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Zusammenfassung

Obwohl die ΛCDM-Kosmologie das erfolgreichste kosmologische Modell ist, das uns heute
zur Verfügung steht, da es die meisten der beobachteten Phänomene erklären kann, wurde es
durch immer mehr Probleme in Frage gestellt. Eine der größten Probleme, sowohl in Bezug
auf die Werte als auch auf die Bedeutung des gemessenen Parameters, ist die berüchtigte
“Hubble-Spannung”. Sie bezeichnet die Unstimmigkeiten zwischen den Messungen der Hubble-
Konstante, die die Expansionsrate des Universums beschreibt und einen wichtigen Bestandteil
unseres kosmologischen Verständnisses darstellt. In den letzten Jahren sind die Methoden zur
Messung von 𝐻0 immer zahlreicher und ausgefeilter geworden, doch während die Unsicherheiten
der Messungen abgenommen haben, wurde die Unstimmigkeit nicht gelöst, sondern hat sogar
zugenommen. Solche Methoden lassen sich grob in “frühe” und “späte” Proben für 𝐻0 ein-
teilen, was sich ungefähr auf den Zeitpunkt der Entstehung des beobachteten Phänomens bezieht.
Während “frühe” Proben, die z.B. auf dem kosmischen Mikrowellenhintergrund basieren, stark
von dem angenommenen kosmologischen Modell abhängig sind, sind “späte” Proben im Allge-
meinen modellunabhängig, aber anfälliger für systematische Fehler in den Messungen. In diesem
Zusammen- hang gehört die “Time-delay”-Kosmographie zu den “späten” Proben, die𝐻0 messen
kann, ohne dass eine Kalibrierung erforderlich ist. Diese Analyse basiert auf dem in der All-
gemeinen Relativitätstheorie gut erprobten Phänomen des starken Gravitationslinseneffekts. Bei
einer variablen Lichtquelle im Hintergrund und einer starken Gravitationslinse im Vordergrund
kann die Zeitverzögerung zwischen den Mehrfachbildern der gelinsten Quelle durch Messung
und Analyse ihrer Leuchtkraft über die Zeit gemessen werden. Eine Linsenmodell-Analyse des
Systems kann dann das Massenprofil der Linse einschränken. Die Kombination aus beiden In-
formationen kann dann verwendet werden, um den Hubble-Parameter einzuschränken. In dieser
Arbeit habe ich diese Analyse auf der Grundlage von Hubble Space Telescope Archivdaten und
einer Beobachtungskampagne mit dem 2,1-Meter-Teleskop am Wendelstein durchgeführt. Ich
habe die weltraumbasierten Daten verwendet und dabei die verfügbaren Filter sowie deren höhere
Auflösung genutzt, um die Linsenmasse zu modellieren. Dadurch konnte ich das Fermat-Potential
mit einer Präzision von 3 % bestimmen.
Ich habe die Daten der Wendelstein-Beobachtungskampagne verwendet, um die Lichtkurven der
gelinsten Quellen zu erstellen, die die Zeitverzögerung einzuschränken, die je nach Bildpaar mit
einer Genauigkeit von 8% bis 15% ermittelt wurde.
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Anschließend habe ich die Ergebnisse nach einem Bayes’schen Ansatz kombiniert und so eine
Beschränkung für 𝐻0 von 71.3+5.0

−4.5
km

Mpc s mit einer statistischen Unsicherheit von ∼ 6, 7% erreicht.
Diese Arbeit wurde größtenteils unabhängig von größeren Kollaborationen wie TDCOSMO
durchgeführt, was eine unvoreingenommene Validierung der Methodik ermöglicht. Darüber
hinaus ist das Ergebnis ein Beweis für die Stärke des Wendelstein-Observatoriums, das als zu-
verlässiges Hilfsmittel für die “Time-delay”-Kosmographie oder ähnliche Projekte, die hochqual-
itative Daten mit hoher Quantität erfordern, betrachtet werden sollte.



Abstract

While ΛCDM cosmology is the most successful cosmological model at our disposal today, being
able to explain most of the observed phenomena, it has been challenged by more and more
tensions. One of the greatest, both in terms of numerical tension and of the importance of the
parameter measured, is the infamous Hubble tension. This refers to the disagreement between
measurements of the Hubble constant, which describes the rate of expansion of the Universe, a
cornerstone of our cosmological understanding. In recent years the methods for measuring 𝐻0
have grown in number and sophistication, and yet, as the uncertainties of the measurements have
decreased, the tension has not been solved; in fact, it has increased.
Such methods can be roughly divided between “early” and “late” probes of 𝐻0, approximately
referring to the time of origin of the phenomenon observed. While “early” probes, based for
example on the cosmic microwave background, are strongly dependent on the assumed cosmology,
“late” probes are generally model-independent but are more susceptible to systematic errors in
the measurements. In this context, the time delay cosmographic method is a “late” time probe
which can measure 𝐻0 directly, without requiring any calibration. This analysis is based on the
well-tested general relativity phenomenon of strong gravitational lensing. Given a background
variable source and a foreground strong gravitational lens, the time delay between the multiple
lensed images can be measured by monitoring and analysing their luminosity over time. A
separate modelling analysis of the system can then constrain the mass profile of the lens. The
two combined information can then be used to constrain the Hubble constant. In this work,
I implemented this analysis based on Hubble Space Telescope archival data and a dedicated
observational campaign from the 2.1-meter telescope at Wendelstein. I employed the space-based
data by taking advantage of the multiple filters available and their higher resolution to model the
lens mass, obtaining a result with 3% precision on the Fermat potential.
I instead used the data from the Wendelstein observational campaign to produce the lightcurves
of the image and analyse them in order to constrain the time delay, which was obtained with a
precision ranging from 8% to 15% depending on the image pair.
I then combined the results following a Bayesian approach, reaching a constraint on 𝐻0 of
71.3+5.0

−4.5
km

Mpc s with a precision ∼ 6.7% considering random uncertainty. Notably, this work
has been mostly independent of major collaborations, such as TDCOSMO, thus providing an
unbiased validation of the methodology. Furthermore, the result is proof of the capabilities of the
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Wendelstein observatory, which should be considered a reliable asset for time delay cosmography
or similar projects that require high-sampling, high-quality data.
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Chapter 1
Introduction

The idea of light interacting gravitationally with matter was entertained as early as 1704 by none
other than Sir Isaac Newton Newton (1704) and was further studied by several great physicists:
Cavendish (unpublished manuscript, 1784), Laplace Laplace marquis de (1813) and Soldner
Soldner von (1804), among others. However, it was only with the publication of Einstein’s theory
of General Relativity (GR, Einstein, 1916) that this concept was revisited and correctly defined.
Such a phenomenon was dubbed, somewhat inappropriately Lodge (1919), “gravitational lensing”
(GL) and was first observed during the famous 1919 eclipses, being the second observational
proof of GR. The discovery was so sensational that the New York Times reported it on the 10th
of November with the headline “Lights All Askew in the Heavens” Times (1919). However,
after such initial success, this field of research was met with little optimism, as even Einstein,
as late as 1936, remarked that “there is no great chance of observing this phenomenon” Einstein
(1936). Fortunately, Zwicky found one of the early hints of the existence of dark matter (DM)
by applying the virial theorem to nearby clusters of galaxies, and thus considered the mass of
galaxies, at the time referred to as “nebulae”, to be underestimated. He therefore painted a much
brighter picture of the possibility of observing GL, and, even more importantly, suggested some
key points of interest for which this field of research was worthy of study. Quoting Zwicky (1937):
“The discovery of images of nebulae which are formed through the gravitational fields of nearby
nebulae would be of considerable interest for a number of reasons.

1. It would furnish an additional test for the general theory of relativity.

2. It would enable us to see nebulae at distances greater than those ordinarily reached by even
the greatest telescopes. Any such extension of the known parts of the universe promises to
shed very welcome new light on a number of cosmological problems.

3. The problem of determining nebular masses at present has arrived at a stalemate. [...]
Observations on the deflection of light around nebulae may provide the most direct deter-
mination of nebular masses and clear up the above-mentioned discrepancy”

His vision proved to be accurate; today, not only is gravitational lensing a well-established and
flourishing research field, but these points still encapsulate the focus of most of the GL studies.
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Starting from the latter point, GL has been effectively utilized to investigate the mass distribution
of galaxies and larger cosmic structures. Its primary aim has been to constrain Dark Matter (DM)
candidates and properties, ranging from cold (Narayan, White, 1988; Kochanek, 1994), warm
(Gilman et al., 2019) or a mixture of both, as well as self-interacting (SIDM, Gilman et al., 2021;
Despali et al., 2019) and “fuzzy” DM (Laroche et al., 2022). Multiple studies also focused on
DM small-scale substructures, such as angular structures in the lens systems (Vegetti, Koopmans,
2009; O’Riordan, Vegetti, 2024) and line-of-sight haloes (Dhanasingham et al., 2023; Hogg et al.,
2023). Considering the second point of Zwicky’s list, strong gravitational lensing has been used
to study sources which would be unobservable directly, due to intrinsic brightness and distance.
Recently, the farthest observed galaxies have been studied thanks to the combination of exquisite
resolution and depth of the James Webb Space Telescope (Gardner et al., 2006, JWST) combined
with the natural high magnification of cluster-scale lenses (e.g. Roberts-Borsani et al., 2023;
Hsiao et al., 2023). The morphology and kinematics of galaxies at high redshifts would also not
be observable if it were not for strong lensing (e.g. Rizzo, 2020; Amvrosiadis et al., 2024).

Finally, the first of Zwicky’s points proved particularly fruitful, as multiple and different
avenues of research are built upon it. For example, tests of GR have been developed by constraining
the post-Newtonian parameter (𝛾PPN, Thorne, Will, 1971) in galaxy-galaxy strong lensing,
indicating the ratio of the spatial curvature potential and the Newtonian potential. In standard
GR, these are assumed to be identical, but strong GL can be used to verify such a hypothesis
(e.g. Collett et al., 2018; Yang et al., 2020). Also tied to this first point are the constraints of
cosmological parameters such as the matter density parameter Ωm and the dark energy equation
of state w which are possibly constrained from “compound lensing”, i.e. a single lens with
multiple lensed sources, which is a rare occurrence for single galaxies (see e.g. Ballard et al.,
2024), but is more common in galaxy clusters (e.g. Caminha et al., 2022), or H0, the Hubble
parameter. The latter will be the focus of this study, and its measurement is referred to as
Time Delay Cosmography (TDC) or Time Delay Cosmographic analysis. I will describe the
details of the theoretical framework of this method in detail in Chapter 2, while I present here a
qualitative description of the method. The mass of a gravitational lens warps space-time around
itself, altering the light-path. This warping causes the spatial length of the light-path to be
elongated compared to the unperturbed path, resulting in a geometrical delay. Additionally, the
gravitational lens induces time dilation in its surrounding space-time (gravitational or Shapiro’s
delay, see Shapiro, 1964). As a result, the light experiences a further delay due to this time
dilation, causing its proper time to be dilated while traversing the lens environment.

The combination of these two effects results in the observed light being delayed with respect
to the unperturbed light ray. The latter is unfortunately impossible to observe due to the presence
of the lens. However, in the case of strong gravitational lenses (SGL or simply SL), the light of
the source is deflected into multiple images, which are delayed differently from one to the other.
Thus, a relative time delay between the arrival time of light is present for each pair of images.
Such a time delay is dependent on the mass distribution of the lens, the geometrical configuration
of the system (i.e. the relative positions of the source, the lens and the observer) and the cosmol-
ogy. The time delay can be measured if the source presents a variability in luminosity over time,
such as for Quasi-Stellar Objects (QSOs) or SuperNovae (SNae). In such cases, observational
campaigns can be carried out to record the luminosity variation in each image with respect to
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time, indicated as lightcurves. The lightcurve variations are then correlated between the images,
identifying their relative time delay and magnification shift (or, equivalently, their flux ratio). On
the other hand, the mass distribution and geometrical configuration of the system can be obtained
by modelling the system based on high-resolution observations. Ancillary information, such as
integrated spectroscopy of the lens and characterisation of the lens environment, is furthermore
required to break the Mass-sheet degeneracy (Suyu et al., 2014). These measurements are then
used to constrain cosmological parameters, in particular, the Hubble parameter 𝐻0.
This is a fundamental parameter for our understanding of the Universe, and measuring it accu-
rately and precisely has become of great importance for the astrophysics community. Not only
because its value affects many aspects of our cosmological understanding, from the size and age
of the universe, to its critical density, but also due to the divergence in results from different
measurements. This is commonly referred to as the “Hubble tension” Di Valentino et al. (2021a),
one of the open and heavily debated crises in cosmology. It results from the tension, at present
larger than 5𝜎 Perivolaropoulos, Skara (2022), between its measurements. If these results are
not to be corrected by unknown or underestimated systematics, they would indicate a significant
failure of our current model of the Universe, and lead us to the discovery of a new, more exact un-
derstanding of it. A great effort within the scientific community is being made to try and solve this
tension, either by improving the precision of the measurement or by defining a new cosmological
model. In this context, this work is particularly timely as it provides an additional measurement
of 𝐻0 using the relatively new Time Delay Cosmography (TDC) method, which enables a direct
determination of this parameter. Importantly, this research was conducted independently of larger
collaborations, offering an external verification of the methodology employed.
Furthermore, this work will rely on the data obtained during a dedicated observational cam-
paign carried out at the Wendestein observatory to measure the time delay. The results of this
work, therefore, reinforce the argument that this is a state-of-the-art facility for cosmological
observations and, more generally, a well-suited observatory for high-sampling, high-resolution
campaigns. This will prove always more important with the advent of the “Big Data Era” of as-
trophysics, where large-scale surveys are expected to increase by orders of magnitude the number
of suitable targets Collett (2015).
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Chapter 2
Gravitational Lenses in Time Delay
Cosmography

Cosmology is a fundamental branch of science that has been investigated from the early days of
written history, but due to the lack of a sound theoretical framework and observational capabilities,
it was rather limited to speculation, often on par with philosophy and religion. The birth of modern
cosmology had to wait until a little more than a century ago, with the scientific revolution that
Einstein’s Relativity brought to physics, in 1916 (Einstein, 1916). Since then, our understanding
of the cosmos has grown exponentially, in tandem with our observational capabilities: it took
approximately 10 years to observe the expansion of the universe (Lemaı̂tre, 1927; Hubble, 1929),
another four decades to observe the relic of the Big Bang as cosmic microwave background
(CMB, Penzias, 1968), and then thirty years to discover that the universe’s expansion rate is
positive, meaning that we are experiencing an accelerated expansion (Riess et al., 1998).
Our understanding of the cosmos is now at a fairly mature stage, being based on the ΛCDM
“standard model” (Peebles, 1984; Peebles, Ratra, 2003; Carroll, 2001). Its name refers to its two
most critical energy components: cold dark matter (CDM, Zwicky, 1933; Freeman, 1970; Rubin
et al., 1980), which dominates the matter component, and the cosmological constant (indicated
by Λ, Carroll, 2001), which is associated with the dark energy (DE), which in turn consists of
68% of the total energy of the universe and is the leading cause for the accelerated expansion
Peebles, Ratra (2003); Weinberg (1989). This has been a very successful model, as it is the
simplest mathematical framework based on only 6 free parameters Aghanim et al. (2020): the
cold dark matter density 𝜔c = Ωcℎ

2, the baryon density 𝜔b = Ωbℎ
2, the scalar spectral index 𝑛𝑠,

the observed angular size of the sound horizon at recombination 𝜃MC, the initial super-horizon
amplitude of curvature perturbations 𝐴𝑠, and the reionization optical depth 𝜏. This model is
able to describe most of the modern cosmological observations: the presence of the CMB, the
accelerated expansion of the universe, the large-scale structure distribution of galaxies and the
chemical abundance observed today.
However, ΛCDM is far from perfect, as it suffers from known theoretical problems, such as its
“cosmic coincidence” (also referred to as the “Why now?” problem, i.e. the fact that matter
and dark energy have a comparable energy density today, 𝜌𝑚 ∼ 𝜌Λ, Arkani-Hamed et al., 2000;
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Velten et al., 2014) and the disagreement between the vacuum energy density derived from
observations and the one expected from Quantum Field Theory Weinberg (1989); Martin (2012);
Burgess (2015). Moreover, while the model accounts for dark matter and dark energy, there is
still no definitive theory describing the physical nature of either of them Bertone, Hooper (2018);
Amendola, Tsujikawa (2010). Lastly, for a few decades, this model has been also facing numerous
observational crises (see Abdalla et al., 2022, for a detailed review), first and foremost being the
observed tension between different measurements of the expansion of the universe, the Hubble
constant𝐻0, dubbed the “Hubble tension” (Riess et al., 2016; Verde et al., 2019, further discussed
in section 2.1.2), followed by the “S8 tension” or “growth tension” Anchordoqui et al. (2021). The
latter, however, might result to be an apparent tension (Sánchez, 2020) or might have been proved
to be due to systematics (Ghirardini et al., 2024), although further independent measurements
are required. Many other sources of tension are present, as reviewed in Perivolaropoulos, Skara
(2022), but will not be discussed here: the CMB anisotropy anomalies, the cosmic dipoles, the
Baryon Acoustic Oscillations (BAO) curiosities, the Cosmic Birefringence, and others. These
tensions are to be considered great opportunities; indeed, if those can not be explained from
systematics in the measurements or other unknowns or underestimated sources of error in the
analysis, which all studies have thoroughly researched for, the only remaining explanation is to
be found in an incoherent model. This would point the research to new physics and a deeper
understanding of the universe. However, at present, no systematic appears to be able to explain
all tensions, and no model has reached the capabilities of ΛCDM (e.g. Knox, Millea, 2020), as
none can simultaneously explain the tension and all other observed cosmological features.
In this study, we will focus on the Hubble tension specifically, described in Section 2.1.2, and
measure the Hubble parameter with the Time Delay Cosmographic method (TDC, see Section
2.3), first introduced by Refsdal as early as 1964 Refsdal (1964). In the following Sections, I will
introduce a brief background of cosmology (Section 2.1). I will then give a general introduction
to gravitational lensing (Section 2.2), and a more detailed discussion of how this phenomenon is
taken advantage of in the TDC framework (Section 2.3). In this section, I will also discuss some
details of the model peculiar to this study, such as the physical model of QSO (Section 2.3.4) and
the effect of microlensing (Section 2.3.5).

2.1 Cosmological Background
The framework of modern cosmology lies in Einstein’s field equations Einstein (1936). The
following section is a general overview of the cosmological implications of these equations,
which are now well-known and established in the field. For a more in-depth overview, refer to
Peebles (1993). Einstein’s field equations relate the geometric terms of spacetime with its energy
content:

𝑅𝜇𝜈 −
1
2
𝑔𝜇𝜈R + 𝑔𝜇𝜈Λ =

8𝜋𝐺
𝑐4 𝑇𝜇𝜈 . (2.1)

This is a tensor equation, where 𝑅𝜇𝜈 is the Ricci tensor, 𝑔𝜇𝜈 is the metric, R is the Ricci scalar
or scalar curvature, which is the contraction of the Ricci tensor given the metric: R𝑔𝜇𝜈𝑅𝜇𝜈 and
Λ is the cosmological constant. For the right-hand side of the equation, encoding the energy and
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mass content, 𝐺 is the gravitational constant and 𝑇𝜇𝜈 is the stress-energy tensor. Note that for
different conventions, the constant factors and signs might change, but the general form of the
equation will remain.
ΛCDM cosmology is then defined, given this equation, by assuming at cosmological scales the
following:

• The cosmological principle: the universe is isotropic and homogeneous.

• The presence of four components of the energy content of the universe: matter (comprising
both cold dark matter and baryonic matter), radiation, the cosmological constant, encoding
the effect of dark energy, and the curvature.

• The metric being represented by the Friedmann-Lemaı̂tre-Robertson-Walker metric (FLRW)
metric (this is indeed a consequence of the cosmological principle).

• The different components, matter, radiation and dark energy, are considered to behave as a
perfect fluid.

The FLRW metric is described in general in the following form:

d𝑠2 = −d𝑡2𝑐2 + 𝑎2(𝑡) ·
(

1
1 − 𝑘𝑟2/𝑅2

0
d𝑟2 + 𝑟2d𝜔2

)
. (2.2)

Here 𝑐 is the speed of light, d𝜔2 = d𝜃2 + sin2𝜃d𝜙2 takes into consideration all angle dependence
and 𝑘 is the curvature sign and can take values between -1, 0 and +1, to which corresponds the
geometry of space: open, flat or closed, respectively. Correspondingly, 𝑅0 is the curvature scale
or radius, related to the spatial curvature 𝐾 = 𝑘

𝑅2
0
. 𝑎(𝑡) is the scale factor, which depends only on

cosmological time and encodes the scale of the universe at a given time (thus its expansion or
contraction over time). We define for convenience 𝑎(𝑡0) = 𝑎0 = 1, where 𝑡0 indicates the cosmic
time today; thus 𝑎(𝑡) serves as a relative scale with respect to the size of the Universe today. I
furthermore follow the usual convention of indicating the given parameter of today with the “0”
as subscript.
Considering the FLRW metric, the Equations 2.1 can be solved and rewritten as Friedmann’s
equations :

¤𝑎2

𝑎2 =
8𝜋𝐺

3
𝜌 − 𝑐2𝑘

𝑎2𝑅2
0

+
Λ𝑐2

3
(2.3)

¥𝑎
𝑎

= −4𝜋𝐺
3

(
𝜌 + 3

𝑝

𝑐2

)
+
Λ𝑐2

3
, (2.4)

where Equation 2.3 is obtained from the time-time component of Equation 2.1 (i.e. 𝜇, 𝜈 = 0, 0),
while 2.4 is obtained from the trace of the tensor (i.e. 𝜇, 𝜈 = 𝑖, 𝑖). The Hubble parameter is
usually introduced here by defining 𝐻 = ¤𝑎

𝑎
, where ¤𝑎 = d𝑎

d𝑡 . . Given the dependence on time of
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both ¤𝑎(𝑡) and 𝑎(𝑡), note that 𝐻 is also a function of time. It is then a misnomer to define it as
the Hubble constant, although this can be referred to as the value of the Hubble parameter today,
𝐻(𝑡0) = 𝐻0 = ¤𝑎0

𝑎0
= ¤𝑎0, as we should do in this work.

The Friedmann equations define the expansion rate of the universe and its acceleration as a
function of its energy content. In order to solve them, we need to define the dependence of
pressure and density of the universe’s components (matter, radiation and dark energy) with
respect to time. We then make use of the assumption that such components behave as perfect
fluids. Thus, we can define their equation of state as 𝑝 = 𝑤𝜌𝑐2, where 𝑝 indicates the pressure and
𝑤 is assumed to be constant. It is worth mentioning that this is not an unchallenged assumption,
and expansions of ΛCDM models have been considered where 𝑤 is time-dependent, usually
applied to DE and thus referred to as “dynamical DE” models, e.g. Linder (2003).

Given the cosmological principle, these components are independent of the positions (else
the homogeneity would be broken) and are only dependent on cosmic time. Matter is considered
to be pressure-less in cosmological scales, thus 𝑤𝑚 = 0 (for this reason referred to as “cold dust”).
For radiation, 𝑤𝛾 is instead 1/3. For dark energy, 𝑤Λ = −1, although given the discussed effect
of dark energy, this value is still under investigation. Note that the energy density relative to the
cosmological constant is defined as 𝜌Λ = 𝑐2Λ

8𝜋𝐺 .
Given this assumption, it can be derived that the solution 𝜌(𝑎) ∝ 𝑎−3(1+𝑤). For each energy
component and its corresponding factor 𝑤, this equation tells their cosmic evolution: cold matter
dilutes as 𝜌𝑚 ∝ 𝑎−3, as expected, while the density of the cosmological constant is indeed
constant over time. The energy density of radiation instead dilutes as 𝜌𝛾 ∝ 𝑎−4, which is due
to the additional loss of energy of the expanding space over which the electromagnetic waves
are propagating. This is an observable effect, as the wavelength of light of a distant object is
“stretched” by a factor 1/𝑎 from the moment it is emitted to now. This is the cosmological redshift
𝑧, which is defined as 𝑧 = 1/𝑎 − 1. This is the actual observable of cosmological time, as it can
be, in principle, directly observed from the spectra of the object, and is therefore often used in
cosmology rather than the cosmic time or even the scale factor.
It is customary to redefine the first Friedmann equation 2.3 by defining the critical density
𝜌𝑐 = 3𝐻2

8𝜋𝐺 , and introducing the non-dimensional density parameters Ω𝑖 = 𝜌𝑖/𝜌𝑐. We then obtain∑
𝑖 Ω𝑖 = 1, where 𝑖 varies between matter, radiation, dark energy and curvature, for which we

define Ω𝑘 = − 𝑘𝑐2

¤𝑎2𝑅2
0
. If we compare that to today’s density parameter, we obtain the following:

𝐻2

𝐻2
0

= Ω0,𝑘𝑎
−2 +

∑︁
𝑖

Ω0,𝑖𝑎
−(1+𝑤𝑖). (2.5)

This latter equation, referred to as the dimensionless Friedmann equation, describes 𝐻 as a
function of 𝑎, and it’s then straightforward to redefine it as a function of 𝑧:

𝐻 = 𝐻0

√︂∑︁
𝑖

Ω0,𝑖(1 + 𝑧)1+𝑤𝑖 , (2.6)

where we have incorporated the curvature in the summation over 𝑖, with 𝑤𝑘 = 1. The square root
on the left-hand side is sometimes defined as the function 𝐸(𝑧), thus having 𝐻(𝑧) = 𝐻0𝐸(𝑧).
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2.1.1 Distances in Cosmology
I will conclude this brief introduction by discussing the topic of how to measure distances in an
expanding and generally non-flat space. A more in-depth presentation can be found in Dodelson,
Schmidt (2020). From the FLRW metric defined in Equation 2.2, the proper distance can be
defined as 𝐷(𝑡) = 𝑎(𝑡)𝜒. This is the physical distance between two objects at a given time,
separated by the comoving distance 𝜒. This depends on the sign curvature 𝑘 of the universe, as

𝜒 =


𝑅0 sin−1(𝑟/𝑅0) if 𝑘 = +1
𝑟 if 𝑘 = 0
𝑅0 sinh−1(𝑟/𝑅0) if 𝑘 = −1,

(2.7)

where 𝑟 is the radius obtained from the spherical coordinates as described for the FLRW metric
in 2.2 and 𝑅0 is the curvature scale. It can be seen that, given different geometries, the distances
would be affected, with a closed universe (𝑘 = +1) having a larger proper distance to an object
than its coordinate distance 𝑟. This is because the geometry is analogous to a sphere, where the
distance along the surface (corresponding to 𝜒) is longer than the straight-line distance (analogous
to 𝑟). On the contrary, an open universe (𝑘 = −1), which is analogous to a hyperbolic space,
would have a smaller proper distance than the coordinate distance. Finally, 𝑘 = 0 would represent
a flat universe, where no curvature could alter the relationship between the coordinate distance
and the proper distance. The comoving distance can be related to the scale factor by considering
the travel time of light and correcting for the expansion of the universe along the path. Thus
considering two points at cosmic time 𝑡0 and 𝑡1, we obtain

𝜒 = 𝑐
∫ 𝑡1
𝑡0

d𝑡′

𝑎(𝑡′)
= 𝑐

∫𝑎1

𝑎0

d𝑎′
¤𝑎′𝑎′

. (2.8)

Here we operated a simple change of variable by considering the time derivative of 𝑎, where
𝑎(𝑡𝑖) = 𝑎𝑖 for 𝑖 = 0, 1. It is usual to consider an observer at 𝑡0 = 0, thus 𝑎0 = 1, and a source at
𝑎1 = 𝑎, thus their comoving distance becomes 𝜒 = 𝑐

∫𝑎
1

d𝑎′
¤𝑎′𝑎′ . Considering this definition of 𝜒,

equation 2.5 and the corresponding definition of the function 𝐸(𝑎) = 𝐻(𝑎)/𝐻0, we can obtain:

𝜒 =
𝑐

𝐻0

∫𝑎

1

d𝑎′

𝑎′2𝐸(𝑎′)
(2.9)

=
𝑐

𝐻0

∫𝑎

1

d𝑎′

𝑎′2
1√︁∑

𝑖 Ω0,𝑖𝑎′−(1+𝑤𝑖)
(2.10)

=
𝑐

𝐻0

∫ 𝑧

0

d𝑧′√︃∑
𝑖 Ω0,𝑖(1 + 𝑧′)(1+𝑤𝑖)

. (2.11)

Here we take advantage of the shortened version of the density parameters as introduced in
Equation2.5, and we apply a change of variable using the relation between redshift and scale
factor 𝑎 = 1

1+𝑧 .
However, the proper distance is not observable due to the expansion of the universe. Instead,



10 2. Gravitational Lenses in Time Delay Cosmography

cosmologists have introduced two new definitions of distances: the angular diameter distance 𝐷𝜃

and the luminosity distance 𝐷L. Both rely on the idea of a certain type of standard reference to
measure the distance from an object: the first a “standard candle”, while the second a “standard
ruler”. The luminosity distance 𝐷L is defined by considering the relation between flux F and
luminosity L, thus 𝐷L =

√︃
L

4𝜋F . Considering the loss of energy due to redshift, it can then be
demonstrated that 𝐷L = (1 + 𝑧)𝜒. The angular diameter distance 𝐷𝜃 , instead, relates the apparent
size of an object in the sky 𝛿𝜃 (measured as an angle, from which the name and the variable 𝜃)
with respect to its true, physical size, 𝛿𝑠:

𝐷𝜃 =
𝛿𝑠

𝛿𝜃
. (2.12)

Given the expansion of the universe, an observer at 𝑎 = 1 would observe the object of physical
size 𝛿𝑠 at scale factor 𝑎 having a size of 𝛿𝜃 = 𝛿𝑠/𝑎

𝑟
, where 𝑟 is the coordinate distance. Thus

𝐷𝜃 = 𝑎𝑟. (2.13)

Generally, cosmological observations are done using light, which follows a null geodesic: 𝑑𝑠 = 0.
To avoid confusion, note that 𝑑𝑠 = 0 refers to the spacetime interval of the metric described in 2.2
along the path joining the observer and the source, which is different from 𝛿𝑠, which is the size
of the source itself. Following equation 2.2, 𝑐d𝑡 = 𝑎

√︃
1/(1 − 𝑘𝑟2/𝑅2

0)d𝑟 = 𝑎d𝜒 (where we have
considered a frame of reference such that the angular component d𝜔 = 0). We can then define
𝑟 = 𝑟(𝜒) by inverting the given equation 2.7, depending on 𝑘 = +1, 0,−1:

𝑟 =


𝑅0 sin(𝜒/𝑅0) if 𝑘 = +1
𝜒 if 𝑘 = 0
𝑅0 sinh(𝜒/𝑅0) if 𝑘 = −1.

(2.14)

Now, considering the definition of the density parameter for the curvature, we can rewrite the
curvature scale 𝑅0 as 𝑅0 = 𝑐

𝐻0

√︃
𝑘

−Ω𝑘,0
. Note that Ω𝑘 has the opposite sign with respect to 𝑘 , thus

the factor under the square root is always positive and 𝑅0 is always a real number. For simplicity,
we can the write 𝑅0 = 𝑐

𝐻0

√︃
| 𝑘
Ω𝑘,0

|. Then, the angular diameter distance can be rewritten as:

𝐷𝜃 = 𝑎 ·


𝑐

𝐻0
√
|Ω𝑘,0 |

sin
(
𝜒
𝐻0
√
|Ω𝑘,0 |
𝑐

)
if 𝑘 = +1

𝑟 if 𝑘 = 0
𝑐

𝐻0
√
|Ω𝑘,0 |

sinh
(
𝜒
𝐻0
√
|Ω𝑘,0 |
𝑐

)
if 𝑘 = −1.

(2.15)

Here 𝐷𝜃 is defined between a source at scale factor 𝑎 and the observer at 𝑎0 = 1, but equation
2.15 can be generalised to any two scale factor 𝑎1 and 𝑎2 (𝑎2 being the source and 𝑎1 being the
observer) by substituting the prefactor 𝑎 with 𝑎2/𝑎1 in 2.15 and changing the integral limits of
equation 2.9.
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For the purpose of the analysis carried out in this paper, we shall only consider a flat universe,
i.e. 𝑘 = 0 and 𝑟 = 𝜒, thus :

𝐷𝜃 =𝑎 · 𝜒 (2.16)

=
𝑐

(1 + 𝑧)

∫ 𝑧

0

d𝑧′

𝐻(𝑧′)
(2.17)

=
𝑐

(1 + 𝑧)𝐻0

∫ 𝑧

0

d𝑧′

𝐸(𝑧′)
. (2.18)

Note how 𝐷𝜃 is therefore linearly dependent on 𝐻0, which is a core component of the Time Delay
Cosmography, as described in 2.3.

2.1.2 The Hubble Tension
As mentioned, multiple methods have been developed during the last century to measure the
velocity of the expansion of the universe. These can, however, be divided into two main groups,
the “late” and the “early” time probes. While intuitively those can be interpreted as the cosmic
time at which the given observed phenomenon arises, this late/early dichotomy is more properly
defined as the epoch of the ΛCDM model under consideration. These two subsets of measure-
ments, when appropriately converted to the present cosmic time, converge to two ranges of results
in tension with one another. This is the Hubble tension, one of the major crises in cosmology at
the time of writing, ranging between 4𝜎 to 6𝜎 depending on the dataset under consideration.

I will here present a concise review of the topic, but the interested reader can find a thorough
and updated review of the subject in Di Valentino et al. (2021a), from which Figure 2.1 is taken.
This summarises the state of 𝐻0 measurements as of 2021. While more measurements have been
added to the set, the tension has remained unsolved, and therefore, this plot can be considered as
a good starting point to understand the subject.

As can be seen from this Figure, the highest tensions arise with respect to the results obtained
from CMB angular scale of fluctuations measurements, in particular from Planck data Aghanim
et al. (2020), an “early” time probe. In practice, the most precise “early” time measurements
for 𝐻0 are based on the phenomenon of the Baryonic Acoustic Oscillations (BAO). Before
recombination (𝑧 > 1100, Dodelson, Schmidt, 2020) the universe was permeated by plasma (i.e.
a fluid of baryons and photons). This plasma oscillated due to spherical sound waves produced
by perturbations of the baryon gas and driven by photon pressure. Due to the expansion of
the universe and consequent cooling of the plasma, the universe eventually reaches the time of
recombination, i.e. when the mean energy of the photons became too low to immediately ionise
the baryon, which therefore became bound in atoms. The Universe became “transparent” to
the light, and the photons began propagating freely in it. Thus, the sound waves shells of the
baryon become frozen. This is visible on the CMB anisotropy spectrum as it defines the scale of
the peaks, referred to as the BAO scale, as well as in the galaxy two-point correlation function
Eisenstein et al. (2005). This scale can then be measured as an angle in the sky 𝜃𝑠. This in turn
can be converted into a constraint on 𝐻0 by considering the angular diameter distance definition
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Figure 1. Whisker plot with 68% CL constraints of the Hubble constant H0 through
direct and indirect measurements by different astronomical missions and groups per-
formed over the years. The cyan vertical band corresponds to the H0 value from SH0ES
Team [2] (R20, H0 = 73.2 ± 1.3 km s−1 Mpc−1 at 68% CL) and the light pink vertical
band corresponds to the H0 value as reported by Planck 2018 team [11] within a ΛCDM
scenario. A sample code for producing similar figures with any choice of the data is
made publicly available online at github.com/lucavisinelli/H0TensionRealm.

