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Zusammenfassung

Das Verständnis des Zustands des intergalaktischen Mediums (IGM) während der Epoche der
Reionisierung (EoR) ist entscheidend, um die Entstehung der ersten Sterne, Galaxien und kosmi-
schen Strukturen zu entschlüsseln. Diese Dissertation präsentiert eine umfassende Untersuchung,
die theoretische Grundlagen, fortgeschrittene Simulationstechniken und innovative maschinelle
Lernmethoden kombiniert, um das rotverschobene 21-cm-Signal aus dem IGM zu modellieren
und zu extrahieren.

Im ersten Teil der Arbeit konzentriere ich mich auf die Verbesserung von Techniken zur Extraktion
des 21-cm-Signalleistungsspektrums aus Radiodaten. Insbesondere konzentriere ich mich auf
die Verbesserung der Vordergrundsubtraktionstechnik auf der Grundlage der Gaußschen Prozess-
regression (GPR) unter Verwendung von maschinellem Lernen (ML). Das heißt, anstatt mich
auf die Verwendung analytischer Funktionen zu verlassen, um eine “Vorlage” für das 21-cm-
Signalleistungsspektrum zu erstellen, verwende ich einen auf Variational Auto-Encoder (VAE)
basierenden Algorithmus, der auf simulierten Leistungsspektren aus den Grizzly-Simulationen
trainiert wurde. Ich habe dann simulierte Datenwürfel erstellt und 21-cm-Signalleistungsspektren
nicht nur aus den Grizzly-Simulationen, sondern auch aus Simulationen mit völlig anderer Ar-
chitektur wie CRASH und 21cmFAST injiziert und gezeigt, dass das ML-gestützte GPR das 21-
cm-Signal erfolgreich innerhalb von 2𝜎-Unsicherheiten extrahieren konnte, während es in allen
Fällen die Form des Spektrums besser erfasste. Ich führte weitere Tests mit unterschiedlichen
Rauschpegeln und Rotverschiebungen durch und untersuchte auch die Rolle des systematis-
chen Rauschüberschusses, der bei LOFAR-Beobachtungen festgestellt wurde. Anschließend
wandte ich dies auf 141 Stunden echter LOFAR-Daten an, wobei alle anderen Aspekte außer-
halb der Vorlage für das 21-cm-Signalleistungsspektrum gleich blieben. Ich stelle fest, dass die
überarbeitete Pipeline eine konservative 2𝜎-Obergrenze für das 21-cm-Leistungsspektrum von
Δ2

21 < (80)2 mK2 bei 𝑘 = 0, 075 ℎ Mpc−1 ergibt, wenn ich das überschüssige Rauschen nicht
vom 21-cm-Signal trenne, wie es bei früheren Ergebnissen der Fall war. Durch die Anwendung
von Bias-Korrekturen zur Beseitigung des übermäßigen Rauschens kann die Obergrenze jedoch
weiter aufΔ2

21 < (25)2 mK2 gesenkt werden. Aufgrund des begrenzten Verständnisses der Art der
in den Daten vorhandenen übermäßigen Rauschkomponente muss jedoch noch bestätigt werden,
ob die erhaltenen Bias-korrigierten Obergrenzen tatsächlich das gesamte 21-cm-Signal enthalten.
Dennoch stellt dieser ML-basierte Ansatz eine der vielversprechendsten Methoden zur Extraktion
des 21-cm-Signalleistungsspektrums dar, was für die spätere Erkennung des 21-cm-Signals mit
mehr Beobachtungsstunden von LOFAR und/oder mit zukünftigen Radioteleskopen wie SKA
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von entscheidender Bedeutung wäre.

Im zweiten Teil der Arbeit konzentriere ich mich auf die Verbesserung der Modellierung des 21-
cm-Signals durch die Implementierung des Fixed & Paired (F&P)-Ansatzes zur Unterdrückung
der kosmischen Varianz, ohne dass massive Simulationsvolumina erforderlich sind. Herkömm-
liche Methoden stützen sich auf groß angelegte Simulationen, um schwache 21-cm-Fluktuationen
zu erfassen, aber F&P erhöht das statistische Volumen, indem es anfängliche Dichtestörungen fix-
iert und Simulationen mit invertierten Phasen koppelt. Dies steigert die Effizienz um mindestens
das 3,5-Fache für das Leistungsspektrum und um das 5-Fache für das gleichseitige Bispek-
trum, wodurch die Rechenkosten erheblich gesenkt werden. Vergleiche wichtiger statistischer
Messgrößen – darunter das Leistungsspektrum, das Bispektrum, die Schiefe und die Blasen-
größenverteilung – bestätigen, dass der F&P-Durchschnitt eng mit den Ensemble-Durchschnitten
übereinstimmt, was ihn zu einer zuverlässigen und effizienten Methode für die Vorhersage von
beobachtbaren 21-cm-Signalen macht, was für die Interpretation von Daten aus Radiointerfer-
ometern der nächsten Generation von entscheidender Bedeutung ist.

Im dritten Teil der Arbeit untersuche ich die Erweiterung des physikalischen Parameterraums
von Simulationen, die zur Ableitung astrophysikalischer Eigenschaften aus dem 21-cm-Signal
verwendet werden. Insbesondere muss geprüft werden, ob die Variabilität einiger Parameter
zu Kompromissbeziehungen zwischen ihnen führt, sodass sich die Bandbreite der realisierbaren
Modelle, die mit den Observablen übereinstimmen, erweitert. Dazu verwende ich die Polar-
Simulationen, die 𝑁-Körper-Simulationen, die mit Gadget-4 ausgeführt werden, mit dem semi-
analytischen Galaxienbildungsmodell L-Galaxies und Grizzly nachbearbeiten. Ich variierte
zwei wichtige kosmologische Parameter – die Hubble-Konstante (𝐻0) und die Materie-Cluster-
Amplitude (𝜎8) – und passte astrophysikalische Parameter wie die Sternentstehungseffizienz und
die pro Supernova-Explosion freigesetzte Energie so an, dass alle Simulationen mit den UV-
Leuchtkraftfunktionen aus den neuesten JWST-Beobachtungen bei Rotverschiebungen 𝑧 = 10
und 9 übereinstimmen. Ich stelle fest, dass die vorhergesagten 21-cm-Leistungsspektren trotz der
Verwendung unterschiedlicher Sätze kosmologischer und astrophysikalischer Parameter mit den
aktuellen oberen Beobachtungsgrenzen übereinstimmen, was deutlich macht, dass verschiedene
Modelle realisierbar sind. Dies unterstreicht das Potenzial der Kombination von galaktischen und
IGM-Beobachtungsgrößen zur gemeinsamen Eingrenzung der physikalischen Prozesse, die die
Reionisierung antreiben.

Insgesamt macht die Dissertation bedeutende Fortschritte sowohl bei den Simulations- als auch bei
den Datenanalyseverfahren für EoR-Studien. Durch die Weiterentwicklung von ML-gestützten
GPR-Methoden zur robusten Vordergrundreduzierung und den Einsatz innovativer Simulations-
strategien zur Überwindung der kosmischen Varianz und der begrenzten Parameterabdeckung
trägt diese Arbeit zu einem tieferen und präziseren Verständnis des frühen Universums bei. Der
hier skizzierte integrierte Ansatz bringt uns einer zuverlässigen Erkennung und Interpretation des
schwer fassbaren 21-cm-Signals aus dem IGM näher und bietet ein neues Fenster zur kosmischen
Strukturbildung während der Epoche der Reionisierung.



Abstract

Understanding the state of the intergalactic medium (IGM) during the Epoch of Reionization
(EoR) is pivotal to unraveling the formation of the first stars, galaxies, and cosmic structures.
This thesis presents a comprehensive investigation that combines theoretical foundations, ad-
vanced simulation techniques, and innovative machine-learning methods to model and extract the
redshifted 21-cm signal from the IGM.

In the first part of the thesis, I focus on improving techniques for extracting the 21-cm signal
power spectrum from radio data. In particular, I focus on improving the foreground subtraction
technique based on Gaussian Process Regression (GPR) using Machine Learning (ML). That is,
instead of relying on using analytic functions to build a “template” for the 21-cm signal power
spectrum, I use a Variational Auto-Encoder (VAE) - based algorithm trained on mock power
spectra from the Grizzly simulations. I then built simulated datacubes and injected mock 21-
cm signal power spectra not just from the Grizzly simulations but also from simulations with
completely different architecture like CRASH and 21cmFAST and showed that the ML-enhanced
GPR could successfully extract the 21-cm signal within 2𝜎 uncertainties while better capturing
the shape of the spectrum in all cases. I performed additional tests with differing noise levels and
redshifts and also explored the role of the systematic excess noise found in LOFAR observations.
Subsequently, I applied this to 141 hours of real LOFAR data, keeping all other aspects beyond the
template for the 21-cm signal power spectrum the same. I find that if I do not separate the excess
noise from the 21-cm signal, as was done for past results, the revised pipeline yields a conservative
2𝜎 upper limit on the 21-cm power spectrum of Δ2

21 < (80)2 mK2 at 𝑘 = 0.075 ℎ Mpc−1. But on
applying bias corrections to remove the excess noise, the upper limit can be further pushed down
to Δ2

21 < (25)2 mK2. However, due to the limited understanding of the nature of the excess noise
component present in the data, it is yet to be confirmed if the bias-corrected upper limits obtained
indeed contain the entirety of the 21-cm signal. Nevertheless, this ML-based approach provides
one of the most promising methods of extracting the 21-cm signal power spectrum, which would
be crucial to eventually detect the 21-cm signal with more hours of observation from LOFAR
and/or with upcoming radio telescopes like SKA.

In the second part of the thesis, I focus on improving the modeling of the 21-cm signal by
implementing the Fixed & Paired (F&P) approach to suppress cosmic variance without requiring
massive simulation volumes. Traditional methods rely on large-scale simulations to capture faint
21-cm fluctuations, but F&P enhances statistical volume by fixing initial density perturbations and
pairing simulations with inverted phases. This boosts efficiency by at least 3.5 times for the power
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spectrum and 5 times for the equilateral bispectrum, significantly reducing computational cost.
Comparisons of key statistical measures—including the power spectrum, bispectrum, skewness,
and bubble size distribution—confirm that the F&P average closely matches ensemble averages,
making it a reliable and efficient method for predicting 21-cm signal observables, which is crucial
for interpreting data from next-generation radio interferometers.

In the third part of the thesis, I investigate the broadening of the physical parameter space of
simulations used to infer astrophysical properties from the 21-cm signal. In particular, it is
necessary to check if allowing some parameters to vary leads to trade-off relationships between
them, such that the range of viable models that match observables broadens. For this, I use
the Polar simulations, which post-processes 𝑁-body simulations run with Gadget-4 with the
semi-analytic galaxy formation model L-Galaxies and Grizzly. I varied two key cosmological
parameters—specifically the Hubble constant (𝐻0) and the matter clustering amplitude (𝜎8) and
adapted astrophysical parameters such as the star formation efficiency and the energy released
per supernova explosion such that all simulations match the UV luminosity functions from
the latest JWST observations at redshifts 𝑧 = 10 and 9. I find that despite adopting distinct
sets of cosmological and astrophysical parameters, the predicted 21-cm power spectra remain
consistent with current observational upper limits, thus making it clear that various models can
be viable. This highlights the potential of combining both galactic and IGM observables for
jointly constraining the physical processes driving reionization.

Overall, the thesis makes significant strides in both simulation and data-analysis techniques for
EoR studies. By advancing ML-enhanced GPR methods for robust foreground mitigation and
employing innovative simulation strategies to overcome cosmic variance and limited parameter
coverage, this work contributes to a deeper and more precise understanding of the early Universe.
The integrated approach outlined herein brings us closer to a reliable detection and interpretation
of the elusive 21-cm signal from the IGM, offering a new window into cosmic structure formation
during the Epoch of Reionization.



Chapter 1

Epoch of Reionization: The Formation of
the Firsts

Where’s the glory in repeating what others have done?

- Rick Riordan

1.1 Overview

The building of knowledge is an iterative and cumulative process. Any work that advances our
understanding of cosmology necessarily builds upon foundational discoveries that attempt to
address the enduring question: “How did the Universe come to be as it is today?”

Early models of the cosmos were rooted in geocentrism, placing the Earth at the center of the
Universe. In this view, celestial bodies—including the Sun, planets, and a celestial sphere studded
with stars—revolved around a stationary Earth. This model, epitomized by the Ptolemaic system,
dominated Western thought for centuries until the heliocentric revolution spearheaded by Nicolaus
Copernicus in the 16th century (Copernicus, 1543). His work was further substantiated by Galileo
Galilei’s telescopic observations (Galilei, 1610) and Johannes Kepler’s laws of planetary motion
(Kepler, 1609), leading to the realization that Earth was merely one of several planets orbiting
the Sun.

Yet, even the Sun proved not to be special. By the early 20th century, astronomers had come
to recognize that it was simply one of the billions of stars comprising the Milky Way galaxy
(Shapley, 1921). Even the notion that the Milky Way encompassed the entire Universe persisted
until Edwin Hubble’s groundbreaking observations at the Mount Wilson Observatory. Hubble
demonstrated that distant "nebulae" were, in fact, independent galaxies far beyond the Milky Way.
He further established that these galaxies were receding from us at velocities proportional to their
distance—a phenomenon now known as Hubble’s Law (Hubble, 1929). This led to proposals of
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an expanding Universe, with various explanations of the same, the most popular of which were
that of the “Big Bang” theory and the “Steady State” theory.

The discovery of the cosmic microwave background (CMB) radiation in 1965 by Arno Penzias
and Robert Wilson provided crucial evidence supporting the Big Bang theory (Penzias & Wilson,
1965). This observation, coupled with advances in theoretical modeling, solidified the modern
ΛCDM (Lambda-Cold Dark Matter) model of the expanding Universe. This framework posits a
Universe composed predominantly of cold dark matter and dark energy, the latter represented by
the cosmological constant “Λ” (Peebles, 1968; Planck Collaboration et al., 2014, 2016, 2020).

According to the ΛCDM model, the Universe originated from a singularity approximately 13.8
billion years ago in an event known as the Big Bang. This was followed by a brief but rapid
phase of expansion called inflation (Guth, 1981; Linde, 1982). During this period, the Universe
was extraordinarily hot and homogeneous. As it continued expanding and cooling, a plasma of
quarks, leptons, photons, and gluons gradually transitioned to a state in which quarks and gluons
combined to form protons and neutrons.

Roughly 380,000 years after the Big Bang, the Universe underwent the Epoch of Recombination,
during which free electrons combined with protons to form neutral hydrogen and helium atoms.
This dramatic reduction in free charged particles allowed photons to travel freely, leading to the
decoupling of radiation from matter. The photons from this period persist today as the CMB, a
faint glow that permeates the cosmos and serves as a critical observational window into the early
Universe (Peebles, 1968).

Following the Epoch of Recombination, the Universe entered a phase where gravity became the
dominant force driving the formation of structures. During this period, dark matter, an elusive
and non-luminous component of the cosmos, began to clump together under its own gravity,
forming what are known as dark matter halos. These halos acted as gravitational wells, pulling
in ordinary baryonic matter—comprising protons, neutrons, and electrons—which subsequently
cooled and condensed within these potential wells.

As the baryonic matter accumulated and cooled, the first stars ignited, marking the onset of a
transformative era in cosmic history known as the Cosmic Dawn. These first stars, often referred
to as Population III stars (Klessen & Glover, 2023), were typically massive and short-lived,
composed almost entirely of hydrogen and helium, the simplest elements. Their formation is
intrinsically tied to the creation of the first galaxies and other astrophysical structures (Bromm &
Yoshida, 2011), fundamentally altering the dynamics and chemistry of the Universe.

The intense ultraviolet radiation emitted by these early stars played a crucial role in reionizing
the intergalactic medium (IGM). This radiation had sufficient energy to ionize neutral hydrogen
atoms, splitting them back into protons and electrons. As it is a reversion back to the Universe
being ionized, this period where most of the neutral atomic Hydrogen was ionized is referred
to as the “Epoch of Reionization” (EoR). This epoch, spanning redshifts between 𝑧 ≈ 5 and
𝑧 ≈ 15, is pivotal for understanding the formation and evolution of the first luminous structures
and their influence on the surrounding interstellar and intergalactic media (Ciardi & Ferrara,
2005; Morales & Wyithe, 2010; Pritchard & Loeb, 2012; Furlanetto, 2016; Liu & Shaw, 2020).
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From observations of the Gunn-Peterson troughs of high-𝑧 quasars (Becker et al., 2001; Fan et al.,
2006a) and the optical depth for Thomson scattering of the CMB radiation (Planck Collaboration
et al., 2016), we can deduce that most reionization took place in the range 6 ≲ 𝑧 ≲ 10, with recent
observations suggesting an end of reionization at 𝑧 < 6 (see e.g. Becker et al. 2015 and Bosman
et al. 2022). There exist multiple indirect probes to study this period. For example, the evolution
of the observed Lyman-𝛼 emitter luminosity function at 𝑧 > 6 (Clément et al., 2012; Schenker
et al., 2013), and Lyman-𝛼 absorption profiles to distant quasars (Mortlock, 2016; Greig et al.,
2017; Davies et al., 2018). However, questions on how exactly the first of everything we see today
formed, their timelines, rates, and exact processes are still open questions.

The goal of this thesis is to contribute to the improvements in the chances of detection of one of
the most sensitive probes of this period, the fluctuations of the redshifted 21-cm line of neutral
Hydrogen in the IGM against the CMB (Hogan & Rees, 1979; Madau et al., 1997; Shaver et al.,
1999; Tozzi et al., 2000; Ciardi & Madau, 2003; Zaroubi, 2013). A statistical detection of the
strength of these 21-cm brightness temperature fluctuations can allow us to constrain our models
of the early Universe and the formation of the first stars and galaxies. This approach provides a
different perspective, where instead of looking at the “sources” of ionizing photons, we look at
the “sink”, which is the IGM, to understand the EoR.

However, in order to actually detect the 21-cm signal even as a power spectrum, we need to
improve our detection techniques. For this, I have worked on implementing a Machine Learning-
based approach. In this approach, I generate mock 21-cm signal power spectra from simulations
and use them as a training set to build a “template”. This template is used with the signal
extraction algorithm to identify the part of the data that arises from the 21-cm signal and allows
for its subsequent extraction.

Apart from signal extraction, it is imperative to improve numerical modelling concurrently to
ensure we can understand the physical processes at play that lead to the observed 21-cm signal
power spectrum. As of now, the main limitations have been in the trade-offs between simulated
volume, resolution, and physical modelling, forced by limits in computational power. In my PhD,
I have explored possible avenues to boost the effective volume/size of simulations used, as well
as broaden the parameter space of physical processes that we model.

In this chapter, I provide an overview of the standard ΛCDM cosmological model assumed
throughout the work of this thesis in Section 1.2 and an introduction to structure formation in
Section 1.3. Next, I discuss our current understanding of the formation of the first stars and
galaxies in Section 1.4, and the 21-cm signal in Section 1.5. In Section 1.5, I provide a brief
primer on the theoretical background of the 21-cm signal as an observable in subsection 1.5.1,
the status of current observations of the 21-cm signal at the EoR in subsection 1.5.2, and the
LOFAR EoR Key Science Project in subsection 1.5.3. Next, in subsection 1.5.4, I discuss various
modelling efforts for understanding the EoR and the methodologies used in this thesis to improve
upon them. Lastly, in Section 1.6, I chart out the structure of this thesis.
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Figure 1.1: Map of the Cosmic Microwave Background (CMB) as reconstructed by the Planck
satellite observations reported in Planck Collaboration et al. (2014).

1.2 ΛCDM Cosmology

The ΛCDM (Lambda - Cold Dark Matter) model is the prevailing cosmological framework
that describes the large-scale structure and evolution of the Universe. This model integrates
the cosmological constant associated with dark energy, and cold dark matter (CDM), alongside
ordinary matter and radiation. It is grounded in two broad principles: (i) the “Cosmological
Principle”, and (ii) that General Relativity describes gravity correctly, which in turn governs the
overall behaviour of the Universe (Hamilton, 2014). Both of these assumptions are supported by
a range of observational evidence.

The first principle, i.e., the Cosmological Principle, simply states that at large enough scales, the
Universe is isotropic, homogeneous, and uniformly expanding in all directions. This assumption
is consistent with observations of the CMB. The CMB is found to be isotropic and can be
approximated as a black-body spectrum with a temperature of 𝑇CMB ≈ 2.7 K. Nevertheless,
fluctuations in temperature are observed, at the scale of Δ𝑇/𝑇 ≈ 10−5 (Planck Collaboration
et al., 2014, 2016, 2020) that indicate deviations from homogeneity.

For having information on the geometry of spacetime and the evolution of structure forma-
tion, the ΛCDM model assumes that the geometry of the Universe can be described by the
Friedman-Lemâitre-Robertson–Walker (FLRW; Friedman, 1922; Lemaître & Eddington, 1931)
metric which is a solution to Einstein’s field equations of General Relativity. The FLRW metric
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is used to characterise a spacetime that is expanding or contracting uniformly as:

𝑑𝑠2 = 𝑐2𝑑𝑡2 − 𝑎(𝑡)2
(
𝑑𝑟2

1 − 𝑘𝑟2 + 𝑟2𝑑Ω2
)

(1.1)

Here, 𝑎(𝑡) represents the scale factor, which describes how distances in the Universe change over
time; 𝑘 denotes the curvature parameter, indicating whether the Universe is open (𝑘 < 0), closed
(𝑘 > 0), or flat (𝑘 = 0); and 𝑑Ω2 encapsulates the angular part of the metric.

The dynamics of the scale factor 𝑎(𝑡) are governed by the Friedmann equations (Friedman,
1922; Friedmann, 1924), derived from the FLRW metric and Einstein’s field equations. The first
Friedmann equation is thus found to be:(

¤𝑎
𝑎

)2
=

8𝜋𝐺
3

𝜌 − 𝑘𝑐2

𝑎2 + Λ𝑐2

3
(1.2)

In this equation, ¤𝑎 is the time derivative of the scale factor, 𝐺 is the gravitational constant, 𝜌
is the total energy density of the Universe, and Λ is the cosmological constant associated with
dark energy. The second Friedmann equation provides further insight into the acceleration of the
Universe’s expansion:

¥𝑎
𝑎
= −4𝜋𝐺

3

(
𝜌 + 3𝑝

𝑐2

)
+ Λ𝑐2

3
(1.3)

Here ¥𝑎 is the second time-derivative of the scale factor, and 𝑝 represents the pressure. These
equations collectively describe how the Universe’s expansion rate is influenced by its energy
content and geometry. On representing 𝐻 (𝑡) = ¥𝑎

𝑎
, which is the Hubble parameter (with the

present day value given as the Hubble constant, 𝐻0) and critical density 𝜌𝑐 =
3𝐻2

0
8𝜋𝐺 , we obtain the

dimensionless parameters:
Ωm = 𝜌/𝜌𝑐 (1.4)

ΩΛ =
Λ𝑐2

3𝐻2
0

(1.5)

Ωk = − 𝑘𝑐2

𝑎2𝐻2
0

(1.6)

Assuming a flat Universe sets Ωk ≈ 0. Additionally, assuming a 6 parameter ΛCDM model
provides a good fit to observations of CMB anisotropies by space-based observatories like COBE
(Lindley, 1989), WMAP (Bennett et al., 2003), and most recently, Planck (as shown in Figure 1.1;
Planck Collaboration et al., 2014, 2016, 2020), by fitting the power spectrum of the temperature
fluctuations as shown in Figure 1.2. These six parameters are Ωm, ΩΛ, 𝐻0, the baryon density
parameter Ω𝑏, the root-mean-square mass fluctuations on 8h−1 Mpc scale (where ℎ = 𝐻/100)
𝜎8, and the spectral index of the primordial density fluctuation, 𝑛s.

The latest results from Planck Collaboration et al. (2020) measure Ωm = 0.3111 ± 0.0056,
which is the contribution of non-relativistic matter to the cosmic energy density, and dark
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Figure 1.2: Power spectrum of the temperature fluctuations of the CMB as measured by the
Planck satellite shown with solid points from Planck Collaboration et al. (2016) along with the 6
parameter ΛCDM cosmology model fit shown with the solid line. Source: Planck Collaboration
et al. (2016, 2020).

energy contributing ΩΛ = 0.6889 ± 0.0056. Additionally, 𝐻0 = 67.66 ± 0.42 kms−1Mpc−1,
𝑛s = 0.9665±0.0038, 𝜎8 = 0.8102±0.0060, and a baryonic matter component of Ω𝑏 ≈ 0.04897.
Given the small fraction of baryonic matter, it is clear that matter in the Universe is predominantly
dark. Further, we find that Ωm + ΩΛ ≈ 1, as expected from a flat Universe. This flatness is
explained by inflation (Guth, 1981; Linde, 1982), which also explains the large-scale isotropy
and homogeneity. The small-scale perturbations in the CMB are accounted for via quantum
fluctuations in the energy density of a scalar field of inflation. These density perturbations can
be described as a power spectrum, 𝑃r(𝑘) ∝ 𝑘ns−1, and the measured value of 𝑛s is in excellent
agreement with inflationary models (Mukhanov & Chibisov, 1981).

Given the agreement with observations along with insights in properties of dark energy and dark
matter, the ΛCDM model is chosen as the standard model throughout this thesis.
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1.3 Structure formation

While the Universe is believed to have been largely featureless at the time of the CMB, i.e, at
the Epoch of Recombination, the density perturbations discussed in the earlier section affect the
dark matter distribution. This, in turn, leads to runaway gravitational collapse, and once the
density contrast grows beyond Δ𝜌/𝜌 ≈ 1, the gravitational attraction becomes stronger than the
expansion of the Universe (often referred to as “Hubble flow”), leading to non-linear collapse
and the form of virialised structures known as dark matter haloes. The virial theorem essentially
states that the dark matter particles in the system contain their total energy from the kinetic energy
of motion and gravitational potential energy such that:

𝐸kin = −1
2
𝐸pot (1.7)

This redistribution of energy to reach a quasi-equilibrium state is known as “violent relaxation”
(Lynden-Bell, 1967). Assuming spherical collapse from an initial Gaussian random field given
by inflation, we can get the number density of haloes at a given halo mass as a function of redshift
from the Press-Schechter formalism (Press & Schechter, 1974):

𝑀
𝑑𝑛

𝑑𝑀
= −

(
2
𝜋

)−0.5
𝑑 (𝑙𝑛𝜎)
𝑑 (𝑙𝑛𝑀)

𝜌0
𝑀
𝜈ce−𝜈

2
c/2 (1.8)

where 𝜌0 is the mean density at a given redshift, 𝜎 is the standard deviation of the density
contrast smoothed through a certain window, 𝜈c is the minimum number of standard deviations
of a collapsed fluctuation, and 𝑀 is the mass of the halo. The dark matter halo statistics obtained
from cosmological simulations (e.g., the Millenium simulations as shown in Figure 1.3) are found
to be in good agreement with this model, especially when elliptical collapse and halo merger
statistics are taken into account (see Sheth et al., 2001). Nevertheless, some issues exist, mainly
that the Press-Schechter model overpredicts the abundance of low-mass halos while at the same
time underpredicts the amount of high-mass halos. Improvements to this have been explored by
reducing the dependence on the exact values of the cosmological parameters used in the ΛCDM
model (see Tinker et al., 2008), and redshift (see Watson et al., 2013).

1.4 First Stars and Galaxies

The matter that we can see in the Universe, be it from the naked eye or through various ground
and space-based telescopes, is baryonic. Thus, while dark matter forms the majority of all matter,
it is important to understand how baryons condensed to form the first stars, galaxies, and every
other astrophysical object that we can see in the sky. This is especially important as the behaviour
of baryons is more complex than that of dark matter. For example, dark matter behaves like
a collisionless fluid, i.e., dark matter particles do not collide frequently enough and exchange
energy, and thus mostly just interact gravitationally. In contrast, baryons can do so and achieve
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Figure 1.3: Evolution of the dark matter density field shown as slices of a thickness of 15 Mpc/h
from the Millennium simulations (Springel et al., 2005; Gao et al., 2005; Springel, 2005) for
redshifts 𝑧 = 18.3, 5.7, 1.4 and 0.0. We note that while the Universe does not show any clear
features at 𝑧 = 18.3, by 𝑧 = 0, the growth of the web-like architecture of large scale structure
commonly known as the “Cosmic Web” becomes apparent.

thermal equilibrium. Thus, when baryons condense into the gravitational potential wells formed
by dark matter, they can undergo shock heating that increases their temperature, which in turn
provides pressure support against further gravitational collapse. However, in the denser regions
within the halo, baryons have more frequent collisions, leading to more efficient cooling. Thus,
they lose their pressure support, which drives further gravitational collapse into the potential well
of the dark matter halo. Eventually, this process collects the baryons into a gas cloud at the center
of the dark matter halo. This cloud finally has a balance between pressure and gravity and thus
achieves hydrostatic equilibrium. The stage when the cloud reaches this state can be given by the
Jeans criterion (Jeans & Darwin, 1902), which is when the sound-crossing time across the system
is greater than the free-fall time. The mass required for a system to reach this stage is referred to
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as Jeans mass, and it is given as:

𝑀jeans =

(
5𝑘𝑇
𝐺𝜇𝑚p

)3/2 ( 3
4𝜋𝜌

)1/2

≈ 2𝑀⊙

(
𝑐s

0.2 km/s

)3 (
𝑛

103 cm−3

)−1/2 (1.9)

where 𝑐s is the speed of sound in the cloud, 𝑘 is the Boltzmann constant, 𝜌 is the density of
the gas, 𝜇 is the mean molecular weight, 𝑇 is the temperature, 𝑚p is the proton mass, 𝐺 is the
gravitational constant, and 𝑛 is the number density of the gas.

