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Summary

Answering questions based on real-world data can pose considerable challenges to analysts. It often re-
quires the use of data that are of questionable quality, exhibit high uncertainty, and may originate from
multiple sources. Such data bear a high degree of complexity in their structure with respect to the un-
derlying data-generating process. This cumulative thesis aims to address these issues in the context of
selected research areas.
The thesis is divided into two parts. The first part introduces the necessary methodology. The second
part presents the four contributing articles. The methodological part provides an introduction chapter
to statistical inference and probabilistic modeling by presenting Bayesian inference using Markov chain
Monte Carlo as a general approach, and the generalized linear model (GLM) as a classical statistical
method. Furthermore, the first part provides three chapters of methodological background in selected
areas of research.
The first area to be discussed is infectious disease modeling. The focus is on time-shifting operations
that can be used to combine information from multiple time series. This lays the foundation for the first
two contributions, which employ a Bayesian hierarchical approach to infectious disease modeling in the
context of COVID-19 data.
Next, an overview of measurement error theory is presented, followed by a discussion on how the Bayesian
approach addresses these challenges. The third contribution demonstrates the flexibility of the Bayesian
approach by applying it to data from the Wismut cohort, which presents considerable complexity and
requires the use of multiple measurement error models.
Finally, the last discussed chapter delves into the field of federated learning and privacy-preserving meth-
ods. The fourth contribution builds on the presented methodological background to develop an algorithm
that is able to validate learned classification models through a GLM-based formulation of the ROC curve.
An underlying theme of this thesis is the notion of uncertainty. In the Bayesian approach, uncertainty
is encoded through the formulation of prior distributions and the overall probabilistic model, which in-
herently propagates and quantifies the uncertainty in a posterior distribution. The fourth contribution
leverages the concept of uncertainty to preserve individual privacy by adding calibrated noise.
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Zusammenfassung

Die Beantwortung von Fragestellungen anhand von realen Daten kann Analysten vor enorme Heraus-
forderungen stellen. Oft werden Daten verwendet, deren Qualität suboptimal und mit hoher Unsicher-
heit verbunden ist. Darüber hinaus ist es gegebenenfalls erforderlich, Daten aus mehreren Quellen zu
verwenden. Dies kann zu einer erheblichen strukturellen Komplexität im Hinblick auf den datengener-
ierenden Prozess führen. Die vorliegende kumulative Arbeit versucht Lösungen im Kontext ausgewählter
Forschungsbereiche zu geben.
Sie gliedert sich in zwei Teile. Der erste Teil stellt den erforderlichen methodologischen Hintergrund vor,
während der zweite Teil alle beigetragenen Fachartikel enthält. Im methodologischen Teil wird zunächst
ein einführendes Kapitel zu statistischer Inferenz und probabilistischen Modellierungskonzepten dargelegt.
Es werden bayesianische Inferenz unter Verwendung von Markov-Chain-Monte-Carlo als genereller Ansatz
sowie das generalisierte lineare Modell (GLM) als klassische statistische Methode diskutiert. Im Anschluss
folgen drei Kapitel, die Hintergründe zu ausgewählten Forschungsbereichen liefern, die Teil dieser Arbeit
sind.
Der erste betrachtete Bereich ist die Modellierung von Infektionskrankheiten. Hierbei wird der Fokus
auf Zeitverschiebungsoperationen gelegt, die genutzt werden können, um Informationen von mehreren
Zeitreihen zu kombinieren. Dies bildet die Grundlage für die ersten beiden beigetragenen Fachartikel.
Diese nutzen einen bayesianisch-hierarchischen Ansatz im Kontext von Daten der COVID-19-Pandemie.
Im Anschluss wird ein Überblick zu Messfehler-Methodologie gegeben und wie diese durch einen bayesian-
ischen Ansatz berücksichtigt werden können. Der dritte und thematisch zugehörige beigetragene Fachar-
tikel demonstriert die Flexibilität des bayesianischen Ansatzes anhand von Daten der Wismut-Kohorte –
Daten, die eine beträchtliche Komplexität aufweisen und die Modellierung mehrerer Messfehler-Modelle
erforderlich macht.
Das abschließend behandelte Kapitel widmet sich dem föderierten Lernen und Methoden zum Daten-
schutz. Dies bildet das Fundament für den vierten Fachartikel. In diesem wird ein Algorithmus entwickelt
und implementiert, der Klassifikationsmodelle durch eine GLM-basierte Formulierung einer ROC-Kurve
validiert.
Ein wichtiges latentes Thema dieser Arbeit ist das Konzept von Unsicherheiten. Beim bayesianischen
Ansatz wird Unsicherheit durch die Formulierung von Priorverteilungen und das gesamte probabilistische
Modell dargestellt welche durch die Posterioriverteilung eine direkte und angemessene Quantifizierung
erlaubt. Der vierte beigetragene Fachartikel nutzt das Konzept von Unsicherheit, um den den Schutz der
Privatsphäre einzelner Personen zu gewährleisten, indem kalibriertes Rauschen addiert wird.
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Chapter 1

Overview

The analysis of collected data is a fundamental part of empirical research. However, data in the real
world may exhibit quality limitations due to practical constraints, limited resources during collection, or
evolving research requirements imposed on historically collected data sets. This means that data often
carry a high degree of uncertainty and a large potential for confounding. We may also face challenges
such as integrating data from multiple sources. It may not even be possible to merge data at a single
location for further analysis due to legal or privacy barriers. How can these issues be addressed? This
thesis tries to offer an answer for specific cases.
The underlying theme of this thesis is the notion of uncertainty. Bayesian modeling offers an intuitive
way to deal with uncertainty. Through the combination of different probabilistic sub-models and prior
distributions that encode a researcher’s beliefs into a larger model, one can handle even very complex
situations. This is exactly the case in the first three contributions, where the Bayesian approach proves
to be an ideal fit.
The first two contributions address challenges in infectious disease modeling. They leverage data to model
the infection dynamics of the COVID-19 pandemic. Throughout the pandemic, various structural changes,
such as vaccinations, emerging variants of concern, varying testing strategies, and non-pharmaceutical in-
terventions, affect the disease dynamics. One can model all these different influences and combine them
with appropriate prior information and hierarchical modeling techniques.
In the third contribution, we exploit the flexibility of the Bayesian approach for data problems where
measurement errors are prevalent. Even though the approach is generally applicable, we discuss the
problem with a focus on occupational cohort studies, where one is interested in the association between
an exposure and an outcome of interest. In this area of research, measurement errors are a well-known
problem. The Bayesian approach provides sufficient flexibility to handle problems where the measurement
error process is highly complex.
The last area to be discussed is the field of privacy-preserving federated learning. While numerous ap-
proaches exist for conducting federated learning, methods for model validation fall short. Therefore, the
last contribution combines different aspects of federated learning with the well-established framework of
generalized linear models (GLMs) to construct a privacy-preserving ROC analysis approach. Uncertainty
plays a crucial role in this context as well. The proposed algorithm adds calibrated noise to guarantee
individual privacy.
Even though the notion of uncertainty is a constant companion throughout this thesis, not all aspects are
covered. In particular, confounding plays an important role in statistical modeling. However, this topic
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is not explicitly discussed, and we refer to the wide body of literature.1

The thesis is divided into two parts. The first part is dedicated to establishing the methodological
foundation, which includes an introduction to Bayesian modeling using Markov chain Monte Carlo and
GLMs (Chapter 2). Subsequently, the following three chapters (Chapters 3-5) discuss the relevant theory
for the various fields of research. The second part provides the contributions to this thesis, where the
first two contributions (Chapters 6 and 7) are concerned with infectious disease modeling, and the next
contribution (Chapter 8) focuses on measurement errors. While the first three contributions utilize a
Bayesian hierarchical approach, the last contribution (Chapter 9) presents a ROC-GLM approach in the
field of privacy-preserving federated learning.

1We refer to Greenland, Pearl, and Robins [47] as one of the most prominent introductory papers to this topic.
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Chapter 2

Inference, probabilistic models and esti-

mation

In this chapter, we discuss the general ideas and methodology that are required for all subsequent chapters
and therefore also for all contributions. We consider methods that are concerned with probabilistic
modeling and the estimation of such models using observable data. The subsequent chapters address
specific modeling solutions for selected fields of research and specific situations.

2.1 Statistical inference

Wasserman [96] defines statistical inference as ”the process of using data to infer the distribution that
generated the data.” It is not necessary that we are always interested in the full distribution. We may also
just want to focus at specific parts of the distribution, e.g. certain moments or other aggregated quantities
of interest. In addition to the rather classical idea of generalizing from collected data to the underlying
population, Gelman, Hill, and Vehtari [40] also state two further objectives. First, the generalization from
a treatment to a control group, which is a common task in causal inference. Second, the generalization
from observed measurements to underlying constructs. The latter is of particular interest, as it represents
a major aim for a large fraction of this thesis. Latent variables, which are inferred from uncertain and
complex data settings are a central part of the first three contributions (Chapters 6, 7 and 8).
It is worth mentioning, that we are concerned with statistical inference and may distinguish it from its use
in the context of probabilistic and generative machine learning, particularly contemporary large language
models (LLMs). In this domain, the term rather refers roughly to the generation of artificial new data
from new input data after a model has been learned. This could, for instance, be the generation of new
tokens after a set of input tokens is provided.

2.1.1 Probabilistic modeling

The heart of statistical inference is probably the model that reflects or encodes the scientific question
under consideration.1 The model is an essential part of both Bayesian and frequentist approaches. We
will discuss both ideas in more detail in the next section (section 2.1.3). Here, we focus on probabilistic

1We could, of course, consider multiple models. For instance, in a Bayesian workflow, it is common to define models
iteratively by critical model checking and testing [43, 12]. Another example would be a comparison or ensemble of models.
However, one could still interpret this as one large, hierarchically ordered model. Moreover, models may not be fixed forever
as new findings and other factors over time will emerge leading to updated versions.
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2.1 Statistical inference

models in which we define relationships between quantities using distributional assumptions. This usually
leads to a joint distribution over all random quantities [79]. They may define an assumed (marginal) data-
generating process (DGP) that we use as a working model. With ”working model”, we want to highlight
that the model is almost always a simplification of the actual DGP. This also aligns with the famous
statement ”all models are wrong” by Box [12]. However, the same text also highlights their importance.
In particular, it is stated that ”scientists must be alert to what is importantly wrong”. With this in mind,
we may be able to answer scientific questions in an adequately way, making a working model useful. For
instance, if we are interested in an unbiased effect for a specific association, we may decide on required
simplifications to make a problem feasible. In the end, we are left with defining a model that we hope, it
represents or offers what we require. Therefore, we could rather interpret a model as a story we assume
or permit. This could range from defining a precise and possibly complex DGP, a robust simplification,
or a highly non-linear black-box function.
We could therefore view this in light of the statement by Coombs [23] that ”we buy information with
assumptions”2. With this we mean that our findings are always conditioned on a chosen story with a
subjective component, and therefore exhibit inherent uncertainty.
If we define a probabilistic relationship, we generally use the notion of distributions in which the functional
form is determined by a set of parameters. Here, we restrict ourselves to models that are parameterized
by a finite set, i.e., we focus on the class of parametric models. This stands in contrast to non-parametric
models where a relationship cannot be described by a finite set [96]. Ghosal and van der Vaart [44]
describes a parametric model as setting a very strong prior on a thin subset of all possible distributions.
We could relate this again to the subjectivity of a model and therefore the inherent uncertainty about
model choice. However, an in-depth discussion about the merits and demerits is not part of this work.

2.1.2 Directed acyclic graphs

It is sometimes helpful to illustrate a model as a directed acyclic graph (DAG). This is commonly done
in Bayesian modeling, causal inference, and probabilistic machine learning ([83, 97, 71, 79]). They are
also sometimes called ”Bayesian networks” or ”belief networks”. It is important to note, that DAGs
are not inherently Bayesian, nor is Bayesian inference a prerequisite. It is rather a tool that is used to
illustrate the relationships between different quantities, such as data, parameters and latent variables.
However, Murphy [79] argues that the term “belief” refers to subjective probability. This is a common
interpretation in the Bayesian paradigm [97], implying the subjectivity that is inherent in modeling.

2.1.3 Two perspectives

The probabilistic model is an essential component of both concepts that are used in statistical inference,
namely the frequentist (or classical) and Bayesian approach. The debate will not be discussed in full
detail here. However, we will briefly outline the distinction as both are relevant to this thesis. Wasserman
[96] distinguishes frequentist and Bayesian methods in Chapter 11 of his book using three postulates for
each of them. We briefly state them in a direct comparison.

• While in the frequentist perspective, probabilities are considered to be objective and are repre-
sented through limiting relative frequencies, the Bayesian idea embraces a subjective view in which
probabilities represent the degree of belief (or uncertainty).

2Coombs’ interpretation was mainly concerned with psychological data. The quote is therefore actually a bit misused.
However, the statement generalizes perfectly to statistical models.
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2 Inference, probabilistic models and estimation

• In the frequentist framework, parameters are unknown, but fixed quantities where we cannot make
a probability statement about a parameter itself. A Bayesian view would allow making a direct
probability statement. about a parameter.

• Frequentists focus on well-defined long run frequency properties (e.g. convergence or confidence
intervals) in contrast to the Bayesian idea of inferring a full probability distribution.

Even though the postulates help to distinguish the two points of view, in practice, the distinction may
not always be clear, as many ideas can be framed from either viewpoint (see for instance [55, 53]). This
also means that much of the criticism apply for both approaches (for instance, the dependence on a
probabilistic modeling story [46]). From a practical standpoint, we may even ignore the distinction as
both use basically the same mathematical foundation and rather use tools from both views to solve a
given problem.3 We will not discuss this topic in more depth and use the classical distinction to introduce
the relevant parts for the rest of the thesis.

2.2 Bayesian inference

The Bayesian idea dates back to the work of Thomas Bayes in 1763 [8]. Pierre Simon Laplace indepen-
dently proposed the same idea (probably independently) in 1774 and developed it into the form we use
today [72].

2.2.1 Bayes’ rule

In the Bayesian framework, we consider a set of parameters and possible latent variables, denoted by
θ where we express our belief using a prior distribution p(θ).4 Our belief can also be viewed as prior
uncertainty regarding θ [78]. Furthermore, we require observed data D. Note that we often condition
on further quantities as fixed parameters. We then update our belief about θ by forming the posterior
p(θ | D) using the likelihood p(D | θ) within Bayes’ rule:

p(θ | D) =
p(D | θ) p(θ)

p(D)
, (2.1)

where the denominator is a normalizing constant, also known as the model evidence or marginal likelihood
[11]. The marginal likelihood plays an important role in Bayes factors, as it serves as a measure of model fit
to the data and, therefore, as a basis for comparing different models [90]. We can rewrite the denominator
as

p(D) =

∫
p(D | θ) dp(θ) (2.2)

to make this more clear. If we want to make predictions using new data Dnew, we can utilize the posterior

p(Dnew | D) =

∫
p(Dnew | θ) dp(θ | D),

which yields the posterior predictive distribution. The posterior predictive provides a natural uncertainty
quantification that accounts for the modeled uncertainty with respect to θ and the data.

3It may be not fruitful to debate in terms of subjectivity and objectivity as it is often done in this context, but rather
refer to attributes that can be motivated from those. We refer to Gelman and Hennig [39] for a more elaborate discussion of
their role in statistical data analysis.

4Sometimes, the latent quantities, i.e., the parameters and latent variables, are referred to simply as latent variables [11].
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2.2 Bayesian inference

Note that p(D | θ) p(θ) can be rather complex with multiple hierarchical layers with conditional distribu-
tions. We refer to the subsequent chapters for examples. The full definition in terms of a posterior allows
the uncertainty expressed through probability distributions can propagate through different levels.

2.2.2 Learning the posterior

Using (2.1) implies that we can compute the normalizing constant given in (2.2) . This is only for a
small subset of models possible (for instance, in the case of conjugate priors, where the posterior and
prior belong to the same distributional family) [42]. If a closed-form solution cannot be found, one has
to rely on numerical methods. The workhorse is probably Markov chain Monte Carlo, which will be
discussed in more detail in the next section. Since the method is associated with a high computational
burden, alternative approaches exist that try to alleviate the problem. Some prominent examples include
variational inference [11], integrated nested Laplace approximation [88], sequential Monte Carlo [21],
normalizing flows [100], and Stein variational gradient descent [69].

2.2.3 Markov chain Monte Carlo

The origin of Markov chain Monte Carlo (MCMC) dates back to the work of Metropolis et al. [74].
However, one could also pin down the origins to roughly one decade earlier, when the first Monte Carlo
methods were put into action [73]. The method was later generalized by Hastings [54]. These are probably
the canonical citations commonly referenced when delving into of MCMC methods. Even though the
method has been optimized and has undergone a lot of changes over the past decades, the basic idea
remains the same: we generate a Markov chain that converges to a stationary distribution of interest.5

With respect to Bayesian inference, this is exactly the posterior since we only have access to the numerator
of equation 2.1.

Metropolis-Hastings algorithm

In the standard Metropolis-Hastings (MH) algorithm, it is required that we can evaluate the numerator
of the target distribution and that we can propose new values from a selected proposal distribution. The
algorithm constructs a Markov chain θ = {θ(t) : t ∈ T}, where T is a discrete set, usually Z+. We use the
proposal distribution conditioned on a previous state, i.e., q(· | θ(t)) 6 and our (unnormalized) distribution
from (2.1), i.e. a p̃(θ | D) ∝ p(D | θ) p(θ). First, we initialize the chain (e.g. randomly) at t = 1 with θ(1).
Then, we iterate T times as follows. We use the proposal distribution to obtain a new candidate state
θ((t+1)∗). Afterwards, we calculate

α(θ(t), θ((t+1)∗)) = min

(
1,

p̃(θ((t+1)∗) | D)q(θ(t) | θ((t+1)∗))

p̃(θ(t) | D)q(θ((t+1)∗) | θ(t))

)
(2.3)

and set θ(t+1) = θ((t+1)∗) with probability α(θ(t), θ((t+1)∗)), or retain the old state with probability
1 − α(θ(t), θ((t+1)∗)), i.e., θ(t+1) = θ(t). This is equivalent to drawing a random number from a uni-
form distribution over [0, 1] and checking whether the drawn number is less than the ratio in (2.3). For
computational reasons, we could also consider evaluating everything on the log scale. This makes the
algorithm numerically stable [14], and evaluation can be accelerated since addition operations are com-
putationally cheaper, and probability distributions such as the Gaussian no longer require the evaluation

5See for instance Meyn and Tweedie [75] for an in-depth discussion on Markov chains.
6It is actually not necessary, to have a conditional proposal distribution. It can take any form under some regularity

conditions [45].
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2 Inference, probabilistic models and estimation

of an exponential function. Moreover, it is worth mentioning that an asymmetric proposal distribution
would imply, that the proposal ratio q(θ(t) | θ((t+1)∗))/q(θ((t+1)∗) | θ(t)) in (2.3) reduces to one. This would
reduce the MH algorithm to the Metropolis algorithm [74].
The presented procedure guarantees that the generated Markov chain converges to the posterior as its
stationary distribution. This works because the MH ratio (2.3) is constructed, in such a way that the
normalizing constant cancels out and only the numerator is required.
In general, the standard procedure is to discard a portion of the samples at the beginning (burnin). Fur-
thermore, it can be useful to run an adaptive phase at the beginning to calibrate the proposal distribution
for better sampling properties. In the classical algorithm, this would imply that one decreases or increases
the dispersion of a simple proposal distribution, e.g., from a Gaussian proposal. However, this procedure
is also used in more recent versions of the algorithm, where other features of the proposal may be tuned.7.

Sampling quality and dimension of θ

The quality of the sampling in the MH algorithm heavily depends on the dimension of the parameter
space that must be explored. If the dimension is high, this may be problematic because the curse of
dimensionality impairs acceptance probabilities [10]. Even though the application of (2.3) guarantees that
the generated Markov chain will eventually sample from the distribution of interest, it does not guarantee
efficient sampling. In high dimensions, sampling primarily focuses on the typical set and any proposed
state outside this set would lead to a very small acceptance probability. To alleviate the problem, one may
use a tailored proposal distribution that generates new states with a high probability of being in the typical
set. If a simple proposal distribution is used, such as a Gaussian in a random walk Metropolis, a very
small standard deviation is required. If one wishes to stick with simple proposals, one can also propose a
new state for a subset of the parameters or even a single element of θ. This resembles the Gibbs sampler
[14], where each component of θ is updated one at a time. Even though this procedure allows sampling
while preserving a certain degree of simplicity, it may lead to a high autocorrelation within the generated
chain and the effective sample size is low. Therefore, many more iterations are required implying a larger
computational budget. Alternatively, one might consider more complex proposal procedures. These are,
for instance, algorithms that take the gradients of the posterior into account. The most popular versions
are probably Metropolis-adjusted Langevin algorithm [28], hybrid Monte Carlo (also called Hamiltonian
Monte Carlo) [30, 14], or the No-U-Turn Sampler [59]. While these methods offer more informed proposals,
they also have limitations. For instance, they require the parameter space to be Θ = Rp, where p is the
dimension of θ. One may use transformations or marginalization to satisfy this constraint. However,
depending on the problem (and consequently, the specified models), these options are not straightforward
to use. Moreover, an implementation is not a trivial task when the data structure is complex. In such
cases, the standard approach of using probabilistic programming languages or inference frameworks (e.g.
[15, 1, 86, 16]), which provide well-tested implementations of these algorithms, does not offer sufficient
flexibility.

2.3 Classical approach

In this section, we discuss generalized linear models (GLMs) as a representative classical approach. In
a GLM, we use a class of probabilistic models in which we regress an outcome on a set of covariates.
It forms the foundation for Chapter 5. GLMs represent one of the most important methods of classical

7This could be, for instance, the number of steps, discretization time, or the mass matrix required in proposals that rely
on Hamiltonian dynamics [14, 10, 58]
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2.3 Classical approach

statistics and are the predecessor of a vast amount of more complex regression models (see for instance
Wood [99]).

Generalized linear model

The GLM was introduced by Nelder and Wedderburn [80] defining a unifying framework for different re-
gressions problems. We consider n ∈ N observations, represented in a data setD = {(x1, y1), . . . , (xn, yn)} ∈
(X × Y)n where X ⊆ Rp and Y ⊆ R. Each yi is a realization of a random variable Yi that belongs to
the exponential family. Here, we consider θ as the parameters of interest, which usually represents p+ 1
regression coefficients. We use a vector of p ∈ N covariates (or features), often including an intercept;
i.e., the i-th covariate vector is given by xi = (1, xi,1, . . . , xi,p), where the first element is reserved for the
intercept. The expected value of the dependent variable for the i-th observation is given by µi = E(Yi)
and is defined via a monotonic function h applied to a linear predictor:

µi = h(ηi)

ηi = xT
i β.

We are mainly interested, to estimate the vector of coefficients β = (β0, β1, . . . , βp)
T . For the fourth

contribution, we consider a binary outcome, for which we model the probability of observing Yi = 1 using
the cumulative distribution function (CDF) of a Gaussian distribution Φ:

P (Yi = 1) = Φ(ηi)

Note that the canonical link would be, g(µi) = log( µi

1−µi
) while the probit model uses the probit function

g(µi) = Φ−1(µi), i.e., the inverse CDF of a standard Gaussian. One can motivate the probit model using
a latent Gaussian variable with a threshold as is done in the contribution.
We write the log-likelihood of the model, parameterized by θ as a function of the data D as

ℓθ(D) = log p(D | θ) =
n∑

i=1

log p(yi | xi, θ).

p(D | θ) = ∏n
i=1 p(yi | xi, θ) implies a conditional independence on the covariates xi that are considered

to be fixed.8 Therefore, the log-likelihood is a function of θ.

Model fitting

The parameters θ of a GLM can be estimated using a gradient-based optimization method. Here, we
consider the Fisher-scoring algorithm, which is also employed in the corresponding contribution. For
that, we iteratively optimize the parameter estimate θ̂s, where the subscript s is used to denote the s-th
iteration. The update is performed by calculating

θ̂s+1 = θ̂s + I−1(θ̂s)V(θ̂s)
8In the Bayesian framework we stay a bit more generic compared to the GLM case, where we do not define the data D

explicitly like in the GLM. In the view of a GLM, we consider the data to be used in a ”regress Y on X relationship” logic.
We do this deliberately, to convey the generality of the presented Bayesian approach while we focus on a classical regression
problem in this part. For instance, in the first two contributions, we consider up to four different outcomes that are used to
inform a latent series.
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2 Inference, probabilistic models and estimation

where we use the first- and second-order gradient information, i.e., the score function and observed Fisher
information, given by

V(θ̂s) =
[
∂ℓθ(y, x)

∂θ

]
θ=θ̂s

,

I(θ̂s) =
[
∂V(θ)
∂θ

]
θ=θ̂s

.

2.4 Discussion and link to contributions

In this chapter, we discussed several aspects of statistical inference, covering the Bayesian approach in
general and GLMs as a representative method within the frequentist framework. In the Bayesian frame-
work, a common argument is its great flexibility. One of the main reasons for this flexibility is probably
the generality of MCMC, which, at least in theory, works for a very wide range of problems. Therefore,
the Bayesian approach often focuses a lot on the modeling part itself. This flexibility makes it ideally
suited for the first three contributions. One can construct the joint posterior by defining small sub-models
for specific components and concatenating them via conditional independence. Nonetheless, this flexibil-
ity is not a ”silver bullet”. Inferring a posterior distribution often implies a high computational burden.
Moreover, the high complexity of the problems requires a custom implementation and considerable effort
has to be put into the implementation to guarantee reliable software that minimizes errors, numerical
stability and modularity for further development. This is exactly the case for the contributed articles.
All of them employ a MCMC sampling scheme that is, at its core, always a MH algorithm, but is heavily
customized to fit the problems.
Even though the Bayesian approach embraces subjectivity, it still require scrutiny. The flexibility carries
the risk of becoming unnecessarily complex, and one has to weigh accuracy and robustness carefully.
Additionally, probabilistic models can be sensitive to prior distributions or model assumptions (see, for
instance Gelman and Yao [41]). One must investigate the quality of models, for example through simu-
lation studies and sensitivity analyses. A Bayesian approach does not directly provide any guarantees on
long-run performance; therefore, the frequentist properties of a developed model should also be investi-
gated, e.g., using simulation studies.
On the other hand, frequentist models may offer a simple and direct approach for many problems. Models
like the GLM are well understood and supported by a rich body of theory and literature. One can rely
on a fixed model class that is often proven to perform well. However, due to this inflexibility, a researcher
would possibly opt for smaller samples where stricter assumptions can be defended, or even make sim-
plifying assumptions about the model itself. This bears the risk that scientific questions are made to fit
the tools rather than choosing the most tailored solution to answer the question of major interest. In
situations such as contribution four, the problem naturally lends itself to the application of these classical
methods, which allow for a robust and fast solution.
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Chapter 3

Modeling of infectious diseases

The mathematical modeling of infectious diseases has a long tradition, dating back centuries [26, 56].
The first highly recognized work was published by Daniel Bernoulli in 1760 which formulated an infection
process as a deterministic differential equation [3]. However, as progressive this work has been at this
time, the modeling approach was put to sleep and was awakened from its slumber many years later in
the 20th century [57, 52]. Since then, the field of mathematical modeling of infectious diseases has come
a long way with landmarks like the first edition of the book of N. T. J. Bailey in 1975 [4, 57]. With
the outbreak of the COVID-19 pandemic [104], that is arguably one of the most influential events in the
past years, resulting in millions of deaths [20, 29], the modeling of infectious diseases gained even more
traction leading to a plethora of scientific publications featuring a high number of modeling approaches
(see for instance [20, 25]).
Institutions and scientists published data related to the pandemic (see for instance [29, 24, 51, 49]). These
sources made it possible for scientists around the world to leverage data from many countries to gain in-
sights and understand characteristics of the infection dynamics. With the progression of the pandemic,
the challenges became more complex. New variants led to a faster spread of the virus and affected other
parts of the dynamics, such as the severity of an infection. The development and distribution of vaccines
had opposite effects. Social and political actions also changed as more information became available and
infrastructure was adapted.
In this chapter, we discuss the relevant methods and selected modeling approaches that form the founda-
tion for the first two contributions (Chapters 6 and 7).

3.1 Overview

To infer infection dynamics, we must rely on available data. Officially reported cases do not represent
the true number of infections, which therefore has to be treated as a latent variable in a probabilistic
modeling approach. One can, of course, make simplifying assumptions that allow official data to be used
directly. However, this would either limit a potential analysis to a very short observation window or one
would risk biases in the estimation. When the COVID-19 pandemic hit Europe, the most relevant data
series were reported cases, collected through testing, reported number of deaths, or numbers that are
related to hospitals like hospital admissions or occupations of intensive-care units. These sources bear a
lot of uncertainty with respect to location and time. For instance, reporting or testing policies changed
over time and varied between countries making it non-trivial to use them in a model. The next section
aims to introduce a method, that can be used to combine the different data sources to infer the actual
number of infections.

11



3 Modeling of infectious diseases

Figure 3.1: Simplified DGP for an infected individual. After an infection, a person will develop symptoms.
Afterwards the person will possibly contribute to official data.

In the subsequent section, we will discuss infection dynamics and the role of the reproduction number.
While SIR-based models are probably the most recognized approach in standard infectious disease mod-
eling, other methods exist that are closely related. In this section, we consider a generalized version: the
renewal equation that characterizes the infection process of a communicable disease.

3.2 Multiple sources of information

All the reported quantities mentioned above (cases, deaths, hospital) are not flawless and come with their
own issues that can lead to contradicting information. However, we want to use as much information
as possible. How can this problem be addressed? Contribution I attempts to give an answer. The
goal is to find a way that allows us to include all time series. This can be done by incorporating the
unique problems of each series into sub-models with its own likelihood and combine them to infer a latent
variable. Since all series are count data by definition, that may exhibit overdispersion, one can use a
negative binomial distribution parameterized with its mean and a dispersion parameter. Therefore, the
general form to model the observed counts on day t ∈ {1, . . . , T} can be expressed as a negative binomial
(NB) distribution. We consider a random variable Xt,m, observed at time points t ∈ {1, . . . , T} in location
m ∈ {1, . . .M}, which is assumed to be

Xt,m ∼ NB(µX
t,m, ϕX). (3.1)

Here, we parameterize the NB distribution not in the standard form, but in terms of a location parameter

µX
t,m and an overdispersion parameter ϕX .1 The variance is then given by V(X) = µX

t,m +
µX
t,m

2

ϕX . One can

make two important observations from this chosen parametrization. 1) For ϕX → ∞, the variance of Xt,m

becomes equal to its mean and the distribution reduces to a Poisson distribution without overdispersion.
2) Like in the Poisson case, the variance of the random variable depends on the location parameter.
Hence, a small value of µX

t,m will result in a small variance of Xt,m and a large value will lead to a large
variance. Note that this is always relative to a given value of ϕ, that also affects the variance. Using a
Bayesian framework, we can set an adequate prior on ϕX to control this variance.