5

Figure 2.1: Figure 1 of Di Valentino et al. (2021a): “Whisker plot with 68% CL constraints of the
Hubble constant 𝐻0 through direct and indirect measurements by different astronomical missions
and groups performed over the years. The cyan vertical band corresponds to the 𝐻0 value from
SH0ES Team (R20, 𝐻0 = 73.2 ± 1.3kms−1Mpc−1 at 68% CL, Riess et al., 2021) and the light
pink vertical band corresponds to the 𝐻0 value as reported by Planck 2018 team (N Aghanim
et al., 2020) within a ΛCDM scenario.”
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described in equation 2.13 and treating it as a standard ruler Peebles (1980):

𝜃𝑠 =
𝑟𝑠

𝑑𝐴
, (2.19)

where 𝑟𝑠 is the radius of the sound horizon at the time of recombination and 𝑑𝐴 = 𝐷𝐴

𝑎
= (1+𝑧)𝐷𝐴 =

𝑐
∫ 𝑧

0
d𝑧′
𝐻(𝑧′) is the comoving angular diameter distance to the last scattering, i.e. 𝑧 ∼ 1100. Assuming

a cosmological model, 𝑑𝐴 can then be written as 𝑑𝑎 ∝ 𝐻−1
0 . 𝑟𝑠 can then be estimated as the

distance that the sound could have travelled from the Big Bang, at 𝑧 ∼ ∞, to the moment of
decoupling from the photons. Thus, measuring 𝜃𝑠 gives a joint constraint on 𝐻0 and 𝑟𝑠, but does
not constrain one without the other. Further information on 𝑟𝑠 is needed to obtain a result on
𝐻0, which can be obtained from the CMB power spectra Zarrouk et al. (2018) or by deuterium
abundance (e.g. Addison et al., 2013). Similarly, 𝜃𝑠 can be constrained from independent
data, such as from the imprint of BAO on the galaxy spatial distribution obtained from extensive
surveys such as the Sloan Digital Sky Survey (SDSS, York et al., 2000), encompassing the
Baryon Oscillation Spectroscopic Survey (BOSS, Dawson et al., 2012). More details can be
found, e.g. in Perivolaropoulos, Skara (2022). It can be seen that 𝑟𝑠 is heavily dependent on the
model assumption, in particular on the assumption about the nature of DM and DE when using
CMB to constrain it. Thus, this method, while obtaining exquisite precision, is model-dependent
as well. Conversely, the “late” probes are mostly direct measurements of 𝐻0, meaning that they
are not dependent on the cosmological model. The first and arguably the most successful of
these methods is based on the distance-redshift relation, i.e. improving upon the famous first
Hubble diagram of 1929 Hubble (1929). This method is based on constructing a “cosmic distance
ladder”, for which several standard rulers and candles are used to calibrate the distance to the next,
such that it becomes possible to measure the distance to objects in the Hubble flow, i.e. which
velocity from us is dominated by the expansion of the universe. The most common approach is to
use parallax to calibrate the luminosities of standard candles, i.e. objects with fixed luminosities:
first, pulsating Cepheid variables Leavitt (1908) and then SuperNovae type Ia (SNIa)Colgate
(1979). This method therefore relies in practice on one main theoretical assumption, which is
that the standard candles behave consistently everywhere in the Universe, which is to say that the
laws of physics are valid everywhere. This assumption is, in practice, a fundamental premise in
most, if not all, cosmological studies, as it has its root in the Copernican principle. While sound
from the theoretical perspective, this method suffers instead from a large number of possible
systematic errors, as any error at any “step of the ladder” will inevitably affect the next and
therefore the final constraints. Nevertheless, a great deal of effort has been made since the first
modern measurements Freedman et al. (2001), based on the first decades of observations from
the Hubble Space Telescope. In particular, the Supernova 𝐻0 for the Equation of State (SH0ES)
Project Riess et al. (2022) significantly improved the method by verifying several of the sources
of errors (e.g. Riess et al., 2016, 2019, 2023). As shown in Figure 2.1, the multiple variations
and improvements upon the model led to small changes in the result, which stayed consistent with
each other and thus in strong tension with the “early” probes.

While there exist several other methods of measuring 𝐻0, the most employed and precise
of which is considering different types of standard candles. For example, using the Tip of the
Red Giant Branch (TRGB), i.e. a subset of the Red Giant stars, as standard candles, combined
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with SNIa Scolnic et al. (2023). Another method was to take advantage of the Tully-Fisher
relation Tully, Fisher (1977). This is a scaling law that correlates the luminosity and the rotational
velocities of galaxies, thus rendering them “standardizable” candles Giovanelli et al. (1997).

Lastly, a fairly different and recently developed “late” type method is the Time Delay Cos-
mographic analysis. Given that this will be the focus of this work, I will describe in detail the
methodology in Section 2.3. Here it will suffice to say that this approach provides fairly precise
measurements, reaching a few km

sMpc of precision, but also suffers from systematic that has to be ac-
counted for, see Section 2.3.3. However, while the explicit analysis of such systematics increased
the uncertainty and affected the mean of the result, the tension with the “early” type measurement
remained. To conclude, despite the intense effort from multiple groups in various fields of the
scientific community, the Hubble tension remains unsolved. While initially the most likely expla-
nation was expected to be measurement systematics, this now seems unlikely (Di Valentino et al.,
2021b), as the known sources of error have been considered and minimised, thus only multiple,
unrelated errors would be able to explain the current tension. Multiple new cosmological models
are under consideration to solve the tension, some of which are considered particularly promising,
such as early (Karwal, Kamionkowski, 2016) or dynamical (Chevallier, Polarski, 2001) DE, dark
neutrino interaction(Ghosh et al., 2018) or modified gravity (Capozziello, Francaviglia, 2008).
However, while most of them solve or diminish the tension, none have yet reached the success
of ΛCDM in explaining the vast majority of our observations. It is thus essential to further
investigate the tension, adopting a comprehensive and unbiased approach to identify new sources
of error and explore potential solutions. With this goal in mind, the current work was devised to
follow a new methodology, such as TDC, from an independent perspective. In this context, this
approach aimed to verify and replicate the procedures proposed by the major collaborations in
the field, namely H0LiCOW-TDCOSMO.

2.2 Gravitational Lensing: Brief Theoretical Overview
The phenomenon of gravitational lensing is usually described by the common idea that a con-
centration of mass warps the surrounding spacetime, such that its geodesics are distorted and
“curved” around the mass, which is then referred to as the lens. Thus, a background source of
light, which would appear to a foreground observed at a given position in the sky ®𝛽, would instead
appear at a new position ®𝜃. A typical representation of this phenomenon is shown in Figure 2.2.

If the distortion due to the mass is severe enough, several geodesics connecting the observer
and the source would be present, thus the source would appear as multiple images in the sky. I
will now offer a more detailed and quantitative explanation of this phenomenon by presenting
a brief overview of the theory of gravitational lensing, specifically regarding its application to
Time Delay Cosmography, which is described in Section 2.3. Given the importance of the topic,
there exist many manuscripts far more comprehensive and detailed than the following. Interested
readers are encouraged to consult sources such as the fundamental monograph Schneider et al.
(1992), the lectures of Narayan Narayan, Bartelmann (1996), the recent lectures from Meneghetti
Meneghetti (2021), which offer an extended set of Python exercises, or the even more recent
“Essentials of Strong Gravitational Lensing” Saha et al. (2024). The following section is heavily
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Figure 2.2: Sketch of the gravitational lens effect from Seitz (1998). Note that the distances
𝐷s, 𝐷l and 𝐷ls (the distance between the observer and the source, the observer and the lens
and between the lens and the source, respectively) indicated on the bottom are angular diameter
distances (see Section 2.1.1).

inspired by this literature.

2.2.1 Light Deflection in General Relativity

In general, the study of the propagation of light in a curved spacetime is a complicated subject,
which, however, can be simplified by some assumptions. Firstly, it is usually assumed that the
overall geometry is well described by the FLRW metric (see equation 2.2), while the effect of the
gravitational lens distortions is limited to a local perturbation. Secondly, the effect of the lens
can be considered “weak”, in the sense that its Newtonian gravitational potential Φ is assumed
to be significantly smaller than 𝑐2, Φ/𝑐2 ≪ 1. This is true for all objects of interest in this study,
namely galaxy-scale lenses.
The first assumption, referred to as the “Born approximation”, derived from scattering theory
Born (1926), allows the lightpath to be considered in three sections: the path from the source to
the lens, the path around the lens and the path from the lens to the observer. Given the assumption,
light travels the first and last sections in an unperturbed spacetime, while the deflection happens
only at the location near the lens. This allows us to compute the deflection along the unperturbed
path, which greatly simplifies the approach.
The second assumption further simplifies the calculation of the deflection. First, it has been
demonstrated that Fermat’s principle, defined in geometrical optics, can be used to study the light
deflection in a GR framework Perlick (1990). Specifically, deflection due to a GL can be seen as
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a generalisation of the refraction phenomenon. Taking two fixed points 𝐴 and 𝐵, let’s consider
the extremal travel time along a certain path as 𝑡travel =

∫𝐵
𝐴
𝑛
𝑐
d𝑙, where 𝑛 is the “refraction index”

of the lens and 𝑙 is the path. From Fermat’s principle, the light will follow the path ®𝑥(𝑙) that
minimises 𝑡travel, thus

𝛿

∫𝐵

𝐴

𝑛(®𝑥(𝑙))d𝑙 = 0. (2.20)

Given the second assumption, there exists a local inertial frame of reference where spacetime is
flat and described by a simple metric of Minkovsky:

𝜂𝜇𝜈 =

©«

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

ª®®®®®®®¬
. (2.21)

This corresponds to the following line element:

d𝑠2 = 𝜂𝜇𝜈d𝑥𝜇d𝑥𝜈 = −(𝑐d𝑡)2 + (d®𝑥)2. (2.22)

Note that this differs from the FLRW presented in equation 2.2 as we are now considering a small
region of the universe, where the effect of the cosmic expansion and the curvature are negligible.
However, this metric is now perturbed by the (weak) effect of the lens with Newtonian potential
Φ, thus we obtain:

𝜂𝜇𝜈 → 𝑔𝜇𝜈

©«

−(1 + 2Φ
𝑐2 ) 0 0 0

0 1 − 2Φ
𝑐2 0 0

0 0 1 − 2Φ
𝑐2 0

0 0 0 1 − 2Φ
𝑐2

ª®®®®®®®¬
. (2.23)

The lens element is then:

d𝑠2 = 𝑔𝜇𝜈d𝑥𝜇d𝑥𝜈 = −(1 +
2Φ
𝑐2 )(𝑐d𝑡)2 + (1 − 2Φ

𝑐2 )(d®𝑥)2. (2.24)

Light propagates along the null geodesics, thus d𝑠 = 0. Therefore

(1 +
2Φ
𝑐2 )(𝑐d𝑡)2 = (1 − 2Φ

𝑐2 )(d®𝑥)2. (2.25)

The speed of light in the section of the path affected by the lens is then

𝑐′ =
|d®𝑥 |
d𝑡

= 𝑐

√√√
1 + 2Φ

𝑐2

1 − 2Φ
𝑐2

≈ 𝑐 (1 +
2Φ
𝑐2 ), (2.26)
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where the assumption Φ

𝑐2 ≪ 1 was used to approximate (1 − 2Φ
𝑐2 )−1 ≈ 1 + 2Φ

𝑐2 . The “refractive
index” of the lens is then the ratio of the speed of light 𝑐 with 𝑐′:

𝑛 =
𝑐

𝑐′
=

1
1 + 2Φ

𝑐2

≈ 1 − 2Φ
𝑐2 , (2.27)

where the same approximation is used.
The potential Φ is negative by definition, thus 𝑛 ≥ 1 and the speed of light 𝑐′ in the proximity

of the lens is smaller than the speed of light in the vacuum.
We can then derive the deflection angle of the lens from equation 2.20. This is a variational

problem. Let’s consider a reparametrisation of the path, given by d𝑙 = | d®𝑥
d𝜆 |d𝜆, where 𝜆 is an

arbitrary parameter. Equation 2.20 can then be rewritten as

𝛿

∫𝜆𝐵
𝜆𝐴

d𝜆𝑛[®𝑥(𝜆)]| d®𝑥
d𝜆

|= 0. (2.28)

We can then consider 𝜆 as time, then we have d®𝑥
d𝜆 = ¤®𝑥 as a generalised velocity and we can rewrite

the expression 𝑛[®𝑥(𝜆)]| d®𝑥
d𝜆 | as a Lagrangian 𝑛[®𝑥(𝜆)]| d®𝑥

d𝜆 |≡ L( ¤®𝑥, ®𝑥, 𝜆). The Euler equation is then

d
d𝜆
𝜕L
𝜕 ¤®𝑥

− 𝜕L
𝜕®𝑥 = 0. (2.29)

The partial derivative of L with respect to ®𝑥 is then

𝜕L
𝜕®𝑥 =

𝜕𝑛| ¤®𝑥 |
𝜕®𝑥 =

𝜕𝑛

𝜕®𝑥 |
¤®𝑥 |= ®∇𝑛| ¤®𝑥 |, (2.30)

where we introduced ®∇ = 𝜕
𝜕®𝑥 . For the partial derivative of L with respect to ¤®𝑥, considering

| d®𝑥
d𝜆 |= | ¤®𝑥 |= ( ¤®𝑥2)1/2, we obtain

𝜕L
𝜕 ¤®𝑥

=
𝜕𝑛| ¤®𝑥 |
𝜕 ¤®𝑥

= 𝑛
𝜕 | ¤®𝑥 |
𝜕 ¤®𝑥

= 𝑛
¤®𝑥
| ¤®𝑥 |
. (2.31)

Note that ¤®𝑥 is by definition the tangent vector of ®𝑥; thus, it is a tangent vector of the light path.
Given that 𝜆 is an arbitrary parameter, it can then be defined such that ¤®𝑥 is normalised, i.e. | ¤®𝑥 |= 1.
Thus the Euler equation becomes

d𝑛 ¤®𝑥
d𝜆

− ®∇𝑛 = 0. (2.32)

Considering the first derivative, we obtain d𝑛 ¤®𝑥
d𝜆 = ¤®𝑥 d𝑛

d𝜆 + 𝑛 d ¤®𝑥
d𝜆 = ¤®𝑥(®∇𝑛 · ¤®𝑥) + 𝑛 ¥®𝑥. Thus equation 2.32

can be rewritten as :
𝑛 ¥®𝑥 = ®∇𝑛 − ¤®𝑥(®∇𝑛 · ¤®𝑥), (2.33)

where the first term of the right-hand side is the derivative of 𝑛 with respect to ®𝑥 and the second
term is the component of the derivative of 𝑛 along the light path. Thus, the whole right-hand side
is the derivative of 𝑛 perpendicular to the light path. Therefore equation 2.33 becomes:

¥®𝑥 =
1
𝑛

®∇⊥𝑛 = ®∇⊥ln𝑛. (2.34)
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From equation 2.27, we have 𝑛 ≈ 1 − 2Φ
𝑐2 and considering the weak approximation Φ

𝑐2 ≪ 1,
ln𝑛 ≈ −2Φ

𝑐2 . We then obtain :
¥®𝑥 ≈ − 2

𝑐2
®∇⊥Φ. (2.35)

We can then obtain the deflection angle ®̂𝛼 (see Figure 2.2) as the difference between the initial
and final ¤®𝑥 (i.e. before and after the lens), thus by itegrating −¥®𝑥 along the lightpath 𝜆:

®̂𝛼 = ¤®𝑥in − ¤®𝑥out =
2
𝑐2

∫𝜆𝐵
𝜆𝐴

®∇⊥Φd𝜆. (2.36)

Considering the previously mentioned Born approximation, the computation is simplified, as it
is now integrated over the unperturbed path 𝑧, which can be defined such that the lens is at 𝑧 = 0.
A general example is given considering the deflection angle of a lightray passing at a distance 𝜉
(referred to as the impact parameter) of a point mass of mass 𝑀 , whose potential will then be
Φ(𝜉, 𝑧) = −𝐺𝑀

√︁
𝜉2 + 𝑧2. The deflection angle is then

®̂𝛼(®𝜉) =
2
𝑐2

∫+∞

−∞
®∇⊥Φ(𝜉, 𝑧)d𝑧 =

4𝐺𝑀
𝑐2𝜉2

®𝜉. (2.37)

Note that, when accounting only for Newtonian relativity, the deflection angle obtained is smaller
by a factor of 2; simplistically, this can be attributed to the fact that this approach does not take
into account the whole spacetime distortion, but rather only the space distortion.

2.2.2 Deflection by Extended Mass Distributions
When observing the phenomenon of gravitational lensing, the lens is rarely a point mass; while
black holes and other very compact objects might fit the description, their effect is usually very
strong, thus breaking the assumption Φ/𝑐2 ≪ 1. These objects, therefore, need a more precise
framework, which is beyond the interest of this work. Instead, I will be working with a galaxy-
scale lens, thus requiring mass distributed in three dimensions. However, when considering the
scale of the lightpath, the “depth” of the lens mass distribution, i.e. the length of the lens along
the line of sight, is many orders of magnitude smaller. A further approximation can then be
made, referred to as the “thin screen” (or “thin lens”) approximation. In this optic, the lens is
considered to be distributed only in two dimensions, the lens plane, ignoring its “depth”. Instead
of considering its 3-dimensional mass density distribution, 𝜌(®𝜉, 𝑧), the lens is then fully described
by its 2-dimensional one, Σ(®𝜉) =

∫
𝜌(®𝜉, 𝑧)d𝑧, where ®𝜉 is a vector on the lens plane, while 𝑧 is the

dimension along the line of sight. The distance to the lens is the constant for all lens components,
𝐷l. Similarly, the source is approximated to be two-dimensional and to reside within the “source
plane”, which is located at 𝐷s from the observer. The distance between the source and the lens
plane is then referred to as 𝐷ls. In lensing, such distances are usually expressed as angular
diameter distances (see Section 2.1.1). This approach is advantageous because the calculations
and measurements within this framework are inherently based on angular variables, as seen in
the next Section 2.2.3.
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Given the thin lens approximation, the deflection angle can be calculated by summing every
contribution of the mass elements on the lens plane, Σ(®𝜉)d2 ®𝜉:

®̂𝛼(®𝜉) =
4𝐺
𝑐2

∫
(®𝜉 − ®𝜉′)Σ(®𝜉′)
| ®𝜉 − ®𝜉′|2

d2 ®𝜉′. (2.38)

The deflection angle is then generally a two-dimensional vector field. This can be reduced to one
dimension in the case of a perfectly circular symmetric mass distribution, for which the frame of
reference can be set to the centre of the mass. Thus the deflection angle is �̂�(𝜉) = 4𝐺𝑀(𝜉)

𝑐2𝜉
, where

𝑀(𝜉) is the enclosed mass within the radius 𝜉.

2.2.3 Lens Equation
Let us consider an optical axis, an arbitrary line over which the observer is located perpendicular
to the lens and source plane. The angular positions of the components of the system are defined
with respect to this axis. The optical axis is shown in Figure 2.2 as the dashed line. Consider
a source located at the intrinsic angular position ®𝛽 in the sky (i.e. if the lens were not present,
it would be observed at ®𝛽). Considering the angular diameter distance from the source plane
𝐷s and given the definition 2.12, we can then obtain the position of the source in the source
plane: ®𝜂 = ®𝛽𝐷s. Assuming a realistic source, such as a galaxy, for example, it will emit light
isotropically, i.e. in all directions. Precisely half of this light will reach the lens plane; however,
we are now only interested in the light which is finally deflected by such an amount that it reaches
the observer. This light reaches the lens plane at the position ®𝜉 (the impact parameter), is deflected
by an angle ®̂𝛼 and reaches the observer at an angle ®𝜃. Considering the distance from the lens
plane, ®𝜉 = ®𝜃𝐷l. In the case of galaxy lensing, the angles ®𝜃, ®𝛽 and ®̂𝛼 are small and their relation
is then described by the lens equation:

®𝜃𝐷s = ®𝛽𝐷s + ®̂𝛼𝐷ls. (2.39)

This can be understood as the “projection” of the different angles on the source plane. ®𝛽𝐷s is
the intrinsic position of the source, ®𝜃𝐷s is the apparent position of the source from the observer
perspective, and ®̂𝛼𝐷ls is the difference vector between the two points.

The lens equation can be simplified by introducing the reduced angle:

®𝛼(®𝜃) = ®̂𝛼(®𝜃)
𝐷ls
𝐷s
. (2.40)

This is the deflection angle “rescaled” to the frame of reference of the observer. Thus the lens
equation becomes

®𝛽 = ®𝜃 − ®𝛼(®𝜃). (2.41)
This equation can only be solved analytically for very simple mass distributions, while it is
usually solved numerically for most concrete applications. In fact, this equation is usually highly
non-linear, which leads to the possibility of multiple solutions for 𝜃, i.e. multiple images. Ideally,
when modelling a lens (as I will be discussing in Section 4) the positions of the images (®𝜃) are
measured and the mass distribution is modelled (from which ®𝛼 is obtained), thus obtaining for
each image the same source position ®𝛽 through equation 2.41.
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2.2.4 Effective Lensing Potential
It is useful to introduce the effective lensing potential (or simply lensing potential) to characterise
the mass distribution:

𝜓(®𝜃) =
𝐷ds
𝐷d𝐷s

2
𝑐2

∫
Φ(𝐷d ®𝜃, 𝑧)d𝑧. (2.42)

This is an integrated and rescaled version of the Newtonian potential of the lens, and is related to
the reduced deflection angle by taking its gradient with respect to ®𝜃 and the equations 2.36 and
2.40, obtaining :

®∇𝜃𝜓(®𝜃) = 𝐷d ®∇⊥𝜓(®𝜃) =
𝐷ds
𝐷s

2
𝑐2

∫
®∇⊥Φ(𝐷d ®𝜃, 𝑧)d𝑧 = ®𝛼(®𝜃). (2.43)

Taking the Laplacian of 𝜓(®𝜃), we obtain a relation to the surface mass density Σ(®𝜃). The
Laplacian of 𝜓(®𝜃) is:

∇2
𝜃𝜓(®𝜃) =

𝐷ds𝐷d
𝐷s

2
𝑐2

∫
∇2

⊥Φ(𝐷d ®𝜃, 𝑧)d𝑧. (2.44)

We then introduce the convergence 𝜅(®𝜃), which is a dimensionless surface mass density:

𝜅(®𝜃) ≡ Σ(®𝜃)
Σcrit

, (2.45)

where Σcrit is the surface mass density and is defined as Σcrit = 𝑐2

4𝜋𝐺
𝐷s
𝐷l𝐷ls

. This is a function of the
various distances of the system; thus, given a single system, it is constant and characterises it, as
it gives a scale to the surface mass density. Considering the Poisson equation for the Newtonian
potential, we obtain∇2Φ = 4𝜋𝐺𝜌. The surface mass density is then

Σ(®𝜃) =
1

4𝜋𝐺

∫
∇2Φd𝑧, (2.46)

and the convergence is
𝜅(®𝜃) =

1
𝑐2
𝐷l𝐷ls
𝐷s

∫
∇2Φd𝑧. (2.47)

We consider then the two dimensional Laplacian ∇2
𝜃

:

∇2
𝜃 =

𝜕2

𝜕𝜃2
1

+
𝜕2

𝜕𝜃2
2

= 𝐷2
l (
𝜕2

𝜕𝜉2
1

+
𝜕2

𝜕𝜉2
2

) = 𝐷2
l (∇2 − 𝜕2

𝜕𝑧2 ), (2.48)

thus
∇2Φ =

1
𝐷2

l
∇2
𝜃Φ +

𝜕2Φ

𝜕𝑧2 . (2.49)

Combining this equation and equation 2.47 yields:

𝜅(®𝜃) =
𝐷ls
𝐷s𝐷l

1
𝑐2

(∫+∞

−∞
∇2
𝜃Φd𝑧 + 𝐷2

l

∫+∞

−∞

𝜕2Φ

𝜕𝑧2 d𝑧
)
. (2.50)
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The second term of the parenthesis vanishes, as the integral results in 𝜕Φ
𝜕𝑧

and, assuming that the
lens is gravitationally bound, this value is zero for 𝑧 → ±∞. This is then related to the Laplacian
of the effective lensing potential through equation 2.44:

𝜅(®𝜃) =
1
2
∇𝜃𝜓(®𝜃). (2.51)

Integrating this equation, we obtain

𝜓(®𝜃) =
1
𝜋

∫
𝜅( ®𝜃′)ln| ®𝜃 − ®𝜃′|d2𝜃′. (2.52)

From this equation and 2.43 which the reduced deflection angle can be related to the convergence:

®𝛼(®𝜃) =
1
𝜋

∫
𝜅( ®𝜃′)

®𝜃 − ®𝜃′

| ®𝜃 − ®𝜃′|2
d2𝜃′. (2.53)

Note that this equation is consistent with equation 2.38 when considering Σcrit.

Point-Mass Lenses and Einstein Angle

Considering a point-mass lens greatly simplifies the lens equation. Let us set the optical axis
such that it crosses the lens plane at the position of the lens. Then, taking the equation 2.47, the
deflection angle can be rewritten as:

®̂𝛼(®𝜉) =
4𝐺𝑀
𝑐2

®𝜉
| ®𝜉 |2

=
4𝐺𝑀
𝑐2𝐷l

®𝜃
| ®𝜃 |2

= ®̂𝛼(®𝜃). (2.54)

The direction of ®̂𝛼 is outward with respect to the lens, and due to the symmetry of the system, we
can reduce the problem to one dimension:

�̂� =
4𝐺𝑀
𝑐2𝐷l𝜃

. (2.55)

The lens equation, now one-dimensional as well, can then be written as

𝛽 = 𝜃 − 4𝐺𝑀
𝑐2𝐷l𝜃

𝐷ls
𝐷s
. (2.56)

This equation is quadratic in 𝜃, thus, for every 𝛽, there exist two solutions 𝜃, thus two images.
Moreover, we can introduce 𝜃𝐸 , the Einstein radius, as

𝜃𝐸 ≡
√︂

4𝐺𝑀
𝑐2

𝐷ls
𝐷l𝐷s

. (2.57)

The equation 2.56 is then simplified as 𝛽 = 𝜃 − 𝜃2
𝐸

𝜃
. If we then consider 𝛽 = 0, i.e. the source is

located exactly behind the centre of the lens, the solutions for 𝜃 are 𝜃± = ±𝜃𝐸 , which corresponds
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to a perfect circle of radius 𝜃𝐸 around the centre of the lens. This phenomenon, while surprising
and rare, has been observed and is called Einstein’s ring (e.g. see Figure 2.3).

Figure 2.3: LRG 3-757 (nicknamed “Cosmic Horseshoe”) is a famous example of an almost
complete optical Einstein ring around a luminous red galaxy (LRG) which acts as a lens. The
image is a combination of multifilter exposures taken with the Hubble Space Telescope’s Wide
Field Camera 3.

Moreover, while introduced in the context of point-masses, 𝜃𝐸 can be generalised to any kind
of lens and is a useful parameter as it gives a general idea of the size of the lens.

2.2.5 Jacobian Matrix
The lens effect on the background image is effectively a distortion. This can be studied by taking
the mapping from the source plane to the lens plane, 𝜕 ®𝛽

𝜕 ®𝜃
, which is the Jacobian matrix 𝐴:

𝐴 =
𝜕 ®𝛽
𝜕 ®𝜃

=

(
𝛿𝑖 𝑗 −

𝜕𝛼𝑖(®𝜃)
𝜕𝜃 𝑗

)
=

(
𝛿𝑖 𝑗 −

𝜕2𝜓(®𝜃)
𝜕𝜃𝑖𝜕𝜃 𝑗

)
, (2.58)

where the letters 𝑖 and 𝑗 indicate the components of ®𝜃 on the lens plane and the steps obtained
through the equation 2.41 and the equation 2.43. Thus, the Jacobian components can be written as
second partial derivatives of the effective lensing potential, which we abbreviate as 𝜕2𝜓(®𝜃)

𝜕𝜃𝑖𝜕𝜃 𝑗
= 𝜓𝑖 𝑗 .
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Figure 2.4: Sketch describing the effects of shear and convergence on a spherical source (image
taken from Narayan, Bartelmann, 1996, , Figure 13)

From equation 2.51, we can rewrite the convergence as 𝜅 = 1/2(𝜓11 + 𝜓22) = 1/2 tr𝜓𝑖 𝑗 . We then
introduce the shear tensor, which is defined by its two components 𝛾1(®𝜃) and 𝛾2(®𝜃):

𝛾1(®𝜃) =
1
2

(𝜓11 − 𝜓22) ≡ 𝛾(®𝜃)cos[2𝜙(®𝜃)] (2.59)

𝛾2(®𝜃) = 𝜓12 = 𝜓21 ≡ 𝛾(®𝜃)sin[2𝜙(®𝜃)], (2.60)

where the magnitude 𝛾 and the orientation 𝜙 are other common reparametrisation of the shear
tensor.
The Jacobian matrix can then be written as

𝐴 = ©«
1 − 𝜅 − 𝛾1 −𝛾2

−𝛾2 1 − 𝜅 + 𝛾1

ª®¬ = (1 − 𝜅) ©«
1 0

0 1
ª®¬ − 𝛾 ©«

cos2𝜙 sin2𝜙

sin2𝜙 −cos2𝜙
ª®¬ . (2.61)

This explains the effects of convergence and shear. 𝜅 does not affect the shape, as it is isotropic,
but rather scales the image by a constant factor 1/(1 − 𝜅). Instead, the shear deforms the shape
of the image along the axis 𝜙 by elongating it along this direction and shrinking it along the
perpendicular direction. A sketch of the effect is shown in Figure 2.4.

2.2.6 Magnification
A fundamental aspect of gravitational lensing is that, according to Liouville’s theorem (Carroll,
2019), the surface brightness of the source is preserved during the lens effect, as the gravitational
effect of the lens does not absorb or emit photons. This is not true for physical lenses, which
both absorb and emit light; however, in most cases of interest, the gravitational effect dominates
over such “baryonic” effects. Thus, considering a solid angle element of the source plane 𝛿𝛽2,
mapped by the lens into 𝛿𝜃2, will change in shape but not in surface brightness. This effectively
means that the image is magnified (or demagnified), as shown in Figure 2.5.
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Figure 2.5: Sketch of the magnification effect due to the lens L: The source area A𝑆 is mapped
into A𝐼 . The ratio between the solid angle of the unperturbed image (Δ𝜔0 = A𝑆/𝐷

2
𝑠 ) and the

observed one (Δ𝜔 = A𝐼/𝐷
2
𝑑
) at the observer position O gives the magnification factor. This

image is adapted from Figure 2.3 of Schneider et al. (1992).

The magnification factor due to the lens, 𝜇, is then given by 𝜕𝜃2

𝜕𝛽2 , which is the inverse of the
determinant of the Jacobian matrix 𝐴 defined in equation 2.58:

𝜇(®𝜃) =
𝜕𝜃2

𝜕𝛽2 =
1

det𝐴(®𝜃)
=

1
(1 − 𝜅(®𝜃))2 − 𝛾(®𝜃)2

. (2.62)

Note that there could be points ®𝜃 such that |1 − 𝜅(®𝜃)|= |𝛾(®𝜃)|, thus where the magnification is
formally infinite. These points form the critical curves on the lens plane, which can be mapped to
the source plane by the lens equation, in which case they form the caustics of the lens. However, an
infinite magnification would correspond to an infinite increase in flux, which is clearly unphysical.
This does not happen due to the fact that the source is not infinitely small; thus, the magnification
is more precisely the weighted mean of equation 2.62 over the source. Secondly, we treated
here the light propagation in the framework of the approximation to geometrical optics. When
reaching the region of the critical curves, this approximation fails, and we should be employing
the formally more precise wave-optic framework. This is, however, beyond the scope of this
work, for which it will be enough to consider the critical curves as regions around which the
lensed images are strongly magnified.

If we take the inverse matrix of the Jacobian𝑀 = 𝐴−1, which is referred to as the magnification
tensor, the magnification can be written as 𝜇 = det𝑀 . We then have two eigenvectors of this
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matrix:

𝜇𝑡 =
1

1 − 𝜅 − 𝛾 (2.63)

𝜇𝑟 =
1

1 − 𝜅 + 𝛾
, (2.64)

which are referred to as the tangential and radial magnification factors. This naming comes from
the fact that for axis-symmetric lenses, these eigenvectors are oriented tangentially and radially
with respect to the lens iso-density contours. Moreover, this corresponds to two critical curves,
which are then referred to as tangential and radial.
Another important aspect of critical curves and caustics is related to the number of images. We
have seen that the lens equation can have multiple solutions, and this depends on the position of
the source. It can be demonstrated (e.g. Schneider et al., 1992) that the number of images changes
by two when the source crosses a caustic. Finally, it is interesting to note that the magnification
has a sign, which is referred to as the parity of the image. This, in turn, reflects the chirality of
the lensed image, such that a positive parity image will preserve the chirality of the source, while
a negative parity one will have an inverted chirality.

2.2.7 External Shear
In most practical scenarios, the lens system is not isolated, and there are significant matter
distributions in the surroundings of the system which the lensing effect has to be accounted for,
without explicitly modelling every component. This is usually faced by considering an external
source of shear. This accounts for observable distortions in the data, as opposed to external
convergence, whose effects would not be visible. Hence, the external convergence is set to 0 (I
will discuss this further in Section 2.3.3). To model the shear, an ulterior potential 𝜓𝛾 can be
considered, which has to satisfy the following conditions, such that 𝛾1 = 1/2(𝜓11 − 𝜓22) = const,
𝛾2 = 𝜓12 = 𝜓21 = const and 𝜅 = 1/2(𝜓11 + 𝜓22) = 0. Given that 𝜓11 ± 𝜓22 = const, both 𝜓11
and 𝜓22 must be constant. The effective potential can then be written in polar coordinates as
𝜓𝛾(𝛾, 𝜙) = 𝛾

2 𝜃
2cos2(𝜙 − 𝜙𝛾).

Note that the external shear breaks the circular symmetry of the lens; thus, it presents
degeneracies with the ellipticity components of the lens.

2.3 Gravitational Lensing: Application to Time Delay Cos-
mography

Given the general overview of gravitational lensing described in the previous Section 2.2, I
will now focus on the lensing time delay effect and how this phenomenon can be employed in
cosmology. Firstly, I will discuss the theory behind the time delay phenomenon (Section 2.3.1)
and then how this is used in time delay cosmography (in Section 2.3.2). I will then focus on
specifics of the Time Delay Cosmography, such as the mass-sheet degeneracy in Section 2.3.3,
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the variable sources used in this study in Section 2.3.4 and the effects of microlensing in such
analysis 2.3.5.

