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1.1 Beitrag zur 1. Publikation 
Kraus M, Saller MM, Baumbach SF et al (2022) Prediction of Physical Frailty in Orthogeriatric 
Patients Using Sensor Insole--Based Gait Analysis and Machine Learning Algorithms: 
Cross-sectional Study. JMIR Med Inf 10:e32724. https://doi.org/10.2196/32724 

 

Am Beginn des Projekts stand eine ausführliche Literaturrecherche, um die Konzeptionalisierung der 

Arbeit gemeinsam mit meinem wissenschaftlichen Betreuer Dr. rer. nat. Maximilian Saller durchführen 
zu können. Die so festgelegte Projektbasis wurde von mir selbst weiterentwickelt und die Umsetzung 

im Detail mit meinen ärztlichen und wissenschaftlichen Betreuern und Co-Autoren geplant. Alle in die 

vorliegende Arbeit eingeflossenen Daten wurden eigenständig in der Osteoporosesprechstunde des 

osteologischen Schwerpunktzentrums der LMU durch mich selbst erhoben und in einer extra hierfür 

durch mich aufgesetzten REDCap Studiendatenbank gespeichert und verwaltet, um die Datenqualität 

und -validität so hoch wie möglich zu halten. Die Auswertung der erhobenen Daten erfolgte mittels der 

Open Source Software R durch meine Person. Nach gemeinsamer Interpretation der Daten mit den 

Co-Autoren habe ich die Erstfassung des Manuskripts erstellt und dieses in Rücksprache mit den Co-
Autoren eingereicht und anschließend mit Unterstützung insbesondere von Dr. rer. nat. Maximilian 

https://doi.org/10.2196/32724
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Saller die Reviewer-Kommentare adressiert und das Manuskript erneut eingereicht. Nach Publikation 

des Manuskripts im Januar 2022 haben Dr. med. Alexander und ich im April 2022 gemeinsam die 

Bewerbung für den Digitalisierungspreis der Deutschen Gesellschaft für Orthopädie und 

Unfallchirurgie für die beste Publikation formuliert, welcher uns im Oktober 2022 zuerkannt wurde. 

1.2 Beitrag zur 2. Publikation 

 
             

        

 

 

Zu Beginn des Projekts führte ich eine umfassende Literaturrecherche durch, um die Planung der 

Arbeit zusammen mit meinem wissenschaftlichen Betreuer Dr. rer. nat. Maximilian Saller zu gestalten. 
Basierend auf dieser Projektgrundlage habe ich das Projekt weiterentwickelt und im Detail mit den 

beteiligten Ärzten und wissenschaftlichen Betreuern geplant. Sämtliche Daten, die in dieser Arbeit 

verwendet wurden, wurden durch mich selbst, während der Osteoporosesprechstunde im 

osteologischen Schwerpunktzentrum erhoben und in einer speziell dafür durch mich eingerichteten 

REDCap-Studiendatenbank gespeichert und verwaltet, um die Qualität und Gültigkeit der Daten 

bestmöglich zu gewährleisten. Die Auswertung der gesammelten Daten wurde von mir unter 

Verwendung der Open-Source-Software R durchgeführt. Nach der gemeinsamen Interpretation der 
Daten mit den Co-Autoren habe ich die erste Version des Manuskripts erstellt und dieses in 

Absprache mit meinen Co-Autoren eingereicht. Anschließend habe ich eigenständig die Kommentare 

der Gutachter bearbeitet und das Manuskript erneut eingereicht, wobei ich insbesondere auf die 

Unterstützung von Dr. rer. nat. Maximilian Saller zählen konnte. Nach Annahme des Abstracts wurde 

unsere Publikation vom Journal als Cover-Paper der entsprechenden Ausgabe ausgewählt. Hierzu 

habe ich ein „Graphical-Abstract“ über unser Projekt erstellt, das in dieser Dissertation am Beginn der 

2. Publikation abgebildet ist. 

 

 

Kraus, M., Stumpf, U. C., Keppler, A. M., Neuerburg, C., Böcker, W., Wackerhage, H., Baumbach, 
S. F., & Saller, M. M. (2023). Development of a Machine Learning-Based Model to Predict 
Timed-Up-and-Go Test in Older Adults. Geriatrics (Basel, Switzerland), 8(5), 99. 
https://doi.org/10.3390/geriatrics8050099

https://doi.org/10.3390/geriatrics8050099
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2. Einleitung 
 

2.1.1 Introduction 

Falls are a serious public health concern, especially for high-risk groups such as orthogeriatric patients 

and individuals undergoing trauma surgery. Falls can result in severe injuries, fractures, and other 

adverse health outcomes, leading to increased morbidity, mortality, and healthcare costs. In 2007, the 

World Health Organization report revealed that 32-42% of all people over 70 years of age fall once a 

year [1]. The economic burden of non-fatal falls in elderly patients in the United States of America was 

approximately $50 billion in 2017. [2] Therefore, accurately predicting fall risk and implementing 

appropriate preventive strategies is crucial to improve patient outcomes and to reduce the burden on 
healthcare systems as well as implementing efficient fall prevention initiatives. [3] About 5% of falls in 

orthogeriatric patients result in fractures, with an even higher incidence rate in patients suffering 

osteoporosis. [4] Osteoporotic fractures present a significant public health concern, particularly in an 

aging society where the incidence of fractures rises continuously. These fractures not only lead to 

reduced quality of life, but also place a substantial burden on healthcare resources. To address this 

issue, it is crucial to implement effective preventive measures that can mitigate the occurrence of 

fractures and optimize the utilization of healthcare resources. In this context, the risk assessment by 

gait analysis and non-mobility data among orthogeriatric patients holds great potential. [5] 

2.1.2 Definition of Osteosarcopenia 

Osteosarcopenia is a medical condition that poses a significant threat to orthogeriatric patients, 

particularly in relation to falls, fractures, and other adverse health events. [6] Osteosarcopenia is 
characterized by the simultaneous presence of two age-related conditions: osteoporosis, which is the 

loss of bone mass and deterioration of bone tissue, and sarcopenia, which is the progressive loss of 

muscle mass, strength, and function. [7] Both, osteoporosis and sarcopenia, individually contribute to 

an increased risk of falls and fractures, but when combined, they create a synergistic effect that 

significantly amplifies the vulnerability of orthogeriatric patients. [8] 

The interaction between osteoporosis and sarcopenia extends beyond falls and fractures. The 

presence of these conditions in orthogeriatric patients is associated with an increased likelihood of 
experiencing adverse health events. [9] Individuals with osteosarcopenia may have reduced functional 

capacity, leading to difficulties in performing activities of daily living, compromised independence, and 

a higher risk of institutionalization. Additionally, the coexistence of osteoporosis and sarcopenia can 

result in prolonged recovery periods following fractures, higher rates of postoperative complications, 

and increased mortality rates. [10] 

A multifaceted strategy is required to manage the hazard of osteosarcopenia in orthogeriatric patients. 

[8] This may involve implementing preventive measures, such as exercise programs to improve 
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muscle strength and balance, optimizing nutrition to support bone health and muscle function, and 

ensuring appropriate pharmacological interventions to manage osteoporosis. [11] Furthermore, 

interdisciplinary collaborations among orthopedic surgeons, geriatricians, physical therapists, and 

nutritionists are essential to develop individual tailored treatment plans and interventions that address 

the specific needs of these patients. [12], [13] 

2.1.3 Current Tools for Risk Stratification for Osteosarcopenia 

It is crucial to assess the fall risk in orthogeriatric patients to identify those at risk early and enable 

timely preventive measures before a fall occurs (Figure 1). This approach can prevent a cascade of 

falls and ensuing fractures that may affect the active elderly, as seen in the top part of figure 1. It is 

critical to reduce the number of falls. This technique has the potential to reduce hospitalization rates 

while allowing patients to retain high levels of mobility and quality of life for as long as feasible. These 

facts suggest that fall prevention is better than any post-fall rehabilitation approach. As a result, 

improved risk assessment systems that leverage various, multivariate data synthesis, including 
artificial intelligence technologies in the future, are urgent. 

 

Figure 1: Graphical abstract presenting the need for fall risk assessment in orthogeriatric patients 

 

Various risk stratification tools have been developed to assess the risk of osteosarcopenia, 
considering both bone health (osteoporosis) and muscle function (sarcopenia) [14]. Two commonly 

used tools are the European Working Group on Sarcopenia in Older People (EWGSOP) [15] algorithm 

and the International Osteoporosis Foundation (IOF) Fracture Risk Assessment Tool ® (FRAX) [16]. 
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The EWGSOP algorithm evaluates muscle mass, strength, and physical performance, along with bone 

mineral density (BMD) measured by dual x-ray absorptiometry (DXA), providing a comprehensive 

assessment of osteoporosis and sarcopenia [17]. In contrast, FRAX primarily assesses fracture risk 

due to osteoporosis using clinical risk factors [18]. 

While the EWGSOP algorithm provides a more accurate diagnosis of osteosarcopenia, further testing, 

such as DXA or BIA, is necessary. Conversely, FRAX is more convenient and pragmatic, 
encompassing some muscle-related risk factors indirectly through factors like previous falls. 

Nevertheless, it may not comprehensively assess sarcopenia. 

The decision to use one of these tools depends on the specific clinical context, availability of 

resources, institutional infrastructure such as body impedance analyzers, and the primary outcome of 

interest - whether it's a comprehensive assessment of osteosarcopenia or an assessment of fracture 

risk. 

2.2 Guidelines for the Assessment and Treatment of 
Osteosarcopenia 

2.2.1 Guidelines for the Diagnosis and Management of Osteoporosis 

Osteoporosis, a common skeletal disorder characterized by decreased bone density and increased 

fracture risk, has attracted significant attention from renowned organizations, including the 

Dachverband Osteolologie [19], the National Osteoporosis Guidelines Group [20], and the 

International Osteoporosis Foundation [21]. These organizations formulated protocols to assist the 

diagnosis and treatment of osteoporosis, furnishing invaluable perspectives on optimal methodologies 
and evidence-supported suggestions [22]. 

While aiming to improve patient outcomes, each set of guidelines exhibits subtle variations in their 

approach. The "Dachverband Osteolologie" guidelines prioritize a multifaceted osteoporosis 

management strategy, emphasizing bone mineral density analysis, clinical risk assessment tools, and 

detailed evaluation of fracture risk factors. This comprehensive approach facilitates tailored 

interventions based on thorough assessment of individual risk profiles. 