This equilibrium, however, is still fairly unstable (Hoyle, 1953), with growing density leading
to fragmentation due to self-gravity triggering further collisional heating in these fragments.
In present-day galaxies, the presence of metals (elements beyond Helium in the periodic table)
allows for more channels of cooling, such as through emission lines, but in this period, most
of the gas is pristine, i.e., is made up of mostly Hydrogen and some amount of Helium. Thus,
temperatures continue to be fairly higher in these fragments as compared to their surroundings, as
they reach densities high enough to trigger nuclear fusion. As the Jeans mass is proportional to the
temperature, this implies that the first stars, also known as Population III stars, were significantly
more massive than stars observed at lower redshifts, with estimates in the range of 102 − 103 𝑀⊙
(Abel et al., 1999; Bromm et al., 1999; Abel et al., 2002; O’Shea & Norman, 2007; Kulkarni
et al., 2019; Ventura et al., 2023). However, there is no consensus on their exact mass range, with
studies incorporating turbulence (Turk et al., 2012; Wollenberg et al., 2020), radiative feedback
(Hosokawa et al., 2011, 2012; Hirano et al., 2014, 2015; Hosokawa et al., 2016; Jaura et al., 2022)
or simply higher resolution (Turk et al., 2012; Prole et al., 2022) show them to be similar to the
next generation of stars, that is, the Population II stars.

Apart from the nuclear reactions that took place within these stars that led to the formation of some
of the lighter metals, these stars are also believed to have led to the first supernovae (explosions
of stars at least 8 times more massive than our Sun), neutron star mergers and supermassive black
holes which produce heavier metals and large amounts of radiation. While the metals allow for
more efficient cooling and thus smaller stars (Population II and eventually Population I stars),
the radiative feedback processes provide heating that can mitigate gravitational collapse and thus
star formation (Yoshii & Sabano, 1980; Bromm et al., 2001; Schneider et al., 2002; Smith &
Sigurdsson, 2007; Tornatore et al., 2007; Xu et al., 2016; Tanaka & Hasegawa, 2021; Latif et al.,
2022; Ventura et al., 2024, 2025).

However, Population III stars are yet to be observed, and thus, our knowledge of the first stars and
galaxies is fairly limited. With telescopes like the Hubble Space Telescope (HST) and the James
Webb Space Telescope (JWST), we are pushing the limits of the earliest galaxies observed (see
for example, Finkelstein et al., 2015; Bouwens et al., 2015, 2021; Harikane et al., 2022; Bouwens
et al., 2023a,b; Harikane et al., 2023; Leung et al., 2023; McLeod et al., 2024; Adams et al.,
2024), and thus, a discovery of galaxies made up of Population III stars is imminent. Nevertheless,
focussing on individual galaxies would invariably lead to a selection bias, i.e., the information
gained from these observations would be biased towards the properties of the brightest and most
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massive galaxies. The alternative to this is to rely on indirect searches, i.e., by focussing on the
IGM around the first galaxies. The IGM during this period is believed to be mostly composed
of neutral, atomic Hydrogen that gets ionized by UV photons produced by the first galaxies to
reach the present-day state of a mostly ionized IGM. While neutral Hydrogen may usually not
be expected to provide any radiation that can be used to observe these regions, the conditions so
far described are conducive for the production of 21-cm line photons, which can thus become a
tool to learn more about the formation of the first stars and galaxies, and broadly the Epoch of
Reionization.

1.5 The 21-cm Signal

1.5.1 Theoretical background

The 21-cm line is a hyperfine transition line of atomic hydrogen in the ground state, arising due
to the interaction between the electron and proton spins (Field, 1959; Hogan & Rees, 1979; Scott
& Rees, 1990; Madau et al., 1997; Shaver et al., 1999; Tozzi et al., 2000; Ciardi & Madau, 2003;
Zaroubi, 2013). When the electron and proton spins are parallel, it leads to the slightly higher
energy triplet state, while when they are anti-parallel, it leads to the more stable singlet state.
However, a transition from the triplet to a singlet state is considered as a forbidden transition.
This is because, due to the minimal energy difference (≈ few 𝜇eV), in most cases, Hydrogen
atoms will flip between the two states through collisional excitation and de-excitation. In fact,
the triplet state is found to have a lifetime of ≈ 107 years from decaying into the singlet state by
spontaneous emission. However, the IGM at the EoR is believed to have three key properties,
that make the 21-cm signal from this period observable. They are:

• Low density: the IGM typically has a density of ≈1 atom/m3. This reduces the likelihood
of collisional deexcitation.

• Large amounts of neutral Hydrogen: most of the matter in the early Universe was
Hydrogen (Ewen & Purcell, 1951; Muller & Oort, 1951). Thus, despite low chances of
spontaneous emission for an individual atom, as a whole, the chances are substantial.

• Triple state boosting: Most of the Hydrogen is boosted to the triplet state by Lyman-𝛼
radiation (Wouthuysen, 1952; Field, 1958) or the occasional collision.

As described above, the strength of the signal is governed by the population of neutral Hydrogen
atoms in triplet and singlet states. The relation between these two states can be expressed in terms
of a quantity we define as the spin temperature, 𝑇S, as:

𝑛1
𝑛0

= 3𝑒(−𝑇∗/𝑇S) (1.10)

where 𝑛1 and 𝑛0 are the number densities of electrons in the triplet and singlet states of the
hyperfine level, respectively, and 𝑇∗ = 0.00681 𝐾 is the temperature corresponding to the 21-cm
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Figure 1.4: A representation that shows the concept of the brightness temperature (𝑇b) arising
from the spin temperature (𝑇S) and the background CMB radiation (𝑇CMB) which is observed by
our telescopes. This figure has been adapted from Zaroubi (2013).

wavelength. The spin temperature is thus a representation of the ratio between the occupation
number of the two hyperfine levels. This ratio establishes the intensity of the radiation emerging
from a cloud of neutral hydrogen. In actual observations, one would have to take into account the
level of background being transmitted through a given cloud as well as the amount of absorption
and emission within the cloud. Thus, a careful analysis of radiative transfer is necessary. This
is typically done in terms of the specific intensity or brightness, 𝐼𝜈 = 𝑑𝐼/𝑑𝜈, where 𝜈 is the
frequency (Rybicki & Lightman, 1986). Thus, the radiative transfer equation for a thermally
emitting material at temperature 𝑇 can be written in terms of the optical depth for absorption as:

𝑑𝐼𝜈

𝑑𝜏𝜈
= −𝐼𝜈 + 𝐵𝜈𝑇 (1.11)

where 𝜏𝜈 is the optical depth for absorption through the cloud at a given frequency and 𝐵𝜈 is the
Planck function. Now, as in radio astronomy we deal with low frequencies, the Rayleigh-Jeans
law is valid, and thus we can express the brightness 𝐼𝜈 by its equivalent brightness temperature,
𝑇b, which are related as:

𝑇b(𝜈) =
𝐼𝜈𝑐

2

2𝜈2𝑘B
(1.12)

where 𝑘B is the Boltzmann’s constant and 𝑐 is the speed of light. Now, as in our case, the
background radiation is the CMB, Equation 1.11 reduces to:

𝑑𝑇b
𝑑𝜏𝜈

= −𝑇b + 𝑇CMB (1.13)

with𝑇CMB being the CMB temperature. Solving this for the temperature of the emergent radiation
at frequency 𝜈 yields:

𝑇b(𝜈) = 𝑇S(1 − 𝑒−𝜏𝜈 ) + 𝑇CMB(𝜈)𝑒−𝜏𝜈 (1.14)
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where 𝑇S = 𝑇b(0) is the brightness temperature in the absorbing cloud of neutral Hydrogen (see
Figure 1.4). For a more detailed discussion, see Zaroubi (2013).

Often, the final reported quantity is the differential brightness temperature of the 21-cm signal,
i.e., 𝛿𝑇b = 𝑇b − 𝑇CMB. For any patch of the IGM, this is given by (Furlanetto et al., 2006):

𝛿𝑇b = 27𝑥HI(1 + 𝛿B)
(
1 − 𝑇CMB

𝑇𝑆

)
×

[(
ΩBℎ

2

0.023

) (
0.15
Ωmℎ2

1 + 𝑧
10

)1/2]
mK (1.15)

where 𝑥HI is the fraction of neutral hydrogen, 𝛿B is the fractional overdensity of baryons, 𝑇S is the
spin temperature, 𝑇CMB is the temperature of the CMB photons at that redshift, Ωm is the total
matter density, ΩB is the baryon density, 𝑧 is the redshift and ℎ is the Hubble constant in units of
100 kms−1Mpc−1. In this equation, the physical properties of the IGM affecting the large-scale
fluctuations of 𝛿𝑇b are 𝑥HI, 𝑇S and 𝛿B.

1.5.2 Observational efforts

Several interferometric low-frequency radio telescopes have been designed, such as e.g. PAPER1,
MWA2, LOFAR3, HERA4, NenuFAR5 and the upcoming SKA6. However, the detection of the
signal is a challenge, and a successful detection has not been possible yet. This is because of the
fact that it is buried under foregrounds (synchrotron and free-free emissions from the Milky Way
and other galaxies) that are several orders of magnitude stronger. Additionally, given the current
interferometers used, the noise levels, even on observing deep fields for 1000 hours, are still of
the same strength as the expected signal.

Nevertheless, over the years, the various interferometer experiments have been providing in-
creasingly tighter upper limits on the 21-cm signal differential brightness temperature power
spectrum as depicted in Figure 1.5. For example, HERA Collaboration et al. (2023) re-
ported Δ2(𝑘 = 0.34 ℎMpc−1) ≤ 457 mK2 at 𝑧=7.9 and Δ2(𝑘 = 0.36 ℎMpc−1) ≤ 3496 mK2

at 𝑧=10.4 from 94 nights of observation, and Mertens et al. (2020, hereafter M20) reported
Δ2(𝑘 = 0.075 ℎMpc−1) < 5329 mK2 from 141 hours (≈10 nights) of observation with LOFAR
at 𝑧=9.1.

To address the issue of foregrounds, HERA Collaboration et al. (2023) uses the “foreground
avoidance" technique (Kerrigan et al., 2018; Morales et al., 2019) by focusing on regions in
Fourier space which are mostly foreground free, while the LOFAR EoR Key Science Project
(KSP) team uses foreground modelling and removal, which allows the maximization of scales
explored, as well as boosts the sensitivity up to an order of magnitude (Pober et al., 2014). This is

1Precision Array to Probe EoR, http://eor.berkeley.edu
2Murchison Widefield Array, http://www.mwatelescope.org
3Low-Frequency Array, http://www.lofar.org
4Hydrogen Epoch of Reionization Array, https://reionization.org/
5New Extension in Nançay Upgrading LOFAR, https://nenufar.obs-nancay.fr/en
6Square Kilometre Array, https://www.skao.int/en

http://eor.berkeley.edu
http://www.mwatelescope.org
http://www.lofar.org
https://reionization.org/
https://nenufar.obs-nancay.fr/en
https://www.skao.int/en
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Figure 1.5: The predicted 21-cm power spectra from semi-numerical simulations (blue lines)
versus observed upper limits (scattered points), along with the limits achievable with ≈1000
hours of observation with LOFAR, NenuFAR and SKA. Credit: Florent Mertens.

because no data is discarded, with a focus on modelling each component of the data as accurately
as possible.

Dealing with noise is fairly straightforward in theory but is difficult to implement. Nevertheless,
with improved interferometric experiments like the SKA and longer observation hours that are
stacked by accounting for night-to-night variations, the contribution of noise can be reduced. The
same is shown with the red lines in Figure 1.5, which shows the limits achievable with LOFAR,
NenuFAR and SKA with 1000 hours of observation.

1.5.3 The LOFAR EoR Key Science Project

The LOFAR radio telescope comprises 24 core stations distributed within a 2 km diameter, 14
remote stations across the Netherlands, providing a maximum baseline length of approximately
100 km, and an increasing number of international stations across Europe as shown in Figure 1.7
(van Haarlem et al., 2013). The LOFAR EoR Key Science Project (KSP) team utilises observa-
tions from the High Band Antennas (HBA), operating at frequencies between 110 and 189 MHz,
and targets two primary fields as shown in Figure 1.7: the North Celestial Pole (NCP) and the
bright compact radio source 3C 196 (de Bruyn & LOFAR EoR Key Science Project Team, 2012).
This data was recorded with a frequency range of 115 to 189 MHz, with a spectral resolution of
3.05 kHz (resulting in 64 channels per sub- band of 195.3 kHz) and a temporal resolution of 2
seconds.

So far, the LOFAR team has focussed on the NCP deep field, which has no major bright sources
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Figure 1.6: The 24 core stations of LOFAR (left) and a map of the 14 remote stations across the
Netherlands and the various international stations across Europe (right). Credit: ASTRON.

Figure 1.7: The all-sky map as observed by LOFAR, with various deep field candidates indicated.
From these, the ones marked with white arrows are the finally selected ones of the North Celestial
Pole (NCP) and the bright compact radio source 3C 196. Credit: Léon V. E. Koopmans.

and can be observed every night of the year. However, improvements in foreground modelling
indicate that the foreground-subtracted 3C 196 field may have a lower noise contribution than the
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NCP field. Thus, soon, the LOFAR team will be able to provide upper limits across two different
deep fields, which can allow for cross-correlation of inferred properties.

The most stringent constraints obtained with LOFAR data were presented in M20, where Gaussian
Process Regression (GPR, as described in Mertens et al., 2018; Gehlot et al., 2019; Hothi et al.,
2021, and in this thesis in Section 2.2.2 of Chapter 2) was used for hyperparameter optimization
with different Matern class functions (Eq. 2.6 in Chapter 2, from Stein, 1999) chosen as covariance
kernels for modelling different components of the observed data and then recovering the fitted
datacube (a deep field with the third side represented in terms of frequency). However, Kern &
Liu (2021) pointed out some issues with this approach. Primarily, they found that given the choice
of normalization and bias correction in the power-spectra estimation used in M20, misestimation
of the covariance kernel for the EoR signal could lead to significant signal loss. This can have
severe ramifications on the astrophysical interpretations of the estimated 21-cm signal power
spectrum. Further, they show that alternative choices for normalization and weighting schemes
could reduce the dependence on the choice of covariance priors, thus reducing its impact on the
estimation of the 21-cm signal. However, in this thesis, I focus on improving the covariance prior,
while in the future, I plan to explore other normalization and bias correction schemes to further
upgrade the overall analysis pipeline.

To improve the covariance kernel, I refer to Mertens et al. (2024). They propose a Machine
Learning (ML)-based approach to GPR, where the covariance kernel for the 21-cm signal is
obtained by implementing a Variational Auto-Encoder (VAE)-based algorithm that learns from
simulations. The specifics of the VAE-based algorithm and its implementation are discussed in
detail in Section 2.2.3 of Chapter 2. The results obtained with this approach can then directly be
compared against runs of the same simulation code to constrain the physical parameters used. As
the covariance kernel is trained over a range of physical parameters, this would significantly reduce
the chances of misestimation. Thus, it can be reliably used to derive astrophysical parameters
necessary for the same simulation code to generate similar power spectra.

In particular, in this thesis, I use GRIZZLY (Ghara et al., 2015, 2018, 2020) for generating the
training, test, and validation datasets. This code has been employed previously (see Ghara
et al., 2020) to constrain astrophysical parameters based on the results obtained in M20. As
this combines 𝑁-body simulations with 1D radiative transfer, it is more physically precise than
semi-numerical algorithms, while not being as computationally expensive as codes that use 3D
radiative transfer (while still performing reasonably well, as shown in Ghara et al., 2018). I tested
the performance of this ML-based kernel versus covariance kernels used with GPR in previous
work in Chapter 2, which is based on Acharya et al. (2024b, hereafter A24). Then, in Chapter 3,
which is based on Acharya et al. (2024d), I apply this VAE-based covariance kernel to the same
pipeline and same data as had been analysed by M20 and compare their results.

1.5.4 Simulations for the 21-cm Signal

The observed upper limits of the 21-cm signal power spectrum have allowed us to rule out some
extreme astrophysical models through comparisons with simulations (e.g., Ghara et al., 2020;
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Mondal et al., 2020; Greig et al., 2021a,b; Abdurashidova et al., 2022). New methods that
utilize multi-redshift power spectrum observations (Ghara et al., 2024; Choudhury et al., 2024),
wavelet statistics (Hothi et al., 2024), and simulation-based inference (Saxena et al., 2023; Greig
et al., 2024) have also been developed to improve the understanding of parameters governing the
properties of the IGM.

To study the formation of the first galaxies responsible for driving the ionization of Hydrogen in
the IGM, many hydrodynamical and/or radiative transfer simulations with different prescriptions
have been utilised, such as CROC (Gnedin, 2014; Gnedin & Kaurov, 2014; Esmerian & Gnedin,
2021, 2022, 2024), FIRE (Ma et al., 2018), Technicolor Dawn (Finlator et al., 2018), Sphinx
(Rosdahl et al., 2018), CRASH simulations (Eide et al., 2018, 2020; Ma et al., 2021; Kostyuk
et al., 2023; Basu et al., 2024), C2Ray simulations (Mellema et al., 2006; Dixon et al., 2016;
Giri & Mellema, 2021; Hirling et al., 2024; Giri et al., 2024), CoDa I,II, III (Ocvirk et al., 2016,
2020; Lewis et al., 2022), Astrid (Bird et al., 2022), ColdSIM (Maio et al., 2022; Maio & Viel,
2023; Casavecchia et al., 2024), Thesan (see Figure 1.8 for example results; Kannan et al., 2022;
Garaldi et al., 2022; Smith et al., 2022; Garaldi et al., 2024), and SPICE (Bhagwat et al., 2024).
Although these simulations are ideal tools to investigate the IGM and galactic properties, they
are computationally expensive and thus limited in box size and/or in the number of simulations
that can be run. Thus, they cannot be used for building a wide range of models for comparison
with the 21-cm power spectrum or their upper limits.

To this aim, semi-numerical approaches such as SimFast21 (Santos et al., 2010a,b), Bears
(Thomas et al., 2009), 21cmFAST (Mesinger & Furlanetto, 2007; Mesinger et al., 2011), Grizzly
(Ghara et al., 2015, 2018), ReionYuga (Mondal et al., 2017), Artist (Molaro et al., 2019),
AMBER (Trac et al., 2022) and BEORN (Schaeffer et al., 2023) are typically employed. To
incorporate a more realistic modeling of galactic properties into these methods, codes such as
ASTRAEUS (Hutter et al., 2021, 2024), MERAXES (Mutch et al., 2016; Balu et al., 2023) and
Polar (Ma et al., 2023, hereafter M23) have been developed.

These are especially important, as apart from building a wide range of models, it is also important
to have large-volume boxes. This is because the thermal noise is proportional to the wave-modes
(Koopmans et al., 2015), and thus the best results from upcoming surveys with LOFAR, HERA,
MWA and, subsequently, SKA are expected at the lowest 𝑘 values, i.e., 0.15 ≤ 𝑘/(ℎ cMpc−1) ≤
1.5, after sufficient mitigation of foreground contamination. This corresponds to large physical
scales, and indeed, e.g. Iliev et al. (2014) found that simulations with box sizes greater than 100
ℎ−1 cMpc are necessary to accurately model the evolution and distribution of ionized regions.
Kaur et al. (2020), instead, found that even larger boxes, i.e. ≳ 175ℎ−1 cMpc, are necessary.
However, a simulation with a box size corresponding to 𝑘 ∼ 0.15 ℎ cMpc−1 is still limited by
sample variance. The straightforward solution to this issue is to employ larger boxes in order to
increase the sampling of the long wave modes observationally relevant. For example, in Ghara
et al. (2020), a side length of 500 ℎ−1 cMpc has been simulated, while the semi-numerical approach
of Mesinger et al. (2016) and Greig et al. (2022) has modeled Gpc scales. Such large boxes also
allow us to study the topology of large ionized regions (≳ 10 cMpc), which is especially important
to understand the role of quasars. However, even these approaches have issues, as extremely large
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Figure 1.8: Evolution of various simulated properties in the main Thesan run (Kannan et al.,
2022; Garaldi et al., 2022; Smith et al., 2022; Garaldi et al., 2024) versus time going from the
start of the simulation run (left) to its end (right). The top panel shows the collapse of dark
matter forming the cosmic web structure, and the second panel shows the gas collapsing to create
galaxies. These produce ionizing photons, which ionize the atomic Hydrogen, and the evolution
of the fraction of ionized Hydrogen is shown in the third panel. The final panel shows the
evolution of the temperature of the gas.
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computational resources for running the simulations and storing the generated data are required,
and running large number of such simulations would only be computationally affordable with
the semi-numerical approaches. While they can be appropriate for some analyses, they also have
their own limitations (see for e.g., Choudhury & Paranjape, 2018, for details).

Additionally, there are limitations on the extent of physics that can be explored with such simu-
lations. For example, mini halos (≲ 108 M⊙, see Iliev et al., 2005; Haiman et al., 2001), dwarf
galaxies (Wu & Kravtsov, 2024), or Lyman Limit Systems (Georgiev et al., 2024; Giri et al., 2024)
are expected to play a significant role in reionization, but their inclusion would either require a
high enough mass resolution to be able to capture them in large boxes, or running significantly
smaller boxes. The former exacerbates the computational requirements, while the latter limits
the wave modes that can be sampled.

Various approaches have been proposed to tackle these problems. One approach is to run
simulations with different box sizes and combine their results. A recent example of this is an
analysis of galaxy populations at 𝑧 ≥ 8 in Kannan et al. (2023), which, however, does not provide
a truly combined picture, as the different boxes are manually re-scaled to account for resolution
differences without actual convergence between simulations. There have also been suggestions
to use techniques like deep learning to increase the resolution of large box simulations (see Kodi
Ramanah et al., 2020; Li et al., 2021; Zhang et al., 2024, for applications to dark matter only
𝑁-body simulations), however, these haven’t been carefully tested for EoR redshifts.

Another approach is to run computationally cheaper boxes but include the properties of the
more expensive, full-physics ones. Recently, Sinigaglia et al. (2021) developed a method to map
baryonic properties of the IGM onto DM-only simulations, but its applicability to the reionization
epoch is unclear.

In this thesis, I explore two methods to overcome these issues of box size and physical complexity:
the Fixed & Paired (F&P) method in Chapter 4, and building a suite of viable models of the
Polar simulations in Chapter 5, which acts as a compromise between physical accuracy and
computational expense. I use the F&P method for the observables of the Polar simulations as
well to provide the best possible mock observables from galactic to IGM scales.

1.5.4.1 The Fixed & Paired Method

As smaller boxes can be run with all physical processes explicitly calculated, one way to deal with
the issues highlighted above is to simulate the full physics of reionization in small boxes and then
augment them with techniques that compensate for the limited volume. One way to do this is the
Fixed and Paired (F&P) approach described in Angulo & Pontzen (2016) and Pontzen et al. (2016).
It has been shown to substantially reduce the cosmic variance in the matter power spectrum (see
Maion et al., 2022; Klypin et al., 2020; Villaescusa-Navarro et al., 2018, for examples) with
respect to the traditional approach for the same box size, bypassing the need to run a large number
of smaller boxes. However, this reduction is substantial only for statistical properties (e.g., the
stellar mass function) and not for local ones like the gas distribution of individual galaxies (check



1.5 The 21-cm Signal 19

Villaescusa-Navarro et al., 2018, for more details). The 21-cm signal is influenced by both the
large-scale distribution of neutral hydrogen, and the local properties of the ionized regions around
galaxies. Exploring the extent of improvement (if any) on the effective volume for estimating the
summary statistics of the 21-cm signal using the F&P approach can be helpful in minimising the
required computational needs. This idea was explored in Giri et al. (2023) by running a large
number of realizations of the F&P approach using 21cmFAST (Mesinger & Furlanetto, 2007;
Greig & Mesinger, 2015). By comparing them with randomly generated simulations, they found
that F&P boxes could obtain the same precision in the 21-cm signal power spectrum as traditional
boxes twice their size, allowing at least a factor of 4 reduction in computing costs. However,
21cmFAST does not take into account baryonic hydrodynamics, thus implicitly assuming that
baryons track dark matter. It also does not include a proper implementation of radiative transfer
(RT) or galaxy properties, and thus becomes unreliable at scales below 1 cMpc. Hence, it cannot
provide an accurate picture of galaxy-scale effects on the 21-cm signal.

To increase confidence in the applicability of the F&P method for improving EoR 21-cm signal
studies, it is necessary to use a more realistic framework, i.e., one that includes baryonic hydro-
dynamics, radiative transfer, and models galaxy properties more accurately. For this, I employ a
setup similar to the THESAN simulations (Kannan et al., 2022; Garaldi et al., 2022; Smith et al.,
2022; Garaldi, 2023), detailed in Chapter 4, which is adapted from Acharya et al. (2024c).

1.5.4.2 The Polar simulations

As a part of the LOFAR EoR KSP team, I have worked on designing Polar, a semi-numeric
approach which strikes a balance between speed and complexity of relevant physical processes,
by post-processing 𝑁-body Dark Matter (DM) simulations with Semi-Analytic Models (SAMs)
of galaxy formation and evolution, and subsequently applying the 1D radiative transfer (RT) code
Grizzly (Ghara et al., 2015, 2018), an updated version of Bears (Thomas et al., 2009). This
allows a fast modeling of the 21-cm signal power spectrum while at the same time accounting
for important galactic properties and RT effects. Consequently, observations of the 21-cm line
can also be combined with data obtained in other frequency bands (e.g., from JWST) to constrain
IGM and galactic properties jointly.

In Chapter 5, I investigate the impact of varying cosmological parameters on the 21-cm signal
at 𝑧 ≈ 10.11, 9.16, and 8.3, i.e., the three redshifts targeted by LOFAR (Mertens et al., 2025,
; submitted). I focus on those parameters whose low and high redshift measurements are in
tension, i.e., the Hubble parameter 𝐻0 = 100ℎ km s−1 Mpc−1 and the matter clustering amplitude
𝜎8. My fiducial model is the one of Planck Collaboration et al. (2020), with ℎ = 0.6766 and
𝜎8 = 0.8102, while a higher ℎ value is adopted to explore the low redshift measurement of
ℎ = 0.733 from studies of Cepheid variables in the host galaxies of 42 Type Ia supernovae (Riess
et al., 2022). Similarly, I adopt a lower 𝜎8 value of 0.702 from the low redshift measurement of
anisotropic galaxy clustering measurement analysis (Tröster et al., 2020). Lastly, I also adopt a
𝜎8 = 0.88 from recent eROSITA results (Ghirardini et al., 2024) to consider both extremes of
𝜎8 measurements. Motivated by results obtained in the context of the 21-cm signal shown by
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Giri et al. (2023) and Acharya et al. (2024c, ; based on work shown in Chapter 4), I additionally
implement the Fixed & Paired (F&P) approach (Angulo & Pontzen, 2016) to boost effective
volumes of the simulations and suppress cosmic variance.

1.6 Outline of this thesis

The work in this thesis is divided into three broad parts, which are the following:

1. In Chapter 2, I describe the ML-based improvement to GPR, and its usage for building a
“template” for the 21-cm signal power spectrum. For this, I train on the Grizzly simulations
to build covariance kernels that I test across different redshifts, noise levels, and different
simulations for the injected mock 21-cm signal in the simulated datacube (from Grizzly,
CRASH and 21cmFAST).

2. In Chapter 3, I take the work in Chapter 2 a step further and apply it to real data gathered
by the LOFAR telescope.

3. In Chapter 4, I explore the improvements in the effective volume of simulations used
for studying the EoR with radiation magneto-hydrodynamical (RMHD) simulations by
adopting the F&P method, particularly by modelling the power spectrum and bispectrum.

4. In Chapter 5, I introduce the Polar simulations that aim to broaden the range of parameters
that can be varied for building a suite of possible models of the EoR. These simulations
will be useful not just for building broader training sets for Machine Learning but also
for incorporating more viable models by inferring all possible combinations of model
parameters that produce results that match with observations.

5. Finally, in Chapter 6, I summarise the results of this thesis and discuss future work that can
be carried out to lead to an eventual detection of the 21-cm signal at the EoR and develop
a deeper understanding of the physical processes that govern this period.



Chapter 2

Machine Learning for extracting the 21-cm
Signal: Testing

There is a lot about what is going on here that I don’t understand.
But I am participating anyway.