We aim to infer the true and unobserved number of actually infected individuals, denoted as It,m ∈ N0

from observed data. For that, we can deduce an intuitive DGP that represents the connection between
It,m and the data. Given that an individual gets infected, incubation period passes until symptoms are
developed. After a disease becomes recognizable through symptoms, it may lead to different outcomes.
An individual has a certain probability of being tested, possibly receiving a positive test result, and,

1Therefor, the density is given by p(x | µt,m, ϕ) = Γ(ϕ+x)
x!Γ(ϕ)

(
µt,m

µt,m+ϕ

)x (
ϕ

µt,m+ϕ

)ϕ

.
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3.2 Multiple sources of information

consequently, being reported as a case. The person may also develop severe symptoms such that an
admission to a hospital is necessary. In some cases, an infection can be fatal. Figure 3.1 shows this
process as a simplified image over time. Note that we denote the last node as ”Data”. With this, we
mean that an individual may contribute to reported data. This could be in the form of a case, in hospital
statistics, or in fatality counts. A single case can, therefore, also contribute to multiple time series. The
DGP assumes that symptoms will be developed after an infection, and that a contribution to the data
can only occur after symptom onset. Only a fraction of infected individuals will experience an event that
contributes to the data. Moreover, the time until an event occurs varies among infected individuals. This
implies a distribution within the time domain: Some individuals will experience an earlier event, while
others will experience later events. When considering an aggregated level (e.g., a country) and staying in
discrete time, we can express this varying time shift for a share of the infected individuals as

µX′
t,m = πX′∑

u≤t

Xu,m (FX′(t− u+ 1)− FX′(t− u)) , (3.2)

where FX′ is a continuous distribution that represents the time until an event occurs, e.g., the time until an
individual develops symptoms after an infection. The expected number of all events µX′

t,m at time t is there-
fore a function of all counts that occurred in the past Xu,m, u ≤ t. The term (FX′(t− u+ 1)− FX′(t− u))
can be seen as a discretization, that represents the whole probability mass between two consecutive days
(t− u) and (t− u+ 1). Thus, (3.2) states that we obtain the expected value µX′

t,m for a random variable
X ′

t,m at time t in location m as the sum of all past values Xu,m,∀u ≤ t, weighted by their probability

that an event is occurring after u and u+ 1 days. This sum in (3.2) is then multiplied by a factor πX′
to

reflect a possible fraction or multiple of the value. To illustrate, consider a simplified example: Suppose
that the distribution FX′ has all its probability mass concentrated on one specific day (e.g., a one-day
lag) and that πX′

= 1. In this case, the expectation of µX′
t,m would simply be the value of Xt−1,m and

the process would resemble a random walk with negative binomial innovations (see e.g., [31] for further
information on time series modeling). As a second example, consider a distribution that has a uniform
probability mass over three days, such that every day has a mass of 1

3 , and let πX′
= 0.1. This would

shift and ”smooth” the past values.2 πY = 0.1 scales this down such that the event occurs only in 10% of
the cases. As abstract as this concept is so far, it can be directly used to formulate a relationship between
the unobserved infections during an outbreak and the officially reported time series. The concept is used
in both contributions of this thesis and was originally borrowed from Flaxman et al. [36], where it is used
to model a DGP for fatality counts. The corresponding time shifting distribution, therefore, models the
time between an infection and the time until death. Contribution I of this thesis generalizes the concept
to utilize multiple considered time series: In a first step account for the incubation period until infected
individuals would develop symptoms. This is considered to be a deterministic shift and we do not treat
the number of symptomatic cases as stochastic. This would cause identification problems because we
would have two latent, unobserved variables with a direct dependency. Moreover, not all infected cases
develop symptoms. In this case, we would rather refer to them as pseudo-symptomatic cases.
Using the time-shifted variable of counted cases, we can follow the assumed DGP and consider the po-
tential contribution to the reported data. For instance, an individual may get tested and subsequently
reported as an actual case. We can use the logic from equation (3.3) to model this process. This requires

2Note that this is not an actual smoother such as a 3-day moving average. Equation (3.2) can be seen as a partial
convolution since it only considers the past values at u ≤ t [13]. However, one could represent it as a standard convolution
by discarding certain values. Computationally, this can be faster as the fast Fourier transform can be utilized to reduce
the convolution operation to a multiplication operation in the Fourier domain [27] and may be optimized in high-level
programming languages [81].
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3 Modeling of infectious diseases

a time-shifting distribution that reflects the time between symptom onset and the actual contribution to
the data.

Accounting for uncertainties in reported data

The mapping to subsequent events from infections can be highly dependent on the current regime in a
pandemic. For instance, in phases of high incidence within a certain country, official testing capacities
were not sufficient. This implies that only a small fraction of actual cases was reported as such while this
may not play a crucial role in phases of low incidence. Moreover, official testing policies also have changed
over time, and other location-specific, seasonal effects (such as weekend effects) may impaired reporting
further.
The time-shifting distribution and scaling factor πX′

should therefore reflect local and time-specific fea-
tures. Hence, we would like to adapt both quantities accordingly, such that they can represent individual
characteristics. Making them part of a probabilistic model gives us the flexibility to account for these
particular uncertainties in the data. However, one has to be cautious as high flexibility gives rise to
overfitting and identification problems.
Besides reported cases, we can use the same procedure to connect the true cases to the other series,
such as reported deaths or hospital data. Within these series, we may consider that new dynamics, such
as improved severity due to new variants or vaccination coverage in the population, affect the share of
individuals who die, are admitted to a hospital, or remain in intensive-care units. This, again, implies a
flexible representation of the time-shifting distribution and scaling factor. Combining all available series
while accounting for the mentioned uncertainties may offer a way to infer a meaningful picture of the
actual infections.

Contributions I and II heavily rely on this concept, in which we define all the connections to the data
via time-shifting distributions as sub-models of the likelihood. Within a Bayesian approach we attempt
to estimate parts of the characteristics, that are required, to obtain a meaningful FX′ and πX′ .

3.3 Modeling the transmission process

After we have modeled the connection between the latent variable representing infected individuals, we
can use this relationship to infer features of the disease transmission process. This can be approached from
different angles. One prominent approach is the simulation of a full, possibly stochastic, pseudo- or meta-
population (see, for instance, [34, 35]). These models require strong assumptions about a population and
its behavior that may have a significant impact on the conclusions. However, they provide high flexibility
and one can examine counterfactual outcomes by making small modifications. The transmission can also
be modeled via network approaches that can be combined with other ideas [82, 19, 37]. The last approach
to be mentioned here, which is arguably the most popular, is the method of compartment models, often
also referred as SIR models [101, 13]. Even though the term ”SIR” imply the basic form, it generally
refers to much more complex models with many compartments compared to the three standard ones
(susceptible, infectious and recovered).

Renewal equation

The compartment modeling approach is closely connected with the utilized approach in the contributions
of this thesis, namely, the renewal equation. Although the motivation stems from the Euler–Lotka equation
that is originally used by demographers, ecologists and evolutionary biologists, the renewal equation can
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3.4 Discussion and link to contributions

also be used to model the transmission of an infectious disease where it provides an intuitive interpretation
[13]. The connection to SIR models stems from branching process theory, where the difference is the higher
flexibility of renewal equations through a more flexible generation time distribution. Also known as the
serial interval, it defines the duration of a disease transmission, i.e., the time an infected individual
transmits the disease to a secondary susceptible [95, 36]. The renewal equation can be formulated in
continuous time. However, since the contributed articles consider a equidistant discrete time grid, we
write it as a discrete sum:

µt,m = Rt,m

∑
u<t

Iu,m (Fγ(t− u+ 1)− Fγ(t− u)) , (3.3)

where the expected number of current infections µt,m depends on past infections Iu,m, u ≤ t, the generation
time (or serial interval) distribution Fγ , and the instantaneous reproduction number Rt,m. We can
interpret the expected number of current infections as a weighted sum of past infections that is scaled
by the reproduction number. It is immediately recognizable that equation (3.3) is a special case of the
time-shifting procedure in (3.2), where we have an autoregressive character and an intuitive interpretation
of πY as the reproduction number Rt,m. The generation time distribution Fγ quantifies the probability
that an infected individual transmits the disease to a secondary susceptible within a given time interval.

Reproduction number

Rt,m is a dynamic quantity with changes over time and can depend on both the population and its location.
Different reproduction numbers can be defined, where all of them share the same core interpretation as the
expected number of secondary infections caused by a single infected individual. In the following, we discuss
the two reproduction numbers, that are utilized in Contributions I and II. The basic reproduction number
R0 is defined as before, but with the assumption to be in a population of fully susceptible individuals [95,
13]. We can view R0 as a threshold quantity that determines whether a disease can invade and persist in
a new host population [91]. For values less than one, infections would causing the disease to eventually die
out. For values greater than one, the disease has a positive growth rate and can invade the population.
The instantaneous reproduction number Rt is a property of the disease dynamics at a specific time t. It is
the expected number of secondary infections, assuming that the conditions at time t remain unchanged.
This means that for an arbitrary time point, it can be modeled as a function of the basic reproduction
number and other circumstances that are prevalent at this time. These conditions may include a smaller
pool of susceptible individuals (e.g, immunization through infection or vaccination), changed contact
patterns (e.g. though changes in social behavior), or a drift in the contagiousness through mutations of
the virus.

3.4 Discussion and link to contributions

The presented concept of inferring a latent series from observed data to learn disease dynamics implies
that the population (with respect to a location m) is homogeneous and that individual characteristics can
be modeled by independent noise processes. To relax this rather strict assumption, it would be necessary
to use fine-grained data that provide this information. Alternatively, one could impose assumptions about
the population as it is done in a pseudo-population approach, suggesting that the boundaries between
different approaches are not strict.
As discussed in Chapter 2, the strength of the Bayesian approach lies in its high flexibility. An assumed
DGP can be defined through the combination of sub-models and prior information. This makes it a per-
fect fit for modeling infectious diseases. It gives the freedom to model all relevant parts of the DGP under
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3 Modeling of infectious diseases

a complex data situations with high uncertainty. The probabilistic formulation allows the propagation of
this uncertainty in the model to obtain reasonable posterior estimates for quantities of interest. The use
of data from different locations also allows the formulation of hierarchical levels that can be utilized in
in a probabilistic model. This provides a direct approach for sharing information between locations while
allowing a certain degree of flexibility.

Contribution I (Section 6) utilizes the presented concepts to demonstrate how multiple time series can
be integrated to infer the effect of NPIs during the COVID-19 pandemic by leveraging data from 20 Eu-
ropean countries. Through the Bayesian formulation, it is straightforward to model quantities of interest
like NPIs or the reproduction number.

Contribution II (Section 7) builds on the methods developed in the first contribution. The idea stems
from the observation that the data structure at the European level - consisting of daily counts for every
county - is fundamentally the same as that at the German level when using federal states as the location
unit. Even though, the data structure can be framed in the same way, the collected data itself differs for
some of the time series, implying the necessity to adapt the developed method.
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Chapter 4

Measurement error

This chapter aims to provide the methodological background on measurement error (ME). We discuss the
topic in the context of occupational cohort studies.
In general, a ME can vaguely be described as a discrepancy between a true value of a quantity and the
measurement of it. With respect to probabilistic models, a ME can be defined as not observing the true
value of a random variable X, but an error-prone version, denoted Z. With respect to epidemiological
studies we only consider in the following measurement errors in the exposure, e.g., where one is interested
in the association between a dependent variable Y and and an exposure X. Moreover, we consider only
errors on variables, measured on a continuous scale. Hence, categorical errors and errors in the dependent
variable are beyond the scope of this text.

4.1 Types of measurement error

A ME can be categorized based on several characteristics. These characteristics are generally defined in
the ME model [65]. It is important to note that measurement error can always be categorized according
to additional characteristics. However, the context often implies some of these features without stating
them explicitly. To illustrate, consider the standard introduction to ME, which motivates the concept
using an unshared, additive, classical ME that is therefore implicitly assumed to be non-differential. For
instance, see Yi [102], Carroll et al. [17], and Gustafson [50], where all of these sources use exactly this
type of error as a introductory example in the context of a linear regression. The reason is probably
that it is easy to understand and one can directly show, the consequence of the error (see also Section
4.2). In the following we distinguish MEs based on characteristics that are important for Contribution
III (Chapter 8).

Classical Error

As stated earlier, the classical ME is the standard model used to introduce the concept [22]. The standard
formulation is given by

Z = X + UC , where X ⊥⊥ UC ,

where we consider Z,X and UC to be real-valued random variables. Z represents the observed version of
the true variable X, perturbed by an error UC . In the most prominent error model, it is assumed that
the measurement error follows a zero-mean Gaussian distribution, i.e., UC ∼ N(0, σ2

C). Therefore, the
assumption in this model is that the observed variable deviates randomly from the true value without any
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4 Measurement error

systematic pattern. However, the most essential feature of a classical ME is the assumed independence
of X and UC .

Berkson Error

In contrast to the classical error, a Berkson error assumes that the true value deviates from a known value
[9]. Mathematically, the ME model can be written as

X = Z + UB, where Z ⊥⊥ UB.

One may again consider a Gaussian measurement error, UB ∼ N(0, σ2
B). In this case, the error is

independent of the observed variable Z. This type of error is prominent in occupational epidemiology
[65]. To give a typical example in this context, we consider groups j = 1, . . . , J of workers where each
group j is assigned a measured or estimated amount of exposure Zj . Hence, each individual within group
j gets assigned exactly the same value, e.g. the mean (or level) exposure measured through an ambient
measurement at a workplace j. However, an individual i in group j is assumed to deviate from this
mean value. Therefore the actual exposure for an individual can be written as Xi,j for all individuals
i = 1, . . . , nj .

Combination of classical and Berkson error

One can consider a combination of classical and Berkson error models [60]. To illustrate, consider the
previous example. However, the mean exposure for group j is not measured exactly, but rather is measured
with error now. This is a common case in occupational cohort studies. For instance, this occurs when
exposures are measured through a job-exposure matrix (JEM). Mathematically, this can be written as

Zj = Xj + UCj

X ′
i,j = Zj + UBi ,

(4.1)

where we still use Zj to denote the measured exposure level for each group j = 1, . . . , J , which is an
error-prone version of Xj . Furthermore, we allow a deviation for each single worker i = 1, . . . , nj within
the group j, leading to the individual exposure X ′

i,j that is not observable. Note that this model only has
the measured version of the mean exposure level as an observed quantity.

Shared and unshared errors

(4.1) implicitly suggests a shared classical error: The error UCj affects all individuals in group j exactly
in the same manner, since everyone is subject to the same mean ambient measurement. They share the
same error. When looking at the Berkson error formulation, the example implies an unshared Berkson
error component, as every individual experiences an individual-specific deviation UBi . This also implies
a different dimension of the latent exposure: The mean ambient exposure is measured for J groups and
therefore we could define it as an error UC ∈ RJ .1 The dimension of the actual individual exposure, which
is also influenced by the Berkson error, is defined by adding the number of all individuals in all groups,
i.e. the full Berkson error UB has dimension n with n =

∑J
j=1 nj as the total number of individuals in

the cohort or data set. In this example, the Berkson error is unshared among workers. However, one can
also consider a shared Berkson error, where a deviation from an overall mean level of exposure represents

1The missing subscript on UC implies a larger dimension, than for UCj as UC denotes the vector of all mean exposure

values, i.e. UC = (UC1 , . . . , UCJ )
T .
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different workplaces [61]. For instance, all individuals in a workroom may share the same Berkson error
if the overall level is taken over the whole building and we want to model the exposures on a room level.
The assumed model for shared and unshared error structures has a significant impact on computation
because it heavily affects the dimension of the implied latent variable (see also Chapter 2).

Additive and multiplicative errors

The equations from before are always written using an additive error. However, although the additive
structure is more popular, one may also consider a multiplicative error model, wich is more prominent in
occupational and environmental epidemiology [61, 2]. In this case, the dependence assumptions between
errors and observed variables remain the same as in the previous cases. Instead of a Gaussian distribution
as the most popular choice for additive errors, we can use a log-Gaussian distribution for multiplicative
errors. For instance, the classical error model would be written as Z = X · UC , where we assume that

log(UC) ∼ N
(
−σ2

C
2 , σ2

C

)
. In this case, the location parameter of the underlying Gaussian distribution is

set to −σ2
C
2 . Since the mean of a log-Gaussian distribution is defined as exp(µ + σ2

2 ), setting µ = −σ2
C
2

ensures that the mean equals one. This is analogous to the definition of a zero-mean Gaussian for an
additive error, as the error does not change the value of the error-prone variable in expectation.

More on types of errors

So far, the description of different error types represents the relevant standard theory that is required
for Contribution III (Chapter 8). However, some other concepts play a minor but relevant role. The
first one to be mentioned is the distinction between differential and non-differential ME. If the outcome
(dependent variable) is conditionally independent of the error given the true non-error-prone covariate
X, the error is called non-differential. This means that the error has no influence on the outcome and is
stochastically independent [103]. On the other hand, if the ME is not independent of the outcome, the
ME is considered differential. In Contribution III, we assume a non-differential ME.
Other characteristics worth mentioning include the differentiation between ME on the outcome and/or
on covariates [92], and ME with a different sample space, e.g., a categorical ME that can be interpreted
as misclassification [65, 50].

4.2 Accounting for measurement error

We consider statistical problems in which we are interested in the association between an outcome and
covariates (exposure), with the strength of this association parameterized by θd, possibly as a part of
a larger parameter set θD (see disease model in Section 4.2.2). Inference on error-prone data generally
leads to biased results [17, 103, 50]. For trivial cases, such as linear regression, one can directly derive a
formula for the resulting attenuation of the coefficient. In more complex cases involving a non-linear link,
interactions, or more complex dependence structures, the behavior is not always clear and may even lead
to reverse attenuation [17, 62, 77, 94, 2]. Consequently, solutions to account for ME in data is inevitable.

4.2.1 Approaches to account for measurement error

Many different approaches have been proposed over the past decades. Here, we focus on the Bayesian
approach used in Contribution III. We refer to Keogh et al. [65] and Shaw et al. [89] for an overview of
alternative ideas.
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4.2.2 Bayesian approach to account for measurement error

In the Bayesian approach, we model the ME as part of the DGP. This is usually a probabilistic model that
defines the relationship between an outcome of interest and the exposure and potential other potential
covariates. To model the DGP, we require at least three sub-models [87].2 These are the disease model,
the measurement model and the exposure model. We connect them through conditional independence
assumptions to one large model. We will discuss each of them, along with a brief discussion of prior
distributions.

Disease model

The disease model defines the association between an outcome Yi and the covariate of interest Xi for
individuals i = 1, . . . , n, where the association is quantified by the parameter θd. For simplicity, we stick
to a single covariate. We write this association as p(yi | xi, θD). θD is the collection of all parameters
of the disease model. This collection contains at least θd. Other parameters may represent additional
characteristics like dispersion parameters or additional hazard parameters.

Measurement model

The measurement model describes the relationship between the observed, error-prone version Zi of the
variable Xi, that is p(zi | xi, θM ). For instance, in the most prominent example of an unshared classical
additive error, which is a zero-mean Gaussian, the model is defined as stated earlier in Section 4.1 with
only one parameter, θM = σ2

C . However, the model can be arbitrarily complex, as long as it is identifiable
(e.g., through adequate prior assumptions).

Exposure model

The exposure model is only relevant for classical errors. It defines the distributional assumption of the
latent variable Xi, where the model parameters are denoted by θE and therefore p(xi | θE).

Prior distributions

In the Bayesian approach, we define prior distributions on all parameters of the three models, i.e.,
p(θD), p(θM ), and p(θE). As discussed in Chapter 2, we can deliberately express our beliefs or uncer-
tainty about the parameters here. A reasonable approach would be to impose additional hierarchical
structures that define prior distributions on the parameters of the prior distributions (sometimes called
hyperpriors).

4.2.3 Inference

Given all models, they can be combined into an unnormalized posterior distribution:

p(θD, θM , θE , x | y, z) ∝ p(θD)p(θM )p(θE)
N∏
i=1

p(yi | xi, θD)p(zi | xi, θM )p(xi | θE) (4.2)

2This idea is equivalent to the likelihood-based approach that also defines the same sub-models. The main differences lie,
as outlined in chapter 2, in the treatment of parameters and the estimation process.
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4.3 Discussion and link to contributions

As for the most Bayesian problems, it is only in very rare cases possible to find a closed form solution
and one has to opt for numerical solutions as described in chapter 2. The true exposure can be be a high-
dimensional latent variable. However, depending on the chosen algorithm and measurement model, it
may be possible to utilize the error structure to mitigate the computational burden a bit by implementing
custom computing routines.

4.3 Discussion and link to contributions

The probabilistic model in (4.2) is written in an abstract form, without stating exact relationships.
While the disease model is, in many cases, straightforward (e.g., a regression or survival problem), the
measurement error model can get rather complex. In many cases, the model is just a simple unshared.
However, if the measurement process is complex, the measurement model will also be complex. This
is exactly the case of contribution III (Chapter 8), which uses data from the Wismut cohort [66]. The
measurement model is a combination of many different shared Berkson and classical error components.
Further, we deal not only with one, but multiple measurement models. The reason for the involved error
structure is the complex data situation arising from multiple different approaches that were used to obtain
exposure measurements over different periods and locations. Even though the data can be organized into
a single table in long format, it is inherently complex. Therefore, the Bayesian approach is perfectly
tailored to the problem, as it allows for the definition of custom sub-models for each part of the DGP.
Contribution III also demonstrates how a custom MCMC sampler can be used to exploit the prevalent
error structure.
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Chapter 5

Validation of models on distributed data

The performance evaluation of binary classification algorithms is an essential task in many scientific
disciplines. In particular, a medical context often demands critical decisions affecting patients directly.
Therefore, it is important to have reliable algorithms and predictors. Leveraging a large amount of data to
obtain trustworthy results through the validation of prediction methods is therefore necessary. However,
data are often distributed across different locations, e.g., different hospitals. The common approach of
centralizing data at one location is often not possible. One of the major reasons is the need to protect
individual privacy. We, therefore, face two challenges. 1) The algorithms must be designed in such a way
that they can work with data that is distributed across different locations. 2) Algorithms must guarantee
the protection of individual privacy.
In the following, we introduce the building blocks for Contribution IV (Chapter 9). The idea relies on a
classical statistical method, namely the GLM, which was introduced in Chapter 2.
We consider a binary classification problem where we use a function f : Rp → R that maps a p-dimensional
vector of covariates or features x ∈ Rp to a score.1 The vector is a realization of the associated random
variable X. We estimate or learn this function using a statistical model on (training) data, obtaining f̂ .
Furthermore, we have access to a sample of observational data D = {(x1, y1), . . . , (xn, yn)}, where yi is
binary and represents the i-th realization of the binary variable Y . Note that D is not the data that was
used to train f̂ , but rather the data that we use to validate a learned classifier. To do this, we define
a discrimination threshold c ∈ R within an indicator function 1(c,∞)(f̂(x)). c is used to define a binary

classifier derived from f̂ based on this threshold.

5.1 ROC curve

The receiver operating characteristic (ROC) curve is a method to evaluate the performance of a binary
classification model as a function of the threshold c. ROC analysis is a well-established method with
a long history in signal detection, the evaluation of diagnostic systems, and medical decision making.
It was also adopted by the machine learning community decades ago [33]. If we plot the true positive
rate2 (TPR) and false positive rate3 (FPR) of f̂ for varying values of c, we obtain the ROC curve. The
TPR (also known as sensitivity) is the proportion of actual positives correctly identified, while the FPR

1The function may also map f : Rp → [0, 1], where an algorithm either directly models probabilities or uses a link function
to squash values between 0 and 1. However, in popular cases like logistic regression, these transformations do not affect the
result, as the ROC curve is invariant to monotonic transformations [85].

2Also called true positive fraction.
3Also called false positive fraction.
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5.1 ROC curve

(which equals 1–specificity) is the proportion of actual negatives incorrectly identified as positive. With
”positive” we mean that the value of the variable Y = 1, whereas ”negative” would imply Y = 0. We
define the TPR and FPR as functions of the threshold c (conditioned on Y ):

TPR(c) =P (f̂(X) ≥ c | Y = 1)

FPR(c) =P (f̂(X) ≥ c | Y = 0).
(5.1)

The ROC curve (or space) is the set of all pairs of FPR and TPR values derived from all possible thresholds
c:

ROC = {(FPR(c), TPR(c)) : c ∈ R}. (5.2)

We can rewrite the ROC curve as function of a variable r: ROC(r) = S1(S
−1
0 (r)), where S0(c) = FPR(c)

and S1(c) = TPR(c) are called the survivor functions of Y for the negatives (non-diseased population)
and positives (diseased population). We rewrite this as

ROC(r) =S1(S
−1
0 (r))

=P (f̂(X) ≥ S−1
0 (r) | Y = 1)

=P (S0(f̂(X ≤ r) | Y = 1),

where S−1
0 (r) = c. The ROC curve can therefore be expressed in terms of placement values, i.e. the

positives (diseased) with respect to the survivor function of the negatives (non-diseased).

5.1.1 AUC

The area under the curve (AUC) is perhaps the most common measure used to summarize a ROC curve
as a single value and is defined as

AUC =

∫ 1

0
ROC(r) dr.

If AUC = 1 the learned function f̂ would perfectly discriminate with respect to the validation data. For
AUC = 0.5, the classifier is useless because it performs no better than random guessing. If AUC < 0.5,
it would be preferable to simply flip the output of the classifier.

5.1.2 Estimation of the ROC

The ROC curve is not directly observable and we must estimate it from our validation data D. The most
popular method is an empirical, non-parametric estimate. However, we adopt an alternative formulation
based on a GLM. For completeness, we briefly state the standard method, which is used as a comparison

measure in Contribution IV. The standard method estimates T̂PR(c) = n−1
1

∑n1
i=1 1(c,∞)(f̂(x

(1)
i ) and

F̂PR(c) = n−1
0

∑n0
l=1 1(c,∞)(f̂(x

(0)
l ), where we use x

(1)
i and x

(0)
i to denote the i-th or l-th vector within

the subgroups of positives and negatives respectively, i.e., yi = 0 and yi = 1, with n1 and n0 representing
the number of data points in each group. These formulas are merely the empirical versions of (5.1).

ROC-GLM

The ROC-GLM is an alternative approach that yields a smooth ROC curve. The original idea was pro-
posed in Pepe [84]. The approach formulates the ROC curve as a regression problem ROCg (r | γ) =
g(h(r)γ), where we use a link function g : R → [0, 1], η 7→ g(η), regression coefficients γ ∈ Rl and covari-
ates defined though a function h : R → Rl, r 7→ h(r) = (h1(r), . . . , hl(r))

T . Note that h in this context is
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5 Validation of models on distributed data

not the same function as defined in Chapter 2 to model the response in a GLM, but a transformation of
r, and g is used to model the response (unlike the link function g in Chapter 2).
We can then fit a ROC-GLM by constructing a pseudo-data set DROC-GLM = {(h(rj), uij) | i =
1, . . . , n1, j = 1, . . . , nR} where we have h(rj) as covariates and uij as target variable. The construc-

tion is done using thresholds R = {r1, . . . rnR}, where we obtain the targets as uij = 1(−∞,rj)(Ŝ0(f(x
(1)
i )).

Further, we can define as regression coefficients γ the function h(r) = (h1(r) = 1, h2(r) = Φ−1(r). Using
this exact definition, we would directly obtain the bi-normal ROC model when we use a probit link, i.e.
ROCg(r | γ) = Φ

(
γ1 + γ2Φ

−1(r)
)
. The model can then be estimated as described in Chapter 2 using the

Fisher-scoring algorithm.

5.2 Statistical disclosure control and differential privacy

Here, we state the definition of Castro [18]: ”Statistical disclosure control (SDC) comprises the set of
methods for preserving individual and confidential information when releasing data”. SDC plays a crucial
role in applications where the privacy of individual data is important. A technique, can be considered
part of SDC, is differential privacy (DP). However, DP is not often discussed in the context of SDC.
In the following, we will discuss one basic method of both SDC and DP as both are essential parts of
Contribution IV

5.2.1 Secure aggregation

The term ”secure aggregation” is not always explicitly mentioned in SDC sources but discussed as an
implicit method to preserve privacy in statistical outputs (see, for instance, Hundepool et al. [63] and
Griffiths et al. [48]). This is done in a a straightforward way: Aggregated data can be considered as
safe as long as the share of the individual’s contribution is not too large. This logic is also often used
in magnitude and frequency tables [18]. A closely related concept is k-anonymity. However, the two
concepts are not identical: k-anonymity is rather a property of a microdata set (or their quasi-identifiers),
while secure aggregation is a property of a function applied to the data. We may define the output of
an aggregation function a : Rd 7→ R,v → a(v) to be secure if d is greater than a chosen threshold. For
instance, an empirical mean or a frequency table can only be used, if a sufficient number of data points
contribute to the aggregated result(s).

5.2.2 Differential privacy

Differential privacy (DP)[32] is a mathematical framework that provides quantifiable privacy guarantees.
This quantifiability stands in contrast to other approaches where no formal guarantees can generally be
given. A non-technical introduction to DP can be found in Wood et al. [98]. DP provides mathematical
guarantees by assuming a worst-case scenario as a threat model where an adversary has nearly all infor-
mation except a tiny part that the attacker wants to learn. To formalize this, we consider an algorithm or
query M : X 7→ Y that takes input from domain X and maps to domain Y. The input domain X could
be, for instance, Rd or Nd, and the target domain Y could be R or N, for some d ∈ N. The algorithm M
is considered (ε, δ)-DP if the following property holds:

P (M(x) ∈ R) ≤ exp(ε)P (M(x′) ∈ R) + δ, (5.3)

with ε ∈ R+
0 , δ ∈ [0, 1] and where the two inputs x,x′ ∈ X n are considered to be adjacent. Adjacency in

the context of DP generally means that two data sets differ by exactly one record or entry. This means
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5.3 Learning on distributed data

that either one value is added, deleted or changed. Qualitatively, this implies that a single individual’s
entry in a data set has only limited impact on the output of any analysis. Hence, an individual’s contribu-
tion to the output of M cannot be too large. The privacy parameters ε and δ, along with the sensitivity
of an algorithm, determine the utility of a DP algorithm. Using (5.3), we can control the privacy level ε.
As ε → 0, the privacy loss approaches zero while the utility would also diminish. δ can be seen as ”slack”
value. We can interpret (1 − δ) as the probability that ε-DP holds, also referred to ”pure DP”. ε-DP is
the special case where δ = 0, i.e. (ε, 0)-DP [68]. The most prominent algorithm currently is probably the
Gaussian mechanism, where X = Rd. This mechanism requires (ε, δ)-DP with δ > 0 [5, 32]. This means
it cannot work with pure DP. The Gaussian mechanism adds calibrated zero-mean Gaussian noise to a
deterministic algorithm. The Gaussian mechanism relies, like all DP algorithms, on randomness. With
respect to the Gaussian mechanism, a small ε implies a larger standard deviation for the added Gaussian
noise.
This leads to a utility loss, as the true output is obfuscated, but a higher privacy is guaranteed. As DP
is fundamentally probabilistic, we can frame it as deliberately introducing uncertainty in an algorithm’s
output to obtain a “safe” version. This implies that one must carefully weigh the two conflicting goals
of utility and privacy. This gives rise to the major critique of DP: The unintuitive interpretation of ε
compared to concepts like k-anonymity [93]. Even though DP provides a quantifiable degree of privacy
through ε, it remains difficult to interpret. Various interpretation methods have been proposed. For
instance, a Bayesian interpretations looks at the update from a prior to a posterior belief about x and
x′ based on the output of a DP algorithm (see e.g. Mironov [76] and Lee and Clifton [67]). An alterna-
tive interpretation embeds DP in a classical statistical hypothesis-testing framework where an adversary
formulates a hypothesis about the two neighboring data sets [97, 64, 6]. Another major critique of DP
concerns the resulting utility of DP algorithms: The considered attack scenario is rigorously pessimistic
(worst-case), leading to an extensive obfuscation of outputs and therefore a very large utility loss [7]. More
recent work argue, that higher values of ε ≥ 7 would be sufficient, when considering a less pessimistic
attack scenario or data properties (see for instance Ziller et al. [105] and Lowy et al. [70]).