2.3.1 Theory of Gravitational Time Delay

Let us consider the time it takes a photon to traverse the path from the source to the observer, 𝑡0,
which I will refer to as “flight time”. Due to the presence of the lens, the photons will be delayed
by 𝛿𝑡, where such delay is due to two separate effects, a gravitational delay 𝛿𝑡grav and a geometrical
one, 𝛿𝑡geom. The first is also known as Shapiro time delay (from Shapiro, 1964), which is due to
the relativistic effect of the lens. This can be computed by considering the difference in flight time
of a photon traversing the same path, with and without a gravitational potential Φ which affects
the space-time. Considering the refractive index obtained from equation 2.27 as the effective
refractive index, we obtain:

𝛿𝑡grav =
∫

d𝑧
𝑐′

−
∫

d𝑧
𝑐

=
1
𝑐

∫
(𝑛 − 1)d𝑧 = − 2

𝑐2

∫
Φd𝑧. (2.65)

Considering the definition of the effective lensing potential from equation 2.42, we obtain:

𝛿𝑡grav = −𝐷l𝐷s
𝐷ls

1
𝑐
𝜓. (2.66)

The geometrical time delay can be instead intuitively considered as the excess of time the light
takes due to the deflection compared to the “straight line”. Formally, this can either by measured
by considering the metric or it can be approximated from a simpler geometrical construction,
which is sketched in Figure 2.6. The dashed line represents the lightpath of a photon emitted
by the source S, which reaches the lens plane in H’ and is deflected due to the lens by an angle
�̂�. It then arrives at the observer positioned at O from the direction 𝜃. The unperturbed path is
instead the straight solid line connecting S and O, SO. Let us then consider two circles centred
on S and O, which are tangent to each other at the point H, which is located on the unperturbed
path SO. Note, however, that H is not necessarily on the lens plane. These two circles meet the
perturbed lightpath at K and K’. The difference in length of the lightpath is therefore Δ𝑙 = KHK′.
Following the notation of Figure 2.6, this corresponds to Δ𝑙 ≈ 𝜉𝑐.
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Figure 2.6: Scheme representing the geometrical time delay 𝛿𝑡geom. This image is taken from
Figure 3.6 of Meneghetti (2021).

Moreover, given that the triangles SHK and OHK’ are isosceles, we can obtain the following
relations:

𝑑 = 𝜋 − �̂� (2.67)
�̂� + �̂� + 𝑐 = 𝜋 (2.68)

�̂� + �̂� = 𝑐 + 𝑑. (2.69)

Therefore angle 𝑐 is 𝑐 = �̂�/2. Therefore Δ𝑙 ≈ 𝜉 �̂�2 = (®𝜃 − ®𝛽)𝐷l𝐷s
𝐷ls

®𝛼
2 = 1

2 (®𝜃 − ®𝛽)2 𝐷l𝐷s
𝐷ls

. Thus the
geometrical time delay is 𝛿𝑡geom = Δ𝑙

𝑐
.

Both components of the time delay occur at the position of the lens; thus, they must be scaled by
a factor 1 + 𝑧𝑙 to account for the cosmic expansion. The total time delay is then

𝛿𝑡(®𝜃) =
1 + 𝑧𝑙
𝑐

𝐷l𝐷s
𝐷ls

(
1
2

(®𝜃2 − ®𝛽2) − 𝜓(®𝜃)
)
. (2.70)

This is usually rewritten as
𝛿𝑡(®𝜃) =

𝐷Δ𝑡

𝑐
𝜙(®𝜃), (2.71)

where
𝐷Δ𝑡 = (1 + 𝑧𝑙)

𝐷l𝐷s
𝐷ls

(2.72)

is referred to as the time delay distance and

𝜙(®𝜃) =
(®𝜃 − ®𝛽)2

2
− 𝜓(®𝜃) (2.73)
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is called the Fermat potential.
In all practical cases, the time delay with respect to the unperturbed path is not observable.
However, when the source is lensed into multiple images, the relative time delay between said
images is observable:

Δ𝑡(®𝜃𝐴, ®𝜃𝐵) = 𝛿𝑡(®𝜃𝐵) − 𝛿𝑡(®𝜃𝐴) =
𝐷Δ𝑡

𝑐
Δ𝜙(®𝜃𝐴, ®𝜃𝐵), (2.74)

where

Δ𝜙(®𝜃𝐴, ®𝜃𝐵) = 𝜙(®𝜃𝐵) − 𝜙(®𝜃𝐴) =
1
2

[(®𝜃𝐵 − ®𝛽)2 − (®𝜃𝐴 − ®𝛽)2] − [𝜓(®𝜃𝐵) − 𝜓(®𝜃𝐴)], (2.75)

and ®𝜃𝐴 and ®𝜃𝐵 are the positions of the two lensed images 𝐴 and 𝐵.

2.3.2 Time Delay Cosmography
From Section 2.3.1 I have shown that the time delay between two images 𝐴 and 𝐵, Δ𝑡𝐴𝐵 is a
function of the difference of Fermat potential at the images position Δ𝜙𝐴𝐵 and the time delay
distance 𝐷Δ𝑡 , which is constant given a lens system. The latter is defined in equation 2.72 as a
ratio of angular diameter distances; thus, following equation 2.16, it can be written as:

𝐷Δ𝑡 =(1 + 𝑧𝑙)
𝐷l𝐷s
𝐷ls

(2.76)

=(1 + 𝑧𝑙)
𝑐

(1+𝑧𝑙)𝐻0

∫ 𝑧𝑙
0

d𝑧′
𝐸−1(𝑧′)

𝑐
(1+𝑧𝑠)𝐻0

∫ 𝑧𝑠
0

d𝑧′
𝐸−1(𝑧′)

𝑐
(1+𝑧𝑠)𝐻0

∫ 𝑧𝑠
𝑧𝑙

d𝑧′
𝐸−1(𝑧′)

(2.77)

=
𝑐

𝐻0

∫ 𝑧𝑙
0 𝐸

−1(𝑧′)d𝑧′
∫ 𝑧𝑠

0 𝐸
−1(𝑧′)d𝑧′∫ 𝑧𝑠

𝑧𝑙
𝐸−1(𝑧′)d𝑧′

, (2.78)

where 𝐸(𝑧) =
√︁∑

𝑖 Ω0,𝑖(1 + 𝑧)1+𝑤𝑖 and assuming a flat universe. Interestingly, the fraction of
integral on the RHS of this equation is only weakly dependent on cosmology, specifically on the
different density components. 𝐷Δ𝑡 is instead far more sensible to 𝐻0, as it is inversely dependent
on it. Thus, 𝐻0 can be measured directly from the relation

𝐻0 = 𝑘
Δ𝜙𝐴𝐵

Δ𝑡𝐴𝐵
, (2.79)

where 𝑘 encodes all remaining cosmological parameters. This implies that we can measure
directly 𝐻0 from a strongly lensed system, independently of all other methods described in
Section 2.1.2.
This methodology, referred to as “time delay cosmography” (TDC) was first introduced by Refsdal
Refsdal (1964), but it remained beyond the observational capabilities until recently. In order to
accurately constrain 𝐻0, a TDC analysis requires four components:

• Constraints on the time delay between the images.
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• Constraints on the mass distribution of the lens, from which the Fermat potential model
can be computed.

• Information on the positions of the lens and source, i.e. their redshifts.

• Constraints on the effect of the environment of the lens on the measurement.

The time delay can be observed in the presence of a variable source such as SNae (as theorised
by Refsdal and recently becoming a reality, e.g. in Kelly et al., 2016; Suyu et al., 2020) or QSOs
(e.g. Wong et al., 2020). The first type of source has the advantage of being standard candles (for
SNIa) or standardizable (for SNII De Jaeger et al., 2020), thus providing additional information
as the absolute magnification can be used to constrain the lens model. SNae also have a known
lightcurve (Hamuy et al., 1996), thus simplifying the time delay measurement. Finally, the SNae
will eventually vanish after the explosion, thus leaving the lensed system unperturbed by its light,
allowing the host galaxies of the SNae to be visible as lensed images, which can be used to greatly
constrain the lens modelling Cañameras et al. (2021). The drawback of SNae is their rarity, such
that only recently a handful have been observed (one of the most recent being SN “H0pe”, Frye
et al., 2024). Comparatively, strongly lensed QSOs are more common, ranging now on the order
of hundreds Treu et al. (2018); Lemon et al. (2023). I will focus on the QSO sources given that
this work will be based on a strongly lensed QSO, and will further discuss them in Section 2.3.4.
The lensed images of the source must then be observed over time, recording their luminosity in
so-called “lightcurves”. These will then present the same variability structures shifted in time
(due to the relative time delay between the images, see equation 2.75) and brightness (due to the
different magnification of the images, see equation 2.62). The time delay can then be measured
by correlating the lightcurves variabilities (as it has been successfully done in, e.g. Courbin et al.,
2018; Millon et al., 2020b).
The constraints on the Fermat potential have increased in accuracy recently due to breakthroughs
in the methodology of lens modelling using high-resolution images from space-based telescopes
such as the Hubble Space Telescope (Suyu et al., 2010; Chen et al., 2019; Birrer et al., 2015; Shajib
et al., 2020). Spectroscopy is then required to constrain the redshift of both lens and source,
as the method is strongly affected by their positions. Finally, the effects of the environment
have been recently stressed as one of the major sources of possible systematic, namely in the
form of mass-sheet degeneracy Falco et al. (1985) and its generalised form of source position
transformation Schneider, Sluse (2014). However, this pitfall has been recently studied in depth
Suyu et al. (2010); Greene et al. (2013); McCully et al. (2017) and has been considered in recent
analyses (e.g. Wells et al., 2023). I will further the topic in Section 2.3.3.
The combined improvement in the quality of the data and sophistication of the models yielded a
precision on the order of 2% on 𝐻0 in 2020 based on only a small sample of 7 lenses Wong et al.
(2020). The focus now is shifted toward understanding and minimising systematics.
The analysis presented here offers a uniquely advantageous perspective on the problem, having
been conducted entirely independently of any major current collaboration. While many analytical
choices were influenced by previous works and established literature, the work was carried
out autonomously. Consequently, this analysis serves as proof of reproducibility for the TDC
methodology.
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2.3.3 Mass-Sheet Degeneracy
A critical point of lens modelling is the so-called mass-sheet degeneracy (MSD), first introduced
by Falco et al. (1985): there would be almost no observables to distinguish the mass distribution
described by the convergence 𝜅(®𝜃) and (Schneider, Sluse (2013)):

𝜅𝜆(®𝜃) = 𝜆𝜅(®𝜃) + (1 − 𝜆), (2.80)

along with a rescaling of the source position ®𝛽 → 𝜆 ®𝛽, as the lens model would reproduce exactly
the same dimensionless observables: image shape, position, magnification ratio, etc. However,
this degeneracy would linearly affect the Fermat potential differences: Δ𝜙 → 𝜆Δ𝜙, thus biasing
the final constraint on 𝐻0 by a factor 𝜆.
In practice, choosing a model for the mass profile formally breaks the degeneracy by arbitrarily
selecting one of the available 𝜅(®𝜃)𝜆.
This degeneracy can be divided into two separate sources of uncertainty: the inner shape of the
mass profile 𝜆int and the external mass sheet degeneracy 𝜅ext. In the first case, it is assumed to be
due to the freedom of the internal profile: for a given lens system, there exist multiple different
profiles that fit equally well the data but return different constraints on Δ𝜙. This degeneracy can
be broken through complementary data to the internal structure of the lens, such as the spatially
resolved stellar kinematics of the lens Shajib et al. (2023). Similarly, external convergence is
correlated to the environment of the lens, such as over-/under-densities along the line of sight. In
this case, deep photometric observations with a large field of view around the system are required
to identify possible targets Suyu et al. (2010, 2013). These must then be spectroscopically
observed in order to determine their redshift. Once this catalogue is obtained, it can be compared
in a statistical sense to cosmological simulations, such as the Millennium simulation Springel
et al. (2005), where the 𝜅ext can be measured numerically. Other approaches instead explicitly
model the most luminous components near the line of sight, such as Millon et al. (2020b).
Due to time constraints and lack of complementary data (most notably, spectroscopic data) in this
analysis, I will not constrain the MSD, which is then left as a future improvement.

2.3.4 Variable Sources: QSO
In this work, I will be considering a quadruply lensed QSO, SDSSJ1433, presented in detail in
Section 3.2. I will discuss here some of the properties of QSOs most relevant for this analysis.
Starting from the name, QSO stands for Quasi-Stellar Object, which is a remnant of its history
Burbidge (1967), as they appeared as point-sources, but were significantly brighter, with very large
redshift and with significantly different spectra with respect to stars. The current understanding
(see e.g. Beckmann, Shrader, 2012) explains this finding by describing the QSO as a very bright
active galactic nucleus (or AGN). These are systems powered by super-massive (𝑀 ≥ 106𝑀⊙)
black holes residing at the centre of galaxies, which accrete matter from their surroundings.
As the infalling material forms an accretion disk around the black hole, its gravitational energy
is converted into electromagnetic radiation through friction Frank et al. (2002). This results
in the emission of significant amounts of energy, on the order of 𝐿bol ≈ 1048erg/s across the
electromagnetic spectrum Padovani et al. (2017).
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A schematic reproduction of an AGN is shown in Figure 2.7.

Figure 2.7: Artist rendition of the structure of an active galactic nucleus, Figure taken from
Addison-Weasley (2019).

The common understanding of these AGN considers two ultra-relativistic polar jets. The
physics of such jets is still discussed (Blandford et al., 2019), but is expected to be related to the
magnetic fields produced by the infalling matter.
For what concerns TDC, however, the most important aspect to consider is that QSOs are (from
Peterson, 1997):

1. high-redshift objects, spanning a large redshift range: 0.5 < 𝑧 < 7

2. bright in most wavelengths

3. time-variable

4. point-like

The first point makes them likely to be strongly lensed. The second point means that they can
be observed even at this high redshift, especially if magnified by lensing. The time-variable
luminosity makes them optimal targets for TDC analysis. The last point is however, a minor
drawback, as point-like sources are more affected by microlensing, which is discussed in the
following Section 2.3.5.
Due to the correlation between the infalling material and the corresponding luminosity of the
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QSO, the variability would appear to be effectively stochastic and can vary significantly even on
short timescales: on the order of a fraction of a magnitude, in the timescale of days Peterson
(1997). An example of lightcurve of a QSO is shown in Figure 2.8. However, there appears to be
observational evidence Kawaguchi et al. (2000) of a non-flat power spectrum of the lightcurves.
This seems to indicate that small variations are more likely to occur over short timescales and
large variations on longer timescales.

Figure 2.8: Flux variability in the optical for of NGC 5548 between 1988 to 1996 Peterson (2001).
The horizontal line indicates the constant contribution of the host galaxy.

In practice, the lightcurves appear to be well-fitted by splines, the number of knots depending
on the scale of variability of the single system. This has been empirically demonstrated by the
success of the COSMOGRAIL collaboration Millon et al. (2020a) in fitting lightcurves of lensed
QSOs. I will then follow a similar approach in my time delay analysis in Chapter 5.

Another aspect to consider is that brighter QSOs present lower variability amplitude Wills
et al. (1993). This poses an interesting optimisation problem when selecting an optimal target
for TDC: brighter QSO would have a higher photometric signal and therefore less noise, but
the reduced amplitude in variability would hinder the time delay measurement, for which the
variability is the signal, and vice-versa. For this study, this limitation had to be ignored due to the
limited number of objects observable at the time (see Chapter 3), but it will appear that luckily the
chosen system presented high enough variability for the time delay to be observable, see Chapter
5.
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Figure 2.9: Simulation of a microlens map with a background source obtained from GIMLET
Astrophysics for, Technology of (2020).

2.3.5 Microlensing
Until now, I have discussed galaxy-scale lenses, as this will be the main focus of the lens
modelling. However, any mass, if concentrated enough, can be a GL. We then refer to them as
microlensing if their mass is in the range of 10−6 ≤ m/𝑀⊙ ≤ 106 (Schneider et al., 2006). Let
us then focus on such microlenses on the lens plane of the macro-lens. Being that the microlens
can be approximated to a point mass, the corresponding 𝜃𝐸,micro is obtained as

𝜃𝐸,micro ≈ 10−6
√︁
𝑚/𝑀⊙arcsec (2.81)

for microlenses in a lensing galaxy at 𝑧 ≈ 0.5, acting on a background source 𝑧 ≈ 2. Due to the
scale of the phenomenon, the multiple images due to the microlens are not observable; however,
the magnification of the object can be very significant, on the order of magnitudes (e.g. Schmidt,
Wambsganss, 2010). Moreover, the configuration of the microlenses is by nature highly unstable,
i.e. the alignment of the source, the microlens and the observer is not constant over time. The
timescale of such a phenomenon is, however, very variable as well and can range from days to
months and even years Schmidt, Wambsganss (2010). Finally, the density of microlenses at a
given position on the lens plane is not easily constrained a priori. Nonetheless, in the case of
strongly lensed quasars, the convergence is assumed to be on the order of 𝜅mircolens ∼ 1, meaning
that on average several microlenses are affecting the quasar image at any given time Schmidt,
Wambsganss (2010).
The final effect of a pattern of microlenses on a moving source can be seen in Figure 2.9. This is
a simulation obtained from GIMLET Astrophysics for, Technology of (2020), where a constant
source moves on the background of a fixed map of microlenses. It is important to notice that
the strongest variation appears at the crossing of the caustics, not within the caustics. Moreover,
the scale of this phenomenon is dependent on the size of the source. Larger sources will take
longer to cross the lightcurves, thus “diluting” the event over time instead of having a sharp peak.
Let us then consider what this phenomenon implies for our study. Given that the lens is not
observable directly, the effect of the microlenses on the observed lightcurves would correspond
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to a brightness variation of an image independently of the “intrinsic” variability of the source.
This effectively introduces an ulterior source of error in the time delay analysis, which is based on
the principle of “matching” the lightcurves by shifting them; this is hindered if the lightcurves do
not match. In extreme cases, if the microlensing effect distortion is too severe, the time delay is
not recoverable. However, most of the time, the effect is not so dramatic, and it only contributes
to increasing the noise. As it will be shown in Chapter 5, this will be the case for this analysis.
Interestingly, while the size of the QSO is well approximated to a point source when compared to
the scale of the macro-lens, this is not valid when compared to the size of a microlens, which is
expected to be significantly smaller than the QSO. Considering then the QSO accretion disk, due
to its structure briefly described in Section 2.3.4, it will present higher temperatures in the centre
and lower temperatures outwards. Correspondingly, the spectra emitted will be different. Given
the localised magnification of the microlens, the magnified light would be colour-dependent, and
it would therefore be possible to identify microlensing events by observing the lightcurves in
multiple filters. There is, however, a further step to consider, which is the “lamp post” model
introduced by Tie, Kochanek (2017). Here, it is considered that the variability of the QSO also
originates from the central black hole, and it then propagates outward in the disk within the
light-crossing time of the disk, which is on the order of days. Considering this lag in combination
with the microlensing effect, it is possible to observe a microlensing-induced time delay.
In this analysis, however, I do not consider this source of systematic error due to several reasons,
such as the lack of observation in multiple filters (as I will discuss in Chapter 5), the good results
obtained when considering minimal microlensing and, most importantly, the limitation in time.
A future improvement of the analysis might take into account this possible source of error.



Chapter 3
Time Delay Cosmographic Analysis at
Wendelstein: Project Outline

In this project, I aimed to use one or possibly several multiply-lensed QSOs for time delay
cosmography (TDC). The work aimed to accomplish three main goals:

• Firstly, add a novel system to the array of TDC systems analysed till now, which is limited
to 7 lenses as of 2020, see Birrer et al. (2020);

• Offer an independent validation of the TDC method implemented by larger collaborations
such as H0LiCOW and TDCOSMO. While the general outline of the project is based on
the same approach, several paths were redefined independently. In particular, this study
faces the lens modelling with a new approach by analysing each exposure independently
from each other, which proves to be of paramount importance in this study (see Section
4.4.1);

• Finally, we aim to introduce the Wendelstein 2.1-meter telescope as a state-of-the-art
follow-up facility for observational cosmology, particularly TDC. The success in measuring
accurate and precise time delays between the images further consolidates the argument that
2-meter class ground-based telescopes are well suited for multi-year, high cadence, high
SNR observational campaigns for time-domain surveys. These facilities will be necessary
assets in the “Big Data Era” of astrophysics, where stage-IV surveys are expected to deliver
a wealth of objects of interest. Only for strong lensing, LSST and Euclid are expected to
detect O(105) objects of interest each Collett (2015). Facilities such as Wendelstein are
well suited to carry the follow-up observations required to take advantage of such a dataset
fully.

3.1 Method
The study is divided into two, mostly independent studies.
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Following the equation 2.79, in order to constrain 𝐻0 I had first to constrain Δ𝜙 and Δ𝑡, given
that 𝑘 is taken as a fixed constant assuming a flat ΛCDM cosmology with Ω𝑚,0 = 0.3. To measure
Δ𝜙, I needed to measure the Fermat potential 𝜙 at the image position, which in turn required
me to model the mass distribution of the lens. I addressed this by employing the public Python
library lenstronomy on archival Hubble Space Telescope (HST) images across multiple filters.
The redshifts of the source and lens were known from prior studies (Agnello et al., 2018).

This analysis is explained in detail in chapter 4.
The second part of the analysis revolves around the time delay estimation, described in chapter
5. Given the variability of the source, here a QSO, and the time delay between the images, the
luminosity of each image over time, referred to as a “lightcurve”, should share a common shape,
although shifted in time and brightness (due to the different magnification of the images). Thus,
the time delay can be measured by observing such variations over time. For that, I made use of
the dedicated observational campaign carried out from the 2.1 meter Fraunhofer telescope at the
Wendelstein Observatory using the Wendelstein Wide Field Imager (WWFI, Hopp et al., 2014).
I reduced the daily observations and obtained the lightcurves, which I then analysed using the
publicly available Python library PyCS3 (Tewes et al., 2013). I describe the details of this analysis
in Chapter 5.

Finally, the two posteriors on Δ𝜙 and Δ𝑡 are used to constrain 𝐻0 with a Bayesian approach
in chapter 6.

3.2 Object Selection and Description
The first step of the project was to select the objects of interest, i.e. known multiply-lensed QSOs.
The sample of potential targets was based on the public Gravitationally Lensed Quasar (GLQ)
Database Lemon et al. (2019), which presented a pool of 220 lensed QSOs known in 2019. This
had to abide by several criteria to allow for the observations from WST and optimise the chances
of high-precision measurements. Here they are listed loosely in order of importance:

• The QSO system has to be visible from the Wendelstein Observatory for at least half of the
year (possibly the whole year). Given the location of the WST , this constrains that the pool
of eligible objects has to have a high declination, in the range of DEC≥ 0. Moreover, the
requirement on photometric precision restricted the observations to a relative airmass of 2,
further limiting the elevation to be higher than 30 degrees.

• The QSO system had to have high luminosity in the visible (𝑔′ ≲ 23 mag) to be observable
with high photometric accuracy. This meant that most, if not all images had to be bright in
the visible.

• The QSO images have to be lensed with a large enough separation to be deblended in the
observations. The median seeing from WST is ∼ 1′′, thus dictating the minimum separation
between the observed images.

• The QSO had to be multiply imaged, and the presence of four images highly improved the
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constraints on both the time delay measurement and the lens model reconstruction. The
search was therefore limited to the quadruply lensed QSOs, referred to as “quads”.

• The mass model required exquisite spatial resolution to be effective; thus, the search was
focused on objects that had archival HST observations or with similar resolution. Multiple
filters, especially infrared ones, were strongly favoured as they allowed increased modelling
precision due to higher information content (e.g. due to the presence of lensed extended
sources).

• The simple systems were preferred, i.e. galaxy-scale lenses, isolated from other larger
structures (e.g. galaxy clusters). This simplified the lens modelling and therefore increased
the measurement precision and accuracy.

• The availability of spectroscopic constrain on the redshift of the QSO and its lens was a
requirement, as it is a necessary component of a cosmological analysis such as TDC.

• The presence of additional extended lensed features, such as arclets or arcs produced by the
host galaxy of the QSO or other lensed sources, was favoured as it significantly improved
the lens modelling constraints, but was not considered a strict requirement.

Previous analyses present in the literature of the obtained sample were taken into account,
especially concerning the estimates or forecasts of the time delay between the images. The obser-
vational campaign was to be limited to a few years, possibly less, and the sampling was expected
to be on the order of a day. Any time delay larger than 1/3 year or smaller than a few days could
hardly be detected.
This search resulted in two optimum candidates, SDSSJ1433+6007 and PSJ1721+8842. While
promising, PSJ1721+8842 proved to be highly complex in its lens modelling and presented little
variability in luminosity during the observation period, while simultaneously being plagued by
intense microlensing. Therefore, the analysis of this system is yet to be finalised and is not
presented here. I instead present here the study carried out on SDSSJ1433+6007, referred to
hereafter as J1433.

J1433

Firstly discovered by (Agnello et al., 2018) (henceforth A18), this system is composed of a
QSO quadruply lensed by a foreground bright, early-type galaxy, henceforth referred to as the
Main Lens. The system also presents a lensing “perturber”, which is believed to be a satellite
galaxy of the Main Lens (see Section B for an estimation of its photometric redshift). Both the
lens’s and QSO’s spectra were observed, the first from the Keck II telescope using the Echellette
Spectrograph and Imager (ESI) and the second from the 2.5 m Nordic Optical Telescope (La
Palma) using the Andalucia Faint Object Spectrograph and Camera (ALFOSC). This resulted in
𝑧QSO = 2.737 ± 0.003 and 𝑧lens = 0.407 ± 0.002, reported by A18.

HST observations in 5 filters from the Wide Field Camera 3 (WFC3) are available (F475W,
F814W, F105W, F140W and F160W), in which the host galaxy of the QSO is visible in the two
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QSO Lensed Image Pairs Separation [”]

A-B 3.757

A-C 2.262

A-D 2.984

C-D 2.807

B-C 1.795

B-D 2.588

Table 3.1: Separation in arcseconds between the various pairs of lensed images. It can be seen
that they are all well separated (Δ®𝑥 > 1.6′′). The separation between images and lens components
(the main lens and the perturber) can be smaller, but this can be accounted for (see Chapter 5).
These values are obtained by measuring the images position with SExtractor (Bertin, Arnouts,
1996) in filter F814W.

most infrared ones (F140W and F160W). This is expected due to its higher brightness in such
wavelength caused by its redshift: due to the Balmer break at ≈ 3645Å and the redshift of the
QSO, it is expected to be brightest at 𝜆 ⪆ 1360 nm.
J1433 is optimally located high enough in the sky to be observable year-round from the WST . The
coordinates of image A, the lensed QSO image taken as the reference point, are RA=14:33:22.7786
and DEC=+60:07:16.928.
It also presents a large enough separation between lensed images (min(Δ®𝑥)∼1.8”, see Table 3.1),
which permits the observation of the images as unblended from WST . Furthermore, these images
are bright enough to be observable with high photometric accuracy in g’ filter. This was deduced
a priori from the available literature at the time, specifically from (Shajib et al., 2019), Table 5,
where the luminosity of the QSO images is reported (note that the image labelling is different
with respect to this analysis). Considering F475X as being the most similar filter to our g’, we
can see that the dimmest image, D, has a magnitude of 21.93±0.04. While this is close to the
minimum threshold imposed for the luminosity, all other images are significantly brighter and
thus should provide a high enough photometric accuracy.
As mentioned, J1433 was previously studied in the literature, although never with the accuracy
required for cosmographic constraints. Nevertheless, this provided spectroscopic constraints for
the main lens and the QSO, as well as initial lens models useful to estimate the range of expected
time delays. From A18, the expected time-delays range from ∼ 15 days to ∼ 110 days, which
is the optimal range of observable delays for this type of analysis. Finally, the fact that this
system had not yet been studied within a time-delay cosmographic framework made it appealing
to produce new science.



Chapter 4
TDC@W: Lens Modelling of SDSSJ1433

I here describe how the data was collected, preprocessed and analysed to constrain the mass
profile of J1433. Note that the focus of this analysis will be to constrain the Fermat potential
posterior at the positions of the images.
The main idea of this study, in contrast with most of the standard work done in similar analyses,
is to model the lens independently for the various filters. This would allow for a comparison of
the independent posterior distributions and therefore stress the potential tension between them.
Indeed, a choice of model might fit well every filter, but if doing so the posterior appears to be
in tension, it would indicate a failure to converge to a single result. Given the achromaticity
of lensing effects, excluding time-varying systems such as microlenses (see Section 2.3.5), each
filter should converge to the same mass model. Note that, since the spectra of the different
components (QSO, satellite, early- and late-type galaxies) are not constant over the observed
wavelengths, the amount of information will vary. Moreover, the filter differed for exposure time
and pixel resolution, as discussed in Section 4.1. However, this should only mean a different
degree of constraint of certain parameters - e.g., the position of QSO images is badly recovered
in lower-resolution exposures. On the other hand, explicit tension between the observed posterior
would then indicate that the model is converging to different results for different filters. This
would then hint that the modelling approach chosen is not able to fit the data, either due to over-
or underfitting. Analysing the filters jointly, usually referred to as multifilter modelling, could
instead lead to convergence to some intermediate solution. This could be, for example, a local
minimum that would fit reasonably well each filter, while not raising any suspicion to a superfi-
cial investigation. Finally, for the independent modelling of each filter, once the convergence is
reached, the posterior can be multiplied together. I then show in Section 4.5 that this procedure
is mathematically equivalent to sampling the posterior given a joint likelihood informed by all
filters.
When required, the default cosmology is assumed to be a flat ΛCDM with Ω𝑚,0 = 0.3, and
𝐻0 = 70 km

Mpc s , taking care not to be biased by such an assumption.

I introduce the details of the data used in the modelling in Section 4.1, and I detail their pre-
processing before the modelling in Section 4.2. I explain the modelling choices in Section 4.3, and
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Filter Central Exposure Exposure Resolution

Wavelength [Å] Date Time [s] (original/drizzled) [ ”
pix ]

F475X 4772.2 2018-05-04 1504.00 0.040/0.040

F814W 8048.1 2018-05-04 1428.00 0.040/0.040

F105W 10551.0 2019-02-14 124.23 0.128/0.128

F140W 13922.9 2019-02-14 446.93 0.128/0.080

F160W 15369.2 2018-05-04 2196.93 0.128/0.080

Table 4.1: Specifics for the HST exposures. The resolution is indicated before and after drizzling.

the details of the modelling run in Section 4.4. I then combine the results in Section 4.5 and dis-
cuss the result in Section 4.6. Here I also present the additional outcomes yielded by this analysis,
such as the total mass and mass-to-light ratio (Section 4.6.2) and the colour profile of the main lens
(Section 4.6.3). Lastly, I compare the obtained results with the available literature (Section 4.6.4).

4.1 HST Data
The system was observed from the Wide Field Camera 3 (WFC3) of HST on two separate
occasions, first using the optical filters F475X and F814W and the near-infrared (NIR) filter
F160W in May 2018, then using the two NIR filters F105W and F140W in February 2019. The
details of the observations are reported in Table 4.2, while a colour image is reported in Figure
4.1. In this image, I also define the naming convention which is followed in this work. The
naming of the image follows the naming convention of A18; this is defined by the time-delay
predicted by the lens configuration: image A being the one with minimal time delay, followed by
B and so on. In Figure 4.1, I also indicate the main lens galaxy as G and the nearby perturber as
Pert.

While a possible approach to the model would be to model every filter fully independent of
each other, preliminary tests indicated that the constraints carried by the optical filters were insuf-
ficient to constrain the full lens model. This becomes clear if we consider that these filters, while
featuring the highest pixel resolution, only present the QSO image positions as the constraint for
the lens model, as explained in Section 3.2. As a rough approximation, it can be seen that the
images correspond to only 4x2=8 constraints, while the free parameters are on the order of 30
parameters (see Table 4.5). Thus, the model would be underconstrained.
Moreover, a similar discourse is valid for F105W, which I discarded from the lens modelling
due to the low exposure time and lack of a lensed host galaxy. The details of this choice will be
discussed in Section 4.2.1.
Therefore, I developed a different approach and used the optical filters only to measure and tightly
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Figure 4.1: Colour image from HST of J1433 using three of the available filters: F475X (blue),
F814W (green) and F160W (red). Following the convention of Agnello et al. (2018), the blue
point sources are the four lensed images of the QSO and are indicated with capital letters from
A to D. G Indicates the central red galaxy, which acts as the main lens, and “Pert” indicates a
smaller galaxy, northwest of image C, acting as a perturber for the main lens (likely its satellite
galaxy, as later discussed in Appendix B). The North and East directions and the 1-arcsecond
scale are also shown.
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constrain the QSO position for the modelling prior. I then consider only the model of the NIR
filters to constrain the posterior (see Section 4.5. These filters had lower resolution, however,
they featured extended source features, which constrained far better the lens parameters, as I will
show in Section 4.4.

4.2 Preprocessing of HST Data for Lens Modelling
The HST data obtained from the online archive MAST (09/2023) has to be reduced and pre-
processed to be input in the lens modelling pipeline. This preprocessing is composed of the
“drizzling” of the images (see Section 4.2.1), the sky correction and error computation (see
Section 4.2.2), the Point Spread Function (PSF) modelling (see Section 4.2.3), the lens light
modelling of the main lens (see Section 4.2.4) and the masking (see Section 4.2.5).

4.2.1 Drizzling of the Filters
The HST online archive provides all required images ranging from the raw single exposures to
the combined and reduced science frames, which have been “drizzled”.

“Drizzling”, first introduced by Fruchter, Hook (1997), refers to the method used to improve
the resolution of multiple dithered images. This is done by mapping each low-resolution pixel
into a higher-resolution, rotated and shifted grid. To limit the convolution effect of the original
pixel grid into the new image, the pixels are rescaled by a factor 𝑝 before the computation. The
resized pixels can be seen as “drops” that “drizzle” (hence the name) into the output subsampled
image.

The HST images are processed by the DrizzlePac pipeline, specifically astrodrizzle
(Fruchter, et al., 2010). This pipeline masks cosmic rays, resamples and combines multiple
dithered exposures by drizzling. However, this method does not provide a corresponding error
frame, which must be computed separately as described in Section 4.2.2. Moreover, the drizzled
images obtained from the archive are drizzled to the same resolution as the original observations.
This maximises the SNR while not increasing the image resolution.
Given the requirements of the analysis, I decided to consider the standard drizzled images for
the optical, as their original resolution is sufficiently high, reaching 0.04′′/pixel. This approach
maximises the SNR. Instead, I opted to drizzle the infrared images in order to increase their
resolution, which is significantly poorer than the optical, originally being 0.128′′/pixel. However,
F105W had only one exposure (see Section 4.1) and therefore could not be drizzled to higher
resolution, as well as having a very poor SNR. Moreover, the extended source is still not visible
in this filter, either due to low SNR or the wavelength observed, and therefore suffers from the
same lack of constraining power as the optical filters. This led me to discard this filter from the
lens modelling.
The two near-infrared exposures available, F140W and F160W, were drizzled following the
standard implementation, using a pixel fraction 𝑝 = 0.8 (indicated by final_pixfrac in the
code) and a final pixel scale of 0.08 ′′

pix . For consistency, I employed astrodrizzle to resample
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Figure 4.2: Science frames as recovered from the HST archive. Notice that the drizzling is
performed without increasing the resolution. For more details refer to Figure 4.1.

the exposure F105W, without increasing its resolution (considering thus final_pixfrac=1 and
final_scale=0.128 ′′

pix ). As previously mentioned, the optical images were maintained on their
original frame, which is equivalent to running astrodrizzle with final_pixfrac=1 and
final_scale=0.04 ′′

pix .
The original frames are shown in Figure 4.2, while the drizzled results are shown in Figure 4.3
(which are only present for F105W, F140W and F160W, as the optical filters are not drizzled
further). Moreover, the multiple exposures of F160W were drizzled automatically into two
separated combined frames in the HST archive, referred to as F160W7030 and F160W7040, as
shown in Figure 4.2. In this analysis, these exposures are instead combined into a single frame
by the drizzling of the original exposures. I also report in Table 4.2 an overview of the various
filters, with their respective wavelength, exposure date, length of exposure and resolution.

