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Abstract

Precision medicine represents a pivotal advancement in healthcare, offering the

potential to tailor treatments based on individual molecular, environmental, and

lifestyle factors, thus improving patient outcomes and reducing adverse effects.

However, significant challenges remain, including the underutilization of different

modalities of data, data sparsity, issues with interpretability, and the need for so-

phisticated computational methods to analyze high-dimensional datasets. To ad-

dress these challenges, this thesis introduces multiple advancements in methodol-

ogy for various aspects of precision medicine, from preclinical to clinical studies.

For preclinical studies such as drug high throughput screens of cancer cell lines,

the stratification with inferred ancestry information enhanced biomarker discovery,

demonstrating improved identification of drug response biomarkers. In addition,

for observational clinical studies, integration of multiomic data within a biologically

interpretable framework, providing an end-to-end comprehensive and transparent

machine learning approach to biomarker discovery for complex metabolic diseases.

Furthermore, for more complex data such as clinical longitudinal electronic health

records, the utilization of pretrained large language models to develop an inter-

pretable prognostic model for type 2 diabetes offered valuable insights into disease

progression and patient management. Together, these proposed methods highlight

the transformative potential of integrating advanced machine learning techniques

and diverse data types to advance biomarker discovery in multiple aspects of preci-

sion medicine. Insights into disease mechanisms and actionable biomarkers discov-

ered from these studies serve as valuable resources to help translate both biomedical

research and healthcare practice and eventually benefit patients.
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1 Introduction

1 Introduction

The advent of precision medicine has revolutionized the approach to diagnosing, treat-

ing, and preventing diseases, offering personalized healthcare solutions tailored to the

genetic, environmental, and lifestyle factors of individual patients (1). This paradigm

shift is particularly transformative in the fields of oncology and endocrinology, where

precision cancer medicine and precision diabetes medicine are at the forefront of clinical

innovation. In cancer medicine, the focus on precision approaches has led to significant

advancements in identifying genetic mutations and molecular alterations that drive tu-

mor growth and progression. These insights have facilitated the development of targeted

therapies and immunotherapies, improving treatment efficacy and patient outcomes (2).

Similarly, in diabetes care, precision medicine is redefining disease management by elu-

cidating the genetic and molecular underpinnings of different diabetes subtypes. This

enables the creation of more effective, individualized treatment plans that address the

specific pathophysiological mechanisms involved (3).

The availability and integration of multiomic and clinical data is pivotal in this con-

text, providing a comprehensive view of disease biology that goes beyond single-dimension

analyses (4). Besides, machine learning plays a crucial role in this integrative process,

offering sophisticated tools to analyze and interpret complex datasets, identify poten-

tial biomarkers, and predict disease outcomes (5). These technologies are instrumental

in bridging the gap between preclinical research and clinical application, ensuring that

discoveries made in the lab translate into tangible health benefits for patients.

This chapter delves into the current status of precision cancer medicine and preci-

sion diabetes medicine, tracing the journey from preclinical studies to clinical applications.

It explores the integration of multiomic and clinical data, the role of machine learning

in biomarker discovery, and the challenges and opportunities that lie ahead in making

precision medicine a reality. Through a detailed examination of these themes, the chap-

ters highlights the profound impact of precision medicine on improving patient care and

advancing medical science.

1.1 Current status of precision medicine

The idea of precision medicine could be dated back to the 19th century. Sir William Osler,

one of the founders of modern medicine, said “It is much more important to know what

sort of a patient has disease than what sort of a disease a patient has” (6), implying the

1



1.1 Current status of precision medicine

importance of understanding the patient’s physiological state (and all other information)

in order to treat the disease effectively. Many times throughout nineteenth and twentieth

centuries, medical research and practice had taken ideas that could fall under precision

medicine paradigm. For example, Werner Kalow’s 1962 textbook “Pharmacogenetics”

had pointed out that therapeutic responses were associated not only to the biochemical

properties of the agents but also to the genetic makeup of the patients (7). In 2015, the

Precision Medicine Initiative was launched (1), emphasizing the need of utilizing relevant

information of patients to guide personalized treatments and prevention strategies in

complex noncommunicable diseases such as cancer and diabetes. Amount of research

in the field has been increased significantly and, together with advancement of multi-

omics profiling, big data analysis and computational power, benefited researchers, clinical

practitioners, patients and their families significantly, paving a way towards translational

medicine.

1.1.1 From ”one-size-fits-all” to precision medicine

Medicine is a broad field of science with the primary goal of promoting human health

through advancing diagnosis, prognosis, treatment and prevention of diseases (8). The

practice of medicine could be dated back to the start of human history. Since ancient time,

Chinese, Greek and Egyptian medical practitioners had been treating patients through

empirical experience and observations of relevant symptoms. Decisions on treatments

were usually based on the characteristics of the diseases and universal guideline applied to

the whole population (9, 10). Fast forward to nineteenth and twentieth centuries, modern

medicine was highly standardized in which medical education and practice strictly followed

standard guideline which associated diseases’ characteristics with intervention options

(11). Most of the knowledge harnessed in these guidelines was driven by clinical trials and

population studies which often yielded conclusions by averaging observations from a large

heterogeneous group of patients (11). This approach had resulted in multiple achievements

in medicine in the past century, especially in the context of infectious diseases and acute

conditions (12). For example, successful vaccination programs in general population had

led to the global eradication of smallpox (13).

Although this “one-size-fits-all” approach had undeniably contributed to the progress

of medicine throughout history, it is not without limitations. In the context of chronic

and complex diseases, it becomes more and more evident that a particular drug can only

benefit a subset of patients, the others either do not exhibit any positive progression or

more dangerously, show side effects (6). As we understand more about human physiology

2



1.1 Current status of precision medicine

and pathology of the diseases, it is generally accepted that the development and treatment

response of these diseases are associated with a multitude of factors including genetic

variation, life style, social-environmental factors and the interactions of all these factors,

all of which makes patient profiles vary among each other (6, 7, 14). Therefore, when

these individual variations are neglected, treatments yield little success. Consequently,

this leads to prolonged treatment time, increased cost and poor overall patient and doctor

satisfaction. To tackle these obstacles, a more precise approach that tailors medical

intervention to groups of patients that exhibit specific characteristics is employed, which

is often referred to as precision medicine.

In contrast to the one-size-fits-all approach, precision medicine aims to adapt any

medical decision to stratified groups of patients that differ from each other in certain

characteristics (6). These characteristics could range from social-environmental factors

such as age, sex, ethnicity, physical activity level and use of certain medications to genetic

variations and altered protein signaling in the body. The emerging focus on precision

medicine is relatively recent, however, some medical practices have existed for many years

to some extent. For instance, people who need blood transfusion need to have their and

their donor’s blood type determined in order to find a suitable match (14). In this case,

blood type serves as a genetic marker to stratify patients and have a crucially precise

blood transfuse. By adapting medical intervention to patients’ characteristics, precision

medicine has improved the patients’ life and overall satisfaction to the healthcare.

Several advancements in molecular biology and technology have empowered devel-

opment of the field. Progress in this field has been accelerated recently and aligned with

the understanding of our genome as well as the central dogma of biology (14). From the

discovery of DNA structure in 1953 (15) to the first generation sequencing technology in

1977 (16) and the completion of Human Genome Project in 2003 (17), we have come a

long way to understand our genetic code and the sophisticated link between genes and

observed traits. It is now widely accepted that not all diseases follow Mendelian model

in which one trait is only affected by one gene, but instead they are often caused by

variations of multiple genes and gene (product) interactions, as well as a multitude of

extrinsic factors (6). In addition, precision medicine is further enabled by technology ad-

vancement, which allows profiling of molecular data such as millions of genetic variations

and tens of thousands of gene transcripts and proteins for a patient at a relatively short

time and low cost. The deep molecular characterization, coupled with the patient’s med-

ical history and social-environmental factors, makes up a complete patient profile that

helps discover biomarkers in research, design clinical trials to test drug efficacy, determine

3



1.1 Current status of precision medicine

the risks of getting diseases, shapes decisions of interventions and disease management in

clinical practice (6). All of this is nonetheless empowered by the ability to generate, store

and manage big data, as well as interdisciplinary expertise of scientists from biomedicine,

bioinformatics, computer science and data science (6). In sum, big efforts are being made

to strengthen precision medicine, making it a truly translational paradigm with the ulti-

mate goal of improving human health. Many of these efforts lie in the fields of oncology

and diabetology.

1.1.2 Advancements in precision cancer medicine

Cancer is a multifaceted and challenging disease requiring diverse treatment approaches.

It is defined by the uncontrolled growth, proliferation, and evasion of normal regulatory

mechanisms in cells (18). Traditionally, cancer classification relies on tissue type, his-

tology, and metastatic behavior, which form the basis for diagnosis and treatment (19).

However, this limited information often results in therapies that target both healthy and

cancerous cells indiscriminately, highlighting a critical need for more targeted approaches.

Traditional cancer treatments, while effective, often come with significant side effects.

For decades, the first line of treatment has included cytotoxic chemotherapy, radiotherapy,

and surgery, methods that either destroy or remove cancer cells. Unfortunately, these

treatments can also damage healthy cells, leading to adverse effects that can be as severe

as the clinical benefits (20, 21). This raises concerns about the balance between efficacy

and harm, suggesting that these approaches, while useful, are not without significant

limitations.

Lung cancer treatment, for example, exemplifies the limitations of traditional ther-

apies. In 2004, the WHO classified lung cancer into small cell lung cancer (SCLC) and

non-small cell lung cancer (NSCLC), further sub-classifying NSCLC into squamous cell

carcinoma and adenocarcinoma (22). Standard treatment for advanced NSCLC has his-

torically involved platinum-based chemotherapy, such as cisplatin and carboplatin, which

effectively kill cancer cells by inducing DNA damage (22). However, these treatments also

cause severe side effects, including nausea, fatigue, and immunosuppression, emphasizing

the need for more refined therapeutic strategies (20, 21).

The evolution of cancer research marks a significant shift towards more targeted

and personalized therapies. Advances in molecular biology have paved the way for next-

generation cancer management approaches that move beyond the one-size-fits-all model.

4



1.1 Current status of precision medicine

These innovations, while promising, are still in development and highlight the potential

of personalized medicine to reduce the harmful side effects of traditional treatments while

improving overall patient outcomes.

Knowledge of molecular biology have been leveraged to advance cancer treatment

for many years. One of the earliest examples is the 1960s’ discovery of the association

of chronic myeloid leukemia (CML) to the Philadelphia chromosome, which is a modi-

fied chromosome 22 caused by a fusion of ABL gene in chromosome 9 to BCR gene in

chromosome 22 to create a fused ABL-BCR version of a tyrosine kinase that causes un-

controlled growth of white blood cells (23). This has led to the development of effective

targeted therapies such as imatinib, which is a tyrosine kinase inhibitor (TKI) which tar-

gets the pathogenic ABL-BCR tyrosine kinase (24). This initial breakthrough has led to

a series of relevant achievements in using TKIs to treat many types of cancers. Multi-

ple other pathogenic mutations in NSCLC and melanoma have been discovered and the

corresponding TKIs have been developed to target these genes and achieved remarkable

clinical accomplishments (24). These successes reforms our definition and characterization

of cancer and how we treat the disease leveraging molecular biology.

Cancer can nowadays be thought of as a complex genetic disease where one or more

genetic and/or epigenetic alterations that together disrupts the gene expression patterns

and subsequent processes, which ultimately leads to the oncogenesis phenotypes (25).

In a healthy cell, some proteins work in promoting cell survival, growth and division

(oncogenes) while others take care of DNA damage repair, cell cycle arrest and apoptosis

(tumor suppressor genes), among others (24). All these proteins work together in highly

regulated protein networks to ensure a healthy development of the cell. Cancer happens

when genetic and/or epigenetic alterations cause either overexpression of oncogenes or

under-expression of tumor suppressor genes, disrupting the regulated protein networks and

predisposing the cell to cancer fate (24). In this context, associated mutations that truly

drive the development of cancer are called driver mutations, the rest are called passenger

mutations. That being said, the distinction between driver and passenger mutations is

relatively dynamic due to the lack of necessary information (25).

Understanding the links between these molecular dysregulation and disease phe-

notype helps drive medical decision making and opens a new opportunity to tackle the

disease. For instance, HER2 is a growth receptor that is often overexpressed in breast can-

cer, triggering downstream signaling pathways that leads to cancer cell proliferation (26).

Genomic testing allows identification of HER2-positive patients who could be treated with

therapies that specifically block the activity of this oncogene, such as trastuzumab, the
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1.1 Current status of precision medicine

first FDA-approved drug for treating HER2-positive breast cancer (26). In the case of NC-

SLC, an EGFR mutation is a strong biomarker that helps physicians determine whether

they should treat the patient with TKIs such as erlotinib or standard chemotherapy (22).

Efforts have been made to advance molecular profiling technologies and further ex-

pand the biological understanding of cancer. Since the completion of the human genome

(17) and the cancer genome atlas (TCGA) (27), the increasingly comprehensive molec-

ular landscape of cancer has been revealed, with the discovery of many genes and their

driver mutations involving in specific cancer development. These genes serve as potential

targets for preclinical and clinical research for cancer biomarker discovery. Examples of

such research are the Genomics of Drug Sensitivity in Cancer (GDSC) (28) and Can-

cer Therapeutics Response Portal (CTRP) (29) in which hundreds of compounds were

screened against more than 1000 of cancer cell lines which were characterized for the

common cancer mutations with the aim of identifying significant pharmacogenetic inter-

actions between drugs and gene mutations. Findings from these projects help designing

clinical trials which could potentially leads to new therapy for cancer treatment.

That being said, precision oncology is met with multiple challenges when being trans-

lated to clinical practice. Treatment resistance is a major drawback of many targeted

therapies. Mechanisms of resistance vary from the heterogeneity of the tumor, tumor

evolution to failure to account for the driver mutations in the complex protein network

(30). A classic example is the EGFR T790M mutation, which is acquired in approxi-

mately 50% of patients previously treated with TKIs (22). Non-invasive liquid biopsy for

monitoring the evolution of tumors and detecting resistance clones presents a potential

solution to this (24). Furthermore, many germline and environmental-behavioral factors

are often neglected in cancer research, leading to failure in clinical trials and treatments

that are not generalizable to different groups of patients. Efforts have been made to

account for these challenges and further advance precision oncology, benefiting patients.

1.1.3 Advancements in precision diabetes medicine

Diabetes has become a major burden to public health worldwide. In 2019, around 1.5

million people died of diabetes and another 460 000 people died of kidney complications

of diabetes. Many of these patients were younger than 70 years (31). The mortality rates

are not only high but also increasing at alarming speed. Between 2000 and 2019, the

rates increased 3% on average, and up to 13% in lower-middle-income countries (31). The

complexity of the disease together with many associated life-threatening complications
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1.1 Current status of precision medicine

has made diabetes one of the most urgent epidemics to tackle in the 21st century.

Diabetes is a chronic condition characterized by either lack of production of insulin

or the produced insulin cannot be used effectively, leading to hyperglycemia (32). Since

insulin is an essential hormone in glucose metabolism affecting virtually all organs in the

body, the insulin deficiency causes many microvascular and macrovascular dysfunctions in

the end organs (32). Common microvascular conditions associated with diabetes during

the course of the disease are nerve damage (neuropathy), kidney damage (nephropathy)

and eye damage (retinopathy), while involved macrovascular conditions include heart

disease, stroke and peripheral vascular disease (33). The complexity and heterogeneity of

these complications make management challenging.

When the body cannot produce insulin due to an autoimmune disease that targets

insulin-producing beta cells in pancreas, the diabetes is called type 1 diabetes (T1D), a

serious condition in which neither cause nor prevention strategy are fully comprehended

(33, 32). On the other hand, type 2 diabetes (T2D) is a more common type of diabetes

which is characterized by the inability of the body to use insulin properly, causing in-

creased level of blood glucose and several downstream consequences to the system (33, 32).

Since the mechanisms and risk factors of T2D are better understood and its prevalence are

much more dominant than the former type, it is often the target for research in precision

diabetes medicine.

Precision diabetes medicine provides a transformative approach to managing dia-

betes by tailoring treatments to individual patient profiles. By leveraging multidimen-

sional data, it helps in making informed decisions for diagnosis, prevention, prognosis, and

treatment (32, 34, 35). This method acknowledges the disease’s inherent heterogeneity,

which traditional, generalized approaches might overlook. A critical challenge in imple-

menting precision diabetes medicine lies in the complexity of integrating such vast and

varied data sources into actionable insights.

The heterogeneity of diabetes can be understood at various levels. At social-environmental

level, patients may be categorized based on demographic details like age, sex, and eth-

nicity, as well as behavioral factors such as diet, physical activity, and alcohol consump-

tion. For instance, older individuals with lower physical activity levels show a significantly

higher risk of developing type 2 diabetes (T2D) (36). Although these social-environmental

factors are helpful for broad categorization, they are often insufficient for accurately pre-

dicting disease trajectories due to their general nature. At a deeper level, molecular

heterogeneity in diabetes presents an additional layer of complexity. Factors like genetic
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predispositions, gene expression levels, protein markers, and metabolic regulation also

influence disease progression (34). For example, higher levels of serum inflammatory cy-

tokines increase the risk of diabetic neuropathy (37). This molecular diversity necessitates

a more nuanced understanding of the disease, though the challenge lies in making these

biomarkers accessible and actionable in routine clinical settings.

The growing availability of large-scale data and advancements in medical science

have enabled more precise stratification of patients. For instance, a recent study has used

clinically relevant pathophysiological variables to segregate pre-diabetes patients into six

distinct groups, each with different diabetes progression patterns (38). While this devel-

opment marks a significant step forward in precision medicine, the effective translation of

these insights into widespread clinical practice remains a major hurdle, requiring further

refinement in data interpretation and integration into healthcare systems.

Precision approach to diabetes has gained attention in recent years. In 2018, for the

first time the American Diabetes Association (ADA), in partnership with the European

Association for the Study of Diabetes (EASD), launched the Precision Medicine in Dia-

betes Initiative (PMDI). Later the PMDI has also partnered with U.S. National Institute

of Diabetes and Digestive and Kidney Diseases (NIDDK) and Juvenile Diabetes Research

Foundation (JDRF). The aim of PMDI is to establish a consensus for the implementation

of precision diabetes medicine in aspects including diagnosis, prognosis, prevention and

treatment, leveraging expert opinions around the globe (35). The first report of PMDI in

2020 and the second in 2023 have provided detailed reviews of evidence and guideline to

support the translation of precision medicine into practice in these four areas (32, 39).

One key area in focus is the precision diagnosis of diabetes, which is a set of meth-

ods to classify patients into distinct groups of different disease progression and treatment

prognosis. It is conceptualized as a sequential process instead of a single diagnosis step:

from assessing the epidemiology aspect (age, sex and ancestry) to observing clinical fea-

tures and finally a diagnostic test to lead to a conclusion. This pathway helps involve

multiple data modality in the diagnostics process instead of a single glycated hemoglobin

(HbA1c) value. It is important to involve age, sex, ethnicity, pregnancy status and molec-

ular profile into the diagnosis process (32). Insights gained from precision diagnosis drive

the subsequent medical decision making. Many studies have stratified patients at diagno-

sis into categories of distinct progression and treatment prognosis either using supervised

modelling and unsupervised clustering of clinical features, or clustering of genetic variants

in case of T2D (40). Other studies utilized many data modalities in studying diabetes and

its associated complications (41). Though having some limitations, these studies bring
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diabetes care closer to a translational precision care.

1.2 Multimodal data integration in precision medicine

The idea of employing multimodal data in studying complex diseases relies on the fact

that these conditions interact with multiple factors in the system and environment. In the

context of precision medicine, multimodal data analysis, which involves integrating mul-

tiple types of data in studying diseases, offers significant advantages over single modality

approaches as it would increase the chance of pinpointing specific biomarkers valuable for

diagnosis, prognosis and treatment of individual patients. With the current advancement

in data generating and analysis technology, the availability of diverse types of data has

been increasing, which has revolutionized the way researchers understand and address

complex biological and medical problems.

1.2.1 Advantages of multimodal data analysis

While the central dogma of molecular biology often implies that there are certain levels of

correlation between molecular entities in complex systems, there is a significant amount of

discrepancy. For example, it has been known that the gene expression and corresponding

protein abundance levels in multiple cell and tissue types are poorly correlated (42), mak-

ing the sole use gene expression data to infer protein expression and functions challenging.

The involvement of other molecular entities such as epigenomics and metabolomics fur-

ther increases the complexity of the problem, as each of these entities are not only affected

by intrinsic factors, but also independently interact with environmental and behavioral

factors (43, 44). In clinical practice, patient stratification for differential treatment prog-

nosis is important as patients who share similar clinical phenotypes might have different

pathological mechanisms leading to differential response to interventions (45). Involv-

ing diverse types of data increase the insights into these mechanisms to identify the key

biomarkers of the disease. Thus, multimodal data analysis offers a holistic understanding

of complex biological processes and assist in biomarker discovery in precision medicine.

1.2.2 Types of data

Advanced omics technology has enabled the generation of large quantity of biological and

clinical data. Together with the development of computational resources and analysis

ability, these data has revolutionized biomedical practice. Each of these data plays a
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different role in how we understand complex diseases.

1.2.2.1 Genomic data

Often referred to as the blueprint of life, the genome harbours the DNA sequence of

an organism, which encodes for information of all cellular activities (46). Variations in

genome such as single nucleotide polymorphisms (SNPs), insertions, deletions, and larger

structural variations might disrupt these activities, leading to dysfunction in metabolisms

and ultimately pathogenicity. Thus, genomic data is a great source to understand the

pathological signatures of diseases. For example, in cancer research, genomic sequencing

of tumor samples can reveal somatic mutations in oncogenes and tumor suppressor genes,

providing insights into the genetic alterations of oncogenicity and evolution, providing

actionable targets for therapy.

With the decreasing cost and increasing throughput, next-generation sequencing

(NGS) is becoming the standard genomic profiling technology in biological and clini-

cal research (47). NGS technologies, such as short-read Illumina sequencing and single

molecule Oxford Nanopore sequencing, have revolutionized genomics by enabling rapid

and cost-effective sequencing of entire genomes, exomes or targeted panels (48).

1.2.2.2 Transcriptomic data

While genomic data provides the whole genetic information of the individuals, transcrip-

tomic data captures the specific expression profile of each cell or tissue type, bridging the

genetic codes and functions (49). Transcriptomics involves the study of RNA transcripts

transcribed using the information encoded in the genome and the specific transcription

machinery of the cell, reflecting which genes are actively being expressed at any given time,

space and condition (49). Thus, transcriptomic data is invaluable for understanding how

metabolisms changes in response to diseases, treatments, or environmental factors. For

instance, in autoimmune diseases like rheumatoid arthritis, transcriptomic profiling can

identify dysregulated immune response genes, shedding light on disease mechanisms and

potential therapeutic targets (50).

RNA sequencing (RNA-seq) is the predominant technology used to generate tran-

scriptomic data (49). RNA-seq provides a high-resolution view of the transcriptome,

allowing researchers to quantify gene expression levels and link to physiological states.

Modern RNA-seq technology such as single cell transcriptomics and spatial transcrip-

tomics allow studying the heterogeneity of diseases and physiological states at high reso-

lution.
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1.2.2.3 Proteomic data

Proteomic data delves into the functional landscape of the cell by profiling proteins,

the workhorses performing virtually all activities in biological systems. Proteomics en-

compasses the study of protein expression, modifications, interactions, and functions. In

clinical settings, proteomic data can be instrumental in identifying biomarkers for disease

diagnosis and prognosis (51). Mass spectrometry (MS) is the cornerstone technology for

proteomics, enabling the simultaneous identification and quantification of thousands of

proteins in biological samples. Another popular technology includes proximity extension

assay which is especially useful when researchers want focus on a targeted panel of proteins

for their research question.

1.2.2.4 Metabolomic data

Metabolomic data captures the chemical fingerprint of biological systems by profiling

small molecules and metabolites, thus metabolome provides a snapshot of the metabolic

state of a cell or organism, reflecting the interactions between the genome, transcriptome,

proteome, and environment (44). In the realm of personalized medicine, metabolomic data

can provide insights into individual metabolic profiles, enabling tailored therapeutic inter-

ventions. For instance, in diabetes research, metabolomic profiling can identify metabolic

changes associated with insulin resistance, facilitating the development of personalized

treatment strategies (52). Techniques such as nuclear magnetic resonance (NMR) spec-

troscopy and mass spectrometry (MS) are commonly used to generate metabolomic data.

1.2.2.5 Clinical data

Clinical data encompasses a wide range of information derived from patient records,

including medical history, laboratory measurements, demographic data, treatment out-

comes, and lifestyle factors. Electronic health records (EHRs) and clinical databases are

primary sources of clinical data. This data type provides critical context for interpreting

molecular and omics data, linking biological findings to patient health outcomes. Inte-

grating clinical data with other omics data types can enhance the understanding of disease

mechanisms and improve clinical decision-making. For example, in oncology, combining

genomic and clinical data can help predict patient responses to specific therapies, paving

the way for precision medicine.
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1.2.3 Challenges in multimodal data analysis

While multimodal data comes with great potential in precision medicine, there are a

few challenges that need to be addressed before we could harness these values. These

challenges could stem from the underlying nature of these data to the practice of data

generation and clinical usage. Awareness of these obstacles is an important step toward

an effective integration strategy to leverage the power of these data.

Multimodal data encompasses diverse types of biological information, each with

unique characteristics and formats. This heterogeneity complicates the integration pro-

cess. Genomic data might be in the form of DNA sequences or SNP genotypes, while

proteomic data could be in mass spectrometry readouts, and imaging data in pixel in-

tensities. These differing formats and scales require standardization and normalization

to ensure compatibility. Furthermore, the biological meaning of data points varies across

modalities. For example, a genetic variant might have a different biological implication

compared to an increase in the corresponding protein abundance. Thus, a framework

that is aware of the heterogeneity and is able to extract the common biological signal

associated with the phenotype of interest would be of great help.

Another challenge stems from the dimensionality. Different data types often have

varying dimensions. Genomic data can involve millions of observed genetic variants while

metabolomic data might only involve a few hundreds metabolites. This imbalance could

lead to models becoming too tailored to the features of one data type and fail to attend

all relevant features. Accounting for these discrepancies and select for the most important

variables are important for an effective integration strategy. In addition, in many studies,

the number of samples available for each data type can vary greatly. For instance, a study

might have extensive transcriptomic data from thousands of patients but only limited

proteomic data from a subset of these patients. This disparity can lead to biased analyses

if not properly addressed.

Last but not least, missing data is a pervasive issue not only in multimodal data, but

also in general biomedical datasets, arising from various sources such as incomplete sample

collection, technical limitations, or data processing errors. Particularly, in longitudinal

studies, patients may drop out, leading to missing data points at certain time intervals.

Additionally, not all data types may be collected for every patient, resulting in gaps in

the dataset. Deep understanding of the missingness patterns and proper data processing

techniques are necessary to mitigate the issue.
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1.2.4 Data integration strategies

While it is challenging when dealing with multimodal datasets, several strategies have

been proposed to address these challenges and achieve the research goals.

Data pre-processing is undoubtedly one of the most important steps to guarantee

the quality of the data and the reliability of downstream analysis result. Ensuring that

data from different modalities are standardized and normalized is crucial for effective

integration. Techniques such as z-score normalization, quantile normalization, and batch

effect correction help make data from different sources comparable (53). Furthermore, to

mitigate the impact of missing data, robust imputation methods (e.g., k-nearest neighbors,

single value decomposition) (54) to estimate missing values could be employed. It is worth

noting that the identification of the missing patterns and their significance is essential to

determine the proper data processing technique (55).

To manage the high dimensionality and feature imbalance of multimodal data, dimen-

sionality reduction techniques such as principal component analysis, t-SNE and matrix

factorization (56) are frequently employed. Particularly, these techniques aim to map

data points to a common latent space which is smaller than the original feature space

and might contain meaningful biological signal of interest. In addition, embedded feature

selection in machine learning algorithms such as LASSO and random forests are also lever-

age to select for the relevant features to the phenotype of interest which greatly reduce

the feature size to assist downstream predictive modeling.