Conversely, the National Osteoporosis Guidelines Group emphasizes the role of fracture risk 

assessment tools like FRAX® in guiding treatment decisions. They emphasize the assessment of 
each person's fracture risk taking into account measures of bone mineral density and clinical risk 

factors. These guidelines emphasize the importance of evaluating individual fracture risk, based on 20 

million patient years [23] by taking clinical risk factors and bone mineral density measurements into 

account, to determine the most appropriate course of action. [14] 

Similarly, the International Osteoporosis Foundation guidelines stress assessing fracture risk with 

FRAX® and advocate integrating pharmacological interventions, recommending specific medications 

such as bisphosphonates, Denosumab, and teriparatide-based on fracture risk profiles and patient 
characteristics. 
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Despite nuanced differences, all three guideline sets converge on the importance of lifestyle 

modifications, including weight-bearing exercise, smoking cessation, and sufficient calcium and 

vitamin D intake, as foundational components of osteoporosis management. 

I have referred to the references in the preparation of the sub-projects of this dissertation and I was 

already able to present the collected baseline data and follow-up data at the annual congress of the 

DVO and “Deutscher Kongress für Orthopädie und Unfallchirurgie (DKOU). [24]–[27] 

2.2.2 Guidelines for the Assessment of Sarcopenia 

Sarcopenia is a disorder that is characterized by a progressive loss of muscle mass and function 

because of aging and has received significant attention from medical experts as a serious public 

health problem. To tackle this issue, key organizations such as the EWGSOP [17] and the Asian 

Working Group for Sarcopenia (AWGS) [28] have developed guidelines to enhance the diagnosis and 

treatment of sarcopenia. While both guidelines have a shared objective, a comparative analysis 

reveals important distinctions in their approaches. 

The EWGSOP recommendations place a strong emphasis on using physical performance tests, 

muscle strength evaluations, and measurements of muscle mass to diagnose sarcopenia. They stress 

the significance of integrating these criteria into a comprehensive diagnostic algorithm, which 

facilitates a more precise assessment of muscle health in older adults. The EWGSOP guidelines offer 

cut-off points and reference values for each diagnostic criterion, assisting clinicians in efficiently 

interpreting and integrating the guidelines. 

Conversely, the AWGS guidelines deem grip strength as a primary diagnostic criterion for sarcopenia 
and recommend lower grip strength thresholds for Asian populations based on age-related muscle 

loss in local cohorts. Additionally, the AWGS guidelines highlight the significance of additional markers 

such as gait speed and body composition in diagnosing sarcopenia in Asian populations. [28] 

Both guidelines agree on the importance of regular physical activity, adequate protein intake, and 

resistance training as fundamental components of sarcopenia management. To optimize patient 

outcomes, a multidisciplinary approach involving health care professionals from different specialties is 

required and recognized as necessary by health care experts. 

2.3 Gait Analysis in Orthogeriatric Patients 

Gait analysis holds significant value to assess orthogeriatric patients, due to its ability to provide 

objective and quantitative data on gait parameters and patterns. [29] Gait analysis encompasses the 

methodical assessment of multiple facets of ambulation, including stride length, cadence, velocity, 

step width and time-and-space factors. [30] It contributes to a better understanding of the functional 

constraints and biomechanical changes that occur in orthogeriatric patients, giving useful insights for 

professional treatment and research. 

Gait analysis is a highly effective technique in clinical practice for the diagnosis, monitoring, and 

management of orthogeriatric diseases. [31] Through the examination of gait patterns, healthcare 
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professionals are able to detect variations from typical patterns and ascertain the root causes. For 

example, gait analysis can reveal asymmetries or abnormalities in weight-bearing distribution, 

indicating potential limb or joint pathologies. [32] It can provide information on balance impairments, 

muscle weakness, or joint stiffness that may contribute to increased fall risk in orthogeriatric patients. 

[33] This objective data assists to develop personalized treatment plans, to monitor the regeneration 

progress, and evaluating the effectiveness of interventions. [34] 

Gait analysis is an essential component of orthogeriatric patient research. The investigators have the 

ability to examine the impact of various interventions, such as fitness programs, assistive devices, or 

surgical operations, on gait performance and functional outcomes through the analysis of gait 

patterns. [35] Gait analysis provides objective measures that can be compared across different patient 

groups or treatment modalities, to facilitate evidence-based decision-making and to advance our 

understanding of the impact of interventions on gait function in orthogeriatric patients. [36] 

Gait analysis has the potential to become a tool for patient outcome control [35], [37]. By establishing 

standardized gait parameters and normative data for orthogeriatric populations, gait analysis can be 
used as an objective outcome measure. [38] This would enable doctors to analyze changes more 

precisely and quantitatively in gait performance over time, assess the effectiveness of therapies, and 

monitor functional recovery. Objective gait measurements might help to construct prediction models 

for identifying those who are at a higher risk of falling or having an adverse event, allowing for early 

interventions to reduce such risks. [39] 

To realize the full potential of gait analysis as an outcome control tool, further advancements are 

needed. [35] Portable and cost-effective gait analysis systems, such as the Insole3 (Moticon, Munich, 
Germany), offer a widely accessible solution for comprehensive gait analysis in clinical environments, 

eliminating the need for a dedicated gait laboratory. [40] These systems enable detailed assessment 

of gait parameters without significant logistical or financial constraints. 

In real-world situations, these insoles are effortlessly incorporated into patients' footwear and offer 

continuous and objective gait data. Mobile sensor insoles obviously have numerous benefits 

compared to standard gait labs. This innovative technique allows for the analysis of gait patterns 

during everyday motions and under changing environmental circumstances. Consequently, healthcare 

providers can obtain a better understanding of their patients' gait patterns and mobility restrictions, and 
eventually offer individualized intervention options. 

Additionally, the establishment of standardized protocols and reference databases specific to 

orthogeriatric patients would enhance the interpretation and comparability of gait analysis results 

across different centers and studies. This will help to improve objective measurement of gait 

performance and functional recovery in orthogeriatric patients as well as predictive information on 

potential rehabilitation capacity and occurrence of adverse health events. [5] 
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2.4 Machine Learning 

Machine learning (ML) is a branch of artificial intelligence focused on creating algorithms and models 

that learn from data to make predictions or decisions. [41] In orthogeriatric care, ML can help to 

advance to risk assessment and predicting rehabilitation outcomes through supervised and 
unsupervised learning approaches. [42], [43] There are two primary branches of machine learning: 

supervised and unsupervised learning. Supervised learning involves training a model with labeled data 

to predict outcomes based on patient characteristics and preoperative data. [44] This can help develop 

risk assessment tools for adverse events in orthopedic surgery. [45] Unsupervised learning, on the 

other hand, trains models without labels to discover hidden patterns, such as patient subgroups with 

similar characteristics or treatment outcomes. This can aid in identifying profiles with successful 

rehabilitation outcomes [46] or predict patient-reported outcomes. [47] ML models can provide more 

accurate risk assessment tools by incorporating a wide range of patient factors, from a large reference 
cohort. They should be used as decision support tools rather than replacing clinical judgment, as 

previous results could not achieve a significant improvement of the therapy results, mainly the 

treatment safety can be improved. [48] Surgeons need to critically evaluate and interpret the model 

outputs considering the specific context and individual patient characteristics. 

 

2.4.1 Machine Learning for Evaluation of Gait-Analysis and Multidimensional 
Data 

The combination of mobile sensor insoles, machine learning, and gait analysis has the potential to 

revolutionize orthogeriatric care, concept shown in figure 2 and is often referred to the term “smart 

gait”. [49] This multidimensional approach allows for the assessment of real-world gait data, accurate 

fall risk prediction, and personalized interventions for fracture prevention. The evaluation of gait 

patterns in orthogeriatric patients plays a crucial role in identifying potential risks and implementing 

preventive measures to mitigate the occurrence of fractures. Traditional gait analysis methods, 
predominantly conducted in specialized gait labs, have provided valuable insights into biomechanical 

parameters. [50] However, these methods are often limited to controlled environments, making it 

challenging to capture real-world gait patterns and predict fall risks accurately. In recent years, the 

integration of ML techniques and mobile sensor insoles has emerged as a promising approach to 

make it more accessible, enhance gait analysis, risk stratification, and fracture prevention in 

orthogeriatric patients. [50] 
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Figure 2: Graphical abstract for reporting vs. reality in fall risk 

When evaluating fall risk, a considerable gap exists between standard assessments and the actual 

risk, particularly among orthogeriatric patients. This discrepancy is primarily due to the use of patient-

reported questionnaires, which are prone to a high reporting bias. When physical tests such as the 

Timed-Up-and-Go-Test or a balance test are conducted, there is often examiner bias, as well as an 

increased patient motivation leading to false positive test results, when compared to real world 
performance. Therefore, it is critical to monitor patients with objective tools such as mobile wearables 

like wristbands or sensor soles that collect data around-the-clock for a specific period and accurately 

record real-world mobility. When analyzing data, it is preferable to use algorithms to ensure maximum 

objectivity and validity. 

ML techniques have proven valuable in analyzing vast amounts of multidimensional gait data obtained 

by mobile sensor insoles. [49] These algorithms can detect tiny patterns and correlations in data that 

human viewers may miss. Researchers have built prediction models for fall risk assessment and 

patient categorization using ML algorithms. Such models consider a wide range of gait metrics, 
demographic variables, and comorbidities, allowing for tailored risk assessment and targeted 

treatments. Healthcare workers may get useful insights into patients' mobility patterns, identify 

deviations from normal gait, and more accurately forecast fall risk by merging mobile sensor insoles, 

medical record data, and machine learning approaches. [51] This information can aid in the 

development of targeted interventions, including exercise programs, environmental changes, and 

customized assistive devices, to enhance patient outcomes and decrease the occurrence of fractures. 

The integration of these advancements in clinical practice has potential to notably boost patient 
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outcomes, enrich quality of life, and decrease healthcare expenses linked to orthogeriatric fractures. 

[52] Additional research and validation studies should be conducted to fully establish the effectiveness 

and clinical usefulness of this innovative approach. 

