slice of the cosmological polytope is very closely related to

the graph associahedron. For instance, for the simplest cases of the 2-dimensional graph
associahedra, corresponding to the 4-site chain and star graphs (shown in figure 5.1, right),
this slice of the cosmological polytope gives us precisely the familiar pentagon and hexagon.
But more generally, it is obvious that this sliced cosmological polytope cannot be precisely
the same as the graph associahedron – the graph associahedron knows about the general
perimeters, not about the specialization associated with working with x’s and y’s.

To actually match the two objects, we have to realise that the sliced cosmological
polytope is obtained by a degeneration of the graph associahedron, when the δP occurring
in the inequalities cutting out the graph associahedron saturate most of the inequalities
they satisfy. Indeed, we have thatδP + δP ′ < δP∪P ′ + δP∩P ′ , if P ∩ P ′ is a single vertex orP ∪ P ′ is everything ,

δP + δP ′ = δP∪P ′ + δP∩P ′ , otherwise .
(5.29)

Imposing these equalities has the effect of shrinking some of the faces of the graph as-
sociahedra – the graph associahedra are all simple polytopes, but the sliced cosmological
polytopes are not. For instance, for the case of the 5 site chain where the graph associa-
hedron is the usual three-dimensional associahedron (see figure 5.2, right), while the sliced
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cosmological polytope still has 9 faces, but only has 12 vertices and 19 edges instead of
the usual 14 vertices and 21 edges; two of the edges of the usual associahedron are then
contracted to a point in the sliced cosmological polytope.

It is straightforward to establish the connection between the sliced cosmological poly-
tope and this degeneration of the graph associahedron. We simply take the graph, and
solve for the xv variables by setting all the perimeters associated with the small tubes en-
circling the vertices to tv. We are left only with ye variables. These satisfy a single equality
(from the Et equation in (5.28)), and the rest of the inequalities coming from (5.27). Then
the inequality for any large tube P becomes∑

e not inP
(2ye) ≥

∑
v not inP

tv − Et. (5.30)

If we identify 2ye ≡ Xe, these are just the inequalities for cutting out the graph associahe-
dron (5.19), but with a special choice for the RHS of the inequality. Comparing with the
RHS of the P inequality for the graph associahedron δP +∑

v not inP δv we have that

δP =
∑

v not inP
(tv − δv) − Et. (5.31)

Further matching ∑e 2ye = ∑
v tv − Et (from (5.28)) with ∑

eXe = ∑
v δv (from the facet

defined by the graph associahedron in the cosmohedron (5.14)) lets us identify∑
v

(tv − δv) = Et. (5.32)

It is then very easy to see that the choice for δP in (5.31) satisfies the inequalities and
equalities given for the degenerated graph associahedron we defined above (5.29).

5.3 Computing the Wavefunction from the Cosmohe-
dron

In this section we discuss how the cosmohedron can help us compute the cosmological
wavefunction. Firstly, we discuss how the combinatorial structure of the cosmohedron
makes evident a recursive formulation for the wavefunction, shown in (2.45). As well as
the russian doll picture. Then we will discuss how can we obtain the wavefunction from
the canonical form of the polytope.

5.3.1 The geometry of recursive factorization
In section 2.5, we explained how there are two equivalent representations of the wavefunc-
tion – one as a sum over diagrams and their respective russian dolls (2.46), the other via
the recursive representation in terms of cuts given in (2.45).
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Figure 5.9: (Left) Set of facets corresponding to partial triangulations with a single chord
that by themselves contain all vertices of the cosmohedron. (Right) Set of facets corre-
sponding to full triangulations that also touch all vertices.

We would now like to point out how the geometry of the cosmohedron makes both
representations of the wavefunction completely obvious. Let’s do this by looking at the
three-dimensional cosmohedron (see figure 5.9). Recall that every term in the russian doll
expansion of the wavefunction is associated with a vertex of the cosmohedron.

Now, the point is that there are a number of natural ways of attaching any vertex of the
cosmohedron uniquely to some facet of the cosmohedron. We can consider the “maximal”
facets of the cosmohedron that correspond to complete triangulations T, and associate
a vertex corresponding to a given russian doll with its corresponding triangulation. In
this way, the collection of all vertices can be organized into first collecting all the facets
associated with triangulations T , and then looking at the vertices of each facet, as given in
(2.46). This is obviously the first representation or what we called the russian doll picture.
But there is another interesting way of associating vertices with facets: every vertex can
also be naturally attached to one of the “minimal” facets of the cosmohedron corresponding
to a single chord. The corresponding facet is just the product of cosmohedra for the left
and right factors on the cut. Hence, we can run through all the vertices by summing over
all these facets, and then take the vertices on them. This way of collecting the vertices
gives us the recursive computation of the wavefunction in terms of the sum over cuts, as
in (2.45). The russian doll and cut-recursive picture of the polytope are shown in figure
5.9. Of course, we can uniquely associate vertices to facets in other ways interpolating
between the two extremes we have discussed, corresponding to different ways of running
the recursive sum over cuts, but deciding to represent some of the lower wavefunction
factors directly as a sum over russian dolls.
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5.3.2 Wavefunction from Geometry
As we have highlighted earlier, and seen in the n = 6 example, cosmohedra are not sim-
ple polytopes. This is to be contrasted with the associahedron which indeed is a simple
polytope (as we can see from its fan construction as well as in figure 5.3 for the n = 6
case).

As we will explain now, this feature turns out to be extremely crucial to have an object
that reproduces the combinatorial feature of russian dolls (as described in (5.5)), and
therefore that encodes the information of the wavefunction.

Let’s say instead we “blow-up” all the non-simple vertices to obtain a simple polytope.
For simplicity let’s look at the case of n = 6, which is the first case this happens, and look
at the non-simple vertex associated with cone {g1,4, g1,3 + g1,4, g1,4 + g1,5, g1,3 + g1,4 + g1,5}
highlighted in figure 5.6. In these vertices, the four faces meet – {(1, 4)}, {(1, 3), (1, 4)},
{(1, 4), (1, 5)} and {(1, 3), (1, 4), (1, 5)} – and the union of their respective subpolygons
forms the russian doll containing triangles {(1, 2, 3), (1, 3, 4), (1, 4, 5), (1, 5, 6)} and the two
squares {(1, 2, 3, 4), (1, 4, 5, 6)}. Now there are two ways in which we can blow up this
vertex, one way is by adding an edge connecting rays g1,4 and g1,3 + g1,4 + g1,5 – the object
we obtain in this case corresponds to the full barycentric subdivision of the associahedron,
which we will later on denote by Permuto-cosmohedron; another way is by adding an edge
connecting rays g1,3 + g1,4 and g1,4 + g1,5. At the level of the polytope, the first type of
blow up would lead to the object on the top right of figure 5.6 while the second one leads
to the one on the bottom right of figure 5.6.

However, note that in both cases, the object we obtain after the “blow-up” does not
encode the combinatorics of russian dolls correctly. This is because if we look at the new
edge (represented in red in figure 5.6), it is labelled by the union of the subpolygons of the
facets that meet along it, which in both cases means that it is already labelled by the full
russian doll associated with the original non-simple vertex.

This is an important difference between the cosmohedron and the associahedron. We
will now proceed to discuss the realization of the geometry that precisely reproduces the
combinatorics of the cosmohedron. As we will see, this embedding starts from the kinematic
embedding of the associahedron as in [93] and adds some extra inequalities that precisely
shave off this polytope exactly in the way that produces the correct polytope with non-
simple vertices.

In the previous section, we described the set of inequalities that carve out the cosmohe-
dron, together with the set of constraints on ϵC required to produce the correct polytope.
As we saw, in addition to the inequalities (5.9), we also had equalities, which ultimately
imply that the polytope we have is not simple. We now want to explain a systematic way to
blow up the polytope into another polytope which is simple – the permuto-cosmohedron2

– which will be the object from which we can ultimately extract the wavefunction (as we
explain in the next section).