Data fusion is also a useful set of techniques that could be leveraged to deal with

heterogeneous multimodal data. Data fusion could be in the early stage of modeling (con-

catenating raw features before model training), intermediate stage (combining processed

features), and late stage (merging trained models). Each of these methods comes with

advantages and disadvantages (57, 58). Thus, it is important to understand the data and

the research hypothesis to choose an appropriate method.

Last but not least, ontologies and knowledge graphs are potentially great tools to

facilitate data interpretation and interoperability. Particularly, ontologies enable the in-

tegration of data from different sources by providing a common framework for annotation

and analysis of the data (59). For example, genomic and metabolomic data could be

mapped to the same biological annotation using the biological signaling pathway ontol-

ogy to help identify genetic variants and changes in metabolite levels associated with

specific biological process. Similarly, knowledge graphs enable the integration of diverse
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data types, such as genomic, proteomic, clinical, and drug response data, by representing

them as interconnected entities in a graph. This holistic view facilitates the analysis of

complex biological questions (60).

In summary, leveraging combinations of these methods, researchers can fully leverage

the power of multimodal data to gain comprehensive insights into biological systems and

improve patient outcomes.

1.3 From preclinical to clinical research

So far we have talked about how precision medicine approach has transformed biolog-

ical and medical research and the importance of leveraging multiple data sources for a

holistic view of biological systems. That being said, the journey from bench to bed side

encompasses several phases that are time consuming and require a wide range of expertise.

From preclinical study to clinical trial, each phase is essentially important and consists of

several challenges that need to be addressed before the application could benefit patients.

1.3.1 Evolution of clinical trials

Clinical trials, the systematic investigations to assess the efficacy and safety of medical

interventions, have a long and fascinating history that dates back to ancient times. The

journey of clinical trials from rudimentary experiments to the rigorous, controlled studies

of today highlights the evolution of scientific thought and methodology in medicine.

The origins of clinical trials can be traced back to the earliest civilizations, where

rudimentary forms of medical experimentation were practiced. Although these early trials

lacked the formal structure and ethical considerations of modern studies, they laid the

groundwork for the scientific method in modern medicine. For example, ancient biblical

text recorded around 500 BC in Babylon indicates experiments and observations with

different types of diets to promote overall health (61). While not clinical trials in the

modern sense, these writings indicate an early understanding of the need to observe and

record the outcomes of medical interventions. Fast forward to the Islamic Golden Age

( 8th to 14th centuries), Avicenna in his work “The Canon of Medicine” advocated for

controlled experiments to test the efficacy of drugs, a concept that foreshadowed modern

clinical trials (61).

The modern framework of clinical trials began to take shape in the 18th and 19th cen-

turies. One of the earliest documented clinical trials was conducted by Scottish surgeon
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James Lind in 1747, who demonstrated the effectiveness of citrus fruits in preventing

scurvy among sailors. Particularly, he selected 12 sailors with similar symptoms and

divided them into six groups, each receiving different treatments. Lind’s careful docu-

mentation led to the identification of vitamin C as the cure for scurvy (61). This trial

laid the groundwork for the scientific method in medical research. The 20th century saw

significant advancements in clinical trial design and regulation. The establishment of ran-

domized controlled trials (RCTs) by British statistician Sir Austin Bradford Hill in the

1940s revolutionized medical research by introducing randomization and control groups

to eliminate bias and improve the validity of results, an example of which is Hill’s trial

evaluating the effectiveness of streptomycin in treating pulmonary tuberculosis in 1948

(61). The subsequent development of ethical and regulatory framework further enhanced

the reliability of findings by preventing both researchers and participants from knowing

who received the treatment or placebo (61).

Today, clinical trials are the cornerstone of medicine and health care, providing the

critical evidence needed to translate scientific discoveries into effective treatments. These

are highly regulated and meticulously designed to ensure the safety and efficacy of medical

interventions. Regulatory agencies, such as the U.S. Food and Drug Administration

(FDA) and the European Medicines Agency (EMA), oversee the approval and conduct of

clinical trials. Modern trials often incorporate advanced technologies, such as electronic

health records, genomics, and big data analytics, to enhance their precision and efficiency.

1.3.2 Challenges of clinical trials

One of the foremost challenges in clinical trials, particularly in the context of precision

medicine, is patient stratification (62). Precision medicine aims to tailor treatments to

individual genetic, molecular, and clinical profiles, which requires identifying and re-

cruiting subgroups of patients who are most likely to benefit from specific interventions.

This necessitates extensive genetic and molecular profiling, which can be both costly and

time-consuming. Moreover, accurately classifying patients into these subgroups requires

computational approaches and a deep understanding of disease heterogeneity (62).

Recruiting a sufficient number of participants who meet the inclusion criteria for clin-

ical trials is another major hurdle (63). Trials often require large and diverse cohorts to

ensure statistically significant results and to account for variability in treatment responses

across different populations. Recruitment is further complicated by stringent eligibility

criteria, which can limit the pool of potential participants. Additionally, retaining par-

15



1.3 From preclinical to clinical research

ticipants throughout the trial duration is challenging, as dropouts can skew results and

reduce the statistical power of the study. In addition, clinical trials must adhere to strict

ethical and regulatory standards to protect participants’ rights and safety. This includes

obtaining informed consent, ensuring participant confidentiality, and adhering to proto-

cols approved by regulatory bodies such as the FDA and EMA. These requirements are

essential but can also lengthen the time required to initiate and conduct trials.

Furthermore, the sheer volume and complexity of data generated in clinical trials

pose challenges for data management and analysis (64, 65). Integrating diverse data

types, such as molecular and clinical data, requires advanced bioinformatic infrastructure

and expertise. Ensuring data accuracy, consistency, and security is critical, as errors or

breaches can compromise the validity of the trial results.

With regard to the above challenges, the financial and temporal costs of conducting

clinical trials are substantial. Trials can span several years and require significant funding

to cover expenses related to recruitment, data collection, monitoring, and analysis (66).

The high cost and lengthy timelines can be particularly burdensome for small biotech

companies and academic researchers, potentially limiting the scope and scale of the trials

they can undertake.

1.3.3 Roles of preclinical studies

Usually situated in the earlier phase of a therapy development, preclinical studies play

a crucial role in assisting clinical trials by addressing many of the challenges faced by

them. These models provide critical insights into disease mechanisms, drug efficacy, and

safety before advancing to human clinical trials (67). By bridging the gap between basic

research and clinical application, preclinical studies are essential for the successful de-

velopment of precision medicine therapies. To integrate preclinical and clinical research,

collaboration across disciplines, including genetics, molecular biology, pharmacology, and

clinical medicine, is crucial (67). Advanced technologies such as high-throughput sequenc-

ing, bioinformatics and machine learning are also instrumental in analyzing complex data

and identifying actionable insights (67).

Preclinical studies, using models such as cell lines, animals, and organoids, provide

valuable mechanistic insights into how diseases develop and progress. These studies help

identify molecular targets for new therapies, validate these targets, and understand the

pathways involved (68). For example, in cancer research, high throughput drug screens
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of cancer cell lines coupled with deep molecular characterisation can reveal specific mech-

anisms driving tumor sensitivity and resistance, guiding the development of targeted

therapies (28). In diabetes and cardiovascular disease research, mice have been widely

used as in vivo models to study the effect of metabolic interventions to the systems in

treating obesity, diabetes and other conditions (69). By establishing a solid scientific basis

for potential treatments, preclinical studies reduce the risk of failure in subsequent clinical

trials.

Gaining from the mechanistic insights, preclinical research aids in the identification

of biomarkers that can be used for patient stratification and monitoring treatment re-

sponses. Biomarkers are measurable indicators of biological processes or responses to

treatment, such as specific proteins, genes, or metabolites (70). By validating biomarkers

in preclinical studies, researchers can develop companion diagnostics to identify patients

who are most likely to benefit from a particular therapy. For example, identifying a ge-

netic mutation that predicts response to a targeted cancer therapy can improve patient

selection in clinical trials, enhancing the likelihood of success.

In addition, insights gained from preclinical studies can inform the design of clinical

trials, optimizing their efficiency and effectiveness. For instance, preclinical data can

guide the selection of endpoints, such as specific clinical outcomes or biomarker changes,

that are most relevant for assessing treatment efficacy. Preclinical research can also help

identify potential confounding factors and adverse effects that should be monitored during

clinical trials. By refining trial design based on robust preclinical evidence, researchers

can increase the likelihood of obtaining meaningful and actionable results.

Often time, before new treatments can be tested in humans, their safety and efficacy

must be rigorously evaluated in preclinical models. Animal studies, for instance, are

used to assess the pharmacokinetics (how a drug is absorbed, distributed, metabolized,

and excreted) and pharmacodynamics (the effects of the drug on the body) of potential

therapies (68). These studies help determine appropriate dosing, identify potential side

effects, and establish initial efficacy. This preclinical evidence is critical for designing

safe and effective clinical trial protocols, including dose escalation and safety monitoring

strategies.

Lastly, by providing preliminary evidence of safety and efficacy, preclinical studies

help reduce their costs and timelines. Early identification of ineffective or unsafe treat-

ments can prevent costly late-stage trial failures. Additionally, preclinical studies can

support the use of adaptive trial designs, which allow for modifications based on interim
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results, thereby increasing trial efficiency and reducing the time required to bring new

therapies to market.

1.3.4 Limitations of preclinical research

While preclinical studies are crucial in the early phases of therapy development, they are

not without significant limitations. One major challenge is that these models often fail

to fully replicate the complexity of human biology. For instance, cell lines and animal

models cannot entirely mimic the human tumor microenvironment, immune responses, or

genetic diversity. As a result, the translation of findings from animal models to humans

is often problematic due to species-specific differences in drug metabolism and disease

progression (71). Moreover, the predictive power of preclinical studies is limited by their

simplified nature, which may overlook critical aspects of disease mechanisms and drug

interactions, resulting in overestimation of a drug’s efficacy and underestimation of its

toxicity, contributing to high failure rates in subsequent clinical trials (72). The lack of

standardized protocols across different laboratories further complicates the reproducibil-

ity and reliability of preclinical data (73). These limitations underscore the need for more

sophisticated models, such as patient-derived organoids or advanced computational sim-

ulations, to better capture human disease complexity and improve the translatability of

preclinical findings to clinical settings.

1.3.5 Commonly used preclinical models

Preclinical models enable scientists to explore the biological underpinnings of diseases and

evaluate potential therapies. These models allow for controlled experiments that would

be unethical or impractical in human subjects. Among the various preclinical models,

cell lines, mice, and organoids are the most commonly used (74). Each model has its own

unique history, advantages, and limitations, contributing distinctively to the research

landscape. As exemplified in Section 3.1, preclinical models such as cancer cell lines offer

a simple yet useful means to evaluate drug response mechanisms and identify putative

biomarkers. Furthermore, alternatives such as organoids and mouse models serve as

complementary options with their own advantages and limitations. Understanding their

characteristics is crucial for leveraging their potential effectively.
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1.3.5.1 Cell lines

Cell lines have been a cornerstone of biomedical research since the mid-20th century

(75). The first immortal human cell line, known as HeLa, was derived from the cervical

cancer cells of Henrietta Lacks in 1951 (75). This groundbreaking development provided

researchers with a stable, reproducible model for studying cellular processes and disease

mechanisms. Since then, many more cell lines have been derived, representing various

tissues and diseases of complex systems (76). Large projects such as The Cancer Cell

Line Encyclopedia (CCLE) characterized and obtained mutation, gene expression, protein

abundance and metabolite abundance of circa 1,000 cancer cell lines, providing invaluable

resources for subsequent exploratory research (77). For example, given insights from

CCLE, high throughput drug screens such as the Genomics of Drug Sensitivity in Cancer

(GDSC) further assisted biomarker discovery by screening hundreds of compounds on the

cancer cell lines and conducted hundreds of thousands of drug-gen association tests to

identify putative biomarkers for further validation (28).

Cell lines offer several advantages. They are relatively easy to culture and maintain,

allowing for high-throughput screening of drugs and genetic manipulations (78). The

ability to generate large quantities of homogeneous cells makes them ideal for biochemical

assays and molecular biology studies (79). Additionally, cell lines can be genetically

modified to mimic specific disease conditions or to express particular genes, providing a

versatile platform for research (80).

Despite their utility, cell lines have notable limitations. They often lack the com-

plexity and organization of tissues in a living organism, which can result in oversimplified

models of disease. For example, extra cellular matrix and immune cell interactions can

usually not be accounted for in cell culture (81). In addition, prolonged culture can

lead to genetic drift and phenotypic changes, potentially affecting the reproducibility and

relevance of findings.

1.3.5.2 Organoids

Compared to cell lines, organoids are a relatively recent development in preclinical re-

search. The concept emerged in the 2000s, with significant advancements made in the

following decade (74). Organoids are three-dimensional structures derived from primary

tissues or stem cells that self-organize into miniaturized versions of in vivo organs (74).

Organoids offer unparalleled advantages in replicating the architecture and function-

ality of human organs. They provide a more physiologically relevant model compared to
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traditional two-dimensional cell cultures, allowing for the study of organ development,

disease mechanisms, and drug responses in a context that closely mimics human phys-

iology (74). Organoids can be derived from patient-specific cells, enabling personalized

medicine approaches and the study of genetic disorders (74). Moreover, organoids would

be a more ethical options compared to animal models.

Despite their promise, organoids face several challenges. Their development and

maintenance require specialized techniques and expertise, making them less accessible

to all research labs. Organoids often lack the full complexity of in vivo organs, such as

interactions with the immune system and vascularization. Additionally, the variability

between organoid cultures can pose reproducibility issues.

1.3.5.3 Mouse models

Another commonly used preclinical model is mice. The use of mice in research dates

back to the early 20th century. C.C. Little established the first inbred mouse strains in

the 1900s, providing a genetically consistent model for studying hereditary traits and

diseases (82). The development of transgenic and knockout mice in the 1980s further

revolutionized the field, allowing for precise genetic manipulations.

Mouse models offer several advantages. Their genetic and physiological similarities

to humans make them valuable for studying complex biological processes and disease

mechanisms (83). The ability to manipulate their genome enables the creation of models

that mimic human genetic disorders (84). For example, transgenic mice expressing the

human amyloid precursor protein (APP) gene are used in Alzheimer’s disease research

to study amyloid plaque formation and test potential treatments (85). On the other

hand, knockout mice lacking the p53 tumor suppressor gene provide insights into cancer

development and the role of p53 in cell cycle regulation (86). Mice also have a short

reproductive cycle and lifespan, facilitating the study of genetic inheritance and disease

progression over generations (87).

That being said, there are limitations to using mouse models. Differences in metabolism,

immune responses, and lifespan between mice and humans can affect the translation of

findings. The ethical considerations of using animals in research also necessitate stringent

regulations and oversight. Additionally, maintaining genetically modified mouse strains

can be resource-intensive and costly.
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1.3.6 Observational clinical studies

Beside clinical trials, another type of clinical research is observational clinical study, which

is more practical than randomized control trials (RCTs) in many situations where RCTs

are either unethical or studying rare conditions (88). These studies provide invaluable

insights into the health and disease patterns of large groups of individuals, offering a real-

world perspective that complements the controlled environments of preclinical and clinical

studies. Observational clinical studies are research investigations where data is collected

on individuals or groups without manipulating the study environment or interventions

(88). Unlike RCTs, which introduce specific treatments or conditions to assess their

effects, observational studies observe natural variations in exposures and outcomes among

populations. These studies can be cohorts, which study incidence, cross-sectional studies,

which study prevalence, or case-control studies, which compare groups retrospectively

(88).

1.3.6.1 Roles of observational clinical studies

One of the most renowned observational studies is the Framingham Heart Study, initiated

in 1948. This longitudinal cohort study has followed multiple generations of residents in

Framingham, Massachusetts, to identify risk factors for cardiovascular disease. Key find-

ings from this study have established the roles of hypertension, high cholesterol, smoking,

obesity, and diabetes as major risk factors for heart disease, fundamentally shaping public

health policies and preventive strategies (89). The Nurses’ Health Study, which began in

1976, is another landmark observational study. It has tracked the health and lifestyle be-

haviors of over 120,000 registered nurses in the United States to investigate the long-term

effects of diet, hormones, environment, and lifestyle on women’s health. This study has

provided critical insights into the links between diet and cancer, the effects of hormone

replacement therapy, and risk factors for chronic diseases such as diabetes and cardio-

vascular disease (90). Today, the UK Biobank is a large-scale biomedical database and

research resource containing in-depth genetic and health information from half a million

UK participants. Launched in 2006, it aims to improve the prevention, diagnosis, and

treatment of a wide range of serious and life-threatening illnesses. The vast amount of

data collected, including genetic information, lifestyle factors, and health records, allows

researchers to explore complex interactions between genetics and environment in disease

development (91).

Observational studies reflect the complexities and variabilities of real-world settings,

providing insights that are highly generalizable to broader populations. This contrasts
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with the often highly controlled environments of clinical trials, which may not fully cap-

ture the diversity of everyday clinical practice. In addition, these studies can investigate

exposures that would be unethical to assign deliberately, such as smoking or environmen-

tal pollutants. They allow researchers to study the effects of such exposures on health

outcomes without intervening in harmful ways (88). Furthermore, compared to RCTs

where a relatively smaller group of homogeneous participants are recruited, observational

studies often involve large sample sizes and diverse populations, enhancing the statis-

tical power to detect associations and the ability to generalize findings across different

demographic groups (92). Last but not least, prospective observational studies can follow

individuals over long periods, providing valuable longitudinal data that can reveal trends

and causal relationships over time. This is particularly useful for studying chronic diseases

and long-term health outcomes where it would be challenging for clinical trials to assess

(93).

1.3.6.2 Data types of observational clinical studies

Observational studies utilize a broad array of data types and sources to comprehensively

capture health-related information from diverse populations. The richness and diversity

of these data types allow researchers to explore various aspects of health and disease,

leading to a more nuanced understanding of the factors that influence outcomes.

Among the types of data, demographic data forms the foundational layer of these

studies, providing essential information on participants’ age, gender, ethnicity, and socioe-

conomic status. These variables are crucial for understanding population diversity and

stratifying analyses to identify disparities in health outcomes across different demographic

groups (93). Clinical data is another vital component, encompassing medical records, di-

agnoses, treatment histories, and clinical outcomes. This data is typically obtained from

healthcare providers and includes detailed information about patients’ interactions with

the healthcare system, such as hospital admissions, surgical procedures, and medication

prescriptions. Clinical data allows researchers to track the progression of diseases and

evaluate the effectiveness of various treatments (94).

Molecular data, including -omic data, which is increasingly available through ad-

vances in high throughput technologies, provides insights into the genetic predispositions

as well as changes in the molecular landscape of individuals (4). Depending on the scale of

the studies, this data type often includes information on single nucleotide polymorphisms

(SNPs), gene expression profiles, epigenetic modifications as well as protein and metabo-

lite abundance. This type of data is essential for studying the molecular basis of diseases
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and identifying potential biomarkers for risk stratification and personalized medicine.

Observational studies often include behavioral data, which captures information on

lifestyle factors that influence health, such as diet, physical activity, smoking, and alcohol

consumption (95). This data is often collected through self-reported surveys or digital

health tools like wearable devices. Behavioral data helps researchers understand how

lifestyle choices impact health outcomes and identify potential targets for public health

interventions. Another important data type is environmental data, which includes in-

formation about external exposures that affect health, such as air pollution, geographic

location, climate conditions, and occupational hazards (96). Environmental data is typi-

cally gathered from governmental or environmental monitoring agencies and can be linked

to individual health records to assess the impact of environmental factors on disease in-

cidence and progression (96).

1.3.6.3 Data sources of observational clinical studies

Electronic Health Records (EHRs) are a primary source of clinical data in observational

studies. EHRs are digital versions of patients’ medical histories maintained by healthcare

providers, containing comprehensive information about patients’ diagnoses, treatments,

and outcomes (97). The widespread adoption of EHRs has significantly enhanced the

ability to conduct large-scale observational studies by providing accessible, longitudinal

clinical data.

Another common data source are biobanks, which are repositories that store biolog-

ical samples, such as blood, saliva, or tissue, along with associated health information

(98). These samples can be used for -omic analyses, providing a rich source of molecular

data. Biobanks enable researchers to study the molecular basis of diseases and investigate

the interactions between genes and environmental factors.

Surveys and questionnaires are traditional tools for collecting behavioral and demo-

graphic data directly from study participants. These instruments can be administered

in person, by phone, or online, and they gather detailed self-reported information about

participants’ lifestyles, behaviors, and personal histories (99). Surveys are particularly

useful for capturing data on behaviors and exposures that are not typically recorded

in medical records. Administrative databases, maintained by health agencies, insurance

companies, or other organizations, offer extensive data on healthcare utilization, costs,

and outcomes. These databases include information on hospital admissions, outpatient

visits, prescription drug use, and healthcare expenditures. Administrative data can be
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linked with clinical and demographic data to study patterns of healthcare access, quality,

and outcomes on a large scale (100).

Last but not least, wearable devices and mobile apps represent a growing source

of real-time behavioral and physiological data. These technologies track various health

metrics, such as physical activity, heart rate, sleep patterns, and glucose levels (101). The

continuous monitoring provided by wearables offers a granular view of health behaviors

and physiological responses, enabling researchers to study the dynamic aspects of health

and disease in everyday settings.

1.3.6.4 Limitations of observational clinical studies

Despite their many advantages, observational clinical studies face several limitations.

Particularly, observational studies are susceptible to confounding, where external factors

may influence both the exposure and outcome, leading to spurious associations (102).

For example, a study might find an association between coffee consumption and reduced

risk of a certain disease, but this could be confounded by other factors such as physical

activity and life style (103). In addition, various types of bias can affect the validity

of observational studies. Selection bias occurs when the study population is not rep-

resentative of the general population, while recall bias arises when participants do not

accurately remember or report past exposures or behaviors. Measurement bias can also

occur if the methods of data collection are inconsistent or inaccurate (88). Furthermore,

establishing causality in observational studies is challenging because these studies only

observe associations, not direct cause-and-effect relationships. While longitudinal data

can suggest temporal sequences, it cannot definitively prove causation without ruling out

all potential confounding factors (88). Moreover, the quality and completeness of data

in observational studies can vary. Missing data, inaccuracies in self-reported information,

and inconsistencies in medical records can compromise the reliability of findings. Ensur-

ing high data quality requires robust data collection methods and thorough validation

procedures. Understanding these limitations and implementing mitigation strategies are

keys to fully leverage the power of observational clinical data.

1.4 Machine learning for biomarker discovery

Biomarkers are measurable indicators of biological processes, pathogenic processes, or

pharmacologic responses to a therapeutic intervention (70). Biomarkers can be classified

into different types based on their applications in medical practice: diagnostic, prog-

nostic, and predictive biomarkers. Diagnostic biomarkers are used to detect or confirm
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the presence of a disease, enabling early and accurate diagnosis. Prognostic biomarkers

provide information about the likely course or outcome of a disease, helping to predict

disease progression and patient survival. Predictive biomarkers, on the other hand, are

used to predict the response of a patient to a particular treatment, facilitating personal-

ized therapy decisions (70). They are crucial for early disease detection, prognostication,

and the development of targeted therapies, thereby improving patient clinical outcomes.

The ultimate goal of leveraging multimodal datasets in preclinical and clinical studies is

to discover novel biomarkers and facilitate therapy development in the age of precision

medicine. However, the complexity of biological systems and the vast amount of data gen-

erated by modern high-throughput technologies pose significant challenges to traditional

biomarker discovery methods, as discussed in sections 1.2 and 1.3. Meanwhile, machine

learning has emerged as a powerful tool to address these challenges by leveraging data-

driven algorithms that enables the inference of subtle patterns and relationships within

complex biological datasets. That being said, challenges remain to be addressed before

we could utilize the full potential of machine learning in biomarker discovery.

1.4.1 Introduction to machine learning

Machine learning is a subset of artificial intelligence (AI) that focuses on developing

algorithms that enable computers to learn from and make inferences based on data. The

core idea is to allow the machine to learn general rules and relationships, which is then

used to make decisions or predictions without being explicitly programmed for specific

tasks (104). For example, a machine learning model could learn the relationship between

genetic variants to the risk of developing T2D, thereby assist clinical decision making

during diagnosis and intervention (105). Among the many ways of classifying machine

learning algorithms, one could considers the amount and type of human supervision these

algorithms get during training, which results in four categories: supervised, unsupervised,

semi-supervised and reinforcement learning (104).

Supervised learning involves using a known outcomes (labels) in the training dataset

to develop models that can predict these outcomes (104). Depending on the nature

of the label, supervised learning can be categorized into classification tasks, which pre-

dict categorical outcomes, and regression tasks, which predict continuous numeric values

(104). Common supervised learning algorithms include linear regression, logistic regres-

sion, k-nearest neighbors, support vector machines, decision trees, and random forests.

In contrast, unsupervised learning deals with unlabeled data, where the system identifies

patterns without prior knowledge of outcomes, commonly performing tasks such as clus-
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tering (e.g. k-means, hierarchical clustering), dimensionality reduction (e.g. PCA, t-SNE,

UMAP), and anomaly detection (104). Semi-supervised learning combines aspects of both

supervised and unsupervised learning, handling datasets where only some samples are la-

beled. Typically, this involves clustering samples based on similarities (unsupervised) and

then using the labeled data to inform predictions (supervised) (104). Finally, reinforce-

ment learning differs from the other forms significantly, where an ”agent” learns optimal

strategies (policies) to achieve goals by receiving “rewards” or “penalties” based on its

actions during each iteration of action (104).

A popular subset of machine learning is the deep learning, relying on a model archi-

tecture called deep neural network (DNN), which mimics the structure and function of a

biological neural network (106). The general architecture of a DNN consists of an input

layer for feature inputs, an output layer for predicted outcomes, and several hidden layers

in between to propagate and transform input signals (106). One significant advantage of

DNNs is their ability to discern complex patterns across various data types, leading to

high accuracy, especially when provided with large datasets (106). However, the nonlinear

modeling of data and the complexity of the hidden layers make the interpretation of DNN

predictions more challenging (107).

1.4.2 Basics of supervised machine learning in biomedical research

Supervised learning is the most commonly used machine learning approach in biomedical

research due to its effectiveness in prediction tasks (104). In a general case, we have a

data matrix X ∈ Rm×n of n variables and m examples and a target variable y ∈ Rm

representing the output to be predicted. The training dataset includes a set of input-

output pairs (Xi, yi) where Xi represents the features and yi represents the labels of the

sample i (104). An example of X and y are gene expression profiles and cancer types of

patients, respectively.

A supervised model is mathematical representation that aims to map input features

to the output labels, by learning the function y = f(X; θ) + ε, where θ is the model

parameters and ϵ is the noise, that describes the relationship between X and y (104).

The model training is the process of learning the above function by minimizing the loss

function L(y, ŷ), where ŷ = f(X; θ) is the prediction output of true outcome y (104). The

common forms of L are mean squared error for regression task (y is a continuous variable)

and cross entropy for classification task (y is a categorical variable). L is minimized

through an optimization algorithm to estimate the parameters θ in which L is minimum.
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The model f(X; θ) could come in many forms depending on the underlying relation-

ships between the variables and the form of target variable, ranging from more simple

models describing linear relationships between features and target such as linear regres-

sion and logistic regression to ones that could deal with more complex relationships such

as support vector machine, decision trees and deep neural network (104). The choice

of model type to use depends on many factors such as the size and complexity of the

data, the computational resources and the research questions of interest. Oftentimes, one

should experiment with different model conditions, or utilize an ensemble of models to

achieve a desirable result.

1.4.3 Training a supervised machine learning model for biomarker discovery

Supervised models, trained on labeled datasets to predict sample outcome using its input

features, is an effective way to learn the relationship between samples’ features and their

outcome. Through insights obtained from these relationships, we could pinpoint which

features are most likely associated with the outcome, making them potential biomarkers

of the study. The process from data to biomarker discovery is long and involves many

aspects of machine learning that need to be carefully executed.

1.4.3.1 Data preprocessing

In biomarker discovery, data could be sourced from various sources. Common sources

are omics technologies, including genomics, epigenomics, transcriptomics, proteomics and

metabolomics. Genomic, epigenomic and transcriptomic data might come from variants

of next-generation sequencing (NGS) technologies, providing information on gene variants

and mutations, epigenomic processes and gene expression levels, respectively. Proteomic

data, derived from mass spectrometry, offers insights into protein expression levels and

modifications. Metabolomic data, obtained through techniques like nuclear magnetic

resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS),

reveals small molecule metabolites in biological samples (108). Data could also be in form

of clinical information. Clinical data from electronic health records (EHRs), population

surveys and patient registries are also integral, offering context on patient demographics,

disease states, and treatment outcomes.