5.3 Learning on distributed data

We consider data, that are split across different locations, e.g., different servers. Moreover, we assume
that the data follow the same structure, i.e., they have identical columns and data types, leading to similar
design matrices within a statistical model. Hence, the data are horizontally split and do not overlap. The
full data set is therefore th eunion of the local data sets:

D =
K⋃
k=1

D(k), n = n(1) + · · ·+ n(K),

where each local data set is defined as before with an additional subscript (k), k = 1 = 1, . . . ,K to define
it as the data set at the k-th location: D(k) = {(x(k),1, y(k),1), . . . , (x(k),n(k)

, y(k),n(k)
)}.

The field of distributed learning is quite broad with numerous applications in machine learning. The
most commonly employed strategy is relatively intuitive: An algorithm is applied to the local data D(k)

(all locations, or just a subset). Afterwards, the local results (e.g. parameter estimates) are sent to an
aggregator, that combines them to obtain intermediate global parameters. This procedure is repeated
until a convergence criterion is met.
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5 Validation of models on distributed data

5.4 Discussion and link to contributions

The above described techniques are the building blocks of the final contribution to this thesis. We can
combine the previously described methods into one algorithm, that can be used to privately validate a
learned classifier via a ROC curve. However, through the adaption of a GLM formulation and the use of
DP, one may obtain suboptimal results.
The standard procedure in DP is to generate stochastic noise on top of a, possibly deterministic, algo-
rithm. Thus, DP can also be seen as deliberately inducing measurement error to preserve privacy (see
also Chapter 4). Much of the ME theory could therefore be adapted to the field of DP.
Even if a new method is defined, this does not mean it can be used directly in practice without accom-
panying software. Contribution IV (Chapter 9) provides an implementation in DataSHIELD [38].
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Spatio-Temporal Disease Models to Improve the Prediction of Weekly COVID-19 Cases in Ger-
many”. In: Scientific Reports 12.1 (Mar. 2022), p. 3930. issn: 2045-2322. doi: 10.1038/s41598-
022-07757-5.

[38] Amadou Gaye et al. “DataSHIELD: Taking the Analysis to the Data, Not the Data to the Analy-
sis”. In: International Journal of Epidemiology 43.6 (Dec. 2014), pp. 1929–1944. issn: 1464-3685,
0300-5771. doi: 10.1093/ije/dyu188.

[39] Andrew Gelman and Christian Hennig. “Beyond Subjective and Objective in Statistics”. In: Jour-
nal of the Royal Statistical Society Series A: Statistics in Society 180.4 (Oct. 2017), pp. 967–1033.
issn: 0964-1998, 1467-985X. doi: 10.1111/rssa.12276.

[40] Andrew Gelman, Jennifer Hill, and Aki Vehtari. Regression and Other Stories. Cambridge Univer-
sity Press, 2021. isbn: 1-107-02398-X.

[41] Andrew Gelman and Yuling Yao. “Holes in Bayesian Statistics”. In: Journal of Physics G: Nuclear
and Particle Physics 48.1 (Jan. 2021), p. 014002. issn: 0954-3899, 1361-6471. doi: 10.1088/1361-
6471/abc3a5. arXiv: 2002.06467 [math, stat].

[42] Andrew Gelman et al. Bayesian Data Analysis Third Edition (with Errors Fixed as of 15 February
2021). Third edition. Chapman and Hall/CRC, 2013.

[43] Andrew Gelman et al. “Bayesian Workflow”. In: arXiv preprint arXiv:2011.01808 (2020). arXiv:
2011.01808.

[44] Subhashis Ghosal and Aad van der Vaart. Fundamentals of Nonparametric Bayesian Inference.
1st ed. Cambridge University Press, June 2017. isbn: 978-0-521-87826-5 978-1-139-02983-4. doi:
10.1017/9781139029834.

[45] Walter R Gilks, Sylvia Richardson, and David Spiegelhalter. Markov Chain Monte Carlo in Prac-
tice. CRC press, 1995. isbn: 1-4822-1497-0.

[46] Sander Greenland. “Bayesian Perspectives for Epidemiological Research: I. Foundations and Basic
Methods”. In: International Journal of Epidemiology 35.3 (June 2006), pp. 765–775. issn: 1464-
3685, 0300-5771. doi: 10.1093/ije/dyi312.

[47] Sander Greenland, Judea Pearl, and James M. Robins. “Confounding and Collapsibility in Causal
Inference”. In: Statistical Science 14.1 (Feb. 1999). issn: 0883-4237. doi: 10.1214/ss/1009211805.

[48] Emily Griffiths et al. “Handbook on Statistical Disclosure Control for Outputs”. In: Safe Data
Access Professionals Working Group (2019).

29

https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.25561/77482
https://doi.org/10.25561/77482
https://doi.org/10.1038/nature04017
https://doi.org/10.1038/nature04017
https://doi.org/10.1038/s41586-020-2405-7
https://doi.org/10.1038/s41598-022-07757-5
https://doi.org/10.1038/s41598-022-07757-5
https://doi.org/10.1093/ije/dyu188
https://doi.org/10.1111/rssa.12276
https://doi.org/10.1088/1361-6471/abc3a5
https://doi.org/10.1088/1361-6471/abc3a5
https://arxiv.org/abs/2002.06467
https://arxiv.org/abs/2011.01808
https://doi.org/10.1017/9781139029834
https://doi.org/10.1093/ije/dyi312
https://doi.org/10.1214/ss/1009211805


Bibliography

[49] Emanuele Guidotti and David Ardia. “COVID-19 Data Hub”. In: Journal of Open Source Software
5.51 (July 2020), p. 2376. issn: 2475-9066. doi: 10.21105/joss.02376.

[50] Paul Gustafson. Measurement Error and Misclassification in Statistics and Epidemiology: Impacts
and Bayesian Adjustments. Interdisciplinary Statistics Series 13. Boca Raton, Fla. [u.a]: Chapman
& Hall/CRC, 2004. isbn: 978-1-58488-335-7.

[51] Thomas Hale et al. “A Global Panel Database of Pandemic Policies (Oxford COVID-19 Gov-
ernment Response Tracker)”. In: Nature Human Behaviour 5.4 (Mar. 2021), pp. 529–538. issn:
2397-3374. doi: 10.1038/s41562-021-01079-8.

[52] William Heaton Hamer. The Milroy Lectures on Epidemic Diseases in England. 1906.

[53] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning.
Springer Series in Statistics. New York, NY: Springer New York, 2009. isbn: 978-0-387-84857-0
978-0-387-84858-7. doi: 10.1007/978-0-387-84858-7.

[54] W Keith Hastings. “Monte Carlo Sampling Methods Using Markov Chains and Their Applica-
tions”. In: (1970). issn: 1464-3510.
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Abstract
Infectious disease models can serve as critical tools to predict the development
of cases and associated healthcare demand and to determine the set of nonphar-
maceutical interventions (NPIs) that is most effective in slowing the spread of
an infectious agent. Current approaches to estimate NPI effects typically focus
on relatively short time periods and either on the number of reported cases,
deaths, intensive care occupancy, or hospital occupancy as a single indicator of
disease transmission. In this work, we propose a Bayesian hierarchical model
that integrates multiple outcomes and complementary sources of information in
the estimation of the true and unknown number of infections while accounting
for time-varying underreporting and weekday-specific delays in reported cases
and deaths, allowing us to estimate the number of infections on a daily basis
rather than having to smooth the data. To address dynamic changes occurring
over long periods of time, we account for the spread of new variants, seasonal-
ity, and time-varying differences in host susceptibility. We implement a Markov
chain Monte Carlo algorithm to conduct Bayesian inference and illustrate the
proposed approach with data on COVID-19 from 20 European countries. The
approach shows good performance on simulated data and produces posterior
predictions that show a good fit to reported cases, deaths, hospital, and intensive
care occupancy.
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1 INTRODUCTION

The experience with severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019
(COVID-19) has underlined both the importance of and the challenges in the modeling of infectious diseases. Infectious
disease models can serve as critical tools to predict epidemic development and healthcare demand and to determine
when and which nonpharmaceutical interventions (NPIs) should be implemented to slow the spread of an infectious
agent. However, the modeling of infectious diseases is complicated by the fact that the main quantity of interest, that
is, the number of daily infections, is a latent variable that cannot be observed and therefore has to be estimated by
using information on other observable quantities. The number of reported cases, hospital occupancy, and deaths all
provide complementary, yet incomplete and sometimes even contradictory, information on the number of infections
in a given geographical region. The number of reported cases is prone to underreporting, as it depends on the relia-
bility of tests, the testing capacity, and the employed testing strategy (May, 2020; Pullano et al., 2021). When changes
in the testing strategy concur with the introduction or the relaxation of NPIs, they can create severe distortions in the
estimation of NPI effects. While modeling disease mortality, which is less prone to underreporting, can avoid biases
due to changes in the testing strategy, it is difficult to predict future healthcare demand based on disease mortality.
Moreover, the time lag between infection and death may be highly variable, leading to a reduction of statistical power
(Sharma et al., 2021) and where (more or less effective) treatment is available, differences in the availability, accessi-
bility, and quality of healthcare may affect case fatality rates. A possible solution for this situation, in which there are
several imperfect proxy variables for the number of infections, is to combine information on disease incidence, mortal-
ity, and hospital occupancy in a common framework while explicitly accounting for time-varying underreporting and
reporting delays.
Bayesian hierarchical approaches can address this challenge by providing a coherent and flexible framework to inte-

grate all available sources of information while accounting for different sources of uncertainty. By combining different
submodels through conditional independence assumptions, it is possible to integrate mechanistic assumptions on dis-
ease dynamics and submodels describing the relationship between the true (and unknown) number of infections and
reported cases, hospital occupancy, and deaths. Additionally, we can borrow information from other geographical regions
to stabilize parameter estimates and to improve forecasts on future healthcare demand. Current approaches to assess
the effect of NPIs typically either focus on the number of deaths (Flaxman et al., 2020) or the number of cases (Ban-
holzer et al., 2021; Dehning et al., 2020; Islam et al., 2020; Li et al., 2021b). Unwin et al. (2020), Brauner et al. (2021), and
Sharma et al. (2021) extend the semimechanistic Bayesian hierarchical model proposed by Flaxman et al. (2020) by includ-
ing information on reported cases and deaths when inferring the number of new infections. However, these approaches
typically only estimate NPI effects for short time periods because they do not explicitly account for differences in host
susceptibility over time (due to vaccination or previous infection), seasonality, the prevalence of different virus variants,
or time-varying underreporting.
Here, we show how a Bayesian hierarchical approach can be used to integrate the available information on the

number of reported cases, the number of deaths, and hospital and intensive care unit (ICU) occupancy in the esti-
mation of the true and unknown number of infections while accounting for underreporting and reporting delays in
the number of reported cases. We account for the influence of seasons, previous infections, vaccination coverage, and
the prevalence of different virus variants as these factors can have a critical influence on the number of new infec-
tions and on disease severity. By doing so, it is possible to use data over long time periods in several countries rather
than focusing on short time periods in a single country during which the prevailing variant, vaccination coverage, and
the testing strategy remained roughly constant. By allowing for weekday-specific delays in reported cases and deaths
(which mainly arise due to reduced reporting during the weekend), we are not required to smooth the analyzed time
series and we can estimate the number of infections on a daily basis. We illustrate the proposed approach using data
for COVID-19 from 20 European countries and investigate its performance both on simulated data and by assessing
how well the model describes reported cases, hospital and ICU occupancy, and deaths through posterior predictive
checks.
The rest of the paper is organized as follows. In Section 2, we describe the proposed Bayesian hierarchical model. In

Section 3, we present a simulation study to assess the performance of our proposed approach. A case study on the mod-
eling of COVID-19 in 20 European countries is presented in Section 4. In Section 5, we summarize this article with a
brief discussion.
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F IGURE 1 Simplified directed acyclic graph (DAG) describing how the true and unknown number of infections is estimated through
the four observed time series. Parameters are shown in orange and variables are shown in blue. Unknown quantities that have to be estimated
are given in circles and quantities that are either observed or assumed to be known are given in squares.

2 THEMODEL

In this section, we describe themain elements of the Bayesian hierarchical model. At its core, themodel treats the number
of true and unknown infections 𝐼𝑡,𝑚 ∈ ℕ0 at time 𝑡 in geographical region 𝑚 as a discrete latent variable where 𝑡 and 𝑚
are considered as discrete index sets (e.g., days and countries). We describe the model in two parts. First, we describe how
we infer the number of true and unknown infections (i.e., the values of the latent variable) from the available information
on reported cases, hospital and ICU occupancy, and deaths while accounting for time-varying underreporting, weekday-
specific reporting delays, and changes in the severity of the disease due to vaccination coverage and different virus variants.
Second, we describe how we estimate the effects of NPIs given the true and unknown number of infections represented
through the discrete latent variable while accounting for seasonality, time-varying differences in host susceptibility and
changes in the transmissibility of the virus due to different virus variants.

2.1 Inferring the number of infections

As illustrated in Figure 1, we use information on the reported number of cases, deaths, and hospital and ICU occupancy
to estimate the true and unknown number of infections 𝐼𝑡,𝑚 at time 𝑡 in geographical region 𝑚. Each of these observed
time series is linked through a submodel to this discrete latent variable: the reporting model, the death model, and two
hospitalization models (normal beds and ICU). Before linking the number of infections to the observable time series, we
define a second latent variable, the number of cases 𝐶𝑡,𝑚 ∈ ℕ0 in geographical region 𝑚 with symptom onset on day 𝑡,
which is simply a deterministic function of the number of infections 𝐼𝑡,𝑚 occurring until time 𝑡, as described through the
following disease model: 𝐶𝑡,𝑚 =∑

𝑢≤𝑡 𝐼𝑡,𝑚(𝐹𝜉𝐶 (𝑡 − 𝑢 + 1) − 𝐹𝜉𝐶 (𝑡 − 𝑢)),
where 𝐹𝜉𝐶 is the cumulative distribution function of the incubation period. Note that we do not distinguish infections by
strength of symptoms. Some infected individuals may even experience so weak symptoms that they are not noticed, and
in this case, the incubation period is of merely technical nature. Through the disease model, the number of (symptomatic
and asymptomatic) cases becomes a deterministic function of the number of infections, which is simply shifted by the
incubation time distribution.
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The number of cases 𝐶𝑡,𝑚 is linked to the number of reported cases 𝐶𝑅𝑡,𝑚 through the following reporting model:

𝐶𝑅𝑡,𝑚 ∼ 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚(𝜇𝑅𝑡,𝑚, 𝜙𝑅),
where𝜇𝑅𝑡,𝑚 = 𝜌𝑡,𝑚∑

𝑢<𝑡 𝐶𝑢,𝑚(𝐹𝜉𝑅,𝑤𝑚 (𝑡 − 𝑢 + 1) − 𝐹𝜉𝑅,𝑤𝑚 (𝑡 − 𝑢)),
where 𝐹𝜉𝑅,𝑤𝑚 is the reporting delay distribution for a specific weekday𝑤 in geographical region𝑚. In this model, the num-
ber of reported cases follows a negative binomial distribution where the expected number of reported cases on day 𝑡 is
described as the sum of all true cases occurring on some day 𝑢 before day 𝑡 weighted by their probability of being reported
after 𝑡 − 𝑢 days and multiplied by a time-specific underreporting rate 𝜌𝑡,𝑚. We choose a negative binomial distribution
rather than a Poisson distribution to allow for overdispersion (controlled by the size parameter 𝜙𝑅). The variance of 𝐶𝑅𝑡,𝑚
is then given by 𝜇𝑅𝑡,𝑚 + 𝜇𝑅𝑡,𝑚2∕𝜙𝑅. Therefore, for high values of 𝜙𝑅 relative to 𝜇𝑅𝑡,𝑚, the distribution resembles a Poisson dis-
tribution and low values indicate high overdispersion. The time-specific underreporting rates 𝜌𝑡,𝑚 are modeled through
a piece-wise constant function. By accounting for time-varying underreporting and weekday-specific reporting delays,
the reporting model allows for discrepancies between the true dynamics of the disease and the number of cases that are
reported by health authorities (Höhle & an der Heiden, 2014). In the reporting model, we assume that the delay between
symptom onset and day of reporting can be specific to a geographical region 𝑚. Since it is very difficult to obtain this
information for each region, we use information from a specific geographical region for which we can estimate these
weekday-specific reporting delay distributions (in our application to COVID-19, this region is Bavaria in Germany) and
adapt them for each location. The whole procedure is as follows. For each weekday of symptom onset, we use a different
reporting delay distribution. This means, for instance, that an infected individual with symptom onset on Monday may
have another reporting pattern and therefore another reporting delay distribution than an individual with symptom onset
on Sunday (since several local authorities do not work on Sundays). Figure S6 in the Supporting Information shows the
estimated reference distributions fromBavaria. Furthermore, we individualize these weekday-specific reporting delay dis-
tributions for each location with its regional reporting pattern (e.g., some countries do not report any cases on Sundays at
all while others do). We achieve this by introducing location and weekday-specific parameters 𝛽𝑤𝑚 to adapt these distribu-
tions for weekdays𝑤 for each geographical region𝑚. These parameters 𝛽𝑤𝑚 are multiplied with the discretized versions of
the Bavarian reporting delay distributions to inflate or deflate the probability mass at the respective time spans that match
the weekdays. For example, for a country𝐴 that does not report any cases at all on Sundays, the respective 𝛽𝑆𝑢𝑛𝑑𝑎𝑦𝐴 would
be estimated as zero. Thus, the reporting delay distribution for symptom onset on Mondays would result in a probability
mass of zero on the 6th, 13th, and so on, day, whereby the reporting delay distribution for symptom onset on Tuesday
would result in a probability mass of zero on the 5th, 12th, and so on, day. After the multiplication, we renormalize the
result to obtain a proper probability distribution. As a consequence, we can account for weekly reporting patterns that are
specific to each geographical region𝑚.
Following Flaxman et al. (2020), we describe the number of deaths 𝐷𝑡,𝑚 occurring on day 𝑡 in geographical region𝑚 as

a function of the number of true cases with disease onset prior to 𝑡 through the following death model:
𝐷𝑡,𝑚 ∼ 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚(𝜇𝐷𝑡,𝑚, 𝜙𝐷),
where𝜇𝐷𝑡,𝑚 = 𝜋𝐷𝑡,𝑚∑

𝑢≤𝑡 𝐶𝑢,𝑚(𝐹𝜉𝐷,𝑤𝑚 (𝑡 − 𝑢 + 1) − 𝐹𝜉𝐷,𝑤𝑚 (𝑡 − 𝑢)).
In this model,𝐷𝑡,𝑚 is described by a negative binomial distribution with expected value equal to the sum of the number

of true cases with disease onset at time 𝑡 − 𝑢, weighted by the probability of dying on the 𝑢th day after the onset of symp-
toms. This latter probability can be obtained by discretizing the probability distribution describing the time until death
for patients who died, that is, 𝐹𝜉𝐷,𝑤𝑚 , and multiplying by the infection fatality rate (IFR) 𝜋𝐷𝑡,𝑚, that is, the probability of
dying for an infected individual where this rate can depend on day 𝑡 and geographical region𝑚. Similarly to 𝐹𝜉𝑅,𝑤𝑚 in the
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reportingmodel,𝐹𝜉𝐷,𝑤𝑚 accounts for weekday effects that can be specific to geographical region𝑚 to account for differences
in reporting through variables 𝛽𝐷,𝑤𝑚 .
The IFR is a crucial part of themodel aswe assume that this quantity is fixed and known, butwe consider several (poten-

tially time-varying) factors that have an influence on this quantity, namely, the age composition in a country, vaccination
rollout, and the prevalence of new variants.
The proposed model operates on an aggregated level with respect to locations 𝑚 (e.g., countries). However, different

locations have different age compositions. As disease severity is strongly correlated with age, we obtain an aggregated IFR
by weighting an age-specific IFR with the age structure in each location. We use information on the age strata of each
country from O’Driscoll et al. (2021) and the aggregated IFR for four different age groups 𝑠 = 1,… , 4 from Staerk et al.
(2021), that is, we use an IFR of 0.008% for the age group of 0–34 years, 0.122% for 35–59 years, 0.992% for 60–79 years and
7.274% for an age of 80 or older. The location-specific IFR is then calculated by

𝑖𝑓𝑟𝑚 = 4∑
𝑠=1 𝑤𝑠,𝑚 ⋅ 𝑖𝑓𝑟𝑠,

where𝑤𝑠,𝑚 is the proportion of the age category (stratum) of the population of country𝑚 and 𝑖𝑓𝑟𝑠 defines the age-specific
IFR in each stratum 𝑠.
As vaccinations substantially reduce the probability of dying, we make the assumption that the IFR at each location𝑚 changes as a function of the time-varying vaccination coverage. With growing coverage in the population, the IFR is

lowered. It is important to mention that older age groups in the population were vaccinated with a higher priority at
the beginning of the vaccination rollout in most countries. We include the effect of vaccinations by reducing the IFR
in the different age strata relative to their share of the population. Most countries do not provide enough information
about their vaccination progress in the different age groups. We therefore use publicly available data from France (Santé
Publique France, 2021) and extrapolate this information to all other countries, because themajority of European countries
used a similar vaccination strategy, making it plausible to assume that the evolution of vaccination coverage over time in
the different age groups was roughly comparable across different countries. We assume that after the first vaccination, the
probability of dying is reduced by 80%, that is, 𝛽𝑣𝑎𝑐𝑐𝜋𝐷 = 0.8 after a lag of 2 weeks. For example, Haas et al. (2021) found a
higher effectiveness against COVID-19-related deaths of the BNT162b2 vaccine. However, since not all countries use the
same type of vaccine and one can assume a reduction of the vaccine effectiveness as time goes on, we decide to use this
approximation with a lower effectiveness.
Finally, new mutations of the virus can change disease severity. For COVID-19, we include the effect of alpha (B.1.1.7)

and delta (B.1.617.2) in the considered time window. Fisman and Tuite (2021) provide information on the severity of these
variants of concern. To account for the fact that these variants changed the overall IFR, we combine the time-varying
prevalence of these variants of concernwith their disease severity. For B.1.1.7, we inflate the IFR by a factor of 𝛽𝑎𝑙𝑝ℎ𝑎𝜋𝐷 = 1.51
and for B.1.617 with 𝛽𝑑𝑒𝑙𝑡𝑎𝜋𝐷 = 2.08.
To test the robustness to the assumptions concerning the overall value of the IFR and the influence of variants of con-

cern and of vaccinations on the IFR, we conduct a number of sensitivity analyses (see Section G and Figures S8 and S9
in the Supporting Information for more details and results). Finally, many countries provide information on hospital and
ICU occupancy, and it is important to be able to integrate these two additional sources of information in the estima-
tion of the true and unknown number of infections wherever this is possible. We integrate this information through two
hospitalization models that have a very similar structure as the death model:

𝐻𝑡,𝑚 ∼ 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚(𝜇𝐻𝑡,𝑚, 𝜙𝐻),
where𝜇𝐻𝑡,𝑚 = 𝜋𝐻𝑡,𝑚∑

𝑢≤𝑡 𝐶𝑢,𝑚(𝐹𝜉𝐻 (𝑡 − 𝑢 + 1) − 𝐹𝜉𝐻 (𝑡 − 𝑢)),
where 𝜋𝐻𝑡,𝑚 varies over time in the same way as 𝜋𝐷𝑡,𝑚 to account for vaccination coverage and different virus variants. In
contrast to𝜋𝐷𝑡,𝑚, however, we can estimate𝜋𝐻𝑡,𝑚 for each geographical region and do not have to consider it to be known. By
doing so, we can account for differences in medical care and definitions of hospital admissions and ICU admissions that
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may vary between geographical regions. To account for vaccination coverage and the influence of virus variants, we define
parameters 𝜋𝐻𝑚 that are specific to each geographical region, but that do not change over time, and calculate 𝜋𝐻𝑡,𝑚 as the
product 𝜋𝐻𝑚 × 𝑔𝑡,𝑚 where 𝑔𝑡,𝑚 is a fixed quantity representing the effect of vaccinations and virus variants, assuming that
these factorsmodify the severity of the disease in the same time-varyingmanner as for𝜋𝐷𝑡,𝑚. 𝑔𝑡,𝑚 can therefore constructed
from 𝜋𝐷𝑡,𝑚 as 𝑔𝑡,𝑚 = 𝜋𝐷𝑡,𝑚∕𝜋𝐷1,𝑚.
We use exactly the same model for hospital (normal beds) and ICU occupancy. For the sake of brevity, we therefore do

not present the model for ICU occupancy in detail, but it can be obtained by merely changing the superscripts from𝐻 to𝐼𝐶𝑈. The two distributions,𝐹𝜉𝐻 and𝐹𝜉𝐼𝐶𝑈 , provide the probability that a personwith symptomonset on day 𝑡𝑜𝑛𝑠𝑒𝑡 occupies
a hospital or an ICU unit on day 𝑡𝑜𝑛𝑠𝑒𝑡 + 𝑡𝑑𝑒𝑙𝑎𝑦 with 𝑡𝑑𝑒𝑙𝑎𝑦 = 1, 2, 3, …. For the application to COVID-19, we obtain these
two distributions by combining information on the time between symptom onset and hospitalization with information
on the time a person occupies a bed or ICU after being hospitalized through Monte Carlo methods. See Sections D.2 of
the Supporting Information for a more detailed description of the definition of 𝐹𝜉𝐻 and 𝐹𝜉𝐼𝐶𝑈 .
2.2 Modeling the effects of NPIs and seasons

As mentioned above, we model the number of true and unknown infections as a discrete latent variable. To describe the
dynamics of the infectious disease, we assume that this latent variable follows the following renewal model:𝐼𝑡,𝑚 ∼ 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚(𝜇𝑡,𝑚, 𝜙𝐼),

where𝜇𝑡,𝑚 = 𝑅𝑡,𝑚∑
𝑢<𝑡 𝐼𝑢,𝑚(𝐹𝛾(𝑡 − 𝑢 + 1) − 𝐹𝛾(𝑡 − 𝑢)).

This renewal model describes the number of infected individuals 𝐼𝑡,𝑚 at each time point 𝑡 in geographical region 𝑚 as
a function of past infections, the instantaneous reproduction number 𝑅𝑡,𝑚, and the generation time distribution. To be
more specific, the expected number of infections 𝜇𝑡,𝑚 is the sum of the previous infections on the 𝑡 − 1 days before 𝑡
weighted by the corresponding probability mass of the discretized generation time distribution 𝐹𝛾(𝑡 − 𝑢 + 1) − 𝐹𝛾(𝑡 − 𝑢)
multiplied by the instantaneous reproduction number 𝑅𝑡,𝑚 at time 𝑡 in geographical region𝑚, where the generation time
distribution 𝐹𝛾(𝑡 − 𝑢 + 1) − 𝐹𝛾(𝑡 − 𝑢) represents the probability to transmit the infection from one infected individual to
another between time 𝑡 − 𝑢 and 𝑡 − 𝑢 + 1. Applying the renewal equation to past infections yields the current number of
infections 𝐼𝑡,𝑚 (see, e.g., Fraser et al., 2009), and it can be seen as a more flexible version of the disease dynamics described
in classical compartmental models for infectious diseases (Wallinga & Lipsitch, 2007). We assume that the latent variable
follows a negative binomial distribution. We set a prior on the size parameter with �̃�𝐼 ∼ 𝑁+(0, 0.015) where �̃�𝐼 = 1∕𝜙𝐼2.
Through this prior assumption, the dispersion is pushed toward smaller values (see Section 2.3 for an explanation). The
same prior is also used for the size parameter for the observed time series (i.e., 𝐶𝑅𝑡,𝑚, 𝐷𝑡,𝑚,𝐻𝑡,𝑚, 𝐼𝐶𝑈𝑡,𝑚).
We seed the model for the first day 𝐼1,𝑚 in each geographical region 𝑚 through a negative binomial distribution with

mean parameter 𝜏𝑚: 𝐼1,𝑚 ∼ 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚(𝜏𝑚, 𝜙𝐼), (1)

where we assume a hierarchical model for 𝜏𝑚, that is, each 𝜏𝑚 follows a truncated Normal distribution around a common
parameter 𝜏 that follows a Gamma distribution with shape 𝑎𝜏 and scale 𝑏𝜏.𝜏𝑚 ∼ 𝑁+(𝜏, 𝜎𝜏),𝜏 ∼ 𝐺𝑎(𝑎𝜏, 𝑏𝜏),𝜎𝜏 ∼ 𝑁+(𝜇𝜎𝜏 , 𝜎𝜎𝜏 ).
For a graphical display of the prior on 𝐼1,𝑚 that this hierarchical structure implies, see Figure S2 in the Supporting Infor-

mation.
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Following Flaxman et al. (2020), Brauner et al. (2021), and Sharma et al. (2021), we describe the effect of 𝐾 NPIs 𝛼𝑘,𝑚
through the following model:

𝑅𝑡,𝑚 = 𝑅0𝑡,𝑚 exp(−𝐾+3∑
𝑘=1 𝛼𝑘,𝑚 ⋅ 𝟙𝑘,𝑚(𝑡)

) ⋅ (1 − 𝑐1𝑡,𝑚 − 𝑐2𝑡,𝑚 ⋅ (1 − 𝑐1𝑡,𝑚))
with

𝑐1𝑡,𝑚 = ∑𝑢<𝑡 𝐼𝑢,𝑚𝑁𝑚 ⋅ (1 − 𝛽𝑟𝑒𝑖𝑛𝑓),
𝑐2𝑡,𝑚 = ∑𝑢<𝑡(𝑉𝑎𝑐𝑐1𝑢,𝑚 ⋅ 𝛽𝑣𝑎𝑐𝑐1 + 𝑉𝑎𝑐𝑐2𝑢,𝑚 ⋅ 𝛽𝑣𝑎𝑐𝑐2)𝑁𝑚 ,

where 𝟙𝑘,𝑚(𝑡) are indicator variables taking the value of 1 if the 𝑘th NPI is active at time 𝑡 in geographical region𝑚 and 0
otherwise. The correction factors 𝑐1𝑡,𝑚 and 𝑐2𝑡,𝑚 reduce the transmissibility of the virus in the population: 𝑐1𝑡,𝑚 corrects for
previously infected individuals. Since an infectionmay not guarantee protection against the infectious agent, we include a
parameter 𝛽𝑟𝑒𝑖𝑛𝑓 giving the probability of reinfection. The term 𝑐2𝑡,𝑚 corrects for vaccination coverage where∑𝑢<𝑡 𝑉𝑎𝑐𝑐1𝑢,𝑚
and ∑𝑢<𝑡 𝑉𝑎𝑐𝑐2𝑢,𝑚 are the number of vaccinated individuals in the population at time 𝑡 and geographical region 𝑚 and𝛽𝑣𝑎𝑐𝑐1 and 𝛽𝑣𝑎𝑐𝑐2 represent the probability of infection after a first and second vaccine dose.
Besides NPIs, we also include the effect of seasons (choosing summer as reference category, resulting in 𝐾 + 3 indica-

tor variables in total) where each indicator variable is 1, if the current 𝑡 corresponds to the according season. Since it is
reasonable to assume variations in the effect of NPIs and seasons between different geographical regions, we allow for
country-specific effects that are linked through a hierarchical structure. This hierarchical structure makes it possible to
share information between regions to infer an overall effect of the NPIs while allowing to estimate individual effects that
are specific to each geographical region: 𝛼𝑘,𝑚 ∼ 𝑁(𝛼𝑘, 𝜎2𝛼𝑘).
The basic reproduction number 𝑅0𝑚 may vary over time due to the occurrence of different variants that modify the trans-
missibility of the virus. We propose a convex combination to construct a time-dependent basic reproduction number 𝑅0𝑚.
For the application to COVID-19, we account for two variants of concern yielding the following formula:

𝑅0𝑡,𝑚 =𝑅0𝑚 ⋅ (1 − 𝑝𝑎𝑙𝑝ℎ𝑎𝑡,𝑚 − 𝑝𝑑𝑒𝑙𝑡𝑎𝑡,𝑚 )+(1 + 𝛽𝑎𝑙𝑝ℎ𝑎) ⋅ 𝑅0𝑚 ⋅ 𝑝𝑎𝑙𝑝ℎ𝑎𝑡,𝑚 +(1 + 𝛽𝑑𝑒𝑙𝑡𝑎) ⋅ 𝑅0𝑚 ⋅ 𝑝𝑑𝑒𝑙𝑡𝑎𝑡,𝑚 ,
where 𝑝𝑎𝑙𝑝ℎ𝑎𝑡,𝑚 and 𝑝𝑑𝑒𝑙𝑡𝑎𝑡,𝑚 are the prevalence of the alpha (B.1.1.7) and delta (B.1.617.2) variants, respectively, at each time 𝑡
in geographical region𝑚. The two unknown parameters 𝛽𝑎𝑙𝑝ℎ𝑎 and 𝛽𝑑𝑒𝑙𝑡𝑎 represent the increased transmissibility of these
variants compared to the wild type. We obtain a time variant reproduction number by taking the reproduction number of
the original wild type as basis and multiplying it with (1 + 𝛽𝑎𝑙𝑝ℎ𝑎) and (1 + 𝛽𝑑𝑒𝑙𝑡𝑎) which accounts for the effect of these
subsequent variants.
Finally, we allow for variation in the basic reproduction number among geographical regions. We therefore assume

reproduction numbers 𝑅0𝑚 that are specific to geographical region 𝑚 that are again modeled in a hierarchical manner
with common mean 𝑅0: 𝑅0𝑚 ∼ 𝑁(𝑅0, 𝜎2𝑅).
The proposed model requires a large set of parameters that are either estimable (and possibly with a prior) or have to
be specified as a fixed quantity. Table 1 provides an overview of all parameters of the model with their specifications.
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8 of 19 REHMS et al.

