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Zusammenfassung

Hyperparameteroptimierung (HPO) ist ein essenzieller Bestandteil maschinellen Lernens
(ML), der die Performanz von Modellen und weitere zentrale Eigenschaften wie beispiel-
sweise Modellkomplexität maßgeblich beeinflusst. Als rechnerisch anspruchsvolles Black-Box-
Optimierungsproblem erfordert HPO effiziente Algorithmen, um optimale Hyperparameterkonfig-
urationen zu identifizieren. Diese Dissertation erweitert das Forschungsfeld HPO in drei zentralen
Dimensionen: grundlegende Erkenntnisse, Optimierung in Szenarien von mehr als einer relevanten
Zielfunktion und algorithmische Innovationen durch Benchmarking.

Erstens untersuchen wir Resampling-Strategien zur Schätzung des Generalisierungsfehlers von
Modellen und zeigen sowohl theoretisch als auch empirisch, dass ein zufälliges Auswählen von
Resampling-Splits über verschiedene Hyperparameterkonfigurationen hinweg die Generalisierung
von HPO verbessern kann. Zudem analysieren wir detailliert die Optimierungslandschaften von
HPO-Problemen hinsichtlich des Validierungsfehlers und identifizieren charakteristische Merkmale
wie geringe Multimodalität und weite Plateaus, welche HPO-Probleme von herkömmlichen Black-
Box-Optimierungsproblemen unterscheiden.

Zweitens entwickeln wir neuartige Algorithmen für HPO in multi-kriteriellen Szenarien sowie in
Quality-Diversity Szenarien. Wir schlagen einen neuen Ansatz vor, um Modellperformanz und
Interpretierbarkeit gleichzeitig zu optimieren, wobei wir letztere anhand von Metriken wie Merk-
malssparsamkeit, Sparsamkeit von Interaktionseffekten und Sparsamkeit nicht-monotoner Merk-
male quantifizieren. Zudem verknüpfen wir das Forschungsfeld Quality-Diversity Optimierung mit
HPO und neuronaler Architektursuche, um innerhalb eines einzigen Optimierungslaufs diverse,
aber gleichzeitig leistungsstarke neuronale Architekturen zu entdecken, die unterschiedlichen Hard-
warebeschränkungen gerecht werden.

Drittens nutzen wir Benchmarking für algorithmische Innovationen und neue Erkenntnisse. Wir
präsentieren YAHPO Gym, eine skalierbare surrogatbasierte Benchmarking-Suite, die sowohl ein-
als auch multi-kriterielle HPO-Probleme sowie multi-fidelity Optimierung unterstützt. Mit diesem
Framework definieren wir neue Quality-Diversity Probleme, die von HPO-Problemen abgeleitet
sind und entwickeln einen innovativen multi-fidelity HPO-Algorithmus, der von den Prinzipien des
Programming by Optimization geleitet wird. Darüber hinaus analysieren wir eine bewährte neu-
ronale Architektursuche-Methode und bewerten den Einfluss der einzelnen Komponenten system-
atisch. Außerdem stellen wir eine Methode zur Konstruktion synthetischer Black-Box-Funktionen
vor, die das Ziel hat, dass deren Optimierungslandschaften vorab definierte, bestimmte Eigen-
schaften aufweisen.

Durch ein vertieftes Verständnis grundlegender Prinzipien von HPO, die Entwicklung neuartiger
multi-kriterieller und Quality-Diversity Optimierungsstrategien sowie die Bereitstellung skalier-
barer Benchmarking-Tools leistet diese Dissertation einen bedeutenden Beitrag zur Effizienz und
Effektivität von HPO für vielfältige ML-Anwendungen.



Summary

Hyperparameter optimization (HPO) is a fundamental aspect of machine learning (ML), directly
influencing model performance and adaptability. As a computationally expensive black-box op-
timization problem, HPO requires efficient algorithms to identify optimal hyperparameter con-
figurations. This thesis advances the field of HPO along three key dimensions: foundational
insights, HPO in the presence of more than one objective, and algorithmic innovations through
benchmarking.