The foundation of any supervised learning model is high-quality data. Once the

data is collected, preprocessing is essential to ensure its quality and suitability for analy-

sis. This step involves several tasks. First, missing data must be addressed, either through
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imputation techniques or by excluding incomplete records if appropriate. In this step, the

pattern of data missingness must be taken into account in order to implement an appro-

priate measure (55). Next, data normalization or standardization is performed to scale

the features, ensuring that variables with different units or magnitudes do not dispropor-

tionately influence the model. For example, gene expression data might be normalized

using methods like log transformation or z-score normalization (53). Feature selection is

another critical aspect, reducing the dimensionality of the dataset by retaining only the

most relevant features. This is especially important due to the fact that the feature space

is usually much larger than the sample space in most biological datasets. Techniques such

as principal component analysis (PCA) or the least absolute shrinkage and selection oper-

ator (LASSO) can be employed to identify and retain significant variables. Furthermore,

biology-driven methods such as gene set enrichment analysis could also be leveraged to

select features that are both predictive and biologically relevant.

During data preprocessing, data visualization is a pivotal step in understanding the

underlying patterns and distributions within the dataset. It helps in identifying potential

outliers, trends, and relationships between variables. Visualization techniques such as

PCA, t-SNE and UMAP can be used for dimensionality reduction, allowing the represen-

tation of high-dimensional data in two or three dimensions. This aids in visualizing the

clustering of samples and the separation between different classes. Additionally, heatmaps

can be employed to illustrate the expression levels of selected biomarkers across different

samples, providing a clear visual representation of potential patterns.

1.4.3.2 Model training and evaluation

The training process of a supervised model involves several steps. Initially, the dataset

is split into training and testing subsets, typically in a ratio of 80:20. The training set is

used to build the model, while the testing set evaluates its performance. During model

training on the training set, one common approach is cross-validation (109), which is

employed to evaluate the generalizability and prevent overfitting of our model. This

involves dividing the training dataset into k subsets and training the model k times, each

time using k - 1 subsets as the training set and the remaining data as the validation

set. The performance metric is averaged over all k trials and the final model, which

is trained using the whole training set, is then tested with the testing set. For model

training, the model architecture is defined based on the problem at hand. For biomarker

discovery, common models include linear regression, logistic regression, support vector

machines (SVMs), decision trees, random forests, and deep neural networks. Each method

corresponds to specific learning algorithm and set of hyperparameters that need to be
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optimized during training. Common algorithms for hyperparameter optimization include

grid search, where the model exhaustively searches through a manually specified subset

of the hyperparameter space, random search, where the model randomly samples the

hyperparameter space and Bayesian optimization, where the model uses a probabilistic

model to select the most promising hyperparameters based on past evaluations.

During training process, the model parameters are optimized to minimize the loss

function, which measures the difference between the predicted and actual outcomes. A

commonly used optimization algorithm is gradient descent. The core idea behind gradient

descent is to use the gradient (or derivative) of the loss function with respect to the model

parameters to guide the direction of parameter updates. The gradient points in the

direction of the steepest increase of the loss function, so moving in the opposite direction

(down the gradient) will decrease the loss (110). A common variant of gradient descent

are stochastic gradient descent, where the algorithm uses a small number of training

examples to compute the gradients and update the parameters. Besides gradient descent,

in the context of linear regression, ordinary least squares is the most common method

for parameter optimization. It minimizes the sum of the squared differences between the

observed and predicted values. Particularly, for the linear model y = f(X; θ) + ε, the

parameters θ can be estimated by θ̂ = (XTX)−1XTy where XTX has to be invertible.

For biological data, dimensionality imbalance makes a significant challenge for build-

ing a good performing model. To mitigate the problem, regularization techniques, such

as LASSO or ridge regression, may be applied to prevent overfitting, which occurs when

the model captures very well signals from the training dataset but fails to generalize to

the testing dataset. Other popular techniques to enhance the learning process include

bagging, boosting and ensemble, which should be considered given specific research cir-

cumstances.

After training, the model’s performance is evaluated using the testing dataset. Sev-

eral metrics are used to assess the accuracy, precision, recall, and F1-score for classification

tasks, or mean squared error (MSE) and root mean squared error (RMSE) for regression

tasks. Cross-validation can provide a robust measure of performance. This helps in en-

suring that the model generalizes well to unseen data and is not overfitted to the training

set.

1.4.3.3 Biomarker discovery and validation

With a trained and evaluated model, the next important step is to interpret the model
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and identify potential biomarkers. In the context of supervised learning, this usually in-

volves analyzing the feature importance of the model. For instance, in a random forest

model, the importance of each feature is determined based on the reduction in impurity

it provides (111). For example, presence of certain genetic mutations could stratify in-

dividuals into higher and lower risks of developing type 2 diabetes, in other words these

mutational features segregate the dataset into two more homogeneous groups than the

original one, making them important features of the model. Features with high impor-

tance scores are considered potential biomarkers, as they significantly contribute to the

model’s predictions. Similarly, in linear models, the magnitude of the coefficients can in-

dicate the relevance of each feature. In general, lower complexity models such as random

forest and linear models make it more straight forward to interpret and extract feature

importance. On the other hand, deep neural networks are more powerful in learning com-

plex patterns within the data at the expense of interpretation as it is more challenging to

extract important features and biomarkers out of these models. In most cases, a post hoc

interpretation procedure must be employed to analyse the prediction of such models. It

is important to take these into account when choosing a suitable model for your research

question.

Identified biomarkers must undergo rigorous validation to confirm their biological rel-

evance and clinical utility. Validation involves both in silico and experimental approaches.

In silico validation includes assessing the reproducibility of the findings in independent

datasets and performing statistical tests to confirm the significance of the biomarkers.

Experimental validation involves laboratory experiments such as quantitative PCR for

gene expression, ELISA for protein levels, or targeted mass spectrometry for metabolites.

Furthermore, validation studies may extend to clinical trials to evaluate the effectiveness

of the biomarkers in predicting disease outcomes or treatment responses in a real-world

setting.

It is essential to distinguish between association and causality when interpreting

biomarkers. An observed association between a biomarker and a disease does not neces-

sarily imply that the biomarker causes the disease. Establishing causality requires rigor-

ous testing and validation. This often involves longitudinal studies, randomized controlled

trials, and techniques such as Mendelian randomization, which uses genetic variants as

instrumental variables to infer causal relationships (112). By carefully validating biomark-

ers through these methods, researchers can ensure that identified biomarkers are not only

associated with but also causally linked to the biological processes of interest, enhancing

their utility in clinical practice.
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1.4.4 From interpretability to translatability

The integration of machine learning into biomedical research has ushered in a new era of

precision medicine, particularly through the discovery of biomarkers. These biomarkers,

which serve as measurable indicators of biological states or conditions, are pivotal in

diagnosing diseases, predicting their progression, and tailoring therapeutic strategies to

individual patients. However, the journey from biomarker discovery to clinical application

is fraught with challenges, primarily related to the interpretability and translatability of

machine learning models. It is crucial to find the balance between predictive power and

interpretability in machine learning algorithms, thereby making precision medicine more

translational.

Among machine learning algorithms, “shallow” learning models, such as linear re-

gression, logistic regression, decision trees, and support vector machines, are typically

more interpretable. These models allow researchers to easily understand the relationship

between input features and the predicted outcomes. However, the simplicity of shallow

learning models often comes at the cost of reduced predictive power, especially when

dealing with complex, high-dimensional data typical of biomedical research (106).

Deep learning models, such as neural networks, convolutional neural networks (CNNs),

recurrent neural networks (RNNs), transformer and recent advancements of large language

models (LLMs) offer superior predictive performance by capturing intricate patterns and

relationships within the data (113), at the expense of interpretability. These models are

particularly effective in handling large, multi-dimensional datasets, making them ideal

for omics and imaging data. Despite their predictive power, deep learning models are

often criticized for being ”black boxes,” where the internal workings and the basis for

their predictions are not easily explained (114). This lack of transparency can hinder the

acceptance and application of these models in clinical settings, where understanding the

rationale behind a decision is crucial. In addition, deep learning models are demanding

in terms of amount of data and computational resources required to train, making them

less accessible in many biomedical applications.

Despite the high complexity, deep learning models are not entirely black boxes, as

several post hoc strategies have been proposed to enhance the interpretability of these

models and bridge the gap between high predictive accuracy and practical clinical util-

ity. One common approach is to compute feature importance scores, which provide in-

sights into which features (or biomarkers) significantly influence the model’s predictions.

Methods such as SHapley Additive exPlanations (SHAP) and Local Interpretable Model-
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agnostic Explanations (LIME) are commonly used to calculate these importance scores

(115). SHAP values, for example, quantify the contribution of each feature to the pre-

diction by considering all possible feature combinations, offering a comprehensive view

of feature impact (115). Besides deep learning models, SHAP values are also commonly

used to interpret non-differentiable machine learning models such as boosted trees and

random forest. For most deep learning models that are differentiable (ie. trained with

gradient descent), another widely used technique is integrated gradient, which works by

integrating the gradients of the model’s output with respect to the inputs along a path

from a baseline (typically all zeros) to the actual input. The integrated gradients for

a feature indicate how much that feature contributes to the prediction, offering a more

nuanced view of feature importance compared to standard gradients. By using integrated

gradients, researchers can attribute the output of the model to the features in a manner

that is consistent with the gradients, but more stable and less noisy (116). In models

such as CNNs, RNNs and Transformers, attention mechanisms enable the model to focus

on specific parts of the input data that are most relevant to the prediction task (113).

By visualizing attention weights, researchers can identify which features or regions of the

data are most critical for the model’s decisions. Besides these post hoc analysis, simpli-

fying complex models by using fewer layers or neurons can also improve interpretability.

Although this may slightly reduce predictive accuracy, it can provide a better balance be-

tween performance and transparency. In summary, enhancing the interpretability of deep

learning models through techniques like feature importance scores, attention mechanisms,

and visualization tools is essential for their acceptance in clinical settings.

Ensuring the translatability of these models through robust validation and interdis-

ciplinary collaboration is crucial for transforming research discoveries into tangible health

benefits. By addressing these challenges, we can harness the full power of machine learning

to make precision medicine more effective, personalized, and broadly applicable.
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2 Aims of research

So far we have discussed many aspects of precision cancer medicine and precision di-

abetes medicine. Though representing a paradigm shift in healthcare, the field faces

significant challenges, including the underutilization of multimodal data, data sparsity,

issues with interpretability, and the need for advanced computational methods to analyze

high-dimensional datasets. Overcoming these hurdles is essential to fully realize the po-

tential of precision medicine and improve patient outcomes. This thesis introduces novel

data analytic and methodological approaches with the aim to address these challenges:

• Aim 1: Leveraging inferred ancestral information to improve biomarker discovery

in drug high throughput screens of cancer cell lines.

• Aim 2: Integration of multiomic and clinical data in an interpretable machine learn-

ing framework to identify prognostic markers of complex diseases such as distal

sensorimotor polyneuropathy.

• Aim 3: Adaptation of pretrained large language models to sparse electronic health

records for prognosis and prevention of type 2 diabetes and its complications.

First, to address the challenge of improving biomarker discovery in drug high-throughput

screening using cancer cell lines, I derived a computational pipeline to infer the ancestry of

the cancer cell lines then leveraged inferred ancestry information to enhance the accuracy

and relevance of biomarker identification. By incorporating ancestry data, the genetic

diversity was accounted for, which is often overlooked in traditional biomarker discovery

approaches. This method not only improves the identification of biomarkers that predict

drug response but also highlights the importance of considering genetic ancestry in preci-

sion medicine research. The findings underscore the potential for more personalized and

effective cancer treatments by acknowledging and utilizing genetic diversity.

In addition, integrating multiomic data collected from sparse observational clinical

data is essential to study complex processes in the field of precision diabetes medicine.

Multiomic data provides a comprehensive view of biological processes. However, the inte-

gration of these heterogeneous data types poses significant analytical challenges. Here I

introduce a novel machine learning framework that leverages gene set enrichment analysis

to select biologically relevant features then combines these features in a robust integration

approach. By doing so, the feature space is shrunk and mapped to the same biological
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space, facilitating prediction and interpretation. This integrative approach not only en-

hances the predictive power of the model but also provides insights into the underlying

biological mechanisms, making the findings more applicable to clinical settings. The

framework demonstrates that combining multiple data types in a biologically meaningful

way can lead to more robust and interpretable biomarker discovery.

Last but not least, leveraging clinical electronic health records (EHRs) for pretrained

large language models (LLMs) to build a prognostic and interpretable model for type 2

diabetes is an important yet challenging task. EHRs contain a wealth of information that

can be leveraged for predictive modeling, but their unstructured nature, variability and

sparsity pose significant challenges. Meanwhile, LLMs have demonstrated huge success

in the language process field, posing a great potential for adaptation to other domains.

Here I explored the utility of pretrained LLMs when adapting to EHRs for predictive

modeling. I connected the two domains by customized data processing, prepending a

learnable embedding to the LLM and fine-tuning both components using the EHR data.

The model not only provides accurate prognostic insights for several important metabolic

indicators but also maintains interpretability, allowing clinicians to understand the factors

driving the predictions. This approach bridges the gap between complex data analysis and

practical clinical application, demonstrating the potential of advanced machine learning

techniques in enhancing patient care and management.

In summary, the approaches mentioned above collectively address critical challenges

in precision medicine by leveraging advanced machine learning techniques and diverse

data types in several biomedical research settings. Together, these approaches illustrate

the transformative potential of precision medicine, paving the way for more personalized,

effective, and interpretable healthcare solutions.
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3 Results

This chapter shows the results of the three projects constituting this cumulative thesis and

that were outlined in the previous chapter. Each project takes up one separate section in

this chapter. Section 3.1 and 3.2 are peer-reviewed papers and section 3.3 is a preprint.

3.1 Inferred Ancestral Origin of Cancer Cell Lines Associates

with Differential Drug Response
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Abstract: Disparities between risk, treatment outcomes and survival rates in cancer patients across
the world may be attributed to socioeconomic factors. In addition, the role of ancestry is frequently
discussed. In preclinical studies, high-throughput drug screens in cancer cell lines have empowered
the identification of clinically relevant molecular biomarkers of drug sensitivity; however, the genetic
ancestry from tissue donors has been largely neglected in this setting. In order to address this,
here, we show that the inferred ancestry of cancer cell lines is conserved and may impact drug
response in patients as a predictive covariate in high-throughput drug screens. We found that there
are differential drug responses between European and East Asian ancestries, especially when treated
with PI3K/mTOR inhibitors. Our finding emphasizes a new angle in precision medicine, as cancer
intervention strategies should consider the germline landscape, thereby reducing the failure rate of
clinical trials.

Keywords: cancer; ancestry; high-throughput drug screen; biomarkers

1. Introduction

Pre-clinical studies in drug development can help to refine the target population and
thus increase the success of clinical trials [1]. To this end, cancer cell lines are simplified
and scalable models of human tumours, and enable the high-throughput exploration of
pharmacogenetic interactions [2–4]. Among the largest efforts are the Genomics of Drug
Sensitivity in Cancer (GDSC) project [2], Cancer Cell Line Encyclopedia (CCLE) [3] and
Cancer Therapeutics Response Portal (CTRP) [4]. These efforts have screened hundreds
of compounds across >1000 cancer cell lines in order to identify molecular biomarkers of
drug response, thereby paving the way for precision oncology.

In the last two decades, the Cancer Genome Atlas (TCGA) [5] and International Can-
cer Gene Consortium (ICGC) [6] have pioneered the molecular characterisation of cancer
patients. These efforts have revealed core cancer genes and their driver mutations, which
are conserved in cancer cell lines (CCL) [7], and focusing on these somatic mutations
assisted the identification of potential biomarkers [2]. On the other hand, germline variants
have been known to influence the somatic mutational landscape of cancer tumours by
changing the structures of genes and amino acid sequences, affecting the distribution of
somatic mutations and causing global enrichment of mutations [8]. So far, many studies
have revealed the direct effect of germline variants or their interaction with somatic muta-
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tions in predicting the outcome of patient treatments or sensitivity of cancer cell lines in
high-throughput drug screens (HTSs) [9–11].

In contrast, genetic ancestry is mostly neglected in HTSs, although it is an estab-
lished factor of risk, progression and response to treatment in several cancer types in the
clinic [12,13]. Incorporating ancestry as an independent factor or covariate in drug response
modelling may result in a more refined discovery of novel biomarkers, and enable us to
model interactions with patient demographics.

In this study, we leveraged the drug sensitivity profiles of >1000 molecularly charac-
terised CCLs across >400 drugs obtained from the GDSC project for revealing ancestry-
dependent pharmacogenetic interactions. First, we inferred the ancestry of the cell line
panel using a Bayesian method, using a list of 100 predictive single-nucleotide poly-
morphisms (referred to as ancestral SNPs) [14] for inference (Figure 1a), validated in an
independent HTS (CTRP). In addition, by using the cell line ancestry, we subsequently
inferred the HLA genotypes of the CCLs (Figure 1a). Lastly, we identified cell line ances-
tries that confer drug sensitivity, ultimately revealing patient subgroups stratified by their
ancestry which may show differential responses to treatments in clinical trials (Figure 1b).
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Figure 1. Ancestry inference pipeline and downstream analysis for differential drug response. (a) The
analysis pipeline for retrieving an ancestral genotyping matrix by using Affymetrix SNP6.0 arrays
from the GDSC CCLs, including data processing, quality control and imputation. The inferred
ancestry and HLA genotypes are deployed on Cell Model Passports. (b) Workflow of pairwise
ancestral comparisons of drug response in GDSC, validated with CTRP, generating hypotheses for
patient stratifications in clinical trials based on demographics.

2. Results
2.1. Inferred Ancestry of Cancer Cell Lines Is Conserved

Using our processing pipeline (Figure 1a), the ancestral SNPs from the GDSC geno-
typing data were retrieved and imputed, which was then used to calculate the ancestral
probabilities of these CCLs and reveal their ancestry origin (details in Methods). Our
ancestry inference pipeline is publicly available and applicable for genetically characterised
human cancer models of unknown origin.

The CCLs were classified in 25 subpopulations (Figure 2a), which stemmed from the
ancestral origins defined by the 1000 Genomes Project (1000G) [15]. Since this level of
stratification resulted in relatively small sample sizes, we summarised the subpopulations into
five ancestries, namely European (EUR), East Asian (EAS), African (AFR), American (AMR)
and South Asian (SAS) ancestries (Figure 2a). In this context, most cell lines were classified as
EUR, followed by EAS ancestry. Particularly, EUR and EAS were assigned to 633 cells (63.1%)
and 248 cells (25.0%), respectively, which together constituted the vast majority of the dataset
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(88.1%). The other ancestries, AFR, AMR and SAS, only accounted for 56 cells (5.7%), 47 cells
(5.4%) and 10 cells (0.8%), respectively (Figure 2a). The distribution of ancestries across cancer
types was conserved in many cancer types (Figure 2b). For example, 69.69% of small cell
lung cancer (SCLC) were EUR (46/66 cells), in contrast with only 7.58% AMR (5/66 cells).
There were a few exceptions, however, in which the vast majority of cells in a cancer type
were EAS. For example, 35 CCLs were derived from oesophageal carcinoma (ESCA) samples,
of which 24 CCLs were classified into EAS (68.57%). CCLs were labelled according to TCGA
classification, in which a significant number of cells could not be classified into any cancer
type (183/994 cells, 18.41%) (Figure 2b).
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Figure 2. Inference of the ancestral distribution in cancer cell lines. (a) Heatmap of the z-scores for the
inference of ancestry by estimating ancestral probabilities using a Bayesian method. (b) Distribution
of inferred ancestries across cancer types. (c) PCA on the ancestral genotyping matrix. (d) Ancestral
concordance between inferred ancestries of the GDSC and annotated CCLE CCLs.

A principal component analysis using the genotype matrix showed that the cells
were clustered into three distinct groups, which correspond to AFR, EAS and EUR/AMR
ancestries (Figure 2c), thus highlighting a stable prediction of ancestry in CCLs.

In order to examine the validity of our method, we compared the results with a similar
dataset from the CCLE project. We found 644 cell lines overlapping between the two
datasets, using the shared COSMIC and DepMap cell IDs. To make our data compatible
with the CCLE data, we summarised both AMR and EUR cell lines as Caucasian and EAS
and SAS cell lines as Asian in the annotated GDSC set. As expected, the inferred ancestry
showed very high concordance with the referenced ancestry by the CCLE. Particularly,
634 out of 644 cell lines were consistently annotated (98.4%). From the remaining ten cells,
nine were CCLE Caucasian that were classified as SAS (eight cells) or AFR (1 cell) and one
was an African cell line that was classified as AMR in GDSC, set by our pipeline (Figure 2d).
Although based only on a subset of the data, the extremely high concordance of our results
with CCLE data proved the accuracy of our analysis pipeline.

Furthermore, using the inferred ancestry information, we managed to predict the HLA
genotypes of the CCLs using the HiBAG method [16] with high accuracy (Supplementary
Table S1). We validated the result with 56 NCI60 cell lines; the accuracy was up to 85.7%
(allowing one mismatched allele for the haplotype consisting of six loci in MHC class I
and II: A, B, C, DRB1, DQB1 and DPB1). Together, ancestries and HLA genotypes of CCLs
will be imported to Cell Model Passports, a catalogue of CCL annotations that serve as
potential features in pharmacogenomic studies (Figure 1a).
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2.2. Differential Drug Responses between Asian and Caucasian Cancer Cell Lines

Next, we investigated CCL ancestries which confer drug sensitivity, which may be
leveraged for selecting target cohorts based on demographics. The drug response data
from the GDSC project served as our discovery cohort, and CTRP was used for validation.
We performed one-way ANOVA tests for investigating imbalances in drug responses
across two pairwise ancestries. Comparing the largest two populations, i.e., Asian and
Caucasian (Figure 1b; Methods), revealed 59 significant associations between ancestry and
drug response in total across nine cancer types (Figure 3a & Supplementary Table S2, <20%
FDR). Comparisons of Asian and African, as well as African and Caucasian ancestries are
included in the Supplementary Materials (Supplementary Tables S3 and S4).
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Figure 3. Differential drug responses between ancestral origins. (a) Associations between Caucasian and Asian ancestry
and drug response across cancer types (<20% FDR). (b) Comparison of effect sizes between GDSC and CRTP. Highlighted
are significant associations in GDSC, which were overlapping with CTRP. Here, the exemplified associations are higher
drug sensitivity of (c) Asian CCLs to PI3K/mTOR inhibitors in GBM. (d) Caucasian CCLs to anthracyclines in COREAD
and (e) Caucasian CCLs to TKIs in LGG.

For validation, we investigated the overlapping screens between GDSC and CTRP
(Figure 1b; Methods). Focusing on the fraction of associations between ancestry and
drug response that were significant in GDSC (<20% FDR), we observed that 11 out of 16
associations from our discovery cohort displayed a consistent sign of effect size (Figure 3b).
Four out of the five inconsistent validation experiments were found in acute lymphoblastic
leukaemias (ALL). Across all performed tests, the Pearson correlation for effect sizes of the
overlapping compounds between GDSC and CCLE was R = 0.2 (Figure 3b), suggesting
reproducible associations in independent experiments.

Among the top significant associations, Asian cell lines showed higher sensitivity to
PI3K/mTOR inhibitors, especially in glioblastoma (GBM). Specifically, out of all 12 associa-
tions in GBM, the cell lines were significantly sensitive to apitolisib (Cohen’s d = −1.73, adj.
p = 0.06), GSK1059615 (Cohen’s d = −1.55, adj. p = 0.11), torin 2 (Cohen’s d = −1.87, adj.
p = 0.06) and WYE-125132 (Cohen’s d = −1.91, adj. p = 0.04) (Figure 3c). Furthermore, the
targets of those drugs (PI3K/mTOR) were enriched among Asian-sensitive associations
in GBM (mTOR: adj. p = 0.0004, PI3K: adj. p = 0.01; Methods). Noticeably, the majority of
these inhibitors (three out of four) target only mTOR or a combination of mTOR and PI3K,
whereas GSK1059615 only targets PI3K.
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Associations in which Caucasian CCLs were found to be more sensitive accounted for
47 out of 59 total significant associations (Supplementary Table S2). In fact, 16 out of 59
significant associations were found in colorectal adenocarcinoma (COREAD), all of which
were found to be sensitive in Caucasian CCLs. We found that Caucasian CCLs are more
sensitive to the two anthracyclines doxorubicin and epirubicin (Figure 3d). This type of
drug is enriched among all significant associations in COREAD (adj. p = 0.09).

Furthermore, we identified that Caucasian CCLs in low-grade glioma (LGG) were
more sensitive to irreversible tyrosine kinase inhibitors (TKI) targeting EGFR, ERBB2 or
ERBB4, such as AST-1306 (Cohen’s d = 1.71, adj. p = 0.14) and CI-1033 (Cohen’s d = 1.43, adj.
p = 0.17) (Figure 3e). Remarkably, other screened TKIs such as pelitinib (Cohen’s d = 1.17,
adj. p = 0.25) and PF-00299804 (Cohen’s d = 0.98, adj. p = 0.25) showed similar trends but
did not pass our set FDR threshold of 20%. Interestingly, all CCLs with a copy number
gain of EGFR showed sensitivity to TKIs independent of ancestry, but here we can reveal
that other Caucasian CCLs with wild-type EGFR respond better than their Asian CCL
wild-type counterparts.

Somatic driver mutations are commonly investigated as potential drug response
biomarkers. It is likely that the frequency by which somatic mutations are observed in
patients can be dependent on their ancestry. Consequently, we screened for enrichments
of high-confidence cancer genes in CCLs in either Asian or Caucasian ancestry CCLs
(Methods). We only found a handful of enriched cancer genes, namely for Asian CCLs; NF1
mutations are more abundant for GBM (adj. p = 0.05; Figure 3c) and mutations in MLL2
or PIK3R1 are more prevalent for COREAD (adj. p = 0.26 and adj. p = 0.21, respectively;
Figure 3d). However, none of these mutations explained the ancestry-dependent variability
of drug responses.

3. Discussion

Drug approval agencies are bound by demographics, e.g., the EMA in Europe or
the FDA in the USA, and have an undeniable impact on pharmacology [17]. In order
to estimate its impact on drug response, we predicted ancestry in cancer cell lines and
showed a differential drug response in high-throughput drug screens. We implemented
an efficient Bayesian ancestral inference which utilized ancestral genotype frequencies of
SNPs and population weights in the 1000G project to successfully classify cell lines into
ancestral populations, demonstrating the possibility to infer missing ancestral information
in published data for both patients and cancer cell lines, even with sparse input data.

In general, there is consistency in the distributions of ancestries across cancer types,
with a few exceptions. The distribution of ancestries in CCLs may reflect the demographic
differences in incidence and prevalence of cancer among ethnic groups, thereby influencing
the selection of CCL models. For example, a few studies have shown that Asian populations
have significantly higher incidence and prevalence of ESCA and STAD as compared to
Caucasian [18–21], which is consistent with our findings.

Strikingly high concordance with published data from the CCLE project supported
the validity of our ancestral results and the whole analysis pipeline, building a platform
for subsequent analysis and future studies.

A univariate ANOVA analysis was conducted to assess whether ancestry can affect
drug sensitivity, especially between Asian and Caucasian CCLs. The results reveal some
drugs for which Asian CCLs showed higher sensitivity than Caucasian CCLs. Among the
most significant associations were inhibitors targeting PI3K/mTOR signalling in GBM,
especially those targeting mTOR. This was consistent with a past study involving clinical
trials in solid tumours, concluding that Asian patients suffered from more severe toxicity
when treated with PI3K/mTOR inhibitors than European patients who were given similar
doses in solid tumours [22]. However, the direct impact of ancestry on the sensitivity of
PI3K/mTOR inhibitors and the molecular mechanisms that drive the observed differential
drug sensitivity have been hardly studied so far. The response of CCLs with Asian ancestry
is consistent with previous studies reporting a high susceptibility of Asian patient-derived
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cell lines to combination treatment with nimotuzumab (EGFR inhibitor) and rapamycin
(mTOR inhibitor) in GBM, which was found to be independent of their EGFR status [23].