Note that while only two of the filters are actively used in the lens modelling, I will present in
this Section the preprocessing of the observed data (namely the error frame estimation and PSF
modelling) and corresponding results for all filters. This has multiple reasons; firstly, I tested
various approaches to the modelling during the analysis, and most of them required the full set of
preprocessed data for each filter. Secondly, the successful repetition of the process for different
datasets solidifies the claim that such a process is well-defined. Lastly, most of the data will be
eventually used for other purposes outside the lens modelling proper, such as the isophote lens
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Figure 4.3: Science frames after drizzling, which was performed only on the NIR filters F105W,
F140W and F160W. Note how for F105W the resolution can not be improved, while for the two
other filters, it reduces to 0.08 ′′

pix

Filter Central Exposure Exposure Resolution

Wavelength [Å] Date Time [s] (original/drizzled) [ ′′

pix ]

F475X 4772.2 2018-05-04 1504.00 0.040/0.040

F814W 8048.1 2018-05-04 1428.00 0.040/0.040

F105W 10551.0 2019-02-14 124.23 0.128/0.128

F140W 13922.9 2019-02-14 446.93 0.128/0.080

F160W 15369.2 2018-05-04 2196.93 0.128/0.080

Table 4.2: Specifics for the HST exposures. Note the comparison between the original sampling
and the result after the drizzling procedure, which was applied to the NIR frames to increase their
resolution. This was not possible for F105W due to the lack of multiple exposures.
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light modelling (see Section 4.2.4), the colour profile of the main lens (see Section 4.6.3) and the
photometric redshift estimation of the perturber (see Section B).

4.2.2 Error Frames and “Sky” Correction
As previously mentioned, the drizzling pipeline does not provide a “drizzled error image” by
default. Quoting from Hoffmann, Mack (2021), “ At present, there’s no easy way for the user
to do this. Perhaps this could be done by swapping in the flc.fits/flt.fits ERR array
for the science [...] array, then running astrodrizzle on the modified images.”, where ERR
indicate the original error frame for the single exposure. This approach, however, does not seem
valid. Firstly, as drizzling combines various pixels together, their uncertainty is now correlated,
as explained in Section 7 of Fruchter, Hook (2002) (henceforth F02, from which all following
quotes in this Section are taken). Even when ignoring this effect,the suggested approach appears
incorrect. The drizzling pipeline, as described in F02, should follow Equation 5:

𝐼𝑥0𝑦0 =
𝑑𝑥𝑖𝑦𝑖𝑎𝑥0𝑦0𝑥𝑖𝑦𝑖𝑤𝑥𝑖𝑦𝑖 𝑠

2

𝑊𝑥0𝑦0

, (4.1)

where 𝑖 indicate an input image with pixels (𝑥𝑖, 𝑦𝑖) with corresponding data 𝑑𝑥𝑖𝑦𝑖 and weight 𝑤𝑥𝑖𝑦𝑖 .
𝑠2 is “introduced to conserve surface density” while the output image is defined by the pixels
(𝑥0, 𝑦0) “ with value 𝐼𝑥0𝑦0 , weight 𝑊𝑥0𝑦0 , and fractional pixel overlap 0 < 𝑎𝑥0𝑦0𝑥𝑖𝑦𝑖 < 1”. 𝑊𝑥0𝑦0 is
computed as described in Equation 4 of F02: 𝑊𝑥0𝑦0 = 𝑎𝑥0𝑦0𝑥𝑖𝑦𝑖𝑤𝑥𝑖𝑦𝑖 . Here we have implicitly
made use of the Einstein notation, thus rewriting explicitly equation 4.1 we obtain:

𝐼𝑥0𝑦0 =
∑
𝑖 𝑑𝑥𝑖𝑦𝑖𝑎𝑥0𝑦0𝑥𝑖𝑦𝑖𝑤𝑥𝑖𝑦𝑖 𝑠

2∑
𝑖 𝑎𝑥0𝑦0𝑥𝑖𝑦𝑖𝑤𝑥𝑖𝑦𝑖

. (4.2)

Following F02, the uncertainty of the pixel for the drizzled image is described in Equation 7:

𝜎2
𝑝 =

∑
𝑑𝑥𝑦∈P 𝑎

2
𝑥𝑦𝑤

2
𝑥𝑦𝑠

4𝜎2
𝑥𝑦

(∑𝑑𝑥𝑦∈P 𝑎𝑥𝑦𝑤𝑥𝑦)2 , (4.3)

where P refers to the “set of all input pixels whose drops overlap with a given output pixel ”
and 𝜎𝑥𝑦 “is the standard deviation of the noise distribution of the input pixel 𝑑𝑥𝑦”. Note the
slight change in notation. Also note that the correlated noise only enters the computation when
considering a selection of pixels, rather than a single one, and thus 𝜎2

𝑝 is, for now, a valid
estimation of the variance of the noise per pixel.
What is clear from these two equations, however, is that giving as input the error frame, i.e. 𝜎𝑥𝑦
to astrodrizzle does not provide the proper “drizzled error frame”. It would be possible to
correct for this effect and still use the astrodrizzle pipeline, but to avoid complications, I
instead followed a simpler approach, based on standard Gaussian error propagation:

𝜎𝑥𝑦

[ e−
sec

]
=

√︃
(𝑑𝑥𝑦 + sky)[ e−

sec] × TEM[sec] + RN2[e−]

TEM [sec]
, (4.4)
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where TEM is the Time Exposure Map and RN is the Read-Out Noise . The sky is the median of
the 𝜎-clipped drizzled image and is subtracted from the image, obtaining 𝑑𝑥𝑦 = 𝑑′𝑥𝑦 − sky, where
𝑑′𝑥𝑦 is the default output science frame obtained after drizzling. 𝑑𝑥𝑦 and 𝜎𝑥𝑦 are then the value
and uncertainty of pixel (𝑥, 𝑦) in units of electrons per second.

The images later used for the analysis are then cropped, taking a square of ∼ 6′′𝑥6′′ around
the main galaxy. This, along with the masking later described in Section 4.2.5, ensures that
the modelling only takes into account the most informative pixels and reduces the memory
requirements.

4.2.3 PSF Modelling
During the lens modelling process, a parametric model is defined which must be convolved with
a PSF kernel to be properly compared with the observation. In lenstronomy, the PSF kernel
can be given as a pixellated model, which is the optimal approach compared to analytic profiles.
Moreover, due to the high precision required, the PSF should be supersampled to maximise
astrometric precision and best fit the model. This step is of great relevance for the accuracy
of the model, as seen in (Shajib et al., 2019). By construction, the PSF model mediates the
comparison between a given parametric model and the observations and, therefore, is crucial for
high-precision results.
In this analysis, I therefore opted to obtain supersampled PSF kernels. Note that the procedure
described here is applied to all HST images as well as the ground-based observations later
analysed (see Chapter 5). The PSF kernel is obtained using the software psf (Riffeser, 2006),
which outputs the resulting pixelated profile by supersampling the input point source (e.g. stars or
QSO) in a flux-conserving manner. If multiple inputs are given, those are then stacked to increase
the SNR. Therefore, such a method is most effective when more such sources are available in
the field close to the observed target. In the case under analysis, the feature most affected by the
PSF precision is the QSO image position. In fact, this parameter informs the lens mass model
and indicates where to measure the Fermat potential. Therefore, it has to be constrained with
the highest accuracy and precision. The best option is to model the PSF kernel over the QSO
images themselves. This is not always possible in practice due to several reasons, such as low
brightness of the image and blending with other light profiles, both originating from the source
and the lens plane. In particular, image D is too dim and too blended with the lens light to be
considered in any filter. Similarly, image C is, in turn, too blended with the perturber light profile.
Images A and B can be used for the optical filters and F105W, although only after modelling
and subtracting the lens light, as described in Section 4.3.2. However, this is not applicable
to the remaining filters, F140W and F160W. In these filters, the resolution is lower (see Table
4.2), the lens light appears brighter, and the host galaxy of the QSO appears lensed in arclets at
the image position. Thus, for the PSF modelling in these filters, I considered nearby stars (four
for F140w and three for F160W), selecting the closest and brightest available in the field. The
vicinity in the image allows for minimising the variability of the PSF due to optical effects (see
e.g. Howell et al., 1996, , Figure 3), while the high brightness increases the SNR. Note, however,
that the stars considered must not be saturated. The use of stars as the model for the PSF is, in
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Figure 4.4: The correction of contaminants in the PSF model for F814W. From left to right: the
original PSF model, the mask considered and the final PSF model.

principle, a sub-optimal choice, as their colours differ significantly from the QSO images and
thus the obtained PSF profile would also be different, as the PSF is colour-dependent. However,
this effect is mitigated by the low resolution of these filters, in which the mismatch of the PSF
profile is negligible. Moreover, the modelling of the QSO position will be prior-dominated by
the constraints obtained from the optical filters. Thus, the effect of the PSF on the model would
be mostly present in the convolution of the arclets and the perturber, which share a redder colour.
The difference in colour between the modelled objects and the stars used for the PSF model is
therefore mitigated.
Due to the different approaches, the size of the PSF kernel differed mildly between the filters.
For most filters, this amounted to 41 pixels, while for F105W it was 31 pixels. This was limited
by the presence of straylight (originating from the perturber, other QSO images and residuals of
the main lens light subtraction) at larger distances from the QSO images. This is exacerbated in
F105W due to its lower pixel resolution. In general, a larger PSF kernel allows for more precise
modelling of the outer wings and diffraction spikes, but also increases the computational cost.
To further improve the quality of such PSF models, I implemented further steps. Firstly, I verify
by visual inspection that there are no further light contaminations, such as small secondary light
sources or straylight. Such contamination has to be small in amplitude and in size, i.e. ⪅ 1/100 of
the maximum of the PSF and only affecting a few tens of pixels. I then approximate the PSF to be
circular symmetric and replace the affected pixels with their corresponding pixels at a given angle
of rotation with respect to the centre of the PSF kernel. Usually, the angle should be taken to be
180, so as to select the circularly symmetrical opposite pixels, but this is sometimes not possible
due to the presence of overlapping contaminants on both pixels; thus, also rotations of 90 degrees
are used. The same substitution is carried out in the corresponding pixels of the error frame.
This correction only affects a few pixels per PSF kernel, and therefore does not significantly alter
the model, while marginally improving the residual. An example of such a process is shown for
the PSF of F814W in Figure 4.4.

Secondly, the PSF model of F105W is significantly affected by the presence of external light
coming from the residual of the main lens light. I thus subtract a constant value in order to force
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Figure 4.5: PSF models for the various filters. Top Left: PSF profiles normalised to their
maximum value. Top Center, Top Right Center and Bottom Row: Encircled Energy (EE) of
the PSF model at increasing radii compared to the literature values (STSI, 07/10/2023) for filter
F814W, F475X, F105W, F140W and F160W. Note that the literature values of the EE for F475X
present a clear outlier at aperture ≈ 4”. This derives directly from the data reported in the
literature. While it does not affect the current analysis, it is nonphysical and should be corrected.

the wings of the PSF to converge to zero. The numerical value of this constant is the average of
the kernel’s edges. In principle, this approach was considered for the optical filters as well, as
the PSF was modelled on the QSO images. However, this correction was not necessary for these
filters.

The final test before the modelling itself is carried out is the comparison of the PSF with the
reported Encircled Energy (EE, STSI, 07/10/2023) of the given filter. All PSF models appear to
agree with the expected profiles, as seen in Figure 4.5, with marginal deviation at the centre for
the infrared due to their lower resolution.

In Table 4.3, the Full Width at Half Maximum (FWHM) and the radius at which the Encircled
Energy is 50 %, REE, are reported. These are fundamental parameters to characterise the
PSF shape. It is interesting to note that the FWHM does not always increase with the central
wavelength 𝜆, which would be expected from a diffraction-limited telescope as HST, following
𝜃 ∝ 𝜆/d (considering the small angle approximation and d as the telescope aperture, constant



4.2 Preprocessing of HST Data for Lens Modelling 49

Filter FWHM [”] REE [”]

F475X 0.095 0.068

F814W 0.086 0.075

F105W 0.236 0.145

F140W 0.209 0.169

F160W 0.228 0.201

Table 4.3: Table with FWHM of the various PSF models for the different filters and their radius
at which the EE=50 %, referred to as REE.

for all filters). This can be explained by the fact that the FWHM, consistently smaller than
2REE, probes the core region of the PSF kernel, which deviates from spherical symmetry. On
the other hand, 2REE is larger and thus is mostly affected by the wings, which dominate the
energy density of the PSF. This region is less affected by the core asymmetry and recovers
the expected dependency on 𝜆. Moreover, this further consolidates our previous assumption of
circular symmetry at large radii. It can be further noted that F105W is the greatest outlier, as
seen in FWHM and in the profile in Figure 4.5, which is likely due to the aforementioned low
exposure time and undersampled image. While all such tests are valid and in general cheap
verifications of the PSF model, it is important to remember that the main test for the goodness
of the PSF model is the lens modelling itself. Most of the steps discussed here to optimise the
PSF had been developed iteratively by improving upon imperfect lens models. A possible future
expansion of the analysis could take into account the automated PSF reconstruction available in
lenstronomy, which iteratively optimises the PSF by minimising the residuals. Initial tests in
this direction showed little improvement in the final result. It is yet to be probed if that is due to a
suboptimal implementation of the PSF reconstruction algorithm or to an already optimised PSF.

4.2.4 Lens Light Modelling and Subtraction

Before the proper mass modelling, I fitted an isophotal model to the main lens light independently
for each filter. There are two main reasons for this. Firstly, the lens light model allows for the
subtraction of the light profile of the main lens, which is then discarded from the modelling.
This reduces the complexity of the analysis and allows for faster convergence and overall better-
constrained parameters. Secondly, the lens light models obtained from all filters can be used to
inform the prior of the mass distribution of the galaxy. I will present the details of how this was
implemented in the later Section 4.3.5. For now, I will describe how I modelled the lens light
and how the results for the various filters can be combined in a common prior.
Isophotal modelling is a well-established technique to fit elliptical galaxies (Jedrzejewski, 1987).
In particular, the light modelling of this analysis takes advantage of the fitting procedure presented
in Kluge, Bender (2023) and Kluge et al. (2023). The procedure iteratively fits elliptical isophotes
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at increasing radii to the image. Each isophote is defined by its centre coordinates (𝑥, 𝑦), pointing
angle 𝜙, ellipticity 𝜖 (related to the axis ratio 𝑞 as 𝜖 = 1− 𝑞), major axis 𝑎 and diskyness/boxiness
indicator 𝑎4. Note that given the major axis and the ellipticity, the minor axis 𝑏 is fixed by the
relation 𝑏 = 𝑎𝑞 = 𝑎(1 − 𝜖). The latter defines the deviations from exact elliptical profiles. The fit
is performed from the inner radii outwards, and its shape parameters (𝑥, 𝑦, 𝜙, 𝜖 , 𝑎4) are fixed after
a certain major axis threshold 𝑎1/4

fix = 1.013 arcsec1/4. This is set as the obtained parametric model
is stable enough to fit the extended light beyond 𝑎fix while avoiding being biased by unmasked
neighbours.
In order to accurately fit the light of the lens, all contaminant sources of light must be eliminated,
either by subtraction or masking. Furthermore, to improve the fit, the isophotes models are
performed over the whole exposure, thus ranging between ∼ 20 to ∼ 100 squared arcseconds,
depending on the filter. I will, however, concentrate on the region of the lens system.

The most critical light components to eliminate are the closest ones to the centre, in particular
the lensed QSO images, the perturber and, when visible, the lensed arclets of the host galaxy.
The first can be partially subtracted by employing a PSF model, obtained from neighbouring stars
using the aforementioned psf program (see Section 4.2.3). The model is then rescaled to match
the image brightness and resampled to match the position of the QSO with sub-pixel precision.
This subtraction aims to subtract the outer wings of the QSO’s PSF. These are more extended and
therefore would affect more importantly the isophotal model, while still being subdominant with
respect to the luminosity of the lens itself. Given this approach, the fit will present residual at
the core, although limited to a few pixels. These are later masked along any other source which
can not be subtracted by a point source, i.e. the perturber, the extended host galaxy (if present)
and other luminous objects nearby. To mask all external sources, a 𝜎-clipping (Zhang, 1995, see
e.g.) with 2 ⪅ 𝜎 ⪅ 5 is applied to all external regions. Assuming the profile to be elliptically
symmetrical, the masked pixels are then “mirrored”, i.e. substituted by the symmetrical opposite
pixels (unless these are also masked). This limits the effect of masking, which might otherwise
significantly impact the modelling. The steps are shown in Figure 4.6 for F160W. For this filter
in particular, it was necessary to iterate the process in order to accurately mask the spurious light
of the arclets and perturber, as in the first iteration, masking was hindered by the presence of the
lens, which was strongly blended with these components. In practice, this is done by doing a
first lens light model. The lens light is then subtracted from the image, where the QSO images
have been subtracted. Here, every pixel which shows significant residuals due to the presence of
external light is masked. The resulting mask is then used for the second and final lens model,
which is the one shown in Figure 4.6.

The other filters were less problematic, mostly thanks to the lower wavelengths and therefore
lower brightness of the arcs and of the lens galaxy itself. The whole set of the resulting models
is shown in Figure 4.7
Now it is interesting to study further the resulting distribution of parameters obtained from such
fit, in order to define an informative prior for the lens mass model. This analysis provides for each
isophote the best fit of the parameters, along with the estimation of their uncertainty. Plotting the
following for all filters with respect to the major axis 𝑎, we obtain Figure 4.8.

The threshold for fixing the parameter is 𝑎1/4
fix = 1.013 arcsec1/4, or 𝑎fix = 1.053′′, depending

on the filter and corresponding brightness of the lens. The lensed QSO images are located in the
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Figure 4.6: The required steps for the isophotal lens light modelling of F160W. Note that only
the second and final iterations are shown here, as the first differs only in the masking and the final
result.
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Figure 4.7: The resulting isophotal lens light modelling for the remaining filters.
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Figure 4.8: Parametric results of the isophotal fitting for the main lens light with respect to the
axis ratio to the power of 1/4, 𝑎1/4: axis ratio 𝑞ML, pointing angle 𝜙ML and coordinates 𝑥/𝑦ML.
For each plot, the vertical lines indicate the range within which the QSO images are located. The
horizontal blue line indicates the average of the given parameter taken within the QSO images
region. These values are then considered as additive information to the likelihood during the lens
mass modelling, as later described in Section 4.3.5. Differences in starting value for 𝑎1/4 are due
to the varying pixel resolution between the different filters.
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Parameter Value

⟨𝑞LL⟩ [ ] 0.65 ± 0.04

⟨𝜙LL⟩ [◦] -8.1 ± 1.6

⟨𝑥LL⟩ [”] 0.94 ± 0.01

⟨𝑦LL⟩ [”] -2.05 ± 0.01

Table 4.4: The resulting values obtained for the axis ratio 𝑞LL, the pointing angle 𝜙LL and the
central coordinates ®𝑐LL = (𝑥LL, 𝑦LL) of the main lens luminous profile from the isophotal as
shown in the Figure 4.8. Note that the coordinates are defined with respect to image A.

range 1.1 arcsec1/4 ⪅ 𝑎1/4 ⪅ 1.25 arcsec1/4, thus after fixing the shapes parameters. This comes
to the advantage of the fitting, as this region is heavily masked for most of the filters, and thus the
fit might be underconstrained if all parameters were allowed to vary. Moreover, this is the most
informative region, as it is where all lensed images (QSO and host galaxy) are located, and thus
most of the constraining power of the data is contained within it. For this reason, when taking
the average of the shape parameter (q, 𝜙 and coordinates x and y), I only consider the isophotes
within this range. The reason is that the model used to describe the mass distribution is only a
valid approximation in a limited region around the images’ positions (usually indicated by the
Einstein angle 𝜃E). Therefore, any correlation between the mass shape and position should be
done with respect to the light distribution at a corresponding radius. The obtained average is
reported in Table 4.4, where the uncertainties are obtained by error propagation of the parametric
uncertainty, but are not considered further for the model.

For completeness, I report here also the a4 parameter, although this will not be further
considered in the analysis. As shown in Figure 4.9, the results are also in agreement in this
parameter, and the average is compatible with zero.

4.2.5 Masking
In order to limit the modelling to the lens system and avoid being biased by the light of nearby
sources, interlopers and residuals of the lens light subtraction, a mask file is given as input to
lenstronomy. The mask is a boolean pixel map representing which pixels are considered for the
modelling. This step becomes particularly significant due to the pre-subtraction of the lens light
presented in Section 4.2.4. This leaves residuals which can be seen by the eye in the centre of the
image, as seen in Figure 4.7 and Figure 4.6, especially due to the lower resolution of the infrared
filters. Given that these filters will be considered for the modelling, it is therefore important to
mask all traces of light which do not belong to the modelling. I then focused on F160W, being the
most informative filter due to its high wavelength and thus extended source, as well as having the
longest exposure time and therefore significant SNR. I created a large mask, which covers most
of the central region of the lens and everything outside the location of the QSO images and the
arclets. The comparison between the original image and the masked one is presented in Figure
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Figure 4.9: The diskyness/boxiness parameter a4 obtained from the isophotes model in the
different filters. We can see that the result agrees with 0 for all filters.

4.10.
To limit the variation introduced in the modelling of the different filters, an equivalent mask is

applied to F140W. The mask transformation from one frame of reference to the other is obtained
by aligning the file using its relative coordinate information. The change is minimal, however,
thanks to the identical drizzling procedure which ensures that the two images share a similar pixel
grid. The result is also shown in Figure 4.10.

A particular region of interest for the masking is later discussed in Section 4.4.1 in connection
with an excess of light visible in F160W.

4.3 Mass and Light Profiles
In modelling gravitational lenses, our primary focus is on the overall mass distribution of the
lens, encompassing both luminous (baryonic) matter and dark matter. While the observed light
can provide insights into the mass distribution, it must be taken with caution. Given the presence
of dark matter, the principle that ’light traces matter’ can not be applied unconditionally. Instead,
informed by the results of the lens modelling of the Sloan Lens ACS (SLACS) Survey lenses
Bolton et al. (2006, 2008); Auger et al. (2010), I followed a similar approach as described in
Schmidt et al. (2022), i.e. adding limited constraints to the mass model from the lens light profile.

In this section, I discuss the profiles used for the mass (see Section 4.3.1) and light (see
Section 4.3.2) modelling of the system. I also explain the ties between said profiles implemented
by joining some parameters (see Section 4.3.3). I then describe the prior uses for this parametric
modelling (see Section 4.3.4) and how the likelihood is computed (see Section 4.3.5).
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Figure 4.10: Mask for the two filters F140W and F160W. The mask is defined for the F160W
image and applied to both filters, considering a coordinate transformation to adapt to the small
differences in the pixel grid. Note that this is the initial mask, which will be updated as discussed
in Section 4.4.1
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4.3.1 Mass Profiles

The most common approach for the mass model of galaxy-scale lenses is to consider a parametric
profile for the mass density. This is due to the simplicity of such profiles and corresponding low
computational cost, as well as the empirical confirmation of optimal results in reconstructing the
observed lens configuration with said models. For example, the Singular Isothermal Spherical
(SIS) profile is a special type of profile:

𝜅(𝑥, 𝑦) =
𝜃𝐸√︁
𝑥2 + 𝑦2

=
𝜃𝐸

𝑟
. (4.5)

While being unphysical due to its singularity at 𝑟 = 0 and the fact that the total integrated mass
diverges at infinity, this profile has several advantages. Firstly, its simplicity makes it one of the
first density profiles to be defined and used. Secondly, this profile is analytically obtained by
considering a distribution of massive point particles in thermal equilibrium. The relation between
its velocity dispersion and the Einstein angle can therefore be obtained: 𝜎v = 𝑐

√︃
𝜃𝐸

𝐷s
4𝜋𝐷ds

, where
𝐷s and 𝐷ds represent the angular diameter distance between the observer and the source and the
lens and the source, respectively. Lastly, although simplistic, this profile is in rough agreement
with several astrophysical structures, such as the stellar dynamics and X-ray halo of elliptical
galaxies, the model of individual lenses and joint lensing and dynamical analyses, see Keeton
(2001). The natural evolution of the SIS profile is represented by additional degrees of freedom.
Firstly, the ellipticity of the profile might be considered. Secondly, the power of the profile 𝛾 can
be set free to vary. When considering both these degrees of freedom, we obtain the elliptical
power law profile:

𝜅(𝑥, 𝑦) =
3 − 𝛾

2

(
𝜃𝐸√︁

𝑞𝑥2 + 𝑦2/𝑞

)𝛾−1

. (4.6)

Note that the axis ratio 𝑞 is the only ellipticity parameter written explicitly. However, the pointing
angle 𝜙 is also implicitly present, as it can be defined by the orientation of the coordinate system,
which in equation 4.6 is aligned with the major and minor axes of the lens. A different approach can
be obtained by considering composite models, consisting of an elliptical NFW profile (Navarro
et al., 1997) for the dark matter halo and a baryonic component linked to the observed light
distribution by a scaling factor. This approach, for example, has been implemented in the lens
modelling of the TDCOSMO collaboration (e.g. Rusu et al., 2020), where the light distribution
is modelled by a Chameleon (or pseudo-Jaffe) profile Kassiola, Kovner (1993); Dutton et al.
(2011) and scaled by a mass-to-light ratio factor.

In this study, I will limit the analysis to an elliptical power law for the main lens profile.
Additionally, the perturber is also considered to be a significant component of the mass distri-
bution. This is modelled by a SIS, as it appears to be too small to be fitted by a more complex
model. Finally, to account for the effect of external massive components which are not explicitly
modelled, I consider a two-component external cartesian shear (see Section 2.2.7). This represent
a shear field defined by strenght 𝛾Shear and direction 𝜓Shear .
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Note, however, that I will not take into account the mass-sheet degeneracy (MSD), i.e. the
external convergence, described in Section 2.3.3. This is due to the lack of two fundamental
datasets for such a study: a 2D spectroscopically derived stellar velocity dispersion of the
lens system, which would inform the mass distribution within the system, and a map of the
neighbourhood of the system (i.e. weighed number count of the nearby galaxies), which can
constrain the external component of the convergence. For this reason, is important to consider
that this analysis is still affected by this unconstrained bias, and a future improvement upon this
work must consider it. Also note that the choice of a fixed mass profile formally breaks the mass
sheet degeneracy (e.g. Schneider, Sluse, 2013), as the MSD transformation described in equation
2.80 does not return an exact power law.

To conclude, while the choice of lens models here described appears successful in fitting the
data (see Section 4.6), further study can be done to test the validity of other models.

4.3.2 Light Profiles
I considered multiple profiles to fit the light observed in the images. These are the main lens,
the perturber and the “sky brightness” from the lens plane, while the QSO images and the arclets
of the host galaxy are from the source plane. As described in Section 4.2.4, the main lens light
is modelled and subtracted a priori, and is not modelled further. The perturber is modelled as
a circular Sérsic profile, whose centre is fixed (see following Section) to be the centre of the
corresponding mass profile described previously in Section 4.3.1. The “sky brightness” is, in
principle, subtracted a priori, see Section 4.2.2. However, I still consider it here as an ulterior
free parameter to take into account any residual of the lens light subtraction. This is modelled
as a uniform background over all pixels, and in all models, it has a negligible impact on the final
result. It might be discarded in further analyses without significant loss of accuracy. For the
source plane, the QSO is modelled as a point source, while the host galaxy is represented by a
circular Sérsic profile Sérsic (1963):

𝐼(𝑟) = 𝐼𝑒exp{−𝑏𝑛[(
𝑟

𝑅𝑒
)

1
𝑛 − 1]}, (4.7)

where 𝐼𝑒 is the intensity at the half-light radius 𝑅𝑒, 𝑛 is the “Sérsic index” which controls the
curvature of the profile and 𝑏𝑛 is a function of 𝑛.

As previously mentioned, the host galaxy was only visible in the NIR filters, F140W and
F160W, and was therefore modelled in these filters only. Additionally, the centres of the host
galaxy and the QSO are fixed to coincide in the source plane, as we expect the QSO to be powered
by the supermassive black hole residing at the centre of the host galaxy. A more complex profile
for the host galaxy might be considered, as adding shapelets (Refregier, 2003; Birrer et al.,
2015). These functions are localised basis functions with varying shapes, designed to capture
small variations in luminosity, adding detail to the otherwise smooth profile of the source. For
this system, preliminary tests in which the addition of shapelets was considered did result in
overfitting. This was characterised by a lower 𝜒2 and unphysical properties of the source (such
as negative flux). However, while discarded for the current analysis, it might be interesting to
test this fitting procedure further. Similarly, an elliptical Sérsic profile was also considered, but it
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proved to be too little information in the lensed arclets for an accurate model, and it also resulted
in an overfit of the data. Given that the simple addition of these degrees of freedom resulted in
overfitting, I did not take into account more complex profiles.

4.3.3 Joint Parameters
The program lenstronomy allows users to join parameters between different profiles for both
the luminous and massive components. This ensures that the values of these parameters are
consistently equated at each step of the analysis. As mentioned previously, for this system, the
following parameters were joined:

• the coordinates of the centre of the host galaxy and the QSO have to coincide in the source
plane,

• the coordinates of the centre of the perturber light profile and its mass profile have to be
the same.

The first point is physically motivated, as explained in Section 4.3.2. The second, tying the mass
and the light centre of the perturber, is instead data-driven. The perturber is not significantly
extended, ranging to ≈ 0.25′′, thus ≈ 1.4kpc on the lens plane, assuming ΛCDM cosmology (with
Ω𝑚,0 = 0.3, and 𝐻0 = 70 km

Mpc s , as described in the Section 4.1). Therefore, while it is unlikely that
its dark matter and luminous profiles are perfectly aligned, I assumed that the deviation should
be negligible given the available resolution. While this approach was motivated by the perturber,
I decided against fixing the centre of the main lens mass to the centre of the isophotal model
previously obtained (see Section 4.2.4). This is to avoid overconstraining the model and because
a shift between the centre of the light and the mass might be physically motivated due to the dark
matter halo. In order to weakly inform the centre of the mass profile, I instead added an additional
likelihood term, later described in Section 4.3.5.

4.3.4 Priors
I present here the resulting parameter of the profile considered in the model and its prior. The
prior ranges were initially physically motivated or based on previous results, such as (Agnello
et al., 2018), (Shajib et al., 2019) and (Schmidt et al., 2022). However, they were iteratively
optimised over time to expedite model convergence by avoiding extreme parameter ranges and
to enhance the model constraints by applying tight and informative priors for the QSO image
positions.

Given the individual modelling of each filter, it is paramount to define a prior which is
common to all models. For the two NIR filters, the priors are identical due to the similarities
of the data. The optical filters, which are modelled as a verification, differed only in the lack of
the host galaxy. Note, however, that this analysis is focused on constraining the Fermat potential
differences 𝚫𝝓, thus, the prior might differ when it comes to “noise terms” such as, in this case,
the presence of the host galaxy. It will be shown in Figure 4.11 that this difference does not affect
the final prior, as the prior 𝑃(𝚫𝝓) is compatible between all modelled filters. This derives from
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the fact that for the mass profiles, all filters are modelled consistently. For the main lens (ML)
the elliptical power law is described by the Einstein radius 𝜃ML

E , the exponent of the power law
𝛾ML, the two polar components of the ellipticity 𝑒ML

1 and 𝑒ML
2 , the centre coordinates 𝑥ML and

𝑦ML. Similarly, for the perturber (𝑃) we have 𝜃P
E, 𝑥P and 𝑦P. Finally, the two polar components

of external shear are indicated by 𝛾Shear and 𝜓Shear.
Additionally, there are eight positional free parameters for the QSO’s image positions in the

image plane, 𝑥QSO
𝑖

and 𝑦QSO
𝑖

for 𝑖 = {𝐴, 𝐵, 𝐶, 𝐷}, along with their independent intensities 𝐼QSO
0,𝑖

(see Section 4.3.3). Furthermore, the model requires additional parameters for the luminous
profiles: for the perturber and host galaxy (HG) Sérsic profiles there are the half-light radii 𝑅P,
𝑅HG, the Sérsic indexes 𝑛P, 𝑛HG, and the central intensities 𝐼P

0 , and 𝐼HG
0 , respectively. Such

profiles normally also require two coordinates for the centre position; however, these parameters
are not free. As previously mentioned in Section 4.3.3 they are defined to coincide with the centre
of the mass profile (for the perturber) and with the backwards ray-traced position of the QSO
images (for the host galaxy).

Finally, the uniform background has one component, a constant intensity 𝐼Bkg. The parameters
used in the modelling are summarised in Table 4.5.

By default, the priors in lenstronomy are uniform, and for most of the parameters considered,
I maintained such an uninformative approach. However, I followed a different approach for what
concerns the positions of the various components. The reasons stem from the aforementioned fact
that the optical filters had the highest resolution while containing the least amount of information
due to the lack of visible arclets of the host galaxy. Thus, they were the perfect candidates to
constrain the positions of the QSO images, as these were unperturbed by the additional light of the
lensed host galaxy. However, the frame of reference (FoR) had to be aligned with high precision
between the different filters to compare the coordinates between them. Firstly, in each filter,
the QSO positions are measured using SExtractor (Bertin, Arnouts, 1996) and their relative
PSF model obtained in Section 4.2.3. The first order correction is to subtract the position of the
QSO image A, which is one of the brightest and least perturbed images. This image will then be
considered as the reference point. Due to the shared high resolution, it can be seen that the optical
coordinates are in agreement with an average 0.0018” difference, or 0.04 pixels in the opticals. I
take the average of these coordinates as the reference position ®𝑐⟨VIS⟩ = (𝑥QSO

⟨VIS⟩, i, 𝑦
QSO
⟨VIS⟩, i), where

𝑥
QSO
⟨VIS⟩, i = ⟨𝑥QSO

i ⟩VIS and 𝑦QSO
⟨VIS⟩, i = ⟨𝑦QSO

i ⟩VIS are the average of the corresponding coordinates
for i-th image measured from the optical filters. While ®𝑐⟨VIS⟩, i is defined as the centre of the
prior for the QSO positions in all models, I also use it to align the FoR. In order to accomplish
this, I compare ®𝑐⟨VIS⟩, i with the corresponding coordinates of the i-th QSO image for each given
NIR j-th frame, ®𝑐NIRj, i = (𝑥NIRj, i, 𝑦NIRj, i) (excluding image C, which in the NIR is often too
severely blended with the perturber to be accurately measured). I first measure and correct for the
difference between the centroids of these coordinates, thus further correcting for a shift. This is a
minor correction since taking image A as the FoR origin already corrects for it at the first order.
Secondly, I run a Kabsch algorithm (Kabsch, 1976) between the resulting positions to measure
the rotation matrix. Both the centroid shift and the rotation matrix are used to correct the FoR of
the j-th frame in order to be compatible with the opticals.