First, we revisit resampling strategies for performance estimation, demonstrating both theoreti-
cally and empirically that reshuffling resampling splits across hyperparameter configurations en-
hances generalization. Additionally, we conduct an in-depth analysis of HPO validation land-
scapes, revealing characteristics such as low multimodality and broad plateaus that differentiate
them from conventional black-box optimization benchmarks.

Second, we introduce novel algorithms for HPO in multi-objective and quality diversity settings.
We propose a new approach for simultaneously optimizing model performance and interpretability,
quantifying interpretability through feature sparsity, sparsity of interaction effects, and sparsity
of non-monotone features. Furthermore, we bridge the field of quality diversity optimization with
HPO, which allows us to discover diverse yet well-performing neural architectures that satisfy
varying hardware constraints within a single optimization run.

Third, we use benchmarking to drive algorithmic innovation and insights in HPO. We present
YAHPO Gym, a scalable benchmarking suite supporting single-objective, multi-fidelity, and multi-
objective HPO via surrogate benchmarks. Using this framework, we define new quality diversity
problems inspired by HPO and develop a novel multi-fidelity optimization algorithm guided by
programming by optimization principles. Additionally, we ablate a state-of-the-art neural archi-
tecture search algorithm to assess the impact of individual components and introduce a systematic
approach for constructing synthetic black-box functions that admit specific optimization landscape
properties.

By deepening our general understanding of HPO, proposing novel multi-objective and quality
diversity optimization strategies, and developing scalable benchmarking tools, this thesis enhances
the efficiency and effectiveness of HPO across diverse ML applications.
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Part I.

Introduction and Background





1. Introduction

1.1. Outline

Machine Learning (ML) is a branch of Artificial Intelligence that develops algorithms which learn
from experience. An algorithm or computer program, i.e., the machine, is considered to learn
when it gains experience from past data, allowing it to improve performance on a given task over
time (Mitchell, 1997, Chapter 1, p. 2). In other words, if an algorithm improves its ability to
complete a task based on prior interactions or observations, it exhibits learning.

In recent years, ML has provided radically new approaches to application fields such as computer
vision (Krizhevsky et al., 2012; He et al., 2016; Dosovitskiy et al., 2021), natural language pro-
cessing (Vaswani et al., 2017; Devlin et al., 2019; Brown et al., 2020), game playing (Silver et al.,
2016) and drug discovery (Vamathevan et al., 2019). ML, however, is not one single algorithm.
Instead, many different learning algorithms exist, each varying in how they approach solving a
task and how learning from data is performed. Crucially, each algorithm has its own hyperparam-
eters - control parameters that determine how the algorithm learns from data and influence the
final model that will be used to solve a task.

Choosing ML algorithms and their hyperparameters so they perform well on a task is a non-trivial
problem and requires expert knowledge and manual trial and error over many iterations. This
hinders the adoption of ML (McKinsey & Company, 2018; Baier et al., 2019; Shankar et al., 2022;
Paleyes et al., 2022).

The field of Automated Machine Learning (AutoML) is concerned with democratizing ML. It
aims to make ML accessible, efficient, and scalable by reducing the need for manual intervention
and expert knowledge. A core component of AutoML is given by Hyperparameter Optimization
(HPO) that subsumes different methods to automatically identify well-performing hyperparameter
configurations (HPCs) of an ML algorithm for a task at hand.

HPO can be characterized by different dimensions, including the search space, type and number
of objective functions, evaluation methodology, optimization algorithms, and computational effi-
ciency. The search space defines the hyperparameters to optimize ranging from low-dimensional
numeric to high-dimensional mixed spaces with categorical parameters and potentially hierarchi-
cal dependencies. In full AutoML pipelines, this extends beyond the hyperparameters of a single
algorithm to include algorithm selection and pre- and post-processing steps.

The primary goal of HPO is to optimize an ML model’s performance, typically measured by an
estimate of its generalization error. To ensure unbiased estimation of a model’s generalization
error, resampling techniques such as holdout and cross-validation need to be used to mimic eval-
uating models on unseen data. Since the generalization error lacks an analytical expression and
gradient information, HPO is fundamentally a black-box optimization problem. The costly nature
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1. Introduction

of model evaluation further complicates it, making HPO expensive, especially in deep learning,
where evaluating a single HPC can take hours or even days.