Let’s go back to the fan definition of the polytope. As explained previously, we can go
2This object already appeared earlier when we explained the “blow-up” of the non-simple vertex for

the n = 6 case.
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from the associahedron fan to the cosmohedron fan by adding rays corresponding to all
possible subsets of chords entering on a given triangulation – corresponding therefore to all
possible partial triangulations. However, not all rays are connected to each other, which is
why the cosmohedron is not simple.

We have already explored in detail the non-simple vertex at 6-points where facets
{(1, 4)}, {(1, 3), (1, 4)}, {(1, 4), (1, 5)}, {(1, 3), (1, 4), (1, 5)} meet in section 5.2. In particu-
lar, we explained how the two different “blow-up” led to objects that did not consistently
describe the combinatorics of russian dolls.

However, let’s now go back to the blow up in which we produce an edge between facets
{(1, 4)} and {(1, 3), (1, 4), (1, 5)} – this corresponds to the full barycentric subdivision of
the associahedron fan into a permutohedron fan, leading to what we called the permuto-
cosmohedron. For this new object, we can think of each vertex as labeling the ways in
which we can get a full triangulation by listing chords in a particular order. In particular,
for two vertices produced in the blow up, these correspond to cases in which we start with
(1, 4) and then we have two possible ways to continue to the full triangulation:

{(1, 4)} → {(1, 4), (1, 3)} → {(1, 4), (1, 3), (1, 5)},
{(1, 4)} → {(1, 4), (1, 5)} → {(1, 4), (1, 3), (1, 5)},

(5.33)

each of which corresponds to one of the vertices we obtain after simplifying the non-simple
vertex of the original cosmohedron.

The permuto-cosmohedron is then a simple polytope whose vertices label all the possible
orderings of building full triangulations out of partial triangulations. For general n, the fan
definition of the permuto-cosmohedron is simply given by the full barycentric subdivision of
the respective Assocn fan. This object has manifestly more vertices than the cosmohedron
and therefore is not precisely tailored to the wavefunction. Nonetheless, as we will see
momentarily, this permutuhedral blow-up will provide us a natural way of extracting the
full wavefunction from the geometry.

Before proceeding to the extraction of the wavefunction let’s discuss the embedding
of the permuto-cosmohedron. For the cosmohedron we saw that for each facet associated
with a given collection of chords, C, we have an inequality of the form of (5.8), where
the ϵC ’s satisfy both equalities (5.10) and inequalities (5.9). To produce the full permuto-
cosmohedron all we need to do is turn the equalities (5.10) into inequalities, with the same
sign, i.e. we have that for any collection of chords C and C ′:

ϵC + ϵC′ < ϵC∪C′ + ϵC∩C′ , (5.34)

this then turns all the non-simple vertices into simple ones and gives us precisely the
blow-up corresponding to the permuto-cosmohedron.

Let’s now discuss how to extract the wavefunction from the geometry. We will start
by defining the canonical form of the graph associahedron for a single graph, and then
proceed to the generalization that gives us the full wavefunction from the cosmohedron.

The connection between the wavefunction and geometry for single graphs is by now
the familiar one. For a single diagram/n−pt triangulation, with (n − 3) chords, we have
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Figure 5.10: Examples of 1/XC for different faces of n = 5 and n = 8 cosmohedron.

a (n− 4)-dimensional graph associahedron. The graph associahedron is simple, hence one
computation of the canonical form of the graph associahedron is given by summing over
all vertices – corresponding to complete tubings/russian dolls – and multiplying by 1/P ’s
for all the tubes corresponding to the facets meeting at the vertex. This gives us a term
with (n − 4) poles. Of course, every tubing associated with the diagram has the Etotal
tube surrounding the entire graph, as well as the small circles encircling every vertex –
corresponding to the triangles entering the triangulation dual to the graph. Hence, we
have

ΨG = 1
Ptot

×
∏
v⊂G

1
Pv

× Ω(AG), (5.35)

where Ptot is the perimeter of the full n-gon corresponding to Et, and Pv the perimeter of
each triangle entering the underlying triangulation.

The extraction of the wavefunction for the sum over all diagrams is much more in-
teresting. Let’s consider the simple polytope we get by blowing-up the cosmohedron as
described in the previous section – the permuto-cosmohedron. Each facet of this polytope
is associated a partial triangulation given by a collection of non-overlapping chords C. Let
nC be the number of non-triangle subpolygons entering in the partial triangulation defined
by C, then we define

1
XC

≡ 1
nC

∑
P,P ′ meeting on edge

1
PPP ′

P ′
, (5.36)

where we consider the products of the perimeters of the subpolygons entering in C that
share an edge, and sum over them (see figure 5.10). So this means that to each facet,
instead of associating a single singularity (like we do to extract the amplitude from the
associahedron), we associate pairs of singularities. It is clear that we could not associate a
single singularity to each facet simply because the dimensionality of the Cosmon does not
match the number of singularities on Ψn. This new feature reflects that even the way we
extract the wavefunction from the canonical form of cosmohedra requires a generalization
from what is done in the amplitudes case.

We now look at the canonical form for the permutohedron, associating XC (5.36)).
Since the permuto-cosmohedron is simple, the canonical form is the sum over all vertices
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weighted by the product of all 1
XC

’s for the facets that meet on the vertex. While this
manifestly has only simple poles in terms of 1

XC
, it will clearly have terms with simple

poles as well as double and higher poles when written in terms of the 1
PP

. But the claim
is that the wavefunction is given by the part of the canonical form with only simple poles:

Ψ = 1
Et

× Ω(XC)|single poles inPP . (5.37)

5-point example – At five points the cosmohedron is simple, therefore it coincides with
the permuto-cosmohedron. Then, we can directly compute the poles of each facet, XC ,
according to (5.36). Let’s consider the facet labelled by the cords {(1, 3), (1, 4)}, the
singularity pairs we associate to it are (see figure 5.10):

1
X{(1,3),(1,4)}

= 1
P123 P134

+ 1
P134 P145

.

Similarly, we can compute the singularity pairs of the facets that meet facet {(1, 3), (1, 4)}
– those are {(1, 3)}, and {(1, 4)} – for which we have:

1
X{(1,3)}

= 1
P123 P1345

,
1

X{(1,4)}
= 1

P1234 P145
.

We can now compute the contributions of each of these two vertices to the wavefunction:
1

X{(1,3),(1,4)}X{(1,3)}
= 1

P2
123 P134 P1345

+ 1
P123 P134 P145 P1345

,

1
X{(1,3),(1,4)}X{(1,4)}

= 1
P123 P134 P145 P1234

+ 1
P134 P2

145 P1234
.

According to (5.37), in the first line above, we send the first term to zero, and in the
second line we send the second term to zero. So we are left with precisely the russian dolls
contributing to each vertex (see figure 5.4). When we sum these two terms, they add up
to the wavefunction of the graph corresponding to the triangulation {(1, 3), (1, 4)}. By
computing the contributions from the remaining vertices of the decagon, we obtain the full
wavefunction at 5-points.

6-point example – Let us now see how the prescription in (5.37) gives us the correct
contribution in the blown up vertices at 6-points. Let us use our running example of the
vertices in (5.33) as an example (see top right of figure 5.6). For the first line in (5.33),
which corresponds to one vertex of the permuto-cosmohedron, the pairs of singularities
are:

1
X{(1,4)}X{(1,3),(1,4)}X{(1,3),(1,4),(1,5)}

=
( 1

2P1234P1456

)( 1
P123P134

+ 1
P134P1456

)
×

×
( 1

P123P134
+ 1

P134P145
+ 1

P145P156

)
,
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where the 1
2 in the first factor comes from the fact that the facet {(1, 4)} has two non-

triangle subpolygons, two squares, thus nC = 2 in (5.36). As for the second line in (5.33),
the other vertex coming from the blow up, the contribution will be:

1
X{(1,4)}X{(1,4),(1,5)}X{(1,3),(1,4),(1,5)}

=
( 1

2P1234P1456

)( 1
P1234P145

+ 1
P145P156

)
×

×
( 1

P123P134
+ 1

P134P145
+ 1

P145P156

)
.

