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Abstract

Distressing physical symptoms that persist for months are frequent, occur across all ar-
eas of medicine and strongly impact quality of life. The association with measurable and
reproducible pathophysiological processes is often loose or even absent and for most persis-
tent physical symptoms (PPS), positive diagnostic markers are lacking, which challenges
diagnosis and treatment. This thesis aims to contribute towards a better mechanistic un-
derstanding of PPS that can inform treatment and diagnosis by investigating symptom
perception and sensorimotor processing in two examples of PPS, i.e., functional dizziness
and post COVID-19 condition.
We adopt a Bayesian brain perspective that proposes that the brain infers the most likely
causes of sensory inputs by inverting an internal model that constitutes a probabilistic
mapping between different states and sensory input as well as prior knowledge about these
states. Recent theories have proposed that erroneous internal models can lead to the
emergence of symptoms and dysfunctional motor processing, also in the absence of patho-
physiological processes. Here, we provide further evidence in support of this hypothesis
for functional dizziness and post COVID-19 condition. Using two different experimental
paradigms, we were able to show that sensorimotor deficits (in functional dizziness) and
increased breathlessness perception (in post COVID-19 condition) do not reflect altered
and potentially pathological body states but rather are due to involvement of incorrect
internal models. We highlight that different mechanisms could underlie these results and
discuss the role of incorrect but highly precise priors in functional dizziness and maladap-
tive cost-functions in patients with post COVID-19 condition. In addition, we bridge the
gap between experimental data and theories by developing a mathematical model that
proposes a potential mechanism of how processing of respiratory data can lead to the
emergence of breathlessness perception.
In summary, this thesis provides an explanatory framework, a measurable marker of incor-
rect internal model use and an improved mechanistic understanding for functional dizziness
and post COVID-19 condition. These findings can contribute towards development and
refinement of existing treatments and reduce stigmatization of PPS.
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Chapter 1

Theoretical background

1.1 Persistent physical symptoms (PPS)
Experiencing fatigue, headache, abdominal pain or any other physical symptom is not un-
common. Around 80 % of the general population experience at least one physical symptom
within the period of one month (Hinz et al., 2017; Green et al., 2001). While most of the
time symptoms resolve on their own, for some individuals, they persist for months and are
highly distressing and hence fall under the category of persistent physical symptoms.

1.1.1 Definition
Persistent physical symptoms (PPS) is "an umbrella term to describe subjectively distress-
ing somatic1 complaints, irrespective of their aetiology, that are present on most days for
at least several months" (Löwe et al., 2022). Even though clusters of symptoms based on
their inter-relation have been proposed, such as neurological, gastrointestinal, urogenital,
cardiovascular, and musculoskeletal symptoms (Senger et al., 2022), the definition of PPS
is not specific to a particular cluster, but refers to any persistent symptom that an individ-
ual experiences as distressing. Often patients experience several different symptoms and
PPS are highly prevalent in diseases across all areas of medicine (Löwe et al., 2022; Löwe
et al., 2024). For example, persistent fatigue is reported across a wide range of different
chronic diseases (Goërtz et al., 2021) and constitutes a core symptom, that is often de-
scribed as the most debilitating one, in multiple sclerosis (Barak and Achiron, 2006; Oliva
Ramirez et al., 2021; Fisk et al., 1994) and cancer patients (Lawrence, 2004; Whitehead
et al., 2016). PPS are also central to the diagnosis of functional disorders, where symptoms
cannot be associated with a measurable and reproducible pathophysiological mechanism
(Smith, 2023; Barsky and Borus, 1999; Rosmalen et al., 2021). Examples include bowel
complaints such as constipation and diarrhea in irritable bowel syndrome (Ford et al.,
2020), loss of balance due to functional dizziness (Popkirov et al., 2018), musculoskeletal

1As in this thesis, the terms "somatic" and "physical" symptoms are usually used interchangeably in
the literature.
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pain in fibromyalgia (Jahan et al., 2012), and tremor and paralysis in functional neuro-
logical disorders (Stone et al., 2020). In addition, PPS are often associated with mental
diseases. Headaches (Muneer et al., 2018) and pain (Vaccarino et al., 2009), for example,
are prominent symptoms in people with major depressive disorder. While the categoriza-
tion into chronic biomedical, functional or mental disorders serves to illustrate that PPS
can be found across all areas of medicine, it must be highlighted that these categories
are artificial and not mutually exclusive. For example, patients with epilepsy can also
experience functional seizures not caused by electrophysiological brain activity, but whose
experience and clinical presentation is similar to epileptic seizures (Kutlubaev et al., 2018).

The definition of PPS does not presuppose a specific association (or strength thereof)
with an underlying biomedical condition but rather focuses on the patient’s subjective
experience, independent of the underlying cause. It thereby acknowledges that finding a
biomedical cause is in many cases challenging and unreliable: Almost half of all patients
presenting in primary care report physical symptoms that cannot be attributed to a known
organic disease (Haller et al., 2015) and the number of symptoms a patient presents with
is inversely proportional to the frequency of identification of a biomedical origin thereof
(Nimnuan et al., 2001). Even if a biomedical cause for a symptom is identified, symptoms
and causes often only correlate poorly. For example, experienced breathlessness is in many
cases independent of actual lung function, even in patients with severe lung diseases such as
chronic obstructive pulmonary disease and asthma (Wolkove et al., 1989; Herigstad et al.,
2017). Improvements in breathlessness after treatment or over the course of pulmonary
rehabilitation can occur despite the absence of improvement in lung function or exercise
capacity (Wadell et al., 2013; Teeter and Bleecker, 1998; Lacasse et al., 1996). Conversely,
breathlessness can persist, for example in patients with post-COVID-19 condition, despite
measurable improvements in lung function (Shah et al., 2021). Importantly, patients’
impairment and suffering is independent of whether a biomedical cause can be identified
(Joustra et al., 2015; Klaus et al., 2013). The definition of PPS thus values the patient’s
subjective experience, which ultimately determines suffering and impairment.

The burden of PPS is immense due to detrimental effects on quality of life and work
participation which lead to a considerable increase in health care utilization (Joustra et
al., 2015; Carson et al., 2011). Patients often report unpredictable variability in symptom
onset and intensity, leading to a feeling of loss of control over their own body and making
it hard to plan life and take part in social activities (Whitehead et al., 2016). It is thus
paramount that patients receive a timely diagnosis that allows to establish an adequate
treatment plan to alleviate suffering.

However, diagnosis of PPS is often challenging due to the loose association between
symptoms and biomedical causes and for many PPS no clear positive diagnostic biomarkers
exist. As a consequence, patients often have to endure numerous health care visits including
invasive and stressful diagnostic procedures. In a considerable number of cases, even after
years of diagnostic procedure, a biomedical cause cannot be identified (Stone et al., 2009).
This is especially true for functional disorders. In current clinical practice, the diagnosis
of a functional disorder is mostly still a diagnosis of exclusion, i.e., is only given once no
biomedical cause of the symptoms can be revealed. This is based on diagnostic classification
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schemes, such as the 10th revision of the International Classification of Diseases (ICD-10;
WHO, 2004), where the absence of a biomedical cause is a diagnostic criterion. Since
the same symptom can often be associated with a wealth of different underlying diseases,
ruling out potential candidates can take an enormous amount of time, and on average,
patients with functional disorders have to wait several years until they receive a diagnosis
(Butler et al., 2021; Tinazzi et al., 2021). Even in the case of an actual diagnosis, patients
hardly ever receive an adequate explanation thereof, leaving behind frustration and doubt
about the validity of the diagnosis (Burton et al., 2015). What is more, in the absence
of biomarkers, the cause of patients suffering often becomes ’invisible’ to others. Unlike
a broken arm, symptoms like fatigue, pain or dizziness cannot be ’seen’ from the outside.
Furthermore, symptoms such as chronic fatigue are often described by patients dissimilar
to any previously experienced type of fatigue (Whitehead et al., 2016). Caretakers and
physicians who have never suffered from chronic fatigue might falsely assume that the
patient’s fatigue is similar to the type of fatigue that they know and have experienced, for
example after an exhausting day of work. Together with the lack of positive diagnostic
markers, this can lead to stigmatization and misunderstandings with family, caretakers
and physicians (Ballering et al., 2021; Treufeldt and Burton, 2024).

Nowadays, there is a paradigm shift in clinical medicine that aims to identify positive,
diagnostic markers of PPS. Clear positive markers would considerably speed up diagnosis,
which is fundamental to determine adequate treatment. For some functional disorders
positive diagnostic markers exist. Among these positive signs for clinical examination is
Hoover’s sign or entrainment of tremor, which can be used to distinguish between neuro-
structural and functional impairments (for an overview of different positive signs for func-
tional neurological disorders, see Stone et al., 2020; Espay et al., 2018). However, for most
PPS positive and objectively measurable diagnostic markers are still missing.

Despite increasing attention and research focus on PPS in recent years, the exact causes
and mechanisms underlying PPS are still largely unclear. While PPS can develop after an
acute disease with a clear biomedical cause, the association with symptoms often becomes
loose or even absent when symptoms persist over prolonged periods of time. Similarly, PPS
can occur ’de-novo’, i.e., without a known previous disease. The transition from short-term
to persistent symptoms is complex and involves biomedical, psychosocial and sociodemo-
graphic factors, all of which can be present in one patient (Löwe et al., 2024). This calls
for a systematic framework aimed at capturing the various factors underlying the transi-
tion from short-term to persistent symptoms and characterising their interactions. Such
a framework enables improved understanding of the diverse set of backgrounds that may
cause a particular patient’s symptoms and thus provides additional value in the diagnostic
process by painting a more comprehensive picture of the patient’s (disease) history.

The biopsychosocial vulnerability stress-model by Henningsen et al. (2018b) and Löwe
et al. (2022) incorporates predisposing, triggering, maintaining and aggravating factors.
Predisposing factors include female sex and gender (Ballering et al., 2020), lower socioe-
conomic status (Kitselaar et al., 2023), early adverse life experiences, interpersonal stress,
sleep problems, depression, anxiety, previous physical symptoms, elevated body mass in-
dex and some genetic profiles (Herzog and Schmahl, 2018; Kitselaar et al., 2023). Factors
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that could trigger physical symptoms, especially in people with the aforementioned predis-
posing factors, include acute infections and injuries, medical procedures and surgery and
stressful life events (Kitselaar et al., 2023; Löwe et al., 2024). Symptoms might persist
and aggravate due to sustained immune activation (Bjurstrom et al., 2016), altered micro-
biome (Minerbi et al., 2019), affective conditions such as illness-related anxiety (Boersma
and Linton, 2005), and alexithymia (Schnabel et al., 2022; De Gucht and Heiser, 2003),
i.e., a deficit in recognising, experiencing and expressing emotions. By taking into account
present and past psycho-social and biomedical experiences, this multifaceted framework
highlights the interdisciplinary approach needed in diagnosis and management of PPS.
This interdisciplinary perspective might also prove beneficial in better understanding the
recent phenomenon of PPS after COVID-19.

1.1.2 PPS after COVID-19
Persistent symptoms after infectious diseases are a common clinical phenomenon. Many
viruses, among them Epstein Barr virus, Ebola and Dengue infections, are known to cause
post-infectious fatigue (Choutka et al., 2022). In 2020, patients first drew attention to
prolonged and complex symptoms after a SARS-CoV-2 infection, mainly using social media
channels. Soon, patient-led surveys (Assaf et al., 2020) followed that informed about
the range and extent of symptoms after COVID-19. Such initiatives gained more and
more attention and were later continued by peer-reviewed studies.2 Patients often called
themselves ’long-haulers’ and used the hashtag #longCOVID on social media.

Today, both terms ’long-COVID’ and ’post COVID-19 condition’ (or short post-COVID)
are mostly used interchangeably, with post COVID-19 condition often used in peer-reviewed
studies and also by the World Health Organization (WHO), which published a clinical case
definition in 2021: "Post COVID-19 condition occurs in individuals with a history of prob-
able or confirmed SARS-CoV-2 infection, usually 3 months from the onset of COVID-19
with symptoms that last for at least 2 months and cannot be explained by an alternative
diagnosis. Common symptoms include fatigue, shortness of breath, cognitive dysfunction
but also others [...] which generally have an impact on everyday functioning. Symptoms
may be new onset, following initial recovery from an acute COVID19 episode, or persist
from the initial illness. Symptoms may also fluctuate or relapse over time. A separate
definition may be applicable for children" (Soriano et al., 2022).

It is estimated that 45% of people surviving a SARS-CoV-2 infection still experience
unresolved symptoms at a follow up time of around 4 months (O’Mahoney et al., 2023).
Although a higher risk of developing post-COVID condition seems to be associated with
severe COVID-19 disease courses requiring hospitalization (Ceban et al., 2022; Schou et
al., 2021; Tsampasian et al., 2023), a considerable number of patients with initially mild
COVID-19 is affected. One third of non-hospitalised patients still experience symptoms at
an average follow-up time of 4 months (O’Mahoney et al., 2023) though prevalence rates

2For an overview of the development of patient-driven long-COVID research, see Callard and Perego,
2021.
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differ considerably between studies and depend on sample size and characteristics as well
as time of follow up. Symptom reports range over many different organ systems with some
of the most commonly reported ones being fatigue, exercise intolerance, headache and
breathlessness (Lopez-Leon et al., 2021; O’Mahoney et al., 2023; Tenforde et al., 2020). In
many patients, the symptom profile largely overlaps with those known from chronic fatigue
syndrome and fibromyalgia and some patients might qualify for several of these diagnoses
(Haider et al., 2022).

Several pathophysiological changes have been observed in patients that provide first
insights into possible disease mechanisms. Common hypotheses (for a review, see Davis et
al., 2023; Nalbandian et al., 2021) include persistent SARS-CoV-2 reservoirs (Machkovech
et al., 2024; Swank et al., 2023), dysregulated and sustained immune responses (Glynne
et al., 2021; Phetsouphanh et al., 2022), virus reactivation (Chen et al., 2023), altered gut
microbiota (Liu et al., 2022), endothelial dysfunction (Haffke et al., 2022) and blood brain
barrier disruption leading to inflammatory processes and brain damage altering signalling in
brain circuits (Boldrini et al., 2021; Sarubbo et al., 2022; Vlemincx et al., 2022). However,
in many patients, symptoms cannot be explained by such pathophysiological processes or
measurable organ deficits (El-Medany et al., 2024; Kaye et al., 2022; Lam et al., 2021;
Shah et al., 2021; Sneller et al., 2022). In addition, it has repeatedly been shown that
psychological and social factors play an important role in the emergence of post COVID-19
condition, such as psychological stress experienced pre-infection, loneliness, disease related
anxiety and mental health disorders (Wang et al., 2022; Lemogne et al., 2023).

In summary, the disease picture of post-COVID condition is highly heterogeneous, with
numerous persistent physical symptoms after SARS-CoV-2 infection bearing resemblance
to those observed in other diseases with PPS, especially chronic fatigue syndrome and
fibromyalgia (Haider et al., 2022).

1.1.3 Summary

PPS are frequent, highly disabling and can be found across all areas of medicine (Löwe
et al., 2024). The loose association between symptoms and reproducible and measurable
pathophysiological processes has challenged researchers and clinicians to explain symptoms,
often leading to stigmatizing terms such as ’medically unexplained symptoms’. However,
the understanding of PPS has markedly evolved and nowadays explanatory frameworks
that allow the integration of biopsychosocial factors are available.

Mechanistic explanations see PPS as arising from maladaptive processing and integra-
tion of sensory signals arriving in the brain. Before explaining how dysfunctions in this
processing can lead to PPS, the next sections will first introduce the general framework
of Bayesian brain theories, which describe how the brain can optimally interpret sensory
signals in the presence of noise and time delay.

5



1.2 The Bayesian brain theory
Neuroscientific accounts are based on the central idea that human behaviour and perception
are a result of neural activity in the brain. Some of this activity is caused by afferent sensory
signals sent by receptors within the body. These sensory receptors can detect (a limited
range of) the properties of our environment. For example, photoreceptors in the retina of
the eye detect photons and transmit information about the brightness of a light source.
Some photoreceptors (cones) are sensitive only to certain wavelengths emitted from the
light source which allows the brain to construct a perception of colour (Molday and Moritz,
2015). Sensory receptors do not only convey information about stimuli in the environment
(external states) but also about processes and states within the body (internal states).
For example, chemoreceptors detect the concentration of carbon dioxide in the blood and
thereby inform about the current gas exchange in the lung (Guyenet et al., 2010). Together,
these afferent signals allow the brain to form a representation (or internal model) of the
bodily and external environment needed to regulate body states and interact with the
environment.

A simplistic view is that conscious perception, and thus symptoms, are a direct rep-
resentation of bodily dysfunction or tissue damage signalled via afferent sensory input.
Therefore, the more severe the dysfunction, the stronger the symptom. This would mean
that the brain is merely detecting and collecting information via sensors within the body,
which is the only source of information used to initiate actions and form perception. How-
ever, already in the 19th century von Helmholtz (1867) proposed that perception is a
construct of sensory signals and predictions. Today, this view is at the core of Bayesian
theories of brain function.

The first part of this section covers Bayesian inference, which describes how the brain
can optimally infer the cause of noisy and time-delayed sensory signals. In the second
part, Bayesian decision theory is introduced. It describes the optimal decision process of
how to plan actions based on inferred states by considering context-specific objectives. In
the following part, one possible algorithmic scheme of how Bayesian inference could be
implemented is described. Following, forward models are introduced that allow to predict
how states will evolve over time. The section closes with a discussion of how dysfunctions
in any of the aforementioned processes could lead to the emergence of PPS.

1.2.1 Bayesian inference
Since the brain has no direct access to states of the body and environment, it relies on
afferent sensory signals transmitting the relevant information. These signals are noisy and
inherently delayed with respect to the event that caused them. They can thus often be
interpreted in multiple ambiguous ways and if the brain merely reacted to them, it could
only intervene once body states have already deviated from the narrow range that is crucial
for survival. The brain thus faces the challenge of an inversion problem, where based on
noisy and delayed sensory signals, it needs to infer the states that caused the received
signals.
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The main idea of Bayesian theories of brain function is that perception is a probabilistic
inference process aimed at inferring the most probable state of the world (external state) or
own body (internal state), based on sensory input and prior knowledge (Ma et al., 2023). In
order to do so, the brain needs to maintain a generative model (Knill and Richards, 1996;
Barlow, 1961; Rao and Ballard, 1999). This kind of internal model describes how states
generate observed sensory data (measurement distribution) and also includes all knowledge
about statistical regularities of world states (stimulus distribution). Whereas the stimulus
distribution describes the probability of occurrence of different (internal or external) states,
the measurement distribution reflects the probability of different measurements (sensory
inputs) if the same stimulus or state was encountered again. The width of this distribution
is often called the measurement noise or sensory noise. The wider the distribution (i.e.,
higher variance or lower precision), the noisier the sensory measurements. Measurement
and stimulus distribution fully describe the internal, generative model that maps from
real world states to sensory data. However, the brain does not have access to the true
world states, but needs to infer them based on sensory measurements. This corresponds
to inverting the generative model. Based on the measurement distribution, the brain can
compute a likelihood function. The likelihood function assigns probabilities to the different
world states that could have caused the observed sensory input. It can intuitively be
understood as the brain’s belief of a state, only given the sensory data, i.e., without taking
prior knowledge into account. In many cases, sensory input is ambiguous and different
world states are equally likely to have caused the same sensory input. Here, it would be
beneficial to additionally include prior knowledge about the probability of encountering
a specific internal or external state. The brain can compute such a prior belief of how
likely a state is based on the stimulus distribution of the generative model. The prior then
represents the belief of a particular state even before sensory data have been received (Ma
et al., 2023).
Bayes’ theorem is a rule from statistics that describes how to optimally combine two
different noisy signals, in this case prior knowledge and sensory input, to infer the common
cause of both signals. According to this law, the posterior p(x|y), i.e., the inferred world
state x based on sensory measurement y is proportional to prior p(x) and likelihood p(x|y):

p(x|y) ∝ p(y|x)p(x) (1.1)

posterior ∝ likelihood ∗ prior. (1.2)

In the Bayesian sense, the probability distribution over different states is often termed
belief. However, it is important to mention that this makes no implications of whether
these beliefs can be consciously accessed or not. If a belief is held with high precision,
the probability distribution will be concentrated over the most likely value, which, in a
Gaussian setting, will be the mean or expectation. The posterior mean is a weighted
combination of prior and likelihood. Depending on the respective precision, either prior or
likelihood receive more weight, and thus influence the resulting inference more strongly. In
other words, if sensory input is noisy and ambiguous (low precision), more weight is put on
prior knowledge to infer the underlying state. In contrary, if no or imprecise prior knowledge
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is available, more weight is put on the actual incoming sensory data. Bayesian inference
can thus be seen as a framework that describes how the brain can update prior beliefs with
sensory data, to obtain a posterior belief about states in the body or environment (Adams
et al., 2013). Bayesian concepts are capable of describing a wide range of human behaviour
and perception, such as decision making (Beck et al., 2008), motor control (Körding and
Wolpert, 2004; Körding and Wolpert, 2006) and magnitude estimation (Petzschner and
Glasauer, 2011).

In summary, the brain solves the inversion problem of inferring the causes of sensory
inputs, by inverting its internal generative model. This is achieved by applying Bayes’ rule
which effectively amounts to the computation of posterior probability of hidden causes of
the obtained sensory input. Depending on the associated certainty, either likelihood or
prior influence the posterior belief more strongly. In the next section, Bayesian decision
theory is introduced which describes how the brain should select one specific value of this
distribution that represents the final estimate.

1.2.2 Bayesian decision theory: from inference to action
While Bayesian inference offers a way to compute a posterior distribution over hidden
states, it does not define how the brain should decide on one particular action based on
the inferred hidden state. Here, Bayesian decision theory comes into play by describing
how the brain should combine posterior beliefs about different states with cost functions to
decide on a final action. These actions can be of behavioural, physiological or perceptual
nature. For example, actions can take on the form of a specific arm movement in a reaching
task. Similarly, actions can constitute hormone release and thus a physiological reaction.
Actions can also involve reporting perceptual estimates, such as a location of a hidden
sound source. In these perceptual tasks, the estimate is sometimes interpreted to represent
the content of perception itself (Ma, 2019).

Independent of its nature, each action a that the brain initiates will be associated with
some costs. In Bayesian decision theory, the overall costs associated with a particular
action are quantified by a cost function C(x,a). It depends on the world state x and the
action a. The expected cost of an action with respect to the posterior distribution is:

E(C(a)) =
∫

p(x|y) ∗ C(x, a)dx. (1.3)

An optimal action is then defined as the one that minimizes the expected costs (or
maximizes reward in the case of a utility instead of cost function). If the task is to optimally
estimate a continuous state x (e.g., the location of a sound source), the cost-function can
be defined as the squared error between the decided estimate a and the actual world state
x. Minimizing this cost function will then yield the mean of the posterior distribution (Ma,
2019).

In most situations, actions are much more complex than the perceptual task to report
the estimate of a world state (e.g., the location of a sound source). For example, a physician
might have to decide whether to perform an expensive and burdensome diagnostic test to
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rule-out an unlikely but serious diagnosis. Here, the cost function in Equation 1.3 can
be adapted to incorporate more complex associations between actions and costs. Possible
actions might also be decoupled from the world state inference. For example, one might
infer the width of a river and then decide whether to jump across it or not. In this case,
the cost function for the perceptual estimate (river width) might co-exist alongside a cost-
function used for deciding on the appropriate action (Ma et al., 2023).

In summary, Bayesian decision theory describes how based on the posterior distribution,
the brain should decide on one particular estimate (single value). These decisions can lead
to actions that are of behavioural, physiological or perceptual nature.

1.2.3 Bayesian forward modeling
So far, the concepts in the last sections only took one particular point in time into account,
such as inferring the current position of a ball in a tennis match. However, Bayesian
computations also allow to predict future states, e.g., the trajectory of a flying ball, by
applying an iterative algorithm, also known as Bayesian filtering. This is achieved via
internal forward models pfw(xt+1|xt) that can predict the future state of the ball based on
the posterior in the last time step that included sensory input y1:t until time point t:

p(xt+1|y1:t) =
∫

pfw(xt+1|xt)p(xt|y1:t)dx. (1.4)

This internal forward model includes all information relevant for the dynamics, such as
air resistance and gravity, in the example of a flying ball. It can additionally consider a
motor control signal u, resulting in pfw(xt+1|xt, ut). In the example of the tennis match,
the forward model might then predict future states of the ball based on the current state
as well as the motor command for moving the racquet when returning the ball back to the
opponent. The likelihood function of new sensory information yt+1 can then be combined
with the predictive distribution above to compute a new posterior:

p(xt+1|y1:t+1) ∝ p(yt+1|xt+1)p(xt+1|y1:t). (1.5)

The ability to perform such predictive calculations has advantages that range over differ-
ent time scales. For example, it enables to track the ball’s trajectory with pursuit eye
movements. In addition, it allows to position oneself in an optimal way to reach the ball
and return it to the opponent (McNamee and Wolpert, 2019). Furthermore, Bayesian
integration of the predicted sensory input from the forward model with actual sensory
input, can reduce the noise in the final estimate (Wolpert et al., 1995). Forward models
also enable a differentiation whether sensory input is due to own actions or changes in the
environment. Only based on sensory input, the brain could not distinguish whether,e.g.,
optical flow during an eye movement is due to movement in the external environment or
self-movement. The activation of retinal ganglion cells in the eye would be the same in
both cases. It is assumed that copies of (planned) motor commands, so-called efference
copies (von Holst and Mittelstaedt, 1950), are sent to a forward model that can predict
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the sensory consequences of these motor commands. If this predicted sensory signal de-
viates from the actual sensory input, it can be inferred that the discrepancy between the
two signals must have arisen due to sources other than the motor commands themselves
(McNamee and Wolpert, 2019).

1.2.4 Bayesian predictive coding: an algorithmic framework
Considering Marr’s levels of analysis (Marr, 1982), Bayesian inference serves to achieve
the computational goal of the brain. In other words, it describes how the brain should
optimally combine sensory input and prior expectations to infer hidden states and make
sense of its environment. However, multiple different ways exist for the implementation
of Bayesian inference on an algorithmic level (for an overview, see Aitchison and Lengyel,
2017). One possible implementation is predictive coding (Rao and Ballard, 1999). It
proposes three computational quantities needed to implement Bayesian inference algo-
rithmically: predictions, prediction errors and their relative precision. Prediction errors
represent the difference between a predicted sensory signal and the actual sensory signal.
Each level in the hierarchy receives the predicted sensory signal from hierarchically higher
levels in the brain and sends prediction errors back to this higher level where they can
serve to update the initial predictions. In that way, only the prediction error and not the
signal itself needs to be processed, serving as a sparse way of representing information.
Predictive coding thus assumes a hierarchy of different processing steps where predictions
are sent down and prediction errors up the hierarchy.

The hierarchical structure of predictive coding proposes that the internal model main-
tained by the brain and resulting predictions are not localized in one specific area or
processing step but rather distributed over many different processing hierarchies. At lower
levels the predictions are about the direct sensory input. A classical example from neuro-
biology are receptive fields of retinal ganglion cells. These specific receptive fields allow to
predict the light intensity in the center of the field by taking the surrounding activation
into account. This reflects that visual scenes usually show some spatial coherence and
regularity and intensities are not randomly occurring in the environment. Retinal ganglion
cells then only send the prediction error between the actual light intensity and the pre-
dicted one to the brain (Srinivasan et al., 1982). Going up the hierarchy, receptive fields
get increasingly complex and predictions are about more abstract features of the sensory
input, such as direction and orientation of a visual stimulus in visual area 1 (Hubel and
Wiesel, 1962).

A discrepancy between the predictions derived from the internal model and the actual
sensory data gives rise to prediction errors. In theory, this discrepancy should result in an
update of the internal model, which can be conceptualised as a form of learning. That way
the brain can incorporate new experiences into the internal model and adapt to a chang-
ing environment. However, since sensory data is noisy, not all prediction errors represent
meaningful deviations from predicted states. Therefore, the extent to which predictions are
updated depends on the assumed precision of the prediction error relative to the prediction
itself. Next to updating the internal model to better match future sensory input, predic-
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tion errors can also be minimized by active inference (Friston, 2010). Action selection in
active inference involves an alternative mechanistic proposal to Bayesian decision theory
(subsection 1.2.2). Instead of explicit cost-functions, the information about costs is inte-
grated into priors about future states and the action that minimizes surprise (free energy)
is selected (Friston et al., 2012). Actions are initiated that are aimed at bringing future
sensory input more closely to the predicted one. These actions can take on different forms
such as volitional movements (e.g., putting on a jacket when core temperature decreases)
or physiological processes (e.g., cutaneous vasoconstriction).

In summary, Bayesian predictive coding describes a possible algorithmic implementa-
tion of Bayesian inference. While Bayesian inference describes how the brain could compute
the expected sensory input, it does not offer any suggestions on how this is implemented
on an algorithmic level. Here, predictive coding comes into play by describing how efficient
message passing could be implemented by only transmitting prediction errors instead of
the signal itself. Thus, while Bayesian inference can be seen as describing the computation
itself, predictive coding is an algorithmic scheme that next to Bayesian inference can also
serve other computational goals (Aitchison and Lengyel, 2017).

The different computational quantities derived from Bayesian theories of brain function
offer a way to investigate processing of bodily signals in the brain and alterations in these
processes have been suggested to play a role in the emergence of PPS, discussed in the
next section.

1.2.5 A Bayesian brain perspective on PPS
The Bayesian brain theory proposes that perception is not a direct representation of the
actual real world processes but always a combination of model-based predictions (prior)
and sensory input (likelihood). Optical illusions, such as Adelson’s Checkerboard illusion
(see Figure 1.1), are an impressive example in the exteroceptive 3 domain, where prior
knowledge strongly biases perception away from actual sensory input.
Here, square A is perceived darker than square B, even though both squares are identical
copies of each other, i.e., lead to the same sensory input. Prior knowledge of how a
checkerboard is arranged and how shadows change the intensities of colors, leads to the
construction of a perception that aligns with this model of the world. Thus, people usually
perceive both squares as being different. Even if this illusion is explained and the actual
physical reality is known, i.e., both squares are identical copies of each other, the illusion
remains the perceived reality.

There is no reason to believe that such extremes do not occur for interoception, resulting
in symptom perception even though sensory input does not signal any pathophysiological
processes. This perspective has several important implications. First, symptoms are per-
ceived in the same way, independently of whether they arise due to sensory input signalling
pathophysiological processes or due to incorrect models about real world processes, man-

3Exteroception refers to inference processes of external states in the environment, while interoception
refers to inference of body states (Craig, 2002).
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Figure 1.1: Adelson’s Checkerboard illusion (Adelson, 1995). Square A is perceived as
darker than square B by most people. However, square A is an identical copy of square
B, which is illustrated with the bars on the right. Even when this knowledge about real
world states is available, square A and B are still perceived differently when looking at the
left side.

ifesting as aberrant expectations or prior beliefs in the brain. Second, the example of the
optical illusion demonstrates that explicit knowledge about the actual real world states
(’Both squares A and B are identical copies of each other’) does not alter perception,
highlighting that priors are mostly outside volitional control.

According to Bayesian inference and decision theory, the brain can optimally infer and
regulate bodily states if prior and likelihood are based on an internal model that adequately
describes relevant real world processes and if the inferred state is integrated with a function
representing context-specific costs. This would require that the brain maintains a correct
generative model, which it fully uses in the inference process. However, the brain might
not have been able to learn the correct generative model. Recent theories have cast PPS
in a Bayesian framework and have suggested that symptoms can arise due to incorrect
internal models that lead to failures in inference and/or control of bodily states.

A common explanatory approach is that aberrant prior beliefs with excessively high
precision can bias symptom perception away from actual sensory input. This can lead to
symptoms in the absence of any pathophysiological process or organo-structural damage
(Henningsen et al., 2018a; Petzschner et al., 2017; Pezzulo et al., 2019; Van Den Bergh et
al., 2017). Such priors might arise, for example, due to associative learning. If a contextual
cue (e.g., walking up a flight of stairs) is frequently paired with a specific symptom (e.g.,
an asthma attack), a strong association is formed between both. The more often this
combination is experienced, the stronger the assumed association. This can lead to a
highly precise prior of experiencing a bodily symptom when this cue is present. If this
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association and thus the assumed precision of the prior becomes excessively high, the prior
might be sufficient to trigger symptoms, even when no sensory input is supporting this
(Van Den Bergh et al., 2017). Studies on pain placebo and nocebo (Jensen et al., 2015)
support the notion that such learnt associations and formation of a prior can occur outside
of conscious perception.

While most explanatory accounts for PPS focus on aberrant priors, an incorrect map-
ping between states and sensory input (likelihood function) could also lead to the emer-
gence of symptoms. For example, an overly strong precision weighting of sensory input has
been hypothesized to explain atypical features of perception in people with autism (Brock,
2012). A highly precise likelihood function would decrease the effect of prior knowledge
which impedes generalization and interpretation of sensory input.

Similarly, maladaptive cost functions could assign disproportionately high or low costs
to specific actions. The decision to exert an effort to perform a physical or cognitive
task depends on the expected costs. For example, perceived fatigue has been theorised
to increase these costs, which favors a strategy to reduce physical and cognitive effort
(Matthews et al., 2023; Massar et al., 2018; Richter et al., 2016). While these studies have
investigated volitional behaviours, such shifts in cost functions might also affect actions
outside volitional control and could explain, for example, increased physiological stress
responses.

In summary, failures in correctly maintaining and updating internal models and cost
functions will affect inference and control of body states and can lead to symptom percep-
tion and maladapted behaviour in the absence of any sensory input signalling pathology.