2.5 Current State of Physical Frailty Assessment in Bedridden 

Orthogeriatric Patients 

Assessing physical frailty in bedridden orthogeriatric patients remains a critical challenge in clinical 

practice. Currently, clinicians heavily rely on subjective evaluations such as the Clinical Frailty Scale 

(CFS) [53] or patient-reported questionnaires, which are prone to reporting bias and can result in an 
overestimation of individual abilities. [54] This leads to discrepancies between subjective assessments 

and objective measures [54] It is crucial to develop more objective and accurate methods for 

evaluating frailty in this population. The discrepancies highlight the necessity for improved assessment 

tools that precisely capture the multifaceted nature of physical frailty in this demographic. [55] 

2.5.1 Discrepancies Between Clinical and Objective Assessments 

The apparent discrepancies between clinical and objective assessments in immobilized orthogeriatric 

patients raise significant concerns about the accuracy and reliability of conventional assessment 

techniques. [56] Research reveals the inherent limitations of relying solely on subjective clinical 

appraisals, which reveal substantial disparities in comparison to objective assessments. This 

discrepancy emphasizes the necessity of supplementing traditional assessment approaches with 
objective and measurable standards to achieve complete understanding of physical frailty in 

immobilized patients. Additionally, exploration of ML methods presents a promising path for advancing 

assessment precision through integration of multifaceted clinical-, demographic- and mobility data and 

activities of daily living. [52] Utilizing cutting-edge ML methods may enable a more comprehensive 

assessment of physical frailty and fall risk, providing a more nuanced understanding that transcends 

the limitations of traditional assessments, particularly for individuals facing immobilization challenges. 

2.5.2 Challenges in Conducting Physical Tests in Immobilized Patients 

Conducting physical tests on immobilized orthogeriatric patients presents numerous challenges that 

hinder accurate and comprehensive assessment. These patients' limited mobility and functional ability 

considerably impedes the feasibility and reliability of conventional physical tests. Furthermore, the 

inability to conduct standard physical assessments due to immobilization exacerbates the difficulties in 
obtaining precise measurements of physical frailty. [57] Alternative assessment methodologies that 

surpass mobility-related constraints are crucial for a comprehensive evaluation of physical frailty in this 

susceptible patient population. Therefore, it is imperative to develop new approaches to overcome 

these challenges. 

Traditional approaches on assessing physical frailty in bedridden orthogeriatric patients are often 

limited to subjective scales. Innovative methodologies are being sought to bridge the gap between 
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subjective and objective assessments, and to overcome the difficulties involved in conducting physical 

tests on immobilized individuals. 

2.5.3 Need for Assessment of Physical Status in Bedridden Patients 

The evaluation of physical condition in bedridden patients, especially in cases of acute trauma 

resulting in immobilization, is crucial in clinical decision-making. [58] When a person suffers an acute 

hip fracture, the injury makes them immobile. Nothing was known about the patients’ baseline physical 

fragility before to the incident, making it unable to assess their pre-injury mobility capabilities. It is vital 

to identify the individual's previous physical competence since it serves as the foundation for designing 

specific therapy techniques. In these cases, it is necessary to accurately examine the patients’ 
physical health before to the accident in order to choose the most effective treatment procedures. The 

clinicians’ capacity to make educated decisions about the most suited treatment method is severely 

impaired without this information of their pre-injury health. 

Accurately assessing pre-injury physical condition is essential in clinical scenarios involving mobility 

and frailty assessment, highlighting the crucial role of predictive modeling. It is imperative to consider 

various clinical and demographic factors to understand the intricate interplay of variables that impact 

an individuals’ physical status. ML algorithms provide a strong method for managing complex datasets 
and estimating the impact of individual variables relative to each other. [59] Utilizing these algorithms, 

clinicians can develop predictive models that are crucial in multiple clinical settings where assessing 

mobility or frailty is essential. These models not only assist in estimating the risk of falls but also 

provide insight for patient rehabilitation planning, resource allocation, and the development of 

personalized care strategies. [60] The implementation of predictive modeling through machine learning 

techniques is seen as a revolutionary approach to navigating the complexities in assessing physical 

status in immobilized patients, especially in acute trauma scenarios where pre-injury status is 

uncertain. [61] 

2.5.4 Aim of the Dissertation 

The dissertation endeavors to tackle the challenges of evaluating physical frailty in elderly patients, 

specifically those with orthopedic impairments, by employing novel methodologies based on ML and 
multivariate non-mobility data. The present research, which is based on two complimentary studies, 

attempts to rethink, and revolutionize the evaluation of physical frailty in this specific patient group. My 

main goal is to improve the precision, objectivity, and inclusiveness of physical frailty evaluation 

approaches. 

 

The fundamental goal of this research is to provide and test alternative paradigms that go beyond the 

limitations of existing evaluation procedures, which usually suffer from difficulties of subjectivity, 
inaccuracy, and limited applicability among immobile persons. This dissertation aims to demonstrate, 

through extensive investigation and analysis, that ML-based gait analysis outperforms traditional 

questionnaires and physical exams in diagnosing physical frailty in orthogeriatric patients. 
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Furthermore, it aims to address a gap in existing approaches by developing objective ML models that 

may integrate a variety of non-mobility elements. These models aim to reliably anticipate the time 

required to complete the Timed-Up-and-Go test by reducing reliance on mobility-related information, 

supporting an impartial and automated diagnosis approach for physically weak individuals. The 

objective is to offer full and precise evaluations, allowing for better clinical decision-making and 

tailored treatments in orthogeriatric care settings. 

The dissertations’ comprehensive approach examines the complexity of diagnosing physical frailty 

using empirical methodologies, ML techniques, and sophisticated statistical analysis. This emphasizes 

the significance of powerful prediction models and deep understanding of multifactorial characteristics 

in modernizing the process of measuring physical frailty in aged orthogeriatric patients. 
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3. Zusammenfassung: 
Die Beurteilung der körperliche Gebrechlichkeit (physical frailty) bei älteren Patienten, insbesondere 

bei solchen mit orthopädischen Beeinträchtigungen, stellt in der klinischen Praxis eine große 

Herausforderung dar. Dies liegt in erster Linie an der Subjektivität, Unzuverlässigkeit und Zeitintensität 

etablierter Bewertungsmethoden. Diese stützen sich in der Regel auf mobilitätsbezogene Daten und 

sind bei immobilen Personen größtenteils nicht anwendbar. Angesichts dieser Einschränkungen 

wurden zwei sich ergänzende Studien durchgeführt, um die Einschätzung der körperlichen 
Gebrechlichkeit in dieser demografischen Gruppe zu verbessern. 

Ziel der ersten Studie war es, die Vorhersagegenauigkeit von Gangdaten, die während des Timed-Up-

and-Go-Tests erhoben wurden, mit etablierten Fragebögen zur Einschätzung der „physical Frailty“ zu 

vergleichen. In dieser Studie wurden Algorithmen des maschinellen Lernens eingesetzt, um 

körperliche Gebrechlichkeit, definiert durch die Short Physical Performance Battery (SPPB), bei 

Patienten im Alter von über 60 Jahren zu identifizieren, die selbstständig gehfähig sind und keine 

geistigen oder neurologischen Beeinträchtigungen aufweisen. Diese Querschnittsuntersuchung 
erfasste verschiedene Parameter, die mit körperlicher Gebrechlichkeit assoziiert sind, und zeigte 

signifikante Unterschiede in den Gangparametern zwischen Gruppen mit und ohne körperliche 

Gebrechlichkeit. Darüber hinaus wies der Timed-Up-and-Go-Test im Vergleich zum SARC-F-

Fragebogen (Strength, Assistance with walking, Rise from a chair, Climb stairs and Falls) einen 

höheren prädiktiven Wert auf, was durch eine "Area under the curve“ der „reciever operator 

characteristics“ (AUROC) von 0,862 gegenüber 0,639 belegt wird. Mithilfe rekursiver Variablen 

Auswahl identifizierten Algorithmen des maschinellen Lernens neun entscheidende Parameter, die 

aus digitalen Gangmessungen stammten. Mit diesen Parametern ließ sich eine robuste 
Vorhersagegenauigkeit erreichen, die zu AUROCs zwischen 0,801 und 0,919 führte. Die vorliegende 

Studie unterstreicht die Überlegenheit der auf maschinellem Lernen basierenden Ganganalyse bei der 

effizienten Identifizierung der körperlichen Gebrechlichkeit bei orthogeriatrischen Patienten im 

Vergleich zu herkömmlichen Methoden. 

Die zweite Studie zielte darauf ab, die Grenzen der Bewertung körperlicher Gebrechlichkeit zu 

überwinden, indem objektive Modelle entwickelt wurden, die multifaktorielle Parameter nutzen, die 

nicht auf Mobilitätsmessungen beruhen. Mit diesem Ansatz wird die Abhängigkeit von 

mobilitätsbezogenen Daten überwunden und die Timed-Up-and-Go-Testzeit dennoch möglichst genau 
abgeschätzt. Unter Verwendung von sechs verschiedenen Algorithmen zur Feature-Selektion und 67 

multifaktoriellen Parametern wurden in der Studie vier maschinelle Lernalgorithmen trainiert, darunter 

ein Generalized Linear Model, eine Support Vector Machine, ein Random Forest Algorithmus und ein 

Extreme Gradient Boost Algorithmus. Der Random Forest Algorithmus zeigte die höchste Genauigkeit 

bei der Vorhersage der Timed-Up-and-Go-Testzeit, mit einem mittleren absoluten Fehler von 2,7 

Sekunden. Die Methodik der Variablenauswahl hatte nur minimalen Einfluss auf die Gesamtleistung 

des Modells. Allerdings neigten alle Algorithmen dazu, die Zeit für schnellere Patienten zu 
überschätzen und für langsamere Patienten zu unterschätzen. Diese Ergebnisse zeigen, dass es 
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möglich ist, die Timed-Up-and-Go-Testzeit ohne Mobilitätsdaten vorherzusagen, was eine objektive 

Bewertung und automatische Identifizierung von körperlich gebrechlichen Patienten ermöglicht. Die 

Fortschritte haben das Potenzial, die Patientenversorgung und die Behandlungsplanung in der 

Orthogeriatrie zu verbessern und stellen einen revolutionären Ansatz für die klinische 

Entscheidungsfindung und personalisierte Interventionen dar. 
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4. Abstract (English) 
Clinical practice has a barrier when assessing physical frailty in older patients, especially those with 

orthopedic limitations. This is mostly because standard assessment techniques are subjective, 

unreliable, and time-consuming. They also frequently depend on data relating to mobility, which may 
not be applicable to people who are immobile. Considering these limitations, two complementary 

studies were conducted to redefine the evaluation of physical frailty in this demographic group. The 

aim is to improve the evaluation and assessment of physical frailty. 

