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ABSTRACT v

Abstract

Graph structures are essential for modeling pairwise relationships in systems ranging
from social networks to biological interactions and transportation infrastructure. How-
ever, in many real-world scenarios, relationships are often beyond pairwise. For example,
social networks generally feature group structures where individuals belong to multi-
ple groups simultaneously. The hypergraph structure has been extensively considered
to model such higher-order relationships, wherein hyperedges can connect an arbitrary
number of nodes. This thesis focuses on developing scalable and interpretable data
mining algorithms for graph and hypergraph analysis, advancing techniques to handle
complex relational patterns in these networks.

We explore information diffusion in hypergraphs and study the information cover-
age maximization problem in this scenario. Traditional information diffusion models
are designed primarily for ordinary graphs. To address this limitation, we propose HIC,
the Hypergraph Independent Cascade model, which extends the conventional indepen-
dent cascade model to accommodate hypergraphs. Building on HIC, we propose a novel
influence maximization problem: the information coverage maximization problem in
hypergraphs. Unlike traditional influence maximization, which focuses on identifying
influential nodes, we target to identify key groups. We establish the NP-hardness of this
problem and demonstrate the submodular monotonicity of the information spread func-
tion. To solve the problem efficiently, we developed a heuristic approach called InfDis,
inspired by the Degree Discount algorithm. Extensive experiments validate the effective-
ness and efficiency of this approach.

The second task addressed in the thesis is hyperlink prediction, which involves pre-
dicting interactions among multiple entities. While existing solutions generally operate
on the entire hypergraph, we propose the first subgraph-based hyperlink prediction ap-
proach that captures localized characteristics of central hyperedges while mitigating scal-
ability concerns. The proposed method, SSF, focuses on localized subgraph patterns and
extracts interpretable features using structural heuristics such as walks and loops. Ad-
ditionally, its edge-weakening scheme adapts to varying hypergraph densities, enabling
fine-grained feature learning. We conduct extensive experiments to validate SSF’s adap-
tive capacity, evaluate the effectiveness of its feature components, and assess its robust-
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ness across various parameter configurations.
Next, we focus on a fundamental problem—graph classification. For this problem,

we propose RWF, a graph fingerprinting technique that combines structural role-based
vertex partitioning with local connection strength measurement. By creating soft align-
ments of node subsets across graphs of varying sizes, RWF generates topology-aware
fingerprints that capture intra- and inter-subset connectivity. Further, RWF supports the
integration of node attributes to enhance classification performance. Empirical assess-
ment encompassing a wide range of graph datasets demonstrates that RWF achieves high
computational efficiency while maintaining robust classification accuracy.

Collectively, this thesis introduces a novel problem formulation and presents three
scalable, interpretable techniques designed to address key challenges in graph and hy-
pergraph analysis.
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Zusammenfassung

Graphstrukturen sind entscheidend für die Modellierung paarweiser Beziehungen in
Systemen, die von sozialen Netzwerken über biologische Interaktionen bis hin zu
Verkehrsinfrastrukturen reichen. In vielen realen Szenarien gehen Beziehungen je-
doch oft über Paare hinaus. So weisen soziale Netzwerke beispielsweise Gruppen-
strukturen auf, in denen Individuen gleichzeitig mehreren Gruppen angehören. Die
Hypergraph-Struktur wird häufig genutzt, um solche höherstufigen Beziehungen abzu-
bilden, wobei Hyperkanten eine beliebige Anzahl von Knoten verbinden können. Diese
Arbeit konzentriert sich auf die Entwicklung skalierbarer und interpretierbarer Data-
Mining-Algorithmen zur Analyse von Graphen und Hypergraphen, um Techniken für den
Umgang mit komplexen relationalen Mustern in diesen Netzwerken voranzutreiben.

Wir untersuchen die Informationsverbreitung in Hypergraphen und adressieren
das Problem der Maximierung der Informationsabdeckung. Herkömmliche Diffusion-
smodelle sind primär für Standardgraphen konzipiert. Um diese Einschränkung zu
überwinden, schlagen wir HIC (Hypergraph Independent Cascade) vor, das das klas-
sische unabhängige Kaskadenmodell auf Hypergraphen erweitert. Basierend auf HIC
formulieren wir ein neuartiges Einflussmaximierungsproblem: die Maximierung der In-
formationsabdeckung in Hypergraphen. Im Gegensatz zur traditionellen Einflussmax-
imierung, die einflussreiche Knoten identifiziert, zielen wir auf Schlüsselgruppen ab.
Wir beweisen die NP-Härte dieses Problems und zeigen die submodulare Monotonie
der Informationsausbreitungsfunktion. Zur effizienten Lösung entwickelten wir einen
heuristischen Ansatz namens InfDis, inspiriert vom Degree-Discount-Algorithmus. Um-
fangreiche Experimente bestätigen die Wirksamkeit und Effizienz dieses Ansatzes.

Die zweite untersuchte Aufgabe ist die Hyperlink-Vorhersage, die die Prognose von
Interaktionen zwischen mehreren Entitäten betrifft. Während bestehende Lösungen
üblicherweise den gesamten Hypergraphen analysieren, schlagen wir den ersten teil-
graphbasierten Ansatz vor, der lokalisierte Merkmale zentraler Hyperkanten erfasst und
gleichzeitig Skalierbarkeitsprobleme mindert. Die Methode SSF konzentriert sich auf
lokale Teilgraphmuster und extrahiert interpretierbare Merkmale mittels struktureller
Heuristiken wie Pfaden und Schleifen. Ein integriertes Kantenabschwächungsschema
passt sich variierenden Hypergraphdichten an und ermöglicht feingranulare Merkmal-
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slernprozesse. Experimente validieren SSFs Adaptionsfähigkeit, die Effektivität seiner
Merkmalskomponenten und seine Robustheit unter verschiedenen Parameterkonfigura-
tionen.

Im dritten Schwerpunkt behandeln wir die Grundaufgabe der Graphklassifizierung.
Hierfür entwickeln wir RWF, eine Graph-Fingerabdrucktechnik, die strukturell rollen-
basierte Knotenpartitionierung mit lokalen Verbindungsstärkemessungen kombiniert.
Durch weiche Ausrichtungen von Knotenteilmengen über Graphen variierender Größe
erzeugt RWF topologiebewusste Fingerabdrücke, die intra- und intersubset-Konnektivität
erfassen. Zudem unterstützt RWF die Integration von Knotenattributen zur Steigerung
der Klassifizierungsleistung. Empirische Auswertungen über diverse Graphdatensätze
zeigen, dass RWF hohe Recheneffizienz bei robusten Klassifizierungsgenauigkeiten erre-
icht.

Zusammenfassend führt diese Arbeit eine neuartige Problemformulierung ein und
präsentiert drei skalierbare, interpretierbare Techniken zur Lösung zentraler Heraus-
forderungen in der Graph- und Hypergraphenanalyse.
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Influence without Authority: Maximizing Information Coverage in Hyper-
graphs
Proceedings of the 2023 SIAM International Conference on Data Mining (SDM). Soci-
ety for Industrial and Applied Mathematics, 2023; [LWLB23]

2. Peiyan Li, Liming Pan, Kai Li, Claudia Plant, Christian Böhm
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1. Introduction

In an increasingly interconnected world, data rarely exists in isolation. Instead, it is
often linked by a network of dependencies, interactions, and other kinds of relation-
ships. From social media and communication systems to transportation networks and
e-commerce platforms, complex systems are naturally modeled as graphs, where en-
tities are represented as nodes and their interactions as edges. For instance, online
social platforms like X (formerly Twitter) and LinkedIn leverages graph structures to
map connections between users. The Twitter graph was used to trace misinformation
spread[CBHG12, MSGL14, BO22], and identify influential accounts that amplify content
virally [MZY17], by analyzing retweet cascades and follower networks. On LinkedIn,
nodes represent users or companies, while edges capture professional connections or em-
ployment histories. These graphs power features like “People You May Know” [HTK14]
and job recommendations [CLZK18]. On the other hand, communication systems, such
as wired and wireless network infrastructures, use graph modes to develop load balanc-
ing strategies [FB15, TSO21, AE21] and optimize resource allocation [COZ+17]. For
example, data centers model server clusters as graphs, where edge weights represent
bandwidth or latency. Algorithms like max-flow min-cut optimize data routing to pre-
vent bottlenecks [AE21], while graph partitioning techniques distribute workloads across
servers to minimize energy consumption [FB15]. Similarly, transportation networks like
air traffic and urban transit systems leverage graphs to optimize connectivity and re-
silience [ZMHD15, AMB19], and e-commerce platforms like Amazon and Taobao utilize
graph-based recommendation systems to suggest products based on user purchasing pat-
terns and preferences [SRJ17, LZW+21].

While graphs capture pairwise relationships between entities, many real-world phe-
nomena involve interactions among multiple entities simultaneously. Hypergraphs ex-
tend traditional graphs by allowing hyperedges to connect any number of nodes1, mak-
ing them suitable for modeling group interactions. For instance, many online social net-
works, e.g., Facebook, WhatsApp, and WeChat, can be viewed as hypergraphs. A What-
sApp group chat forms a hyperedge linking all participants, enabling simultaneous com-

1An edge is a special type of hyperedge that connects only two nodes.
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munication [LWLB23]. Similarly, the server structure of Discord [Rob23], where users
join channels dedicated to specific topics, is fundamentally hypergraph-based. Meetup,
which connects users through shared events or hobbies, further illustrates how hyper-
edges represent collective engagement [LHT+12]. Beyond social networks, hypergraphs
are also valuable in biological research, where they model multi-way interactions such as
metabolic reactions and protein interactions, with hyperedges representing the resulting
products [PCC14, VP19]. Other examples include collaborative research teams[TCR10],
email threads [BAS+18], and any other multi-agent systems [YHS+24].