- Martha Wells

2.1 Overview

This chapter covers the implementation of the Variational Auto-Encoder (VAE)-based algorithm
of Machine Learning to build a covariance kernel for the 21-cm signal as proposed in Mertens
et al. (2024) and tests its performance against analytical covariance kernels for recovering various
simulated signals with different noise levels and redshifts from mock LOFAR data using Gaussian
Process Regression (GPR). The work shown here was published in Acharya et al. (2024b), whose
notation has been adapted to be consistent with the rest of the thesis.

In Section 2.2, I discuss a range of simulations used to generate mock 21-cm datasets, as well
as introduce the ML-trained 21-cm kernel. I also provide a short introduction to GPR. I report
the results and comparisons between kernel performances in Section 2.3. Finally, I discuss the
role of the excess noise component found in M20 and the overall performance of the ML-based
kernel in Section 2.4.
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2.2 Methodology

In this section, I introduce the pipeline used to implement GPR to recover the 21-cm signal from
mock datasets, comparing the performance of an ML-based kernel versus kernels used in M20.

2.2.1 Simulations of the 21-sm signal

The 21-cm differential brightness temperature relative to the CMB for any patch of the IGM is
given by (see Furlanetto et al., 2006):

𝛿𝑇b = 27𝑥HI(1 + 𝛿B)
(
1 − 𝑇CMB

𝑇𝑆

)
×

[(
ΩBℎ

2

0.023

) (
0.15
Ωmℎ2

1 + 𝑧
10

)1/2]
mK (2.1)

where 𝑥HI is the fraction of neutral hydrogen, 𝛿B is the fractional overdensity of baryons, 𝑇S is the
spin temperature, 𝑇CMB is the temperature of the CMB photons at that redshift, Ωm is the total
matter density, ΩB is the baryon density, 𝑧 is the redshift and ℎ is the Hubble constant in units of
100 kms−1Mpc−1. In this equation, the parameters affecting the large-scale fluctuations of 𝛿𝑇b
are 𝑥HI, 𝑇S and 𝛿B.

I consider a variety of simulations to generate mock 21-cm differential brightness temperature
maps as discussed below. In Section 2.2.1.1, I employ maps generated using GRIZZLY, where I
focus on variations tied to fluctuations in 𝑥HI and𝑇S, while assuming that the fluctuations due to 𝛿B
are small and can thus be ignored. In Section 2.2.1.2, I do not make this assumption and employ
maps generated using the reionisation simulation code CRASH. In Appendix A I also consider the
additional case of using 21cmFAST (Mesinger & Furlanetto, 2007; Greig & Mesinger, 2015) to
generate the 21-cm differential brightness temperature maps.

2.2.1.1 GRIZZLY simulations

GRIZZLY (Ghara et al., 2015, 2018, 2020) employs a 1D radiative transfer scheme in combination
with cosmological density fields and halo catalogues obtained from an N-body simulation to
produce brightness temperature maps of the 21-cm signal at different redshifts for a given source
model. The algorithm has been shown to reproduce results similar to those obtained with 3D
radiative transfer schemes with the same N-body simulation, while being at least 105 times faster
(Ghara et al., 2018). Because of this, I can run a large number of GRIZZLY simulations without
the process being too computationally expensive. Furthermore, it has a wide range of physical
parameters that can be varied, thus allowing me to explore the role of different physical processes
in generating different models of the 21-cm signal. The density fields, velocity fields and the
halo lists used in this work are obtained from the same N-body simulation (500 ℎ−1 cMpc box
length, 69123 particles, with a mass resolution of 4.05 × 107 M⊙) which was used in Ghara
et al. (2020). In this study, I consider two major GRIZZLY models presented in Sections 3.1 and
3.2 of Ghara et al. (2020). Similar to their implementation, I use four physical parameters to
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model the sources: the ionization efficiency (𝜁), the minimum mass of the UV emitting halos
(𝑀min), the minimum mass of the X-ray emitting halos (𝑀minX) and the X-ray heating efficiency
( 𝑓X). The emission rate of ionizing photons and X-rays per unit stellar mass from a halo are
𝜁 × 2.85 × 1045 s−1M−1

⊙ and 𝑓X × 1042 s−1M−1
⊙ , respectively. Further, the X-ray spectral index 𝛼

is fixed at 1.2, as done in Ghara et al. (2020). Lastly, they note that all other IGM properties can
be derived from these parameters, and thus using just these to define the simulation is sufficient.
The properties of the two models adopted are listed below:

• 𝑥HI fluctuation dominated model: here, I assume a uniform Ly𝛼 background strong
enough to allow the spin temperature 𝑇S to be fully coupled to the gas temperature 𝑇K.
Further, I adopt the following parameters: 𝜁 = 7.0, 𝑀min = 𝑀minX = 109M⊙ and fX = 100,
which makes the gas temperature (and in turn, 𝑇S) significantly high compared to 𝑇CMB
due to strong X-ray heating. This assumption of 𝑇S ≫ 𝑇CMB ensures that 𝛿𝑇b becomes
insensitive to the (1 − 𝑇CMB

𝑇S
) term from Equation 2.1. Thus, all variability of 𝛿𝑇b is tied to

the fluctuation of the neutral hydrogen fraction 𝑥HI.

• 𝑇S fluctuation dominated model: in this case, while I continue to have the assumption of
a strong, uniform Ly𝛼 background to ensure coupling of𝑇S and𝑇K, I change my parameters
to relax the condition of 𝑇S ≫ 𝑇CMB. This is done by reducing the X-ray heating and
ionization efficiency. Thus, I adopt the following parameters: 𝜁 = 3.0, 𝑀min = 109M⊙,
𝑀minX = 1010M⊙ and 𝑓X = 1. This allows for greater variability tied to 𝑇S, with regions of
partial reionization and heating forming in the IGM.

2.2.1.2 CRASH simulations

As a reference, I also use the simulations of reionization described in Eide et al. (2018, 2020)
and Ma et al. (2021). These are obtained by post-processing the large-scale, high-resolution
hydrodynamical simulation Massive Black-II (Khandai et al. 2015; box length 100 ℎ−1cMpc,
2 × 17923 gas and dark matter particles, corresponding to a resolution of 2.2 × 106ℎ−1M⊙ and
1.1× 107ℎ−1M⊙ respectively) with the multi-frequency 3D radiative transfer code CRASH (Ciardi
et al., 2001; Maselli et al., 2009; Graziani et al., 2013, 2018; Glatzle et al., 2019). Here, I make
use of the “Stars” simulation run (which includes only stellar type sources) to generate the mock
21-cm signal data at 𝑧=9.18. I refer the reader to the original papers for more detailed information
on the simulations.

2.2.2 Gaussian process regression

Gaussian Process Regression (GPR, Rasmussen & Williams 2006; Aigrain & Foreman-Mackey
2023) can be used to model a noisy observation y = 𝑓 (x)+𝜖 , with 𝜖 Gaussian noise having variance
𝜎2

noise. This is achieved by modelling the Gaussian Process as a joint probability distribution for
y = {𝑦𝑖}𝑖=1,...,𝑁 , as f(x), which is fully defined by its mean vector (m) and covariance matrix (K,
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also called covariance “kernel”) as:

f (x) ∼ N (m(x),K(x, x)) . (2.2)

for a set of points x (independent parameters). Here, the covariance matrix K gives the covariance
between the function values at any two points and can be written as 𝐾𝑖 𝑗 = 𝜅(𝑥𝑖, 𝑥 𝑗 , 𝜙) + 𝛿𝑖 𝑗𝜎2

𝑖
,

where 𝜅(𝑥𝑖, 𝑥 𝑗 , 𝜙) can be optimised by the choice of hyperparameters represented by 𝜙, and 𝛿𝑖 𝑗
is the Kronecker-delta function.

When applying it to radio data to extract the 21-cm signal, I split this function into a foreground
component, ffg, and the 21-cm signal, f21, giving:

y = fsky(x) + f21(x) + 𝜖 (2.3)

where 𝑦 is the observed data and 𝑥 is the frequency. Next, following M20, I further split
the foreground component into the intrinsic sky emission component (fsky), which comes from
the confusion-limited extragalactic sources and from the Milky Way, and the mode-mixing
contaminants component fmix, which has contributions from the instrument chromaticity and
calibration errors. Beyond the foreground, I also model the noise (represented by 𝜖 in Equation 2.3)
using estimates of the noise variance for ≈10 nights of observation from M20. In addition to
this, M20 found a significant spectrally correlated residual, and thus I inject this “excess noise”
component (fex) into my model as well. This gives an updated version of Equation 2.3:

y = fsky(x) + fmix(x) + fex(x) + f21(x) + 𝜖 . (2.4)

For the sake of simplicity and utilising the additive property of matrices, I can reduce Equation 2.4
to y = f (x) +𝜖 , and represent f (x) with its corresponding covariance kernel 𝐾 (from Equation 2.2)
as:

K = Ksky + Kmix + Knoise + Kex + K21 . (2.5)

M20 modelled each of these kernels using the best possible fit Matern-class functions (Eq. 2.6;
Stein, 1999):

𝑘Matern(𝑟) = 𝜎2 21−𝜂

Γ(𝜂)

(√︁
2𝜂𝑟
𝑙

)𝜂
𝜅𝜂

(√︁
2𝜂𝑟
𝑙

)
. (2.6)

Note that in the Matern-class function, 𝑟 is the absolute difference between the frequencies of two
sub-bands, 𝜅𝜂 is the modified Bessel function of the second kind and Γ is the Gamma-function.

M20 obtained the best possible fit Matern-class function by taking different values of the hy-
perparameter 𝜂, maximising the marginal likelihood (also known as the evidence) and obtaining
estimates for the coherence scale hyperparameter 𝑙 and the variance 𝜎2. Then, for each kernel,
they chose the 𝜂 that led to the highest evidence by calculating the analytical integral over f which
is the log-marginal-likelihood (LML, see Section 2.3 in Mertens et al., 2018) and choosing the
kernel that maximises its value. For calculating the hyperparameters (listed in the second column
of Table 2.1), M20 used a gradient-descent based optimization algorithm for maximising the
LML.
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2.2.3 Machine learning trained 21-cm kernel

The limitations of GPR as pointed out by Kern & Liu (2021) mainly boil down to the choice of
covariance kernel for the 21-cm signal. While the choice of hyperparameters allows a variety
of functions to be accessed, the same function might not work equally well across the 𝑘-space.
Having a function obtained by employing ML trained on power spectra of simulations where
the sources of ionization are modelled using parameters that sample a wide range of values,
allows greater flexibility, and reduces chances of misestimation. Further, it allows for a direct
comparison with physical quantities, as I can reliably derive the source parameters necessary to
generate simulations that produce the power spectra estimated by the ML-based kernel.

To achieve this, Mertens et al. (2024) uses a Variational Auto-Encoder (VAE, Kingma & Welling,
2013, 2019) algorithm. Simply put, an Auto-Encoder (AE, Goodfellow et al., 2016) is an
unsupervised neural network which compresses data by reducing the number of independent
parameters used to describe it into what is referred to as a “latent space” of hyperparameters.
Thus, it is primarily used for data compression by filtering out independent parameters that are
deemed to be unnecessary because they only slightly affect data recovery. This is a two steps
process, where the first step of reducing the number of independent parameters into the latent
space is called encoding, while the step of recovering the data given the latent space parameters
is called decoding. Instead of taking an input of just a set of parameters 𝑎1, ... , 𝑎𝑛, a VAE
(Pinheiro Cinelli et al., 2021) uses probability distributions of each parameter, thus allowing to
interpolate in the latent space, and to generate a large range of new samples of reconstructed data
(in my case 21-cm signal models), which are not limited by the data that the encoder was trained
on. However, this also means that the VAE encoder has an inherently larger error than an AE
encoder.

Thus, reconstructing the training data using the decoder with the latent space generated by the
VAE encoder as input would not be an exact match to the original training data. However, the
VAE is designed to optimize a trade-off between reconstruction accuracy and the fidelity of the
latent space representation, by minimising the KL (Kullback-Leibler) divergence loss (Kullback
& Leibler, 1951), which is a measure of the divergence between the distribution of reconstructed
data and the training data. So while the reconstructed data and training data might not be an
exact match, if their overall distribution is similar (i.e., divergence is minimised), the training is
considered successful. Thus, in the training of a VAE algorithm, the following sources of error
exist:

1. Encoder: the error due to sampling from a distribution for each independent parameter to
build a latent space. Sampling from a distribution is expected to be noisier than choosing
point values.

2. Decoder: the error due to deriving the independent parameters, given some value of
the latent space parameters. As this does not involve sampling from distributions, the
contribution to the total error is expected to be smaller.

Mertens et al. (2024) shows that GPR can be used to estimate the values of the latent space
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parameters, after which the decoder of the VAE kernel can be used to estimate the independent
parameters, and in turn to obtain the recovered 21-cm signal. In this case I would then use only
the decoder part of the VAE algorithm. However, as minimising KL divergence loss requires to
train the encoder and decoder together, I proceed as follows.

I start by using two hyperparameters, 𝑥1 and 𝑥2, and an associated variance, as the latent space
parameters. I train the VAE algorithm on a dataset of ≈ 1500 simulations (the training set), and
validate it against an independent dataset of ≈ 150 simulations (the validation set). I refer to
this as the VAE kernel. The training and validation datasets are generated by running GRIZZLY
simulations with a wide range of values for the parameters introduced in Section 2.2.1.1. I sample
them randomly at the same redshift as the targeted 21-cm signal (𝑧 = 9.16, 8.30 and 10.11) and
in the following ranges: 𝜁 = [−3, 3], 𝑀min = [9, 12], 𝑀minX = [9, 12] and 𝑓X = [−3, 2] in the
log space. I choose these ranges to be significantly broader than necessary (i.e., the performance
of the VAE kernel does not show any appreciable difference even if they are reduced by multiple
orders of magnitude), and also note that the performance of the kernel is not impacted if I fix one
of the parameters to a specific value and vary the remaining three. This ensures that the sampling
range does not induce any major bias. Next, to train the VAE I use 2000 iterations, as I find that
the KL divergence loss and the reconstruction loss for both the training and validation datasets
stabilise after ≈500 iterations. The reconstruction loss is defined as the total error made when
using the encoder to obtain specific values of the latent space parameters, and then employing the
decoder to retrieve the data from those parameters. I then evaluate the ratio between the output
and input data as a function of the wave number 𝑘 , and finally calculate the median ratio, which
is ≈1 across all 𝑘-bins. However, as discussed earlier, the 68% confidence interval is significant,
being ≈10% for 𝑘 = [0.06, 0.12] ℎMpc−1, ≈35% for 𝑘 = [0.12, 0.43] ℎMpc−1 and ≈27% for
𝑘 = [0.43, 1.11] ℎMpc−1 at 𝑧= 8.30, 9.16 and 10.11.

I note a similar reconstruction error for training sets of sizes ranging from 1000 to 5000 simulations
(with the validation set scaling as ∼ 10% of the training set in size), while the errors become
worse when using less than 1000 simulations. I also tried to used three hyperparameters, but saw
no significant improvement in the recovery error. I thus choose to use two hyperparameters to
avoid overfitting.

A high reconstruction error was to be expected, as it includes also the error due to the encoding
process. While this is not required for my purpose, I do need to evaluate the exact contribution
from the decoder. For this, I create a testing set of ≈ 150 simulations, and ensure that it also
includes “extreme” models from GRIZZLY (which I define as cases where the power spectrum
differs by at least an order of magnitude from the mean of the power spectra from the training
and validation datasets), along with some injected stochastic noise. I then apply GPR for
hyperparameter optimization (using MCMC, as discussed in Section 2.2.5) to estimate 𝑥1, 𝑥2 and
the associated variance. This is then used with the decoder to obtain the recovered signal. The
median ratio of the recovered and input data across all 𝑘-bins is again ≈1. But now I obtain a 68%
confidence interval of ≈0.5% for 𝑘 = [0.06, 0.12] ℎMpc−1, ≈1% for 𝑘 = [0.12, 0.43] ℎMpc−1

and ≈3% for 𝑘 = [0.43, 1.11] ℎMpc−1 at 𝑧= 8.28, 9.16 and 10.11, respectively. By comparing to
the total error estimated above, I note that even where decoder error is high, i.e., for the highest
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𝑘-bins, it is still a minor contributor. Therefore, as the overall error is ≲ 5%, I accept the VAE
kernel as a reliable ML-based kernel for the 21-cm signal, and proceed to use it with GPR for
signal recovery.

2.2.4 Generating mock datasets

To build a mock dataset in the gridded 𝑈 − 𝑉 cube domain of radio observations, I derive a
full dataset 𝑦 by adding each term on the right hand side of Equation 2.4. For this, I adopt the
values of 𝜂, 𝑙 and 𝜎2 for Ksky, Kmix and Kex given in the second column of Table 2.1 to generate
their corresponding fsky, fmix and fex. These values are obtained from the results of M20, where
they used 𝜂sky = +∞ for the intrinsic sky, 𝜂mix = 3/2 for the mode-mixing contaminants, and
𝜂ex = 5/2 for the excess noise to fix Matern class functions for each of these components, and
then employed GPR to obtain the coherence-scale hyperparameter 𝑙 and its associated variance
by adopting 𝜂21 = 1/2 for the 21-cm signal. Note that while fsky and fmix are not independent
quantities, their recovery with GPR treats them as such. In this paper, I also generate them as
independent components to build my mock datasets (unlike in real data, where the mode-mixing
component depends on the true sky signal). Thus, the overall quality of the recovered fsky and
fmix is better from the mock datasets, than from real data. However, the effect on the accuracy
of recovery is not expected to be severe, as the impact of not factoring in the inter-dependency
is insignificant, as compared to the overall power of these components. That is, even without
assuming their inter-dependence, GPR can recover them with reasonably high accuracy.

Next, I also assume the value 𝜎2
noise ∼ 74× 103 mK2 (from M20) to simulate the noise component

𝜖 for ≈10 nights of observation with LOFAR scaled to the Field of View (FoV) corresponding
to the GRIZZLY simulations, which is 3.03◦ × 3.03◦. The variance for the intrinsic sky-emission,
mode-mixing and excess noise components scales by the noise variance as indicated in Table 2.1.

I also consider the case of ≈100 nights of observation, to provide estimates for future observations
of similar duration with LOFAR. In this case, the noise variance is expected to be reduced by a
factor of 10, assuming all effects to scale uniformly from ≈10 to ≈100 nights of data. However, it
should be noted that the data used in M20 was plagued with issues such as RFI flagging and bad
ionospheric conditions, and it would be of little scientific value to assume the same conditions to
persist for a 10 times longer observational duration. For this reason, I assume ideal conditions
(for example, picking observation nights with good ionospheric conditions) and assume that the
thermal noise is reduced by a factor of 20 instead, obtaining 𝜎2

noise ∼ 3.7 × 103 mK2. As I
expect the excess noise to behave in a similar fashion, I also reduce its variance 𝜎2

ex by a factor
of 20. M20 noted that the mode-mixing contaminants were not decreasing when integrating
over more nights of data. However, the parts of this component due to effects of ionosphere and
calibration errors are uncorrelated from night to night, and thus are expected to decrease with
longer integration, leading to a reduction of the mode-mixing term. Additionally, this should
also decrease because of the improved UV-coverage. Here, I thus consider an ideal scenario to
understand how the performance of the VAE kernel compares with previously used kernels when
also the mode-mixing term’s variance 𝜎2

mix is reduced by a factor of 20. However, I scale down
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the intrinsic sky component only by a factor of 2. This is justified because (i) the confusion noise
limit is set by the resolution of the LOFAR telescope, so that unresolved point sources cannot be
subtracted even when integrating over more nights; (ii) modelling an increasing number of point
sources is not a trivial task, and doing it accurately does not seem feasible in the short-term. Thus,
I limit ourselves to an assumption of modest improvements. Because of this, I assume that the
variance of fsky is scaled by a thermal noise variance of 𝜎2

noise ∼ 37 × 103 mK2, corresponding
to a factor of 2 reduction from the noise variance in the ≈10 nights case.

Following the procedure outlined above, I generate two sets of foreground, noise and excess noise
components, i.e. for ≈10 and ≈100 nights of observation. I then add the 21-cm signal (see
Section 2.2.1) to obtain a complete mock dataset.

The input power spectra for the overall mock dataset using GRIZZLY is shown in Figures 2.1
and 2.2 for the 𝑥HI and 𝑇S fluctuation dominated case, respectively. The ratio between the 21-cm
signal and the 1-𝜎 uncertainty of the noise power spectrum is a measure of the Signal to Noise
Ratio (SNR). Thus, for 𝑘-bins where the 21-cm signal’s power is greater than the 1-𝜎 error of the
noise, there is a chance of detectability with 1-𝜎 confidence. From Figure 2.1 I can thus conclude
that for ≈10 nights of observation a detection of the 𝑥HI fluctuation dominated 21-cm signal is
unlikely, as the SNR is ≪ 1 for all 𝑘-bins. However, the chances of detectability improve for
≈100 nights of observation, as SNR ≈ 1. In Figure 2.2, I see that detecting the 𝑇S fluctuation
dominated signal should be possible also for ≈10 nights of observations, as SNR is > 1 for all
𝑘-bins, while for ≈100 nights it is ≳ 10, assuring a detection as long as the covariance kernel
used to model the 21-cm signal is correctly estimated.

While I first focus on the 21-cm signal at 𝑧 = 9.16 in order to make a direct comparisons with
M20, I also consider 𝑧 = 8.30 and 10.11 to prepare for future LOFAR results at these redshifts.

2.2.5 Recovery with MCMC

As discussed in Section 2.2.2, M20 used a gradient-descent method to maximise the LML.
However, in this paper I instead use MCMC sampling (Foreman-Mackey et al., 2013) to estimate
the hyperparameters by sampling their posterior distributions. The benefit of MCMC sampling
is that it allows me to also have a measurement of the uncertainty on the hyperparameters, which
can then be propagated. I build the posterior distributions adopting flat uniform priors with broad
ranges as used in M20. For the coherence-scales, I provide a smaller range for the uniform
prior (𝑈) to improve convergence time, as done by M20. Thus, as listed in the third column of
Table 2.1, I use a range of (10,100) for 𝑙sky and of (1,10) for 𝑙mix. To ensure that the converged
value for 𝑙ex remains in the 1-𝜎 confidence interval, I used a range of (0.1, 0.8) rather than of
(0.2,0.8) as in M20. While I note that a Gamma prior for the variances of the different component
leads to faster convergence, I still adopt flat priors in the logarithmic scale over several orders of
magnitude (thus effectively an uninformed prior) to minimise the chances of bias.

In addition to this, I note that the coherence scale and the variance for the 21-cm signal are
dependent on the baseline length. So, while to recover the intrinsic sky, mode mixing and excess
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Figure 2.1: Power spectrum of the mock dataset (purple solid line) generated using the 𝑥HI
fluctuation dominated model from GRIZZLY. It consists of the foreground component (intrinsic
sky + mode-mixing contaminants; pink dashed), the excess noise (magenta dashed), the noise
(yellow dashed) and the 21-cm signal at 𝑧 = 9.16 (grey dashed). I also show the 1 - 𝜎 upper limit
(dark-yellow dotted) achievable if the dataset is thermal noise dominated, i.e. any signal below
this line has SNR < 1. The top (bottom) panel refers to a case with the noise corresponding to 10
(100) nights of observation.
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Figure 2.2: As Fig. 2.1 for the 𝑇S fluctuation dominated model.
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noise components I continue to employ the same Matern class functions used to generate them
(i.e. with the same 𝜂 values of the input, see Table 2.1), when using Matern class functions to
recover the 21-cm signal, I modify the hyperparameter 𝑙 and the variance as:

𝑙 =
𝑙0

1 + 0.001𝑙𝛼𝑙0(𝑢 − 𝑢min)
and𝜎2 = 𝜎2

0𝜎
2
norm

(
u

umin

)𝜎2
𝛼

, (2.7)

where 𝑙0 and 𝜎2
0 are the coherence-scale parameter and variance used in M20 for baseline length

𝑢 (where 𝑢min is the minimum baseline length), but now I introduce the additional parameters 𝑙𝛼
and 𝜎2

𝛼 to fully define the coherence-scale hyperparameter and the variance. Further, 𝜎2
norm is

chosen such that the mean of the variance over all baselines is 𝜎2
0 . The two additional parameters

(i.e., 𝑙𝛼 and𝜎2
𝛼) thus allow me to encode the dependence on the baseline length into the covariance

kernel for the 21-cm signal.

To recover the 21-cm signal component, I use Matern class functions with two specific values
of 𝜂: the Exponential Matern class function with 𝜂 = 1/2 (which, as shown in M20, maximises
the evidence), and the Matern32 function with 𝜂 = 3/2. I then compare their performance
for recovery to the VAE kernel using GPR. For the hyperparameters 𝑥1 and 𝑥2, I again take an
uninformed flat prior in the linear space.

2.3 Results

Here I discuss a qualitative comparison between the results which are shown in Figures 2.3
and 2.4 using the three aforementioned kernels (Exponential, Matern32 and VAE). I then analyse
the estimated coherence-scale hyperparameter and variance values for each of the components
of the mock datasets defined in Section 2.2.1.1 in Table 2.1. Further, I qualitatively compare
the results obtained by using the full simulations of reionization (Section 2.2.1.2) rather than the
mock datasets generated with GRIZZLY. Lastly, I explore the role of redshift on the performance
of the VAE kernel, by testing cases at 𝑧 = 8.30 and 10.11, and by comparing them against the
results obtained for 𝑧 = 9.16.

2.3.1 𝑥HI fluctuation dominated model

In Figure 2.3, I compare the results from the three kernels (VAE in blue solid, Exponential in
orange dashed-dotted and Matern32 in green dotted) in recovering the power spectrum of the
21-cm signal at 𝑧 = 9.16 (in grey dashed). I also show the 2-𝜎 uncertainty on the recovery
from different kernels to compare their performance. I note that if the lower bound of the 2-𝜎
uncertainty of the recovered signal is below the uncertainty on the thermal noise (as shown in
Figure 2.1) the recovery qualifies as an upper limit, otherwise it is referred to as a detection. Based
on this, I note that in this case, the recovery from all kernels is going to provide upper limits, as
the thermal noise uncertainty is higher than the 21-cm signal for ≈10 nights, and comparable to
it for ≈100 nights.



32 2. Machine Learning for extracting the 21-cm Signal: Testing

10 2

100

102

104

106 10 nights
of observation

exponential kernel recovery
matern32 kernel recovery
VAE kernel recovery

Mertens et al. (2020)
noise
21-cm signal

10 1 100

k [h cMpc 1]
10 2

100

102

104

106 100 nights
of observation

2  (
k)

 [m
K2 ]

Figure 2.3: Power spectrum recovered using the Exponential (orange dashed-dotted line) and
Matern32 (green dotted) Matern class functions based covariance kernels, and the VAE-based
kernel (blue solid), together with the 𝑥HI fluctuation dominated model 21-cm signal (grey dashed)
and noise (yellow dashed) at 𝑧 = 9.16. The 2𝜎 uncertainty on the recovered signal for each kernel
is shown as a shaded area in the corresponding colours. The top (bottom) panel refers to a case
with the noise corresponding to 10 (100) nights of observation. I also plot the estimated upper
limits of power at 𝑘 = 0.075 ℎMpc−1 from Mertens et al. (2020, cross). Note that this value can
be significantly higher than the signal due to more complex noise in real data.
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I note that for ≈10 nights of observations, while the VAE kernel has uncertainty bands wider than
the Matern-class function based kernels, the input 21-cm signal is contained within its constrained
region. Thus, while the recovered signal for the three kernels is comparable, the VAE kernel
is robust enough to compensate for the overestimation and to contain the signal within the 2-𝜎
limits of the error, although it is still an upper limit rather than a constrained detection. As
discussed in Section 2.2.4, the reason for this non-detection when using Matern class functions
based kernels and broad uncertainty bands for the VAE kernel is due to the low SNR, which is
< 0.1 across all 𝑘-bins. This, however, improves to an average SNR of ≈ 1 for ≈100 nights of
observations, for which, as expected, I obtain tighter constraints and an improved prediction of
the actual value. I see, though, that the recovered signal from Matern-class function based kernels
is still over-predicted. In particular, for 𝑘 > 0.5 ℎcMpc−1 the Exponential and Matern32 kernels
are unable to contain the signal even in their 2𝜎 uncertainty bands. On the other hand, the VAE
kernel contains the signal in its 2𝜎 uncertainty bands across all 𝑘-bins, despite the recovered
signal being about an order of magnitude higher than the input signal. The VAE kernel also does
a much better job in recovering the overall shape of the power spectrum. By comparing to the
estimated power at 𝑘 = 0.075 ℎMpc−1 from M20 (cross), it is clear that in this case the VAE
kernel is also capable of significantly improving the 21-cm upper limits estimate. However, I
highlight that the VAE kernel applied to real data is still likely to provide upper limits higher
than what has been shown here, because of the more complex noise, and thus the improvement
provided by the kernel might be lesser.