The primary objective of the initial study was to examine and compare the efficacy of utilizing insole 

data obtained from the Timed-Up-and-Go test in comparison to known benchmark questionnaires and 

physical tests. The present study employed machine learning algorithms to detect physical frailty, as 

determined by the Short Physical Performance Battery (SPPB), in a cohort of individuals aged 60 

years and above who possessed independent ambulation and did not exhibit any cognitive or 
neurological disorders.  This study conducted a cross-sectional analysis to examine several factors 

related to physical frailty. The results showed notable disparities in gait metrics between individuals 

with and without physical frailty. Furthermore, the  Timed-Up-and-Go test exhibited superior predictive 

value, when compared to the SARC-F (Strength, Assistance with walking, Rise from a chair, Climb 

stairs and Falls) questionnaire, as evidenced by an AUROC of 0.862 versus 0.639. Machine learning 

algorithms discovered nine critical characteristics, mostly from digital insole gait data, using recursive 

feature elimination.  Robust predictive accuracy was achieved using these settings, with AUROCs 

ranging from 0.801 to 0.919. In summary, this research shows that machine learning-based gait 
analysis is superior to conventional evaluations when it comes to accurately detecting physical fragility 

in elderly individuals. The second study aimed to address the limitations of assessing physical frailty 

by developing objective machine models that utilize multifactorial non-mobility parameters. This 

approach dissociates reliance on mobility-related data and predicts the  Timed-Up-and-Go test time 

accurately. Four machine learning methods—a generalized linear model, a support vector machine, a 

random forest algorithm, and an extreme gradient boost technique—were compared using six distinct 

feature selection approaches and 67 multifactorial variables. The random forest algorithm 
demonstrated the highest accuracy in predicting  Timed-up-and-Gotest time, with a mean absolute 

error of 2.7 seconds. The variable selection methodology had minimal influence on the overall model 

performance. For slower patients, all algorithms tended to underestimate time, whereas for faster 

individuals, they tended to overestimate it. These results highlight the potential for Timed-Up-and-Go 

test time prediction in the absence of mobility data, enabling the automated identification and objective 

evaluation of patients who are physically frail.  With this approach to clinical decision-making and 

tailored interventions, these developments might have the potential to significantly improve patient 

care and treatment planning in orthogeriatric settings.  
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4.1 Aim of Publication I 
In the Paper “Prediction of Physical Frailty in Orthogeriatric Patients Using Sensor Insole-Based Gait 

Analysis and Machine Learning Algorithms: Cross-sectional Study” we aimed at assessing the 

physical frailty of older patients, researchers sought to leverage modern insole wearables and ML 

algorithms to enhance the accuracy of evaluation methods. By contrasting the insole data obtained 
from the Timed-Up-and-Go-Test with traditional evaluations like the SARC-F (Strength, Assistance 

with walking, Rise from a chair, Climb stairs and Falls) questionnaire, the research sought to 

determine the most efficient method for assessing physical frailty, as defined by the Short Physical 

Performance Battery (SPPB). Through comprehensive analysis of multiple parameters, including body 

composition and gait patterns captured by digital sensor insoles, the study revealed that ML algorithms 

outperformed traditional methods in identifying physical frailty. This innovative gait analysis approach 

using sensor soles showcased its potential to revolutionize physical frailty assessments for 
orthogeriatric patients through the innovative use of machine learning algorithms and sensor soles, 

leading to more accurate and effective evaluation methods that can inform individualized therapies 

and improve the quality of care for patients at fall and fracture risk. 
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Abstract
Background: Assessment of the physical frailty of older patients is of great importance in many medical disciplines to be able
to implement individualized therapies. For physical tests, time is usually used as the only objective measure. To record other
objective factors, modern wearables offer great potential for generating valid data and integrating the data into medical
decision-making.
Objective: The aim of this study was to compare the predictive value of insole data, which were collected during the
Timed-Up-and-Go (TUG) test, to the benchmark standard questionnaire for sarcopenia (SARC-F: strength, assistance with
walking, rising from a chair, climbing stairs, and falls) and physical assessment (TUG test) for evaluating physical frailty, defined
by the Short Physical Performance Battery (SPPB), using machine learning algorithms.
Methods: This cross-sectional study included patients aged >60 years with independent ambulation and no mental or neurological
impairment. A comprehensive set of parameters associated with physical frailty were assessed, including body composition,
questionnaires (European Quality of Life 5-dimension [EQ 5D 5L], SARC-F), and physical performance tests (SPPB, TUG),
along with digital sensor insole gait parameters collected during the TUG test. Physical frailty was defined as an SPPB score≤8.
Advanced statistics, including random forest (RF) feature selection and machine learning algorithms (K-nearest neighbor [KNN]
and RF) were used to compare the diagnostic value of these parameters to identify patients with physical frailty.
Results: Classified by the SPPB, 23 of the 57 eligible patients were defined as having physical frailty. Several gait parameters
were significantly different between the two groups (with and without physical frailty). The area under the receiver operating
characteristic curve (AUROC) of the TUG test was superior to that of the SARC-F (0.862 vs 0.639). The recursive feature
elimination algorithm identified 9 parameters, 8 of which were digital insole gait parameters. Both the KNN and RF algorithms
trained with these parameters resulted in excellent results (AUROC of 0.801 and 0.919, respectively).
Conclusions: A gait analysis based on machine learning algorithms using sensor soles is superior to the SARC-F and the TUG
test to identify physical frailty in orthogeriatric patients.

(JMIR Med Inform 2022;10(1):e32724) doi: 10.2196/32724
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Introduction
The physiological process of aging is inevitably connected to
a decrease in physical performance [1]. It has been estimated
that approximately 30% of the US population above the age of
55 years suffer from moderate to severe physical limitations
[2]. In an orthogeriatric patient population, the assessment of
physical frailty is of particular importance, as it is not only
strongly associated with falls but also to an inferior outcome
following surgery [3]. Consequently, it is of upmost importance
to test for and thereby objectify physical impairment (ie, frailty).

Various individual parameters have been proposed to assess
physical performance, including handgrip strength, daily step
count, and gait speed. However, all of these have considerable
interindividual variation [4]. Along with individual physiologic
parameters, a variety of questionnaires such as the Barthel index
[5], De-Morton Mobility index [6], or FRAIL scale [7] have
been developed to quantify frailty. However, these
questionnaires have proven to be inferior to the more complex
physical assessments [8]. The Short Physical Performance
Battery (SPPB) [9] is often considered one of the benchmark
tests to assess frailty [8]. The SPPB combines multiple physical
assessments, including gait, balance, and strength [10]. There
is a consensus that screening for physical frailty is not only the
prerequisite for successful individual patient care but also for
cost-effectiveness [11]. Nonetheless, an international consensus
on the most appropriate screening method is still missing [12].

As outlined above, comprehensive physical stance and gait
assessments might be the most effective approach to quantify
frailty. A new approach to assess physical activity and gait
parameters includes the use of wearables and physical activity
monitors [13]. These devices enable physicians and researchers
to assess physical activity comprehensively under real-life
conditions, and they have already been successfully applied to
assist in the diagnosis of musculoskeletal diseases and to monitor
rehabilitation [14-17]. A more recent development is sensor
insoles with pressure and gyroscope sensors. These insoles can
be easily inserted into any shoe and allow for the assessment
of several gait parameters in an outpatient setting and also during
various daily activities. This might provide a more feasible
alternative to time-consuming assessments in specialized gait
laboratories.

Although sensor insoles might help in the assessment of frailty,
the large number of data points generated necessitates advanced
statistical analysis. The random forest (RF) based on decision
trees or the K-nearest neighbor (KNN) based on the Euclidean
distance between points in high-dimensional space are two
suitable strategies to develop clinical decision algorithms [18].

The aim of this study was to compare the classification
capability of insole data collected during the Timed-Up-and-Go
(TUG) test—a clinical gait test to assess a patient’s mobility
and risk of falling—to SARC-F (a five-item questionnaire for
the quick assessment of the risk of sarcopenia, assessing
strength, assistance with walking, rising from a chair, climbing
stairs, and falls) and the TUG test to assess physical frailty,
defined by the SPPB, using machine learning algorithms.

Methods
Patient Selection
Patients presenting to our orthogeriatric outpatient clinic for an
osteoporosis diagnosis or therapy between December 2020 and
March 2021 were invited to participate in this study. Inclusion
criteria were aged >60 years, independent ambulation without
any walking aids, and no mental or neurological impairment.
Patients were informed of the study details, including the
anonymized evaluation of the collected data, and then provided
written consent. This cross-sectional study was approved by
the local ethics committee (#19-177).

General Data Assessment
All data were collected in a standardized fashion by a unique,
specially trained investigator. Demographic data included age,
weight, height, BMI, body composition, general health-related
quality of life assessed by the European Quality of Life
5-dimension (EQ-5D-5L) questionnaire [19], and the sarcopenia
and physical frailty screening questionnaire SARC-F [20]. All
questionnaires were completed together with the patients to
obtain the highest possible data quality. Body composition (ie,
body fat and muscle percentages) was measured using a
clinically validated body composition monitor (BF511,
Omron-Healthcare, Kyoto, Japan).

Assessment of Physical Frailty
Physical frailty was assessed by three different means: the SPPB,
the TUG test, and digital insole gait parameters assessed during
the TUG test using sensor insoles (Science3, Moticon, Munich,
Germany).

The SPPB [9] is considered the benchmark test to assess
physical frailty and was therefore used as the primary outcome
parameter [8]. The SPPB is comprised of multiple tests for gait
and stance safety, as well as lower-extremity strength and
performance [10]. This tool scores the ability to stand in three
different positions for 10 seconds, the time required to walk 3
meters, and the time it takes to rise from and sit down on a chair
5 times. Points are awarded for each subtest according to the
time achieved, with a maximum score of 12 and a minimum
score of 0. Patients with SPPB scores≤8 are considered to be
physically frail [21,22]. The binary SPPB score (not physically
frail vs physically frail) was used as the classification label for
the machine learning models applied in this study.

The TUG test measures the time a patient takes to rise from a
chair (height 46 centimeters), walk 3 meters, turn 180 degrees,
and return to their initial seating position [23]. A duration of 12
seconds or longer has been associated with a higher probability
of physical frailty [24]. Therefore, a cut-off value of 12 seconds
was chosen to classify patients into physically frail and not
physically frail groups.