As the examples show, graph and hypergraph structures are essential in data sci-
ence, preserving interconnected systems’ rich relational information. By modeling enti-
ties as nodes and interactions as edges or hyperedges, these structures capture pairwise
or higher-order relationships that traditional tabular or vector-based representations of-
ten overlook. Therefore, analyzing graphs and hypergraphs has emerged as a critical
target of data mining, a core step of the Knowledge Discovery in Database (KDD) pro-
cess. According to the classical definition in [FPSS96], KDD encompasses a five-step
pipeline for transforming raw data into actionable knowledge, including data cleaning,
integration, transformation, pattern extraction (via data mining), and interpretation. In
this context, data mining specifically focuses on the automated discovery of non-trivial
patterns, correlations, or anomalies within large datasets. When applied to graph or hy-
pergraph data, this process is termed graph mining or hypergraph mining, respectively.

Different mining tasks lead to distinct types of actionable insights. For instance,
community detection algorithms identify clusters of nodes characterized by high in-
ternal density and sparse interconnections [LF09, YAT16, JYJ+21]; centrality mea-
sures reveal key influencers in networks [LFH10, GSC16, OMK22]; and link predic-
tion algorithms infer missing or future relationships [LZ11, SZA+20]. Over the past
four decades, the graph mining domain has been shaped by diverse methodologi-
cal paradigms and a wide range of mining tasks [CH06, CF06, XSY+21]. Given the
breadth and complexity of graph mining, we only get an overview of key techni-
cal trends. Technically, early works relied on probabilistic graphical models and sta-
tistical analysis [KS80, SV93, Mos87]. Subsequent progress shifted toward matrix-
based approaches, e.g., graph spectral analysis [PSL90, FBCM04, CRS97], PageRanks
[Hav99, BGS05, XG04], label propagation [WZ06, ZFNP15] and matrix factorization
[KDP12, ZSBS12, QDM+19, ME11], which dominated the landscape until the rise of
deep learning for graphs [KW17, VCC+18, HYL17, Jin21]—the current state-of-the-
art for many graph-related tasks. In contrast to graph mining, hypergraph researches
[FYZ+19, LYS22, ACP+23] have gained increasing attention only in the past decade,
representing a relatively new area for exploration 2.

2According to a Web of Science search in January 2025, there are 14,296 papers in the graph mining
domain (excluding hypergraph mining) and 366 papers focused on hypergraph mining.
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1.1 Research Goals

In this cumulative thesis, we focus on data mining for graphs and hypergraphs, ad-
dressing three interconnected research tasks. While distinct in their objectives, these
tasks collectively shift the analytical focus from traditional node-centric perspectives to
higher-order abstractions.

1. Information Diffusion and Influence Maximization in Hypergraphs
In this task, we aim to design a scalable solution for identifying highly influential
hyperedges under a hypergraph-aware information diffusion model. Our problem
formation requires incorporating group interactions, where influence diffusion de-
pends on synergistic relationships among multiple nodes. Further, the target is to
find a seed set of hyperedges that trigger a cascade with the maximum information
coverage.

2. Hyperlink Prediction
For hyperlink prediction, the goal is to derive an interpretable and scalable feather
extraction technique for predicting the existence of potential hyperedges. This re-
search goal is motivated by the observation that hyperlink prediction algorithms
tend to be latent-based, which are difficult to interpret, and these solutions face
high complexities in general, accounting for the combinatorial complexity of hy-
peredges.

3. Graph Classification
Similar to the second research goal but focusing on a different task, the third re-
search goal is to enable robust classification of graphs with heterogeneous sizes and
structures through scalable, unsupervised feature extraction. This task emphasizes
representation learning at the graph level.

We start with information diffusion and influence maximization in hypergraphs
[LWLB23]. We contribute a new information diffusion model, Hypergraph Independent
Cascade (HIC), which generalizes the classical Independent Cascade model [KKT03] by
allowing group-level information diffusion. Building on this, we formalize a novel influ-
ence maximization problem for hypergraphs: identifying an optimal set of seed hyper-
edges to maximize information coverage. We establish the NP-hardness of the problem,
prove that computing information coverage is #P-hard, and demonstrate the submod-
ular monotonicity of the coverage function. While the classical greedy algorithm offers
theoretical guarantees, its computational inefficiency limits practical utility. To overcome
this, we propose Influence Discount (InfDis), a heuristic method that achieves compara-
ble performance with reasonable interpretation while reducing runtime by four orders of
magnitude compared to the naive greedy algorithm.
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For hyperlink prediction, we contribute Subgraph Structural Features (SSF)
[LPL+23], the first subgraph-based feature extraction technique designed for this task.
The rationale behind SSF is that hyperedges and non-hyperedges exhibit distinct local
patterns. For this purpose, we use well-established structural heuristics like loop and
walk as the basic feature and enhance the conventional subgraph extraction technique
[ZC18] with an edge-weakening scheme. The contributed feature extraction technique
is unsupervised and independent of trainable components. The extracted features are
interpretable and are computationally efficient. The edge-weakening scheme enables
SSF to adaptively encode structural information across dense and sparse hypergraphs,
enabling robust performance across diverse datasets. Experimental results demonstrate
that SSF is a lightweight yet powerful solution for hyperlink prediction.

We introduce Random Walk Fingerprints (RWF) [LWB24], a new unsupervised fea-
ture extraction technique for graph classification. RWF employs a structural-role-based
vertex partitioning scheme to generate subset-based graph representations, enabling soft
structural alignments across graphs of different sizes. Building on the node partitions,
SSF computes three structural features, reflecting the connection strengths within and
between node subsets. Additionally, a highlight of RWF is its flexibility in incorporat-
ing node features, making it a comprehensive tool for feature extraction. The overall
complexity of RWF is competitive compared to a wide range of graph classification algo-
rithms, and it shows robust classification results.

1.2 Thesis Structure

The thesis is structured as follows. Chapter 1 provides an overview of graph and hyper-
graph data mining, and outlines the three research tasks covered in this thesis. Chapter
2 introduces necessary preliminaries to help elaborate the contributions made in this
thesis. Chapter 3 presents the detailed contributions. Chapter 4 includes the discussion,
limitations, future directions, and final remarks. Appendix A contains the three papers
and the detailed listings of author contributions.
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2. Foundations

In this chapter, we first give several foundational concepts of graphs and hypergraphs.
Then, we introduce two lines of graph representation learning, which includes non-deep
techniques and deep-learning-based approaches. After that, we introduce how graph
neural neural networks are extended to hypergraphs. These representation learning
methodologies form the technical backbone of many benchmark approaches analyzed in
this thesis. Lastly, we introduce the problem of influence maximization and its variants.

2.1 Graphs and Hypergraphs

We define a weighted graph G by an ordered pair (V , E ,w), where V = {v1, . . . , vn} is a
finite set of nodes, E = {e1, . . . , em} is a finite set of edges, and w is a vector representing
edge weights. For a graph G, its edges satisfy |e| = 2, and two nodes u, v ∈ V are adjacent
if {u, v} ∈ E . The weighted degree of a node v, denoted d(v), is a product of the number
of edges incident to v and the edge weights, i.e., d(v) =

∑
e∋v we. The adjacency matrix

of G is a |V| × |V| matrix A with:

Auv =

{
wuv if {u, v} ∈ E ,
0 otherwise.

When G is unweighted, wuv = 1 for all {u, v} ∈ E. If G is weighted, wuv > 0 for
all {u, v} ∈ E. We do not consider edges with negative weights. In many real-world
scenarios, a graph may be associated with node attributes. We use X ∈ Rp×|V | to denote
the node feature matrix, where p is the dimension of node attributes.

Similar to the definition of a graph, we use H = (V ,F ,wf ) to represent a weighted
hypergraph, where V = {v1, . . . , vn} is the set of nodes, F = {f1, . . . , fm} ⊂ 2V is the set
of hyperedges, and wf is a vector of hyperedge weights. In this thesis, we do not consider
hyperedges which contains only one node, and we simply let |f | ≥ 2. The hypergraph
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Figure 2.1: Illustration of a Hypergraph and its Graph Expansions: The images show a hy-
pergraph with nodes {v1, v2, v3, v4, v5} and hyperedges {f1, f2, f3, f4}, and its graph
expansions.

can be represented by an incidence matrix S ∈ R|F|×|V|, where:

Sfv =

{
1 if v ∈ f,

0 otherwise.

For a hyperedge f ∈ F , its degree is defined by the cardinality of the hyperedge, i.e.,
δ(f) = |f |. For a node v in a hypergraph H, its weighted degree is defined by d(v) =∑

f∈F wfSfv. We use Dv ∈ R|V|×|V|, Df ∈ R|F|×|F| and W ∈ R|F|×|F| to denote the
diagonal matrices containing the weighted node degrees, the hyperedge degrees and the
hyperedge weights, respectively.

2.1.1 Hypergraph Expansion

In hypergraph analysis, a common practice involves projecting hypergraphs onto ordi-
nary graphs. Here, we outline three widely adopted hypergraph expansion techniques:

• Clique Expansion. This method replaces each hyperedge with a clique, forming a
weighted graph.

• Line Expansion3. This technique maps hyperedges to nodes in a new graph, con-
necting two hyperedges if they share at least one node.

• Bipartite Expansion (also called Star Expansion). In this approach, hyperedges
are treated as independent nodes, forming a bipartite graph where original nodes
connect only through hyperedges. Each hyperedge links to its constituent nodes
but not directly to other hyperedges.

3There are other line expansion techniques, e.g., [LFA+22, KMK24]. In this thesis, when we use the
notion of line expansion, if not explicitly stated, it specifically refers to the case illustrated in Fig. 2.1c
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Among these expansion techniques, clique expansion is the most widely used tech-
nique due to its simplicity. With clique expansion, a hypergraph H = (V ,F) is projected
to a weighted graph G = (V , E ,w). In the matrix form, G can be represented by a
weighted adjacency matrix A = STS. If removing self-loops in G, A = STS−diag(STS),
where diag(STS) is a diagonal matrix whose diagonal entries are identical to those of
STS. Similarly, for a weighted hypergraph, the adjacency matrix of its clique expansion is
A = STWS, where W is a diagonal matrix with entries corresponding to the hyperedge
weights. If removing self-loops, A = STWS−Dv.