In the 4th and 5th columns of Table 2.1 I show the MCMC estimates for the coherence-scale
hyperparameter and the variance obtained by applying GPR to the input power spectrum of the
mock dataset (in indigo, Figure 2.1). The covariance kernels for the intrinsic sky, mode mixing and
excess noise components are the same as those used to generate them (i.e., the value of 𝜂 is fixed),
while I adopt the VAE kernel for the 21-cm signal. Note that the variances for all components
are scaled down by the corresponding value of 𝜎2

noise. This is equal to 74 × 103 mK2 for all
components for ≈10 nights of observations (see M20), while for ≈100 nights this corresponds to
scaling down by a factor of 2 (i.e., 𝜎2

noise = 37 ×103 mK2) for the intrinsic sky component, and by
a factor of 20 (i.e., 𝜎2

noise = 3.7 ×103 mK2 ) for other components (as discussed in Section 2.2.4).
From the MCMC estimates, I note that the measurement of the coherence-scale for the fsky and
fmix improves from ≈10 to ≈100 nights of observation. However, the variance estimates do not
show an improvement, and even slightly worsen for the excess noise component. The estimates
of 𝑥1 and 𝑥2 and their associated variance 𝜎2

21 agree within error limits for both cases.

2.3.2 𝑇S fluctuation dominated model

Here I perform a comparison between covariance kernels for the spin temperature fluctuation
model, similarly to what done in the previous section. The results are shown in Figure 2.4. As
seen in Figure 2.2 and discussed in Section 2.2.4, the SNR is larger than 1 also for ≈10 nights of
observations, suggesting better chances of detectability and smaller uncertainty ranges. Indeed,
all three covariance kernels contain the signal within the 2𝜎 uncertainty bands around their
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Figure 2.4: As Figure 2.3 for the 𝑇𝑆 fluctuation dominated model.



2.3 Results 35

recovered signal, and the uncertainty range for the VAE kernel is ≈ 2 orders of magnitude smaller
than the equivalent case for the 𝑥HI fluctuation dominated model. As discussed in the previous
section, I compare the lower bounds of the recovered signal with the thermal noise uncertainty
from Figure 2.2 to classify the recovery as a detection or an upper limit.

For ≈100 nights of observations, the SNR is ≫ 10 across all 𝑘-bins, so that the recovered signal
is expected to reproduce the input signal with a significantly narrower 2𝜎 uncertainty range,
provided that the covariance kernel chosen is a reliable estimate of the covariance of the input
21-cm signal. Indeed, from Figure 2.4 I note that the VAE kernel fully recovers the signal with
less than one order of magnitude uncertainty. However, the Exponential kernel contains the
21-cm signal only in the lowest 𝑘-bins and shows significant bias in the estimated power at higher
𝑘-bins. Its broad 2-𝜎 uncertainty shows that the recovery just provides upper limits even in the
low 𝑘-bins. On the other hand, the Matern32 kernel performs better, and provides a successful
detection, albeit with broader uncertainty ranges than the VAE kernel recovery. This suggests
that the Exponential kernel is definitely not a good match for the covariance of the input 21-cm
signal, and, as highlighted by Kern & Liu (2021), would lead to significant errors in the estimated
physics, if used. The Matern32 kernel is better, however the VAE kernel improves upon it even
further. This problem with the Exponential kernel appears in the ≈100 and not in the ≈10 nights
of observation due to the similarity of power and shape of the excess-noise and 21-cm signal
components. Thus, a covariance kernel which is not a reliable estimate of the covariance of the
input 21-cm signal would not be able to distinguish between the two, and may either ignore both
equally, or identify one over the other purely by chance. It can also be argued that the only reason
for any “detection” at low 𝑘-bins using the Exponential kernel could possibly just be the detection
of the excess noise component, wrongly interpreted as the 21-cm signal one.

The recovered values for the coherence-scales and variances for the intrinsic sky, mode mixing
and excess noise components, as well as those for the hyperparameters 𝑥1 and 𝑥2 and associated
variance for the 21-cm signal are listed in the 6𝑡ℎ and 7𝑡ℎ columns of Table 2.1 along with their
68% confidence intervals. As expected, I find an improvement in recovery of the input values
for ≈100 nights of observation in comparison to ≈10 nights, particularly for the coherence-scale
hyperparameter.

While I note better estimates for 𝑙sky and𝜎2
sky/𝜎

2
noise for≈100 nights of observations in both 21-cm

signal models, in the 𝑥HI fluctuation dominated model the input 𝜎2
sky/𝜎

2
noise is not included within

the estimate error of the recovered values. A similar behaviour is observed in the recovery of the
variance for fmix and fex in the 𝑥HI fluctuation dominated model for ≈100 nights of observations.
Lastly, I also note that the 𝑥1 and 𝑥2 hyperparameters and associated variance for the 21-cm signal
in both models agree within the error estimates. While the estimated variance for ≈100 nights of
observations is higher, it also has a broad 68% confidence interval.
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2.3.3 CRASH simulations

The power spectra resulting from the recovery using the three kernels in the case of the CRASH
simulation are shown in Figure 2.5. As now the input 21-cm signal has a power which lies in
between the two GRIZZLYmodels, this translates into an intermediate SNR across 𝑘-bins. Due to
this, I are able to successfully contain the input signal in the 2𝜎 ranges of the recovered signals in
most 𝑘-bins for ≈10 nights of observation with all kernels, but given the thermal noise uncertainty
power, it is still classified as an upper limit. However, for ≈100 nights, I note that while the VAE
kernel does an excellent job of recovering the signal with narrow 2𝜎 uncertainty bands, they still
indicate that the recovery is an upper limit. On the other hand, the Matern class functions based
kernels underestimate the signal and do not contain the input 21-cm signal within 2𝜎 uncertainty
bands for some 𝑘-bins, despite them being significantly larger. When comparing to the thermal
noise uncertainty, I note that they only provide upper limits for the signal in most 𝑘-bins. This
result is similar to that with the 𝑇S fluctuation dominated model with GRIZZLY, and thus is due
to the same reasons discussed in Section 2.3.2.

2.3.4 Redshift dependence

To evaluate the performance of the VAE kernel at different redshifts, I use the simulations at 𝑧 =
8.30, 9.16 and 10.11 of both GRIZZLY models, and compare the performance of the VAE kernel
for noise levels equivalent to ≈100 nights of observations. It should be noted that I use the VAE
kernels trained for the respective redshifts to avoid making the assumption of the kernels being
redshift agnostic.

To analyse my recovery technique, I check how accurately it recovers the input signal, and how
precise the results it reports are. For this purpose, I use the quantities defined below, with their
values listed in Table 2.2:

1. Average bias, ⟨PSrec/PSin⟩𝑘 : this is the average bias given as the ratio between the recovered
(PSrec) and input 21-cm signal (PSin) power spectra, averaged across all 𝑘-bins. An accurate
recovery has a value close to 1, with higher (lower) values indicating an over(under)-
estimation of the input 21-cm signal. I note that the deviation of average bias from 1
increases significantly with redshift for the 𝑥HI fluctuation dominated model. However,
the trend is not so clear for the 𝑇S fluctuation dominated signal, as the power and slope of
the excess noise component match closely those of the input 21-cm signal at 𝑧 = 8.30 and
𝑘 ≤ 0.2 hMpc−1, which makes differentiating between them more difficult. However, I still
get an average bias of ≈ 0.70, suggesting only a minor under-estimation, which is primarily
observed at the lowest 𝑘-bins (see Figure 2.6).

2. Average scaled uncertainty, ⟨Errrec/PSin⟩k: the 2𝜎 uncertainty (given by the shaded region
in Figures 2.3, 2.4, 2.5, and referred to as Errrec hereafter) on the recovered power spectrum
(PSrec) gives the precision of recovery. However, except for cases of extremely poor
recovery, the absolute value of Errrec generally depends on the absolute value of the
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Figure 2.5: As Figure 2.3 for the CRASH simulation of reionization.
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corresponding PSrec. Thus, to compare different recoveries for a given PSin, I need to
convert it into a unitless quantity. I first tried to do this by calculating the ratio Errrec/PSrec
as a measure of the precision of the recovery. However, this ratio contains no information on
the accuracy of PSrec. Indeed, one could have a precise recovery, i.e. a low Errrec/PSrec, but
an inaccurate PSrec, i.e. a bias which deviates significantly from 1 (see point above). This
ratio, then, is not useful, as it does not quantify the overall quality of recovery. To overcome
this issue, I use the ratio Errrec/PSin instead. As the magnitude of Errrec depends on that of
PSrec, it also carries the information of the bias in recovery. Further, as I divide by PSin, the
scaled uncertainty becomes independent of the specific PSin being recovered. This allows
me to use it to compare between cases with different PSin, such as at different redshifts
(see top panel of Figure 2.6 where the power spectrum varies due to the time evolution
of ionising bubbles) and different physical models (as discussed in Sections 2.2.1). I use
this generalised comparison, and call it the scaled uncertainty for each 𝑘-bin. Averaging
this across all 𝑘-bins provides a handy quantity to compare the precision of recovery for
input 21-cm signals with different physical properties. For example, in Figure 2.6 I observe
that in the 𝑥HI fluctuation dominated model, while small-scale variability due to partial
reionization is restricted, it still has variability tied to the large-scale distribution of neutral
Hydrogen, which increases for lower redshifts. This boosts the power at large scales,
corresponding to the low 𝑘-bins. The same can also be seen in the𝑇S fluctuation dominated
model, although its overall power is boosted, as it allows small-scale variability in 𝛿𝑇b as
well. Using the scaled uncertainty, I can compare the precision of recovery across redshift
for both cases. The difference in ⟨Errrec/PSin⟩k is quite significant for the 𝑥HI fluctuation
dominated model, going from ≈ 15 at 𝑧 = 8.30 to ≈ 80 at 𝑧 = 10.11.

3. z-score, ⟨z-score⟩𝑘 : The z-score (Kirch, 2008) is a popular quantity to evaluate quality of
recovery. In my case, it is defined as PSrec−PSin

𝜎
or PSrec−PSin

Errrec/2 at each 𝑘-bin, and it measures
how much the recovered signal deviates from the input 21-cm signal, in units of standard
deviation of the recovered signal. The z-score is thus a more explicit method to combine
into a single quantity the information provided by the bias along with that of the uncertainty.
The only possible issue is that 𝜎(= Errrec/2) depends on PSrec and thus their ratio would
mask the accuracy of recovery as discussed in the point above (see below for an example
case). Further, I note that I cannot just report an average of z-scores across all 𝑘-bins,
as the distribution of z-scores is not necessarily Gaussian. Indeed, I find that while it is
approximately Gaussian for the 𝑥HI fluctuation dominated model, this is not the case for the
𝑇S fluctuation dominated model. Thus, I report the minimum and maximum z-scores (z-
scoremin and z-scoremax) along with the average (⟨z-score⟩𝑘 ). When ⟨z-score⟩𝑘 >(<)0, its
exact value quantifies the extent of over(under)-prediction. I note that in the 𝑥HI fluctuation
dominated model, the average z-score worsens with increasing redshift, consistently with
the behaviour of the average bias and average scaled uncertainty. This trend is not detected
for the 𝑇S fluctuation dominated signal, due to the same reasons discussed above for the
average bias in (i). I also note that at 𝑧 = 10.11, ⟨z-score⟩𝑘 ≈ −2 and +1 in the 𝑇S and 𝑥HI
fluctuation dominated model respectively, naively suggesting a better recovery for the latter.
This, though, is not correct, but simply a consequence of the very broad error bars and the
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Table 2.2: Average bias, ⟨PSrec/PSin⟩𝑘 , average scaled uncertainty, ⟨Errrec/PSin⟩k, and average
z-score, ⟨z − score⟩𝑘 , at various redshifts. These values are obtained when the signal recovery
is done employing the VAE kernel with the 𝑥HI (top) and the 𝑇S (bottom) fluctuation dominated
model and ≈100 nights of observations.

𝑧 ⟨PSrec
PSin

⟩𝑘 ⟨Errrec
PSin

⟩𝑘 z-scoremin ⟨z-score⟩𝑘 z-scoremax
𝑥HI fluctuation dominated

8.30 3.90 14.88 +0.46 +0.74 +0.85
9.16 8.57 21.12 +0.73 +0.82 +0.88
10.11 29.29 78.22 +0.87 +1.02 +1.16

𝑇S fluctuation dominated
8.30 0.69 0.50 -4.00 -1.36 -1.25
9.16 0.90 0.58 -0.79 -0.60 +0.23
10.11 0.34 0.83 -3.50 -1.96 -0.92

inverse proportionality of ⟨z-score⟩𝑘 with the error. This reasoning exposes the limitation
of the z-score. Indeed, by looking at ⟨PSrec/PSin⟩𝑘 and ⟨Errrec/PSin⟩k for recovery of
the 𝑥HI fluctuation dominated signal (see Table 2.2), I note that the deviation from zero
bias (obtained when ⟨PSrec/PSin⟩𝑘 = 1) and zero uncertainty (when ⟨Errrec/PSin⟩k = 0) is
significantly higher than for the 𝑇S fluctuation dominated model. In fact, these numbers
suggest a better quality of recovery in the latter case, which is understandable as the SNR
in this model is higher. Thus, while I report the z-score due to its popularity, I recommend
using the average bias and scaled uncertainty for evaluating the quality of recovery.

The trends in various quantities discussed above are linked to the physical nature of the 21-cm
power spectrum and its redshift evolution. The drop in the SNR with increasing redshift (due
to a decrease in signal power as shown in Figure 2.6 and explained in (ii)), leads to a worsening
of the average bias and scaled uncertainty, especially for the 𝑥HI fluctuation dominated model.
As already mentioned, when the excess noise and the input 21-cm signal have similar power
and slope (as at 𝑧 = 8.30 for the 𝑇S fluctuation dominated case), I observe limitations in the
capability of differentiating among the two, but the effects are minor and the trends of average
bias, scaled uncertainty and z-score for the 𝑥HI fluctuation dominated model are also observed in
the 𝑇S fluctuation dominated model when going from 𝑧 = 9.16 to 𝑧 = 10.11.

Thus, I find that the VAE kernel does not add significant biases, with its recovery and associated
uncertainty largely scaling with the physical properties of the 21-cm signal.
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Figure 2.6: Top panel: input 21-cm signal for the 𝑥HI (dashed lines) and the 𝑇S (solid) fluctuation
dominated model are shown for 𝑧 = 8.30 (blue), 9.16 (orange) and 10.11 (green). Middle panel:
recovered 21-cm signal and its associated uncertainty divided by the input 21-cm signal to give
the bias and scaled uncertainty (the average values over 𝑘-bins for these quantities are listed in
Table 2.2) for the 𝑥HI fluctuation dominated model. For comparison, the line of zero bias (i.e.,
recovered signal perfectly matching the input signal) is also shown. Bottom panel: same as the
middle panel, but for the 𝑇S fluctuation dominated model.
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Table 2.3: Average bias, ⟨PSrec/PSin⟩𝑘 , average scaled uncertainty, ⟨Errrec/PSin⟩k, and average
z-score, ⟨z − score⟩𝑘 , for the 𝑥HI fluctuation dominated model with ≈100 nights of observations
at 𝑧 = 9.16. These values are obtained when the signal recovery is done employing the VAE
kernel and multiplying the coherence-scale hyperparameter, 𝑙ex, or the variance, 𝜎2

ex, listed in the
second column of Table 2.1 (and as used in M20) by a factor fvar.

fvar ⟨PSrec
PSin

⟩𝑘 ⟨Errrec
PSin

⟩𝑘 z-scoremin ⟨z-score⟩𝑘 z-scoremax
𝑙ex

0.5 12.88 31.37 +0.88 +1.04 +1.19
0.75 9.61 26.75 +0.77 +0.89 +0.97
1.0 8.57 21.12 +0.73 +0.82 +0.88
1.25 8.04 27.40 +0.75 +0.82 +0.89
1.5 7.77 15.65 +0.78 +0.84 +0.90
1.75 5.64 14.76 +0.81 +0.87 +0.93
2.0 4.55 19.38 +0.81 +0.85 +0.94

𝜎2
ex

1.00 8.57 21.12 +0.73 +0.82 +0.88
0.75 6.64 32.81 +0.75 +0.80 +0.88
0.50 4.77 16.89 +0.66 +0.71 +0.78
0.25 3.24 9.13 +0.58 +0.62 +0.67

2.4 Discussion

2.4.1 Role of the excess noise component

In M20 it was noted that the excess noise component was poorly constrained, and thus the
combined excess noise and 21-cm signal components were jointly recovered, as separating them
was not statistically justifiable. Thus, it is important to understand how well constrained the
excess noise component has to be, in order to separate the 21-cm signal from it.

To explore this, I looked at the 𝑥HI fluctuation dominated model of the 21-cm signal at 𝑧 = 9.16.
I note that in the ≈100 nights case for the chosen excess noise component, the power spectrum
recovered with the VAE kernel is slightly overestimated, with the 2𝜎 bands on both sides of it
spanning ≈2 orders of magnitude. I then generated a range of input excess noise components (by
varying either the coherence-scale hyperparameter or the variance), and analysed the effects on
the recovery of the 21-cm signal power spectrum using the VAE kernel by looking at the average
bias, scaled uncertainty and z-score, as defined in Section 2.3.4. The results are reported in
Table 2.3, where fvar is the factor by which the coherence-scale hyperparameter and the variance
from the results of M20 were scaled. I see that, overall, the average bias and scaled uncertainty are
reduced when increasing the coherence-scale hyperparameter or decreasing the variance, while
no substantial difference is observed in the average z-score. This is possibly because the bias and
scaled uncertainty decrease at the same rate, and thus their effects roughly cancel out.
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2.4.2 Overall performance of the VAE kernel

Usually it is expected that the recovery of the 21-cm signal from an overall dataset with foreground
components, noise and signal is not possible if SNR<1. In Section 2.3.1 I have indeed shown that
Matern class functions based kernels are unable to contain the input 21-cm signal within their 2𝜎
uncertainty bands when SNR<1. However, the VAE kernel is not only able to do so, but also to
recover the overall shape of the power spectrum, as seen in the top panel of Figure 2.3.

Further, as highlighted by Kern & Liu (2021), misestimation of the covariance kernel can sig-
nificantly hamper signal detection given the currently used normalization and bias correction
schemes. This means that as the Matern class functions model the 21-cm signal only approxi-
mately, their results can be significantly biased for more complex models of the 21-cm signal,
as given e.g. by the 𝑇S fluctuation dominated model of GRIZZLY and the 21-cm signal model
from the CRASH simulations. Indeed, in these cases the Matern class functions based kernels fail
to recover the signal also for noise levels equivalent to ≈100 nights of observation, even when
⟨SNR⟩k ≈ 10. The VAE kernel does not suffer from such a limitation and performs well also when
used with an input signal from the CRASH simulations. This shows that the VAE covariance kernel
is a more robust estimate of the covariance of the 21-cm signal, and can successfully report a
detection within 2𝜎 uncertainty regardless of the exact physical properties of the observed 21-cm
differential brightness temperature power spectrum. Lastly, I note that it performs well across
all redshifts analysed here. This reconfirms the robustness of the VAE kernel in constraining the
21-cm signal, with an increase/decrease in uncertainty tied to the ⟨SNR⟩k of the signal itself.

Overall, the 2𝜎 uncertainty bands given by the VAE kernel contain the signal in all cases
discussed here. I consider the recovery limit of the VAE kernel in terms of SNR averaged over
𝑘-bins to be that from ≈10 nights of observation in the 𝑥HI fluctuation dominated model, i.e.
⟨SNR⟩k = 5 × 10−2. For values lower than this, I do not expect the VAE kernel based recovery
to contain the input signal within its 2𝜎 uncertainty bands across 𝑘 = [0.05, 1.00] ℎMpc−1. I
explore one such case in Appendix A, and indeed find that the recovery does not contain the input
signal within its 2𝜎 uncertainty bands, but instead provides upper limits. Yet it still outperforms
the Matern class functions based kernels in recovering the shape of the power spectrum, spread
of uncertainty on recovery, as well as the reported upper limits.

2.4.3 Limitations

In this work, I reduce the possibility of biases in the EoR covariance kernel by incorporating a
more physically motivated covariance. I showcase the robustness of the generated VAE covariance
kernel by testing it against not just mock 21-cm signals obtained with GRIZZLY, but with signals
generated using very different frameworks as shown in Section 2.3.3 and in Appendix A. This
has also been demonstrated in Mertens et al. (2024).

However, biases are still possible, especially if the true signal, and thus its covariance, is funda-
mentally different from what I obtain with my simulation codes. One way to further minimise
this bias is to use mock data obtained from different codes to train the covariance kernel, which
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I plan to do in further upgrades of my pipeline. In the future, I will also investigate methods to
reduce the dependence on the prior by using different normalization and bias correction schemes
as suggested by Kern & Liu (2021).

2.5 Summary

The LOFAR Epoch of Reionization (EoR) KSP team strives for a successful detection of the
21-cm signal from the EoR at 𝑧 ≈ 7 − 11. Past theoretical models indicated that at least 1000
hours of observation would be necessary to lead to a successful detection (Mertens et al., 2018),
while Mertens et al. (2020) provided upper limits using 141 hours (≈10 nights) of observation.
In this respect, an optimal choice of the covariance kernel for the 21-cm signal component is
crucial. Indeed, as shown in Kern & Liu (2021), given the currently used normalization and
bias correction scheme, a mismatch between the adopted and the actual covariance kernel of the
21-cm signal can induce a significant signal loss, which can in turn lead to incorrect astrophysical
interpretations from any “successful” detection.

To improve the choice of the 21-cm signal covariance kernel, Mertens et al. (2024) introduce a
Machine Learning method which employs a Variational Auto-Encoder (VAE) based algorithm.
As the training done using VAE is not limited by the form of the specific function (as e.g. in
the case of Matern class functions), nor by the kernels of the training datasets (as in the case of
a simple Auto-Encoder), it allows to reproduce the covariance kernel of the 21-cm signal with
a greater flexibility. This is showcased in terms of the robustness of the VAE based kernel’s
performance in comparison to previously used kernels based on Matern class functions.

I show that the result on using the VAE kernel is able to contain the input 21-cm signal within its
2𝜎 uncertainty band in all cases explored where ⟨SNR⟩k ≳ 5× 10−2. It is also usually better than
the results from Matern class functions based covariance kernels in recovering the overall shape
of the power spectrum of the signal. A key result in this paper is that Matern class functions
based kernels are unable to recover the 21-cm signal for the 𝑇S fluctuation dominated model even
for ≈100 nights of observation, for which ⟨SNR⟩k ≈ 10, while a recovery with the VAE kernel
is successful. A similar result is obtained also with a 21-cm signal generated using the CRASH
simulations, thus clearly indicating that the Matern class functions based kernels do not correctly
match the covariance of more complex models of the signal. Thus, this analysis suggests that
using the VAE kernel can mitigate to a significant extent the issues highlighted by Kern & Liu
(2021) given no change to the normalization and bias correction schemes.

Further, I show that the behaviour of the VAE kernel is consistent across all redshifts of interest,
with changes in its performance strongly correlating with the neutral hydrogen distribution, which
changes the strength of the resultant power spectrum, and thus the ⟨SNR⟩k. This suggests that the
VAE based kernel can be used for any choice of redshift without additional correction factors,
making the algorithm developed here directly applicable to LOFAR data at 𝑧 ≈ 8 to 10, whose
results can then be compared with results from telescopes like HERA.

I also explore the effects that the properties of the excess noise component identified in M20 have
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on the recovery of the 21-cm signal. As expected, I find that having a higher coherence scale or
a lower variance for the components leads to better recovery.

In companion papers I will apply the VAE kernel to the ≈10 nights of LOFAR data used in M20,
and explore the range of theoretical models which are consistent with the upper limits provided
by the VAE kernel, as done in Ghara et al. (2020). Applying the VAE kernel to observations
much longer than ≈10 nights requires a significant improvement in the modelling of the intrinsic
sky component, which would eventually be limited by the confusion noise due to the angular
resolution of LOFAR. Further improvements, such as noise mitigation, can be implemented by
choosing data from nights with better ionospheric conditions and lesser contribution from RFI
flagging. All these aspects are currently being explored by the LOFAR EoR KSP team.
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Chapter 3

Machine Learning for extracting the 21-cm
Signal: Application

Always look where the action isn’t, because that’s where the action is.

- Richard Osman

3.1 Overview

In this chapter, I use the VAE-based kernel developed in Acharya et al. (2024b) and described in
Chapter 2 and apply it with Gaussian Process Regression on 141 hours (≈10 nights) of data with
LOFAR at 𝑧=9.1, whose upper limits with analytical covariance kernels was reported in Mertens
et al. (2020). This work was published in Acharya et al. (2024d) and has been adapted to be
consistent with the rest of the thesis.

In Section 3.2, I briefly highlight the covariance kernels used for the different components of the
dataset; in Section 3.3, I present two cases of recovery, and compare the obtained upper limits
to those presented in M20. In Section 3.4, I discuss the quality of my results by comparing the
residuals on applying my model to the data, and also the limitations of the method. Finally, in
Section 3.5, I give my conclusions.

3.2 Methodology

Gaussian Process Regression (GPR; Rasmussen & Williams, 2006; Aigrain & Foreman-Mackey,
2023) has been used to model radio data in frequency space as noisy observations of the form
y = f (x) + 𝜖 , with 𝜖 Gaussian noise vector having variance 𝜎2

noise (see e.g. A24, M20 and Munshi
et al., 2024). The vector f (x) can be split into the 21-cm signal (f21) and foregrounds. To the
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latter contribute an intrinsic sky component (fsky) and mode-mixing contaminants (fmix). Further,
M20 identified an additional term for bias correction, defining it as an “excess noise” component
(fex), which corrects for additional systematic noise after the subtraction of foregrounds. While
the exact source of this excess is yet to be identified, various possibilities have been discussed in
Section 6.2 of M20, and the LOFAR EoR KSP team is currently working on testing each one of
them. The overall datacube y can be expressed as:

y = fsky(x) + fmix(x) + fex(x) + f21(x) + 𝜖 . (3.1)

For a set of points x (independent parameters in frequency), for each value 𝑥, 𝑓 (𝑥) given by
a Gaussian Process GP(𝑚, 𝜅) is fully defined by its mean 𝑚 and covariance matrix 𝜅. The
vector f(x) is then fully defined by its mean vector m and covariance matrix vector K. The joint
distribution for all random variables that share the desired covariance properties is a normal
distribution vector (N ) which can be represented as:

f (x) ∼ N (m(x),K(x, x)) . (3.2)

Here, the matrix K gives the covariance between the function values at any two points, and can
be written as 𝐾𝑖 𝑗 = 𝜅(𝑥𝑖, 𝑥 𝑗 , 𝜙) + 𝛿𝑖 𝑗𝜎2

𝑖,noise, where 𝜅(𝑥𝑖, 𝑥 𝑗 , 𝜙) can be optimised by the choice of
hyperparameters represented by 𝜙, 𝛿𝑖 𝑗 is the Kronecker-delta function and 𝜎2

𝑖,noise is the noise at
𝑥𝑖.

If I assume that the various components are uncorrelated, I can utilise the additive property of
matrices. Thus, the covariance kernels of the right-hand side of Equation 3.1 can be represented
as a single covariance kernel 𝐾 given as:

K = Ksky + Kmix + Knoise + Kex + K21 . (3.3)

Ksky, Kmix, and Kex are modelled using the best-fit Matern-class functions (Stein, 1999) as done
by M20 and A24:

𝑘Matern(𝑟) = 𝜎2 21−𝜂

Γ(𝜂)

(√︁
2𝜂𝑟
𝑙

)𝜂
𝜅𝜂

(√︁
2𝜂𝑟
𝑙

)
, (3.4)

with 𝜂sky = +∞, 𝜂mix = 3/2 and 𝜂ex = 5/2. Additionally, 𝑙 is the coherence-scale hyperparameter,
with its associated variance given by𝜎2, 𝑟 is the absolute difference between the frequencies of two
sub-bands, 𝜅𝜂 is the modified Bessel function of the second kind, and Γ is the Gamma-function.
𝜂sky, 𝜂mix, and 𝜂ex were obtained by M20 by assuming different values of the hyperparameter 𝜂,
and finding the one that maximised the marginal likelihood (or the “evidence”). This was done by
calculating the analytical integral over f, which is the log-marginal-likelihood (LML, see Section
2.3 in Mertens et al. (2018)). While M20 used a gradient-descent-based optimization algorithm for
maximising the LML, A24, instead, introduced an MCMC sampling based approach (Foreman-
Mackey et al., 2013) to estimate the hyperparameters by sampling their posterior distributions.
This additionally provides a measure of the uncertainty on the hyperparameters.

The noise is modelled based on the Stokes-V visibility difference, according to the methodology
laid out in M20. Further, for the 21-cm signal I use the VAE-based kernel at 𝑧 = 9.16 built
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Table 3.1: Comparison of hyperparameters obtained in Mertens et al. (2020) and in this work.
From left to right the columns refer to the hyperparameters used, the results from M20, the results
obtained in this work, and the difference between the two. As the covariance kernels used for
the 21-cm signal component are not the same, I just provide the values of the hyperparameters
obtained in each case. Lastly, 𝜎2

noise is 74 × 103 mK2 (see M20).