After sending all double poles (or higher) to zero, one can check that the added contri-
bution of the two vertices above is:

2
( 1

2 P123 P134 P145 P156 P1234 P1456

)
,

which is precisely the russian doll term associated with the original non-simple vertex in
the cosmohedron (see figure 5.6). The remaining non-simple vertices follow the same blow
up into two vertices, and all other vertices are simple. Following the same prescription
as in the examples above, one can compute the 6-point wavefunction from the permuto-
cosmohedron.

5.4 Loop Cosmohedron
The generalization of the ABHY associahedron to one-loop Tr[ϕ3] integrands was shown
in [101–103,256], and the all-loop extension is given by surfacehedra [102]. It is then very
natural to expect the construction of the loop cosmohedron to also be extended. The
facet inequalities are essentially the same as for tree-level, with the difference that instead
of chords in a polygon, we have curves on the punctured disk. Using the generalized
kinematics proposed in [102], we consider all curves that are not homotopic to each other,
and assign a different variable to each of these, such that a curve from i to j going through
the left of the puncture, Xi,j, is assigned a different variable than the one going through
the right, Xj,i. In addition, at loop-level (and in particular at one-loop), we also have the
tadpole variables Xi,i, and loop variables ending on the puncture p, Xi,p, and X̃i,p (The
doubling of the variables ending on the puncture, Xi,p and X̃i,p, is important to obtain a
closed polytope at one-loop as explained in [102]).

So just like at tree-level the rays of the cosmohedron fan/its facets are labeled by
collections of curves, C, which correspond to subsurface tilings of the punctured disk.
Then, we associate to these facets the ϵ inequalities and equalities we saw at tree-level.
The map (5.11) once more guarantees that all equalities are automatically satisfied, and
similarly for inequalities as long as δPn = 0 (where Pn now stands for the punctured disk
with n-points in the boundary).

From the examples presented, we can also observe how the factorization (5.6) holds
at loop-level. Let us consider figure 5.11 (right), the red and yellow facets correspond
to graph associahedra directly, since they are full triangulations. Then the green facets
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Figure 5.11: (Left) cosmohedron 2-point 1-loop, edges are labelled by partial triangula-
tions with a single curve (where we have two types of curves ending in the puncture,
marked in red and blue), and vertices correspond to full triangulations. We can read off
the russian doll at each vertex by taking the union of the subsurfaces entering on each
edge. (Right) cosmohedron 3-point 1-loop. Highlighted in blue and green we have facets
labeled by a single curve (squares, decagons and dodecagons); in gray facets labeled by
two curves (squares); and in red and yellow faces labelled by full triangulations (pentagons
and hexagons) – corresponding to the graph-associahedra for the loop graphs.

are dodecagons since they correspond to the product of a 3-point tree level cosmohedron,
which is a point, a two-point loop level cosmohedron, which is a dodecagon, and a graph
associahedron corresponding to the two-site chain, which is a point. The dark blue facets
are decagons, since they correspond to the product of a 5-point tree level cosmohedron (a
decagon), and the graph associahedron of a tadpole (a point). Then, the light blue facets
are squares, since they correspond to the product of a 4-point tree-level cosmohedron,
which is an interval, a one-point one-loop cosmohedron, which is also an interval, and the
graph associahedron of the two-site chain (which is a point).

Now, the most obvious picture for generalizing the cosmohedron to all loops therefore
proceeds by generalizing the picture of “cosmologizing” the Feynman fan. These proceeds
precisely in the same way as for the tree-level cosmohedron. We subdivide every cone in
g-vector space into smaller cones, by considering all possible sums of the g-vectors in a
given cone. This yields the fan for the loop cosmohedron, which allows us to write the
facet inequalities: ∑

chords c inC
Xc ≥ ϵC ,

where C is a given partial triangulation of the punctured disk. For the loop case, the
propagator variable Xi,j differs from Xj,i, since the chord can go around the loop in two
different ways3. We will also have propagators attached to tadpoles, Xi,i. As well as the

3Even though when we assign momentum to these curves in the standard way, i.e. by homology, they
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Figure 5.12: (Left) Graph associahedron for the triangle graph. (Right) Graph associahe-
dron for the box graph.

propagators in the loop, Xi,p and X̃i,p (where p is labelling the puncture).
The constants in the facet inequalities, ϵC , obey the same equalities and inequalities

as in tree level, (5.10) and (5.9), respectively. Also at loop level, the equalities are auto-
matically satisfied if we map each ϵC to the sum of the sub-surfaces in the correspondent
partial triangulation,

ϵC =
∑
P ofC

δP ,

And the inequalities in the ϵ are all automatically satisfied if we satisfy the inequalities:

δP + δP ′ < δP∪P ′ +
∑

P̃∈{P∩P ′}

δP̃ , (5.38)

where the sum over δP̃ is reflecting the fact that at loop level the intersection of two
sub-surfaces can be given by two or more disjoint surfaces.

Graph associahedra at loop-level At loop level, the graph associahedron is obtained
exactly the same way as for tree-level. For each triangulation, we associate a node to
each subsurface, and connect the nodes between subsurfaces that share an edge, building
the dual graph, GT . Then the graph associahedron, AG, is the polytope whose facets
correspond to the different tubes of the graph (not including the tubes that enclose single
vertices nor the tube that encloses the full graph), and the vertices correspond to complete
tubings. The factorization property, defined by eq.(5.2), holds at loop level. Let’s now give
some simple examples at one-loop.

both have the same momentum.
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Three-point triangle diagram The graph associahedron of the triangle diagram is a
hexagon (see figure 5.12, left), precisely matching the six russian dolls one can find in the
graph. The triangle graph is dual to the triangulation of the punctured disk containing
curves {(p, 1), (p, 2), (p, 3)}. The facets in figure 5.12 (left) either correspond to blue tubes
or to red tubes, both are segments.

The red tube corresponds to the product of the graph associahedron of the two site
chain, which is a point, with the graph associahedron of the bubble (obtained by shrinking
the red tube to a node), which is a segment.

The blue tube corresponds to the product of the graph associahedron of the three-site
chain, which is a segment, which the graph associahedron of the tadpole (obtained by
shrinking the blue tubes to a node), which is a point.

All the terms will correspond to the product of a blue tube with a red tube, which is
clear by the facet intersections in figure 5.12 (left), and respective labeling (which are the
nesting of the red tube in the blue tube). One such term, after factoring out the total
energy and the triangles, is:

1
P(1,2),(2,3),(3,1),(p,1) P(1,2),(2,3),(p,1),(p,3)

,

the remaining 5 terms are just variations of this one, as one can see by the labels of figure
5.12 (left).

Four-point box diagram The graph associahedron for the four-point box diagram has
20 vertices, 32 edges and 14 facets, as can be seen in the right of figure 5.12. This corre-
sponds to the triangulation {(p, 1), (p, 2), (p, 3), (p, 4)} of the punctured disk. The graph
associahedron will have three types of facets, the tubes with two sites (red tubes in fig-
ure 5.12) will be hexagons, the tubes with three sites (green tubes in figure 5.12) will be
squares, the tubes with four sites (blue tubes in figure 5.12) will be pentagons.

The red tubes will correspond to the product graph associahedron of the two-site chain
(subgraph inside the red tube), which is a point, with the graph associahedron of the
triangle diagram (obtained after shrinking any red tube in the box), which we can see from
the left of figure 5.12, that is a hexagon.

The green tubes will correspond to the product of the graph associahedron of the three-
site chain, which is an interval, with the graph associahedron of the bubble (obtained by
shrinking any green tube in the box diagram in the right of figure 5.12), which is also a
segment. The product is a square.

Finally, the blue tubes will correspond to the product of the graph associahedron of
the four-site chain, which is a pentagon (as can be verified in the left of figure 5.1), with
the graph associahedron of the tadpole, which is a point.