1.3 Methodology
One way to gain insights into the nature of internal models is to experimentally perturb
a bodily state and measure the neural (e.g., brain imaging), behavioural (e.g., motor be-
haviour) and/or perceptual (e.g., symptom reports) response to this perturbation. In the
next sections, two experimental paradigms are introduced that measure the behavioural
(eye-head paradigm and rebreathing paradigm) and perceptual (rebreathing paradigm) re-
sponse to perturbation of body states. By doing so, they enable to investigate whether
internal models capture relevant real-world processes and thus allow to correctly adapt
symptom perception and behaviour.

1.3.1 The eye-head paradigm
The eye-head paradigm (Lehnen et al., 2003) allows to investigate eye-head motor con-
trol and the involvement of internal models. During the experiment, participants perform
large gaze shifts, involving eye and head movement, to flashing light targets in a dark
room. During a gaze shift, eye and head first move together. Once gaze has reached
the target, the head usually continues to move and slightly overshoots and then oscillates
around the target. By counteracting the head movement with eye movements into the

13



opposite direction, gaze is kept stable. During the experiment, participants’ eye as well as
head position and velocity are recorded. In addition, a helmet with attached weights, that
participants have previously never seen or worn, can be introduced that artificially alters
the head moment of inertia and thus perturbs the estimate of head characteristics and
movement. This leads to incorrect movement planning since the internal model does not
correctly capture these altered head characteristics and manifests as increased head oscilla-
tions at the end of gaze shifts, also in healthy participants. Patients with organo-structural
vestibular deficits, i.e., bilateral vestibular loss and cerebellar ataxia, show increased head
oscillations already during natural conditions, which are further exacerbated when head in-
ertia is increased. While healthy participants and patients with cerebellar ataxia were able
to reduce head oscillations under increased head inertia over time, patients with bilateral
vestibular loss failed to do so (Sağlam and Lehnen, 2014; Sağlam et al., 2014; Lehnen et al.,
2019). This highlights that cerebellar as well as vestibular inputs are necessary for head
stabilization during gaze shifts and that vestibular input is needed to adapt to changing
contexts. However, even though vestibular input in patients with functional dizziness is
intact, their head oscillations are increased (Regnath et al., 2024), similarly to patients
with organo-structural impairments (Lehnen et al., 2019). The potential transdiagnostic
role of head oscillations as a marker of incorrect sensorimotor processing has been estab-
lished by showing increased head oscillations also in patients with functional movement
disorders (Regnath et al., 2024) and irritable bowel (Schröder et al., 2022), however, not
pain (Regnath et al., 2023). These results point towards a general sensorimotor processing
dysfunction in patients with functional disorders, but do not allow to specify the exact
mechanism underlying the observed head oscillations, i.e., whether they arise due to incor-
rect internal models or sensory processing.

In chapter 2 we addressed this question by investigating gaze stabilization in patients
with functional dizziness. Several kinds of sensory feedback, namely visual, vestibular and
proprioceptive feedback, play a role in gaze stabilization. In particular, the vestibulo-
ocular reflex (VOR) enables direct counteracting of passive head movements with the
appropriate eye movement. In addition, feedforward models allow to plan eye-movements
that counteract planned head movements (King and Shanidze, 2011; Straka and Chagnaud,
2017). Large gaze shifts involving eye and head movement include two different phases
(Sağlam and Lehnen, 2014). During the so-called ’counter-rotation’ (CR) phase, model-
based motor planning initiates eye movements that actively counteract the expected head
overshoot when reaching the gaze target, in addition to the VOR. During the subsequent
’oscillation phase’ (OSC), small, unwanted head oscillations around the gaze target are
mainly counterbalanced by feedback signals driving the VOR. Sağlam and Lehnen (2014)
have validated the different nature of these gaze stabilization phases and provided further
evidence for the involvement of model-based feedforward mechanisms contributing to gaze
stabilization against planned head movements in the CR phase. They demonstrated that
healthy participants can stabilize gaze similarly well in the CR and OSC phase. In contrast,
patients with chronic bilateral vestibular loss, i.e., without vestibular input, performed
worse in the OSC than in the CR phase. Due to the missing vestibular input, they were
not able to counteract unexpected head movements, while they were still able to stabilize
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gaze by using internal feedforward models.
Since patients with functional dizziness exhibit a normal VOR, we hypothesized that

they can stabilize gaze in the oscillation phase, but show deficits in the internal model-based
counter-rotation phase.

1.3.2 The rebreathing paradigm
A well-validated experimental paradigm to study symptom perception and breathing be-
haviour in response to manipulations of the respiratory body state is Read’s rebreathing
paradigm (Read, 1967).

During the experiment, participants either breathe normal room air or rebreathe from
a bag filled with 5% CO2 and 95% O2. Participants are blinded in respect to the actual
source of breathed air. During rebreathing, inhaled CO2 concentration and thus blood pH
gradually increase. This is detected by chemosensors and leads to an increase in breathing
rate and depth to get rid of excess CO2, which is usually accompanied by breathlessness.

The experiment has previously been used to study symptom perception in high symp-
tom reporters in the general population (Bogaerts et al., 2005), in patients with functional
breathlessness (Bogaerts et al., 2010), chronic fatigue and fibromyalgia (Van Den Houte
et al., 2018), as well as in patients with mental health disorders including anxiety, de-
pression and eating disorders (Lapidus et al., 2020). All studies showed an increased
symptom response that exceeds the physiological and behavioural response, highlight-
ing the potential of this paradigm to uncover transdiagnostic and disease-independent
mechanisms of PPS that are specifically related to the symptom generating processes.

1.4 Aim of this Thesis
To date, a mechanistic understanding of PPS that can inform treatment and contribute
to the development of positive diagnostic markers is still lacking. This especially concerns
PPS that are currently not explained by a reproducible pathophysiological process. This
thesis aims to contribute towards such a mechanistic understanding of PPS by investigating
two different examples of PPS, functional dizziness and post COVID-19 condition. In
particular, it investigates whether these diseases can be explained in a Bayesian framework
that assumes dysfunctions in correctly maintaining and adapting internal models and cost
functions.

In our first study (chapter 2), we asked whether gaze instability occurs due to dysfunc-
tional internal models or whether these deficits are due to sensory, reflex-driven mecha-
nisms. In the second study (chapter 3), we investigated whether patients with post-COVID
fatigue show deficits in adapting breathing behaviour and/or symptom perception when the
respiratory body state is perturbed. We further asked whether such potential dysfunctions
are similar to the ones previously observed in different functional disorders, thereby inves-
tigating a possible transdiagnostic feature. In chapter 4, a theoretical model of breathless-
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ness perception is introduced that allows to test specific theories of how breathing-related
sensory signals could lead to the emergence of breathlessness perception using a Bayesian
framework.

In summary, this dissertation project aimed to answer the following questions:

1. Can functional dizziness and post COVID-19 condition be cast in an explanatory
framework of the Bayesian brain?

2. Is gaze instability in functional dizziness due to erroneous internal models?

3. How can processing of respiratory signals lead to breathlessness perception in the
absence of lung impairment?

4. Do patients with post COVID-19 condition show deficits in breathing control and/or
symptom perception? How could these be explained in a Bayesian framework?

5. Is there a transdiagnostic mechanism underlying post COVID-19 condition and func-
tional disorders?
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Chapter 2

Functional dizziness: Can
dysfunctional internal models explain
gaze instability?

The current chapter encloses the research article entitled "Unstable Gaze in Functional
Dizziness: A Contribution to Understanding the Pathophysiology of Functional Disorders".
The article is published in Frontiers in Neuroscience.

2.1 Summary
Patients with functional dizziness are able to stabilize gaze during sensory feedback driven
phases, but show marked deficits in stabilizing gaze when active, model-based planning of
coordinated eye and head movement is required. This finding makes two major contribu-
tions: a) it shows that sensory processing of vestibular input is intact, but dysfunctions
in gaze stabilization result from model-based motor planning which b) holds potential
for an easy to measure, non-invasive and objective marker of dizziness in the absence of
underlying organ pathology.

2.2 Authors
Lena Schröder, Dina von Werder, Cecilia Ramaioli, Thomas Wachtler, Peter Henningsen,
Stefan Glasauer, Nadine Lehnen

17



fnins-15-685590 July 20, 2021 Time: 11:50 # 1

ORIGINAL RESEARCH
published: 20 July 2021

doi: 10.3389/fnins.2021.685590

Edited by:
Julian Keil,

University of Kiel, Germany

Reviewed by:
Evangelos Anagnostou,

National and Kapodistrian University
of Athens, Eginition Hospital, Greece

Natela Shanidze,
Smith-Kettlewell Eye Research

Institute, United States

*Correspondence:
Lena Schröder

Lena.Schroeder@tum.de

Specialty section:
This article was submitted to

Perception Science,
a section of the journal

Frontiers in Neuroscience

Received: 25 March 2021
Accepted: 16 June 2021
Published: 20 July 2021

Citation:
Schröder L, von Werder D,

Ramaioli C, Wachtler T, Henningsen P,
Glasauer S and Lehnen N (2021)

Unstable Gaze in Functional
Dizziness: A Contribution

to Understanding
the Pathophysiology of Functional

Disorders.
Front. Neurosci. 15:685590.

doi: 10.3389/fnins.2021.685590

Unstable Gaze in Functional
Dizziness: A Contribution to
Understanding the Pathophysiology
of Functional Disorders
Lena Schröder1,2,3* , Dina von Werder1,2,4, Cecilia Ramaioli1, Thomas Wachtler2,3,
Peter Henningsen1, Stefan Glasauer4,5 and Nadine Lehnen1,2,4

1 Department of Psychosomatic Medicine and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich,
Munich, Germany, 2 Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München,
Planegg-Martinsried, Germany, 3 Department of Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried,
Germany, 4 Institute of Medical Technology, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany,
5 Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany

Objective: We are still lacking a pathophysiological mechanism for functional disorders
explaining the emergence and manifestation of characteristic, severely impairing
bodily symptoms like chest pain or dizziness. A recent hypothesis based on the
predictive coding theory of brain function suggests that in functional disorders, internal
expectations do not match the actual sensory body states, leading to perceptual
dysregulation and symptom perception. To test this hypothesis, we investigated
the account of internal expectations and sensory input on gaze stabilization, a
physiologically relevant parameter of gaze shifts, in functional dizziness.

Methods: We assessed gaze stabilization in eight functional dizziness patients and
11 healthy controls during two distinct epochs of large gaze shifts: during a counter-
rotation epoch (CR epoch), where the brain can use internal models, motor planning,
and resulting internal expectations to achieve internally driven gaze stabilization; and
during an oscillation epoch (OSC epoch), where, due to terminated motor planning, no
movement expectations are present, and gaze is stabilized by sensory input alone.

Results: Gaze stabilization differed between functional patients and healthy controls
only when internal movement expectations were involved [F (1,17) = 14.63, p = 0.001,
and partial η2 = 0.463]: functional dizziness patients showed reduced gaze stabilization
during the CR (p = 0.036) but not OSC epoch (p = 0.26).

Conclusion: While sensory-driven gaze stabilization is intact, there are marked, well-
measurable deficits in internally-driven gaze stabilization in functional dizziness pointing
at internal expectations that do not match actual body states. This experimental
evidence supports the perceptual dysregulation hypothesis of functional disorders and
is an important step toward understanding the underlying pathophysiology.

Keywords: functional dizziness, pathophysiology, predictive coding, internal models, somatic symptom disorder,
bodily distress disorder
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INTRODUCTION

A hallmark of functional disorders is the major discrepancy
between patients’ very real suffering from bodily symptoms,
like fatigue, bowel irritation, chest pain, or dizziness, and
an unimpressive exam and clinical workup, which does not
account for the symptoms. There is no clear pathophysiological
correlate (Baizabal-Carvallo et al., 2019; Drane et al., 2020;
Martin and Van Den Bergh, 2020) matching patients’ disability,
distress, and lowered quality of life, which is often even more
impaired than in patients with corresponding organic disorders
(Carson et al., 2011; Vroegop et al., 2013). Diagnosis and,
consequently, adequate treatment are typically delayed by many
years. Such symptoms are common: dizziness, for example,
has a lifetime prevalence of 30% (Neuhauser, 2009), and in
20–50% of the affected patients, symptoms are of functional
nature (Staab and Ruckenstein, 2007; Stone et al., 2010). This
comes with high psychiatric comorbidity (Eckhardt-Henn et al.,
2003; Wiltink et al., 2009; Lahmann et al., 2015) and increased
healthcare utilization (Wiltink et al., 2009). Traditionally, the
absence of an explanatory organic impairment is part of
the diagnostic criteria of functional disorders (e.g., in the
current European diagnostic system ICD-10, World Health
Organization, 2004). Today, we experience a major paradigm
shift in clinical medicine, with positive signs becoming more
and more important in the diagnosis of functional disorders
(American Psychological Association, 2013; Stone, 2016; Stone
et al., 2020). Within this paradigm shift, identifying a—
potentially unifying—pathophysiological mechanism is of high
clinical relevance, as it would help to improve the positive
definition, swift diagnosis, and treatment of functional disorders.

A recent hypothesis reflecting this paradigm shift suggests
that functional disorders emerge and manifest as a consequence
of “perceptual dysregulation” in the central nervous system
(CNS; Edwards et al., 2012; Van den Bergh et al., 2017;
Henningsen et al., 2018; Pezzulo et al., 2019). Within the
framework of predictive coding, central processing of incoming
sensory information is biased by a mismatch resulting from
incorrect internal expectations leading to symptom perception
(Figure 1). Providing empirical validation of this hypothesis
has been a current effort: several studies report “symptom-like”
somatic illusions that could be evoked in healthy participants by
experimentally altering internal expectations (e.g., Iodice et al.,
2019; Bräscher et al., 2020; Wolters et al., 2020). Moreover,
experimentally induced symptoms are more persistent in patients
with functional disorders, uncoupled from corresponding
sensory input (Bogaerts et al., 2010; Van Den Houte et al.,
2018). The first evidence for altered sensorimotor processing
is provided by our prior study investigating head control in
patients with functional dizziness (Lehnen et al., 2019). When
using combined eye–head movements to shift gaze to a new visual

Abbreviations: CNS, central nervous system; CR, counter-rotation; HITD-FT,
head impulse testing device—functional test; ICD-10, International Statistical
Classification of Diseases and Health Related Problems 10; LED, light-emitting
diode; MRI, magnetic resonance imaging; OSC, oscillation; rmANOVA, repeated-
measures analysis of variance; SEM, standard error of the mean; vHIT, video head
impulse Test; VOR, vestibulo-ocular reflex.

FIGURE 1 | Schematic illustration of symptom emergence in the predictive
coding framework on the example of vertigo/dizziness. Predictive coding
understands perception as a constant interplay between incoming sensory
information and internal expectations about such sensory input. In balance
perception, for example, the actual sensory consequences of movement are
processed by the visual, vestibular, and proprioceptive systems. Expectations
about sensory consequences of movement are derived from internal models
about the world and the body that constitute central nervous system
(CNS)-internal representations of previously learned or experienced causal
relations within the body, the environment, and their interaction. Ideally, such
internal models match reality; i.e., they are a valid and reliable representation
of the true causal relations. If this is not the case, resulting expectations about
sensory input do not match the actual sensory activation. This mismatch, if
not used as error signal to update internal models, can lead to persistent
symptom experience, i.e., vertigo/dizziness.

target, functional dizziness patients showed more pronounced
head oscillations, a marker for the incongruency between sensory
input and expectations in sensorimotor planning. This is a
measurable marker clearly distinguishing functional patients
from healthy controls. However, it does not identify the
erroneous site within sensorimotor processing, which could be
either faulty internal models or sensory input.

In the current paper, we assess a physiologically relevant
parameter (gaze stability) in functional dizziness patients that
helps to uncover this site. In our assessment, we make use of
the fact that gaze stability in the context of an eye–head gaze
shift to a new visual target is achieved in two epochs (Figure 2):
first, a counter-rotation (CR) epoch, which is part of the planned
movement toward the target, which means that efference copies
and internal models can help to stabilize gaze (e.g., Roy and
Cullen, 2004; Shanidze et al., 2010; King and Shanidze, 2011);
second, an oscillation (OSC) epoch, where no self-initiated
movements are expected, and stabilization thus depends on
sensory feedback alone, i.e., mainly the vestibulo-ocular reflex.

Internal model and sensory input contribution to these two
gaze stabilization epochs have been validated in a previous study
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FIGURE 2 | Movement sequence over the course of a single 80◦ gaze shift. Shown are position (A) and velocity traces (B) of experimentally recorded eye and head
movements during one exemplary 80◦ gaze shift as well as computed gaze movement. Gaze, i.e., the position of the eyes in space, is composed of eye position
(recorded in relation to the head) and head position (recorded in relation to space). An 80◦ gaze shift requires combined eye–head movements and follows a typical
sequence (C), including two distinct gaze stabilization epochs. Beginning from the target position of the previous trial, quickly after the flashed target light (0, gray bar
in A,B, and red spot in C) is extinguished, eyes and head begin to move jointly toward the remembered target position (dark spot in C) in a coordinated and
voluntarily planned way, representing the start of the gaze shift movement (1). Due to the active nature of head motion here, the vestibulo-ocular reflex (VOR) is
suppressed (e.g., Angelaki and Cullen, 2008). When the gaze movement toward the target is finished, i.e., the eyes have reached maximum amplitude, but the head
continues to move toward the target, the eyes counteract the continuing head movement by a counter-rotation (CR) in order to achieve stable gaze in this first
stabilization epoch. Like the joint eye and head movement in epoch 1, the coordinated eye–head movements in this CR epoch are part of the active gaze shift,
where movements are voluntarily planned, initiated, and executed to shift gaze toward the target position. Therefore, for gaze stabilization, motor planning is used to
expect the sensory consequences of the head movement (e.g., Shanidze et al., 2010; King and Shanidze, 2011). The contribution of motor planning information on
gaze stabilization in the CR epoch of this experimental paradigm has been demonstrated previously in bilateral vestibular loss patients (Saǧlam and Lehnen, 2014).
Due to ongoing active head motion here, VOR is still suppressed in the CR epoch, although suppression is likely to be attenuated toward the end of the active
movement (e.g., Lefèvre et al., 1992). When the head has finished its motion toward the target position, the active movement is completed (3). Now, the second
stabilization epoch begins, where the eyes counteract small, unexpected passive head oscillations, further provoked by experimentally increased head inertia, which
do not emerge as a consequence of motor planning of the active gaze shift. In this oscillation (OSC) epoch, in contrast to the CR epoch, no head movements are
expected. Compensatory eye movements are driven by sensory feedback loops, mainly the VOR that is not suppressed anymore.

using the same experimental design (Saǧlam and Lehnen, 2014):
patients with complete bilateral vestibular loss show better gaze
stabilization in the CR epoch than the OSC epoch, confirming
the contribution of internal model and efference copy use in
this stabilization epoch. Based on the “perceptual dysregulation”
theory (Edwards et al., 2012; Van den Bergh et al., 2017;
Henningsen et al., 2018; Pezzulo et al., 2019), during large eye–
head gaze shifts, we expect functional dizziness patients to rely
on incorrect internal models of their head, thus showing unstable
gaze during the CR, but not the OSC epoch.

MATERIALS AND METHODS

This study investigates a dataset from patients with functional
dizziness that has also been used in a prior publication (Lehnen
et al., 2019). In this former publication, only head movement

characteristics were analyzed. Now, we analyze further
parameters from this dataset, as described in the following.

Subjects
Eight patients with functional dizziness (aged 35 ± 13 years,
mean ± SD, five females) that corresponded to the criteria for
persistent postural-perceptual dizziness of the Bárány Society
(Staab et al., 2017) and 11 age- and gender-matched healthy
subjects (aged 32 ± 6 years, mean ± SD, six females) were
included. Functional dizziness patients were recruited from
the German Center for Vertigo and Balance Disorders, a
tertiary vertigo/dizziness center of the University Hospital
of Munich where they presented with permanent dizziness
symptoms (>3 months). Only patients without any known
prior or current structural peripheral or central vestibular
dysfunction were included. History and an extensive clinical
workup including neurological exams, neuro-ophthalmological
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and neuro-otological exams, caloric irrigation, subjective visual
vertical, laser ophthalmoscopy, posturography, video head
impulse test (vHIT), head impulse testing device—functional test
(HITD-FT; after Ramaioli et al., 2014), and cranial magnetic
resonance imaging (MRI) did not show any organ pathology.
Healthy subjects, employees of the University Hospital of Munich
who voluntarily participated in the study, reported no history of
balance disorders and had a normal neurological exam. To ensure
a structurally intact vestibular system on the day of examination,
a vHIT was conducted prior to study conduction according
to the EyeSeeCam vHIT manual (EyeSeeTec GmbH, Munich,
Germany), revealing no deficits in functional dizziness patients
[VOR gain at 0.06 s: left side: 1.02 ± 0.03, right side: 0.96 ± 0.04,
mean, and standard error of the mean (SEM)] as well as healthy
controls (VOR gain at 0.06 s: left side: 1.02 ± 0.02, right side:
0.98 ± 0.01).

All subjects gave their written consent prior to the study’s
data collection. The study protocol was approved by the Ethics
Committee of the University of Munich, the study design is in
line with the Declaration of Helsinki.

Experimental Procedure
Participants performed large horizontal (combined eye–head)
gaze shifts toward visual targets, which were flashed in complete
darkness (analogously to Lehnen, 2006). Subjects were seated in
front of a desk at 1-m distance, with five light-emitting diodes
(LEDs) placed at eye level in a line on the desk (one central and
four peripheral LEDs, in 0.7- and 0.83-m distance left and right to
the central LED), so that target eccentricity amounted to 0◦, 35◦,
and 40◦ to the left and right with respect to participant’s middle
head position. One experimental round consisted of 52 gaze
shifts, with the target lights flashing consecutively in randomized
order (amounting to gaze shifts of 35◦, 40◦, 70◦, 75◦, and 80◦

magnitude) and with randomized time interval between flashing
lights (1.2–1.8 s) in order to prevent anticipation. Each target
light was flashed for less than 0.1 s to avoid visual feedback.
Subjects were instructed to direct their gaze toward the flashing
LEDs naturally, by engaging eye and head movements, and to
keep final gaze position until the next target flash occurred.
Every subject performed two rounds of the experiment: one in
the natural condition (unweighted) and one with experimentally
altered head characteristics (weighted). For the latter condition, a
helmet with eccentrically placed masses on both sides was firmly
attached to the subjects’ heads, increasing the head moment of
inertia 3.3-fold. All participants were unexperienced with respect
to the experimental design and had never worn the helmet before.
Eye and head movements were recorded with the EyeSeeCam
measuring system (EyeSeeTec GmbH, Munich, Germany), by
tracking movements of the left eye with video-oculography and
head movements with 3D inertial sensors (resting state noise 0◦–
0.3◦/s, SD 0.07◦/s), placed in the middle of the forehead, both
with a sampling rate of 220 Hz.

Data Analysis
Data were analyzed offline using MATLAB (MathWorks, Natick,
MA, United States). Head velocity in the horizontal plane
was directly derived from the horizontal inertial sensor of the

EyeSeeCam measuring system. Head position was computed as
the integral of head velocity over time for each time point,
normalized by initial head position, where participants were
asked to fixate the central LED for 10 s. Eye position was
calculated from pupil rotation vectors, also normalized by initial
eye position. Eye velocity was computed as the derivative of
eye position at each time point. Both eye and head position
and velocity were filtered with a low-pass Gaussian filter (cutoff
frequency 20 Hz). Gaze position and velocity were then computed
by adding up eye and head position and velocity, respectively, so
that gaze (eye in space) corresponded to the sum of eye (eye in
head) and head (head in space). Continuous data streams were
cut into single trials, beginning with the LED onset and ending
0.1 s after the next LED onset, so that each trial represented one
gaze shift. Only gaze shifts in response to 75◦ and 80◦ jumps (43
target trials) and fulfilling the requirement of a large gaze shift
(i.e., measured amplitude of >40◦ amplitude) were considered
for the analysis. To remove saccades during CR and OSC epochs,
saccades were detected automatically with a gaze peak velocity
criterion of 30◦/s and with saccade start and end being defined
as the last minimum before and the next minimum after gaze
velocity peaks, respectively. Saccade detection was then inspected
visually and corrected manually, by adding undetected saccades
(<1% for all subjects) as well as correcting the detected minima
(<1% for all subjects). Eye and head velocities during a saccade
window were removed from the analysis.

Gaze gains were defined as the amount of compensatory eye
movement in respect to head movement and were calculated
as the slope of the linear regression between eye and head
velocity profiles using the MATLAB built-in function robustfit
(analogously to Saǧlam and Lehnen, 2014). Gaze gains were
computed for two gaze stabilization epochs: the internally-
driven CR epoch as part of the planned gaze shift, using
internal expectations and sensory information for stabilization,
and the sensory-driven OSC epoch for sensory-dependent gaze
stabilization after gaze shift end. CR epoch begins when the
eye has reached maximum amplitude, but the head continues
to move toward the target (Figure 2, picture 2). This was
implemented by using the time window between the eye
maximum eccentricity point and the point where head velocity
reached 0◦/s. OSC epoch begins when the active head movement
has been terminated but the head continues to move passively,
i.e., due to unexpected OSCs induced by increased head inertia
(Figure 2, picture 3). We defined this epoch as the time
window from the first zero crossing of head velocity until
0.1 s after the next LED flash. This was done to make sure
that we harvest the data as long as possible. For both epochs,
the resulting gain displays the amount of compensatory eye
movement in relation to the head movement, with zero reflecting
no compensatory eye movement at all and one reflecting perfect
compensation. Only gaze shifts where the point of eye maximum
eccentricity as well as the first head zero crossing could be
detected were considered for the analysis. Of 43 gaze shifts in
total, 34 ± 2 (mean ± SEM) and 33 ± 2 trials were taken
into the analysis of mean CR and OSC gains, respectively, with
no significant group differences [Wilks’ lambda (1,17) = 0.79,
p = 0.15].
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Statistical Analysis
The Shapiro–Wilk test was used for normality assessment in
all factor groups. Differences in gaze gains for CR epoch and
OSC epoch (within-factor epoch), unweighted and weighted
condition (within-factor weight), and gaze shifts to the left
and right side (within-factor side) were analyzed with a
2 × 2 × 2 repeated-measures ANOVA (rmANOVA). Group
differences were analyzed by adding a between-subject factor
(group: healthy subjects and patients with functional dizziness)
to the rmANOVA. After a significant effect, for post hoc
testing, Bonferroni-corrected comparisons were computed for
the respective conditions. Significance levels were the same for
each statistical test (p = 0.05).

Note that there are differences in gaze gains from the left and
right side [main effect side: F(1,17) = 43.4, p < 0.001, and partial
η2 = 0.72], which are known from vHIT testing (Park et al.,
2019) and attributed to the asymmetric camera position in the
EyeSeeCam system. Although there was a significant interaction
of gaze shift side with group in the rmANOVA [side ∗ group
interaction: F(1,17) = 9.96, p = 0.006, and partial η2 = 0.37], in
post hoc testing, those group differences did not reach statistical
significance for neither the left (p = 0.055) nor the right side
(p = 0.44). We therefore consider gaze gain alterations to the
left and right side as similar for all conditions, so that factor and
group comparisons should not be affected. For better readability,
gaze gains in the written text are reported for gaze shifts to
the left side only.

RESULTS

To investigate gaze stabilization during combined eye–head
gaze shifts, we computed the amount of compensatory eye
movements for gaze stabilization during two distinct epochs
that either involve motor planning and internal expectations
(internally-driven CR epoch) or not (sensory-driven OSC epoch).
Figure 3 shows representative eye and head movements during
such gaze shifts for one healthy participant (upper panels) and
one functional dizziness patient (lower panels) in the natural
condition (left) and with increased head inertia (right). In the
natural, unweighted condition, the healthy participant performed
compensatory eye movements in the CR epoch that counteract
head movements and stabilize gaze. Increasing the head inertia
led to a decrease of compensatory eye movements in the healthy
subject. In the functional dizziness patient, compensatory eye
movements in the CR epoch were already smaller in the natural,
unweighted condition and further decreased with increased
head inertia. In the OSC epoch, compensatory eye movements
did not differ between the healthy subject and the functional
dizziness patient.

These characteristics were found for all subjects (Figure 4).
During CR epoch, healthy subjects showed a gain of 0.97 ± 0.03
(mean ± SEM) in the unweighted condition and 0.87 ± 0.04
in the weighted condition, and functional dizziness patients
displayed a gain of 0.83 ± 0.04 in the unweighted and 0.75 ± 0.03
in the weighted condition. In contrast, during OSC epoch, gaze
gains of healthy controls were 0.96 ± 0.02 in the unweighted
and 0.97 ± 0.03 in the weighted condition and 0.95 ± 0.03

and 0.98 ± 0.04 in the unweighted and weighted condition of
functional patients, respectively. RmANOVA confirmed different
gaze gains for the CR and OSC epoch [main effect epoch:
F(1,17) = 67.67, p < 0.001, and partial η2 = 0.80] influenced
by group [epoch ∗ group interaction: F(1,17) = 14.63, p = 0.001,
and partial η2 = 0.463]. Post hoc testing revealed that functional
dizziness patients displayed significantly lower gaze stabilization
than healthy subjects in the CR epoch (p = 0.036) but not the
OSC epoch (p = 0.26). Increasing the head inertia influenced
gaze stabilization in dependence of the epoch [weight ∗ epoch
interaction: F(1,17) = 20.24, p < 0.001; and partial η2 = 0.54].
Post hoc tests showed reduced gaze stabilization with increased
head inertia in the CR epoch (p < 0.001), but not in the OSC
epoch (p = 0.11).

DISCUSSION

This study reveals marked deficits in gaze stabilization in
functional dizziness patients. The deficits are only present during
the internally-driven CR epoch of gaze shifts, where, based on
motor planning and internal models, CNS expectations about
the sensory outcome of the movement are used additionally
to sensory input to stabilize gaze. During sensory-driven
OSC epoch, when stabilization is only based on sensory
input, gaze is stable.

As far as we know, this is the first study demonstrating a
direct physiologically relevant pathology of functional dizziness.
Importantly, this deficit is demonstrated in patients with
a structurally fully intact peripheral and central vestibular
system, as assessed by neurological, neuro-otological, and neuro-
ophthalmological exams and an extensive workup, including
subjective visual vertical, laser ophthalmoscopy, posturography,
caloric irrigation, vHIT, HITD-FT, and cranial MRI. In analogy
to the intact stabilization during the OSC epoch, vHIT, i.e.,
vestibular-driven ocular stabilization response to passive high-
frequency head movements, was intact in these patients, also on
the day of study.

Remarkably, however, during the CR epoch, where functional
dizziness patients can use expectations together with sensory
feedback for gaze stabilization, their deficits become visible
and measurable: the eyes do not sufficiently counter-rotate to
compensate for the head movement. As a consequence, gaze
is not stable, but drifting. This effect—already present in the
natural, unweighted condition—becomes even more pronounced
when the head inertia is increased. In this weighted condition,
when alterations in head characteristics are not yet reflected in
CNS-internal representations, expectations are derived from the
unweighted head internal model. Thus, wrong information is
used to drive compensatory eye movements, leading to reduced
gaze stabilization.

These findings demonstrate the significant role of both intact
processing of vestibular feedback and expectation formation
based on correct internal models, during eye–head gaze shifts.
Their contribution over the course of the gaze shifts has
been previously demonstrated within the same experimental
paradigm, where patients with complete bilateral vestibular loss
show gaze stabilization in the CR epoch despite missing sensory
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A B

D
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FIGURE 3 | Filtered raw data of experimental movement recordings with illustrated gain computation. (A–D left) Shown are representative eye (light) and head (dark)
velocity traces of one typical healthy subject (A,B) and one typical functional patient (C,D) for the unweighted (natural, A,C) and weighted condition (increased head
inertia, B,D). The dashed horizontal lines display the zero line. Head oscillations—and counteracting eye movements—are illustrated in the window with increased
y-axis scale (note that the functional dizziness patient display more pronounced head oscillations than the healthy participant, even in the natural condition. Group
analysis confirming these differences have been published in Lehnen et al., 2019). (A–D right) Shown is eye velocity plotted against head velocity (gray circles) for
counter-rotation (CR) and oscillation (OSC) gain computation for one representative gaze shift. Gaze gains are displayed as the slope of the solid lines, which
represent the linear regression of eye velocity in head depending on head velocity in space. Perfect gaze stabilization, i.e., a gaze gain of 1, is indicated by the
dashed line. The healthy subject shows intact CR-gaze stabilization in the unweighted condition, which is reduced by increasing the head inertia in the weighted
condition. The functional patient displays reduced CR-gaze stabilization in the unweighted condition, which is further reduced in the weighted condition. During OSC
epoch, both the healthy subject and the functional patient show intact gaze stabilization.

BA C

FIGURE 4 | Results of group analysis (controls n = 11, patients n = 8). (A) Shown are gaze gains (mean and SEM) for all factor steps of the rmANOVA, i.e., gains to
the left vs. right side (within-factor side, left group vs. right group of bars), unweighted (U) vs. weighted (W, within-factor weight, left vs. right bar within each bar
group), in the CR vs. OSC epoch (within-factor epoch, upper vs. lower bar plot) for the healthy controls as well as the functional patients (between-factor group, all
bars within solid vs. dashed squares). (B) Shown are gaze gains (mean and SEM) for the group * epoch interaction. Gaze gains differed between healthy controls
and functional patients [F (1,17) = 14.63, p = 0.001, and partial η2 = 0.463]: functional patients displayed smaller gaze gains in the CR (p = 0.036) but not the OSC
epoch (p = 0.26). (C) Shown are gaze gains (mean and SEM) for the weight * epoch interaction. Gaze gains differed between the unweighted and weighted
conditions [F (1,17) = 20.24, p < 0.001; and partial η2 = 0.54], being reduced with weight in the CR (p < 0.001) but not the OSC epoch (p = 0.11).

input (Saǧlam and Lehnen, 2014). Together with the present
results, by using the example of functional dizziness patients, we
are one step closer in locating an erroneous site of perceptual
dysregulation in functional disorders (Edwards et al., 2012; Van
den Bergh et al., 2017; Henningsen et al., 2018; Pezzulo et al.,
2019). While we could provide evidence for a general central

sensorimotor deficit in functional dizziness in a previous paper
(Lehnen et al., 2019), we can now demonstrate first experimental
evidence for an incorrect internal model use that has the potential
to explain symptom experience in functional dizziness patients.