The prior of the QSO images is then defined to be a Gaussian prior, centred on ®𝑐⟨VIS⟩, i
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Model Parameter Variable

Filters F475X F814W F140W F160W

PEMDML

Centre
𝑥ML

𝑦ML

Einstein radius 𝜃ML
E

Power 𝛾ML

Polar Ellipticity
𝑒ML

1

𝑒ML
2

SISP
Centre

𝑥P

𝑦P

Einstein radius 𝜃P
E

External Shear
Shear Power 𝛾Shear

Shear Angle 𝜓Shear

QSO
X Coord.s images (i={ABCD}) 𝑥

QSO
i

Y Coord.s images (i={ABCD}) 𝑦
QSO
i

SérsicP

Half-light Radius 𝑅P

Sérsic index 𝑛P

Intensity 𝐼P
0

SérsicHG

Half-light Radius // // 𝑅HG

Sérsic index // // 𝑛HG

Intensity // // 𝐼HG
0

QSO Intensities Intensities (i={ABCD}) 𝐼
QSO
i

Background Intensity 𝐼
Bkg
0

Total N of Parameters 27 30

N of non-linear Parameters 20 23

N of used Pixels 5636 5601 1667 1520

Degree of Freedom (DoF) 5609 5574 1637 1490

Table 4.5: Parameter used for the lens mass modelling. The double lines separate the list in mass
parameters, light parameters correlated to the mass profiles and light parameters independent
from the mass profiles. ML refers to the Main Lens (mass), P to the Perturber (mass and light)
and HG to the Host Galaxy of the QSO (light). All intensities (𝐼P

0 , 𝐼HG
0 , 𝐼Bkg

0 and 𝐼QSO
i ) are linear

parameters and are not sampled explicitly by the non-linear solver (see Section 4.4). The centre
of the Sérsic profile of the host galaxy is not a free parameter, as it is defined to be identical to
the position of the QSO in the source plane (Section 4.3.3). The number of pixels refers to the
non-masked pixels, and the DoF results from the difference between pixels and the total number
of parameters.
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with a standard deviation of 0.004” (equivalent to 0.1 pixels in the optical filters). The prior is
furthermore implemented within a certain range, thus effectively representing a truncated normal
distribution. The range is defined to be ®𝑐⟨VIS⟩, i±0.012” (equivalent to 0.3 pixels in the optical
filters). These hyperparameters are selected with a slightly less stringent constraint to account for
any unknown errors in the FoR alignment, primarily influenced by the uncertainty of the QSO
position measured from the NIR frames. The precision of these measurements is impacted by
the lower resolution and the presence of external lights: arclets, perturbers and main lens light
residuals. Thus, the bounds and standard deviation of the prior are larger than the previously
mentioned of 0.0018”. The other coordinates are the centre of the main lens mass and the centre
of the perturber (which is the centre of both its mass and light profile). The first is obtained from
the lens light model described in Section 4.2.4. The parametric results of the model, combined
with the filters, yield the centre of the light distribution, which we assume to be a reasonable prior
for the mass as well. I consider a large prior range to allow for a shift between the mass and the
light of 0.198”, corresponding to 5 pixels in the optical frames. As described in the following
Section 4.3.5, I will also introduce an ulterior likelihood component to tie the centre between
mass and light profiles. For what concerns the perturber, the approach is similar to prior of the
QSO images. The central position is measured with SExtractor in the two optical frames, it is
averaged between them obtaining ®𝑐P

⟨VIS⟩ = (⟨𝑥P⟩VIS, ⟨𝑦P⟩VIS). This is then used as the centre of
the prior for the modelling, considering a uniform prior with a range of ±0.04′′, equivalent to 1
pixel in the optical frames. The resulting prior values are reported in Table 4.6.

Note that the QSO positions ®𝑐QSO, once adjusted for the different reference frames, are in
optimal agreement with Schmidt et al. (2022), hereafter S22, Table 3. Also, be aware of the
different naming conventions, where image D in S22 is named A in this study and vice versa.

Once the prior is defined for the lens parameters, it is straightforward to compute the cor-
responding prior for the Fermat potential difference at the position of the images Δ𝜙. This is
done numerically by doing an MCMC sampling of the prior of the lens parameters, as described
in Table 4.5 and Table 4.6. For each resulting particle, I compute the corresponding Fermat
potential 𝜙 at each QSO image position. I then take the differences with respect to image A,
as in Δ𝜙A 𝑗 = 𝜙 𝑗 − 𝜙A, where 𝑗 = B, C, D. This results in a three-dimensional distribution of
points which samples the prior 𝑃(𝚫𝝓). This is reported in Figure 4.11, and it can be seen that,
as expected, the prior is compatible between all models. In this Figure, the prior for the optical
filters are reported as well, even though it will not be explicitly used for the modelling. The prior
obtained here will be used in Section 4.5 to compute the combined posterior.

4.3.5 Likelihood

In lenstronomy, the likelihood is computed as log-likelihood, such that every term results
in a simple addition. The default initial value is a simple 𝜒2 function: 𝜒2

mod = Mask ·
(Reconstructed Image − Data)2/Error Frame2. The Reconstructed Image results from the light
modelling from the source plane, lensed by the lens mass model on the lens plane, added to
the light profile present on the lens plane, and finally convolved with the PSF model. Thus
𝜒2 depends on all lens model parameters. In addition to this standard term, I considered the
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Lens Mass Models

Model Parameter Variable Prior

PEMDML

Centre
xML U(xML

0 -0.198”,xML
0 +0.198”)

yML U(yML
0 -0.198”,yML

0 +0.198”)

Einstein radius 𝜃ML
E U(1.5”,1.8”)

Power 𝛾ML U(1.5,2.5)

Polar Ellipticity (1) 𝑒ML
1 U(0.0,0.3)

Polar Ellipticity (2) 𝑒ML
2 U(-0.12,0.12)

SISP
Centre

xP U(xP
0 -0.04”, xP

0 +0.04”)

yP U(yP
0 -0.04”, yP

0+0.04”)

Einstein radius 𝜃P
E U(0.0”,0.35”)

External Shear
Shear Power 𝛾Shear U(0.0,0.4)

Shear Angle 𝜓Shear U(-𝜋/2,-0.2𝜋)

Lens Light Models

Model Parameter Variable Prior

SérsicP

Half-light Radius RP U(0.1”,2.0”)

Sérsic index nP U(1,6.5)

Host Galaxy Models

Model Parameter Variable Prior

SérsicHG Half-light Radius RHG U(0.1”,0.5”)

Sérsic index nHG U(1,6.5)

QSO Model

Model Parameter Variable Prior

QSO
Image Coordinates

xi U(xi,0 -0.012”,xi,0+0.012”) ·N (xi,0,0.004”)

yi U(yi,0-0.012”, yi,0+0.012”) ·N ( yi,0,0.004”)

Table 4.6: Parametric bounds for the Prior implemented in the lens light model. Note that for all
coordinates apart from the QSO images, the uniform prior is defined as a function of (xprof

0 ,yprof
0 ),

which are the initial estimates for the (x,y) positions of the given profile. For their numerical
values, see Table 4.7. All parameters that are not reported here are either joint parameters (see
Section 4.3.3 and Table 4.5) or intensities, which do not have a prior constraint since they were
not sampled.
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Parameter Variable Value[”]

Main Lens Centre
xML

0 0.9653

yML
0 -2.029

Perturber Centre
xP

0 -1.126

yP
0 -1.863

Image A
xA,0 0.000

yA,0 0.000

Image B
xB,0 -0.004

yB,0 -3.756

Image C
xC,0 -0.762

yC,0 -2.130

Image D
xD,0 2.043

yD,0 -2.175

Table 4.7: Starting value for the coordinates of the various luminous components. Note that these
are reported in arcseconds with respect to the position of the QSO image A, which is therefore
(0,0). The main lens coordinates are obtained from the isophotal modelling described in Section
4.2.4. The QSO positions ®𝑐QSO and the perturber positions are instead measured in the optical
filters.
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Figure 4.11: Superposition of the corner plot for the sampling of the prior 𝑃(𝚫𝝓) for all models.
As expected, these are identical. The prior for the optical filters, since they will not be considered
in the final result, are shown for comparison only and thus are transparent.
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“check_matched_source_position”, which adds a punishing factor 𝜒2
source for models in

which the backwards ray-traced images do not match in the source plane. In theory, this forces
the model to consider each image to have originated from the same source. In practice, this is
implemented by taking the positions of the QSO images 𝜽 resulting from the model and assuming

a default uncertainty of 𝜎𝜃 =0.001”. The corresponding error matrix is Σ𝜃 = ©«
𝜎𝜃 0

0 𝜎𝜃

ª®¬. By

ray-tracing the 𝑖-th image 𝜽𝑖 into the source plane we obtain the source position 𝜷𝑖 relative to this
image. Similarly, by transposing Σ𝜃 through the Jacobian matrix into the source-plane following
equation 13 of (Birrer, Treu, 2019) we obtain the corresponding error matrix Σ𝛽. Now on the
source plane, the 𝜒2

source term is computed as

𝜒2
source =

∑︁
𝑖

Δ ®𝛽𝑖 · Σ−1
𝛽,𝑖 · Δ ®𝛽𝑖, (4.8)

where Σ−1
𝛽,𝑖

is the inverse of the uncertainty matrix Σ𝛽,𝑖 and Δ ®𝛽𝑖 is the difference between ®𝛽𝑖, and
the mean of all ray-traced images positions, ⟨ ®𝛽𝑖⟩. Furthermore, the likelihood is computed with
a “hard bound” 𝜎𝛽, hb = 0.001′′, meaning that any model resulting in |Δ ®𝛽𝑖 |> 𝜎𝛽, hb for any 𝑖 is
discarded, thus forcing the matching of the images.
An ulterior term to the likelihood computation is an additional punishing term that I introduced
through the “custom_logL_addition” argument. This is used to add information to the mass
profile of the main lens from its relative isophotal light model. In particular, this concerns the
central position and the ellipticity parameters (axis ratio and pointing angle). The central position
of the lens mass (LM) ®𝑐LM = (𝑥LM, 𝑦LM) is tied to the corresponding coordinates measured from
the isophotal lens light ®𝑐LL = (⟨𝑥LL⟩, ⟨𝑦LL⟩) (reported in Table 4.4) by computing their distance
𝑑L =

√︁
(𝑥LM − ⟨𝑥LL⟩)2 + (𝑦LM − ⟨𝑦LL⟩)2 and adding a simple gaussian log-likelihood, centred in

0 and with standard deviation 𝜎𝑑 = 0.4”.
For the ellipticity parameters, I follow a similar approach as discussed in Schmidt et al. (2022)
(S22). In their paper, they underline a weak relation between mass and light profile axis ratio q
and pointing angle 𝜙. In S22, this relation is based on 63 of the gravitationally lensed system
of the SLACS lenses (Bolton et al., 2006, 2008; Auger et al., 2010), and is represented in their
Figure 4 and Figure 5, here reported in Figure 4.12 and Figure 4.13, respectively.

Considering that this analysis treats a single lens, from which luminous axis ratio and pointing
angle have been measured, the reported relation can be translated into a top-hat likelihood and
a Gaussian likelihood, respectively. However, to avoid overconstraining the model, I considered
a weaker addition to the likelihood. For what concerns the axis ratio, I instead implemented a
hybrid likelihood distribution, considering a uniform distribution for q≤ ⟨qLL⟩ −0.1 and a normal
distribution otherwise. Such normal distribution would be centred on ⟨qLL⟩ − 0.1 and have a
standard deviation 𝜎𝑞LL obtained from the propagated uncertainty on ⟨𝑞LL⟩ as reported in Table
4.4 scaled by a factor of 3.

Lastly, for the pointing angle 𝜙 the punishing term is a normal 𝜒2 function, assuming a
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Figure 4.12: Figure 4 from S22: The relation between the axis ratio 𝑞 of mass (𝑞mass) and light
(𝑞light) profiles for 63 of the SLACS lenses. The shaded area corresponds to 𝑞mass > 𝑞light − 0.1
and is taken as additional information implemented in the likelihood of this study.
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Figure 4.13: Figure 5 from S22: The relation between the difference of pointing angle between
the mass and light profile, Δ𝜙 = 𝜙mass − 𝜙light and the axis ratio of the light profiles (𝑞light) for 63
of the SLACS lenses. The shaded area corresponds to Δ𝜙 < |10 − 5/(𝑞light)|. While considered
as such for the lens modelling prior in S22, in this study I will implement a simpler Gaussian
likelihood relation between the pointing angle of the two profiles, as described in Section 4.3.5.
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𝜎𝜙LL = 4.5 ◦. This can be summarised as follows:

𝜒2
𝑑 = − 𝑑L

2

2𝜎2
𝑑L

(4.9)

𝜒2
q =


0 if 𝑞 ≤ (⟨𝑞LL⟩ − 0.1)
− [𝑞−(⟨𝑞LL⟩−0.1)]2

2𝜎2
𝑞LL

else. (4.10)

𝜒2
𝜙 = − (𝜙 − 𝜙LL)2

2𝜎2
𝜙LL

. (4.11)

(4.12)

I argue that the constraints are here imposed to be less stringent to account for deviation from the
rule described in S22, especially regarding the hard limit they implement for the axis ratio.

To conclude the total 𝜒2
tot results from the sum over all 𝜒2:

𝜒2
tot = 𝜒2

mod + 𝜒2
source + 𝜒2

d + 𝜒2
q + 𝜒2

𝜙. (4.13)

4.4 Modelling Run
Once I preprocessed the data (see Section 4.2) and defined the models (see Section 4.3), I then
proceeded to run the models. lenstronomy is implemented with two non-linear solvers; first, a
Particle Swarm Optimisation (PSO, Kennedy, Eberhart, 1995) is run to recover the approximate
optima of the parameter space, then a Markov chain Monte Carlo implemented with emcee
(Foreman-Mackey et al., 2013). The PSO, as the name suggests, is implemented by selecting
a sample of points in the multi-dimensional parameter space, referred to as particles, which are
given a direction and velocity. The optimisation then runs iteratively by moving the “swarm” of
particles and measuring the likelihood (following equation 4.13) of the new position for each of
them, called “fitness”. Each particle then adapts its velocity and direction in relation to its own
“personal best”, i.e. the position it has reached with the highest likelihood, and the “global best”
of the swarm, i.e. the highest likelihood position found by any of the particles. The particles are
then expected to converge to the global optimum of the parameter space. The convergence of
the PSO in lenstronomy is defined by two main criteria. First, the first 𝑝 = 70% of particles
is selected with respect to their “personal best”, and the mean of their “personal best”, ⟨𝑝𝑏⟩, is
computed. The first criterion of convergence is that the difference between ⟨𝑝𝑏⟩ and the “global
best” of the swarm must be less than 𝑚 = 10−3. If the first criterion is passed, the program
selects the best 𝑝 = 70% of particles - note that this considers the “fitness” of the particle at each
iteration, not the “personal best” that a given particle has ever reached. It then computes the
distances within the parametric space between the position of these particles and the recorded
position of the “global best”. If the maximum distance is smaller than 𝑛 = 10−2, the second
criterion is deemed to be reached. Note that all hyperparameters 𝑝, 𝑚, 𝑛 can be adjusted, but in
this analysis, the default values appeared to be well-defined and therefore I did not modify them.
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In this work, the PSO was run with 2000 particles and 5000 iterations. This setup, combined with
the boundaries of the prior defined in Section 4.3.4 (see Table 4.6), ensured that all models reached
convergence. Having well-defined convergence criteria meant that the PSO was interrupted once
these were reached. Thus, implementing long iterations was not deemed an expensive task. Note
that the PSO by construction does not sample effectively the parameter space, but it is a fast
optimiser, i.e. reaches convergence relatively quickly.

Once completed, the PSO outputs the “global optimum” position. This is then used as
a starting value to sample the posterior with the MCMC. The MCMC implemented within
emcee with an affine invariance property (Goodman, Weare, 2010). Such a property allows the
sampler’s efficiency to be independent of the anisotropic shape of the sampled distribution. Given
the unknown shape of our posterior, this is a valuable property. This sampler is initialised with
a burn-in of 2000 steps, followed by an initial sample of 4000 steps. The “walker ratio” is set to
10, i.e. the ratio of walkers to the number of non-linear parameters, thus corresponding to 230
walkers for each run of the NIR filters and 200 for the VIS filters. The sample after the burn-in
is occasionally extended with a few thousand steps to obtain a smoother distribution, but this has
no significant effect on the final result.

Contrary to the PSO, the MCMC does not have a uniquely defined convergence criterion,
although several have been introduced, such as the integrated autocorrelation time or the Gel-
man–Rubin statistic Gelman, Rubin (1992). In this study, I considered a few different approaches.
Firstly, the convergence can be visually verified by plotting the “MCMC behaviour”, i.e. the av-
erage position of the walkers during the run for each parameter. Any strong trend in the last part
of the run would indicate a lack of convergence. An example of this can be seen in Figure 4.14,
for the main lens 𝜃E obtained from the model of F160W. The discontinuity appears due to the
additional MCMC run, which doubled the length of the chain. However, such discontinuity is
a minor numerical effect and has no impact on the results. Nevertheless, it can be seen that the
trend is approximately flat, which is the expected behaviour for a converged MCMC.

Similarly, the corner plot of the MCMC chain can be observed. These show the correlation
between the modelling parameters. Distributions that showed multimodality or centred around
the prior limits are deemed not converged. Note that there is an exception to this general rule,
which in this analysis is represented by the position of the QSO images in the NIR filters. As
discussed, these parameters are not easily recovered from the modelling of such filters alone;
thus, I introduced a very informative prior obtained from the optical filters. This implied that the
posterior was necessarily affected by the prior bounds, and in some cases, hit the prior limits.
Thus, this phenomenon is physically motivated and is not considered an indication of a lack of
convergence. Moreover, not all parameters were given the same weight, as this analysis is focused
on lens mass parameters; therefore non-convergence of light parameters (most notably for the
source 𝑅HG and 𝑛HG) was not highlighted as an issue.

These tests had the advantage of being computationally cheap and of giving a larger under-
standing of the results obtained. However, they were not quantitative in nature. I then considered
the criterion described in Ertl et al. (2023), equation 7:

Δlog𝑃 ≤ 5, (4.14)

where Δlog𝑃 represents the difference in log-likelihood between the median of the first and
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Figure 4.14: Result of the MCMC of the model F160W for the 𝜃E parameter of the main lens
model. For readability, the steps shown are averaged over the walkers: the black line indicates the
average and the red shaded area indicates the scatter. Note the discontinuity in the middle: this
is due to the additional MCMC chain after the first 3000 steps. Such discontinuity is, however,
negligible when considering the intrinsic scattering.
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last 2000 points of the MCMC.
To correct for non-convergence, the model could be run with a longer MCMC or the parametric

freedom could be changed. Note that in some cases, the lack of convergence might indicate some
problem in the data, usually tied to an imperfect PSF model, or in the modelling choices.

If the MCMC was deemed converged, the resulting distribution of points is taken as a
reasonable sample of the posterior. Given the focus of this analysis on the Fermat potential, I
then computed the corresponding posterior distribution in the Δ𝜙 parametric space, following the
same computation as described for the prior in Section 4.3.4. This resulted in the distribution
𝑃(𝚫𝝓 |D𝑖), where D𝑖 indicate the 𝑖-th dataset, i.e. the set of data of a given filter 𝑖: science frame,
error frame, PSF model and mask.

Once obtained 𝑃(𝚫𝝓 |D𝑖) of multiple filters, I could compare them. This step is crucial since
the results must not show tension between each other. This is physically motivated, as each filter
is an independent representation of the same phenomenon. Thus, the constraining power of each
filter may vary, but the underlying truth should be constant. Therefore, a lack of convergence
would be a serious indication of a bias or a lack of convergence in one or more of the models
and would require an in-depth analysis to be solved. Most commonly, this could be explained by
wrong parametric constraints, sub-optimal PSF model, non-converged PSO or MCMC and finally
an under-constrained modelling approach. While the first three problems are easily tackled, the
last is the most delicate and requires careful correction. In particular, this was the indication that
my initial model required the additional likelihood terms discussed in Section 4.3.5 and led me
to the finding of the contaminant light in F160W (see Section 4.4.1). Moreover, the posterior has
to agree in order to be combined. I discuss this combination of the posteriors in Section 4.5.

4.4.1 Contaminant Light in F160W
When comparing the posterior resulting from F160W with the ones from other filters (including
the optical), it became clear that there was a significant tension. This is shown in Figure 4.15,
where I report the comparison on the 𝚫𝝓 posterior for F160W and F140W. The two distribution
are in tension of 𝜏(F140W, F160W) ≈ 2𝜎, where the tension is computed as 𝜏(F140W, F160W) =∑
𝑖
|Δ𝜙F140W

𝑖
−Δ𝜙F160W

𝑖
|√︃

𝜎2
𝑖,F140W+𝜎2

𝑖,F160W

/3, and 𝑖 indicate the image three pairs 𝑖 = [𝐴𝐵, 𝐴𝐶, 𝐴𝐷]. Δ𝜙
𝑗

𝑖
and 𝜎𝑖, 𝑗 are

the median and standard deviation of the posterior distribution of Δ𝜙𝑖 considering the model for
the 𝑗 filter, respectively.

Even after testing different PSF models and increasing the MCMC run, the tension remained,
thus indicating that it was independent in both aspects. It was therefore not caused by one of the
most obvious points of failure and needed a more detailed study. Given the similarity between
F160W and F140W, as discussed in Section 4.3.4, the same modelling approach was applied
to both filters. Consequently, divergences due to modelling factors, such as the presence of the
lensed host galaxy and the prior subtraction of the Main Lens light, can be ruled out. Similarly,
data quality can not be a plausible explanation for divergence due to the shared pixel resolution.
While F160W had a higher exposure time (see Table 4.2), this is unlikely to explain the significant
tension observed. It is most likely that the tension arose from the different wavelength coverage
of the filters and the corresponding observed features in the luminous components.
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Figure 4.15: Corner plot of the posterior distributions 𝑃(𝚫𝝓 |DF140W) and 𝑃(𝚫𝝓 |DF160W). Note
the significant tension between the two results obtained from the two NIR filters.
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I therefore focused on the data, and I wanted in particular to understand what difference there
was between the data in F140W and F160W. To do so, I considered the parametric model obtained
from the lens modelling of F140W. I then reconstructed the image by convolving it with the PSF
model obtained from F160W, and let the amplitude of each luminous component of the model
free to vary (i.e. the perturber, the lensed host galaxy and the four individual QSO images). I
then fit the science frame of F160W with this given model. The normalised residual is shown in
Figure 4.16.

In this Figure, several residuals were present. Firstly, the less surprising ones are the residuals
at the image positions, which are almost always present in these filters due to the imperfect
PSF model, which is not tailored to fit the QSO images, as discussed in Section 4.2.3. More
interestingly, two “contaminant” structures appeared, East of image A and of image B, as indicated
in the Figure by the red circles. These residuals, while not as significant in amplitude as the
residuals at the positions of the QSO images, are interesting due to their location. They are
roughly in the same region of the arclets; however, they are not expected from the model of
F140W, as their orientation is not compatible with the expected shape of said arclets. Moreover,
there is no other obvious source (e.g., main lens, perturber, or other nearby sources) in this region
that is expected to produce light. These excesses of light, which I will refer to as “contaminants”
hereafter, are therefore not expected from the model, and given their position, residing close to the
arclets and the positions of the QSO images, they appear to heavily affect the model of F160W.
Other residuals are also present, such as a similar excess of light South of image C. I will show,
however, that these residuals are not as significant, and while lowering the final 𝜒2 (see Section
4.6.1), they do not create tension in the final model. Interestingly, such contaminants were first
found in the earlier model iteration, where the data of F160W and F140W were not drizzled, and
the main lens light was not subtracted a priori. This indicates that this signal is not due to an
artefact of the data analysis but is produced by a physical source. This is also supported by the
fact that the light is even visible from the original data: for example, looking East of image A and
East of image B in Figure 4.10, although heavily blended with the lens light.

I then considered multiple hypotheses to explain the source of such contaminants. Generally,
these can be separated into two categories: either it is a “noise component” or an “informative
component”. In the first case, the source of the contaminant has no significant relation with the
lens or the source and therefore is only a source of noise for the modelling. This, for example,
could be a foreground object with negligible mass or be undersubtracted lens light. Initially, when
modelling the data before drizzling, the contaminant near image B was not as clearly present and
the one near image A appeared circular. Thus, a plausible hypothesis was that the object was a
foreground star, absent in other observations due to its relative motion with respect to the system
and the HST telescope, combined with the different times of the exposures for the other two
NIR filters, which were taken two years later (see Table 4.2). However, this hypothesis, and, in
general, all hypotheses which do not account for the presence of the second contaminant near
image B, are now invalidated. The second category assumes the contaminant to be an informative
component, which would mean that it is part of the lens system, either by being a part of the
lens or the source (i.e. the host galaxy or a second source). The most appealing scenario would
be the second, as it would explain the presence of both contaminant sections (i.e. both the one
East of image A and the one East of image B) and would be an addition of information to the
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Figure 4.16: Residuals from subtracting the F160W exposure from the reconstructed image,
based on the lens modelling results of filter F140W. The red circles indicate the “contaminants”,
while green circles and corresponding letters mark the positions of the images. Additionally, a
significant residual appears west of image C; however, this does not affect the F160W model or its
residuals, unlike the contaminants as later shown in Figure 4.17, and is, therefore, less significant
for the model.
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model. While in principle this would be useful to further constrain the model, I was unsuccessful
in fitting this light. I verified that adding complexity to the modelling of the host galaxy, such
as considering an elliptical Sérsic profile, a Sérsic profile + shapelets and even a second Sérsic
profile, failed to improve the modelling and to fit the contaminants. While further testing could
be possible by increasing the complexity of the model, it must be done with caution in order not
to overfit the data. This is even more important when considering the low resolution of this filter
and the unknown origin of this light. I conclude that, within the limitations of this work and of
the available data, the contaminants can not be fitted and must be masked.

I then implemented an extended mask, which approximately covers the red circles shown in
Figure 4.16. As described in Section 4.2.5, this had to be adapted to the pixel grid of each filter,
so that the models could be compatible. The comparison between the original mask and the
updated one, along with the corresponding normalised residual map for the modelling of F160W,
is shown in Figure 4.17.

This completely solves the tension, as the resulting posteriors𝑃(𝚫𝝓 |DF140W) and𝑃(𝚫𝝓 |DF160W)
are now in agreement within 0.6𝜎, as seen in Figure 4.18. Note that the same mask has now been
applied to both models, but F140W remains mostly unchanged by the difference.

I conclude that the presence of unknown complexity in the data, likely corresponding to
the extended source, biases the model if not correctly taken into account. The masking of the
contaminants solves the problem, although it limits the constraining power of the data.

These effects are predominantly observed in F160W due to a combination of factors. These
are the higher brightness of the redshifted host galaxy at the observed wavelength, the large PSF
FWHM (see Table 4.3) and the lower pixel resolution of NIR filters.

While in this analysis I was therefore limited to masking, I believe that future higher-resolution
observations in wavelengths similar to F160W or further in the infrared, e.g. observed from James
Webb Space Telescope Near-infrared Camera (Beichman et al., 2012), could be employed to fur-
ther study the contaminants and understand their origin. This would, in turn, be useful to constrain
the lens mass model further.

Nevertheless, these results are in agreement, converged and with reasonable residuals. I thus
consider them to be ready to be combined in a common posterior, as described in the following
Section.

4.5 Combination of Posterior
Given the independent modelling of each filter followed in this analysis, the result of the modelling
are two independent posteriors, 𝑃(𝚫𝝓 |DF140W) and 𝑃(𝚫𝝓 |DF160W), shown in Figure 4.18. I then
applied a Bayesian approach to combine the posteriors in order to obtain the joint posterior
𝑃(𝚫𝝓 |DF140W,DF160W). The problem can be generalised to any number of posterior 𝑃(𝚫𝝓 |D𝑖)
given the dataset D𝑖, as long as the datasets are independent. In this case, the NIR datasets
are independent of each other. However, this can not be said of the opticals, given that I used
the positions of the QSO images measured in the latter to constrain the prior of the modelling.
Therefore, this approach is only valid to combine the posterior of the NIR filters, while I will
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Figure 4.17: Comparison of the original mask (top left) and the updated mask (top right) applied
to F160W and the corresponding residual after modelling (bottom row). Notice the clear residual
East of image A and image B that indicate the presence of the contaminants.
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Figure 4.18: A corner plot representing the posterior of the Fermat potential obtained from the
model of F140W and F160W after the masking of the contaminant, shown in Figure 4.17. Note
that the tension has been solved.

further discuss the combination of the optical posterior in Section 4.5.1. Given the Bayesian
theorem, we can write:

𝑃(𝚫𝝓 |D𝑖) ≃ 𝑃(D𝑖 |𝚫𝝓) · 𝑃(𝚫𝝓) (4.15)

𝑃(𝚫𝝓|𝑫) ≃
𝑁∏
𝑖

𝑃(D𝑖 |𝚫𝝓) · 𝑃(𝚫𝝓) (4.16)

𝑃(𝚫𝝓|𝑫) = 𝑎
∏𝑁
𝑖
𝑃(𝚫𝝓 |D𝑖)

𝑃(𝚫𝝓)𝑁−1 . (4.17)

Where 𝑫 = [D1,D2, ...], 𝑃(D𝑖 |𝚫𝝓) is the likelihood and 𝑎 is a normalisation constant which
takes into consideration the evidence. While equation 4.17 can be applied more generally for any
number of independent datasets, in this analysis 𝑁 = 2 and 𝑃(𝚫𝝓|𝑫) = 𝑎 𝑃(𝚫𝝓 |DF140W)𝑃(𝚫𝝓 |DF160W)

𝑃(𝚫𝝓)
.

In practice, this computation can be divided into two parts, computing the density of the
posterior distributions 𝑃(𝚫𝝓 |D𝑖) and of the prior 𝑃(𝚫𝝓). The posterior is computed by measuring
the distribution density by binning the data into a histogram. In order to ensure that the binning
is identical for each posterior, I first compute the range of each posterior. I then define a uniform
binning within the maxima and minima of this range. Following this, I measure the density
of points of the MCMC distribution for each model within each bin, obtaining the density for
each posterior 𝑃(𝚫𝝓 |D𝑖). Subsequently, I can multiply for each bin 𝑗 the densities, obtaining
𝑃(𝚫𝝓 𝑗 |𝑫) = ∏

𝑖 𝑃(𝚫𝝓 𝑗 |D𝑖). The prior 𝑃(𝚫𝝓) is computed the same way as in Section 4.3.4,
by sampling the prior of the lens parameters and computing the corresponding distribution in
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the Fermat parameter space. I then use the kernel density estimator (KDE) available within
sklearn (Pedregosa et al., 2011) to fit the sampled points of the prior at the position of the
bin grid previously described. The KDE implementation to compute the density distribution of
the prior 𝑃(𝚫𝝓) is needed to solve a sampling problem. The prior range is significantly larger
than the range of the posterior by definition and in practice as seen by comparing Figure 4.11
and Figure 4.20. Thus, sampling the whole range of the prior might result in only a few points
within the range of the posterior. This would result in a badly constrained density if it were
to be measured by considering a histogram with the same binning of the posterior. Instead, a
KDE can be trained over the whole prior range and then measured at the centre of the bins. This
allows for a fast and safe computation of the prior. Note that the KDE could be a method to
compute the density for the posterior 𝑃(𝚫𝝓 |D𝑖). However, this is rendered impractical due to the
large number of samples and the dimensionality of the problem, which significantly increases the
computational cost for the KDE fitting. Instead, the histogram results to be significantly faster and
easier to implement. Future improvement might consider another approach to the problem, but I
deem this solution to be satisfactory within the required precision. Once obtained the posterior
multiplication 𝑃(𝚫𝝓 𝑗 |𝑫) and the KDE trained on the prior 𝑃(𝚫𝝓), I can compute the combined
posterior following the equation 4.17. The factor 𝑎 is taken into account by normalising the
posterior distribution. The result is shown in Figure 4.19

I report the resulting numerical values in Table 4.10, where I compare it to the results reported
by Schmidt et al. (2022). The values reported are the median of the distribution. The upper and
lower uncertainties are determined by the differences between the median and the 84th/16th
percentiles, respectively. This distribution reported in Figure 4.19 is then considered as the final
posterior 𝑃(𝚫𝝓|𝑫𝑯𝑺𝑻) which will be use in Chapter 6 to constrain 𝐻0.

4.5.1 Joining the Posterior with the Optical Models
While combining the posterior 𝑃(𝚫𝝓 |DF140W,DF160W), I first wanted to verify that the modelling
of the optical filter would be in agreement with the result obtained from the NIR. To do so, I
run the modelling for F475X and F814W. These models were identical but differed from the
NIR model for two reasons. Firstly, the host galaxy of the QSO is not visible as lensed arclets
and therefore is not modelled. Moreover, the combined effect of their higher resolution, lower
brightness of the main lens and lack of arclets meant that after subtracting the isophotal lens light
(see Section 4.2.4), I could use the QSO images as a reference for the PSF model, as described in
Section 4.2.3. All the other specifics of the model were in common with the NIR modelling.
The resulting posterior 𝑃(𝚫𝝓 |DF475X) and 𝑃(𝚫𝝓 |DF814W) are shown in Figure 4.20, where they
are shown in comparison with the NIR posterior previously obtained. As expected, the results are
in optimal agreement, although the optical posteriors show a larger uncertainty. This is expected
due to the lower information contained in the images, due to the absence of visible arcs, which
greatly increases the constraining power of the modelling. Also, note that the difference in SNR
of the host galaxy arclets between F140W and F160W is reflected in the scatter of the posterior.
F140W has a lower exposure and covers a lower bandwidth, resulting in a lower SNR of the red
arclets, and thus in lower constraints for the mass model.

It is also interesting, while not properly mathematically correct, to consider the combination of
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Figure 4.19: Resulting combined posterior 𝑃(𝚫𝝓 𝑗 |DF140W,DF160W) from the modelling of Sec-
tion 4.4 following equation 4.17. The contour levels indicate the 68, 95 and 99.7 % confidence
levels, whereas the reported values indicate the median and the 1-𝜎 confidence level.
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Figure 4.20: Corner plot comparing the 𝑃(𝚫𝝓 |𝐷𝑖), for 𝐷𝑖 = {F475X, F814W, F140W, F160W}.
Note the agreement between the posteriors.
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these posteriors as obtained from equation 4.17. In practice, this would be the correct combination
if we ignore the dependency between the NIR modelling and the optical filter, represented by
the information on the positions of the QSO image and of the perturber. The result is shown in
Figure 4.21.