In total, the polytope has 20 vertices, precisely matching the number of russian dolls in
the graph. There will be 16 terms which correspond to a tubing which has a blue, a green
and a red tube. One such term, after factoring out the total energy and the triangles, is:

1
P(1,2),(2,3),(3,4),(4,1),(p,1) P(1,2),(2,3),(3,4),(p,1),(p,4) P(1,2),(2,3),(p,1),(p,3)

,
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and one can consider 16 similar tubings. In the polytope of figure 5.12, one can identify
these terms by finding the vertices that are intersections of facets labeled by a blue tube,
a green tube and a red tube. The other 4 terms correspond to the product of a blue tube
with two red tubes, one such example is:

1
P(1,2),(2,3),(3,4),(4,1),(p,1) P(1,2),(2,3),(p,1),(p,3) P(3,4),(4,1),(p,1),(p,1)

.

Again one can count four vertices in figure 5.12 which are the intersection of two facets
labeled by a red tube and one facet labeled by a blue tube.

One-loop cosmohedra realization As described earlier, the embedding of the loop
cosmohedra is done exactly in the same way as in the tree-level case. We now proceed to
give some explicit examples.

Two-points The one-loop two-points associahedron is a hexagon, thus the corre-
sponding cosmohedron will be a dodecagon. The Feynman fan is given by the g-vectors:

g1,1, g2,2, gp,1, gp,2, gp̃,1, gp̃,2,

and we “cosmologize” it by adding the following linear combinations of g-vectors:

g1,1 + gp,1, g2,2 + gp,2, gp,1 + gp,2,

as well as the other three rays with gp,i → gp̃,i. Now that we have the form of our
facet inequalities, we only need to parametrize the ϵ constants which will “shave off” the
underlying loop associahedron polytope. The ϵ will have to satisfy 6 inequalities in order
to yield the correct polytope and since in this case the polytope is two-dimensional, and
thus simple, there are no equalities to be imposed on the ϵ-space,

ϵ{(1,1)} + ϵ{(p,1)} < ϵ{(1,1),(p,1)}, ϵ{(p,1)} + ϵ{(p,2)} < ϵ{(p,1),(p,2)},

and the remaining for are obtained by the mappings p → p̃ and/or 1 → 2. These in-
equalities transform into intersections and unions of sub-surfaces when using the mapping
(5.11):

δ{(1,1)} + δ{(1,2),(2,1),(p,1)} < δ{(1,1),(p,1)},

δ{(1,2),(2,1),(p,1)} + δ{(1,2),(2,1),(p,2)} < δ{(1,2),(p,1),(p,2)} + δ{(2,1),(p,1),(p,2)},

respectively. Here, the δP are labelled by the cords that bound the sub-surface. The second
inequality is an example of the case where the intersection of the surfaces on the left-hand
side is given by multiple disjoint sub-surfaces.
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Three-points At three-points the cosmohedron is three-dimensional, it has 108 ver-
tices, 168 edges and 62 facets. This means we will have 62 ϵC , which will form 138 inequal-
ities, and 12 equalities. One such equality is:

ϵ{(1,1),(1,3)} + ϵ{(1,1),(p,1)} = ϵ{(1,1)} + ϵ{(1,1),(1,3),(p,1)} ,

and the other 11 equalities are variations of this one. On the other hand, two examples of
inequalities are:

ϵ{(1,1)} + ϵ{(1,3)} < ϵ{(1,1),(1,3)} ,

ϵ{(p,1),(p,2)} + ϵ{(p,1),(p,3)} < ϵ{(p,1),(p,2),(p,3)} + ϵ{(p,1)} ,

which have the corresponding form in terms of overlaps of sub-surfaces:

δ{(1,1),(1,2),(2,3),(3,1)} + δ{(1,3),(3,1)} < δ{(1,1),(1,3),(3,1)} ,

δ{(1,2),(2,3),(p,1),(p,3)} + δ{(2,3),(3,1),(p,1),(p,2)} < δ{(2,3),(p,2),(p,3)} + δ{(1,2),(2,3),(3,1),(p,1)} ,

where the union in the first line is the total energy sub-surface, which we set to zero. This
example also provides a good illustration of the factorization of the facets at one-loop.
The facets labelled by the cords {(2, 1)}, {(3, 2)} or {(1, 3)} will be dodecagons, since they
constitute the factorization into the one-loop two-points cosmohedron, the tree level three-
point cosmohedron and the two-site chain graph associahedron, which are a dodecagon,
and two points, respectively. Thus, the cosmohedron will have three dodecagon facets.
Then, the facets labelled by the cords {(p, 1)}, {(p, 2)} or {(p, 3)}, (as well as the facets
with p → p̃) will be decagons, since here the facet factorizes into one sub-surface with five
boundaries and no puncture, thus it will be the cosmohedron of the five point wavefunction,
which is a decagon, and the graph associahedron of the one site graph, which is a point.
The cosmohedron will have 6 decagon facets. Finally, the facets labelled by the cords
{(1, 1)}, {(2, 2)} or {(3, 3)} will be squares. Since they represent the factorization of the
facet into a square and the one-loop one-point sub-surface, and the graph associated to it
is the two-site chain. Thus, the facet is the product of two segments and a point, which is
a square. Following this factorisation properties, one can find the remaining facets of the
cosmohedron.

Extracting the loop wavefunction from geometry Extracting the wavefunction
from the cosmohedron at loop level is very similar to tree level. One starts by constructing
the permuto-cosmohedron, which follows from turning the equalities into inequalities, and
then constructing the canonical form for the polytope and extracting the part with only
simple poles.

Firstly, we will discuss how to build the permuto-cosmohedron at loop level. We have
seen in the beginning of this section that the structure of the equalities and inequalities
is exactly the same. And each equality corresponds to a non-simple vertex in the cosmo-
hedron. Then, to “simplify” these vertices one turns the equalities into inequalities in the
same way as we did at tree level:

ϵC + ϵC′ = ϵC∪C′ + ϵC∩C′ → ϵC + ϵC′ < ϵC∪C′ + ϵC∩C′ .
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Finding a parametrization of the ϵ satisfying all inequalities, will ensure we obtain the
permuto-cosmohedron at loop level.

To extract the full wavefunction, the pairs of singularities we associate to each facet
have to be slightly reformulated, relative to the tree level case. If we consider a given facet
and the corresponding partial triangulation, labeled by the set of cords C, and nC being the
number of sub-surfaces with more than three bounding edges in the partial triangulation,
then we still define,

1
XC

≡ 1
nC

 ∑
P,P ′ meeting on edge

1
PPP ′

P ′

 . (5.39)

However, when in the set C there is only one chord connecting the inner puncture to
the disk boundary, (p, i), then the partial triangulation will have a sub-surface with two
edges which go around this chord – say {(i, p), (p, i)} – like we see for the subsurfaces in
red and blue in the (left) top russian doll depicted in figure 5.11. In these cases we have to
associate a triangle sub-surface to the chord, (p, i), which we will define to be PP ≡ T(p,i).
And this sub-surface borders only with the sub-surface which goes around the cord (p, i).
The wavefunction is defined from the permuto-cosmohedron in the same way as at tree-
level, except in the end, after selecting the single poles in the canonical form, we set all
T(p,i) → 1. Therefore, we can write,

Ψ =
( 1
Et

× Ω(XC)|single poles inPP

)∣∣∣∣
T(p,i)→1

. (5.40)

One-loop two-point wavefunction The cosmohedron for the one-loop two-point
wavefunction is simple, therefore is equivalent to the permutahedral “blow-up”. The cosmo-
hedron is a dodecagon, and here we will discuss explicitly how to compute the contributions
from three vertices, since the remaining ones are some variation of these. First, let us con-
sider the vertex which results from the intersection of the facets {(p, 1)} and {(p, 1), (p, 2)}.
Then according to the above discussion we can write:

1
X{(p,1)}

= 1
P(1,2),(2,1),(p,1)T(p,1)

,
1

X{(p,1),(p,2)}
= 1

P(1,2),(p,1),(p,2)P(2,1),(p,1),(p,2)
.

