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1.1 Beitrag zur 1. Publikation

Kraus M, Saller MM, Baumbach SF et al (2022) Prediction of Physical Frailty in Orthogeriatric
Patients Using Sensor Insole--Based Gait Analysis and Machine Learning Algorithms:
Cross-sectional Study. JMIR Med Inf 10:€32724. https://doi.org/10.2196/32724

Am Beginn des Projekts stand eine ausfihrliche Literaturrecherche, um die Konzeptionalisierung der
Arbeit gemeinsam mit meinem wissenschaftlichen Betreuer Dr. rer. nat. Maximilian Saller durchfiihren
zu konnen. Die so festgelegte Projektbasis wurde von mir selbst weiterentwickelt und die Umsetzung
im Detail mit meinen arztlichen und wissenschaftlichen Betreuern und Co-Autoren geplant. Alle in die
vorliegende Arbeit eingeflossenen Daten wurden eigenstéandig in der Osteoporosesprechstunde des
osteologischen Schwerpunktzentrums der LMU durch mich selbst erhoben und in einer extra hierfir
durch mich aufgesetzten REDCap Studiendatenbank gespeichert und verwaltet, um die Datenqualitat
und -validitat so hoch wie mdglich zu halten. Die Auswertung der erhobenen Daten erfolgte mittels der
Open Source Software R durch meine Person. Nach gemeinsamer Interpretation der Daten mit den
Co-Autoren habe ich die Erstfassung des Manuskripts erstellt und dieses in Riicksprache mit den Co-
Autoren eingereicht und anschlieBend mit Unterstiitzung insbesondere von Dr. rer. nat. Maximilian
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Saller die Reviewer-Kommentare adressiert und das Manuskript erneut eingereicht. Nach Publikation
des Manuskripts im Januar 2022 haben Dr. med. Alexander und ich im April 2022 gemeinsam die
Bewerbung fir den Digitalisierungspreis der Deutschen Gesellschaft fir Orthopadie und

Unfallchirurgie fiir die beste Publikation formuliert, welcher uns im Oktober 2022 zuerkannt wurde.

1.2 Beitrag zur 2. Publikation

Kraus, M., Stumpf, U. C., Keppler, A. M., Neuerburg, C., Bocker, W., Wackerhage, H., Baumbach,
S. F., & Saller, M. M. (2023). Development of a Machine Learning-Based Model to Predict
Timed-Up-and-Go Test in Older Adults. Geriatrics (Basel, Switzerland), 8(5), 99.
https://doi.org/10.3390/geriatrics8050099

Zu Beginn des Projekts fiihrte ich eine umfassende Literaturrecherche durch, um die Planung der
Arbeit zusammen mit meinem wissenschaftlichen Betreuer Dr. rer. nat. Maximilian Saller zu gestalten.
Basierend auf dieser Projektgrundlage habe ich das Projekt weiterentwickelt und im Detail mit den
beteiligten Arzten und wissenschaftlichen Betreuern geplant. Samtliche Daten, die in dieser Arbeit
verwendet wurden, wurden durch mich selbst, wahrend der Osteoporosesprechstunde im
osteologischen Schwerpunktzentrum erhoben und in einer speziell dafiir durch mich eingerichteten
REDCap-Studiendatenbank gespeichert und verwaltet, um die Qualitat und Giiltigkeit der Daten
bestmdglich zu gewahrleisten. Die Auswertung der gesammelten Daten wurde von mir unter
Verwendung der Open-Source-Software R durchgefiihrt. Nach der gemeinsamen Interpretation der
Daten mit den Co-Autoren habe ich die erste Version des Manuskripts erstellt und dieses in
Absprache mit meinen Co-Autoren eingereicht. AnschlieRend habe ich eigenstandig die Kommentare
der Gutachter bearbeitet und das Manuskript erneut eingereicht, wobei ich insbesondere auf die
Unterstiitzung von Dr. rer. nat. Maximilian Saller zdhlen konnte. Nach Annahme des Abstracts wurde
unsere Publikation vom Journal als Cover-Paper der entsprechenden Ausgabe ausgewahlt. Hierzu
habe ich ein ,Graphical-Abstract® iber unser Projekt erstellt, das in dieser Dissertation am Beginn der
2. Publikation abgebildet ist.
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2. Einleitung

2.1.1 Introduction

Falls are a serious public health concern, especially for high-risk groups such as orthogeriatric patients
and individuals undergoing trauma surgery. Falls can result in severe injuries, fractures, and other
adverse health outcomes, leading to increased morbidity, mortality, and healthcare costs. In 2007, the
World Health Organization report revealed that 32-42% of all people over 70 years of age fall once a
year [1]. The economic burden of non-fatal falls in elderly patients in the United States of America was
approximately $50 billion in 2017. [2] Therefore, accurately predicting fall risk and implementing
appropriate preventive strategies is crucial to improve patient outcomes and to reduce the burden on
healthcare systems as well as implementing efficient fall prevention initiatives. [3] About 5% of falls in
orthogeriatric patients result in fractures, with an even higher incidence rate in patients suffering
osteoporosis. [4] Osteoporotic fractures present a significant public health concern, particularly in an
aging society where the incidence of fractures rises continuously. These fractures not only lead to
reduced quality of life, but also place a substantial burden on healthcare resources. To address this
issue, it is crucial to implement effective preventive measures that can mitigate the occurrence of
fractures and optimize the utilization of healthcare resources. In this context, the risk assessment by

gait analysis and non-mobility data among orthogeriatric patients holds great potential. [5]

2.1.2 Definition of Osteosarcopenia

Osteosarcopenia is a medical condition that poses a significant threat to orthogeriatric patients,
particularly in relation to falls, fractures, and other adverse health events. [6] Osteosarcopenia is
characterized by the simultaneous presence of two age-related conditions: osteoporosis, which is the
loss of bone mass and deterioration of bone tissue, and sarcopenia, which is the progressive loss of
muscle mass, strength, and function. [7] Both, osteoporosis and sarcopenia, individually contribute to
an increased risk of falls and fractures, but when combined, they create a synergistic effect that

significantly amplifies the vulnerability of orthogeriatric patients. [8]

The interaction between osteoporosis and sarcopenia extends beyond falls and fractures. The
presence of these conditions in orthogeriatric patients is associated with an increased likelihood of
experiencing adverse health events. [9] Individuals with osteosarcopenia may have reduced functional
capacity, leading to difficulties in performing activities of daily living, compromised independence, and
a higher risk of institutionalization. Additionally, the coexistence of osteoporosis and sarcopenia can
result in prolonged recovery periods following fractures, higher rates of postoperative complications,

and increased mortality rates. [10]

A multifaceted strategy is required to manage the hazard of osteosarcopenia in orthogeriatric patients.

[8] This may involve implementing preventive measures, such as exercise programs to improve
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muscle strength and balance, optimizing nutrition to support bone health and muscle function, and
ensuring appropriate pharmacological interventions to manage osteoporosis. [11] Furthermore,
interdisciplinary collaborations among orthopedic surgeons, geriatricians, physical therapists, and
nutritionists are essential to develop individual tailored treatment plans and interventions that address

the specific needs of these patients. [12], [13]

2.1.3 Current Tools for Risk Stratification for Osteosarcopenia

It is crucial to assess the fall risk in orthogeriatric patients to identify those at risk early and enable
timely preventive measures before a fall occurs (Figure 1). This approach can prevent a cascade of
falls and ensuing fractures that may affect the active elderly, as seen in the top part of figure 1. It is
critical to reduce the number of falls. This technique has the potential to reduce hospitalization rates
while allowing patients to retain high levels of mobility and quality of life for as long as feasible. These
facts suggest that fall prevention is better than any post-fall rehabilitation approach. As a result,
improved risk assessment systems that leverage various, multivariate data synthesis, including
artificial intelligence technologies in the future, are urgent.

Need for fall risk assessmemt in
orthogeriatric patients

LY o & - e £
ﬁ:l 2 A Y4 ./.

risk

g stratification

Figure 1: Graphical abstract presenting the need for fall risk assessment in orthogeriatric patients

Various risk stratification tools have been developed to assess the risk of osteosarcopenia,
considering both bone health (osteoporosis) and muscle function (sarcopenia) [14]. Two commonly
used tools are the European Working Group on Sarcopenia in Older People (EWGSOP) [15] algorithm
and the International Osteoporosis Foundation (IOF) Fracture Risk Assessment Tool ® (FRAX) [16].
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The EWGSOP algorithm evaluates muscle mass, strength, and physical performance, along with bone
mineral density (BMD) measured by dual x-ray absorptiometry (DXA), providing a comprehensive
assessment of osteoporosis and sarcopenia [17]. In contrast, FRAX primarily assesses fracture risk

due to osteoporosis using clinical risk factors [18].

While the EWGSOP algorithm provides a more accurate diagnosis of osteosarcopenia, further testing,
such as DXA or BIA, is necessary. Conversely, FRAX is more convenient and pragmatic,
encompassing some muscle-related risk factors indirectly through factors like previous falls.

Nevertheless, it may not comprehensively assess sarcopenia.

The decision to use one of these tools depends on the specific clinical context, availability of
resources, institutional infrastructure such as body impedance analyzers, and the primary outcome of
interest - whether it's a comprehensive assessment of osteosarcopenia or an assessment of fracture

risk.

2.2 Guidelines for the Assessment and Treatment of

Osteosarcopenia

2.2.1 Guidelines for the Diagnosis and Management of Osteoporosis

Osteoporosis, a common skeletal disorder characterized by decreased bone density and increased
fracture risk, has attracted significant attention from renowned organizations, including the
Dachverband Osteolologie [19], the National Osteoporosis Guidelines Group [20], and the
International Osteoporosis Foundation [21]. These organizations formulated protocols to assist the
diagnosis and treatment of osteoporosis, furnishing invaluable perspectives on optimal methodologies
and evidence-supported suggestions [22].

While aiming to improve patient outcomes, each set of guidelines exhibits subtle variations in their
approach. The "Dachverband Osteolologie” guidelines prioritize a multifaceted osteoporosis
management strategy, emphasizing bone mineral density analysis, clinical risk assessment tools, and
detailed evaluation of fracture risk factors. This comprehensive approach facilitates tailored

interventions based on thorough assessment of individual risk profiles.

Conversely, the National Osteoporosis Guidelines Group emphasizes the role of fracture risk
assessment tools like FRAX® in guiding treatment decisions. They emphasize the assessment of
each person's fracture risk taking into account measures of bone mineral density and clinical risk
factors. These guidelines emphasize the importance of evaluating individual fracture risk, based on 20
million patient years [23] by taking clinical risk factors and bone mineral density measurements into

account, to determine the most appropriate course of action. [14]

Similarly, the International Osteoporosis Foundation guidelines stress assessing fracture risk with
FRAX® and advocate integrating pharmacological interventions, recommending specific medications
such as bisphosphonates, Denosumab, and teriparatide-based on fracture risk profiles and patient
characteristics.
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Despite nuanced differences, all three guideline sets converge on the importance of lifestyle
modifications, including weight-bearing exercise, smoking cessation, and sufficient calcium and

vitamin D intake, as foundational components of osteoporosis management.

| have referred to the references in the preparation of the sub-projects of this dissertation and | was
already able to present the collected baseline data and follow-up data at the annual congress of the
DVO and “Deutscher Kongress fiir Orthopadie und Unfallchirurgie (DKOU). [24]-[27]

2.2.2 Guidelines for the Assessment of Sarcopenia

Sarcopenia is a disorder that is characterized by a progressive loss of muscle mass and function
because of aging and has received significant attention from medical experts as a serious public
health problem. To tackle this issue, key organizations such as the EWGSOP [17] and the Asian
Working Group for Sarcopenia (AWGS) [28] have developed guidelines to enhance the diagnosis and
treatment of sarcopenia. While both guidelines have a shared objective, a comparative analysis
reveals important distinctions in their approaches.