The gait parameters were assessed by Science3 digital sensor
insoles during the TUG test. Each of these insoles has 19
pressure sensors and a 3D gyroscope sensor to measure a variety
of temporal, spatial, and local gait parameters, including gait
speed and pressure distribution [25,26]. The parameters assessed
are outlined in detail in Table 1.
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Table 1. Overview of all insole gait parameters assessed.

UnitParameter

secondsTUGa test time

numberSteps

millimetersMean length of gait line

metersStandard deviation x/y of gait line

NewtonsMean total force during stance

secondsMean gait cycle time

strides/minuteMean gait cadence

secondsMean double support time

gMean acceleration over gait cycle (x/y/z)

metersMean stride length

%Mean fraction of stance phase

%Mean fraction of swing phase

metersWalking distance

meters/secondMean walking speed

metersCOPb variability (left/right)

metersCOP trace length (left/right)

aTUG: Timed-Up-and-Go.
bCOP: center of pressure.

General Statistical Analysis
Unpaired t tests were used with α adjustment according to the
Benjamini and Hochberg method [27] to compare
interval-scaled, normally distributed variables (demographics,
questionnaires, and gait parameters) between patients with and
without physical frailty. Data are expressed as mean (SD). The
effect size is expressed as the standardized mean difference.

Prediction Algorithms
To train the prediction algorithms, all collected performance-
and nonperformance-related variables were used to train a
recursive feature elimination algorithm that can identify the
most relevant parameters for distinguishing patients with (SPPB
score≤8) and without (SPPB score>8) physical frailty. For this
purpose, the feature elimination algorithm was used to choose
the best suitable variables based on an RF algorithm from the
ranger package [28]. Gini impurity was used to rank the
variables in order of their importance, as this measure is
particularly suited to assess how well certain variables divide
up a data set [29]. Based on this ordering of the variables, the
variables were gradually removed until the lowest possible
classification error was achieved. The classification error was
chosen as the performance measure for the recursive feature
selection, since the main focus was on maximizing the accuracy
of the models developed later.

Two supervised machine learning algorithms, KNN [30] and
RF, were used for further analysis using the previously selected
variables. Both algorithms rely on being trained with labeled
training data with a subsequent performance evaluation using
test data. Prior to the training and tuning processes, the data

were split into a training and a testing data set at a 70:30 ratio.
The training process included an internal 3-fold cross-validation
step. As hyperparameter tuning is essential for supervised
machine learning algorithms to increase the accuracy of the
classification [31], both algorithms were subjected to a tuning
process that optimizes all variables to be tuned simultaneously,
exclusively using the training data set. For the KNN, the tuning
range for the number of neighbors was set from 1 to 22. For the
type of kernels, the four variants rectangular, Gaussian, rank,
and optimal were tested. For the unit of measurement of the
distance, the options Euclidean distance, absolute distance, and
Minkowski distance were available. For the RF, the number of
variables considered as split candidates within a tree was tuned
in the range of 1 to 7, the maximum number of branches in a
tree was in the range of 2 to 10, and the number of trees in the
RF was set from 100 to 1000. The nested resampling technique
was used to enable better estimation of the true model
performance on unseen data [32]. The 30% of the data not seen
by the model were used to compare the performance of the
different models subsequently.

To compare the generated algorithms to the classification
properties of the TUG and SARC-F, confusion matrices and
receiver operating characteristic (ROC) curves were created
based on a logistic regression for the SARC-F using solely the
score achieved and for the TUG using only the time taken to
complete the test so as to compare the different prediction
strategies. All data were collected in a REDCap study database
[33] and analyzed in a standardized manner with RStudio
software (version 1.3.1093), R (version 4.0.3), using the
packages dplyr (version 1.0.2), Hmisc (version 4.6-0), ggplot2
(version 3.3.2), caret (version 6.0-86), and mlr3 (version 6.0-86)
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Table 2. Comparison of demographics, body composition, physical activity, physical performance, and health questionnaire scores between patients
with and without physical frailty.

SMDaP valuePhysical frailty (n=23)No physical frailty (n=34)Variable

0.892.00280.00 (5.82)74.76 (5.92)Age (years), mean (SD)

0.055.8424.66 (3.79)24.42 (4.81)BMI (kg/m2), mean (SD)

0.053.85160.56 (7.84)160.94 (6.37)Height (cm), mean (SD)

0.070.8063.45 (9.61)62.77 (9.72)Weight (kg), mean (SD)

0.243.3732.14 (7.86)30.15 (8.55)Body fat (%), mean (SD)

0.254.348.71 (2.72)7.95 (3.21)Visceral fat (%), mean (SD)

0.460.0928.52 (3.29)30.26 (4.20)Muscle mass (%), mean (SD)

0.034.901341.29 (123.22)1345.32 (110.40)Resting metabolism (kcal), mean (SD)

0.228.4134.31 (3.30)35.04 (3.12)Calf circumference, mean (SD)

0.818.0070.65 (0.27)0.84 (0.16)EQ-5D-5Lb index, mean (SD)

–3.106<.0016.44 (2.06)11.30 (0.79)SPPBc score (points), mean (SD)

<.00123 (40)0 (0)SPPB score≤8, n (%)

1.002.01SARC-Fd score, n (%)

6 (26)22 (65)0

7 (30)8 (24)1

3 (13)2 (6)2

4 (17)0 (0)3

3 (13)2 (6)4

0.422.31Number of falls in past year, n (%)

12 (52)24 (71)0

9 (39)7 (21)1-3

2 (9)3 (9)>3

0.303.270.59 (0.06)0.61 (0.06)BMDe femoral neck (g/cm3), mean (SD)

0.391.170.91 (0.16)0.85 (0.12)BMD lumbar spine (g/cm3), mean (SD)

0.005>.99Smoking, n (%)

21 (91)31 (91)No

2 (9)3 (9)Yes

0.103.74Self-sustaining, n (%)

5 (22)6 (18)No

18 (78)28 (82)Yes

0.566.05Daily leaving apartment, n (%)

8 (35)4 (12)No

15 (65)30 (88)Yes

0.569.06Weekly sports activity (>3 h), n (%)

13 (57)10 (29)No

10 (43)24 (71)Yes

aSMD: standardized mean difference.
bEQ-5D-5L: European Quality of Life 5-dimension questionnaire.
cSPPB: Short Physical Performance Battery.
dSARC-F: sarcopenia test (strength, assistance with walking, rising from a chair, climbing stairs, and fall).
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[34]. The code used to create and compare the models to the
established tests has been made publicly available on GitHub
[35].

Results
All of the 57 eligible consecutive orthogeriatric patients were
included in the final analysis. The patients’ mean age was 77
(SD 6) years and 93% were women. Classified by the SPPB,
23 patients (40%) had physical frailty. Table 2 shows the
comparison of all assessed general parameters between the
patients with and without physical frailty. Only age, EQ-5D-5L
index, and SARC-F score differed significantly between the
two groups. It should be emphasized that the average age of the
patients with physical frailty was more than 5 years above the
average age of the patients without physical frailty. In parallel,
the mean health index of the patients with physical frailty
determined by the EQ-5D-5L was almost 0.2 points below that
of the patients without physical frailty. All other collected
demographic data such as weight, height, BMI, body fat, and
muscle mass did not differ significantly between the two groups.

The between-groups comparison of the digital gait analysis is
presented in Table 3. The two groups differed significantly for
all insole-generated gait parameters (all P<.05).

The classification errors of the TUG test and SARC-F to identify
patients with physical frailty were 0.333 and 0.316, respectively.
However, the area under the ROC curve (AUROC) for the TUG
test was higher when compared with that of the SARC-F (0.862
vs 0.639; Figure 1A, Figure 1B).

The RF-based recursive feature elimination algorithm was
trained to extract the most important features for classifying
physical frailty using all parameters collected, except the SPPB,

TUG test, and SARC-F, as they either define the result or
represent the classification methods to be compared.

Based on the defined criteria, the 9 parameters outlined in Figure
2 were included. Notably, 8 out of the 9 parameters selected
were gait parameters collected by the insoles (Figure 2). The
number of steps and the step length were the most decisive
factors for the identification of physical frailty by the algorithm.
The gait speed followed in third place. Of the variables selected,
double support seemed to have the least effect on classification.

These variables were then used to train the two classification
algorithms KNN and RF. The tuning process resulted in an
optimal combination of hyperparameters for the KNN as
follows: k=15, a “rank” kernel, and the Minkowski distance.
The optimal combination for the RF was 7 split variables, 6
branches, and 550 trees.

To compare the classification abilities of the TUG and the
SARC-F with the algorithms created, a logistic regression was
carried out on the SARC-F score and the TUG time on the
dependent variable physical frailty and the ROC curve was
drawn (Figure 1A-D). Table 4 summarizes the prediction
accuracy of the four classifiers. Both classical approaches were
outperformed by the machine learning–based models in terms
of classification error (KNN=0.246, Figure 1D; RF=0.281,
Figure 1C). The AUROC for the RF was slightly superior to
that of the KNN (Table 4). Overall, the KNN showed the lowest
error rate in classification at 24.6% (Figure 1). RF showed the
largest AUROC value and thus appears to be the most suitable
for classification. In the conventional tests, the TUG test was
far superior to the SARC-F in terms of area under the ROC
curve and classification error. The KNN showed the lowest
classification error rate, but had a slightly smaller AUROC
value than those of the RF and the TUG test.
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Table 2. Comparison of demographics, body composition, physical activity, physical performance, and health questionnaire scores between patients
with and without physical frailty.