Therefore, the contribution from this vertex is:
1

EtP(1,2),(2,1),(p,1)P(1,2),(p,1),(p,2)P(2,1),(p,1),(p,2)
,

where we have set the value of T(p,1) to one at the end. Then, we can compute the
contribution of the vertex which is the intersection of the facet {(p, 1)} and {(1, 1), (p, 1)},

1
X{(p,1)}

= 1
P(1,2),(2,1),(p,1)T(p,1)

,
1

X{(1,1),(p,1)}
= 1

P(1,1),(1,2),(2,1)P(1,1),(p,1)
+ 1

P(1,1),(p,1)T(p,1)
,

which in the end will lead to the contribution,
1

EtP(1,2),(2,1),(p,1)P(1,2),(2,1),(1,1)P(1,1),(p,1)
,
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keep in mind that we dropped the terms with T 2
(p,1), just like for any other sub-surface, and

only in the end we set T(p,1) → 1. And finally, we can compute the contribution from the
vertex at the intersection of the facets {(1, 1)} and {(1, 1), (p, 1)},

1
X{(1,1)}

= 1
P(1,1),(1,2),(2,1)P(1,1)

,
1

X{(1,1),(p,1)}
= 1

P(1,1),(1,2),(2,1)P(1,1),(p,1)
+ 1

P(1,1),(p,1)T(p,1)
,

and its contribution to the wavefunction is:
1

EtP(1,1),(1,2),(2,1)P(1,1)P(1,1),(p,1)
.

One-loop three-point wavefunction Now we will proceed with the three-point
one-loop example. Here we will compute one contribution from a non-simple vertex and
one of the terms in the triangle diagram, since these are the vertices that best illustrate
the differences with the tree-level computations. Let us start with the non-simple vertex,
where the facets {(1, 1)}, {(1, 1), (1, 3)} , {(1, 1), (p, 1)}, and {(1, 1), (1, 3), (p, 1)} meet.
The permutahedral “blow-up” splits it into two vertices, one of which, is the intersec-
tion of the facets {(1, 1)}, {(1, 1), (1, 3)} , and {(1, 1), (1, 3), (p, 1)}, and another {(1, 1)},
{(1, 1), (p, 1)}, and {(1, 1), (1, 3), (p, 1)}. For the first vertex, we can write,

1
X{(1,1)}

= 1
P(1,1),(1,2),(2,3),(3,1)P(1,1)

,
1

X{(1,1),(1,3)}
= 1

P(1,2),(1,3),(2,3)P(1,1),(1,3),(3,1)
+ 1

P(1,1)P(1,1),(1,3),(3,1)
,

1
X{(1,1),(1,3),(p,1)}

= 1
P(1,2),(2,3),(1,3)P(1,1),(1,3),(3,1)

+ 1
P(1,1),(p,1)P(1,1),(1,3),(3,1)

+ 1
P(1,1),(p,1)T(p,1)

,

for the second vertex the partial triangulation with two cords will differ, it is,

1
X{(1,1),(p,1)}

= 1
P(1,1),(1,2),(2,3),(3,1)P(1,1),(p,1)

+ 1
P(1,1),(p,1)T(p,1)

.

Naturally, both vertices will give the same contribution, which is,

1
2EtP(1,1),(1,2),(2,3),(3,1)P(1,1)P(1,1),(p,1)P(1,2),(2,3),(1,3)P(1,1),(1,3),(3,1)

.

Since they are two, the one-half will cancel. Finally, we will look at the vertex at the
intersection of the facets, {(p, 1)},{(p, 1), (p, 2)}, and {(p, 1), (p, 2), (p, 3)}. This is one of
the 6 vertices in the facet of the cosmohedron which corresponds to the triangle diagram.
For this vertex, we can write,

1
X{(p,1)}

= 1
P(1,2),(2,3),(3,1),(p,1)T(p,1)

,
1

X{(p,1),(p,2)}
= 1

P(1,2),(p,1),(p,2)P(2,3),(3,1),(p,1),(p,2)
,

1
X{(p,1),(p,2),(p,3)}

= 1
P(1,2),(p,1),(p,2)P(2,3),(p,2),(p,3)

+ 1
P(2,3),(p,2),(p,3)P(3,1),(p,1),(p,3)

+ 1
P(1,2),(p,1),(p,2)P(3,1),(p,1),(p,3)

.
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This leads to the contribution, for this vertex,
1

EtP(1,2),(p,1),(p,2)P(2,3),(p,2),(p,3)P(3,1),(p,1),(p,3)P(2,3),(3,1),(p,1),(p,2)P(1,2),(2,3),(3,1),(p,1)
,

which we can check to be one of the tubings of the triangle diagram.

5.5 Cosmological correlahedra
In this section, we will describe a combinatorial object that encodes all the contributions
to the correlator in Tr(ϕ3) theory. As we will see, they naturally combine into a “sandwich"
of associahedra and cosmohedra in a single higher-dimensional polytope.

In section 2 we described how to compute correlators from the wavefunction, and we
further discussed it in the examples of section 3.3. But now we need to discuss how to
embed the picture of deleting edges in diagrams we had for correlators, into the momentum
polygon picture. It is quite simple, the fully connected terms have their representation fully
in terms of the Russian doll picture, aswe saw for the cosmohedron. The disconnected
terms, we consider a mixture of cords and sub-polygons. For example, if we were to
consider a graph with on edge deleted, then at the level of the momentum polygon we
associate an internal cord to the deleted edge, and the russian doll picture for each of the
two sup-polygons arising from the division of the full momentum polygon by the cord.
Therefore, we can write:

Corrn = Φn +
∑
C≠∅

∏
(i,j)∈C

1
ki,j

×
∏

P compatible C
ΨP , (5.41)

where the first term corresponds to the fully connected part which does not depend on
cords, and just gives us the full wavefunction. The combinatorics of the full correlator is
then clearly a hybrid between those of amplitudes (non-crossing chords) and the wavefunc-
tion (non-overlapping sub-polygons).

Now, it is natural to expect any geometry for the full correlator to live in one higher
dimension than the associahedron/cosmohedron. The reason is that while all the terms in
the wavefunction have an Et singularity, which is not explicitly included as a facet in the
cosmohedron, this is not the case for the full correlator – some terms have Et singularities
(those coming from Ψn in (5.41)) and others don’t (the remaining terms in (5.41)). Thus, it
stands to reason to think about an object in one higher dimension, roughly corresponding
to Et, with a “bottom” facet associated with Et, which looks like the cosmohedron. If this
object is to include the combinatorics of non-overlapping chords, then we know that these
objects alone, with no reference to sub-polygons at all, are captured by the associahedron.
So it is reasonable to expect that the “cosmological correlahedron” we are looking for should
be a sort of sandwich in an extra dimension, with the cosmohedron at the “bottom”, and
an associahedron maximally far away, at the “top” of the new direction.

This can also be nicely motivated by trying to guess what the fan of this higher-
dimensional object might look like. Let us consider the simplest possible case of n = 4.
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Figure 5.13: (Left) Fan of the cosmological correlahedron for n = 4. In dashed, we represent
the underlying associahedron fan. (Right) 4-points cosmological correlahedron.

The fan for the associahedron has the two usual rays for g-vectors (1, 3), (2, 4), pointing
in opposite directions in one dimension. But we will introduce two new rays, “B” and
“T” (for “bottom” and “top”) pointing in opposite directions in a second direction. We
know we want to have facets of the correlator polytope corresponding to two different kinds
of single chords: one where the single chord is associated with subpolygons (like we saw
earlier for the wavefunction), and another where it is associated simply with the |⃗k| in the
correlator. We will thus record images of the rays (1, 3), (2, 4) on the bottom and top, by
defining

(1, 3)B = (1, 3) +B, (2, 4)B = (2, 4) +B,

(1, 3)T = (1, 3) + T, (2, 4)T = (2, 4) + T.
(5.42)

This gives us the six rays T, (1, 3)T , (1, 3)B, B, (2, 4)B, (2, 4)T , which is naturally associated
with the hexagon shown in figure 5.13. We see that this hexagon has an interval at
the top and one at the bottom, naturally associated with the n = 4 associahedron and
cosmohedron respectively. Note that the top facet only has vertices of the associahedron,
and does not by itself correspond to any terms in the correlator. But the remaining four
vertices (highlighted in black in figure 5.13) are naturally associated with all the terms in
the correlator.