TABLE 1 Summary of all parameters used in the model.

Parameters to model disease dynamics
Parameter Description Additional information Prior𝐼1,𝑚 Initial number of infected individuals Location-specific (hierarchical) 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚(𝜏𝑚, 𝜙𝐼)𝐹𝛾 Generation time distribution 𝐺𝑎(5, 0.45) Fixed𝜏𝑚 Expected mean of 𝐼1,𝑚 Location-specific (hierarchical) 𝑁+(𝜏, 𝜎𝜏)𝜏 Mean over all 𝜏𝑚 Shared mean 𝐺𝑎(10, 1)𝜎𝜏 Variation of 𝜏𝑚 across all𝑚 𝑁+(0, 10)𝜙𝐼 Size parameter of infections Prior on �̃�𝐼 = 1∕𝜙𝐼2 𝑁+(0, 0.015)𝐼𝑡,𝑚 Number of infected individuals at 𝑡,𝑚 Location- & time-specific 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚(𝜏𝑚, 𝜙)𝑅0𝑚 Basic reproduction number for each𝑚 Location-specific (hierarchical) 𝑁(𝑅0, 𝜎𝑅)𝑅0 Mean 𝑅0 over all𝑚 Shared mean 𝑁(3.25, 0.05)𝜎𝑅 Variation of 𝑅0 over all𝑚 𝑁+(0, 0.01)𝛽𝑎𝑙𝑝ℎ𝑎 Increased transmissibility of variant For B1.1.7 𝑁(0.6, 0.01)𝛽𝑑𝑒𝑙𝑡𝑎 Increased transmissibility of variant For B.1.617.2 𝑁(1.5, 0.01)𝑝𝑎𝑙𝑝ℎ𝑎𝑡,𝑚 Prevalence at time 𝑡 in location𝑚 For B1.1.7 See supp. info (fixed)𝑝𝑑𝑒𝑙𝑡𝑎𝑡,𝑚 Prevalence at time 𝑡 in location𝑚 For B.1.617.2 See supp. info (fixed)𝛽𝑣𝑎𝑐𝑐1𝑡,𝑚 Effectiveness of vaccination With one dose 0.5 (fixed)𝛽𝑣𝑎𝑐𝑐2𝑡,𝑚 Effectiveness of vaccination With two doses 0.35 (fixed)𝛼𝑘,𝑚 Effect of the 𝑘th NPI at location𝑚 Location-specific (hierarchical) 𝑁(𝛼𝑘, 𝜎𝛼𝑘 )𝛼𝑘 Mean of the 𝑘th NPI over all𝑚 Shared mean 𝑁(0, 0.3)𝜎𝛼𝑘 Variation of 𝛼𝑘 over all𝑚 𝑁+(0, 0.015)
Parameters to infer the infections
Parameter Description Additional information Prior𝐹𝜉𝐶 Incubation time distribution 𝐺𝑎(5.68, 0.08) Fixed𝐹𝜉𝑅,𝑤𝑚 Reporting delay distribution See Supp. Info Fixed𝛽𝑤𝑚 Seasonal reporting at 𝑤 in𝑚 Weekday-specific 𝑈(0, 10)𝜙𝑅 Size for reported cases Prior on �̃�𝑅 = 1∕𝜙𝑅2 𝑁+(0, 0.015)𝜌𝑡,𝑚 Reporting ratio at 𝑡 &𝑚 Piece-wise constant 𝑈(0, 3)𝜋𝐷𝑡,𝑚 Infection fatality rate for location𝑚 See Section 2.1 Fixed𝑖𝑓𝑟𝑔 IFR for age stratum 𝑔 See Section 2.1 Fixed𝑤𝑠𝑚 Share of age stratum in location𝑚 See Section 2.1 Fixed𝛽𝑣𝑎𝑐𝑐𝜋𝐷 Effect of vaccination on IFR 0.8 (fixed)𝛽𝑎𝑙𝑝ℎ𝑎𝜋𝐷 Severity of B.1.1.7 1.51 (fixed)𝛽𝑑𝑒𝑙𝑡𝑎𝜋𝐷 Severity of B.1.617.2 2.08 (fixed)𝐹𝜉𝐷,𝑤𝑚 Symptoms-to-death distribution 𝐺𝑎(15.93, 0.1) Fixed𝛽𝐷,𝑤𝑚 Seasonal reporting at 𝑤 in𝑚 One for each weekday 𝑤 𝑈(0, 10)𝜙𝐷 Size for reported deaths Prior on �̃�𝐷 = 1∕𝜙𝐷2 𝑁+(0, 0.015)𝜋𝐻 Depends on 𝜋𝐷 via 𝑔𝑡,𝑚 𝑈(0, 10)𝐹𝜉𝐻 Symptoms-to-hospital occupancy See Supp. Info D.2 Fixed𝜙𝐻 Size of hospital occupancy Prior on �̃�𝐻 = 1∕𝜙𝐻2 𝑁+(0, 0.015)𝜋𝐼𝐶𝑈 Depends on 𝜋𝐷 via 𝑔𝑡,𝑚 𝑈(0, 10)𝐹𝜉𝐼𝐶𝑈 Symptoms-to-ICU occupancy See Supp. Info D.2 Fixed𝜙𝐼𝐶𝑈 Size of ICU occupancy Prior on �̃�𝐼𝐶𝑈 = 1∕𝜙𝐼𝐶𝑈2 𝑁+(0, 0.015)𝑔𝑡,𝑚 Correction to 𝜋𝐻 and 𝜋𝐼𝐶𝑈 Derived from 𝜋𝐷𝑡,𝑚 (Section 2.1) Fixed
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Furthermore, we provide a full directed acyclic graph (Figure 1), a summary of the model, and the full expression of the
joint posterior in Section A of the Supporting Information.

2.3 Inference, identifiability, and implementation

The flexibility of the proposedmodel can come at the cost of nonidentifiability issues. The first obvious problem of identifi-
ability occurs if we try to estimate the IFR 𝜋𝐷𝑡,𝑚, the probability of being hospitalized 𝜋𝐻𝑚 or being treated in ICU 𝜋𝐼𝐶𝑈𝑚 , and
the case detection ratios 𝜌𝑡,𝑚 simultaneously. This problem is easily circumvented by considering one of the four param-
eters as known. As the IFR can be reliably estimated in seroprevalence studies and modified by accounting for factors
like the age structure of the population, vaccination coverage, and the prevalence of different variants, we consider this
factor known to be able to estimate the three remaining factors. The second identifiability issue arises in the estimation of
the number of true and unknown infections. Since we assume that this variable follows a negative binomial distribution
where the expected value is a function of the effects of NPIs (that are to be estimated), themodel can in theory describe the
data through any set of values for these parameters if the dispersion is high (i.e., the size parameter is small). Moreover,
the dimension of the latent variable can be rather high depending on the length of the observation window and number
of geographical regions (the dimension in the latent variable grows with 𝑡 and𝑚). We address this issue by assuming an
informative prior for the different size parameters in the renewal model, the hospitalization models, and the death model
and by splitting 𝐼𝑡,𝑚 in blocks of 10 for each geographical region𝑚 to be able to update each block one at a time. Finally,
assuming a hierarchicalmodel structure on𝛼𝑘,𝑚,𝑅0𝑚, and 𝜏𝑚 has the advantage of stabilizing parameter estimates by using
information across countries. This effect is particularly important for the estimation of NPI. Since such interventions are
often implemented or relaxed as multicomponent interventions on the same or subsequent days in a country, it is difficult
to disentangle their effects if we assume country-specific effects that do not follow a hierarchical structure because the
estimated effects would be highly correlated. Using a hierarchical model allows us to account for variation in the effect
of these interventions while using the information across countries to reduce the correlation between effect estimates.
However, it is difficult to determine the exact amount of shrinkage that should be applied (expressed through the prior
distributions on the variance parameters). The choice needs to be transparently reported and tested in sensitivity analyses.
Due to the complexity of the hierarchical model, there is no analytical solution and we use a Metropolis–Hastings

algorithm (Hastings, 1970) to sample from the joint posterior distribution. For the simulation study and the application,
we fine-tune acceptance rates by using an adaptive phase (Brooks et al., 2011; Roberts & Rosenthal, 2009) and discard a
defined number of iterations as burn-in. We apply thinning to reduce the autocorrelation in the generatedMarkov chains.
For more details on the implementation, we refer to Section E of the Supporting Information.

3 SIMULATION STUDY

3.1 Data generation and study design

We carry out a simulation study with the aims (1) to assess the correctness of the implemented algorithm, (2) to inves-
tigate potential problems concerning the identifiability of model parameters, and (3) to assess the impact of model
misspecification concerning age stratification. We simulate date according to the model with prespecified parameters.
Afterwards, we apply the proposed model to the generated data sets and compare the results with the known parameters
and the latent variable. We generate 100 data sets with 10 geographical regions and an observation period of 600 days for
each of them. Thus, each data set contains 6000 rows of data. We specify five artificial interventions with mean effects𝛼1 = 0.22, 𝛼2 = 0.25, 𝛼3 = 0.3, 𝛼4 = 0.4, 𝛼5 = 0.45. This allows the reproduction number to be reduced by roughly 80%
when all NPIs are active. To obtain region-specific effects of NPIs, we sample from a Gaussian distribution with the corre-
spondingmean 𝛼𝑘 and a standard deviation 𝜎𝛼𝑘 = 0.01. The basic reproduction number is sampled in the same way using
a mean 𝑅0 = 3.25 and a standard deviation of 𝜎2𝑅 = 0.1. We seed the first day of the pandemic in each region by sampling
from a negative binomial distribution with a mean 𝜏𝑚 that is generated from a Gaussian distribution with mean 𝜏 = 10
and 𝜎𝜏 = 2. All size parameters of the negative binomial distributions are set to 1000 to obtain stable disease dynamics.
To obtain realistic time points at which the NPIs are set to active, we generate data in which the decision on whether an
NPI is set to active depends on ICU occupancy: To do so, we generate Bernoulli variables for currently inactive NPIs at
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10 of 19 REHMS et al.

TABLE 2 Average estimated effects of nonpharmaceutical interventions (NPIs) on simulated data. All values (except the coverage) are
taken as the mean over all simulated data sets and generated Markov chains for all 𝛼𝑘,𝑚 ’s.
Intervention True value Estimate Relative bias (%) Coverage (%)
NPI1 0.22 0.223 1.312 97.4
NPI2 0.25 0.253 1.140 97.0
NPI3 0.30 0.304 1.189 97.2
NPI4 0.40 0.406 1.462 95.0
NPI5 0.45 0.456 1.534 91.7

F IGURE 2 Results for the first three NPIs and 20 data sets. The horizontal line is the true mean value.

each 𝑡 with probability 𝑝𝑘,𝑡,𝑚 depending on ICU occupancy on 𝑡 − 1. In the case an NPI is activated, it remains active for
a random time period between 60 and 120 days.
We carry out a second simulation scenario to test the impact of misspecifying the mixing between different age groups

(third aim). The proposedmodel assumes homogeneousmixing by aggregating all time series over the different age groups
and only reflects different age compositions via the IFR. We test the impact of this potential misspecification by simulat-
ing age-stratified data with diffusion between the age groups and fit the model on the aggregated data. In Section F of
the Supporting Information, we provide further details on how the diffusion between age groups is performed. Table S1
and Figure S7 in the Supporting Information shows that aggregating over age strata has only a negligible impact on the
estimation of NPI effects.
The data generation is carried out in R version 4.0.4 (R Core Team, 2021). For further details, see the provided R scripts

that we used for the data generation.

3.2 Results on simulated data

We fit the model to each of the 100 data sets where we run two chains with 100,000 iterations and a burn-in of 50,000.
We apply thinning by keeping only every 60th iteration. We check convergence by analyzing traceplots and potential
scale reduction factors that are always < 1.01 (Gelman & Rubin, 1992). As can be seen in Table 2, the algorithm produces
estimates that are very close to the true NPI effects (with a mean relative bias of at most 1.534%) and very high coverage
rates. For illustration purposes, we present in Figure 2 the samples from the posterior as violin plot for the first three NPIs
and 20 data sets. Figure 3 shows the posterior predictions of the number of (unknown) daily infections (A) and reported
cases (B) for one of the 10 regions for one data set. For the simulated data, the model fits very well with a low uncertainty.
The results for the missspecified model can be found in Table S1 and Figure S7 of the Supporting Information.

4 CASE STUDY: MODELING COVID-19 IN 20 EUROPEAN COUNTRIES

4.1 Data sources

In our case study on COVID-19, we analyze data from 20 European countries (Austria, Belgium, Czechia, Denmark, Fin-
land, France, Germany, Greece, Hungary, Ireland, Italy, Netherlands, Norway, Poland, Portugal, Slovenia, Spain, Sweden,
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(a) (b)

F IGURE 3 Posterior predictions for two time series on simulated data. The (unobserved) infections are shown in A and reported cases
in B. Black encodes the true underlying simulated time series. The blue color represents the mean predictions with 95% credible interval.

Switzerland, United Kingdom). Following Flaxman et al. (2020), we define the start of the observation period in each
country as 30 days before 10 cumulated deaths were reported. We include data on the entire course of the pandemic until
the 31st of October 2021 resulting in a median length of 620 days. We use data on reported cases and deaths from the Johns
Hopkins CSSE COVID-19 Dataset (Dong et al., 2020). Data on the prevalence of variants of concern and hospital and ICU
occupancy are obtained from the European Centre for Disease Prevention and Control (European Centre for Disease Pre-
vention and Control, 2022), except for hospital and ICU occupancy for the United Kingdom, which is obtained from the
COVID-19 in the UK dashboard provided by the UK Health Security Agency (UK Health Security Agency, 2022). As the
data on the prevalence of different variants are only available on a weekly basis, we fit a sigmoid function with a squared
loss to obtain smooth daily data. More details on this procedure and the resulting time series are presented in Section C.2
with Figures S4 and S5 of the Supporting Information. Data on vaccinations are obtained from Our World in Data (Math-
ieu et al., 2021). Since we use a weighted IFR by age strata, we need information on the number of vaccinations in different
age groups. However, very few countries provide information on the age structure of currently vaccinated individuals. We
therefore use publicly available data from France and map the relative age-specific vaccination progress to other coun-
tries, making the assumption that the prioritization of vaccinations for different age groups evolved roughly in the same
manner across different European countries (see Section 2.1). We define the following interventions using information
from the COVID-19 Government Response Tracker (OxCGRT; Hale et al., 2021) resulting in five NPIs: school closure, gath-
erings, lockdown, subsequent lockdown, and general behavioral changes. The NPI “school closure” is active when at least
some levels of schools and universities (e.g., just high schools) are required to close, and “gatherings” captures the restric-
tion of gatherings to 10 or fewer people. We use two different NPIs depending on whether it was forbidden to leave the
house (with possible exceptions such as grocery shopping, and “essential” trips) for the first time (“lockdown”) or further
times (“subsequent lockdown”) because subsequent lockdowns often followed a much more detailed protocol. The last
NPI “general behavioral changes” is active from the first time an NPI was implemented in a country and remains active
until the end of the observation period. It subsumes many behavioral adaptations that were taken since the beginning of
the pandemic and that were respected by a large part of the population in many countries until the end of 2021. These
include, for instance, restricting physical contact, working from home wherever possible, higher alertness in case of any
respiratory disease symptoms, and the wearing of face masks in some countries. We give a more detailed overview of how
we derived these NPIs with the OxCGRT variable coding and the resulting time series (Figure S3) in Section C.1 of the
Supporting Information.

4.2 Challenges in the analysis of the observed time-series

Figure 4 illustrates the challenges in the estimation of the number of daily new infections in a given country by showing
the number of reported cases, hospital and ICU occupancy and deaths in the United Kingdom and various factors that
have an influence on disease transmission and severity. While the four observed time series show a similar trend during
the time between October 2020 and March 2021, they provide rather contradictory information in early-2020 and in late-
2021. In particular, the growth rates for the four time series are very different for specific time points (see, e.g., the steep
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12 of 19 REHMS et al.

F IGURE 4 Reported cases, hospital occupancy, intensive care unit occupancy, and reported deaths (multiplied by a factor of 20) in the
United Kingdom between early-2020 and late-2021. The four observed time series are influenced by the set of nonpharmaceutical
interventions that were active at each time point (shown at the top), the season (shown just below), and the number of persons having
received a first and second vaccine dose and the prevalence of different virus variants.

increase in reported deaths and hospital occupancy in the early-2020 vs. themore gradual increase in reported cases or the
very steep increase in reported cases in July 2021 and the comparably gradual increase in reported deaths). In early-2020,
it is obvious that, as in many other countries, only a small proportion of cases were reported because of limited testing
capacities. In late-2021, on the other hand, previous infections and vaccinations are likely to have led to fewer severe cases
of infections in the population. As a consequence, the numbers of reported deaths and hospital and ICUoccupancy are low
compared to the number of reported cases. Moreover, the reported time series are not only influenced by the set of NPIs
that is active at each time point, but also by the current season with higher infections observed in autumn andwinter than
in spring and summer and by the prevalence of different virus variants that influence both the transmissibility of the virus
and the severity of the disease. Overly simplistic analyses of these time series that only focus on a single indicator of disease
transmission and that ignore one or several of the various influencing factors and the weekly patterns in reported cases
and deathsmay obtain very different answers concerning the same research question, leading to contradictory results that
are difficult to communicate to the general public and decision-makers.

4.3 Results

We run eight chains with a burn-in of 20,000 followed by 50,000 iterations per chain. We apply a thin of 100 resulting in
4000 (i.e., 500 × 8) samples from the posterior distribution for each parameter. We run a longer adaptive phase with 200
adaptive steps (each with 100 iterations) to get good initial proposal standard deviations. For the final sampling proce-
dure, we again fine-tune these proposals by running 10 adaptive phases (with 50 iterations each). Information about the
convergence diagnostic for the parameters of major interest (NPIs and seasonal effects) and further results are presented
in Section E of the Supporting Information.
Estimated effects of NPIs Figure 5 provides information on the estimated relative reduction in the reproduction

number for NPIs and seasons, respectively. For NPIs, the smallest effect is “school closure” with a credibility interval that
includes zero. The most effective NPI is “general behavioral changes,” which we defined with the aim to capture several
protective measures that were respected by a large portion of the population between the beginning of 2020 and the end
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F IGURE 5 Reduction in the reproduction number for NPIs estimated across 20 European countries. Posterior distributions for the mean
effects 𝛼𝑘 are given in orange. Posterior predictive distribution for 𝛼𝑘,𝑚 reflecting effect heterogeneity across countries is shown in blue. They
are obtained by sampling from a normal distribution with mean 𝛼𝑘 and standard deviation 𝜎𝛼𝑘 for each iteration. The 50% and 95% credible
intervals are given as bold and normal lines, respectively.

of 2021 including, for instance, working from home wherever possible, higher alertness in case of any respiratory disease
symptoms, complyingwith hygiene recommendations, social distancing, and thewearing of facemasks in some countries.
When comparing the effects for the first lockdown with one or several subsequent lockdowns, we can see that the first

lockdown is estimated to have a larger effect than subsequent lockdowns, reflecting the fact that the first lockdown was
characterized by stronger restrictions and probably better adherence to these than subsequent lockdowns. Figure 6 shows

F IGURE 6 Increase in the reproduction number for seasons estimated across 20 European countries. Posterior distributions for the
mean effects are given in orange. Posterior predictive distributions are shown in blue. The 50% and 95% credible intervals are given as bold
and normal lines, respectively.
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(b)(a)

F IGURE 7 Posterior predictions of the reported cases for two countries, Hungary (A) and France (B). The observed time series are given
in black and the estimated mean with 50% and 95% credible intervals are shown in blue.

the results for the seasons. As expected, one can observe a strong seasonal influence with an estimated increase in the
reproduction number of about 14%, 30%, and 37% for spring, autumn, and winter, respectively.
Model fit and case detection ratios Figure 7 shows posterior predictive checks comparing the observed time series

and the posterior predictions for reported cases, hospital occupancy, and deaths for two selected countries, Hungary and
France. We chose these two countries, because they represent very different geographical regions in Europe, they differ in
their size, they present very different disease dynamics, and data on hospital occupancy were available for both countries.
The approach captures the weekly variation in reported cases and deaths that are specific to the two countries. Moreover,
it is capable of reproducing the three complementary time series, even though they provide quite contrasting information,
in particular, for the first wave. The model shows a tendency to overestimate hospital occupancy during the peaks of the
first and second waves of the pandemic for many countries, including Hungary and France. This overestimation might
be linked to increases in hospital mortality during the peaks of the first and second waves that are well documented for
several countries and have been linked to increasing strain on services that may have led to changes in the case-mix and
illness severity of admitted patients (Docherty et al., 2021; Gray et al., 2022; Jassat et al., 2021)
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(b)(a)

F IGURE 8 Estimated case detection ratios between early-2020 and late-2021 for Hungary (A) and France (B). The shades of blue
represent the standard deviation of the posterior with light blue indicating more uncertainty in the estimation. The inverse test positivity rate,
which can be interpreted as the number of tests that are performed to detect a case, is given in orange.

Integrating information on reported cases, hospital and ICU occupancy and deaths while accounting for time-varying
underreporting in the number of reported cases allow us to estimate variations in case detection ratios that occurred over
time. Figure 8 compares these estimated case detection ratios for Hungary and France between early-2020 and late-2021
with the inverse test positivity rate, that is, the number of tests that are performed to obtain a positive test. In general,
we observe high underreporting (i.e., very small detection ratios) for the first wave of the pandemic indicating that the
true number of infections by far exceeded the reported number of cases. Subsequently, the case detection ratios increased
during the summermonths and even reached values of over 100%, that is, there weremore cases being reported than there
were estimated true infections. Thismight be explained by the fact that the prevalence of the viruswas very low during this
period and the number of performed tests was very high. In this situation, theremay be a nonnegligible proportion of false
positive results and we can therefore expect the number of reported cases to exceed the number of true infections due to
the imperfect specificity of the tests (Bisoffi et al., 2020; Brownstein & Chen, 2021; Cohen & Kessel, 2020). However, these
resultsmust be interpretedwith caution as the estimated case detection ratios critically depend on the assumed value of the
IFR and on assumptions about how this case fatality rate changes as a function of virus variants and vaccination coverage.
In Section H of the Supporting Information, we present in Figure S10 the individual NPI estimations for each country, in
Figure S11 the estimated overcontagiousness of the variants of concern, in Figures S12–S14 the posterior predictions for
the observed time series, in Figure S15 the estimated infections (latent variable), in Figure S16 the estimated case detection
ratios, and in Figure S17 the trace plots for the mean NPIs.

5 DISCUSSION

Wepresented a Bayesian hierarchical approach for themodeling of infectious diseases that allows to integrate information
on the number of reported cases, hospital and ICU occupancy, and deaths in the estimation of the number of daily new
infections. As mentioned in Section 1, previous studies have used various modeling approaches to assess the effect of NPIs
on COVID-19 transmission, hospitalizations, and deaths (Banholzer et al., 2021; Brauner et al., 2021; Dehning et al., 2020;
Flaxman et al., 2020; Islam et al., 2020; Li et al., 2021a; Sharma et al., 2021; Unwin et al., 2020). Some of these report
different findings related to, for example, the magnitude of effect for a specific NPI, as well as the ordering of the relative
effectiveness of multiple NPIs. There are numerous other such studies, and systematically identifying and reviewing each
of them to compare their findings with those of our study is beyond the scope of this study. Indeed, the principal aim of
our study was to show how many of the shortcomings of previous modeling approaches can be overcome by adopting a
Bayesian hierarchical approach. Owing to its modular nature, it is possible to model the dynamics of infectious diseases
while allowing proper statistical inference and an evaluation of the fit to the observed time series. Moreover, we can
integrate the available information while accounting for various sources of uncertainty in this information. By explicitly
accounting for time-varying underreporting, seasonality, the spread of different virus variants, vaccination coverage, and
previous infections, it is possible to use information over long time periods rather than focusing on short time periods
duringwhich these factors remain roughly constant. Using this approach allows for the transparent reporting ofmodel and
parameter assumptions and is very flexible: It is thus straightforward to adapt the model to account for additional factors
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that might have an influence on disease dynamics. In contrast tomost othermodeling approaches, our approach explicitly
accounts for weekly patterns in the reporting delay distribution for reported cases and deaths, and it is therefore not
necessary to smooth these time series. The explicit estimation of new infections on a daily basis is amajor advantage if one
is interested in the effect of influencing factors that may show variations on a daily scale, for instance, weather conditions
(Tosepu et al., 2020), air pollution (Cole et al., 2020), or pollen (Damialis et al., 2021). Due to the flexible combination of
different submodels, it would also be straightforward to integrate further information, for example, on the number of tests,
onmeasurements fromwastewater, from seroprevalence surveys, or from randomized surveillance testing.Nicholson et al.
(2022) combine the latter information with targeted test counts using a stochastic SIR model on weekly aggregated data
to obtain fine-scale spatiotemporal prevalence estimates for the United Kingdom.
While the flexible modeling of the observed time series allows to account for different sources of uncertainty, it also

comes at the cost of making a number of model and parameter assumptions. Since our modeling approach implicitly
gives more weight to reported deaths and ICU and hospital occupancy than to reported cases (by compensating devia-
tions between the true and unknown number of infections and reported cases by differences in case detection ratios for
time periods at which the testing strategy changed), our assumptions on how disease severity (and therefore the IFR) is
influenced by vaccinations and virus variants play a crucial role in the model. To test the robustness to these assumptions,
we conducted extensive sensitivity analyses in which we assessed the degree to which NPI estimates are influenced by
variations in the assumptions concerning the overall IFR value and the effect of vaccinations and variants of concern on
the IFR. As can be seen in SectionG of the Supporting Information, variations in the assumptions concerning these factors
has a negligible effect on the estimates of NPI effects.
In our application to COVID-19, we only accounted for the wild type, the alpha, and the delta variant. In principle, it

would also be possible to account for the omicron (B.1.1.529) variant using the proposed approach, but there is evidence
that this new variant did not only increase the transmissibility of the virus and decrease the severity of the disease, but
also entailed changes in the generation time distribution and vaccine efficacy. As a consequence, accounting for omicron
would have required a great number of additional assumptions, and it was not in the scope of this work to find reliable
information to be able to make all these additional assumptions.
Despite evidence on the importance of asymptomatic infections in the transmission of COVID-19, we did not explicitly

distinguish symptomatic and asymptomatic cases in our case study concerning COVID-19. Indeed, it is not clear whether
this distinction would necessarily improve the model. This distinction is typically neither made by health authorities in
the reporting of cases nor in seroprevalence studieswhen estimating IFRs. Distinguishing symptomatic and asymptomatic
infections would therefore require additional assumptions, in particular, on IFRs that apply only to symptomatic cases,
without a clear benefit concerning the insights that we gain from the observable quantities.
Similarly, we assume homogeneous mixing between the different age groups and do not account for age stratification

in our model, but it is not clear whether accounting for age stratification would improve our estimates. Indeed, account-
ing for age stratification would require a great number of additional assumptions, including on the interaction patterns
between the age strata in the different countries and age-specific information on the number of reported cases, hospital
occupancy, ICU occupancy, and deaths, and this information is only available for a small proportion of the countries that
we considered in our application to COVID-19. Even if we had reliable information on mixing patterns between different
age groups and age-specific time series, it is not clear whether ignoring these age groups will strongly affect the estimation
of NPI effects. In accordance, the results on simulated data presented in Section F of the Supporting Information show
that violations of the homogeneous mixing assumption only have a minor influence on NPI estimates. While ignoring
age stratification might in general not have a large impact on our NPI estimates, it may lead to an underestimation of
the effect of school closures: Since our model relies more on reported deaths and ICU and hospital occupancy than on
reported cases, it might not be able to detect an increase or decrease in the number of new infections among children
because disease severity in this group is very low. While this reasoning is consistent with some empirical evidence (Fuku-
moto et al., 2021), others have found differing findings. Studies using various modeling approaches, for example, have
reported meaningful decreases in transmission, hospitalization, and deaths due to school closures (Haug et al., 2020; Li
et al., 2021a; Liu et al., 2021). Similarly, an overview of systematic reviews, which included and described mainly observa-
tional studies, also found that most systematic reviews reported benefits of school closures (Talic et al., 2021). However,
each of these studies, as well as many of the underlying studies included in the systematic review, emphasize concerns
related to their internal and external validity. Indeed, our model is designed to improve upon multiple assumptions made
and approaches taken by such evidence. Nevertheless, our finding that school closures only have a negligible impact on
disease dynamics has to be interpreted with caution.
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In many countries, the question of whether NPIs should be implemented as a function of reported cases or hospi-
tal occupancy was widely debated as both quantities are to some extent unreliable. The proposed Bayesian hierarchical
approach provides a framework in which information on both quantities (and on reported deaths and ICU occupancy)
can be integrated to predict epidemic development and health care demand in the near future to be able to weigh costs,
benefits, and uncertainties in a more robust manner in evidence-informed decision making. While we have developed
the approach with reference to COVID-19, the model could easily be adapted to any other known or presently unknown
infectious agent.
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Using a Bayesian hierarchical 
approach to study the association 
between non‑pharmaceutical 
interventions and the spread 
of Covid‑19 in Germany
Yeganeh Khazaei 1*, Helmut Küchenhoff 1, Sabine Hoffmann 2,3, Diella Syliqi 1 & 
Raphael Rehms 2,3

Non‑Pharmaceutical Interventions (NPIs) are community mitigation strategies, aimed at reducing the 
spread of illnesses like the coronavirus pandemic, without relying on pharmaceutical drug treatments. 
This study aims to evaluate the effectiveness of different NPIs across sixteen states of Germany, for a 
time period of 21 months of the pandemic. We used a Bayesian hierarchical approach that combines 
different sub‑models and merges information from complementary sources, to estimate the true and 
unknown number of infections. In this framework, we used data on reported cases, hospitalizations, 
intensive care unit occupancy, and deaths to estimate the effect of NPIs. The list of NPIs includes: 
“contact restriction (up to 5 people)”, “strict contact restriction”, “curfew”, “events permitted up to 
100 people”, “mask requirement in shopping malls”, “restaurant closure”, “restaurants permitted only 
with test”, “school closure” and “general behavioral changes”. We found a considerable reduction in 
the instantaneous reproduction number by “general behavioral changes”, “strict contact restriction”, 
“restaurants permitted only with test”, “contact restriction (up to 5 people)”, “restaurant closure” and 
“curfew”. No association with school closures could be found. This study suggests that some public 
health measures, including general behavioral changes, strict contact restrictions, and restaurants 
permitted only with tests are associated with containing the Covid‑19 pandemic. Future research is 
needed to better understand the effectiveness of NPIs in the context of Covid‑19 vaccination.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has quickly spread globally, with more than 38.4 
million cumulative confirmed Covid-19 cases in Germany from the beginning of the pandemic by the end of 
May 2023, including a total of 174,170 deaths associated with SARS-CoV-2  infection1. Starting from March 2020, 
different bundles of non-pharmaceutical interventions (NPIs), at different times with varying stringency have 
been implemented to control the transmission of the virus. This was mostly done to protect the most vulnerable 
individuals from infection and to mitigate the surge of patients requiring hospitalization. By doing so, it aimed 
to protect the healthcare system from being overwhelmed by a sudden influx of cases. These NPIs included but 
were not limited to, containment measures such as domestic or international travel bans, individual protection 
measures like mask-wearing requirements, social distancing measures such as school closing and gathering bans, 
and health system measures like testing and contact tracing. All the NPIs are considered essential components 
of public health that people and communities can take to help slow the spread of  illnesses2–4. However, the 
effectiveness of these policies remains a subject of debate, requiring further exploration to better understand the 
relationship between NPI intensity, duration, and their impact. It should be noted that, alongside these mandated 
policies, volunteer social behavioral changes were also observed during the pandemic. Thus the investigation of 
the impact of behavioral changes and concurrent NPIs is of immense importance.
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In light of the severe social and economic  costs5, affecting individuals’ behavior and mental health of these 
 interventions6, it is crucial to quantify the effects of these measures. During the past two years, there were several 
attempts to identify the most influential measures across the world including  Europe4,7–14. However, there is much 
discussion and controversy around the matter. In 2022, Rehms et al. proposed a Bayesian hierarchical approach, 
as a common framework, that integrates disease incidence, hospital occupancy, and mortality, as complementary 
sources of information to get a reliable estimate of the unknown number of infections. The model takes into 
account that published data suffers from time-varying under-reporting and reporting delays. Moreover, effects 
on the disease dynamics over time are incorporated: The effect of vaccinations starting on the 8th of December, 
2020, and the rise of new variants of concern, which accelerated the spread of the virus and increased its lethality. 
By explicitly modeling these characteristics, it is possible to look at a larger time horizon and therefore utilize 
more data, making the results more robust. Hence, one is not forced to look at small periods where constant 
disease dynamics can be assumed to justify simplified  models15.