It can be seen that the obtained posterior is fully compatible with the one shown in Figure
4.19, thus indicating that the modelling of the optical filters does not further constrain 𝚫𝝓. I
consider this further proof that the optical filters do not contain other useful information other
than the QSO and perturber position.

4.6 Results
Once I obtained the posteriors, I estimated the individual performance in Section 4.6.1. I present
here some ulterior results of the mass and light model, such as the total mass and mass-to-light
ratio (in Section 4.6.2) and the main lens colour profile (in Section 4.6.3). Finally, I compare
the obtained model with the available literature; while few other models are available, such as
Agnello et al. (2018) and Shajib et al. (2019), I will focus on Schmidt et al. (2022), which present
the most updated model on J1433, and share the largest similarities in the modelling procedures.

4.6.1 Goodness of Fit
An intuitive way to define the goodness of a given fit is given by the normalised residual map.
This is obtained from the formula pi = (Modeli−Datai)Maski

𝜎𝑖
, where p is the normalised residual map,

Model is the final model, Data is the observed image in a given filter and 𝜎 is its corresponding
error frame. All such values are computed pixel-wise for each non-masked pixel i. The obtained
maps are shown in Figure 4.22, where I included the optical results for completeness. Notice that
the latter has a significantly lower residual, which is explained by the lack of extended sources of
light and the higher pixel resolution. As it can be seen, F160W present higher residuals overall,
due to the lower resolution and higher brightness of the multiple luminous components.

While indicative of the presence of structure in the residual, the residual maps are not a
quantitative indication of the goodness of fit. For this, we relied on the total reduced 𝜒2 of the
non-masked pixels, i.e. the normalised residual divided by the respective number of degrees
of freedom (DoF, reported in Table 4.5 for each model), also indicated as 𝜒2

red. These vary
significantly between filters as they mostly depend on the number of pixels considered. The
number of free parameters also changes between filters (as different light profiles are considered
for different filters, see Section 4.3.2), but such a change is negligible compared to the total
number of pixels. The 𝜒2

red is reported for each filter in Table 4.8. For the optical filter, 𝜒2
red ∼ 0.7

indicates a slight overfit of the data, most likely due to the significant prior constraint on the QSO
position. Do consider that these models are reported here for completeness, but do not enter the
computation of the final posterior, as described in Section 4.5.

F140W also results in a low chi-square, with 𝜒2
red ∼ 0.5. This would indicate a significant

overfit of the data; however, it is likely to be driven by an overestimation of the error frame and
possibly by the lower number of pixels taken into account, while only minor residuals are present.
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Figure 4.21: The resulting combined posterior following equation 4.17 considering the posterior
of both NIR and optical filters as shown in Figure 4.20. Notice that the comparison between this
image and Figure 4.19: the two posteriors are fully compatible.
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Figure 4.22: Residual maps for all observed filters, normalised by the uncertainty. The masks
are also applied. Note the different orientations of the image between optical and NIR, resulting
from the different drizzling.
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Filter QSO images RMSE [”] Reduced 𝜒2

F475X 0.0018 0.65

F814W 0.0025 0.67

F140W 0.0075 0.51

F160W 0.0091 1.37

Table 4.8: Root Means Square Error of the QSO’s images positions and total reduced 𝜒2
red.

On the other hand, the moderately high resulting 𝜒2
red ∼ 1.4 for F160W can be explained by the

aforementioned presence of significant residual structure in the image along the arclets.
In Table 4.8, I also indicate the “Root Mean Square Error” (RMSE) of the QSO images

position. This indicates the average difference between the modelled and expected positions of
the QSO images. It is defined as RMSEQSO =

√︃
Σ𝑁
𝑖

(𝑥obs,i − 𝑥mod,i)2 + (𝑦obs,i − 𝑦mod,i)2/𝑁 where
𝑥obs,i, 𝑦obs,i are the reference coordinates of the QSO images in the optical filters (see Section
4.3.4 ), while 𝑥mod,i, 𝑦mod,i are the ones resulting from the lens model and 𝑁 = 4 is the number
of images. Note that this is a measure in arcseconds. Unsurprisingly, the recovered positions are
less accurate in the NIR models, even in the presence of the constraining prior informed by the
optical filters.

4.6.2 Total Mass and Mass-to-Light Ratio
To obtain the Mass-to-Light ratio, I will combine the measurement of the mass profile from the
most accurate mass model and the light profile from the most accurate lens light modelling. The
first is obtained from the modelling of F160W, due to the presence of the lensed host galaxy as
described in the previous sections. The most accurate lens light model, which has been obtained
in Section 4.2.4, is deemed to be the one relative to F814W. This takes advantage of the higher
resolution and high exposure time of this filter. Moreover, this filter covers higher wavelengths
compared to F475X, where the lens galaxy appears brighter, thus increasing the SNR. Finally,
the lens is not blending with the QSO images, thus allowing for an easier subtraction/masking of
their light.

For each mass model, the cumulative mass profile of the lens system, defined as the total
projected mass within a given aperture) can be estimated, following the standard lens equations:

M(®𝑟 ≤) = Σcrit

∫
𝜅( ®x′)𝑑𝑥′. (4.18)

Here, Σcrit is the critical mass density, a cosmological function dependent on the redshifts of the
lens and the source: Σcrit = Ds𝑐

2

4𝜋GDdDds
. Ds/d/ds indicate the angular diameter distances between us

and the source, us and the deflector and the source and the deflector, respectively. G and c are
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the gravitational constant and the speed of light, respectively. 𝜅(®x) is the convergence at a given
position ®x, which is defined as the projected mass density Σ(®x) normalised by Σcrit. The integral
is then a two-dimensional integral over the circular region of radius ®𝑟.
Note, however, that the density profile used to model the mass distribution of the lens system
(described in Section 4.3.1, equation 4.6) diverges at ®𝑥 = 0 and does not converge to zero fast
enough for ®𝑥 → ∞, meaning that the total integrated mass at infinity diverges as well. Both
cases are nonphysical but are not critical as the lens model is considered accurate only within
the regions where the images appear, indicatively at the Einstein radius 𝜃E. Very far from such a
region (both at very small radii or very large), the model is merely an extrapolation and should
not be trusted. Such divergences are avoided in practice by defining cut-off radii. To define these
cut-off radii, I also take into consideration the light profile obtained from the isophote models
(see Section 4.2.4), in order to allow for a meaningful comparison between the mass and light
profile and hence the Mass-to-Light ratio profile. Therefore, I restrict the focus on the mass
profile results within the range of [𝑎min ≲ 𝑎 ≲ 𝑎max ” ], where 𝑎 is the major axis of the main
lens light profile. I defined the minimum radius to be the major axis of the first isophote larger
than the REE, the EE radius defined in Section 4.2.3, in order to avoid PSF effects. For F814W,
REE(F814W) = 0.075′′ (as seen in Table 4.3), corresponding to 𝑎min = 0.088”, equivalent to 2.2
pixels for F814W, and 0.48 kpc on the lens plane. For the outer cut-off, I limited the plot to
𝑎 ≤ 5𝜃E ≈ 7.8 ”, i.e. 𝑎max ≈ 42.4 kpc on the lens plane.
I compute the flux of the main lens by considering elliptical apertures using the Python package
photutils (Bradley et al., 2022) matching the isophotes of the lens model. I then compute the
enclosed luminosity from the model, as well as the corresponding error from the error frames.
The flux is then converted into magnitude considering the equation (Institute, 01/31/2024):

𝑚AB(𝑟) = −2.5log10

(
Flux(𝑟)
EE(𝑟)

)
+ ZPAB, (4.19)

where the subscript AB indicate that the magnitude is in the AB magnitude system. while 𝑟
refers to the radius and Flux(r) is the flux enclosed within it. Note that I correct for the Encircled
Energy (EE), which is reported from the literature, as discussed in Section 4.2.3. The zeropoint
ZPAB is obtained following the equation described in STScI (05/30/2024):

ZPAB = −2.5log10(PHOTFLAM) − 5log10(PHOTPLAM) − 2.408. (4.20)

PHOTFLAM and PHOTPLAM are header keywords used to derive the instrumental zeropoint; specif-
ically, PHOTFLAM is, quoting STScI (05/30/2024), “the inverse sensitivity (units: erg cm−2 Å−1

electron−1). This represents the scaling factor necessary to transform an instrumental flux in
units of electrons per second to a physical flux density”, while PHOTPLAM is the pivot wavelength,
in units of �̊�. To convert the apparent magnitude into the absolute magnitude, I correct for the
distance modulus of 5 · log10(𝐷L(𝑧lens)/10pc) = 41.73 mag (where 𝐷L is the luminosity distance),
for cosmic dimming of 2.5 · log10((1 + 𝑧lens)4) = 1.48 mag, galactic extinction and 𝐾 correction.
The last two corrections are wavelength-dependent and are obtained from the literature. I obtain
𝐾(F814W) = 0.55 mag using the tool available at the site http://kcor.sai.msu.ru/ based
on Chilingarian et al. (2010) and Chilingarian, Zolotukhin (2012). The galactic extinction is

http://kcor.sai.msu.ru/
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retrieved from NASA/IPAC (2023), which results to be 𝐴F814W = 0.014 mag. Finally, we convert
to solar magnitude by considering the sun magnitude M= 4.52 mag in AB magnitude for F814W,
as reported by Willmer (2018).

The resulting Mass-to-Light ratio Υ(𝑎) is shown in plotted in Figure 4.23. Note how the
trend of the enclosed mass is growing linearly, whereas the luminosity flattens, thus yielding a
positive trend for Υ(𝑎). It can be seen that the Υ(𝜃E) ≈ 1, which is in line with the expected
Mass-to-Light ratio for such an early-type galaxy, at least considering the inner region sampled.
Note that we are here taking into account only the light of F814W. Moreover, the corresponding
mass 𝑀(𝜃E) results to be 4.28+0.04

−0.05 · 1011. Doing some significant approximation, considering the
model as a singular isothermal sphere, it is possible to extrapolate an analytical estimate of the
velocity dispersion 𝜎v using the equation 𝜎v = 𝑐

√︃
𝜃E

𝐷s
4𝜋𝐷ds

≈ 275 km
s (refer e.g. Meylan et al.,

2006, , eq. 52). Considering that this is a rough approximation, this result is well in agreement
with the result obtained from spectroscopy of Mozumdar et al. (2023), who reports in Table 3
𝜎v = 261 ± 6(stat.) ± 7(sys.) km/s.

4.6.3 Main Lens Colour

Given the isophotal model obtained in Section 4.2.4, it is then possible to obtain the magnitude
of the main lens and its colours. I will focus here in particular on the integrated colour profile
obtained from F475X and F814W. I measure the luminosity of the main lens as described in
the previous Section 4.6.2, by measuring the flux within elliptical apertures and converting it
first into apparent magnitude (following equation 4.19), then into absolute magnitude. The last
conversion is divided between geometric corrections (distance modulus and cosmic dimming),
which are independent of the wavelength, and wavelength-dependent corrections, such as galactic
absorption and K-correction. The latter are computed in the same way for F475X as for F814W,
obtaining 𝐾(F475X) = 0.25 and 𝐴F475X = 0.029 mag.
I then compute the enclosed luminosity difference in the two filters for a given major axis value
𝑎. Note that this profile represents the integrated colour, i.e. the colour given by the enclosed
luminosity within the isophote, rather than the colour at a specific isophote. The result is shown
in Figure 4.24. The plot is cut after 𝑎 > 3 ” from the centre of the lens, as it reaches the limiting
surface brightness.

The grey area, i.e. 𝑎 < 0.05 ” is ignored as it represents where the differences in the PSFs
most strongly affect the model. The negative trend with radius, i.e. the colour becoming “bluer”,
is expected from elliptical galaxies (Saglia et al., 2000).

The resulting integrated colour within the isophote with major axis 0.05 ” < 𝑎 <3 ” is
ΔmagF475X−F814W = 2.17±0.07 mag.

Given the scope of this analysis, I do not consider a more precise estimation of the error.
Instead, it is approximately obtained from photon noise and thus ignores any uncertainty due
to other isophotes parameters (centre coordinates, ellipticity and boxiness). However, these
uncertainties should be confined to the area we are considering here. Thus, while the reported
error may underestimate the full uncertainty, it can still be regarded as a reasonable approximation.
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Figure 4.23: Plot of the cumulative mass from lens mass modelling (for filter F160W, see Section
4.4.1), the enclosed luminosity from isophotal fitting (for filter F814W, see Section 4.2.4), and
the corresponding Mass-to-Light ratio Υ. The plots are with respect to the semi-major axis of
the isophotes, 𝑎. The 1-𝜎 region computed from the posterior of the lens modelling is indicated
by the shaded cyan band. The luminosity uncertainty, while computed, has a negligible effect on
the error budget and is not plotted. 𝜃E, obtained from the mass model, is indicated by the red
dashed line, along with its corresponding grey 1𝜎 region.
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Figure 4.24: The integrated colour profile obtained from isophotal light models of the main lens
in filters F475X and F814W, plotted with respect to the isophotes’ major axis 𝑎. The green
vertical region indicates the location of the QSO images, while the grey region approximately
corresponds to the FWHM of the PSF of F475X (∼ 0.05”), highlighting where the modelling is
most affected by the PSF.

4.6.4 Comparative Analysis with Existing Literature
I compare the results of the lens modelling with the available literature, specifically Schmidt et al.
(2022) (hereafter S22). I disregard Agnello et al. (2018) due to the lower resolution of the data
used in their preliminary analysis, while I ignore Shajib et al. (2019) since S22 present the results
of an improved modelling procedure based on this paper.
S22 shared some similarities and differences with the current work. They used the same modelling
program (lenstronomy) and the main lens mass profile (an elliptical power law). While not
explicitly described in the article, following their pipeline shown in Figure 3 and the resulting
convergence map in Figure C5, here reported in Figure 4.25, it appears that the perturber was
also modelled considering a singular isothermal sphere. Furthermore, an external shear was
considered. However, the analysis developed in S22 diverged from the current work in other
aspects; firstly, S22 aimed to introduce an automated pipeline for lens modelling, while I focus
here on the analysis of a single system. In S22, they considered multifilter modelling, based on
the HST exposures from filters F475X, F814W and F160W. I instead implemented a single filter
modelling, and considered F140W and F160W for the modelling, while employing the optical
filter only to constrain the position of the QSO and the perturber.

In Table 4.9, the results between this model and the results of S22 are compared, along with
their tension. Note that I will report only the results relative to the modelling of F160W, as it is
the most precise result obtained. Only a limited number of parameters are in agreement, while
most results present varying degrees of tension. Partially this is due to the very high precision
claimed by S22, such as for 𝜃𝐸 and possibly for yML, while others stress a significant difference
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Figure 4.25: Resulting model reported in Figure C5 of S22. Note the perturber modelled as a
SIS, the host galaxy modelled as a circular Sérsic profile and the significant residual in F160W
at the position of the contaminant, described in Section 4.4.1.
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This paper (F160W) S22 Tension

𝜃ML
E [”] 1.63+0.007

−0.008 1.581+0.003
−0.002 6.2

𝛾ML [”] 1.88+0.04
−0.05 1.92 ± 0.03 0.8

𝑞ML [] 0.69 ± 0.02 0.96 ± 0.01 10.6

𝜙ML [◦] −4.8 ± 0.5 −28+4.5
−2.6 6.5

xML [”] 0.93 ± 0.01 0.931 ± 0.006 0.3

yML [”] −2.061 ± 0.002 −2.038 ± 0.006 3.6

𝜃Pert
E [”] 0.186 ± 0.009

𝛾Shear [] 0.061+0.007
−0.008 0.127 ± 0.004 7.8

𝜓Shear [◦] −70.3+2.7
−3.8 −82 ± 0.4 3.7

Table 4.9: Comparison between the mass-profile results for F160W and S22, adapted to the same
frame of reference. It should be noted that S22 does not explicitly report the value for 𝜃P

E.

in the analysis. For example, the high level of tension in the ellipticity parameter 𝑞ML and 𝜙ML is
not explained only by the small uncertainty of the result of S22. In this regard, the pointing angle
𝜙ML reported by S22 presents a difference larger than 18 ◦ from the lens light distribution. In
this analysis, it would be unlikely to happen as such large differences are suppressed (see Section
4.3.5). This tension can be explained by the fact that the axis ratio 𝑞ML resulting from S22 is very
large, indicating an almost spherical distribution. Thus 𝜙ML is almost degenerate with respect
to the model; therefore, this tension is not significant. On the other hand, the tension in 𝑞ML

strongly impacts the mass model and therefore the cosmological inference based on it.
This tension might be due to the modelling of F160W in S22, as it has no mask accounting for the
“contaminant” described in Section 4.4.1. As seen in Figure C5, reported here in Figure 4.25, the
modelling of this filter leaves significant residuals at similar positions, as well as in other regions,
which are masked in this model.

Given the focus of this analysis on the Fermat potential differences, I compared Δ𝜙 (Table 8 of
see S22). In this case, I consider the combined Fermat difference posterior shown in Section 4.5
and Figure 4.19. This was done to compare our final result with a similarly informed model from
the literature. Note, however, that the result of this analysis is formally only on the two NIR filters
F160W and F140W. The information about the optical is reduced to the prior of the positions of
the QSO images and the perturber. Note also that the naming of the QSO images differed from
this work and S22, as the names of images A and D are inverted. I remain consistent with the
naming of this work.

The results are shown in Table 4.10. As expected from the tension in the individual lens
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This paper S22 Tension

Δ𝜙𝐴𝐵 [arcsec2] 0.4±0.01 0.36 ± 0.03 1.11

Δ𝜙𝐴𝐶 [arcsec2] 0.58±0.02 0.49 ± 0.03 2.19

Δ𝜙𝐴𝐷 [arcsec2] 1.32+0.04
−0.06 1.03 ± 0.03 4.83

Table 4.10: Comparison of results for the combined Fermat potential difference Δ𝜙 between S22
and this work.

QSO Images F475X F814W F160W

This Paper S22 Tension This Paper S22 Tension This Paper S22 Tension

A 20.27 ± 0.07 20.265 ± 0.001 0.06 20.2 ± 0.1 20.175 ± 0.003 0.04 20.7 ± 0.1 20.518 ± 0.0045 2.0

B 20.09 ± 0.07 20.095 ± 0.001 0.02 20.0 ± 0.1 20.048 ± 0.003 0.07 20.7 ± 0.1 20.369 ± 0.004 3.5

C 20.447 ± 0.078 20.468 ± 0.002 0.3 20.4 ± 0.1 20.365 ± 0.004 0.2 20.6 ± 0.1 20.455 ± 0.007 2.0

D 21.9 ± 0.2 21.972+0.004
−0.005 0.5 21.8 ± 0.2 21.782+0.008

−0.011 0.1 22.5 ± 0.2 21.793+0.012
−0.011 3.1

Table 4.11: QSO images luminosities obtained from lens modelling and compared to S22 with
their relative tension.

parameters shown in Table 4.9, all resulting Δ𝜙 are in tension, in all cases higher than 1.1 𝜎.
For completeness, I compare the luminosities of the QSO images in the shared filters, F475X,

F814W and F160W. To measure them, I computed the total flux for each modelled QSO image (in
practice, by taking an aperture of 100 arcseconds). For the uncertainty, I considered a Poissonian
noise, and took the flux of the corresponding aperture on the root-squared image. Note that this
error computation ignores all other sources of error, such as the modelling and the presence of
other sources.

The results are reported in Table 4.11, where the S22 data are taken from Table A2. The large
tension present for the F160W is dominated by the high precision claimed by S22, along with
some differences in the results obtained, which are likely to be due to differences in the modelling.
The photometry of image D, which is the dimmest image and the most blended with the lens light,
is particularly sensitive to the modelling of the lens light. I conclude this section by comparing
the source reconstruction. This is, however, not easily done due to different parametrisation of the
source. While both works consider a circular Sérsic profile, S22 consider this model in common
between all filters, plus a set of two-dimensional Cartesian shapelets. Thus, S22 differ from the
current work as it considers the source modelling in all filters. Nevertheless, the central position
of the source with respect to image A can be recovered. I then compare them in Table 4.12.
As expected, given the overall results, I find a significant tension in these results as well. The
difference between the two positions is ≈0.13”.

Overall, the results of S22 differ significantly in lens parameters (see Table 4.9) and thus in the
Fermat potential constraints (see Table 4.10). This is likely due to the differences in modelling
approach and most importantly to the difference in the masking employed.
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Host Galaxy Coord. This Paper (F160W) S22 Tension

𝛿RA 0.46±0.02 0.493 ±0.010 1.5

𝛿DEC -1.83±0.02 -1.92±0.003 4.5

Table 4.12: Comparison of the centre of the host galaxy between S22 (Table 4) and this work for
F160W, along with their relative tension. The positions are relative to image A.

In particular, it appears that modelling in parallel without a robust approach for the detection
and treatment of unknown systematics, such as the “contaminants” of F160W, would lead to
severely biased results. This approach is therefore strongly discouraged within the context of
cosmological inference. It is also to be considered that S22 refers to the results from the model of
J1433 as “far from cosmography grade” based on a metric of the stability of the model. Therefore,
while the tension with their result is significant, it should not be a cause to doubt the findings of
this study.



Chapter 5
TDC@W: Time Delay Estimate from
Lightcurves Analysis

The second cardinal part of the Time Delay Cosmographic method consists of measuring the
time delay between the various strongly lensed images. This can then be used to correlate the
measured Fermat potential obtained from the lens mass model, as described in Chapter 4, to the
cosmological parameters, as seen in Chapter 2 (in particular, see Equation 2.79).

As previously described, the time delay with respect to the unperturbed image is not observ-
able in this case, but the relative time delay (i.e. the time delay between two images) can be
measured.
In practice, a time delay measurement of a continuously variable source (such as a QSO, in
contrast to “una tantum” sources such as SNae) would require observing the lightcurve of every
image with high photometric and temporal accuracy. This can be done by means of an observa-
tional campaign from a ground-based telescope. Given the substantial cost of any observational
campaign, several aspects have to be considered to plan and successfully carry out the observa-
tions. Firstly, the length of the observational campaign, 𝑡obs depends on the maximum expected
time delay Δ𝑡max and the variability of the source. Δ𝑡max would require 𝑡𝑜𝑏𝑠 to be at least twice as
large as Δ𝑡max, preferably a few times. Δ𝑡max is not known precisely without measures but can be
approximately gauged a priori from the image separation, as Δ𝑡( ®𝜃𝑖, ®𝜃 𝑗 ) ∝ Δ𝜙( ®𝜃𝑖, ®𝜃 𝑗 ) ∝ ( ®𝜃𝑖 − ®𝜃 𝑗 )2

(as seen in Equations 2.79 and 2.73), thus indicating that larger image-separation system would
require longer campaigns. It can also be estimated more precisely following the TDC equation
and assuming a given value of 𝐻0; as long as this is considered to be a rough measurement to
gauge 𝑡obs, this assumption is valid and would not bias the result.
The second aspect affecting 𝑡obs, the variability of the source, is instead harder to define a priori.
Given the random nature of the variability, the length of the campaign can not be defined a priori
by such a parameter but rather should be prolonged in case the variability is low in order to
increase the overall signal and the chance of observing a larger-scale variability.
A second aspect to consider is the frequency of observations, 𝜈obs, or inversely its cadence,
i.e. how many days between two observations. Firstly, there is a lower bound indicated by the
shortest time delay to be measured, Δ𝑡𝑚𝑖𝑛, as the cadence has to be smaller than such value.
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More generally, higher frequency, i.e. higher sampling, also correlates with lower time delay
uncertainty. The observation strategy for the exposures, such as the number of exposures, their
length in time and the filters used, as well as the dependence of such choices on the characteristic
of the single night (mostly weather and brightness of the sky) should be tailored to the specifics
of the telescope and of the system.
For the system under consideration, the initial 𝑡obs was indicatively defined on the order of 1
year, with the option to extend it depending on the requirement of the analysis (i.e. in case of
absence of significant variability) and freedom of the telescope. Furthermore, the observation
cadence was defined to be 1 observation per night, to sample even smaller scale variation. Note
that such frequency is just an indication for the best-case scenario, as weather and down-times of
the telescope, as well as quality limitation of the data, limit the number of observed nights to a
significantly higher cadency, as later discussed in Section 5.1.
Initially, the observations were carried out in two Sloan filters, 𝑔′ and 𝑖′. The multifilter observa-
tion should have been useful to further correct for microlensing effects (Rojas et al., 2020). The
principle was based on the idea of taking advantage of the so-called chromatic microlensing, i.e.
the change of colour in the lightcurves due to microlensing. This effect is caused by the small
caustic size of microlenses, which can therefore lens a specific region of the QSO. Given our
current model of QSO, these regions have different colours and thus the magnification appears
different in different wavelengths. In practice, the infrared wavelength resulted in a lower SNR
compared to the 𝑔′ filter and had to be discarded from the analysis as it carried little information.
This allowed us to interrupt the observation in such a filter, and therefore prolong and increase
the number of exposures in the 𝑔′ filter, thus increasing the SNR for the leading filter.
Moreover, as it will be discussed in the time-delay analysis in Section 5.3, the effect of microlens-
ing appears not to be severely impacting the data compared to the intrinsic variability of the
source, and therefore, a more sophisticated analysis was not required.
The final requirement to define a priori of the observations or during its first stages (once a few
observations have been carried out) is the minimum quality requirement to satisfy for an obser-
vation to be carried out. Namely, this refers to the weather conditions of the night: the maximum
seeing and minimum transparency necessary for an observation to be carried out and be useful for
the analysis. Such requirements limit the number of data points in favour of their higher quality
while optimising the cost of the campaign in terms of observation time. In this category, it can
also be defined the exposure length of the single exposure as well as their total number relative
to the sky brightness, which in turn is mostly dependent on the location and period of the moon
or other human-made light sources. For the analysis at hand, it was defined to have a maximum
seeing of 1.9” and a minimum transparency of 70%. Furthermore, the length of the exposures
was seen not to be significantly affected by the “bright time”, but the number of exposures per
night varied from 6 (“dark time”) to 12 (“bright time”).
Once such parameters were set, the observational campaign was carried out at the LMU Wen-
delstein Observatory using the 2.1-meter Wendelstein Telescope equipped with a Wide-Field
Imager (WWFI) (Hopp et al., 2014; Kosyra et al., 2014). The details of the observations and
their data reduction are described in Section 5.1. I introduce the method employed for the time
delay analysis in Section 5.2. I then present the time delay analysis in Section 5.3. The error
estimation on the time delay results is described in Section 5.4. Given the specific parametric
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approach taken, such analysis results in a set of results; how these results are combined is then
described in Section 5.5.

5.1 WST Data for Lightcurve Compilation
The campaign lasted from 7/02/2020 till 15/06/2023; this resulted in significantly longer than the
originally planned campaign of one year due to the requirement of the observation (as the QSO
presented low to moderate variability for the first ∼2 years of observations, as later discussed) and
availability of the telescope itself. Each night of observation was then reduced with the standard
data-reduction pipeline developed for the WST described in detail in Kluge (2020) and Kluge et al.
(2020). While the pipeline described encompasses the most general cases, we here require a
specific data reduction, for which few options are superfluous. An overview of the process can
be seen in the flow chart 5.1, which is Figure 10.1 of Kluge (2020) tailored to the observation at
hand. The pipeline first subtracts the bias voltage, obtained by a monthly calibration (referred to
as the “monthly masterbias”), and subtracts the overscan values. It then aligns the CCD regions
and computes the relative gains of each read-out region. Subsequently, the image is divided by
the flatfield exposure, which is taken daily (referred to as the “daily masterflat”). After this, the
programme then identifies and masks bad pixels (considering hot pixels, cosmic rays and saturated
pixels). It then converts the counts into photon counts by multiplying the gain. The propagation
of the statistical uncertainty provides the corresponding error frames for each exposure. A first
approximated astrometry is obtained from the observation coordinates. The charge persistence
is masked, and the bias offset residuals are matched between the 4 read-out regions of the CCD.
Finally, the pipeline creates a star catalogue for each night. At this point, the programme is paused
and each exposure is visually inspected to verify the quality of the observation, identify possible
failures in the computations and manually mask the satellite traces. To speed up this tedious
process, the masking is only applied to the CCD quadrant where the QSO is located. After this
manual intervention, the pipeline is restarted. The reduced single exposures are resampled and
stacked together, producing the final combined image for the night. The same process is applied
to the error frames, which return the corresponding error image.

By comparing it with the original, it can be seen that for the observation of J1433 there is no
need for modelling the bright stars’ effects, such as stellar ghosts and halos, as the field around
the object has few of them and most of them fall out of the interested quadrant (see Figure 5.3).

Once the single reduced night is produced, a tailored analysis of the reduced images is
required to accurately extract the photometry. This falls within the general description of PSF-
photometry, although with specifically high requirements to reach the necessary precision for
time delay measurements.
During the data reduction, the PSF full-width half maximum (FWHM) is automatically estimated
with a non-parametric approach from the surface brightness profile of field stars. This FWHM
is the seeing estimate for the given exposure and, once averaged over the multiple exposures,
represents a first estimate for the seeing of the given night. This is used to discard “bad” nights
with a too large seeing, i.e. seeing > 1.9′′, as previously mentioned. A first photometric
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Figure 5.1: Flowchart for the data reduction of the single night observation for WST, tailored for
the lightcurve analysis of J1433. This is a simplified version of the more general chart presented
in Figure 10.1 of Kluge (2020).
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zeropoint (ZP) estimate is also obtained by comparing approximately 100 stars in the field of
each observation to the Pan-STARSS1 DR2 catalogue (Flewelling et al., 2016). This is done
by measuring their aperture photometry using a circular aperture with 25 pixels diameter, to be
compatible with the catalogues’ methods. This can produce some seeing-dependent errors, as the
smearing of the light can be severe enough that the flux may leak out of the aperture, affecting the
precision of the ZP calibration. This method is estimated to be precise on the order of 0.2 mag,
not enough for the purpose of this analysis. To obtain a higher photometric precision, another
specific pipeline was developed based on PSF photometry. While this method would still rely on
the first ZP calibration based on the PD2 catalogues, any unknown error would correspond to a
systematic shift in magnitude. This would not affect the time delay analysis as it only depends on
relative luminosity variations.

Firstly, the seeing of the night is measured again by taking the FWHM of the PSF model
obtained from a “seeing reference star”. This star is selected to be close to J1433, ensuring
that the seeing remains unchanged between the two objects, and bright enough to be constantly
visible with high SNR, while not too bright to cause a non-linear response in the detection. The
selection of the same star for all observations ensures an unbiased measurement of the seeing.
Next, a supersampled PSF model is created following a similar approach as described in Section
4.2.3, i.e. using the programme psf (Riffeser, 2006), based on eight stars in the field around
J1433, referred to as the “PSF reference stars”. In this case, the exact position of the centre
for each of these stars is obtained by fitting them with a Moffat profile with an FWHM fixed to
the one previously measured from the “seeing reference star”. The centre coordinates are then
used as a fixed parameter in the PSF modelling procedure, which relies on running psf on these
“PSF reference stars”. Note that the added step of measuring the centre improves the PSF model
precision, as such ground-based observation presents a significantly larger PSF spread compared
to HST. Having defined “a priori” the center allows for a more stable PSF model. The obtained
PSF model is supersampled by a factor of 5 and is then used for the ZP calibration and further
for the measurement of the QSO images’ photometry.
The ZP calibration (or rather, re-calibration as it corrects for second-order deviation from the
first estimate based on the Pan-STARSS1 catalogue) is done by measuring the luminosity of
stable stars in the field, referred to as “ZP reference stars”. To select such stars, a large sample
of field stars in the vicinity of J1433 is considered, and their PSF photometry is measured for a
few months at the beginning of the campaign. The stars that appeared significantly variable with
respect to the average were discarded. This resulted in two stars being stable with respect to each
other. This can be seen in Figures 5.2 where their magnitude in g’ is plotted after the subtraction
of their reference magnitude and the ZP correction. This corresponds to the equation:

Δmag𝑖,𝑆 𝑗
= mag𝑖,𝑆 𝑗

− magref,𝑆 𝑗
− 𝛿ZP𝑖, (5.1)

where Δmag𝑖,𝑆 𝑗
is the resulting data point for ZP star 𝑆 𝑗 for the 𝑖-th night, mag𝑖,𝑆 𝑗

is the measured
magnitude of 𝑆 𝑗 for the 𝑖-th night, magref,𝑆 𝑗

is the reference magnitude of the 𝑆 𝑗 star and 𝛿ZP𝑖
is the ZP correction for the corresponding 𝑖-th night. Such correction is measured by averaging
the difference of the measured magnitude of the ZP reference stars at the 𝑖-th night with their
reference magnitude, i.e. 𝛿ZP𝑖 ⟨mag𝑆 𝑗 ,𝑖

− magref,𝑆 𝑗
⟩ 𝑗 .
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Figure 5.2: PSF photometry in g’ filter of the “ZP reference stars” (see Table 5.1 and Figure 5.3)
corrected for their reference magnitude and ZP correction (see Equation 5.1).

R.A. (J2000) Dec. (J2000)

14:33:26.46 +60:06:25.27 Seeing Reference Star

14:33:15.12 +60:07:46.45 ZP Reference Star 1 (mag𝑔′ = 18.064)

14:32:53.65 +60:08:35.26 ZP Reference Star 2 (mag𝑔′ = 18.306)

14:33:01.28 +60:08:38.29

14:32:58.96 +60:09:01.82

14:33:04.72 +60:06:10.16

14:32:58.31 +60:05:20.49

14:32:53.35 +60:05:06.44

Table 5.1: Sexagesimal sky coordinates of the “PSF reference stars” used for the calibration of the
observations. The first one is the star considered when estimating the seeing. The second and third
are the reference stars used for the ZP calibration with the corresponding magnitude measured
for the reference night (31/07/2020, see Figure 5.3) and taken as the reference magnitude for all
observations.
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Figure 5.3: Reference image: this is the observation taken the 31/07/2020. Here are indicated
the PSF reference stars (shown in white), ZP reference stars (shown in cyan) and seeing reference
star (shown in green) for J1433 (in the yellow box). Their coordinates are shown in Table 5.1

The reference magnitude magref,𝑆 𝑗
is the magnitude of the given 𝑆 𝑗 star as observed on the

reference night, 31/07/2020 (shown in Figure 5.3, values reported in Table 5.1). This night was
selected at the beginning of the campaign for its good - but not optimal, in order to avoid it being
an outlier - observational conditions (seeing of 0.88” and transparency of 99%).