The EWGSOP recommendations place a strong emphasis on using physical performance tests,
muscle strength evaluations, and measurements of muscle mass to diagnose sarcopenia. They stress
the significance of integrating these criteria into a comprehensive diagnostic algorithm, which
facilitates a more precise assessment of muscle health in older adults. The EWGSOP guidelines offer
cut-off points and reference values for each diagnostic criterion, assisting clinicians in efficiently
interpreting and integrating the guidelines.

Conversely, the AWGS guidelines deem grip strength as a primary diagnostic criterion for sarcopenia
and recommend lower grip strength thresholds for Asian populations based on age-related muscle
loss in local cohorts. Additionally, the AWGS guidelines highlight the significance of additional markers

such as gait speed and body composition in diagnosing sarcopenia in Asian populations. [28]

Both guidelines agree on the importance of regular physical activity, adequate protein intake, and
resistance training as fundamental components of sarcopenia management. To optimize patient
outcomes, a multidisciplinary approach involving health care professionals from different specialties is
required and recognized as necessary by health care experts.

2.3 Gait Analysis in Orthogeriatric Patients

Gait analysis holds significant value to assess orthogeriatric patients, due to its ability to provide
objective and quantitative data on gait parameters and patterns. [29] Gait analysis encompasses the
methodical assessment of multiple facets of ambulation, including stride length, cadence, velocity,
step width and time-and-space factors. [30] It contributes to a better understanding of the functional
constraints and biomechanical changes that occur in orthogeriatric patients, giving useful insights for

professional treatment and research.

Gait analysis is a highly effective technique in clinical practice for the diagnosis, monitoring, and

management of orthogeriatric diseases. [31] Through the examination of gait patterns, healthcare
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professionals are able to detect variations from typical patterns and ascertain the root causes. For
example, gait analysis can reveal asymmetries or abnormalities in weight-bearing distribution,
indicating potential limb or joint pathologies. [32] It can provide information on balance impairments,
muscle weakness, or joint stiffness that may contribute to increased fall risk in orthogeriatric patients.
[33] This objective data assists to develop personalized treatment plans, to monitor the regeneration

progress, and evaluating the effectiveness of interventions. [34]

Gait analysis is an essential component of orthogeriatric patient research. The investigators have the
ability to examine the impact of various interventions, such as fithess programs, assistive devices, or
surgical operations, on gait performance and functional outcomes through the analysis of gait
patterns. [35] Gait analysis provides objective measures that can be compared across different patient
groups or treatment modalities, to facilitate evidence-based decision-making and to advance our

understanding of the impact of interventions on gait function in orthogeriatric patients. [36]

Gait analysis has the potential to become a tool for patient outcome control [35], [37]. By establishing
standardized gait parameters and normative data for orthogeriatric populations, gait analysis can be
used as an objective outcome measure. [38] This would enable doctors to analyze changes more
precisely and quantitatively in gait performance over time, assess the effectiveness of therapies, and
monitor functional recovery. Objective gait measurements might help to construct prediction models
for identifying those who are at a higher risk of falling or having an adverse event, allowing for early

interventions to reduce such risks. [39]

To realize the full potential of gait analysis as an outcome control tool, further advancements are
needed. [35] Portable and cost-effective gait analysis systems, such as the Insole3 (Moticon, Munich,
Germany), offer a widely accessible solution for comprehensive gait analysis in clinical environments,
eliminating the need for a dedicated gait laboratory. [40] These systems enable detailed assessment

of gait parameters without significant logistical or financial constraints.

In real-world situations, these insoles are effortlessly incorporated into patients' footwear and offer
continuous and objective gait data. Mobile sensor insoles obviously have numerous benefits
compared to standard gait labs. This innovative technique allows for the analysis of gait patterns
during everyday motions and under changing environmental circumstances. Consequently, healthcare
providers can obtain a better understanding of their patients' gait patterns and mobility restrictions, and
eventually offer individualized intervention options.

Additionally, the establishment of standardized protocols and reference databases specific to
orthogeriatric patients would enhance the interpretation and comparability of gait analysis results
across different centers and studies. This will help to improve objective measurement of gait
performance and functional recovery in orthogeriatric patients as well as predictive information on

potential rehabilitation capacity and occurrence of adverse health events. [5]
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2.4 Machine Learning

Machine learning (ML) is a branch of artificial intelligence focused on creating algorithms and models
that learn from data to make predictions or decisions. [41] In orthogeriatric care, ML can help to
advance to risk assessment and predicting rehabilitation outcomes through supervised and
unsupervised learning approaches. [42], [43] There are two primary branches of machine learning:
supervised and unsupervised learning. Supervised learning involves training a model with labeled data
to predict outcomes based on patient characteristics and preoperative data. [44] This can help develop
risk assessment tools for adverse events in orthopedic surgery. [45] Unsupervised learning, on the
other hand, trains models without labels to discover hidden patterns, such as patient subgroups with
similar characteristics or treatment outcomes. This can aid in identifying profiles with successful
rehabilitation outcomes [46] or predict patient-reported outcomes. [47] ML models can provide more
accurate risk assessment tools by incorporating a wide range of patient factors, from a large reference
cohort. They should be used as decision support tools rather than replacing clinical judgment, as
previous results could not achieve a significant improvement of the therapy results, mainly the
treatment safety can be improved. [48] Surgeons need to critically evaluate and interpret the model

outputs considering the specific context and individual patient characteristics.

2.41 Machine Learning for Evaluation of Gait-Analysis and Multidimensional
Data

The combination of mobile sensor insoles, machine learning, and gait analysis has the potential to
revolutionize orthogeriatric care, concept shown in figure 2 and is often referred to the term “smart
gait’. [49] This multidimensional approach allows for the assessment of real-world gait data, accurate
fall risk prediction, and personalized interventions for fracture prevention. The evaluation of gait
patterns in orthogeriatric patients plays a crucial role in identifying potential risks and implementing
preventive measures to mitigate the occurrence of fractures. Traditional gait analysis methods,
predominantly conducted in specialized gait labs, have provided valuable insights into biomechanical
parameters. [50] However, these methods are often limited to controlled environments, making it
challenging to capture real-world gait patterns and predict fall risks accurately. In recent years, the
integration of ML techniques and mobile sensor insoles has emerged as a promising approach to
make it more accessible, enhance gait analysis, risk stratification, and fracture prevention in

orthogeriatric patients. [50]
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Reporting vs. reality in fall risk assessment

R ), .
( , ’ 'Tgl 7| M o :
) | |
Vae —

o = @

| ;JV{}-: by :g‘:‘g_

. =0
— )

v

Need for objective real world data and independent evaluation

- & = 4—7
J

Figure 2: Graphical abstract for reporting vs. reality in fall risk

When evaluating fall risk, a considerable gap exists between standard assessments and the actual
risk, particularly among orthogeriatric patients. This discrepancy is primarily due to the use of patient-
reported questionnaires, which are prone to a high reporting bias. When physical tests such as the
Timed-Up-and-Go-Test or a balance test are conducted, there is often examiner bias, as well as an
increased patient motivation leading to false positive test results, when compared to real world
performance. Therefore, it is critical to monitor patients with objective tools such as mobile wearables
like wristbands or sensor soles that collect data around-the-clock for a specific period and accurately
record real-world mobility. When analyzing data, it is preferable to use algorithms to ensure maximum
objectivity and validity.

ML techniques have proven valuable in analyzing vast amounts of multidimensional gait data obtained
by mobile sensor insoles. [49] These algorithms can detect tiny patterns and correlations in data that
human viewers may miss. Researchers have built prediction models for fall risk assessment and
patient categorization using ML algorithms. Such models consider a wide range of gait metrics,
demographic variables, and comorbidities, allowing for tailored risk assessment and targeted
treatments. Healthcare workers may get useful insights into patients' mobility patterns, identify
deviations from normal gait, and more accurately forecast fall risk by merging mobile sensor insoles,
medical record data, and machine learning approaches. [51] This information can aid in the
development of targeted interventions, including exercise programs, environmental changes, and
customized assistive devices, to enhance patient outcomes and decrease the occurrence of fractures.

The integration of these advancements in clinical practice has potential to notably boost patient
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outcomes, enrich quality of life, and decrease healthcare expenses linked to orthogeriatric fractures.
[52] Additional research and validation studies should be conducted to fully establish the effectiveness

and clinical usefulness of this innovative approach.

2.5 Current State of Physical Frailty Assessment in Bedridden
Orthogeriatric Patients

Assessing physical frailty in bedridden orthogeriatric patients remains a critical challenge in clinical
practice. Currently, clinicians heavily rely on subjective evaluations such as the Clinical Frailty Scale
(CFS) [53] or patient-reported questionnaires, which are prone to reporting bias and can result in an
overestimation of individual abilities. [54] This leads to discrepancies between subjective assessments
and objective measures [54] It is crucial to develop more objective and accurate methods for
evaluating frailty in this population. The discrepancies highlight the necessity for improved assessment

tools that precisely capture the multifaceted nature of physical frailty in this demographic. [55]

2.5.1 Discrepancies Between Clinical and Objective Assessments

The apparent discrepancies between clinical and objective assessments in immobilized orthogeriatric
patients raise significant concerns about the accuracy and reliability of conventional assessment
techniques. [56] Research reveals the inherent limitations of relying solely on subjective clinical
appraisals, which reveal substantial disparities in comparison to objective assessments. This
discrepancy emphasizes the necessity of supplementing traditional assessment approaches with
objective and measurable standards to achieve complete understanding of physical frailty in
immobilized patients. Additionally, exploration of ML methods presents a promising path for advancing
assessment precision through integration of multifaceted clinical-, demographic- and mobility data and
activities of daily living. [52] Utilizing cutting-edge ML methods may enable a more comprehensive
assessment of physical frailty and fall risk, providing a more nuanced understanding that transcends

the limitations of traditional assessments, particularly for individuals facing immobilization challenges.

2.5.2 Challenges in Conducting Physical Tests in Immobilized Patients

Conducting physical tests on immobilized orthogeriatric patients presents numerous challenges that
hinder accurate and comprehensive assessment. These patients' limited mobility and functional ability
considerably impedes the feasibility and reliability of conventional physical tests. Furthermore, the
inability to conduct standard physical assessments due to immobilization exacerbates the difficulties in
obtaining precise measurements of physical frailty. [57] Alternative assessment methodologies that
surpass mobility-related constraints are crucial for a comprehensive evaluation of physical frailty in this
susceptible patient population. Therefore, it is imperative to develop new approaches to overcome

these challenges.

Traditional approaches on assessing physical frailty in bedridden orthogeriatric patients are often

limited to subjective scales. Innovative methodologies are being sought to bridge the gap between
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subjective and objective assessments, and to overcome the difficulties involved in conducting physical

tests on immobilized individuals.

2.5.3 Need for Assessment of Physical Status in Bedridden Patients

The evaluation of physical condition in bedridden patients, especially in cases of acute trauma
resulting in immobilization, is crucial in clinical decision-making. [58] When a person suffers an acute
hip fracture, the injury makes them immobile. Nothing was known about the patients’ baseline physical
fragility before to the incident, making it unable to assess their pre-injury mobility capabilities. It is vital
to identify the individual's previous physical competence since it serves as the foundation for designing
specific therapy techniques. In these cases, it is necessary to accurately examine the patients’
physical health before to the accident in order to choose the most effective treatment procedures. The
clinicians’ capacity to make educated decisions about the most suited treatment method is severely

impaired without this information of their pre-injury health.