The idea of the role of mismatching information in symptom
experience is central to the explanation of physiological and
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clinical vestibular vertigo. Vertigo is, by definition, a feeling of
unsteadiness or movement, which occurs as a consequence of
conflicting information in the CNS (Dieterich, 2004). Typically,
by using expectations that rely on internal models about the body
and the environment, the CNS establishes congruence between
the different sensory or sensorimotor input sources, enabling
stable positioning in and orientation within the environment.
If the CNS fails to do so, e.g., in motion sickness (Money,
1970; Reason, 1978; Oman, 1982; Yardley, 1991; Oman and
Cullen, 2014), the mismatch between expected and actual sensory
input can elicit typical vertigo/dizziness feelings and nausea
(Figure 1). Here, not only previous sensory experiences influence
the expected sensory input but also higher-order cognitive
motion beliefs, which are linked to certain contexts (Nooij et al.,
2021). From this perspective, functional dizziness displays as
a further dizziness/vertigo appearance, providing legitimation
for the “realness” of symptom experience in patients with
functional dizziness.

Studies investigating the direct pathophysiological
mechanisms of functional dizziness are sparse. However,
looking at imaging studies, several investigations report
structural and functional brain alterations that can be related to
our understanding of the underlying pathological mechanisms
in functional dizziness patients. Structural gray matter decline
(Wurthmann et al., 2017) as well as reduced functional resting
state activity (Li et al., 2020) in functional dizziness patients were
reported for brain areas that are important for spatial orientation
and multisensory vestibular integration. Connectivity studies
also demonstrated reduced resting-state functional connectivity
between visual, vestibular, and spatial cognition areas (Lee et al.,
2018; Li et al., 2020). Importantly, a special role of the cerebellum
is highlighted (Lee et al., 2018; Huber et al., 2020): during a
visual motion task, for example, cerebellar network activity of
functional dizziness patients was reduced, whereas during static
visual scenes, it was increased (Huber et al., 2020).

In our experiment, we were able to evoke unstable gaze in
healthy controls, too: when head inertia was experimentally
increased, our control subjects showed reduced compensatory
eye movements in internally driven CR epoch and drifting
gaze. The fact that creating a mismatch between expectations
and actual sensory input by altering head mechanics is
sufficient to reduce gaze stabilization provides further validation
of our experimental paradigm as well as the supposed
pathophysiological mechanism that underlies functional
disorders. However, how this pathophysiological mechanism
leads to symptom perception, remains to be seen. It is important
to note that, while these findings have the potential to improve
our understanding of “how” functional dizziness symptoms
emerge and manifest, we cannot answer the “why” question of
etiology. Furthermore, the interpretation of our study results
presents only one possible explanation within a rather cognitive
framework of symptom emergence and manifestation in patients
with functional dizziness and does not exclude alternative
interpretations. We understand this piece of evidence as a first
experimental cornerstone that might guide future research
toward transdiagnostic mechanisms for a positive definition of
functional disorders. Further studies with functional dizziness

patients as well as other patient groups are necessary to
demonstrate the general validity of the perceptual dysregulation
theory in functional disorders.

Nevertheless, we feel that an improved understanding of
the pathophysiology of functional dizziness could constitute a
great relief for both patients as well as caretakers. A measurable
symptom correlate would most likely reduce stigma in this highly
stigmatized patient group (Freidl et al., 2007; Rommelfanger
et al., 2017; Eger Aydogmus, 2020). Also, providing measurable
alterations has the potential of improving positive diagnosis of
functional dizziness. In the long run, insights like these could
further improve therapeutic strategies, e.g., in psychoeducation
or sensorimotor adaptation training like it is already successfully
done in unilateral and bilateral peripheral vestibular disorders
(McDonnell and Hillier, 2007; Lehnen et al., 2018).

In summary, this study demonstrates unstable gaze in
functional dizziness. During large eye-head gaze shifts toward
visual targets gaze is unstable in the internally-driven CR
epoch, i.e., when internal expectations are used to drive gaze
stabilization, additionally to sensory input. In contrast, gaze
is stable in the purely sensory-driven OSC epoch. Thereby,
our findings provide further evidence for the predictive coding
account of functional disorders, identifying—for the first time
within the affected body system—internal expectations as the site
where “perceptual dysregulation” arises (Edwards et al., 2012;
Van den Bergh et al., 2017; Henningsen et al., 2018; Pezzulo
et al., 2019). Together, these results have the potential to improve
diagnosis and treatment in functional patients.
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Chapter 3

Post-COVID fatigue: Can patients
adapt breathing behaviour and
symptom perception in a rebreathing
experiment?

The current chapter contains the manuscript for a research article with the title "Increased
breathlessness in post-COVID syndrome despite normal breathing patterns in a rebreathing
challenge - A Bayesian Brain perspective". The article is published as a preprint (https:
//osf.io/preprints/osf/nqb3h_v1) and is accepted for peer review in Nature Scientific
Reports.

3.1 Summary
Patients with post-COVID fatigue experience significantly higher breathlessness in a re-
breathing paradigm, even though breathing patterns and physiological measures are not
different to healthy control participants. The correct adaptation of breathing behaviour to
the rebreathing challenge indicates correct inference of the body state for motor planning.
Nevertheless, breathlessness was significantly increased in patients, suggesting dysfunctions
specific to symptom perception.
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Abstract
Severe symptoms in the absence of measurable body pathology are a frequent hallmark of
post-Covid syndrome. From a Bayesian Brain perspective, such symptoms can be explained
by the use of incorrect internal models that the brain uses to interpret sensory signals. In
this pre-registered study, we investigate whether induced breathlessness perception during
a controlled rebreathing challenge is reflected by altered respiratory measures (physiology
and breathing patterns), and propose different computational mechanisms that could ex-
plain our findings in a Bayesian Brain framework.
We analysed data from 40 patients with post-COVID syndrome and 40 healthy participants
matched for age, sex and BMI. Results from lung function, neurological and neurocognitive
examination of all participants were within normal limits on the day of the experiment.



Using a Bayesian repeated-measures ANOVA, we found that patients’ breathlessness was
strongly increased (BF10,baseline=8.029, BF10,rebreathing=11636, BF10,recovery=43662) com-
pared to controls. When excluding patients who hyperventilated (N=8, 20%) during the
experiment from the analysis, differences in breathlessness remained (BF10,baseline=1.283,
BF10,rebreathing=126.812, BF10,recovery=751.282). For physiology and breathing patterns, all
evidence pointed towards no difference between the two groups (0.307>BF10<0.704).
In summary, we found intact breathing patterns and physiology but increased symptom
perception in patients with post-COVID syndrome.

Introduction
The post-COVID syndrome encompasses a wide range of debilitating symptoms that con-
siderably impair quality of life for many patients. Symptoms can affect different organ
systems with some of the most prevalent symptoms being fatigue, exercise intolerance,
several types of pain and breathlessness (Lopez-Leon et al., 2021; O’Mahoney et al., 2023;
Tenforde et al., 2020). Biomedical findings have provided insights into potentially under-
lying pathophysiological changes of the disease. However, these findings typically only
emerge at the group level. In individual patients, the association between symptoms and
measurable pathophysiological findings can vary considerably, and, in some cases, symp-
toms cannot be explained by standard clinical diagnostic findings (El-Medany et al., 2024;
Kaye et al., 2022; Lam et al., 2021; Shah et al., 2021; Sneller et al., 2022). This suggests
that pathophysiological changes contribute to the manifestation of post-COVID syndrome,
but are not always sufficient to explain symptoms.
The Bayesian brain theory offers a new explanatory perspective on how a divergence be-
tween symptoms and physiological body states could arise. The body and its environment
are constantly changing. To keep the body in homeostasis, the brain must adapt behaviour
and bodily processes (Ramsay and Woods, 2014). For this, it needs to translate informa-
tion provided by sensors about the current state of body and environment into adequate
actions. These actions will change the body state and elicit new sensory input that is
again detected by sensors and sent to the brain. Since the brain does not have direct
access to body states, it needs to infer them based on the sensory data it receives. The
processing and representation in the brain of signals originating in the body is termed
interoception (Craig, 2002; Critchley and Garfinkel, 2017; Feldman Barrett and Simmons,
2015). In addition to direct control of bodily states, interoceptive signals also play a role
in the perception of symptoms (Locatelli et al., 2023), a process in which the brain tries
to make sense of interoceptive signals by classifying them into meaningful categories with
behavioural relevance. The Bayesian brain theory is based on Bayes’ theorem (see Figure
1), which describes how to optimally combine noisy data (likelihood) with prior knowl-
edge to estimate a hidden (body) state. Applied to brain function, it suggests that the
brain uses implicit a-priori expectations (prior) to interpret sensory signals. These priors
are based on general knowledge of body states and how they are influenced by context,
which is represented in so-called internal models in the brain. Depending on the quality



and associated reliability of both the sensory input (likelihood) and the prior, the eventual
perception of symptoms (posterior) in consciousness can be closer to the sensory input or
closer to the prior (Edwards et al., 2012; Knill and Richards, 1996; Pezzulo et al., 2019;
Van Den Bergh et al., 2017). Highly reliable but incorrect priors (or very noisy sensory
data), could explain persistent and strong breathlessness, even in the absence of underlying
impairment of lung function (Faull et al., 2018; Marlow et al., 2019; von Werder et al.,
2024).

The Bayesian brain theory has also been applied to explain increased breathlessness
ratings despite normal physiology and breathing patterns during a rebreathing challenge in
functional breathlessness (Bogaerts et al., 2010), myalgic encephalomyelitis/chronic fatigue
syndrome (ME/CFS) and fibromyalgia (Van Den Houte et al., 2018). Interestingly, breath-
lessness was only increased compared to healthy controls when participants (unknowingly)
breathed room air and sensory input was low. When sensory input was strong due to
increasing CO2 levels during rebreathing, symptoms were similar to those of healthy par-
ticipants and more strongly correlated with physiological measures (Bogaerts et al., 2010;
Van Den Houte et al., 2018). These results point to dysfunctions in the process of symptom
generation due to incorrect internal models and thus inadequate priors, especially when
the relevant sensory input is low.
In this study, we investigate whether similar differences in breathlessness perception dur-
ing rebreathing are also present in patients with post-COVID syndrome with intact lung
function and no signs of an underlying organic disease. We used the same rebreathing
challenge as in these previous studies to perturb the respiratory body state in a controlled
way and investigated how this influences the adaptation of the perceptual (breathlessness
ratings) and physiological (heart rate and exhaled CO2) responses, as well as breathing pat-
terns (respiratory rate and tidal volume). A strong association between symptom reports,
breathing patterns and physiological measures is indicative of adaptive internal models
that can correctly predict sensory signals. Conversely, a decoupling between those mea-
sures would indicate the strong influence of incorrect internal models leading to priors
that bias symptom perception away from actual sensory input. In additional exploratory
analyses, we investigated whether symptom perception during the experiment depends on
whether patients are hyperventilating and whether patients experience breathlessness as
part of their post-COVID syndrome or not. We hypothesize that, compared to healthy
control participants, patients with post-COVID syndrome show:

1. Similar breathing patterns and physiology

2. Increased breathlessness ratings before and after the rebreathing challenge

3. Similar breathlessness ratings during rebreathing, i.e., during a period with a strong
respiratory stimulus

4. Similar breathing patterns and reports of breathlessness in the subgroup of patients
with and without a history of post-COVID breathlessness
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Figure 1: a) Internal model and inference (based on Petzschner et al. (2017)). The brain holds a prob-
abilistic model of how the received respiratory input has been generated. This includes the probabilities
of different respiratory body states (prior) and the probabilities to observe the received respiratory input
conditioned on the possible respiratory body states (likelihood). By inverting this model, the brain can
infer the underlying respiratory state. This inference corresponds to applying Bayes theorem. b) Bayes
theorem describes how to optimally combine different sources of noisy data. It is commonly applied to inte-
roception and symptom perception and suggests how the brain should combine noisy sensory (respiratory)
data (likelihood) with model-based predictions (a priori knowledge, prior) to yield an optimal estimate
of the underlying respiratory body state (posterior). Prior and likelihood are conceived as probability
distributions to assign (un)certainty to each of these. The width (i.e., variance) of the likelihood function
corresponds to the brain’s uncertainty (i.e., the signal’s reliability) only based on the sensory signal. The
variance of the prior corresponds to the brain’s uncertainty of its knowledge about possible body states,
before receiving any sensory signals. The variance of the resulting posterior corresponds to the brain’s
uncertainty after combining the received sensory signal with prior knowledge. The posterior is shifted
towards the distribution with less uncertainty (i.e., higher reliability). This means high certainty about
the prior can shift the posterior more towards model-based predictions and away from sensory signals.



Methods
The current study is part of the innovative training network ETUDE (Encompassing
Training in fUnctional Disorders across Europe; https://etude-itn.eu/), ultimately aim-
ing to improve the understanding of mechanisms, diagnosis, treatment and stigmatization
of Functional Disorders (Rosmalen et al., 2021). It was carried out in accordance with
the Declaration of Helsinki and was approved by the ethics committee of the Technical
University of Munich. All participants provided signed informed consent and received
financial compensation of 10€ per hour. We preregistered the study procedure and anal-
ysis on the Open Science Framework prior to data collection. It can be accessed under:
https://osf.io/5ysn8. Data from five healthy control participants and five patients was
previously used in a publication by our lab (von Werder et al., 2024).

Participants
Overall, 56 patients and 53 healthy participants were measured that met all inclusion and
none of the exclusion criteria at the time of screening. Of these, 40 patients (Mage = 40.7
years, SDage = 11.7 years, 23 women) and 40 healthy control participants (Mage = 37.35
years, SDage = 12.55 years, 25 women) were included for final data analysis, see Figure 2
for reasons of exclusion.
All individuals eligible for the current study were at least 18 years old, had sufficient
German language skills to understand instructions and questionnaires, and had a previous
Sars-CoV-2 infection. Exclusion criteria for both groups were neurological, cardiological
or pulmonological impairment, pregnancy and severe episode of major depression, florid
psychosis or addiction disorder. All patients had a post-COVID diagnosis from a specialized
post-COVID centre at university hospital clinics and were severely affected by fatigue
and/or breathlessness for at least 3 months. They were only included if according to the
specialized post-COVID centres, no standard clinical tests revealed an explanation of their
symptoms. All healthy participants needed to be symptom free for at least 3 months after
their last Sars-CoV-2 infection and were excluded if they were suffering from a functional
(somatoform or dissociative) disorder.

Study procedure
Measurements went from July 2022 to May 2024. After written informed consent, all
individuals performed the rebreathing experiment described below. Then participants
filled out questionnaires and a detailed clinical characterization was performed. This was
done after the rebreathing experiment as to not interfere with experimental results.

The rebreathing experiment

The experiment was based on the standard rebreathing paradigm (Read, 1967) previously
used to investigate breathlessness perception and breathing patterns in various patient



groups and healthy participants (e.g., Bogaerts et al., 2010; Van Den Houte et al., 2018).
Individuals wore a nose clip and breathed through a mouthpiece into a breathing circuit.
The circuit was designed such that the experimenter could sit behind a visual barrier
and let the participant either breathe normal room air or air from the rebreathing bag.
Participants were blinded to the actual source of air breathed and its timing and wore
headsets so they were unable to hear when a valve switch was performed for the different
breathing conditions.
To get accustomed to the breathing circuit and breathlessness rating scale, participants
breathed into the circuit and were informed that they are breathing room air for the next
60s. During the last 30s they additionally rated their breathlessness as described below. In
the main session, participants were instructed that the CO2 concentration in inhaled air can
change and that this might or might not lead to breathlessness. The exact wording (and
an English translation) is available in the Appendix. The rebreathing experiment started
with room air for 60s, after which the valve was switched to the rebreathing condition.
After 150s the valve was switched back to room air for another 150s. Breathing flow, CO2
concentration in breathed air and heart rate were measured with a sampling rate of 50Hz.

CO2 concentration in inhaled and exhaled air was measured with a sampling port at
the mouthpiece that was connected to a side stream CO2 sensor (Masimo, NomoLine, ISA
CO2). Respiratory flow was assessed with a heated pneumotachograph (0-400 L/min,Hans
Rudolph). Heart rate and peripheral oxygen saturation were measured using an oximeter
(Nonin Xpod) that was attached to the left index finger. Synchronized data recording
from all devices and data storage was ensured by using the SmartLab Instrumentation sys-
tem with Insight Software from Hans Rudolph. A three-way manual control valve (Hans
Rudolph) allowed switching the source of breathed air between room air and rebreathing.
The rebreathing bag was filled with a gas concentration of 5% CO2 and 95% O2 (Carbogen,
Linde). Synchronization between breathlessness ratings and physiological data was evalu-
ated by installing an Arduino board that detected mouse clicks and sent this information
to the SmartLab Instrumentation system.

Questionnaires

Patient Health Questionnaire (PHQ-15): The somatic symptom scale of the Patient
Health Questionnaire (Gräfe et al., 2004; Kroenke et al., 2002) asks how bothered partic-
ipants have been by 15 common somatic symptoms in the past two weeks. Ratings are
on a three-point scale (0: not bothered at all, 1: bothered a little, 2: bothered a lot) and
global ratings can range from 0 to 30.
Chalder Fatigue Scale (CFQ): The Chalder Fatigue Scale (Chalder et al., 1993; Jack-
son, 2015) comprises 11 items and measures the extent and severity of fatigue. Questions
1-7 measure physical fatigue and questions 8-11 cognitive fatigue. Ratings are on a four-
point scale (0: better than usual, 1: no worse than usual, 2: worse than usual, 3: much
worse than usual). The Likert scoring method was applied, so global scores can range from
0 to 33.
Common post-COVID symptoms: All participants were presented with a list of seven



symptoms commonly reported in post-COVID syndrome and were asked to rate which of
them they are currently experiencing and the respective level of severity. Ratings are on a
four-point scale (0-not present, 1-mild, 2-moderate, 3-severe).
Concurrently perceived breathlessness: During the experiment participants’ breath-
lessness ratings and their timepoints were recorded with a program written in OpenSesame,
version 3.3.11 (Mathôt et al., 2012). It presented a scale with every integer from 0 to 100
every 10s. A tone marked the start of a new rating. Next to the scale verbal descriptions
of the breathlessness label (as in Bogaerts et al., 2010) were given (0 – no breathlessness,
5 – barely noticeable, 10 – very slight, 20 – slight, 30 – moderate, 40 – rather strong, 50 –
strong, 60 – 80 very strong, 90 – very, very strong, 100 – not bearable; translations from
German).

Clinical characterization

On the day of the experiment, we performed a detailed clinical characterization to ensure
that participants met all inclusion and none of the exclusion criteria. Pulmonary function
was assessed in the Department of Occupational Medicine (Ludwig-Maximilians Univer-
sity) using spirometry and diffusion capacity (Masterscreen PFT, Vyaire) according to the
European Respiratory Society (ERS) clinical guidelines. The Global Lung Function Initia-
tive calculator was used to evaluate the percentage of predicted norm value and percentage
of LLN for each participant depending on age, height and sex. All equations were based
on Caucasian data. We determined the following parameters: FEV1 – forced expiratory
volume in 1 second. FVC – forced vital capacity. DLCO – diffusion capacity for carbon
monoxide. KCO – carbon monoxide transfer coefficient. RV - residual volume. VA – alve-
olar volume. The semi-structured clinical interview for the diagnosis of DSM-5 disorders
(SCID-5-CV, Beesdo-Baum et al., 2019) was performed to ensure that none of the exclu-
sion criteria were met. A standardized neurological examination was performed to rule out
neurological impairment. The Montreal Cognitive Assessment (MOCA; Nasreddine et al.,
2005) was performed to rule out severe neurocognitive impairment. The MOCA assesses
different cognitive domains including short-term memory, visuospatial abilities, working
memory, attention, language, abstract reasoning, and orientation. Scores can range from 0
to 30. Scores of 26 and above indicate normal cognitive abilities, scores between 6 and 25
indicate at least mild cognitive impairment and scores below 6 severe cognitive impairment.

Missing data and exclusion on day of study
Participants were excluded for data analysis if they showed signs of obstructive lung func-
tion on the day of the experiment, i.e., FEV1/FVC was below the lower limit normal (LLN;
Pellegrino, 2005), which is the 5th percentile of a healthy, non-smoking reference popula-
tion. This was the case for one control participant and one patient. In another two control
participants and three patients FEV1/FVC was within 2% lower than the LLN. In these
cases, a specialized pulmonologist visually inspected the lung function curves and decided
that no obstructive lung function impairment was present, and these participants were
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Figure 2: Participants that were excluded from data analysis.

included in the study. For further reasons of exclusion for data analysis after appearance
on the day of study, see Figure 2.

Respiratory flow, heart rate and CO2 concentration in breathed air, as well as breath-
lessness ratings are available for all included participants, except one patient. Due to
technical errors, for this patient only CO2 recordings and breathlessness ratings, but not
respiratory flow data are available. The CFQ was added after study start to characterize
fatigue levels in patients in more detail. At this time point, we had already measured
15 healthy control participants and one patient. The CFQ is thus missing for 15 healthy
participants and one patient. However, since this questionnaire only serves to charac-
terize fatigue levels in patients, we still show CFQ scores in the results section. Due to
experimenter error, the MOCA is missing for one healthy control participant.

Data processing
Data were processed using Python 3.0. Respiratory flow measurements were normalized to
participants’ height by dividing the respiratory flow by their height in meters. Breath-by-
breath data were obtained by assessing timepoints of in- and exhalation as defined by the



zero crossings of the respiratory flow data. For each breath, the durations of inspiration
(Ti) and expiration (Te) were determined, and the inspiratory and expiratory volumes (Vi

and Ve) were calculated by taking the integral of the signal. Respiratory rate (RR) and
tidal volume (Vt) were calculated as follows:

RR = 60
Ti + Te

(1)

V t = Vi + Ve

2 (2)

Fractional end-tidal CO2 (FetCO2) was approximated by taking the maximum exhaled
CO2 concentration in each breath. FetCO2 concentration serves as a proxy for arterial
CO2 concentration (Rentola et al., 2018). We thus captured breathing patterns (RR and
Vt) as well as the physiological response (heart rate, FetCO2) which also serves as a proxy
of the sensory stimulus for mechano- and chemoreceptors.
The breathlessness ratings were interpolated to match the breath-by-breath data of each
participant. Each breath was defined to start with an inhalation that is followed by an
exhalation. Breath-by-breath data were then averaged over 10s intervals. The start of the
rebreathing phase was defined as the time point of the start of the breath that followed
the valve switch. The start of the recovery phase was defined as the time point of the
start for the breath that followed the valve switch back to room air. The time point
that participants first and last inhaled an increased CO2 concentration during rebreathing
depends on the individual’s respiratory rate and time point of the valve switch in the
breathing cycle. Thus, although the valve switch occurred at 60s and 210s, the duration
of inhaling increased CO2 concentration during rebreathing was slightly lower for some
participants. We thus analysed the first 130s after the rebreathing start to ensure that
data is available for all participants. The baseline phase was defined as the 60s before the
rebreathing start and the recovery phase as the 150s after recovery start (see Figure 3).

Statistics and reproducibility
Statistical tests were carried out in JASP (Team, 2024). To compare demographic charac-
teristics and questionnaire scores, a Bayesian independent samples t-test (two-sided) was
used. To evaluate possible group differences in the rebreathing experiment, we performed
a Bayesian repeated-measures ANOVA for each of the different conditions (baseline, re-
breathing, recovery) with respectively RR, Vt, FetCO2, heart rate and breathlessness
rating as the dependent variable, the between factor group (main analysis: patients versus
healthy participants; exploratory analysis: post-COVID with breathlessness versus post-
COVID without breathlessness) and the independent within-factor time segment (repeated
measures factor). We used a uniform prior over all models. We adopted a Bayesian sta-
tistical approach that allows to quantitatively make statements about whether the null or
alternative hypothesis are more likely (Peter Rosenfeld and Olson, 2021). The Bayes factor
10 (BF10) quantifies the ratio between the alternative hypothesis given the data and the



null hypothesis given the data. For example, a BF10 = 5 indicates that the alternative
hypothesis is 5 times more likely than the null hypothesis, whereas a BF10 = 1/5 indicates
that the null hypothesis is 5 times more likely. BFs of 1, ]1-3], ]3-10], ]10-30], ]30-100] and
> 100 are often interpreted as “no”, “anecdotal”, “moderate”, “strong”, “very strong”,
and “extreme evidence” (Lee and Wagenmakers, 2014), or, according to Jeffreys (1961)
“not worth more than a bare mention”, “substantial”, “strong”, “very strong” and “deci-
sive evidence”. In our interpretation of Bayes Factors, we follow Lee and Wagenmakers
(2014). The required sample size for our study was estimated based on the effect sizes
of two previous studies using the same rebreathing paradigm (Bogaerts et al., 2010; Van
Den Houte et al., 2018). Using G*Power for the power analysis, we obtained a required
sample size of 34 participants per group. We included a safety margin and thus measured
40 participants. The detailed sample size calculation can be found in the preregistration
(https://osf.io/5ysn8).

Exploratory analyses

Since hyperventilation has previously been described as a frequent breathing pattern in pa-
tients suffering from post-COVID syndrome (Taverne et al., 2021), we investigated whether
this is also the case in our experiment. Since there is currently no gold standard to di-
agnose dysfunctional breathing (Boulding et al., 2016) nor a specific cut-off defined for
hyperventilation, we defined hyperventilation in our study as an FetCO2 level of <3.5%,
which is in the range of FetCO2 levels previously shown to cause symptoms in healthy
individuals (Rafferty et al., 1992). We subsequently compared the subset of patients that
was not hyperventilating to the healthy control group.

We further investigated whether the experience of breathlessness as part of post-COVID
syndrome influences the experiences of breathlessness during the experiment. For this pur-
pose, we compared all patients who reported at least mild breathlessness in the COVID
symptom questionnaire (see Table 3) with those who reported not suffering from breath-
lessness. For both exploratory analyses, we used the same Bayesian repeated-measures
ANOVA as described above.

Results
Demographic and clinical characteristics
We report on a sample of 40 patients who suffer from post-COVID syndrome without
clinical signs of cognitive, neurological or pulmonological impairment and 40 healthy control
participants who were matched by age, sex, and body mass index (Table 1 and Appendix
Figure 5). The infection that led to post-COVID symptoms was between March 2020
and December 2022. On average patients have suffered for 18.02 months (range: 5 – 36
months) from symptoms at the time of study participation. Patients report very high levels
of fatigue as measured with the CFQ and more bodily symptoms than healthy participants
as measured with the PHQ-15 (see Table 1). According to the PHQ-15 results, patients are



Table 1: Demographic and clinical characteristics. Chalder Fatigue Scale was available for 39 patients
and 25 healthy control participants. Possible scores CFQ (0-33) and PHQ-15 (0-30). BMI – body mass
index, CFQ – Chalder Fatigue Scale, PHQ-15 – Patient Health Questionnaire 15

post-COVID healthy controls BF10
mean (range) mean (range)

Age (years) 40.7 (22-62) 37.35 (24-65) 0.442
Sex (female/male) 23/17 25/15 n.a.
BMI (kg/m2) 24.13 (18-34) 23.68 (19-35) 0.265
Symptom duration (months) 18.02 (5-36) n.a. n.a.
CFQ 25.15 (11-33) 9.96 (2-18) 3.80*1016

PHQ-15 12.75 (4-24) 3.3 (0-10) 1.79*1012

bothered most by ‘Feeling tired or having low energy’, ‘trouble sleeping’ and ‘headaches’
(see Appendix Figure 6). When asked about current post-COVID symptoms, patients
most often reported fatigue, followed by difficulties concentrating, tiredness and dizziness
or light-headedness. All patients reported fatigue as one of their post-COVID symptoms
and 22 patients reported having breathlessness in addition to their fatigue (see Table 3).

There is no supporting evidence indicating different lung function parameters between
healthy control participants and patients, however, there was anecdotal evidence for an
increase in DLCO and KCO (see Table 2). It has previously been shown that the odds
of experiencing any respiratory symptom decrease the higher the ratio of FEV1/FVC and
reaches a minimum at 80% (Torén et al., 2021). All of our participants were above that
threshold. None of the included participants has a neurological or severe neurocognitive
impairment. Three patients and two healthy participants have MOCA scores below 26,
suggesting mild cognitive impairment (see Table 2).

Rebreathing experiment
The results of the rebreathing experiment are visualized in Figure 3 and Table 4.

Baseline

In the baseline phase with room air, reported breathlessness is higher in patients (Mpat

= 9.0) than in healthy participants (Mhealthy = 2.8; BF10 = 8.029, moderate evidence).
There is anecdotal evidence for similar breathing patterns, i.e., respiration rate (BF10 =
0.817) and tidal volume (BF10 = 0.617) and a similar physiological response, i.e., FetCO2
concentration (BF10 = 0.695) and heart rate (BF10 = 0.671) in both groups.

Rebreathing

During rebreathing patients report higher breathlessness (Mpat = 26.5) than healthy par-
ticipants (Mhealthy = 11.1; BF10 = 11636, extreme evidence). There is anecdotal evidence



Table 2: Lung function parameters and results from the Montreal Cognitive Assessment (MOCA). %
predicted – percentage of predicted norm value based on age, height and sex. % LLN – percentage of
lower limit normal. FEV1 – forced expiratory volume in 1 second. FVC – forced vital capacity. DLCO –
diffusion capacity for carbon monoxide. KCO – carbon monoxide transfer coefficient. RV- residual volume.
VA – alveolar volume.

post-COVID healthy controls BF10
mean (range) mean (range)

MOCA 28.26 (23-30) 28.46 (24-30) n.a.
FEV1/FVC
% predicted 96.59 (85.50 – 116.29) 97.27 (84.33 – 112.73) 0.255
% LLN 112.04 (98.97 – 134.81) 112.77 (97.61 – 130.22) 0.251
FEV1
% predicted 99.41 (67.56 – 129.00) 101.18 (73.28 – 124.71) 0.281
%LLN 126.31 (86.17 – 169.65) 128.16 (98.34 – 166.81) 0.261
FVC
% predicted 102.53 (77.90 – 129.95) 103.59 (79.69 – 131.18) 0.249
%LLN 129.92 (99.26 – 163.75) 130.98 (99.7 – 174.77) 0.242
DLCO
% predicted 96.33 (67.88 – 130.09) 102.18 (83.19 – 127.08) 1.477
%LLN 123.19 (87.56 – 167.65) 130.18 (105.15 – 160.18) 1.228
KCO
% predicted 97.35 (75.33 – 127.01) 103.78 (74.10 – 125.00) 1.794
%LLN 124.18 (95.64 – 161.93) 132.20 (98.22 – 160.68) 1.623
RV
% predicted 104.71 (70.45 – 210.18) 106.69 (65.66 – 179.00) 0.246
%LLN 194.12 (124.37 – 403.79) 203.81 (130.44 – 374.57) 0.307
VA
% predicted 99.00 (80.89 – 125.10) 99.00 (80.69 – 123.24) 0.232
%LLN 120.67 (99.14 – 153.33) 120.46 (97.93 – 149.87) 0.233

for similar tidal volume (BF10 = 0.361) and FetCO2 concentration (BF10 = 0.437) and
anecdotal evidence for increased respiratory rate (BF10 = 2.007) in patients.

Recovery

During recovery with room air, patients report higher breathlessness (Mpat = 36.6) than
healthy control participants (Mhealthy = 13.5; BF10 = 43662, extreme evidence). There is
anecdotal evidence for an increased respiratory rate (BF10 = 1.877) and moderate evidence
for decreased FetCO2 concentration in patients (BF10 = 5.018). Evidence for similar tidal
volume (BF10 = 0.423) is anecdotal.



Table 3: Prevalence and severity of symptoms commonly reported in post-COVID. Severity was rated
on a scale from 0 (not present) to 3 (severe). Mean severity for those participants that reported that the
symptom was present. Data is available for 40 patients and 39 healthy control participants.

Symptom post-COVID healthy controls
frequency severity (std) frequency severity (std)

fatigue 97.5% 2.36 (0.66) 20.51% 1.25 (0.66)
difficulties concentrating 90.0% 2.06 (0.74) 15.39% 1.00 (0.00)
tiredness 87.5% 2.23 (0.76) 28.21% 1.45 (0.66)
dizziness/light headedness 70.0% 1.39 (0.62) 5.13% 1.00 (0.00)
pain 65.0% 1.62 (0.74) 10.26% 1.25 (0.43)
breathlessness 55.0% 1.64 (0.64) 0.00% -
loss of taste and/or smell 22.5% 1.89 (0.74) 2.56% 1.00 (0.00)
nausea and/or vomiting 15.0% 1.00 (0.00) 0.00% -

Exploratory analyses
During the study, eight patients and no healthy control participant were hyperventilating.
Of these, two patients were already hyperventilating during the baseline phase with room
air and six patients start to hyperventilate only after the rebreathing challenge. When ex-
cluding patients that are hyperventilating from the group comparison, all evidence points
towards similar breathing patterns (BF10<0.704), while evidence for increased breath-
lessness during rebreathing and recovery phase remains strong (BF10 >126.812) and is
anecdotal in the baseline phase (BF10 = 1.283).

We further investigated whether experiencing breathlessness as part of post-COVID
syndrome leads to higher induced breathlessness perception during the experiment. For
almost all phases, evidence for breathing patterns and breathlessness perception points
towards similarity between groups and there is anecdotal evidence (BF10 = 1.326) for
increased breathlessness perception in patients with post-COVID breathlessness in the
baseline phase with room air (see Figure 3 on the right and Table 4).