There are a few studies [CR19, KMK24, KLG+24] discussing the information loss
caused by hypergraph expansion techniques. It is a critical challenge in applications
where preserving the original hypergraph’s structural semantics is essential. We borrow
the concepts in [KMK24] to depict the limitations of the three hypergraph expansion
techniques. Clique expansion and line expansion are non-recoverable, as the expanded
graph cannot recover its corresponding hypergraph without additional knowledge; and
bipartite expansion suffers from tie-weakening, a phenomenon where indirect connec-
tions between nodes, i.e., nodes are connected through hyperedge nodes, weaken the
relationships.

To cope with the potential information loss caused by hypergraph expansion, hy-
brid strategies that combine multiple expansion techniques are considered. For instance,
[YWYA22] uses a combination of bipartite expansion and clique expansion; [YCW+24]
proposes cross expansion, which is a combination of the three hypergraph expansion
techniques. These approaches aim to compensate for individual methods’ shortcomings.
For example, clique expansion loses global hyperedge context, and bipartite expansion
may cause edge sparsity by combining complementary perspectives. Nevertheless, se-
lecting optimal expansion strategies remains a nontrivial problem, as the choice hinges
on both the properties of datasets (e.g., hyperedge cardinality and sparsity) and the ob-
jectives of the downstream task.

2.1.2 Random Walk

A random walk on a graph is a stochastic process that starts at a given node, and then
iteratively transitions to neighboring nodes. In an unweighted graph, random walk pro-
gresses by selecting the next node from the current node’s neighbors uniformly at ran-
dom. For a weighted graph, the process adapts such that the probability of transitioning
to each neighboring node is proportional to the weight of the connecting edge.

In a naive random walk, the transition matrix for an unweighted undirected graph G
is P = D−1A, where A is the corresponding adjacency matrix. Its entry, e.g., Puv =

Auv

d(v)
,

represents the probability of moving from node u to v.
There are many variations of random walks, such as biased random walks [Alt80,
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HH97, FF09], lazy random walks [SDWL14], random walk with restart [TFP06] and
Lévy Walks [ZDK15]. These adaptations are widely employed to simulate complex phe-
nomena in physics, biology, and network science. For a systematic review of random
walk theory and applications, please refer to the following book [Woe17] and surveys
[XLN+19, MPL17].

When it comes to hypergraphs, there are two main lines of adaption. The first line is
similar to simple random walks. For a walk that starts at an arbitrary node u:

1. Select a hyperedge f ∋ u with probability proportional to the hyperedge weight
wf/d(u).

2. Select a node v ∈ e uniformly at random, and set the current node to v.

Let P be the transition matrix for the above hypergraph random walk. Then each entry
of P is:

Puv =
∑
f∋u

wf

d(u)

Sfv

δ(f)

where d(u) and d(v) denote the weighted degree of node u and v, respectively. In a
matrix form:

P = D−1
v STWD−1

e S

It has been shown in [CR19] that the above hypergraph random walk is the same as
a simple random walk on the graph clique expansion of the hypergraph. A corollary is
proposed in the same paper: edge-dependent vertex weights might be a key to utiliz-
ing higher-order information. In that way, a hypergraph is represented by a weighted
incidence matrix R ∈ R|F|×|V| such that:

Rfv =

{
γf (v) if v ∈ f,

0 otherwise.

Correspondingly, the hypergraph random walk has the following steps:

1. Select a hyperedge f ∋ u with probability proportional to the hyperedge weight
wf/d(u).

2. Select a node v ∈ e with probability γf (v)/δ(f), and set the current node to v.

Thus, the entry of the transition matrix becomes:

Puv =
∑

f∈F(u)

wf

d(u)

γf (v)

δ(f)
.

In a matrix form:
P = D−1

v STWD−1
e R
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The second line of random walks, incorporating edge-dependent vertex weights, has
shown interesting results in hypergraph community detection [HAPP20] and node rank-
ing [CR19]. A potential limitation is a lack of benchmark datasets since specifying edge-
dependent vertex weights requires additional knowledge of the data. Current imple-
mentations typically rely on ad hoc heuristics or random distributions to assign these
weights.

2.2 Non-Deep Graph Representation Learning

From a broader view, graph representation learning aims to answer the following ques-
tion: How can we encode the structural richness of graphs and the semantic information
associated with nodes and edges into numerical representations while preserving their
inherent properties? The solution is graph embedding, a family of techniques that fo-
cuses on preserving these complex structures and associated attribute information into
compact low-dimensional vector spaces. These embeddings thus enable downstream
tasks like node classification/clustering, link prediction, edge classification, and graph
classification/clustering. We review the main technical trend of these methodologies in
this section and section 2.3. This section only introduces non-deep graph embeddings,
including three categories of methodologies: graph statistics, matrix factorization, and
random walk-based embeddings.

Graph Statistics Early graph analysis uses handcrafted topological metrics to charac-
terize node/graph properties. At the node level, degree centrality provides basic connec-
tivity information, while clustering coefficients [WS98] quantify local triangle density
to identify community structures. Higher-order centrality measures, such as between-
ness centrality [Fre77] for identifying bridge nodes and eigenvector centrality [Ruh00]
for measuring influence through recursive neighbor importance, are used to capture the
structural roles of nodes. At the graph level, global statistics like diameter [Bol81], den-
sity [Law01], modularity or assortativity [New02] summarize macroscopic properties.
These graph statistics provide valuable insights for characterizing nodes and graphs.
Currently, the study of graph statistics does not have a leading role. However, these
statistics still provide guidance or act as complementary tools for downstream tasks
[LLC+20, ALH22, LFZ+24].

Matrix Factorization Classical spectral methods like Laplacian Eigenmaps [BN03] and
Spectral Clustering [NJW01] rely on graph Laplacian matrices to embed nodes by opti-
mizing the spectral properties of graphs. These techniques operate under the principle
that the eigenvectors of the graph Laplacian capture meaningful low-dimensional struc-
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ture. For instance, Laplacian Eigenmaps explicitly minimize a cost function involving the
graph’s Laplacian to preserve locality, while Spectral Clustering partitions graphs using
the eigenvectors of the normalized Laplacian to group nodes with strong connectivity. By
focusing on the low-frequency eigenvectors of the Laplacian matrices (associated with
the smallest eigenvalues), these methods emphasize smoothness over the graph struc-
ture, preserving global connectivity patterns such as community hierarchies or manifold
geometry. The spectral methods generally contain eigenvalue decomposition and operate
on the Laplacian matrices. Other kinds of matrix factorization techniques operate on the
adjacency or feature matrices, employing different kinds of data assumptions like low-
rankness [HCD12, TLSZ14, NVM+18, EASDP20] and sparsity [SXZF07, KR12, CSX12].
The former assumes that data lies on a low-dimensional space, often relevant to di-
mensionality reduction and graph clustering, while the latter assumes that data can be
represented as a linear combination of a small number of basis elements and is typically
favored in scenarios requiring feature selection and noise reduction.

Random-Walk Based Embeddings DeepWalk [PARS14] is a pioneer study that first
adapts word embedding techniques to graphs. In DeepWalk, nodes are treated as words,
and sentences are node sequences generated via truncated random walk. DeepWalk
processes them by applying Skip-Gram [MCCD13], which maximizes the likelihood of
context nodes (within a window) given a target node. LINE [TQW+15] explores a sim-
ilar idea but eliminates random walks. It directly models first-order proximity (direct
edges) and second-order proximity (shared neighbors) through explicit objective func-
tions. Further, it utilizes edge sampling and negative sampling to train embeddings di-
rectly, making it suitable for large-scale networks. Node2Vec [GL16] extends DeepWalk
by introducing a biased random walk strategy controlled by parameters, which balance
breadth-first (BFS) and depth-first (DFS) sampling, enabling embeddings to interpolate
between homophily and structural equivalence. While more flexible than DeepWalk, its
performance remains sensitive to hyperparameter tuning and walk design. Notably, the
three random-walk-based methods have been theoretically unified under a matrix fac-
torization framework [QDM+18], highlighting their underlying conceptual coherence.

2.3 Deep Graph Representation Learning

Deep learning for graphs revolutionized graph representation learning by introducing
graph neural networks (GNNs). Following the classical taxonomy, we broadly catego-
rize GNNs into spectral-based and spatial-based approaches. Additionally, we introduce
graph transformers and unsupervised graph representation learning techniques.
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2.3.1 Spectral-based and Spatial-based Graph Neural Networks

Spectral-based Graph Neural Networks The foundation of spectral-based GNNs
[DBV16, KW17, XSC+18, BGLA21] is the Laplacian matrix L = D − A. Its normal-
ized version is L = I − D−1/2AD−1/2. For undirected graphs, both Laplacian matrices
are symmetric, enabling eigen-decomposition of the form: L = UΛUT , where U is a
matrix of eigenvectors, and Λ contains eigenvalues. Borrowing the concept of Fourier
Transform from the field of Digital Signal Processing (DSP), a signal x ∈ R|V|×1 on a
graph is transformed to the spectral domain via x̂ = UTx, and the signal reconstructs
back to the spatial domain via x = Ux̂. Here, U servers as the Fourier basis. A learnable
filter g(Λ) operates on the eigenvalues to perform filtering in the spectral domain. The
filtered signal becomes:

xout = Ug(Λ)UTx

Different spectral-based GNNs propose distinct parameterizations of g(Λ) to balance
expressiveness and computational efficiency. Here, we list several representative meth-
ods:

• ChebyNet [DBV16] uses Chebyshev polynomials Tk to approximate the polynomial
filter: g(Λ) =

∑K−1
k=0 θkΛ

k, where θ ∈ RK is a vector of polynomial coefficients. This
approximation avoids eigen-decomposition by leveraging the recurrence relation of
Chebyshev polynomials:

g(Λ) ≈
K∑
k=0

αkTk(Λ̃), Λ̃ =
2Λ

λmax

− I

where α ∈ RK is a vector of Chebyshev coefficients, and Tk(Λ̃) is the Cheby-
shev polynomial. The localized filter enables efficient computation while capturing
multi-hop neighborhood information.