In addition, previous studies have shown that East Asian patients are more sensitive
to EGFR inhibitors, due to an observation that Asians have a higher mutational frequency
of EGFR compared to Caucasians [24]. In contrast, amplifications in EGFR have been found
to be more prevalent in Caucasians for cancer types such as non-small cell lung cancer [25].
Accordingly, we found that TKIs targeting EGFR, ERBB2 or ERBB4 conferred sensitivity in
Caucasian CCLs in LGG. However, sensitivity was also found for Caucasian CCLs with
wild-type EGFR, which is not reported thus far.

We further observed a significant number of Caucasian CCLs in the cancer types
COREAD, LGG and ALL, which were more sensitive to various drugs compared to
Asian CCLs, but these associations showed no enrichment of specific signalling path-
ways and putative drug targets. Many studies have shown the ethnic differences in the
incidence and survival rates of these cancers, especially between Asian and Caucasian
patients [12,13,26,27], and a few studies reported a significantly higher toxicity response to
chemotherapy in COREAD Caucasian patients than Asian ones [28,29], but the cause of
the differential response to targeted therapies which lies under differences in molecular
profiles is still yet to be discovered by more comprehensive molecular investigations.

A limitation of this study lies in the fact that human CCLs remain simplified models
which do not capture the full complexity observed in tumours, e.g., the tumour microen-
vironment, clonal heterogeneity or immune responses. Despite the conserved ancestral
origins of CCLs, biological processes within the tumour microenvironment may differ
in vivo [7], thus often hampering the generalisation of the results to patients. In addition,
CCL models lack patient environments and lifestyle factors, which also can influence the
sensitivity to cancer treatments [30]. It would be desirable to explore differences within
subpopulations; however, we lack the statistical power due to reduced sample sizes. Thus,
differential drug sensitivity analyses of subpopulations may become feasible with ad-
ditional data releases in the future. Nevertheless, our findings suggest that the impact
of ancestry can be partially modelled in vitro. We present a resource for ancestry and
HLA subtypes of CCLs, which are shared via Cell Model Passports. This enables in vitro
pharmacogenomics analyses considering demographics. In addition, we anticipate that
the HLA subtype definition will become an important feature in upcoming CCLs and
lymphocyte co-culturing HTS, which are currently pursued for novel immunotherapies. In
summary, this study successfully elucidated the distribution of ancestries in the selection
of cancer cell lines using an efficient inference pipeline and subsequent differential drug
responses to PI3K/mTOR inhibitors and TKIs in GBM and LGG, respectively. We believe
that this resource and subsequent findings may shape the next generation of algorithms to
identify biomarkers in HTSs.

4. Materials and Methods
4.1. Data Availability

The Affymetrix SNP6.0 arrays genotyping dataset contains 1007 cancer cell lines and
884,148 SNPs ranging from chromosome 1 to chromosome 22, which are deposited in
the European Genome-Phenome Archive (EGAS00001000978). For inferring ancestry, we
leveraged the set of 100 ancestral SNPs from Sampson et al. [14]. Using synonyms data
from Ensembl Biomart, we retrieved the genotypes of 26 ancestral SNPs, and imputed the
remaining 74 SNPs.

4.2. Quality Control

CSV files from the Genomics of Drug Sensitivity in Cancer (GDSC) database were
transformed into text (PED and MAP) and binary file sets (BED, BIM and FAM) for each
chromosome using PLINK [31]. First, SNPs that had a missing rate higher than 10% and
a minor allele frequency (MAF) less than 0.05 were removed. Next, positions of SNPs
were compared to SNP coordinates of a legend file of the same build retrieved from the
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1000 Genome Project (1000G) database (https://www.internationalgenome.org/, accessed
on 20 February 2020) [15] and mismatched SNPs were removed. Finally, SNPs were checked
for potential swapping of the reference strand, alternative alleles and strand flipping, and
the mismatched SNPs were removed.

4.3. Phasing and Imputation

The quality-controlled binary file sets were converted to VCF files using PLINK. A
reference genome was downloaded from the 1000G database in the form of phased VCF
files and converted to BCF using BCFtools [32] and M3VCF using Minimac3 [33]. The VCF
file inputs were phased using Eagle2 [34], provided the BCF reference files and genetic
map from the 1000G. The phased VCF files were then imputed using Minimac4 [33] to fill
the missing SNPs in each chromosome, provided the M3VCF reference genome files.

4.4. Inference of Ancestry

The imputed genotypes were then combined with the typed set to assemble a complete
ancestral list to infer the ancestral origin of the cell lines. We calculated the probability
that a cell belongs to a population given its observed ancestral genotype, the popula-
tion’s genotype frequency and the population weight in the 1000G, based on Bayesian
inference. The population genotype frequencies were obtained using the Ensembl API.
Particularly, for a cell Yi that has the genotype Gi of the ancestral SNPs independently
occurring, the probability P(Gi) that Yi belongs to a population k (k corresponds to one of
25 subpopulations in the 1000 G) is:

P
(→

Gi

)
=

100

∏
j = 1

P̂(Yi = k)× (Yi = k)
P̂
(
Gij

)

Then, the subpopulation was assigned to the cell line which had the highest corre-

sponding probability: arg maxk{P(
→
Gi)}. Labelling of the populations was based on the

1000G classification.

4.5. HLA Prediction

The imputed genotypes and the inferred ancestry of cancer cell lines (CCLs) were
used to predict the genotypes of seven human leukocyte antigen (HLA) loci, including
HLA-A, HLA-B, HLA-C, HLA-DPB1, HLA-DQA1, HLA-DQB1 and HLA-DRB1, at 4-digit
resolution using the HIBAG algorithm [16].

4.6. Ancestry Biomarker Analysis

First, we combined GDSC1 and GDSC2 datasets and generated a unique drug identi-
fier (including drug ID and dataset). Next, we removed the drugs that had extrapolated
IC50 values (considering the maximum screening concentrations) in more than 50% of the
screened CCLs. Then, we performed one-way ANOVAs across the remaining drugs and
for each cancer type using ancestry as a predictor and drug response (log10(IC50)) as the
dependent variable, adjusting for cell characteristics and growth properties as covariates.
The unclassified cell lines and the cancer types that contained only one population were
filtered out of the analysis. We also removed the drugs that were treated in less than
10 cell lines. To simplify the subsequent analysis and comparison to the Cancer Cell Line
Encyclopedia (CCLE) dataset, we re-encoded the ancestry variable as follows: American
(AMR) and European (EUR) were combined into Caucasian; East Asian (EAS) and South
Asian (SAS) were combined into Asian. ANOVAs were performed in a pairwise manner
between two out of the three populations. Populations that had less than three cells were
not tested. The effect size was calculated as Cohen’s d. The p-values of the ANOVA tests
for each cancer type were adjusted using the Benjamini–Hochberg correction.
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4.7. Enrichment of Drug Targets

We identified enriched drug targets in drugs with differential drug response for each
cancer type independently. We extracted the putative drug targets from the GDSC manifest
files and for each drug target that had at least 2 significant drugs per cancer type. We
subsequently tested for enrichment using a hypergeometric test for nine drug targets
in total, and we adjusted the enrichment p-values for multiplicity using the Bonferroni
adjustment method.

4.8. Enrichment of Somatic Driver Genes in Ancestries

We downloaded the Binary Event Matrices (BEM) from the GDSC portal (https:
//www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources/Home.html, accessed on
13 March 2020), which contains a curated set of cancer somatic driver genes observed in
both CCLs and primary tumours, from which the binary mutational status is given. We
used a two-sided Fisher’s test for performing the enrichment tests. We only tested cancer
types with at least one drug displaying a differential drug response, and only mutations
with at least six mutated CCLs. In total, we performed 88 statistical tests, and adjusted
the enrichment p-values for multiplicity with the Bonferroni adjustment method for each
cancer type independently.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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Abstract 

Distal sensorimotor polyneuropathy (DSPN) is a common neurological disorder in elderly adults and 

people with obesity, prediabetes and diabetes and is associated with high morbidity and premature 

mortality. DSPN is a multifactorial disease and not fully understood yet. Here, we developed the 

Interpretable Multimodal Machine Learning (IMML) framework for predicting DSPN prevalence and 

incidence based on sparse multimodal data. Exploiting IMMLs interpretability further empowered 

biomarker identification. We leveraged the population-based KORA F4/FF4 cohort including 1,091 

participants and their deep multimodal characterisation, i.e. clinical data, genomics, methylomics, 

transcriptomics, proteomics, inflammatory proteins and metabolomics. Clinical data alone is sufficient 

to stratify individuals with and without DSPN (AUROC = 0.752), whilst predicting DSPN incidence 

6.5±0.2 years later strongly benefits from clinical data complemented with two or more molecular 

modalities (improved ΔAUROC >0.1, achieved AUROC of 0.714). Important and interpretable 

features of incident DSPN prediction include up-regulation of proinflammatory cytokines, down-

regulation of SUMOylation pathway and essential fatty acids, thus yielding novel insights in the disease 

pathophysiology. These may become biomarkers for incident DSPN, guide prevention strategies and 

serve as proof of concept for the utility of IMML in studying complex diseases. 
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Introduction 

Type 2 diabetes (T2D) and its comorbidities have become a global challenge given the increasing case 

numbers and the enormous cost of diagnosis and treatments, putting burden on the public health 

management worldwide 1–4. Distal sensorimotor polyneuropathy (DSPN) is the most common 

neurological complication in T2D which is characterised by a sensory loss of lower limbs, with or 

without neuropathic pain, caused by nerve damage 5. Importantly, recent studies show that DSPN is 

also prevalent in elderly adults and people with prediabetes and obesity, thus affecting an increasing 

proportion of the general population 6,7.  

DSPN diagnosis is challenging. It is based on evaluating the sensing ability of individuals, observing 

existing physiological conditions and morphological changes, and finally conducting 

neurophysiological measurements 7. However, a large proportion of individuals with DSPN remain 

undiagnosed 8, and we lack computational methods to reliably predict prevalent (i.e. cross-sectional) 

and incident (i.e. disease trajectory) DSPN. Furthermore, the complex pathogenesis of DSPN is not 

fully understood yet, and is anticipated to be multifactorial 9, attributed by the interplay of many 

intrinsic and extrinsic factors 7, thus rendering predictions challenging.  

With the advent of multi-omics technologies, we are now able to conduct high-throughput assays that 

simultaneously characterise hundreds to millions of biomolecules across large patient cohorts 10–12. As 

a result, the number of datasets with deep multi-omic characterisation has been exponentially increasing 

in recent years, e.g. the population-based KORA (Collaborative Research in the Region of Augsburg) 

F4/FF4 cohort which includes a subset of 1,091 participants with DSPN label defined by the Michigan 

Neuropathy Screening Instrument (MNSI) 13. Each participant in KORA is characterised with clinical 

data, genomics, methylomics, transcriptomics, proteomics, inflammatory proteins and metabolomics 

13. Rise of these large-scale multimodal datasets and computational integration frameworks are the 

prerequisite to gain insights in complex multifactorial diseases and comorbidities at multiple molecular 

levels 14,15, here exemplified with DSPN.  

Statistical methods empower biological insights. For instance, to select genes associated with a certain 

phenotype, e.g. gene expression patterns in DSPN, the conventional method is setting a fixed 

significance threshold for a certain univariate statistical test and selecting genes that fall under the 

threshold 16,17. While it is effective in identifying the most univariately significant genes, it tends to 

neglect smaller effect sizes which may cumulatively contribute to a multivariate model. In order to 

address this, gene set enrichment analysis (GSEA) is a powerful tool to prioritise functional relevant 

genes regardless of their global effect size, as it puts genes into context of biological signalling 

pathways using prior knowledge. Notably, GSEA generalises to other biomolecules such as proteins 

and metabolites, representing a potential approach to study complex systemic diseases 18.  
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There are several multimodality data integration strategies. The simplest approach is to concatenate all 

available features together before supervised learning 19,20. This method is simple to implement, 

however, it requires extensive data processing and normalisation to incorporate heterogenous 

modalities encompassing vast amounts of features, thereby often neglecting important biological 

signals 20. To address this, state-of-the-art integration methods such as ensemble stacking (meta 

learning) are employed to combine the powers of multiple data modalities and/or learning algorithms, 

whilst increasing weights of more predictive modalities/algorithms. This empowers to learn 

complicated structures and relationships of the data 21. A critical assumption of multi-view learning, 

however, is that the single-view models should be independent 21. This assumption is often violated in 

complex metabolic diseases, as there is a high level of redundancy and correlations amongst feature 

layers. Nevertheless, multi-view learning has proven to be superior compared to models leveraging 

concatenated feature space in crowd-sourced computational challenges 22,23.  

In this study, we present the Interpretable Multimodal Machine Learning (IMML) framework, and 

exemplify its capability with DSPN classification and predicting DSPN onset over 6.5-years, i.e. 

prevalent and incidence predictions, respectively. IMML focuses on deriving predictive, interpretable 

and translational models leveraging sparse multimodal data. For this, we developed a two-step feature 

selection and integration machine learning framework. The first step extracts functionally relevant 

features of each molecular layer in isolation and leverages GSEA, whilst the second step benchmarks 

all combinations of data modalities based on cross-validated and regularised linear models. We 

hypothesise that well performing models at the minimum number of data modality will give insights 

into the disease aetiology of DSPN and its incidence, thus may improve diagnosis and pave the way for 

prevention strategies.  

 

The derived framework successfully classifies cross-sectional DSPN and predicts future incident 

DSPN, as well as identify relevant and actionable biomarkers of the disease. In particular, the model 

achieves the AUROC of 0.752 and 0.714 for cross-sectional DSPN and incident DSPN, respectively. 

Dissecting the model complexity shows that involving molecular data helps improving the prediction 

performance for incident DSPN, with ΔAUROC >0.1 compared to the clinical data-only model. 

Importantly, feature analysis shows multiple important signatures of incident DSPN such as up-

regulation of inflammatory cytokines and down-regulation of SUMOylation process and essential fatty 

acids. These putative biomarkers serve as useful resources for future investigation to identify actionable 

biomarkers for interventions. These findings do not only help identifying individuals at risk of 

developing the disease but also shed light into the pathological mechanisms and important biomarkers 

that would help improve patients’ life, further advancing precision medicine. 
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Figure 1: Workflow of interpretable multimodal framework for feature prioritisation, DSPN classification and disease 

incidence prediction. (a) Distribution of samples across time points (KORA F4 and FF4), disease status (case or control) at 

baseline (KORA F4) and follow-up (KORA FF4) and prediction tasks. Both models were trained on the same set of F4 features 

but different labels and a subset of samples. (b) Number of features stratified according to data modalities. In grey are removed 

features after pre-processing. (c) Number of samples characterised within each data modality and their overlaps in KORA F4. 

(d) Fully characterised samples in KORA F4 were exclusively leveraged for (g) the second and final training step, whilst the 

remaining sparse samples were used for (e) prior feature prioritisation: All molecular features were shortlisted based on 

differential expression analysis (DEA), gene set enrichment analysis (GSEA) and their leading-edge genes (Methods), whilst 

clinical features were ranked according to feature importance of elastic net models. (f) Features for the final training step were 

selected based on rank aggregation (Methods). (g) The final training set contained 54 DSPN cases and 188 controls in KORA 

F4. In the second step, elastic net models determined the optimal number of modalities, features and combination of modalities. 

These models implemented forward feature selection in a nested cross-validation, using weighted log loss to account for class 

imbalance, and finally 100 stratified resampling during training and rank aggregation (Methods), thus returning (h) the refined 

and final model further subject to functional analysis for gaining insights in DSPN pathophysiology. 

Results 

We leveraged the population-based KORA study including participants aged 62-81 years with clinical 

examination of DSPN from the F4 (2006-2008) and FF4 (2013-2014) surveys (Methods). The earlier 

F4 time point surveyed 1,091 individuals of whom 622 were followed up at the later FF4 time point. 

We used the established Michigan Neuropathy Screening Instrument (MNSI) to assess and define the 

DSPN status as described in previous studies 24,25. Using MNSI, we identified 188 DSPN cases and 903 
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controls at F4, and 131 controls who developed DSPN between F4 and FF4 (Supp. Table S1, S2). The 

first machine learning task was to predict DSPN prevalence at F4 (Fig. 1a). The second task was to 

predict whether controls at F4 will develop incident DSPN during the period from F4 to FF4 (Fig. 1a). 

Data modalities included in this study were genomics, transcriptomics, proteomics, metabolomics, 

methylomics, clinical attributes and a panel of inflammatory proteins. The modalities vary greatly in 

number of features, ranging from 91 clinical attributes to >7.5 million single nucleotide polymorphisms 

(SNPs; Fig. 1b). After data type-specific processing (Methods), the number of features was drastically 

reduced, e.g., only approximately 42% of the assayed SNPs were used for subsequent analyses 

(Methods; Fig. 1b). Participants in KORA were sparsely characterised with varying overlaps of data 

modalities (Fig. 1c). 

The two-step feature selection and integration machine learning framework 

The IMML framework is based on a two-step approach: i) Extensive feature engineering and selection 

process (Fig. 1d-f; Fig. S1; Methods), and ii) final model training (Fig. 1g,h). For enriching biological 

signals and reducing feature space, we used 849 samples which were lacking at least one data modality, 

whilst the remaining completely characterised 242 samples were exclusively used for the final model 

training. Both subsets of data for feature selection and model training and testing were subject to PCA 

analysis using clinical information to ensure there was no potential bias in sample selection (Supp. Fig. 

S2).  

For the first step, i.e. feature engineering and selection processes, we prioritised predictive and 

biologically relevant biomolecules regardless of their effect sizes (Methods). We observed that GSEA-

based methods significantly outperformed threshold-based methods (Wilcoxon Rank Sum test, p-value 

= 3.758e-12; Supp. Fig. S3). Therefore, we implemented differential expression analysis (DEA) 17 

followed by GSEA 18 to extract a list of molecule sets corresponding to signalling pathways that may 

be pivotal in DSPN development. This process was repeatedly performed to account for variability 

(Methods) 26. Finally, we extracted the leading-edge molecules, i.e. those that drive the enrichment of 

molecule sets 18. We obtained between zero and 25 significantly enriched molecule sets per data 

modality (Supp. Fig. S4, S6; Supp. Table S3, S4), from which we extracted up to 727 leading-edge 

features (Supp. Fig. S1, S5, S7). In addition, for clinical feature selection, we trained elastic net models 

and leveraged rank aggregation to retrieve 13 predictive clinical features (Methods; Fig. 1e,f; Supp. 

Fig. S1).   

For the second step, i.e. final model training and multimodal data integration, we leveraged the short-

listed features from the analyses above. The final model was trained with an embedded feature selection 

whilst balancing number of modalities. We benchmarked three feature integration methods, i.e. forward 

feature selection (FFS), ensemble and concatenation of all features together (Supp. Fig. S3a; 

Methods), and observed best performance with GSEA-FFS followed by GSEA-ensemble stacking 
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(Supp. Fig. S3b). When comparing the performance of the FFS and ensemble stacking methods using 

all modalities and with GSEA as the feature selection approach, the FFS algorithm achieved marginally 

higher predictive performance (Supp. Fig. S8a). Both methods retained inflammatory proteins as the 

most predictive features, however, the GSEA-FFS was further able to detect clinically relevant signals 

from other modalities (Supp. Fig. S8b). Therefore, we implemented an iterative FFS algorithm with 

resampled cross-validation (Methods).  

To select the machine learning algorithm for DSPN prediction, we compared the predictive 

performance of elastic net, random forest and support vector machine, the latter leveraged linear and 

radial kernels (Supp. Fig. S9). For this we performed 100 matched resamples with forward feature 

selection. Elastic net outperformed the other three machine learning algorithms in both prevalent DSPN 

(Supp. Fig. S9a-d) and incident DSPN predictions (Supp. Fig. S9e-h). Best performances in prevalent 

DSPN (AUROCs of 0.737) and  incident DSPN (AUROCs of 0.708) predictions were observed at 1-

modality and 3-modality models, respectively. Notably, none of the other machine learning algorithms 

reached AUROC higher than 0.700 at any number of modalities.  

For each iteration of resampling, the most predictive combination of modalities were selected based on 

cross-validation (Fig. 1g,h; Supp. Fig. S1).  Analysis of the final model returned predictive modality 

combinations, which became subject to functional analysis for DSPN classification and incidence 

prediction in the following sections. 

 

Figure 2: The clinical model can sufficiently stratify DSPN prevalence. (a) Classification of DSPN first leverages clinical 

attributes, and cumulatively adds molecular modalities with forward feature selection (Methods). Here shown for 100 cross-

validated models. (b) Test set performance of DSPN classification based on leveraging between one to seven data modalities. 

(c) Prediction probabilities of samples in the 100 left-out test sets leveraging clinical features only, stratified into true labels (case 

and control). (d) Feature importance of the final model based on clinical attributes alone applied to training and feature selection 

set (Methods). (e) PCA leveraging the four most important clinical features shown in panel d to stratify cases from control. (f) 
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Distribution of the test prediction probability of all samples of 100 resampled and cross-validated models. (g) Normalised values 

of the four most important clinical features. The order of samples corresponds to panel f.  

Clinical data can sufficiently stratify individuals with and without DSPN  

In a clinical setting, all suspected DSPN patients are thoroughly clinically characterised and 

neurologically evaluated. Therefore, our FFS algorithm used KORA clinical attributes as baseline 

input, and consecutively, evaluated the gained performance by adding more molecular modalities to 

classify DSPN (Fig. 2a). Metabolite and protein features were the most frequently added across 100 

iterations, while transcripts were usually added last (Fig. 2a). However, the baseline clinical model 

significantly outperformed any more complex model (Wilcoxon rank sum test, p<2.22e-16; Fig. 2b,c; 

Supp. Fig. S10a, S11). The clinical model had a median area under the receiver operating curve 

(AUROC; Methods) value of 0.752 with an interquartile range (IQR) of 0.686-0.821 and 95% 

confidence interval (CI) of 0.733-0.770, whilst the best performing model with molecular data only 

achieved a median AUROC of 0.583 with IQR of 0.539-0.627. This suggested that clinical variables 

alone are sufficient to stratify individuals with and without DSPN.  

To further dissect the predictive component of clinical attributes, we extracted the most important 

clinical features from 100 resampled and cross-validated models. For this, we leveraged Robust Rank 

Aggregation (RRA; FDR < 5%), and used these within the final model (Methods). After computing t-

statistics of model parameters, four variables had non-zero t-statistics, including age, waist 

circumference, height and whether the patient had neurological illnesses (self-reported during 

interview; Fig. 2d). The principal component analysis (PCA) of these four clinical variables 

empowered the segregations of cases and controls (Fig. 2e). When we further stratified the prediction 

probabilities to individual samples and ranked them according to mean probability, most cases were 

ranked higher than controls, although there were a few outliers (Fig. 2f). Values of age, waist 

circumference and height were significantly higher in cases compared to controls (p < 0.05, Wilcoxon 

Rank Sum test) while having neurological illnesses was significantly enriched in DSPN cases (p < 0.05, 

Fisher’s Exact test; Fig. 2g; Supp. Fig. S12).  
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Figure 3: Predicting DSPN incidence benefits from molecular data. (a) Each model starts with clinical attributes at baseline, 

and consecutively increases the number of modalities by adding the next molecular modality with feed forward selection for 100 

cross-validated models (Methods). (b) Performance of all model complexities to predict patient trajectories. (c) Prediction 

probabilities of samples in the 100 left-out testing sets using the optimal mode of the corresponding iterations, stratified into true 

labels (case and control). (d) Important features of the final model. X-axis represents the signed model important scores (t-

statistics) of the features in the training set, y-axis represents their t-statistics in the feature selection set. (e) PCA leveraging the 

most important features of the final model in panel d. (f) Waterfall plot of prediction probability of all samples across 100 

resampling steps. (g) Normalised values of the important features in panel d stratified by individual samples and ordered 

according to panel f. Features belonging to the same data modality are grouped together.  
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Molecular data improves DSPN incidence prediction 

DSPN incidence prediction was strongly enhanced by integrating clinical and molecular data. In 

contrast to clinical baseline models (Supp. Fig. S13a,b), we observed a strong benefit in leveraging 

molecular modalities for predicting whether participants of the KORA F4 cohort will develop DSPN 

or not within the next 6.5±0.2 years (Fig. 3a,b; Supp. Fig. S13c). The baseline DSPN incidence model 

achieved a median AUROC of 0.603 with an IQR of 0.543-0.676 and 95% CI of 0.588-0.624. This was 

significantly outperformed by adding either one or two additional molecular data modalities (Fig. 3a,b; 

Supp. Fig. S10b, S14), i.e. median AUROC of 0.678 with an IQR of 0.612-0.752 and 95% CI of 0.652-

0.692 and AUROC of 0.700 with IQR of 0.651-0.774 and 95% CI of 0.686-0.722, respectively 

(Wilcoxon rank sum test, p = 1.9e-16 and p = 2.9e-11, respectively). In essence, molecular features 

significantly enhanced DSPN incidence prediction. We observed that inflammatory proteins were 

>80% the first picked molecular layer, followed by metabolites, whilst SNPs seemed to carry the least 

predictive information (Fig. 3a). The performance tended to saturate at 3-modality models as adding 

more modalities did not significantly improve the performance anymore (Wilcoxon rank sum test, 

p=0.95), i.e. 4-modality models had a median AUROC of 0.714 with an IQR of 0.640-0.774 and 95% 

CI of 0.684-0.720 (Fig. 3b). We observed similar results and a saturation of performance at 3-

modalities, when not enforcing clinical attributes as baseline modality, which were still selected in 57% 

of all 3-modality models (Supp. Fig. S15).  In essence, prediction of DSPN incidence strongly benefited 

from adding two or more molecular modalities, and saturated at the 3-modality models. 

For feature importance analysis of the final model, we selected 3-modality models (Methods). The 

prediction probabilities of incident cases were significantly higher compared to controls (Wilcoxon 

rank sum test, p < 2e-16; Fig. 3c). We obtained 26 features with non-zero t-statistics including 17 

inflammatory proteins, four metabolites, three transcripts and two clinical variables (Fig. 3d; 

Methods). Most of the predictive power stemmed from inflammatory proteins, whilst two transcripts 

(CDC42 and SP3) and two metabolites (caprate and linolenate) displayed the largest t-statistic 

magnitude (Supp. Fig. S16). PCA analysis on these 26 features illustrated that they enable the 

prediction of DSPN incidence (Fig. 3e). 

When stratifying the prediction probabilities of the 3-modality models into individual samples and 

ranking them based on their means, most of the incident DSPN cases were concentrated in higher 

probability regions, in contrast to controls (Fig. 3f). Furthermore, higher prediction probability also 

corresponded to higher concentrations of many model-important inflammatory proteins and lower 

concentrations of caprate (Fig. 3g). Incident DSPN cases were significantly enriched for low physical 

activity (Fisher’s exact test, p = 0.003; Supp.  Fig. S17). In essence, levels of inflammatory proteins 

and metabolites were significantly different between people transitioning to DSPN compared to those 

who did not (Wilcoxon rank sum tests, p < 0.05; Supp.  Fig. S17), highlighting the important role of 

molecular features to predict DSPN incidence. 
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Figure 4. Enrichment of inflammatory cytokines- and essential fatty acids-related pathways as important signatures of 

DSPN progression. (a) Sub-network of important features to predict development of DSPN. Each node is a feature coloured 

according to its data modality. Edges are the number of shared molecule sets between two nodes. The important features in the 

final model are highlighted and labelled in black. Below are examples of enriched molecule sets associated with (b) inflammation-

related proteins, (c) transcripts and (d) metabolites: (b) The up-regulation of “Chemokine receptors bind chemokine” gene set. 

(c) SUMOylation of DNA replication proteins. (d) G alpha (q) signalling events. Molecules are ranked in decreasing order of t-

statistics, with ticks representing molecules that belong to the examined molecule set. 

Increased inflammation, reduced levels of SUMOylation and essential fatty acids as important 

signatures of incident DSPN 

For gaining further insights into the prediction of incident DSPN, we investigated predictive features 

in the context of the initial GSEA-based feature selection. To this end, we created a network of features 

connecting all molecular layers by shared signalling pathways (Methods; Fig. 4a; Supp. Fig. S7). For 

this, all biomolecules were connected to any other leading-edge molecule according to Reactome 27. 