Discussion

Summary
We used a rebreathing experiment to perturb the respiratory body state in a controlled
way. Breathlessness ratings in patients with post-COVID syndrome were increased com-
pared to healthy individuals, while breathing patterns and physiology were similar. During
rebreathing and recovery phase, there was no supporting evidence for higher breathlessness
ratings in patients that experience breathlessness as part of their post-COVID syndrome
and those who do not. 20% of patients hyperventilated during the experiment, however,
differences in breathlessness remained when removing these patients from analysis.



Table 4: Bayes factors (BF10) for different group comparisons.

Baseline Rebreathing Recovery
Patients versus healthy controls
Including hyperventilation
Breathlessness 8.029 11636 43662
Respiration rate 0.817 2.007 1.877
Tidal volume 0.617 0.361 0.423
FetCO2 0.695 0.437 5.018
Heart rate 0.671 0.708 0.776
Excluding hyperventilation
Breathlessness 1.283 126.812 751.282
Respiration rate 0.562 0.651 0.669
Tidal volume 0.619 0.640 0.478
FetCO2 0.704 0.307 0.480
Heart rate 0.568 0.500 0.531
Patients with versus without breathlessness
Breathlessness 1.326 0.414 0.618
Respriation rate 0.701 0.605 0.665
Tidal volume 0.664 0.480 0.512
FetCO2 0.689 0.626 0.684
Heart rate 0.797 1.336 1.632
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Figure 3: Results rebreathing experiment. a) Exemplary time course of inhaled CO2 concentration from
one individual. First, participants breathe room air, i.e., inhaled CO2 concentration is low. After a valve
switch, they rebreathe from a rebreathing bag, initially filled with 5% CO2 and 95% O2. This constitutes
a strong respiratory stimulus. After 150s the breathing circuit is opened again, and participants breathe
room air. The exact rebreathing and recovery start was defined based on the inhaled CO2 concentration
of each individual (see Methods). b) Differences in breathlessness reports for all patients and healthy
participants (left), only those that were not hyperventilating (middle) and patients with versus without
breathlessness that were not hyperventilating (right). c) Breathing patterns and FetCO2 for all three
group comparisons. Solid lines – mean, dashed lines – standard error of the mean.

Intact breathing patterns
Our results are in line with our first hypothesis that stated similar adaptation of respiratory
patterns and physiology to the rebreathing challenge in patients and healthy participants.
This suggests that patients in our study were able to correctly process sensory signals re-
lated to respiration, infer the underlying respiratory body state and plan adaptive breathing
patterns. As in several previous studies (El-Medany et al., 2024; Kaye et al., 2022; Sneller
et al., 2022), we find intact lung function in patients with post-COVID syndrome. Our
results of similar breathing patterns, extend the common finding of intact lung function,
by showing that not only mechanical ventilation and gas exchange in the lung are function-
ing appropriately, but also the sensory-control loop for breathing regulation is intact. It
must be mentioned that while in all breathing conditions evidence pointed towards similar
breathing patterns and physiology, evidence remained anecdotal. In addition, while most
evidence pointed towards similar lung function measures between healthy participants and
patients, we also observed anecdotal evidence for decreased lung diffusing capacity (DLCO
and KCO) in patients. Our sample size might thus have been too small to detect subtle dif-
ferences in breathing patterns or lung function. However, it remains questionable whether
such small differences could explain the observed large differences in breathlessness ratings
in our study.

Dysfunctions in symptom perception
We were further able to confirm our second hypothesis that breathlessness is increased
before and after the rebreathing challenge, i.e., during phases with room air. However, we
also found strongly increased breathlessness during the rebreathing challenge, i.e., when the
respiratory stimulus was very strong. This is against our third hypothesis and not in line
with previous results in ME/CFS, fibromyalgia (Van Den Houte et al., 2018) and functional
breathlessness (Bogaerts et al., 2010). One possible explanation for the latter divergent
result is that the effect of rebreathing on breathlessness ratings is dependent on stimulus
strength. While we used the same experimental paradigm as in other studies, FetCO2 levels
in our study were lower (mean FetCO2 at end of rebreathing 6.9%) than in these studies
(mean FetCO2 at end of rebreathing 8% in Bogaerts et al. (2010)). This could either be
due to differences in the technical setup (e.g., different dead space of the breathing circuit)
or differences in breathing patterns. Slower and shallower breathing, as already exhibited



during the baseline phase in participants in our study, leads to less CO2 that is exhaled into
the breathing circuit during rebreathing and thus a lower respiratory stimulus intensity.
This interpretation is consistent with the results of another study with non-clinical high and
low symptom reporters using the same rebreathing paradigm (Walentynowicz et al., 2018).
Here, high symptom reporters also reported higher breathlessness during the rebreathing
phase than low symptom reporters. Interestingly, in this study, FetCO2 levels were in the
same range (mean FetCO2 at end of rebreathing 7.3%) as ours.

Potentially transdiagnostic mechanism
Furthermore, we could partly confirm our fourth hypothesis, i.e., breathlessness ratings
are similar in post-COVID patients with and without a history of breathlessness. While
breathlessness ratings during baseline were slightly increased in patients with post-COVID
breathlessness, our statistical analysis yielded no group differences during rebreathing and
recovery. This is in line with previous studies showing increased symptom reporting in dif-
ferent groups of patients regardless of their primary symptoms and suggests a more general
dysfunction of symptom processing underlying persistent symptoms across diseases. Con-
text and learned associations play a dominant role in symptom perception. Experimental
setups such as the rebreathing experiment in this study and instructions that focus on
symptom ratings create a context that activates symptom priors. This might be especially
strong in patients and could outweigh symptom- or disease-specific processes, leading to
the observed similarities across different studies, diagnoses and symptoms.

Possible computational mechanisms
We explored different computational mechanisms that could explain our observed results.
Since breathing control is intact but breathlessness reports increased, one possibility would
be the use of different internal models. For example, assuming the same sensory input and
its reliability but a higher and more reliable prior for symptom perception than breath-
ing patterns would result in increased breathlessness reports while breathing regulation is
within normal limits (see Figure 4A). This would be in line with hierarchically arranged lev-
els of interoceptive respiratory processing, ranging from homeostatic regulation of breathing
control to meta-cognitive processes of symptom perception that are connected and share
algorithmic similarities but also include different processing steps (Allen et al., 2023). To
specifically explain the observed differences in breathlessness ratings, we further tested
what kind of prior would lead to the observed results (see Appendix Figure 7). We first
considered the effect of a prior for higher breathlessness in patients that is equally reliable
as in healthy participants. In this case, breathlessness ratings are already increased during
the baseline phase with room air and progressively increase during rebreathing. Thus,
the difference in breathlessness ratings persists when the stimulus strength is increased,
which is in line with our results. Accordingly, one possible explanation for the observed
differences in breathlessness is that patients expect higher levels of breathlessness in the
experiment than controls, with both groups being similarly certain about their a-priori
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Figure 4: Possible computational mechanisms that could explain increased breathlessness despite normal
breathing patterns. A) Different internal models for breathlessness perception and breathing patterns.
The same sensory input and its reliability is assumed for breathing patterns and breathlessness perception,
represented as the same likelihood function. However, for breathlessness a higher and more reliable prior
(i.e., higher mean value and less variance/higher precision) is assumed. According to Bayes theorem, the
posterior (blue curve) is a precision-weighted combination of likelihood and prior. Thus, due to the higher
and more reliable prior for breathlessness perception than breathing patterns, the resulting posterior is
shifted towards higher breathlessness levels, even though sensory input (likelihood) is the same as for
breathing patterns. The inferred bodily state (posterior) is thus closer to the actual sensory input in
breathing patterns and closer to the prior in symptom perception. While the respiratory state is correctly
inferred for breathing patterns, an incorrect internal model, e.g., with a strong weighting of erroneous
priors, could lead to strong breathlessness despite an intact respiratory body state. B) Alternatively, the
same internal model could be used, yielding the same posterior (top, blue curve) but different cost-functions
could be applied to decide on the action that should be taken. Applying a cost function mathematically
corresponds to a convolution of the posterior with the cost function. This yields the expected costs (solid
line for breathing patterns, dotted line for reported breathlessness) for each possible action and allows to
choose the action associated with minimum costs. An action can either be a specific breathing pattern
or a symptom report. While breathing patterns and symptoms are outcomes that can be consciously
perceived, the decision process involving the application of cost functions (B), or the formation of priors
(A), is happening subconsciously.



expectations. To explain the observed breathlessness ratings within the patient group,
i.e., between patients with and without a history of breathlessness, we propose that pa-
tients with post-COVID breathlessness are more certain about their a-priori expectations
of increased breathlessness during the experiment than those patients without post-COVID
breathlessness. This would be represented in a similarly high but more reliable prior, which
would lead to the observed increased breathlessness ratings during baseline and a decrease
of this difference during rebreathing (see Appendix Figure 7). We further explored how
different cost functions would influence breathlessness perception and breathing regulation
(see Figure 4B). Cost functions are an essential part of Bayesian decision theory. The
brain’s inference of the underlying body state is represented as the posterior distribution.
It describes the probability of the value or category of a bodily state given the current
sensory input and the prior knowledge about this state. However, the brain must eventu-
ally choose one value from this posterior probability distribution. Cost functions allow to
integrate rewards and costs into this decision-making process and thus decide on the ac-
tion with highest expected reward (or lowest expected cost) given the current bodily state
represented by the posterior distribution (Dayan and Daw, 2008; Körding and Wolpert,
2006). This action can either be a specific breathing behaviour or a decision to consciously
perceive and report a specific symptom level. Cost functions are task specific and depend
on the desired goal. A stronger perceptual response in relation to the underlying body
state will lead to an earlier initiation of preventive measures that reduce further bodily
stressors. Consequently, it is ‘safer’ to perceive symptoms that overrepresent the under-
lying body state. This would be achieved by applying an asymmetric cost function that
rewards symptom reports overrepresenting the actual underlying body state and penalizes
underrepresenting them. This would be similar to a better-safe-than-sorry strategy that
has previously been suggested by Van den Bergh et al. (2021). This explanation assumes
the same internal model for respiratory control and symptom perception, but the use of
a symmetric cost function for respiratory control and an asymmetric cost function for
symptom perception, leading to the observed increased breathlessness ratings despite nor-
mal breathing control. Similarly, it can explain the observed differences in breathlessness
ratings between patients and healthy participants.

Hyperventilation
While breathing patterns were similar to healthy controls in most patients, 20% of post-
COVID patients hyperventilated during the experiment. Recently, carotid body dysfunc-
tion has been proposed as a possible cause of hyperventilation in post-COVID syndrome.
The carotid body monitors and provides feedback about CO2 levels and changes in blood
pH. Dysfunction could, for example, result in an over-reactive breathing response to oth-
erwise normal pH levels (El-Medany et al., 2024). A similar response could be due to
dysfunctions in inspiratory muscles that has recently been shown in patients with post-
COVID (Hennigs et al., 2022). Pathological dysfunction on the side of the sensor (carotid
body) or effector (inspiratory muscles) are a possible explanation for the observed breath-
ing patterns and breathlessness reports in patients that hyperventilated in our experiment



and could lead to erroneous processing of interoceptive respiratory signals. Six out of the
eight patients that hyperventilated breathed normally during the baseline phase, and only
started to hyperventilate during the recovery phase after the aversive rebreathing stimu-
lus. Because fear of bodily symptoms in response to breathing distress have been shown
to alter breathing, also this explanation may account for the observed hyperventilation
responses. Stress-related hyperventilation is a type of feedforward regulation (Van Diest
et al., 2001) and thus overweighing priors during breathing regulation could play a role
in this subgroup. A catastrophic interpretation of interoceptive signals has also been sug-
gested to underlie the observed discordance between physiological measures and symptom
reports during a hyperventilation provocation test (Spinhoven et al., 1993). Importantly,
the dissociation between breathlessness and breathing patterns in our study remains when
removing participants who hyperventilated during the experiment from the analysis.

Internal models
Our experimental results suggest that the cause of heightened symptoms in patients is not
directly related to breathing physiology but rather differences in processing and incorpo-
rating interoceptive breathing signals into symptom perception due to incorrect internal
models or overly cautious cost-functions. It is currently unclear where and how internal
models for interoception are represented and maintained in the brain, but there is evi-
dence that brain areas like the anterior insula (Harrison et al., 2021) play an important
role. There have been several findings of brain changes concerning the structural as well
as functional connectivity in patients with post-COVID (Douaud et al., 2022; Serrano
Del Pueblo et al., 2024), some of them pertaining to brain areas that are thought to be
involved in interoceptive processing. Pathological changes in these brain areas could lead
to problems in correctly maintaining and adapting internal models. Similarly, internal
models and cost functions can be adapted by experience. For example, experiencing a
persistent immune reaction due to viral reservoirs or social or emotional stress and anx-
iety, can lead to an adaptation of internal models that assume a high risk for aversive
bodily stressors and thus the development of incorrect priors. Anxiety and depression are
known risk factors for developing post-COVID symptoms (Tsampasian et al., 2023; Wang
et al., 2022) and Harrison et al. (2021) have recently shown a close link between anxiety
and respiratory-related interoception that is especially strong at higher levels involving
meta-cognitive processes of interoception with different activities in the anterior insula in
individuals with low versus high anxiety. Our computational approach provided insights
into possible ways how internal model-based prior expectations and cost-functions might be
altered. In specific, we have shown that our data can be explained by patients expecting a
higher level of breathlessness, however, being equally certain about their prior expectation
as healthy participants. Better understanding how exactly priors, i.e., (implicit) symptom
expectations, are altered are crucial to develop new and improve existing therapeutical
approaches. This is supported by previous studies showing that breathlessness reductions
during pulmonary rehabilitation in COPD patients are associated with altered neural pro-
cesses reflecting learned breathlessness associations (Herigstad et al., 2017). Furthermore,



virtual-reality approaches that alter breathlessness perception by modulating expectations
have been proposed to re-align breathlessness with sensory signals (Finnegan et al., 2022)
which has implications for exposure based cognitive-behavioural therapies.

Conclusion
In summary, we have provided first evidence that while breathing control is mostly intact,
processes in the brain for symptom perception are erroneous in patients with post-COVID
syndrome. We have suggested different computational mechanisms that could underlie this
erroneous processing in a Bayesian brain framework. This theoretical approach allowed to
investigate how prior symptom expectations must be altered to match our experimental
data which can guide development of specifically targeted treatments options. Impor-
tantly, these priors are mostly implicit and a result of specific brain activity that might
be altered due to disease-specific or transdiagnostic processes that are currently not well
understood. Our results highlight that in addition to physiological processes in the body,
further research could greatly benefit from focusing on interoception and its influence on
symptom-related processing in the brain by taking a Bayesian brain perspective.

Data Availability
Anonymized physiological data and breathlessness ratings recorded during the rebreathing
experiment as well as lung function parameters, MOCA scores and questionnaire data
(PHQ-15, CFQ, prevalence of common post-COVID symptoms, breathlessness ratings in
everyday life situations) can be found via the following link: https://osf.io/vt2j5/
?view_only=9c65fd05163249b2b116c750bde43476
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Appendix

Instruction for rebreathing experiment
German (original)
Im folgenden Experiment atmen sie Luft mit unterschiedlichen CO2 Konzentrationen ein.
Das kann zu Atemnot führen, muss aber nicht. Wir messen kontinuierlich ihre physiologis-
chen Atemparamter und bitten Sie alle 10 Sekunden anzugeben, ob Sie Atemnot haben und
falls ja, wie stark diese ist. Atemnot kann bei Personen ganz unterschiedliche Empfindun-
gen auslösen. Das kann zum Beispiel das Gefühl sein, nicht genügend Luft zu haben bzw.,
dass die geatmete Luft nicht ausreicht. Es kann sich in dem Wunsch oder Drang äußern,
z.B. an ein Fenster zu gehen und dort frische Luft zu atmen. Es kann auch mit dem Drang
verbunden sein, das Mundstück loszulassen und frei oder mehr zu atmen. Ebenso kann
sein, dass Sie das Gefühl haben, dass die aktuelle Atmung nicht ausreicht. Atemnot kann
auch mit einer gewissen Anstrengung oder Schwierigkeiten bei der Atmung verbunden sein.
Diese Empfindungen können auftreten, müssen aber nicht und die Empfindungen können
kommen und gehen. Atemnot kann also ganz unterschiedliche Empfindungen auslösen und
diese können in unserem Experiment kommen und gehen oder gar nicht auftreten.
English (translation)
In the following experiment, you will breathe air with different CO2 concentrations. This
can lead to breathlessness but does not have to. We continuously measure your physiologi-
cal breathing parameters and ask you to indicate every 10 seconds whether you experience
breathlessness and, if so, how strong it is. Breathlessness can trigger very different sensa-
tions in people. For example, it can be the feeling of not having enough air or that the
air you are breathing is not enough. It can manifest itself in the desire or urge to go to
a window and breathe fresh air, for example. It can also be associated with the urge to
let go of the mouthpiece and breathe freely or more deeply. You may also feel that your
current breathing is not sufficient. Breathlessness may also be associated with a certain
effort or difficulty in breathing. These sensations may or may not occur and the sensations
may come and go. Breathlessness can therefore trigger very different sensations and these
can come and go or not occur at all in our experiment.

Deviations from pre-registered analysis plan
As stated in our pre-registration, our experimental paradigm consisted of the conditions
in 5. Since the second rebreathing phase was too short for breathlessness changes to occur
and for better comparability with previous studies, we only evaluated data up to the end
of the recovery phase in this paper. In our pre-registration we also included a co-variate
in the repeated-measures ANOVA. Starting from the rebreathing phase, we planned to
add the mean of respective dependent variable (CO2 concentration, breathlessness rating
or breathing flow) over the last 30s of the previous breathing condition as a covariate.
However, for this paper we were interested in the difference for each specific breathing
condition, independent of baseline levels. We thus decided to not include the co-variate in



the analysis.

Table 5: Experimental phases of the pre-registered paradigm

Breathing condition Duration
Baseline (room air) 60s
Rebreathing 150s
Recovery (room air) 150s
Cognitive cue (room air) 30s
Second rebreathing 30s

10

15

20

25

30

35

40

BM
I

0

20

40

60

80

100

140
150
160
170
180
190
200
210

healthy patient

healthy patient

healthy patient

ag
e 

[y
ea

rs
]

he
ig

ht
 [

cm
]

Figure 5: Demographic characteristics of the patient and healthy participant group for age (BF10 =
0.442), height (BF10 = 0.289) and body mass index (BMI; BF10 = 0.265).
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Figure 6: Clinical characteristics. A) Results for Chalder Fatigue Scale (CFQ) for each question (top)
and overall group comparison (bottom, BF10 = 3.8*1016). B) Results for Patient Health Questionnaire 15
(PHQ-15) for each question (top) and overall group comparison (bottom, BF10 = 1.79*1012). C) Presence
and severity of current symptoms frequently reported in post-COVID syndrome.
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Figure 7: The effect of different priors (i.e., different internal models) on breathlessness reports. Top:
During rebreathing sensory input and thus the mean of the likelihood function increases. Since lung func-
tion is intact, the same likelihood function is assumed for patients and healthy participants. Second row:
The internal model for healthy participants leads to a prior with a low mean to which low weight is assigned
(high variance, i.e., low precision of the prior). Thus, healthy participants expect low breathlessness, but
rely mostly on sensory input. Third row: Patients without breathlessness assume a higher breathlessness
level than healthy participants but are equally certain about their belief. The prior variance is thus the
same as in healthy control participants, but the prior is shifted to the right, i.e. higher breathlessness lev-
els. This leads to a shift of the posterior towards higher breathlessness levels than in healthy participants.
When the stimulus strength increases (likelihood 2 in the top panel), the shift of the mean of the posterior
is equally strong as in healthy participants, i.e., breathlessness differences during rebreathing remain (same
length of errors in panel 2 and 3). Bottom: Patients with breathlessness expect an equally high level of
breathlessness but are more certain about their belief than patients without breathlessness. This leads to
a lower variance, i.e., higher precision of the prior. During phases with low stimulus intensity this will lead
to a higher posterior mean, i.e., slightly increased breathlessness reports, however, when stimulus intensity
increases (e.g., during rebreathing) breathlessness reports are similar. This is in line with our experimental
results.



Chapter 4

A mathematical model of
breathlessness processing in the brain

The current chapter encloses the research article with the title ’Post-COVID breathlessness:
a mathematical model of respiratory processing in the brain’. The article is published in
European Archives of Psychiatry and Clinical Neuroscience.

4.1 Summary
We developed a model of respiratory processing in the brain that explains how breathless-
ness can emerge in the absence of lung function deficits. The model assumes that perceived
breathlessness is an estimate of the current respiratory state of the body. This respiratory
state depends on the measured CO2 level in the blood, evolves from the respiratory state
in the last breath and takes the respiratory demands in the current context into account.
We validated our model by using experimental data from healthy participants performing
a rebreathing task.

4.2 Authors
Dina von Werder, Franziska Regnath, Daniel Schäfer, Rudolf Jörres, Nadine Lehnen, Stefan
Glasauer

60



Vol.:(0123456789)

European Archives of Psychiatry and Clinical Neuroscience 
https://doi.org/10.1007/s00406-023-01739-y

ORIGINAL PAPER

Post‑COVID breathlessness: a mathematical model of respiratory 
processing in the brain

Dina von Werder1,2,3  · Franziska Regnath3,4  · Daniel Schäfer3  · Rudolf Jörres5,6  · Nadine Lehnen1,3  · 
Stefan Glasauer1,7 

Received: 12 June 2023 / Accepted: 11 December 2023 
© The Author(s) 2024

Abstract
Breathlessness is among the most common post-COVID symptoms. In a considerable number of patients, severe breathless-
ness cannot be explained by peripheral organ impairment. Recent concepts have described how such persistent breathlessness 
could arise from dysfunctional processing of respiratory information in the brain. In this paper, we present a first quantitative 
and testable mathematical model of how processing of respiratory-related signals could lead to breathlessness perception. 
The model is based on recent theories that the brain holds an adaptive and dynamic internal representation of a respiratory 
state that is based on previous experiences and comprises gas exchange between environment, lung and tissue cells. Per-
ceived breathlessness reflects the brain’s estimate of this respiratory state signaling a potentially hazardous disequilibrium 
in gas exchange. The internal respiratory state evolves from the respiratory state of the last breath, is updated by a sensory 
measurement of  CO2 concentration, and is dependent on the current activity context. To evaluate our model and thus test 
the assumed mechanism, we used data from an ongoing rebreathing experiment investigating breathlessness in patients 
with post-COVID without peripheral organ dysfunction (N = 5) and healthy control participants without complaints after 
COVID-19 (N = 5). Although the observed breathlessness patterns varied extensively between individual participants in the 
rebreathing experiment, our model shows good performance in replicating these individual, heterogeneous time courses. The 
model assumes the same underlying processes in the central nervous system in all individuals, i.e., also between patients and 
healthy control participants, and we hypothesize that differences in breathlessness are explained by different weighting and 
thus influence of these processes on the final percept. Our model could thus be applied in future studies to provide insight 
into where in the processing cascade of respiratory signals a deficit is located that leads to (post-COVID) breathlessness. A 
potential clinical application could be, e.g., the monitoring of effects of pulmonary rehabilitation on respiratory processing 
in the brain to improve the therapeutic strategies.
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Introduction

Post‑COVID breathlessness

Persistent breathlessness is estimated to affect more than 
25% of patients after COVID-19 [1]. While some patients 
present with impaired lung function and carbon monox-
ide diffusing capacity [2], others have neither measurable 
pulmonary [3, 4] nor cardiac impairments [5] despite pro-
found breathlessness. In general, there is only a moderately 
strong relationship between peripheral organ dysfunction 
and patients’ breathlessness, and a considerable number 
of patients lack any measurable organic symptom cor-
relate [1]. Recently, concepts based on the processing of 
respiratory information in the brain have been developed 
that describe how persistent breathlessness that is not suf-
ficiently explained by organ dysfunction could manifest 
[6–10]. These concepts highlight that perception of symp-
toms occurs in the brain, even if the initial cause resides in 
body periphery, and that symptoms can be just as authentic 
and disabling when peripheral organs are intact, but infor-
mation relayed from sensors to the brain is misprocessed. 
Therefore, investigating how bodily signals are processed 
in the brain should be an integral part of the search for pos-
sible disease mechanisms in addition to the examination of 
peripheral organ impairments.

A new perspective on breathlessness

The environment around us is constantly changing. To keep 
the body in homeostasis, the brain must monitor all relevant 
processes in the body and adjust them as soon as they exceed 
setpoints such as a certain core temperature, pH or glucose 
level [11]. In the case of breathing, different receptors signal 
information about lung mechanics, cardiac function, carbon 
dioxide  (CO2) concentration and pH levels in the blood. The 
brain needs to measure and integrate these signals to obtain 
information about the current respiratory state, i.e., the gas 
exchange between the environment, lungs, and tissue cells 
[12, 13]. This involves two problems: (1) Sensory informa-
tion coming from receptors is inherently noisy which makes 
sensing of a signal prone to errors. (2) Sensory input always 
follows an event and consequently is delayed. Therefore, 
reactive control of bodily states will often be too slow lead-
ing to over- or undershooting the desired setpoint, which 
could, e.g., in the case of pH levels, be life-threatening.

This implies that in many scenarios, reactive control 
mechanisms will not be sufficient. Conversely, it is crucial 
that the brain predicts deviations from setpoints in advance 
and adjusts breathing in anticipation of actual changes, e.g., 
in pH. To predict future changes of bodily states, the brain 
needs to form an internal representation that describes how 

such bodily states evolve over time (see Fig. 1). This internal 
representation is often called an internal model. It needs to 
be dynamically adapted based on newly available informa-
tion. For example, changes such as increased lung ventila-
tion due to training, or decreased lung function due to dis-
ease (as in Fig. 1b) need to be incorporated. This means that 
the internal representation is built from past experiences. 
Based on these, predictions can be developed (see Fig. 1) to 
handle noisy measurements and obtain an optimal estimate 
of the underlying body state [9, 14, 15]. This is comparable 
to driving on a familiar road at night: even if visibility is 
poor, our knowledge of how the road is developing improves 
our perception and makes driving easier. In a similar way, 
the brain obtains an optimal estimate of the actual underly-
ing body state from the combination of sensory input and 
prediction. The relative contributions of noisy measurements 
and predictions (see Fig. 1c) are determined by their relative 
precision. If sensory input is very noisy and imprecise (like 
when driving at night and vision is poor), more reliance will 
be put on predictions (our knowledge of the road), and the 
resulting estimate is shifted toward these. Thus, predictions 
will dominate the estimate of the body state (see Fig. 1c). In 
contrast, if sensory input is precise (driving during the day 
and good vision), the brain’s estimate of the body state will 
more closely reflect the actual sensory input. The brain’s best 
educated estimate about the underlying body state is thus 
a combination of predictions based on internal representa-
tions and sensory input. This is described by Bayes’ Law, 
a statistical framework that can explain different perceptual 
phenomena [16, 17] and is often used to model perception 
[15]. It is important to highlight that the brain’s estimate 
about body states is not necessarily consciously perceivable 
and that probably a further step is necessary that translates 
this estimate into conscious perception.

While internal representations are crucial to correctly 
interpret the noisy information around us and to deal with 
bodily perturbations in an adequate and timely manner, 
visual illusions demonstrate that predictions based on inter-
nal representations can also misdirect perception. Visual 
illusions (such as the checkerboard illusion [18]) are often 
caused by strong predictions that bias our perception, lead-
ing to a discordance between the perceived reality and the 
physical reality. Similar to perception of stimuli arising out-
side the body, internal representations can bias perception 
of stimuli arising inside the body [19]. If the internal repre-
sentation about the processes causing the respiratory state 
is defect, measurements will be incorrectly interpreted, and 
breathlessness could arise even if the sensory input does 
not signal any abnormalities—just as an optical illusion is 
perceived and becomes one’s own reality despite not corre-
sponding to physical reality. Importantly, even though objec-
tive knowledge about the actual physical reality is present, it 
usually does not ‘correct’ perception.



European Archives of Psychiatry and Clinical Neuroscience 

At present it is unclear how and where these internal rep-
resentations are implemented in the brain, although there 
is some evidence that the insula [20, 21] and cerebellum 
[22–24] are involved in updating and maintaining inter-
nal representations. Here, mathematical models can pro-
vide relevant insights by revealing constraints to which the 
physiological mechanisms must be subjected. Such models 
implement a quantitative description of assumed internal 
representations and estimation processes of bodily states. 
In our model, we assume an internal respiratory state that 
describes gas exchange between environment, lung and tis-
sue cells. The current internal representation evolves from 
that of the last breath via updating from sensory measure-
ments of  CO2 concentration in the blood and cerebrospi-
nal fluid. The perceived breathlessness reflects the brain’s 
estimate of this respiratory state signaling a normal versus 
potentially dangerous disequilibrium in gas exchange.

In the present work, we test the plausibility of this 
hypothesized mechanism by evaluating whether our model 
can describe the relationships between individual breath-
lessness ratings and  CO2 levels measured in a rebreathing 
experiment.

By writing down our proposed mechanism as a quan-
titative mathematical model, we render our theory about 
processing of respiratory information in the brain testable. 
We hypothesize that breathlessness ratings from a very 
heterogeneous sample including healthy participants and 
patients with post-COVID can be simulated by a model 
that assumes the same underlying processes in all individ-
uals and that differences in breathlessness are explained by 
different weighting and thus influence of these processes 
on the final percept.

Fig. 1  Development of breathlessness perception. a–c The brain 
holds an internal representation how bodily states evolve over time. 
Based on this, it can inform predictions about sensory input and use 
these predictions to optimally estimate the actual sensory input in a 
noisy environment. The brain’s best estimate is thus always a com-
bination between prediction and sensory measurement. Each compo-
nent can be weighted differently, according to how precise it is (Bayes 
law). b During acute disease, respiration can be impaired, and the 
internal representation is adapted to this diseased state. c When the 
lung recovers and respiration is intact, but the internal representation 

not updated, predictions are developed based on an internal repre-
sentation that still assumes impaired respiration. If sensory input is 
noisy (dashed line) and predictions assumed to be very precise (thick 
line), predictions will be weighted more strongly in the estimation 
process of the respiratory state. Thus, even though sensory input sig-
nals intact respiration, inadequate predictions of diseased respiration 
can bias the estimate toward a respiratory state signaling impaired gas 
exchange. This can subsequently lead to breathlessness in the absence 
of any sensory input signaling impaired respiration
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Methods

The current study is part of the innovative training network 
ETUDE (Encompassing Training in fUnctional Disorders 
across Europe; https:// etude- itn. eu/), ultimately aiming 
to improve the understanding of mechanisms, diagnosis, 
treatment and stigmatization of Functional Disorders [25].

Experimental paradigm

Experimental data were acquired using an experimental 
paradigm that is a variation of Read’s rebreathing method 
[26] and was previously used to investigate, e.g., medically 
unexplained breathlessness [27], as well as chronic fatigue 
and fibromyalgia [28]. Participants breathed through a 
mouthpiece that was connected to a Y-valve behind a visual 
barrier. The experimenter was located behind the barrier 
and could let the participant breathe either room air or air 
from a rebreathing bag. The rebreathing bag was initially 
filled with a gas mixture of 5%  CO2 and 95%  O2 (Carbo-
gen, Linde). Due to rebreathing from this closed system, the 
inhaled  CO2 concentration gradually increased leading to 
hypercapnia and breathlessness.

During the experiment, we recorded  CO2 concentration 
in breathed air (capnograph, Hans Rudolph), peripheral oxy-
gen saturation (pulse oximetry, Nonin Xpod) and respira-
tory flow rate (pneumotachograph, Hans Rudolph) with a 
sampling rate of 50Hz. For this study, we calculated single 
breath data for  CO2 concentration. End-tidal  CO2  (etCO2) 
was obtained by taking the maximum  CO2 concentration 
exhaled in each breath. These single breath data were aver-
aged over 10s intervals. Participants were instructed to rate 
their breathlessness on a scale from 0 (not at all) to 100 
(unbearable) every 10s when an auditory cue was presented. 
They were informed that they would breathe air with differ-
ent concentrations of  CO2 and  O2 that can induce either a 
feeling of breathlessness or no symptoms at all. However, at 
no point in the experiment, the actual source of breathed air 
was known to them. The experiment started with a baseline 
phase, during which participants inhaled room air for 60s. 
This was followed by a rebreathing phase for 150s and a 
subsequent recovery phase with room air for another 150s.

Participants

We recruited patients at specialized post-COVID clinics in 
university hospital settings who presented with post-COVID 
breathlessness not explained by peripheral cardiorespiratory 
or neurological impairments. All patients needed to provide 
a PCR test documenting the initial SARS-CoV-2 infection 
and had to be suffering from post-COVID symptoms for at 
least 3 months. Data collection for this rebreathing study is 

still ongoing, but we consider it worthwhile to inform other 
researchers on our modeling approach using first results. 
For evaluating the model, we included data from the first 5 
patients (mean age ± standard deviation: 34.2 ± 13.7 years, 
4 female). Healthy control participants were recruited 
through the intranet of the Klinikum rechts der Isar, Tech-
nical University Munich, as well as through advertisement 
(flyers) outside of the clinic. For this study, we included 5 
healthy controls participants (mean age ± standard deviation: 
35.0 ± 15.5 years, 4 female) who were matched by age and 
gender to the 5 patients.

On the day of the experiment, lung function tests (spirom-
etry and diffusing capacity for CO) and a standardized neu-
rological examination were performed to rule out any organ 
impairment on that very day. None of the included par-
ticipants nor patients showed signs of impairment in these 
exams. In addition, we clinically characterized all partici-
pants using the gold standard for making DSM-5 diagnoses, 
i.e., the Structured Clinical Interview for DSM-5 disorders 
(SCID-5-CV). Furthermore, we used the patient health ques-
tionnaire (PHQ-15), a well-established tool which asks about 
the presence and severity of common bodily symptoms [29], 
and asked participants about the presence and severity of 
breathlessness in everyday life situations.