Parameter M20 This work Difference
𝑙sky 47.5+3.1

−2.8 38.6+2.6
−2.6 2.3𝜎

𝜎2
sky/𝜎

2
noise 611+22

−19 530±18 3.0𝜎
𝑙mix 2.97+0.09

−0.08 3.05+0.08
−0.08 0.7𝜎

𝜎2
mix/𝜎

2
noise 50.4+2.1

−1.9 48.8+2.1
−2.0 0.6𝜎

𝑙ex 0.26+0.01
−0.01 0.32+0.01

−0.01 4.2𝜎
𝜎2

ex/𝜎2
noise 2.18+0.09

−0.14 2.82+0.10
−0.10 4.2𝜎

𝑓21

𝜂21 = 1/2 𝑥1 = 0.49+1.00
−1.00,

𝑙21 > 0.73 𝑥2 = −0.34+0.97
−0.97 –

𝜎2
21

𝜎2
noise

< 0.77 𝜎2
21

𝜎2
noise

= 0.01+0.09
−0.01

by A24 by training on Grizzly simulations. This VAE-based kernel is fully defined using two
hyperparameters 𝑥1 and 𝑥2 with uninformed flat priors in linear space in the range [-10, 10], and
an associated variance. The kernel has been trained on a training set of ≈ 1500 simulations with
4 independently variable parameters. While more hyperparameters could be employed, they do
not provide any significant improvement, and thus I do not use them to avoid overfitting. A24
also used an additional testing set of ≈ 150 simulations and found a recovery error of ≲ 1%
for wave-modes of 𝑘 < 0.43ℎMpc−1. In this work, the performance of the VAE-based kernel is
compared against the results obtained in M20 when using a Matern-class function with 𝜂21 = 1/2.

3.3 Results

Following A24, I recover the hyperparameters of the various signal components by applying GPR
to the data using an MCMC approach (Foreman-Mackey et al., 2013). I adopt the same broad flat
priors for the variances, and uniform priors for the coherence-scale parameters (see Table 1 and
Section 2.5 of A24). The recovered values are listed in Table 3.1, where I compare them to those
obtained by M20. I find that the hyperparameters for the 𝑓sky and 𝑓ex components differ from the
M20 estimates by about 2-4𝜎, while those for 𝑓mix are in good agreement. This is expected with
a more accurate 21-cm kernel, as it reduces the strength of the correlation of hyperparameters of
the different components. This allows for better characterisation of the different components in
the overall data. I discuss the details below after analysing each component’s recovered power
spectra.
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To have a better understanding of the results quantified above, in Figure 3.1, I show the recovered
upper limits on the power spectra in two cases. In the first one (top panel), I present the excess
noise component (dashed-dotted green line) and the 21-cm signal (blue dashes with downward
arrows) separately, as done for the mock datasets in A24, and refer to this as the individual upper
limits case. I additionally show the 2-𝜎 confidence interval on the recovery of the VAE-based
kernel, the overall noise (yellow dashed line), and the 2-𝜎 error on the noise (brown dotted line).
I compare my recovery with the results from M20 shown with magenta crosses. I note that while
the upper limits are higher than the 2-𝜎 error on the noise, the values approach similar values at
the higher 𝑘 bins (see values listed in Table 3.2). Further, it is still possible that some fraction of
the 21-cm signal may be assigned to the excess noise, and vice-versa. Thus, I also show a second
case (bottom panel), which takes a more conservative approach of including the excess noise in
the upper limits along with the 21-cm signal (solid blue line), as done in M20. I refer to this as
the joint upper limits case.

I note that, in the individual case, the upper limits on the 21-cm signal power spectrum are
significantly deeper than those of the combined power spectrum of the excess noise and 21-cm
signal found by M20.

Because I depict just the extracted 21-cm signal component, I assume that the bias correction
for the excess noise is accurate, with minimal loss of the 21-cm signal. This is an idealised
scenario, where the excess noise component is accurately described by the covariance kernel used
for it. To verify this, I need a better understanding of the source of the excess noise component.
Nevertheless, I report results with my current best choice of the kernel as identified by M20, to
test the extent of improvement possible with the inclusion of the VAE-based kernel for the 21-cm
signal. However, in Figure 3.1, the 2-𝜎 confidence interval on the lower side extends to < 1 mK2,
and thus is effectively zero. Thus, this confirms that this is just an upper limit and not a detection.

When comparing the joint upper limits cases, I find marginally higher values than those found by
M20 for 𝑘 ≲ 0.2 ℎ cMpc−1, and marginally lower for 0.2 ℎ cMpc−1 ≲ 𝑘 ≲ 0.5 ℎ cMpc−1. This
is caused by the power of the excess noise component being mildly higher in the lower 𝑘-bins,
and mildly lower in the higher 𝑘-bins, compared to the results of M20. This shows up as a 4.2𝜎
difference of the hyperparameters 𝑙ex and 𝜎2

ex/𝜎2
noise from the results of M20. A closer inspection

shows that this occurs because a small fraction of the intrinsic sky component is assigned to the
excess noise component at lower 𝑘-bins, and vice-versa for the higher 𝑘-bins, due to the usage
of a more accurate 21-cm kernel. While the difference in the recovered power spectrum for the
foregrounds is not significant, the higher contributions at small scales for the excess noise, could
allow a better characterisation of the same.

The exact values of the recovered median power spectrum of the 21-cm signal and their upper
limits in each 𝑘-bin are listed in Table 3.2 for the joint and individual upper limits case discussed
in this work, as well by M20. I also show the 2-𝜎 error of the noise (which represents the
maximum sensitivity achievable) to compare against the obtained upper limits. I can summarize
the results as follows:

• The excess noise is confirmed to be the dominant signal component after sky-model and
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Figure 3.1: Upper limits on the power spectrum of the 21-cm signal from 10 nights of LOFAR
observational data at 𝑧 ≈ 9.1. Top: Individual upper limits case. The upper limits on Δ2

21 (blue
dashes with downward arrows) are obtained using the VAE-based kernel separately from the
excess noise (dashed-dotted green line). The 2-𝜎 confidence of the recovery by the VAE-based
kernel is shaded in blue, and noted to effectively extend down to zero. I also plot the upper limits
obtained by M20 (crosses with downward arrows), the noise (dashed yellow line) and the 2-𝜎
error on the noise (dotted brown). Bottom: Joint upper limits case. The upper limits on the
power spectrum of the 21-cm signal and excess noise are recovered together (solid blue line and
shaded region), as done in M20. The other lines and symbols have the same meaning as in the
top panel.
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residual foregrounds subtraction, with its recovered power spectrum being about an order
of magnitude stronger than the noise.

• While the hyperparameters for the excess noise component differ by 4.2𝜎 from the results
of M20, the recovered power spectrum and 2-𝜎 upper limits show only a minor deviation.

• In the case of individual upper limits, the upper limits of the 21-cm signal power spectrum
lie above the 2-𝜎 error on the noise, and thus are not noise-dominated. However, this is not
a detection, because the lower limit on the recovery by the VAE-based kernel is consistent
with zero.

I conclude that with these data, performing a bias correction for the excess noise provides an
individual upper limit on the 21-cm signal power spectrum that is higher than the 2-𝜎 error on
the noise. However, the upper limits approach the 2-𝜎 error on the noise at higher 𝑘 bins. Thus,
lowering the noise threshold with longer observations could allow a greater separation between
the upper limits and the noise threshold, and eventually also a detection, provided no correlation
between the excess noise and the 21-cm signal is present. For this, the LOFAR EoR KSP team
has ≈ 100 nights of data to analyse and is currently in the process of doing so. I discuss the
correlations of the different components and the limitations of the overall model in the subsequent
section.

3.4 Discussion

The individual upper limits are greater than the 2-𝜎 error on the noise, and thus is not noise
dominated. However, it is still possible that the VAE-based kernels provide an incomplete model
of the data. In this case, I would be biased towards cases where the model is enough for the 21-cm
signal, and the remainder of the data is modelled with the excess and foregrounds components as
defined above. For example, better characterisation of the excess noise may indeed lead to broader
models for it. In my current model, what I can explore however, is the degeneracy between the
VAE-based kernel and the excess noise kernel. A decrease in the correlation between them would
indicate that at least the models I use for them are not degenerate. For example, the difference in
the intrinsic sky and excess noise component hyperparameters with respect to M20 could be due
to a decrease in correlation of the hyperparameters for these components by using the VAE-based
kernel for the 21-cm signal. To have a clearer picture of this, it is important to investigate whether
the hyperparameters of the different components in my overall model are correlated and whether
the overall model is a complete picture of the data.

To assess this, in Figure 3.2, I show the corner plot of the hyperparameters, where the purple
contours are the 68%, 95% and 99.7% confidence intervals. I see that hyperparameters of each
component are largely uncorrelated with those of other components. In particular, I note that
the 21-cm signal hyperparameters are completely uncorrelated from those of the excess noise.
This provides greater confidence in the 2-𝜎 confidence intervals obtained in the individual upper
limits case.
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Figure 3.2: Posterior probability distributions of the GPR model hyperparameters used: 𝑥1, 𝑥2, the
variances 𝜎2

21, 𝜎2
sky, 𝜎2

mix and 𝜎2
ex, and the coherence-scales 𝑙sky, 𝑙mix and 𝑙ex. The purple contours

show the 68%, 95% and 99.7% confidence intervals and the diagonal plots refer to the individual
posterior distributions of each of the hyperparameters listed. Note that the hyperparameters of
each component are largely uncorrelated with those of other components.

Furthermore, to assess the performance of my model, I plot the residual obtained by subtracting
the data cube of the model from the observational data cube in Figure 3.3, and compare its power
spectrum (black solid) to that of the noise data cube (yellow dashed). I find excellent agreement
between them within the 2-𝜎 error on the noise. To numerically quantify this, I calculate the
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Figure 3.3: Residual (black solid line) obtained by subtracting the full GPR model from the data,
and its corresponding 2-𝜎 confidence interval (grey shaded region). The noise is shown as a
yellow dashed line with 2-𝜎 error bars. I note an excellent agreement between them.

𝜒2 of the residual versus the noise power spectrum, and find this to be ≈ 6.12. With 7 𝑘 bins,
this gives a reduced 𝜒2 ≈ 0.87, thus confirming the performance of the model. However, it is
still possible that some minor leakage can occur between the different signal components. Thus,
better modelling of the excess noise remains necessary to improve the bias correction as more
data is added. Furthermore, for an eventual detection, reduction of the noise component through
longer observations is also needed.

3.5 Conclusions

To improve the modelling of the 21-cm signal covariance kernel, Mertens et al. (2024) introduced
a Machine Learning based method that uses a Variational Auto-Encoder (VAE) based algorithm.
This was trained on Grizzly simulations (Ghara et al., 2015, 2018, 2020) of the 21-cm signal and
tested against mock datasets by Acharya et al. (2024b). In this work, I use the VAE-based kernel
trained at 𝑧 = 9.16 to obtain an updated upper limit on the 21-cm signal from 141 hours of LOFAR
data (≈ 10 nights) at 𝑧 ≈ 9.1. I compare my results to past efforts, which used analytic functions
instead of Machine Learning (Mertens et al., 2020), and find that they are consistent with errors,
although the new upper limits are slightly increased at 𝑘 ≲ 0.2 ℎ cMpc−1, and mildly decreased
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for 0.2 ℎ cMpc−1 ≲ 𝑘 ≲ 0.5 ℎ cMpc−1. Overall, I report a 2-𝜎 upper limit of Δ2
21 < (80)2 mK2

at 𝑘 = 0.075 ℎ Mpc−1 in the conservative case, when jointly recovering the 21-cm signal and
excess noise components.

I also investigate the case in which the upper limits of the 21-cm signal are evaluated including
a bias correction for the excess noise component. In this case, I report a 2-𝜎 upper limit of
Δ2

21 < (25)2 mK2 at 𝑘 = 0.075 ℎ Mpc−1. I confirm that the VAE kernel hyperparameters
are uncorrelated from the excess component ones, thus providing confidence for the estimated
upper limits. This is strengthened by the fact that the residuals obtained by subtracting the full
model from the data are consistent with the noise with 0.87𝜎. Although the bias correction is
promising, I still caution against using the bias-corrected upper limits, as better modelling of the
excess noise remains necessary to improve confidence on its separation from the 21-cm signal,
as the data improves and the signal to noise increases. In future work, the LOFAR EoR KSP
team will be improving the characterisation of the excess noise component and its corresponding
covariance kernel, and assess whether an excess noise bias correction can reliably be applied as
this work suggests it can. As demonstrated here, this approach would substantially reduce the
current upper limits on the 21-cm signal, although this should still be considered as an upper
limit and not a detection for the given data, as it is already reaching the sensitivity limit due to the
noise, given by the 2-𝜎 error on the noise. This improvement could offer enhanced astrophysical
constraints compared to Ghara et al. (2020), allowing for the rejection of a significantly greater
number of cold IGM scenarios and achieving stricter constraints on the sources of X-ray heating.
This shall be carried out in future work. Additionally, the team will make use of VAE-based
covariance kernels as developed in Acharya et al. (2024b) across multiple redshifts with data
from the LOFAR telescope.



Chapter 4

Improved simulations: boosting simulation
volumes

When stupid ideas work, they become genius ideas.

- Andy Weir

4.1 Overview

In this chapter, I move on to dealing with improvements in numerical simulations of the 21-cm
signal observables, including the skewness, power spectrum, bispectrum, and bubble size distri-
bution. In particular, I focus on the improvement in terms of the effective volume of simulations
possible by implementing the Fixed & Paired (F&P) method. I test this with Radiation-Magneto-
Hydrodynamic (RMHD) simulations to carefully account for radiative transfer and baryonic
hydrodynamics, which in turn impact galaxy properties. Using these simulations ensures we
account for the impact of small-scale properties (below one comoving Megaparsec) on the 21-cm
signal. The contents of this chapter were published in Acharya et al. (2024c) and have been
adapted to be consistent with the rest of the thesis.

The simulations used are detailed in Section 4.2. I discuss the results of various summary statistics
in Section 4.3 and the improvement on using the F&P approach in Section 4.4, while I give my
conclusions in Section 4.5.
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4.2 Methodology

4.2.1 The 21-cm signal

The brightness temperature fluctuations of the 21-cm signal are given relative to the CMB
temperature for any patch of the IGM as (see Furlanetto et al., 2006):

𝛿𝑇b = 27𝑥HI(1 + 𝛿B)
(
1 − 𝑇CMB

𝑇𝑆

)
×

[(
ΩBℎ

2

0.023

) (
0.15
Ωmℎ2

1 + 𝑧
10

)1/2]
mK (4.1)

where 𝑥HI is the fraction of neutral hydrogen, 𝛿B is the fractional overdensity of baryons, 𝑇S is
the hydrogen spin temperature, 𝑇CMB is the temperature of the CMB photons at redshift 𝑧, Ωm is
the total matter density, ΩB is the baryon density, and ℎ is the Hubble constant in units of 100
kms−1cMpc−1. Above I assume that the spin temperature is coupled to the gas temperature, i.e.,
𝑇S = 𝑇gas, where 𝑇gas is the gas temperature self-consistently calculated in the simulations.

In the next section, I introduce the simulation used to generate mock differential brightness
temperature (𝛿𝑇b) maps.

4.2.2 Simulations

My setup is inspired by the THESAN simulations. I run a suite of radiation-magneto-hydrodynamic
simulations that utilize the moving-mesh hydrodynamics code AREPO (Springel, 2010; Weinberger
et al., 2020), which includes a gravity solver based on the hybrid Tree-PM method (Barnes
& Hut, 1986), a quasi-Lagrangian Godunov method (Godunov & Bohachevsky, 1959) based
hydrodynamics solver implemented on an unstructured Voronoi mesh grid (Vogelsberger et al.,
2020) and the radiative transfer extension AREPO-RT (Kannan et al., 2019) for a self-consistent
treatment of ionizing radiation. I include the production and propagation of ionizing photons in
three energy bins relevant for hydrogen and helium photoionization ([13.6, 24.6, 54.4, ∞] eV).
Further, I emply a non-equilibrium thermochemistry solver to model the coupling of radiation
fields to gas. For the luminosity and spectral energy density of stars, I use a complex function of
age and metallicity calculated using the Binary Population and Spectral Synthesis models (BPASS
v2.2.1; Eldridge et al., 2017), modeling the unresolved birth cloud with a uniform escape fraction
of 𝑓esc = 0.37. I note that I do not perform a recalibration of this parameter with respect to THESAN
since (i) it mostly impacts the final phases of reionization, while I are interested in the initial ones,
and (ii) my goal is to compare methods for initial condition generation, so a slightly-inaccurate
reionization history is not expected to affect at all my results. For further details on the THESAN
simulations, see Kannan et al. (2019, 2022).

All my simulations have a box-size of 𝐿 = 95.5 cMpc, and 𝑁 = 2 × 5253 particles, giving a
dark matter and baryonic particle mass of 𝑚DM = 2.0 × 108 M⊙ and 𝑚gas = 4.7 × 106 M⊙,
respectively. The gravitational softening length for the star and dark matter particles is set to
6.0 ckpc, which is also the minimum value for the adaptively softened gas cells according to
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cell radius. The cosmological parameters are taken from Planck Collaboration et al. (2016) as
ℎ = 0.6774, Ωm = 0.3089, ΩΛ = 0.6911, Ωb = 0.0486, 𝜎8 = 0.8159 and 𝑛𝑠 = 0.9667. In the
initial conditions the gas is assumed to follow the DM distribution perfectly, with a primordial
hydrogen and helium fractions of 𝑋 = 0.76 and 𝑌 = 0.24, respectively. I start the simulations
from 𝑧ini = 49, generating 54 snapshots between 𝑧 = 20 to 7.

Due to the chosen particle number, my dark matter halo masses are ≳ 1010 M⊙, leading to
reionization being driven by relatively massive galaxies. The resulting topology of reionization
therefore somewhat differs at small scales from the one that would be produced including lower
mass, more abundant, galaxies. This will impact the 21-cm signal and slow down the reionization
process (which is driven by 𝑀star ∼ 107 M⊙ galaxies as shown in Rosdahl et al., 2022; Yeh et al.,
2023; Kostyuk et al., 2023). However, these effects will equally affect all simulations, so will
be factored out by my comparative analysis. A higher mass resolution would be immensely
computationally expensive to run the number of simulations necessary to perform the statistical
analyses discussed in subsequent sections of this work. As discussed earlier, the necessity of
simulating large physical scales in order to compare with upcoming surveys prevents me from
employing smaller (and thus computationally cheaper) boxes.

Once a significant fraction of neutral hydrogen is reionized, the improvement of using the F&P
approach to study the 21-cm signal is expected to saturate. This is depicted in Figures 4.8 and B.1,
showing the improvement factor calculated according to the methodology of Section 4.4.1. Thus,
I only run the simulations down to 𝑧fin = 7, which corresponds to ⟨𝑥HI⟩ ≈ 0.8.

Lastly, as done in Kannan et al. (2022), I also save Cartesian data output at a higher cadence (243
outputs between 𝑧 = 16 to 𝑧 = 7) by gridding the simulation data onto a regular Cartesian grid
employing a first order Particle-In-Cell approach. I use a 2563 grid, i.e. each cell is ∼ 372 ckpc
in size.

4.2.2.1 The Fixed & Paired approach

The F&P approach was first proposed by Angulo & Pontzen (2016) and is based on the creation
of a special pair of initial conditions (ICs) that, when employed together, significantly reduce the
impact of cosmic variance. In the traditional approach to ICs creation, an initially uniform and
isotropic distribution of tracers particles is perturbed (following e.g. Zel’dovich, 1970) to induce
density perturbations:

𝛿(k, 𝑧ini) =
√︁
𝑃(k, 𝑧ini)𝑒𝑖𝜃k (4.2)

where the phase 𝜃k is sampled from a flat distribution in the range [0, 2𝜋], and the power spectrum
amplitude 𝑃(k, 𝑧ini) is sampled from a Gaussian distribution centered on its expectation value
𝐸 [𝑃(k̂, 𝑧ini)] (necessary to produce a Gaussian random field).

In the F&P approach, the power spectrum modes are fixed to their expectation values. This
produces the fixed initial conditions, while the paired one is obtained by reversing the phase
associated to each particle displacement. By combining simulations run with these two sets
of ICs, the variance-induced fluctuations (which in traditional ICs mainly affect the large-scale
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Figure 4.1: Evolution of the volume averaged neutral hydrogen fraction versus redshift for GIC
simulations (grey solid), their ensemble average (black solid) and five F&P averages (orange,
magenta, red, blue and green dashed). I note that at 𝑧=7 ⟨𝑥HI⟩ ranges between 0.72 and 0.82 for
the GIC simulations.

modes, where the sampling of the power spectrum amplitude is scarce and therefore more
susceptible to deviations from its expectation value) are suppressed up to the fourth perturbative
order (Angulo & Pontzen, 2016). Additionally, despite breaking the Gaussianity of the generated
field, this approach does not induce unwanted features, as shown by e.g., Angulo & Pontzen
(2016) and Chartier et al. (2021) for the matter power spectrum, bispectrum and the halo mass
function, by Anderson et al. (2019) for Lyman-𝛼 forest power spectra, and for a variety of other
quantities by Villaescusa-Navarro et al. (2018) and Klypin et al. (2020).

In this work, I generate 5 such pairs of F&P simulations, in order to explore the effects of the
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random sampling of density perturbations. To minimise the effect of randomness, for each pair I
fix the seed for the random number generator used for stochastic algorithms like the star formation
prescription. Further, I run all the simulations described here on the same machine with the same
hardware configurations. As AREPO is coded to be binary identical in such conditions, it allows
me to avoid floating point errors building up and biasing my results.

I compare the averages of these 5 F&P pairs against 35 traditional Gaussian-sampled initial
conditions based simulations (hereafter referred to as GIC). As an example, in Figure 4.1 I show
the reionization histories of the 5 pairs (magenta, orange, red, blue, green dashed), as well as that
of the GIC simulations (grey solid). From the figure, I note that the reionization histories of the
F&P averages cluster close to the average of those of the GIC simulations. This is a consequence
of the fact that the F&P method ensures that the F&P averages closely match the halo mass
function, while GIC simulations can spuriously have an excess/dearth of very bright sources.

In Figure 4.2, I show maps of 𝛿𝑇b at different redshifts (𝑧 = 10, 8.3, 7.6, 7; these correspond
to ⟨𝑥HI⟩ = 0.99, 0.95, 0.9, 0.8) for one of the fixed simulations, its corresponding pair, their
average, and the average of two randomly chosen GIC simulations. I choose two GIC simulations
at random to provide a visual comparison of results obtained from averaging them as opposed
to averaging an F&P pair. Note that due to the phase inversion used for generating the initial
conditions of the pair, the regions of high 𝛿𝑇b in the fixed simulation roughly overlaps with regions
of low 𝛿𝑇b in the pair. This is evident in their average, which does not have specific regions of
high (or low) 𝛿𝑇b, unlike the average of the two GIC simulations. With decreasing redshift, I
see such regions beginning to form for the F&P average as well, but a closer analysis of the 𝛿𝑇b
summary statistics is necessary to analyse the difference from GIC simulations.

In the next section, I compare the ensemble average of the GIC simulations (taken to be the “true"
value) against the F&P average simulations. I show qualitative comparisons between two of the
F&P averages and the true value in Section 4.3, and a more quantitative analysis using all five of
the averaged simulations in Section 4.4.

4.3 Analysis and Results

In this section, I compare the various summary statistics of the 21-cm signal for the GIC simula-
tions and their ensemble average versus the F&P averages. In particular, I focus on the skewness,
the power spectrum, and the bispectrum. In Sections 4.3.1, 4.3.2 and 4.3.3 I analyse their be-
haviour at various redshifts, focusing on 𝑧 = 10, 9, 8, and 7. I also compare the ionized bubble
size distribution across these redshifts in Section 4.3.4.

4.3.1 Skewness

The skewness (�̃�3,b) is a statistical measure of asymmetry in a distribution, i.e., as the name
suggests, it quantifies how skewed a distribution is around its mean value. �̃� = 0 indicates a
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Figure 4.2: Middle slices of the 𝛿𝑇b maps of (from left to right): one of the fixed simulations,
its corresponding pair, their average, and the average of 2 GIC simulations, at 𝑧 = 10, 8.3, 7.6, 7
(with ⟨𝑥HI⟩ = 0.99, 0.95, 0.90, 0.80 respectively). The average of 2 GIC simulations shows clear
regions of high (and low) 𝛿𝑇b, unlike the F&P average. With decreasing redshift, such regions
begin to form for the F&P average as well, but a closer analysis of the 𝛿𝑇b summary statistics is
necessary to analyse the difference from GIC simulations.

symmetric distribution. Here, I use the definition of skewness from Ma et al. (2021), given as:

�̃�3,b =
𝜇3(𝛿𝑇b)
𝜇2(𝛿𝑇b)3/2 = E

[
(𝛿Tb − ⟨𝛿Tb⟩)3

𝜎3
𝛿Tb

]
(4.3)

where 𝜇𝑖 is the 𝑖-th central moment, and E[] is the expectation value at each snapshot where I
calculate the skewness. In my case, this would be the volume average.
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Figure 4.3: Redshift evolution of skewness for 35 GIC simulations (grey solid), their ensemble
average (black solid), and the five F&P averages (orange, magenta, red, blue and green; dashed).

In Figure 4.3, I compare the evolution of skewness versus redshift from 𝑧 = 10 to 7 for the 35
GIC simulations, their ensemble average, and the 5 F&P average simulations. I note that the F&P
averages are a good estimate for the true value of the skewness in most cases. For the 2nd F&P
average, the deviation is larger at 𝑧 ≲ 8, which is indicative of more inhomogeneity in the 𝛿𝑇b.
I find that this anomalous skewness is caused by the fixed simulation in the second pair having
a chance association of galaxies with strong black hole feedback and high output of ionizing
photons. While such cases are rare, they are physically possible and highlight how the relevance
of galactic processes in the production of the 21-cm signal hinders the improvements granted by
the F&P approach. I also note that such cases are not completely captured by e.g. the 21cmFAST
simulation used in Giri et al. (2023).
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This anomalous skewness however, is not expected to cause a major effect on other summary
statistics like the power spectrum and bispectrum, because the effect is localised around few
simulated galaxies. Thus, not only the scales involved are significantly smaller than the scales
I consider in the next sections, but this effect is driven by a statistically-insignificant number of
objects. To ensure this, I checked that by replacing in Equation 4.3 the volume average with the
median, the anomalous behavior vanishes. To make this more evident, in all following figures
concerning summary statistics (0.15 ≤ 𝑘/(ℎ cMpc−1) ≤ 2.0) I elected to show the F&P pair
that most closely follows the ensemble-averaged skewness and the pair that most deviates from
it. There is no significant difference between these two.

4.3.2 Power Spectrum

The power spectrum is expected to be the first detectable statistic of the 21-cm signal during the
EoR, and thus is of particular interest. So analysing the improvement in modelling, if any, with
the F&P method is important. The power spectrum of 𝛿𝑇b as defined in Equation 4.1 is given by:

𝑃21cm(k) = 𝛿𝐷 (k + k′)⟨𝛿𝑇b(k)𝛿𝑇b(k′)⟩ (4.4)

where 𝛿𝐷 is the Dirac function, 𝛿𝑇b(k) is the differential brightness temperature in Fourier space,
and ⟨...⟩ is the ensemble average. In this work, I use the normalized form of the power spectrum
given by:

Δ2
21cm =

𝑘3

2𝜋2 × 𝑃21cm. (4.5)

In Figure 4.4 I show the power spectra of the GIC simulations (in grey), their ensemble average
(in black), and the F&P averages (magenta and orange) for 2 pairs (purple and green, with the
fixed simulation in dashed, and their corresponding pairs in dotted lines) out of the 5 generated
in Section 4.2.2.1. While I have analysed results for all of the five generated F&P pairs (see
Section 4.4.1 for a quantitative comparison), for the sake of visual clarity I show only two out of
the five pairs. I explicitly choose the second F&P pair average (orange) to check if its deviation
in skewness leads to any difference in behaviour as compared to one of the other four pairs
(magenta).