Germany has implemented different containment and mitigation strategies starting in March 2020. In this 
paper, we apply the proposed Bayesian hierarchical approach for all sixteen states of Germany, for a time period 
of 21 months, and evaluate the effectiveness of different NPIs.

Materials and methods
Data sources and preprocessing
Selection of NPIs
This study includes various NPI time series obtained from the Corona data platform. A team of researchers from 
different institutes, including the Corona data platform, Infas, Infas 360, and the University of Bonn, funded by 
the Federal Ministry of Economics and Climate Protection of the Federal Republic of Germany collected regional 
data on an ongoing basis of all measures and epidemiological-medical as well as socio-economic indicators of 
all cities and  districts16. From 23 categories and 1152  subcategories17, 8 main measures, across 16 different states 
are selected: “contact restriction (up to 5 people)”, “strict contact restriction”, “curfew”, “events permitted up to 
100 people”, “mask requirement in shopping malls”, “restaurant closure”, “restaurants permitted only with test”, 
“school closure” and one additional NPI labeled as “general behavioral changes”. Rehms et al. proposed this 
NPI to account for changes in people’s behavior during the pandemic. This NPI is active all the time starting 
with the activation of the first  NPI15. It is important to account for such an effect as it makes the other NPIs 
more comparable (e.g. closing schools or restrictions on gatherings will not have a comparable effect if social 
distancing in case of respiratory symptoms is practiced). It can therefore be seen as a residual for untracked or 
latent NPIs which are not directly implemented by the government and are implicitly active through behavioral 
changes in the population.

The reasons for which we selected this set of NPIs are threefold: they either reflect the characteristics of a 
specific time span of the pandemic (curfew, events permitted up to 100 people, restaurant closure, restaurants 
permitted only with test, school closure), they enable us to compare two specific measures with different strict-
ness level (contact restriction (up to 5 people), strict contact restriction), or they evaluate the effectiveness of 
more long-lasting measures such as mask requirement in shopping malls. Note that not all of the interventions 
were implemented in all the states. We define the interventions as presented in Table 1.

Reported cases, hospitalizations, and deaths
We use the following official data sets: data on reported cases, hospitalizations, and deaths in Germany are pub-
lished daily by the RKI on a state  level18. The RKI is a German federal government agency and scientific institute 

Table 1.  Description of the defined non-pharmaceutical interventions (NPI).

Name of NPI Definition

Contact restriction (up to 5 people) Max. 5 people, except a household and close family members (private and public settings merged 
together)

Strict contact restriction Only persons of a household and close family members (private and public settings merged 
together)

Curfew Exit restriction; leaving the apartment only for a valid reason

Events permitted up to 100 people Indoor public events, up to 100 people

General behavioral changes

This NPI captures many behavioral adaptations people took during the pandemic and is active 
from the first time an NPI was implemented in a state and remains active until the end of the 
observation period. The list includes but is not limited to wearing masks, increased engagement in 
positive/negative health behaviors, working from home, less physical contact, and generally higher 
vigilance in terms of one’s personal health

Mask requirement In shopping malls and sales outlets

Restaurant closure Catering establishments of any kind are prohibited. The sale and delivery of takeaway meals are 
exceptions

Restaurants permitted only with tests Test-related access restrictions

School closure
Primary/secondary schools and partial/complete school closures merged together (selection of 1 
final class and grade, or selection of 2 final classes and grades, or emergency selection of 3 classes 
and grades for children of certain parent groups, or selection of 4 teaching sessions of only certain 
subjects). All school holidays for each state were added manually
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responsible for health reporting, disease control, and prevention. As the national register for Covid-19, it pre-
serves all identified disease cases reported by the local health authorities. In our analysis, we use daily reported 
cases, the number of new patients admitted to hospitals due to Covid during the past 7 days, and a daily number 
of deaths due to Covid-19, on a daily basis for each state.

Intensive care unit occupancy
Data on the daily occupancy of Intensive Care Unit (ICU) beds in Germany is made publicly available by the 
German Interdisciplinary Association for ICU Medicine and Emergency  Medicine19.

The hierarchical model
In this section, we provide a short description of the used model. A more technical description is given in the 
Supplementary Material Section B. To estimate the effect of the NPIs, we use a Bayesian hierarchical approach 
proposed by Rehms et al.15. Hierarchical models provide a flexible framework to describe complex phenomena 
through the combination of different submodels. Hereby, each submodel handles another small part of a big 
problem, making the intractable tractable. To apply the model to German data, we modify the proposed model, 
making it more flexible and tailored to the data. In the following, we give a short description of the model and 
its modification. For more insights on the methodological aspects, we refer to the original work of Rehms et al.15.

The model can be divided in two constituent parts: The first one infers the number of infections for each time 
point and region from given data. The second one infers, given these infections, the effect of the NPIs. The actual 
true number of infections can not be observed directly, as official numbers suffer from incomplete and delayed 
reporting, variations in testing strategies, and more. To infer these actual infections over time, the proposed 
model uses four different time series as complementary sources of information: reported number of deaths, cases, 
and the occupancy of hospital beds and ICUs. Each of the series provides individual information on the disease 
dynamics. For example, one could use the reported deaths to ’calculate back’ the number of infected individu-
als. We do this with all four series linking each of them through individual submodels. As we use a probabilistic 
Bayesian approach, the uncertainty about each of the linked models is preserved in the inferred number of 
infections. Given these inferred infections for every day in every region, it is possible to estimate the effect of the 
NPIs using a renewal equation (see e.g.20). The renewal equation formulates the disease dynamics as a function 
of the reproduction number and the past infections. It can be seen as a flexible version of classical compartment 
models like the SIR  model21. The reproduction number in this renewal equation is formulated as a function of a 
basic reproduction number and the effect of the NPIs. This quantities are then estimated within this framework.

To derive the unobserved infections, the model takes into account that data are reported with delays and suffer 
from seasonal and structural under-and over-reporting due to weekends and varying testing policies. Moreover, 
the model does not rely on constant dynamics over time: With the surge of new variants of concern, the contagion 
process and the infection fatality rate (IFR) change. Both quantities are also affected by the vaccination coverage 
of the population. By including all these factors, it is possible to use a much larger time horizon, resulting in more 
usable information to reliably infer the effect of NPIs. It is therefore not necessary to focus on short time periods 
during which disease dynamics and the degree of underreporting can be assumed to have remained constant. 
To get estimates of the NPIs, the model is designed in a hierarchical way: The effect of each NPI is estimated 
for each location (here, the federal states of Germany) separately while sharing a common mean and standard 
deviation. Therefore, the parameters can borrow information from each other while allowing for an individual 
effect for each location. The hierarchical formulation gives robust and reliable estimates of the NPIs’. Besides the 
effect of the NPIs, the effect of the seasons as a proxy for behavioral changes of the population with respect to 
drifts in weather and temperature are estimated as well. To fit the model of Rehms et al.15 to the German data, 
we modify it in two ways. Firstly, as Germany does not provide data about hospital occupancy, we use hospital 
admissions (for ICU, occupancy data were available). The time-shifting distribution to be used is simplified, 
as it is not necessary to model the time of occupancy. Secondly, we introduce a new parameter that allows for 
a change in the fraction of hospitalizations and ICU occupancy on the 1st of July 2020. This gives the model 
more flexibility to estimate the relationship between hospital data and unobserved infections. As there was only 
limited experience with COVID-19 in the first wave, the hospitalization pattern may have changed afterwards.

Data preparation
Official data for the first months of the pandemic were not available on the state level. We impute these data 
points as follows: We considered the sum of the first two weeks of the available data on reported deaths (as it 
is the most reliable source of information) and calculated the relative proportion of each state compared to all 
reported deaths in Germany. As aggregated data on the country level were available from the start of the pan-
demic, we use these estimated proportions to split this aggregated data into the theoretical number of reported 
deaths and cases for each German state (rounded to integers). This procedure implies that at the beginning of the 
disease, the infection dynamics are the same in each federal state. Following Rehms et al.15, we define the start 
of the observation period in each state as 30 days before the number of reported cumulative deaths reaches or 
exceeds a count of ten. The first considered dates range from the 18th of February 2020 for Bavaria to the 8th of 
March 2020 for Mecklenburg-Western Pomerania. The median of the considered days is 615. The observation 
period ends on 31 October 2021. The merging process of “Berlin & Brandenburg”, “Bremen & Niedersachsen” 
and “Hamburg & Schleswig-Holstein” is described in Supplemental A.1 Section.

Conducting Bayesian inference
The proposed model requires the definition of many different parameters (fixed and variable). To get sensible 
specifications, we use the same definition as Rehms et al.15. Fixed quantities are taken exactly as the specification, 
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as for Germany, and deployed for all states of Germany. This assumes, for instance, that the infection fatality rate 
for two persons who are doubly vaccinated and getting infected with the alpha variant of the virus at the same 
time is the same, regardless of their location. Prior distributions are also set in the same way as in Rehms et al.15.

Inference of the proposed model is done via Markov Chain Monte Carlo as described in detail in Rehms 
et al.15 using a customized Metropolis-Hastings update scheme tailored for the  model22,23. We run eight chains 
with 50,000 iterations. Beforehand, each chain used 20,000 samples as burn-in. We only keep each 100th value 
of each sampled Markov chain to reduce autocorrelation, resulting in a final sample of 4000 data points from the 
posterior distribution. The presented results are the derived empirical quantities from this model.

Results
We fit the model to our dataset, which included the list of NPIs (as described above), coded as dummy variables 
with the earliest start at 2020-02-18 until 2021-10-31 for 13 federal states. Each row was complemented by the 
data on the number of reported cases, hospitalizations, ICU occupancy, deaths, vaccination coverage, seasons, 
and variants of concern. Using our model, we were able to calculate the effectiveness of each NPI in reducing 
the instantaneous reproduction number as a percentage value for each measure.

Figure 1 shows the estimated effects of the NPIs as a reduction or an increase in % of the instantaneous 
reproduction number with a 95% credible interval. The effects are presented as the mean effects over all states. 
The largest effect is given by general behavioral changes, which reduces the reproduction number by 70% (CI: 
(68%, 71%)). This effect captures non-observable effects which are not encoded by other NPIs. The effect in the 
reproduction number was followed by a significant reduction with strict contact restriction by 14% (CI: (3%, 
24%)), restaurants permitted only with tests by 13% (CI: (9%, 17%)), contact restriction (up to 5 people) by 12% 
(CI: (7%, 16%)) and restaurant closure by 8% (CI: (3%, 13%)). Curfew showed a marginal effect by reducing the 
reproduction number by 7% (CI: (0%, 13%)), while events permitted up to 100 people showed an increase in 
the reproduction number by 7% (CI: ( −14%, −1%)). This increase was observed in school closures by 5% (CI: 
( −10%, −1%)) and mask requirement in shopping malls and sales outlets by 3% (CI: ( −7%, 1%)) as well, albeit 
not statistically significant. Furthermore, we estimate the effect of the season as a nuisance parameter. One can 
interpret its result as a relative change to the summer months, which serves as a reference category. We observed 
a significant negative effect for autumn (an increase in the reproduction number by 28% (CI: ( −33%, −23%)) 

Figure 1.  Estimated effects of the defined NPIs. The x-axis gives the relative reduction in % (obtained with the 
transformation 1− exp(−αk) from the original estimated values). The y-axis indicates the defined NPI. The 
colored area shows the distribution of the estimate. The number above each row shows the estimated mean 
effect along with a 95%-credible interval. As the numbers indicate a relative reduction, a negative value can be 
interpreted as a relative increase.
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and for winter (by 7% (CI: ( −13%, −1%)). Spring reduces the reproduction number significantly by 11% (CI: 
(7%, 14%)).

To test the robustness of the results, we also made three sensitivity analyses by varying crucial parts of the 
model that could influence the results. However, we found no substantial difference in the estimated effects. 
Besides the results relating to the NPIs, the model also estimates the unknown number of actual infections in all 
federal states. We show an aggregated version of these estimations in Fig. 2, i.e. the sum of the estimated infec-
tions over all federal states with a 75%- and 95%- credible interval in blue. For comparison, we also provide the 
reported cases (also aggregated to country level), but shifted by six plus seven days to account for the incubation 
time and the time until a case is actually reported. The estimation of the infections implies higher under-reporting 
in phases of large growth rates, in particular in the first and second wave of the pandemic. This effect seems to 
vanish around July 2021.

Discussion
Since the beginning of the Covid-19 pandemic, many recommendations have been made for citizens and several 
social measures have been implemented. Besides vaccination, NPIs play a unique role in preventing the pathogen 
from being transmitted. Previously, the effectiveness of NPIs across different countries was extensively reviewed. 
Here, we used a data-driven approach to estimate the effects of nine NPIs, from March 2020 to October 2021, 
in Germany. General behavioral changes were associated with the largest reduction in the effective reproduc-
tion number, followed by measures including strict contact restriction, restaurants permitted only with a test, 
contact restriction (up to 5 people), restaurant closure, and curfew. The current work showed that some NPIs 
were associated with a clear reduction in the instantaneous reproduction number, which was consistent with the 
increasing evidence indicating that NPIs are efficient in alleviating and controlling Covid-19 outbreaks. However, 
some NPIs showed mixed results compared with the existing literature.

We believe that by using the proposed Bayesian hierarchical approach, we can integrate different data sources 
and this has several benefits such as increasing the amount of data available for estimating NPI effects and 
reducing biases in the reporting of cases and deaths. Since we are not attempting to deduce the total number of 
Covid-19 infections, our results are more robust to violations concerning the assumptions about specific infec-
tion fatality rates (IFR). Lastly, we allow the effects of all NPIs to vary across states, acknowledging differences 
in NPI implementation and adherence.

There are some factors that limited our analysis of the estimation of NPI effects. First, defining NPIs proved to 
be a complex task. According to the Corona data platform, an NPI variable was considered active if the measure 
was in place at the federal-state level. This information, while exceptionally detailed and organized, was also 
dependent on the 7-day incidence rate, potentially resulting in a weekly pattern for NPI activation, as outlined in 
the Supplementary Material Section A. Therefore, we implemented a rigorous decision-making strategy to extract 
the NPI data. Second, many measures were introduced simultaneously (e.g., the introduction of mask require-
ments and the prohibition of mass events). Talic et al. noted a similar challenge, where over half of the 72 studies 
they reviewed couldn’t be included in their meta-analysis because they evaluated “packages” of measures in the 

Figure 2.  Estimated infections with 75%- and 95%- credible intervals in blue. In yellow we provide the reported 
cases for a better comparison. We shifted the reported cases by 13 days to the left to get a better comparison 
between the two curves. This shift reflects the mean time until an infected person is getting symptoms (roughly 
6 days) and being reported as an actual case (roughly 7 days) afterward.
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form of NPI combinations, making it impossible to assess the effects of each NPI  individually24. On the other 
hand, the imposition and relaxation of control measures varied across federal states. For instance, contact restric-
tions limiting gatherings to a maximum of 5 people in private settings were enforced in Baden-Württemberg in 
mid-March 2020, while the same restriction was applied in Bavaria in mid-May 2020. Similarly, we anticipated 
substantial variation in school closure measures since we accounted for school holidays, which are not uniform 
nationwide across Germany, meaning it is not the same in different states. Consequently, decisions on closing 
schools were sometimes made in accordance with school holidays; leading to instances of no implementation 
of school closures provided a holiday in place or sometimes merely extensions of existing holidays. Given the 
complexities described above, through the hierarchical formulation of the model, it is possible to identify the 
effect of an NPI, as long as there is some degree of heterogeneity among different locations. A third limitation in 
our analysis pertains to potential interdependencies among infection dynamics in different states. Unfortunately, 
our model cannot account for these potential dependencies.

The key strength of this study is twofold. First, we were able to use high-quality and comprehensive daily 
data on reported cases, hospitalizations, deaths, and occupancy of ICU beds provided by RKI and DIVI through 
their respective dashboards. Furthermore, a critical asset to our analysis is the Corona data platform, which 
consistently delivers detailed information on the implementation of NPIs at the state level on a daily basis. This 
granular dataset empowers us to define NPIs with precision, a fundamental requirement for our investigation. It is 
worth noting that the data on the platform is methodically based on the Oxford Stringency  Index25, a recognized 
metric for assessing governmental responses to the pandemic. Since March 2020, the platform has systemati-
cally collected official publications pertaining to Covid-19 protective measures and diligently categorized their 
content into various upper and subcategories. While our study shares a hierarchical data structure with the 
Oxford Stringency Index, it distinguishes itself through the depth and the content of the respective  coding17. 
The second strength is the use of a sophisticated model that comprises a wide variety of aspects, including but 
not limited to the use of the information from four different daily time series (reported cases, hospitalizations, 
deaths, and ICU occupancy) to infer reliable disease dynamics. While the model accounts for uncertainties in 
the information (e.g. under-reporting), it also considers effects like vaccinations and the emergence of new vari-
ants of concern making it possible to use information over a relatively long period of time giving more informed 
estimates. Moreover, we do not need to smooth the observed time series, since we account for variations in daily 
reporting patterns in reported cases and deaths.

The roles of general behavioral changes or measures and their public adoption during a pandemic have been 
evaluated  before26–28. The term general behavioral changes encompasses any actions that contribute to reduc-
ing the transmission of Covid-19 and, as a result, aid in containing the pandemic. Hence, this NPI subsumes a 
large variety of not directly defined NPIs which are more latent and are very difficult to define on an aggregated 
level. It can include various practices, such as practicing good hygiene by washing or disinfecting hands, fol-
lowing proper cough and sneeze etiquette, and regularly cleaning surfaces. Additionally, it involves engaging in 
voluntary physical distancing measures, such as staying at home, limiting close contact, and avoiding crowded 
places. Wearing masks or gloves, staying home when experiencing respiratory symptoms, utilizing testing ser-
vices, refraining from non-essential travel, and utilizing contact-tracing applications are among other measures 
included within this term. The definition of general behavioral changes can therefore be quite vague depending 
on the considered context of a study as it may include some of the mentioned aspects or not. In this work, the 
NPI general behavioral changes serve as a controlling variable, making other NPIs more comparable to each 
other by capturing latent NPIs that are not directly defined or implemented. It is therefore important, to interpret 
the result for this variable with caution. More often than not, general behavioral changes or measures are under-
evaluated and their consideration in the epidemiological models is  limited26. In an SEIR model suggested by 
Khairulbahri, they reported a reduction in infected cases of about 22%, by studying behavioral measures effect, 
which was consistent with the findings of our  study27. A reduction in the incidence of Covid-19 associated with 
physical distancing (75%, CI: (59%, 95%)) was reported in a meta-analysis by Talic et al., which is in line with the 
results of our  study24. In addition, Brauner et al. showed limiting gatherings to fewer than 10 people had a large 
effect size for reducing transmission at the advent of the pandemic (42%, CI: (17%, 60%))29. We found similar 
substantial reductions in the reproduction number for restaurants permitted only with tests and restaurant 
closure. Ledebur et al.30 reported restrictions in gastronomy reduced transmissions by about 17%. However we 
should keep in mind that their analysis focused on less disruptive measures that did not consist of full closures, 
but rather of restrictions such as mandatory registration of visitors, limits for the opening hours, or the number 
of people seated at a table. However, on the same note, the effectiveness of fully closing gastronomy has been 
repeatedly established in the  literature31–33.

We observed marginal effects for cancellation of events beyond 100 people and curfew in our results, which 
should be interpreted with caution. Previously, in a study on the effectiveness of a nighttime curfew in Ham-
burg, Germany, the researchers concluded that the curfew was substantially reducing the number of Covid-19 
 cases34. Several other studies found that nighttime curfews reduce mobility, hence they result in fewer Covid-19 
 infections35. It should be considered that we included curfew as an exit restriction; leaving the apartment only for 
a valid reason, which is considered a harsher intervention than a nighttime curfew. In detail, curfews and cancel-
lation of events beyond 100 people were implemented only over short periods across many states, and mostly, 
in co-treatments with other NPIs implemented at the same time. This endogeneity of the policies can hinder the 
estimation of the true effectiveness of NPIs. On the other hand, it has been discussed that strict exit restrictions 
that limit the lives of citizens might backfire and increase Covid-19  infections36. However, there is little and 
rather mixed evidence on the effectiveness of curfews with varying strictness to contain the Covid-19 pandemic.

Our study showed no evidence for the effectiveness of school closure. Previously, Talic et al. were not able to 
make a consensus for school closure, due to the high heterogeneity between studies. They qualitatively reported 
that school closure could be highly effective if implemented early, with low incidence rates of Covid-1924. This 
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is in accordance with Fritz et al who emphasized that the effectiveness of school closure in the case of Covid-19 
is inconclusive and high caution should be maintained when interpreting the results, specifically due to many 
socio-economic and psychological implications to  it37. Similarly, the same result was reported by Rehms et al. 
They estimated the smallest effect for school closure with a credibility interval that included  zero15. Moreover, 
Isphording et al. showed the number of Covid-19 infections did not increase with school re-openings in the 
summer of  202038. All in all, with the simultaneous implementation of different public health measures, the 
results should not be  overstated24,39,40.

Thoroughly examining the effectiveness of interventions presents relevant obstacles in terms of methodology. 
While simulation studies can investigate different situations, they rely on strong assumptions that may not be 
easily verifiable and bring a low level of  evidence41,42. As an alternative approach with potential, we used cross-
state modeling that is data-driven and compares the timing of state-wide interventions with the subsequent 
cases, hospitalization, ICU, or death counts. In the previous works, there was a fairly large variation among the 
inclusion of different sets of NPIs and methodologies in use. They reported varying results on the effectiveness 
of public health measures in reducing different outcomes such as incidence, transmission, or mortality. Hence, 
the comparison between these studies can be impeded by this variation. Talic et al. mainly used observational 
studies from different countries in their meta-analysis. They further explained the concern hovering around 
the ability of the mathematical models and their assumptions, to predict the course of virus transmission or the 
effectiveness of interventions was the main reason they excluded such studies in their meta-analysis24,43. Addition-
ally, sophisticated and flexible methods, like Bayesian longitudinal models, were used by some  researchers9,29,44. 
For instance, Hunter et al. used Bayesian generalized additive mixed models to adjust for spatial dependency 
in Covid-19 between nation states, as well as multilevel mixed-effects negative binomial regression model with 
cases or deaths on a specific day as the outcome  variable45. Some studies used linear regression, simple correla-
tion  coefficients41, or mixed effects linear  regression42.

Moreover, different outcomes of interest have been reported as well, including the number of confirmed 
cases, mortality or death rate, or confirmed deaths. Bo et al. evaluated the effectiveness of four types of NPIs on 
the transmission of Covid-19 by generalised linear mixed model, with city/country-level random intercept in 
the model to control for clustering effects within the same city/country46. At the same time, focusing on short 
time periods during the pandemic or using either the number of reported cases, intensive care occupancy, new 
hospital admissions, or deaths, as a single indicator of disease transmission, would give an incomplete picture of 
the pandemic. All things considered, the settings, methodologies, and results of these studies were inconsistent 
and the interpretation and application of their findings and methods should be done cautiously. Banholzer et al. 
pointed out that such huge variation in a plethora of published studies can result in the robustness of the results 
in different settings, as much as it can hinder conclusive evidence on the effectiveness of  NPIs44.

In conclusion, the current work contributes to the body of evidence on the effectiveness of individual NPI. 
As previously mentioned, serious deficiencies in the available empirical data are observable. Although our work 
focused on a data-driven approach to estimate the effects of NPIs, our estimates should not be taken as the final 
word on NPI effectiveness. Further high-quality original studies with reliable effect estimates are necessary in 
order to avoid unrealistic expectations or overestimation of the effectiveness of the NPIs.

Data availability
Supplementary materials for this paper are available from the publisher’s webpage including additional informa-
tion on data preprocessing, technical description of the model, and results of sensitivity analyses. The code to 
run the model is available in the following repository: https:// github. com/ Rapha elRe/ COVID_ NPIs_ Germa ny.
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Abstract

Exposure assessment in occupational epidemiology may involve multiple un-
known quantities that are measured or reconstructed simultaneously for groups
of workers and over several years. Additionally, exposures may be collected
using different assessment strategies, depending on the period of exposure. As
a consequence, researchers who are analyzing occupational cohort studies are
commonly faced with challenging structures of exposure measurement error,
involving complex dependence structures and multiple measurement error mod-
els, depending on the period of exposure. However, previous work has often
made many simplifying assumptions concerning these errors. In this work, we
propose a Bayesian hierarchical approach to account for a broad range of error
structures arising in occupational epidemiology. The considered error struc-
tures may involve several unknown quantities that can be subject to mixtures
of Berkson and classical measurement error. It is possible to account for dif-
ferent error structures, depending on the exposure period and the location of
a worker. Moreover, errors can present complex dependence structures over
time and between workers. We illustrate the proposed hierarchical approach on
a subgroup of the German cohort of uranium miners to account for potential
exposure uncertainties in the association between radon exposure and lung can-
cer mortality. The performance of the proposed approach and its sensitivity to
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model misspecification are evaluated in a simulation study. The results show
that biases in estimates arising from very complex measurement errors can be
corrected through the proposed Bayesian hierarchical approach.

1 Introduction

In occupational epidemiology, researchers are often interested in the association
between the cumulative exposure to a specific chemical or physical agent and the
time until an event occurs, such as a diagnosis of or death from a certain disease.
In this situation, exposure is time-dependent and ongoing, and the exposure his-
tory of workers may be collected using different assessment strategies depending
on the period of exposure. During the estimation process, measurement errors
can arise, leading to complex patterns of exposure uncertainty, where the struc-
ture and magnitude of measurement error can vary over time.
In many occupational cohort studies, there are no prospective exposure mea-
surements. As it is often infeasible or too costly to measure or to estimate
exposure values for individual workers, many occupational cohort studies rely
on job-exposure matrices (JEMs). In general, JEMs provide information about
exposure levels for certain job categories or titles [16]. The assigned exposure
value may also vary with respect to location and year. Although it is widely ac-
knowledged that exposure measurement error can have deleterious consequences
on the validity of statistical inference and may lead to erroneous conclusions,
researchers in the field of occupational epidemiology do not often account for
these errors [10]. Many of the publications account for measurement error use
Bayesian approaches [6, 49, 11, 5, 26, 34], while frequentist methods are also
employed [16, 35, 34, 3]. It is often assumed that errors follow a simple structure
where deviations of individual exposures for workers from the assigned exposure
level in a JEM is described as unshared Berkson error [4, 7, 30, 51]. However,
the estimation of the exposure values in a JEM often involves the estimation
of multiple uncertain quantities that may be subject to complex structures of
measurement error. Exposure values in a JEM are often reconstructed retro-
spectively by experts [44], leading to measurement errors that may affect several
groups of workers and several exposure years at the same time. As a conse-
quence, group-level estimates and individual job conditions may give rise to
mixtures of Berkson and classical measurement error with complex dependency
structures. While it is difficult to account for complex error structures using
available measurement error correction methods, they pose serious threats to
the validity of statistical inference in occupational epidemiology. Moreover, it is
unlikely that the bias introduced by these complex measurement error structures
can be adequately corrected for with methods that assume simple measurement
error structures, such as unshared Berkson error. In previous work, we found
that uncertainty components shared within workers cause more bias in risk es-
timation than components of unshared exposure uncertainty and that this can
lead to an attenuation of the exposure-response curve for high exposure values
[25], a phenomenon that is frequently observed in occupational cohort studies
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[24, 50, 51].
The aim of this paper is to demonstrate that even highly complex measurement
error structures, which may commonly arise in occupational cohort studies, can
be effectively addressed. We illustrate this by proposing a flexible hierarchi-
cal Bayesian framework capable of accounting for these complexities, applied
to the German cohort of uranium miners. Section 2 describes measurement
error structures that typically arise through the prospective and retrospective
exposure assessment in occupational epidemiology and the basic methodology
to account for them using a Bayesian hierarchical approach. In section 3, we
demonstrate the flexibility of the approach as a proof of concept using the Ger-
man cohort of uranium miners as illustrative example. We account for highly
complex structures of measurement errors that arises when studying the associ-
ation between radon exposure and lung cancer mortality, presenting preliminary
results for a selective subgroup of the Wismut cohort [28, 31]. Section 4 presents
a simulation study in which we evaluate the performance of the proposed ap-
proach and assess its sensitivity to model misspecification. In section 5 we
discuss our results and give an outlook for future work.