The study was designed in line with the Declaration of 
Helsinki, and the Ethics Committee of the Technical Univer-
sity Munich approved the study protocol prior to conduction. 
Informed consent was obtained from all individual partici-
pants included in the study.

Model description

The brain is not passively waiting and then reacting to sen-
sory input but rather actively predicting sensory input based 
on its internal representation how certain body states are 
generated. Accordingly, our main assumption for mathemati-
cal modeling is that the brain holds an internal representa-
tion of how bodily states related to breathlessness are chang-
ing over time and how these changes are linked to sensorily 
measurable quantities such as  CO2 concentration. In the 
following, we will refer to the bodily state reflecting the gas 
exchange between environment, lung and tissue as “internal 
respiratory state”. We assume that perception of breathless-
ness reflects potentially dangerous levels of this state, like 
perception of pain reflects damage to the body. Perception 
of breathlessness thus represents the brain’s estimate of a 
respiratory state indicating disequilibrium in gas exchange 
that may cause dangerous pH levels in the blood.

To construct our mathematical model of breathlessness 
perception (see Fig. 2, for the equations see Appendix), we 
first formulated a hypothesis about the brain’s internal rep-
resentation how the respiratory state will evolve. This inter-
nal representation can then be used to form predictions to 
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optimally estimate the internal respiratory state that is not 
directly accessible to the brain. All our following assump-
tions for the construction of the model are physiologically 
informed. For simplification, we assume that the respiratory 
state can be summarized in a single variable. We further 

assume that the state varies only slowly from one breath to 
the next and is influenced by the internal  CO2 concentration 
as well as the current activity context. Walking up a flight of 
stairs would amount to a high activity context as compared 
to standing still. Similarly, our rebreathing paradigm can 

Fig. 2  Model of breathlessness perception (a) and a visualization of 
the different processing steps (b). Measurement of  CO2 concentration 
in the blood and cerebrospinal fluid (bottom, b5) is noisy and error-
prone and thus needs to be combined with a prediction to obtain an 
estimate of the actual underlying  CO2 concentration (orange, solid 
line in b4). Note that this internal estimate can be different from 
the actual  CO2 concentration and will be used to update predictions 
about future measurements. Furthermore, the current activity context 
plays a role (b3). Walking up a flight of stairs leads to a high activ-
ity context, which will increase the respiratory state, while resting 
evokes a low activity context and a lower respiratory state. Note that 
while the activity context is constant throughout the simulation, its 
effect (shown in b3) increases and saturates after about 2 min for this 
participant. The respiratory state describes the current gas exchange 
between environment, lung and tissue cells and is not consciously 

accessible. The respiratory state in the last breath is used to predict 
the current respiratory state and can be updated by the estimated  CO2 
concentration as well as the activity state. How much the estimated 
 CO2 concentration is taken into account can vary. If the sensory 
update is taken into account only to a very small extent, the respira-
tory state is mainly influenced by the prediction based on the last res-
piratory state and the current activity context. Thus, even though sen-
sory measurements signal an improvement in  CO2 levels (b5, in last 
phase with room air), the respiratory state signaling imbalances in gas 
exchange may show minor improvement (b2, in last phase with room 
air). Finally, the respiratory state needs to be translated into the per-
ception of breathlessness (b1). Breathlessness thus reflects an internal 
respiratory state that signals a potentially dangerous imbalance in gas 
exchange
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amount to a high activity context. The activity context thus 
describes the expected influence of an activity on respiratory 
demands. Importantly, it can be different between individu-
als. We chose exhaled  CO2 concentration per breath as the 
sensory quantity to update the respiratory state since it is 
experimentally accessible and can be used to approximate 
arterial  CO2 concentration [30] that is measured by chemo-
receptors. Like the internal respiratory state, the exhaled 
 CO2 concentration is assumed to vary only slowly from one 
breath to the next. Thus, we hypothesize that the current 
respiratory state evolves from the respiratory state in the 
last breath and is updated by the sensory  CO2 state. This 
process describes the brain’s internal representation of how 
a respiratory state is generated.

For the estimation of the expected respiratory state, the 
brain needs to combine the measured  CO2 concentration 
with the internal representation described above. Since 
measurement of the  CO2 concentration is noisy and error-
prone, the brain also needs to estimate the actual  CO2 con-
centration. For this, the brain forms a prediction based on 
the internal representation that the  CO2 level changes slowly, 
but randomly, from one breath to the next. This prediction 
can be combined with the measured  CO2 concentration to 
optimally estimate the actual  CO2 concentration. For this 
estimation process, the framework of Bayes law can be used. 
It shows that if sensory measurement is precise, the resulting 
 CO2 estimate will primarily rely on the sensory measure-
ment. However, if sensory uncertainty is high, the estimate 
will more closely reflect the prediction based on the inter-
nal representation. As Kalman Filters are generally applied 
to estimate states evolving over time from noisy measure-
ments, we used this approach to formulate the Bayesian 
estimation process (for the equations see Appendix). The 
five free parameters of this estimator, which are considered 
to be characteristic for each individual, can be computed 
from the experimental  CO2 and breathlessness data from 
each individual participant. They are (1) the ratio of meas-
urement uncertainty and assumed random changes of  CO2 
concentration, (2) a weight factor describing how much the 
 CO2 level influences the respiratory state in every breath, (3) 
a parameter for the assumed activity context, and (4,5) two 
scaling parameters for the transformation translating the res-
piratory state into breathlessness perception (formulated as 
linear transformation comprising an offset and a gain factor).

The resulting estimated breathlessness states from the 
estimation model were compared to the time course of the 
actual breathlessness ratings from participants in the experi-
ment. The free parameters were fitted by minimizing least-
squares between actual and estimated breathlessness rating 
using the in-built MATLAB function lsqnonlin.

Model evaluation

To evaluate whether the observed breathlessness ratings 
could also be explained by a simpler model that assumes 
that breathlessness is a scaled and shifted version of sensory 
input, we compared our model to a linear regression model 
of the following form:

with b : breathlessness, �
0: intercept, �

1
 : regression slope, x: 

 CO2 concentration measured in the experiment and � : error 
term.

Furthermore, we tested whether simpler versions of our 
proposed model can explain breathlessness ratings equally 
well as the full version. Our proposed model describes the 
respiratory state as depending on the activity context, the 
respiratory state in the last breath and an estimate of the 
internal  CO2 level. While sensory input (in this case internal 
 CO2 level) will likely play a role to some extent in every par-
ticipant, we kept this component but set up two new model 
variants where we (1) removed the activity context and (2) 
in another model removed the dependence on the respiratory 
state in the last breath.

Performance between the different model versions, i.e., 
(1) the full model, (2) without activity context and (3) with-
out dependence on the last respiratory state and (4) the linear 
regression model was compared using Akaike Information 
Criterion (AIC) which evaluates the quality of a model fit 

b = �0 + �1 ∗ x + �

Table 1  Clinical characterization of participants

Left: Participants were asked how breathless they are in everyday 
situations. Breathlessness was rated on a scale from 0 (no breathless-
ness at all) to 9 (extreme breathlessness) in these different situations. 
Right: PHQ-15 scores of patients (P) and healthy controls (H). PHQ-
15 scores of ≥ 5, ≥ 10, ≥ 15 represent mild, moderate and severe levels 
of somatization

How breathless are you when… PHQ-15 
SCORE

…at rest …putting on 
clothes

…walking up the 
stairs one floor

P1 2 5 7 6
P2 1 2 7 16
P3 1 3 8 21
P4 2 2 6 16
P5 0 3 5 17
H1 0 0 0 6
H2 0 0 0 2
H3 0 0 0 0
H4 0 0 1 6
H5 0 0 0 3
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while also taking into account the number of parameters and 
thus the risk of overfitting.

Results

Clinical characterization

Table  1  displays the clinical characteristics of 
all included patients and healthy control participants. These 
characteristics were not part of the modeling procedure, nor 
were they considered for statistical analyses to evaluate dif-
ferences between patients and healthy control participants. 
Table 2 shows diagnoses of all participants as obtained with 
the clinical interview for DSM-5 disorders (SCID-5-CV).

Table 2  Diagnoses as obtained from SCID-5-CV interview of all par-
ticipants. P - patient; H - healthy control participant

Participants Diagnosis

P1 Major depressive disorder, single episode, unspecified
Undifferentiated somatoform disorder

P2 Premenstrual dysphoric disorder
Specific isolated phobias
Undifferentiated somatoform disorder

P3 Major depressive disorder, single episode, moderate
Generalized anxiety disorder
Undifferentiated somatoform disorder

P4 Undifferentiated somatoform disorder
P5 –
H1 Bipolar disorder, in full remission
H2 Major depressive disorder, recurrent, in full remission
H3 –
H4 Specific isolated phobias
H5 –

Fig. 3  CO2 concentration in exhaled breath (top) and breathlessness 
ratings (blue) and model simulation (red dashed) (bottom) for indi-
vidual, healthy control participants (H1: same data as in Fig. 2). Par-

ticipants rated breathlessness on a visual analog scale from 0 to 100. 
H - healthy control participant
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Modeling results

Although all participants inhaled air with the same  CO2 
concentrations, both at baseline and at the beginning of the 
rebreathing phase, i.e., received a similar sensory stimulus, 
breathlessness ratings varied considerably between partici-
pants (see Figs. 3 and 4). This was true both for the maxi-
mum perceived breathlessness and for the development of 
breathlessness over time. Differences in breathlessness pat-
terns could be observed between the two groups; however, 
there were also substantial differences between individual 

patients, as well as between individual healthy participants. 
While some participants recovered rapidly after the rebreath-
ing phase, i.e., breathlessness decreased back to low ratings, 
others remained breathless even when they were breathing 
room air (compare e.g., P1 to P5 in Fig. 4). Despite these 
very different patterns, our model showed good performance 
in its capability to replicate the observed time course of 
individual breathlessness. Using only  CO2 concentration as 
input, it did not simply mirror this input but was also capa-
ble of describing breathlessness ratings that were uncoupled 
from the actual sensory input. This was for example the case 

Fig. 4  CO2 concentration in exhaled breath (top) and breathlessness ratings (blue) and model simulation (red dashed) (bottom) for individual 
patients with post-COVID breathlessness. Patients rated breathlessness on a visual analog scale from 0 to 100. P - patient

Table 3  Akaike Information Criterion (AIC) for the full proposed model, variants with either no activity context or no dependence on the res-
piratory state in the last breath as well as a linear regression model

P1 P2 P3 P4 P5 H1 H2 H3 H4 H5
Full model 46.53 61.08 113.70 149.02 142.02 91.07 134.31 94.94 98.10 92.08

vity
context

169.85 63.14 117.36 147.06 140.15 117.44 136.27 92.95 120.23 125.55

No 
dependence 
on last 
breath

187.68 70.45 134.45 155.23 149.26 110.34 132.98 92.49 120.21 140.53

Linear 
Regression

168.39 172.99 121.67 231.73 207.01 147.38 166.25 99.67 136.55 196.09

The lower the AIC, the better the model fit. Green: Lowest AIC, i.e., best model performance, for each participant. P - patient; H - healthy con-
trol participant 
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in P1, where breathlessness increased throughout the experi-
ment and stayed high, even though  CO2 concentration had 
decreased back to baseline.

Table 3 shows Akaike Information Criterion (AIC) for 
variants of the proposed model as well as a linear regres-
sion model. The lower the AIC, the better the model per-
formance. The diverse breathlessness patterns observed in 
the experiment were poorly explained by a linear regression 
model which assumes that breathlessness is a scaled and 
shifted version of the sensory input, i.e.,  CO2 concentration. 
In none of the participants, it performed better than the full 
proposed model or variants of it. Similarly, simpler version 
of our proposed model (1) without activity context and (2) 
without dependence on the respiratory state in the last breath 
predicted breathlessness ratings in general less well than 
the full model. A model variant without the activity context 
only led to slightly better predictions in 2 out of 10 partici-
pants. Similarly, the model variant without dependence on 
the respiratory state in the last breath only improved model 
prediction slightly in 2 out of 10 participants. However, in 
most participants, our full model showed a decisive improve-
ment in model performance when compared to variants of it 
or the linear regression model.

Discussion

In this work, we provided a quantitative and testable model 
that describes how respiratory processing leads to breath-
lessness perception. According to our model, the brain 
needs to estimate a respiratory state by updating predic-
tions based on the last respiratory state and an estimated 
 CO2 concentration, while taking the current activity con-
text into account. It showed good performance in describ-
ing highly heterogeneous time courses of individual 
breathlessness ratings obtained in our rebreathing experi-
ment and outperformed other model variants as well as a 
linear regression model. Since the experimental data dem-
onstrated very diverse breathlessness patterns, this might 
have required different mechanistic approaches for differ-
ent subgroups. However, our model equipped with only 
one underlying mechanism was capable across all of these 
different, individual breathing patterns. Remarkably, it 
could also simulate breathlessness when it was uncoupled 
from the sensory  CO2 stimulus (see P1, Fig. 4). It thereby 
provides a possible mechanism of how the same  CO2 
stimulus can be linked to different breathlessness patterns. 
Interestingly, only two patients with post-COVID (P4 and 
P5) developed strong breathlessness in the rebreathing 
phase. This shows that the patients in this study were not 
in general more sensitive to respiratory stimuli and thus 
experienced stronger breathlessness but that likely more 
complex dysfunctions in respiratory processing played a 

role that can result in more or less sensitive detection and 
response to these stimuli.

The parameter values of the model obtained from fit-
ting the model output to experimental data describe how 
strongly each of the processes formulated in our model 
influence the final breathlessness percept. While the sam-
ple size in this study allowed to test whether the model 
in general can produce breathlessness ratings that are 
similar to experimentally obtained ratings, future studies 
with higher sample sizes are necessary to evaluate pos-
sible parameter differences between individuals as well 
as different groups. The parameters of the model provide 
specific insight into where in the processing of respira-
tory information a dysregulation might occur that leads to 
persistent breathlessness. For example, the internal  CO2 
state could be wrongly estimated. This could result from 
increased uncertainty of  CO2 sensors, which leads to rely-
ing more on predictions than actually measured  CO2 con-
centration. Then, the internal respiratory state would not 
reflect the actual underlying  CO2 level. Another factor is 
the activity context, which, if wrongly estimated, might 
lead to increase of breathlessness even without changes in 
 CO2 measurement. Our model thus allows to test within 
the same mechanism how different processes are weighted 
which could result in (post-COVID) breathlessness even 
though peripheral organ function is intact, and chemore-
ceptors signal a balanced gas exchange.

On a general level, the question remains how inade-
quate internal representations emerge. One possibility (see 
Fig. 1) could be that during the acute phase of COVID-19, 
the internal representation had to be adapted to a state of 
lung disease from viral infection (Fig. 1b). During this 
time, the adaptation was crucial to maintain homeostasis; 
however, it needs to be revised back to the healthy body 
state as soon as the infection resolves. If this does not 
take place (see Fig. 1c), sensory input signaling an intact 
lung would be interpreted with an internal representation 
referring to the diseased state, leading to symptom percep-
tion. A failure to update the internal representation could 
be due, for example, to persistent damage of respiratory 
chemoreceptive sensors or pathways. Persistent sensory 
changes in post-COVID have been reported for smell and 
taste, but also for other sensory inputs [31]. Such dam-
age to respiratory chemoreception could also explain why 
breathlessness can be decoupled from actual  CO2 level, as 
found in P1 (see Fig. 4). Furthermore, Sars-CoV-2-related 
changes in brain structure could play a role. In a longitu-
dinal study comparing MRI scans before and after SARS-
CoV-2 infection, Douaud et al. [32] found greater loss of 
gray matter and increased diffusivity, which is indicative 
of tissue damage in several brain regions, including the 
insula. Exploratory analyses have also shown loss of gray 
matter in the cerebellum. Both brain areas are involved in 
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breathlessness perception and are assumed to store internal 
representations and to process prediction errors that arise 
when sensory input does not match predictions [33–35]. 
In addition, it is well known that stress [36] and mental 
health conditions such as anxiety [37, 38] interfere with 
how bodily signals are processed.

A discordance between symptoms and lung function 
parameters such as forced expiratory volume  (FEV1) is 
a well-known phenomenon in respiratory diseases such 
as asthma [39–41]. However, symptoms decoupled from 
organ dysfunction are not specific to respiratory diseases 
but rather can be found in any field of clinical medicine 
[42]. Experimental approaches have been developed to 
test altered processing of body signals as a cause of these 
symptoms. For example, Lehnen et al. [43] developed an 
experiment that challenges the interaction between sensory 
input and internal model to study functional dizziness in 
patients with intact organ function which allowed to detect 
markers indicating dysfunctional sensorimotor processing 
[44, 45]. This was transdiagnostically extended to irritable 
bowel syndrome [46].

Limitations

The fact that our mathematical model could simulate our 
experimental data does not necessarily mean that it is the 
only possible model. It is also still greatly simplified. For 
example, it is unlikely that  CO2 concentration is the only 
sensory input used to update the respiratory state. Breath-
ing also evokes, e.g., proprioceptive signals that provide 
information about lung mechanics such as the breathing 
frequency. In addition, for sudden changes in breathlessness 
perception that are decoupled from changes in  CO2 concen-
tration (see e.g., P3 & H3), our current model shows poor 
performance. Here threshold effects could be implemented 
in future versions of the model to allow simulations of such 
patterns. Furthermore, the sample size in this study only 
allowed to show that in general our model can predict dif-
ferent breathlessness patterns but did not allow for analysis 
of group differences, neither for model parameters nor for 
experimental data. Despite these limitations, we present our 
model at this stage of development because it could already 
describe experimental data very well, especially in view of 
the small set of parameters needed to describe a complex 
behavior.

Outlook

Our model enables to test hypotheses about the process-
ing of (post-COVID) breathlessness in the brain. While 
our hypothesis of how respiratory signals are processed in 
the brain is so far supported by results, further experimen-
tal tests are required to validate, and potentially refine it. 

Especially in post-COVID patients such as P1, an independ-
ent test of respiratory chemoreception could help to answer 
the question, whether sensory damage, e.g., to the carotid 
bodies or to central chemoreception [47], may have played 
a role in maintaining an inadequate internal representation 
of respiratory state. Another obvious consequence of the 
hypothesis would be that relief from breathlessness should 
be possible by readjusting the internal representation so 
that it adequately reflects a healthy state. One may assume 
that this already occurs during pulmonary rehabilitation 
programs, although not explicitly addressed [48]. Here, our 
model could provide a means to monitor which parameters 
are improved by rehabilitation. Finally, a possible method 
of providing improved sensory input is biofeedback, which 
has recently been suggested for post-COVID treatment of 
dysregulation of the autonomic system [49]. For example, 
monitoring the blood oxygenation level or, via transcuta-
neous  CO2 monitoring, even the  CO2 level, could show 
patients that their respiratory state is normal despite feel-
ing breathless. Such a cognitive input might have a small 
effect but could help in gradually readjusting the internal 
representation.
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Chapter 5

General discussion

5.1 Key findings
This thesis investigated sensorimotor control and symptom perception in patients with
PPS. Our experimental findings revealed sensorimotor dysfunction in patients with func-
tional dizziness and altered symptom perception in patients with post COVID-19 condi-
tion that can be attributed to incorrect internal models instead of pathophysiological body
states. In chapter 2, we showed that gaze in patients with functional dizziness is only un-
stable in phases requiring model-based motor planning but not in phases that are sensory
reflex-driven. In chapter 3, we demonstrated that while most patients with post-COVID
fatigue can correctly adapt breathing patterns to changing stimuli, breathlessness is in-
creased compared to healthy control participants, hinting at dysfunctional internal models
specific to symptom perception. In chapter 4, we bridged the gap between theoretical ap-
proaches and experimental data by developing a mathematical model that formalizes the
hypothesized mechanism of how processing of respiratory signals can lead to breathlessness
perception.

5.2 Towards a mechanistic understanding of functional
dizziness

We were able to demonstrate that deficits in gaze stabilization in patients with functional
dizziness are due to incorrect internal models, however, the exact underlying mechanism
remains unclear. Next to gaze instability, several other (sensorimotor) deficits are known
in patients with functional dizziness. In the following sections, potential mechanisms that
could explain the observed sensorimotor deficits in the eye-head paradigm will be discussed.
Then, a possible adaptation of the experimental paradigm to multisensory contexts will
be suggested and theories of multisensory integration and Bayesian causal inference in-
troduced. The following section reviews (sensorimotor) dysfunctions in this multisensory
framework. Finally, different potential reasons why incorrect internal models could be
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immune against updating and their role in further developing and refining treatment ap-
proaches for functional dizziness will be discussed.

5.2.1 Sensorimotor deficits in the eye-head paradigm
Gaze stabilization requires correct inference of head inertia as well as a correct forward
model to plan and adapt the required compensating eye movement. When gaze has reached
the target, the head continues to move which needs to be counteracted by eye movements
into the opposite direction to keep gaze stable. If the eyes can completely counteract the
head movement, this leads to a counter-rotation (CR) gain of 1. A CR gain close to 1
is observed in healthy participants in the baseline phase of our experiment. When we
artificially increased head inertia by placing a helmet with weights on participants’ heads,
this led to an insufficient counter-rotation of the eye in respect to the head movement and
thus a decreased CR gain in healthy participants. In patients with functional dizziness,
however, the CR gain was already decreased in the baseline and further worsened in the
condition with increased head moment of inertia (see chapter 2).

A possible mechanistic explanation for the decreased CR gain in a Bayesian framework
is a down-weighting of vestibular information (likelihood) due to precise, but incorrect prior
distributions over head inertia (Lehnen et al., 2018). According to Bayes rule, the inferred
state based on the available sensory input (y) is proportional to the likelihood function of
the sensory input given the actual body state and the prior describing the probability of
this state (x).

p(x|y) ∝ p(y|x) ∗ p(x) (5.1)

Introducing the helmet leads to an increase in head inertia, which cannot be predicted
since participants have never seen or worn the helmet before. The prior over head inertia
thus does not correctly represent the now increased head inertia. A prior assigning higher
probability to lower head inertia than actually present, will lead to an underestimation of
head inertia. Consequently, also the overshoot of the head at the end of the gaze shift will
be underestimated and thus no sufficient counter-rotation of the eye is planned. This leads
to a decreased CR gain in the weighted condition in healthy participants. In patients, a de-
creased CR gain is observed in the baseline phase and further exacerbated in the weighted
condition, suggesting that patients hold an incorrect prior already in natural, unweighted
conditions. While our experimental results are well accounted for by an explanatory mech-
anism that assumes failures in correctly inferring head inertia due to incorrect priors, they
could equally well be explained by alternative mechanisms, such as imprecise likelihood
functions instead of precise priors. Since different mechanisms can lead to the same ob-
served behaviour, it is inherently difficult to disentangle where a dysfunction is located
exactly. What is more, patients with functional dizziness are mostly diagnosed given an
exclusion of other pathophysiological processes that could cause the experienced symptoms.
This does not necessarily mean that the same mechanism is present in all patients, making
it even harder to disentangle mechanistic underpinnings in results from possibly heteroge-
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neous patient groups. Here, a combination of modelling approaches and carefully designed
experiments might help to gain insight into the exact mechanism as well as to investi-
gate possible differences between individual patients. Such an experimental-computational
approach to distinguish between different Bayesian computational mechanisms has, for
example, been applied to study autism (Schneebeli et al., 2022).

Next to an incorrect inference model, deficits might also arise due to erroneous forward
models that, based on an efference copy, incorrectly predict how the head will move and
the associated vestibular input (Lehnen et al., 2018). Eye movements are then planned
accordingly, leading to deficient gaze stabilization. Incorrect forward models can also ex-
plain previous work in our research group. Lehnen et al. (2019) investigated head oscilla-
tions in patients with functional dizziness, bilateral vestibulopathy and cerebellar ataxia.1
When gaze reaches the target, the head usually overshoots and oscillates around the gaze
target. In patients with functional dizziness, these head oscillations were higher than in
healthy control participants2 but not different from patients with organo-structural vestibu-
lar deficits, i.e., bilateral vestibular loss and cerebellar ataxia. Whereas in these patients,
no vestibular input is available (bilateral vestibular loss) or this input cannot be processed
due to damage in the cerebellum (cerebellar ataxia), similarly impaired head control in
functional dizziness with intact vestibular function can be explained by incorrect forward
models. If head movements and its sensory consequences are incorrectly predicted, only
insufficient stabilization by, e.g., the neck muscles, will be initiated which leads to the
observed head oscillations.

In summary, internal models incorrectly representing head inertia can explain sensori-
motor deficits observed in functional dizziness. Whether this is due to incorrect inference,
forward or other internal models, cannot be fully determined based on our experimental
results. Since these internal models might be maintained in different brain areas and in-
volve different processing steps, a better understanding of the exact mechanism could help
to further elucidate the cause of sensorimotor dysfunctions in functional dizziness.

A limitation that currently hinders translation of our experimental results to clinical
contexts is that the current experimental paradigm investigates gaze stability in a context
where only vestibular input is available3. Usually, gaze stabilization requires correct esti-
mation of head characteristics based on visual, vestibular and proprioceptive sensory input
to optimally plan eye movements that can counteract unwanted head movements. As a
next step, it is thus essential to conduct the current experiment in conditions where visual
input is available which also more closely reflects the experiences of patients in everyday

1The data analyzed in this thesis for functional dizziness was part of this larger study which investigated
gaze shifts in functional dizziness, bilateral vestibulopathy and cerebellar ataxia.

2We have recently replicated the results of increased head oscillations in patients with functional dizzi-
ness as compared to healthy participants (Regnath et al., 2024).

3Theoretically, also proprioceptive input is available. However, Sağlam and Lehnen (2014) and Wibble
and Pansell (2024) have shown that in the absence of visual input, proprioceptive feedback is negligible for
adapting eye movements. The eye-head paradigm in this study is conducted in complete darkness and it
can thus be assumed that it isolates vestibular processing from other sensory modalities when performing
gaze shifts.
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life. This will also allow to investigate multisensory integration and the question of whether
visual input can improve gaze stability in patients with functional dizziness. In the next
section, a Bayesian framework for multisensory integration and Bayesian causal inference
will be introduced.

5.2.2 Multisensory integration and Bayesian causal inference
Integrating information from the visual and vestibular system leads to improvements in
perceptual and behavioural performance. For example, integrating visual and vestibular
signals has been shown to improve heading perception in healthy participants, i.e., the
direction of self-movement (Dokka et al., 2015; Gu et al., 2008; Fetsch et al., 2009) and
dissociating self-motion from object motion is enhanced when in addition to visual input,
vestibular inputs are available (Dokka et al., 2015).
If the cause of sensory signals from the visual (yvis) and vestibular (yvest) system is the
same, the posterior over the hidden states (x) that might have caused these signals is
proportional to the product of the prior (p(x)) over possible states and the likelihood
functions of each sensory input (Ma et al., 2023). This can be formulated as follows:

p(x|yvest, yvis) ∝ p(x)p(yvest|x)p(yvis|x). (5.2)

However, sensory information from different modalities should only be combined if it
arises from the same underlying (body) state. Thus, the brain must infer whether sensory
signals arise from the same cause and should be integrated into one percept or whether
they should be segregated and interpreted independently of each other. This inference of
the causal relationship of sensory signals can be described by Bayesian causal inference
models (Noppeney, 2021; Körding et al., 2007; Acerbi et al., 2018). For two independent
measurements (yvest and yvis), the inference of whether a common cause (C = 1) or two
different causes (C = 2) underlie these measurements can be described by Bayes’ law:

p(C|yvest, yvis) = p(yvest, yvis|C)p(C)
p(yvest, yvis)

(5.3)

As there is noise and it can never be fully determined whether there is one or multiple
causes of different sensory signals, the estimates of the true states of each sensory signal
are calculated for both causal structures (C = 1 and C = 2). For the case that both
signals share a common cause (i.e., C = 1), this happens according to Equation 5.2 and a
specified cost function and yields x̂vestvis,C=1. For the case that there are different causes,
each estimate is calculated independently of the other according to Equation 5.1. This
yields x̂vest,C=2 and x̂vis,C=2. To estimate the hidden state underlying the sensory signals,
the estimates for C = 1 and C = 2 are combined according to a specific decision theory.
One strategy involves model averaging, where each estimate is weighted according to the
posterior of the causal interaction. Consequently, in the event that there is a greater
probability that the two signals have a shared underlying cause, the integrated estimate
(x̂vestvis,C=1) is weighted more strongly. If both signals are unlikely to share the same
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hidden cause, the unimodal estimate receives more weight. The inference of the hidden
state underlying the vestibular input when also visual input is available and vice versa,
can be formulated as follows (Jones and Noppeney, 2024):

x̂vest = P (C = 1|yvest, yvis) ∗ x̂vestvis,C=1 + (1 − P (C = 1|yvest, yvis)) ∗ x̂vest,C=2. (5.4)

x̂vis = P (C = 1|yvest, yvis) ∗ x̂vestvis,C=1 + (1 − P (C = 1|yvest, yvis)) ∗ x̂vis,C=2. (5.5)

In summary, multisensory integration involves two parts a) inference of the causal
structure causing the sensory signals and b) inference of the hidden (body) states. In the
next section, our experimental results and proposed mechanisms for gaze instability in
functional dizziness will be discussed in the light of this multisensory Bayesian framework.

5.2.2.1 Gaze (in)stability in multisensory contexts

In the current version of the eye-head paradigm, participants only receive feedback via the
vestibular system. Conducting our eye-head paradigm in light conditions would offer a way
to study how visual and vestibular information is integrated during gaze stabilization and
whether visual input is sufficient to adapt incorrect priors and improve gaze stability. If
correctly integrated, adding visual input provides additional feedback that could serve to
update incorrect priors over head inertia and thus decrease gaze as well as head instability.
This requires that the brain correctly infers the causal structure, i.e., that both sensory
signals (vision and vestibular) convey information about the same body state and should be
integrated. If the brain cannot correctly integrate this multisensory input, gaze instability
should remain, independently of whether visual information is available or not.

If gaze instability remains, visual feedback should signal a drift of the visual environ-
ment, i.e., a movement of the retinal image, each time patients perform a gaze shift. The
brain needs to infer whether this movement of the retinal image is due to self-movement
or movement in the environment, which has implications for, e.g., adjustments of body
posture. Several findings suggest that patients with functional dizziness have problems in
distinguishing self- from external motion. This will be addressed in the next section.

5.2.2.2 Deficits in distinguishing self-motion from motion in the environment

Am I moving or is the environment moving? Most people will have experienced the train
illusion. When sitting in a train at a station and watching another train through the
window, a movement of the other train is often perceived as self-motion, i.e., a feeling that
one’s own train is starting to move. It is usually only after some time that you become aware
of this illusion and realise that the train you are in is standing still, while the other train is
moving. This subjective feeling of self-motion in the presence of a strong visual stimulus but
no actual physical movement is known as vection. It occurs if the brain incorrectly solves
ambiguous visual input that could either signal movement of the own body or of objects in
the environment. It has been shown that the inability to correctly resolve ambiguity can
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lead to maladapted postural control and body sway in healthy participants which can be
explained by a Bayesian causal inference model that assumes two competing hypotheses
relating to self-motion versus motion of the environment (Dokka et al., 2010).

The effect of vection might be particularly strong in patients with functional dizziness.
Chaudhary et al. (2022) instructed patients to fixate letters on a background that changed
from low visual complexity to high complexity involving moving stimuli while measur-
ing patients’ postural body sway. Patients showed significantly increased body sway in
conditions involving complex, and especially moving visual stimuli compared to healthy
participants. Incorrectly attributing the observed visual motion in the experimental con-
dition to own body movement, might lead to a feeling of self-motion even though no actual
movement is present (vection). This perceived self-movement is then compensated by ad-
justing body posture, leading to the observed body sway in patients. This also aligns
with patients often reporting an exacerbation of their symptoms in contexts with complex
visual scenes (Staab et al., 2017), such as during traffic or in crowds of people moving into
different directions.

The tendency to attribute motion to one-self instead of the external environment might
also be facilitated due to decreased vestibular motion thresholds. When inducing vestibu-
lar signals via galvanic stimulation, patients with functional dizziness report a feeling of
self-motion already at lower stimulation intensities than healthy participants (Helmchen
et al., 2024; Storm et al., 2024). This implicates that even small bodily movements and
deficits in postural control that lead to low vestibular input might be capable to induce a
feeling of self-motion in patients. This aligns with the finding that the lower this vestibu-
lar motion threshold, the higher the difference between perceived postural instability and
actual postural instability (Helmchen et al., 2024). Greater perceived postural instabil-
ity could then lead to stronger adjustments in body posture, further exacerbating actual
postural instability, creating a vicious cycle.

Deficits like postural instability, head oscillation and gaze instability lead to constant
errors, which should usually update incorrect movement patterns based on maladapted
internal models. Since this does not seem to happen, it raises the question of why internal
models are so rigid and immune against updating in patients with functional dizziness.

5.2.3 Why are internal models not updated?
When artificially inducing movement errors (e.g., via prism glasses (Harris, 1965) or shifting
visual presentations of hand position in virtual reality (Cheng and Sabes, 2007)), healthy
participants can usually adapt to these changes by taking error information into account.
Persistent sensorimotor dysfunctions described in the last sections generate constant errors
that should lead to an adaptation of movement patterns, however this does not seem to
happen in patients. Previous work from our lab has tested whether increasing prediction
errors by artificially altering head inertia (helmet with weights) can lead to adaptations
of internal models, which would manifest in decreased head oscillations over time. While
healthy participants can update incorrect models and reduce head oscillations after some
trials when head inertia is artificially increased, a reduction is only minimal in patients
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with functional dizziness (Lehnen et al., 2019). To investigate whether increasing pre-
diction errors during the weighted condition with helmets has an influence on subsequent
movements without the helmet, we added a second unweighted condition after the weighted
one. While healthy participants were able to reduce head oscillations from the first to the
second unweighted condition, patients failed to do so (Regnath et al., 2024). These results
support the theory that patients maintain very rigid internal models which remain resistant
to updating, even in the presence of large errors.