Accurately assessing pre-injury physical condition is essential in clinical scenarios involving mobility
and frailty assessment, highlighting the crucial role of predictive modeling. It is imperative to consider
various clinical and demographic factors to understand the intricate interplay of variables that impact
an individuals’ physical status. ML algorithms provide a strong method for managing complex datasets
and estimating the impact of individual variables relative to each other. [59] Utilizing these algorithms,
clinicians can develop predictive models that are crucial in multiple clinical settings where assessing
mobility or frailty is essential. These models not only assist in estimating the risk of falls but also
provide insight for patient rehabilitation planning, resource allocation, and the development of
personalized care strategies. [60] The implementation of predictive modeling through machine learning
techniques is seen as a revolutionary approach to navigating the complexities in assessing physical
status in immobilized patients, especially in acute trauma scenarios where pre-injury status is

uncertain. [61]

2.5.4 Aim of the Dissertation

The dissertation endeavors to tackle the challenges of evaluating physical frailty in elderly patients,
specifically those with orthopedic impairments, by employing novel methodologies based on ML and
multivariate non-mobility data. The present research, which is based on two complimentary studies,
attempts to rethink, and revolutionize the evaluation of physical frailty in this specific patient group. My
main goal is to improve the precision, objectivity, and inclusiveness of physical frailty evaluation

approaches.

The fundamental goal of this research is to provide and test alternative paradigms that go beyond the
limitations of existing evaluation procedures, which usually suffer from difficulties of subjectivity,
inaccuracy, and limited applicability among immobile persons. This dissertation aims to demonstrate,
through extensive investigation and analysis, that ML-based gait analysis outperforms traditional

questionnaires and physical exams in diagnosing physical frailty in orthogeriatric patients.
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Furthermore, it aims to address a gap in existing approaches by developing objective ML models that
may integrate a variety of non-mobility elements. These models aim to reliably anticipate the time
required to complete the Timed-Up-and-Go test by reducing reliance on mobility-related information,
supporting an impartial and automated diagnosis approach for physically weak individuals. The
objective is to offer full and precise evaluations, allowing for better clinical decision-making and
tailored treatments in orthogeriatric care settings.

The dissertations’ comprehensive approach examines the complexity of diagnosing physical frailty
using empirical methodologies, ML techniques, and sophisticated statistical analysis. This emphasizes
the significance of powerful prediction models and deep understanding of multifactorial characteristics

in modernizing the process of measuring physical frailty in aged orthogeriatric patients.



3 Zusammenfassung: 20

3. Zusammenfassung:

Die Beurteilung der korperliche Gebrechlichkeit (physical frailty) bei alteren Patienten, insbesondere
bei solchen mit orthopadischen Beeintrachtigungen, stellt in der klinischen Praxis eine groRe
Herausforderung dar. Dies liegt in erster Linie an der Subjektivitat, Unzuverlassigkeit und Zeitintensitat
etablierter Bewertungsmethoden. Diese stiitzen sich in der Regel auf mobilitatsbezogene Daten und
sind bei immobilen Personen gréRtenteils nicht anwendbar. Angesichts dieser Einschrankungen
wurden zwei sich ergdnzende Studien durchgefiihrt, um die Einschatzung der koérperlichen
Gebrechlichkeit in dieser demografischen Gruppe zu verbessern.

Ziel der ersten Studie war es, die Vorhersagegenauigkeit von Gangdaten, die wahrend des Timed-Up-
and-Go-Tests erhoben wurden, mit etablierten Fragebdgen zur Einschatzung der ,physical Frailty” zu
vergleichen. In dieser Studie wurden Algorithmen des maschinellen Lernens eingesetzt, um
korperliche Gebrechlichkeit, definiert durch die Short Physical Performance Battery (SPPB), bei
Patienten im Alter von Uber 60 Jahren zu identifizieren, die selbststédndig gehfahig sind und keine
geistigen oder neurologischen Beeintrachtigungen aufweisen. Diese Querschnittsuntersuchung
erfasste verschiedene Parameter, die mit korperlicher Gebrechlichkeit assoziiert sind, und zeigte
signifikante Unterschiede in den Gangparametern zwischen Gruppen mit und ohne korperliche
Gebrechlichkeit. Darliber hinaus wies der Timed-Up-and-Go-Test im Vergleich zum SARC-F-
Fragebogen (Strength, Assistance with walking, Rise from a chair, Climb stairs and Falls) einen
héheren pradiktiven Wert auf, was durch eine "Area under the curve® der ,reciever operator
characteristics®* (AUROC) von 0,862 gegenlber 0,639 belegt wird. Mithilfe rekursiver Variablen
Auswahl identifizierten Algorithmen des maschinellen Lernens neun entscheidende Parameter, die
aus digitalen Gangmessungen stammten. Mit diesen Parametern lieR sich eine robuste
Vorhersagegenauigkeit erreichen, die zu AUROCs zwischen 0,801 und 0,919 fiihrte. Die vorliegende
Studie unterstreicht die Uberlegenheit der auf maschinellem Lernen basierenden Ganganalyse bei der
effizienten Identifizierung der korperlichen Gebrechlichkeit bei orthogeriatrischen Patienten im

Vergleich zu herkdmmlichen Methoden.

Die zweite Studie zielte darauf ab, die Grenzen der Bewertung korperlicher Gebrechlichkeit zu
Uberwinden, indem objektive Modelle entwickelt wurden, die multifaktorielle Parameter nutzen, die
nicht auf Mobilitaitsmessungen beruhen. Mit diesem Ansatz wird die Abhangigkeit von
mobilitdtsbezogenen Daten iberwunden und die Timed-Up-and-Go-Testzeit dennoch mdglichst genau
abgeschatzt. Unter Verwendung von sechs verschiedenen Algorithmen zur Feature-Selektion und 67
multifaktoriellen Parametern wurden in der Studie vier maschinelle Lernalgorithmen trainiert, darunter
ein Generalized Linear Model, eine Support Vector Machine, ein Random Forest Algorithmus und ein
Extreme Gradient Boost Algorithmus. Der Random Forest Algorithmus zeigte die hochste Genauigkeit
bei der Vorhersage der Timed-Up-and-Go-Testzeit, mit einem mittleren absoluten Fehler von 2,7
Sekunden. Die Methodik der Variablenauswahl hatte nur minimalen Einfluss auf die Gesamtleistung
des Modells. Allerdings neigten alle Algorithmen dazu, die Zeit fiir schnellere Patienten zu
Uberschatzen und fir langsamere Patienten zu unterschatzen. Diese Ergebnisse zeigen, dass es
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moglich ist, die Timed-Up-and-Go-Testzeit ohne Mobilitdtsdaten vorherzusagen, was eine objektive
Bewertung und automatische Identifizierung von korperlich gebrechlichen Patienten ermdglicht. Die
Fortschritte haben das Potenzial, die Patientenversorgung und die Behandlungsplanung in der
Orthogeriatrie zu verbessern und stellen einen revolutionaren Ansatz fir die Kklinische

Entscheidungsfindung und personalisierte Interventionen dar.
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4. Abstract (English)

Clinical practice has a barrier when assessing physical frailty in older patients, especially those with
orthopedic limitations. This is mostly because standard assessment techniques are subjective,
unreliable, and time-consuming. They also frequently depend on data relating to mobility, which may
not be applicable to people who are immobile. Considering these limitations, two complementary
studies were conducted to redefine the evaluation of physical frailty in this demographic group. The

aim is to improve the evaluation and assessment of physical frailty.

The primary objective of the initial study was to examine and compare the efficacy of utilizing insole
data obtained from the Timed-Up-and-Go test in comparison to known benchmark questionnaires and
physical tests. The present study employed machine learning algorithms to detect physical frailty, as
determined by the Short Physical Performance Battery (SPPB), in a cohort of individuals aged 60
years and above who possessed independent ambulation and did not exhibit any cognitive or
neurological disorders. This study conducted a cross-sectional analysis to examine several factors
related to physical frailty. The results showed notable disparities in gait metrics between individuals
with and without physical frailty. Furthermore, the Timed-Up-and-Go test exhibited superior predictive
value, when compared to the SARC-F (Strength, Assistance with walking, Rise from a chair, Climb
stairs and Falls) questionnaire, as evidenced by an AUROC of 0.862 versus 0.639. Machine learning
algorithms discovered nine critical characteristics, mostly from digital insole gait data, using recursive
feature elimination. Robust predictive accuracy was achieved using these settings, with AUROCs
ranging from 0.801 to 0.919. In summary, this research shows that machine learning-based gait
analysis is superior to conventional evaluations when it comes to accurately detecting physical fragility
in elderly individuals. The second study aimed to address the limitations of assessing physical frailty
by developing objective machine models that utilize multifactorial non-mobility parameters. This
approach dissociates reliance on mobility-related data and predicts the Timed-Up-and-Go test time
accurately. Four machine learning methods—a generalized linear model, a support vector machine, a
random forest algorithm, and an extreme gradient boost technique—were compared using six distinct
feature selection approaches and 67 multifactorial variables. The random forest algorithm
demonstrated the highest accuracy in predicting Timed-up-and-Gotest time, with a mean absolute
error of 2.7 seconds. The variable selection methodology had minimal influence on the overall model
performance. For slower patients, all algorithms tended to underestimate time, whereas for faster
individuals, they tended to overestimate it. These results highlight the potential for Timed-Up-and-Go
test time prediction in the absence of mobility data, enabling the automated identification and objective
evaluation of patients who are physically frail. With this approach to clinical decision-making and
tailored interventions, these developments might have the potential to significantly improve patient

care and treatment planning in orthogeriatric settings.
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In the Paper “Prediction of Physical Frailty in Orthogeriatric Patients Using Sensor Insole-Based Gait
Analysis and Machine Learning Algorithms: Cross-sectional Study” we aimed at assessing the
physical frailty of older patients, researchers sought to leverage modern insole wearables and ML
algorithms to enhance the accuracy of evaluation methods. By contrasting the insole data obtained
from the Timed-Up-and-Go-Test with traditional evaluations like the SARC-F (Strength, Assistance
with walking, Rise from a chair, Climb stairs and Falls) questionnaire, the research sought to
determine the most efficient method for assessing physical frailty, as defined by the Short Physical
Performance Battery (SPPB). Through comprehensive analysis of multiple parameters, including body
composition and gait patterns captured by digital sensor insoles, the study revealed that ML algorithms
outperformed traditional methods in identifying physical frailty. This innovative gait analysis approach
using sensor soles showcased its potential to revolutionize physical frailty assessments for
orthogeriatric patients through the innovative use of machine learning algorithms and sensor soles,
leading to more accurate and effective evaluation methods that can inform individualized therapies

and improve the quality of care for patients at fall and fracture risk.
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Abstract

Background: Assessment of the physical frailty of older patients is of great importance in many medical disciplines to be able
to implement individualized therapies. For physical tests, time is usually used as the only objective measure. To record other
objective factors, modern wearables offer great potential for generating valid data and integrating the data into medical
decision-making.

Objective: The aim of this study was to compare the predictive value of insole data, which were collected during the
Timed-Up-and-Go (TUG) test, to the benchmark standard questionnaire for sarcopenia (SARC-F: strength, assistance with
walking, rising from a chair, climbing stairs, and falls) and physical assessment (TUG test) for evaluating physical frailty, defined
by the Short Physical Performance Battery (SPPB), using machine learning algorithms.