Let’s move on to the next example at n = 5, where we will see almost all the relevant
structure for general n. We again start from the rays of the associahedron, which we can
label with the chords (1, 3), (1, 4), (2, 4), (2, 5), (2, 6), now living in two dimensions, and add
B, T pointing in opposite directions in an extra third direction. We then produce the rays
(i, j)B = (i, j) + B and (i, j)T = (i, j) + T as before. But on the bottom, we continue to
produce the rest of the rays for the cosmohedron as we have described before, by producing
the sums of the bottom rays. To produce the cones, we begin by connecting all the bottom
rays to B and all the top rays to T . Next, we connect all the bottom rays amongst each
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Figure 5.14: (Left) Projection of the n = 5 cosmological correlahedron fan. In dashed we
represent the underlying associahedron fan with rays (3, 5), (1, 3), (1, 4) and (2, 4) marked
in gray, with the added dimension corresponding to Et. Shaded in red we highlight the
pentagonal facet which is touching the base Cosmo5, and in blue the hexagonal facet which
is touching the top Assoc5. (Right) 3-dimensional projection of the Corr6 fan, coming from
the underlying 3-dimensional associahedron cone containing rays (1, 3), (1, 4), (1, 5). In
green, we highlight a square pyramid corresponding to a non-simple vertex of Corr6.

other as for the cosmohedron, while all the top rays are connected to each other as they
are for the associahedron. Finally, the top and bottom and connected by a very simple
rule: an (i, j)T is connected to every bottom ray that contains (i, j). The fan for the n = 5
is three-dimensional but as usual we can draw a projective picture of it two-dimensionally,
and this is drawn in figure 5.14 (left); a combinatorial representation of the wavefunction is
shown in the top of figure 5.16 (at the end of the note). Again, we see that the “top” facet
is the associahedron, and the “bottom” facet is a cosmohedron. All the faces in between
are labelled by mixtures of the “top” chords – which we can think of as the |⃗k| chords in the
wavefunction, and “bottom” chords – which give us nested subpolygons. Apart from the
vertices on the top associahedron facet (marked in blue), the rest of the vertices precisely
correspond to all the terms in the correlator (marked in black).

The cosmological correlahedron has a natural combinatorial definition for all n. Faces
are labelled by {C,P}, where C is a collection of non-overlapping chords as for associahe-
dra, and P is a collection of non-overlapping subpolygons satisfying the russian doll rule as
for cosmohedra, except that we now include the “full perimeter” as subpolygons, and we
have two full perimeters labelled by T , B. There are two special faces, the “top” facet where
{C = empty, P = Pfull,top} and the “bottom” facet where {C = empty, P = Pfull,bottom}.
No subpolygons, nor Pfull,bottom are allowed to occur in the list with Pfull, top. Then, the
cosmological correlahedron generalizes the notion of compatibility for associahedra and
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cosmohedra in the obvious way:

{C ′, P ′} is a face of {C,P} if C ⊂ C ′ and P ⊂ P ′. (5.43)

At n = 6 the fan is four-dimensional, but we can draw a relevant piece of it three-
dimensionally, as done in figure 5.14 (right). The rays are produced and connected to form
cones in exactly the way we described above: starting with the rays of the associahedron
(i, j), producing (i, j)B = (i, j) + B and (i, j)T = (i, j) + T , producing the rest of the
rays of the cosmohedron from the bottom rays, and connecting all the bottom rays as for
cosmohedra, the top rays are connected as for associahedra, and every top (i, j)T ray to
every bottom rays that contains (i, j). Again remarkably, the cones are non-overlapping,
and apart from the purely top ones giving all the triangulations of the n-gon, the rest of
the cones are associated with every term in the correlator.

As for cosmohedra, starting with n = 6 we encounter the phenomenon of non-simple
vertices for the cosmological correlahedron. In the figure, the five rays (1, 4)T together with
(1, 4)B, (1, 3)B + (1, 4)B, (1, 5)B + (1, 4)B, (1, 3)B + (1, 4)B + (1, 5)B form a square-pyramid,
associated with a single term in the correlator.

The picture for the fan of the cosmological correlahedron can clearly be extended to
loops, and an example of a three-dimensional polytope for the 1-loop bubble is shown in
the bottom of figure 5.16 (at the end of the note).

It is also natural to cut out the cosmological correlahedron by inequalities, extending
those of associahedra and cosmohedra in the obvious way, involving “shaving parameters”
ϵT,B for both the top and bottom rays. We have checked that the polytopes produced in
this way have exactly the correct combinatorics for n = 6, and that they have the correct
number of vertices to account for the correlator up to n = 8. In figure 5.15 we show the
embedding of the n = 5 cosmological correlahedron as well as the embedding of the facet
(1, 4)T of the n = 6 one. For general n, we expect an interesting relation between ϵT,B to
produce the correct combinatorics. We leave an exploration of this question, as well as the
systematics of extracting the correlator from the geometry, to future work.

5.6 Discussion
In this chapter we introduced a novel combinatorial definition of the wavefunction, the
cosmohedron. It comes with its own graph geometry, the graph associahedra, which corre-
spond to facets of the cosmohedron. We also construct the embedding of the cosmohedron,
which naturally arises from the ABHY associahedron.

This construction has many interesting things to point out. Firstly, the obvious one is
that it is highly non-trivial that the wavefunction can be fully accounted for through this
construction, both at tree and loop level. This obviously was made possible by thinking
about the wavefunction in terms of independent perimeter variables from the momentum
polygon. However, the cosmohedron is clearly not the end of the story. In constructions like
the ABHY associahedron, or cosmological polytopes, the respective integrand can be fully
extracted from a traditional canonical form. For the cosmohedron we need to attribute
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Figure 5.15: (Left) Embedding of the Corr5. (Right) Embedding of the (1, 4)T facet of
Corr6.

to each facet a pair of singularities, unlike the typical facet relation for the associahedron,
and furthermore, in the cosmohedron we need to truncate the canonical form obtained.
This begs the question about whether there is a bigger object from which the standard
canonical form procedure gives us the correct wavefunction, or whether the canonical form
we have has actually a deeper physical meaning in the truncated part. An interesting
question to be asked, which can lead to progress in this problem, is whether there is a way
to embed the cosmohedron which is not as dependent on the Associahedron construction.
In practice, when we construct the cosmohedron, firstly we construct the associhedron
inequalities, which by themselves already depend on the non-planar constants cij. Then,
we “blow-up" the faces, or in other words, we trim the faces by new faces (given by the
“blow-up" of the fan), where the trimming is controlled by small ϵ parameters, which obey
very simple inequalities between themselves, and very importantly have to be smaller than
the cij constants. The interesting question is: is there a way to make ϵC and cij on the
same footing? This could force us to re-think the embedding of the cosmohedron in a way
that makes the canonical form a more standard object like in other cases we have seen in
amplitudes, and cosmology.

Nevertheless, the graph associahedra, which we can associate to each diagram, is a
simple polytope and has a standard canonical form giving the correct wavefunction for
the graph. Therefore these objects make the obvious first candidate to try and find a
Minkowski sum of simplices decomposition of the graph associahedra, which would allow
us to construct a “stringy" integrand, as was done for the associahedron [105].
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Corr5 :

Top Front Facet: 

Bottom/Back Facet: 

Assoc5 

Cosmo5 

(1,3)T : Hexagon

(1,3)B+(3,5)B: Pentagon

(1,3)B: Square

Corr2
1-loop :

Top Front Facet: 

Bottom/Back Facet: 

Assoc2
1-loop 

Cosmo2
1-loop 

(1,p)T : Hexagon

(1,p)B+(2,p)B: Pentagon

(1,p)B: Square

Figure 5.16: The top figure shows the combinatorial structure of the three-dimensional
n = 5 cosmological correlahedron, looked at from above. We see the top pentagon facet as
the n = 5 associahedron, and the bottom decagon as the n = 5 cosmohedron. A number
of other facets, edges and vertices are labelled by collections (C,P ) of non-overlapping
chords and subpolygons. There are 30 vertices. The top 5 vertices (marked in blue)
all correspond to triangulations of the associahedron, the rest of the vertices are all the
terms in the correlator. The bottom figure shows exactly the same for the n = 2, 1-loop
correlator. As for the amplitude polytopes, there are two kinds of “loop” variable, touching
the puncture. The top facet is the hexagon familiar from the amplitude. The bottom is
the dodecagon for the cosmohedron. The vertices not on the top facet all correspond to
the terms in the correlator.