• GCN [KW17] simplify ChebyNet with K = 1, reducing the polynomial to a first-
order approximation. It introduces a renormalization trick and adds self-loops to
stabilize training. GCN acts as a low-pass filter that smooths node features across
immediate neighbors.

• GWNN [XSC+18] replaces the Fourier basis with spectral graph wavelets for local-
ized filtering. The filter becomes: g(Λ) = Ue−sΛU⊤, where s is a scaling parameter
that enables multi-resolution analysis. GWNN avoids global Fourier transforms and
reduces computational complexity via fast wavelet transforms.

• ARMA [BGLA21] approximates the filter using an autoregressive-moving-average
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(ARMA) process:

g(Λ) =

(
I+

K∑
k=1

qkΛ
k

)−1 K−1∑
k=0

pkΛ
m,

where qk, pk are learnable parameters. ARMA filters model long-range dependen-
cies without learning high-degree polynomials, which improves efficiency and sta-
bility.

Spatial-based Graph Neural Networks In contrast to spectral-based GNNs, which
leverage the graph spectrum, spatial-based GNNs operate directly on the graph topology
by aggregating features from local neighborhoods. These architectures can be unified by
a framework called Message Passing Neural Networks [GSR+17], where each node iter-
atively updates its representation by aggregating features from its neighbors. Formally,
the update rule for a node v at the ℓ-th layer is defined as:

h
(ℓ)
N(v) = AGGREGATION

({
h(ℓ−1)
v , h(ℓ−1)

u : u ∈ N(v)
})

h(ℓ)
v = COMBINATION

(
h
(ℓ)
N(v), h

(ℓ−1)
v

)
where AGGREGATION and COMBINATION are parameterized functions, h(ℓ−1)

v is the
representation of node v at the (ℓ − 1)-th layer, encoding the (l − 1)-hop structure in-
formation. h

(l)
N(v) denotes the aggregated features from the node and its neighborhood

N(v). Below, we show how key spatial-based GNNs instantiate this framework through
distinct aggregation and combination strategies.

• GraphSAGE [HYL17] enables inductive learning on large graphs by sampling
neighbors and aggregating their features. Its feature aggregation operates on a
fixed-size sample of N(v). Common aggregation functions include Mean, Max, and
LSTM.

– Mean:
h
(ℓ)
N(v) =

1

|N(v)|
∑

u∈N(v)

h(ℓ−1)
u

– Max:
h
(ℓ)
N(v) = max

u∈N (v)
σ
(
Wpoolh

(ℓ−1)
u + bpool

)
– LSTM: Although LSTM [HS97] is not permutation invariant, GraphSAGE uses

a LSTM on random permutation of neighbors as a more expressive aggregation
function.
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After feature aggregation, GraphSAGE combines the node’s own features with the
aggregated neighborhood features, followed by a learnable transformation:

h(ℓ)
v = σ

(
W(ℓ) ·

[
h(ℓ−1)
v ∥ h(ℓ)

N(v)

])
,

where ∥ denotes concatenation.

• GAT [VCC+18] uses attention mechanisms to weigh the importance of neighbor-
ing nodes dynamically. It computes attention coefficients αvu between v and each
neighbor u via:

αvu = softmaxu

(
LeakyReLU

(
aT
[
Wh(ℓ−1)

v ∥Wh(ℓ−1)
u

]))
,

where a and W are learnable parameters. The aggregated message is a weighted
sum:

h
(ℓ)
N(v) =

∑
u∈N (v)

αvuWh(ℓ−1)
u .

To stabilize the learning process of self-attention, GAT uses multi-head attention,
where K independent attention mechanisms are executed. After that, it applies a
nonlinear activation to the aggregated result, and concatenate the features:

h(ℓ)
v = ∥Kk=1σ

(
h
(ℓ)
N(v),k

)
The aggregation process can also be performed by employ averaging:

h(ℓ)
v = σ

(
1

K

K∑
k=1

h
(ℓ)
N(v),k

)

• GIN [XHLJ19] improves the discriminative power of GNNs by designing injective
aggregation functions, aligning with the Weisfeiler-Lehman (WL) graph isomor-
phism test. Its aggregation function is a sum of neighbor features:

h
(ℓ)
N(v) =

∑
u∈N(v)

h(ℓ−1)
u .

For the combination part, it injects the node’s own features via a learnable scaling
parameter ϵ(ℓ), followed by an MLP:

h(ℓ)
v = MLP(ℓ)

((
1 + ϵ(ℓ)

)
· h(ℓ−1)

v + h
(ℓ)
N(v)

)
.
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After feature aggregation and combination, these hidden node representations can
be read out into a graph-level representation for graph classification or regression. Al-
ternatively, they may be fed into task-specific components for node-level or edge-level
predictions.

Spectral vs. Spatial It should be noted that the distinction between spectral and spa-
tial GNNs originates from their mathematical foundations. However, there is not a clear
boundary between them. Spectral GNNs such as GCN and ChebyNet can also be de-
scribed in the MPNN framework [GSR+17, BRH+21, BHG+21, GMP21]. For instance,
the spectral convolution of GCN can be reinterpreted as a mean aggregation step in spa-
tial message passing [BRH+21]. This convergence highlights that spectral operations
often implicitly define spatial aggregation rules, enabling theoretical analyses of expres-
sive power, e.g., the equivalence between GCN and the Weisfeiler-Lehman test [GMP21].

2.3.2 Graph Transformers

At the time of writing the thesis, Graph Transformers [DB21, YCL+21, KBH+21, RGD+22,
CHYW23, XWL+24] have emerged as a new paradigm of graph neural networks. A graph
transformer is an adaptation of the transformer architecture [VSP+17], initially designed
for sequential data. It modifies the self-attention mechanism to incorporate the graph
structure [DB21].

Graph transformers address critical limitations of message-passing GNNs, such as
over-squashing, limited long-range dependency modeling, and insufficient utilization of
edge features. The key technical innovations of graph transformers include:

• Positional/Structural Encoding aims to incorporate the absolute or relative loca-
tion of nodes into the embedding. Common strategies include Laplacian eigen-
vectors [DB21], random walk probabilities [DLL+22], shortest path distances
[YCL+21] and node centrality matrices [YCL+21]. In practice, these strategies are
usually combined.

• Global Attention aims to capture long-range dependencies among nodes. Un-
like GAT, which performs the attention mechanism in the local neighborhood,
graph transformers use global attention and depict interactions between all node
pairs. In awareness of the high computational costs of global dense attention,
some studies also consider sparse attention, which typically relies on sampling
[SVV+23, SLV+25].

• Handling Edge Features [DB21, RBX+20] is a byproduct of positional encoding
and the attention mechanism since positional encodings indirectly encode edge
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information into node representations, and the attention mechanism dynamically
adapts interactions between nodes based on edge features. This enables the uti-
lization of both node features and edge semantics, which are particularly valuable
in multi-modal graphs.

2.3.3 Unsupervised Graph Neural Networks

Unsupervised graph representation learning aims to encode graph-structured data into
low-dimensional embeddings without labeled supervision. Key paradigms include graph
autoencoders and contrastive learning, each leveraging different mechanisms to capture
structural or semantic patterns.

Graph Autoencoder Graph autoencoders [WCZ16, KW16, PHL+18] are unsupervised
models that learn node embeddings by reconstructing graph structural information, such
as adjacency matrices, node features, or substructures. They typically consist of an en-
coder that maps nodes to latent representations and a decoder that reconstructs graph
data. A simple example is the GAE model [KW16], which calculates the node embeddings
as Z = GCN(A,X), and reconstructs the adjacency matrix Â = σ(ZZT ) by minimizing the
mean squared error or the cross entropy loss between Â and A. SDNE [WCZ16] is
an early graph autoencoder that employs shallow stacked autoencoders to reconstruct
adjacency matrices. It preserves first-order proximity (direct edges) via a Laplacian-
eigenmaps-inspired loss and second-order proximity (neighborhood similarity) through
reconstruction loss. Unlike SDNE, GAE and VGAE [KW16] use graph convolutional net-
works (GCNs) [KW17] as encoders. GAE reconstructs adjacency matrices using a simple
inner-product decoder, and VGAE extends this framework with variational inference,
learning probabilistic embeddings that enhance robustness and generalization. Building
upon GAE and VGAE, ARGA and ARVGA [PHL+18] further add adversarial regulariza-
tion by training a discriminator to align latent embeddings with a prior distribution.
This strategy improves embedding quality by enforcing distributional constraints. Once
learned, embeddings can be directly applied to downstream tasks such as community de-
tection and link prediction. Several studies [WPL+17, ZLZL22, GWY+22, MBTK22] also
explore integrating additional task-specific decoders into the autoencoder architecture,
enabling end-to-end training for improved performance.

Graph Contrastive Learning Unlike graph autoencoders, contrastive methods learn
embeddings by maximizing agreement between augmented views of the same graph
[JWQ+24]. These augmentations are broadly categorized into two types: (1) feature
or topology modifications, such as feature masking [TTA+21, YCS+20], feature shuf-
fling [JPT21], edge permutation [ZXY+20], and node dropping [XCL+21]; and (2) sub-
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graph sampling strategies [HK20, WZM+22, ZHSS24]. It is important to note that the
augmentations should preserve the underlying semantic structure to avoid losing task-
relevant information during training. There are distinct training strategies for contrastive
learning. DGI [VFH+19] introduces a global-local contrast by contrasting node embed-
dings against a graph-wide embedding, enforcing nodes to align with the global context.
GRACE [ZXY+20] applies edge removal and feature masking to create two views, then
maximizes similarity between the same node across views while repelling negative pairs.
GraphCL [YCS+20] systematically evaluates the impact of augmentations, showing that
edge perturbation and feature masking benefit tasks like molecular property prediction.
Instead of conducting augmentation on the whole graph, MVGRL [HK20] employs graph
diffusion to sample subgraphs as augmented views and contrasts node features with sub-
graph representations.