I note that the F&P averages match the ensemble average across all redshifts. While their
deviation from the ensemble average increases with decreasing redshift, it is still less than that
of the individual GIC simulations (see lower panels of Figure 4.4). This is understandable as a
combination of two effects. First, the F&P approach is expected to yield improvements on the
predictions of features that are primarily governed by the large-scale structure (as they are tied to
the matter power spectrum), while it does not provide a statistical improvement on the prediction
of galaxy properties (Villaescusa-Navarro et al., 2018), such as ionizing photons output, as they
are entirely dominated by local physics. Secondly, the period of emergence of ionized regions is
one where the 21-cm signal becomes increasingly non-Gaussian. Thus, the information content in
the power spectrum is reduced in this period as compared to earlier and later redshifts, which have
a homogenized distribution of neutral and ionized hydrogen, respectively. While the contribution
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Figure 4.4: Top: Power spectra of GIC simulations (grey solid), their ensemble average (black
solid), two F&P pairs (purple and green, dashed and dotted) and their averages (magenta and
orange, solid) for 𝑧 = 10, 8.3, 7.6, and 7 from left to right. Bottom: The normalised deviation of
each random simulation and F&P average from the ensemble average.

from the large-scale structure remains the same, the fluctuations of 𝛿𝑇b are increasingly affected
by the presence of ionized gas, which in my simulation is dominated by large and isolated ionized
regions. While this mostly affects the power spectrum at small scales, the cumulative fluctuations
over large scales can also show up. Thus for the F&P method I observe deviations in the 21-cm
signal power spectrum which are larger than those in the matter power spectrum as redshift
decreases. However, I note that these deviations are still smaller than those of the individual GIC
simulations. Nevertheless, it is necessary to check if an F&P pair average power spectrum is more
likely to minimize cosmic variance as opposed to an average of two random GIC simulations.
Thus, I quantify the improvement on using the F&P method in Section 4.4.1, where I consider
all my F&P pair averages.

While discrepancies between my results and Giri et al. (2023) could possibly be due to the
difference in methodologies adopted for comparing the F&P method versus traditional generation
of initial conditions, contributions from better handling of galaxy-driven physics in my simulations
are also possible. It is however difficult to discern the extent of the effect galaxy-driven physics
has on my results. Finally, it is also possible that my ensemble average is biased because it is an
average of just 35 simulations. Using significantly larger number of GIC simulations may rule
out this issue. However, I note no appreciable difference in the ensemble average once more than
20 GIC simulations have been used, and thus refrain from running additional simulations.

4.3.3 Bispectrum

As discussed in the previous section, the non-Gaussianity of the 𝛿𝑇b increases with the growth of
ionized regions as redshift decreases. This means that a statistic that focuses only on the Gaussian
parts of the signal, like the power spectrum, encapsulates less and less information as I move to
lower redshift, into the regime of ⟨𝑥HI⟩ ≲ 0.9. Therefore, I turn to higher-order statistics to assess
whether the F&P average is still a good approximation of the ensemble average of simulations in
this regime, since they are able to capture the non-Gaussian features of the 𝛿𝑇b. While skewness
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Figure 4.5: Top panels: Equilateral triangle bispectra (𝐵equi) for 0.15 ≤ 𝑘/(ℎ cMpc−1) ≤ 2.0
of GIC simulations (grey solid), their ensemble average (black solid), two F&P pairs (pur-
ple and green, dashed and dotted) and their averages (magenta and orange, solid) for 𝑧 =

10, 8.3, 7.6, and 7, clockwise from upper left. Bottom panels: The normalised deviation of
each random simulation and F&P average from the ensemble average.

as discussed in Section 4.3.1 would show some broad non-Gaussian features of the signal, it is
still a one point statistic, i.e. it will not quantify the correlation of the signal between different
Fourier modes. Thus, I now focus on the bispectrum as defined in Majumdar et al. (2018):

𝑏21cm(k1, k2, k3) = 𝛿𝐷 (k1 + k2 + k3)⟨𝛿𝑇b(k1)𝛿𝑇b(k2)𝛿𝑇b(k3)⟩ (4.6)

where k1, k2, k3 are the Fourier space wave numbers, 𝛿𝐷 is the Dirac delta function and
⟨𝛿𝑇b(k1)𝛿𝑇b(k2)𝛿𝑇b(k3)⟩ is a measure of the number of triangles (weighted by the 𝛿𝑇b val-
ues at their vertices) of different configurations formed by wave numbers k1, k2 and k3. The
different triangles can be formed by varying the magnitude of the wave numbers.

To evaluate the bispectra from my simulations, I use the publicly available BiFFT package
(Watkinson et al., 2017), which employs a Fourier transform based technique (as described in
Scoccimarro, 2015; Sefusatti et al., 2016) much faster rather than the more traditional approach
of counting individual triangles, while still providing consistent results. Following Majumdar
et al. (2020), I normalize 𝑏21cm(k1, k2, k3) as 𝐵21cm(k1, k2, k3) = 𝑘3

2𝑘
3
3/(2𝜋

2)2𝑏21cm(k1, k2, k3).

As done in Figure 4.4, I focus on wave numbers between 0.15 ≤ 𝑘 ≤ 2ℎ cMpc−1 and show only
two of the five F&P averages for the sake of visual clarity. Further, I consider only two reference
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Figure 4.6: Top panels: Isosceles triangle bispectra (𝐵isoc) for 𝑘1 = 𝑘2 = 0.2 ℎ cMpc−1 for
𝑧 = 10, 8.3, 7.6, and 7, clockwise from upper left. Colours and linestyles follow Figure 4.5.
Bottom panels: The normalised deviation of each random simulation and F&P average from the
ensemble average.

cases:

• Equilateral triangles (𝐵equi): Here I set 𝑘1 = 𝑘2 = 𝑘3 = 𝑘 , where 𝑘 goes from 0.15 to
2 ℎ cMpc−1. This allows me to explore the non-Gaussian features of the signal across
various physical scales. The results are shown in Figure 4.5, with the same colours and
linestyles as Figure 4.4. I note that the F&P averages are a close match to the ensemble
average across all redshifts. The apparent large deviations seen at some wave modes of
the F&P average in comparison to the ensemble average (lower panels of Figure 4.5) arise
because at those scales the bispectra approach 0. The normalisation by the ensemble
average thus exaggerates the small differences significantly. Giri et al. (2023) carried out a
similar analysis for 𝑧 = 9 (corresponding to ⟨𝑥HI⟩ = 0.8 in their simulations), and found the
F&P averages to be a close match to the ensemble average for 𝑘 > 0.1 ℎ cMpc−1. Thus my
results are consistent with their conclusions. I also quantify the improvement on using the
F&P method for 𝐵equi in Appendix B, using the methodology of Section 4.4.1, considering
all my F&P pair averages.

• Isosceles triangles (𝐵isoc): I set 𝑘1 = 𝑘2 = 𝑘 = 0.2 ℎ cMpc−1 ≠ k3 to explore large physical
scales more thoroughly. I plot 𝐵isoc versus the opening angle between the vectors k1 and k2
given as 𝜃 = cos−1(k1 · k2/(𝑘1𝑘2)) in Figure 4.6, with the same colours and linestyles as
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Figure 4.4. As expected, the GIC simulations show large sample variance, which reduces
with decreasing redshift. However, the F&P averages are an even closer match to the
ensemble average as compared to the GIC simulations, and thus continue to provide an
improvement across all four of the redshift bins used. Similarly to what observed for 𝐵equi,
the large deviations seen at some scales at 𝑧 = 10 are due to 𝐵isoc approaching 0.

I also repeat the process for other 𝐵isoc, by varying 𝑘1 = 𝑘2 = 𝑘 from 0.15 to 1.5 ℎ cMpc−1, and
find that the trends hold across all physical scales. This is an interesting result, as it provides a
useful statistic for modelling the 21-cm signal using F&P averages at redshifts with ⟨𝑥HI⟩ ≤ 0.9.
It thus works well for comparing with observations too, as at these redshifts the bispectrum is a
more useful statistic than the power spectrum.

However, it is necessary to verify that the improvement in estimating the “true" bispectrum when
using an F&P average indeed correlates with statistical estimates of the physical properties (i.e.,
the distribution of neutral hydrogen) at the observed redshifts. A good way to check this, is to
analyse the properties and distribution of the source of the non-Gaussian features of the 𝛿𝑇b, i.e.,
the ionized regions.

4.3.4 Bubble size distribution

There is no universal consensus on how to identify ionized regions, with several methods having
been used in literature (see Giri et al., 2018, for a detailed comparison of different methods).
Here, firstly, I choose to define cells with 𝑥HI ≲ 0.5 as ionized. Next, I use a Friend-of-Friends
algorithm based on the ndimage package of SciPy (Virtanen et al., 2020) to identify regions
with clusters of such ionized cells, which are then considered as “bubbles”. From their volume,
I derive the radius of an equivalent sphere and use it as an effective bubble radius (𝑟eff). The
threshold value of 𝑥HI=0.5 chosen to identify a cell as neutral or ionized is arbitrary. However, I
find that varying this value does not affect my qualitative results.

The maximum value of 𝑟eff is determined by the box size, while I ignore bubbles equivalent
to an individual cell as they are resolution limited. I then find radii in the range 0.16 ≲
𝑟eff/(ℎ−1 cMpc) ≲ 40. As my simulations are run only down to 𝑧 = 7 and quasars are not
included as sources of ionizing photons, I do not expect many bubbles with 𝑟eff > 5 ℎ−1 cMpc,
and thus do not need to worry about the other extreme of the resolution range. I thus limit my
analysis to the range 0.3 ≤ 𝑟eff/(ℎ−1 cMpc) ≤ 5, and build histograms of number of bubbles
(𝑛bubbles) binned according to 𝑟eff . In Figure 4.7, I construct violin plots (cyan) for the different
values of 𝑛bubbles for the GIC simulations, and also show the ensemble average (black circles).
To compare this with the two F&P averages used in Section 4.3.3, I plot the averages for the
number of bubbles for the individual fixed and paired simulations using the same colour scheme
(magenta and orange triangles). Again, I only show two out of the generated five averages for
the sake of easy visual comparison, as all five give similar results. I note that both F&P averages
are a good match for the ensemble average, and even when they deviate, they remain well within
the violins, showcasing the ranges of the GIC simulations. This confirms that the improvement
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Figure 4.7: Number of ionized bubbles in different radii 𝑟eff bins at 𝑧 = 10, 8.3, 7.6, and 7. I plot
their distribution for the GIC simulations (cyan violin), the ensemble average (black circles), and
the two F&P averages used in Sections 4.3.2 and 4.3.3 (magenta and orange triangles).

in the bispectrum noted when using the F&P average is obtained because they closely match the
number and sizes of ionized regions of the ensemble average.

Further, as expected, I see that the violin plots get narrower as I approach lower redshifts, as
small scale variability between the GIC simulations grows with decreasing redshift. Lastly, I
note that the number of smaller bubbles grows when going from 𝑧 = 10 to 𝑧 = 7.6, but by
𝑧 = 7, many of them would have begun merging, leading to a fall in the number of bubbles with
1.0 ≤ 𝑟eff/(ℎ−1 cMpc) ≤ 2.0.

4.4 Discussion

4.4.1 Advantage of the F&P method

Qualitatively, I note that the F&P average provides a closer estimate of the ensemble average,
as compared to any individual GIC simulation, for statistics like the skewness and the power
spectrum, at least for ⟨𝑥HI⟩ ≥ 0.9. For ⟨𝑥HI⟩ ≲ 0.9, the improvements for the power spectrum is
reduced and the bispectrum becomes the better statistic to use.
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Figure 4.8: The standard deviation curve (grey) generated by interpolating the standard deviations
of ⟨𝑃ws⟩m GIC (grey squares) versus number of sampled GIC simulations 𝑚 going from 1 to 35
for 𝑧 = 10, 8.3, 7.6 and 7, clockwise from top left. The five F&P averages are plotted as triangles
(circles) with the assumption of them being 1-𝜎 (2-𝜎) away from ⟨𝑃ws⟩35 GIC using the same
colours as used in Figures 4.1 and 4.3. Their closest matches in the standard deviation curve are
shown with black dotted vertical lines gives 𝑚eq.

However, it is necessary to quantify this improvement as compared to the average of multiple
GIC simulations. For this reason, here I lay out the methodology to find the number of GIC
simulations needed to match the performance of one F&P average with respect to the power
spectrum. For this, I define “performance” as the extent of deviation of the average of multiple
GIC simulations or of an F&P pair from the power spectrum of the ensemble average. If the
number of GIC simulations required to match the performance of an F&P average is greater than
2, this means more of them need to be run to achieve the same performance. In this case, using
the F&P average which just needs 2 simulations to be run would reduce computational costs.

Ideally, for this comparison one should run a large number of GIC simulations as well as F&P
averages, and compare the extent of their deviation from the ensemble average at specific wave-
modes. However, as radiation-hydrodynamical simulations are computationally expensive, I
utilise the 35 GIC simulations discussed in previous sections, and compare them to all 5 F&P
averages generated in Section 4.2.2.1. To mimic large number statistics, I proceeds as follows:

1. Wave-mode window: The availability of a large number of simulations allows the investi-
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gation of specific wave-modes, while the same cannot be done when I are limited to just a
small number of them as in this case individual wave-modes are affected as well by random
noise. I thus choose a window of wave-modes and sum all the power spectra at 𝑘s contained
within it for each GIC simulation (𝑃ws), their ensemble average (⟨𝑃ws⟩35 GIC), as well as
each F&P average (⟨𝑃ws⟩F&P i, where 𝑖 goes from 1 to 5). I choose this window to be
0.15 ≤ 𝑘/(ℎ cMpc−1) ≤ 0.4 to ensure that the largest physical scales covered correspond
to those at which the current and next-generation radio telescopes are most sensitive.

2. Choosing GIC simulations: To evaluate the ‘effective volume’ of the F&P simulations,
I need to determine the number 𝑚eq of GIC ones that match the statistical power of a
single pair of F&P simulations. However, different subsets of 𝑚 < 35 GIC simulations
will produce different results, especially for small values of 𝑚. Therefore, in the following
I consider all the 35𝐶𝑚 possible subsets, which is the number of combinations of 𝑚 objects
out of 35. But for computational reasons, I cap the number of combinations to 104.

3. Standard deviation curve: For every 𝑚, I compute the average 𝑃ws for all 35𝐶𝑚 combina-
tions. These ⟨𝑃ws⟩m GIC values form a Gaussian distribution centred around the ensemble
average value ⟨𝑃ws⟩35 GIC. I measure the standard deviation of this Gaussian distribution
(𝜎⟨𝑃ws⟩m GIC) for each 𝑚. I linearly interpolate these values to generate the grey curves in
Figure 4.8, with the grey squares referring to 𝜎⟨𝑃ws⟩m GIC .

4. Standard deviation of the F&P runs: Although the above procedure should be repeated
for the F&P runs, this is prohibitively expensive from a computational point of view.
Therefore, I explicitly parameterize my ignorance of the true width of the distribution of
⟨𝑃ws⟩F&P by assuming that each F&P average lies exactly 1-𝜎 away from its center. In other
words, I assume that ⟨𝑃ws⟩F&P i − ⟨𝑃ws⟩35 GIC is a measure of the width of the Gaussian
distribution of ⟨𝑃ws⟩F&P. This is done independently for each F&P run, and is shown in
Figure 4.8 with triangles. I then repeat this procedure but assuming that each F&P average
lies exactly 2-𝜎 away from the center of the distribution, and show the results with circles.

5. Closest 𝑚 matching: For the F&P runs, I compare their standard deviation with the curve
generated from the GIC simulations in step (iii) and determine the closest 𝑚 value (black
dotted vertical lines in Figure 4.8). This is my estimate of 𝑚eq for each F&P simulation
pair.

6. Improvement factor ( 𝑓imp): Finally, I define the improvement factor 𝑓imp = 𝑚eq/2 for all
5 F&P runs. This corresponds to the ratio between the number of simulation runs (i.e.
simulated volumes, since all my runs have the same box size) necessary with GIC and F&P
ICs, for which I report the minimum, maximum and average values in Table 4.1.

From Figure 4.9, I note that the extent of improvement provided by the F&P method reduces
with decreasing redshift, as was expected from the qualitative results of Section 4.3.2. However,
interestingly, this trend seems to stop at 𝑧 = 7.6, with higher values of 𝑓imp noted at 𝑧 = 7. This
indicates that while the F&P average may be performing worse at lower redshifts, it still does
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Table 4.1: 𝑓imp is the factor of improvement on running an F&P average over running multiple
GIC simulations. I report the minimum, maximum and average value of this quantity for the two
cases discussed in (iv), for the five F&P averages.

𝑧 1 − 𝜎 away 2 − 𝜎 away
𝑓imp,min 𝑓imp,max ⟨ 𝑓imp⟩ 𝑓imp,min 𝑓imp,max ⟨ 𝑓imp⟩

10.0 2.0 15.5 6.4 6.5 17.0 10.9
8.3 1.0 10.5 4.7 3.0 15.0 9.0
7.6 0.5 8.5 3.5 1.0 14.0 7.1
7.0 1.0 17.0 8.3 2.5 17.5 11.2

better than an average of a few GIC simulations. In fact, I note that ⟨ 𝑓imp⟩ is ∼ 6 at 𝑧 = 10 (thus
one F&P average is better than running 12 GIC simulations), but ∼ 8 at 𝑧 = 7 (equivalent to 16
GIC simulations) for the case of F&P averages being 1-𝜎 away. The lowest average improvement
is 3.5 at 𝑧 = 7.6, indicating that at least 7 GIC simulations are needed to match an F&P average.

As I sum the power spectra across the aforementioned wave-mode window, a direct comparison
between my results and those of Giri et al. (2023) is difficult. Nevertheless, I note that in the
range 10 ≥ 𝑧 ≥ 7, I obtain 𝑓imp ≥ 3.5, which agrees with their result of an improvement of
at least a factor of 4 at 𝑘 = 0.1 ℎ cMpc−1 at 𝑧 = 9, ⟨𝑥HI⟩ = 0.8. The worst possible value of
𝑓imp is 0.5, which corresponds to the case when I have a single GIC simulation perform better.
This is expected, as pure randomness does allow such chance events. However, as the average
improvement is above 2, I believe this still supports the use of F&P averages for modelling the
21-cm signal power spectrum rather than running GIC simulations.

A similar analysis can be run for the equilateral triangles bispectrum. I present this in more
details in Appendix B, where I find 𝑓imp ≥ 5.0. This result showcases that the F&P method is
even better for the bispectrum, and thus using multiple summary statistics for the 21-cm signal
can allow me to maximise the interpretation of the 21-cm signal without requiring large effective
volumes. Note that similar analyses can be performed for bispectra generated for different values
of 𝑘1, 𝑘2 and 𝑘3, by using a window over the opening angle instead of the wave-mode.

4.4.2 Limitations and future applications

As I have shown in the previous Section, the F&P method can be a powerful tool to extend the
statistical accuracy of limited-volume simulations of the EoR 21-cm signal. In combination with
the advancement of computational techniques and hardware, this method can deliver accurate
predictions over volumes of interest for the study of the 21-cm signal, especially in the early
phases of cosmic reionization. However, I caution that the F&P method does not improve
my predictive ability concerning individual galaxy properties, as they are dominated by local
processes and environment. Therefore, the improvement granted on statistical quantities (e.g.
the power spectrum and bispectrum) does not necessarily mirror exactly on different observables
that might be more affected by individual objects (see e.g. the discussion in Sec. 4.3.1).
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Figure 4.9: Redshift evolution of the improvement factor in computational expense, 𝑓imp, when
using the F&P approach. The errorbars show the range from 𝑓imp,min to 𝑓imp,max for the F&P
averages being 1-𝜎 away (yellow) or 2-𝜎 away (blue) from an assumed distribution of F&P
averages, and the points show the average, ⟨ 𝑓imp⟩. The top axis shows the corresponding ⟨𝑥HI⟩
and the right axis shows the number 𝑚eq of GIC simulations corresponding to 𝑓imp. The black
dashed line indicates no improvement.
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I foresee numerous application of this technique. For instance, the lower computational cost
required (with respect to traditional approaches) entails e.g. that larger volumes, as well as a
broader range of cosmologies and/or physical models can be explored with accurate simulations,
greatly improving the reliability of predictions and – eventually – inference from 21-cm signal
data. While basing the entire inference process on RMHD simulations remains prohibitive, they
will be needed in order to confirm and improve constraints obtained through computationally-
cheaper less-accurate methods. Additionally, they are necessary to explore the coupling between
small and large scales, e.g. spatial correlations between galaxies and the 21-cm signal, that the
advent of SKA will enable. My results suggest that such accurate predictions can be obtained
from RMHD simulations even in statistically-significant volumes of the Universe.

Finally, the F&P approach operates orthogonally to super-resolution techniques (Kodi Ramanah
et al., 2020; Li et al., 2021, as discussed in Section 1.5.4); therefore these two approaches should
be considered complementary rather than in opposition.

4.5 Summary

Running simulations for EoR is computationally very expensive. This is exacerbated when aiming
at resolving low-mass galaxies (whose importance has been recently shown observationally in
Atek et al., 2023) in volumes large enough to be statistically significant for reionization studies.
In this work, I explored the Fixed & Paired (F&P) approach (Angulo & Pontzen, 2016; Pontzen
et al., 2016) to investigate the possibility of reducing the number of simulations needed (and
thus the overall computational expense) to produce unbiased models of the 21-cm signal. While
past efforts have used semi-numerical approaches to implement this, I have shown more rigorous
results by using radiation hydrodynamic simulations that model more accurately galaxy-scale
effects on the 21-cm signal. I focus on the wave modes in the range 0.15 ≤ 𝑘/(ℎ cMpc−1) ≤ 2, as
the best measurements from present and upcoming radio telescopes like LOFAR, HERA, MWA
and SKA are expected in this regime. Further, I focus on redshifts 10 ≥ 𝑧 ≥ 7, which in my case
correspond to 1.0 > ⟨𝑥HI⟩ ≥ 0.8.

To explore the improvement with respect to various 21-cm signal statistics obtained by adopting the
F&P approach rather than running Gaussian-sampled initial conditions based (GIC) simulations,
I use a setup similar to that of the THESAN project (Kannan et al., 2022; Garaldi et al., 2022;
Smith et al., 2022; Garaldi, 2023). In particular, I investigate the impact on the skewness, power
spectrum, bispectrum and the ionized region size distribution, and introduce a novel method to
quantify the improvement.

I find that the skewness and power spectrum are well-estimated by the F&P averages for ⟨𝑥HI⟩ ≥
0.9, and their performance is good also in the range 0.9 > ⟨𝑥HI⟩ ≥ 0.8, with an improvement
in computational cost better than 3.5 for the generation of the power spectrum. I find that the
bispectrum is well estimated for ⟨𝑥HI⟩ ≥ 0.8, with the scaled deviation between the F&P averages
and the ensemble average being below 1. The only exception are those modes where the ensemble
average bispectrum approaches zero, artificially increasing the small differences between the F&P
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average and the ensemble average. In fact, I find that the improvement in computational cost
is better than a factor of 5 for the equilateral triangle bispectrum. This confirms that the F&P
average bispectrum is a great complement to the power spectrum for studies of the 21-cm signal
when ⟨𝑥HI⟩ ≥ 0.8. Finally, I show that in this regime the F&P averages also provide a good
estimate of the HII regions size distribution, with the F&P averages being within 2−𝜎 deviation
of the ensemble average for bubbles with radius ≤ 5ℎ−1 cMpc.

Thus, the F&P method can be used to model the 21-cm signal summary statistics with significantly
reduced effective volume and computational expense.
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Chapter 5

Improved simulations: exploring broader
parameter spaces

You’ve got a whole plateful of “maybe a little less wrong”.

- James S. A. Corey

5.1 Overview

In this chapter, I look at another major component of improving simulations of the IGM at the
Epoch of Reionization by running a suite of the Polar simulations. In particular, I explore the
necessity for broadening the range of physical parameters (and thus the complexity of processes)
included by showcasing that the interplay of cosmological and astrophysical parameters governing
simulations can lead to multiple viable models that are in agreement with IGM and galactic
observables. This also indicates the need for multi-wavelength parameter inference across a
wider range of observable quantities to constrain the space of viable parameters. This work has
been submitted for publication to the Monthly Notices of the Royal Astronomical Society and is
currently available publicly at Acharya et al. (2024a).

In Section 5.2, I discuss the setup of the Polar simulations with different cosmologies. In
Section 5.3, I present the resulting galactic and IGM properties, and in Section 5.4, I discuss
the implications of varying astrophysical and cosmological parameters for inference modeling
from 21-cm signal observations, jointly constrained with other observables of the EoR. Finally, I
summarize my results in Section 5.5.
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5.2 Methodology

Building on M23, I utilize a similar setup by running 𝑁-body DM simulations, and then post-
processing them with the L-Galaxies SAM (Barrera et al., 2023; Henriques et al., 2015, 2020)
to model the formation and evolution of galaxies, and with the 1D radiative transfer code Grizzly
(Ghara et al., 2015, 2018) to model the gas ionization and the 21-cm signal from neutral hydrogen.
In Sections 5.2.1 and 5.2.2, I highlight the key parameters used for setting up the simulations and
the analysis done in this work. Further, in Section 5.2.3 I propose two cases: one where I keep
the astrophysical parameters the same for all four cosmological models, and one in which I tune
them to match UV luminosity functions (UVLFs) observed with JWST and HST at 𝑧 = 10 and 9.
I refer to the first and second case as “unconstrained” and “constrained”, respectively.

5.2.1 Dark-matter simulations

I use the Gadget-4 code (Springel et al., 2021) for running 𝑁-body DM simulations with a
volume of (150ℎ−1 cMpc)3 and 20483 DM particles. This translates into a DM particle mass
of 5 × 107 M⊙, matching the particle resolution of larger simulations used by the LOFAR EoR
KSP team (see for example Giri et al., 2019b,a). The box size is chosen to probe wave-modes
of 𝑘 ≤ 1.0ℎ cMpc−1, where the best results from observations with LOFAR, HERA, MWA (and
eventually SKA) are expected (Koopmans et al., 2015). This condition requires simulations with
box sizes > 100ℎ−1 cMpc (Iliev et al., 2014), although Kaur et al. (2020) suggests box sizes
> 175ℎ−1 cMpc being necessary when accounting for X-ray heating of the IGM. To sidestep
this issue, I assume that at my redshifts of interest, the IGM has already been heated above the
CMB temperature (see Section 5.2.2.2). I additionally employ the F&P approach (Angulo &
Pontzen, 2016) to mitigate sample variance, and thus run two realisations of each DM simulation.
Each pair of realisations has the mode amplitudes fixed to the square root of the initial matter
power spectrum, and the phases of the second realisations (B-series) are obtained by mirroring
those of the first realisations (A-series). The F&P approach of averaging observables of these
two realisations has been shown to boost the statistical precision of the matter power spectrum,
bispectrum and halo mass function (Angulo & Pontzen, 2016; Chartier et al., 2021; Maion et al.,
2022; Villaescusa-Navarro et al., 2018), Lyman-𝛼 power spectra (Anderson et al., 2019), 21-cm
signal power spectrum and bispectrum (Giri et al., 2023; Acharya et al., 2024c) and several
other quantities derived from simulations (Villaescusa-Navarro et al., 2018; Klypin et al., 2020).
Beyond this, I use the same random seed to minimize the effect of randomized initial conditions
for both the A and B-series of simulations.

For my reference simulation, I assume a “fiducial” Λ-Cold Dark Matter (ΛCDM) cosmological
model based on Planck Collaboration et al. (2020, specifically the TT,TE,EE+lowE+lensing+BAO
case), setting ΩΛ = 0.6889, Ωm = Ωb +Ωdm = 0.3111, Ωb = 0.04897, 𝐻0 = 100ℎ km s−1 Mpc−1

with ℎ = 0.6766, 𝜎8 = 0.8102 and 𝑛𝑠 = 0.9665, where the symbols have their usual meaning.
Further, I consider three additional cosmologies, where I vary ℎ and 𝜎8, while keeping the other
parameters fixed to the above-mentioned values. This is necessary to consider the maximum
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Table 5.1: The four 𝑁-body dark matter simulation models considered in this work. From left to
right, the model name, the adopted value of ℎ and 𝜎8, and the reference for the values. All other
cosmological parameters are fixed to the Planck Collaboration et al. (2020) values.

Model ℎ 𝜎8 Reference
fiducial 0.6766 0.8102 Planck Collaboration et al. (2020)
ℎ high 0.7330 0.8102 Riess et al. (2022)
𝜎8 low 0.6766 0.7020 Tröster et al. (2020)
𝜎8 high 0.6766 0.8800 Ghirardini et al. (2024)

impact of changing cosmological parameters across the range of observed values. First, I adopt
ℎ = 0.7330 (from Riess et al., 2022), and refer to this as the “ℎ high” model. In addition, I explore
two extreme values of 𝜎8, namely the “𝜎8 low” case with 𝜎8 = 0.702 (Tröster et al., 2020), and
the “𝜎8 high” case with 𝜎8 = 0.88 (Ghirardini et al., 2024). The details of the four simulation
models are listed in Table 5.1.

The initial conditions for all simulations are generated at 𝑧 = 199 with a second-order Lagrangian
perturbation theory based on the NgenIC algorithm implemented into Gadget-4, using the same
linear theory power spectrum as Hernández-Aguayo et al. (2023). I generate 90 snapshots between
𝑧 = 20 and 𝑧 = 5, for which I save full snapshot information. However, in order to ensure a
maximum step size of 10 Myrs between snapshots used to build halo merger trees with the Friend-
Of-Friends (FOF) group finding algorithm (Springel et al., 2001), I perform a finer gridding to
generate a total of 156 output time steps for FOF groups. I use a standard linking length of 0.2
times the mean particle spacing and a minimum group size of 64 DM particles (corresponding
to a minimum halo size of ≈ 3 × 109 M⊙). Substructures within halos are identified using
the Subfind-HBT algorithm (Han et al., 2018; Springel et al., 2021). Finally, the gravitational
softening length is set to 0.025 of the mean particle spacing, i.e. ≈ 1.83ℎ−1 ckpc.