Chapter 6

Conclusion

In the previous chapters, we discussed the different aspects of the cosmological wavefunc-
tion, its analytical structure, its integration and a novel combinatorial formulation. In this
section, we review and discuss the main outcomes of all of this work. We also point out
future interesting research directions which can follow from here.

Main Results In chapter 3, we develop a parameterisation of the integrals which con-
tribute to cosmological observables, which we call cosmological integrals, be it cosmological
correlators, or simply the wavefunction. This parameterisation works for any topology, that
is with any number of loops, which before was not understood. The importance of it comes
from the fact that its generality allows putting on equal footing an integral contributing
to any observable, graph topology, and various different models of inflation. This is of
course a very important feature to have if one wants to understand the general features of
quantum field theory in quasi-de Sitter spacetimes, which is the underlying assumption of
inflation.

In the subsequent sub-sections we make use of methods that preserve this generality.
In fact, after defining this parameterisation we develop a new formalism which computes
the divergences of any cosmological integral. This formalism makes use of ideas such as the
Newton polytope associated to the integrand, and then employing the method of sector
decomposition to compute the integral as a series in the regulator. We were able to find
a connection between the diagram associated to the integral and the different sectors in
the integration regions, as well as their degree of divergence. This allows simply from the
graph to immediately obtain the integrals over a cube region corresponding to each sector
tiling the full integration region. Then, extracting the divergences is a straightforward
subtraction scheme. For the leading logarithmic divergences we are able to find a general
form for the coefficient. Our formalism has several very nice features. For starters, it is
completely general, in the sense that we only need to input the specific parameters of the
theory, (i.e. which observable, which background, which lagrangian, and how many exter-
nal states) very late in the computation. It also makes straightforward the identification
of the different regions contributing to the divergences, whether it is secular growth or a
loop divergence, or a mix of both. This indeed agrees with the literature. Finally, it makes
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very obvious that the contributions to the leading divergences come from the disconnected
part of the wavefunction, which is a product of tree-level wavefunctions. This also had
been proven recently in the literature. Using this formalism we were able to develop a
systematic subtraction scheme that subtracts the leading secular divergences, and at one
loop we were able to also construct a finite computable. This allows constructing infrared
finite computables at tree level (and less divergent computables at loop level). It remains
to be seen what are (if there are) the natural cosmological observables which produce these
infrared finite quantities, we leave that for future work.

In chapter 4, we turn to the integration of cosmological integrals. To do this we employ
the method of differential equations, which in recent years has been used massively in the
computation of Feynman integrals. In general, cosmological integrals hold the structure
of twisted period integrals. As such, we were able to derive integration by parts identities
for the integral families of the one-loop two-site wavefunction coefficient, and the one-loop
three-site wavefunction coefficient. We were able to obtain an analytic form for the one-
loop two-site in general FLRW power law cosmologies. Additionally, we were able to show
that the integral family of one-loop three site wavefunction contains elliptic polylogarithms,
which was unknown from the previous literature on computing cosmological observables.

In chapter 5, we introduce the cosmohedron, a geometrical object which encodes the
combinatorics of wavefunction. The cosmohedron is obtained by associating a facet to each
partial triangulation of the momentum polygon. Then, the inequalities associated to these
facets are controlled by a constant, ϵC , which itself must satisfy inequalities and equalities
related to different ϵC . As we have seen, this allows constructing the embedding for the
cosmohedron, where each vertex corresponds directly to a Russian doll term contributing
to the wavefunction. Besides the cosmohedron, we also constructed a graph polytope,
the graph associahedra, which corresponds to certain facets of the cosmohedron, those
corresponding to full triangulations, and thus graphs. We also provide a way to extract
the wavefunction from the cosmohedron, by first providing a prescription to “blow-up” the
non-simple vertices, and then assigning pairs of singularities to each facet and keeping only
the simple poles in the canonical form. Furthermore, we extrapolate all of this to loop level
Tr[ϕ3]. We also construct the generalization of the cosmohedron for the correlator. Finally,
we connect the graph associahedron picture for single diagrams and show how it connects
with cosmological polytopes. We show that the graph associahedron is a particular slice
of the cosmological polytope.

Future directions Regarding the work on infrared divergences there are couple of natu-
ral directions to take. For the first direction, it would be interesting to take our formalism
and show how the leading divergences reproduce Starobinski’s stochastic inflation. Fur-
thermore, despite having been argued that the sub-leading divergences follow a similar
stochastic dynamics, it is not entirely clear how this is realized. Ideally, the probability
distribution function given by the norm squared of the wavefunction should follow exact
renormalisation group equations. And finally, it would be interesting to understand what
kind of behaviour these divergences must satisfy in order to re-sum.
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Another possible direction follows from the study of infrared finite computables. We
simply showed that it is possible to formulate infrared finite quantities, however it would
be interesting to see if there is a novel computable that precisely matches our proposal. For
example in flat-space, where it has been known for long time that a certain combination at
one loop between the box diagram and the triangle ones is infrared finite [222], there exist
an observable, the Wilson loops with a Lagrangian insertion [257–259], whose perturbative
expansion [260] returns precisely this combination and has a geometrical interpretion [261].
The existence of the thick graph rules open the question about a more generally defined
computable whose originates such rules. We have left its possible independent, first prin-
ciple, definition to future work.

Regarding the use of differential equations to compute cosmological correlators, first
and foremost it would be interesting to conclude our analysis of the triangle graph. Even
though elliptic integrals appear in the differential equations, it is not entirely clear they will
appear in the integrated answer for the wavefunction. Furthermore, it would be interesting
to extend this approach to the full site plus loop integration, and not simply the loop
integral. And finally, it is trivial to extend the method to compute correlators, it would be
interesting to see if there are any simplifications when comparing to the wavefunction.

Finally, in the cosmohedron it would be interesting to explore how this novel way of
extracting the wavefunction has a larger physical meaning, or whether there is some other
object which leads to the cosmohedron where an “honest” canonical form computes the
wavefunction. We explained how to get the cosmological wavefunction under a single inte-
gral for the cosmohedron, however it would be interesting to extend our analysis to higher
order polynomial interactions, and other types of massive states, not simply conformally
coupled. Additionally, we only provided a general rule to embed the correlator polytope.
It would be interesting to complete our analysis and understand the type of inequalities
between the constants that appear in this embedding, and the equivalent picture of the
graph associahedron, but for the correlator given by a single graph. Finally, we know from
flat-space scattering amplitudes that there is a worldsheet formulation for Tr[ϕ3] ampli-
tudes. The close connection between the associahedron and the cosmohedron leads us to
think whether such a picture exists for the wavefunction.
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Appendix A

The ABHY Associahedron

The associahedron, Assocn, is a polytope that encodes the combinatorics of triangulations
of n-gons. Concretely, Assocn is an (n − 3)-dimensional simple polytope whose faces are
associated to partial/full triangulations of the n−gon, or what is the same, collections of
non-overlapping chords of the n-gon. The codimension-1 faces are associated to partial
triangulations with a single chord, codimension 2 faces with those with two chords, and
so on until we reach the vertices, which are labelled by (n − 3) non-overlapping chords
specifying a full triangulation.

If we denote a collection of non-overlapping chords by C, then the associahedron is the
polytope whose face structure reflects the combinatorics of compatible chords, which can
be stated as the fundamental property that:

C ′ is a face of C if C ⊂ C ′.