2 Accounting for measurement error in occupa-
tional epidemiology

2.1 Measurement error characteristics in occupational epi-
demiology

When describing measurement error, one commonly distinguishes classical and
Berkson error. A classical measurement error model describes the error prone
observed value Z as a function of the true value X and of an error term U that is
independent of X. For additive and multiplicative error, classical measurement
error can be written as Z =X +U and Z =X ⋅U with X ⊥⊥ U , respectively. Con-
versely, for Berkson error, the error term U is independent of the observed value
Z. Again, we can write X = Z + U and X = Z ⋅ U with Z ⊥⊥ U for additive and
multiplicative Berkson error, respectively. A classical measurement error model
is often employed to describe the measurement arising from a measurement de-
vice or through the estimation of experts whereas a Berkson model describes
the situation where the true and unknown value of a quantity of interest devi-
ates from a fixed and observed value. In an occupational cohort study, it is in
general plausible to assume that exposure measurement error is non-differential,
i.e. that errors are independent of the outcome since it is unlikely that errors
arising in the exposure estimation in an occupational cohort depend on the (fu-
ture) disease status of individual workers.
If a JEM is used, the same exposure level is typically assigned to all workers in
a job category (potentially also as a function of year and location). As a con-
sequence, measurement errors that arise from the estimation of this common
exposure level will affect all workers in that job category in the same way. In
cases where exposure values in a JEM are based on measurements and there
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is only one quantity that is to be measured (for instance pesticide levels, air-
borne contaminants or noise) the error arising through the estimation of the
exposure level given in the JEM can be described through a classical measure-
ment error component that is shared among workers in the same job category:
Z(t, j) = X(t, j) + U(t, j). Here, every worker who works at year t in job cat-
egory j will receive the same error U(t, j). In cases where exposure values are
reconstructed by experts rather than being based on measurements, the clas-
sical error component described above will often be shared for the entire time
period for which the estimation was made, leading to a classical measurement
error that is shared among workers and years: Z(pt, j) =X(pt, j) +U(pt, j) for
all job categories j and years t in the time period pt.
Deviations of each individual true exposure from the common exposure level
can then be described by unshared Berkson error. If the same value is as-
sumed for different locations, the true average value at each location may devi-
ate from this common value, leading to a Berkson error that is shared among
all workers in a given location. For instance, an additive shared Berkson error
at different locations o (e.g. mining objects) and years t could be written as
X(t, o) = Z(t, o) +U(t, o). Finally, even when exposure values are estimated in
a prospective fashion, there may be additional uncertain quantities involved in
the estimation that are retrospectively estimated by experts. We will describe
more complex error structures involving several uncertain quantities in more
detail in our application to the German cohort of uranium miners.

2.2 Accounting for measurement error

To account for measurement error using a Bayesian hierarchical approach, one
specifies three sub-models and concatenates them to a full joint model using con-
ditional independence assumptions [47]. This is similar to the procedure in a
likelihood-based approach [12, 17]. However, Bayesian approaches may be more
versatile from a computational perspective when it comes to the correction for
complex errors structures. In the following, we will give a short summary of the
general Bayesian approach. We start by defining the three required sub-models:
The disease model, measurement model and the exposure model.

Disease model: The disease model defines the relation [Y ∣X,θ1] between an
outcome Y and one or more covariates of interest X (at least exposure values),
where θ1 is the collection of all parameters of the disease model. We follow
Richardson and Gilks [47], to denote (possibly conditional) distributions using
squared brackets. In occupational cohort studies, a commonly used outcome is
the time until an event occurs, for instance the time until a specific diagnosis
or cause-specific death where the covariate of interest would be an exposure to
a specific chemical or physical agent.

Measurement model: The measurement model [Z ∣X,θ2] describes the re-
lation between the observed, error prone variable Z and the true, unobserved
values X for all uncertain quantities intervening in the calculation of individual
exposure values, parameterized by θ2. With respect to measurement errors that
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arise through application of a JEM, a combination of a classical and Berkson er-
ror can be used to describe the following situation: In general, the estimation of
the exposure for one group or job category is not measured precisely. Therefore,
a classical error can be assumed to reflect uncertainty in the estimation of this
common exposure level. Moreover, an additional Berkson error can describe
deviations of exposure values of individual workers from this common exposure
level. This leads to a combination of two different errors. Since multiple un-
certain quantities typically intervene in the estimation of an exposure level in a
JEM, we may often be faced with combinations of Berkson and classical mea-
surement error in multiple uncertain quantities. We illustrate this situation in
more detail in the next section for the Wismut cohort.

Exposure model: The exposure model defines the distribution [X ∣θ3] of the
unobserved exposure X. Note, that in the case of a Berkson error, a formulation
of an exposure model is not required. θ3 parameterized the distribution of X. If
we assume, for instance, that exposure values follow a normal distribution, the
parameters would be θ3 = (µX , σ2

X), i.e the assumed mean value and standard
deviation of the distribution of X.

We can combined the three models using conditional independence assump-
tions to formulate the unnormalized joint posterior over all unknown quantities
by assuming additional prior distributions on the parameters of the models [θ1],[θ2] and [θ3]:

[θ1, θ2, θ3,X ∣Y,Z]∝ [θ1][θ2][θ3][Y ∣X,θ1][Z ∣X,θ2][X ∣θ3]. (1)

We can use any suitable inference method to obtain the posterior. Most
prominent choices are Markov chain Monte Carlo (MCMC) [9], variational in-
ference [8] or integrated nested Laplace approximation [43, 48]. MCMC can
be considered as the most versatile approach and it can approximate the pos-
terior with arbitrary accuracy (at least in theory). This usually comes with
a substantially higher computational burden. MCMC algorithms generate a
Markov chain that has the posterior of interest as stationary distribution. After
initializing the chain at an arbitrary state, the chain will converge to the station-
ary distribution (samples before convergence are typically discarded as burnin).
Samples from this Markov chain can then be considered as samples from the
posterior. It is common to have a calibration phase at the beginning to sample
more efficiently and to thin the chain to obtain less correlated samples. Fur-
thermore, it is good practice to run multiple chains to parallelize computation
and to calculate common quality criteria like the R̂ statistic [15, 55].
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3 Application: Modeling the association between
radon exposure and lung cancer mortality in
the Wismut cohort

In the following, we will use the German cohort of uranium miners, also referred
to as Wismut cohort [28], as an example to illustrate how complex structures of
potential exposure uncertainties that may arise in occupational cohort studies
can be accounted for through a Bayesian hierarchical approach. The cohort
consists of 58,974 workers who were employed between 1946 and 1989 at the
Wismut company. We are interested in the association between the exposure
of radon gas (or rather the decay products) and lung cancer mortality. It is
generally acknowledged that the exposure to radon progeny is a relevant cause
of lung cancer [53]. For all exposure years in the cohort, individual exposure
estimates were based on a JEM [33, 32], which provides estimated annual expo-
sure values to radon progeny for a reference activity with 2000 working hours.
These values were then multiplied by a so-called activity weighting factor that
can be summarized as a correction factor for the different radiation exposures
associated with different activities. Further, the estimated annual exposure is
multiplied by a working time factor to adjust for deviations in the number of
standard working hours from a reference [31]. The individual annual exposure
is afterwards calculated by combining these quantities (see section 3.2 that ex-
plains this in more detail as part of the measurement model).

3.1 Disease model

In the Wismut cohort, we are interested in the association between radon expo-
sure and lung cancer mortality. We use a survival outcome, where lung cancer
mortality is a right-censored variable (Yi, δi) for each miner i ∈ {1, . . . n}, where
Yi denotes the attained age in years and δi is the censoring indicator. Attained
age is left truncated (at the time of entry into the cohort) and radon exposure,
denoted as Xcum

i (t), is a time-varying covariate that accumulates over years
t. Two popular model choices in radiation epidemiology are the proportional
hazards (PH) and the excess hazard ratio (EHR) model. The instantaneous
hazard for miner i in a PH model is defined as

hi(t;λ, β) = h0(t,λ) exp(β ⋅Xcum
i (t)),

where h0 is the baseline hazard and β the effect of the exposure on the instan-
taneous hazard. The baseline hazard does not depend on the covariates, but
may depend on time and a set of parameters λ. In the case of the EHR model,
th e instantaneous hazard hi(t;λ, β) is modeled as

hi(t;λ, β) = h0(t,λ)(1 + β ⋅Xcum
i (t)).
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The EHR model implies a constraint on β as the hazard must be positive.
In both cases, we assume a simplified linear model without effect-modifying
variables and we model the baseline hazard assuming an explicitly modeled
functional form as the correction for measurement error through a hierarchi-
cal model requires the formulation of the full likelihood. We choose a flexible
piecewise-constant function as model for the hazard baseline, parameterized
through λ = {λ1, . . . , λ4}, i.e. h0(t,λ) = λk ∀t ∈ Ik = (sk−1, sk], where Ik is the
time interval corresponding to the baseline hazard of λj that is defined through
the partitions 0 = s0 < s1 < s2 < s3 < s4 [27, 14, 39, 37]. Following Hoffmann et
al. [26], we use s1 = 40, s2 = 55, s3 = 75, s4 = 104 as break points and define the
priors on the parameters as

β ∼ N(0, σ2
β)

and

λk ∼ Ga(αλ
k , β

λ
k ) ∀k ∈ {1, . . .4},

where each λk has an individual prior specification through shape and scale
parameters αλ

k and βλ
k to reflect a stepwise increase in the baseline hazard. The

prior on β is chosen to be uninformative while the parameters of the baseline
hazard are chosen to be informative (see first part of section C in the supple-
mentary for a list of all chosen prior parameters of the disease model).

3.2 Measurement model for the Wismut cohort

In the Wismut cohort, the exposure values in the JEM were estimated through
different methods depending on the time period and the type of workplace (un-
derground, open pit, milling or surface). A mining location is also referred to as
an object in the Wismut cohort. Based on the preliminary work of Küchenhoff
et al. [31], Ellenbach et al. [13] characterize, quantify and develop measurement
models to describe the characteristics of exposure uncertainties arising in the
exposure assessment for all time periods and types of workplaces (see Figure 4
in section A for an overview). We consider five of these different measurement
models for the Bayesian approach: M1, M2, M2 Expert and M3 for underground
miners (depending on the time period and the availability of measurements for
radon gas and radon progeny), and M4 for miners employed at surface areas affil-
iated to mining locations. Besides, we assume no measurement error for miners
working in pure surface objects without exposure to radon. We do not consider
the error structures arising in processing companies and in open pit mining ob-
jects and exclude miners who ever worked in either of these two types of mining
locations, leading to a sub sample of 48,534 miners. Furthermore, we exclude all
miners whose working histories include measurement model MX Expert WLM,
which was defined by Ellenbach et al.[13] for cases in which information to re-
construct the exposure values according to the other measurement models was
lacking, finally leading to a selective sub sample of 34,809 miners. The cumu-
lated exposure of a miner is often derived considering different measurement
models, since most miners worked in more than just one time period or changed

7

8 Contribution III

72



the location over time. For the sake of readability, in this section, we describe
the measurement model M2 as it represents a typical error structure that may
arise through the use of a JEM. We refer to the supplementary material A for
the full specification of all measurement models.
Measurement model M2 was employed for workers in underground mining ob-
jects located in the federal states Saxony and Thuringia, Germany and devel-
opment objects in Saxony in the exposure assessment period 1955/56 to 1965
in Saxony and 1955/56-1974 in Thuringia. In this exposure assessment period,
exposure values were calculated using the following formula:

E(t, o, j) = 12 ⋅CRn(pt,o) ⋅ τ(t, o) ⋅ f(po,j) ⋅w (pt) ⋅ g (pt,o) , (2)

where E(t, o, j) denotes the estimated annual exposure to radon for a worker
who conducted activity j in location o and year t. 12 ⋅ CRn(pt,o) ⋅ τ(t, o) is
the estimated annual radon gas concentration for the reference activity (being
a hewer) and 2000 annual working hours. To obtain the annual exposure to
radon progeny, the exposure is multiplied by an activity weighting factor f(po,j),
which corrects for the fact that most activities had lower exposure to radon
than a hewer, as well as by a working time factor w(pt), which modifies the
reference working time of 2000 hours to obtain a smaller or higher amount of
working hours. By multiplying with an equilibrium factor g (pt,o), the measured
radon gas exposure is converted to radon progeny exposure in working level
months (WLM), which is the historical unit of radon exposure in cohorts of
uranium miners and related to the potential alpha energy concentration [38].
We call these different quantities uncertain factors as they are considered to
be potentially error-prone. With a slight abuse of notation, we define variables
pt, pt,o and po,j to express the dependence structures arising from the fact that
many of the uncertain factors were not estimated for individual years t and
locations o, but instead a common value was used for several years, locations
and activities (e.g. pt,o uses a common value for several years t and locations o).
Although there were ambient radon gas concentration measurements CRn(pt,o)
available for most years and locations in measurement model M2, there are
some years and locations for which there were no measurements. For these cases,
measurements from different years or locations were extrapolated and sometimes
adjusted with a transfer factor τ(t, o). In general, the use of a common value or
extrapolated measurements for several years, locations, and activities leads to
a shared classical measurement error for these years, locations, and activities.
For the radon gas concentrations, we assume a classical error component that
describes potential uncertainty in the measurement process. Since the average
radon gas concentration is the result of a large number of measurements, we
assume that the average of the measurements is distributed normally around
its true value, following the central limit theorem. Additionally, we assume a
Berkson error component only for those years and location without ambient
radon gas measurements but used the transferred values from other years or
locations. For the activity weighting, the working time and the equilibrium
factors, we assume both a classical and a Berkson measurement error component
to describe the potential uncertainty in the estimation of a common value and
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the variability around this common value for several years, objects and activities,
respectively:

CRn(pt,o) = CRn(pt,o) +UC,c(pt,o)
C′Rn(t, o) = CRn(pt,o) ⋅UC′

Rn
,B(t, o) ⋅ τ(t, o) (only if values were transferred)

f(po,j) = φ(po,j) ⋅Uφ,c(po,j)
φ′(t, o, j) = φ(po,j) ⋅Uφ′,B(t, o, j)
w (pt) = ω (pt) ⋅Uω,c (pt)
ω′(t, o) = ω (pt) ⋅Uω′,B(t, o)
g (pt,o) = γ (pt,o) ⋅Uγ,c (pt,o)
γ′(t, o) = γ (pt,o) ⋅Uγ′,B(t, o)

where C′Rn(t, o), φ′(t, o, j), ω′(t, o), and γ′(t, o) are the true values of the
radon gas concentration, the activity weighting factor, the working time fac-
tor, and the equilibrium factor respectively. CRn(pt,o), φ(po,j), ω (pt) and
γ (pt,o) are the true average (level) values for each of them and CRn(pt,o),
f(po,j), w (pt) and g (pt,o) are the level values that were estimated by experts.
For additive errors, we assume an error term that follows a normal distribu-
tion, i.e. UC,c(pt,o) ∼ N(0, σ2

C,c(pt,o)), for the radon gas concentration while
we assume a log-normal distributed error for multiplicative errors. That is

log(UC′
Rn

,B(t, o)) ∼ N (− 1
2
σ2
C′
Rn

,B(t, o), σ2
C′
Rn

,B(t, o)) for the Berkson error of the

radon gas concentration. We assume that the error distributions for the classical
and the Berkson error components of the other uncertain factors also follow a
log-normal distribution analogous to the Berkson error of the radon gas concen-
tration.
The true exposure of a miner i who is employed in activity j in object o and
year t is then given by:

Xi(t, o, j) = 12 ⋅C′Rn(t, o) ⋅ φ′(t, o, pj) ⋅ ω′(t, o) ⋅ γ′(t, o) ⋅ li(t, o, j) (3)

where the factor li(t, o, j) accounts for the individual time that a miner worked in
object o and activity j in year t. Equation (3) resembles equation (2). However,
it is important to note that now the different factors are latent variables that
are estimated in addition to the parameters of interest.
Given the individual exposure Xi, a cumulated individual exposure Xcum

i must
be calculated as exposure accumulates over time. For details and an example,
see section B.2 of the supplementary material. We show the full measurement
error model M2 in Figure 1 as a directed acyclic graph (DAG). See Ellenbach
et al. [13] for the DAGs of the other measurement models.
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Figure 1: DAG of measurement model M2. With circles we represent unknown
quantities and with boxes observed/fixed quantities. Single arrows indicate

probabilistic dependencies between the different quantities and double arrows
deterministic dependencies. The DAG does not include the prior parameters

and parameters of the exposure model.

3.3 Exposure model for the Wismut cohort

In the Wismut cohort, the uncertain factors vary depending on the measure-
ment model. We describe the exposure models for measurement model M2 and
refer to section C of the supplementary material for the exposure models of the
other measurement models. For M2, we do not only need to define exposure
models for the true and unknown radon gas concentration CRn(pt,o), but also
for the other uncertain factors, namely the activity weighting factor φ′(t, o, j),
the working time factor ω′(t, o) and the equilibrium factor γ′(t, o). The radon
gas concentration is assumed to follow a truncated Gaussian distribution with
varying priors over time on the mean and standard deviation to reflect varying
concentration levels over the years, i.e.

CRn(pt,o) ∼ N+(µCRn
(t), σ2

CRn
(t))

µCRn
(t) ∼ N(µCRn

, σ2
CRn
)

σCRn
(t) ∼ N+(µCRn

, σ2
CRn
).
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The other uncertain factors φ(po,j), ω (pt), and γ (pt,o) are assumed to follow
a generalized Beta distribution with modified support to an appropriate range
that represents realistic values:

φ(po,j) ∼ B[0,1.3](aφ, bφ),
ω (pt) ∼ B[0.6,1.5](aω, bω),

γ (pt,o) ∼ B[0.05,0.8](aγ , bγ),
where we use B[lo,up](a, b) to denote a Beta distribution with parameters a

and b and write the modified support in subscript with [lo, up] and we allow for
additional flexibility by setting the following priors on the shape parameters of
the Beta distributions (a and b):

am, bm ∼ N(µBm , σ2
Bm
), for m ∈ {φ,ω, γ}.

3.4 Inference using an efficient MCMC algorithm

After defining the disease, measurement and exposure model, we can use them
to write the unnormalized joint posterior for all workers and years where the
exposure assessment is based on measurement model M2. To get a compact
form, we use again squared brackets to denote the probability density function
(PDF) of a random variable.

[θ,Xcum ∣ ⋅]∝
[β][λ] [aω] [bω] [aγ] [bγ] [aφ] [bφ]∏

t

[µCRn
(t)]∏

t

[σCRn
(t)]×

∏
i,t

[Yi ∣ λ, β,Xcum
i (t)]×

∏
i,t

[Xcum
i (t) ∣Xi(t)]×

∏
i,t

[Xi(t) ∣ C′Rn
(t, o), φ′(t, o, j), γ′(t, o), ω′(t, o), li(t, o, j)]×

∏
t,o

[ω′(t, o) ∣ σ2
ω′,B , ω (pt)]∏

pt

[w (pt) ∣ σ2
ω,c, ω (pt)]∏

pt

[ω (pt) ∣ aω, aω]×
∏
t,o

[γ′(t, o) ∣ σ2
γ′,B , γ (pt,o)]∏

pt,o

[g (pt,o) ∣ σ2
γ,c, γ (pt,o)]∏

pt,o

[γ (pt,o) ∣ aγ , aγ]×
∏
t,o,j

[φ′(t, o, j) ∣ σ2
φ′,B , φ(po,j)]∏

po,j

[f(po,j) ∣ σ2
φ,c, φ(po,j)]∏

po,j

[φ(po,j) ∣ aφ, aφ]×
∏
t,o

[C′Rn
(t, o) ∣ σ2

C,c,CRn(pt,o)]∏
pt,o

[CRn(pt,o) ∣ µCRn
(t), σ2

CRn
(t)]

where θ denotes the collection of all latent quantities, i.e. θ = (β, λ, aω, bω,
aγ , bγ , aφ, bφ, µC(t), σC(t), C′Rn

(t, o), φ′(t, o, j), γ′(t, o), ω′(t, o), CRn(pt,o),
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φ(po,j), γ (pt,o), ω (pt)). Note that the fourth and fifth line do not represent
a probabilistic, but a deterministic relationship that expresses the connection
between the individual cumulated exposure of a worker and the value of the un-
certain quantities intervening in the calculation of the yearly exposure values.
We implement a custom Metropolis-Hastings (MH) algorithm with component-
wise updates [40, 9] to sample from the posterior. We briefly describe the
key-points of the MCMC algorithm. More details are presented in section B in
the supplementary material. All uncertain quantities are treated as latent vari-
ables that are updated at each sampling step of the MCMC algorithm one at a
time, starting with the parameters of the disease model. For the parameters of
the disease model, it is possible to condition on the cumulative latent exposure
Xcum

i leading to a simplified MH-ratio where only the disease model has to
be evaluated. The update of the latent exposure poses more challenges: After
proposing a new value for one of the uncertain factors, formula (3) can be used
to calculate the latent exposure and to evaluate the disease model. However,
this requires two extra steps:
1) Because the quantities are affected by shared classical and Berkson mea-
surement error within and between workers, caution is necessary as each error
is shared across different domains defined through the dependency structures
specified in the measurement model. For instance, the classical error part of the
working time factor ω, varies only over periods pt (i.e. it is shared for multiple
years), while the Berkson error is defined over every year t and object o. As
a consequence, the uncertain factor has to be mapped to its corresponding do-
main before it can be used for the calculation of the true and unknown exposure
values.
2) Given a new proposed state, the calculation in (3) returns only annual expo-
sure values. However, as the exposure of a worker accumulates over time, it is
necessary to calculate the cumulative exposure vector for each individual worker
over all the working years every time a yearly exposure value is proposed.
We used sparse matrix multiplication to solve both challenges. This is com-
putationally efficient because only non-zero values are stored and used for the
mapping and cumulation.
We implement the MCMC update scheme in python3 [54] in an object-oriented
fashion using mainly the standard numerical library numpy [18]. Statistical dis-
tributions and sparse matrix functionalities rely on scipy [56].

3.5 Results

In order to obtain 4000 independent samples from the posterior distribution, we
generate samples from eight independent chains with 100,000 iterations each and
and thin them by keeping only every 200th sample). Beforehand, we tune the
chains using 100 adaptive phases with 50 samples each to obtain better sampling
quality and run further 50,000 iterations as burnin. Figure 2 and Table 1 show
the results for a proportional hazards and an EHR model. We present as point
estimates the empirical mean and median and the 95%-highest density interval
(credible interval) as measure of uncertainty. The HDI represents the 95% of
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the most credible values [29].
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Figure 2: Violin plots of the samples from the posterior distribution for an
EHR (left) and proportional hazards model (right). Results that account for
measurement error are plotted in blue and the results from the naive models

without measurement error correction are plotted in green.

Disease model Correction Mean Median HDI (95%)

Proportional hazards
Corrected 0.1553 0.1532 [0.1066, 0.2032]

Uncorrected 0.1181 0.1181 [0.1088, 0.1275]

EHR
Corrected 0.3977 0.3917 [0.2614, 0.5352]

Uncorrected 0.3028 0.3025 [0.2567, 0.3471]

Table 1: Summary statistics of the parameter β (association between radon
exposure and lung cancer mortality) using a proportional hazards or an excess
hazards (EHR) model for the application on data of a selective subgroup of
the German uranium miners cohort. We present the empirical mean, median

and HDI calculated from the sampled posterior.

It is observable that without accounting for the assumed measurement error
structure, the estimated association between radon exposure and lung cancer
mortality in the selective subgroup of the cohort is underestimated by about
23.95% for the proportional hazards model and 23.86% for the EHR model
(when considering the empirical mean of the posterior distribution as point
estimate). This indicates that in this example, accounting for measurement
error results in an increase in the point estimate of the risk. However, it also
considerably increases the uncertainty of the risk estimate. We provide the
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convergence analysis in section D of the supplementary material.

4 Simulation study

We conduct a simulation study to assess whether the proposed Bayesian hi-
erarchical approach can produce reliable results when accounting for complex
structures of measurement error that may typically arise in occupational co-
horts. In the following, we will follow the structure proposed in Morris et al.
[42].

Aims

1) We want to ensure that an unbiased estimate for the parameter of interest
can be inferred; 2) We aim to test the frequentist properties of the proposed
approach by verifying if the 95% credible interval from the posterior samples ad-
equately covers the parameter of interest under the correct model assumptions;
3) We want to assess the sensitivity to model misspecification by estimating the
extent to which an incorrect specification of the distributions of the measure-
ment model can influence the results.

Data-generating mechanisms

We generate 100 data sets per scenario, where each data set simulates the work-
ing history and survival times of 5,000 miners. The simulation study uses not
only measurement model M2, but generates data over all measurement models
that were used for the application to the real data of the Wismut cohort, only
with the small simplification of no reference objects and thus no Berkson er-
ror component for radon measurements. To generate data sets that follow the
assumed probabilistic models of the different measurement models (see section
A of the supplementary materials), we first randomly draw 5000 miners from
a simplified cohort data set (due to data protection reasons) using only the in-
formation on whether a miner worked at the Wismut company and whether he
was exposed to radon in the respective year. All miners are randomly sampled
into different objects and different activities. Secondly, we sample the true av-
erage values of all uncertain factors, as well as all their classical and Berkson
errors from the respective distributions. We take the dependency structures into
account and generate shared errors accordingly. For example, for the working
time factor, we sample as many true mean values ω (pt) from a Beta distri-
bution and as many multiplicative classical errors Uω,c (pt) from a log-normal
distribution, as there are different values for pt. For the multiplicative Berkson
errors Uω′,B(t, o), we sample a separate value for each year t and each object
o from a log-normal distribution. We then obtain the true values of the uncer-
tain factors by multiplying the sampled true average values with the sampled
Berkson errors (e.g., ω′(t, o) = ω (pt) ⋅Uω′,B(t, o)). By multiplying (or adding in
the case of an additive measurement error) the sampled classical errors with the
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sampled true average values, we obtain the observed values of the uncertain fac-
tors (e.g., w (pt) = ω (pt) ⋅Uω,c (pt)). Then, the miners’ true exposures and their
error-prone observed exposures are calculated using, respectively, the true or
observed values of the uncertain factors according to the formula for the respec-
tive measurement model (see section A of the supplementary materials). The
Bayesian hierarchical approach uses the observed exposures for measurement
error correction and for the uncorrected naive estimate. The true exposures, on
the other hand, are used to generate the survival times. In particular, we gener-
ate the censored time until death by lung cancer according to a PH model as a
function of a miner’s radon exposure in WLM as time-varying covariate using a
method that relies on the generation of truncated piecewise exponential random
variables, initially proposed in Zhou [57] and further extended by Hendry [23]
and Montez-Rath et al. [41]. For the exact implementation of the simulation
code in R [45], we refer to the accompanying git repository.

Estimand

Our estimand is the parameter of interest β representing the association between
radon exposure and lung cancer mortality. In particular, we consider the samples
drawn for β as estimates of the posterior distribution.

Methods

We define three different scenarios for the simulation study. The first scenario
(S1) simulates data assuming β = 0.3, whereas the second scenario (S2) uses
β = 0.6. For both scenarios we apply the proposed model with measurement
error (ME) correction, as well as a naive one without ME correction to the
respective simulated data. Both scenarios should test the correctness of the ap-
proach covering aims 1) and 2). The third scenario (S3) is designed for aim 3):
We test the robustness of the model against wrong distributional assumptions
by investigating the impact of assuming a log-normal distribution for the radon
concentration measurements for those measurement models where the data is
simulated using a (truncated) normal distribution and vice versa assuming a
(truncated) normal distribution for models where the data is simulated using
a log-normal distribution. Furthermore, we want to investigate whether a mis-
specification of the distributional assumptions for the exposure models specified
for the uncertain factors other than radon concentration (e.g. working time)
impacts model performance in a significant way: Instead of flexible Beta distri-
butions (with additional priors on a and b), we force the model to use a fixed
uniform distribution implying a = b = 1 for the latent factors while using the
standard data generating process. All scenarios are fitted using solely a propor-
tional hazards model for the exposure-disease relationship and no EHR to keep
the computational cost feasible. For every scenario, we generated 100 data sets.
For scenarios S1 and S2 we used the Bayesian approach exactly as described in
section 3, and for scenario S3 we only modified the exposure models to account
for the wrong distributional assumptions. For scenario S1 and S2, we also run
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a model on the true, unknown values of the uncertain factors, as they were
measured without any error. For this we solely use formula (3) to calculate the
exposure and use only the disease model. It can therefore be seen as a reference
where one would expect very accurate estimates. Due to convergence problems
for some data set in the second scenario (S2), only 99 or 97 data sets are used
for S2 (see section D in the supplementary materials).

Performance measures

The main performance measure is the bias between the point estimate (empir-
ical mean) of the posterior distribution and the true value of β. We quantify
it by calculating the absolute and the relative bias. Furthermore, we estimate
the mean squared error (MSE). We calculate these quantities using the em-

pirical mean of the posterior distribution as point estimate β̂. Our secondary
performance measure is the proportion of the coverage of the true β value (that
was used to generate the data) in the interval estimate of β, estimated by the
empirical 95%-HDI.

Results

Table 2 shows the results for the different scenarios with their Monte Carlo
standard error in parentheses, that quantifies the simulation uncertainty due
to using a finite number of simulations [42]. The results are in line with the
results of the application on the data of the Wismut cohort: ignoring the mea-
surement error may lead to some bias. Through measurement error correction,
this bias can be eliminated for both scenarios S1 and S2 (aim 1) achieving a
bias level that is nearly as good as fitting a model directly to the true values
without measurement error. However, when accounting for measurement errors,
the 95%-HDI for the risk estimate becomes wider, even leading to overcoverage
in scenarios with beta = 0.3. Moreover, the results for S3 imply that a poten-
tial misspecification with respect to the exposure distribution on the radon gas
measurements or on other uncertain factors has only a negligible impact on the
estimates (aim 3). Further, we show the results of the posterior estimates for
the first 20 simulated data sets graphically over all considered scenarios in Fig-
ure 3 (naive estimates and measurement error correction). Looking at the mean
and 95%-HDI, one can see that the measurement error correction provides good
results while having slightly wider intervals caused by the higher uncertainty
induced through the error (aim 3). In section E of the supplementary material,
we analyze and discuss the convergence of the presented results.