Methods: This cross-sectional study included patients aged >60 years with independent ambulation and no mental or neurological
impairment. A comprehensive set of parameters associated with physical frailty were assessed, including body composition,
questionnaires (European Quality of Life 5-dimension [EQ 5D 5L], SARC-F), and physical performance tests (SPPB, TUG),
along with digital sensor insole gait parameters collected during the TUG test. Physical frailty was defined as an SPPB score=8.
Advanced statistics, including random forest (RF) feature selection and machine learning algorithms (K-nearest neighbor [KNN]
and RF) were used to compare the diagnostic value of these parameters to identify patients with physical frailty.

Results: Classified by the SPPB, 23 of the 57 eligible patients were defined as having physical frailty. Several gait parameters
were significantly different between the two groups (with and without physical frailty). The area under the receiver operating
characteristic curve (AUROC) of the TUG test was superior to that of the SARC-F (0.862 vs 0.639). The recursive feature
elimination algorithm identified 9 parameters, 8 of which were digital insole gait parameters. Both the KNN and RF algorithms
trained with these parameters resulted in excellent results (AUROC of 0.801 and 0.919, respectively).

Conclusions: A gait analysis based on machine learning algorithms using sensor soles is superior to the SARC-F and the TUG
test to identify physical frailty in orthogeriatric patients.

(JMIR Med Inform 2022;10(1):e32724) doi: 10.2196/32724
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Introduction

Kraus et al

Methods

The physiological process of aging is inevitably connected to
a decrease in physical performance [1]. It has been estimated
that approximately 30% of the US population above the age of
55 years suffer from moderate to severe physical limitations
[2]. In an orthogeriatric patient population, the assessment of
physical frailty is of particular importance, as it is not only
strongly associated with falls but also to an inferior outcome
following surgery [3]. Consequently, it is of upmost importance
to test for and thereby objectify physical impairment (ie, frailty).

Various individual parameters have been proposed to assess
physical performance, including handgrip strength, daily step
count, and gait speed. However, all of these have considerable
interindividual variation [4]. Along with individual physiologic
parameters, a variety of questionnaires such as the Barthel index
[5], De-Morton Mobility index [6], or FRAIL scale [7] have
been developed to quantify frailty. However, these
questionnaires have proven to be inferior to the more complex
physical assessments [8]. The Short Physical Performance
Battery (SPPB) [9] is often considered one of the benchmark
tests to assess frailty [8]. The SPPB combines multiple physical
assessments, including gait, balance, and strength [10]. There
is a consensus that screening for physical frailty is not only the
prerequisite for successful individual patient care but also for
cost-effectiveness [11]. Nonetheless, an international consensus
on the most appropriate screening method is still missing [12].

As outlined above, comprehensive physical stance and gait
assessments might be the most effective approach to quantify
frailty. A new approach to assess physical activity and gait
parameters includes the use of wearables and physical activity
monitors [13]. These devices enable physicians and researchers
to assess physical activity comprehensively under real-life
conditions, and they have already been successfully applied to
assist in the diagnosis of musculoskeletal diseases and to monitor
rehabilitation [14-17]. A more recent development is sensor
insoles with pressure and gyroscope sensors. These insoles can
be easily inserted into any shoe and allow for the assessment
of several gait parameters in an outpatient setting and also during
various daily activities. This might provide a more feasible
alternative to time-consuming assessments in specialized gait
laboratories.

Although sensor insoles might help in the assessment of frailty,
the large number of data points generated necessitates advanced
statistical analysis. The random forest (RF) based on decision
trees or the K-nearest neighbor (KNN) based on the Euclidean
distance between points in high-dimensional space are two
suitable strategies to develop clinical decision algorithms [18].

The aim of this study was to compare the classification
capability of insole data collected during the Timed-Up-and-Go
(TUG) test—a clinical gait test to assess a patient’s mobility
and risk of falling—to SARC-F (a five-item questionnaire for
the quick assessment of the risk of sarcopenia, assessing
strength, assistance with walking, rising from a chair, climbing
stairs, and falls) and the TUG test to assess physical frailty,
defined by the SPPB, using machine learning algorithms.

https://medinform.jmir.org/2022/1/e32724
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Patient Selection

Patients presenting to our orthogeriatric outpatient clinic for an
osteoporosis diagnosis or therapy between December 2020 and
March 2021 were invited to participate in this study. Inclusion
criteria were aged >60 years, independent ambulation without
any walking aids, and no mental or neurological impairment.
Patients were informed of the study details, including the
anonymized evaluation of the collected data, and then provided
written consent. This cross-sectional study was approved by
the local ethics committee (#19-177).

General Data Assessment

All data were collected in a standardized fashion by a unique,
specially trained investigator. Demographic data included age,
weight, height, BMI, body composition, general health-related
quality of life assessed by the European Quality of Life
5-dimension (EQ-5D-5L) questionnaire [19], and the sarcopenia
and physical frailty screening questionnaire SARC-F [20]. All
questionnaires were completed together with the patients to
obtain the highest possible data quality. Body composition (ie,
body fat and muscle percentages) was measured using a
clinically validated body composition monitor (BF511,
Omron-Healthcare, Kyoto, Japan).

Assessment of Physical Frailty

Physical frailty was assessed by three different means: the SPPB,
the TUG test, and digital insole gait parameters assessed during
the TUG test using sensor insoles (Science3, Moticon, Munich,
Germany).

The SPPB [9] is considered the benchmark test to assess
physical frailty and was therefore used as the primary outcome
parameter [8]. The SPPB is comprised of multiple tests for gait
and stance safety, as well as lower-extremity strength and
performance [10]. This tool scores the ability to stand in three
different positions for 10 seconds, the time required to walk 3
meters, and the time it takes to rise from and sit down on a chair
5 times. Points are awarded for each subtest according to the
time achieved, with a maximum score of 12 and a minimum
score of 0. Patients with SPPB scores<8 are considered to be
physically frail [21,22]. The binary SPPB score (not physically
frail vs physically frail) was used as the classification label for
the machine learning models applied in this study.

The TUG test measures the time a patient takes to rise from a
chair (height 46 centimeters), walk 3 meters, turn 180 degrees,
and return to their initial seating position [23]. A duration of 12
seconds or longer has been associated with a higher probability
of physical frailty [24]. Therefore, a cut-off value of 12 seconds
was chosen to classify patients into physically frail and not
physically frail groups.

The gait parameters were assessed by Science3 digital sensor
insoles during the TUG test. Each of these insoles has 19
pressure sensors and a 3D gyroscope sensor to measure a variety
of temporal, spatial, and local gait parameters, including gait
speed and pressure distribution [25,26]. The parameters assessed
are outlined in detail in Table 1.
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Table 1. Overview of all insole gait parameters assessed.

Kraus et al

Parameter Unit
TUG? test time seconds
Steps number
Mean length of gait line millimeters
Standard deviation x/y of gait line meters
Mean total force during stance Newtons
Mean gait cycle time seconds

Mean gait cadence

Mean double support time

Mean acceleration over gait cycle (x/y/z)
Mean stride length

Mean fraction of stance phase

Mean fraction of swing phase

Walking distance

Mean walking speed

COP® variability (lefuright)

COP trace length (left/right)

strides/minute
seconds

8

meters

%

%

meters
meters/second

meters

meters

*TUG: Timed-Up-and-Go.
YCOP: center of pressure.

General Statistical Analysis

Unpaired 7 tests were used with o adjustment according to the
Benjamini and Hochberg method [27] to compare
interval-scaled, normally distributed variables (demographics,
questionnaires, and gait parameters) between patients with and
without physical frailty. Data are expressed as mean (SD). The
effect size is expressed as the standardized mean difference.

Prediction Algorithms

To train the prediction algorithms, all collected performance-
and nonperformance-related variables were used to train a
recursive feature elimination algorithm that can identify the
most relevant parameters for distinguishing patients with (SPPB
score=8) and without (SPPB score>8) physical frailty. For this
purpose, the feature elimination algorithm was used to choose
the best suitable variables based on an RF algorithm from the
ranger package [28]. Gini impurity was used to rank the
variables in order of their importance, as this measure is
particularly suited to assess how well certain variables divide
up a data set [29]. Based on this ordering of the variables, the
variables were gradually removed until the lowest possible
classification error was achieved. The classification error was
chosen as the performance measure for the recursive feature
selection, since the main focus was on maximizing the accuracy
of the models developed later.

Two supervised machine learning algorithms, KNN [30] and
RF, were used for further analysis using the previously selected
variables. Both algorithms rely on being trained with labeled
training data with a subsequent performance evaluation using
test data. Prior to the training and tuning processes, the data
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were split into a training and a testing data set at a 70:30 ratio.
The training process included an internal 3-fold cross-validation
step. As hyperparameter tuning is essential for supervised
machine learning algorithms to increase the accuracy of the
classification [31], both algorithms were subjected to a tuning
process that optimizes all variables to be tuned simultaneously,
exclusively using the training data set. For the KNN, the tuning
range for the number of neighbors was set from 1 to 22. For the
type of kernels, the four variants rectangular, Gaussian, rank,
and optimal were tested. For the unit of measurement of the
distance, the options Euclidean distance, absolute distance, and
Minkowski distance were available. For the RF, the number of
variables considered as split candidates within a tree was tuned
in the range of 1 to 7, the maximum number of branches in a
tree was in the range of 2 to 10, and the number of trees in the
RF was set from 100 to 1000. The nested resampling technique
was used to enable better estimation of the true model
performance on unseen data [32]. The 30% of the data not seen
by the model were used to compare the performance of the
different models subsequently.

To compare the generated algorithms to the classification
properties of the TUG and SARC-F, confusion matrices and
receiver operating characteristic (ROC) curves were created
based on a logistic regression for the SARC-F using solely the
score achieved and for the TUG using only the time taken to
complete the test so as to compare the different prediction
strategies. All data were collected in a REDCap study database
[33] and analyzed in a standardized manner with RStudio
software (version 1.3.1093), R (version 4.0.3), using the
packages dplyr (version 1.0.2), Hmisc (version 4.6-0), ggplot2
(version 3.3.2), caret (version 6.0-86), and mlr3 (version 6.0-86)
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Table 2. Comparison of demographics, body composition, physical activity, physical performance, and health questionnaire scores between patients

with and without physical frailty.

Variable No physical frailty (n=34) Physical frailty (n=23) P value SMD?*
Age (years), mean (SD) 74.76 (5.92) 80.00 (5.82) 002 0.892
BMI (kg/mz), mean (SD) 2442 (4.81) 24.66 (3.79) 84 0.055
Height (cm), mean (SD) 160.94 (6.37) 160.56 (7.84) 85 0.053
Weight (kg), mean (SD) 62.77 (9.72) 63.45 (9.61) .80 0.070
Body fat (%), mean (SD) 30.15 (8.55) 32.14 (7.86) 37 0.243
Visceral fat (%), mean (SD) 795(3.21) 8.71 (2.72) 34 0.254
Muscle mass (%), mean (SD) 30.26 (4.20) 28.52(3.29) 09 0.460
Resting metabolism (kcal), mean (SD) 1345.32 (110.40) 1341.29 (123.22) 90 0.034
Calf circumference, mean (SD) 35.04 (3.12) 34.31(3.30) 41 0.228
EQ-5D-5L" index, mean (SD) 0.84 (0.16) 0.65 (0.27) 007 0818
SPPBC score (points), mean (SD) 11.30 (0.79) 6.44 (2.06) <001 -3.106
SPPB score=8, n (%) 0 (0) 23 (40) <.001
SARC-F? score, n (%) 01 1.002
0 22 (65) 6 (26)
1 8 (24) 7(30)
2 2(6) 3(13)
3 0(0) 407
4 2(6) 3(13)
Number of falls in past year, n (%) 31 0422
0 24 (71) 12(52)
1-3 7(21) 9(39)
>3 39 209
BMD® femoral neck (g/cm3), mean (SD) 0.61 (0.06) 0.59 (0.06) 27 0303
BMD lumbar spine (g/cm3), mean (SD) 0.85(0.12) 0.91 (0.16) 17 0.391
Smoking, n (%) >.99 0.005
No 31 91) 219D
Yes 39 209
Self-sustaining, n (%) 74 0.103
No 6(18) 5(22)
Yes 28 (82) 18 (78)
Daily leaving apartment, n (%) 05 0.566
No 4(12) 8(35)
Yes 30 (88) 15 (65)
‘Weekly sports activity (>3 h), n (%) 06 0.569
No 10 (29) 13(57)
Yes 24 (71) 10 (43)
4SMD: standardized mean difference.
bEQ-SD-SL: European Quality of Life 5-dimension questionnaire.
°SPPB: Short Physical Performance Battery.
ISARC-F: sarcopenia test (strength, assistance with walking, rising from a chair, climbing stairs, and fall).
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[34]. The code used to create and compare the models to the
established tests has been made publicly available on GitHub
[35].