One simple way of constructing the associahedron combinatorially is via mutations.
This is if we start on a given vertex of the associahedron, corresponding to a full triangu-
lation of the n-gon, we can generate the vertices that are connected to it by performing
mutations: given the collection of chords in a triangulation, each chord is then a diagonal of
a square defined by the boundary edges and the remaining chords on the triangulation. A
mutation flips one of the chords to the other diagonal of the square in which it is contained.
Since a triangulation contains n − 3 chords, starting at a given vertex we can mutate in
n− 3 different ways, which means that at any vertex of our polytope (n− 3) edges meet,
which tells us the polytope is simple. Following this procedure, we can generate the full
polytope, and we further conclude that any two vertices are connected via an edge if and
only if their triangulations are related by a mutation.

For example, suppose we do this exercise for n = 4. In that case, there are only two
triangulations and the geometry is one-dimensional – the Assoc4 is a line interval with two
vertices, one at each boundary of the interval, labeling the two possible triangulations. In
this case it is trivial, but indeed we see a mutation relates the two triangulations.

At n = 5, we should find a two-dimensional geometry, which ends up being a pentagon
as depicted in the left of figure 5.1. We see that each edge is associated with partial trian-
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gulations with a single chord, and the vertices are labeling all the possible 5 triangulations
of the pentagon.

Similarly, for n = 6, the Assoc6 is a three-dimensional polytope, with 9 codimension one
facets – one associated to each chord of the hexagon – 21 codimension-2 facets – associated
to collections of two non-overlapping chords – and finally 14 vertices, each labeling one
triangulation of the hexagon (see figure 5.3, left).

One remarkable property of the associahedron is the factorization structure associated
with its boundaries – the boundaries of associahedra are given by products of lower-point
associahedra. This feature stands as the geometric avatar of factorization of tree-level
scalar amplitudes into products of lower-point amplitudes. For example, if we look at
the 5-point associahedron (figure 5.4, left) then we see that each boundary – the edges
– are naturally associated with a partial triangle with a single chord which divides the
pentagon into a square and a triangle. Indeed, the boundary is then given by the product
of the lower-point associahedron associated to the smaller polygons appearing in the partial
triangulation. In this case, the 3-point associahedron is a point and the 4-point is the line
segment described above, so we get simply a line interval. Similarly, at 6-points, we see
that the polytope has 6 pentagonal facets and 3 square facets. The first six, correspond to
partial triangulations including a single chord (i, i + 2) which divides the hexagon into a
pentagon and a triangle, therefore we expect to get Assoc5 × Assoc3, which is indeed what
we have since these facets are pentagons. As for the square facets, these correspond to
partial triangulations with a single chord of the type (i, i + 3) which divides the hexagon
into two squares, and therefore we get that these facets are Assoc4 × Assoc4, which is
precisely a square.

We stress that is not at all obvious a priori that the combinatorics of partial triangu-
lations can be captured by a polytope. It’s existence, and it’s factorization properties on
facets are most naturally understood from a particular realization in terms of a simple set
of inequalities we will review in a moment.

Now that we have understood how the combinatorial information associated to cubic
tree graphs is organized in this polytope, and in particular how its boundary structure
encodes the basic factorization features of amplitudes, let’s see how we can connect these
physical observables to this geometry.

In a theory of colored scalars interacting via cubic interactions – Tr(ϕ3) theory – we
can write the amplitudes perturbatively over sums of cubic diagrams. Namely at leading
order, once we fix an ordering for the external particles, say e.g. the standard ordering
(1, 2, · · · , n − 1, n), we get contributions from all the possible tree-level planar Feynman
diagrams – which are precisely dual to triangulations of the n-gon. In particular, if we
associate to each edge of the n-gon a momentum of the particle in the scattering process,
pµ1 , p

µ
2 , · · · , pµn, then given a triangulation we have that the length2 of the chords entering in

the triangulation precisely give us the momentum square flowing through the propagators
in the dual cubic graph. Let’s denote the (length)2 of a chord going from vertex i to vertex
j by Xi,j then we have:

Xi,j = (pi + pi+1 + · · · + pj−1)2, (A.1)
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where we have Xi,j = Xj,i and Xi,i+1 = 0 since we are considering our particles to be
massless and therefore we have p2

i = 0. Therefore, we can write Tr(ϕ3) amplitudes at
tree-level as a sum over all possible cubic Feynman diagrams – all possible triangulations
of the n-gon – where for each diagram we have a factor of one over the product of the Xi,j

corresponding to the chords entering in the triangulation:

An(Xi,j) =
∑

triang. T

∏
Xi,j∈T

1
Xi,j

. (A.2)

This way of writing the amplitude makes manifest that it is a function exclusively
of the Xi,j’s which are usually called the planar variables – as they correspond to the
invariants associated to momentum flowing through propagators of planar tree diagrams.
Note, however, that the planar variables are not all the possible Lorentz invariants dot
product of momentum one can consider, for example we also have the dot products pi · pj
with i and j non-adjacent. In particular, at n-points we have n chosen 2 dot products
of momenta, but due to momentum conservation only n(n − 3)/2 of these are actually
independent. Quite nicely n(n−3)/2, is precisely the number of Xi,j we have for an n-gon,
and therefore we have that the planar variables form a basis of kinematic space, where
momentum conservation is automatically implemented by the fact that they lived in a
closed momentum polygon.

This means that the non-planar variables – corresponding to dot products of non-
adjacent particles — can be written in terms of the planar ones. Let us call the non-planar
invariants by ci,j = −2pi · pj with i, j not adjacent. Then we have:

ci,j = Xi,j +Xi+1,j+1 −Xi,j+1 −Xi+1,j. (A.3)

Now that we have defined the kinematic space the amplitude lives in as well as given a
precise definition of the amplitude in this space (A.2), we can proceed to understand how
to connect this object to the geometry of the associahedron. The first step is to embed
the associahedron in kinematic space - where the amplitude is defined - this is we want to
define a set of inequalities in Xi,j space that carve out this polytope. This embedding was
introduced in [93] and we will summarize it here. As explained above, each facet of this
geometry is associated with a partial triangulation with a single chord, and therefore is
naturally associated with a given Xi,j. Therefore, to each facet we associate the inequality:

Xi,j ≥ 0. (A.4)

So we have that all X’s are positive inside the polytope and vanish in the respective
facets. However, as explained earlier the Assocn is an n − 3-dimensional object, and the
current inequalities naively define a cone in an n(n−3)/2 dimensional space. So in order to
bring it to the correct dimension we intersect this cone with the “ABHY" plane defined as
follows: Pick a triangulation say {X1,3, X1,4, · · · , X1,n−1} and consider the kinematic basis
containing the X’s in the triangulation as well as the collection of non-planar variables
C = {c1,3, c1,4, · · · , c1,n−1, c2,4, c2,5, · · · , c2,n−1, · · · c3,5, · · · , cn−3,n−1} which contains exactly
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n(n− 3)/2 − (n− 3) c’s. Then since this forms a basis we can write all X’s in terms of the
X’s in the chosen triangulation and the ci,j’s in this collection. If we fix the non-planar
variables in C to be positive then (A.4) defines an n− 3 dimensional geometry in the space
spanned by X1,3, X1,4, · · · , X1,n−1 which is precisely the associahedron.

Given this embedding, the amplitude is given by the canonical form of this polytope.
There are various motivations for the ABHY inequalities, from a “causal diamond" picture
[101] in kinematic space to recording the data of curves on surfaces [102]. It is striking
that none of these refer to summing over all diagrams. The connection with the usual
Feynman diagrams arises from a particular way of computing the canonical form of the
associahedron. Indeed for any simple polytope, there is a natural triangulation, taking
the inverse product of the facet inequalities meeting at each vertex and summing over all
vertices, corresponding to an especially obvious triangulation of the dual polytope. Since
each vertex of the associahedron corresponds to a complete triangulation, this expression
for the canonical form of a simple polytope turns into the Feynman diagram expansion.
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