SMDaP valuePhysical frailty (n=23)No physical frailty (n=34)Variable

0.892.00280.00 (5.82)74.76 (5.92)Age (years), mean (SD)

0.055.8424.66 (3.79)24.42 (4.81)BMI (kg/m2), mean (SD)

0.053.85160.56 (7.84)160.94 (6.37)Height (cm), mean (SD)

0.070.8063.45 (9.61)62.77 (9.72)Weight (kg), mean (SD)

0.243.3732.14 (7.86)30.15 (8.55)Body fat (%), mean (SD)

0.254.348.71 (2.72)7.95 (3.21)Visceral fat (%), mean (SD)

0.460.0928.52 (3.29)30.26 (4.20)Muscle mass (%), mean (SD)

0.034.901341.29 (123.22)1345.32 (110.40)Resting metabolism (kcal), mean (SD)

0.228.4134.31 (3.30)35.04 (3.12)Calf circumference, mean (SD)

0.818.0070.65 (0.27)0.84 (0.16)EQ-5D-5Lb index, mean (SD)

–3.106<.0016.44 (2.06)11.30 (0.79)SPPBc score (points), mean (SD)

<.00123 (40)0 (0)SPPB score≤8, n (%)

1.002.01SARC-Fd score, n (%)

6 (26)22 (65)0

7 (30)8 (24)1

3 (13)2 (6)2

4 (17)0 (0)3

3 (13)2 (6)4

0.422.31Number of falls in past year, n (%)

12 (52)24 (71)0

9 (39)7 (21)1-3

2 (9)3 (9)>3

0.303.270.59 (0.06)0.61 (0.06)BMDe femoral neck (g/cm3), mean (SD)

0.391.170.91 (0.16)0.85 (0.12)BMD lumbar spine (g/cm3), mean (SD)

0.005>.99Smoking, n (%)

21 (91)31 (91)No

2 (9)3 (9)Yes

0.103.74Self-sustaining, n (%)

5 (22)6 (18)No

18 (78)28 (82)Yes

0.566.05Daily leaving apartment, n (%)

8 (35)4 (12)No

15 (65)30 (88)Yes

0.569.06Weekly sports activity (>3 h), n (%)

13 (57)10 (29)No

10 (43)24 (71)Yes

aSMD: standardized mean difference.
bEQ-5D-5L: European Quality of Life 5-dimension questionnaire.
cSPPB: Short Physical Performance Battery.
dSARC-F: sarcopenia test (strength, assistance with walking, rising from a chair, climbing stairs, and fall).
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eBMD: bone mineral density.

Table 3. Comparison of gait parameters between patients with and without physical frailty.

SMDaP valuePhysical frailty, mean (SD)No physical frailty, mean (SD)Variable

–1.637<.0010.69 (0.19)1.09 (0.28)Mean gait speed (m/s)

1.765<.00115.79 (5.50)8.52 (1.93)TUGb time (s)

–1.450<.0010.85 (0.17)1.12 (0.19)Mean stride length (m)

–1.214<.00149.37 (8.21)59.72 (8.83)Mean gait cadence (strides/min)

1.199<.0011.27 (0.20)1.05 (0.16)Mean gait cycle time (s)

0.843.0030.51 (0.14)0.40 (0.13)Mean double support time (s)

0.804.00520.04 (5.67)15.32 (6.05)Number of steps (n)

0.695.020.59 (0.74)0.03 (0.89)Mean acceleration over gait cycle right (g)

0.680.027.06 (3.22)5.25 (1.96)COPc trace length right (m)

0.672.02–1.39 (1.54)–2.36 (1.32)Mean acceleration over gait cycle right (g)

0.574.04142.66 (19.05)131.10 (21.20)Mean length width of gait line right (mm)

–0.552.051.21 (0.78)1.66 (0.86)Variance of acceleration over gait cycle (m/s2)

aSMD: standardized mean difference.
bTUG: Timed-Up-and-Go.
cCOP: center of pressure.
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Figure 1. Comparison of the receiver operating characteristic (ROC) curves of the classification properties of the sarcopenia index SARC-F (A),
Timed-Up-and-Go (TUG) test (B), and the random forest (C) and k-nearest neighbor (D) algorithms. AUC: area under the ROC curve.
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Figure 2. Selected parameters based on the recursive feature elimination algorithm, ordered by their importance for reduction of classification error
ranked by Gini-Impurity [29].

Table 4. Comparison of physical frailty prediction methods.

RFe classifierKNNd classifierTUGc test LRSARC-Fa LRbPerformance metric

0.7240.7190.6670.684Accuracy

0.8590.9190.8620.639AUROCf

aSARC-F: sarcopenia test (strength, assistance with walking, rising from a chair, climbing stairs, and fall).
bLR: logistic regression.
cTUG: Timed-Up-and-Go.
dKNN: K-nearest neighbor.
eRF: random forest.
fAUROC: area under the receiver operating characteristic curve.

Discussion
Principal Findings
Based on a sample of 57 patients and advanced statistics, this
study shows that gait parameters assessed by digital insoles
during the TUG test outperformed both the benchmark tests
(the TUG physical assessment and SARC-F questionnaire) to
identify patients with physical frailty.

Patients identified as physically frail classified by their SPPB
scores (≤8) were on average 5 years older than patients that
were not classified as physically frail, with no significant
difference in BMI or body composition. By contrast, previous
studies have reported a decreased muscle mass and increased
fat percentage in patients with physical frailty [36]. Despite the
considerable amount of physical frailty–related data collected
(Tables 1 and 2), the vast majority (8 out of 9) of the parameters
selected by the recursive feature elimination algorithm were
insole gait parameters collected during the TUG test. Although

the temporal gait variables such as gait speed, double support
time, and gait cadence can be considered dependent variables,
they all reflect different aspects of gait. For this reason, it makes
sense to integrate several of these aspects into the machine
learning algorithms to better map the gait pattern of an
individual patient and derive the best possible classification.

Previous studies have proposed that gait speed is the most
relevant parameter to identify patients with physical frailty [4].
It has been shown that a slow gait speed is associated with an
increased fall risk [37], as well as a higher mortality rate [38].
Interestingly, the advanced modeling used in this study weighted
stride length equally important as gait speed to differentiate
between physical frailty and no physical frailty in patients, in
terms of their classification importance measured by the Gini
impurity (Figure 2). Although gait speed is easily assessed, it
might be biased by patients’ motivation. One can hypothesize
a “white coat effect,” in this case a higher level of motivation
during medical gait speed examinations. Stride length might be
a more robust (ie, harder to influence consciously) parameter
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in such settings, which might explain its superiority in the herein
applied modeling. Espy et al [39] provided a possible
explanation for the higher robustness of stride length compared
to gait speed. They were able to show that a slow gait leads to
instability, which again is compensated for by a small-stepped
gait pattern [39]. It appears reasonable that patients with physical
frailty would therefore compensate for their unstable gait pattern
by a reduction of their stride length [39]. Overall, stride length
and gait speed were found to be the two most relevant
parameters for the model (Figure 2), and could only be slightly
increased by adding additional gait parameters such as cadence,
double support time, and acceleration over gait cycle.
Consequently, stride length in addition to gait speed might be
a valuable clinical parameter to identify patients with physical
frailty. Their early identification is essential to reduce the
number of falls [37] and possibly mortality rates [38], as well
as to increase further health outcomes [40]. These considerable
implications are not only important in an orthogeriatric setting
but also for almost all medical specialties.

In line with previous studies, the SARC-F as well as the TUG
test were found to be suitable for estimating the physical frailty
status [41]. The slightly better results for the TUG test compared
with the SARC-F might be explained by their different natures.
The SARC-F is a patient-reported outcome measure, whereas
the TUG test is a more objective score. Older patients have been
shown to overestimate their physical abilities [42,43], which
might result in false negative SARF-F scores. Complementing
the SARC-F by an objective measurement such as the TUG
test, handgrip strength, or a gait analysis might increase its
accuracy and therefore screening value.

Nevertheless, the combination of machine learning algorithms
and digital gait analysis outperformed the TUG test and SARC-F
in the detection of physical frailty. The digital insoles used in
this study can easily be applied and have proven to be reliable
[25]. Furthermore, they could be integrated into health
assessment apps, such as on a smartphone. This can facilitate
both the collection of longitudinal data and remote monitoring
of at-risk patients, and potentially even guide rehabilitation.
Consequently, gait analysis by digital insoles might become
another valuable part of the growing body of digital health
devices.

Limitations and Strengths
An obvious limitation of this study is the limited number of
patients. The smaller the number of patients the algorithm is
trained on, the more limited is its generalizability. Therefore,

the herein proposed algorithm must be validated in a larger
cohort. In the setting of a longitudinal, multicenter trial, the
applied statistics could be extended to deep learning methods
such as neural networks, which could further increase the
accuracy of the predictions. Another limitation is the definition
of physical frailty. Due to the current setup, it was only possible
to define physical frailty by the SPPB. Although the SPBB is
considered one of the benchmark tests for physical frailty [44],
it would be even more meaningful to directly assess the
occurrence of various health impairments such as falls, fractures,
progression to impaired ambulation, or death. Nonetheless,
these parameters can only be assessed in a longitudinal study
setup.

Despite these limitations, several strengths of this study are
noteworthy. First, the combined use of modern wearables and
data analysis strategies from the field of data science to
complement the classic statistical analysis is an advantage of
this study. Due to the increasing amount of data points collected
by digital devices, advanced statistics will become the primary
working horse to analyze the data. Second, the meta-modeling
approach applied represents a pessimistic estimation of the
models’ performance in a larger cohort. Nevertheless, the
resulting AUROC values of 0.801 and 0.841 can be judged as
excellent [45]. These excellent results argue for the value of
digital insole gait parameters. For application in clinical practice,
it is conceivable that a doctor will receive an analysis on their
terminal device in real time during the test, which can provide
time-efficient support in clinical decision-making for or against
prescribing fall prevention training, certain medications, or other
therapeutic interventions. Finally, this study also indicates that
gait parameters might be a promising target for physical frailty
therapies. It can by hypothesized that focused physiotherapy or
fall risk minimization counseling could counteract physical
frailty and thereby increase the patient’s health-related quality
of life.

Conclusion
Machine learning algorithms–based gait analysis using mobile
insoles appears to be a promising approach to screen for physical
frailty in an outpatient setting. Due to the increasing amount of
data collected, high-performance data processing will become
increasingly important. Future large-scale, longitudinal, and
multicenter screening trials should collect as many data points
as possible, including from digital devices such as wearables,
and apply advanced statistics to increase the diagnostic
sensitivity and accuracy of physical frailty diagnosis.
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Publication II 
Veröffentlicht am: 07.10.2023 

DOI: 10.3390/geriatrics8050099 

 

Aim of publication II 
The study aimed to redefine physical frailty assessment in bedridden patient groups by utilizing 
multifactorial non-mobility data. The main objective was to create and validate strong machine learning 
models that could precisely predict Timed-Up-and-Go test times. This innovative approach seeks to 
bypass the use of traditional mobility-related measures and provides an objective and inclusive system 
for evaluating physical ability and locomotion results in immobilized individuals. The study aimed to 
develop a nuanced understanding of Timed-Up-and-Go test outcomes using various biological, 
inflammatory, and physiological markers, prioritizing systemic inflammation and physiological markers 
over chronological age. Ultimately, the study aimed to develop a precise, objective, and detailed 
assessment of physical frailty among bedridden patients. This will help to improve clinical decision-
making and customize interventions in orthogeriatric care settings.  

https://doi.org/10.3390/geriatrics8050099


Publication II 38 

  

 

 

 

 

  



Publication II 39 

 

 

 



Publication II 40 

 



Publication II 41 

 



Publication II 42 

 



Publication II 43 

 



Publication II 44 

 



Publication II 45 

 



Publication II 46 

 



Publication II 47 

 



Publication II 48 

 



Publication II 49 

 



Publication II 50 

 



Publication II 51 

 



Publication II 52 

 



5 Literaturverzeichnis 53 

5. Literaturverzeichnis 
Es empfiehlt sich für das Erstellen des Literaturverzeichnis Programme, wie beispielsweise Endnote, 
Citavi oder Mendeley zu verwenden.   