Graph Pretraining In unsupervised graph embedding, another important paradigm is
graph pretraining [HLG+20, LJFS21], which derives from pretraining strategies in natu-
ral language processing [DYW+19]. Graph pretraining involves training models on aux-
iliary unsupervised or self-supervised tasks, such as graph reconstruction or contrastive
learning, to learn transferable neural network structures. The objective is to capture
generalized knowledge that can enhance performance on downstream tasks. After pre-
training, the embeddings or model weights are typically used to initialize or fine-tune
task-specific models, enabling adaptation to target applications.

2.4 Hypergraph Neural Networks

Hypergraph Neural Networks (HGNNs) extend traditional GNNs to operate on hyper-
graphs, trying to preserve higher-order relationships depicted by hyperedges. The core
design principles of HGNNs align with GNNs [HY21, GFJJ22]. The key differences are:
(1) GNNs model node-to-node message passing, while HGNNs need to consider the im-
pact of hyperedges; (2) HGNNs should be able to handle variable-sized hyperedges,
necessitating novel aggregation/pooling strategies. Below, we introduce HGNNs by in-
vestigating how hyperedges are treated. In general, we divide these methods into implicit
and explicit ways.

Implicit Hyperedge Representation Implicit methods encode hyperedges through hy-
pergraph expansions, which reduce hypergraphs to ordinary graphs. HGNN [FYZ+18]
leverages hypergraph Laplacian operators to propagate features, treating hyperedges as
weighted cliques. HyperGCN [YNY+19] approximates hyperedges as graph edges via
a “mediator” node strategy, enabling GCN-like operations. HyperGT [LTY+24] uses the
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bipartite expansion graph to regularize the attention matrix. HJRL [YCW+24] combines
clique expansion and bipartite expansion in order to learn a shared representation of
nodes and hyperedges. LEGCN [YWYA22] uses a kind of line expansion to transform
node-hyperedge pair as nodes in a standard graph and then apply GCN on it.

Explicit Hyperedge Representation Hyperedges can be represented as explicit learn-
able entities. Some explicit methods treat hyperedges as dynamic components with their
own embeddings, updated during message passing. Typically, these methods can be de-
scribed by a dual message-passing framework, which consists of node-to-hyperedge ag-
gregation and hyperedge-to-node aggregation. HNHN [DSB20] is a simple dual message
passing neural network, which applies separate normalization for each message pass-
ing from either node to hyperedge or hyperedge to node, ensuring numerical stability.
UniGCNII [HY21] uses a two-stage hyperedge-to-node message passing. Before aggrega-
tion, the hyperedge representation is normalized by their degrees. HNHN and UniGCNII
assume equal importance of nodes within each hyperedge. Hyper-SAGNN [ZZM20] uses
self-attention to model node interactions within hyperedges, learning context-aware con-
tributions of nodes. To cope with the limitation that fixed aggregation functions (e.g.,
sum, max, mean, etc.) lose structural and feature information, AllSet [CPPM22] replaces
fixed aggregation with learnable, permutation-invariant multiset functions. This study
also shows that AllSet generalizes existing HGNN models such as HyperGCN [YNY+19],
HGNN [FYZ+18], and HyperSAGE [AGRW20] by framing them as special cases with spe-
cific aggregation choices. Motivated by the fact that a node in different hyperedges may
have different roles, WHATsNet [CKYS23] introduces role-specific node representations
by ranking nodes via centrality scores and encoding positional roles within hyperedges,
capturing context-dependent heterogeneity. This progression reflects a shift from static
aggregation to adaptive, context-aware frameworks for hypergraph representation learn-
ing.

2.5 Influence Maximization and Beyond

In this section, we review the classical influence maximization problem with represen-
tative solutions and discuss relevant problem settings, including its extension to hyper-
graphs.

2.5.1 Classical Influence Maximization

The classical influence maximization (IM) problem, a cornerstone of social network anal-
ysis, was formalized by Kempe et al. in 2003 [KKT03]. This problem aims to identify a
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small set of seed nodes in a social network such that, when activated, they trigger the
largest possible cascade of influence under a predefined diffusion model. The objective
is to maximize the expected number of nodes activated through the spread process. In
their study, two kinds of diffusion models are studied:

• Independent Cascade (IC). In a discrete-time stochastic process, each newly acti-
vated node u has one chance to activate its inactive neighbor v with a probability
puv. Activation attempts are independent across edges and steps. The process ter-
minates when no new activations occur.

• Linear Threshold (LT). In LT, each node v has a threshold θv, which satisfies θv ∈
[0, 1], and each edge has a non-negative weight wuv such that

∑
u∈N(v) wuv ≤ 1.

Influence weights on edges determine the strength of peer effects. A node becomes
active if the cumulative influence from its active neighbors exceeds the threshold.

As shown in [KKT03], IM is NP-hard under IC and LT. Considering the submodularity and
monotonicity of the influence spread function, the greedy algorithm, which selects seeds
iteratively by choosing the node with the highest marginal gain in influence spread, can
be used to solve this problem. This greedy algorithm achieves a (1− 1/e) approximation
ratio relative to the optimal. This pioneering study uses Markov Chain Monte Carlo
(MCMC) simulations to calculate the influence spread, as the influence spread can be
approximated arbitrarily close by increasing the number of MCMC simulations.

Considering the high computation costs of a large number of MCMC simulations,
a line of algorithms tries to reduce the number of MCMC simulations. For instance,
CELF [LKG+07] exploits submodularity to reduce redundant calculations. It skips MCMC
simulations of vertices that are known to be suboptimal. Another line of algorithms
avoids costly MCMC simulations by trading space for speed, such as TIM [TSX15], IMM
[TXS14], and RIS [BBCL14]. These algorithms sample reverse cascades (denoted as RR
sets) to estimate influence efficiently. After sampling sufficient RR sets, finding the seed
set becomes a maximum cover problem.

On the other hand, numerous heuristic algorithms are proposed to address the com-
putational challenges of influence maximization (IM) in large social networks, prior-
itizing practical efficiency over theoretical approximation guarantees. For instance,
some studies [CSH+14, LXY+17, ZZ17] consider IM as a node ranking problem, using
topology-driven scores to identify high-impact nodes. Another line of research exploits
graph structural patterns, such as communities, to reduce computational overhead. By
assuming networks exhibit modularity (e.g., communities that are dense inside and with
sparse interconnections), these approaches constrain influence propagation to localized
regions [CZP+14, GW20] or limit diffusion to a fixed number of steps [GBLV13].
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2.5.2 Variations of Influence Maximization

In the last twenty years, influence maximization has evolved to address diverse real-
world scenarios and constraints. Below are key variations:

• Budgeted IM [NZ13, PHWV20] targets to maximize influence under node-specific
activation costs and a total budget.

• Competitive IM [BKS07, ZLJW+22] models influence propagation in the presence
of competing campaigns, where nodes may adopt one of multiple cascading ideas.

• Topic-aware IM [CFL+15, BBM13] targets to maximize influence for content-
specific campaigns, where nodes have topic-dependent influence probabilities.

• Influence Minimization [YLW+19, YLG20] aims to minimize the spread of misin-
formation by seeding “protector” nodes.

• Profit Maximization [LL12, ZLY+17] maximizes revenue from influenced users,
accounting for campaign costs. This combines IM with profit-driven optimization.

• Diversity-aware IM [TLZ+14] ensures that seed nodes represent diverse demo-
graphics (e.g., age, gender, interests).

Among these variations, Budgeted, Competitive, and Topic-aware IM adapt the core
problem to constraints like limited resources, rival campaigns, and content-specific dy-
namics. Meanwhile, Influence Minimization, Profit Maximization, and Diversity-aware
IM reflect broader societal and economic priorities, such as fighting misinformation, mak-
ing profits, and ensuring fair representation.

It is worth noting that these variations are generally based on ordinary graphs. When
accounting for social groups, this necessitates frameworks that consider group-level ef-
fects. Below are representative adaptions:

• SIMPH [ZZG+18] incorporates crowd psychology, wherein a social group, a tail
node, will be activated with some probability only after each node in the head
node set is activated. This mechanism captures directed information propagation
through group structures based on the IC model.

• GIM [ZGW19] simulates election-like dynamics, where a group is activated once
a critical fraction of its members are activated. The objective shifts to maximizing
the number of activated groups rather than individual users. GIM is built on the IC
model.
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• SubTSSH [ACSS21] extend the LT model to hypergraphs. Nodes influence hyper-
edges when a sufficient number of their constituent nodes are activated. Hyper-
edges, in turn, influence nodes connected to them when enough hyperedges are
activated.

These advancements extend IM to hypergraphs. They highlight the shift from individual-
centric models to systems that account for collective behavior. By bridging classic diffu-
sion models (e.g., IC, LT) with group-aware mechanisms, modern IM research continues
to enhance its realism and practical utility. In Section 3.2, we will introduce our problem
definition and corresponding solution.
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3. Contributions

In this chapter, we introduce the main publications included in this cumulative thesis.
The essential contributions will be highlighted. Further details can be found in the cor-
responding papers in the Appendix.