As a validation measure, this process was replicated for the images obtained in filter i’, and
the same set of stars resulted to be stable in that filter. The resulting standard deviation of Δmag𝑖,𝑆
is ∼ 0.006 mag for both ZP reference stars 𝑆. This has a negligible effect on the lightcurves
error budget. Furthermore, note that any systematic error introduced here in the ZP calibration,
i.e. a constant bias or shift in the magnitude of the lightcurves, would not have an effect on
the time delay analysis, which only relies on the information carried in the relative shape of
the lightcurves. Moreover, if such bias is a shared constant between the lightcurves, which is a
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Figure 5.4: Comparison of transmission of F475X from camera WFC3, UVIS2 of HST and
SDSS 𝑔’ as a function of wavelengths. Note that, apart from the disparity in scale, which can be
accounted for by adjusting the ZP, the two filters transmit very similar light. The data is obtained
from Observatory (08/05/2024).

reasonable assumption, it would not affect the relative magnification shift, and thus would not
propagate into the analysis of the flux ratio described in the Appendix A.
Before measuring the photometry of the images given our PSF model and the ZP calibration,
it is necessary to subtract all interfering light, most notably the main lens light, the perturber
light and all nearby sources that might blend with the light of the images. To do so, I used the
HST exposure F475X, previously employed for the lens modelling (Chapter 4), as its bandwidth
and centring are comparable to those of the g’ band, as seen in Figure 5.4. Given the higher
resolution of the HST images, deblending the light between the different sources is trivial, as
was previously described in Chapter 4 with respect to the lens light subtraction. In this case, the
objective is instead to remove the light of the QSO images. To do so, I produce a new PSF model
for the F475X, now considering several bright but unsaturated stars in the field around J1433.
This PSF model is regridded at the position of the images, rescaled to match the luminosity of the
individual QSO images and subtracted. Note that the objective and therefore the methodology
of such PSF modelling is here different from the one previously described in Section 4.2.3, as
the PSF model obtained for the lens modelling was used to fit the position of the images, and
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therefore required a very precise core and central inner part of the wings. Here, instead, the
primary objective is to subtract the outer wings of the QSO, which are the ones blending with the
other sources. The residuals at the centre are masked and interpolated from neighbouring pixels.
Once successfully subtracted all light of the QSO images, the pixel resolution of the resulting
HST image is degraded to that of WST of 0.2 ′′

pix. The image is then shifted, rotated, cropped
and finally resampled to the pixel grid of the WST observation. This image is indicated as the
HSTtoWST image.
For every night of observation, this image has to be convolved to the observation seeing. This
is done with a three-step process, first by convolving a first time the HSTtoWST image to the
seeing of the night by means of the PSF model obtained from the “PSF reference stars”, then the
astrometry is measured again and corrected for small deviations between the observed night and
HSTtoWST. This corrected astrometry is then applied to the initial HSTtoWST image, and the
convolution kernel is computed again. Once this second, astrometry-corrected kernel is obtained,
the HSTtoWST image can be accurately convolved to the seeing of the observed night. The reason
for this iterative approach is that the convolution kernel is highly sensitive to precise astrometry,
and in turn, small deviations of astrometry can be corrected only once the seeing is compatible.
Thus, a first convolution is implemented for the astrometry to be corrected, and with that, a
second, more accurate convolution kernel can be obtained.
Once the HSTtoWST image is brought to the correct seeing, its ZP is adjusted in order to the ZP
of the observation night previously obtained. This is furthermore scaled by an additional factor,
which is required due to the difference of HST’s ZP. The numerical value of this scaling factor is
obtained empirically by minimising the residual and resulting to be 1.11.
The resulting HSTtoWST image, now convolved to the same seeing of the night and with the
correct ZP, is subtracted from the observation, as shown in Figure 5.5 for the reference night
(31/07/2020). Now that all interfering light has been subtracted, the QSO’s images photometry
can be computed. This is done by taking the previously obtained PSF model for the night,
resampling it at the position of the images and rescaling it to match the flux of each QSO image
while optimising for a common shift of their position. This last adjustment takes into account the
remaining astrometric imprecision, on the order of 0.3” or 1.5 pixels. Such shift and scale factors
are obtained by minimising the residual. The scale factor can then be converted into magnitudes
with the ZP previously refined.
As previously mentioned, to limit the noise, the data was cut, discarding the exposures with sky
transparency lower than 70% and/or seeing larger than 1.9”. Note that this was applied to single
exposures, and given the variability of such parameters during the night, thus in a few cases, this
led to discarding a few exposures over the whole night of observations. However, many nights
had to be completely discarded, leading to a cut of roughly 31% of the total number of observed
nights. Note that this figure also includes cases where the observations were interrupted due
to bad weather or other circumstances, which also resulted in bad observing conditions in the
exposures taken. This is to say that the quality constraint might not be the primary cause for the
loss of data. The resulting distribution for the quality of datapoints can be seen in Figure 5.6.

The final dataset comprised 297 data points obtained over three years with a median magnitude
precision of 0.015 ≤ 𝜎mag ≤ 0.055 depending on the brightness of the QSO images. The light-
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Figure 5.5: Example of the procedure followed to subtract all constant sources of light from the
single observation night (in this case, the “reference night” 31/07/2020). Top left: reduced WST
observation. Top right: the HSTtoWST image further convolved with the seeing of the observed
night and rescaled to the correct ZP. Bottom: Resulting subtracted image, where only the QSO
light remains.
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Figure 5.6: Distribution of seeing and sky transparency for the observations used in the light-
curve analysis in Section 5.3 after the quality cutoff. The medians are 1.16 ” for the seeing and
86.72% for the transparency.

curves can be seen in Figure 5.7. The specifics of the observations are summarised in Table 5.2.

It can be seen that such lightcurves show clear signs of variability, so much so that even by eye
one can see the time delay between them, although the most notable features (i.e. the minimum
around HJD 2459600/February of 2022 and the maximum around HJD 2459900/December of
2022, depending on the lightcurves) only appeared on the last year and a half of observations.
Also consider the different SNR between the images due to their intrinsic magnification, as image
D is significantly dimmer and thus shows a clear scatter and higher photometric noise. Note
several interruptions of observations, mostly due to technical problems and connected downtimes
of the telescope, as well as more general problems such as the global COVID pandemic.
In conclusion, the data obtained is characterised by a high SNR, and high sampling and shows
clear signs of intrinsic variations, with the overall observation period extended enough to cover
all expected time delays, and is therefore an optimal dataset for time delay measurements, which
will be presented in the remaining Sections of this chapter.

5.2 Introduction to PyCS3

For the time delay analysis, I relied on the Python library PyCS3 (Python Curve Shifting)
described in Tewes et al. (2013), the state-of-the-art time delay analytical procedure developed
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Period of Observation 7 February 2020- 15 June 2023

Filter Sloan 𝑔′

Total observed Nights 432

N. Datapoints 297

Sampling 4.1 days

Pixel scale 0.2 ”/pixel

Median Seeing 1.16 ”

Median Transparency 86.72 %

Median 𝜎mag [mag] 0.015 - 0.055

Exposure Time (bright time) 12×240 s

Exposure Time (dark time) 6×240 s

Relative Photometric Error 1.6 % - 5.7 %

Table 5.2: Specifics of WST observations. The final number of data points is 69 % of the total
number of observed nights due to quality constraints. The sampling is the mean number of
days between the observations and is computed with respect to the number of data points used.
Note that the median 𝜎mag indicates the range of median uncertainty on the magnitudes of the
light-curves. Thus, it depends on the luminosity of the images. Here, the two extremes are shown
for images B and D, respectively, the brightest and dimmest. Due to the dark and bright time
variation, the number of exposures varies by a factor of two.
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Figure 5.7: Resulting light-curves for the QSO’s images observed from the WWFI at the 2.1
Meter Telescope of the Wendelstein Observatory in the 𝑔′ band.

by the COSMOGRAIL collaboration 1. This library allowed for two alternative time delay
measurement methods: the spline fitting method and the Gaussian kernel regression method.
These two methods are explained in detail in Tewes et al. (2013) and later refined in Millon
et al. (2020a), but I will here briefly recapitulate their principle. The spline fitting method
is based on the assumption that the intrinsic variability of the QSO (i.e. the lightcurve as it
would be observed in the absence of the lens) can be modelled by a free-knot basis spline (or
B-spline) of degree 3. These are specific splines, i.e. piecewise polynomials, whose knots,
i.e. coordinates where the polynomial pieces connect, are free to vary and therefore have to be
optimised alongside the polynomial parameters. The degree 3 means that the second derivative
of the spline is continuous along the curve, thus ensuring a certain “smoothness” to the curve.
Note that the freedom of the knots ensures a larger flexibility for the model, while also not forcing
any discrete grid. However, this comes with the trade-off of a higher computational cost; in fact,
optimising the spline parameters for a set of fixed knots is a linear problem, and therefore easily
resolved. This is not true for the minimisation of 𝜒2 when the knot is a free parameter, as the
computation becomes non-linear. The presence of several local optima and stationary areas in
this parameter space further complicates the computation, and this method thus requires a specific
approach to be successful. To solve this, the programme makes use of “bounded optimal knots”
(BOK) described in Molinari et al. (2004), which optimise the knot position for a least-square
spline approximation. In practice, the computation is divided into two steps; first, the knots are
iteratively optimised within certain bounds; once fixed these are, the parameters are optimised

1https://www.epfl.ch/labs/lastro/scientific-activities/cosmograil/

https://www.epfl.ch/labs/lastro/scientific-activities/cosmograil/
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linearly. This approach is iteratively repeated until convergence. The bounded approach to the
knot position further ensures that the knots respect a minimum distance, avoiding the overlap of
the knots, which would create discontinuities in the spline derivative.
However, the problem of lensed lightcurves is the presence of microlensing variation, referred
to as the extrinsic variability of the lightcurves (see Chapter 2). These are not accounted for
by a single intrinsic spline and have to be corrected differently. For the spline fitting method,
this is obtained by considering, for each lightcurve necessary, an individual, “extrinsic” additive
lightcurve to correct for such effects. The added microlensing correction results effectively in an
added degree of freedom to adapt the individual lightcurve to the common “intrinsic” lightcurve.
To avoid overfitting, the variability of such extrinsic correction has to be lower than the intrinsic
lightcurve. Physically, this corresponds to the requirement that the intrinsic variability must
dominate the signal in order to be able to measure it. In principle, this is not a given and depends
on the system. In the case of lightcurves observed to be microlensing dominated, recovering
a time delay with any significance would be impossible. When considering more moderate
cases, where the microlensing is present but not dominant, it still raises the question of how
much freedom to allow such extrinsic correction. In practice, these are modelled by low-degree
polynomials or a degree 3 spline with a single, fixed knot, whose parameters are optimised with
the intrinsic spline parameters. It has been seen that a free knot generates degeneracies with the
fitting of the intrinsic lightcurve and is therefore avoided. Further note that, given the definition
of such extrinsic correction, this is effectively a correction for all correlated noise in the single
lightcurve. The most obvious case of noise is microlensing, and that is why this is considered
a microlensing correction, but in principle, it is a correction for any correlated and smoothly
varying noise in the data, known or unknown.
In conclusion, this is a parametric model that requires the definition of the number of knots for
the intrinsic lightcurve, referred to as the knot step 𝜂, the minimum distance between such knots,
𝜖 , and the type and degree of freedom of the microlensing correction.
The Gaussian kernel regression model is instead a non-parametric model, in which each lightcurve
is fitted by a Gaussian process regression. The modelled lightcurves are then subtracted pairwise,
and their relative time delay is a free parameter optimised to minimise the variability in the
residual.
These two methods are based on different approaches to the analysis of the lightcurves and result
in similarly well-constrained time delays, in agreement between themselves (Millon et al., 2020a,
see e.g. Figure 7 in ). While it would be cautious to repeat the analysis with both to verify
the stability of the results, preliminary analysis with the Gaussian kernel estimation resulted
in weakly constrained results. Moreover, the uncertainty estimation for both methods, later
described in detail in Section 5.4, requires a set of simulated lightcurves that are produced by a
generative model based on the spline fitting approach. Thus, the Gaussian regression analysis
can be considered not completely independent from the other method. It was therefore discarded
and was left for a future expansion upon this work to test that such a method agrees with the
results reported here. I will instead focus on the spline fitting method and explain in this and the
following section my implementation for the analysis of J1433.
The overall structure of the analysis follows the method described in Millon et al. (2020a). This
is divided roughly into three steps, corresponding to the three following Sections: the analysis



5.2 Introduction to PyCS3 107

(Section 5.3), the uncertainty estimation (Section 5.4) and the combination of results (Section
5.5). This results from the parametric approach of this method and the impossibility of defining
a priori the correct set of parameters for the analysis. Thus, a broader search is conducted, which
is possible due to the low computational cost of the analysis and the reliable method for the
combination of results, later described. In this approach, multiple sets of parameters, indicated
by S = {S1,S2...,S 𝑗 , ...} are considered, and for each of those, the analysis is repeated 1000
times. The resulting distribution is interesting for two aspects: its scatter 𝜎Δ𝑡,𝑎𝑛. and its median
⟨Δ𝑡⟩.
𝜎Δ𝑡,𝑎𝑛. is considered a metric of the “goodness of fit”: a scatter larger than a given threshold, in
this analysis defined to be 𝜎thresh. =2 days, indicating that the given S is unable to stably fit the
dataset and does not converge to a single result. This is usually the case for over-constraining
models, i.e. with too large freedom, e.g. see Figure 2 in Tewes et al. (2013). These S are flagged
as “bad” and are therefore discarded from the following steps of the analysis. 𝜎Δ𝑡,𝑎𝑛. is saved as
the intrinsic scatter for the given S and is later combined with the total uncertainty, although it is
usually a negligible contribution (as expected, see e.g. Tewes et al., 2013).
The median ⟨Δ𝑡⟩ of the distribution obtained from the analysis is instead considered the resulting
time delay.
For each given S, the uncertainty is then estimated via a “Monte-Carlo” approach: a generative
model is used to produce a set of 800 simulated lightcurves with similar constraining power
as the real data, and the analysis is repeated with randomised initial conditions and the same
parameters of S as for the real data. The resulting time delay is compared with the true time
delay injected in the simulated lightcurves, and their difference produces an error distribution.
Such distribution carries information on the uncertainty of the time delay estimation for that S,
where the systematic is given by the median of the distribution and the random error by its scatter.
Subsequently, the uncertainty for this S is obtained by adding them and 𝜎Δ𝑡,𝑎𝑛. in quadrature.
Finally, the results of each remaining S have to be combined. This could be done by selecting
the best absolute result or by marginalising over all the results. However, both approaches are
suboptimal: the best result could be biased by unconstrained systematics and its error could
be underestimated, while the marginalisation might inflate the uncertainty more than necessary,
overestimating it. Instead, following the approach of Tewes et al. (2013), I opted for a hybrid
approach that minimises the tension. I define the tension between two sets S𝛼 and S𝛽 as follows.
Given a lightcurve pair, the corresponding time delay estimates for each set are Δ𝑡𝛼

+𝜎+
𝛼

−𝜎−
𝛼

and

Δ𝑡𝛽
+𝜎+

𝛽

−𝜎−
𝛽

. Their tension is then

𝜏(Δ𝑡𝛼,Δ𝑡𝛽) =
Δ𝑡𝛼 − Δ𝑡𝛽√︃
𝜎−
𝛼

2 + 𝜎+
𝛽

2
, (5.2)

givenΔ𝑡𝛼 > Δ𝑡𝛽. Else, the signs of the equation are inverted. This is computed for each lightcurve
pair, and the total tension between the two sets S𝑖 and S 𝑗 is taken to be the maximum tension
between the different lightcurve pairs.
The result combination is therefore done by combining the results that minimise such tension. To
do so, first, the best result is selected, Sbest. This corresponds to the lowest average uncertainty
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Figure 5.8: Flowchart for the combination of the time delay results given different sets of
parameters S for which the analysis was run.

over all lightcurves couples. Then the tension between Sbest and all other S is computed, and I
defined a subgroup with all Sj that present a tension higher than a certain threshold, here defined
to be 𝜏thresh. = 0.5. Within this subgroup, I select the best Sbest′ , following the same reasoning
as before, i.e. the S which presents the lowest average time delay uncertainty. Following this,
the Sbest and Sbest′ results are combined, producing a new Sbest, and the process is repeated until
there is no more tension between the final Sbest and the other S. I illustrate the flowchart in Figure
5.8.

5.3 Time Delay Analysis

The method chosen, the spline fitting method, is a parametric method that requires the user to
define a few cardinal parameters. For the intrinsic spline, which is initialised with equally spaced
knots, these are the knot step 𝜂, which indicates the initial time interval between the knots, and
𝜖 , the minimum distance between the knots. Both these parameters are defined in units of days.
While 𝜖 is seen to have little effect on the results, 𝜂 is the parameter that most crucially defines
it. This is in fact inversely proportional to the number of knots present in the final spline and
therefore dictates its flexibility. Its definition might be misleading, as it might indicate to the user
that the knots are fixed. This is clearly not the case, but rather it can be seen as the first guess over
the time-scale of the variability of the given lightcurve: a large 𝜂 would indicate a slowly varying
system, while a small 𝜂 would correspond to a continuously varying intrinsic lightcurve. Given
the freedom of the knots, however, it should be seen as the inverse of the number of knots, and
rather than the absolute time scale of the variability, it would constrain the amount of variation
over the observation.
The choice of 𝜂 is therefore crucial in order not to overfit (𝜂 too small) or underfit the data (𝜂
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too large). A strongly/weakly variable curve requires a small/large knot step. In the case of
the lightcurves obtained for J1433 and shown in Figure 5.7, intrinsic variations (i.e. common
to all lightcurves) dominate its structure on medium to long time scales (∼ 300 days). Smaller
variations in shorter time scales (∼10 days) can also be seen in the three brightest lightcurves.
This led me to consider knot steps in a range between 30 and 45 days. I therefore selected
𝜂 = {30, 35, 40, 45}. This corresponds to a number of knots of {41,35,31,27}, respectively.
Very short peaks, on the order of days or very long trends, over the whole observational period,
might instead be caused by microlensing.
The very short peaks should not significantly affect the results as they only concern a few data
points. Thus, this case is not accounted for in the analysis. Note that a different system, where such
short-term, microlensing-induced variation was more common, might be analysed differently; e.g.
by masking the affected data points.
The second microlensing effect, the very long-term one, is instead corrected explicitly by adding
to every lightcurve a microlensing correction. As described in the introduction in Section 5.2, this
is in fact an added lightcurve with some pre-determined degrees of freedom that is used to adjust
every lightcurves to the common intrinsic spline. The flexibility of such an extrinsic lightcurve
is therefore also important and depends on the time scale and intensity of the microlensing
perturbance in the system. Due to the aforementioned assumption for the obtained lightcurve,
I only considered a low degree of freedom for such corrections. Thus, I considered, for each
lightcurve, either a 3-degree spline with one fixed knot or a polynomial with degrees ranging from
0 to 2. Regarding such choices, a few things are worth pointing out. Firstly, for each analysis,
the same type of microlensing correction is applied to all lightcurves. This is done partly for
simplicity, as it reduces the multiplicity of analyses carried out, and given the resulting low
dependency on microlensing correction, it appears to be unnecessary. Furthermore, considering
microlensing only for a subset of lightcurves, while possible, resulted in underconstrained results
and was therefore discarded after a few tests. Secondly, the spline has a fixed knot, as leaving the
knot free to vary is seen to overfit the data. In particular, it presents degeneracies with the intrinsic
spline knot freedom, and the fit fails to converge to a stable solution in this configuration. Finally,
the polynomial correction of degree zero corresponds to a constant value, i.e. a magnitude shift of
the lightcurve. This is completely degenerate with the intrinsic magnification shift of the image
and therefore can be viewed as fitting with no microlensing correction. It will be discussed later
that this method appears to be too little constraining, i.e. underfitting the data; it is considered
here as a benchmark, and its failure is a hint that extrinsic correction is necessary, even if with
a low degree of freedom. Related to this case, it is important to note that this degeneracy,
i.e. between the intrinsic magnitude shift of the lens and the average magnitude shift due to
microlensing, is present for all microlensing corrections. This is a physical degeneracy: from
the lightcurves alone, it is impossible to completely disentangle the luminosity variation due to
microlensing or due to the lens. Two aspects come to help us here: microlensing magnification
is limited to an order of magnitude lower than the intrinsic magnification, and it is time-variable.
Thus, averaging the lightcurve over time would result in intrinsic magnification; this would be
true if it were possible to average over timescales longer than the microlensing time scales,
which in principle are undefined. It is believed, however, that microlensing should mostly appear
on limited time scales. It is therefore reasonable to expect that the average magnification over
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the observed period of over three years would be a fair estimate of the intrinsic magnification
of the image. Thus I consider the total intrinsic magnification given by the magnification of
the lightcurves, i.e. the shift Δmagintr.

i applied to the individual i-th lightcurve to be matched
to the intrinsic spline, plus the mean magnification of the extrinsic lightcurve for the given
lightcurve ⟨magextr.

i ⟩. As with all measurements in this analysis, also this is a relative one,
thus the measurement is the magnitude shift between two lightcurves, i and j, is given by
Δmagtot

ij = (Δmagintr.
j −Δmagintr.

i )+ (⟨magextr.
j ⟩ − ⟨magextr.

i ⟩). This will be important, especially for
the flux ratio anomaly discussed in the Appendix A, when comparing the obtained magnification
to the predicted one from the lensing analysis, previously discussed in Chapter 4.
Given the aforementioned choices of parameters, the analysis resulted in a set of 16 different
analyses, given 4 knot steps for the intrinsic spline and 4 possible microlensing corrections. To
speed up the analysis and its convergence, the initial lightcurves are shifted in time and magnitude
by a first rough estimate, in order to leave the optimisation a fine adjustment on the order of 10
days. The prior magnitude shift is obtained by taking the average of the difference in magnitude
with respect to image A, weighted by the uncertainty of the data points. The prior time delay shift
is instead obtained from the Fermat potential measured in the lens model, combined following
equation 2.79 by assuming the default cosmology. This also means that such initial prior is
dependent on an initial assumption of 𝐻0 = 70 km

sMpc . To avoid being biased by such a choice, and,
more generally, to marginalise over all prior shifts and to estimate the stability of the analysis, each
analysis is repeated 1000 times. For each iteration, the initial magnitude is randomised within a
range of 0.5 mag from the initial prior, and the time shift is within a range of 10 days from the
expected time delay. This time scatter approximately corresponds to varying 𝐻0 between 50 to
100 km

sMpc depending on the Fermat potential. This is equivalent to the later assumed prior on 𝐻0
(see Chapter 6), and therefore the bias of this initial shift is rendered negligible.
The result of one of the analyses is plotted in Figure 5.9. In particular, this example corresponds to
one of the 1000 analyses where the intrinsic knotstep is 45 days and the microlensing is modelled
with a spline. It can be seen how the intrinsic variation of the lightcurves is well recovered by
the black spline. In order not to clutter the text, the analyses for the other 15 sets of parameters
are not reported here. The repetition of the analyses produces a distribution of time delays which
can be analysed. An example of such distribution is shown in Figure 5.10. The set of parameters
used for that analysis is the same as for the analysis shown in Figure 5.9. Note how the scatter of
image pair AD is significantly larger than the other, due to the larger photometric uncertainty of
image D coupled with its larger time delay. The latter implies that the overlap of the lightcurves
is marginally limited compared to the others, and thus the constraining power of the lightcurves’
data might be reduced as well.

As mentioned in the introduction in Section 5.2, this is used both to obtain an estimate of
the time delay and to discard the “bad” S by verifying that the intrinsic scatter 𝜎Δ𝑡,an. is always
lower than the chosen threshold of 2 days for all S. In Figure 5.11, the 𝜎Δ𝑡,an. is reported for the
different S, and the different lightcurves pair.

Firstly, note that in all cases, image D causes a significant increase in time delay uncertainty.
We can also see the importance of the cut-off. While such a threshold is mostly overestimated
for the image pair AB and AC, it clearly distinguishes which set S are converging to a time delay
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Figure 5.9: Time-delay analysis with PyCS3 on the J1433 light-curves shown in Figure 5.7. The
black curve is the resulting intrinsic spline, representing the common variability. The coloured
points correspond to the data point of each lightcurve shifted by time delay, magnitude shift, and
microlensing correction. The latter is plotted in the colour of the corresponding lightcurve. This
is shown as an example of the analysis and is one of the 1000 iterations obtained considering an
initial knot step of 45 days for the intrinsic spline and a spline microlensing correction
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Figure 5.10: Time delay result distribution from the 1000 analyses of the lightcurves for a givenS.
Knots. indicates the initial knot step of the intrinsic lightcurve. “Spline ML ∀ images” indicates
that the spline microlensing correction is applied to all lightcurves.
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Figure 5.11: Resulting 𝜎Δt, an. for the various knot steps of the intrinsic spline and microlensing
configuration of the S. The blue crosses indicate polynomial microlensing, the different shapes
depending on their degree, while the green ones indicate spline microlensing. The red dotted line
indicated the 2 day cut-off.
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for the image pair AD. In this case, we can see the polynomial correction of degree 1, i.e. the
case where no effective microlensing is considered, appears higher (and for most of the chosen
knot steps significantly higher) than the threshold. Also consider that, ignoring AD, a similar
structure appears for the other image pair, i.e. a higher scatter when no microlensing is assumed.
Thus, this model performs consistently worse than the others. This indicates that, while weak,
the microlensing correction is required for this system. A similar case is the knot step 30, which
is consistently unable to fit the image pair AD. Some other cases also present signs of instability
in fitting the lightcurve D. As mentioned, all S that present a scatter higher than the cut-off are
discarded from the analysis, and therefore the no-microlensing S is henceforth discarded. It
might seem that such a cut is too strict, but it is necessary due to the required precision of the
analysis.
From the time delay result distribution, I also obtain the time delay estimates by taking the median.
The results of the analysis are reported in Table 5.3. From this table, it can be seen that the scatter
𝜎Δ𝑡,an. is a poor estimator for the uncertainty, as it severely underestimates the scatter between
the different results. For this reason, an ulterior analysis is required to constrain the random and
systematic uncertainty, which is described in the following Section 5.4.

5.4 Time Delay Uncertainty Estimation
The methodology to constrain the uncertainty of the time delay follows a “Monte Carlo” approach
as described in Tewes et al. (2013), coupled with a stable generative model to simulate lightcurves.
These simulated lightcurves will have, by construction, a similar constraining power as the real
data. Thus repeating the analysis with the same set of parameters S as in the real data and
comparing its result with the “real” simulated time delays, 𝜎Δ𝑡 = Δ𝑡real

sim −Δ𝑡meas.
sim , would give us an

indication of both random and systematic error for the given S applied to this dataset. Note that
such analysis on simulated lightcurves has to be repeated multiple times, to marginalise over the
random noise configuration of the simulated data and the randomisation of the initial time delay
and magnification. As a byproduct of this method, the magnification ratio uncertainty can be
estimated as well, which I will discuss in the appendix A when analysing the flux ratio anomaly.
A flowchart of the steps is shown in Figure 5.12. First, for each S, the analysis is run once
more on the real data. The output will now be the base for the simulations. The time delays and
magnification ratio are uniformly randomised around the estimated values in a range of ±10 days
and ±0.5 mag, respectively. The intrinsic spline is instead taken as the model for the intrinsic
variability of the QSO. Once time-shifted and magnitude-shifted by the simulated values for each
image, the obtained lightcurves are added to the extrinsic lightcurves obtained by the fitting, i.e.
the modelled microlensing effects are added to the synthetic lightcurves. These lightcurves are
then sampled on the same dates as the real observations. The photometric uncertainty of each
data point is set to be identical to that of the corresponding observations. It can be pointed
out that the extrinsic microlensing fit does not consider all “spectra” of the noise, as very fast
extrinsic variability, correlated noise and shot noise are not modelled by it and therefore have to be
injected in the simulated lightcurves in a different way. For such fast extrinsic variability, the code
randomly generated a “power-law noise”, which is an additive noise component to the lightcurve
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Image Pair
Intrinsic Spline Microlensing Correction

Δ𝑡 [d] 𝜎Δ𝑡,an. [d]
Knot Steps 𝜂 ML Type ML Degree

AB

35 Polynom.

2

21.09 0.42

AC 34.67 0.40

AD 76.72 1.77

AB

3

21.51 0.33

AC 32.53 0.54

AD 78.57 1.43

AB

40

Polynom. 3

21.58 0.33

AC 32.69 0.52

AD 78.92 1.83

AB

Spline

22.73 0.54

AC 34.03 0.68

AD 83.20 1.68

AB

45

Polynom. 2

22.09 0.60

AC 32.88 0.52

AD 78.85 1.98

AB

Spline

23.09 0.45

AC 34.06 0.35

AD 82.59 1.47

Table 5.3: Time delay results and their scatter for different analysis configurations after the cut-
off.
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Figure 5.12: Flowchart for the error estimation of the time delay measurement for a given set of
parameters S.
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whose Fourier spectrum follows a power law. The parameters of this additive component are
iteratively optimised for every set of synthetic lightcurve and for every individual QSO lightcurve
within such a set. The procedure, described in detail in Tewes et al. (2013) is the following:

• The power-law noise is drawn for each lightcurve with a fine regular sampling.

• The corresponding signals are linearly interpolated at the observation time.

• The noise is rescaled locally such that its amplitude follows the observed scatter.

• The analysis is repeated on this synthetic lightcurve, and the residuals are compared to
those obtained from the analysis of the observed lightcurves.

• The power-law parameters are iteratively optimised until the residuals are statistically
compatible.

The power-law is characterised by the minimum and maximum frequency the exponent, 𝛽, of
the power-law and the scaling factor for the noise, A. The first two are defined to be fmin =1/500
days−1, as correlated signals with lower frequency are well fitted by the explicitly defined extrinsic
microlensing, and fmax=0.2, defined by the maximum Nyquist frequency from the sampling.
Interestingly, such frequency parameters, which affect the sampling, have little effect. On the
other hand, the two “shape” parameters, 𝛽 and A, influence directly the efficiency of the time
delay estimation on the simulated lightcurves, and are therefore optimised in order to achieve a
similar constraining power as for the real data.
Once the power-law is optimised, the noise is converted into a real signal via inverse Fourier
transformation, and such “lightcurve noise” is interpolated at the observation date, yielding 𝜖𝑖.
This is further locally rescaled by a factor 𝑠𝑖, in order to match the scatter of the observed nights
for the given date. This factor is obtained by analysing the residuals of each of the observed
lightcurves, 𝑟𝑖,obs. Taking their absolute values, they are normalised to one over the whole
residuals, and they are smoothed by a median filter with a window of seven observations, as
described in Equation 8 of Tewes et al. (2013):

𝑠𝑖 = median
( |𝑟 𝑗 ,obs |
|𝑟obs |

, 𝑗 ∈ {𝑖 − 3, ..., 𝑖 + 3}
)
. (5.3)

Note that the average amplitude of the synthetic noise is not affected by 𝑠𝑖, which, averaged over
the whole lightcurve, tends to 1. It is instead dependent on A.
The optimisation of 𝛽 and A is carried out by taking the residuals as a metric. In particular, their
standard deviation 𝜎 and their number of “runs” r. This is defined as the sequence of consecutive
residuals with common sign, i.e. either all > 0 or < 0. This statistic is used to test if the adjacent
residuals are independent or not, based on (Wall, Jenkins, 2003, , Chapter 5). Take a large enough
sample of 𝑁 statistically independent data points, for which the analysis produces 𝑁+ positive
residuals and 𝑁− negative ones. The number of runs r is expected to follow a normal distribution
with 𝜇𝑟 = 2𝑁+𝑁−

𝑁
+ 1 and 𝜎2

𝑟 = (𝜇𝑟−1)(𝜇𝑟−2)
𝑁−1 as its expectation value and variance, respectively.

It is then simple to verify if the obtained run distribution is in agreement with the theoretical one,
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Figure 5.13: A random example of the simulated lightcurves for the QSO’s images.

i.e. if the residuals are correlated, by taking 𝑧𝑟 = 𝑟−𝜇𝑟
𝜎𝑟

. This value should be around 1 if such a
hypothesis is correct. This is usually not the case by default, but can be achieved by fine-tuning
𝛽 and A. Interestingly, such parameters are directly correlated with 𝑟 and 𝜎𝑟 , respectively. This
makes the procedure straightforward and therefore computationally fast, as only a few iterations
are needed to converge.
Once the small-scale noise is added to the synthetic ligthcurves, these are ripe to be used for the
uncertainty estimation. An example of such a lightcurve can be seen in Figure 5.13. Note how
the lightcurve is indistinguishable from the real data, seen in Figure 5.7. This is only one of the
800 lightcurves produced using the generative model for a given set of parameter S (here I have
taken the same as the previous examples, e.g. Figure 5.9: S = {𝜂 = 45,microlensing = spline}).
Finally, after the synthetic dataset is produced, the analysis is rerun for every S. In this case,
since the time delays and magnitude shifts that had been injected in the synthetic lightcurves are
randomised around the measured values, it is not necessary to further add randomisation of the
initial conditions, as previously done for the real data analysis in Section 5.3. The analysis is thus
started around the expected values of time delay and magnitude shifts.
The results are then compared with the injected results, and their difference produces the “error
distribution”, shown in Figure 5.14 for the S usually taken for the examples. From such distri-
bution, I measure the systematic error 𝜎sys and the random error 𝜎Δ𝑡,rnd from the median and
the width of the distribution. Specifically, the latter is measured as half the width of the 68%
confidence interval; in practice, it is obtained by taking the average absolute difference between
the 16% and 84% quantiles and the median. As it can be seen in Figure 5.14, the 𝜎Δ𝑡,sys is in
all cases very small and compatible with 0, while the random uncertainty dominates the error
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Figure 5.14: Error distribution of the time-delay estimate given the set of parameters S = {𝜂 =
45,microlensing = spline}. See Figure 5.10 for the corresponding result distribution. Note that
the error estimate is dominated by the random error, most notably for the time-delay AD, as
expected due to the low magnification of image D and thus higher photometric uncertainty.
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Image Pair
Intrinsic Spline Microlensing Correction

𝜎Δ𝑡,an. [d] 𝜎Δ𝑡,sys [d] 𝜎Δ𝑡,rnd [d] 𝜎Δ𝑡,tot [d]
Knot Steps 𝜂 ML Type ML Degree

AB

35 Polynom.

2

0.42 0.44 2.34 2.42

AC 0.40 0.43 2.49 2.56

AD 1.77 1.04 7.83 8.09

AB

3

0.33 0.26 2.34 2.38

AC 0.54 0.05 2.31 2.38

AD 1.43 0.77 6.86 7.05

AB

40

Polynom. 3

0.33 0.22 2.29 2.32

AC 0.52 0.12 2.29 2.36

AD 1.83 0.15 6.7 6.95

AB

Spline

0.54 0.67 1.89 2.08

AC 0.68 0.58 2.42 2.58

AD 1.68 0.54 5.24 5.53

AB

45

Polynom. 2

0.60 0.03 2.33 2.41

AC 0.52 0.24 2.58 2.64

AD 1.98 0.65 6.44 6.77

AB

Spline

0.45 0.47 1.84 1.95

AC 0.35 0.22 2.34 2.37

AD 1.47 0.25 5.04 5.25

Table 5.4: Resulting uncertainty for the time delay method for the various sets of parameters
S, divided into components and the total resulting error. Note how, with respect to the error
components, the total error is dominated by the random uncertainty. With respect to the image
pairs, AD carries the largest uncertainty, both from the analysis of the real data in 𝜎Δ𝑡,an. and of
the synthetic data in 𝜎Δ𝑡,rnd .

budget, especially for the image pair AD, as expected due to its low photometric accuracy, as
previously mentioned. Also, note how this uncertainty is far larger than the scatter of the distri-
bution obtained from the analysis of the real data, 𝜎Δt ,an..
For each S, the uncertainty for the time delay of each image pair is then computed as 𝜎Δ𝑡,𝑖 𝑗 =√︃
𝜎2
Δ𝑡,𝑖 𝑗 ,rnd + 𝜎2

Δ𝑡,𝑖 𝑗 ,sys + 𝜎2
Δ𝑡,𝑖 𝑗 ,an., where 𝑖 𝑗 indicate the image pair. The resulting uncertainties,

divided into the various components, are shown in Table 5.4. Note how, as expected, the random
error is dominant in all cases. For each S, we have now obtained the time delay estimates (see
Section 5.3) and their relative uncertainties (see Table 5.4). I now have to combine the results,
which are described in the following Section.
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5.5 Time Delay Estimates Combination and Results

I combine the time delay estimates following the approach of Tewes et al. (2013), as described
in detail in the introduction of the time delay analysis in Section 5.2, although with some small
deviations.
The main takeaway is that this approach, rather than marginalising over all results or selecting
only the best result, aims to combine a selection of results that minimises the tension for all the
remaining ones. I previously described the process of selecting the results in Section 5.4, and it
is further schematised in the flowchart in Figure 5.8. Her,e I will describe the implementation
and how the results are combined in practice.
Firstly, I will refer to the set of parameters as S, as previously, while the results of a given set
S∥ will be indicated by G∥ . This corresponds to an array of time delay estimates, E𝑖 𝑗 , for each
given pair of images 𝑖 𝑗 , thus G∥ = [EAB,EAC,EAD]. E𝑖 𝑗 is then the time delay estimate which
contains the time delay and the corresponding uncertainty, E𝑖 𝑗 = Δ𝑡

+𝜎+
𝑖 𝑗 ,−𝜎−

. The choice for the best
result is therefore simply the group Gbest which presents the lowest average error (averaging over
the image pairs, the analytical, the systematic and the random error). This choice is made when
selecting the best absolute group as a starting point, and, once defined, the subset of groups in
tension with the given best group when selecting the best group within such “tension group”.
Notice that, by considering the uncertainty separately for each E𝑖 𝑗 , i.e. for the estimate of the time
delay of each lightcurve pair, all correlation between the lightcurves is neglected. Moreover, the
uncertainty is treated as if it follows a normal distribution. This is a valid simplification for the
choice of the best result, but might underestimate the error when combining the results. Instead,
I opted for treating the uncertainty distribution as a proper posterior distribution. In order to do
that, I record the median of the distribution as 𝜎Δ𝑡,sys, and correct the distribution for this value,
thus centring it on zero. The uncertainty obtained from the scatter of the analysis, i.e. 𝜎Δ𝑡,an., is
also to be considered a systematic uncertainty, and is therefore added under quadrature to 𝜎Δ𝑡,sys,
from which results the corrected systematic uncertainty for the given group, indicated as 𝜎sys.
I then add the estimate of the time delay Δ𝑡 to the distribution. The result is a distribution centred
around the estimated result, whose width indicates the probability of the measurement. Net of
the normalisation, this can be considered a probability distribution, comparable to the chains
produced by an MCMC algorithm. Note that this is a three-dimensional distribution, given by the
number of image pairs. The only caveat is that the systematic error is now not explicitly encoded
in the distribution itself.
Given this approach, when two groups are combined, their distributions are stacked together. The
resulting distribution is then considered the posterior distribution of the combined result, whose
mean is the new result. The systematic errors of the two groups are added under quadrature,
giving the new systematic error.
Once the iterative process of combining the best group in tension has converged, the resulting
group is now in agreement with all other groups, while considering the smallest possible uncer-
tainty. The result of the combination is shown in the Figure 5.15. The coloured results are the
various groups for the remaining sets of parameters (after the quality cut-off of the analysis, see
Figure 5.11). The selected groups for the combination are indicated by the (S) and the circle
around their point. Given the fairly good agreement, the combination of only two sets is enough
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Figure 5.15: Results of the time-delay for the various light-curves couples and its combined final
time-delay. The results iteratively selected for the “Combined result” are indicated with the (S).

to reach a combined result which is not in tension with any other result. The combined result is
shown in black, and its 1-𝜎 region is shaded in grey to underline the good agreement with all G.