We identified two large subnetworks of 15 predictive features containing nine inflammatory proteins, 

three transcripts (CD42, SP3 and ITSN1) and three metabolites (caprate, linolenate and adrenate; Fig. 

4a).  

Inflammation is an important signature of incident DSPN prediction, which is evident by the increased 

frequency of functional important inflammatory proteins in the identified large subnetwork (Fig. 4a). 

To gain further understanding of their role, we performed GSEA on the proteomic training data 

focusing on gene sets involving inflammation. Binding of chemokines to their receptors was 

significantly upregulated (Fig. 4b; adjusted p-value = 0.008), as well as signalling of G protein-coupled 

receptors (GPCR; Supp. Fig. S18; adjusted p-values < 0.2).  

Transcriptomic modality encompassed consistently significant gene sets. In particular, down-regulation 

of SUMOylation-related signalling pathways were consistently observed in both feature selection and 

training sets (adjusted p-values < 0.2; Fig. 4c; Supp. Fig. S18). These included SUMOylation of 
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proteins involved in DNA replication and DNA damage response and repair. In addition, the gene set 

involved in transport of mature RNA from nucleus to cytoplasm was significantly down-regulated (Fig. 

4c; Supp. Fig. S18).  

Interestingly, all metabolites in the subnetwork were fatty acids (Fig. 4a) and all were significantly 

down-regulated, i.e. caprate, linolenate and adrenate. As a result, GPCR pathways related to fatty acids 

activity were significantly down-regulated (Fig. 4d; Supp. Fig. S18; adjusted p-values < 0.2). Other 

significant metabolomic pathways included the down-regulation of fatty acid-related signalling and 

synthesis, secretion, and inactivation of glucagon-like peptide-1 (GLP-1; Supp. Fig. S18), and up-

regulation of transport of organic anions (Supp. Fig. S18). 

Overall, functional analysis of the predictive features revealed molecular signatures of incident DSPN. 

Particularly, the up-regulation of several inflammatory proteins and down-regulation of SUMOylation-

related transcripts and essential fatty acids are the most significant patterns.  

Discussion 

DSPN is a complex disease attributed to multiple and heterogeneous risk factors 7. Thus, integration of 

sparse multimodal data is a prerequisite for a deeper understanding of the disease pathophysiology. In 

order to address this, here we present the IMML framework, which allows prediction of prevalent and 

incident DSPN status based on clinical and molecular characterisation. We achieved good performance 

for both prediction tasks, i.e. AUROC > 0.7. Furthermore, the IMML two-step approach empowered 

the analysis of sparse clinical and molecular data, which is common in biomedical research. Utilising 

the modality-specific non-overlapping samples for feature selection increased the number of accessible 

samples and reproducibility of molecular patterns across different datasets.  

The analysis of prevalent DSPN (classification of case-control in the F4 population) suggested that the 

clinical model (using only clinical variables) outperformed the concatenated models (using clinical + 

molecular variables) in prediction. Then, feature analysis of the clinical model suggested that age, 

height, neurological illness, and waist circumference were the most important factors that influence the 

prediction of prevalent DSPN. Age and height have been reported to be associated with prevalent DSPN 

28. The neurological comorbidity status of patients is not used to classify DSPN yet, however, there 

might be an intrinsic neurological mechanism that links DSPN to other neurological illnesses. Finally, 

waist circumference is strongly correlated with BMI, which has been reported to be a risk factor for 

developing DSPN 29. From a clinical perspective it is worth mentioning that only waist circumference 

represents a modifiable risk factor which emphasises the role of obesity prevention and treatment also 

in the context of DSPN. In summary, for prevalent DSPN, our analysis is confirmatory of previous 

studies with respect to these clinical variables. However, here we report the clinical variables in the 

context of a comprehensive multi-modality analysis of DSPN prevalence, thus adding another layer of 

information to the model. 
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In the case of incident DSPN prediction, the molecular variables added prediction value as they helped 

improve the prediction performance (higher AUROC values) compared to the clinical model alone. 

Feature analysis detected multiple important and potentially actionable biomarkers such as 

inflammatory proteins, SUMOylation-related transcripts and essential fatty acids. Although  the 

association between inflammatory proteins and incident DSPN has been reported before 24,25, there are 

as yet no data from population-based studies such as ours implicating SUMOylation-related transcripts 

and essential fatty acids in the development of DSPN so that these findings are novel and merit further 

investigation in other cohorts. Additionally, none of these biomarkers and pathways has been reported 

before in the context of our novel multi-modality analysis of DSPN incidence. 

Feature analysis suggested the crucial role of subclinical inflammation in the development of DSPN. 

We found that 18 out of the 27 most important incident DSPN features were inflammatory proteins. 

Our finding was consistent with previous studies showing the predictive value of pro-inflammatory 

cytokines in DSPN 24,25. One cytokine (IL-6), five chemokines (CXCL9, CXCL10, CCL13, CCL19 and 

CCL20) and five soluble forms of transmembrane proteins (CDCP1, SLAMF1, TNFRSF9, 

TNFRSF11B, CD5) were up-regulated at baseline in patients with incident DSPN, suggesting a 

proinflammatory process which could be observed before DSPN onset 24,25. CXCL9 and CXCL10 have 

been shown to directly impact neurotoxic effects 25. In addition, nerve-derived chemokines may play a 

role in attracting immune cells to further damage stressed neurons 25. In accordance with the up-

regulation of these proteins, signalling pathways downstream of GPCR signalling, specifically 

involving chemokine-induced inflammation, were also significantly up-regulated. Subclinical 

inflammation is an established hallmark of DSPN, as people affected by the disease often have elevated 

levels of pro-inflammatory cytokines that are associated with nerve damage 24,25,30,31. It has been 

hypothesised that a cross-talk of innate and adaptive immune cells contributes to DSPN 25, which is 

further supported by our study, but requires further mechanistic validation. 

Remarkably, inflammatory effects were observed in the blood samples prior to disease onset. Thus, the 

predictive pro-inflammatory cytokines, chemokines and transmembrane proteins observed in this study 

could represent modifiable risk factors and therefore therapeutic targets for disease prevention. For 

example, salicylate was reported in many studies to have inhibitory effects on production of cytokines 

and chemokines32. In addition, novel treatment approaches targeting IL-1beta-related mechanisms have 

been demonstrated to reduce subclinical inflammation and have beneficial effects on cardiometabolic 

risk 33,34, and may be generalisable for DSPN. Beyond pharmacological approaches to attenuate 

subclinical inflammation, it is important to emphasise that subclinical inflammation is triggered by a 

range of other modifiable risk factors such as high-calorie diet, certain nutrients, physical inactivity, 

obesity, psychosocial stress and sleep disturbances so that lifestyle changes represent another option 

for intervention35. 
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The transcriptomic layer also gained attention as one of the most important predictors of DSPN. 

Particularly, significant down-regulation of the small ubiquitin-related modifier (SUMO) pathway was 

consistent with a recent study 36, which demonstrated SUMO posttranslational modifications are 

involved in glycolysis. Furthermore, the tricarboxylic acid (TCA) cycle plays a crucial role in 

maintaining important metabolic processes in sensory neurons, and deficiency of SUMO activity causes 

damaging effects which may specifically contribute to DSPN pathogenesis 36. Although this enrichment 

analysis has to be interpreted with caution due to the small sample size, it is noteworthy that oxidative 

stress and inflammation have been proposed as mediators linking hyperglycaemia and impaired 

SUMOylation in diabetic polyneuropathy and that aberrant SUMOylation has also been implicated in 

the aetiology of neurodegenerative diseases 37. Thus, this finding extends the aforementioned results on 

inflammation, corroborates other studies and may point towards another mechanism how DSPN risk 

could be targeted by addressing modifiable risk factors leading to inflammation and oxidative stress. 

Three fatty acids were identified as potential biomarkers of incident DSPN, i.e. caprate, linolenate and 

adrenate. Capric acid, also known as decanoid acid, binds to the α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) receptor, a glutamate receptor that mediates synaptic transmission in 

the brain. Capric acid has antioxidative effects in neuronal cells 38 and has been implicated in the 

amelioration of several neurological diseases 39 so that further studies of the potential role of decreased 

capric acid levels for the development of DSPN appear promising. Adrenic acid-derived epoxy fatty 

acids have anti-nociceptive properties and can reduce inflammatory pain 40 so that a link between lower 

levels and higher risk of DSPN appears biologically plausible. Linolenic acid and adrenic acid, or all-

cis-7,10,13,16-docosatetraenoic acid,  are also essential polyunsaturated fatty acids (PUFA), which are 

precursors of more potent derivatives such as arachidonic (omega-6, ARA) and docosahexaenoic 

(omega-3, DHA) acids, which serve as either building blocks of cell membrane or substrates for the 

synthesis of inflammation-related compounds and are involved in neural development processes 41,42. 

Furthermore, DHA reduces pro-inflammatory cytokines and induces anti-inflammation cytokines, 

which is consistent with the observed patterns of inflammatory proteins in our datasets 41. In addition, 

certain groups of GPCR called free fatty acid receptors (FFAR), such as GPR40/FFAR1 and 

GPR120/FFAR4, are activated by PUFAs and medium-chain fatty acids (MCFA), such as capric acid, 

to regulate many cellular processes, i.e. insulin secretion, inflammation, neural cognitive and sensory 

function 43. Overall, caprate, linolenate and adrenate have not been linked to DSPN in detailed 

investigations but nevertheless highlight the possibility that they should be modifiable risk factors that 

could be modulated by specific dietary interventions or dietary supplements. Importantly, experimental 

results suggested that PUFA might be a potential agent to treat DSPN 44,45, subject to future studies 

focussing on high-risk individuals assessing the potential preventive and therapeutic properties of 

dietary fatty acids in this context.  
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One strength of our study’s design is the utilisation of population-based prospective data from a large 

cohort (KORA F4). The KORA cohort contains repeated assessment of DSPN status using identical 

examination methods at two timepoints, which allows studying both prevalent and incident DSPN. The 

fact that the mean follow-up time was 6.5 years and that we do not have data on DSPN diagnosis 

between both studies means that our data cannot be extrapolated to considerably shorter or longer time-

periods than 6.5 years. It is possible that different variables may be more powerful for short-term or 

very long-term prediction of DSPN which needs to be addressed in future studies. Furthermore, we 

presented an innovative machine learning framework to model incidence of DSPN by integrating multi-

omic and clinical data. Previous efforts either focused on classifying the disease in a cross-sectional 

context, lacked multi-omics integration strategies or exhibited limitations of univariate statistical 

analyses25,46–50. In our study, the multi-omic data integration added significant information to boost 

predictive performance. Strikingly, our findings were observed in blood instead of biopsies containing 

neuronal cells which would be more tissue-specific for DSPN but are not accessible in large 

epidemiological cohort studies. Results of this study highlighted the utility of a less invasive blood-

based assay to study complex diseases such as DSPN in clinical practice. Although the prediction 

performance could be improved further by increasing the quantity and quality of data collection and 

more advanced machine learning development, we believe that using such a model could both be 

valuable in clinical practice and for the design of future intervention studies. On the one hand, the early 

identification of people at elevated risk of DSPN could lead to an intensification of (pharmacological 

and non-pharmacological) risk factor treatment in these people. On the other hand, our model could be 

used for an enrichment of high-risk individuals in future intervention trials which could reduce required 

sample size and therefore the costs to assess novel prevention and treatment options. In the long run, 

our results indicate potentially actionable biomarkers that could be targeted by novel therapy concepts. 

One limitation of this study is that our IMML relies substantially on the availability of prior biological 

knowledge and functional annotation of biomolecules, which thereby reduces the number of evaluated 

features and may introduce a bias. That being said, incorporating biological knowledge during feature 

selection increased interpretability, reduced multiple hypothesis testing and utilised cumulatively low-

effect size features, overall boosting the model performance. It is our belief that IMML achieves a good 

balance between predictive power and interpretable DSPN signature, which thereby increases clinical 

translatability. In addition, validation with external cohorts is currently not feasible due to the 

uniqueness of the KORA dataset, i.e. deep molecular and longitudinal phenotypic DSPN 

characterisation, which empowered this study. 

One aspect that we were unable to claim are causal relationships due to the inherent limitations of the 

Kora study design. This is neither addressable in the cross-sectional studies, nor in the prospective 

segment of our analysis, which concentrates on the occurrence of Diabetic Sensorimotor 

Polyneuropathy (DSPN), however, the latter sheds light on the temporal associations between risk 
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factors and the onset of DSPN. To delve into the aspect of causality, alternative methodologies are 

warranted, such as Mendelian randomization studies conducted in human cohorts or investigations 

utilising animal models and in vitro studies employing pertinent cell culture models of neurotoxicity. 

Our findings concerning incident DSPN offer promising candidates for such inquiries subject to further 

studies. 

In summary, we presented the IMML framework which allows studying multifactorial diseases, here 

exemplified with DSPN. Leveraging IMML, we were able to stratify individuals according to prevalent 

DSPN status using only clinical variables. More importantly, IMML showed that molecular data is 

essential to predict the incidence of DSPN, and pathological signatures are detectable in blood samples 

6-7 years before disease onset. IMML is capable of integrating sparse multimodal data, and is 

generalisable to other cohorts and comorbidities. In essence, IMML simplifies the integration and 

interpretation, thus giving insights in the disease pathophysiology of DSPN, and may navigate the next 

generation of diagnostic, prevention and treatment strategies of DSPN. 

 

Methods 

Population data 

The population-based data in this study was obtained from the “Kooperative Gesundheitsforschung in 

der Region Augsburg/Cooperative Health Research in the Region of Augsburg” (KORA) platform 24,51. 

Specifically, data from the KORA F4 (2006-2008) and the KORA FF4 (2013-2014) studies, both 

follow-up examinations of the population-based KORA S4 study (1999-2001), were used. All 

examinations were carried out in accordance with the Declaration of Helsinki, including written 

informed consent from all participants. The KORA study was approved by the ethics board of the 

Bavarian Chamber of Physicians (Munich, Germany). The data used in this study was obtained under 

a data sharing agreement with the Board of Management of KORA and all data owners. Initially there 

were 1,161 KORA F4 participants aged 62-81 years in the age group with the neuropathy examination 

module. We excluded 28 individuals with known type 1 diabetes, diabetes forms other than type 2, or 

unclear glucose tolerance status. In total, we leveraged 1,133 individuals.   

DSPN assessment 

We used the examination part of the Michigan Neuropathy Screening Instrument (MNSI) score to 

assess the status of DSPN for all participants of KORA F4 and KORA FF4, as described previously 24. 

In the MNSI assessment, we evaluated the appearance of feet (normal or any abnormalities such as dry 

skin, calluses, infections, fissures, or other irregularities), foot ulceration, ankle reflexes, and vibration 

perception threshold at the great toes which was assessed with the Rydel-Seiffer graduated C 64 Hz 

tuning fork 52. The normal limits for vibration perception threshold, adjusted for age, were determined 

based on the method outlined by Martina et al. 53. The MNSI score also included the bilateral 

examination of touch/pressure sensation using a 10-g monofilament (Neuropen) 54. Therefore, the total 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.01.04.574164doi: bioRxiv preprint 



MNSI score ranged from 0 (indicating normal in all aspects) to a maximum of 10 points. Considering 

the advanced age of the participants and the inclusion of the monofilament examination, we defined 

distal sensorimotor polyneuropathy (DSPN) as a score of equal or higher than 3 points 25. Thus, 

participants with an MNSI score ≥3 in KORA F4 were considered as 

prevalent DSPN cases, whereas participants without DSPN in KORA F4 (MNSI 

<3) but MNSI ≥3 in KORA FF4 were considered as incident cases. This 

definition meets the minimal diagnostic criteria for possible DSPN, as 

outlined by the Toronto Diabetic Neuropathy Expert Group 55
. 

Using this criterion, for prevalent DSPN analysis, among 1,091 out of 1,133 individuals having MNSI 

scoring records, there were 188 cases and 903 controls. For incident DSPN analysis, we only considered 

the 903 controls in the KORA F4 and examined their progression of DSPN status in the KORA FF4. 

Among these, we excluded 378 individuals that either did not participate or lacked MNSI scoring 

records in the KORA FF4. For the incident DSPN analysis, the remaining 521 participants were split 

into 131 DSPN cases and 394 controls. For both predictions of prevalent and incident DSPN, we only 

leveraged clinical and molecular features collected at the early time point of KORA F4. 

Data pre-processing 

From the KORA F4 study we obtained six types of molecular data, including genomic (Affymetrix 

Axiom), transcriptomic (Illumina HumanHT 12v3 Expression BeadChip), proteomic (SOMAscan), 

metabolomic (Metabolon), methylomic (Illumina Methylation 450k) and a small panel of inflammatory 

proteins (OLINK) data, besides clinical records. Each molecular layer was standardised before 

downstream analysis by computing the z-score, which accounts for different distributions and 

numerical scales of features. Our analysis pipeline pre-processed the data in a modality-specific 

manner, as shown below.  

Processing of genomic data 

Following microarray assay and initial imputation using the Haplotype Reference Consortium (HRC) 

as reference genome, the genomic dataset had 3,788 samples and 7,545,537 SNPs. We used PLINK 

v1.07 56 for quality control of the genotype data. In particular, we removed SNPs that had equal or 

higher than 1% missing rate, less than 1% minor allele frequency (MAF) and significant deviation from 

Hardy Weinberg Equilibrium (HWE, p<1e-10). We used the –annotate function in the MAGMA 

software 57 to annotate the SNPs to their associated genes, based on the gene location information from 

the human genome GRCh37, considering SNPs that locate 2Mb upstream and 500b downstream of the 

genes. Following that we discarded SNPs that could not be annotated to a gene. We removed samples 

that had heterozygosity rates deviating more than three standard deviations from the mean across all 

samples. Finally, we filtered samples that had clinical records in the KORA F4 study. Eventually, the 
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pre-processed genomic dataset included 1,083 samples and 3,167,521 SNPs. We transformed the 

categorical SNP data into continuous alternative allele copy numbers (0, 1 or 2). 

Processing of transcriptomic data 

The initial data generation, quality control and transformation were performed by the KORA study 58,59. 

Specifically, the annotation of probes sequences to known transcripts was based on an annotation file 

provided by Illumina for HumanHT 12v3 BeadChip (using genome location of hg19). Only probes 

with the label “good” during mapping (probe sequence mapped uniquely to UCSC transcript) were 

included in this study. Furthermore, samples with less than 6,000 detected probes were removed using 

Illumina’s GenomeStudio. The data was log2 transformed and quantile-normalised using Bioconductor 

package lumi 60. The samples were clustered using R and the outliers were removed. We obtained 993 

samples and 48,804 transcripts for our analysis. The technical variables including amplification plate, 

RIN number and sample storage time were regressed out using the R package limma 17.  

Processing of proteomic data 

The SOMAscan proteomic data was obtained from the KORA F4 study, including 1,000 individuals 

and 1,129 protein probes. One individual and 34 probes were removed due to low quality in accordance 

with the SomaLogic pipeline. Many probes mapped to multiple proteins/UniProt IDs so we transformed 

probe annotation into protein annotation. We also filtered for samples that had clinical records. In total, 

the dataset included 397 individuals and 1,160 proteins.  

Processing of metabolomic data 

The Metabolon metabolomic data obtained from the KORA F4 study included 1,768 individuals and 

525 metabolites, after initial quality control and transformation. Particularly, the data was log10 

transformed and values that lied more than four standard deviations from the mean were set to missing. 

We additionally discarded metabolites that had more than 70% missing values. For the remaining 

metabolites we imputed missing values using k nearest neighbour algorithm. Furthermore, we 

discarded samples that had standardised Mahalanobis distance larger than 4 and samples that did not 

have clinical records. Finally, we leveraged 829 samples and 466 metabolites. 

Processing of methylomic data 

The Illumina 450k Methylation M-value data was obtained from the KORA F4, which had already 

undergone filtering for detection rate and data normalisation. The original data had 1,727 samples and 

485,512 methylation probes. We leveraged the ChAMP pipeline for methylation data processing 61. 

Specifically, we excluded probes spanning SNP regions and probes not associated to genes based on 

the Illumina annotation file. Then, we imputed missing data using k nearest neighbour algorithm. 

Finally, technical effects were regressed out using the ComBat function in the sva package 62. Only 
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samples with clinical records were included in this study. In total, we had 849 samples and 399,541 

methylation probes for our analysis.  

Processing of inflammatory protein data 

The OLINK inflammation panel included 92 inflammatory proteins which were measured in 1,133 

samples. We additionally removed 21 proteins due to low detection quality, as reported in our previous 

study 25. In summary, we used 71 proteins for our analysis. 

Processing of clinical data 

Clinical data obtained from the KORA F4 study included background information, diabetes and 

comorbidity status, lifestyle, blood biochemistry and medication usage for 1,161 individuals 24,51. 

Together with the filtering mentioned in the “Population data” section, there were 1,133 samples 

remaining. Categorical variables were transformed using one hot encoding. Subsequently, variables 

having >10% missing values were discarded. In total, we leveraged 1,133 individuals and 83 variables. 

  

Data partitioning for modality-specific feature selection 

Each sample that was lacking at least one data modality was leveraged for modality-specific feature 

selection. For prevalent DSPN prediction included 710 genomic (141 cases and 569 controls), 621 

transcriptomic (133 cases and 488 controls), 67 proteomic (9 cases and 58 controls), 476 metabolomic 

(76 cases and 400 controls), 495 methylomic (82 cases and 413 controls) and 720 clinical (142 cases 

and 578 controls) samples. The incident DSPN prediction leveraged 223 genomic (57 cases and 166 

controls), 171 transcriptomic (47 cases and 124 controls), 58 proteomic (13 cases and 45 controls), 160 

metabolomic (30 cases and 130 controls), 174 methylomic (38 cases and 136 controls) and 242 clinical 

(63 cases and 179 controls) samples. During gene set enrichment analysis, 100 stratified resampled 

splits were created for each of the modality-specific dataset, except proteomics due to limited sample 

size. We used 80% and 20% of samples for feature selection / training and testing, respectively.  

Data partitioning for final model training 

Fully multi-modal characterised samples were used for final model training. For prevalent DSPN 

prediction, this was 285 samples (31 cases and 254 controls), whilst for incident DSPN prediction, it 

was 242 samples (54 cases and 188 controls). We created 100 stratified splits which leveraged 80% 

samples for feature integration / training, and the remaining 20% for model testing. We further 

partitioned the 80% training samples into stratified five folds for cross-validation. The cross-validation 

performance was used as a criterion for the FFS algorithm to select the optimal model. We never used 

any test data for neither model training nor tuning of model parameters. 

Gene set enrichment analysis 

For the gene set enrichment analysis (GSEA), we leveraged the Bioconductor fgsea R-package 63, 

which is a more computationally efficient implementation compared to the original method 18. For 
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ranking genes, we used the t-statistics of the differential expression analysis from the Bioconductor 

limma R-package 17, which estimated the univariate association of the genes to the phenotype using a 

linear model. For calculating the enrichment score (ES), we used gene sets from the Reactome database 

27. Finally, the p-values were adjusted for multiple hypothesis testing with false discovery rate (FDR) 

< 20%, which is a lenient threshold allowing the selection of features with lower effect size, which may 

add predictive value in multivariate models in later integration steps.  

The mapping of biomolecules to Reactome was customised for each data modality. For transcriptomic 

and proteomic data, we used the Reactome gene set annotation with Entrez IDs. For metabolomic data, 

we used the Reactome metabolite set annotation based on ChEBI IDs. 

For genomic data, we leveraged the MAGMA software 57 to estimate the gene effect and subsequently 

perform gene set analysis. First, we annotated SNPs according to nearby genes (2 kb upstream and 0.5 

kb downstream), and consecutively used MAGMA to estimate the gene effect on the phenotype, taking 

into account the SNPs that were mapped to this gene. MAGMA estimated the gene effect by first 

conducting principal component analysis (PCA) using all SNPs linked to this gene, and afterwards used 

PCs to train a linear regression model predicting the phenotype. Finally, MAGMA computed the gene’s 

p-value with F-test, and  converted these to Z-values for the gene set analysis leveraging a linear 

regression model 57. 

For methylomic data, we used the methylRRA method64 to perform gene set enrichment analysis 

(GSEA) on the CpG probes. First, this required a differential expression analysis on the probes using 

the R package limma, followed by using the ranked list of p-values as input for methylRRA. To this 

end, methylRRA computed a p-value for each gene leveraging the ranking of all CpGs annotated to 

that gene by implementing Robust Rank Aggregation algorithm26. Consequently, the p-values were 

transformed into z-scores and were used for the  GSEA to extract significant gene sets64. 

In all cases, we included the full set of Reactome signaling pathways at the lowest levels of pathway 

hierarchy to avoid redundancy, and at the time, ensure full unbiased coverage (Supplementary Data 

1). Furthermore, except for the proteomic data, the GSEA was performed across the 100 stratified splits 

accounting for heterogeneity. 

Robust Rank Aggregation 

We leveraged the implementation of Robust Rank Aggregation of Kolde et al.26. The 

molecules/molecule sets were ranked according to p-values, leading to a different ranked list per cross-

validation/resampling run. Then, the rank distribution of each molecule/molecule set across all lists was 

tested against the random ranking distribution generated by permutation with the null hypothesis that 

there was no difference between the two distributions. The p-values of the test were adjusted for 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.01.04.574164doi: bioRxiv preprint 



multiple hypothesis testing by multiplying the number of tested lists and additionally adjusted for the 

number of tested molecules/molecule sets by Benjamini-Hochberg method. 

Extraction of leading-edge genes 

Leading-edge genes in upregulated gene sets are all genes from the beginning of the ranked gene list 

until the enrichment score (ES). In contrast, in case of down-regulated gene sets, leading-edge genes 

are from the ES to the end of the ranked gene list. Here, we leveraged 80% of all data for each of the 

100 stratified resamples, did GSEA, extracted the leading edge molecules to train an elastic net model, 

and finally tested the model prediction on the left out remaining 20% of samples. For aggregating 

results of these 100 stratified resamples, we only considered predictive models (AUROC > 0.5), and 

leveraged a Robust Rank Aggregation (RRA) algorithm26 with a false discovery rate (FDR) cutoff of 

5%, which delivered a union of leading-edge gene sets. Afterwards, a GSEA was conducted on the 

union of leading-edge gene sets to extract the final consensus significant gene sets and leading edge 

molecules, which were subject to final model training. 

Clinical feature selection 

For select clinical variables, we leveraged elastic nets using the R package caret with an 80% and 20% 

split for training and testing, respectively. We used weighted log-loss as the performance metric for 

hyper parameter tuning. The feature importance of the models was evaluated using the magnitude of t-

statistics. Features with zero t-statistic were omitted. Finally, we used RRA with FDR cutoff of 5% to 

aggregate the important features across the 100 bootstraps.  

Iterative forward feature selection 

The iterative forward feature selection (FFS) integrates multiple data modalities. It is based on 100 

independent runs of five-fold cross-validation. We tuned elastic net’s hyperparameters alpha and 

lambda by grid search of 20 alphas and lambdas in range [0,1], resulting in 400 parameter sets. The 

chosen hyperparameter combination was the one having best mean performance across 5-fold cross-

validations. In each run, we randomly sampled 80% of the dataset to perform five-fold cross-validation 

and the performance was tested with the remaining 20% data. For each fold of model training, elastic 

net models with weighted log-loss function to overcome class imbalances were implemented. Within 

the inner loop, a 5-fold cross-validation selected the best data modality to add next. The prediction 

performance of the model was tested by predicting on the outer test set (20% samples). The prediction 

probabilities were calibrated using the Platt scaling method. In each step, the model adds the next best 

data modality based on increased performance until all data modalities are included.   

Extracting feature importance 

We selected the optimal number of modalities based on their testing AUROC distribution. For this, the 

chosen number of modalities had a significant improvement in testing AUROC distribution compared 

to the previous number, and no significant improvement could be observed in the later complexities 
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(Wilcoxon rank sum test, p<0.05). After choosing the optimal number of modalities, the important 

features in the 100 models of that number of modalities were aggregated using RRA. Consecutively, 

we used the selected features to train a final elastic net model on the whole training dataset using the 

same settings as previous steps. The feature importance of the final model was accessed by t-statistics 

of model parameters. 