Results

All of the 57 eligible consecutive orthogeriatric patients were
included in the final analysis. The patients’ mean age was 77
(SD 6) years and 93% were women. Classified by the SPPB,
23 patients (40%) had physical frailty. Table 2 shows the
comparison of all assessed general parameters between the
patients with and without physical frailty. Only age, EQ-5D-5L
index, and SARC-F score differed significantly between the
two groups. It should be emphasized that the average age of the
patients with physical frailty was more than 5 years above the
average age of the patients without physical frailty. In parallel,
the mean health index of the patients with physical frailty
determined by the EQ-5D-5L was almost 0.2 points below that
of the patients without physical frailty. All other collected
demographic data such as weight, height, BMI, body fat, and
muscle mass did not differ significantly between the two groups.

The between-groups comparison of the digital gait analysis is
presented in Table 3. The two groups differed significantly for
all insole-generated gait parameters (all P<.05).

The classification errors of the TUG test and SARC-F to identify
patients with physical frailty were 0.333 and 0.316, respectively.
However, the area under the ROC curve (AUROC) for the TUG
test was higher when compared with that of the SARC-F (0.862
vs 0.639; Figure 1A, Figure 1B).

The RF-based recursive feature elimination algorithm was
trained to extract the most important features for classifying
physical frailty using all parameters collected, except the SPPB,
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TUG test, and SARC-F, as they either define the result or
represent the classification methods to be compared.

Based on the defined criteria, the 9 parameters outlined in Figure
2 were included. Notably, 8 out of the 9 parameters selected
were gait parameters collected by the insoles (Figure 2). The
number of steps and the step length were the most decisive
factors for the identification of physical frailty by the algorithm.
The gait speed followed in third place. Of the variables selected,
double support seemed to have the least effect on classification.

These variables were then used to train the two classification
algorithms KNN and RF. The tuning process resulted in an
optimal combination of hyperparameters for the KNN as
follows: k=15, a “rank” kernel, and the Minkowski distance.
The optimal combination for the RF was 7 split variables, 6
branches, and 550 trees.

To compare the classification abilities of the TUG and the
SARC-F with the algorithms created, a logistic regression was
carried out on the SARC-F score and the TUG time on the
dependent variable physical frailty and the ROC curve was
drawn (Figure 1A-D). Table 4 summarizes the prediction
accuracy of the four classifiers. Both classical approaches were
outperformed by the machine learning—based models in terms
of classification error (KNN=0.246, Figure 1D; RF=0.281,
Figure 1C). The AUROC for the RF was slightly superior to
that of the KNN (Table 4). Overall, the KNN showed the lowest
error rate in classification at 24.6% (Figure 1). RF showed the
largest AUROC value and thus appears to be the most suitable
for classification. In the conventional tests, the TUG test was
far superior to the SARC-F in terms of area under the ROC
curve and classification error. The KNN showed the lowest
classification error rate, but had a slightly smaller AUROC
value than those of the RF and the TUG test.
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Table 2. Comparison of demographics, body composition, physical activity, physical performance, and health questionnaire scores between patients

with and without physical frailty.

Variable No physical frailty (n=34) Physical frailty (n=23) P value SMD?*
Age (years), mean (SD) 74.76 (5.92) 80.00 (5.82) 002 0.892
BMI (kg/mz), mean (SD) 2442 (4.81) 24.66 (3.79) 84 0.055
Height (cm), mean (SD) 160.94 (6.37) 160.56 (7.84) 85 0.053
Weight (kg), mean (SD) 62.77 (9.72) 63.45 (9.61) .80 0.070
Body fat (%), mean (SD) 30.15 (8.55) 32.14 (7.86) 37 0.243
Visceral fat (%), mean (SD) 795(3.21) 8.71 (2.72) 34 0.254
Muscle mass (%), mean (SD) 30.26 (4.20) 28.52(3.29) 09 0.460
Resting metabolism (kcal), mean (SD) 1345.32 (110.40) 1341.29 (123.22) 90 0.034
Calf circumference, mean (SD) 35.04 (3.12) 34.31(3.30) 41 0.228
EQ-5D-5L" index, mean (SD) 0.84 (0.16) 0.65 (0.27) 007 0818
SPPBC score (points), mean (SD) 11.30 (0.79) 6.44 (2.06) <001 -3.106
SPPB score=8, n (%) 0 (0) 23 (40) <.001
SARC-F? score, n (%) 01 1.002
0 22 (65) 6 (26)
1 8 (24) 7(30)
2 2(6) 3(13)
3 0(0) 407
4 2(6) 3(13)
Number of falls in past year, n (%) 31 0422
0 24 (71) 12(52)
1-3 7(21) 9(39)
>3 39 209
BMD® femoral neck (g/cm3), mean (SD) 0.61 (0.06) 0.59 (0.06) 27 0303
BMD lumbar spine (g/cm3), mean (SD) 0.85(0.12) 0.91 (0.16) 17 0.391
Smoking, n (%) >.99 0.005
No 31 91) 219D
Yes 39 209
Self-sustaining, n (%) 74 0.103
No 6(18) 5(22)
Yes 28 (82) 18 (78)
Daily leaving apartment, n (%) 05 0.566
No 4(12) 8(35)
Yes 30 (88) 15 (65)
‘Weekly sports activity (>3 h), n (%) 06 0.569
No 10 (29) 13(57)
Yes 24 (71) 10 (43)
4SMD: standardized mean difference.
bEQ-SD-SL: European Quality of Life 5-dimension questionnaire.
°SPPB: Short Physical Performance Battery.
ISARC-F: sarcopenia test (strength, assistance with walking, rising from a chair, climbing stairs, and fall).
https://medinform jmir.org/2022/1/e32724 JMIR Med Inform 2022 | vol. 10 | iss. 1132724 1 p. 5

(page number not for citation purposes)

RenderX



Publication |

JMIR MEDICAL INFORMATICS Kraus et al
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Table 3. Comparison of gait parameters between patients with and without physical frailty.

Variable No physical frailty, mean (SD) Physical frailty, mean (SD) P value SMD?*
Mean gait speed (m/s) 1.09 (0.28) 0.69 (0.19) <.001 -1.637
TUGP time (s) 8.52(1.93) 15.79 (5.50) <.001 1.765
Mean stride length (m) 1.12 (0.19) 0.85(0.17) <.001 —1.450
Mean gait cadence (strides/min) 59.72 (8.83) 49.37 (8.21) <.001 -1.214
Mean gait cycle time (s) 1.05 (0.16) 1.27 (0.20) <.001 1.199
Mean double support time (s) 0.40 (0.13) 0.51(0.14) 003 0.843
Number of steps (n) 15.32 (6.05) 20.04 (5.67) 005 0.804
Mean acceleration over gait cycle right (g) 0.03 (0.89) 0.59 (0.74) 02 0.695
COP* trace length right (m) 5.25(1.96) 7.06 (3.22) 02 0.680
Mean acceleration over gait cycle right (g) -2.36(1.32) -1.39 (1.54) 02 0.672
Mean length width of gait line right (mm) 131.10 (21.20) 142.66 (19.05) 04 0.574
Variance of acceleration over gait cycle (m/sz) 1.66 (0.86) 1.21(0.78) 05 -0.552

2SMD: standardized mean difference.
bTUG: Timed-Up-and-Go.

€COP: center of pressure.
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Figure 1. Comparison of the receiver operating characteristic (ROC) curves of the classification properties of the sarcopenia index SARC-F (A),
Timed-Up-and-Go (TUG) test (B), and the random forest (C) and k-nearest neighbor (D) algorithms. AUC: area under the ROC curve.
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Figure 2. Selected parameters based on the recursive feature elimination algorithm, ordered by their importance for reduction of classification error

ranked by Gini-Impurity [29].

number of steps [n] -
stride length [m] -
gait speed [m/s] -
acceleration over gait cycle [s] -
age [years] -
gait cycle time [s] -
gait cadence [strides/min]
center of pressure variability [cm] -

double support time [s] -

Feature Importance [loss of classification error]

Table 4. Comparison of physical frailty prediction methods.

Performance metric SARC-F* LR® TUG test LR KNNY classifier RF° classifier
Accuracy 0.684 0.667 0.719 0.724
AUROCE 0.639 0.862 0919 0859

2SARC-F: sarcopenia test (strength, assistance with walking, rising from a chair, climbing stairs, and fall).

PLR: logistic regression.
“TUG: Timed-Up-and-Go.
9KNN: K-nearest neighbor.
RF: random forest.

fAUROC: area under the receiver operating characteristic curve.

Discussion

Principal Findings

Based on a sample of 57 patients and advanced statistics, this
study shows that gait parameters assessed by digital insoles
during the TUG test outperformed both the benchmark tests
(the TUG physical assessment and SARC-F questionnaire) to
identify patients with physical frailty.

Patients identified as physically frail classified by their SPPB
scores (=8) were on average 5 years older than patients that
were not classified as physically frail, with no significant
difference in BMI or body composition. By contrast, previous
studies have reported a decreased muscle mass and increased
fat percentage in patients with physical frailty [36]. Despite the
considerable amount of physical frailty—related data collected
(Tables 1 and 2), the vast majority (8 out of 9) of the parameters
selected by the recursive feature elimination algorithm were
insole gait parameters collected during the TUG test. Although
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the temporal gait variables such as gait speed, double support
time, and gait cadence can be considered dependent variables,
they all reflect different aspects of gait. For this reason, it makes
sense to integrate several of these aspects into the machine
learning algorithms to better map the gait pattern of an
individual patient and derive the best possible classification.

Previous studies have proposed that gait speed is the most
relevant parameter to identify patients with physical frailty [4].
It has been shown that a slow gait speed is associated with an
increased fall risk [37], as well as a higher mortality rate [38].
Interestingly, the advanced modeling used in this study weighted
stride length equally important as gait speed to differentiate
between physical frailty and no physical frailty in patients, in
terms of their classification importance measured by the Gini
impurity (Figure 2). Although gait speed is easily assessed, it
might be biased by patients’ motivation. One can hypothesize
a “white coat effect,” in this case a higher level of motivation
during medical gait speed examinations. Stride length might be
a more robust (ie, harder to influence consciously) parameter
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in such settings, which might explain its superiority in the herein
applied modeling. Espy et al [39] provided a possible
explanation for the higher robustness of stride length compared
to gait speed. They were able to show that a slow gait leads to
instability, which again is compensated for by a small-stepped
gait pattern [39]. It appears reasonable that patients with physical
frailty would therefore compensate for their unstable gait pattern
by a reduction of their stride length [39]. Overall, stride length
and gait speed were found to be the two most relevant
parameters for the model (Figure 2), and could only be slightly
increased by adding additional gait parameters such as cadence,
double support time, and acceleration over gait cycle.
Consequently, stride length in addition to gait speed might be
a valuable clinical parameter to identify patients with physical
frailty. Their early identification is essential to reduce the
number of falls [37] and possibly mortality rates [38], as well
as to increase further health outcomes [40]. These considerable
implications are not only important in an orthogeriatric setting
but also for almost all medical specialties.