5 Discussion

In this work, we proposed a Bayesian hierarchical approach to account for com-
plex structures of measurement error in occupational cohort studies. These
error structures can involve both multiple potentially uncertain quantities that
may be subject to complex mixtures of Berkson and classical measurement error
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S 1 (β = 0.3) S 2 (β = 0.6) S 3 (β = 0.3)
naive ME cor. true naive ME cor. true misspec1 misspec2

Absolute bias
-0.08 0.004 -0.002 -0.207 0.022 -0.003 -0.002 -0.004
(0.005) (0.003) (0.001) (0.01) (0.006) (0.001) (0.003) (0.003)

Relative bias
-0.266 0.014 -0.007 -0.344 0.037 -0.005 -0.007 -0.013
(0.018) (0.011) (0.002) (0.017) (0.009) (0.001) (0.01) (0.01)

MSE
0.0092 0.001 0.0001 0.0529 0.0036 0.0001 0.0009 0.0009
(0.001) (0.0001) (0.0) (0.0043) (0.0006) (0.0) (0.0001) (0.0001)

Coverage
0.12 0.99 0.95 0.031 0.959 0.959 0.98 1.0

(0.325) (0.099) (0.218) (0.172) (0.198) (0.199) (0.14) (0.0)

Table 2: Absolute/relative bias, mean squared error (MSE) and the coverage
using 95%-HDIs over 100 data sets (99 or 97 for S2, see section E in the

supplementary materials) for the different scenarios, i.e. S1 with β = 0.3 , S2
with β = 0.6 and S3 with two misspecified models using also β = 0.3. ’misspec1’
assumes a log-normal distribution for the radon concentration measurements
while data is simulated with a (truncated) normal or vice versa depending on
the measurement model. ’misspec2’ assumes a uniform distribution in the
exposure model on other multiplicative factors. The column with ’true’
calculates the model without measurement error correction on the true

unobserved values and is therefore a reference model.

and multiple measurement error models to tailor the assumed measurement er-
ror structures to the exposure assessment strategies that were used for different
workers and at different exposure periods. We illustrated the approach on data
of the Wismut cohort where and showed on simulated data that the proposed
approach is able to produce reliable results under the assumed data generating
processes.
However, a number of limitations have to be considered in the interpretation
of our results. Like any statistical method, the proposed approach to account
for measurement error may stand and fall with its implicitly and explicitly
stated assumptions. In the simulation study, we investigated how assuming an
additive error when the error is actually multiplicative and vice versa would
affect our results. We tested the robustness to this misspecification of the mea-
surement model, as a broad body of literature suggests a multiplicative error
[36, 52, 19, 20, 22, 21, 1, 2, 3] while we chose an additive error for measurements
of radon gas concentration and radon progeny whenever multiple measurements
were averaged.
We only considered a simplified model for the association between one (time-
varying) exposure and an outcome, but ignored effect modifying variables that
are known to be important in the association between radon exposure and lung
cancer mortality. This requires more future work and was not the focus of this
paper. Hence, the presented results should be interpreted as a proof of concept
and illustration and rather not as an answer to the question what the actual ef-
fect of the variable of interest is. However, the used Bayesian hierarchical model
would provide enough flexibility, to account for potential confounding and effect
modifying variables in future work.
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(b) β = 0.6, left: naive, right: ME corrected

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Misspecification 1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Misspecification 2

True mean Mean estimated Posterior 

(c) β = 0.3, left: misspecification first setting, right: misspecification second
setting, both with ME correction

Figure 3: Empirical mean and 95%-HDI (blue) derived from the posterior on
the 20 first data sets of the simulation study. Horizontal line: mean value,

yellow is the estimated empirical mean over all posterior means of β and black
denotes the true value of β.
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Data and code availability

We provide the full code of the implemented MCMC sampler. We also provide
all required files to re-run the simulation study. Moreover, we provide the code
that was used to run the application on the Wismut data. The repository can be
found at https://github.com/RaphaelRe/Wismut_ME_Bayes. The actual data
of the Wismut cohort cannot be shared due to privacy protection. However, we
share the generated Markov chains for both, application and simulation [46]
that can be used to produce all presented results.
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[3] R. S. Allodji, A. Thiébaut, K. Leuraud, E. Rage, S. Henry, D. Laurier, and
J. Bénichou. The performance of functional methods for correcting non-
Gaussian measurement error within Poisson regression: corrected excess
risk of lung cancer mortality in relation to radon exposure among French
uranium miners. Statistics in Medicine, 31(30):4428–4443, 2012.

[4] B. G. Armstrong. Effect of measurement error on epidemiological studies
of environmental and occupational exposures. Occupational and Environ-
mental Medicine, 55(10):651–656, 1998.

[5] S. M. Bartell, G. B. Hamra, and K. Steenland. Bayesian analysis of silica
exposure and lung cancer using human and animal studies. Epidemiology,
28(2):281–287, 2017.

[6] M. Belloni, C. Guihenneuc, E. Rage, and S. Ancelet. A Bayesian hierarchi-
cal approach to account for left-censored and missing radiation doses prone
to classical measurement error when analyzing lung cancer mortality due
to γ-ray exposure in the French cohort of uranium miners. Radiation and
Environmental Biophysics, 59:423–437, 2020.

[7] R. Bender, T. Augustin, and M. Blettner. Generating survival times to sim-
ulate Cox proportional hazards models. Statistics in Medicine, 24(11):1713
– 1723, 2005.

19

8 Contribution III

84



[8] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A
review for statisticians. Journal of the American statistical Association,
112(518):859–877, 2017.

[9] S. Brooks, A. Gelman, G. Jones, and X.-L. Meng. Handbook of Markov
chain Monte Carlo. CRC press, 2011.

[10] I. Burstyn. Occupational epidemiologist’s quest to tame measurement error
in exposure. Global Epidemiology, 2:100038, 2020.

[11] I. Burstyn, P. Gustafson, J. Pintos, J. Lavoué, and J. Siemiatycki. Correc-
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Ŕıo, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy,
W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant. Array program-
ming with NumPy. Nature, 585(7825):357–362, Sept. 2020.
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Distributed non-disclosive validation 
of predictive models by a modified ROC-GLM
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Abstract 

Background Distributed statistical analyses provide a promising approach for privacy protection when analyzing 
data distributed over several databases. Instead of directly operating on data, the analyst receives anonymous sum-
mary statistics, which are combined into an aggregated result. Further, in discrimination model (prognosis, diagnosis, 
etc.) development, it is key to evaluate a trained model w.r.t. to its prognostic or predictive performance on new inde-
pendent data. For binary classification, quantifying discrimination uses the receiver operating characteristics (ROC) 
and its area under the curve (AUC) as aggregation measure. We are interested to calculate both as well as basic indica-
tors of calibration-in-the-large for a binary classification task using a distributed and privacy-preserving approach.

Methods We employ DataSHIELD as the technology to carry out distributed analyses, and we use a newly developed 
algorithm to validate the prediction score by conducting distributed and privacy-preserving ROC analysis. Calibration 
curves are constructed from mean values over sites. The determination of ROC and its AUC is based on a generalized 
linear model (GLM) approximation of the true ROC curve, the ROC-GLM, as well as on ideas of differential privacy (DP). 
DP adds noise (quantified by the ℓ2 sensitivity �2(f̂ ) ) to the data and enables a global handling of placement num-
bers. The impact of DP parameters was studied by simulations.

Results In our simulation scenario, the true and distributed AUC measures differ by �AUC < 0.01 depending heav-
ily on the choice of the differential privacy parameters. It is recommended to check the accuracy of the distributed 
AUC estimator in specific simulation scenarios along with a reasonable choice of DP parameters. Here, the accuracy 
of the distributed AUC estimator may be impaired by too much artificial noise added from DP.

Conclusions The applicability of our algorithms depends on the ℓ2 sensitivity �2(f̂ ) of the underlying statistical/
predictive model. The simulations carried out have shown that the approximation error is acceptable for the majority 
of simulated cases. For models with high �2(f̂ ) , the privacy parameters must be set accordingly higher to ensure suf-
ficient privacy protection, which affects the approximation error. This work shows that complex measures, as the AUC, 
are applicable for validation in distributed setups while preserving an individual’s privacy.

Keywords Area under the ROC curve, Distributed computing, Medical tests, ROC-GLM
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Introduction
Medical research needs trust that the use of confiden-
tial patient data follows principles of privacy protection. 
However, depending on the released data, breaches of 
the patient’s privacy may occur [16]. Even when a patient 
gives informed consent that the researcher can have 
access to his/her pseudonymized patient data, it is neces-
sary to keep data in a protected environment and to pro-
cess it accordingly. Privacy-preserving modeling protects 
sensitive patient data [1].

Typically, multi-center studies in medicine or epidemi-
ology collect the data in a central study database and per-
form the analyses in a specifically protected environment 
following the informed consent of the study subjects. 
However, this requires an administratively challenging 
and time-consuming trustworthy data-sharing process.

Using only anonymous and aggregated data for analy-
sis can alleviate the administrative load for data sharing. 
Distributed data networks in clinical studies allow to lev-
erage routinely collected electronic health data and thus 
streamline data collection. Non-disclosing distributed 
analysis is an important part of this concept. It enables 
statistical analyses without sharing individual patient 
data (IPD) between the various sites of a clinical study or 
sharing IPD with a central analysis unit. Non-disclosing 
distributed analyses protect patient data privacy and 
enhance data security, making this a potentially advanta-
geous approach for medical research involving sensitive 
patient data. However, algorithms are needed to support 
robust multivariable-adjusted statistical analysis without 
the need to centralize IPD.

As a part of the German Medical Informatics Initiative1 
(MII) the Data Integration for Future Medicine (DIFU-
TURE) consortium [21] undertakes distributed data net-
work studies and provides tools as well as algorithms for 
non-disclosing distributed analyses. DIFUTURE’s spe-
cific objective is to provide digital tools for individual 
treatment decisions and prognosis and to develop dis-
tributed algorithms for the discovery and validation of 
prognostic and predictive rules. In the following paper, 
we investigate how the area under the curve (AUC) and 
its confidence intervals (CIs) proposed by DeLong et al. 
[6] behave if the computed AUC uses a generalized linear 
model (GLM) approach of Pepe [19] in a distributed dif-
ferential privacy framework. We can also determine and 
view the ROC using distributed analyses.

The concept of differential privacy was operational-
ized by Dwork [7]. An algorithm is considered to be dif-
ferential private if an observer cannot determine based 
solely on the output whether a particular individual’s 

information was used in the computation. Differential 
privacy ensures protection of patient data privacy, as dif-
ferential private algorithms are more likely to resist iden-
tification and re-identification attacks [8] than alternative 
approaches.

The ROC curve and its AUC in pooled IPD testing data 
as well as assessing the quality of calibration  [27] is the 
state-of-the-art of prognostic/predictive validation tech-
niques in a binary classification setting. In general, IPD 
transfer requires specific patient consent, and data pro-
tection laws apply. Here, we present a non-disclosing 
distributed ROC-GLM, which we use to calculate the 
ROC curve, its AUC, and the respective CIs. These meth-
ods and their implementation in DataSHIELD frame-
work [10] allow analyses in which IPD does not leave its 
secured environment. This way, only noisy IPD under dif-
ferential privacy or anonymous and aggregated statistics 
are shared, thereby preventing the identification of indi-
viduals. We also demonstrate that assessing the calibra-
tion of binary classification rules based on distributed 
calculation is a straightforward task.

We motivate our approach by looking at the binormal 
classification case, where individuals with negative or 
positive outcome have N (µ0, σ

2
0 ) or N (µ1, σ

2
1 ) distrib-

uted scores with µ0 < µ1 . With a = (µ1 − µ0)/σ1 and 
b = σ0/σ1 it holds that ROC(t) = �(a+ b ·�−1(t)) and 
AUC = �(a/(1+ b2)0.5) . In the case of non-normal 
score distribution, the ROC-GLM allows to approximate 
the respective ROC and AUC by using the same expres-
sions where a and b are estimated from a probit regres-
sion. Furthermore, the ROC-GLM approach allows a 
simultaneous estimation of ROC curves and AUCs over a 
set of subgroups defined by covariates [19].2

Contribution The work herein proposes new privacy-
preserving algorithms adapted to the distributed data 
setting for the ROC-GLM [18], the AUC derived there-
from, and its CIs for that AUC. To validate the algo-
rithms, we provide a simulation study to assess estima-
tion accuracy. We compare the results with those from 
the standard procedure. Furthermore, we apply the pro-
posed algorithms to validate a given prognostic rule on 
data of breast cancer patients.

We describe how the concept of the distributed ROC 
analysis can be incorporated into the ROC-GLM by  
using differential privacy. We generate privacy-preserving  
survivor function that can be communicated without 

1 www. mediz ininf ormat ik- initi ative. de

2 Note, that the estimation of a ROC-GLM is not unbiased in the non-
normal case. We provide an illustrative counterexample in Appendix  A.6. 
which uses gamma-distributed score values in the outcome groups.
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the threat of privacy breaches. Furthermore, we outline 
a distributed Fisher scoring algorithm [14] that estimates 
parameters for the ROC-GLM. In addition, we describe 
a privacy protecting distributed calibration approach and 
demonstrate that distributed GLM model building does 
not impose specific algorithmic challenges. Furthermore, 
we introduce a distributed version of the Brier score [5] 
and the calibration curve [28]. The bycatch of the princi-
ples described is a privacy protected version of the binor-
mal ROC and its AUC.

Related literature
Boyd et al. [3] calculate the AUC under differential pri-
vacy using a symmetric binormal ROC function. How-
ever, our approach is more general and allows extension 
to non-parametric data with multiple covariates. While 
they derive the AUC from the ROC parameters, we 
also use integration techniques. In addition, we provide 
CIs for the AUC. Ünan et  al. [25] use homomorphic 
encryption to calculate the ROC curve. Their approach 
does not provide CIs or an extension to multiple covar-
iates. To the best of our knowledge, a modified ROC-
GLM algorithm for non-disclosing distributed analyses 
has so far not been developed.

Background
Throughout this paper, we consider binary classifica-
tion, with 1 for a case with the trait(s) of interest (i.e., 
“diseased”, “success”, “favorable”) and 0 for the remain-
ing cases (i.e., lacking trait(s) of interest, “healthy”, 
“no success”, “unfavorable”). Furthermore, f (x) ∈ R 
is the true score based on a true but unknown func-
tion f for a patient with a feature vector x (the indi-
vidual realization of an underlying random vector 
X  ). In this paper, the score can also express a pos-
terior probability with f (x) ∈ [0, 1] . The function 
f is estimated by a statistical (classification) model 
f̂ : Rp → R . The estimated individual score for a sub-
ject with feature or covariate vector x ∈ Rp is f̂ (x) . 
The training or validation data set used to fit or vali-
date f̂  is denoted as D = {(x1, y1), . . . , (xn, yn)} with 
yi ∈ {1, 0} . The score f̂ (x) and a threshold value c ∈ R 
are used to define a binary classifier: �[c,∞)(f̂ (x)) . 
On an observational level, x1,i and x0,i indicate the ith 
observation that corresponds to a positive or nega-
tive output y. The number of observations in D with 
output 1 and 0 are denoted by n1 and n0 . The set of 
scores that corresponds to the positive or negative 
output is denoted by F1 = {f̂ (x1,i) | i = 1, . . . , n1} and 
F0 = {f̂ (x0,i) | i = 1, . . . , n0} , with F1,i = f̂ (x1,i) and 
F0,i = f̂ (x0,i).

ROC curve and AUC 
To quantify the quality of a binary classifier, we use the 
true positive rate (TPR) and false positive rate (FPR) with 
values between 0 and 1: TPR(c) = P(f (X) ≥ c | Y = 1) 
and FPR(c) = P(f (X) ≥ c | Y = 0) for threshold 
c ∈ R  [18]. These probability functions are also known as 
positive or negative  survivor functions S1(c) = TPR(c) 
and S0(c) = FPR(c) . The ROC curve is defined as 
ROC(t) = S1(S

−1
0 (t)) . The AUC as a measure of discrimi-

nation between the two distributions of the positive and 
negative class is given as AUC =

1
0 ROC(t) dt [30].

Empirical calculation of the ROC curve and AUC 
The calculation of the empirical ROC curve uses the empir‑
ical survivor functions Ŝ1 and Ŝ0 . These functions are based 
on the empirical cumulative distribution functions (ECDF) 
F̂1 of F1 and F̂0 of F0 : Ŝ1 = 1− F̂1 and Ŝ0 = 1− F̂0 . 
The set of possible values of the empirical TPR and 
FPR are given by S1 = {Ŝ1(f̂ (x0,i)) | i = 1, . . . , n0} and 
S0 = {Ŝ0(f̂ (x1,i)) | i = 1, . . . , n1} and are also called place‑
ment values. These values standardize a given score relative 
to the class distribution [19]. The set S1 represents the posi-
tive placement values and S0 the negative placement values.

The empirical version of the ROC(t) is a dis-
crete function derived from the placement values  
S1 ⊆ {0, 1/n1, . . . , (n1 − 1)/n1, 1} and 
S0 ⊆ {0, 1/n0, . . . , (n0 − 1)/n0, 1} . The empirical AUC 
is a sum over rectangles of width 1/n0 and height 
Ŝ1(f̂ (x0,i)) ([19], p.106):

Equation (1) is the empirical analogue of the expecta-
tions of the placement values, i.e. AUC = E(S1(f (x))) . 
The term f̂ (x0,i) is the score of the estimated statistical 
model for the negative output x0,i . The empirical AUC is 
a function of the empirical survivor function Ŝ1 evaluated 
at the score values for all negative outputs x0,i.

The empirical AUC is equivalent to the Mann-Whit-
ney U-statistic and inherits the respective distributional 
properties. For a sufficient large sample of n0 and n1 , it 
converges to the normal distribution.

CI for the empirical AUC 
CIs are calculated following [6]. The variance of the 
empirical AUC is determined by:

An asymmetric confidence interval which guar-
antees values within the interval (0,1) is derived 

(1)ÂUC = n0
−1

n0∑

i=1

Ŝ1(f̂ (x0,i)).

(2)v̂ar(AUC) =
v̂ar(S1)

n0
+

v̂ar(S0)

n1
.
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from a symmetric confidence interval for logit AUC 
ciα(logit(AUC)) using the logit−1 transformation (p 107, 
[19]):

The term �−1 denotes the quantile function of the 
standard normal distribution. The term of the standard 
error is a direct consequence of the application of the 
delta rule to logit(AUC).

Statistical testing can be conducted based on that 
CI. For example, the hypothesis H0 : AUC ≤ a0 vs. 
H1 : AUC > a0 with a significance level of α can be tested 
by checking whether logit(a0) < a , ∀a ∈ ciα to reject H0.

The ROC‑GLM
The ROC-GLM interprets the ROC curve as a GLM ([19], 
Section 5.5.2): ROCg (t|γ ) = g(γ h(t)) , with link function 
g : R → [0, 1], η �→ g(η) , coefficient vector γ ∈ Rl , and 
covariate vector h : R → Rl , t �→ h(t) = (h1(t), . . . , hl(t))

T . 
In general this estimator is not unbiased (see for example 
Appendix A.6).

Estimating the ROC-GLM uses an intermediate data 
set DROC-GLM = {(uij ,h(tj)) | i = 1, . . . , n1, j = 1, . . . , nT } 
with covariates h(tj) , a set of thresholds T = {t1, . . . , tnT } , 
and binary response uij ∈ {0, 1} , uij = �

(Ŝ0(F1,i),∞)
(tj) =

�(−∞,F1,i](Ŝ
−1

0
(tj)) . The simplest ROC-GLM uses the 

two-dimensional vector h(t) with h1(t) = 1 and 
h2(t) = �−1(t) . Setting the link function to g = � results 
in the binormal form ROCg (t|γ ) = �(γ1 + γ2�

−1(t)) . 
It is equivalent to a probit regression with response 
variable uij and covariate �−1(tj) . A common strategy 
for choosing the set of thresholds T is to use an equi-
distant grid.

(3)

ciα(logit(AUC)) = logit(ÂUC)±�−1

(
1−

α

2

) √
v̂ar(AUC)

ÂUC

(
1− ÂUC

) .

The estimated ROC curve ROCg (t|γ̂ ) results 
from the estimated model parameters γ̂ . The AUC 
from the ROC-GLM ÂUCROC-GLM is the integral 
ÂUCROC-GLM =

∫ 1
0 ROCg (t|γ̂ ) dt . Here, we use the 

R-function integrate  [20] or the explicit formula 
AUC = �(a/(1+ b

2)0.5) . Figure  1 visualizes the single 
steps of the ROC-GLM algorithm.

Differential privacy
Differential privacy (DP) is a theoretical framework which 
provides formal guarantees to restrict privacy leakage of 
individual information when statistical analysis is per-
formed on the data [9, 26]. One of the most prominent 
DP approaches adds noise r to a deterministic algorithm 
to obtain a randomized version M : X �→ Y with domain 
X  (e.g., X = Rp ) and target domain Y (e.g., Y = R in 
regression). Formally speaking a mechanism M is (ε, δ)
-differential private, if for any subset of outputs R ⊆ Y , 
the property P(M(x) ∈ R) ≤ exp(ε)P(M(x′) ∈ R)+ δ 
holds for two adjacent inputs.3 The value of ε controls 
how much privacy is guaranteed. Intuitively, this means 
that for a small ε , applying the randomized algorithm M 
on two datasets that only differ in one data point, the typ-
ical output (i.e. a high probability) of M for both datasets 
has to be nearly the same while a larger value of ε would 
allow that the typical output could differ more. The value 
of δ can be interpreted as the probability that ε-differen-
tial privacy is broken (see [8]). Hence, δ has to be set to 
a small value that should be at least less than the inverse 
number of data points. We provide an interpretation of 
the privacy parameter ε in Appendix A.3.

Fig. 1 The ROC-GLM(D) procedure starts with the data (D) and a model f for predicting scores Y. It calculates the survivor function Ŝ
D̄

 
and determines the intermediate data DROC-GLM . The probit regression estimates the parameters

3 In theory, multiple definitions of adjacent inputs exist. Throughout this 
article, adjacent inputs are based on a histogram representation x̃ ∈ N

p and 
x̃
′ ∈ N

p of two input vectors x and x ′ . Two inputs are adjacent if the ℓ1 norm 
of x̃ and x̃ ′ is equal to one: adjacent x , x ′ ⇔ �x̃ − x̃

′�1 = 1 (cf., [9]).
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We add normally distributed noise r to f̂  to obtain a 
private version of the estimated scores f̂ (x) (i.e. Gaussian 
mechanism): M(x) = f̂ (x)+ r . Hence, the obfuscated val-
ues of the survivor function F̃1 = {M(x1,i) | i = 1, . . . , n1} 
and not the original score values F1 are used for further 
calculations. The noise r follows a zero-mean Gaussian 
N (0, τ 2) , where its variance is set to the minimal value 
that guarantees a certain level of privacy. Balle and Wang 
[2] propose the analytic Gaussian mechanism which 
searches numerically for a minimal value of τ such that 
a defined level of privacy ( ε , δ ) for a given ℓ2-sensitivity 
is achieved. The sensitivity of an algorithm is defined as 
�2(f̂ ) = supadjacent x, x′ �f̂ (x)− f̂ (x′)�2 . Within this work, 
we first calculate the ℓ2-sensitivity of the prediction model 
f̂  to determine possible values of the privacy parameters 
(see Correctness of the AUC inferred from ROC-GLM and 
distributed ROC-GLM  section). Given these parameters, 
we subsequently determine the minimal required amount 
of noise τ for the analytic Gaussian mechanism. We provide 
further details and a visualization of the Gaussian mecha-
nism in Appendix A.2.

Distributed ROC‑GLM
General principles
A total of K data sets are distributed over a network of 
K sites: D(1), . . . ,D(K ) . Each data set D(k) consists of n(k) 
observations (x(k)i , y

(k)
i ) . The jth component of the ith fea-

ture vector of the kth site is denoted by x(k)j,i  . The ith out-
come on site k is y(k)i  . We assume (1) the single data have 
empty intersections and (2) the union of the distributed 
data is a subset of the full but inaccessible data set:

Instead of calculating the ROC-GLM for one local data 
set, we want to calculate the ROC-GLM on K distributed 
data sets D(1), . . . ,D(K ) . All shared information must 
comply with the following non-disclosing principles: 

A1  Given the value q, the privacy level, an aggregation 
a : Rd �→ R , v → a(v) is admissible for sharing the 
value a(v) if d ≥ q ∈ N . The privacy level requests 
a minimum number of values on which a(v) is 
derived. In the distributed setup, the aggregation 
a(v(k)) with n(k) unique values in v(k) shared from 
each of the K sites can then be further processed. 
Values a(v(k)) can be shared if n(k) ≥ q.

A2  Differential privacy  [7] is used to ensure non- 
disclosive IPD via a noisy representation.

(4)D =

K⋃

k=1

D(k), n = n(1) + · · · + n(K )

Distributed Brier score and calibration curve Cali-
bration of a probabilistic (or scoring) classifier is 
often addressed by the Brier score  [5] or a calibration 
curve  [28]. Both can be calculated by considering crite-
rion A1.

Brier score: The Brier score ( BS ) is the mean squared 
error of the true 0-1-labels and the predicted probabili-
ties of belonging to class 1. For the Brier score, the score 
f̂ (x) ∈ [0, 1] is given as posterior probability. The Brier 
score is calculated by:

Hence, having a prediction model f̂  at each of the K 
sites, we can calculate the Brier score by: 

1 Calculating the residuals e(k)i  based on the true label 
y
(k)
i  at site k and the predicted probabilities f̂ (x(k)i ) : 

e
(k)
i = y

(k)
i − f̂ (x

(k)
i ) , ∀i = 1, . . . , n(k).

2 Calculating asum(e(k) ◦ e(k)) , with e
(k) = (e

(k)
1

, . . . , e
(k)

n(k)
)T ∈ R

nk , 
the element-wise product ◦ , and aggregation 
asum(v

(k)) =
∑n(k)

i=1 v
(k)
i .

3 Sending asum(e(k) ◦ e(k)) and n(k) (if nk ≥ q ) to the host, 
who finally calculates BS = n

−1
∑

K

k=1
asum(e

(k) ◦ e(k)).

Calibration curve: To calculate a calibration curve, we dis-
cretize the domain of the probabilistic classifier f̂  in [0, 1] 
into nbin bins (for example, nbin + 1 equidistant points pi 
from 0 to 1 to construct the nbin bins bl = [pl , pl+1) for 
l = 1, . . . , nbin − 1 and bnbin = [pnbin , pnbin+1] for l = nbin ). 
The calibration curve is the set of 2-dimensional points 
pcal,l = (pfl , tfl) , with tfl = |Il |

−1
∑

i∈Il
yi as the true 

fraction of yi = 1 in bin bl and pfl = |Il |
−1

∑
iIl

f̂ (xj) 
as the predicted fraction for outcome 1 in bl . The set Il 
describes the observations for which the prediction f̂ (xi) 
falls into bin bl : Il = {i ∈ {1, . . . , n} | f̂ (xi) ∈ bl} . A prob-
abilistic classifier f̂  is well-calibrated if the points pcal,l 
are close to the bisector.

In the distributed setup, the points pcal,l are con-
structed by applying the distributed mean to both points 
for each bin at each site: 

1 Set all b1, . . . , bnbin , and communicate them to the 
sites.

2 Calculate the values c(k)l,pf = asum({f̂ (x
(k)
i ) | i ∈ I

(k)
l }) 

and c(k)l,tf = asum({y
(k)
i | i ∈ I

(k)
l }) for all l = 1, . . . , nbin.

3 Send {(c(k)
l,tf , c

(k)

l,pf, |I
(k)

l
|) | k = 1, . . . ,K , l = 1, . . . , nbin} to 

the host if |I(k)
l | ≥ q.

(5)BS = n−1
n∑

i=1

(
yi − f̂ (xi)

)2
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4 The host calculates the calibration curve pcal,l by 
aggregating the elements tfl = (

∑
K

k=1
|I

(k)

l
|)−1

∑
K

k=1
c
(k)

l,tf
 

and pfl = (
∑

K

k=1 |I
(k)

l
|)−1

∑
K

k=1 c
(k)

l,pf
 for l = 1, . . . , nbin.

The distributed ROC‑GLM Two aspects are of rele-
vance when building the distributed version of the ROC-
GLM (distrROCGLM): (1) The distributed version of the 
empirical survivor function and (2) a distributed version 
of the probit regression. Figure  2 shows details of the 
general procedure. The starting point of the distributed 
ROC-GLM is the private data D(1), . . . ,D(K ) on the K 
sites.

The global survivor function Ŝ0 is approximated by S̃0 
(Approximating the global survivor functions  section) 
using principle A2. The computation of S̃0 depends on 
the level of privacy induced by the (ε, δ) DP parameters 
(Differential privacy  section). The accuracy of the AUC 
as well as its CI depends on the choice of ε and δ . The 
global survivor function S̃0 is transmitted to each of the K 
sites and allows calculation of a local version of the inter-
mediate data set D(k)

ROC-GLM (see The ROC-GLM section). 
The distributed probit regression complies with princi-
ple A1 and produces the distributed ROC-GLM param-
eter estimates (see Distributed GLM  section). Using 
the ROC-GLM of these parameters, denoted by R̃OCg , 
allows calculation of the approximated AUC, denoted by 
ÃUCROC-GLM =

∫ 1
0 R̃OCg (t|γ̂ ) dt . Finally, the CIs can 

be calculated based on a variance estimation, which also 
complies with principle A2 (see Distributed CIs for the 
AUC based on the Score function section).

The distributed GLM model building Distributed 
GLM  section describes the federation of the Fisher 

Scoring algorithm and explains how it can be applied 
under principle A2. Therefore, distributed privacy pro-
tected GLM model building does not pose specific 
challenges.

Approximating the global survivor functions
The privacy-preserving calculation of the global negative 
survivor function Ŝ0 needs special attention. It is pro-
hibited to directly communicate score values F (k)

0  from 
the local sites to the central analyst. Instead, we propose 
to calculate an approximation S̃0 : First, we determine 
the ℓ2-sensitivity of the prediction model f̂  and set the 
value of ε and τ . Then, we generate a noisy representa-
tion F̃ (k)

0 = F
(k)
0 + r

(k) of the original score values F (k)
0  

at each site. Second, the noisy scores are communicated 
to the host and pooled to F̃0 =

⋃K
k=1 F̃

(k)
0  to calculate an 

approximation S̃0 of the global survivor function. Third, 
(ε, δ) DP allows sharing S̃0 with all sites. Forth, the local 
sites calculate the global placement values and create 
the intermediate data set used by the distributed probit 
regression.

Distributed GLM
For distributed calculation of the GLM, we use an 
approach described by  [14] and adjust the optimization 
algorithm of GLMs – the Fisher scoring – at its base to 
estimate parameters without performance loss. This 
approach complies with A1.