  

Benchmarking of feature selection and integration methods 

For feature selection, we compared GSEA with the conventional thresholding methods. For feature 

integration, we benchmarked FFS, data concatenation and ensemble stacking approaches. Thus, in total 

there were six combinations of methods to compare. For the thresholding method, we implemented 

differential expression analysis using limma and selected features having p-values<0.05.  

Regarding feature integration, we benchmarked the FFS with ensemble stacking and feature 

concatenation. The latter concatenated all features into a single matrix before training the model. The 

ensemble stacking approach leveraged 100 independent runs with stratified resampling. This is, we 

generated 100 sets of stratified resamples, each consisting of 80% training and 20% test set (i.e. outer 

loop). Within  each 80% training set, we further divided the data into 5-fold cross validation sets (i.e. 

inner loop). For each iteration of the inner loop, we trained an elastic net model on four out of five 

validation sets and made predictions on the remaining validation set. After five iterations, we obtained 

the predictions of all samples for that inner loop (corresponding to the 80% training set from the outer 

loop). We used this together with the ground truth (80% outer train) to train an elastic net meta model 

in the outer loop, and consecutively tested the predictive performance on the remaining 20% test set. 

Importantly, the test sets were never used for any parameter optimisation nor training, and only 

leveraged for unbiased performance evaluation. This process was repeated for each data modality. For 

the feature analysis we implemented Robust Rank Aggregation on the meta models of the ensemble 

stacking across 100 resamplings, then extracted the individual feature importance.  

 

Statistics and Reproducibility 

The multiomic datasets were preprocessed by the KORA study using customised software mentioned 

above. The development of the computational framework and the statistical analyses were conducted 

using the R packages and independent software detailed above. To reproduced the analysis results, one 

can obtain the data from https://www.helmholtz-munich.de/en/epi/cohort/kora/kora-studienzentrum, 

following a data sharing agreement with the KORA study. Details about sample sizes, types of data 

and code availability could be found in Methods, Data availability and Code availability. 

 

Data availability 

The KORA F4/FF4 cohort dataset is not publicly available due to data protection agreement to protect 

patient confidentiality. However, data access for research purposes could be requested via the KORA 
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platform at https://helmholtz-muenchen.managed-otrs.com/external/. Data of the results shown in the 

main figures could be found in Supplementary Data 3. 

  

Code availability 

The analysis code of this paper is available at https://github.com/phngbh/DSPN  65. The developed 

IMML framework is available at https://github.com/phngbh/IMML 66.   
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Abstract

Timely prognosis of type 2 diabetes-associated complications becomes crucial to drive intervention

strategies, save time and cost and increase overall treatment satisfaction. The emergence of AI-driven

large language models (LLM) provides an opportunity to gain insights into patients’ journey and infer

significant clinical features. However, adapting LLMs to the healthcare domain remains challenging due

to the sparse numerical nature and large feature space of the longitudinal medical records. In this work

we demonstrated the utility of LLM in medical time series prediction by proposing a novel approach.

Particularly, we first preprocessed and concatenated a missing mask to the data, then constructed and

prepended an embedding layer to a pretrained LLM and fine-tuned both components leveraging the

preprocessed data. To demonstrate the model performance, we leveraged the DPV registry dataset

consisting of real world medical records of 449 185 T2D patients. Results showed that the fine-tuned

LLM model outperformed baseline models in predicting HbA1c and LDL levels in the next doctor visit,

achieving Pearson’s correlation coefficients of 0.749 and 0.754, respectively. In addition, the model

showed robust long-term prediction when predicting HbA1c in the next 554.3 days (95% CI: [547.0,

561.5]), outperforming the prediction by last observation. Furthermore, integrated gradient feature

analyses revealed the significance of specific visits and clinical features contributing to the prediction of

both variables, pinpointing potential biomarkers for early interventions. Overall, the results showed the

possibility to leverage the prediction power of LLM in T2D prognosis using sparse medical time series,

assisting clinical prognosis and biomarker discovery, ultimately advancing precision medicine.



Introduction

Type 2 diabetes (T2D) is a chronic metabolic disorder characterized by insulin resistance and impaired

insulin secretion, leading to elevated blood glucose levels 1. This condition is associated with a myriad of

micro- and macrovascular dysfunctions in the end organs such as cardiovascular diseases, neuropathy,

nephropathy and retinopathy, which collectively contribute to significant morbidity and mortality

worldwide 2. The global prevalence of T2D has been increasing steadily, highlighting the urgent need for

effective management strategies to mitigate its complications. Early prognosis of these complications is

crucial as it enables timely interventions that can slow or prevent the progression of the disease, thereby

improving patient outcomes and reducing healthcare costs.

Longitudinal medical records, which contain comprehensive and continuous patient data over time 3, are

invaluable for the early prognosis of T2D. These records typically include a wide range of information

such as demographics, medical history, laboratory test results, medication prescriptions and lifestyle

factors, providing a holistic view of the patient’s health journey. For instance, the Framingham Heart

Study has demonstrated the utility of longitudinal data in predicting the risk of cardiovascular diseases 4.

Similarly, the Diabetes Control and Complications Trial (DCCT) has shown that long-term monitoring of

blood glucose levels can predict the onset of diabetic complications 5. The availability of these datasets

allows for the identification of patterns that may not be apparent in cross-sectional data, facilitating

more accurate and individualized prognostic assessments. That being said, the substantial volume and

complexity of such datasets complicate the effort to analyze and extract useful insights.

The advent of machine learning, particularly deep learning, has revolutionized the field of medical

prognosis, especially in the analysis of complex and voluminous longitudinal medical data. Several

variants of deep learning architectures have been employed to analyze and model such datasets such as

feed-forward neural networks, convolutional neural networks and recurrent neural networks. One of the

earlier works is Deepr, which encoded medical data as sentences of medical codes and mapped them

using word embedding, before modeling using a convolutional neural network in an end-to-end

prediction for hospital readmission 6. In another work, the authors introduced RETAIN which used a

learnable word embedding approach and a recurrent neural network (RNN) with an attention

mechanism to model the temporal medical data and assist interpretation 7. Several more recent deep

learning methods have been developed using advances such as transformers. One notable method is

Med-BERT, which applies a transformer-based architecture to encode and model electronic health

records (EHR) data. Med-BERT effectively captures complex patterns and temporal dependencies within

the data, showing significant improvements in various prediction tasks, including disease progression

and hospital readmission 8. Another study introduced BEHRT, which was inspired by the pretraining of

the BERT language model. Particularly, BEHRT introduces positional embeddings to account for the time

intervals between medical events and pretrained the model using mask language model on a large

dataset, thus providing a more nuanced representation of patient history and improving prediction

performance in multiple clinical scenarios 9.



While these studies showed superior performance of deep learning models on various clinical and

healthcare tasks, they are not without limitations. Most of these studies demonstrated the prediction

performance on specific datasets with relatively low number of variables as predictors. This does not

reflect real world scenarios where healthcare datasets are usually filled with hundreds of variables

coming from diverse sources such as diagnostic codes, laboratory tests, medication usage, lifestyle and

demographic information. The models should be able to deal with this amount of features or go through

intensive preprocessing. Another limitation lies in the fact that in order to train such complex models, a

vast amount of data and computational resources are required. For example, models such as

transformers could go up to millions of parameters, making it challenging to train and account for the

important complex relationships.

Furthermore, sparsity of the data possesses another substantial challenge that was not exclusively

tackled in most of the studies. Missingness is very common in healthcare datasets and could harbor

important information for the prediction, thus needs to be handled carefully. A few methods have been

proposed over the years to address the missingness in medical time series, by modeling the

spatiotemporal relationships while reducing inflated errors due to long range sequences. For example,

GRU-D utilizes gated recurrent units (GRUs) and introduces a decay mechanism to model the influence of

missing values over time, enhancing the imputation accuracy for time series data 10. On the other hand,

BRITS employs a bidirectional RNN approach, incorporating both forward and backward temporal

dynamics to handle irregular time series data more effectively 11. Last but not least, NAOMI uses a

non-autoregressive model that conditions on both past and future values, applying a multi-resolution

strategy to iteratively refine the imputed values across different time scales 12. While these methods

demonstrated success in some cases, the complexity of such models makes it challenging to scale up to

more sophisticated datasets. Furthermore, some inherent aspects of autoregressive models such as

memory loss, exploding/vanishing gradients and irregular time intervals were not fully addressed,

making them less feasible to implement.

Recently, pretrained large language models (LLMs) such as GPT-3 and BERT have shown promise in

various natural language processing tasks, including those in the biomedical domain. These models,

which are trained on vast amounts of text data, can be fine-tuned for specific tasks, including the

analysis of longitudinal health records for prognostic purposes. For instance, Huang et al. fine-tuned the

BERT model on clinical notes from EHRs to predict patient outcomes such as hospital readmission and

mortality 13. Similarly, GatorTron, a transformer model pretrained on large-scale clinical data, has shown

efficacy in predicting disease progression and identifying high-risk patients by analyzing both structured

and unstructured health data 14. Another study introduced MedGPT, a model fine-tuned on longitudinal

EHR data to predict the onset of complications in diabetic patients, outperforming traditional machine

learning approaches 15. Most of these studies pretrained a LLM from scratch using clinical data, while did

not explore the possibility to fine tune pretrained ones. Furthermore, these studies mostly focused on

unstructured clinical text, which is inline with the NLP nature of LLMs, they did not attempt to model the

structured clinical data directly. In addition, the intepretability of these models was also overlooked.



In this study, we aimed to explore the utility of pretrained LLM on prognosis tasks for a large longitudinal

medical dataset. To this end, we developed a novel approach to deal with the sparse structured numeric

nature of the data and adapt it directly to a pretrained LLM without training from scratch. In particular,

we implemented a minimal data preprocessing and transformation to deal with missingness, constructed

and prepended a learnable embedding layer to the LLM architecture and finally trained both

components simultaneously to predict prognosis endpoints. Furthermore, we also demonstrated the

interpretability of such a model in clinical settings, making it more translational and assisting precise and

personalized healthcare.

Results

This study utilized the data from the DPV Initiative, a project initiated by Ulm University and supported

by the German Diabetes Center (DZD) and its partners. The large cohort of electronic health records

consisted of 649 331 patients from over 400 treatment facilities in four European countries. From these,

a subset of 449 185 type 2 diabetes (T2D) patients were selected, from which 50 183 samples that had at

least 10 clinical visits recorded were further selected (Fig. 1a). This ensures that the dataset includes

patients with sufficient historical data to inform the predictions. From this initial dataset, we performed

intensive and specific data and feature processing for both of the target variables HbA1c and LDL

(Methods). At the end, there were 36 733 and 15 139 samples for the prediction of HbA1c and LDL,

respectively (Fig. 1a). Both target variables showed a relatively normal distribution of values across the

patient population (Fig. 1a).

To prepare the data for the prediction, we defined important points along the patients’ medical records.

Each patient record is a timeline from the first visit to the target point, where there is the value to be

predicted, in this study the patient records consisted of 10 to 50 visits. Along this timeline, prediction

point is the time point before which the data is used to make predictions. The period from the first visit

up until the prediction point is called feature window. During this time, 321 features were collected from

patient records, such as diagnoses, demographics, physical measurements, laboratory measurements,

medication usage and hospitalization, which were not recorded for all patients in all visits. The prediction

window is defined as the time period from the prediction point till target point, indicating how far in the

future the prediction is made (Fig. 1b). The means of record lengths for HbA1c and LDL samples are 2651

(95% CI [2633,2669]) and 2661 (95% CI [2642,2679]), respectively (Fig 1c,d).

The machine learning framework to adapt sparse multivariate medical time series to pretrained large

language model

This machine learning framework was designed to handle sparse medical time series data and adapt it to

a pretrained large language model to leverage the prediction power of such models in the specific

domain of medical data. The framework aims to mitigate issues related to missing data, which is

common in medical records, and transforming the data into a suitable format for pretrained language

models.



Figure 1. Summary of the data and machine learning framework to adapt sparse medical time series to pretrained large

language models. (a) Samples were gone through a filtering process to select relevant samples for each prediction task. The

histograms show the distribution of selected samples for HbA1c and LDL prediction. (b) Example of a patient medical record

used in this study, from the first visit to the target point, feature window and prediction window are also defined. (c,d)

Distributions of the lengths of the time series for HbA1c and LDL, respectively. (e) The machine learning framework started with

processing the sparse medical data, which was then fed into an embedding layer that outputs a reduced representation of the

data, which in turn was used as input for the pre-trained language model, which outputs the prediction (e).

The framework is a multi-step process to make prediction from raw medical data. The process begins

with data processing, which includes the generation of a missing mask containing missing information of

the variables and appending the missing mask to the original data matrix, retaining the missing

information of the variables. The missing values were then filled with the means of the corresponding

variables across time points. The processed data is then passed through an embedding layer, which

reduces the dimensionality of the data while preserving its essential features. The embedding layer is

crucial for handling the complexity and sparsity of the medical data, as it transforms the input into a

more compact and meaningful representation, and at the same time makes it compatible for the

pretrained language model. The embedded data is subsequently fed into a pretrained large language

model. This model, which has been trained on vast amounts of textual data, is adapted to understand

and predict outcomes based on the structured medical data provided (Methods, Fig. 1e). In this study

we leveraged the framework to predict HbA1c and LDL levels either in the next visit or some visit in the

future.



The LLM-based model trained on medical time series data is useful in case of longer prediction

windows

Figure 2. LLM-based model trained on time series outperformed the XGBoost trained on snapshot data. a) Correlation

between observed data and predicted data using XGBoost trained on snapshot data of 17 500 samples at prediction point. Data

points are results from a test set of 2500. b) Performance of the XGBoost model at different prediction points (“last” means last

time point before the target point), in terms of mean squared error (MSE) and Pearson’s correlation coefficient. c) Performance

of the XGBoost model compared to the LLM-based model trained on time series at different prediction points, with 10

resamples. P-values are from Wilcoxon Rank Sum test. d) Performance of both models at different training size within a subset

of 20 000 samples, at the prediction point of “4th to last”, with 10 resamples.

Before training a deep learning model on time series data, we wanted to validate the utility of such

model and data in clinical settings. Using a random training sample of 18 000, we observed that to

predict the HbA1c level in the next doctor visit, an XGBoost model trained only on the data at the

prediction point is sufficiently well performed. In particular, the model achieved a Pearson’s correlation

coefficient of 0.741 on the test set, indicating the sufficiency of using a shallow learner on the snapshot

data at the prediction point (Fig. 2a). However, when we widened the prediction window by moving the

prediction point further away from the target point, the prediction performance deteriorated drastically,

in terms of mean squared error (MSE) and Pearson’s correlation coefficient. Specifically, the MSE

increased from 0.780 to 1.152, and the correlation coefficient reduced from 0.741 to 0.582, when

shifting the prediction point four visits to the past (Fig. 2b). From this, we hypothesized that using deep



learning trained on longitudinal data would improve the prediction in such cases by learning the complex

patterns of historical data.

Figure 3. The LLM-based framework effectively predicted HbA1c level in the next visit. (a) Performance of the LLM-based

framework was compared to the LSTM-based method and random forest model using only the last observed HbA1c value in the

patient’s record (LastObs), in terms of Pearson’s correlation coefficient. (b) Predicted values of the HbA1c were compared

against the true values in a testing dataset when using 18000 samples for the train set and 2000 samples for the test set.

To prove our hypothesis, we benchmarked the XGBoost model as described above with our LLM-based

model trained using the medical time series data, using the same data set but at multiple different

prediction points. In particular, we compared the prediction performance in predicting HbA1c of the two

methods at different lengths of prediction window, ranging from the mean of 124.5 days (95% CI: [121.0,

126.8]) for predicting the next visit to 554.3 days (95% CI: [547.0, 561.5]) for predicting the fifth visit in

the future (Supp. Fig. S1). Results showed that the LLM-based model showed significant improvement in

prediction performance compared to the XGBoost model, especially in longer prediction windows.

Specifically, in predicting HbA1c in the next visit, the LLM-based model showed marginally higher

correlation coefficient compared to the XGBoost model, although the difference was not significant

(Wilcoxon’s Rank Sum Test, adjusted p-value = 0.121). However, when gradually increasing the prediction

window, the prediction benefited more from the prediction power of LLM and the time series data,

showing the significantly higher performance compared to the XGBoost model, with the lowest p-value

at the widest prediction window (Wilcoxon’s Rank Sum Test, adjusted p-value = 1.17e-05) (Fig. 2c). When

predicting the HbA1c at the fifth visit in the future at different training sizes ranging from 10 000 to 18

000, we also observed the significantly higher performance of LLM-based models compared to the

XGBoost models (Fig.2d). Overall, the results indicated the essentiality of our LLM-based model trained

on time series data, especially in predicting further in the future.

The model could effectively predict HbA1c and LDL levels in the next doctor visit



To illustrate the performance of the derived framework, we used it to make predictions of HbA1c and

LDL levels in the next doctor visit. We then compared the prediction performance with an LSTM-based

model, where the data processing was similar but the pretrained LLM was replaced by an LSTM trained

from scratch. In addition, we also compared the LLM-based model against a random forest model

trained on the last observed value of the target variable and the length of the prediction window

(LastObs). It is worth mentioning that for LLM- and LSTM-based models, we removed all target-related

variables during training, including the target variables themselves, so that although the prediction task

would be harder, we would be able to identify the contribution of important biomarkers for the specific

targets. For all three methods, the training and testing were performed at different ratios of train and

test sets in a subset of 20 000 samples. These comparisons would give detailed evaluation of the model

performance in many aspects.

Using Pearson’s correlation coefficient as the performance metrics, the LLM-based model consistently

outperformed both the LSTM and LastObs models across all training sizes from 5000 to 18 000 samples

out of the 20 000 dataset, for both HbA1c and LDL. In particular, for HbA1c prediction, the LLM-based

models achieved the means of correlation coefficient from 0.618 (95%CI [0.601,0.653]) at 5000 training

size to 0.749 (95%CI [0.738,0.759]) at 18 000 training size. These results significantly outperformed the

LastObs models where the last observation of HbA1c and the prediction window were used in random

forest training, as their performance did not show much improvement when increasing the sample size,

ranging from 0.593 (95%CI [0.590,0.597]) to 0.619 (95% CI [0.598,0.640]). On the other hands,

LSTM-based models where only variables that were not known to be related to the target variable were

used to train did not learn very well the complex patterns of the time series and showed poor

performance, achieving the mean correlations from 0.451 (95% CI [0.445,0.457]) to 0.495 (95% CI

[0.484,0.507]) (Fig. 3a). Noticeably, increasing the number of samples used for training improved the

performance of the LLM-based models more drastically, compared to other methods, especially at the

lower sample sizes. At the sample size of 18 000, the predicted HbA1c values showed strong correlation

to the true values (Fig. 3b).

In an additional analysis, we evaluated the performance of the LLM-based model in a post hoc setting.

Particularly, we transformed the raw predicted values of HbA1c into its original range using the known

mean and standard deviation of HbA1c in our dataset, then divided the samples into healthy (<7.5%) and

unhealthy (>= 7.5%), then evaluated the classification with the observed HbA1c values. Fisher’s Exact

Test showed strong enrichment between the classes of the true and predicted values (p-value =

4.90e-170) (Supp. Fig. S2). The result further emphasized the superior performance and clinical

relevance of our LLM-based model.

The benchmarking of LDL prediction models showed similar patterns as in the case of the HbA1c

prediction. In particular, the mean correlation coefficients of the LLM-based models ranged from 0.650

(95% CI [0.639, 0.660]) to 0.749 (95% CI [0.738, 0.759]), from 5000 to 18 000 training size, respectively,

which outperformed both LSTM-based models (Supp. Fig. S3a). At the training size of 18 000, the

LLM-based models showed high correlation between the predicted and true values (Supp. Fig. S3b). The

LastObs models, however, outperformed the LLM-based models at training size of 5000 with correlation



coefficient of 0.692 (95% CI [0.690, 0.694]). Nevertheless, when increasing the sample size, the

LLM-based showed significantly higher prediction performance than the LastObs models, especially from

the sizes of 10 000 (Wilcoxon Rank Sum test, p-values < 0.05) (Supp. Fig. S3a).

The model gives valuable insights for prognosis of T2D

In order to interpret the model prediction and gain clinically relevant insights regarding T2D

developments, we computed the integrated gradients, a robust algorithm to assess the feature

importance in association with the target variables, for the prediction of HbA1c and LDL (Methods).

Specifically, we computed the integrated gradients for each feature for a subset of 500 samples that

went to 50 doctor visits, then aggregated these gradients across all samples and timepoints to identify

the most important features, i.e. ones that have highest absolute gradients (Methods).

Figure 4. Most important features of HbA1c prediction. a) Heat map of feature importance score represented by integrated

gradients of top 20 most important features. Values are the mean absolute gradients of the features across samples and time

points. b-d) Trajectory of erythrocyte count, cholesterol and fructose levels across visits in the feature window, respectively.

Each line represents one of 500 samples, colours represent the observed HbA1c level at the target point.

For HbA1c prediction, the integrated gradients gave insights into the importance of specific visits and

individual features. In particular, most of the gradients concentrated at the last five visits before the

target point, indicating the essentiality of these visits in providing necessary information for making the

prediction at the target point (Supp. Fig. S4a). When analyzing the most important features in terms of

absolute average gradient across samples and time points, the top features included erythrocyte level,

cholesterol level, fructose level and prediction window (Supp. Fig. S4b). Specifically, the levels of

erythrocyte, cholesterol and fructose were positively associated to the predicted HbA1c level (Fig. 4a),

but mostly influence the prediction in the last five visits of the feature window (Fig. 4b-d). Besides,



several features exhibited the association with HbA1c in their missing patterns. For instance, the missing

information of thyroid stimulating hormone and C-reactive protein levels were among the important

ones.

The integrated gradients also gave insights into important visits and features for the LDL prediction.

Specifically, most of the gradients concentrated at the last ten visits before the target point, showing the

importance of these visits for LDL prediction(Supp. Fig. S5a). When analyzing the most important

features, the top features were thyroid stimulating hormone level, triglyceride level and missing number

of prandial insulin injections (Supp. Fig. S5b). All of these features are positively associated with LDL

level, especially in the last ten visits of the feature window (Supp. Fig. S6)

Discussion

In this work, we successfully introduced a novel approach to adapt sparse numerical data from a medical

time series dataset to pretrained large language model (LLM), utilizing the prediction power of such

models. Specifically, understanding that LLMs were specifically designed for language processing task, we

alleviated the text prompt engineering step by first processing the sparse data to impute the missingness

then added a learnable embedding layer after the input layer and before the pretrained LLM to feed the

input data directly into the transformer architecture of the LLM. By using the learnable embedding layer,

we successfully adapted the numerical input data and avoided the prompt engineering process, while

effectively leveraging the prediction power of the LLM. Results of this paper show positive performance

of this approach, in terms of prediction performance as well as clinical utility.

The LLM-based approach showed strong prediction performance in various aspects, exemplified by the

forecasting of HbA1c and LDL. In particular, the model outperformed both LSTM-based and LastObs

models in various training sizes, indicating the robust performance of the model even at lower number

of training samples. This could be due to the fact that the LLM was already pretrained using much larger

sample size, thereby reducing the number of samples, computational resources and time needed to

fine-tune such model. Nevertheless, it’s worth noticing that increasing the number of training samples

increased the performance drastically for the LLM-based models, especially at lower sample sizes,

indicating that such models still benefit from the larger sample sizes to account for variability, especially

in the case of clinical data where the levels of variation is high. In addition, the LLM-based models

showed robust performance even for larger prediction windows. Particularly, they showed relatively high

correlation coefficients when predicting HbA1c level in the next 18 months (554.3 days (95% CI: [547.0,

561.5])). This also highlighted the utility of historical data when predicting future values, as the

LLM-based leveraging time series data outperformed the XGBoost model using only data at the

prediction point. This demonstrates an important implication to clinical practice as historical data is

relatively important to make decision and influence patient trajectory. Altogether, our LLM-based

approach showed strong clinical utility in terms of prognostics for type 2 diabetes patients.

One important aspect of our model is the ability to give mechanistic insights into the pathological

trajectory of the patients. For the model to be more accessible to patients and healthcare practitioners,



we should be able to interpret its predictions. In this study, we interpreted the model prediction in two

aspects, including important visits along the patient’s medical history and individual influential features.

To this end, we leveraged integrated gradients, a robust algorithm particularly useful for interpreting

highly complex models such as LLMs (Methods). When averaging the gradients across all samples, we

observed that not all visits were influential for prognosis of both HbA1c and LDL. It was interesting that

only the last few visits (five for HbA1c and ten for LDL) of the feature window determined the

predictions. From the clinical point of view, this implies that although historical data is important, only

the doctor visits that are closer to the present are essential and the events that are further away are less

informative.

Regardless of the visits, for HbA1c the most important features in terms of absolute gradients were

erythrocyte, cholesterol and fructose levels. Erythrocytes (or red blood cells) are abundant in the blood

and are greatly affected by blood glucose levels, particularly by the binding of glucose to hemoglobin

A1C to form HbA1c 16. It is interesting that the erythrocyte count seemed to be inversely associated with

HbA1c levels, since the relationship between the two entities has not been straightforward, depending

on many conditions 17. More functional investigations are needed to validate this finding. On the other

hand, cholesterol and fructose are well known markers that indirectly associate with HbA1c. Particularly,

high cholesterol level (especially LDL) and high consumption of fructose might lead to insulin resistance,

worsen glycemic control and finally lead to higher HbA1c level 18,19. These detected important features

showed potential prognostic and prevention biomarkers for T2D.

For LDL prediction, the most important features are thyroid stimulating hormone (TSH), triglycerides and

the missing number of prandial insulin injections, all of which showed positive association to LDL. In

conditions such as hypothyroidism, the level of TSH increases due to reduced function of thyroid, which

leads to the reduced levels of multiple metabolic processes, including clearance of LDL cholesterol,

leading to the increased level of LDL 20. Triglycerides is a different class of lipids that is often associated

with many metabolic disorders, which is also positively associated with LDL level 21. Lastly, prandial

insulin is usually injected to patients with diabetes to control blood glucose level, missing of which would

lead to diabetes and dyslipidemia, which also increases the LDL level 22. In summary, these important

features represent potential diagnostic and prognostic biomarkers for LDL, as well as conditions such as

dyslipidemia.

Despite valuable findings, there is still room for future research to improve the impact of this study. The

putative biomarkers detected in this study need to be validated using an external dataset to validate the

association with the target variables. In the future, molecular data could be integrated to further

elucidate the mechanistic insights. In addition, the high level of missingness also limited the number of

conditions we could predict. As more patients are being recruited, more conditions could be studied and

the utility of the method could be validated more. Nevertheless, superior performance in HbA1c and LDL

prediction served as a proof of concept for the method.

In conclusion, the study demonstrated a novel method to utilize the prediction power of pretrained LLMs

in the healthcare domain, specifically in the prognosis of T2D patients using time series electronic health



records. The LLM-based method exhibited outstanding performance in predicting HbA1c and LDL in the

future doctor visit, as well as pinpointing important visits in the past and influential features as putative

biomarkers for these conditions. These findings have strong clinical utility in diagnosis, prognosis and

prevention strategy, further advancing precision medicine.

  Methods

Study dataset, data processing and experimental design

The study was conducted under a data sharing agreement with the DPV Initiative, a project initiated by

the German Diabetes Center (DZD) and executed and maintained by Ulm University, Germany, from

which we obtained the data. The DPV Initiative has been collecting patient medical records since the

1990s from over 500 treatment facilities across Germany, Austria, Switzerland and Luxembourg. At the

time of acquisition, the data consisted of 649 331 patients, of which 449 185 were of T2D. The number

of doctor visits in T2D patients ranged from 1 to 241. To ensure sufficient information for model training,

we selected patients who had at least 10 visits, which consisted of 50 183 patients. After accounting for

the missing data in the target variables, the number of patients used for HbA1c and LDL predictions were

36 733 and 15 139, respectively. To reduce variability in time sequence lengths and increase the training

sample size, for all the patients that had more than 50 visits, we extracted the sliding windows of 50

visits each, 10 visits per sliding step from the time sequences of these patients. Therefore, the number of

visits of the final dataset ranged from 10 to 50. The final numbers of samples were 52 122 for HbA1c and

18 960 for LDL.