3.1 Common Properties of the Research Tasks and
Methodologies

The three publications address three distinct yet inter-connected tasks: (1) informa-
tion diffusion and influence maximization in hypergraphs, (2) hyperlink prediction, and
(3) graph classification. These tasks shift the analytical focus from traditional node-
centric perspectives to higher-order relational abstractions. Specifically, the first two
tasks aim to identify highly influential or potentially existing hyperedges, respectively,
while the third task classifies entire graph objects. Among these, the first task in-
troduces a novel research problem, which generalizes traditional influence maximiza-
tion problems to hypergraphs; the latter two have been explored in previous studies.
For the latter two tasks, hyperlink prediction has gained increasing attention in recent
years (e.g., [PSL+21, ZCJC18, SZK21], to name a few, more related studies can be
found in this survey [CL23]), and graph classification benefits from numerous well-
established methodologies (e.g., spectral algorithms [SZA21, TMK+18, VZ17], graph
kernels [VSKB10, YV15, KJM20] and graph neural networks [ZCNC18, LRK18]). The
three tasks present unique computational and theoretical challenges due to the follow-
ing reasons:

• Combinatorial Complexity: The number of potential connections in graphs or hy-
pergraphs grows quadratically or exponentially with network size. This complexity
renders tasks such as (a) graph similarity learning [GXTL10], i.e., comparing the
similarity between pairs of graphs, which serves as the foundation for graph classi-
fication; and (b) hyperlink prediction, i.e., predicting missing hyperedges, which is
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computationally demanding since it has a vast searching space4.

• Higher-order Relational Modeling: Hypergraphs capture more generalized rela-
tionships than graphs, necessitating specialized techniques. For instance, (a) infor-
mation diffusion in hypergraphs [SGS18] should account for group dynamics, and
(b) centrality analysis [Ben19] faces limitations as many graph-theoretic principles
do not directly generalize to hypergraphs.

• Interpretability Constraints: Despite the success of graph neural networks, their
complex architectures often make their decision-making processes less transparent.
This lack of transparency raises concerns in high-stakes domains like healthcare and
risk management.

Motivated by these challenges, we aims to develop scalable and interpretable so-
lutions for the three tasks, which forms the general research goal of this thesis. In the
first task, we introduce a novel influence maximization problem in hypergraphs: se-
lecting a seed set of hyperedges to maximize the number of informed nodes under a
hypergraph-specific information diffusion model. To address this problem, we formal-
ize a new diffusion model (HIC) for hypergraphs considering group-level information
propagation. Based on HIC, we can identify high-influential hyperedges from an infor-
mation diffusion perspective. We prove that the defined problem is NP-hard. To solve
it, we propose InfDis, a heuristic algorithm that balances efficiency and effectiveness
in solution discovery. For the remaining tasks, we propose two unsupervised structural
feature extraction approaches: SSF and RWF. SSF is the first subgraph-based feature
extraction technique for hyperlink prediction. It offers fine-grained characterization of
hyperedges and their neighborhoods through localized topological patterns. RWF em-
ploys structural-role-based vertex partitioning and quantifies intra- and inter-partition
connection strengths as predictive features. Notably, the extracted features of both al-
gorithms are rooted in well-established structural heuristics such as loops and walks,
ensuring interpretability. Both methods avoid reliance on labeled data, making them
broadly applicable. We show the scalability of the proposed methods by comparing them
to a wide range of state-of-the-arts. Next, we present the technical contributions and
advantages of each approach in detail.

4To make this problem feasible, current mainstream algorithms [SZK21, YNN+20, XRK13, ZCJC18,
PSL+21] reformulate prediction as a binary classification problem, by introducing a candidate set. Our
paper [LPL+23] follows this way. We also note that this fashion has been challenged in [YLHS24].
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3.2 Information Diffusion and Influence Maximization
in Hypergraphs

As introduced in Section 2.5, influence maximization (IM) is a well-established research
topic with many different problem settings. Traditional IM aims to identify a seed set of
nodes that maximize information spread under predefined diffusion dynamics. While ex-
isting works predominantly focus on node-centric propagation in graphs, we extend this
paradigm to hypergraphs (i.e., social networks with group structure), where hyperedges
(groups) enable simultaneous information sharing among multiple nodes.

In the first paper [LWLB23], we propose a novel influence maximization problem:
Information Coverage Maximization in Hypergraphs. Specifically, the target is to maxi-
mize information coverage in hypergraphs, by selecting seed hyperedges (groups) and
following a predefined hypergraph information diffusion model (i.e., the Hypergraph In-
dependent Cascade model (HIC)). We present the Influence Discount (InfDis) algorithm
to address this problem. Our contributions are threefold:

• A Novel Problem. We formulate a new influence maximization problem. The HIC
model is central to the problem definition, which generalizes the classical IC model
to hypergraphs. In HIC, hyperedges (not nodes) act as diffusion units: a hyperedge
activates if selected as a seed or activated by an overlapping hyperedge, with prop-
agation probability based on shared nodes. HIC mirrors real-world behaviors in
online communities, where every social group member has the same information
exposure. Activating a hyperedge means to inform all its nodes, and overlapping
groups enable cascading effects. This group-centric mechanism shifts the optimiza-
tion target from selecting seed nodes with high authority to selecting a set of seed
hyperedges, which can strongly affect information propagation.

• Theoretical Foundation. We establish the theoretical foundation of the prob-
lem. We prove NP-hardness via reduction to the maximum coverage problem and
show that computing the exact information coverage is #P-hard. Additionally, we
demonstrate the submodularity and monotonicity of the coverage function, en-
abling greedy approaches with approximation guarantees. However, traditional
greedy methods suffer from high computational costs.

• A Practical Solution. We design InfDis, a heuristic inspired by Degree Discount, to
efficiently approximate information coverage. InfDis iteratively selects hyperedges
with the highest estimated marginal gain in coverage while discounting the influ-
ence of hyperedges that overlap with the selected seeds. By restricting coverage
estimation to immediate neighbors (under small propagation probabilities), InfDis
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avoids costly simulations and achieves near-linear time complexity. Specifically,
InfDis includes the following two steps.

– Direct/Indirect Coverage Estimation: Quantifies new nodes covered by a hy-
peredge and its activated neighbors.

– Influence Discounting: Adjusts the coverage of neighboring hyperedges after
seed selection to avoid redundancy.

Experiments on nine real-world datasets demonstrate InfDis’s superiority. It outper-
forms baseline heuristics (Degree, Betweenness) and matches the accuracy of greedy
methods while being 10,000× faster. It processes the Stackoverflow graph with 700k
nodes and 69k hyperedges in 0.139 seconds. InfDis also adapts well to varying propaga-
tion probabilities and hypergraph densities, showcasing robustness.

3.3 Subgraph-based Hyperlink Prediction

The second paper [LPL+23] addresses hyperlink prediction, which aims to predict
missing hyperedges in hypergraphs. Existing methods (e.g., FamilySet [SZK21], NHP
[YNN+20], Loop [PSL+21], HPLSF [XRK13], CMM [ZCJC18]), often operate on the en-
tire hypergraph, leading to scalability challenges. To overcome this, we propose SSF
(Subgraph Structural Features), a novel method that extracts interpretable subgraph
features for hyperlink prediction. The core of SSF is that we measure the connection
strength among subgraph nodes when the edges expanded by the focal hyperedge are
gradually weakened.

SSF has four steps: (1) subgraph extraction, (2) edge weakening for generating sub-
graph variations, (3) feature extraction, and (4) classification. In the subgraph extraction
step, SSF extracts localized subgraphs around candidate hyperedges, which is similar to
the subgraph extraction process of SEAL [ZC18], with the only difference being that one
is hypergraph and one is graph. After the subgraph for a hyperedge f is extracted, we
use clique expansion to get the matrix representation of the subgraph. The edge weight
wuv signifies the number of hyperedges that u and v belong to simultaneously, and we
mark the edges expanded by the candidate hyperedge as focal edges. In the edge weak-
ening process, we gradually weaken the edge weights of focal edges, using a parameter
α to control the degree of edge weakening. Consequently, we can select a finite num-
ber of discrete states of the edge weakening process, creating subgraph variations. For
example:

1. Decrease the weights of the focal edges by 1, indicating the removal of the candi-
date hyperedge from the subgraph.
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Figure 3.1: Illustration of the Features Extracted by SSF: The loop feature loopf,τ is the av-
erage of diagonal entries inside the green square. The walk feature walkf,τ is the
average of all entries inside the green square. The subgraph-level loop perturbation
∆total loopf,τ represents the change in the average of the diagonal entries across
the entire matrix compared to the initial relational matrix Tτ

f,initial.

2. Decrease the weights of the focal edges to 0, indicating the complete removal of the
edges expanded by the candidate hyperedge from the subgraph, i.e., these edges
are blocked.

We then get a set of transition/relational matrices corresponding to the subgraphs:
{Tf,initial,Tf,α1 ,Tf,α2 , · · · ,Tf,αt−1}5. The next step is feature extraction. We extract three
kinds of features for each matrix:

loopf,τ =
1

|f |
∑
v∈f

[Tτ
f ]vv

walkf,τ =
1

|f |2
∑
u,v∈f

[Tτ
f ]uv

∆total loopf,τ =
1

|Vh
f |
(
tr([Tτ

f,initial])− tr([Tτ
f ])
)

where Tτ
f captures τ -hop connection strengths. After feature extraction, these features

are combined into a vector and classified using an MLP, enabling inductive prediction
even for unseen nodes.

In summary, the main technical contributions of SSF are:

5The transition matrix is calculated by D−1A, while the relational matrix is calculated by
D−1/2AD−1/2. Both matrices can reflect the connection strengths between pairs of nodes. In our pub-
lished work, we use the relational matrices because symmetric matrices have computational advantages,
such as faster eigenvalue decomposition and improved numerical stability during iterative processes.
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• Interpretable Feature Extraction: Loop and walk features capture local connectiv-
ity patterns. Subgraph-level loop perturbations measure structural changes caused
by weakening edges. The three features can also be explained from the perspective
of eigen-decomposition.