To evaluate the performance of the simulations, in Figure 5.1 I present the halo mass function
(HMF) as 𝑀h

𝑑𝑛h
𝑑𝑀h

, where 𝑀h and 𝑛h are the halo mass and number density respectively, and
compare them with fits by Tinker et al. (2008), computed using the Python package hmf (Murray,
2014) at 𝑧 = 9 and 10. As in this study, Tinker et al. (2008) takes into account the non-universality
of the HMF by considering the impact of varying the cosmological parameters in the ΛCDM
model. I note that the fiducial and ℎ high models at these redshifts produce very similar HMFs,
despite some noticeable differences in their corresponding fits. A deeper exploration indicates that
my simulation setup is less sensitive to differences in the Hubble parameter, given the choice of
the starting redshift, and that the initial conditions were generated using second-order Lagrangian
perturbation theory. A significantly higher starting redshift or third/fourth-order Lagrangian
perturbation theory may thus be required to better match the fits. Nevertheless, some differences
do exist, especially at the extremities of the HMF, which lead to the differences noted in the
subsequent sections.

Further, I also find a mild under-prediction of the HMF at the low mass end and an over-
prediction at the high mass end. This may be due to the choice of the linking length of 0.2, which
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Figure 5.1: Halo mass functions for my four models: fiducial (cyan), ℎ high (red), 𝜎8 low (purple)
and 𝜎8 high (green) at 𝑧 = 10 (top panel) and 9 (bottom). The A- and B-series are shown with
dashed and dotted lines, respectively. The corresponding fit for each simulation using the Tinker
et al. (2008) model is shown with a solid grey line.
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at significantly high redshifts may lead to overlinking. A lower value of 0.17, as suggested by
Watson et al. (2013), may resolve this issue. However, I still use 0.2 for minimizing differences
between the setups used for past applications of L-Galaxies (e.g., Henriques et al., 2015, 2020;
Barrera et al., 2023, and M23) and my setup. Lastly, I note that the B-series has slightly more
massive halos in all models. This is purely because of the choice of the random seed, which
happens to lead to some regions of massive halo formation in the B-series where the A-series
have voids.

5.2.2 Galactic and IGM properties with Polar

Polar is a semi-numerical model designed to obtain high-𝑧 galaxy properties and the 21-cm signal
from the IGM in a fast and robust manner. It combines the semi-analytical galaxy formation
and evolution model of L-Galaxies (Henriques et al., 2015, 2020; Barrera et al., 2023) with the
one-dimensional radiative transfer code Grizzly (Ghara et al., 2015, 2018).

5.2.2.1 Semi-Analytic modeling of galaxies

I use L-Galaxies as described by Barrera et al. (2023), as a post-processing module of Gadget-4.
This is an updated version of the publicly available L-Galaxies 2020 that was used by M23.
L-Galaxies implements most major physical processes of gas cooling, star formation, galaxy
mergers, supernovae feedback, black hole growth, AGN feedback, and dust attenuation. While
Barrera et al. (2023) largely builds on Henriques et al. (2015), I also consider the parameters
used by Henriques et al. (2020) before adapting them for my purposes. In particular, I focus on
those that control star formation efficiency (𝛼SF), star formation efficiency during galaxy mergers
(𝛼SF,burst), AGN accretion rate (𝑘AGN), reheating of cold gas by star formation (𝜖reheat, 𝑉reheat),
and the energy released by each supernova (𝐸SN).

I tune the parameters to match photometric observations of the UVLFs from JWST and HST at
𝑧 = 10 and 9, as these redshifts are observationally relevant for the LOFAR EoR KSP. I note that
L-Galaxies assumes a 100% escape fraction for the UV photons, and thus I also implement the
dust attenuation approach of Henriques et al. (2015). However, this is a simplified model and
more complex ones may lead to greater suppression of the UV luminosity function. In Table 5.2
I list all the possible parameters available in L-Galaxies, and their values set to match UVLF
observations as discussed in Section 5.2.3.

5.2.2.2 Radiative transfer and the 21-cm signal

Modeling the EoR requires the inclusion of radiative transfer to describe the hydrogen ionization
and heating. For this, I take the results of the 𝑁-body simulations from Section 5.2.1 and the
semi-analytic modeling of galaxies from Section 5.2.2.1, and post-process them with the 1D
radiative transfer code Grizzly, as done by M23. Grizzly uses pre-computed ionization and
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temperature profiles of gas for different source and density properties at various redshifts to
model the ionization and heating processes and the differential brightness temperature of the
21-cm signal (𝛿𝑇b).

More specifically, Grizzly requires as input the gridded matter density field and dark matter
halo masses from the 𝑁-body simulation, as well as the corresponding galactic stellar masses
and stellar ages obtained with L-Galaxies. My reference simulation has a grid of 2563 cells,
resulting in a cell size of ≈ 600 ℎ−1 ckpc, but I use a range of different sizes (from 643 to 5123

cells) to assure convergence of output values in the range 12 > 𝑧 > 5. Next, I assume that the gas
density scales by a factor of Ωb/Ωdm with the dark matter density. Lastly, as done in M23, I use
the Binary Population and Spectral Synthesis (BPASS; Stanway & Eldridge, 2018) code to model
the Spectral Energy Distributions (SEDs) of stellar sources. In future work, I will also explore
the impact of other source types such as X-ray binaries, shock-heated interstellar medium, and
accreting black holes (as done in Eide et al., 2018, 2020; Ma et al., 2021).

Grizzly computes 𝛿𝑇b as follows (see Furlanetto et al., 2006):

𝛿𝑇b = 27𝑥HI(1 + 𝛿B)
(
1 − 𝑇CMB

𝑇𝑆

)
×

[(
ΩBℎ

2

0.023

) (
0.15
Ωmℎ2

1 + 𝑧
10

)1/2]
mK (5.1)

where 𝑥HI is the fraction of neutral hydrogen, 𝛿B is the fractional overdensity of baryons, 𝑇S is
the hydrogen spin temperature, 𝑇CMB is the temperature of the CMB photons at redshift 𝑧, and
Ωm is the total matter density. As done by M23, I assume 𝑇S ≫ 𝑇CMB which is valid when the
IGM has been sufficiently heated by X-ray sources and expected to be the case in the range of
redshift of interest here. Additionally, I also ignore the impact of redshift space distortions. Thus
Equation 5.1 is reduced to

𝛿𝑇b = 27𝑥HI(1 + 𝛿B)
[(

Ωbℎ
2

0.023

) (
0.15
Ωmℎ2

1 + 𝑧
10

)1/2]
mK. (5.2)

I define the power spectrum of 𝛿𝑇b as:

𝑃21cm(k) = 𝛿𝐷 (k + k′)⟨𝛿𝑇b(k)𝛿𝑇b(k′)⟩, (5.3)

where 𝛿𝐷 is the Dirac delta function, 𝛿𝑇b(k) is the differential brightness temperature in Fourier
space, and ⟨...⟩ is the ensemble average. In the following, I will report my results in terms of the
normalized form of the power spectrum, given by (see Peacock, 1999, for details):

Δ2
21cm(𝑘) =

𝑘3

2𝜋2 × 𝑃21cm(𝑘). (5.4)

5.2.3 UV luminosity functions

Because Henriques et al. (2015, 2020) tuned the L-Galaxies parameters to the low-redshift
Universe (𝑧 < 3), it is necessary to adapt them to match the redshift regime that I are interested
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Figure 5.2: A and B-series averaged UVLFs for the unconstrained (top) and constrained (bottom)
cases at 𝑧 = 10 and 9 for the fiducial (cyan), ℎ high (red), 𝜎8 low (purple) and 𝜎8 high (green).
I also show the dust attenuated (solid) and unattenuated (dashed) UVLFs, and JWST and HST
observations (Finkelstein et al., 2015; Bouwens et al., 2015, 2021; Harikane et al., 2022; Bouwens
et al., 2023a,b; Harikane et al., 2023; Leung et al., 2023; McLeod et al., 2024; Adams et al., 2024,
grey circles).
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in (see Vani et al., 2024, on discrepancies from observations at higher redshifts). In particular,
for the LOFAR EoR KSP team, focussing on 10 > 𝑧 > 8.5 is crucial, as this is the regime in
which the LOFAR telescope is most sensitive. Thus, I change the values of the parameters listed
in Section 5.2.2.1 to match the observations of the UVLFs from HST legacy fields and JWST
programs (Finkelstein et al., 2015; Bouwens et al., 2015, 2021; Harikane et al., 2022; Bouwens
et al., 2023a,b; Harikane et al., 2023; Leung et al., 2023; McLeod et al., 2024; Adams et al., 2024)
at 𝑧 = 10 and 9. I have also varied other parameters, but their impact on the UVLFs is minimal
(see M23, for a detailed analysis of the impact of different parameters). In future work, I will
broaden the range of astrophysical parameters and analyse their effect on other observables.

First, I tune the 𝛼SF, 𝛼SF,burst, and 𝐸SN values in order for the fiducial case to match the observed
high-𝑧 UVLFs. Additionally, I reduce the value of the fraction of AGN formed (𝑘AGN) by a small
amount, which improves the agreement at the brightest magnitudes (𝑀1600,AB < −20). Similarly,
the supernova feedback-based heating efficiency parameters 𝜖reheat and 𝑉reheat are changed to
improve the agreement for 𝑀1600,AB > −19.

I consider two more cases. In the first one, the same L-Galaxies parameters of the fiducial model
above are adopted for all 𝑁-body simulations, to investigate the impact of different cosmologies
on the 21-cm signal independently from observations of galaxies at high redshifts. I refer to this
model as “unconstrained”. This case allows me to have a clearer picture of the impact of changing
cosmologies on the 21-cm signal, without astrophysical processes potentially cancelling out their
effects on observables. In the second case, called “constrained”, the L-Galaxies parameters
(specifically 𝛼SF, 𝛼SF,burst, and 𝐸SN) are changed for each cosmological model to match the
observed UVLFs. This is potentially more interesting, as it allows for a joint constraint of
astrophysical and cosmological parameters based on multi-frequency observations. The L-
Galaxies parameters adopted are listed in Table 5.2.

I show the UVLFs for the unconstrained (top) and constrained case (bottom) in Figure 5.2 for all
cosmological models, along with observations at 𝑧 = 10 and 9. In the unconstrained case, I note
that the fiducial and ℎ high models have similar UVLFs, while the 𝜎8 low model underpredicts
the UVLF as compared to observations. On the other hand, the UVLF in the 𝜎8 high model is
mildly overpredicted. These results are in agreement with the impact that these parameters are
expected to have on matter clustering. In the constrained case, the boost in star formation due
to higher 𝛼SF and 𝛼SF,burst values and a lower 𝐸SN value, allows the 𝜎8 low model to match the
bright end of the UVLF. However, due to lower matter clustering, it does not produce as many
faint galaxies as the other cases, and sees a steep drop at 𝑀1600,AB > −18. On the other hand,
the high 𝐸SN in the 𝜎8 high model strongly suppresses star formation and thus matches other
cosmological models, as well as JWST and HST observations. Additionally, it produces more
faint galaxies even at 𝑀1600,AB > −16. Between the ℎ high and fiducial models, the difference
is minimal at 𝑧 = 10 due to the mildly higher 𝐸SN in the ℎ high model. However, at 𝑧 = 9 the
impact of higher matter clustering in the ℎ high model shows up in the form of more galaxies at
the low luminosity end.

Lastly, I note that in the fiducial model the brightest galaxy at 𝑧 = 14 has 𝑀1600,AB = −20.36,
while at 𝑧 = 13 it has 𝑀1600,AB = −20.60, which is in agreement with the recent spectroscop-
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Figure 5.3: Maps of 𝛿𝑇b of the A-series middle slices of single cell thickness (i.e., ≈ 600 ℎ−1 ckpc)
for the four cosmological models in the constrained case at 𝑧 = 12, 10, 8, and 6 (from top to
bottom). Here the dark areas represent the ionized regions with 𝛿𝑇b = 0. Note that 𝛿𝑇b cannot
have negative values due to the assumption of 𝑇S ≫ 𝑇CMB.

ically confirmed galaxies at 𝑧 = 14.32 and 13.90 (Carniani et al., 2024). For completeness, in
Appendix C I also show the UVLFs in the range 12 > 𝑧 > 5 for the constrained case. I find that
my models reasonably agree with UVLF observations across this redshift range.

5.2.4 Reionization history

Before discussing the reionization history in more detail, I note that the escape fraction of UV
photons had been set to 𝑓esc = 12.5% in order for the fiducial model to reionize completely
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Figure 5.4: Redshift evolution of the average of the A and B-series volume-averaged neutral
hydrogen fraction ⟨𝑥HI⟩ for the fiducial (cyan), ℎ high (red), 𝜎8 low (purple) and 𝜎8 high (green)
models for the unconstrained (top) and constrained (bottom) cases. Dotted lines refer to a fit to
the curves, which is used for a better estimate of the redshift of reionization when the redshift
resolution is too coarse. The vertical grey dashed lines indicate the redshifts observationally
relevant for LOFAR (𝑧 = 10.11, 9.16 and 8.3), and the black solid line is drawn at ⟨𝑥HI⟩ = 0.5
to guide the eye. Grey circles are a collection of observational constraints (Fan et al., 2006b;
Totani et al., 2006; Ota et al., 2008; Ouchi et al., 2010; Bolton et al., 2011; Dĳkstra et al., 2011;
McGreer et al., 2011; Mortlock et al., 2011; Ono et al., 2012; Chornock et al., 2013; Jensen et al.,
2013; Robertson et al., 2013; Schroeder et al., 2013; Pentericci et al., 2014; Schenker et al., 2014;
McGreer et al., 2015; Sobacchi & Mesinger, 2015; Choudhury et al., 2015; Mesinger et al., 2015;
Greig et al., 2017; Davies et al., 2018; Mason et al., 2018; Hoag et al., 2019; Greig et al., 2019;
Jones et al., 2024, collected in the CoReCon module, Garaldi 2023).
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(i.e. the average neutral fraction ⟨𝑥HI⟩ becomes zero) by 𝑧 = 5. For the other models, though,
full reionization is reached at different redshifts. In the future I plan to consider 𝑓esc as a free
parameter as well, although, as a reference, in Appendix E I show the reionization history of the
fiducial model with 𝑓esc = 25%.

For a qualitative view of the reionization history, in Figure 5.3 I show the A-series (i.e. with
“fixed” initial conditions in the F&P pair of simulations) middle slices of the 𝛿𝑇b cubes for the
four cosmological models in the constrained case at 𝑧 = 12, 10, 8 and 6. I note that there are no
major differences until 𝑧 = 8, when more and larger ionized regions appear in the 𝜎8 low model,
while less and smaller ones are present in the 𝜎8 high model. This leads to the 𝜎8 low model
being completely ionized by 𝑧 = 6, while the 𝜎8 high model still has large neutral regions. This
is because, contrary to the fiducial model, in these cases the choice of the parameters controlling
the astrophysical processes has an impact stronger than the one of 𝜎8 on the matter clustering.
However, the differences between the astrophysical parameters of the ℎ high and the fiducial
model are smaller, so that the differences in the size of the ionized regions from 𝑧 = 10 is mainly
driven by matter clustering. Nevertheless, the choice of both astrophysical and cosmological
parameters leads to significantly different speeds at which reionization happens across all four
models. Indeed, despite the relatively similar maps observed at 𝑧 = 8, by 𝑧 = 6 the differences
are much more evident. For completeness, in Appendix D I also show the B-series middle slices.

In Figure 5.4, I present the redshift evolution of the average of the A and B-series volume-
averaged neutral hydrogen fraction, ⟨𝑥HI⟩, in the unconstrained (top) and constrained (bottom)
cases, together with observational constraints. As in some models the redshift of reionization is
not properly captured due to the coarse redshift resolution1, I additionally provide a fit to these
curves to estimate more accurately the end of reionization. I note that in the unconstrained case,
all models reionize at different redshifts. Reionization is the fastest (at 𝑧 = 6.4) in the 𝜎8 high
model, as structure formation happens earlier. The 𝜎8 low model is still only 45% reionized
by 𝑧 = 5 because of the lack of sources, and shows the poorest agreement with observational
constraints. In the constrained case, the differences are reduced, but still significant. In particular,
I note that the 𝜎8 low model reionizes the fastest at 𝑧 = 5.75, while the 𝜎8 high model is only
≈ 65% ionized by 𝑧 = 5. This reversal of reionization histories with respect to the unconstrained
case is due to the impact of different astrophysical parameters. Specifically, the significantly
higher 𝐸SN in the 𝜎8 high model blows away gas and thus suppresses star formation, which
consequently reduces the production of ionizing photons. On the other hand, the higher 𝛼SF and
𝛼SF,burst in the 𝜎8 low model along with the lower 𝐸SN significantly boosts star formation.

As the four models reionize at different redshifts and the end of the EoR can be observationally
constrained (e.g., detections of Gunn-Peterson troughs in the Lyman-𝛼 forest as shown in Becker
et al. 2015, Qin et al. 2021 and Bosman et al. 2022), this in turn limits the possible choice of
astrophysical and cosmological parameters. I note that to model more realistically the final phases
of reionization, the unresolved Lyman limit systems which govern absorption during the final
stages of the reionization process should be accounted for (see Georgiev et al., 2024; Giri et al.,

1While I have a large number of snapshots as discussed in Section 5.2.1 for the sake of simplicity, to run Polar
I adopt a uniform step size of Δ𝑧 = 0.5.
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2024). These, though, are not included here.

Finally, the four models produce a Thomson scattering optical depth in the range (0.041-0.067)
and (0.048- 0.060) for the unconstrained and constrained case respectively, assuming an Helium
(He) II fraction equal to the HII fraction, and an instantaneous HeII reionization at 𝑧 = 3.
These numbers are in agreement with Planck observations (Planck Collaboration et al., 2020; de
Belsunce et al., 2021; Giarè et al., 2024).

5.3 Results

In this section, I present the results from my simulations with respect to various galactic and IGM
properties for the unconstrained and constrained case. To reduce the effect of cosmic variance, I
always consider the A and B-series averages when comparing to observations.

5.3.1 Unconstrained case

In the unconstrained case, I discuss the galactic and IGM observables for models with the UVLFs
reported in the top panel of Figure 5.2.

5.3.1.1 Galactic properties

In Figure 5.5, I present the mass-binned star formation rate (SFR) of galaxies in the four models
at 𝑧 = 10 and 9, with the top panel showing the unconstrained case. The solid lines are the
median SFR, with the shaded regions referring to the 16th to 84th percentiles. The star formation
main sequence (SFMS) in each case is additionally compared with results from various recent
JWST programs represented by grey circles with a binning of ±0.25 around the redshift. As all
parameters affecting the star formation rate were kept the same across all four models, I note
that the overall trends are similar, and agree with observations. The impact of matter clustering
is seen at the low-mass end, where a larger clustering allows for the formation of a statistically
significant sample of smaller mass galaxies in the 𝜎8 high and ℎ high models, while the smallest
mass galaxies formed in the 𝜎8 low case are an order of magnitude more massive. Further, at
the high mass end, I note that the 𝜎8 high model produces the most massive galaxies, which also
have the highest SFR.

To confirm the agreement in star formation rates, in Figure 5.6 I additionally look at the global star
formation efficiency (SFE) at the same redshifts with the top panel showing the unconstrained case.
I define SFE as the ratio of the stellar and halo mass scaled by 𝑓b = Ωb/Ωm, i.e. Mstar/Mhalo 𝑓b, as
a function of the halo mass Mhalo. I also compare this to Spitzer observations at 𝑧 = 7 (Stefanon
et al., 2021) and to abundance matching estimates from Tacchella et al. (2018). As mentioned
above, the parameters controlling the star formation efficiency are the same across all models,
and thus the corresponding global SFE is the same as well. The only difference is in the largest
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Figure 5.5: A and B-series averaged star formation rate (SFR) as a function of stellar mass for
the unconstrained (top) and constrained (bottom) cases, for the fiducial (cyan), ℎ high (red), 𝜎8
low (purple) and 𝜎8 high (green) models at 𝑧 = 10 and 9. Solid lines refer to the median star
formation rate in each mass bin, with 16th and 84th percentiles shown as shaded regions. Grey
circles are observations from various JWST programs (Treu et al., 2023; Fujimoto et al., 2023;
Looser et al., 2023; Bouwens et al., 2023b; Papovich et al., 2023; Arrabal Haro et al., 2023b,a;
Long et al., 2023; Leethochawalit et al., 2023; Atek et al., 2023; Robertson et al., 2023; Heintz
et al., 2023a,b; Jin et al., 2023; Helton et al., 2024; Jung et al., 2024).
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Figure 5.6: A and B-series averaged star formation efficiency (SFE) as a function of halo mass
for the unconstrained (top) and constrained (bottom) cases, for the fiducial (cyan), ℎ high (red),
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from Tacchella et al. (2018).
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galaxies formed, which is directly proportional to 𝜎8 as it controls the clustering of mass. I note
that the SFE is marginally higher than the abundance matching estimates for the lower mass halos,
but the difference is ≲ 0.3 dex. Further, the weak mass dependence of the global SFE trend is
in agreement with zoom-in hydrodynamical simulations like FIREboxHR (Feldmann et al., 2024)
and ColdSIM (Maio & Viel, 2023).

5.3.1.2 21-cm signal from the IGM

I note that despite the disagreement in UVLFs for the four cosmological models shown in the top
panel of Figure 5.2, the models still reproduce fairly well observable quantities such as the SFR
and global SFE, as shown in Section 5.3.1.1. Further, they are broadly in agreement with available
data. I now look at IGM observables, and more specifically at the 21-cm signal power spectrum
(calculated according to Equation 5.4), shown in the top panel of Figure 5.7 for the unconstrained
case at 𝑧 = 9. At this redshift, I note from the top panel of Figure 5.4 that the reionization history
is primarily governed by the matter clustering. Thus, the 𝜎8 low model having the highest ⟨𝑥HI⟩
suggests a significant contrast between its large neutral and ionized regions, thus leading to a
higher power amplitude up to 𝑘 = 0.40 ℎcMpc−1 as compared to the other three models. On
the other hand, the greater matter clustering in the 𝜎8 high and ℎ high models leads to lower
contrast at these scales due to more numerous ionized regions, and thus less power. However,
at smaller scales, having more ionized regions allows for greater contrast, and thus the ℎ high
model catches up with the fiducial model, and the 𝜎8 high model has the highest power overall at
𝑘 > 0.40 ℎcMpc−1.

For a better understanding of the 21-cm signal power spectrum evolution, in Figure 5.8 I addi-
tionally present its redshift dependence at large scales, i.e. 𝑘 = 0.15 ℎcMpc−1, with the top panel
showing the unconstrained case. This allows me to compare how the 21-cm signal evolves in the
four cosmological models across redshifts relevant to LOFAR observations. As suggested by the
reionization histories, I note that the 𝜎8 low model has a larger contrast due to slower reionization,
and thus has a higher amplitude of Δ2

21cm (𝑘 = 0.15 ℎcMpc−1) at the beginning of reionization.
However, the 𝜎8 high and ℎ high models reach a higher amplitude by 𝑧 ≈ 8 due to the formation
of larger ionized regions.

5.3.2 Constrained case

As in this case I have also changed parameters that control star formation efficiency and supernova
feedback, it is crucial to understand their impact on observables other than the UVLFs shown in
the bottom panel of Figure 5.2.
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5.3.2.1 Galactic properties

As in Section 5.3.1.1, in the bottom panel of Figure 5.5 I look at the A and B-series averaged
SFMS and compare them with observations from JWST at 𝑧 = 10 and 9 for the constrained case.
I note that despite differences in the energy of supernovae (𝛼SF and 𝛼SF,burst also differ for the 𝜎8
low model), the high mass ends of the SFMS of the four models still agree with each other and with
observations. This is because the most massive galaxies are also the most luminous, and matching
their UVLFs in Section 5.2.3 consequently matches their star formation properties. However, at
the low-mass end, the SFMS of the four models shows some deviation at both redshifts. This is
because at lower masses, the impact of astrophysical parameters starts to dominate, and while the
𝜎8 high model forms galaxies with masses smaller than the 𝜎8 low model, the median SFR of
these low mass galaxies is an order of magnitude smaller than the lowest mass galaxies in the 𝜎8
low model, because the impact of the energy released per supernova is sufficient to clear out gas
and suppress star formation in the low-mass galaxies.

To further explore the impact of the energy released by supernovae, in the bottom panel of
Figure 5.6 I also look at the global SFE for the constrained case. Here, I notice that, despite
similar SFRs at the high-mass end, the efficiency of star formation in each case differs. The SFE
for the 𝜎8 low model is significantly boosted compared to observations, while the fiducial and ℎ
high models only mildly overpredict the observed SFE. The 𝜎8 high case, on the other hand, is the
best match. I note that the global SFE is inversely proportional to 𝐸SN for all halo masses. The
weak mass dependence trend of the SFE is the same of the unconstrained case, and in agreement
with the trends of the FIREboxHR simulations (Feldmann et al., 2024) and ColdSIM (Maio &
Viel, 2023) for the fiducial, 𝜎8 high and ℎ high models, while the 𝜎8 low model is an order of
magnitude higher but with the same slope.

5.3.2.2 21-cm signal from the IGM

While the UVLFs at 𝑀1600,AB < −18 in the constrained case are similar for all four cosmological
models, the SFR and global SFE show differences, and in some cases do not match observations.
In such a scenario, it becomes interesting to analyze the impact on the 21-cm signal, which
is presented in the bottom panel of Figure 5.7 at 𝑧 = 9 for the constrained case. Unlike the
unconstrained case where the differences in matter clustering contributed to differences not only
in the overdensity term but also in the neutral hydrogen fraction term in equation 5.2, here the
changes in astrophysical parameters lead to a drastic reduction in the differences between the
value of ⟨𝑥HI⟩ across the four models. Thus, the differences in the 21-cm signal power spectra
of the four models are governed primarily by the overdensity term. This leads to a higher power
across all wave modes for the 𝜎8 high model due to greater matter clustering. While one would
expect the ℎ high model to have slightly higher power than the fiducial one due to the dependence
on overdensity, the neutral-fraction term in Equation 5.2 reduces the contrast due to a marginally
faster reionization process, so that the power in the two cases becomes similar. Even the 𝜎8 low
model matches the fiducial and ℎ high models’ power spectra due to a faster reionization process.
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Figure 5.7: A and B-series averaged normalized 21-cm signal power spectrum (Δ2
21cm) for the

unconstrained (top) and constrained (bottom) cases, for the fiducial (cyan), ℎ high (red), 𝜎8 low
(purple) and 𝜎8 high (green) models at 𝑧 = 9.

In the bottom panel of Figure 5.8, I present the redshift evolution of the 21-cm signal power
spectrum at 𝑘 = 0.15 ℎcMpc−1 for the constrained case and notice a significant reduction in
the differences of Δ2

21cm(𝑘 = 0.15 ℎcMpc−1) values between the various cosmological models
at 12 > 𝑧 > 5 compared to the extent of differences in the unconstrained case (top panel of
Figure 5.8). Indeed, at 10 > 𝑧 > 8.5, where LOFAR observations are focused, variations in
the 𝜎8 parameter lead to differences in the power spectrum of only a few mK2. While the exact
magnitude of the difference is subject to the position of the peak of Δ2

21cm(𝑘 = 0.15 ℎcMpc−1),
which in turn is governed by modeling assumptions like the choice of 𝑓esc (see Appendix E for
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Figure 5.8: Redshift evolution of the A and B-series averaged normalized 21-cm signal power
spectrum (Δ2

21cm) at 𝑘 = 0.15 ℎcMpc−1 for the unconstrained (top) and constrained (bottom)
cases, for the fiducial (cyan), ℎ high (red), 𝜎8 low (purple) and 𝜎8 high (green) models. The
vertical dashed lines indicate the redshifts relevant for LOFAR, i.e. 𝑧 = 10.11, 9.16, and 8.3.

a comparison between 𝑓esc = 12.5% and 25%), the key takeaway is that significantly different
choices of cosmological and astrophysical parameters can still lead to similar 21-cm signal
observables, even when constrained by the UVLFs from JWST and HST observations. Thus, to
explore the parameter space of models that agree with upper limits of 21-cm signal power spectra
observations at the redshifts of interest to LOFAR, one should still consider various cosmological
and astrophysical parameters as free. However, jointly constraining these models with a more
diverse set of galactic observables from JWST and upcoming surveys with Euclid and SPHEREx
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can allow meto narrow down the choice of viable ones. Additionally, tomographic imaging of the
distribution of neutral Hydrogen with the upcoming SKA-Low could also be used for additional
constraints on IGM properties from images such as those shown in Figure 5.3 (see for e.g. Bianco
et al., 2021).