The numerical results are also reported in Table 5.5. Note, however, that the full covariances
are not reported here, but are considered by taking the full distribution, which is shown in Figure
5.16.

Note how the resulting distribution is mostly Gaussian, as indicated by the black dotted line,
which traces a Gaussian distribution centred in the result and which 𝜎 is obtained as the mean
of the difference between the 84% quantile and the 16%. This can be more clearly seen in
Figure 5.17, where I discarded any point further than 5 𝜎 away from the median. However, the
correlation between the time delays, as shown very clearly between AC and AB, should not be
dismissed. This will be later taken into consideration in the following Chapter 6, where the results
presented here will be summarised by a multivariate Gaussian.

Also note that in this analysis, we do not account for the microlensing time delay, introduced
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Δ𝑡 AB [d] Δ𝑡 AC [d] Δ𝑡 AD [d]

22.4 ± 2.2 33.3 ± 2.5 80.9 ±7.5

Table 5.5: Combined results for the time-delay between the pairs of images of J1433.

Figure 5.16: Corner plot of the distribution of the time delay result
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Figure 5.17: Close in on the corner plot of the time delay result distribution, discarding all points
further than 5 𝜎 from the median. This is for illustrative purposes only, to indicate how the 1-D
distribution closely follows the Gaussian.
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by Tie, Kochanek (2017). This phenomenon is due to the intrinsic extended nature of the
AGN accretion disc. In the “lamp-post model” defined by Cackett et al. (2007), the disk’s
temperature variations are correlated with its luminosity variations. The temperature changes at
the centre of the disk and propagate outwards, inducing correlated emission at different radii.
This propagation, however, takes time, therefore creating a lag between the emission near the core
and the one induced at the edges of the disk. In general, a larger disk will therefore have a longer
lag. In the absence of microlensing, this phenomenon is barely observable, as the emission of
the edges is far less luminous than the inner core. Moreover, they would similarly contribute
to the lightcurves in each image. However, microlensing can magnify different regions of the
accretion disk, and in different images, it could magnify the lagged signal differently. In practice,
a microlensed image might appear further delayed and distorted with respect to the unperturbed
image.
This phenomenon depends on the number of microlenses at the image position and the size
and orientation of the accretion disk (Tie, Kochanek, 2017). The last two parameters are not
observable directly, but we did somewhat constrain the microlensing intensity by fitting the
lightcurves with a low degree of microlensing correction. This would indicate that J1433 is
weakly affected by microlenses. For this reason, in this analysis, I do not explicitly account for
microlensing time delay. This phenomenon may be nevertheless present in the lightcurves, but
its systematic uncertainty would very likely be subdominant compared to the random uncertainty
(see, e.g., Figure 6 of Bonvin et al., 2019, , the largest systematic effect would correspond to
less than a day shift, well within the uncertainty of the measurement, see Figure 5.15). A more
accurate study of microlensing time delay for J1433 is therefore left for a future expansion of this
work.
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Chapter 6
TDC@W: Constraint On 𝐻0

Following the initial principle given by the equation 2.79, I have shown how to obtain constrain
the mass profile of J1433 in Chapter 4, and obtain its time-delays in Chapter 5. In order to
constrain the Hubble parameter 𝐻0, I will then follow a Bayesian approach. This will be similar
to what is described in most Time-Delay Cosmographic studies, such as (Suyu et al., 2013, ,
henceforth S13) and (Wong et al., 2017), although with some minor changes.
The reason for such deviation in the approach is only due to the implementation of the analysis,
and I will show how they are indeed mathematically equivalent.

6.1 Joint Inference on 𝐻0

Firstly, S13 does consider ulterior data to constrain the model which was not available for this
analysis. These are the spectroscopic information on the lens, given by 𝜎 and 𝑟𝑎𝑛𝑖 (the lens
velocity dispersion and the anisotropic radius for the stellar orbit, respectively) and properties
of the lens environment, given by 𝜅ext and 𝛾ext (the external convergence and external shear,
respectively). These are the constraints required to break the internal and external mass sheet
degeneracy, as described in Section 2.3.3. Such constraints are independent of each other and
of the constraints given by the lens model and time delay, as seen in equation 10 of S13. I can
therefore constrain the cosmological parameter relying only on the available data, albeit without
breaking the MSD. Thus, we can see that equations 8 to 11 can be adapted to the data available
in this paper as follows:

𝑃(𝐻0 |𝑫𝐻𝑆𝑇 , 𝑫lc) =
∫
𝑑𝚫𝝓

𝑃(𝑫𝐻𝑆𝑇 |𝚫𝝓)
𝑃(𝑫𝐻𝑆𝑇 )

𝑃(𝑫lc |𝚫𝝓, 𝐻0)
𝑃(𝑫lc)

𝑃(𝚫𝝓)𝑃(𝐻0). (6.1)

Here we defined the lightcurve data as 𝑫lc and the HST data as 𝑫𝐻𝑆𝑇 . I also limit the cosmological
constraints to 𝐻0, assuming all other cosmological parameters as constant. Furthermore, the
integral is over the Fermat potential differences 𝚫𝝓, instead of all lensing parameters. This is
equivalent, as the former can be defined as the marginalisation of the latter.
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Equation 6.1 assumes various relations of independence: the datasets being independent one
from another (i.e. 𝑃(𝑫𝐻𝑆𝑇 , 𝑫lc |𝚫𝝓, 𝐻0) = 𝑃(𝑫𝐻𝑆𝑇 |𝚫𝝓, 𝐻0)𝑃(𝑫lc |𝚫𝝓, 𝐻0)), the imaging data
being independent on the cosmological parameter 𝐻0 (i.e. 𝑃(𝑫𝐻𝑆𝑇 |𝚫𝝓, 𝐻0) = 𝑃(𝑫𝐻𝑆𝑇 |𝚫𝝓)) and
the priors being independent one from another (i.e. 𝑃(𝚫𝝓, 𝐻0) = 𝑃(𝚫𝝓)𝑃(𝐻0)).
Note, however, that the modular approach in the analysis carried out until now resulted in posterior
distributions over 𝚫𝒕 and 𝚫𝝓, whereas equation 6.1 requires their corresponding likelihoods.
Those can be inverted following Bayes’ theorem, similarly to equation 4.17, as follows:

𝑃(𝑫𝐻𝑆𝑇 |𝚫𝝓) =
𝑃(𝚫𝝓 |𝑫𝐻𝑆𝑇 )𝑃(𝑫𝐻𝑆𝑇 )

𝑃(𝚫𝝓)
(6.2)

𝑃(𝑫lc |𝚫𝝓, 𝐻0) =
𝑃(𝚫𝝓, 𝐻0 |𝑫lc)𝑃(𝑫lc)

𝑃(𝚫𝝓, 𝐻0)
=
𝑃(𝚫𝝓, 𝐻0 |𝑫lc)𝑃(𝑫lc)

𝑃(𝚫𝝓)𝑃(𝐻0)
. (6.3)

Note that the last passage is given by the aforementioned independence of the prior of 𝚫𝝓 and
𝐻0. The second line has to be further converted in order to be in agreement with equation 6.1 by
considering 𝑃(𝚫𝝓, 𝐻0 |𝑫lc) = 𝑃(𝚫𝝓 |𝐻0, 𝑫lc)𝑃(𝐻0 |𝑫lc) = 𝑃(𝚫𝝓 |𝐻0, 𝑫lc)𝑃(𝐻0). This is given by
the independence of 𝐻0 from 𝑫lc alone.
Finally, equation 6.1 can be rewritten as:

𝑃(𝐻0 |𝑫𝐻𝑆𝑇 , 𝑫lc) =
∫
𝑑𝚫𝝓

𝑃(𝚫𝝓 |𝑫𝐻𝑆𝑇 )𝑃(𝚫𝝓 |𝐻0, 𝑫lc)𝑃(𝐻0)
𝑃(𝚫𝝓)

. (6.4)

In this formulation, 𝚫𝝓 is three-dimensional, and so is the integral on the right-hand side of the
equation. Interestingly, given the reformulation detailed in the equations 6.2, it can be seen that
the evidence in the denominator of equation 6.1 cancel out, while the prior 𝑃(𝚫𝝓) appears now
in the denominator. The components of equation 6.4 are the following:

1. 𝑃(𝚫𝝓 |𝑫𝐻𝑆𝑇 ), which is the combined posterior of 𝚫𝝓 obtained from the modelling of the
HST images 𝑫𝐻𝑆𝑇 described in Section 4.5;

2. 𝑃(𝐻0) and 𝑃(𝚫𝝓), the priors on 𝐻0 and 𝚫𝝓, respectively. The first is defined by taking a
uniform prior between 50 and 100 km

s Mpc , whereas the second is obtained from the prior of
the lens parameters (see Section 4.3.4 for its definition and Section 4.5 for its computation)
;

3. 𝑃(𝚫𝝓 |𝐻0, 𝑫lc), which is the posterior of 𝚫𝝓 given the lightcurve data and 𝐻0.

The last component, 𝑃(𝚫𝝓|𝐻0, 𝑫lc), is obtained by converting the posterior on the time delay
given the lightcurve data, 𝑃(𝚫𝒕 |𝑫lc), using equation 2.79. Formally, this is a change of variable
of the posterior distribution. In practice, this can be easily implemented given that 𝑃(𝚫𝒕 |𝑫lc) is
defined as a multivariate Gaussian centred around the measured 𝚫𝒕 and which covariance matrix
is obtained from the uncertainty estimation. These are obtained from the combination of time
delay constraints described in Section 5.5. Equation 2.79 is linear, and thus the change of variable
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is straightforward:

𝚫𝝓(𝚫𝒕, 𝐻0) = 𝚫𝒕
𝐻0
𝑘

(6.5)

cov(𝚫𝝓(𝚫𝒕, 𝐻0)) = cov(𝚫𝒕)
(
𝐻0
𝑘

)2
. (6.6)

Thus, for each value of the prior 𝑃(𝐻0), 𝑃(𝚫𝝓 |𝐻0, 𝑫lc) can be computed.
In practice, the computation is implemented in several steps. Given the uniform prior 𝑃(𝐻0),
the sampling over 𝐻0 is simply a range of equidistant points between the minimum (𝐻0,min =50

km
Mpc s) and maximum (𝐻0,max =100 km

Mpc s). For each of these points 𝐻0, 𝑖, I compute the ana-
lytical posterior density distribution 𝑃(𝚫𝝓 |𝐻0, 𝑖, 𝑫lc) following the equation 6.5. Recalling that
𝑃(𝚫𝝓 |𝑫𝐻𝑆𝑇 ) is defined as a histogram over a set of bins, as described in Section 4.5, I then
compute the value of 𝑃(𝚫𝝓 |𝐻0, 𝑖, 𝑫lc) at the centre of these bins. Similarly, the prior density
distribution 𝑃(𝚫𝝓) was computed over the same set of bins; it is therefore possible to compute
𝑃(𝚫𝝓 |𝐻0, 𝑖 ,𝑫 lc)bin j𝑃(𝚫𝝓 |𝑫𝐻𝑆𝑇 )bin j

𝑃(𝚫𝝓)bin j
𝑑𝚫𝝓bin j for each i-th bin, where 𝑑𝚫𝝓bin j is the volume of the bin.

Note that the 𝑑𝚫𝝓bin j is in this case constant, but this might be different given different im-
plementations. The posterior 𝑃(𝐻0, 𝑖 |𝑫𝐻𝑆𝑇 , 𝑫lc) is then the sum over all the bins. Finally, the
distribution 𝑃(𝐻0 |𝑫𝐻𝑆𝑇 , 𝑫lc)) is obtained by normalising over each 𝐻0, 𝑖. The result is shown in
Figure 6.1.

The resulting median and 1𝜎 deviation are

𝐻0 = 71.3+5.0
−4.5

km
Mpc s

. (6.7)

This measurement has a precision of ∼ 6.7 %, which is dominated by the time-delay uncertainty.
Its relative error contribution is 11.2 %, which is unevenly divided between the image couples due
to their accuracy (ranging between 8 % for AC and 15 % for AD). The difference of the Fermat
potential relative error contribution is ∼ 3.7 %, and is instead divided evenly to ∼ 4 % for every
image couple.

Note that the combined error of 𝐻0 is based on the combination of three measurements, given
the three combinations of images, which are considered independent.

Finally, it is important to consider the bias that this analysis has not taken into account. While
the random error of both the time delay measurements and the Fermat potential measurements is
carefully measured and integrated into the final result, I do not consider systematic errors. Most
importantly, the mass-sheet degeneracy would directly bias the final constraint on 𝐻0. I discuss
the uncertainty over the redshift of the perturber in the Appendix B, but given the lack of suitable
data (namely, deep spectroscopic observations of the perturber), the constraints are limited. I
therefore do not integrate this source of uncertainty in the lens model. Finally, the results were
never blinded at any point, which has become a customary approach for analysis which might be
affected by confirmation bias or similar human-driven sources of bias. This is probably the only
aspect which can not be improved upon, as data can not be formally re-blinded once observed.
A future upgrade of the current work would require either the implementation of a new analysis,



130 6. TDC@W: Constraint On 𝐻0

50 60 70 80 90 100
H0 [km/s/Mpc]

0.000

0.002

0.004

0.006

0.008

P
ro

b
ab

il
it

y

71.3+5.0
−4.5

P (H0|DHST ,Dlc)

Planck

H0LiCOW

Figure 6.1: Resulting posterior probability 𝑃(𝐻0 |𝑫𝐻𝑆𝑇 , 𝑫lc) constrained by light-curves A, B, C,
and D and mass model of J1433. I compare it with the results from the H0LiCOW Collaboration
Wong et al. (2020) and the Planck Collaboration Aghanim et al. (2020).



6.1 Joint Inference on 𝐻0 131

which could be blinded from the beginning, or the finding of a way to verify every step of the
analysis by blinding the required data. I will further discuss the result and the complete analysis
in the following Chapter 7.



132 6. TDC@W: Constraint On 𝐻0



Chapter 7
Discussion and Conclusion

This work presents the first integral Time Delay Cosmographic analysis of the quadruply lensed
QSO system J1433. It relies on two main datasets, the archival HST observations in five filters
(F475X, F814W, F105W, F140W and F160W) and on the dedicated observational campaign
carried out from the 2.1-meter optical telescope at the Wendelstein observatory in the g’ filter.
The analysis can be divided into three, mostly independent sections: the lens modelling and the
constraining of the Fermat potential difference 𝚫𝝓 in Chapter 4, the lightcurves analysis and the
constraining of the time delay 𝚫𝒕 in Chapter 5 and the combination of the two results to constrain
the Hubble constant𝐻0 in Chapter 6. This analysis followed a modular structure, thus each section
is largely independent of the results of the others. This allowed for an iterative improvement of
the analysis, where each part could be improved or modified independently without requiring the
restructuring of the whole study.
More specifically, for the lens analysis, I followed a similar approach to what was developed by
the TDCOSMO collaboration Millon et al. (2020b) using the public lenstronomy modelling
tool. I employed all available HST filters to produce an isophotal light model of the lens galaxy
(see Section 4.2.4), which could be subtracted a priori of the lens modelling and allowed to inform
the likelihood of the mass distribution (see Section 4.3.5). I then used the optical filters to strictly
constrain the positions of the QSO lensed images (see Section 4.3.4). The filter F105W was
instead ignored due to its low SNR, low resolution and the absence of a visible lensed host galaxy.
Then, I run two independent mass models, the two NIR filters F140W and F160W (see Section
4.4). These results were initially strongly in tension, leading me to the discovery of an excess of
light appearing in F160W, which I indicate as the “contaminants” (see Section 4.4.1). Since it
was impossible to definitively determine the nature of the source, I instead opted to mask it. The
results of the modelling run with the updated mask were then in full agreement between the two
NIR filters. I then described how I implemented the combination of the posterior in Section 4.5,
following a Bayesian approach. This resulted in constraints on the Fermat potential difference with
3% precision, accounting for statistical uncertainty. Regarding the lightcurve analysis, I followed
the collection of the data and handled the data reduction of the observations. These resulted in
almost 300 nights over three years of observations, with a median PSF of 1.16”. I oversaw the
development of the pipeline for the lightcurve measurement described in Section 5.1, which I
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employed to obtain the lightcurves shown in Figure 5.7. The resulting photometric precision for
the QSO fluxes ranges from 1.6 % to 5.7 %. This result, besides being the cornerstone for the time
delay analysis of this work, also proves the capabilities of the Wendelstein observatory and the
2.1-meter WWFI. These instruments are suitable for light-curve monitoring of multiple imaged
QSO-galaxy lensing systems for time-delay cosmography and similar monitoring observational
campaigns. I then analysed the obtained lightcurves with the public PyCS3 python library (Tewes
et al., 2013), fitting the lightcurve for time-delay, magnitude shift, microlensing perturbations
and intrinsic variability of the source. I then considered a range of reasonable parametric fits
and obtained for each an individual time delay constraint (see Section 5.3) and an estimation of
the relative uncertainty (see Section 5.4). Instead of averaging the results or selecting only the
best, I implemented the approach described in Millon et al. (2020a), through which a combined
result is defined such that both the final uncertainty and the tension with the combined result are
minimised. This yielded a time delay result with precision ranging from 8 % and 15 %. This
scatter is due to the difference in the observed brightness of the images, which greatly affects the
photometric precision, especially for image D.

Once I obtained the constraint for both 𝚫𝝓 and 𝚫𝒕, I adapted the Bayesian framework for
the joint analysis described in Suyu et al. (2013) to the system at hand (see Section 6.1). The
analysis yields a constraint on 𝐻0 with a ∼ 6.7% precision, accounting for random uncertainties.
This result reaches precision comparable to similar studies, e.g. Chen et al. (2019). Additional
results, which emerged as byproducts of the main analysis, were the colour profile of the main
lens galaxy (see Section 4.6.3) and its mass-to-light ratio (see Section 4.6.2) as well as the study
of the flux ratio anomaly in the Appendix A.

This study showed the importance of preliminary individual modelling of the single filter when
reconstructing the mass profile of the lenses, underlined by the discovery of the “contaminants”.
Such excesses of light were not considered in the previous models of this system, and therefore,
the results are severely in tension with those obtained in this work. Clearly, the technique of
multifilter analysis is not to be fully discarded, but it should require an a priori study of the
individual filters to gauge the information carried by each of them.

Another particular feature of this work is that the whole analysis has been carried out indepen-
dently from larger collaborations, such as TDCOSMO. This is unusual in time delay cosmography
due to the extended amount of different analyses required. This, therefore, allowed me the freedom
to explore new approaches to the problems at hand, while necessarily requiring extensive work
and time to complete. In particular, this prevented me from completing further improvements on
the analysis, especially regarding the study of systematic errors. Firstly, the Mass-Sheet Degen-
eracy (MSD) has not been considered in this work, due to the lack of spectroscopic data which is
necessary to constrain both the inner structure of the lens system and the effect of neighbouring
structures (for details, refer to Section 2.3.3). Then the mass profile considered in the lens mod-
elling was limited to the PEMD, i.e. the power-law profile. Similar studies can also consider a
combined profile, i.e. a combination of a dark matter profile (e.g. a Navarro-Frenk-White profile,
Navarro et al., 1997) and a baryonic profile (usually obtained by scaling the light profile with
a constant mass-to-light ratio). Another source of systematic uncertainty would be the redshift
of the perturber, which in this analysis is assumed to be at the same redshift as the main lens.
While this is a reasonable assumption, due to a lack of spectroscopic data, I only obtained weak
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observational proof that this was true, as discussed in the Appendix B. Other possible future
improvements in the lens modelling could encompass the use of iterative PSF fitting processes
(Schmidt et al., 2022, as used in e.g. ) and the use of multifilter modelling, which is now a viable
option given the knowledge of the possible pitfalls, such as the presence of the “contaminants”.
Regarding the time delay analysis, it would be possible to follow a different approach to the
photometric measurement by deconvolving the exposures and measuring the luminosities of the
QSO images within small apertures. Furthermore, it would be possible to implement the analysis
of the lightcurve with the second available method in PyCS3, which fits the lightcurves with a
Gaussian process regression (Tewes et al., 2013).
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Appendix A
Flux Ratio Anomaly

A further analysis, possible with the data and results obtained, is to investigate the presence
of a flux ratio (FR) anomaly. This refers to the possible tension between the ratio of flux
measured from two lensed images of the same source and the equivalent value predicted from the
magnification of the lens modelling. More specifically, let’s assume a constant (i.e. not variable
over time) source with luminosity 𝐿 in the background and a foreground transparent strong lens.
We indicate the magnification map of the lens for the given source to be 𝜇(®𝜃) and the time delay
map to be 𝜏(®𝜃). Then we should observe the lensed images i of the source at position 𝜃i to have
the luminosity 𝐿i = 𝜇( ®𝜃i) · 𝐿. Considering the two images A and B, their FR should then be
FRAB = 𝐿A

𝐿B
= 𝜇( ®𝜃A)

𝜇( ®𝜃B)
. In this case, however, the luminosity of the source (here, a QSO) varies

over time, as it can be seen from the light-curves in Figure 5.7. We therefore must consider
𝐿 = 𝐿(𝑡) and 𝐿i = 𝜇( ®𝜃i) · 𝐿(𝑡 + 𝜏( ®𝜃i)), where now the luminosity is also affected by the time delay.
Furthermore, each image could be temporarily microlensed by an intervening massive object,
introduced in Section 2.3.5 and discussed in Section 5.3. This would further affect the FR, as
𝐿i(𝑡) = (𝜇( ®𝜃i) + 𝛿𝜇(®𝜃, 𝑡)) · 𝐿(𝑡 + 𝜏( ®𝜃i)), where 𝛿𝜇(®𝜃, 𝑡) is the microlensing effect at ®𝜃 and time
𝑡. Given these effects, the FR can not be measured directly from the HST images, as it would
be biased by the time-delay and possibly by microlensing events. Instead, I can measure it from
the resulting magnitude shift obtained from the time-delay analysis of the WST lightcurves. In
this analysis, I take into account the time-delay and correct for it. Moreover, the analysis also
takes into account the microlensing distortion; however, this is limited to the microlensing shifts
whose time scale is shorter than the observational campaign. Otherwise, the effect would be fully
degenerate with a constant magnitude shift of the lighcurve, as its effect would appear as a constant
magnification of one image over the observation campaign. This would not affect the time-delay
analysis but would bias the measured FR. Such events should become less likely to happen the
longer the observation, as they would require a relatively stable alignment of microlens(es) along
the line of sight.

In the time-delay analysis, I measure the relative magnitude shift between lighcurves as the
average of the microlensing correction, being a polynomial or a spline, ⟨𝜇⟩ added to the initial
magnitude shift Δmagin. The latter is obtained a priori by taking the difference of the weighted
mean for the magnitude of the light-curves, as described in Section 5.3. As previously stated,
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FR LCs Analysis Lens Model Tension

FRAB 1.28 ± 0.05 1.54+0.01
−0.02 4.8

FRAC 0.9 ± 0.1 0.78 ± 0.01 1.2

FRAD 0.22 ± 0.05 0.41 ± 0.01 3.5

Table A.1: Comparison between FR obtained from lens modelling and light-curve analysis, and
the corresponding tension 𝜏 (see equation 5.2).

the reason for the consideration of ⟨𝜇⟩ in the magnitude shift is that a constant microlensing
correction and a magnitude shift are indistinguishable in the lightcurves, thus, in the analysis, the
latter is formally defined as a polynomial microlensing of degree 0. Moreover, when considering
microlensing correction with a higher degree of freedom, the first-order shift ⟨𝜇⟩ would also
fit the magnitude shift. These magnitude shifts were computed in parallel with the time-delay,
following the same procedure. The results to be combined were selected by taking only the
groups that were combined for the time-delay analysis, i.e. the selected groups indicated by (S)
shown in Figure 5.15. The combined result 𝚫𝒎𝒂𝒈 is shown in Figure A.1.

Note that, as for the time delays obtained in Chapter 5, it is not interesting to have the absolute
magnification of the single lightcurve, but rather the relative one; following the convention of
the current work, I took the lightcurve of image A as reference. The magnitude shifts ΔmagAi
are then computed in the time-delay analysis as magnitude shifts between images i and A, where
i=B, C, D: ΔmagAi = magi − magA. This is than be converted as FRAi = 𝐹i

𝐹A
= 10

−2·ΔmagAi
5 . The

resulting FR are reported in Table A.1.
For what concerns the FR measured from the lens model, this can be obtained by computing

the magnification 𝜇 at the image’s position. This is by definition the ratio between the lensed and
unlesed flux for a given image i : |𝜇i |= Fi

Fi, unlensed
; note that we are interested in the absolute value

of 𝜇, as the sign indicates the chirality of the lensed image, which is here negligible.
𝜇 can then be computed in a similar way as for Δ𝜙: for each point of any given MCMC chain

sampling 𝑃(𝝂 |D⟩), the posterior of the lens parameters 𝝂 for a given image D𝑖, I can compute
𝜇 at the image positions and take their ratio with respect to image A, obtaining a distribution
over 𝝁/𝜇A which samples the posterior 𝑃(𝝁/𝜇A |D𝑖). Following the same Bayesian procedure as
described for 𝚫𝝓 in Section 4.5 with the Equation 4.17, I combine the posterior obtained from
the modelling of F140W and F160W, obtaining a sample of 𝑃(𝝁/𝜇A |DF140W,DF160W). The
resulting distribution is shown in Figure A.2. The comparison between the two results is shown
in Table A.1. This result shows varying degrees of tension, all larger than 1𝜎. There are multiple
plausible explanations for it. For what concerns the observed FR from the lightcurves, there
might be two explanations: unaccounted absorption along the different lines of sight and very
long microlensing. Both seem improbable, as the first would affect the colour of the QSO images,
while the second option would require a very stable microlensing configuration, as previously
mentioned. A more likely scenario would be the presence of substructures (e.g. subhalos, Dalal,
Kochanek, 2002) of the lens which are not fitted by the smooth PEMD lens model, or more
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Figure A.1: Results of the magnitude shift measurements 𝚫𝒎𝒂𝒈 from the light-curves analysis
(see Chapter 5), from which the flux ratio is computed as shown in Table A.1. “Knots.” indicate
the knot steps of the intrinsic spline, inversely proportional to the flexibility of the fitting. The
ML refers to microlensing, which is either accounted for by a polynomial or with a 2-degree
spline.
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Figure A.2: Combined posterior of the magnification ratio 𝝁/𝜇A at the positions of the images
B, C, and D from the modelling in Section 4.3 with respect to image A. The 2D contour levels
indicate the 68, 95 and 99.7 % confidence level, while the reported values indicate the median
and 1-𝜎 confidence interval.
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generally, a lens mass profile which differs significantly from the PEMD model.
This latter case could significantly bias the present measurement of 𝐻0 and should be taken

into account in a future expansion of this work.
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Appendix B
Perturber Photometric Redshift

One of the first assumptions of the lens modelling analysis carried out in this work was the
assumption that the perturber galaxy, which can be seen near image C in the colour Figure 4.1,
is located at the same redshift as the main lens galaxy. This assumption might be reasonable,
and it is certainly appealing, for it simplifies the modelling; thus, it is a common assumption
in the previous models of the system (see Shajib et al. (2019) and S22). However, without an
estimation of the redshift, there is no basis for such an assumption. If this were proven to be
wrong, it would strongly bias the lens model and thus the constraints on 𝐻0. Therefore, I tried to
constrain the redshift of the perturber, zpert. No spectra were taken where the perturber is visible:
a slitless spectroscopic image was taken from WFC3 from HST, but the perturber was too dim to
be detected. Similarly,Mozumdar et al. (2023) reports a slit spectrum of the system (see Figure
2) where the perturber should be within the aperture but it is too dim to be detected.

I instead tried to constrain its redshift by photometric redshift estimation. For this, I used the
public Fortran library LEPHARE, (Arnouts et al., 1999) and (Ilbert et al., 2006). I then measured
the magnitude of the perturber in all 5 HST exposures available: F475X, F814W, F105W, F140W
and F160W. Due to the blending of the perturber’s light with nearby sources (image C, main lens
and lensed arclets) I do not measure its brightness directly from the image. I instead use the
corresponding Sérsic fit obtained from the lens modelling (see Chapter 4). However, I did not
model F105W due to its low SNR. I therefore obtained a fit by running a very constrained model,
where all lens parameters were fixed to the results obtained from the modelling of F140W. I
chose this filter due to its similarity with F105W: similar wavelength, pixel resolution (although
F140W had a higher resolution after drizzling) and similar exposure time (with respect to all
other filters, see Table 4.2). I allowed for a small freedom in the QSO images’ positions, which
could vary within a range of ±0.012′′, while still considering the same Gaussian likelihood as the
other model of the NIR filters (see Section 4.3.4). The obtained model, which was only used to
fit the light of the perturber, results in a 𝜒2

red = 0.88.
To measure the luminosity of the perturber, I took a circular aperture of 10” of radius, centred

on the centre of the modelled perturber. The conversion to magnitude followed the same approach
as described in Section 4.6.2. I considered the uncertainty by taking the standard deviation of the
full residual map (i.e. the residual after the subtraction of the whole lens light profile, not only
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F475X F814W F105W F140W F160W

23.0 ± 0.5 21.3 ± 0.2 22.1 ± 0.9 21.7 ± 0.3 20.7 ± 0.3

Table B.1: Apparent magnitudes of the perturber. These were obtained from the lens light model
with a 10” aperture. The uncertainty is estimated from the standard deviation of the residual map.

the perturber). The resulting apparent magnitudes are shown in Table B.1.
These magnitudes were used as input for the photometric redshift estimation with LEPHARE.

I consider the perturber to be a galaxy (i.e. not a star or a QSO), and marginalise over all available
libraries of galaxy spectral energy distributions (SEDs). The output produces a maximum
likelihood (ML) distribution for each of these SEDs, shown in Figure B.1. I here implemented
a cutout, discarding the results of SEDs which had too large an uncertainty, as in 𝜎𝑧 > 0.5, as I
deemed that these SEDs were not able to fit the data.

The resulting precision is nevertheless very poor, with an uncertainty of 𝜎𝑧 ∼ 0.3, mostly
due to the low brightness of the object and correspondingly large uncertainty, and partly due
to the intrinsic lack of precision of the method. Thus, it can be said that the result is not in
disagreement with the starting assumption, but without proving it with reasonable constraints.
Interestingly, when repeating the same analysis for the main lens, I obtained a more constrained
set of distributions, which, however, were not all centred on the spectroscopic redshift. This is
shown in Figure B.2. This is a further indication that this method, while being the only option
available, remains far from accurate.
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Figure B.1: Maximum likelihood posterior distributions for the photo-z estimate of the perturber
for various SED libraries. The black dotted line indicates the Main Lens (ML) redshift known
from spectroscopy. The blue dotted distribution is the normalised sum of all other posterior
distributions, and the red vertical line indicates its expected value, while the dotted vertical line
indicates the most likely value.
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Figure B.2: Maximum likelihood posterior distributions for the photo-z estimate of the main
lens galaxy for various SED libraries. The black dotted line indicates the Main Lens (ML)
redshift known from spectroscopy. As for Figure B.1, the blue distribution is the result of
the sum and normalisation of all other distributions. The solid/dashed red line indicates the
expected/maximum value of the summed distribution.
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Dominique, Escamilla-Rivera Celia, Ferté Agnès, Finelli Fabio, Fosalba Pablo, Freedman
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