In line with previous studies, the SARC-F as well as the TUG
test were found to be suitable for estimating the physical frailty
status [41]. The slightly better results for the TUG test compared
with the SARC-F might be explained by their different natures.
The SARC-F is a patient-reported outcome measure, whereas
the TUG test is a more objective score. Older patients have been
shown to overestimate their physical abilities [42,43], which
might result in false negative SARF-F scores. Complementing
the SARC-F by an objective measurement such as the TUG
test, handgrip strength, or a gait analysis might increase its
accuracy and therefore screening value.

Nevertheless, the combination of machine learning algorithms
and digital gait analysis outperformed the TUG test and SARC-F
in the detection of physical frailty. The digital insoles used in
this study can easily be applied and have proven to be reliable
[25]. Furthermore, they could be integrated into health
assessment apps, such as on a smartphone. This can facilitate
both the collection of longitudinal data and remote monitoring
of at-risk patients, and potentially even guide rehabilitation.
Consequently, gait analysis by digital insoles might become
another valuable part of the growing body of digital health
devices.

Limitations and Strengths

An obvious limitation of this study is the limited number of
patients. The smaller the number of patients the algorithm is
trained on, the more limited is its generalizability. Therefore,
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the herein proposed algorithm must be validated in a larger
cohort. In the setting of a longitudinal, multicenter trial, the
applied statistics could be extended to deep learning methods
such as neural networks, which could further increase the
accuracy of the predictions. Another limitation is the definition
of physical frailty. Due to the current setup, it was only possible
to define physical frailty by the SPPB. Although the SPBB is
considered one of the benchmark tests for physical frailty [44],
it would be even more meaningful to directly assess the
occurrence of various health impairments such as falls, fractures,
progression to impaired ambulation, or death. Nonetheless,
these parameters can only be assessed in a longitudinal study
setup.

Despite these limitations, several strengths of this study are
noteworthy. First, the combined use of modern wearables and
data analysis strategies from the field of data science to
complement the classic statistical analysis is an advantage of
this study. Due to the increasing amount of data points collected
by digital devices, advanced statistics will become the primary
working horse to analyze the data. Second, the meta-modeling
approach applied represents a pessimistic estimation of the
models’ performance in a larger cohort. Nevertheless, the
resulting AUROC values of 0.801 and 0.841 can be judged as
excellent [45]. These excellent results argue for the value of
digital insole gait parameters. For application in clinical practice,
it is conceivable that a doctor will receive an analysis on their
terminal device in real time during the test, which can provide
time-efficient support in clinical decision-making for or against
prescribing fall prevention training, certain medications, or other
therapeutic interventions. Finally, this study also indicates that
gait parameters might be a promising target for physical frailty
therapies. It can by hypothesized that focused physiotherapy or
fall risk minimization counseling could counteract physical
frailty and thereby increase the patient’s health-related quality
of life.

Conclusion

Machine learning algorithms—based gait analysis using mobile
insoles appears to be a promising approach to screen for physical
frailty in an outpatient setting. Due to the increasing amount of
data collected, high-performance data processing will become
increasingly important. Future large-scale, longitudinal, and
multicenter screening trials should collect as many data points
as possible, including from digital devices such as wearables,
and apply advanced statistics to increase the diagnostic
sensitivity and accuracy of physical frailty diagnosis.
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bypass the use of traditional mobility-related measures and provides an objective and inclusive system
for evaluating physical ability and locomotion results in immobilized individuals. The study aimed to
develop a nuanced understanding of Timed-Up-and-Go test outcomes using various biological,
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assessment of physical frailty among bedridden patients. This will help to improve clinical decision-
making and customize interventions in orthogeriatric care settings.
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Abstract: Introduction: The measurement of physical frailty in elderly patients with orthopedic
impairments remains a challenge due to its subjectivity, unreliability, time-consuming nature, and
limited applicability to uninjured individuals. Our study aims to address this gap by developing
objective, multifactorial machine models that do not rely on mobility data and subsequently validating
their predictive capacity concerning the Timed-up-and-Go test (TUG test) in orthogeriatric patients.
Methods: We utilized 67 multifactorial non-mobility parameters in a pre-processing phase, employing
six feature selection algorithms. Subsequently, these parameters were used to train four distinct
machine learning algorithms, including a generalized linear model, a support vector machine, a
random forest algorithm, and an extreme gradient boost algorithm. The primary goal was to predict
the time required for the TUG test without relying on mobility data. Results: The random forest
algorithm yielded the most accurate estimations of the TUG test time. The best-performing algorithm
demonstrated a mean absolute error of 2.7 s, while the worst-performing algorithm exhibited an
error of 7.8 s. The methodology used for variable selection appeared to exert minimal influence
on the overall performance. It is essential to highlight that all the employed algorithms tended
to overestimate the time for quick patients and underestimate it for slower patients. Conclusion:
Our findings demonstrate the feasibility of predicting the TUG test time using a machine learning
model that does not depend on mobility data. This establishes a basis for identifying patients at risk
automatically and objectively assessing the physical capacity of currently immobilized patients. Such
advancements could significantly contribute to enhancing patient care and treatment planning in
orthogeriatric settings.

Keywords: frailty; clinical assessment; machine learning; TUG test; age; osteoporosis

1. Introduction

A key challenge in geriatric medicine is to develop objective measures that report a
patient’s physical capability. Such biomarkers would help to base treatment decisions more
on evidence. The Timed-Up-and-Go test (TUG test) [1] is a commonly used tool to assess the
physical performance of orthogeriatric patients over 60 years of age. It is important for the
long-term care of patients to have reproducible examinations available for an evaluation of
the therapy success. Conducting physical tests such as the TUG test to objectively measure
the physical segment of frailty is crucial, as recent research has revealed that simple clinical
evaluation correlates poorly with objective geriatric assessment. [2,3]. The majority of indi-
viduals with numerous geriatric deficits subjectively underestimated their actual frailty in
comparison to an objective assessment [2,3]. Consequently, there is a pressing need to more

Geriatrics 2023, 8, 99. https:/ /doi.org/10.3390/ geriatrics8050099

https:/ /www.mdpi.com/journal/geriatrics



Publication Il

40

Geriatrics 2023, 8,99

20of 14

objectively assess the physical capacities of geriatric patients [4]. The current tools used to
assess physical capacity are mainly based on standardized patient-reported questionnaires,
such as the Barthel Index [5], DeMorton Mobility Index [6], or screening questionnaires,
such as the sarcopenia and physical frailty screening questionnaire (SARC-F) [7]. The main
disadvantages of these questionnaires are that they are very time-consuming to administer
and are influenced by the subjective self: nent and/or nent by the caretakers.
In addition, older patients tend to overestimate their physical activity [2] and patients
treated in trauma surgery are often immobilized, which limits their capacity to undertake
physical testing. ML-based fall detection and prevention systems are evaluated in a review
by Usmani et al., with a focus on the impact of old age on increased fall risk. The fre-
quent use of support vector machines is an often-used algorithm, and wearables for these
applications are common. However, limitations arise from primarily conducting studies
in controlled environments with adults, and future research directions such as energy
efficiency, sensor fusion, context awareness, and wearable design are highlighted [8].

A review on the latest research trends on fall risk prediction including over 1000 studies
showed that below 5% of the studies evaluated the quality of fall risk prediction models.
These models used patient assessment data related to physical and cognitive function, but
often did not consider post-admission factors or interventions, as well as cross-sectional
blood-work data. The reporting quality was generally poor, but it has improved over the
past decade. The review recommends exploring artificial intelligence and machine learning
with high-dimensional data from digital hospital systems to enhance fall risk prediction in
hospitals [9].

In the future, telemedicine systems will play an important role in this automation to
close the gap between inpatient monitoring and outpatient care. This may help to address
the unique needs of patients and their environmental contexts [10]. A user-friendly portable
digital system for sarcopenia assessment, following the EWGSOP?2 algorithm, has already
been established by Teixeira et al. in 2022. This system not only facilitates the diagnosis and
monitoring of sarcopenia but also holds potential for increasing public awareness about
sarcopenia’s characteristics and risk factors [11].

For future applications, the principles and interventions set out by Petretto et al.
address the potential digital paradox, where individuals who could benefit the most from
telemedicine may be inadvertently excluded, particularly individuals with disabilities and
the elderly. These principles encompass structural considerations, knowledge and skill
requirements, and necessary adaptations, with a focus on accommodating diverse user
needs. The needs and specificities of all stakeholders, including healthcare professionals
and caregivers, are regarded as integral to the discussion [12].

Because of these limitations, we aimed to develop a more objective test to obtain
a measure of physical performance in elderly patients by generating multifactorial data
without mobility data. Second, we validated that test by comparing it to TUG test data
by utilizing supervised machine learning methods [13]. It is challenging to evaluate the
pertinent influencing factors holistically with reference to the individual risk, especially
when evaluating multi-factorial disorders, such as physical frailty. Here, machine learning
algorithms have a lot of potential to assist human judgment and enhance patient care. The
long-term objective is to utilize the pilot study’s findings to create clinical decision support
tools that can be linked into hospital information systems to automatically identify patients
at risk.

2. Materials and Methods
2.1. Patient Recruitment

We recruited patients attending our orthogeriatric outpatient clinic, with a primary
focus on osteoporosis treatment, during the period spanning December 2020 to March 2021.
Our inclusion criteria encompassed individuals aged over 60 years who demonstrated inde-
pendent ambulation without reliance on walking aids and exhibited no signs of mental or
neurological impairments. Conversely, we excluded patients with dementia, those currently
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undergoing acute tumor treatment, or individuals who had sustained significant lower
extremity injuries, such as fractures or joint replacements, within the preceding 6 months, to
ensure the validity of the investigations, ensure the reliability of patient-reported question-
naires, and limit the impact of concurrent illnesses, as well as acute regenerative processes
of the musculoskeletal system, on the laboratory values. Prior to their participation in the
study, all participants provided informed consent, which encompassed the anonymized
evaluation and publication of collected data. Ethical approval for the study was granted by
the local ethics committee of Ludwig Maximilians University Munich (Protocol #19 177).

2.2. General Data Assessment

A single, properly trained investigator collected all data, including age, weight, height,
BMI, body composition, blood draw, general health-related quality of life as measured by
the European Quality of Life 5-dimension (EQ-5D-5L) questionnaire [14], and SARC-F [15].
To ensure data quality, we completed all surveys with the patients. A clinically approved
body composition monitor was used to determine body composition regarding body fat
and muscle percentages (BF511, Omron-Healthcare, Kyoto, Japan).