The basis of the ROC-GLM is a probit regression (and 
therefore a GLM) with E(Y | X = x) = g(xTθ) and 
link function g, response variable Y, and covariates X. 
The Fisher scoring is an iterative descending technique 
θ̂m+1 = θ̂m + I−1(θ̂m)V(θ̂m) that uses second order gra-
dient information. The components are the score vector 
V(θ̂m) = [∂ℓθ (y, x)/∂θ ]θ=θ̂m

∈ Rp and the observed Fisher 

Fig. 2 The distributed ROC-GLM procedure (distrROCGLM) calculates the distributed approximation R̃OCg of ROCg . The sites (here K = 3 ) 
communicate scores with added noise. Centrally, the global negative survivor function S̃

D̄
 is determined and returned to the sites. Finally, 

the distributed probit regression operates on local intermediate data D(k)

ROC-GLM
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information I(θ̂m) = [∂V(θ)/∂θ]
θ=θ̂m

∈ Rp×p based on 
the log likelihood ℓθ (D) =

∑n
i=1 log(fY (yi, xi)) . A common 

stop criterion (as used in R function glm [22]) to determine 
whether the Fisher scoring has converged is when the rela-
tive improvement |devm − devm−1|/(|devm| + 0.1) of the 
deviance devm = −2ln(ℓ

θ̂m
(D)) is smaller than a value a. 

The default value used in the glm function of R is a = 10−8

.
Sufficiently large non-overlapping data at the K sites 

(each subject contributes information only at a unique 
site) implies the additive structure of the global score 
vector V(θm) and Fisher information I(θm) . With the 
site-specific score vector Vk(θm) and Fisher information 
Ik(θm) , it holds:

Distributed CIs for the AUC based on the Score function
The distributed calculation of the global sample 
mean ( distrAVG(v(1), . . . , v(K )) ) complies with A1 as 
well as the distributed version of the sample variance 
v̂ar(v) = (n− 1)−1

∑
n

i=1
(vi − v̄)2 . In the first step, the sam-

ple mean is calculated using v̄ = distrAVG(v(1), . . . , v(K )) 
and shared with all K sites. In the second step, each site 
calculates the aggregation avar(v(k)) =

∑n(k)

i=1(v
(k)
i − v̄)2 , 

which is further aggregated to the sample variance 
v̂ar(v) = (n− 1)−1

∑K
k=1 avar(v

(k)) : distrVAR(v(1), . . . , v(K )) . 
The operations distrAVG and distrVAR fulfill A1 if 
n(k) ≥ q , ∀k ∈ {1, . . . ,K }.

The operation distrVAR provides a non-disclosing dis-
tributed CIs for the global AUC. As described in Empiri-
cal calculation of the ROC curve and AUC  and CI for the 
empirical AUC   sections, the calculation of the approxi-
mated CI requires both approximated survivor functions 
S̃0 and S̃1 (see Approximating the global survivor func-
tions section). A distributed CI c̃iα to approximate ciα fol-
lows from Formula (3).

Simulation study
General considerations
The aim of the simulation study is to understand the 
effect of the noise (introduced by DP) on the AUC 
estimate of the distributed ROC-GLM and its DeLong 
confidence intervals. We take the global empirical 

(6)V(θ̂m) =

K∑

k=1

Vk(θ̂m)

(7)I(θ̂m) =

K∑

k=1

Ik(θ̂m)

AUC [11, 17] as a proxy for the true AUC of the under-
lying data generating process. Our goal is not to con-
struct better estimates for the true AUC, but to study 
the difference between our distributed approach to the 
empirical AUC on the the pooled data.

In this context, we assess the bias of the dis-
tributed approach and measure the difference 
�AUC = AUC − ÃUCROC-GLM between the empirical 
AUC  on pooled data (Empirical calculation of the ROC 
curve and AUC  section) and the distributed ROC-GLM 
ÃUCROC-GLM (General principles section).

To evaluate CI related bias, we calculate the error �ciα 
based on the symmetric difference between ciα pro-
posed by DeLong et al. ([6], see Sect. 3.3) and our non-
disclosing distributed approach c̃iα (Distributed CIs for 
the AUC based on the Scor function section). We study 
�ciα = |c̃iα,l − ciα,l | + |c̃iα,r − ciα,r | , with indices l and r 
denoting the left and right side of the CI, respectively.

We explore the following research questions:

Question 1– Correctness of the AUC inferred from 
ROC‑GLM and distributed ROC‑GLM.(Correctness 
of the AUC inferred from ROC-GLM and distributed 
ROC-GLM  section): Which privacy parameters ε 
and δ result in |�AUC| below 0.01?
Question 2–Correctness of the AUC CIs inferred 
from ROC‑GLM and distributed ROC‑GLM. (Cor-
rectness of the AUC CIs inferred from ROC-GLM 
and distributed ROC-GLM  section): Which privacy 
parameters ε and δ result in �ciα below 0.01?

Data generation
In order to avoid the specification of the score distribu-
tions in both outcome groups, we simulate data as follows. 
We generate uniformly distributed AUC values between 
0.5 and 1. (1) The population size n is randomly chosen 
from {100, 200, . . . , 2500} . (2) For each i ∈ {1, . . . , n} , the 
true prediction scores are generated from the uniform 
distribution Fi ∼ U [0, 1] . Next, (3) the class member-
ship yi ∈ {0, 1} is determined by yi = �(Fi ≥ 0.5) . This 
results in a perfect discrimination by scores between 
positives and negatives (AUC=1). (4) The perfect order-
ing of the class values with respect to individual scores is 
broken by flipping labels randomly. A set of indexes I  of 
size ⌊γn⌋ is selected for which the corresponding labels are 
replaced by yi ∼ Ber(0.5) , ∀i ∈ I  . The fraction γ is sam-
pled from a U[0.5; 1] distribution. (5) For comparison, the 
empirical AUC is calculated from the vector of scores F  
and flipped labels y. (6) The non-disclosing distributed 
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process described in General principles  section is based 
on 5 centers and produces the ÃUCROC-GLM and c̃i0.05 . 
The examined values for the distributed ROC-GLM are 
described in Correctness of the AUC inferred from ROC-
GLM and distributed ROC-GLM section. The simulation 
is repeated Nsim = 10000 times.

Figure 3 shows the empirical distribution of the empiri-
cal as well as ROC-GLM-based AUC values depending 
on the sizes of n. The distribution of the empirical AUC 
values is close to the uniform distribution over the range 
of 0.5 to 1. The behaviour of AUC estimates at the bor-
ders can be explained as follows: To obtain an AUC value 
of one, it is necessary to keep all original class labels y. 
However, this happens rarely, due to the randomized 
assignment of the observations chosen in I  . The same 
applies to AUC values close to 0.5. An AUC value of 0.5 
appears if the class labels are completely randomized. 
This is also a rare event.

Results
Correctness of the AUC inferred from ROC‑GLM 
and distributed ROC‑GLM

ROC‑GLM Figure  3 shows a nearly perfect overlap of 
the means of the simulated empirical as well as the non-
distributed ROC-GLM AUC values in the range of values 
between 0.6 and 0.8. Nevertheless, the behaviour at the 
right border results from numerical problems of the pro-
bit regression on data containing only very few values of 
zero and mostly values of 1.

Table 1 shows summary statistics of (AUC − AUCROC-GLM) 
organized by bins of the empirical AUC of width 0.025. In 
Question 1, an absolute difference below 0.01 is requested, 
which is fulfilled over the whole AUC range. Mean and 
median differences ranging from 0.5 to 0.95 fulfill this 
requirement, whereas for empirical AUC values between 
0.95 and 0.975 slightly larger differences are observed. 
Moreover, for the lower bins, the difference is always posi-
tive while it is negative for the higher bins. This is in line 
with the example from Appendix A.6 for biased ROC-GLM 
estimation.

The results suggest that there are systematic devia-
tions. Thus, we use as an alternative measure the ℓ1
-norm that quantifies the discrepancy between the 
estimated empirical and the estimated GLM for-
mulation of the ROC curve: the (absolute) area 
between both curves over the whole range t, that is, 
discrs =

∫ 1
0 |ROCg (t|γ̂ )− Ŝ1(Ŝ

−1
0 (t))|dt for a data set 

s ∈ {1, . . . ,Nsim} . Figure  4 shows the empirical distribu-
tion of the defined measure over all simulations.

It can be seen that the difference are in general less 
than 5% (mean: 0.032, 25%- quantile: 0.021, 75% -quan-
tile: 0.043). The small discrepancy with respect to the 
AUC is explained by the fact that there are areas where 
the empirical AUC is above the ROC-GLM and vice versa 
which compensate each other (see for example the left 
panel of Fig. 9 and Figure S4 in the appendix where this 
regions can be seen).

Distributed ROC‑GLM In the following, we investigate 
the accuracy of the AUC estimated by the distributed 

Fig. 3 Densities of 10 000 simulated values of the empirical and non-distributed ROC-GLM AUC. The Densities are grouped according data sizes n 
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Table 1 Minimum, 0.25-quantile/1st quantile, median, mean, 0.75-quantile/3rd quantile, maximum, standard deviation, and the 
differences AUC − AUCROC-GLM of the bins containing the respective subset of the 10000 empirical AUC values

Bold values indicate that these AUC bins show absolute differences larger 0.01 and provide a negative answer to Question 1. The count column indicates the number 
of simulated AUC values per bin

Emp. AUC (Bin) Min. 1st Qu. Median Mean 3rd Qu. Max. Sd. Count

(0.5, 0.525] −0.0044 −0.0001 0.0005 0.0040 0.0014 0.0506 0.0100 431

(0.525, 0.55] −0.0052 0.0001 0.0006 0.0027 0.0011 0.0986 0.0123 505

(0.55, 0.575] −0.0031 0.0003 0.0009 0.0014 0.0015 0.1298 0.0080 465

(0.575, 0.6] −0.0018 0.0006 0.0012 0.0015 0.0017 0.1567 0.0072 482

(0.6, 0.625] −0.0044 0.0009 0.0015 0.0014 0.0020 0.0064 0.0010 485

(0.625, 0.65] −0.0039 0.0012 0.0017 0.0017 0.0022 0.0069 0.0010 501

(0.65, 0.675] −0.0031 0.0013 0.0018 0.0018 0.0023 0.0068 0.0011 503

(0.675, 0.7] −0.0022 0.0012 0.0018 0.0018 0.0023 0.0064 0.0010 465

(0.7, 0.725] −0.0082 0.0010 0.0016 0.0016 0.0023 0.0070 0.0012 523

(0.725, 0.75] −0.0031 0.0008 0.0015 0.0014 0.0021 0.0087 0.0012 485

(0.75, 0.775] −0.0058 0.0004 0.0011 0.0010 0.0018 0.0053 0.0013 501

(0.775, 0.8] −0.0053 −0.0003 0.0004 0.0005 0.0012 0.0088 0.0015 523

(0.8, 0.825] −0.0061 −0.0013 −0.0002 −0.0004 0.0005 0.0045 0.0016 476

(0.825, 0.85] −0.0125 −0.0023 −0.0013 −0.0014 −0.0003 0.0059 0.0019 484

(0.85, 0.875] −0.0111 −0.0037 −0.0026 −0.0025 −0.0014 0.0074 0.0020 520

(0.875, 0.9] −0.0136 −0.0056 −0.0044 −0.0043 −0.0030 0.0076 0.0023 534

(0.9, 0.925] −0.0195 −0.0080 −0.0065 −0.0065 −0.0052 0.0066 0.0026 515

(0.925, 0.95] −0.0193 −0.0105 −0.0091 −0.0089 −0.0076 0.0056 0.0030 481

(0.95, 0.975] −0.0227 −0.0138 −0.0113 −0.0113 −0.0093 0.0067 0.0037 503

(0.975, 1] −0.0180 −0.0093 −0.0062 −0.0064 −0.0034 0.0013 0.0039 529

Fig. 4 Distribution of area between the empirical ROC curve and the ROC-GLM curve. The distribution of the alternative discrepancy measure discrs 
is estimated from all simulated datasets s ∈ {1, . . . ,Nsim}
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ROC-GLM. The respective DP parameters ( ε and δ ) must 
be determined in such a way that the answer to Question 
1 is positive. The data are distributed over five sites: The 
simulated prediction scores F  and true classes y are ran-
domly split into K = 5 parts F (1), . . . ,F (5) and y(1), . . . , y(5) . 
Our simulation setting uses ε ∈ Aε = {0.1, 0.5, 1, 5, 10} and 
δ ∈ Aδ = {10−5

, 10
−4

, 10
−3

, 10
−2

, 10
−1} . Due to the Gaussian 

mechanism, we must also take the ℓ2-sensitivity into 
account as the added noise depends on it. Since we do not 
have an analytical description of the score function f̂  , we 
can not determine �2(f̂ ) explicitly in this simulation. We 
assume �2(f̂ ) ∈ A

�2(f̂ )
= {0.01, 0.1, 0.2, 0.3, 0.4} . For the 

simulation, each setting of the grid Aε × Aδ × A
�2(f̂ )

 is 
evaluated by simulating 10000 data sets (cf. Data genera-
tion  section) and hence obtaining 10000 ÃUCROC-GLM 
values that are compared to the respective empirical 
AUC.

Figure  5 shows the simulation results for differ-
ent ( ε , δ ) combinations. The absolute difference of 
(AUC − AUCdistributed ROC-GLM) is checked for hav-
ing a value below 0.01. The results are based on 10000 
simulation runs for 25 ( ε, δ ) combinations and for each 
�2(f̂ ) ∈ {0.01, 0.1, 0.2, 0.3, 0.4} . The variance of the added 
noise to the scores is determined by the analytic Gauss-
ian mechanism from [2]. The figure reveals that the bias 

between empirical and distributed ROC-GLM AUC 
depends heavily on the ℓ2-sensitivity. The smaller the 
sensitivity, less noise is required to ensure a certain level 
of privacy. Correspondingly, smaller choices of privacy 
parameters can and should be used to ensure privacy. 
Very small values of ε lead often to unreliable results 
(except for a very small �2(f ) in combination with higher 
values of δ ). For larger values of ε the results depend 
(besides the sensitivity) on δ . For instance, the evaluation 
of the AUC on an algorithm with sensitivity �2(f ) = 0.1 
and ε = 0.5 would only be reliable with a very high value 
of δ = 0.1 while a value of δ = 10−5 would be possible for 
�2(f ) = 0.01 with ε = 0.5 . For higher values of �2(f ) , 
one has to fall back to higher values of ε . For example, 
consider a hypothetical dataset with 5000 records and an 
algorithm with �2(f ) = 0.3 . In this case one has to accept 
ε = 10 to guarantee a reliable estimate of the AUC while δ 
should be set to a small value.

Correctness of the AUC CIs inferred from ROC‑GLM 
and distributed ROC‑GLM
The respective results in terms of acceptable (ε, δ) com-
binations are shown in Fig.  6. In general, acceptable 
(ε, δ) combinations under Question 1 are also accept-
able under Question 2. Therefore, we recommend using 
the more restrictive settings described in the previous 

Fig. 5 Absolute difference |�AUC| (mean absolute error, MAE): Combinations of privacy parameters ( ε , δ ): Each rectangle contains empirical AUC 
bins of size 0.025 (cf. Table 1) and visualizes the mean of the absolute difference |�AUC| (mean absolute error, MAE) of the distributed ROC-GLM 
AUC compared to the empirical AUC per bin. Each rectangle corresponds to one simulation setting (�2(f̂ ), ε, δ) . The MAE per bin is categorized 
according to the required precision, with blue visualizing an MAE ≤ 0.01 (Question 1) while red shows an unacceptable accuracy measured as MAE 
larger than 0.01
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Correctness of the AUC inferred from ROC-GLM and 
distributed ROC-GLM section for the AUC estimation of 
the distributed ROC-GLM.

Data analysis
We develop a prognostic model on a pooled data and val-
idate its predictive performance on a distributed test data 
set. We also compare the distributed validation results to 
results derived from the pooled analysis (see Comparison 
with pooled data section). As a privacy level, we choose a 
value of q = 5 (see General principles section, A1).

About the data The public data set from the German 
Breast Cancer Study Group [24] can be found in the TH.
data package [12]. The dataset consists of records from 
686 breast cancer patients to assess the effect of hormo-
nal therapy on survival. Besides the binary variable hor-
monal treatment (horTH), the data contains information 
on age (age), menopausal status (menostat), tumor 
size (in mm, tsize), tumor grade (tgrade), number 
of positive nodes (pnodes), progesterone receptor (in 
fmol, progrec), estrogen receptor (in fmol, estrec), 
recurrence-free survival time (in days, time), and cen-
soring indicator (0- censored, 1- event, cens).

We split the data into a training data ( 60 % , 412 
observations) and split the remaining (40 %, 250 obser-
vations) into 5 parts D(1), . . . ,D(5) with n(1) = 51 , 

n(2) = 45 , n(3) = 55 , n(4) = 46 , and n(5) = 53 that are 
used for the distributed validation. The f of interest is 
p(t|x) = P(T > t|X = x) : Probability of surviving time 
point t without recurrence based on covariates x . We 
choose t = 730 (two years). Since we evaluate the binary 
predictor patient survives at least t days without recur‑
rence, we omit 24 patients censored before 730 days 
from the validation sets. As censoring is assumed to be 
independent  and does not introduce selection bias. For 
both sets, train and test, roughly 25% of the observations 
encountered an event before 730 days. We provide the 
Kaplan-Meier curves of the used training and test data 
in Appendix  A.4. The predicted scores are the survival 
probabilities ŷi = f̂ (xi) = p̂(730|xi) with xi ∈ ∪K

k=1D
(k) . 

The corresponding binary variable yi equals 0 if the 
patient dies in [0,  730] or a recurrence was observed, 
and yi equals 1 if otherwise. Therefore, a high value for 
the survival probability ŷi ideally corresponds to a binary 
outcome of 1.

About the model We choose a random survival for-
est  [4, 13] using the R package ranger  [29] as a prog-
nostic model f̂  for the survival probability p(t|x) . With 
the exception of the number of trees (which is set to 20), 
the random forest was trained with the default hyper-
parameter settings of the ranger implementation. The 
model formula is given by

Fig. 6 Mean relative error �ci0.05 : Combinations of the privacy parameters ε and δ and their applicability depending on �2(f̂ ) . Each rectangle 
contains empirical AUC bins of size 0.025 (cf. Table 1) and visualizes the mean of the relative error �ci0.05 of the distributed CI c̃i0.05 compared 
to ci0.05 . Blue shows accuracy values with �ci0.05 ≤ 0.01 (Question 2 applies), while red visualizes inaccuracies of �ci > 0.01
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About the implementation The implementation is based 
on the DataSHIELD  [10] framework and is provided by 
an R package called dsBinVal (github. com/ difut ure- 
lmu/ dsBin Val). Further details about these methods and 
privacy considerations can be found in the respective 
GitHub README.

Aim of the analysis The main goal of the analysis is 
to test the hypothesis that the true AUC is significantly 
larger than 0.6 as the minimal prognostic performance of 
the model f̂  . The significance level is set to α = 0.05:

To test the hypothesis, we estimate the AUC with 
ÃUCROC-GLM using the distributed ROC-GLM as 
well as the approximated CI c̃i0.05 . We reject H0 if 
AUC > 0.6, ∀AUC ∈ c̃i0.05.

Analysis plan In the following, (1) we start with the 
calculation of the ℓ2-sensitivity (Choice of the privacy 
parameters  section). Depending on the result and the 
size of the data, we set the privacy parameters ε and δ 

Surv (time, cens) ∼ horTh + age + tsize

+ tgrade + pnodes + progrec + estrec.

(8)H0 : AUC ≤ 0.6 vs. H1 : AUC > 0.6

using the algorithm from [2]. Next, (2) we continue with 
fitting the distributed ROC-GLM and calculating the 
approximation of the AUC’s confidence interval (Cal-
culation of the distributed ROC-GLM  section). At this 
point, we are able to make a decision about the hypoth-
esis in Eq.  (8). In a final step, (3) we demonstrate how 
to check the calibration of the model using the distrib-
uted Brier score and calibration curve (Checking the 
calibration section).

Choice of the privacy parameters
Given the model and the data set, the ℓ2-sensitiv-
ity is �2(f̂ ) = 0.178 . The results of Correctness of the 
AUC inferred from ROC-GLM and distributed ROC-
GLM section, imply ε = 5 and δ = 0.01 to obtain a reli-
able estimation.

Calculation of the distributed ROC‑GLM
The fit of the ROC-GLM results in parameter esti-
mates of γ1 = 0.79 and γ2 = 1.16 . The AUC obtained 
from the ROC curve using these parameters is 
AUCROC-GLM = 0.697 with c̃i0.05 = [0.615, 0.769] . The 
results are visualized in Fig. 7.

Based on the given CI, we significantly reject H0 for H1 
and hence assume the true AUC to be greater than 0.6.

Fig. 7 ROC curve estimated by the distributed ROC-GLM
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Checking the calibration
The Brier score of f̂  calculates to BS = 0.184 and indi-
cates a good but not perfect calibration. We further 
assume our model to be not calibrated perfectly. Fig-
ure 8 shows the distributed calibration curve as well as 
the individual calibration curves per site. Furthermore, 
we observe that the range of the calibration curve does 

not cover the whole range of the scores f̂ (x) ∈ [0, 1] . 
This indicates that our model does not predict scores 
close to 1. We want to highlight that, due to privacy 
reasons, not all score values were included in the calcu-
lation; aggregated values are only shared if they consist 
of at least 5 elements. The table in Appendix A.5 shows 
the number of elements per bin and site.

Fig. 8 Distributed calibration curve (bold line) and calibration curves of the individual sites using 10 bins. Note that aggregated values from the site 
are only shared if one bin contains more than 5 values. See Appendix A.5 for tables containing the numbers of values per bin

Fig. 9 Comparison of the empirical ROC curve with ROC curve obtained by the distributed ROC-GLM (left). Comparison of the calibration curve 
when calculated on the pooled scores compared with the distributed calibration curve (right). The thin (red) curves are the lines on the pooled data
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Comparison with pooled data
Comparison of both ROC curves (empirical ROC on the pooled 
sample and the distributed ROC-GLM) (Fig.  9, left) shows 
an acceptable fit of the ROC-GLM. However, by scrutinizing 
the plot more closely, one can see that there is a discrepancy 
between the empirical ROC curve and the estimated ROC-
GLM: For a small FPR, the curve from the ROC-GLM is below 
the empirical one. On the other hand, a similar trend is observed 
for high values of the FPR in the opposite direction. This refers 
to differences also observed in the example in Appendix 
A.6. The resulting AUC values are ÃUCROC-GLM = 0.697 
and AUC = 0.679 with |�AUC| = 0.018 . The CIs of the 
approximated CI c̃i0.05 = [0.615, 0.769] and the CI on 
the pooled scores ci0.05 = [0.598, 0.751] reveals a slightly 
more optimistic CI estimation in the distributed setup. 
The error of the CI calculates to �ci0.05 = 0.034.

The distributed calibration curve shows an overlap with 
the calibration curve in areas where all data are allowed to 
be shared. For bins where this is not the case, the distrib-
uted calibration curve differ. Still, the tendency of over- or 
underestimation of the distributed calibration curve cor-
responds to one of the pooled curves. The bins for which 
the full information was received are [0, 0.1], (0.1, 0.2], and 
(0.2, 0.3] (cf. Appendix A.5 Table S1). For all other bins, at 
least one site was not allowed to share the aggregated val-
ues. The pooled calibration curve shows potential overpre-
diction which is not is reflected by the distributed curve.

The Brier score of the pooled and distributed approach 
is equal.

Reproducibility considerations
All experiments were conducted using R version 4.1.2 on a 
Linux machine with an Intel(R) Core(TM) i7-8665U CPU @ 
1.90GHz processor. The package used to run the simulation 
was batchtools [15]. The code to reproduce all results as 
well as all simulation results is available in a GitHub reposi-
tory4. The repository contains a README file with further 
details and a script to install all packages with the respective 
version used when the benchmark was conducted.

The code to conduct the data analysis is given in a sepa-
rate GitHub repository5. The repository contains the data, 
an installation of all necessary packages, as well as code to 
set up the publicly available DataSHIELD server6 to run 
the analysis7.

Discussion
Distributed non-disclosing (i.e., privacy-preserving) 
strategies for data analysis are highly relevant for data-
driven biomedical research. Since the analyses can be 
considered anonymous, current legal data protection 
frameworks allow their use without requesting specific 
consent. Protecting privacy by appropriate means is fun-
damental when using personal data for research. Dis-
tributed approaches also enable taking part in broader 
network structures without additional administrative  
work concerning data protection issues. Privacy-preserving  
distributed computation allows researchers to digitally 
cooperate and leverage the value of their data while  
respecting data sovereignty and without compromising 
privacy. Besides the privacy preservation in algorithms 
that are backed up with security mechanisms, it is worth 
noting that software is also a key player in privacy-pre-
serving analysis. For example, most models fitted with 
the statistical software R attach data directly to the model 
object. Sharing these objects without caution gives ana-
lysts direct access to the training data (cf., e.g., [23]).

International activity has been dedicated to setting up 
distributed non-disclosing analysis frameworks, which 
implement machine learning approaches into a distrib-
uted analysis scheme. However, our impression is that 
algorithms for distributed validation of these learning 
algorithms are lacking.

In this paper, we specifically focused on the assessment 
of discrimination and calibration of learning algorithms 
with a binary outcome. The discrimination is estimated 
by a ROC curve and its AUC. We also provide CIs to the 
distributed AUC estimate. The distributed estimation 
process is based on placement values and survivor func‑
tions. They represent qualities of the global distribution 
of score values (aggregated over all centers). To do this 
in a non-disclosing way, we applied differential privacy 
techniques. With the creation of the placement values 
and the transmission of this information to the local 
server, we applied a distributed version of the ROC-GLM 
approach to estimate the ROC curve and its AUC in a 
distributed way. We used a straightforward approach for 
the distributed GLM estimation. However, we acknowl-
edge that there may be more efficient approaches.

The proposed method implements a combination of 
aggregation and differential privacy (DP) with privacy 
parameters ( ε, δ ). DP offers a solution to exchange criti-
cal information privately to other sites, but a part of the 
information is lost through the induced noise of the pri-
vacy mechanism. The balance between utility (i.e. accu-
rate estimates) and privacy must be carefully weighted. 
The results suggest, that for algorithms with a small sen-
sitivity, the estimates stay reliable. However, for a higher 
sensitivity this is not the case. In general, a higher value 

4 github. com/ difut ure- lmu/ simul ations- distr- auc
5 github. com/ difut ure- lmu/ datas hield- roc- glm- demo
6 Available at opal- demo. obiba. org. The reference, username, and password 
are available at the OPAL documentation opald oc. obiba. org/ en/ latest/ resou 
rces. html in the “Types” section.
7 We cannot guarantee the functionality of the DataSHIELD server or if it will be 
publicly available forever. However, we keep the repository up-to-date by using 
continuous integration, which is triggered automatically every week. This system 
also reports errors that occur if the analysis cannot be conducted on the test server 
anymore. Further information can be found in the README file of the repository.
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of δ may lead to more flexibility (and therefore to a higher 
privacy level) with respect to ε , e.g. setting δ = 0.1 . This 
suggests, that ε-DP is broken in 10% of the cases. It is 
questionable, whether this is an acceptable value.

We discuss broadly the potential bias in the approxima-
tion of the ROC curve by the distributed GLM approach 
and show results in Table  1 and Fig.  9. We focus on a 
binary measure of bias ( |�AUC| < 0.01 ) and did not 
address bias issues in detail. We did not explore how bias 
may be assessed by choosing different metrics (like rela-
tive measures). We did not explore aspects of unbalanced 
datasets and there effect on metrics like negative/positive 
predictive value. Hence, a more comprehensive analysis 
of the proposed method is necessary: even though the 
presented simulation studies provides valuable insights 
into the proposed method, it lacks of a in-depth detailed 
analysis. It is missing a comparison of the empirical ROC 
curve and its distributed ROC-GLM counterpart in 
terms of a ℓ1-metric.

Besides the potential bias of the ROC-GLM, the sim-
ulation study of the DP parameters considers only a 
selected range of configurations and does not further 
investigate their impact beyond the binary threshold. 
Additionally, the application limits itself only to one 
exemplary scenario with one dataset and one defined 
algorithm. Therefore, it can rather be seen as a didactic 
example. An in-depth examination of various classifica-
tion tasks with different characteristics of data and clas-
sifiers under real-world conditions are necessary. Hence, 
future work is required to address the mentioned points 
in a comprising simulation study and a range of applica-
tion settings.

Furthermore, a reviewer pointed to the potential anti-
conservative effect of the proposed procedure. Figure  9 
(left panel) suggests to reject the Null-hypothesis that the 
AUC is below 0.6 on a 5%-level while the result given in 
Comparison with pooled data section for the 95%-CI on 
the pooled data contains 0.6.

In view of these critical points, we therefore recom-
mend applying the proposed method with caution at 
the moment. It is a straight-forward and pragmatic way 
to validate data in a federated manner while preserving 
privacy. Moreover we provide R code that directly imple-
ments the proposed method in the DataSHIELD frame-
work. However, the previously mentioned problems 
imply, that the software should not be used as a black-box 
tool. It can serve as a low-level entry to investigate these 
issues for a specific setting.

We also want to highlight, that the proposed strat-
egy cannot be used to develop a full machine learning 
model on distributed data. We focus exclusively on 

validating an already trained model, using data from 
other sites only once for this specific context. In gen-
eral, applying a DP algorithm many times on the same 
data implies a higher privacy loss. See for example Sec-
tion 3.5 in [9] about composition theorems in DP.

The procedure proposed can be summarized as fol-
lows: (1) The validation of an algorithm requires that it 
is known and can be shared. (2) The calculation of �2(f ) 
provides essential input to determine the DP setting. It 
can be derived from the data at hand and the algorithm 
under validation. The selection of the DP parameters 
(ε, δ) depends on the setting and use-case specific fea-
tures. (3) The user has also to specify the level of pri-
vacy for the aggregation (i.e. the minimal number of 
unique values q to be shared aggregated) under project 
specific requirements. It is recommended to apply the 
proposed procedure on settings with large datasets at 
the different sites.

We mainly concentrate on the validation of a pre-
diction model while the property of the ROC-GLM 
is not fully explored. We do not address specific fea-
tures of the ROC-GLM estimates and ignore aspects 
of unbiasdness and consistency. We demonstrate 
that the approximation of the AUC by the distributed 
ROC-GLM estimates introduces bias which needs 
to be controlled and assessed. The approach creates a 
bias and needs a pragmatic assessment of whether it 
is acceptable or not. If the proposed approach is used 
in an analysis, this aspect must be clearly described in 
the corresponding analysis plan and its impact on the 
analysis must be discussed. Our example shows that the 
proposed approach produces an overly liberal result.

But, it can be seen as an advantage of the proposed 
strategy that the privacy protecting aspects are also 
helpful for subgroup analyses. Moreover, the proposed 
approach makes it straightforward to develop dis-
tributed privacy protected GLM based classification 
models since the log-likelihoods consist of site specific 
independent additive parts. The procedure described in 
Distributed GLM section can also be applied to feder-
ated privacy protecting model building activities in the 
family of generalized linear models.

Abbreviations
AUC   Area under the curve
CI  Confidence interval
DP  Differential privacy
FPR  False positive rate
GLM  Generalized linear model
IPD  Individual patient data
MII  Medical Informatics Initiative
ROC  Receiver operating characteristics
TPR  True positive rate
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Nutzung von großen Sprachmodellen

Zur Anfertigung dieser Dissertation wurden große Sprachmodelle (Large Language Models) genutzt.
Diese wurden ausschließlich herangezogen, um Vorschläge für sprachliche Korrekturen auf Basis bereits
verfasster Inhalte zu generieren. Es kamen folgende Modelle zum Einsatz: o3-mini-high (OpenAI), GPT-
4o (OpenAI).
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