The variables were gone through intensive processing. Originally, there were 321 variables in the

dataset, including demographics, lifestyle, physiological measurements, diagnosis, treatments,

medications and other administrative records. All uniform, completely missing variables and ones with

less than 5% data were removed. Inconsistent encodings were adjusted. Highly correlated and redundant

variables were dropped. Categorical variables were transformed using one hot encoding. To deal with

missing data, for numerical variables we filled the missing data points with the global mean of the

corresponding variables, for categorical variables we encoded the missing values as “missing” before one

hot encoding. Additionally, to retain the missing patterns which might be useful information during

model training, we created a missing mask which had the same dimensions as the original data table but

encoded ‘1’ for missing data and ‘0’ for present data. The mask was appended to the processed data

table. At the end, the numbers of processed variables were 760 for HbA1c and 749 for LDL. All variables

were standardized to normal distribution.

Benchmarking with different training sizes

To reduce the training time and computational resources required, if not indicated otherwise, we

selected a random subset of 20 000 samples for HbA1c and all samples for LDL during our benchmarking

experiments. Within the selected samples, we evaluated the prediction performance at different sizes of

training set, including 5000, 7000, 10 000, 15 000 and 18 000 (only for HbA1c). The remaining samples

were used for testing. For the deep learning models, 2000 samples within the training dataset were

utilized for validation. Using the validation set, we implemented early stopping with a patience



parameter of 30 epochs to avoid overfitting. To ensure the robustness, for each train-test ratio, we

trained models in 10 resamples.

Benchmarking with different prediction windows

The prediction windows were created by moving the prediction point. In particular, we moved the

prediction points backward from the visit preceding the target point to five visits away from the target

point, creating the corresponding prediction windows. For each prediction window, we implemented the

same training and evaluation scheme as with the benchmarking of training sizes above. However, since

we moved the target point maximum five visits to the past, the sequence length was reduced by five,

therefore the range of sequence lengths was now 5 to 45.

Adaptation of the pretrained LLM

To adapt the numerical input data to the pretrained LLM without having to engineer text prompts, we

constructed a learnable embedding layer prepended to the pretrained LLM. The embedding layer was

used to learn the suitable embeddings of the raw input data to be used as input for the LLM. In theory

one can use any architecture that could be customized to output appropriate embeddings for the

specific LLM. In our study, to simplify the training process, we implemented an multilayer perceptron

(MLP) of two hidden layers, each with 50 nodes. The dimensions of input and output layers of the MLP

could be customized depending on the input data and the internal architecture of the LLM. Input

dimensions were 760 for HbA1c and 746 for LDL, output dimension was 768 for embedding dimension of

BERT. Here we used BERT as the pretrained LLM for simplicity, but in theory one can use any pretrained

LLM for their specific purpose. We plugged the embedding layer directly into the input encoder layer of

BERT, bypassing the tokenizing and embedding steps of BERT. Both the embedding layer and BERT were

trained simultaneously during model training.

The LLM was initiated with the pretrained parameters. During forward pass, to avoid overfitting, we

implemented a dropout mechanism for both the embedding and BERT, in which 70% of the parameters

were dropped out of the feedforward, only the remaining parameters were used to compute the output.

We trained the models for a maximum 150 epochs, but with an early stopping mechanism. Particularly,

the training would stop if there was not improvement in prediction performance on the validation set

after 30 epochs. We used Adam optimizer with mean square error as loss function, learning rate of 2e-05

and weight decay of 5e-03. Pearson’s correlation coefficient was used as prediction performance on the

test set.

Implementation of long short term memory (LSTM)

The LSTM included two hidden layers of 100 dimensions. The training process was similar to the

LLM-based method as the processed input data was fed directly into the LSTM. However, the LSTM

model was initiated from scratch. The input and output dimensions, training hyperparameters and

regularization mechanisms were the same as with the LLM-based method.

Implementation of XGBoost



The XGBoost models were trained with 100 boosted trees and mean squared error as the loss function.

All other parameters were set as default from the XGBRegressor function of the xgboost library in

Python. Here we only used the variables in the prediction time point as training features, therefore no

time series was used. The rest of the training and testing scheme was the same as with LLM- and

LSTM-based methods.

Integrated gradients and analysis of feature importance

Here we leveraged integrated gradients to interpret the model prediction. Integrated gradients is a

feature attribution method that quantifies the contribution of each input feature to a model’s prediction.

It works by calculating the path integral of the gradients from a baseline input (usually zero) to the actual

input. The method computes the gradients of the model's output with respect to the input at points

along this path and averages them. By integrating the gradients, it captures how the prediction changes

as the input moves from the baseline to its actual value, providing a more stable and accurate attribution

of feature importance compared to simple gradient methods. Details could be found in the original

publication 23.

To interpret the model prediction, we computed the integrated gradients for a subset of 500 samples

that had 50 visits, using the trained model. We computed both total gradients and average absolute

gradients across all samples. The average absolute gradients were used to analyze the influential visits,

from there we identify most important individual features by summing up the gradients across time

points.

Statistical and computational analysis of results

The analysis framework was developed using pytorch. Data processing, model training and evaluation of

the results were conducted using various libraries from Python. Hypothesis testing for two continuous

variables was done with the Wilcoxon Rank Sum test, p-values were adjusted for FDR. Hypothesis testing

for two categorical variables was done with Fisher’s Exact test. Data visualization was done using ggplot2

in R.

Code availability

The code for the analysis and computational framework is located here:

https://github.com/phngbh/DPV.

Data availability

The data is not publicly accessible due to the patient’s confidentiality. Researchers who would like to

reproduce the results could contact the responsible person in the DPV Initiative in Ulm University.

Detailed information can be found here: https://buster.zibmt.uni-ulm.de/.

References

1. Diabetes. https://www.who.int/news-room/fact-sheets/detail/diabetes.



2. Farmaki, P. et al. Complications of the type 2 diabetes mellitus. Curr. Cardiol. Rev. 16, 249–251

(2020).

3. Lee, S. et al. Unlocking the Potential of Electronic Health Records for Health Research. Int J Popul

Data Sci 5, 1123 (2020).

4. Kannel, W. B. Some lessons in cardiovascular epidemiology from Framingham. Am. J. Cardiol. 37,

269–282 (1976).

5. Nathan, D. M. & for the DCCT/EDIC Research Group. The Diabetes Control and Complications

Trial/Epidemiology of Diabetes Interventions and complications study at 30 years: Overview.

Diabetes Care 37, 9–16 (2014).

6. Nguyen, P., Tran, T., Wickramasinghe, N. & Venkatesh, S. Deepr: A Convolutional Net for Medical

Records. arXiv [stat.ML] (2016).

7. Choi, E. et al. RETAIN: An interpretable predictive model for healthcare using REverse Time

AttentIoN mechanism. arXiv [cs.LG] (2016).

8. Rasmy, L., Xiang, Y., Xie, Z., Tao, C. & Zhi, D. Med-BERT: pretrained contextualized embeddings on

large-scale structured electronic health records for disease prediction. NPJ Digit. Med. 4, (2021).

9. Li, Y. et al. BEHRT: Transformer for electronic health records. Sci. Rep. 10, 7155 (2020).

10. Che, Z., Purushotham, S., Cho, K., Sontag, D. & Liu, Y. Recurrent neural networks for multivariate

time series with missing values. Sci. Rep. 8, (2018).

11. Cao, W. et al. BRITS: Bidirectional recurrent imputation for time series. arXiv [cs.LG] (2018).

12. Liu, Y., Yu, R., Zheng, S., Zhan, E. & Yue, Y. NAOMI: Non-Autoregressive Multiresolution Sequence

Imputation. arXiv [cs.LG] (2019).

13. Huang, K., Altosaar, J. & Ranganath, R. ClinicalBERT: Modeling clinical notes and predicting hospital

readmission. arXiv [cs.CL] (2019).

14. Yang, X. et al. GatorTron: A large clinical language model to unlock patient information from



unstructured electronic health records. bioRxiv (2022) doi:10.1101/2022.02.27.22271257.

15. Kraljevic, Z. et al. MedGPT: Medical concept prediction from clinical narratives. arXiv [cs.CL] (2021).

16. Wang, Y. et al. The relationship between erythrocytes and diabetes mellitus. J. Diabetes Res. 2021,

6656062 (2021).

17. English, E. et al. The effect of anaemia and abnormalities of erythrocyte indices on HbA1c analysis: a

systematic review. Diabetologia 58, 1409–1421 (2015).

18. American Diabetes Association. Dyslipidemia management in adults with diabetes. Diabetes Care

27, s68–s71 (2004).

19. Stanhope, K. L. Role of fructose-containing sugars in the epidemics of obesity and metabolic

syndrome. Annu. Rev. Med. 63, 329–343 (2012).

20. Duntas, L. H. & Brenta, G. A renewed focus on the association between thyroid hormones and lipid

metabolism. Front. Endocrinol. (Lausanne) 9, 511 (2018).

21. Parhofer, K. G. & Laufs, U. The diagnosis and treatment of hypertriglyceridemia. Dtsch. Arztebl. Int.

116, 825–832 (2019).

22. Slattery, D., Amiel, S. A. & Choudhary, P. Optimal prandial timing of bolus insulin in diabetes

management: a review. Diabet. Med. 35, 306–316 (2018).

23. Sundararajan, M., Taly, A. & Yan, Q. Axiomatic Attribution for Deep Networks. arXiv [cs.LG] (2017).



3.3 Leveraging pretrained large language model for prognosis of type 2 diabetes using
longitudinal medical records

94



4 Discussion

4 Discussion

This thesis represent key research findings supporting biomarker discovery for complex

multifactorial diseases such as cancer and diabetes, in both aspects of biomedical insights

and methodological development. While these findings potentially serve as the basis

to translate biomedical research and advance towards precision medicine, there remain

challenges and limitations for future research to tackle. This chapter summarizes key

messages that have been elaborated through in the previous chapter and consolidates

final remarks for this thesis.

4.1 Importance of involving comprehensive data in biomarker

discovery for complex diseases

The integration of multiomic and clinical data is essential for biomarker discovery in the

context of complex diseases, as it provides a comprehensive and nuanced understanding

of the multifaceted nature of these conditions. Complex diseases, such as cancer, dia-

betes, and cardiovascular diseases, arise from intricate interactions between molecular,

environmental and lifestyle factors. Multiomic data offers detailed insights into the var-

ious biological layers that contribute to disease pathology. By integrating these diverse

datasets, researchers can capture the complexity of biological systems and identify intri-

cate interactions and pathways that may not be evident when examining a single omic

layer alone. On the other hand, clinical data adds another critical dimension by providing

patient-specific information, such as demographics, medical histories, treatment responses,

and outcomes. This rich, real-world context is crucial for validating the clinical relevance

and utility of potential biomarkers.

Combining data from various modality enables the identification of biomarkers that

are both biologically meaningful and clinically actionable. This holistic approach en-

hances the predictive power and specificity of biomarkers, facilitating the development of

personalized therapeutic strategies tailored to individual patient profiles. In the realm

of complex diseases, such integrated approaches are particularly valuable, as they help

unravel the underlying heterogeneity and pave the way for targeted interventions that

can improve patient outcomes. Ultimately, the convergence of multiomic and clinical

data fosters a deeper understanding of disease mechanisms, driving more effective and

personalized healthcare solutions.
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4.1 Importance of involving comprehensive data in biomarker discovery for complex
diseases

4.1.1 Demographics, ancestry in particular, associates with cancer drug re-

sponse

Demographics, particularly ancestry information, play a crucial role in cancer research,

especially in understanding and predicting cancer drug responses. Genetic diversity across

different populations can significantly influence the efficacy and safety of cancer therapies.

Ancestry-specific genetic variations can affect drug metabolism, efficacy, and toxicity,

leading to variations in treatment outcomes. For instance, certain genetic mutations that

influence drug response may be more prevalent in specific ancestral groups. Incorporating

ancestry information in cancer research allows for the identification of these population-

specific genetic markers and the development of tailored therapeutic strategies.

In this thesis, I explore the distribution of genetic ancestry among various cancer cell

lines and its implications for cancer research. In particular, I utilized a Bayesian method

to infer the ancestry of over 1000 cancer cell lines, classifying them primarily into five

main groups: European, East Asian, African, American and South Asian. The study

highlighted the discrepancy in ancestral distribution across cancer types, in which Euro-

pean and East Asian accounted for a vast majority of cells, 63.1% and 25%, respectively,

with smaller proportions from African, American, and South Asian ancestries. The distri-

bution of ancestries in cancer cell lines likely mirrors ethnic variations in cancer incidence

and prevalence, influencing the choice of cell line models for research. This finding high-

lights the need for diverse representation in cancer research to better understand drug

responses across different populations.

More importantly, the study found notable differences in how cancer cell lines from

European and East Asian ancestries responded to PI3K/mTOR inhibitors. In particular,

Asian cell lines appeared to be significantly more sensitive to PI3K/mTOR then Caucasian

ones, especially in glioblastoma. This aligns with clinical trial findings that Asian patients

experience greater toxicity from PI3K/mTOR inhibitors compared to European patients.

This suggests that genetic ancestry can influence drug efficacy and underscores the im-

portance of considering ancestral background in preclinical drug testing. Despite this, the

influence of ancestry on drug sensitivity and the underlying molecular mechanisms remain

underexplored. The findings emphasize the potential of integrating genetic ancestry into

precision medicine approaches, which could lead to more effective and personalized cancer

treatments, reducing the failure rates of clinical trials by tailoring interventions to genetic

backgrounds.
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4.2 Interpretable machine learning frameworks help translate biomarker research

4.1.2 Multiomic data is essential for prognosis of complex diseases

Type 2 diabetes and its complications as well as other metabolic conditions are hetero-

geneous diseases characterized by complex underlying molecular mechanisms. Thus, it is

hypothesized that incorporating molecular data together with clinical information facili-

tates the identification of novel biomarkers, elucidates disease mechanisms, and enhances

the development of targeted therapies, ultimately leading to more precise and effective

interventions for such diseases.

In this thesis I demonstrated how molecular data was leveraged to study complex

metabolic diseases. The subject of this study is distal sensorimotor polyneuropathy

(DSPN), a neuropathy condition occuring in both diabetic and non-diabetic individu-

als. Leveraging a comprehensive machine learning framework on a prospective population

dataset, the study found that addition of multiomic data on top of regular clinical data

can significantly improve the prognosis of the participants. In particular, the comprehen-

sive model outperformed the clinical model in predicting the future incident of DSPN for

healthy individuals (6.5 ± 0.2 years), achieving an AUROC of 7.1. The findings imply

the detectable changes in metabolic mechanisms before the onset of observable clinical

symptoms.

The study essentially revealed important putative biomarkers of DSPN incidence.

Specifically, inflammatory proteins and metabolites were significant contributors to the

model’s predictive power. The analysis identified 26 important features, including 17

inflammatory proteins, four metabolites, three transcripts, and two clinical variables.

These findings highlight the critical role of inflammation and metabolic alterations in the

development of DSPN and underscore the potential of using molecular biomarkers for

early prediction and prevention strategies. Ultimately, the findings highlight the need of

multiomic data and its integration in biomarker discovery.

4.2 Interpretable machine learning frameworks help translate

biomarker research

Interpretable machine learning plays a crucial role in biomarker discovery by providing

transparency and insight into the predictive models used in biomedical research. Rid of

black-box models, interpretable machine learning allows researchers, clinicians and pa-

tients to understand how input features contribute to the prediction of disease outcomes.

This transparency is essential for validating the relevance and reliability of identified
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4.2 Interpretable machine learning frameworks help translate biomarker research

biomarkers, ensuring that they are not only statistically significant but also biologically

and clinically meaningful. By elucidating the relationships between multiomic data and

clinical phenotypes, interpretable models facilitate the identification of novel biomark-

ers that can improve early diagnosis, prognostic assessments, and personalized treatment

strategies. Furthermore, the ability to interpret machine learning models helps build trust

among stakeholders, including clinicians and patients, and supports regulatory approval

processes by demonstrating the scientific rigor behind biomarker discoveries. Ultimately,

the integration of interpretability in machine learning enhances the translation of theoret-

ical findings into practical medical applications, advancing the field of precision medicine.

4.2.1 Linear model coupled with biology-driven feature selection for biomarker

discovery

Biological datasets are usually enriched with noise on top of relevant signal of interest.

This issue is further worsened by the extremely imbalanced in data dimensions, where the

number of samples is incomparable to the huge feature space. Thus, an efficient method

to filter through the feature space and select relevant features for biomarker analysis is

much needed, either serving as the basis for exploratory analysis or part of an end to end

predictive modeling.

Here I introduce IMML - a robust two-step end to end machine learning framework

for predictive modeling and biomarker discovery in complex diseases, showcased by the

analysis of distal sensorimotor polyneuropathy (DSPN). The first step of this framework

emphasizes the importance of integrating prior biological knowledge during feature selec-

tion, through the use of gene set enrichment analysis (GSEA). The GSEA feature aims

to map heterogeneous molecular variables to an interpretable biological space, by iden-

tifying the molecule sets that are enriched and associate with the phenotype of interest.

By leveraging GSEA, the framework enriches the feature selection process with insights

from existing biological knowledge, which improves the interpretability and relevance of

the selected features. This method allows for a more targeted approach in identifying

potential biomarkers that are intricately linked to the underlying biology of DSPN.

The use of interpretable models ensures that the relationships between the features

(biomarkers) and the disease outcomes are clearly understood, facilitating the validation

and application of these biomarkers in clinical settings. The impact of this framework

is significant, as it not only enhances the predictive performance of the model but also

leads to the discovery of actionable biomarkers that can be directly applied in precision
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4.2 Interpretable machine learning frameworks help translate biomarker research

medicine. The discovery of these biomarkers, such as the up-regulation of inflamma-

tory proteins, down-regulation of SUMOylation pathways and essential fatty acids, pro-

vides new avenues for early diagnosis, prognosis, and personalized treatment strategies for

DSPN, ultimately advancing the field of precision medicine with reliable and interpretable

findings.

4.2.2 Post-hoc interpretability for fine-tuned large language model

Deep learning (DL) models have demonstrated remarkable predictive power, particu-

larly in complex and high-dimensional datasets typical of healthcare. However, the inter-

pretability of these models poses significant challenges due to their intricate architectures,

often seen as ”black boxes.” Interpretability in DL is crucial as it fosters trust and trans-

parency, essential for clinical decision-making and regulatory approval. Understanding

how DL models make predictions enables clinicians to validate and leverage these mod-

els effectively, ensuring patient safety and adherence to medical standards. As discussed

in section 1.4.4, to enhance interpretability, several approaches have been developed.

Techniques such as Shapley additive explanations (SHAP) and local interpretable model-

agnostic explanations (LIME) provide insights into feature importance and model decision

processes. Additionally, methods like attention mechanisms and integrated gradients of-

fer a more nuanced understanding of the model’s focus and the contribution of individual

features to predictions.

For instance, the machine learning framework introduced in section 3.3 painted out

an elegant way to access the large language model’s internal work, with integrated gradi-

ents. In particular, the computed gradients of the features revealed significant variables

essential for the prediction, at specific time points. As an example, erythrocyte concentra-

tion, fructose and cholesterol level in the last five visits (approximately two years) before

the target time point strongly influenced the model prediction for HbA1C percentage.

This information does not only help researchers and physicians understand the model’s

behaviors and validate its prediction in clinical perspective, but also drive decision mak-

ing for early intervention to improve patients’ prognosis. By making DL models more

interpretable, we can bridge the gap between advanced computational methods and prac-

tical healthcare applications, ultimately making these powerful tools more translatable

and actionable in clinical settings. This not only enhances the reliability of the models

but also ensures that they can be seamlessly integrated into patient care, driving forward

the field of precision medicine.
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4.3 Novel method contributions

Chapter 3 introduces several contributions in novel methodology for advancing biomarker

discovery research in multiple settings. Here is a summary of a few key methods.

4.3.1 The Bayesian ancestry inference framework

In section 3.1, we derived a novel Bayesian method to infer the ancestry of cancer cell

lines (CCLs). To this end, this method utilizes genotype data of the ancestry-associated

variants to estimate the probability that each cell line belongs to various ancestral popu-

lations. Essentially, the process involved associating the genetic profiles of the CCLs to

reference populations with known ancestries. By calculating the likelihood of each cell

line belonging to specific ancestral groups, we effectively assigned ancestry labels such as

European, East Asian, African, American, and South Asian. This probabilistic framework

allowed for a nuanced classification that could capture the complex admixture patterns

present in many cell lines. The inferred ancestries were validated against known ances-

tries from an independent dataset and showed high accuracy, providing a reliable basis

for further analysis.

The accurate inference of ancestry in CCLs has significant implications for cell line

characterization and biomarker analysis. Understanding the ancestral background of

CCLs enhances the ability to select appropriate models for studying cancer biology and

drug responses. It helps in identifying population-specific genetic variants and molecular

pathways that might influence disease progression and treatment efficacy. For instance,

the study found that Asian CCLs exhibited higher sensitivity to certain PI3K/mTOR

inhibitors compared to Caucasian CCLs. This suggests that ancestry-specific biomarkers

can be critical in predicting drug response and tailoring treatments to diverse patient

populations. In sum, this methodological advancement underscores the importance of in-

corporating genetic diversity into cancer research to develop more effective and inclusive

therapeutic strategies.

4.3.2 The interpretable and comprehensive machine learning framework for

predictive modeling

An end-to-end, easy-to-implement predictive modeling for multiomic integration and

biomarker discovery is essential in precision medicine. To this end, the IMML (Inter-
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pretable Multimodal Machine Learning) method proposed in section 3.2 integrates mul-

tiomic and clinical data to enhance the prediction of disease incidence and prevalence,

specifically distal sensorimotor polyneuropathy (DSPN). It employs a two-step approach:

first, using gene set enrichment analysis (GSEA) for feature selection to incorporate prior

biological knowledge, and second, selective integration of the features in a robust model

training framework. This method improves predictive performance with ∆AUROC > 0.1

for the prediction of incident DSPN and ensures that identified biomarkers are biologically

relevant and clinically actionable.

The IMML method has significant implications for understanding disease mecha-

nisms and discovering prognostic and predictive biomarkers. By integrating multiomic

and clinical data, it provides a comprehensive view of the biological processes involved

in complex diseases like DSPN. The use of GSEA during feature selection enriches the

analysis with biological insights, enabling the identification of key pathways and molec-

ular interactions. This method not only enhances the accuracy of disease prediction but

also aids in identifying actionable biomarkers that can inform personalized treatment

strategies, ultimately advancing precision medicine.

4.3.3 Healthcare domain adaptation framework for finetuning pretrained

large language model

As elaborated in section 3.3, domain adaptation is essential to leverage the prediction

power of large language models (LLMs) for sparse clinical data in healthcare prognosis.

Specifically for type 2 diabetes prognosis, we first preprocessed the data to address the

missingness issue, then leveraged a fine-tuned BERT (bidirectional encoder representa-

tions from transformers) LLM model prepended with a learnable linear embedding layer

for nummerical data adaptation. In particular, each data point was transformed into a

fixed-size embedding through the linear embedding layer, effectively reducing the dimen-

sionality while preserving the essential information and omitting the need for text prompt

construction and engineering. Both the embedding layer and the LLM model were then

fine-tuned on the transformed time series data. The LLM’s self-attention mechanism

captures the complex temporal dependencies and interactions between different clinical

measurements. Additionally, dropout and weight decay are employed during training to

prevent overfitting, ensuring the model generalizes well to unseen data.

Applying the novel machine learning framework for type 2 diabetes prognosis repre-

sents a significant contribution in disease prediction and management. By capturing intri-
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cate temporal patterns and relationships within the patient data, this model can provide

highly accurate predictions about disease progression. Particularly, the model achieved

the mean Pearson’s correlation efficient of 0.749 (95%CI [0.738,0.759]) for HbA1C, out-

performing conventional methods. Such precise prognostic tools are invaluable in clinical

settings, enabling healthcare providers to identify high-risk patients early and tailor in-

terventions accordingly. Moreover, the interpretability of the model can offer insights

into which clinical features and time periods are most influential in predicting disease

progression, providing valuable feedback for both medical practitioners and patients in

understanding and managing the disease.

4.4 Limitations and outlook

In general, this thesis represents significant scientific contributions in predictive model-

ing and biomarker discovery for complex diseases, further advancing precision medicine.

While the studies highlight innovative approaches, they bring to light several limitations

and areas for future development. Addressing these challenges and further development

of research in this area would transform precision medicine into a truly translational field

and benefit patients.

4.4.1 Enrichment of data annotation in multiple modalities to assist biomarker

discovery

Enriching the availability of data in precision medicine is crucial for advancing the field,

yet several challenges hinder progress. From the preclinical perspective, one significant

challenge is the lack of annotated demographic information, sparsity in molecular char-

acterization and and other pathological information in cancer cell lines. Comprehensive

databases such as Cell Model Passport encompass molecular characterization, pathologi-

cal information and drug response information of cancer cell models which serve as useful

resources for preclinical study (117). That being said, efforts are being made to complete

the annotation for these cell line models. This limitation is particularly critical as pre-

cision medicine relies on tailoring therapies to individual patient profiles, which requires

comprehensive datasets that include detailed annotations on ancestry, lifestyle factors,

and clinical histories. In particular, findings from Section 3.1. suggest that ancestral in-

formation plays a crucial role in differential drug response, especially between East Asian

and Caucasian populations. Therefore, leveraging this information in preclinical study

would greatly enhance the predictive performance.
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4.4 Limitations and outlook

Another challenge is the incomplete functional annotation of biological molecules

in various multiomic datasets. Despite the growing use of multiomics to explore com-

plex biological systems, many molecules remain poorly characterized, which hampers the

identification of meaningful biomarkers. The vast amount of data generated by high-

throughput technologies often outpaces our ability to accurately annotate and interpret

these molecular features, leading to a gap between data generation and actionable insights.

For instance, while databases like Reactome and KEGG provide extensive information on

molecular pathways and interactions, they do not cover the full spectrum of molecules

identified in high-throughput studies (118, 119). As pointed out in Section 3.2., the lack

of functional annotation in multiple modalities such as genomics and metabolomics re-

duced the number of analyzed features of the framework significantly, complicating the

model interpretation and subsequent biomarker discovery. In genomics, not all genetic

variants have known functions or clinical relevance, leading to challenges in interpreting

how specific mutations might contribute to disease. Similarly, in metabolomics, a sub-

stantial proportion of detected metabolites remain unannotated or poorly characterized,

limiting our understanding of their roles in cellular processes and disease mechanisms.

To address these challenges, future research must focus on several key areas. Firstly,

there is a need for standardized protocols for data collection, annotation, and sharing

across laboratories and institutions. This would ensure that demographic, molecular,

and clinical data are consistently recorded and made available for research. Initiatives

like global biobanks and consortiums that aggregate data from diverse populations could

play a pivotal role in enriching datasets. Secondly, advances in bioinformatics and com-

putational biology are essential for improving the annotation of biological molecules in

multiomic studies. Developing more sophisticated algorithms and machine learning mod-

els to predict the function and significance of uncharacterized molecules could bridge the

gap between data generation and biological understanding. Additionally, collaborative

efforts to expand databases like Reactome and KEGG with new experimental data are

essential. Furthermore, initiatives to create new databases specifically focused on un-

derrepresented molecules or to integrate existing databases for a more holistic view of

molecular interactions could significantly advance the field. By addressing these chal-

lenges, the availability of robust, annotated data will significantly improve, paving the

way for more accurate biomarker discovery and the advancement of precision medicine,

which will ultimately lead to more effective, personalized treatments that consider the full

spectrum of individual patient characteristics.
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4.4 Limitations and outlook

4.4.2 Completion of sample characterisation to increase prediction power

Integrating clinical data more effectively into precision medicine research is a complex

but crucial endeavor. Currently, clinical datasets are often fragmented, with inconsistent

formats, missing data, or variable accuracy, which hinders comprehensive analyses. This

leads to the lack of depth and breadth required to capture the complexity of diseases,

particularly when it comes to correlating molecular profiles with clinical outcomes. This

sparsity is compounded by the challenges of integrating data from different sources, such

as electronic health records, biobanks, and research studies, which may have inconsistent

formats, missing information, or varying degrees of accuracy. These challenges were evi-

denced by the clinical datasets introduced in Section 3.2 and 3.3, where the data modality

were distributed unevenly across samples and missingness was at higher rate. These data

incompleteness complicated the analysis process and reduced prediction power of the

models.