Why are incorrect internal models not updated? From a mechanistic Bayesian predic-
tive coding perspective, this could happen if the precision, i.e., reliability, of the prediction
errors is assumed to be low relative to the prediction itself. Thus, if patients hold an ex-
cessively precise prior that their head inertia is lower than it actually is, while vestibular
input is assumed to be extremely noisy and unreliable, prediction errors will not be able
to update incorrect internal models.

Furthermore, the arising error might be falsely attributed to a cause other than the own
motor system. Movements should only be adapted if the experienced error is relevant to
the performed actions. This can be illustrated with the following example. When trying to
hit a target with a ball but the ball is heavier than expected, one should update movements
related to throwing the ball (e.g., recruit more muscle force) in the next trial. However,
if a short and transient increase in wind blows the thrown ball away from its planned
trajectory, this should not lead to adaptations of movement patterns in the next trial. Wei
and Körding (2009) have suggested that inferring relevance of errors for motor adaptation
involves similar mechanisms to Bayesian causal inference (described in subsection 5.2.2).
Similarly to the process of deciding whether two sensory inputs should be integrated or
separated, the brain needs to infer whether an error is due to an uncontrollable external
factor or due to the own motor system (e.g., due to fatigue). The latter case should lead
to adaptations of actions, while the former one should not. The authors showed that
participants’ motor learning in different tasks can be predicted by such a Bayesian causal
inference model. How can this be translated to our findings? Head oscillations and gaze
instability lead to sensory feedback that should signal an error. The brain has two opposing
hypotheses that could cause the observed sensorimotor errors: A) incorrectly inferred head
inertia or B) an external cause or noise. If the brain attributed the ensuing error to sensory
noise instead of a meaningful signal, it should not update internal models of head inertia.
This would reflect a higher threshold of detecting relevant sensory stimuli, equivalent to a
heightened just-noticeable difference.

Stress and anxiety might also increase resistance to updating internal models. Both are
known to influence how interoceptive signals are processed and lead to decreased adapta-
tion to changing contexts. Harris et al. (2023) have investigated whether anxiety changes
the way how participants exert predictive gaze shifts. They used experimental data in the
form of predictive gaze locations from a virtual reality sensorimotor paradigm as input
to a Markov decision process model to infer the participant’s belief about the optimal
next gaze position. Using this combination of experimental data and computational mod-
eling, they were able to show that under increased levels of anxiety, individuals update
their belief about the predicted gaze position slower than in low-anxiety contexts. They
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hypothesized that under anxiety-related uncertainty, individuals refrain from updating
sensorimotor patterns and resort to more familiar and established ones. Our experimental
paradigm involved particularly large gaze shifts, which are less frequent in everyday life.
As a consequence, during the task more extreme motor patterns were required for gaze
shifts than usually exerted in everyday life. In addition, our experiment was conducted in
complete darkness, and the absence of visual input might have led to increased uncertainty
and anxiety. We did not measure anxiety levels in our patient cohort, however, anxiety
is a frequent comorbidity in patients with functional dizziness, and psychological distress
(anxiety and post-traumatic stress disorder) is estimated to occur in over 40% of patients
(Waterston et al., 2021). If anxiety levels were higher in patients than in the control group,
this may have resulted in patients exhibiting a tendency to avoid adapting to the more
extreme gaze movements required by our experimental paradigm. In addition, anxiety
also directly affects sensorimotor processing (Nieuwenhuys and Oudejans, 2012). However,
the interaction of anxiety and gaze stabilization in functional dizziness patients warrants
further research to better understand their respective influences.

5.2.4 Summary and implications for treatment
In this thesis, we have shown that patients with functional dizziness cannot adequately sta-
bilize gaze at the end of large gaze shifts. We have proposed that gaze instability as well
as previously observed head oscillations could be explained in a Bayesian framework where
incorrect forward models or precise but incorrect priors of head inertia lead to an underes-
timation of actual head inertia and as a consequence to maladapted movement patterns.
An extension of the current experimental paradigm to conditions where visual feedback
is available, would allow to investigate multisensory processing in patients with functional
dizziness, and to test whether visual input can update incorrect priors over head inertia.
Previous behavioural (Breinbauer et al., 2020; Im et al., 2021; Dieterich and Brandt, 2024;
Moaty and Nada, 2023) as well as neuroimaging (Indovina et al., 2021) studies suggest
that patients might have difficulties in adequately integrating multisensory input. If this
was also the case for gaze stabilization, gaze will remain unstable even in conditions where
visual input could provide feedback. This gaze instability should then evoke a visual drift
each time patients perform a gaze shift involving eye and head movement. Such a moving
retinal image indicates that either the body itself or the environment is in motion. If the
visual drift is perceived as self-motion, this might elicit adjustments in body posture aimed
at compensating the perceived motion. This could lead to the commonly observed postu-
ral instability in patients and could also explain vertigo, i.e., a feeling of self- or surround
motion in stationary contexts, which is a common symptom in functional dizziness (Staab
et al., 2017). Incorrect internal models seem to be particularly resistant to updating in
patients with functional dizziness. This might be due to i) low precision of prediction
errors ii) failures in correctly attributing the cause of errors and/or iii) anxiety. How can
these findings inform and influence the development of future therapeutic approaches?

i) How can prediction error precision be increased? Whether prediction errors update
internal models and resulting predictions depends on the assumed reliability or precision of
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the prediction error in respect to the prediction itself. This implies that either reducing the
precision of predictions or increasing precision of sensory signals, should lead to an adapta-
tion of incorrect internal models. Attention seems to play an important role in increasing
precision of attended signals, while down-weighting those of unattended signals. However,
the exact mechanism of how attention modulates perceptual inference and processing of
sensory input is still debated (Whiteley and Sahani, 2012). While one account proposes
that attention is a way to increase precision of sensory input (Mirza et al., 2019; Feldman
and Friston, 2010), others explain attention as acting via priors on the inference process
(Chikkerur et al., 2010; Garlichs and Blank, 2024). Mirza et al. (2019) have provided a
theoretical formulation of selective attention in an active inference framework. Here, se-
lective attention is described as a way to actively sample only task relevant information by
assigning increased certainty to it. Attention is thus a way of increasing the precision of
task-relevant sensory information when planning movement behaviour. As a consequence,
it may be proposed that actively focusing attention on sensory input could serve as a
treatment strategy for reducing the influence of incorrect prior beliefs.

However, this approach warrants caution since too much attention (or on the wrong
input) can also exacerbate symptoms. For example, assigning excessively high precision to
small body movements might lead to compensating movements which further increase body
sway. This is supported by a study showing that when patients engage in dual cognitive
tasks and thus attention is shifted away from body signals, objective postural instability is
improved (Sprenger et al., 2017; Wuehr et al., 2017). The authors suggested that in baseline
conditions an overly strong attention and focus on own body sway could lead to an increased
weighting of current sensory input that leads to adaptive movements that would otherwise
only be required in more challenging balance situations. When patients are distracted and
attention is shifted towards a cognitive task, the attention-driven over-weighting of sensory
information is replaced by more automatic adaptations of movement, leading to a decrease
in body sway. As a consequence, while learning to direct attention towards vestibular
input has the potential to increase precision of these signals and thereby counteracting
the effect of incorrect but precise priors, this approach might only be beneficial for some
sensory modalities and possibly not for all patients. Whereas our experimental results
suggest a down-weighting of sensory input from the vestibular system, processing of sensory
signals from other modalities (Powell et al., 2020), and especially vision (Cousins et al.,
2014) might already involve a high precision weighting. As a consequence, it will be
necessary to first assess how much patients already focus on own body signals and especially
also to which signals. Depending on this, either methods should be provided to learn
to shift attention away from own body signals or to focus on those that are currently
not attended to. Furthermore, this highlights the necessity to improve understanding of
potential mechanistic differences between individual patients.

ii) How can failures of error attribution be resolved? Providing explicit online feedback
about dysfunctions such as head oscillations and postural instability might help patients
to correctly attribute errors to their own movement patterns instead of noise. This is
supported by a study by Murillo et al. (2022), who showed patients a video recording of
their body sway as well as trajectories of their centre of pressure and gave an explanation
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of how postural instability might arise. Following this intervention, patients’ perception
of postural instability reduced (however, not their actual body sway). Further research is
needed to understand how transient these effects are and whether this will over time also
affect objectively measured body sway.

iii) Finally, the results from Harris et al. (2023) suggest that reducing anxiety may prove
an effective contribution to making internal models more adaptable. Thus, in patients with
co-morbid anxiety, the impact of the aforementioned approaches could be enhanced when
they are accompanied by treatment aiming at a reduction of anxiety, such as psychotherapy.
While the causal relationship between functional dizziness and anxiety is unclear, an early
intervention with psychotherapy and pharmacotherapy, especially serotonergic medication,
has been shown to reduce dizziness and psychiatric co-morbidities (Scarff and Lippmann,
2023).

5.3 Altered symptom perception in post COVID-19
condition

We demonstrated increased perceived breathlessness in patients with post-COVID, while
the objectively measured underlying respiratory body state (physiology and breathing be-
haviour) was not different from healthy control participants (chapter 3). This indicates in-
tact interoception, i.e., inference of the underlying respiratory state, for adapting breathing
behaviour but dysfunctions in the symptom generation process. We proposed two different
potential mechanisms that could explain the divergence between breathing behaviour and
symptom perception which are in line with our experimental data. One possibility is that
there are two separate inference processes about the respiratory state, involving different
priors, for controlling breathing behaviour and for generating symptoms. Another possi-
bility is that only a single posterior of the respiratory state is computed but subsequently
combined with different cost functions when a specific breathlessness report or breathing
behaviour is chosen. Before discussing the potential involvement of altered prior and cost-
function in patients with post COVID-19 condition, evidence that the brain is able to form
representations of both, prior and cost functions, is reviewed.

5.3.1 Does the brain represent prior and cost functions?
There is evidence for differential representations of likelihood and prior uncertainty in the
brain (Vilares et al., 2012) and that information about rewards and costs is encoded (Chen,
2021). However, only recently a study investigated whether the brain forms internal rep-
resentations of both, prior and cost functions in the same task, and thus is sensitive to
changes in either of them. To test whether humans can build and adapt internal models
of priors and cost functions, Sohn and Jazayeri (2021) have developed an experimental
paradigm involving prior-cost metamers. These prior-cost metamers are different com-
binations of priors and cost functions that lead to the same action policy. The authors
designed a time reproduction task in which they altered reward (cost function) and the rate
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of occurrence of stimulus magnitudes (prior) such that each combination was a metamer.
Their idea was that an observer that relies on priors and cost functions should see the
metamers as two different pairs and should be sensitive to switches in pairs, whereas an
implicit, non-Bayesian learner, should only learn the optimal policy and is not able to
distinguish between different pairs. During the task they changed the underlying struc-
ture of cost and prior covertly and observed whether individuals show signs of relearning
this new structure. They simulated data of an optimal observer, i.e., an observer that
has full knowledge of the underlying task structure and optimally responds to it. After
metamer switches the probability that the human time reproduction data resulted from
the ideal-observer model decreased but recovered within around 50 trials. This indicates
that humans learn the structure of the novel metamer and, following a period of learning,
their response becomes increasingly more similar to the optimal-observer model. Hence,
this study provides evidence in favour of the view that humans are sensitive to changes in
prior and cost functions and learn their underlying structure. However, such sensitivities
to changes in prior and cost function were only present in a time reproduction task but
not in a visuomotor rotation task. Thus, further research is needed to understand in which
tasks and contexts representations of priors and cost functions are formed.

Computational modeling of the learning rates of prior and cost-function also implied
that both processes likely involve different neural systems. The authors highlighted that
this is in line with neurobiological accounts of how prior beliefs and cost-functions are
learnt. Prior beliefs are thought to be updated when there is a sensory prediction error,
i.e., a mismatch between observed and predicted stimuli (Izawa and Shadmehr, 2011).
Here, the cerebellum is believed to play an important role (Tseng et al., 2007; Synofzik
et al., 2008). Cost functions are assumed to be updated if a mismatch occurs between
predicted and actual reward (reward prediction error) and here the dopaminergic system
is involved (Watabe-Uchida et al., 2017).

In summary, humans seem to be able to represent and learn different combinations of
cost functions and priors, which likely involve distinct neural processing systems. How-
ever, evidence for differential representation of priors and cost-functions has only recently
been emerging and further studies are needed to understand in which contexts the brain
implements these quantities.

5.3.2 Cost functions for breathing behaviour and symptom per-
ception

According to Bayesian Decision Theory, an ideal observer should integrate prior, likelihood
and cost function to derive an optimal estimate of an action that minimizes expected loss
(or maximizes expected reward). Cost functions for breathing behaviour likely assign high
costs for breathing patterns that over- or under-represent the actual underlying respiratory
body state, since both will threaten gas exchange and bodily homeostasis. Breathing too
slow and shallow does not bring enough oxygen into the body. Next to increased energy
expenditure, breathing too fast and deep can lead to hyperventilation and decreased CO2
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concentration in the blood, leading to an increase in pH and respiratory alkalosis. Cost
functions for breathing behaviour should thus assign high costs for breathing too fast as
well as too slow to keep bodily processes within the narrow range needed for survival.

Reporting or consciously experiencing a symptom also involves a selection process based
on the posterior of the inference process. Here, the cost function describes the costs as-
sociated with experiencing a specific level of breathlessness. Breathlessness that is too
low and under-represents the current respiratory state is dangerous, since respiratory dys-
functions remain unnoticed and no volitional measures can be taken to alleviate it. In
contrast, breathlessness that over-represents the underlying body state might in the short
term be beneficial, since it motivates behaviour to deal with the current body state and
take alleviating and preventing measures. It might thus serve as a warning mechanism
and enable timely reactions. However, in the long term considerable costs are associated
with experiencing slight deviations in body states as strong symptoms. Such a ’better-
safe-than-sorry’ theory has previously been suggested to represent a common processing
strategy that underlies different mental disorders (Van den Bergh et al. (2021)). However,
instead of cost functions, Van den Bergh et al. (2021) formulated this processing heuristics
using imprecise likelihood functions and highly precise priors. This again highlights the
difficulty of distinguishing between different computational mechanisms. While Sohn and
Jazayeri (2021) have provided evidence that humans learn representations of prior and cost
functions in the previously described time reproduction experiment, it remains challenging
to disentangle the influence of each component.

One potential distinction between priors and cost functions that warrants further re-
search is the idea that cost functions might be more closely related to trait measures. An
example of such a trait-like characteristic is a general worry that pathological body states
could not be detected, thus favoring perception that overrepresent the actual body state.
Priors might then be more closely related to state measures, i.e., the expected symptom
level based on the momentary context. The same view can be adopted when interpreting
the results from a study by Bogaerts et al. (2005). They measured accuracy of respiratory
symptom perception in people with high versus low negative affectivity (NA). NA is a dis-
position to experience sensations in a negative way and is closely related to trait-anxiety.
People with high NA were overall less accurate in reporting respiratory sensations, which
worsened even more when the experiment was framed in a negative way, i.e., the possibly
arising symptoms were described as distressing versus pleasantly arousing. People with
high NA (trait measure) might thus have an altered cost function that leads to general
dysfunctions in body awareness, that are further exacerbated by the momentary negative
contexts.

This reasoning also suggests that beliefs about the expected severity of symptoms might
shape cost-functions, thus playing a crucial role in (post-COVID) symptom emergence.
This is supported by a study by Rozenkrantz et al. (2022). The authors showed that the
belief about symptom severity at the time point of a hypothetical infection with SARS-
CoV-2 can predict the number of symptoms at a time point three to four weeks later.
This finding was replicated in a second cohort of participants. In addition, they developed
a novel scale measuring an individual’s belief of how well their own body can deal with
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diseases and used a questionnaire to measure resilience and feeling of control during adverse
events. Their experimental data provided evidence that the predictive association between
beliefs about severity and number of symptoms was mediated by the belief about their
body’s capability to fight diseases as well as their perceived resilience to averse situations.
Thus, individuals who expect that their symptoms during a hypothetical infection will be
more severe, believe that their body is less capable to fight diseases, perceive themselves
as less able to handle difficulties, and consequently develop more symptoms.

5.3.3 Limitations
While Bayesian theories of brain function can successfully explain many different be-
haviours and symptom perception, they are sometimes challenged and critiqued (Bowers
and Davis, 2012) since in many cases the underlying model cannot be uniquely determined
and models cannot be falsified. As seen above, different combinations of likelihood and
prior can lead to the exact same inference and it is inherently difficult to disentangle both
processes. This also applies to prior and cost functions. A similar change in behaviour
or perception can occur due to a shift in the cost function, while the prior stays constant
or vice versa. Furthermore, simpler approaches that do not necessarily require learning
and representation of prior, likelihood and cost function in the brain might exist that can
explain many behaviours equally well as Bayesian approaches (for a discussion on criticism
about Bayesian decision theory see Ma, 2019).

While our experimental results do not allow to distinguish whether increased symptom
perception in patients with post-COVID fatigue is due to altered cost functions or prior
beliefs, knowledge about the exact underlying mechanism would provide important insights
since learning of priors and cost-functions has been suggested to involve different processes
and neural systems (Sohn and Jazayeri, 2021). Further studies should thus address the
challenging but crucial endeavour to disentangle different plausible mechanistic proposals,
necessary to inform the development of more effective therapeutic approaches.

5.3.4 Summary and implications for treatment
Most accounts of symptom perception have focused on incorrect and excessively precise
priors, while the role of cost-functions in symptom emergence has so far been largely over-
looked. First evidence supports the hypothesis that the brain can form representations of
both, priors and cost-functions (Sohn and Jazayeri, 2021). We proposed a possible alter-
ation of cost-functions that can explain increased symptom perception in the presence of
normal breathing behaviour. In the framework of Bayesian Decision Theory, cost-functions
define how an optimal estimate is chosen from the posterior distribution. Symptom per-
ception can be seen as a decision process of how the belief about underlying body states
(i.e., posterior) is brought to conscious awareness. To our knowledge, our study is the
first to propose altered cost-functions resulting in symptom perception in the absence of
pathophysiological processes.
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We have shown a mismatch between symptom perception and the objectively measur-
able body state in post COVID-19 condition. This characteristic finding has also been
demonstrated in fibromyalgia, chronic fatigue (Van Den Houte et al., 2018) and functional
breathlessness (Bogaerts et al., 2010). By adopting an explanatory approach previously
used for functional disorders, we have demonstrated that the observed mismatch in post
COVID-19 condition can be explained by either incorrect priors or cost-functions. This
rises the question whether post COVID-19 condition can be seen as a functional disor-
der. Such a perspective has previously been proposed by some researchers (Teodoro et al.,
2023; Joffe and Elliott, 2023; Willis and Chalder, 2021), while others have strongly argued
against this hypothesis (Van der Feltz-Cornelis et al., 2023; Davenport et al., 2024). The
question is thus highly debated with strong opinions on either side. However, the potential
diagnosis of a functional disorder seems to be largely neglected at the moment. A review
investigating the presence of functional neurological disorder (FND) in 102 studies about
neurological symptoms in patients with post COVID-19 condition found "no evidence [..]
that any authors had systematically looked for positive features of FND" (Teodoro et al.,
2023).

The Bayesian brain framework describes each perception as dependent on both, (im-
plicit) prior beliefs and sensory input. Depending on various factors and influences, either
prior knowledge or sensory input is weighted more strongly. As a consequence, perception
always lives on a continuum between both influences. Functional disorders might represent
one extreme of this continuum where overly precise priors largely dominate sensory input,
leading to symptom perception in the absence of pathological body states (Henningsen et
al., 2018a; Van Den Bergh et al., 2017; Petzschner et al., 2017; Lehnen et al., 2018). How-
ever, there is no clear cut-off defining where a functional disorder starts. Our experimental
results suggest that also in post COVID-19 condition, priors and ’top-down’ processing
play an important role and can bias perception away from sensory signals. However, it
remains unclear where post COVID-19 condition is located on the continuum in respect
to functional disorders. Thus, further studies are needed and we do not aim to join a
categorical side of the debate whether post COVID-19 condition is a functional disorder.
Rather, we would like to point out the benefits of adopting a Bayesian brain perspective
and its promising potential in improving treatment and reducing suffering in patients with
post COVID-19 condition. This perspective can incorporate a biopsychosocial framework
that resolves the outdated dualistic view of symptoms either arising due to psychological or
biomedical reasons. While it remains important to look for pathophysiological or organo-
structural deficits, considering incorrect internal models as a cause of post COVID-19 con-
dition, opens up promising new treatment approaches and highlights that bodily symptoms
are reversible and might be treated via the brain. For example, Herigstad et al. (2017) have
shown that improvements of breathlessness in patients with chronic obstructive pulmonary
disease (COPD) over the time course of pulmonary rehabilitation correlated with changes
in brain activity related to learnt breathlessness associations. While changes in breathless-
ness ratings correlated with the stimulus valuation network in the the brain, changes in
breathlessness related anxiety correlated with activity in areas involved in attention pro-
cessing and motor control. They thus demonstrated that improvements of breathlessness
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ratings as well as breathlessness-related anxiety during pulmonary rehabilitation might
reflect changes in associative learning, rather than actual improvements in lung function.
Treatment targeted at a re-evaluation of breathlessness related cues might prove beneficial
to reduce symptom burden. Next to pulmonary rehabilitation, they suggested approaches
such as breathing exercises and mindfulness (Borge et al., 2014). Further treatment options
might include other forms of psychotherapy (Myers et al., 2021), physiotherapy (Nielsen
et al., 2015) and neuro-feedback (Orendáčová et al., 2022).

5.4 Conclusion
By adopting a Bayesian brain perspective on two examples of PPS, functional dizziness
and post COVID-19 condition, this thesis makes three central contributions. First, we
improve the mechanistic understanding by pinpointing deficits in functional dizziness to
failures in internal model-based planning and by demonstrating that in most patients with
post COVID-19 condition deficits arise in processes specific to symptom perception. In
addition, by formulating our theory of how respiratory processing could lead to different
levels of breathlessness in a mathematical model, we provided a way to test a specific
theory. Second, we provide an explainable model that shifts the perspective on PPS from
’medically unexplained’ to ’explained by maladapted internal models’. This offers a way
to explain symptoms to patients when no measurable biomarker can be found. Providing
an understandable explanation of the underlying disease together with the diagnosis has
been shown to be crucial to reduce future health care use and associated costs (Lagrand
et al., 2023). This explanation should also entail that internal models are adaptive and
incorrect models can be relearnt, thereby highlighting that symptoms are reversible. We
hope that this way patients can regain a feeling of control over their health and a positive
attitude that suffering can be alleviated. Third, we reduce stigmatization of PPS via an
objectively measurable disease marker of functional dizziness alongside further evidence for
a theory that explains PPS as arising due to dysfunctions in internal models maintained
by the brain. We thereby hope to shift PPS away from ’medically unexplained’ towards
’explained by incorrect internal models’.

87



Bibliography

Acerbi, L., Dokka, K., Angelaki, D. E., and Ma, W. J. (2018). Bayesian comparison of ex-
plicit and implicit causal inference strategies in multisensory heading perception. PLOS
Computational Biology, 14 (7), e1006110. doi: 10.1371/journal.pcbi.1006110.

Adams, R. A., Stephan, K. E., Brown, H. R., Frith, C. D., and Friston, K. J. (2013). The
Computational Anatomy of Psychosis. Frontiers in Psychiatry, 4, p. 47. doi: 10.3389/
fpsyt.2013.00047.

Adelson, E. (1995). Checkershadow Illusion. http://persci.mit.edu/gallery/checkershadow.
Aitchison, L. and Lengyel, M. (2017). With or without you: predictive coding and Bayesian

inference in the brain. Current Opinion in Neurobiology, 46, pp. 219–227. doi: 10.1016/
j.conb.2017.08.010.

Assaf, G. S., Davis, H., McCorkell, L., Wei, H., Brooke, O., Akrami, A., Low, R., Mercier,
J., and A., A. (2020). Report: What Does COVID-19 Recovery Actually Look Like? –
Patient Led Research Collaborative.

Ballering, A., Olde Hartman, T., and Rosmalen, J. (2021). Long COVID-19, persistent
somatic symptoms and social stigmatisation. Journal of Epidemiology and Community
Health, 75 (6), pp. 603–604. doi: 10.1136/jech-2021-216643.

Ballering, A. V., Bonvanie, I. J., Olde Hartman, T. C., Monden, R., and Rosmalen, J. G.
(2020). Gender and sex independently associate with common somatic symptoms and
lifetime prevalence of chronic disease. Social Science & Medicine, 253, p. 112968. doi:
10.1016/j.socscimed.2020.112968.

Barak, Y. and Achiron, A. (2006). Cognitive fatigue in multiple sclerosis: Findings from
a two-wave screening project. Journal of the Neurological Sciences, 245 (1), pp. 73–76.
doi: 10.1016/j.jns.2005.09.015.

Barlow, H. B. (1961). “Possible Principles Underlying the Transformations of Sensory Mes-
sages”. In: Sensory Communication. Ed. by W. A. Rosenblith. MIT Press, pp. 216–234.
doi: 10.7551/mitpress/9780262518420.003.0013.

Barsky, A. and Borus, J. (1999). Functional Somatic Syndromes. Annals of internal medicine,
130, pp. 910–21. doi: 10.7326/0003-4819-132-4-200002150-00023.

Beck, J. M., Ma, W. J., Kiani, R., Hanks, T., Churchland, A. K., Roitman, J., Shadlen,
M. N., Latham, P. E., and Pouget, A. (2008). Probabilistic Population Codes for
Bayesian Decision Making. Neuron, 60 (6), pp. 1142–1152. doi: 10.1016/j.neuron.
2008.09.021.

88

https://doi.org/10.1371/journal.pcbi.1006110
https://doi.org/10.3389/fpsyt.2013.00047
https://doi.org/10.3389/fpsyt.2013.00047
https://doi.org/10.1016/j.conb.2017.08.010
https://doi.org/10.1016/j.conb.2017.08.010
https://doi.org/10.1136/jech-2021-216643
https://doi.org/10.1016/j.socscimed.2020.112968
https://doi.org/10.1016/j.jns.2005.09.015
https://doi.org/10.7551/mitpress/9780262518420.003.0013
https://doi.org/10.7326/0003-4819-132-4-200002150-00023
https://doi.org/10.1016/j.neuron.2008.09.021
https://doi.org/10.1016/j.neuron.2008.09.021


Bjurstrom, M. F., Giron, S. E., and Griffis, C. A. (2016). Cerebrospinal Fluid Cytokines and
Neurotrophic Factors in Human Chronic Pain Populations: A Comprehensive Review.
Pain Practice: The Official Journal of World Institute of Pain, 16 (2), pp. 183–203.
doi: 10.1111/papr.12252.

Boersma, K. and Linton, S. J. (2005). How does persistent pain develop? An analysis of
the relationship between psychological variables, pain and function across stages of
chronicity. Behaviour Research and Therapy, 43 (11), pp. 1495–1507. doi: 10.1016/j.
brat.2004.11.006.

Bogaerts, K., Notebaert, K., Van Diest, I., Devriese, S., De Peuter, S., and Van den Bergh,
O. (2005). Accuracy of respiratory symptom perception in different affective contexts.
Journal of Psychosomatic Research, 58 (6), pp. 537–543. doi: 10.1016/j.jpsychores.
2004.12.005.

Bogaerts, K., Van Eylen, L., Li, W., Bresseleers, J., Van Diest, I., De Peuter, S., Stans, L.,
Decramer, M., and Van den Bergh, O. (2010). Distorted symptom perception in pa-
tients with medically unexplained symptoms. Journal of Abnormal Psychology, 119 (1),
pp. 226–234. doi: 10.1037/a0017780.

Boldrini, M., Canoll, P. D., and Klein, R. S. (2021). How COVID-19 Affects the Brain.
JAMA Psychiatry, 78 (6), pp. 682–683. doi: doi:10.1001/jamapsychiatry.2021.
0500.

Borge, C. R., Hagen, K. B., Mengshoel, A. M., Omenaas, E., Moum, T., and Wahl,
A. K. (2014). Effects of controlled breathing exercises and respiratory muscle train-
ing in people with chronic obstructive pulmonary disease: results from evaluating the
quality of evidence in systematic reviews. BMC Pulmonary Medicine, 14, p. 184. doi:
10.1186/1471-2466-14-184.

Bowers, J. S. and Davis, C. J. (2012). Bayesian just-so stories in psychology and neuro-
science. Psychological Bulletin, 138 (3), pp. 389–414. doi: 10.1037/a0026450.

Breinbauer, H. A., Contreras, M. D., Lira, J. P., Guevara, C., Castillo, L., Ruëdlinger, K.,
Muñoz, D., and Delano, P. H. (2020). Spatial Navigation Is Distinctively Impaired in
Persistent Postural Perceptual Dizziness. Frontiers in Neurology, 10. doi: 10.3389/
fneur.2019.01361.

Brock, J. (2012). Alternative Bayesian accounts of autistic perception: comment on Pelli-
cano and Burr. Trends in Cognitive Sciences, 16 (12), pp. 573–574. doi: 10.1016/j.
tics.2012.10.005.

Burton, C., Lucassen, P., Aamland, A., and Hartman, T. O. (2015). Explaining symptoms
after negative tests: towards a rational explanation. Journal of the Royal Society of
Medicine, 108 (3), pp. 84–88. doi: 10.1177/0141076814559082.

Butler, M., Shipston-Sharman, O., Seynaeve, M., Bao, J., Pick, S., Bradley-Westguard,
A., Ilola, E., Mildon, B., Golder, D., Rucker, J., Stone, J., and Nicholson, T. (2021).
International online survey of 1048 individuals with functional neurological disorder.
European Journal of Neurology, 28 (11), pp. 3591–3602. doi: 10.1111/ene.15018.

Callard, F. and Perego, E. (2021). How and why patients made Long Covid. Social Science
& Medicine, 268, p. 113426. doi: 10.1016/j.socscimed.2020.113426.

89

https://doi.org/10.1111/papr.12252
https://doi.org/10.1016/j.brat.2004.11.006
https://doi.org/10.1016/j.brat.2004.11.006
https://doi.org/10.1016/j.jpsychores.2004.12.005
https://doi.org/10.1016/j.jpsychores.2004.12.005
https://doi.org/10.1037/a0017780
https://doi.org/doi:10.1001/jamapsychiatry.2021.0500
https://doi.org/doi:10.1001/jamapsychiatry.2021.0500
https://doi.org/10.1186/1471-2466-14-184
https://doi.org/10.1037/a0026450
https://doi.org/10.3389/fneur.2019.01361
https://doi.org/10.3389/fneur.2019.01361
https://doi.org/10.1016/j.tics.2012.10.005
https://doi.org/10.1016/j.tics.2012.10.005
https://doi.org/10.1177/0141076814559082
https://doi.org/10.1111/ene.15018
https://doi.org/10.1016/j.socscimed.2020.113426


Carson, A., Stone, J., Hibberd, C., Murray, G., Duncan, R., Coleman, R., Warlow, C.,
Roberts, R., Pelosi, A., Cavanagh, J., Matthews, K., Goldbeck, R., Hansen, C., and
Sharpe, M. (2011). Disability, distress and unemployment in neurology outpatients
with symptoms ’unexplained by organic disease’. Journal of Neurology, Neurosurgery
& Psychiatry, 82 (7), pp. 810–813. doi: 10.1136/jnnp.2010.220640.

Ceban, F., Ling, S., Lui, L. M., Lee, Y., Gill, H., Teopiz, K. M., Rodrigues, N. B., Sub-
ramaniapillai, M., Di Vincenzo, J. D., Cao, B., Lin, K., Mansur, R. B., Ho, R. C.,
Rosenblat, J. D., Miskowiak, K. W., Vinberg, M., Maletic, V., and McIntyre, R. S.
(2022). Fatigue and cognitive impairment in Post-COVID-19 Syndrome: A system-
atic review and meta-analysis. Brain, Behavior, and Immunity, 101, pp. 93–135. doi:
10.1016/j.bbi.2021.12.020.

Chaudhary, S., Barbado, D., Saywell, N., and Taylor, D. (2022). Visual fixations and vi-
sually induced dizziness: An exploratory study. Gait & Posture, 93, pp. 153–159. doi:
10.1016/j.gaitpost.2022.02.002.

Chen, B., Julg, B., Mohandas, S., Bradfute, S. B., and RECOVER Mechanistic Pathways
Task Force (2023). Viral persistence, reactivation, and mechanisms of long COVID.
eLife, 12. Ed. by J. Iqbal and M. Zaidi, e86015. doi: 10.7554/eLife.86015.

Chen, Y. (2021). Neural Representation of Costs and Rewards in Decision Making. Brain
Sciences, 11 (8), p. 1096. doi: 10.3390/brainsci11081096.

Cheng, S. and Sabes, P. N. (2007). Calibration of Visually Guided Reaching Is Driven by
Error-Corrective Learning and Internal Dynamics. Journal of Neurophysiology, 97 (4),
pp. 3057–3069. doi: 10.1152/jn.00897.2006.

Chikkerur, S., Serre, T., Tan, C., and Poggio, T. (2010). What and where: A Bayesian
inference theory of attention. Vision Research. Mathematical Models of Visual Coding
50 (22), pp. 2233–2247. doi: 10.1016/j.visres.2010.05.013.

Choutka, J., Jansari, V., Hornig, M., and Iwasaki, A. (2022). Unexplained post-acute
infection syndromes. Nature Medicine, 28 (5), pp. 911–923. doi: 10.1038/s41591-
022-01810-6.