• Adaptive Edge Weakening: The edge weakening mechanism dynamically adjusts
edge weights of the focal edges of the subgraph, allowing SSF to generalize across
dense and sparse hypergraphs. Compared to subgraph-based link prediction tech-
niques [ZC18, CJ20, WZ21], which relies on labeling tricks [ZLX+21] to distin-
guish focal nodes and other subgraph nodes, SSF uses a different way, by gradually
weaken the weights of focal edges. In this way, SSF encodes fine-grained topolog-
ical fingerprints that relate to the existence of candidate hyperedge. From another
perspective, the proposed edge weakening mechanism provides a new way of keep-
ing higher-order information when using hypergraph expansion techniques.

Experiments on 10 real-world datasets demonstrate SSF’s effectiveness over state-of-
the-art baselines in AUC and Precision. Ablation studies confirm the importance of each
feature component, while parameter analysis highlights robustness. The edge weaken-
ing scheme is shown to enhance adaptability, particularly in sparse hypergraphs where
traditional methods fail. The scalability of SSF is shown by its ability to process sub-
graphs, not whole graphs. Excluding subgraph extraction, the complexity for computing
features for a hyperedge is O(t · τ · |Vh

f |3), which is at the same level of various subgraph
GNNs. The difference is that we do not enforce end-to-end training but rely on single-
pass feature extraction, and the extracted features are ready to feed into an MLP. Thus,
SSF requires less time and computational resources. In summary, by focusing on local
subgraphs and interpretable structural features, SSF achieves state-of-the-art in multiple
hyperlink prediction tasks while maintaining scalability and transparency.

3.4 Feature Extraction for Graph Classification

The third paper [LWB24] addresses graph classification. Graph classification faces scala-
bility challenges due to the increasing size of real-world graphs and the large volume of
graph datasets. In the literature, there are two main lines of approaches: graph kernels
[BK05, ZWX+18] and graph neural networks [HYL17, HY21]. While graph kernels offer
interpretability, they struggle with large datasets due to quadratic complexity in the num-
ber of graphs. GNNs, though powerful, require heavy computational resources and lack
interpretability if considering complex architectures. To address these limitations, we
propose Random Walk Fingerprints (RWF), a scalable, unsupervised, and interpretable
structural feature extraction method for graph classification. The main technical contri-
butions are twofold:
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Figure 3.2: Illustration of the Features Extracted by RWF: The loop feature of a node subset
V1 is loopτV1

, denotes the average of diagonal entries inside the blue square of V1.
The walk feature of a node subset V1 is walkτV1

, which denotes the average of all entries
inside the blue square corresponding to V1. The walk feature between two node subsets,
i.e., walkτV1→V2

and walkτV2→V1
, denotes the average of all entries inside the green

square correspondingly.

• Novel Graph Fingerprinting Technique: We introduce scalable and interpretable
structural features based on loop and walk. The basis of these structural features is
the same as the second paper [LPL+23]. The difference of RWF is that we measure
loop and walk between node subsets, as shown in Figure 3.2. In other words, these
features quantify connection strengths within and between node subsets, capturing
local connectivity patterns. By leveraging sparse matrix operations and incremental
walk-step calculations, RWF achieves a time complexity of O(Nτcmn), making it
suitable for large graph datasets and sparse graphs. Besides, RWF is capable of
assimilating node features.

• Vertex Partitioning Heuristics: We propose two vertex partitioning heuristics to
align node subsets across graphs of varying sizes. Unlike community detection
methods that focus on identifying dense subgraphs characterized by high internal
density and sparse interconnections, our degree-based and core-periphery heuris-
tics partition nodes by structural roles. As shown in Figure 3.3, the degree heuristic
sorts nodes by degree and divides them into k subsets, while the core-periphery
heuristic identifies central and peripheral nodes using the KM-config algorithm
[KM18]. These partitions enable consistent comparisons of local connectivity pat-
terns, enhancing discriminative power. Experiments show that the degree heuristic
outperforms alternatives, balancing simplicity and effectiveness.

We conduct comprehensive empirical validation across 12 real-world datasets, includ-
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Figure 3.3: Illustration of Two Vertex Partitioning Heuristics: The left figure characterizes
degree-based partitioning, where the nodes are sorted by their degree and then divided
into three partitions. The right figure depicts the core-periphery heuristic, where the
KM-config algorithm identifies core nodes and periphery nodes [KM18].

ing social networks and molecular graphs. RWF achieves state-of-the-art accuracy on
8/12 datasets and demonstrates competitive runtime performance. RWF’s design avoids
the need for expensive kernel matrix computations or end-to-end training, thus simpli-
fying deployment. While parameters like the number of partitions and maximum walk
steps require tuning, our experiments show that RWF is stable with a small number of
partitions, such as 2 or 3, and RWF is not sensitive to the walk length. The method’s scal-
ability is validated on datasets with up to 127,094 graphs, highlighting its practicality for
real-world applications.
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4. Conclusion

In this thesis, we presented multiple advances in the area of graph mining and hyper-
graph mining, in particular in the tasks of information coverage maximization in hy-
pergraphs, hyperlink prediction and graph classification. In the following, we discuss
relevant concepts, and show the limitations of proposed methodologies. Then, we in-
troduce potential research opportunities arising from these researches, and provide final
remarks.

4.1 Discussion

Model Simplicity vs. Real-world Complexity. The tension between model simplicity
and real-world complexity is a pervasive challenge in applied research [MS24]. While
simplified models, such as the proposed HIC model, enable tractable analysis and algo-
rithmic guarantees, they inevitably lose nuances inherent to real-world social dynamics.
Complex models, on the other hand, risk becoming analytically intractable or computa-
tionally prohibitive. Model simplicity and real-world complexity are like a coin of two
sides. Such limitations highlight a recurring theme in applied science: balancing simplic-
ity to achieve actionable insights while acknowledging the messiness of reality.

Deep Approaches vs. Non-deep Approaches The rise of deep learning over the past
decade has reshaped computational paradigms across disciplines, achieving the best per-
formances in tasks ranging from image classification [KSH17] to protein structure pre-
diction [JEP+21]. Its ability to autonomously learn hierarchical representations from
raw data is a cornerstone of modern artificial intelligence. However, this success raises a
critical question:

Is deep learning a universal solution?

While powerful, deep learning techniques typically require high computational re-
sources, and they introduce trade-offs, particularly between performance and inter-
pretability [CSS23]. Though hardware and distributed computing advances have en-
abled the training of increasingly larger models, the computational overhead remains
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a barrier for resource-constrained institutions. Furthermore, the black-box nature of
these systems limits trust in high-stakes domains. This thesis argues that algorithm se-
lection must align with the concrete goal. We contributed three non-deep approaches
tailored to the three tasks. Indeed, these tasks could also employ deep learning
techniques. There are GNNs for estimating the influence spread in ordinary graphs
[KMKP22, PTVM23, LJW+23, PTV+24]. Hyperlink prediction and graph classification
are the domains that deep learning has been widely explored, such as various HGNNs
[SZK21, RZSW24, YNN+20] and GNNs [ZCNC18, LRK18, BZR21, HJLH22]. These so-
lutions often impose prohibitive computational complexity and resource demands. We
benchmark against various neural architectures in the latter two tasks. We show that
through proper algorithmic design, our non-deep methods achieve competitive or supe-
rior performances in many cases. These results demonstrate that effectiveness need not
correlate with architectural complexity, and scalability, interpretability, and effectiveness
can be achieved simultaneously.

4.2 Limitations

Simplified Problem Setting In the above discussion, we mentioned that the simplicity
of the HIC model introduces limitations. SSF has a similar issue. It assumes a predefined
candidate set of potential hyperedges, aligning with the mainstream solutions. However,
generating this set remains a non-trivial problem. Current approaches rely on negative
sampling or domain knowledge, which may introduce bias or fail to cover meaningful
candidates, potentially impacting prediction reliability.

Feature Design Constraints SSF and RWF rely on handcrafted structural features (e.g.,
walks, loops), which prioritize interpretability and scalability. While effective in many
cases, their performance could degrade if the chosen heuristics misalign with the under-
lying network formation mechanisms. This family of algorithms may inherently constrain
the representational power of extracted features, as performance is bounded by the suit-
ability of manually engineered heuristics. Currently, there is no theoretical framework
for analyzing the representational power of these handcrafted features.

Unaddressed Theoretical Aspects In the study of maximizing information coverage in
hypergraphs, the NP-hardness proof relies on a reduction from the maximum coverage
problem under a restricted scenario where the propagation probability p = 0. While this
reduction validly establishes NP-hardness, it does not explicitly address the problem’s
complexity in general cases where p > 0. Specifically, the theoretical relationship be-
tween the maximum coverage problem and the proposed problem remains unexplored
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when propagation dynamics enable seed hyperedges to activate additional hyperedges
beyond the initial selection. This gap leaves open whether existing maximum coverage
algorithms could serve as heuristics for practical scenarios where p > 0. Furthermore,
the proposed InfDis heuristic prioritizes empirical efficiency over theoretical guarantees.
Though it performs well in experiments, the lack of an approximation guarantee limits
its theoretical reliability in worst-case scenarios.

4.3 Future Work

Learning Propagation Probabilities from Data While influence maximization algo-
rithms excel at identifying optimal seed nodes under assumed propagation probabilities,
they typically treat these probabilities as abstract parameters rather than empirically
grounded values. This is the critical limitation of current influence maximization re-
search, which prioritizes algorithmic efficiency over modeling actual diffusion processes.
By deriving these probabilities from observed cascades 6, bridging this gap opens rich re-
search opportunities. By analyzing real-world diffusion patterns (e.g., retweets, citation
cascades, or viral content trajectories), we might be able to quantify node-specific in-
fluence in diverse contexts, identify universal or platform-specific diffusion mechanisms,
and develop predictive models grounded in empirical behavior. Such efforts would ad-
vance theoretical frameworks and enhance practical strategies for managing misinfor-
mation, optimizing marketing campaigns, or modeling social contagion.