Formatierung des Literaturverzeichnisses: 

• Zitieren gem. Harvard-Konvention bzw. APA (Autor-Jahr-System): Angabe von Autor und 
Erscheinungsjahr im Fließtext (z.B. Mustermann, 2000).  

• Beim Autor-Jahr-System werden in einem Fließtext neben dem Erscheinungsjahr der Erst- und 
Zweitautor (Mustermann, 2000; Mustermann und Musterfrau, 2000) genannt, bei mehreren 
Autoren der Erstautor gefolgt von „et al.“ (Mustermann et al., 2000), dies wird als Kurzbeleg 
bezeichnet. Werden an einer Stelle mehrere Werke gleichzeitig zitiert, sind diese mit Kommata 
getrennt anzugeben (Mustermann, 2000, Musterfrau 2001). 
Im Literaturverzeichnis werden die Artikel mit vollständiger Autorenliste, Erscheinungsjahr, Titel, 
Journal, Band, Seitenzahl angegeben. Die Artikel werden alphabetisch nach dem Erstautor 
gelistet. 

• Zitieren gem. Vancouver-Konvention bzw. IEEE (Nummernsystem): fortlaufende eingeklammerte 
Ziffern im Fließtext und analog dazu auch im Literaturverzeichnis die numerische Auflistung. Wird 
ein Literaturbeleg im Fließtext mehrfach zitiert, so ist immer dieselbe Nummer dafür zu 
verwenden (z.B. [17] oder alternativ hochgestellt 17). 
Beim Nummernsystem kann auf mehrere Quellen gleichzeitig verwiesen werden, indem diese 
dann innerhalb der Klammer per Kommata getrennt werden ([17, 19, 24-26] bzw. 17, 19, 24-26).  
Im Literaturverzeichnis werden die Artikel mit Nummer, vollständiger Autorenliste, 
Erscheinungsjahr, Titel, Journal, Band, Seitenzahl angegeben. Die Artikel werden numerisch 
gelistet. 

Bitte verwenden Sie nur eine der möglichen Zitierweisen und seien Sie konsistent. 

[1] World Health Organization, “WHO Global Report on Falls Prevention in Older Age.,” 
Community Health (Bristol)., p. 53, 2007. 

[2] C. S. Florence, G. Bergen, A. Atherly, E. Burns, J. Stevens, and C. Drake, “Medical Costs of 
Fatal and Nonfatal Falls in Older Adults,” J. Am. Geriatr. Soc., vol. 66, no. 4, pp. 693–698, Apr. 
2018. 

[3] S. S. Paul et al., “Patterns of health service use before and after a statewide fall prevention 
initiative for older adults at risk of falls,” Australas. J. Ageing, vol. 41, no. 4, pp. 542–553, Dec. 
2022. 

[4] Weisenfluh, A. Morrison, T. Fan, and Sen, “Epidemiology of falls and osteoporotic fractures: a 
systematic review,” Clin. Outcomes Res., p. 9, Dec. 2012. 

[5] S. Subramaniam, A. I. Faisal, and M. J. Deen, “Wearable Sensor Systems for Fall Risk 
Assessment: A Review,” Front. Digit. Heal., vol. 4, Jul. 2022. 

[6] H. P. Hirschfeld, R. Kinsella, and G. Duque, “Osteosarcopenia: where bone, muscle, and fat 
collide,” Osteoporosis International, vol. 28, no. 10. Springer London, pp. 2781–2790, 01-Oct-
2017. 

[7] B. Kirk, J. Zanker, and G. Duque, “Osteosarcopenia: epidemiology, diagnosis, and treatment—
facts and numbers,” J. Cachexia. Sarcopenia Muscle, vol. 11, no. 3, pp. 609–618, Jun. 2020. 

[8] J. Reiss et al., “Sarcopenia and osteoporosis are interrelated in geriatric inpatients,” Z. 
Gerontol. Geriatr., vol. 52, no. 7, pp. 688–693, Nov. 2019. 

[9] J. Zanker and G. Duque, “Osteosarcopenia: the Path Beyond Controversy,” Current 



5 Literaturverzeichnis 54 

Osteoporosis Reports, vol. 18, no. 2. Springer, pp. 81–84, 01-Apr-2020. 

[10] J. Il Yoo, H. Kim, Y. C. Ha, H. Bin Kwon, and K. H. Koo, “Osteosarcopenia in patients with hip 
fracture is related with high mortality,” J. Korean Med. Sci., vol. 33, no. 4, 2018. 

[11] C. Neuerburg et al., “Investigation and management of osteoporosis in aged trauma patients: A 
treatment algorithm adapted to the German guidelines for osteoporosis,” Journal of 
Orthopaedic Surgery and Research, vol. 12, no. 1. BioMed Central Ltd., 08-Jun-2017. 

[12] D. Schray et al., “Value of a coordinated management of osteoporosis via Fracture Liaison 
Service for the treatment of orthogeriatric patients,” Eur. J. Trauma Emerg. Surg., vol. 42, no. 
5, pp. 559–564, Oct. 2016. 

[13] L. S. Toh, P. S. M. Lai, S. Othman, K. T. Wong, B. Y. Low, and C. Anderson, “An analysis of 
inter-professional collaboration in osteoporosis screening at a primary care level using the 
D’Amour model,” Res. Soc. Adm. Pharm., vol. 13, no. 6, pp. 1142–1150, Nov. 2017. 

[14] J. A. Kanis et al., “Algorithm for the management of patients at low, high and very high risk of 
osteoporotic fractures,” Osteoporos. Int., vol. 31, no. 1, pp. 1–12, Jan. 2020. 

[15] B. Kirk, S. Phu, S. L. Brennan-Olsen, E. Bani Hassan, and G. Duque, “Associations between 
osteoporosis, the severity of sarcopenia and fragility fractures in community-dwelling older 
adults,” Eur. Geriatr. Med., vol. 11, no. 3, pp. 443–450, Jun. 2020. 

[16] J. A. Kanis et al., “A decade of FRAX: how has it changed the management of osteoporosis?,” 
Aging Clinical and Experimental Research, vol. 32, no. 2. Springer, pp. 187–196, 01-Feb-2020. 

[17] A. J. Cruz-Jentoft et al., “Sarcopenia: Revised European consensus on definition and 
diagnosis,” Age and Ageing, vol. 48, no. 1. Oxford University Press, pp. 16–31, 01-Jan-2019. 

[18] J. A. Kanis, A. Odén, E. V. McCloskey, H. Johansson, D. A. Wahl, and C. Cooper, “A 
systematic review of hip fracture incidence and probability of fracture worldwide,” Osteoporosis 
International, vol. 23, no. 9. pp. 2239–2256, Sep-2012. 

[19] Dachverband Osteologie e.V., “Prophylaxe, Diagnostik und Therapie der OSTEOPOROSE,” 
Prophylaxe, Diagnostik und Therapie der OSTEOPOROSE, 2017. [Online]. Available: 
https://www.dv-osteologie.org/uploads/Leitlinie 2017/Finale Version Leitlinie Osteoporose 
2017_end.pdf. 

[20] J. Compston et al., “UK clinical guideline for the prevention and treatment of osteoporosis,” 
Arch. Osteoporos., vol. 12, no. 1, p. 43, Dec. 2017. 

[21] M. S. LeBoff et al., “The clinician’s guide to prevention and treatment of osteoporosis,” 
Osteoporos. Int., vol. 33, no. 10, pp. 2049–2102, Oct. 2022. 

[22] C. L. Gregson et al., “UK clinical guideline for the prevention and treatment of osteoporosis,” 
Arch. Osteoporos., vol. 17, no. 1, p. 58, Dec. 2022. 

[23] L. Vandenput et al., “Update of the fracture risk prediction tool FRAX: a systematic review of 
potential cohorts and analysis plan,” Osteoporos. Int., vol. 33, no. 10, pp. 2103–2136, Oct. 
2022. 

[24] M. Keppler et al., “Identifikation von alterstraumatologischen „patients at risk“ für ein 
postoperatives Mobilisationsdefizit mittels Handkraftmessung,” Dtsch. Kongress für Orthopädie 
und Unfallchirurgie (DKOU 2021, 2021. 

[25] M. Kraus et al., “Entwicklung eines KI-gestützten Entscheidungstools zur Bewertung der 
Physical Frailty bei immobilisierten orthogeriatrischen Patienten,” 2022. 

[26] M. Kraus et al., “Prospektive Einschätzung des Sturzrisikos anhand Machine-Learning-
basierter Ganganalyse während des TUG-Tests mit 2 Jahres Follow-Up,” 2023. 

[27] M. Kraus et al., “Prospektiver Vergleich zur Einschätzung des Sturzrisikos anhand etablierter 
Scores in der Alterstraumatologie mit 2 Jahres „real-world“ Evaluation,” 2023. 

[28] M. H. Oh, H. E. Shin, K. S. Kim, C. W. Won, and M. Kim, “Combinations of Sarcopenia 
Diagnostic Criteria by Asian Working Group of Sarcopenia (AWGS) 2019 Guideline and 
Incident Adverse Health Outcomes in Community-Dwelling Older Adults,” J. Am. Med. Dir. 
Assoc., May 2023. 

[29] S. Studenski et al., “Gait speed and survival in older adults,” JAMA - J. Am. Med. Assoc., vol. 



5 Literaturverzeichnis 55 

305, no. 1, pp. 50–58, Jan. 2011. 

[30] J. C. Ayena, L. Chioukh, M. J. D. Otis, and D. Deslandes, “Risk of falling in a timed up and go 
test using an UWB radar and an instrumented insole,” Sensors (Switzerland), vol. 21, no. 3, pp. 
1–23, Feb. 2021. 