Cousins, S., Cutfield, N. J., Kaski, D., Palla, A., Seemungal, B. M., Golding, J. F., Staab,
J. P., and Bronstein, A. M. (2014). Visual Dependency and Dizziness after Vestibular
Neuritis. PLoS ONE, 9 (9), e105426. doi: 10.1371/journal.pone.0105426.

Craig, A. D. (2002). How do you feel? Interoception: the sense of the physiological condition
of the body. Nature Reviews Neuroscience, 3 (8), pp. 655–666. doi: 10.1038/nrn894.

Davenport, T. E., Blitshteyn, S., Clague-Baker, N., Davies-Payne, D., Treisman, G. J., and
Tyson, S. F. (2024). Long COVID Is Not a Functional Neurologic Disorder. Journal of
Personalized Medicine, 14 (8), p. 799. doi: 10.3390/jpm14080799.

Davis, H. E., McCorkell, L., Vogel, J. M., and Topol, E. J. (2023). Long COVID: major
findings, mechanisms and recommendations. Nature Reviews Microbiology. doi: 10.
1038/s41579-022-00846-2.

De Gucht, V. and Heiser, W. (2003). Alexithymia and somatisation: quantitative review of
the literature. Journal of Psychosomatic Research, 54 (5), pp. 425–434. doi: 10.1016/
s0022-3999(02)00467-1.

90

https://doi.org/10.1136/jnnp.2010.220640
https://doi.org/10.1016/j.bbi.2021.12.020
https://doi.org/10.1016/j.gaitpost.2022.02.002
https://doi.org/10.7554/eLife.86015
https://doi.org/10.3390/brainsci11081096
https://doi.org/10.1152/jn.00897.2006
https://doi.org/10.1016/j.visres.2010.05.013
https://doi.org/10.1038/s41591-022-01810-6
https://doi.org/10.1038/s41591-022-01810-6
https://doi.org/10.1371/journal.pone.0105426
https://doi.org/10.1038/nrn894
https://doi.org/10.3390/jpm14080799
https://doi.org/10.1038/s41579-022-00846-2
https://doi.org/10.1038/s41579-022-00846-2
https://doi.org/10.1016/s0022-3999(02)00467-1
https://doi.org/10.1016/s0022-3999(02)00467-1


Dieterich, M. and Brandt, T. (2024). Central vestibular networking for sensorimotor con-
trol, cognition, and emotion. Current Opinion in Neurology, 37 (1), pp. 74–82. doi:
10.1097/WCO.0000000000001233.

Dokka, K., DeAngelis, G. C., and Angelaki, D. E. (2015). Multisensory Integration of
Visual and Vestibular Signals Improves Heading Discrimination in the Presence of a
Moving Object. Journal of Neuroscience, 35 (40), pp. 13599–13607. doi: 10.1523/
JNEUROSCI.2267-15.2015.

Dokka, K., Kenyon, R. V., Keshner, E. A., and Kording, K. P. (2010). Self versus Environ-
ment Motion in Postural Control. PLOS Computational Biology, 6 (2), e1000680. doi:
10.1371/journal.pcbi.1000680.

Espay, A. J., Aybek, S., Carson, A., Edwards, M. J., Goldstein, L. H., Hallett, M., LaFaver,
K., LaFrance, W. C., Lang, A. E., Nicholson, T., Nielsen, G., Reuber, M., Voon, V.,
Stone, J., and Morgante, F. (2018). Current Concepts in Diagnosis and Treatment
of Functional Neurological Disorders. JAMA neurology, 75 (9), pp. 1132–1141. doi:
10.1001/jamaneurol.2018.1264.

Feldman, H. and Friston, K. (2010). Attention, Uncertainty, and Free-Energy. Frontiers in
Human Neuroscience, 4. doi: 10.3389/fnhum.2010.00215.

Fetsch, C. R., Turner, A. H., DeAngelis, G. C., and Angelaki, D. E. (2009). Dynamic
Reweighting of Visual and Vestibular Cues during Self-Motion Perception. Journal of
Neuroscience, 29 (49), pp. 15601–15612. doi: 10.1523/JNEUROSCI.2574-09.2009.

Fisk, J. D., Pontefract, A., Ritvo, P. G., Archibald, C. J., and Murray, T. (1994). The
Impact of Fatigue on Patients with Multiple Sclerosis. Canadian Journal of Neurological
Sciences / Journal Canadien des Sciences Neurologiques, 21 (1), pp. 9–14. doi: 10.
1017/S0317167100048691.

Ford, A. C., Sperber, A. D., Corsetti, M., and Camilleri, M. (2020). Irritable bowel syn-
drome. The Lancet, 396 (10263), pp. 1675–1688. doi: 10.1016/S0140-6736(20)31548-
8.

Friston, K. (2010). The free-energy principle: a unified brain theory? Nature Reviews Neu-
roscience, 11 (2), pp. 127–138. doi: 10.1038/nrn2787.

Friston, K., Samothrakis, S., and Montague, R. (2012). Active inference and agency: opti-
mal control without cost functions. Biological Cybernetics, 106 (8), pp. 523–541. doi:
10.1007/s00422-012-0512-8.

Garlichs, A. and Blank, H. (2024). Prediction error processing and sharpening of expected
information across the face-processing hierarchy. Nature Communications, 15 (1), p. 3407.
doi: 10.1038/s41467-024-47749-9.

Glynne, P., Tahmasebi, N., Gant, V., and Gupta, R. (2021). Long COVID following mild
SARS-CoV-2 infection: characteristic T cell alterations and response to antihistamines.
70, pp. 61–67. doi: doi:10.1136/jim-2021-002051.

Goërtz, Y. M. J., Braamse, A. M. J., Spruit, M. A., Janssen, D. J. A., Ebadi, Z., Van
Herck, M., Burtin, C., Peters, J. B., Sprangers, M. A. G., Lamers, F., Twisk, J. W. R.,
Thong, M. S. Y., Vercoulen, J. H., Geerlings, S. E., Vaes, A. W., Beijers, R. J. H. C. G.,
van Beers, M., Schols, A. M. W. J., Rosmalen, J. G. M., and Knoop, H. (2021). Fatigue

91

https://doi.org/10.1097/WCO.0000000000001233
https://doi.org/10.1523/JNEUROSCI.2267-15.2015
https://doi.org/10.1523/JNEUROSCI.2267-15.2015
https://doi.org/10.1371/journal.pcbi.1000680
https://doi.org/10.1001/jamaneurol.2018.1264
https://doi.org/10.3389/fnhum.2010.00215
https://doi.org/10.1523/JNEUROSCI.2574-09.2009
https://doi.org/10.1017/S0317167100048691
https://doi.org/10.1017/S0317167100048691
https://doi.org/10.1016/S0140-6736(20)31548-8
https://doi.org/10.1016/S0140-6736(20)31548-8
https://doi.org/10.1038/nrn2787
https://doi.org/10.1007/s00422-012-0512-8
https://doi.org/10.1038/s41467-024-47749-9
https://doi.org/doi:10.1136/jim-2021-002051


in patients with chronic disease: results from the population-based Lifelines Cohort
Study. Scientific Reports, 11 (1), p. 20977. doi: 10.1038/s41598-021-00337-z.

Green, L. A., Fryer, G. E., Yawn, B. P., Lanier, D., and Dovey, S. M. (2001). The Ecology
of Medical Care Revisited. New England Journal of Medicine, 344 (26), pp. 2021–2025.
doi: 10.1056/NEJM200106283442611.

Gu, Y., Angelaki, D. E., and DeAngelis, G. C. (2008). Neural correlates of multi-sensory
cue integration in macaque area MSTd. Nature neuroscience, 11 (10), pp. 1201–1210.
doi: 10.1038/nn.2191.

Guyenet, P. G., Stornetta, R. L., and Bayliss, D. A. (2010). Central respiratory chemore-
ception. Journal of Comparative Neurology, 518 (19), pp. 3883–3906. doi: 10.1002/
cne.22435.

Haffke, M., Freitag, H., Rudolf, G., Seifert, M., Doehner, W., Scherbakov, N., Hanitsch,
L., Wittke, K., Bauer, S., Konietschke, F., Paul, F., Bellmann-Strobl, J., Kedor, C.,
Scheibenbogen, C., and Sotzny, F. (2022). Endothelial dysfunction and altered endothe-
lial biomarkers in patients with post-COVID-19 syndrome and chronic fatigue syndrome
(ME/CFS). Journal of Translational Medicine, 20 (1), p. 138. doi: 10.1186/s12967-
022-03346-2.

Haider, S., Janowski, A. J., Lesnak, J. B., Hayashi, K., Dailey, D. L., Chimenti, R., Frey-
Law, L. A., Sluka, K. A., and Berardi, G. (2022). A comparison of pain, fatigue,
and function between post–COVID-19 condition, fibromyalgia, and chronic fatigue
syndrome: a survey study. Pain, Publish Ahead of Print. doi: 10.1097/j.pain.
0000000000002711.

Haller, H., Cramer, H., Lauche, R., and Dobos, G. (2015). Somatoform Disorders and
Medically Unexplained Symptoms in Primary Care. Deutsches Ärzteblatt international.
doi: 10.3238/arztebl.2015.0279.

Harris, C. S. (1965). Perceptual adaptation to inverted, reversed, and displaced vision.
Psychological Review, 72 (6), pp. 419–444. doi: 10.1037/h0022616.

Harris, D., Arthur, T., Wilson, M., Le Gallais, B., Parsons, T., Dill, A., and Vine, S. J.
(2023). Counteracting Uncertainty: Exploring the Impact of Anxiety on Predictive Sen-
sorimotor Control Mechanisms in a Manual Interception Task. doi: 10.31234/osf.
io/654h3.

Helmchen, C., Blüm, S.-K., Storm, R., Krause, J., and Sprenger, A. (2024). Postural motion
perception during vestibular stimulation depends on the motion perception threshold in
persistent postural-perceptual dizziness. Journal of Neurology, 271 (8), pp. 4909–4924.
doi: 10.1007/s00415-024-12415-z.

Henningsen, P., Gündel, H., Kop, W. J., Löwe, B., Martin, A., Rief, W., Rosmalen, J. G.,
Schröder, A., van der Feltz-Cornelis, C., and Van den Bergh, O. (2018a). Persistent
Physical Symptoms as Perceptual Dysregulation: A Neuropsychobehavioral Model and
Its Clinical Implications. Psychosomatic Medicine, 80 (5), pp. 422–431. doi: 10.1097/
PSY.0000000000000588.

Henningsen, P., Zipfel, S., Sattel, H., and Creed, F. (2018b). Management of Functional
Somatic Syndromes and Bodily Distress. Psychotherapy and Psychosomatics, 87 (1),
pp. 12–31. doi: 10.1159/000484413.

92

https://doi.org/10.1038/s41598-021-00337-z
https://doi.org/10.1056/NEJM200106283442611
https://doi.org/10.1038/nn.2191
https://doi.org/10.1002/cne.22435
https://doi.org/10.1002/cne.22435
https://doi.org/10.1186/s12967-022-03346-2
https://doi.org/10.1186/s12967-022-03346-2
https://doi.org/10.1097/j.pain.0000000000002711
https://doi.org/10.1097/j.pain.0000000000002711
https://doi.org/10.3238/arztebl.2015.0279
https://doi.org/10.1037/h0022616
https://doi.org/10.31234/osf.io/654h3
https://doi.org/10.31234/osf.io/654h3
https://doi.org/10.1007/s00415-024-12415-z
https://doi.org/10.1097/PSY.0000000000000588
https://doi.org/10.1097/PSY.0000000000000588
https://doi.org/10.1159/000484413


Herigstad, M., Faull, O. K., Hayen, A., Evans, E., Hardinge, F. M., Wiech, K., and Pat-
tinson, K. T. S. (2017). Treating breathlessness via the brain: changes in brain activity
over a course of pulmonary rehabilitation. European Respiratory Journal, 50 (3). doi:
10.1183/13993003.01029-2017.

Herzog, J. I. and Schmahl, C. (2018). Adverse Childhood Experiences and the Conse-
quences on Neurobiological, Psychosocial, and Somatic Conditions Across the Lifespan.
Frontiers in Psychiatry, 9. doi: 10.3389/fpsyt.2018.00420.

Hinz, A., Ernst, J., Glaesmer, H., Brähler, E., Rauscher, F. G., Petrowski, K., and Ko-
calevent, R.-D. (2017). Frequency of somatic symptoms in the general population: Nor-
mative values for the Patient Health Questionnaire-15 (PHQ-15). Journal of Psycho-
somatic Research, 96, pp. 27–31. doi: 10.1016/j.jpsychores.2016.12.017.

Hubel, D. H. and Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex. The Journal of Physiology, 160 (1), pp. 106–154.2.

Im, J. J., Na, S., Jeong, H., and Chung, Y.-A. (2021). A Review of Neuroimaging Studies
in Persistent Postural-Perceptual Dizziness (PPPD). Nuclear Medicine and Molecular
Imaging, 55 (2), pp. 53–60. doi: 10.1007/s13139-020-00675-2.

Indovina, I., Passamonti, L., Mucci, V., Chiarella, G., Lacquaniti, F., and Staab, J. P.
(2021). Brain Correlates of Persistent Postural-Perceptual Dizziness: A Review of Neu-
roimaging Studies. Journal of Clinical Medicine, 10 (18), p. 4274. doi: 10 . 3390 /
jcm10184274.

Izawa, J. and Shadmehr, R. (2011). Learning from Sensory and Reward Prediction Errors
during Motor Adaptation. PLOS Computational Biology, 7 (3), e1002012. doi: 10.
1371/journal.pcbi.1002012.

Jahan, F., Nanji, K., Qidwai, W., and Qasim, R. (2012). Fibromyalgia Syndrome: An
Overview of Pathophysiology, Diagnosis and Management. Oman Medical Journal,
27 (3), pp. 192–195. doi: 10.5001/omj.2012.44.

Jensen, K., Kirsch, I., Odmalm, S., Kaptchuk, T. J., and Ingvar, M. (2015). Classical
conditioning of analgesic and hyperalgesic pain responses without conscious aware-
ness. Proceedings of the National Academy of Sciences of the United States of America,
112 (25), pp. 7863–7867. doi: 10.1073/pnas.1504567112.

Joffe, A. R. and Elliott, A. (2023). Long COVID as a functional somatic symptom disorder
caused by abnormally precise prior expectations during Bayesian perceptual processing:
A new hypothesis and implications for pandemic response. SAGE Open Medicine, 11,
p. 20503121231194400. doi: 10.1177/20503121231194400.

Jones, S. A. and Noppeney, U. (2024). “Multisensory Integration and Causal Inference
in Typical and Atypical Populations”. In: Advances of Multisensory Integration in the
Brain. Ed. by Y. Gu and A. Zaidel. Singapore: Springer Nature, pp. 59–76. doi: 10.
1007/978-981-99-7611-9_4.

Joustra, M. L., Janssens, K. A. M., Bültmann, U., and Rosmalen, J. G. M. (2015). Func-
tional limitations in functional somatic syndromes and well-defined medical diseases.
Results from the general population cohort LifeLines. Journal of Psychosomatic Re-
search, 79 (2), pp. 94–99. doi: 10.1016/j.jpsychores.2015.05.004.

93

https://doi.org/10.1183/13993003.01029-2017
https://doi.org/10.3389/fpsyt.2018.00420
https://doi.org/10.1016/j.jpsychores.2016.12.017
https://doi.org/10.1007/s13139-020-00675-2
https://doi.org/10.3390/jcm10184274
https://doi.org/10.3390/jcm10184274
https://doi.org/10.1371/journal.pcbi.1002012
https://doi.org/10.1371/journal.pcbi.1002012
https://doi.org/10.5001/omj.2012.44
https://doi.org/10.1073/pnas.1504567112
https://doi.org/10.1177/20503121231194400
https://doi.org/10.1007/978-981-99-7611-9_4
https://doi.org/10.1007/978-981-99-7611-9_4
https://doi.org/10.1016/j.jpsychores.2015.05.004


Kaye, D. M., Vizi, D., Graham, S., Wang, B., Shihata, W., Nanayakkara, S., Mariani,
J., and Premaratne, M. (2022). Physiologic Insights Into Long COVID Breathlessness.
Circulation: Heart Failure, 15 (6). doi: 10.1161/CIRCHEARTFAILURE.121.009346.

King, W. M. and Shanidze, N. (2011). Anticipatory eye movements stabilize gaze during
self-generated head movements. Annals of the New York Academy of Sciences, 1233 (1),
pp. 219–225. doi: 10.1111/j.1749-6632.2011.06165.x.

Kitselaar, W. M., Van Der Vaart, R., Perschl, J., Numans, M. E., and Evers, A. W. (2023).
Predictors of Persistent Somatic Symptoms in the General Population: A Systematic
Review of Cohort Studies. Psychosomatic Medicine, 85 (1), pp. 71–78. doi: 10.1097/
PSY.0000000000001145.

Klaus, K., Rief, W., Brähler, E., Martin, A., Glaesmer, H., and Mewes, R. (2013). The
Distinction Between “Medically Unexplained” and “Medically Explained” in the Con-
text of Somatoform Disorders. International Journal of Behavioral Medicine, 20 (2),
pp. 161–171. doi: 10.1007/s12529-012-9245-2.

Knill, D. C. and Richards, W. (1996). Perception as Bayesian Inference. Cambridge Uni-
versity Press.

Körding, K. P., Beierholm, U., Ma, W. J., Quartz, S., Tenenbaum, J. B., and Shams, L.
(2007). Causal Inference in Multisensory Perception. PLOS ONE, 2 (9), e943. doi:
10.1371/journal.pone.0000943.

Körding, K. P. and Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning.
Nature, 427 (6971), pp. 244–247. doi: 10.1038/nature02169.

Körding, K. P. and Wolpert, D. M. (2006). Bayesian decision theory in sensorimotor control.
Trends in Cognitive Sciences, 10 (7), pp. 319–326. doi: 10.1016/j.tics.2006.05.003.

Kutlubaev, M. A., Xu, Y., Hackett, M. L., and Stone, J. (2018). Dual diagnosis of epilepsy
and psychogenic nonepileptic seizures: Systematic review and meta-analysis of fre-
quency, correlates, and outcomes. Epilepsy & Behavior, 89, pp. 70–78. doi: 10.1016/
j.yebeh.2018.10.010.

Lacasse, Y., Wong, E., Guyatt, G. H., King, D., Cook, D. J., and Goldstein, R. S. (1996).
Meta-analysis of respiratory rehabilitation in chronic obstructive pulmonary disease.
The Lancet, 348 (9035), pp. 1115–1119. doi: 10.1016/S0140-6736(96)04201-8.

Lagrand, T. J., Jones, M., Bernard, A., and Lehn, A. C. (2023). Health Care Utilization
in Functional Neurologic Disorders. Neurology: Clinical Practice, 13 (1), e200111. doi:
10.1212/CPJ.0000000000200111.

Lam, G. Y., Befus, A. D., Damant, R. W., Ferrara, G., Fuhr, D. P., Stickland, M. K.,
Varughese, R. A., Wong, E. Y., and Smith, M. P. (2021). Exertional intolerance and
dyspnea with preserved lung function: an emerging long COVID phenotype? Respira-
tory Research, 22 (1), p. 222. doi: 10.1186/s12931-021-01814-9.

Lapidus, R. C., Puhl, M., Kuplicki, R., Stewart, J. L., Paulus, M. P., Rhudy, J. L., Feinstein,
J. S., Khalsa, S. S., and Investigators, o. b. o. t. T. 1. (2020). Heightened affective
response to perturbation of respiratory but not pain signals in eating, mood, and anxiety
disorders. PLOS ONE, 15 (7), e0235346. doi: 10.1371/journal.pone.0235346.

94

https://doi.org/10.1161/CIRCHEARTFAILURE.121.009346
https://doi.org/10.1111/j.1749-6632.2011.06165.x
https://doi.org/10.1097/PSY.0000000000001145
https://doi.org/10.1097/PSY.0000000000001145
https://doi.org/10.1007/s12529-012-9245-2
https://doi.org/10.1371/journal.pone.0000943
https://doi.org/10.1038/nature02169
https://doi.org/10.1016/j.tics.2006.05.003
https://doi.org/10.1016/j.yebeh.2018.10.010
https://doi.org/10.1016/j.yebeh.2018.10.010
https://doi.org/10.1016/S0140-6736(96)04201-8
https://doi.org/10.1212/CPJ.0000000000200111
https://doi.org/10.1186/s12931-021-01814-9
https://doi.org/10.1371/journal.pone.0235346


Lawrence, D. P. (2004). Evidence Report on the Occurrence, Assessment, and Treatment
of Fatigue in Cancer Patients. Journal of the National Cancer Institute Monographs,
2004 (32), pp. 40–50. doi: 10.1093/jncimonographs/lgh027.

Lehnen, N., Glasauer, S., and Büttner, U. (2003). Eye-Head Coordination: Challenging
the System by Increasing Head Inertia. Annals of the New York Academy of Sciences,
1004 (1), pp. 524–526. doi: 10.1196/annals.1303.067.

Lehnen, N., Henningsen, P., Ramaioli, C., and Glasauer, S. (2018). An experimental litmus
test of the emerging hypothesis that persistent physical symptoms can be explained
as perceptual dysregulation. Journal of Psychosomatic Research, 114, pp. 15–17. doi:
10.1016/j.jpsychores.2018.08.007.

Lehnen, N., Schröder, L., Henningsen, P., Glasauer, S., and Ramaioli, C. (2019). “Deficient
head motor control in functional dizziness: Experimental evidence of central sensory-
motor dysfunction in persistent physical symptoms”. In: Progress in Brain Research.
Vol. 249. Elsevier, pp. 385–400. doi: 10.1016/bs.pbr.2019.02.006.

Lemogne, C., Gouraud, C., Pitron, V., and Ranque, B. (2023). Why the hypothesis of psy-
chological mechanisms in long COVID is worth considering. Journal of Psychosomatic
Research, 165, p. 111135. doi: 10.1016/j.jpsychores.2022.111135.

Liu, Q., Mak, J. W. Y., Su, Q., Yeoh, Y. K., Lui, G. C.-Y., Ng, S. S. S., Zhang, F., Li,
A. Y. L., Lu, W., Hui, D. S.-C., Chan, P. K., Chan, F. K. L., and Ng, S. C. (2022). Gut
microbiota dynamics in a prospective cohort of patients with post-acute COVID-19
syndrome. Gut, 71 (3), pp. 544–552. doi: 10.1136/gutjnl-2021-325989.

Lopez-Leon, S., Wegman-Ostrosky, T., Perelman, C., Sepulveda, R., Rebolledo, P. A.,
Cuapio, A., and Villapol, S. (2021). More than 50 long-term effects of COVID-19: a
systematic review and meta-analysis. Scientific Reports, 11 (1), p. 16144. doi: 10.
1038/s41598-021-95565-8.

Löwe, B., Andresen, V., Van Den Bergh, O., Huber, T. B., Von Dem Knesebeck, O.,
Lohse, A. W., Nestoriuc, Y., Schneider, G., Schneider, S. W., Schramm, C., Ständer,
S., Vettorazzi, E., Zapf, A., Shedden-Mora, M., and Toussaint, A. (2022). Persistent
SOMAtic symptoms ACROSS diseases — from risk factors to modification: scientific
framework and overarching protocol of the interdisciplinary SOMACROSS research
unit (RU 5211). BMJ Open, 12 (1), e057596. doi: 10.1136/bmjopen-2021-057596.

Löwe, B., Toussaint, A., Rosmalen, J. G. M., Huang, W.-L., Burton, C., Weigel, A., Lev-
enson, J. L., and Henningsen, P. (2024). Persistent physical symptoms: definition, gen-
esis, and management. The Lancet, 403 (10444), pp. 2649–2662. doi: 10.1016/S0140-
6736(24)00623-8.

Ma, W. J. (2019). Bayesian Decision Models: A Primer. Neuron, 104 (1), pp. 164–175. doi:
10.1016/j.neuron.2019.09.037.

Ma, W. J., Körding, K. P., and Goldreich, D. (2023). Bayesian Models of Perception and
Action. The MIT Press.

Machkovech, H. M., Hahn, A. M., Wang, J. G., Grubaugh, N. D., Halfmann, P. J., Johnson,
M. C., Lemieux, J. E., O’Connor, D. H., Piantadosi, A., Wei, W., and Friedrich, T. C.
(2024). Persistent SARS-CoV-2 infection: significance and implications. The Lancet
Infectious Diseases, 24 (7), e453–e462. doi: 10.1016/S1473-3099(23)00815-0.

95

https://doi.org/10.1093/jncimonographs/lgh027
https://doi.org/10.1196/annals.1303.067
https://doi.org/10.1016/j.jpsychores.2018.08.007
https://doi.org/10.1016/bs.pbr.2019.02.006
https://doi.org/10.1016/j.jpsychores.2022.111135
https://doi.org/10.1136/gutjnl-2021-325989
https://doi.org/10.1038/s41598-021-95565-8
https://doi.org/10.1038/s41598-021-95565-8
https://doi.org/10.1136/bmjopen-2021-057596
https://doi.org/10.1016/S0140-6736(24)00623-8
https://doi.org/10.1016/S0140-6736(24)00623-8
https://doi.org/10.1016/j.neuron.2019.09.037
https://doi.org/10.1016/S1473-3099(23)00815-0


Marr, D. (1982). Vision: A Computational Investigation into the Human Representation
and Processing of Visual Information. MIT Press.

Massar, S. A. A., Csathó, Á., and Van der Linden, D. (2018). Quantifying the Motiva-
tional Effects of Cognitive Fatigue Through Effort-Based Decision Making. Frontiers
in Psychology, 9. doi: 10.3389/fpsyg.2018.00843.

Matthews, J., Pisauro, M. A., Jurgelis, M., Müller, T., Vassena, E., Chong, T. T. .-., and
Apps, M. A. J. (2023). Computational mechanisms underlying the dynamics of physical
and cognitive fatigue. Cognition, 240, p. 105603. doi: 10.1016/j.cognition.2023.
105603.

McNamee, D. and Wolpert, D. M. (2019). Internal Models in Biological Control. Annual
Review of Control, Robotics, and Autonomous Systems, 2 (Volume 2, 2019), pp. 339–
364. doi: 10.1146/annurev-control-060117-105206.

El-Medany, A., Adams, Z. H., Blythe, H. C., Hope, K. A., Kendrick, A. H., Abdala Sheikh,
A. P., Paton, J. F. R., Nightingale, A. K., and Hart, E. C. (2024). Carotid body dys-
regulation contributes to Long COVID symptoms. Communications Medicine, 4 (1),
pp. 1–10. doi: 10.1038/s43856-024-00447-5.

Minerbi, A., Gonzalez, E., Brereton, N. J. B., Anjarkouchian, A., Dewar, K., Fitzcharles,
M.-A., Chevalier, S., and Shir, Y. (2019). Altered microbiome composition in indi-
viduals with fibromyalgia. Pain, 160 (11), pp. 2589–2602. doi: 10.1097/j.pain.
0000000000001640.

Mirza, M. B., Adams, R. A., Friston, K., and Parr, T. (2019). Introducing a Bayesian model
of selective attention based on active inference. Scientific Reports, 9 (1), p. 13915. doi:
10.1038/s41598-019-50138-8.

Moaty, A. S. and Nada, N. (2023). Updates on persistent postural-perceptual dizziness
(PPPD): a review article. The Egyptian Journal of Otolaryngology, 39 (1), p. 131. doi:
10.1186/s43163-023-00497-x.

Molday, R. S. and Moritz, O. L. (2015). Photoreceptors at a glance. Journal of Cell Science,
128 (22), pp. 4039–4045. doi: 10.1242/jcs.175687.

Muneer, A., Farooq, A., Farooq, J. H., Qurashi, M. S., Kiani, I. A., and Farooq, J. S.
(2018). Frequency of Primary Headache Syndromes in Patients with a Major Depressive
Disorder. Cureus, 10 (6), e2747. doi: 10.7759/cureus.2747.

Murillo, E. S. P., Bancroft, M. J., Koohi, N., Castro, P., and Kaski, D. (2022). Postu-
ral misperception: a biomarker for persistent postural perceptual dizziness. Journal of
Neurology, Neurosurgery and Psychiatry.

Myers, L., Sarudiansky, M., Korman, G., and Baslet, G. (2021). Using evidence-based
psychotherapy to tailor treatment for patients with functional neurological disorders.
Epilepsy & Behavior Reports, 16, p. 100478. doi: 10.1016/j.ebr.2021.100478.

Nalbandian, A., Sehgal, K., Gupta, A., Madhavan, M. V., McGroder, C., Stevens, J. S.,
Cook, J. R., Nordvig, A. S., Shalev, D., Sehrawat, T. S., Ahluwalia, N., Bikdeli, B.,
Dietz, D., Der-Nigoghossian, C., Liyanage-Don, N., Rosner, G. F., Bernstein, E. J.,
Mohan, S., Beckley, A. A., Seres, D. S., Choueiri, T. K., Uriel, N., Ausiello, J. C.,
Accili, D., Freedberg, D. E., Baldwin, M., Schwartz, A., Brodie, D., Garcia, C. K.,
Elkind, M. S. V., Connors, J. M., Bilezikian, J. P., Landry, D. W., and Wan, E. Y.

96

https://doi.org/10.3389/fpsyg.2018.00843
https://doi.org/10.1016/j.cognition.2023.105603
https://doi.org/10.1016/j.cognition.2023.105603
https://doi.org/10.1146/annurev-control-060117-105206
https://doi.org/10.1038/s43856-024-00447-5
https://doi.org/10.1097/j.pain.0000000000001640
https://doi.org/10.1097/j.pain.0000000000001640
https://doi.org/10.1038/s41598-019-50138-8
https://doi.org/10.1186/s43163-023-00497-x
https://doi.org/10.1242/jcs.175687
https://doi.org/10.7759/cureus.2747
https://doi.org/10.1016/j.ebr.2021.100478


(2021). Post-acute COVID-19 syndrome. Nature Medicine, 27 (4), pp. 601–615. doi:
10.1038/s41591-021-01283-z.

Nielsen, G., Stone, J., Matthews, A., Brown, M., Sparkes, C., Farmer, R., Masterton,
L., Duncan, L., Winters, A., Daniell, L., Lumsden, C., Carson, A., David, A. S., and
Edwards, M. (2015). Physiotherapy for functional motor disorders: a consensus recom-
mendation. Journal of Neurology, Neurosurgery & Psychiatry, 86 (10), pp. 1113–1119.
doi: 10.1136/jnnp-2014-309255.

Nieuwenhuys, A. and Oudejans, R. R. D. (2012). Anxiety and perceptual-motor perfor-
mance: toward an integrated model of concepts, mechanisms, and processes. Psycho-
logical Research, 76 (6), pp. 747–759. doi: 10.1007/s00426-011-0384-x.

Nimnuan, C., Hotopf, M., and Wessely, S. (2001). Medically unexplained symptoms: An
epidemiological study in seven specialities. Journal of Psychosomatic Research, 51 (1),
pp. 361–367. doi: 10.1016/S0022-3999(01)00223-9.

Noppeney, U. (2021). Perceptual Inference, Learning, and Attention in a Multisensory
World. Annual Review of Neuroscience, 44 (Volume 44, 2021), pp. 449–473. doi: 10.
1146/annurev-neuro-100120-085519.

O’Mahoney, L. L., Routen, A., Gillies, C., Ekezie, W., Welford, A., Zhang, A., Karam-
chandani, U., Simms-Williams, N., Cassambai, S., Ardavani, A., Wilkinson, T. J.,
Hawthorne, G., Curtis, F., Kingsnorth, A. P., Almaqhawi, A., Ward, T., Ayoubkhani,
D., Banerjee, A., Calvert, M., Shafran, R., Stephenson, T., Sterne, J., Ward, H., Evans,
R. A., Zaccardi, F., Wright, S., and Khunti, K. (2023). The prevalence and long-term
health effects of Long Covid among hospitalised and non-hospitalised populations: a
systematic review and meta-analysis. eClinicalMedicine, 55. doi: 10.1016/j.eclinm.
2022.101762.

Oliva Ramirez, A., Keenan, A., Kalau, O., Worthington, E., Cohen, L., and Singh, S.
(2021). Prevalence and burden of multiple sclerosis-related fatigue: a systematic litera-
ture review. BMC Neurology, 21 (1), p. 468. doi: 10.1186/s12883-021-02396-1.

Orendáčová, M., Kvašňák, E., and Vránová, J. (2022). Effect of neurofeedback therapy
on neurological post-COVID-19 complications (A pilot study). PLoS ONE, 17 (7),
e0271350. doi: 10.1371/journal.pone.0271350.

Petzschner, F. H. and Glasauer, S. (2011). Iterative Bayesian Estimation as an Explanation
for Range and Regression Effects: A Study on Human Path Integration. Journal of
Neuroscience, 31 (47), pp. 17220–17229. doi: 10.1523/JNEUROSCI.2028-11.2011.

Petzschner, F. H., Weber, L. A., Gard, T., and Stephan, K. E. (2017). Computational Psy-
chosomatics and Computational Psychiatry: Toward a Joint Framework for Differential
Diagnosis. Biological Psychiatry, 82 (6), pp. 421–430. doi: 10.1016/j.biopsych.2017.
05.012.

Pezzulo, G., Maisto, D., Barca, L., and Van den Bergh, O. (2019). Symptom Perception
From a Predictive Processing Perspective. Clinical Psychology in Europe, 1 (4), e35952.
doi: 10.32872/cpe.v1i4.35952.