Temporal Effects in Hyperlink Prediction Current hyperlink prediction algorithms
mainly focus on identifying missing hyperedges in static hypergraphs. The problem of
forecasting future hyperlinks remains under-explored. The key challenges of temporal
hyperlink prediction lie in adapting temporal dynamics (e.g., recency, periodicity, drift,
burstiness) to multi-node interactions [IKB24]. While hyperedges inherently encode
higher-order dependencies, their temporal constraints frequently arise from overlapping
pairwise interactions. This observation suggests potential alignment with frameworks
like neural relational inference (NRI) [KFW+18, XLN+22], which infers latent relational
structures between entities. By extending NRI’s relational reasoning to group-level tem-
poral coordination, we may be able to bridge temporal modeling and hyperedge fore-
casting, enabling joint prediction of when and why multi-node interactions emerge.

Sub-structural Learning for Graphs In RWF [LWB24], we explored role-based struc-
tural partitioning methods beyond Degree and Core-Periphery, like structural clustering

6Like quantifying epidemiology’s reproduction number [BIH+24], propagation probabilities could be
estimated through an event-driven lens.
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techniques. A key limitation of these approaches lies in their strong dependence on pa-
rameter tuning, which becomes impractical for a large number of graphs with different
sub-structural compositions. To mitigate this problem, we may explore an unsupervised
parameter-free decomposition strategy that breaks graphs into universal and fundamen-
tal blocks, enabling shared substructures to generalize across diverse graph types. These
substrcutures can then be explicitly used in graph-related downstream tasks.

4.4 Final Remarks

For this thesis, we proposed three data mining techniques for graph and hypergraph
analysis. From a technical perspective, this thesis prioritizes practicality over algorithmic
novelty. The results support that scalable and interpretable solutions can achieve sub-
stantial performance. Overall, the contributed techniques represent a small step within
the rapidly expanding field of scientific research. We hope these techniques could help
domain experts to uncover novel patterns in their data while inspiring new directions for
the research community.
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[RGD+22] Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu,
Guy Wolf, and Dominique Beaini. Recipe for a general, powerful, scal-
able graph transformer. Advances in Neural Information Processing Systems,
35:14501–14515, 2022.

[Rob23] Bradley Robinson. Governance on, with, behind, and beyond the discord
platform: A study of platform practices in an informal learning context.
Learning, Media and Technology, 48(1):81–94, 2023.

[Ruh00] Britta Ruhnau. Eigenvector-centrality—a node-centrality? Social networks,
22(4):357–365, 2000.

[RZSW24] Xiaobin Rui, Jiaxin Zhuang, Chengcheng Sun, and Zhixiao Wang. Higher-
order link prediction via light hypergraph neural network and hybrid ag-
gregator. International Journal of Machine Learning and Cybernetics, pages
1–15, 2024.

[SDWL14] Jianbing Shen, Yunfan Du, Wenguan Wang, and Xuelong Li. Lazy random
walks for superpixel segmentation. IEEE Transactions on Image Processing,
23(4):1451–1462, 2014.

[SGS18] Qi Suo, Jin-Li Guo, and Ai-Zhong Shen. Information spreading dynam-
ics in hypernetworks. Physica A: Statistical Mechanics and its Applications,
495:475–487, 2018.

[SLV+25] Hamed Shirzad, Honghao Lin, Balaji Venkatachalam, Ameya Velingker,
David Woodruff, and Danica J Sutherland. Even sparser graph transformers.
Advances in Neural Information Processing Systems, 37:71277–71305, 2025.

[SRJ17] Shakila Shaikh, Sheetal Rathi, and Prachi Janrao. Recommendation sys-
tem in e-commerce websites: a graph based approached. In 2017 IEEE 7th
International Advance Computing Conference (IACC), pages 931–934. IEEE,
2017.

[SV93] Moninder Singh and Marco Valtorta. An algorithm for the construction of
bayesian network structures from data. In Uncertainty in artificial intelli-
gence, pages 259–265. Elsevier, 1993.

[SVV+23] Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Suther-
land, and Ali Kemal Sinop. Exphormer: Sparse transformers for graphs. In
International Conference on Machine Learning, pages 31613–31632. PMLR,
2023.



48 REFERENCES

[SXZF07] Jimeng Sun, Yinglian Xie, Hui Zhang, and Christos Faloutsos. Less is more:
Compact matrix decomposition for large sparse graphs. In Proceedings of the
2007 SIAM International Conference on Data Mining, pages 366–377. SIAM,
2007.

[SYL+17] Junming Shao, Zhongjing Yu, Peiyan Li, Wei Han, Christian Sorg, and Qinli
Yang. Exploring common and distinct structural connectivity patterns be-
tween schizophrenia and major depression via cluster-driven nonnegative
matrix factorization. In 2017 IEEE International Conference on Data Mining
(ICDM), pages 1081–1086. IEEE, 2017.

[SZA+20] Zhan Su, Xiliang Zheng, Jun Ai, Yuming Shen, and Xuanxiong Zhang. Link
prediction in recommender systems based on vector similarity. Physica A:
Statistical Mechanics and its Applications, 560:125154, 2020.

[SZA21] Saurabh Sawlani, Lingxiao Zhao, and Leman Akoglu. Fast attributed graph
embedding via density of states. In IEEE ICDM, pages 559–568, 2021.

[SZK21] Balasubramaniam Srinivasan, Da Zheng, and George Karypis. Learning over
families of sets-hypergraph representation learning for higher order tasks.
In Proceedings of the 2021 SIAM International Conference on Data Mining
(SDM), pages 756–764. SIAM, 2021.

[TCR10] Carla Taramasco, Jean-Philippe Cointet, and Camille Roth. Academic team
formation as evolving hypergraphs. Scientometrics, 85(3):721–740, 2010.

[TFP06] Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. Fast random walk with
restart and its applications. In Sixth international conference on data mining
(ICDM’06), pages 613–622. IEEE, 2006.

[TLSZ14] Kewei Tang, Risheng Liu, Zhixun Su, and Jie Zhang. Structure-constrained
low-rank representation. IEEE transactions on neural networks and learning
systems, 25(12):2167–2179, 2014.

[TLZ+14] Fangshuang Tang, Qi Liu, Hengshu Zhu, Enhong Chen, and Feida Zhu. Di-
versified social influence maximization. In 2014 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining (ASONAM
2014), pages 455–459. IEEE, 2014.

[TMK+18] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, Alexander Bronstein, and
Emmanuel Müller. Netlsd: hearing the shape of a graph. In ACM KDD, pages
2347–2356, 2018.



REFERENCES 49

[TQW+15] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu
Mei. Line: Large-scale information network embedding. In Proceedings
of the 24th international conference on world wide web, pages 1067–1077,
2015.

[TSO21] Samaneh Torkzadeh, Hadi Soltanizadeh, and Ali A Orouji. Energy-aware
routing considering load balancing for sdn: a minimum graph-based ant
colony optimization. Cluster Computing, 24(3):2293–2312, 2021.

[TSX15] Youze Tang, Yanchen Shi, and Xiaokui Xiao. Influence maximization in near-
linear time: A martingale approach. In Proceedings of the 2015 ACM SIGMOD
international conference on management of data, pages 1539–1554, 2015.

[TTA+21] Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Remi
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ple share information via groups. An interesting problem arises in
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information diffusion so that the number of eventually informed
nodes can be maximized? In this study, we formulate a novel in-
formation coverage maximization problem in the context of hyper-
graphs, wherein nodes are connected by arbitrary-size hyperedges
(i.e., groups). In contrast to the existing literature on influence
maximization, which aims to find authority nodes with high influ-
ence, we are interested in identifying the key groups. To address this
problem, we present a new information diffusion model for hyper-
graphs, namely Hypergraph-Independent-Cascade (HIC). HIC gen-
eralizes the popular independent cascade model to hypergraphs to
allow capturing group-level information diffusion. We prove the NP-
hardness of the proposed problem under HIC, and the submodular
monotone property of the information coverage function. Further,
inspired by the Degree Discount algorithm, we derive a new heuristic
method named Influence Discount (InfDis). Extensive experiments
provide empirical evidence for the effectiveness and efficiency of our
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Abstract Hyperlink prediction aims to predict interactions among multiple en-
tries, constituting a practical yet challenging problem in the litera-
ture. While a handful of solutions have been proposed, they gener-
ally operate on the entire hypergraph. A practical subgraph-based
solution not only enables better identification of localized charac-
teristics of the central hyperedge but also alleviates scalability con-
cerns. In this study, we present SSF, an innovative hyperlink pre-
diction methodology based on Subgraph Structural Features. The
rationale behind SSF is that hyperedges and non-hyperedges ex-
hibit distinct local patterns, which can be unveiled through the as-
similation of subgraph structural features. To this end, we utilize
well-established structural heuristics such as walks and loops as the
fundamental building blocks. We commence by extracting a sub-
graph encompassing each focal hyperedge, subsequently integrating
an edge weakening scheme to facilitate feature extraction from the
initial subgraph and its variations. The extracted feature vector is
interpretable, and the designed edge weakening scheme empowers
SSF with an adaptive capability to handle hypergraphs with varying
densities. Lastly, a multilayer perceptron classifier is trained for pre-
diction. Experiment results on ten real-world hypergraph networks
demonstrate the effectiveness of the proposed approach.
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Abstract Graph classification has long been a focus of network mining, with
graph kernel methods and representation learning at the forefront.
Despite their success, many of these studies require heavy computa-
tion, making them impractical for large-scale datasets. In this paper,
we design a novel structural feature extraction technique that lever-
ages node subsets and connection strength reflected by random-
walk-based heuristics, presenting a scalable, unsupervised, and eas-
ily interpretable alternative. Initially, we partition each graph based
on the structural roles of nodes. This process creates soft alignments
of node subsets across graphs of varying sizes. Then, we measure
the connection strengths within and between these subsets, which
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nique can seamlessly incorporate node features. Through empiri-
cal assessment encompassing a broad range of graph datasets, we
demonstrate that our method achieves high levels of computational
efficiency while maintaining robust classification accuracy.
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