2.3. Data Collection

Data collection for each individual patient was conducted following their regular
appointment at the geriatric traumatology osteoporosis outpatient clinic, typically between
9 am and 1 pm. This timing was chosen to minimize the potential impact of circadian
fluctuations in the measured parameters. A single examiner conducted the data collection
to ensure consistency and reduce inter-observer variability. When patients met the inclu-
sion criteria for the study, they were provided with information about the potential study
participation and given the autonomy to decide whether they wished to take part in the ex-
aminations. During data acquisition, our foremost objective was to gather a comprehensive
set of parameters pertinent to physical frailty. These parameters were obtained within the
confines of routine clinical practices. To uphold methodological precision, we referred to es-
tablished guidelines and the pertinent literature recommendations. In particular, laboratory
values from a standardized osteological screening laboratory, according to the current DVO
guideline, were included as an essential component of data collection. [16] It was expanded
to include the muscle markers myoglobin, LDH, and muscle-specific creatine kinase. In
addition, demographic data, such as age, weight, height, BMI, were collected, and a BIA
(bioelectrical impedance analysis) was used to measure body fat and muscle percentage.
EQ-5D-5L was surveyed as an index for health-related quality of life. SARC-F [15] was
completed with assistance given to the patients to ensure the greatest possible data quality.
Patients were asked if they can lift 5 kg, walk across the room, struggle to get out of a
chair, climb 10 flights of stairs, and how many times they have fallen in the previous year.
Together with handgrip strength, measured using a digital dynamometer (EH101, Kuptone,
London, UK) and Timed-Up-and-Go time measurements, 65 variables were collected for
each patient. In shaping the parameter selection, we conducted a thorough evaluation by
comparing guidelines and the current literature within the context of an expert panel, while
also taking into careful consideration the available resources for data collection.

2.4. Timed-Up-and-Go Test

Subjects were instructed to walk from a seated position on a regular chair to a marker
3 m away, turn around, and return to the starting position in the TUG test. For all subjects,
the same iPhone application (Apple Inc., Cupertino, CA) was used to record timings.

2.5. Clinical Laboratory Data

To minimize biochemical alterations of the blood, the samples were evaluated immedi-
ately after blood collection in the hospital’s central laboratory. An extended osteological ba-
sic laboratory [16], broadened to include muscle markers, was obtained, including sodium,
potassium, glucose, creatinine clearance, creatinine, serum calcium, protein-corrected serum
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calcium phosphate in serum, total protein, c-reactive protein electrophoresis, albumins, beta
globulins, gamma globulins, alpha-1 globulins, alpha-2 globulins alkaline phosphatase,
gamma-glutamyl transferase, count of red blood cells, erythrocytes, leukocytes hematocrit,
hemoglobin, average corpuscular volume mean corpuscular hemoglobin concentration,
mean corpuscular hemoglobin, platelets hormone parathyroid, thyroid stimulating hor-
mone, 25-hydroxyvitamin D3, lactate dehydrogenase, creatine-kinase, glomerular filtration
rate (GFR), and myoglobin. A detailed list can be found in the supplementary data (Table
S1) and on the projects GitHub repository [17].

2.6. Machine Learning Model Construction

The data analysis and modeling was carried out after data collection was completed
using the open source programming language R (version 4.2.0), utilizing library mlr3 [18]
and its dependent packages. To perform a dimensionality reduction for the machine learn-
ing algorithms, we used six different feature selection methods of the praznik package [19],
each applying a threshold of 0.8 on the mutual information score (mi-score) [20] to se-
lect the most relevant variables. When the ground truth is unknown, the mi-score may
be used to assess the agreement of two independent label assignment strategies on the
same dataset. Comparing feature selection methods helps to make informed decisions
about which method to use for specific data and objectives, considering mathematical
underpinnings and trade-offs between information gain and redundancy reduction [21].

Therefore, the following six methods were selected based on their suitability for the
present dataset: impurity (imp), which evaluates variables based on Gini impurity, which
is used to split data in decision trees [22]; A minimum redundancy maximal relevancy filter
(mrmr), which aims to minimize redundancy among selected features while maximizing
their relevance to the target variable [23]; A minimal conditional mutual information maxi-
mization filter (cmim), which seeks to maximize conditional mutual information, focusing
on the dependence of a feature on the target variable given the other selected features [24];
a minimal joint mutual information maximization filter (jmim), which focuses on maxi-
mizing joint mutual information, considering the mutual information of a feature with all
other selected features [25]; a minimal normalized joint mutual information maximization
filter (njmim), which is similar to the jmim and njmim and also maximizes joint mutual
information but with the additional step of normalizing the mutual information values [26];
and a joint mutual information filter (jmi), which maximizes joint mutual information
but without normalization [22]. As described, these methods differ from a mathematical
point of view in how they evaluate the variables in terms of entropy, either minimizing
redundancy or maximizing information gain, and whether they normalize the input data
or directly use the data structure of the raw data.

The process of variable selection was followed in our analyses by training four different
algorithms: the random forest algorithm [27], one generalized linear model [28], a support
vector machine (SVM) [29], and an XG-Boost-algorithm [30]. During the training process,
we performed resampling by five-fold internal cross-validation to increase the reliability of
our models. The data were split into training and validation data in a ratio of 80/20.

Subsequently, we evaluated and compared the models with respect to their training
and testing error. For this purpose, the error measures mean squared error (MSE), root
mean squared error (RMOSE), and mean absolute error (MAE) were used, as a combination
of metrics is often required to best assess the performance of a model [31].

Based on these results, boxplots, correlation, residual plots, and Taylor diagrams [32]
were created to visualize the results.

2.7. Statistical Analysis

To enhance comprehensibility of the dataset, the analysis was initiated with a compre-
hensive descriptive statistical examination. This initial phase involved the computation of
mean values and standard deviations for all numerical variables. Concurrently, categorical
and binary variables were presented in terms of their respective percentage frequencies. In
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addition to our ML approach, a multivariate ANOVA analysis was performed to discover
the optimal combination of variable extraction and algorithm selection by determining
statistical differences in the training and testing errors between the utilized learners and
feature selection approaches. To maximize traceability, the complete code used can be
viewed in the project’s GitHub repository [17].

3. Results

Of the 115 eligible patients in our outpatient clinic, 103 agreed to participate in this
study. In five instances, participants declined to take part in the assessments, citing that
their subjective physical capacity was insufficient to complete all the tests. Additionally,
seven patients declined participation due to scheduling commitments. Table 1 shows the
general demographic data of these patients. See the Supplemental Materials Table S1 for a
comprehensive exploratory data analysis.

Table 1. Demographic patient data (n = 103, IQR = inter-quartal range).

Variable N Median IQR
Age 76 (71, 80)
Handgrip strength 224 (18.8,25.2)
TUG test time 95 (8.0,13.8)
Weight 108 64 (58, 70)
Height 162 (158, 166)
BMI 244 (21.7,25.9)

3.1. Feature Selection Process

The cut-off of 0.8 for the mutual information score resulted in 10 selected features for
each of the six methods.

The evaluation of the feature frequency in our six different feature selection methods
showed that age and leukocytes were the two most frequently selected variables for the
regression analysis. They were selected by all six methods. By five methods, the variables
EQ-5D index, GFR, grip strength of the dominant hand, and patient-reported health state
were selected. The frequencies of all the selected features are shown in Figure 1 by proportion.

1001 @ [ ]
[ ] [ N I
75
< [
S
T
8_ 50 ®
]
Q
o0 e ° o
25
° [ ] [ ] [ BN
00
> 1y > & o *
& quy \Qo% & b@\\ﬁ\&ao&c F F S d\\q,‘) < oé\@&& & :PQQ & \\43\ &
PR & & I AN & PN
o & & & o &S S E LTSS
& &5 & & P PR LTS S FFF S
I R R SOOI & FF S
& F &L EFTP S § & TN
c"boob* T LSS &S &
& 5 ARSI N
3 & S &S §
c@ A '§z Q\ @ &'
< & & N
Rty L%

feature

Figure 1. Feature frequency of the top 20 automated selected features. The process included the
6 feature selection methods described before. Each approach picked 10 features, for a total of 60,
yielding a proportion of 10% if a variable is selected by all six methods and 1.6 percent if it is chosen
by one method.
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3.2. Validation of the Model

To obtain an initial overview of the performance of the different models, we created a
Taylor diagram [32] (Figure 2) in which the used algorithms are color-coded in A and the
feature selection methods in B. This graphic, published first by Taylor in 2001 [32], aids in
the comparison of several models. It measures the degree of agreement between modeled
and observed behavior using three statistics: the Pearson correlation coefficient, the root
mean square error (RMSE), and the standard deviation.
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Figure 2. Taylor diagram of modelling results. The degree of agreement between modeled and
observed behavior are visualized using three statistics: the Pearson correlation coefficient, the root-
mean-square error (RMSE), and the standard deviation. (A) Colors correspond to the used algorithms;
(B) colors correspond to the feature selecting methods. It is evident that the random forest algorithm
is the best fit, and algorithm selection has a higher impact on the ultimate performance of the model
than feature selection approaches.

The Taylor diagram provides a clear summary of how the models differ in terms of
performance, as assessed by the root mean square error (RMSE). The choice of algorithm
clearly has a considerably bigger influence on the overall performance when compared to
the feature selection method. The random forest method outperforms the other algorithms,
and xgboost seems to perform the worst on our data.

To dissect the differences between the models used in more detail, we have created a
summary table with three different error measures that differ, particularly in terms of their
penalization of the outliers. The three testing error measures MSE, RMSE and MAE are
listed in Table S2, broken down by the feature selection methods and algorithms used.

When comparing the models created using the root mean squared error (RMSE), the
combination of the cmim feature selection and the random forest algorithm performed best
with 3.7 s, whereas the RMSE of the xgboost is more than twice as large with 8.9 s. The
MAE, representing the average of all the absolute errors, was lowest for the combination of
random forest algorithm and a mrmr at 2.7 s and highest for the combination of xgboost
and annjmim at7.9s.
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The MSE is visualized in Figure 3, where we show the MSE split into the training data
and the test data. The MSE is significantly higher for the test data than for the training
data across all the algorithms and feature selection methods, except for xgboost, where the
training and testing errors are almost identical.

Comparison of Learners for Prediction of TUG-Time

A MSE of Training Data

B MSE of Validation Data

im impuri i
100 cmim impurity jmi 100 cmi mpurity Jmi
. .
L.} L}
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.
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machine learning algorithm

o sgboost
machine learning algorithm

Figure 3. Boxplot of mean squared error of testing (A) and training data (B) grouped by algorithms
and feature selection techniques. Means are shown as white rhombus, outliers are presented as
black dots.

Figure 4 shows the individual results of the training process as a correlation plot to the
actual values of the subjects after cross-validation, with only the test data in each case. Next
to it is the corresponding residual plot, which revealed a significant increase in the actual
time required. This pattern can be seen in all the algorithms used, whereby it is evident
that these erroneous deviations are significantly greater with longer TUG test times with
the generalized linear model and the support vector machine than with the random forest
algorithm. Accordingly, the random forest algorithm overestimates the slow patients less
when compared to all the other algorithms. The xgboost algorithm performed worst in the
training and testing processes. With respect to the feature selection methods, only a few
differences can be identified.

To comprehensively assess the outcomes achieved through the implementation of
machine learning techniques, a test statistic was applied to the presented results. For com-
parison, the models were categorized based on their respective algorithm types, followed by
an ANOVA-based pairwise comparison. The ANOVA analysis, with Tukey’s multiple pair-
wise comparisons of the mean squared error in TUG time estimation, revealed a significant
inferiority of xgboost compared to the other three algorithms (p < 0.001). No statistically
significant disparities were observed among the remaining three algorithms, namely the
random forest algorithm, generalized linear model, and support vector machine.
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A Correlation of truth-response for TUG-Regression
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Figure 4. Individual training process outcomes as a correlation plot (A) to the subjects’ actual values
after cross-validation, only showing the testing data in each instance. The dashed red line represents
a perfect correlation of 1. The matching residual plot (B) shows a considerable increase in predicting
error when the true time increases across all models. The horizontal line shows a residual value of
0Oand =+ 10 as reference.