Phetsouphanh, C., Darley, D. R., Wilson, D. B., Howe, A., Munier, C. M. L., Patel, S. K.,
Juno, J. A., Burrell, L. M., Kent, S. J., Dore, G. J., Kelleher, A. D., and Matthews,
G. V. (2022). Immunological dysfunction persists for 8 months following initial mild-

97

https://doi.org/10.1038/s41591-021-01283-z
https://doi.org/10.1136/jnnp-2014-309255
https://doi.org/10.1007/s00426-011-0384-x
https://doi.org/10.1016/S0022-3999(01)00223-9
https://doi.org/10.1146/annurev-neuro-100120-085519
https://doi.org/10.1146/annurev-neuro-100120-085519
https://doi.org/10.1016/j.eclinm.2022.101762
https://doi.org/10.1016/j.eclinm.2022.101762
https://doi.org/10.1186/s12883-021-02396-1
https://doi.org/10.1371/journal.pone.0271350
https://doi.org/10.1523/JNEUROSCI.2028-11.2011
https://doi.org/10.1016/j.biopsych.2017.05.012
https://doi.org/10.1016/j.biopsych.2017.05.012
https://doi.org/10.32872/cpe.v1i4.35952


to-moderate SARS-CoV-2 infection. Nature Immunology, 23 (2), pp. 210–216. doi: 10.
1038/s41590-021-01113-x.

Popkirov, S., Staab, J. P., and Stone, J. (2018). Persistent postural-perceptual dizziness
(PPPD): a common, characteristic and treatable cause of chronic dizziness. Practical
Neurology, 18 (1), pp. 5–13. doi: 10.1136/practneurol-2017-001809.

Powell, G., Derry-Sumner, H., Shelton, K., Rushton, S., Hedge, C., Rajenderkumar, D.,
and Sumner, P. (2020). Visually-induced dizziness is associated with sensitivity and
avoidance across all senses. Journal of Neurology, 267 (8), pp. 2260–2271. doi: 10.
1007/s00415-020-09817-0.

Rao, R. P. N. and Ballard, D. H. (1999). Predictive coding in the visual cortex: a functional
interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2 (1),
pp. 79–87. doi: 10.1038/4580.

Read, D. C. (1967). A CLINICAL METHOD FOR ASSESSING THE VENTILATORY
RESPONSE TO CARBON DIOXIDE. Australasian Annals of Medicine, 16 (1), pp. 20–
32. doi: 10.1111/imj.1967.16.1.20.

Regnath, F., Biersack, K., Jäger, N., Glasauer, S., and Lehnen, N. (2023). Not a gen-
eral, symptom-unspecific, transdiagnostic marker for functional symptoms: sensorimo-
tor processing of head control is intact in chronic pain. Frontiers in Neurology, 14. doi:
10.3389/fneur.2023.1294702.

Regnath, F., Biersack, K., Schröder, L., Stainer, M.-C., von Werder, D., Pürner, D.,
Haslinger, B., and Lehnen, N. (2024). Experimental evidence for a robust, transdiag-
nostic marker in functional disorders: Erroneous sensorimotor processing in functional
dizziness and functional movement disorder. Journal of Psychosomatic Research, 183,
p. 111694. doi: 10.1016/j.jpsychores.2024.111694.

Richter, M., Gendolla, G. H. E., and Wright, R. A. (2016). “Chapter Five - Three Decades
of Research on Motivational Intensity Theory: What We Have Learned About Effort
and What We Still Don’t Know”. In: Advances in Motivation Science. Ed. by A. J.
Elliot. Vol. 3. Elsevier, pp. 149–186. doi: 10.1016/bs.adms.2016.02.001.

Rosmalen, J., Burton, C., Carson, A., Cosci, F., Frostholm, L., Lehnen, N., Olde Hartman,
T., Rask, C., Rymaszewska, J., Stone, J., Tak, L., Witthöft, M., and Löwe, B. (2021).
The European Training Network ETUDE (Encompassing Training in fUnctional Dis-
orders across Europe): a new research and training program of the EURONET-SOMA
network recruiting 15 early stage researchers. Journal of Psychosomatic Research, 141,
p. 110345. doi: 10.1016/j.jpsychores.2020.110345.

Rozenkrantz, L., Kube, T., Bernstein, M. H., and Gabrieli, J. D. E. (2022). How beliefs
about coronavirus disease (COVID) influence COVID-like symptoms? – A longitudinal
study. Health Psychology, 41 (8), pp. 519–526. doi: 10.1037/hea0001219.

Sağlam, M. and Lehnen, N. (2014). Gaze stabilization in chronic vestibular-loss and in
cerebellar ataxia: Interactions of feedforward and sensory feedback mechanisms. Journal
of Vestibular Research, 24 (5-6). Ed. by M. Mandalà, S. Ramat, and D. S. Zee, pp. 425–
431. doi: 10.3233/VES-140538.

Sağlam, M., Glasauer, S., and Lehnen, N. (2014). Vestibular and cerebellar contribution
to gaze optimality. Brain, 137 (4), pp. 1080–1094. doi: 10.1093/brain/awu006.

98

https://doi.org/10.1038/s41590-021-01113-x
https://doi.org/10.1038/s41590-021-01113-x
https://doi.org/10.1136/practneurol-2017-001809
https://doi.org/10.1007/s00415-020-09817-0
https://doi.org/10.1007/s00415-020-09817-0
https://doi.org/10.1038/4580
https://doi.org/10.1111/imj.1967.16.1.20
https://doi.org/10.3389/fneur.2023.1294702
https://doi.org/10.1016/j.jpsychores.2024.111694
https://doi.org/10.1016/bs.adms.2016.02.001
https://doi.org/10.1016/j.jpsychores.2020.110345
https://doi.org/10.1037/hea0001219
https://doi.org/10.3233/VES-140538
https://doi.org/10.1093/brain/awu006


Sarubbo, F., El Haji, K., Vidal-Balle, A., and Bargay Lleonart, J. (2022). Neurological
consequences of COVID-19 and brain related pathogenic mechanisms: A new challenge
for neuroscience. Brain, Behavior, & Immunity - Health, 19, p. 100399. doi: 10.1016/
j.bbih.2021.100399.

Scarff, J. R. and Lippmann, S. (2023). Treating Psychiatric Symptoms in Persistent Pos-
tural Perceptual Dizziness. Innovations in Clinical Neuroscience, 20 (10-12), pp. 49–
54.

Schnabel, K., Petzke, T. M., and Witthöft, M. (2022). The emotion regulation process
in somatic symptom disorders and related conditions - A systematic narrative review.
Clinical Psychology Review, 97, p. 102196. doi: 10.1016/j.cpr.2022.102196.

Schneebeli, M., Haker, H., Rüesch, A., Zahnd, N., Marino, S., Paolini, G., Iglesias, S.,
Petzschner, F. H., and Stephan, K. E. (2022). Disentangling “Bayesian brain” theories
of autism spectrum disorder. doi: 10.1101/2022.02.07.22270242.

Schou, T. M., Joca, S., Wegener, G., and Bay-Richter, C. (2021). Psychiatric and neuropsy-
chiatric sequelae of COVID-19 – A systematic review. Brain, Behavior, and Immunity,
97, pp. 328–348. doi: 10.1016/j.bbi.2021.07.018.

Schröder, L., Regnath, F., Glasauer, S., Hackenberg, A., Hente, J., Weilenmann, S., Pohl,
D., von Känel, R., and Lehnen, N. (2022). Altered sensorimotor processing in irritable
bowel syndrome: Evidence for a transdiagnostic pathomechanism in functional somatic
disorders. Frontiers in Neuroscience, 16, p. 1029126. doi: 10 . 3389 / fnins . 2022 .
1029126.

Senger, K., Heider, J., Kleinstäuber, M., Sehlbrede, M., Witthöft, M., and Schröder, A.
(2022). Network Analysis of Persistent Somatic Symptoms in Two Clinical Patient Sam-
ples. Psychosomatic Medicine, 84 (1), pp. 74–85. doi: 10.1097/PSY.0000000000000999.

Shah, A. S., Ryu, M. H., Hague, C. J., Murphy, D. T., Johnston, J. C., Ryerson, C. J.,
Carlsten, C., and Wong, A. W. (2021). Changes in pulmonary function and patient-
reported outcomes during COVID-19 recovery: a longitudinal, prospective cohort study.
ERJ Open Research, 7 (3), pp. 00243–2021. doi: 10.1183/23120541.00243-2021.

Smith, R. (2023). “Functional disorders”: one of medicine’s biggest failures. BMJ, 380,
p221. doi: 10.1136/bmj.p221.

Sneller, M. C., Liang, C. J., Marques, A. R., Chung, J. Y., Shanbhag, S. M., Fontana,
J. R., Raza, H., Okeke, O., Dewar, R. L., Higgins, B. P., Tolstenko, K., Kwan, R. W.,
Gittens, K. R., Seamon, C. A., McCormack, G., Shaw, J. S., Okpali, G. M., Law, M.,
Trihemasava, K., Kennedy, B. D., Shi, V., Justement, J. S., Buckner, C. M., Blazkova,
J., Moir, S., Chun, T.-W., and Lane, H. C. (2022). A Longitudinal Study of COVID-
19 Sequelae and Immunity: Baseline Findings. Annals of Internal Medicine, 175 (7),
pp. 969–979. doi: 10.7326/M21-4905.

Sohn, H. and Jazayeri, M. (2021). Validating model-based Bayesian integration using
prior–cost metamers. Proceedings of the National Academy of Sciences, 118 (25), e2021531118.
doi: 10.1073/pnas.2021531118.

Soriano, J. B., Murthy, S., Marshall, J. C., Relan, P., and Diaz, J. V. (2022). A clinical case
definition of post-COVID-19 condition by a Delphi consensus. The Lancet Infectious
Diseases, 22 (4), e102–e107. doi: 10.1016/S1473-3099(21)00703-9.

99

https://doi.org/10.1016/j.bbih.2021.100399
https://doi.org/10.1016/j.bbih.2021.100399
https://doi.org/10.1016/j.cpr.2022.102196
https://doi.org/10.1101/2022.02.07.22270242
https://doi.org/10.1016/j.bbi.2021.07.018
https://doi.org/10.3389/fnins.2022.1029126
https://doi.org/10.3389/fnins.2022.1029126
https://doi.org/10.1097/PSY.0000000000000999
https://doi.org/10.1183/23120541.00243-2021
https://doi.org/10.1136/bmj.p221
https://doi.org/10.7326/M21-4905
https://doi.org/10.1073/pnas.2021531118
https://doi.org/10.1016/S1473-3099(21)00703-9


Sprenger, A., Steinhaus, S., and Helmchen, C. (2017). Postural control during recall of
vestibular sensation in patients with functional dizziness and unilateral vestibulopathy.
Journal of Neurology, 264 (1), pp. 42–44. doi: 10.1007/s00415-017-8446-7.

Srinivasan, M. V., Laughlin, S. B., and Dubs, A. (1982). Predictive coding: a fresh view of
inhibition in the retina. Proceedings of the Royal Society of London. Series B, Biological
Sciences, 216 (1205), pp. 427–459. doi: 10.1098/rspb.1982.0085.

Staab, J. P., Eckhardt-Henn, A., Horii, A., Jacob, R., Strupp, M., Brandt, T., and Bron-
stein, A. (2017). Diagnostic criteria for persistent postural-perceptual dizziness (PPPD):
Consensus document of the committee for the Classification of Vestibular Disorders of
the Bárány Society. Journal of Vestibular Research, 27 (4), pp. 191–208. doi: 10.3233/
VES-170622.

Stone, J., Burton, C., and Carson, A. (2020). Recognising and explaining functional neu-
rological disorder. BMJ, p. m3745. doi: 10.1136/bmj.m3745.

Stone, J., Carson, A., Duncan, R., Coleman, R., Roberts, R., Warlow, C., Hibberd, C.,
Murray, G., Cull, R., Pelosi, A., Cavanagh, J., Matthews, K., Goldbeck, R., Smyth, R.,
Walker, J., MacMahon, A., and Sharpe, M. (2009). Symptoms ‘unexplained by organic
disease’ in 1144 new neurology out-patients: how often does the diagnosis change at
follow-up? Brain, 132 (10), pp. 2878–2888. doi: 10.1093/brain/awp220.

Storm, R., Krause, J., Blüm, S.-K., Wrobel, V., Frings, A., Helmchen, C., and Sprenger,
A. (2024). Visual and vestibular motion perception in persistent postural-perceptual
dizziness (PPPD). Journal of Neurology, 271 (6), pp. 3227–3238. doi: 10.1007/s00415-
024-12255-x.

Straka, H. and Chagnaud, B. P. (2017). Moving or being moved: that makes a difference.
Journal of Neurology, 264 (1), pp. 28–33. doi: 10.1007/s00415-017-8437-8.

Swank, Z., Senussi, Y., Manickas-Hill, Z., Yu, X. G., Li, J. Z., Alter, G., and Walt, D. R.
(2023). Persistent Circulating Severe Acute Respiratory Syndrome Coronavirus 2 Spike
Is Associated With Post-acute Coronavirus Disease 2019 Sequelae. Clinical Infectious
Diseases, 76 (3), e487–e490. doi: 10.1093/cid/ciac722.

Synofzik, M., Lindner, A., and Thier, P. (2008). The cerebellum updates predictions about
the visual consequences of one’s behavior. Current biology: CB, 18 (11), pp. 814–818.
doi: 10.1016/j.cub.2008.04.071.

Teeter, J. G. and Bleecker, E. R. (1998). Relationship Between Airway Obstruction and
Respiratory Symptoms in Adult Asthmatics. Chest, 113 (2), pp. 272–277. doi: 10.
1378/chest.113.2.272.

Tenforde, M. W., Kim, S. S., Lindsell, C. J., Billig Rose, E., Shapiro, N. I., Files, D. C.,
Gibbs, K. W., Erickson, H. L., Steingrub, J. S., Smithline, H. A., Gong, M. N., Aboodi,
M. S., Exline, M. C., Henning, D. J., Wilson, J. G., Khan, A., Qadir, N., Brown,
S. M., Peltan, I. D., Rice, T. W., Hager, D. N., Ginde, A. A., Stubblefield, W. B.,
Patel, M. M., Self, W. H., Feldstein, L. R., IVY Network Investigators, CDC COVID-
19 Response Team, IVY Network Investigators, Hart, K. W., McClellan, R., CDC
COVID-19 Response Team, Dorough, L., Dzuris, N., Griggs, E. P., Kassem, A. M.,
Marcet, P. L., Ogokeh, C. E., Sciarratta, C. N., Siddula, A., Smith, E. R., and Wu,
M. J. (2020). Symptom Duration and Risk Factors for Delayed Return to Usual Health

100

https://doi.org/10.1007/s00415-017-8446-7
https://doi.org/10.1098/rspb.1982.0085
https://doi.org/10.3233/VES-170622
https://doi.org/10.3233/VES-170622
https://doi.org/10.1136/bmj.m3745
https://doi.org/10.1093/brain/awp220
https://doi.org/10.1007/s00415-024-12255-x
https://doi.org/10.1007/s00415-024-12255-x
https://doi.org/10.1007/s00415-017-8437-8
https://doi.org/10.1093/cid/ciac722
https://doi.org/10.1016/j.cub.2008.04.071
https://doi.org/10.1378/chest.113.2.272
https://doi.org/10.1378/chest.113.2.272


Among Outpatients with COVID-19 in a Multistate Health Care Systems Network
— United States, March–June 2020. MMWR. Morbidity and Mortality Weekly Report,
69 (30), pp. 993–998. doi: 10.15585/mmwr.mm6930e1.

Teodoro, T., Chen, J., Gelauff, J., and Edwards, M. J. (2023). Functional neurological dis-
order in people with long COVID: A systematic review. European Journal of Neurology,
30 (5), pp. 1505–1514. doi: 10.1111/ene.15721.

Tinazzi, M., Gandolfi, M., Landi, S., and Leardini, C. (2021). Economic Costs of Delayed
Diagnosis of Functional Motor Disorders: Preliminary Results From a Cohort of Patients
of a Specialized Clinic. Frontiers in Neurology, 12. doi: 10.3389/fneur.2021.786126.

Treufeldt, H. and Burton, C. (2024). Stigmatisation in medical encounters for persistent
physical symptoms/functional disorders: Scoping review and thematic synthesis. Pa-
tient Education and Counseling, 123, p. 108198. doi: 10.1016/j.pec.2024.108198.

Tsampasian, V., Elghazaly, H., Chattopadhyay, R., Debski, M., Naing, T. K. P., Garg,
P., Clark, A., Ntatsaki, E., and Vassiliou, V. S. (2023). Risk Factors Associated With
PostCOVID-19 Condition: A Systematic Review and Meta-analysis. JAMA Internal
Medicine. doi: 10.1001/jamainternmed.2023.0750.

Tseng, Y.-W., Diedrichsen, J., Krakauer, J. W., Shadmehr, R., and Bastian, A. J. (2007).
Sensory prediction errors drive cerebellum-dependent adaptation of reaching. Journal
of Neurophysiology, 98 (1), pp. 54–62. doi: 10.1152/jn.00266.2007.

Vaccarino, A. L., Sills, T. L., Evans, K. R., and Kalali, A. H. (2009). Multiple Pain Com-
plaints in Patients With Major Depressive Disorder. Psychosomatic Medicine, 71 (2),
p. 159. doi: 10.1097/PSY.0b013e3181906572.

Van den Bergh, O., Brosschot, J., Critchley, H., Thayer, J. F., and Ottaviani, C. (2021).
Better Safe Than Sorry: A Common Signature of General Vulnerability for Psychopathol-
ogy. Better Safe Than Sorry, 16 (2), pp. 225–246.

Van Den Bergh, O., Witthöft, M., Petersen, S., and Brown, R. J. (2017). Symptoms and the
body: Taking the inferential leap. Neuroscience & Biobehavioral Reviews, 74, pp. 185–
203. doi: 10.1016/j.neubiorev.2017.01.015.

Van Den Houte, M., Bogaerts, K., Van Diest, I., De Bie, J., Persoons, P., Van Oudenhove,
L., and Van den Bergh, O. (2018). Perception of induced dyspnea in fibromyalgia and
chronic fatigue syndrome. Journal of Psychosomatic Research, 106, pp. 49–55. doi:
10.1016/j.jpsychores.2018.01.007.

Van der Feltz-Cornelis, C. M., Moriarty, A. S., and Strain, W. D. (2023). Neurological Dys-
function in Long COVID Should Not Be Labelled as Functional Neurological Disorder.
Viruses, 15 (3), p. 783. doi: 10.3390/v15030783.

Vilares, I., Howard, J. D., Fernandes, H. L., Gottfried, J. A., and Kording, K. P. (2012).
Differential Representations of Prior and Likelihood Uncertainty in the Human Brain.
Current Biology, 22 (18), pp. 1641–1648. doi: 10.1016/j.cub.2012.07.010.

Vlemincx, E., Arcoleo, K. J., Babb, T. G., Davenport, P. W., Feldman, J. M., Marshall,
G. D., Ramirez, J.-M., Ritz, T., Troosters, T., Van den Bergh, O., and von Leupoldt,
A. (2022). Respiratory psychophysiology and COVID-19: A research agenda. Biological
Psychology, p. 108473. doi: 10.1016/j.biopsycho.2022.108473.

Von Helmholtz, H. (1867). Handbuch der physiologischen Optik. Leipzig: Leopold Voss.

101

https://doi.org/10.15585/mmwr.mm6930e1
https://doi.org/10.1111/ene.15721
https://doi.org/10.3389/fneur.2021.786126
https://doi.org/10.1016/j.pec.2024.108198
https://doi.org/10.1001/jamainternmed.2023.0750
https://doi.org/10.1152/jn.00266.2007
https://doi.org/10.1097/PSY.0b013e3181906572
https://doi.org/10.1016/j.neubiorev.2017.01.015
https://doi.org/10.1016/j.jpsychores.2018.01.007
https://doi.org/10.3390/v15030783
https://doi.org/10.1016/j.cub.2012.07.010
https://doi.org/10.1016/j.biopsycho.2022.108473


Von Holst, E. and Mittelstaedt, H. (1950). Das Reafferenzprinzip. Naturwissenschaften,
37 (20), pp. 464–476. doi: 10.1007/BF00622503.

Wadell, K., Webb, K. A., Preston, M. E., Amornputtisathaporn, N., Samis, L., Patelli, J.,
Guenette, J. A., and O’Donnell, D. E. (2013). Impact of Pulmonary Rehabilitation on
the Major Dimensions of Dyspnea in COPD. COPD: Journal of Chronic Obstructive
Pulmonary Disease, 10 (4), pp. 425–435. doi: 10.3109/15412555.2012.758696.

Wang, S., Quan, L., Chavarro, J. E., Slopen, N., Kubzansky, L. D., Koenen, K. C., Kang,
J. H., Weisskopf, M. G., Branch-Elliman, W., and Roberts, A. L. (2022). Associa-
tions of Depression, Anxiety, Worry, Perceived Stress, and Loneliness Prior to Infec-
tion With Risk of Post–COVID-19 Conditions. JAMA Psychiatry. doi: 10 . 1001 /
jamapsychiatry.2022.2640.

Watabe-Uchida, M., Eshel, N., and Uchida, N. (2017). Neural circuitry of reward prediction
error. Annual review of neuroscience, 40, pp. 373–394. doi: 10.1146/annurev-neuro-
072116-031109.

Waterston, J., Chen, L., Mahony, K., Gencarelli, J., and Stuart, G. (2021). Persistent
Postural-Perceptual Dizziness: Precipitating Conditions, Co-morbidities and Treatment
With Cognitive Behavioral Therapy. Frontiers in Neurology, 12. doi: 10.3389/fneur.
2021.795516.

Wei, K. and Körding, K. (2009). Relevance of Error: What Drives Motor Adaptation?
Journal of Neurophysiology, 101 (2), pp. 655–664. doi: 10.1152/jn.90545.2008.

Whitehead, L. C., Unahi, K., Burrell, B., and Crowe, M. T. (2016). The Experience of
Fatigue Across Long-Term Conditions: A Qualitative Meta-Synthesis. Journal of Pain
and Symptom Management, 52 (1), 131–143.e1. doi: 10.1016/j.jpainsymman.2016.
02.013.

Whiteley, L. and Sahani, M. (2012). Attention in a Bayesian Framework. Frontiers in
Human Neuroscience, 6. doi: 10.3389/fnhum.2012.00100.

WHO (2004). ICD-10 : international statistical classification of diseases and related health
problems : tenth revision. World Health Organization.

Wibble, T. and Pansell, T. (2024). Human proprioceptive gaze stabilization during passive
body rotations underneath a fixed head. Scientific Reports, 14 (1), p. 17355. doi: 10.
1038/s41598-024-68116-0.

Willis, C. and Chalder, T. (2021). Concern for Covid-19 cough, fever and impact on mental
health. What about risk of Somatic Symptom Disorder? Journal of Mental Health,
30 (5), pp. 551–555. doi: 10.1080/09638237.2021.1875418.

Wolkove, N., Dajczman, E., Colacone, A., and Kreisman, H. (1989). The Relationship
Between Pulmonary Function and Dyspnea in Obstructive Lung Disease. Chest, 96 (6),
pp. 1247–1251. doi: 10.1378/chest.96.6.1247.

Wolpert, D. M., Ghahramani, Z., and Jordan, M. I. (1995). An Internal Model for Sen-
sorimotor Integration. Science, 269 (5232), pp. 1880–1882. doi: 10.1126/science.
7569931.

Wuehr, M., Brandt, T., and Schniepp, R. (2017). Distracting attention in phobic postural
vertigo normalizes leg muscle activity and balance. Neurology, 88 (3), pp. 284–288. doi:
10.1212/WNL.0000000000003516.

102

https://doi.org/10.1007/BF00622503
https://doi.org/10.3109/15412555.2012.758696
https://doi.org/10.1001/jamapsychiatry.2022.2640
https://doi.org/10.1001/jamapsychiatry.2022.2640
https://doi.org/10.1146/annurev-neuro-072116-031109
https://doi.org/10.1146/annurev-neuro-072116-031109
https://doi.org/10.3389/fneur.2021.795516
https://doi.org/10.3389/fneur.2021.795516
https://doi.org/10.1152/jn.90545.2008
https://doi.org/10.1016/j.jpainsymman.2016.02.013
https://doi.org/10.1016/j.jpainsymman.2016.02.013
https://doi.org/10.3389/fnhum.2012.00100
https://doi.org/10.1038/s41598-024-68116-0
https://doi.org/10.1038/s41598-024-68116-0
https://doi.org/10.1080/09638237.2021.1875418
https://doi.org/10.1378/chest.96.6.1247
https://doi.org/10.1126/science.7569931
https://doi.org/10.1126/science.7569931
https://doi.org/10.1212/WNL.0000000000003516


List of publications

Henke, J., Bunk, D., von Werder, D., Häusler, S., Flanagin, V. L., and Thurley, K. (2021).
Distributed coding of duration in rodent prefrontal cortex during time reproduction.
eLife, 10, e71612. doi: 10.7554/eLife.71612.

Hess, A. J., von Werder, D., Harrison, O. K., Heinzle, J., and Stephan, K. E. (2024).
Refining the Allostatic Self-Efficacy Theory of Fatigue and Depression Using Causal
Inference [preprint]. medRxiv. doi: 10.1101/2024.06.17.24309015.

Regnath, F., Biersack, K., Schröder, L., Stainer, M.-C., von Werder, D., Pürner, D.,
Haslinger, B., and Lehnen, N. (2024). Experimental evidence for a robust, transdiag-
nostic marker in functional disorders: Erroneous sensorimotor processing in functional
dizziness and functional movement disorder. Journal of Psychosomatic Research, 183,
p. 111694. doi: 10.1016/j.jpsychores.2024.111694.

Schröder, L., von Werder, D., Ramaioli, C., Wachtler, T., Henningsen, P., Glasauer, S.,
and Lehnen, N. (2021). Unstable Gaze in Functional Dizziness: A Contribution to
Understanding the Pathophysiology of Functional Disorders. Frontiers in Neuroscience,
15, p. 685590. doi: 10.3389/fnins.2021.685590.

Von Werder, D., Aubele, M., Regnath, F., Tebbe, E., Mladenov, D., von Rheinbaben,
V., Hahn, E., Schäfer, D., Biersack, K., Adorjan, K., Stubbe, H. C., Bogaerts, K.,
Jörres, R. A., Nowak, D., Van Den Bergh, O., Glasauer, S., and Lehnen, N. (2024a).
Increased breathlessness in post-COVID fatigue despite normal breathing behaviour in
a rebreathing challenge [under review].

Von Werder, D., Regnath, F., Schäfer, D., Jörres, R., Lehnen, N., and Glasauer, S. (2024b).
Post-COVID breathlessness: a mathematical model of respiratory processing in the
brain. European Archives of Psychiatry and Clinical Neuroscience. doi: 10 . 1007 /
s00406-023-01739-y.

103

https://doi.org/10.7554/eLife.71612
https://doi.org/10.1101/2024.06.17.24309015
https://doi.org/10.1016/j.jpsychores.2024.111694
https://doi.org/10.3389/fnins.2021.685590
https://doi.org/10.1007/s00406-023-01739-y
https://doi.org/10.1007/s00406-023-01739-y


Acknowledgements

This thesis would not have been possible without the many individual people, who encour-
aged and supported me.
First and foremost, I would like to express my gratitude to my supervisors, Nadine Lehnen
and Stefan Glasauer. Thank you, Nadine, especially for the many insights into clinical
life, and for giving me the freedom and support to follow my ideas and research. Thank
you Stefan, for your invaluable scientific input, insightful discussions, support, trust and
encouragement on my scientific path.
I would also like to thank the Graduate School of Systemic Neurosciences, and especially
Verena, for taking problems seriously and at the same time sweeping them away with an
extraordinary talent for solving organizational challenges – always with a smile.
A special thanks to my fellow PhDs Lena and Franzi, for sharing fun times in the office, a
love for tea, good talks and lunch picnics in the park.
Thank you to Strongway for thoughtful discussions during my regular TAC meetings,
Dennis Nowak for uncomplicated problem-solving approaches, Rudolf Jörres for guidance,
invaluable help with the experimental set-up and equipment and long discussions ranging
from interpretation of lung function data to string theory, Omer Van den Bergh for calm and
friendly support mixed with an inspirational passion for good research and collaboration,
Juliane for helpful feedback, Alex Knorr for convincing me to learn programming and for
joining me on trailruns with ridiculous amounts of snow, and Danya for a never-ending
source of motivation and inspiration, and long walks along the Zürisee.
My PhD wouldn’t have been the same without my time at the Translational Neuromodeling
Unit (TNU). I would like to deeply thank Klaas Enno Stephan for providing me with the
opportunity of an inspiring research internship and for his support, trust and mentorship.
A big and heartfelt thank you goes to everyone at the TNU. You are an amazingly fun, kind,
compassionate, intelligent and inspirational team that made me smile and look forward to
each day in the office, and made Zurich a second home. I am especially grateful to Sandra
and Jakob for excellent supervision, thoughtful advice and compassionate support. To
Matthias,4. To Alex, for ‘Vitaminpausen’, training sessions, coffees, and for teaching me
that ‘it takes two to think’.
Most of all, I thank my family and Sam for unconditional support throughout this journey,
and always.

4for your unparalleled enthusiasm for footnotes, whiteboards, Helmholtz, good tea and even Jaffa cakes.
I hope we share an office at some point in our lives again.

104



Author contributions

Study 1: Unstable Gaze in Functional Dizziness: A Contribution
to Understanding the Pathophysiology of Functional Disorders
Authors: Lena Schröder, Dina von Werder, Cecilia Ramaioli, Thomas Wachtler, Peter
Henningsen, Stefan Glasauer, Nadine Lehnen

NL designed the study. CR collected the data. LS, DW, TW, SG, and NL analyzed
the data. LS and DW created the figures. LS and NL wrote the initial manuscript. All
authors reviewed and edited the manuscript.

My contribution to this publication:
For this publication, I helped analyzing the experimental data in MATLAB and verified
existing scripts and results. Together with LS, I created the figures. I interpreted data,
reviewed and edited the manuscript and supported LS in the peer review process.

Dr. Lena Schröder
Munich, October 2024

Study 2: Increased breathlessness in post-COVID fatigue despite
normal breathing behaviour in a rebreathing challenge
Authors: Dina von Werder, Maria Aubele, Franziska Regnath, Elisabeth Tebbe, Dejan
Mladenov, Victoria von Rheinbaben, Elisabeth Hahn, Daniel Schäfer, Katharina Biersack,
Kristina Adorjan, Hans C. Stubbe, Katleen Bogaerts, Rudolf A. Jörres, Dennis Nowak,
Omer Van den Bergh, Stefan Glasauer, Nadine Lehnen

NL: Initial idea and project initiation. DW, NL, OVdB, SG: Conceptualization. DW,
MA: data curation. DW: formal analysis. DN, NL, SG: Funding acquisition. MA, ET,
KA, HS, DS, FR, DW, RJ, KB: Investigation and Recruitment. DW, SG, RJ, DN, NL,

105



OVdB: Methodology. DW, MA, NL: Project administration. DN, SG, NL: Resources.
DW, FR, SG: Sojware. SG, NL: Supervision. DW, MA, SG, NL: ValidaEon. DW: Visu-
alization. DW: Writing – original draft. All authors: Writing – review and editing

My contribution to this publication:
Together with NL, OVdB and SG, I developed the concept of the study. I wrote the
ethics proposal and pre-registration on the Open Science Framework and contributed in
acquiring funding. I planned, ordered and was responsible for the experiment setup and
maintenance. I coordinated the cooperation with the clinical ambulance and between all
institutions involved. I set up and was responsible for data management and storage. I
was responsible for project administration and management. Together with co-authors,
I was involved in participant screening, recruitment and scheduling, data collection and
participant compensation. I performed the data quality checks and wrote all pre-processing
and analysis scripts in Python. I performed the statistical analysis in JASP. I generated all
visualizations, wrote the original manuscript draft, incorporated co-authors reviews and I
am in charge of the peer review process.

Study 3: Post-COVID breathlessness: a mathematical model of
respiratory processing in the brain
Authors: Dina von Werder, Franziska Regnath, Daniel Schäfer, Rudolf Jörres, Nadine
Lehnen, Stefan Glasauer

Conceptualization: DW, RJ,NL, SG; Methodology: DW, DS, RJ; Formal analysis and
investigation: DW, DS, RJ, SG; Writing—original draft preparation: DW, SG; Writ-
ing—review and editing: DW, FR, DS, RJ, NL, SG; Funding acquisition: NL, SG; Super-
vision: NL, SG.
Together with the co-authors, I conceptualized the study. SG and I developed and evalu-
ated the mathematical model. I was responsible for participant recruitment and screening,
data collection, pre-processing and analysis of the experimental data. I performed model
fitting to the experimental data and wrote the MATLAB scripts for this step. I generated
the visualizations. I drafted the original manuscript. I incorporated co-author reviews and
was responsible for the peer-review process.

Prof. Dr. med. Nadine Lehnen
Munich, October 2024

106


	Abstract
	Theoretical background
	Persistent physical symptoms (PPS)
	Definition
	PPS after COVID-19
	Summary

	The Bayesian brain theory
	Bayesian inference
	Bayesian decision theory: from inference to action
	Bayesian forward modeling
	Bayesian predictive coding: an algorithmic framework
	A Bayesian brain perspective on PPS

	Methodology
	The eye-head paradigm
	The rebreathing paradigm

	Aim of this Thesis

	Functional dizziness: Can dysfunctional internal models explain gaze instability?
	Summary
	Authors

	Post-COVID fatigue: Can patients adapt breathing behaviour and symptom perception in a rebreathing experiment?
	Summary
	Authors

	A mathematical model of breathlessness processing in the brain
	Summary
	Authors

	General discussion
	Key findings
	Towards a mechanistic understanding of functional dizziness
	Sensorimotor deficits in the eye-head paradigm
	Multisensory integration and Bayesian causal inference
	Gaze (in)stability in multisensory contexts
	Deficits in distinguishing self-motion from motion in the environment

	Why are internal models not updated?
	Summary and implications for treatment

	Altered symptom perception in post COVID-19 condition
	Does the brain represent prior and cost functions?
	Cost functions for breathing behaviour and symptom perception
	Limitations
	Summary and implications for treatment

	Conclusion

	Bibliography
	Publication list
	Acknowledgements
	Author contributions