5.4 Discussion

By analyzing various galactic and IGM observables, I note that the interplay of astrophysical
and cosmological parameters can lead to similarities as well as differences. For example, in the
constrained case, while agreement with observed UVLFs leads to similar SFR for the high-mass
galaxies across all models, there are significant differences in the SFR and global SFE for low-
mass galaxies. On the other hand, while in the unconstrained case the SFR and global SFE show
a very similar dependence on stellar mass in all models because the parameters that regulate such
quantities are the same, the UVLFs exhibit significant differences.

For the IGM, I note that the 21-cm signal power spectrum at the redshifts of interest for LOFAR is
very similar across all four models in the constrained case (bottom panel, Figure 5.7). This is due
to the choice of astrophysical parameters, which reduces the impact of the cosmological ones, and
consequently the differences between the reionization histories in comparison to the unconstrained
case. In the unconstrained case, I note significant differences in reionization histories simply
because the choice of cosmological parameters changes the overall matter clustering.

These similarities in terms of 21-cm observables have a profound impact on inference modeling,
as models with very different cosmological and astrophysical parameters may still produce 21-cm
signal power spectra in agreement with current upper limits (for example from Mertens et al.,
2020; Trott et al., 2020; HERA Collaboration et al., 2023; Acharya et al., 2024d), or possibly
also with an eventual measurement. This is because, while the end of reionization may differ
among models, at 𝑧 > 7 the extent and speed of reionization are still largely similar. This means
that fixing a priori any of these parameters could exclude viable models. While introducing
cosmological and astrophysical parameters as free parameters during inference modeling has
been attempted in several earlier studies (see e.g. Kern et al., 2017; Schneider et al., 2023), these
have used only approximate reionization simulation codes due to the significant computational
costs involved in building such a high-dimensional parameter space. Indeed, in a more physical
approach, it is necessary to run a large number of dark-matter only simulations with different
cosmologies, each post-processed with a large set of astrophysical parameters. The problem
worsens if one would like to boost the resolution of the simulations to take into account the role
of mini halos (see Haiman et al., 2001; Iliev et al., 2005), dwarf galaxies (Wu & Kravtsov, 2024),
or Lyman Limit Systems (Georgiev et al., 2024; Giri et al., 2024) which likely play a significant
role in the EoR. While faster semi-numerical codes and emulators can be employed, they are not
ideal tools to model galaxy-scale physics and radiative transfer effects.

Because of this, boosting the resolution of low-resolution simulations using analytic techniques
based on smaller boxes with higher resolution has been proposed (see for example Nasirudin
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et al., 2020; Barsode & Choudhury, 2024). Newer methods based on Machine Learning, such as
Generative Adversarial Networks (GANs, as done in Zhang et al., 2024), bypass the requirement
of a higher resolution simulation. However, it needs to be explored whether such methods are
robust enough to factor in small differences in individual parameters. In subsequent work with
Polar, I intend to include resolution-boosting techniques to resolve halos and galaxies down
by at least two orders of magnitude in mass. The development and implementation of such
techniques will additionally allow meto create more diverse training sets of power spectra for
building Machine Learning kernels for Gaussian Process Regression based signal extraction, as
shown by Mertens et al. (2024) and Acharya et al. (2024b,d).

5.5 Summary

In this work, I have investigated the impact of different cosmological models on the 21-cm signal
and some galactic properties using Polar, which combines 𝑁-body dark matter simulations
run with Gadget-4 with the semi-analytic model of galaxy formation L-Galaxies, and the 1-D
radiative transfer code Grizzly. I have applied the framework to four different cosmological
models: a “fiducial” model, which adopts values of the cosmological parameters from Planck
Collaboration et al. (2020); a “ℎ high” model, with ℎ = 0.733 based on results from studies
of Cepheid variables in the host galaxies of 42 Type Ia supernovae (Riess et al., 2022); a “𝜎8
low” case, with 𝜎8 = 0.702 from an anisotropic galaxy clustering measurement analysis done by
Tröster et al. (2020); and a “𝜎8 high” case, with 𝜎8 = 0.880 according to recent eROSITA results
(Ghirardini et al., 2024). I additionally used the Fixed & Paired approach (Angulo & Pontzen,
2016) to suppress cosmic variance by boosting the effective volumes of the simulations. For all
the quantities analyzed, I took an average of the fixed initial conditions case (which I refer to as
the A-series) and its corresponding pair (referred to as the B-series).

I then choose astrophysical parameters in L-Galaxies such that the fiducial model matches UV
luminosity functions from HST legacy fields and JWST programs at 𝑧 = 10 and 9. To investigate
the effect of adopting different values for ℎ and 𝜎8 on other galactic and IGM observables, I
use the same astrophysical parameters also for the other three cosmological models. I refer to
this as the “unconstrained” case, as by not changing astrophysical parameters for the different
cosmological models the resulting UVLFs will not necessarily be consistent with the observed
ones. I also built a “constrained” case, where I instead choose the astrophysical parameters such
that the UVLFs obtained in each cosmological model are consistent with those observed at 𝑧 = 10
and 9. For this, I increased the star formation efficiency and reduced the energy released per
supernova in the 𝜎8 low model to boost star formation and, in turn, its UVLF. On the other hand,
I increased the energy released per supernova for the ℎ high and 𝜎8 high models to suppress
star formation and mitigate the impact of increased matter clustering as compared to the fiducial
model. For the radiative transfer calculations, I only took into account the stellar sources while
modeling the spectral energy distributions and chose a global escape fraction of 12.5% across all
redshifts for all four models.
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Our results can be summarized as follows:

• Reionization history: In the unconstrained case, the values of the cosmological parameters
strongly influence the matter clustering, which in turn leads to significant differences in
how reionization progresses in each model. While the 𝜎8 high model reionizes by 𝑧 ≈ 6.4,
the 𝜎8 low model is only 45% reionized even by 𝑧 = 5. In the constrained case, instead,
the impact of astrophysical parameters is significant, and the 𝜎8 low model is the first to
reionize, at 𝑧 = 5.75, while the 𝜎8 high model is only 70% reionized by 𝑧 = 5.

• Star Formation Rate (SFR): In the unconstrained case, no significant differences are
observed as the parameters controlling star formation have been kept the same. However,
in the constrained case the SFR in low-mass galaxies is impacted by the required energy
released per supernova, and thus the SFR is boosted for the 𝜎8 low model and suppressed
for the 𝜎8 high model. In both cases, all models broadly agree with observations at 𝑧 = 10
and 9.

• Global Star Formation Efficiency (SFE): As the parameters controlling star formation are
the same in the unconstrained case, the global SFE at all masses is similar in all models. The
SFE is also in agreement with observations and abundance matching estimates. However,
in the constrained case, due to a higher value of the parameter regulating the star formation
efficiency, the global SFE in the 𝜎8 low model is also higher. The other three models show
minor differences, governed by the differences in the energy released per supernova.

• 21-cm signal power spectrum: In the unconstrained case, the differences between the
four models are not only due to the difference in overdensity but also to those in the neutral
fraction and its redshift evolution. However, in the constrained case, the neutral fraction
at 𝑧 > 8 is similar in all models, as the impact of matter clustering on the neutral fraction
is canceled out by the impact of setting different values for the astrophysical parameters
controlling star formation. Thus, the power spectrum at higher redshifts is mostly dictated
by the overdensity term, and because of this it shows smaller differences among the four
models.

Overall, I conclude that different values of cosmological and astrophysical parameters can lead
to differences in some observables (e.g. low-mass SFR and global SFE), while others are largely
unaffected (e.g. UVLFs and 21-cm signal power spectrum). In particular, I note that despite
significantly different galactic processes and reionization histories, the 21-cm power spectra are
very similar in power across 𝑘-bins and in agreement with current observational upper limits
(Acharya et al., 2024d; Mertens et al., 2020; Trott et al., 2020; HERA Collaboration et al.,
2023). Due to this, when doing inference modeling, it is essential to consider all cosmological
and astrophysical parameters as free parameters, with other observational constraints serving as
priors. While a limited exploration of astrophysical parameters can be done with excursion set
algorithms, a semi-analytic model provides a significantly more rigorous and physical approach to
modeling galactic properties. For varying cosmological parameters though, it is necessary to run
a large number of 𝑁-body simulations to populate the prior parameter space. However, running
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so many high-resolution simulations would be prohibitively expensive in terms of computational
resources and time. To address this issue, in future work I intend to incorporate techniques for
boosting the resolution of less costly, low-resolution simulations using either analytic or machine
learning techniques. Such an implementation would also additionally allow me to build broader
training sets of power spectra for the Machine Learning kernels used with Gaussian Process
Regression by the LOFAR EoR Key Science Project team (as done by Acharya et al., 2024b).

Lastly, to achieve a stronger constraining power on a broadened parameter space, it is essential
to jointly employ a variety of galactic observables, e.g. from JWST, Euclid, and upcoming
SPHEREx, as well as tomographic imaging of neutral Hydrogen in the IGM with the future
SKA-Low.
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Chapter 6

Final Remarks and Future Prospects

Deadlines just aren’t real to me until I’m staring one in the face.

- Rick Riordan

In this thesis, I have provided a two-pronged approach towards using the 21-cm line of neutral
Hydrogen to study the evolution of properties of the Intergalactic Medium (IGM) during the
Epoch of Reionization (EoR).

First, I focus on improvements in techniques used for extracting the 21-cm signal power spectrum
from deep-field radio interferometric observations. In particular, as a part of the LOFAR EoR
Key Science Project (KSP) team, I focus on improving their foreground subtraction technique
using Gaussian Process Regression (GPR). Recognizing that misestimation of the 21-cm signal’s
covariance kernel (which serves as a “template” for the power spectrum) can cause substantial
signal loss, I introduced a novel covariance kernel derived via a Variational Auto-Encoder (VAE)-
based algorithm. The VAE is trained on a large suite of Grizzly simulations, enabling it to learn
the complex covariance properties of the 21-cm signal across a range of astrophysical scenarios.
Apart from tests with mock signals from Grizzly itself, I also tested this with various other
simulations, such as CRASH and 21cmFAST. I also examined the influence of the “excess noise”
component (see Section 2.4.1) and explored potential redshift dependencies (see Section 2.3.4),
thereby paving the way for more robust signal extraction in future EoR experiments.

It is also crucial for us to understand the similarities and differences in results between analytical
templates used in the past and this Machine Learning (ML)-based kernel when applied to real
data. For this, I apply the ML-based kernel to the same ≈10 nights of data as analysed by Mertens
et al. (2020), keeping all other components and steps of the signal extraction process the same in
Chapter 3. I also show the possibility of separating the upper limits on the 21-cm signal power
spectrum from the excess noise component for the first time. Thus, this ML-based approach
provides one of the most promising methods of extracting the 21-cm signal power spectrum,
which would be crucial to eventually detect the 21-cm signal with more hours of observation
from LOFAR and/or with upcoming radio telescopes like SKA.
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Being on the cusp of detection means that the theoretical predictions of the 21-cm signal power
spectrum, other observables, and cross-correlations with observations at other wavelengths need
to be improved in order to infer the properties of the Universe during the EoR soundly. Thus,
secondly, I focus on improving the modelling of simulations used to study the 21-cm signal and
cosmic reionization.

One of the major issues in the development of simulations of the 21-cm signal power spec-
trum is that the nature of the observed signal is such that it traditionally requires modelling of
O(107−8 Mpc3) volumes to suppress the impact of cosmic variance. To achieve similar results in
smaller volumes, the Fixed & Paired (F&P) approach was proposed, which uses carefully crafted
simulation pairs. However, the results are significant only for observables of large-scale features,
while the 21-cm signal is affected by both large-scale (overall distribution of neutral Hydrogen in
the IGM) and small-scale (growth of ionized bubbles around individual galaxies) features. Thus,
in Chapter 4, I tested the applicability of and improvement granted by this technique to different
observables of the 21-cm signal from the EoR. I employed radiation-magneto-hydrodynamics
simulations to ensure the most realistic physical description of this epoch, greatly improving over
previous studies using a semi-numerical approach without accurate galaxy formation physics
and radiative transfer. Through this, I explored the statistical improvement granted by the F&P
technique on predictions of the skewness, power spectrum, bispectrum, and ionized regions size
distribution of the 21-cm signal at redshift 7 ≤ 𝑧 ≤ 10 (corresponding to ≥ 80% of the gas being
neutral).

Beyond boosting effective volumes, it is also crucial to expand the parameter space of simulations
used to infer astrophysical properties from this 21-cm signal. In particular, it is necessary to check
if allowing some parameters to vary leads to trade-off relationships between them, such that the
range of viable models that match observables broadens. This becomes even more interesting
when multi-wavelength observations, such as those of the 21-cm signal and JWST observations,
are still explainable with various combinations of parameters. Having these models would also
be useful for broadening the training set of mock 21-cm signals used for building the ML-based
kernel described earlier. Thus, in Chapter 5, I ran four models of the Polar simulations, with
differing cosmological parameters (in particular, the Hubble constant𝐻0 and the matter clustering
amplitude 𝜎8) whose values, as provided by measurements at different redshifts, are in tension.
Additionally, I vary astrophysical parameters, such as the star formation efficiency and the energy
released per supernova explosion, in order to match with observations of the UV luminosity
function at redshifts 𝑧 = 10 and 9 from JWST. In turn, I look at how much of a difference it leads
to in other observables, including, most importantly, the 21-cm signal power spectrum at these
redshifts.

Below, I have summarised the key findings of each of these projects undertaken as a part of this
thesis.
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6.1 Summary of the key results

1. Enhanced Foreground Removal for 21-cm Signal Extraction Using Machine Learning

The first step in this thesis was to work towards implementing a significant upgrade to the GPR
framework for removing foregrounds in LOFAR observations aimed at detecting the faint 21-
cm signal from the EoR in Chapter 2. Extensive tests on mock datasets by simulating noise
levels equivalent to both ≈10 nights (141 hours) and ≈100 nights (1410 hours) of LOFAR
observations demonstrate that the VAE-based kernel recovers the 21-cm power spectrum within
2𝜎 uncertainties for a signal-to-noise ratio (SNR) averaged over 𝑘-bins being ≥ 5 × 10−2 for
𝑘 = [0.05, 1.00] ℎMpc−1, while better capturing both its shape and amplitude compared to
traditional analytic kernels. I also find that across redshifts, the recovery is affected purely by the
changes to the SNR of the 21-cm signal, with no additional significant biases added by the VAE
kernel. This is supported further by the fact that better constraints on the excess noise component
are shown to improve the quality of recovery.

2. Revised LOFAR Upper Limits on the 21-cm Signal at 𝑧 ≈ 9.1

After confirming the robustness of the ML-enhanced covariance kernel as a template for the 21-
cm signal, I applied it to real LOFAR data in Chapter 3, specifically targeting the 21-cm signal at
𝑧 ≈ 9.1 using the same data and processing pipeline as Mertens et al. (2020). By incorporating the
ML-based covariance kernel within the GPR framework, I achieved a more accurate modeling
of the data components, including the dominant foregrounds and a systematic “excess noise”
term. Analyzing 141 hours of LOFAR observations, the revised pipeline yields a conservative
2𝜎 upper limit on the 21-cm power spectrum of Δ2

21 < (80)2 mK2 at 𝑘 = 0.075 ℎ Mpc−1 when
jointly considering the 21-cm signal and excess noise. After applying bias corrections to remove
the excess noise, an even deeper limit of Δ2

21 < (25)2 mK2 is reported (see Table 3.2 for values
across wave modes). These findings demonstrate that the ML-enhanced GPR approach not only
reduces signal loss but also provides tighter constraints on the EoR 21-cm signal. However, due
to the limited understanding of the nature of the excess noise component present in the data, it
is yet to be confirmed if the bias-corrected upper limits obtained indeed contain the entirety of
the 21-cm signal. Nevertheless, this ML-based approach provides one of the most promising
methods of extracting the 21-cm signal power spectrum, which would be crucial to eventually
detect the 21-cm signal with more hours of observation from LOFAR and/or with upcoming radio
telescopes like SKA.

3. Suppressing Cosmic Variance in EoR 21-cm Signal Simulations Using the F&P Approach

Moving into modelling improvements in Chapter 4, I presented a novel technique to mitigate
cosmic variance in radiation–hydrodynamic simulations of the reionization-era 21-cm signal by
employing the F&P approach. Traditional methods require simulating enormous volumes to
accurately capture the faint 21-cm fluctuations amid large-scale density variations. By fixing the
amplitudes of the initial density perturbations to their expected values and pairing each simulation
with one that uses inverted phases, the F&P method effectively boosts the statistical volume by
at least a factor of 3.5 for measuring the 21-cm signal power spectrum, and by at least a factor



104 6. Final Remarks and Future Prospects

of 5 for measuring the equilateral bispectrum (see Sections 4.4.1 and B for the methodology to
calculate these improvement factors). This improvement directly translates to an improvement in
computational cost by the same factor, both in terms of time and memory. Detailed comparisons
of key statistical measures (power spectrum, bispectrum, skewness, and bubble size distributions)
between F&P averages and conventional simulations with randomly sampled initial conditions
show that the F&P approach yields results that closely match ensemble averages and thus the
expected “true” value. This enhanced simulation strategy provides a more efficient and reliable
pathway to predict the 21-cm signal observables, which is critical for interpreting upcoming
observations from next-generation radio interferometers.

4. Exploring the effect of different cosmologies on the Epoch of Reionization 21-cm signal

I finally investigate how variations in key cosmological parameters—specifically the Hubble
constant (𝐻0) and the matter clustering amplitude (𝜎8)—affect the predicted 21-cm signal from
the Epoch of Reionization. Using 𝑁-body simulations run with Gadget-4, I post-process the
results with the Polar reionization pipeline, which couples the semi-analytic galaxy formation
model L-Galaxies with 1D radiative transfer via Grizzly. I then compared the simulated UV
luminosity functions with the latest JWST observations at redshifts 𝑧 = 10 and 9 to determine
the astrophysical parameters necessary for consistency and then explored the impact of different
cosmologies on the 21-cm power spectrum in the redshift range probed by LOFAR (𝑧 ≈ 8.5−10).
Despite adopting distinct sets of cosmological and astrophysical parameters, the predicted 21-
cm power spectra remain consistent with current observational upper limits, highlighting the
potential of combining both galactic and IGM observables to constrain the physical processes
driving reionization more tightly.

6.2 Future prospects

In the efforts to improve the modelling of the 21-cm signal, in this thesis, I have explored
improvements in effective volumes and physical complexity. However, as shown from the results
in Chapter 5, it would be crucial to perform multi-wavelength parameter inference in order to
put tighter constraints on the range of viable models of the Universe. For this, large simulations
required for modelling the 21-cm signal will also have to have the resolution to analyze galaxy
observations from JWST and upcoming missions like SPHEREx (Spectro-Photometer for the
History of the Universe, Epoch of Reionization, and Ices Explorer). While smaller simulation
boxes can achieve higher resolution while having similar computational costs, all state-of-the-art
cosmological simulations built so far tend to focus on only the brightest galaxies. The argument in
support of this is simple: due to the associated computational costs, simulations only resolve up to
the resolution of galaxy masses that are observable. However, this induces a bias in the sampling
of galaxies. While telescopes observe only a subset of galaxies out of all galaxies present at any
redshift, the corresponding simulations only generate a sample of the observable galaxies. Thus,
the physical processes in these simulations would be biased towards not producing any of the
fainter, unobserved galaxies.
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The immediate question that arises is whether this matters at all. And the answer is yes.
Analytical models show that smaller, fainter galaxies can contribute as much as 50% of ionizing
photons during reionization (Wu & Kravtsov, 2024). This oversight could be one of the reasons
behind recent debates on “crises in cosmology,” particularly concerning photon abundance during
reionization (Davies et al., 2021; Muñoz et al., 2024).

Thus, current simulations are unable to fully reconcile theoretical predictions with observational
data by design. Furthermore, the high computational cost of running these simulations requires
fixing several cosmological and astrophysical parameters, thereby narrowing the range of viable
early Universe models that can be tested against upcoming observational data. This limitation
hampers efforts to resolve critical questions, including the Hubble parameter and 𝜎8 tensions
and the properties of dark matter. These challenges persist even as next-generation telescopes
prepare to detect signals from the IGM and investigate the first galaxies. Because of these
issues, the next step in my work will be to develop methodologies to boost the resolution without
compromising on simulation box sizes and physical complexity. However, brute-forcing is also
not computationally feasible. Therefore, to address these constraints, I propose developing a
novel, physics-informed spatiotemporal super-resolution technique. The core principle would be
to upscale inexpensive, low-resolution simulations by operating on merger trees of dark matter
halos. Merger trees are just data structures that store the information on dark matter halo mergers
across time, which leads to the growth of halo masses.

This upscaling would essentially increase the branching of the merger trees at each time step but
can eventually also be used to extrapolate the number of time steps beyond that of the training sets.
As for the exact methodology, while Generative Adversarial Networks (GANs) have been used
in a similar context (e.g., Zhang et al., 2024), they often suffer from mode collapse, producing

Figure 6.1: Flowchart of the proposed DDPM-based network. The input merger tree “conditions”
the noise into super-resolving it via the denoising process of reverse diffusion.
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insufficient diversity in generated outcomes despite variations in the input. To overcome this, I
propose the use of denoising diffusion probabilistic models (DDPMs, which have demonstrated
robustness and versatility in astrophysical applications such as Ono et al., 2024; Nguyen et al.,
2024). They are more stable than GANs as they produce diverse outputs while preserving the input
information. Further, past methods have relied on training on particle data, requiring massive
computational resources for their training data generation. Using merger trees as a training set
instead reduces the computational load, as a single simulation can generate thousands of them
containing the required halo data.

A DDPM works in two stages: adding noise and then removing it. In the first stage, called forward
diffusion, the model gradually adds random noise to the data, making it more and more distorted
until it becomes almost unrecognizable. The second stage, reverse diffusion, is where the model
learns to remove the noise step by step, restoring the original data. By guiding the model with an
input merger tree, I will then improve the input tree’s resolution by essentially “denoising” it and
generating halos beyond its resolution limit. The process is shown as a flowchart in Figure 6.1.
The super-resolved output will be constructed back into the format required by L-Galaxies by
rebuilding the merger trees from the super-resolved halo data. This can then, in turn, be used for
the Polar simulations.

Combining super-resolution with the boost in effective volumes provided by the F&P method
enables the development of EoR simulations that are large-scale, high-resolution, and physically
complex, all without incurring prohibitive computational costs. This unified approach minimizes
systematic biases that arise when comparing physics inferred from different observables by
offering a singular platform for interpreting multi-wavelength data. Thus, with the groundwork
laid in this thesis and the planned future steps, I will not only be able to explore a broader
parameter space but also provide tighter constraints on the physical properties of the Universe
during cosmic reionization. Ultimately, this work allows for a comprehensive understanding of
the EoR by providing deep insights into the formation of the first luminous structures and their
impact on the IGM.



Appendix A

ML-Enhanced 21-cm Signal Extraction:
Investigating a low SNR case

I use the semi-numerical code 21cmFAST (Mesinger & Furlanetto, 2007; Greig & Mesinger,
2015) to generate a mock 21-cm signal at 𝑧 = 9.1 within a box of length 400 cMpc. I adopt the
values 𝜁 = 30%, 𝑅mfp = 15 cMpc and 𝑇 feed

vir = 5 × 104 K (see Greig & Mesinger 2015 for more
details).

The power spectra recovered using the three kernels are shown in Figure A.1. As in this model
the input 21-cm signal is much weaker than in those discussed in the main text, for ≈ 10 nights of
observation (⟨SNR⟩k ≈ 1.6 × 10−2) the input signal is never contained within the 2𝜎 uncertainty
bounds of the recovered signal with the exception of the highest 𝑘-bins, where the SNR is higher.
When comparing with the thermal noise uncertainty, I find that all three kernels manage to provide
upper limits, with the VAE kernel also recovering the overall shape. A detection is not possible
because of the low SNR, with the uncertainty on the thermal noise being almost two orders of
magnitude larger than the input 21-cm signal. For ≈100 nights (⟨SNR⟩k ≈ 0.3), the signal is
within the 2𝜎 uncertainty bounds for all kernels, while still providing upper limits and not a
detection because the SNR is still low despite the increased integration time. The VAE kernel has
the tightest constraints on the uncertainty. While the VAE kernel overestimates the input signal,
it does an excellent job in recovering its overall shape.
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Figure A.1: As Figure 2.3 for 21cmFAST simulations of reionization.
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The F&P method: Improvement factor for
the equilateral bispectrum

I repeat the analysis of the improvement factor when using the F&P method as done in Section 4.4.1
for the bispectrum. While this can be performed for any type of bispectra, for the sake of simplicity
here I discuss only 𝐵equi. For a direct comparison with the power spectrum improvement factor,
I use the same wave-mode window of 0.15 ≤ 𝑘/(ℎ cMpc−1) ≤ 0.4.

Further, for the standard deviation curve for 𝐵equi shown in Figure B.1, I do not consider combi-
nations of GIC simulations with 𝑚 < 4 or 𝑚 > 32 because of sampling bias, which is significant
because unlike the power spectrum, the equilateral bispectrum can take negative values. This,
combined with the fact that the values of 𝐵equi are close to 0 mean that minor deviations from the
ensemble average can lead to severe deviations in the average in cases of poor sampling. As done
in Section 4.4.1, I report the minimum, maximum and average improvement factor ( 𝑓imp) values
in Table B.1 and depict the same graphically in Figure B.2. I note that the average improvement
factor for 𝐵equi is consistent across redshifts 10 ≥ 𝑧 ≥ 7.

Table B.1: As Table 4.1, showing the 𝑓imp improvement factor for the equilateral triangle bispec-
trum (𝐵equi).

𝑧 1 − 𝜎 away 2 − 𝜎 away
𝑓imp,min 𝑓imp,max ⟨ 𝑓imp⟩ 𝑓imp,min 𝑓imp,max ⟨ 𝑓imp⟩

10.0 2.5 17.0 5.7 6.0 18.5 9.6
8.3 2.0 15.0 7.5 6.0 17.5 11.2
7.6 2.5 12.5 5.0 5.5 16.0 9.3
7.0 0.5 17.0 7.4 3.0 18.0 10.8
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Appendix C

Polar: UV Luminosity Functions across
redshifts
As I tune the astrophysical parameters for the constrained case only to match the UVLFs at 𝑧 = 10
and 9, it is interesting to explore how the four cosmological models compare to the UVLFs
observed at other redshifts. In Figure C.1, I show results at 𝑧 = 12, 10, 9, 8, 7, 5. I note that while
the models mildly overestimate observational data at 𝑧 = 5, this could be because astrophysical
parameters may need to be evolved with redshift, while here they are kept constant. Interestingly,
the 𝜎8 low model tends to reproduce the bright end much better at lower redshifts.
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Figure C.1: As Figure 5.2, but for the constrained case UVLFs at 𝑧 = 12, 10, 9, 8, 7 and 5.



Appendix D

Polar: Maps of 𝛿𝑇b

In Figure D.1, I show the maps of 𝛿𝑇b of the B-series middle slices (the simulations with
“paired” initial conditions in the F&P pair of simulations) for the four cosmological models in
the constrained case at 𝑧 = 12, 10, 8, and 6 (from top to bottom). Here the darkest regions
represent the ionized regions with 𝛿𝑇b = 0. Note that 𝛿𝑇b cannot assume negative values, due to
the assumption of 𝑇S ≫ 𝑇CMB. I note that the ionized regions of the A-series middle slices shown
in Figure 5.3, correspond to the most neutral regions of Figure D.1. This is because of the nature
of the Fixed & Paired approach, as regions of matter clustering in the A-series should correspond
to voids in the B-series by construction.
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Figure D.1: Same as Figure 5.3 but for the B-series of simulations.



Appendix E

Polar: Fiducial model with fesc = 25%
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Figure E.1: As Figure 5.4, but for the fiducial model, for an escape fraction of 𝑓esc = 12.5%
(cyan) and 25% (brown).

In Figure E.1, I show the redshift evolution of the average of the A and B-series volume-averaged
neutral hydrogen fraction ⟨𝑥HI⟩ for an escape fraction of 𝑓esc = 12.5% (cyan) and 25% (brown).
I note that as expected, doubling the escape fraction leads to a faster rate of reionization, getting
50% reionized by 𝑧 ≈ 7 for 𝑓esc = 25% as compared to 𝑧 ≈ 6.4 for 𝑓esc = 12.5%. However, both
cases are in agreement with observations, except for redshifts 𝑧 ≤ 6, where the lower 𝑓esc case
has slightly higher values. Nevertheless, it is still within the margin of error of observations. In
Figure E.2 I also show the redshift evolution of the normalized 21-cm signal power spectrum
(Δ2

21cm) at 𝑘 = 0.15 ℎcMpc−1. I note that just like the other parameters as shown in Figure 5.8, the
choice of 𝑓esc impacts where Δ2

21cm(𝑘 = 0.15 ℎcMpc−1) peaks as well as its overall trend across
redshift.
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