4. Discussion

Using multifactorial non-mobility data from over 100 patients, we were able to suc-
cessfully develop machine learning models that predict TUG test times relatively reliably.
We only used data that can be collected from bedridden patients. Our findings should help
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to better stratify acutely immobile patients in terms of their risk of physical frailty, allowing
clinicians to make more appropriate therapeutic decisions [33]. It is crucial to bear in mind
that machine learning models are founded on correlations and not causations [34]. This
aspect must be considered when interpreting our results. The aim of developing these
models is to provide clinical practitioners with valuable support in their assessment of frail
patients, ultimately optimizing patient care.

The outcomes of our study not only advance the accuracy of TUG test time predic-
tions but also shed light on algorithmic behavior in different patient mobility contexts.
These insights are invaluable for optimizing predictive models in orthogeriatric care and
have broader implications for enhancing clinical decision support systems across various
healthcare domains. The achievement of a mean absolute error as low as 2.7 s underscores
the potential of machine learning in refining the accuracy of TUG test time estimations.
Increasing the level of accuracy is pivotal, as even small discrepancies in TUG test time
predictions can have substantial clinical repercussions, affecting patient care plans and
interventions [35].

Our findings reveal an important nuance in the behavior of the algorithms—the
tendency to overestimate the TUG test time for quicker patients and underestimate it
for slower patients. Addressing this issue in further studies is paramount to ensuring
the predictive models” clinical utility across a wide spectrum of patients with varying
mobility levels.

The broader applicability of our findings extends beyond the specific context of
orthogeriatric patients. The machine learning methodologies employed in this study can
serve as a foundation for predictive modeling in various clinical scenarios where mobility
or frailty assessment plays a pivotal role. These scenarios encompass not only fall risk
estimation but also patient rehabilitation planning, resource allocation, and personalized
care strategies.

The field of feature selection plays a critical role in data analysis and machine learning,
aiding in the identification of relevant variables for predictive modeling [36]. Common
approaches include variable filtering, which ranks variables based on their relevance to the
target using predefined criteria. Other methods, such as wrapper and embedded techniques,
optimize feature sets based on the performance of subsequent learning algorithms [37].
Filtering is often favored for its computational efficiency, reduced risk of overfitting, and
generic applicability across various inference models. Information-theoretic measures,
such as mutual information (MI) and conditional mutual information (CMI), are popular
criteria for variable selection due to their model-independent nature and capacity to capture
variable dependencies of arbitrary order [38]. The existing definitions of feature relevancy
and redundancy fail to rigorously address interactions among variables, impeding practical
feature selection methods. Discrimination power analysis is a different method for feature
selection, firmly rooted in the principles of inter-class and intra-class variation, and excels
in discerning the discriminatory capacity of individual features within a dataset [39]. It is
particularly adept at identifying features characterized by low correlation and high discrim-
ination, making it invaluable when dealing with complex databases comprising multiple
classes and abundant training samples. DPA’s ability to balance inter-class differences
and intra-class consistency ensures the selection of features that contribute significantly
to predictive accuracy while reducing redundancy, which is especially important in fea-
ture extraction from multi-faceted data, such as images or shapes [40]. Since our work
focuses on how multiple variables contribute information to the target of TUG test time and
comparing different machine learning algorithms, our study utilized information-based
methods to identify feature relevancy and redundancy in information-theoretic terms [41].

The final performance of the models was only slightly affected by the usage of var-
ious feature selection techniques. We attempted to identify the most helpful variables
for machine learning using a variety of feature selection approaches, all of which were
information-based, due to the high dimensionality of the dataset created by our investiga-
tions. Since there were no appreciable performance differences between the strategies and
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the evaluated feature selection procedures, all approaches may be approximately compared
for our purposes.

Age and inflammatory parameters seem to be crucial factors for the estimation of
the TUG test. To generate valuable information from the results of the feature selection
methods, we tried to evaluate the frequency with which the individual variables were
selected. The two variables chosen from all the selection methods, age and leukocyte count,
appear to be key influencing factors for physical frailty syndrome [42]. Reviews over the
past few years have shown that a high leukocyte count is a sign of systemic inflammation,
illness progression, and a poor prognosis [43], and all-cause mortality can be predicted by
systemic inflammation [44].

Aging is a process that happens at wildly varying speeds in various people. It appears
to be a highly significant and trustworthy indicator when it comes to physical performance.
This may be due to the fact that peak muscle and bone mass deterioration begins in the
20s and 30s [45]. As a result, the age attained provides critical information on how much
of the musculoskeletal structures remain. A limiting note here is that muscle mass alone
is not a determinant of preserved function, and degradation is subject to interindividual
variation. If chronological age was extended to include biological age, the accuracy of the
results achieved would most likely increase, since it is well known that biological methods
of determining age are even more consistent with functional resilience than chronological
age [46].

In addition, existing analyses on composite biomarker predictors for biological age
also found that, for example, CRP and hemoglobin serum levels are meaningful predictors
of biological age, which were also deemed relevant in our analyses [47].

The two described variables were followed in terms of importance by self-assessed
health status, GFR, EQ-5D index, and handgrip strength of the dominant hand. These
variables are already used in existing scores such as the Fried Frailty Scale or functional age
estimators, among others. The fact that we were able to reproduce these results underlines
the reliability of the factors found.

The most commonly used tool, the frailty index [48] offers the advantage that only
external, physical appearance has to be assessed, and no aperitive diagnostics are necessary.
Its only drawback is that the decision is made solely based on a personal assessment of
external factors. Because we intended to generate the highest level of objectivity and
reliability, we opted against using the Frailty Index in our investigations. Recent research
in constrained patient groups has demonstrated that the TUG test and handgrip strength
are also excellent tools for estimating mortality risk. This implies that the TUG test could
function as a reliable gauge of biological age. Additional functional and molecular level
research is required to test this theory [49].

The random forest algorithm yields the best results in the estimation of the TUG
test in the utilized dataset. The algorithm we used for variable selection appears to play
only a minor role in the final performance. While all algorithms, except the xgboost, start
to overestimate the TUG test time of relatively fast patients and underestimate the TUG
test time of slow patients, which should be improved in the further development of the
algorithms, only the xgboost dramatically underestimates the time of all subjects. Our pilot
study thus showed that it is possible to create relatively reliable models for estimating the
TUG test time without directly using mobility data. Statements about the most important
influencing factors in the utilized models could also be made, thus fulfilling the demand
for explainable Al in clinical decision support systems [50].

In the present study, only classic supervised machine learning algorithms were used
due to the fact that classic Al algorithms perform similarly well to deep learning approaches
with the present small number of subjects, and the explainability of the algorithms used is
significantly better than with deep learning approaches [51]. This is because deep learning
approaches, such as deep neural networks, obscure the decision cut-offs, which makes
it much more difficult to understand the decision-making process. Considering that the
random forest algorithm just had a mean absolute error of 2.7 s and the utilized variables
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are solely based on non-mobility data, this can be considered a good result, especially when
considering that many of the patients to be evaluated need a TUG test time of more than
20 s, which means that the mean absolute error is over 10%. If an imprecision of more than
10% must be expected when estimating functional outcomes, its use as a valid diagnostic
tool is limited. Since the models we have developed are mainly intended to be used for risk
stratification, the deviation does not have very serious direct consequences.

It should be highlighted that the subject we address, estimating mobility using
non-mobility data, is dependent on complicated linkages that are challenging to answer
more precisely.

Larger differences could be found between the used algorithms when compared to
the feature selection methods. The combination of the impurity filter and the tree-based
random forest algorithm was the best-performing algorithm in our evaluations. The reason
for this could be that the random forest algorithm achieves good results, especially with
diverse data structures. It should be noted that the training error of the random forest
algorithm is significantly lower, when compared to the other algorithms, which leads to
the risk of overfitting [52] and thus limits the generalizability. The SVM, for example, has a
higher validation error in our evaluations, but at the same time, the training error deviates
less from the validation error, which suggests a better transferability of the results to a
larger patient population.

For very slower TUG pace, the predictions of our model become significantly less
accurate. This is since we have a few subjects with very extreme TUG test times in the
training data, and, at the same time, the parameters used take on very extreme values,
which makes it difficult for the algorithm to make precise predictions with the relatively
limited number of individual datasets. Furthermore, it is possible that additional factors,
such as current motivation or other factors that we did not collect, play a relevant role in
the longer TUG test times.

5. Summary

e  Multifactorial non-mobility data from over 100 patients enabled the development of
reliable machine learning models for predicting TUG (Time-Up-and-Go) test times in
bedridden patients.

e The choice of feature selection techniques minimally impacted the final model performance.

e  Ageand inflammatory parameters, particularly leukocyte count, emerged as crucial
factors in TUG estimation, indicative of systemic inflammation and mortality risk.

e Biological age, incorporating factors such as CRP and hemoglobin levels, correlated
with the TUG outcomes.

e  Variables such as self-assessed health, GFR, EQ-5D index, and handgrip strength were
identified as influential, aligning with existing frailty assessment tools.

e  The random forest algorithm outperformed the other ML algorithms in TUG estimation

e The study achieved a mean absolute error of 2.7 s in TUG estimation, though limita-
tions existed for TUG test times over 20 s, potentially due to limited extreme data and
uncollected factors such as motivation.

e  Estimating mobility from non-mobility data involves complex relationships, pos-
ing challenges.

e  The impurity filter combined with the random forest algorithm showed the best
performance, although overfitting risk and lower validation errors were noted.

6. Limitations

The number of subjects included in the analysis is relatively low for a machine learn-
ing approach. However, it is only an exploratory pilot study investigating the special
patient population of orthogeriatric patients. Another limitation within the confines of our
preliminary investigation pertains to its monocentric study design. This particular design
imposes constraints on the extrapolation of findings, particularly in the context of applying
machine learning algorithms, due to the inability to aggregate structural attributes specific
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to the study center across multiple centers. Therefore, the results should only serve as a
basis for further studies. The measures proposed here, which appear to be relevant for
assessing physical frailty, should be evaluated in larger-scale, ideally multicenter research.

Since our study was designed in a single-stage, single-center setting, during the model
creation, an internal five-fold cross-validation was conducted to create more generalizabil-
ity. We recognize the importance of prospective validation to corroborate the robustness
of our findings. Future research initiatives should focus on validating our predictive
models in independent cohorts of orthogeriatric patients to assess their generalizability
and clinical applicability. We made the models open-source to enable validation across
patient populations.

The very-slow-walking patients were especially difficult to estimate correctly. Accord-
ing to our findings, the slower the patients get, the more difficult the correct prediction
becomes. In the future, investigations of only these slower patients will be necessary to
better understand the underlying relationships and thus be able to make better assessments.

Machine learning studies are always based on correlation analyses, which take a closer
look at the data structure. Therefore, the results must not be considered causal, but only
represent a possibility to understand the correlations and patterns in the data and to be
able to draw clinically relevant correlations from them, which are not necessarily subject to
direct causalities.

No sample size calculation was performed for our study as it was conducted as a
pilot investigation. The predetermined target sample size of 100 individuals was selected
primarily to facilitate a fundamental correlation analysis.

7. Conclusions

Our results demonstrate that non-mobility data can be used effectively to forecast the
time required for the TUG test in orthogeriatric patients using machine learning models,
although the more time patients needed, the less accurate the predictions became.

This is a building block to automate the detection of patients at risk and to create
the possibility of also objectively assessing immobilized patients regarding their physical
capacity. Statements regarding the most influential aspects of the employed models could
also be made, thus meeting the requirement for explainable Al in medicine and at the
same time gaining new insights into physical frailty and related factors. Future research is
required to confirm our findings and adopt clinical decision support systems based on the
developed algorithms.
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