[31] T. Amundsen, M. Rossman, I. Ahmad, A. Clark, and M. Huber, “Fall risk assessment and 
visualization through gait analysis,” Smart Heal., vol. 25, p. 100284, Sep. 2022. 

[32] H. Simila, M. Immonen, J. Merilahti, and T. Petakoski-Hult, “Gait analysis and estimation of 
changes in fall risk factors,” in 2015 37th Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society (EMBC), 2015, pp. 6939–6942. 

[33] J. Zanker et al., “Mortality, falls and slow walking speed are predicted by different muscle 
strength and physical performance measures in women and men,” Arch. Gerontol. Geriatr., vol. 
114, p. 105084, Nov. 2023. 

[34] S. Jiang, B. Zhang, and D. Wei, “The Elderly Fall Risk Assessment and Prediction Based on 
Gait Analysis,” in 2011 IEEE 11th International Conference on Computer and Information 
Technology, 2011, pp. 176–180. 

[35] A. M. Keppler et al., “Validity of accelerometry in step detection and gait speed measurement in 
orthogeriatric patients.,” PLoS One, vol. 14, no. 8, p. e0221732, 2019. 

[36] A. M. Keppler et al., “Mobility improvement in the first 6 postoperative weeks in orthogeriatric 
fracture patients,” Eur. J. Trauma Emerg. Surg., vol. 48, no. 4, pp. 2867–2872, Aug. 2022. 

[37] A. M. Keppler et al., “Postoperative physical activity in orthogeriatric patients - new insights with 
continuous monitoring.,” Injury, vol. 51, no. 3, pp. 628–632, Mar. 2020. 

[38] J. H. Hollman, E. M. McDade, and R. C. Petersen, “Normative spatiotemporal gait parameters 
in older adults,” Gait Posture, vol. 34, no. 1, pp. 111–118, May 2011. 

[39] J. Verghese, R. Holtzer, R. B. Lipton, and C. Wang, “Quantitative Gait Markers and Incident 
Fall Risk in Older Adults,” Journals Gerontol. Ser. A Biol. Sci. Med. Sci., vol. 64A, no. 8, pp. 
896–901, Aug. 2009. 

[40] B. J. Braun et al., “Validation and reliability testing of a new, fully integrated gait analysis 
insole,” J. Foot Ankle Res., vol. 8, no. 1, p. 54, Dec. 2015. 

[41] C. Giordano, M. Brennan, B. Mohamed, P. Rashidi, F. Modave, and P. Tighe, “Accessing 
Artificial Intelligence for Clinical Decision-Making,” Front. Digit. Heal., vol. 3, Jun. 2021. 

[42] S. P. Lalehzarian, A. K. Gowd, and J. N. Liu, “Machine learning in orthopaedic surgery,” World 
J. Orthop., vol. 12, no. 9, pp. 685–699, Sep. 2021. 

[43] F. Cabitza, A. Locoro, and G. Banfi, “Machine Learning in Orthopedics: A Literature Review,” 
Front. Bioeng. Biotechnol., vol. 6, Jun. 2018. 

[44] J. A. M. Sidey-Gibbons and C. J. Sidey-Gibbons, “Machine learning in medicine: a practical 
introduction,” BMC Med. Res. Methodol., vol. 19, no. 1, p. 64, Dec. 2019. 

[45] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and prospects,” 
Science (80-. )., vol. 349, no. 6245, pp. 255–260, Jul. 2015. 

[46] I. Say, Y. E. Chen, M. Z. Sun, J. J. Li, and D. C. Lu, “Machine learning predicts improvement of 
functional outcomes in traumatic brain injury patients after inpatient rehabilitation,” Front. 
Rehabil. Sci., vol. 3, Sep. 2022. 

[47] M. Tschuggnall, V. Grote, M. Pirchl, B. Holzner, G. Rumpold, and M. J. Fischer, “Machine 
learning approaches to predict rehabilitation success based on clinical and patient-reported 
outcome measures,” Informatics Med. Unlocked, vol. 24, p. 100598, 2021. 

[48] B. Vasey et al., “Association of Clinician Diagnostic Performance With Machine Learning–
Based Decision Support Systems,” JAMA Netw. Open, vol. 4, no. 3, p. e211276, Mar. 2021. 

[49] E. J. Harris, I.-H. Khoo, and E. Demircan, “A Survey of Human Gait-Based Artificial Intelligence 
Applications,” Front. Robot. AI, vol. 8, Jan. 2022. 

[50] P. Khera and N. Kumar, “Role of machine learning in gait analysis: a review,” J. Med. Eng. 
Technol., vol. 44, no. 8, pp. 441–467, Nov. 2020. 



5 Literaturverzeichnis 56 

[51] C.-H. Liu, Y.-H. Hu, and Y.-H. Lin, “A Machine Learning–Based Fall Risk Assessment Model 
for Inpatients,” CIN Comput. Informatics, Nurs., vol. 39, no. 8, pp. 450–459, Aug. 2021. 

[52] N. Eichler, S. Raz, A. Toledano-Shubi, D. Livne, I. Shimshoni, and H. Hel-Or, “Automatic and 
Efficient Fall Risk Assessment Based on Machine Learning,” Sensors, vol. 22, no. 4, p. 1557, 
Feb. 2022. 

[53] K. Rockwood, “A global clinical measure of fitness and frailty in elderly people,” Can. Med. 
Assoc. J., vol. 173, no. 5, pp. 489–495, Aug. 2005. 

[54] P. Martin et al., “Self-Assessment of Mobility of People over 65 Years of Age.,” Medicina 
(Kaunas)., vol. 57, no. 9, Sep. 2021. 

[55] C. Beaudart et al., “Assessment of Muscle Function and Physical Performance in Daily Clinical 
Practice: A position paper endorsed by the European Society for Clinical and Economic 
Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO),” Calcified 
Tissue International, vol. 105, no. 1. Springer New York LLC, 15-Jul-2019. 

[56] E. R. Burns, R. Lee, S. E. Hodge, V. J. Pineau, B. Welch, and M. Zhu, “Validation and 
comparison of fall screening tools for predicting future falls among older adults,” Arch. 
Gerontol. Geriatr., vol. 101, p. 104713, Jul. 2022. 

[57] R. S. Kamper et al., “Feasibility of Assessing Older Patients in the Acute Setting: Findings 
From the Copenhagen PROTECT Study,” J. Am. Med. Dir. Assoc., vol. 24, no. 12, pp. 1898–
1903, Dec. 2023. 

[58] X. Wu et al., “The association between major complications of immobility during hospitalization 
and quality of life among bedridden patients: A 3 month prospective multi-center study,” PLoS 
One, vol. 13, no. 10, p. e0205729, Oct. 2018. 

[59] C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning,” Electron. 
Mark., vol. 31, no. 3, pp. 685–695, Sep. 2021. 

[60] A. Haleem, M. Javaid, and R. Vaishya, “Industry 4.0 and its applications in orthopaedics,” J. 
Clin. Orthop. Trauma, vol. 10, no. 3, pp. 615–616, May 2019. 

[61] M. Javaid, A. Haleem, R. Pratap Singh, R. Suman, and S. Rab, “Significance of machine 
learning in healthcare: Features, pillars and applications,” Int. J. Intell. Networks, vol. 3, pp. 58–
73, 2022. 

 



Anhang B: 57 

Anhang B:  
 



Danksagung 58 

Danksagung 
Ein Besonderer Dank gilt meinem wissenschaftlichen Betreuer und Mentor Dr. rer. nat. Maximilian 
Saller. Von ihm das grundlegende wissenschaftliche Handwerkszeug lernen zu dürfen, hat bei mir 
eine große Begeisterung für wissenschaftliches Arbeiten ausgelöst. Während der gesamten 
Zusammenarbeit war er immer unterstützend für mich bestens erreichbar und ich schätze sein 
Feedback auch über das eigentliche Projekt meiner Dissertation hinaus. Er hat mich durch seine 
supportive, fördernde und fordernde Art in meiner Einstellung zur Forschung sehr positiv geprägt und 
mich dazu gebracht Herausforderungen auf ganz neuen Gebieten anzunehmen. Dies habe ich auch 
als prägend für andere Lebensbereiche empfunden. Besonders dankbar bin ich ihm für seine 
kooperative Zusammenarbeit, mit anderen Lehrstühlen und Arbeitsgruppen, da ich denke, dass 
Forschung heutzutage nur in interdisziplinärer Zusammenarbeit das volle Potential ausschöpfen kann. 

Ein weiterer Dank gilt meinen ärztlichen Betreuern. Allen voran Frau Dr. Ulla Stumpf. Sie hat es 
möglich gemacht, dass ich ihre Patienten in der Osteoporosesprechstunde über mehr als 8 Monate 
wöchentlich untersuchen durfte und mich auch beim 2 Jahres-Follow-up unterstützt. 

Prof. Dr. Wolfgang Böcker, Prof. Dr. Henning Wackerhage und Prof. Dr. Dr. Eric Hesse danke ich 
dafür, dass sie Teil meines Thesis-Advisory-Committees sind. Sie haben mich bei der Projektplanung 
ebenso unterstützt wie bei den Zwischen- und Endevaluationen wertvollen Input gegeben. Allen 
dreien danke ich für eine sehr gute Betreuung, da sie sich Zeit für mich genommen haben und immer 
erreichbar waren. 

 

Außerdem möchte ich mich bei allen Co-Autoren bedanken, die die Durchführung der gemeinsamen 
Projekte ermöglichten. 

Ich danke der deutschen Gesellschaft für Orthopädie und Unfallchirurgie dafür, dass der ersten 
Publikation meiner Dissertation der Digitalisierungspreis der Fachgesellschaft im Jahr 2022 zuerkannt 
wurde. Hier bin ich meinem Co-Autor Dr. Alexander Keppler für seine Unterstützung beim 
Bewerbungsprozess sehr dankbar. 

Ich danke der ARCUS-Klinik Pforzheim, dass ich während einem Teil meiner Zeit durch das 
Orthopädiestipendium der Klinik gefördert wurde. 

Ich danke meinen langjährigen Schulfreunden Dennis und Sebastian, dass sie mich mit ihren 
informatischen Kenntnissen beim Aufsetzten der Studiendatenbank unterstützt haben. 

Zuletzt danke ich meiner Familie für die Unterstützung während der Dissertation. 

 

 