To overcome these challenges, the development of interoperable platforms that facil-

itate seamless data sharing and analysis across different healthcare systems is essential.

For instance, creating standardized data repositories that can aggregate and harmonize

data from diverse sources—such as electronic health records, biobanks, and research stud-

ies—would vastly improve the depth and quality of available clinical information. Addi-

tionally, incorporating more comprehensive molecular profiling of patients during routine

care could significantly enrich clinical datasets. For example, routinely collecting genomic,

proteomic, and metabolomic data alongside traditional clinical measures would provide

a more detailed and actionable dataset for researchers. This would not only enhance the

precision of biomarker discovery but also enable more personalized treatment strategies

that are based on a deeper understanding of the patient’s unique molecular and clinical

profile.

Efforts to standardize protocols for data generation and annotation across labora-

tories and institutions are also critical for advancing precision medicine. Currently, the

lack of standardized protocols means that data generated in different studies or at dif-

ferent institutions may not be directly comparable, which limits the ability to integrate

and analyze data at a broader scale. To address this, international collaborations and

initiatives aimed at establishing universal standards for data handling and sharing should

be prioritized. These efforts would not only improve the reliability and reproducibility

of research findings but also enhance the ability to identify and validate biomarkers that

are relevant across different populations. In turn, this would help bridge the gap between
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4.4 Limitations and outlook

research and clinical application, making precision medicine more effective and accessible

to a broader range of patients.

4.4.3 Functional validation of putative biomarkers to translate biomedicine

Functional validation of putative biomarkers is a crucial step in translating biomedical

research findings into clinical applications. For example in Section 3.2, where biomarkers

for distal sensorimotor polyneuropathy (DSPN) were identified, including inflammatory

cytokines, metabolic pathways, and genetic markers, and in section 3.3, where erythrocyte,

fructose and cholesterol were identified as putative biomarkers of future HbA1C level,

functional validation ensures that these biomarkers are not only statistically significant

but also biologically relevant and clinically actionable.

The process of functional validation typically involves several key steps. First, repli-

cating the findings in independent cohorts can confirm the reliability of the biomarkers

across different populations and settings. This helps ensure that the biomarkers are not

artifacts of a specific dataset or analytical method. For instance, in the DSPN study, the

validation of biomarkers such as proinflammatory cytokines would require further studies

to confirm their role in the disease process and their predictive power for DSPN onset. In

addition to replication, functional validation often involves experimental studies designed

to test the biological roles of the biomarkers. This could include in vitro experiments, such

as using cell cultures to examine the effects of specific cytokines on neuronal cells, or in

vivo studies, where animal models are used to explore how manipulating these biomarkers

affects disease progression. For example, we could use genetically modified mice to overex-

press or knock out specific inflammatory cytokines identified as biomarkers in the DSPN

study, observing the resultant impact on nerve function and disease development. In the

context of cholesterol, fructose, and erythrocyte levels identified as biomarkers for future

HbA1C level (a measure of long-term blood glucose levels), functional validation would

involve exploring the mechanistic links between these biomarkers and glucose metabolism.

For instance, we might investigate how elevated cholesterol levels influence insulin resis-

tance or how fructose metabolism affects HbA1C levels. Additionally, understanding the

role of erythrocytes in glucose regulation could provide insights into how changes in red

blood cell function impact HbA1C predictions.

These experimental approaches are complemented by computational methods that

can model the interactions between different biomarkers and their impact on disease

pathways, broadening the understanding of the disease’s mechanisms. By integrating
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multiomic data, we can build network models that predict how changes in one biomarker

might influence others and contribute to disease progression. These models can then be

tested and refined through further experimental studies, ultimately leading to a deeper

understanding of the disease mechanisms.

Functional validation also plays a crucial role in determining the clinical utility of

biomarkers. This involves assessing whether the biomarkers can be reliably measured in

a clinical setting, whether they provide additional information beyond existing diagnostic

tools, and whether they can be used to guide treatment decisions. For the DSPN biomark-

ers, this could mean developing assays that can measure the levels of specific cytokines in

patient blood samples and testing whether these levels correlate with disease progression

or response to treatment.

In summary, functional validation of putative biomarkers is an essential process that

bridges the gap between discovery and application. By confirming the biological relevance,

experimental reproducibility, and clinical utility of biomarkers, researchers can ensure that

their findings lead to meaningful advances in patient care. The examples of inflammatory

cytokines in DSPN and cholesterol, fructose, and erythrocyte levels in HbA1C prediction

highlight the importance of this process in translating research discoveries into tools for

precision medicine.
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A Abbreviations

A.1 List of Acronyms

WHO World Health Organization

NSCLC Non-small cell lung cancer

SCLC Small cell lung cancer

CML Chronic myeloid leukemia

TKI Tyrosine kinase inhibitor

FDA U.S. Food and Drug Administration

TCGA The Cancer Genome Atlas

GDSC Genomics of Drug Sensitivity in Cancer

CTRP Cancer Therapeutics Response Portal

T790M Gatekeeper mutation of the epidermal growth factor receptor

T1D Type 1 diabetes

T2D Type 2 diabetes

ADA American Diabetes Association

EASD European Association for the Study of Diabetes

PMDI Precision Medicine in Diabetes Initiative

NIDDK U.S. National Institute of Diabetes and Digestive and Kidney Diseases

JDRF Juvenile Diabetes Research Foundation

HbA1c Glycated hemoglobin

SNP Single nucleotide polymorphism

NGS Next generation sequencing

RNA-seq RNA sequencing

MS Mass spectrometry

NMR Nuclear magnetic resonance

EHR Electronic health record

t-SNE t-distributed stochastic neighbor embedding

LASSO Least absolute shrinkage and selection operator

RCT Randomized control trial

EMA European Medicine Agency

CCLE The Cancer Cell Line Encyclopedia

AI Artificial Intelligence

PCA Principal Component Analysis

V



A.1 List of Acronyms

UMAP Uniform Manifold Approximation and Projection

DNN Deep neural network

LC-MS Liquid chromatography mass spectrometry

SVM Support vector machine

MSE Mean squared error

RMSE Root mean squared error

PCR Polymerase chain reaction

ELISA Enzyme-linked immunosorbent assay

CNN Convolutional neural network

RNN Recurrent neural network

LLM Large language model

SHAP Shapley Additive Explanation

LIME Local Interpretable Model-agnostic Explanation

CCL Cancer cell line

ICGC International Cancer Genome Consortium

HTS High throughput drug screen of cancer cell lines

HLA Human Leukocyte Antigen

MHC Major Histocompatibility Complex

COSMIC Catalogue of Somatic Mutation in Cancer

DepMap The Cancer Dependency Map Project

NCI60 A group of 60 human cancer cell lines used by the NCI for screening of compounds

ANOVA Analysis of variance hypothesis testing

FDR False discovery rate

GBM Glioblastoma

COREAD Colon and rectum adenocarcinoma

LGG Brain Lower Grade Glioma

PI3K/mTORPI3K/AKT/mTOR intracellular signaling pathway

ALL Acute lymphoblastic leukemia

1000G 1000 Genome Project

ESCA Esophageal carcinoma

STAD Stomach adenocarcinoma

DSPN Distal sensorimotor polyneuropathy

KORA Collaborative Health Research in the Region of Augsburg

AUROC Area under the ROC curve

MNSI Michigan Neuropathy Screening Instrument

GSEA Gene set enrichment analysis

VI



A.2 List of Proteins

DEA Differential expression analysis

FFS Forward feature selection

IQR Interquartile range

CI Confidence interval

RRA Robust Rank Aggregation

BMI Body mass index

SUMO Small ubiquitin-related modifier

TCA cycle Tricarboxylic acid cycle

OLINK Protein profiling platform using proximity extension assay

LDL Low-density lipoprotein

DCCT Diabetes Control and Complications Trial

NLP Natural language processing

BERT Bidirectional Encoder Representations from Transformers

RETAIN Reverse Time Attention model

BEHRT Implementation of BERT for EHR data

GRU Gated Recurrent Unit

LSTM Long Short-Term Memory

BRITS Bidirectional Recurrent Imputation of Time Series data

NAOMI Non-Autoregressive Multiresolution Sequence Imputation

GPT-3 Generative Pre-trained Transformer 3

XGBoost Extreme Gradient Boost

TSH Thyroid stimulating hormone

A.2 List of Proteins

ABL Tyrosine-protein kinase ABL1

BCR Breakpoint cluster region protein

HER2 Receptor tyrosine-protein kinase erbB-2

EGFR Epidermal growth factor receptor

p53 Tumor protein p53

PI3K Phosphoinositide 3-kinase

mTOR Mammalian target of Rapamycin

ERBB2 HER2

ERBB4 Erb-B2 Receptor Tyrosine Kinase 4

GPCR G protein-coupled receptors

VII



A.3 List of Genes

GLP-1 Glucagon-like peptide-1

IL-6 Interleukin 6

CXCL9 Chemokine (C-X-C motif) ligand 9

CXCL10 Chemokine (C-X-C motif) ligand 10

CCL13 Chemokine (C-C motif) ligand 13

CCL19 Chemokine (C-C motif) ligand 19

CCL20 Chemokine (C-C motif) ligand 20

CDCP1 CUB domain containing protein 1

SLAMF1 Signaling lymphocytic activation molecule 1

TNFRSF9 TNF receptor superfamily member 9

TNFRSF11BTNF receptor superfamily member 11B

CD5 Cluster of differentiation on the surface of T cells

FFAR Free fatty acid receptors

A.3 List of Genes

NF1 Neurofibromin 1

MLL2 Lysine methyltransferase 2D

PIK3R1 Phosphoinositide-3-kinase regulatory subunit 1

CDC42 Cell division control protein 42 homolog

SP3 Sp3 Transcription Factor

ITSN1 Intersectin 1

A.4 List of Metabolites

AMPA alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

PUFA Polyunsaturated fatty acid

ARA Arachidonic (omega-6) acid

DHA Docosahexaenoic (omega-3) acid

MCFA Medium-chain fatty acid
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Supplementary Figure S1. Analysis pipeline and results for cross-sectional DSPN 

a. Features in modality-specific datasets were selected independently using non-overlapping 
modality-specific samples. The selected features stratified into case and control are shown in 
the barplots.  

b. Molecular data went through differential expression analysis (DEA) which generated a molecule 
list sorted by t-statistics which was then used as input for gene set enrichment analysis (GSEA). 
GSEA output leading edge genes which drive the enrichment of their respective gene sets. 
Clinical features was selected by training elastic net models and extracting important features. 
The process was repeated using 100 stratified resamplings.  

c. The final significant list of molecules and clinical variables were selected using a rank 
aggregation algorithm.  

d. After feature selection step, the selected features were then integrated to train models to predict 
DSPN, using the left-out overlapping dataset (training set). The training aimed to determine the 
optimal complexity and composition of the models by implementing elastic net with forward 
feature selection in a nested cross-validation manner, using weighted log loss as performance 
metric to account for class imbalance. We used 100 stratified resamplings during training and 
the rank aggregation at the end to select the most stable model.  
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Supplementary Figure S2. PCA of clinical features for feature selection and model training datasets. 
Grey contour plots highlight the model training sets, whilst other colors indicate the feature selection set 
of the different modalities: (a) Genomics, (b) Transcriptomics, c) Proteomics, (d) Metabolomics, (e) 
Methylomics and (f) Clinical data. 
 
 

 
Supplementary Figure S3. Benchmarking of feature selection and integration methods  

a. Illustration of methods for feature selection (thresholding and GSEA) and feature integration 
(concatenation, ensemble and our FFS algorithm) in a conventional multi-modal machine 
learning process. Arrows show the possible trajectory of the process in which different 
combinations of these methods could be used.  

b. Benchmarking result showing prediction performance on the test set of different selection-
integration methods for incident DSPN prediction using transcriptomic, proteomic, metabolomic 
and clinical data. Distributions of AUROC for the matched 100 stratified resamplings are shown 
in the y-axis and different methods are shown on the x-axis. 
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Supplementary Figure S4. Network of enriched gene sets in cross-sectional DSPN 
Network of enriched gene sets from which the predictive features were selected, for cross-sectional 
DSPN prediction. Nodes are the gene sets coloured with their corresponding data modality. Size of the 
nodes reflects their centrality with respect to the network. Edges are the number of shared leading-edge 
molecules between two nodes. 
 
 
 
 



 
Supplementary Figure S5. Network of enriched features in cross-sectional DSPN 
Network of all selected features for training cross-sectional DSPN models. Nodes are the features 
coloured with their corresponding data modality. Edges are the number of shared gene sets between two 
nodes. 
 
 
 
 
 
 
 
 
 
 
 



 
Supplementary Figure S6. Network of enriched gene sets in incident DSPN  
Network of enriched gene sets from which the predictive features were selected, for incident DSPN 
prediction. Nodes are the gene sets coloured with their corresponding data modality. Size of the nodes 
reflects their centrality with respect to the network. Edges are the number of shared leading-edge 
molecules between two nodes. 
 
 
 
 
 
 

 
Supplementary Figure S7. Network of enriched features in incident DSPN  
Network of all selected features for training incident DSPN models. Nodes are the features coloured with 
their corresponding data modality. Edges are the number of shared gene sets between two nodes. 
 
 
 
 
 
 



 
Supplementary Figure S8. Performance of forward feature selection (FFS) and ensemble stacking 
feature integration methods across 100 stratified resamples. (a) AUROC of the testing prediction of 
the two algorithms. P-value of Wilcoxon rank sum test is shown.(b) Important features selected by the 
GSEA-ensemble stacking (GSEA-Es) and GSEA-FFS methods and their overlapping.   
 
 
 
 
 



 
Supplementary Figure S9: Prediction performance of four different machine learning algorithms. 
Here we compare the predictive power of (a-d) prevalent DSPN and (e-h) incident DSPN. We 
benchmarked (a,e) elastic net (glmnet), (b,f) random forest (rf), and support vector machine with (c,g) 
radial (svmRadial) and (d,h) linear kernel (svmLinear). 
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Supplementary Figure S10: Calibration plots of predicted probabilities for prevalent DSPN (a) and 
incident DSPN (b). The predicted probabilities were calibrated using the Platt scaling method. 
 
 
 
 
 
 
 

a b



 
Supplementary Figure S11. Prediction performance of prevalent DSPN models, when forcing the 
FFS algorithm to choose clinical model at the beginning.  

a. Prediction performance during cross-validation. X-axis shows the increasing model complexity. 
Y-axis shows the median of performance values across 5-fold cross-validation for AUROC, 
AUPRC and weighted log-loss 

b. Prediction performance on the testing sets. X-axis shows the increasing model complexity. Y-
axis shows the performance values on the testing sets for AUROC, AUPRC and weighted log-loss 
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Supplementary Figure S12. Distribution of important clinical variables for cross-sectional DSPN 
model  
Distribution of age, height and waist size in the training set stratified into case and control (panel a, b and 
c respectively). Panel d shows association of patients who have neurological illness in general and cross-
sectional DSPN. P-values for Wilcoxon rank sum test and Fisher’s exact test are shown.  
 
 
 
 
 

 
Supplemental Figure S13: Baseline models to predict DSPN incidence. Prediction probabilities during 
testing of negative samples using a) the prevalent DSPN model trained on clinical data alone at F4, b) 
baseline incidence model trained only on clinical variables at F4 and incidence label at FF4 and c) the full 
incidence model trained on clinical + molecular variables at F4 and incidence label at FF4. Cases are 
samples developing DSPN from F4 to FF4, and controls are ones remaining negative. For each 
comparison, Cohen’s d was used as the measure of the difference between groups. 
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Supplementary Figure S14. Prediction performance of incident DSPN models, when forcing the FFS 
algorithm to choose clinical model at the beginning.  

a. Prediction performance during cross-validation. X-axis shows the increasing model complexity. 
Y-axis shows the median of performance values across 5-fold cross-validation for AUROC, 
AUPRC and weighted log-loss 

b. Prediction performance on the testing sets. X-axis shows the increasing model complexity. Y-
axis shows the performance values on the testing sets for AUROC, AUPRC and weighted log-loss 
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Supplementary Figure S15. Prediction performance of incident DSPN models, when allowing the 
FFS algorithm to choose starting model based on cross-validation.  

a. Prediction performance during cross-validation. X-axis shows the increasing model complexity. 
Y-axis shows the median of performance values across 5-fold cross-validation for AUROC, 
AUPRC and weighted log-loss 

b. Prediction performance on the testing sets. X-axis shows the increasing model complexity. Y-
axis shows the performance values on the testing sets for AUROC, AUPRC and weighted log-loss 
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Supplementary Figure S16. Feature importance score of the important features of the final incident 
DSPN model   
X-axis shows the features in decreasing magnitude of the t-statistics in the final model. Y-axis shows the 
t-statistics (signed importance scores) of the features. Colors represent the data modality.   
 
 
 
 
 



 
Supplementary Figure S17. Distribution of important clinical variables for incident DSPN model  
Distribution of the features in the training set stratified into case and control. P-values for Wilcoxon rank 
sum test and Fisher’s exact test are shown. 
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Supplementary Figure S18. Examples of consistently enriched signalling pathways that are 
predictive of incident DSPN   
X-axis represents all evaluated genes ranked in decreasing order of t-statistics, with ticks represent 
genes that belong to the examined gene set. Y-axis represent the enrichment score. Panels a-c are 
inflammation protein pathways, d-g are transcriptomic pathways and h-l are metabolomic pathways. 
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Supplementary Table S1. Clinical characteristics of the dataset for prevalent DSPN prediction 
 

Variable Control (MNSI <3) Case (MNSI >= 3) P 

N 903 188   

Age, years 69.7 ± 5.2 72.5 ± 5.2 1.09e-10 

Sex, % male 49.4 60.6 0.005 

Height, cm 165.3 ± 8.8 167.9 ± 9.6 0.00071 

BMI, kg/m2 28.4 ± 4.2 30.2 ± 5.2 1.30e-05 

Waist circumference, cm 97.2 ± 11.7 103.7 ± 12.9 8.11e-10 

Systolic blood pressure, mmHg 128.8 ± 20 128.6 ± 20 0.873 

Diastolic blood pressure, mmHg 74.4 ± 10.1 72.4 ± 9.8 0.007 

Hypertension, % 62.0 64.4 0.561 

Smoking, %, never/former/current 51.6/40.7/7.7 44.9/48.1/7.0 0.233 

High alcohol consumption, % 29.1 33.7 0.220 

Low physical activity, % 36.8 51.9 0.014 

Previous myocardial infarction, % 5.9 9.1 0.104 

Previous stroke, % 3.2 8.0 0.006 

Presence of neurological diseases, 
% 

16.2 31.0 4.33e-06 

Absent ankle reflexes, % 5 72.3 6.63e-112 

Foot ulcer present, % 0 2.1 0.001 

MNSI score 1.7 ± 1 4.3 ± 0.9 2.34e-107 

Use of NSAIDs, % 3.4 7.4 0.024 

NGT, % 53.7 45.7 0.054 

i-IFG, % 5.3 3.7 0.464 

i-IGT, % 16.7 12.2 0.154 

IFG/IGT, % 4.3 6.9 0.133 

Newly diagnosed diabetes, % 6.4 4.8 0.504 

Known diabetes, % 13.5 26.6 1.25e-05 

Diabetes duration, years* 8.1 ± 6.4 15 ± 10.6 1.58e-15 

Metabolic parameters       

     Fasting glucose, mg/dL+ 103.6 ± 21.2 110.4 ± 29.9 0.015 

     2-h glucose, mg/dL+ 128.0 ± 41.9 127.2 ± 38.6 0.945 

     HbA1c, % 5.7 ± 0.7 6.0 ± 0.8 3.06e-06 

     Total cholesterol, mg/dL 222.7 ± 41.0 210.8 ± 37.9 0.00014 

     LDL cholesterol, mg/dL 140.7 ± 36.2 131.7 ± 33.4 0.001 

     HDL cholesterol, mg/dL 56.0 ± 14.3 53.4 ± 12.2 0.075 

     Creatinine, mg/dL 0.95 ± 0.3 1.02 ± 0.3 0.001 

     Uric acid, mg/dL 5.5 ± 1.4 5.8 ± 1.5 0.015 
* Only applicable to people with diabetes 

   

+ Only applicable to people without known diabetes 
  

 
 



Supplementary Table S2. Clinical characteristics of the dataset for incident DSPN prediction 
 

Variable Control (no incident F4-
>FF4) 

Case (incident F4-> FF4) P 

N 394 131   

Age, years 68.0 ± 4.6 70.1 ± 4.9 2.46e-05 

Sex, % male 49.2 56.5 0.159 

Height, cm 165.9 ± 8.5 167.6 ± 9.4 0.064 

BMI, kg/m2 27.7 ± 3.8 29.1 ± 4.0 0.00054 

Waist circumference, cm 94.8 ± 11.2 99.9 ± 11.4 1.34e-05 

Systolic blood pressure, mmHg 128.4 ± 19.2 131.3 ± 19.9 0.217 

Diastolic blood pressure, mmHg 75.5 ± 10.1 75.5 ± 9.2 0.950 

Hypertension, % 56.3 65.6 0.066 

Smoking, %, never/former/current 52.0/42.4/5.6 55.0/33.6/11.4 0.054 

High alcohol consumption, % 29.4 35.9 0.191 

Low physical activity, % 26.4 42.7 0.00064 

Previous myocardial infarction, % 4.8 6.9 0.373 

Previous stroke, % 1.0 0.8 1 

Presence of neurological diseases, 
% 

14.7 21.4 0.102 

Absent ankle reflexes, % 3.8 6.1 0.323 

Foot ulcer present, % 0 0 1 

MNSI score 1.5 ± 1.0 1.9 ± 0.9 2.65e-05 

Use of NSAIDs, % 1.0 2.3 0.374 

NGT, % 62.9 50.4 0.013 

i-IFG, % 3.0 7.6 0.040 

i-IGT, % 14.5 16.8 0.573 

IFG/IGT, % 4.6 4.6 1 

Newly diagnosed diabetes, % 5.6 5.3 1 

Known diabetes, % 9.4 15.3 0.074 

Diabetes duration, years* 6.9 ± 5.5 8.9 ± 5.2 0.116 

Metabolic parameters       

     Fasting glucose, mg/dL+ 101.0 ± 16.4 103.8 ± 17.2 0.078 

     2-h glucose, mg/dL+ 123.9 ± 38.6 127.4 ± 38.4 0.371 

     HbA1c, % 5.7 ± 0.5 5.8 ± 0.7 0.027 

     Total cholesterol, mg/dL 226.3 ± 40.5 216.1 ± 42.7 0.009 

     LDL cholesterol, mg/dL 142.5 ± 36.3 136.6 ± 37.5 0.069 

     HDL cholesterol, mg/dL 57.3 ± 14.2 52.5 ± 12.3 0.00025 

     Creatinine, mg/dL 0.9 ± 0.2 1.0 ± 0.3 0.071 

     Uric acid, mg/dL 5.5 ± 1.3 5.6 ± 1.4 0.692 

* Only applicable to people with diabetes 
  

+ Only applicable to people without known diabetes 
  

 
 



Supplementary Table S3. Significantly enriched signalling pathways during feature selection for 
prevalent DSPN prediction 
 

pathway pval padj ES NES size Type 

Formation of a pool of free 40S subunits 1.874e-06 2.024e-05 -0.445 -2.140 95 Transcriptomics 

GTP hydrolysis and joining of the 60S ribosomal 
subunit 

3.308e-05 8.132e-05 -0.405 -1.986 104 Transcriptomics 

L13a-mediated translational silencing of 
Ceruloplasmin expression 

3.555e-05 8.132e-05 -0.404 -1.972 103 Transcriptomics 

Nonsense Mediated Decay (NMD) enhanced by 
the Exon Junction Complex (EJC) 

6.2356e-05 0.0001 -0.395 -1.944 106 Transcriptomics 

Collagen chain trimerization 0.0001 0.0002 0.522 2.029 39 Transcriptomics 

Influenza Infection 0.0002 0.0004 -0.341 -1.762 143 Transcriptomics 

Collagen biosynthesis and modifying enzymes 0.0003 0.0005 0.441 1.921 61 Transcriptomics 

Assembly of collagen fibrils and other 
multimeric structures 

0.0003 0.0005 0.448 1.928 58 Transcriptomics 

Degradation of the extracellular matrix 0.0004 0.0006 0.338 1.678 131 Transcriptomics 

Formation of the ternary complex  and 
subsequently the 43S complex 

0.0005 0.0007 -0.460 -1.941 47 Transcriptomics 

SUMOylation of DNA methylation proteins 0.0015 0.002 -0.635 -2.006 15 Transcriptomics 

Selenoamino acid metabolism 0.0018 0.002 -0.333 -1.642 110 Transcriptomics 

Major pathway of rRNA processing in the 
nucleolus and cytosol 

0.0019 0.002 -0.293 -1.550 170 Transcriptomics 

Ribosomal scanning and start codon 
recognition 

0.002 0.003 -0.413 -1.774 53 Transcriptomics 

Regulation of expression of SLITs and ROBOs 0.005 0.005 -0.291 -1.526 159 Transcriptomics 

Laminin interactions 0.0001 0.0713 0.829 2.017 9 Proteomics 

Antimicrobial peptides 0.0004 0.0713 -0.676 -2.111 16 Proteomics 

Interleukin-20 family signaling 0.0004 0.0713 0.745 2.009 13 Proteomics 

Interleukin-3 Interleukin-5 and GM-CSF 
signaling 

0.0006 0.082 0.618 1.922 23 Proteomics 

Transport of nucleosides and free purine and 
pyrimidine bases across the plasma membrane 

0.0002 0.0002 -0.931 -2.083 5 Metabolomics 
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Supplementary Figure S1. Distribution of prediction windows for the benchmarking of LLM-based 
and XGBoost models. a-e) Prediction windows in case of last visit, second to last, third to last, fourth to 
last and fifth to last visits, respectively. The mean numbers of days are also shown.  

mean = 124.5 

mean = 227.9 

mean = 327.5 

mean = 428.7 

mean = 554.3 

a

b

c

d

e



(Raw) predictions Fisher’s exact test, p-value=4.9e-170

a b

Supplementary Figure S2. Performance of the model in stratifying healthy and unhealthy patients. (a) Distribution 
of predicted HbA1C when put back in the normal range. b) Confusion matrix of predictions and observations for HbA1C 
prediction.    



Pearson’s r = 0.754

a b

Supplementary Figure S3. The LLM-based framework effectively predicted LDL level in the next visit. (a) 
Performance of the LLM-based framework was compared to the LSTM-based method and random forest model 
using only the last observed LDL value in the patient’s record (LastObs), in terms of Pearson’s correlation 
coefficient. (b) Predicted values of the LDL was compared against the true values in a testing dataset when using 
18000 samples for train set and 2000 samples for test set. 



a

b

Supplementary Figure S4. Important features in HbA1C 
prediction. (a) Heatmap of top 20 important features across 
timepoints, colours represent average gradient across samples. 
b) Top 20 important features ordered according to average 
absolute gradient across timepoints and samples.    



a

b

Supplementary Figure S5. Important features in LDL 
prediction. (a) Heatmap of top 20 important features across 
timepoints, colours represent average gradient across samples. 
b) Top 20 important features ordered according to average 
absolute gradient across timepoints and samples.    



a b

c

d

Supplementary Figure S6. Most important features of LDL prediction. a) Heat map of feature importance score represented by integrated gradients 
of top 20 most important features. Values are the mean absolute gradients of the features across samples and time points. b-d) Trajectory of 
erythrocyte count, cholesterol and fructose levels across visits in the feature window, respectively. Each line represents one of 500 samples, colours 
represent the observed LDL level at the target point.   
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ine Young, Chloé Amouyal, Mette K Andersen, Maxine P Bonham, Mingling Chen, Feifei

Cheng, Tinashe Chikowore, Sian C Chivers, Christoffer Clemmensen, Dana Dabelea, Adem Y

Dawed, Aaron J Deutsch, Laura T Dickens, Linda A DiMeglio, Monika Dudenhöffer-Pfeifer,
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