Beyond performance, real-world ML applications often require optimizing multiple objectives such
as resource efficiency or measures related to the interpretability of models. This has made multi-
objective HPO an increasingly important and actively researched field.

Over the past decade, the AutoML community has focused on efficient HPO methods, moving
beyond grid and random search to adaptive strategies like Bayesian Optimization. Multi-fidelity
optimization has further improved efficiency by using cheaper approximations of the objective
function.

Since HPO algorithms themselves are modular and configurable, and due to the need to empirically
validate improvements of new algorithms, the HPO and AutoML community has demonstrated the
necessity for representative benchmarks. The effectiveness of empirical research and benchmarking
in HPO relies on access to diverse, representative, and reproducible benchmarks that are easy and
ideally cheap to use and accurately reflect real-world HPO problems.

Despite significant advancements in HPO over the past decade, several challenges remain. The
optimization landscape of HPO problems is still not well understood. The role of resampling
strategies in estimating generalization errors and their impact on the HPO process further requires
deeper investigation. Moreover, real-world applications increasingly demand efficient optimization
beyond predictive performance, incorporating objectives such as interpretability, fairness, and
computational efficiency. However, multi-objective or constrained optimization might not always
be the most efficient approach as they try to approximate the whole Pareto front or only return
a single solution satisfying a constraint. Finally, benchmarking in HPO remains a relevant topic,
as existing benchmarks often lack scalability, representativeness, and reproducibility.

This thesis addresses these challenges through three key contributions:

1. Foundations of HPO: We investigate the impact of resampling strategies and using the same
or different train validation splits for each HPC on generalization error. We further analyze
the optimization landscape of HPO and contrast its properties with traditional black-box
optimization problems.

2. Multi-objective and quality diversity HPO: We develop novel algorithms that extend HPO
beyond single-objective optimization, introducing strategies to balance predictive perfor-
mance with other objectives such as interpretability of models and resource efficiency.

3. Benchmarking in HPO: We introduce a large-scale surrogate-based benchmarking suite that
offers efficient, reproducible, and scalable evaluation tools for HPO research. To showcase its
practicality, we apply it to the algorithm configuration of a multi-fidelity HPO method. Ad-
ditionally, we highlight the value of ablation studies in gaining deeper insights into algorithm
components.

4



1.2 How to read this Thesis

1.2. How to read this Thesis

This is a thesis by publication, which combines several works published in leading venues following
research questions concerned with advancing HPO. Before listing the contributed publications,
the current Part I sets the general stage, and we already briefly outlined ML and HPO in the
previous Section 1.1. In the following Chapter 2 we provide a general background on ML and
HPO and introduce notation and concepts of the methods underlying HPO in ML. This part
further contains a systematic overview of recent developments in HPO, providing motivation for
the contributions of this thesis at a higher level of abstraction. Contributed publications are then
categorized into three groups and presented in Part II: In Chapter 3, we present contributions
concerned with the foundations of HPO. In Chapter 4, we present contributions to HPO in the
presence of more than one objective, namely multi-objective and quality diversity optimization.
In Chapter 5, we focus on benchmarking in HPO. Within each chapter introducing a group of
contributions, we briefly motivate the contributions and summarize them. Finally, we discuss our
contributions and the field of HPO and its future in Chapter 6 in Part III concluding the thesis.
Some publications of the author have not been included in this thesis. We briefly list them in
Part IV along with other references and the contributed publications selected for this thesis.
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2. Background

The following background closely follows the terminology and notation introduced in Bischl et al.
(2023). The goal of supervised ML is to infer a model based on training data whose predictions
generalize well to unseen test data. To formalize this, let D := {(x(i), y(i))}ni=1 be a labeled dataset
composed of n observations. Each observation (x(i), y(i)) consists of a p dimensional feature vector
x(i) ∈ X and a target label y(i) ∈ Y. We will not cover tensor data or multi-label outputs or the
unsupervised setting to keep the notation simple. We assume that D is an i.i.d. sample from an
underlying, unknown distribution, i.e., D ∼ (Pxy)n. An ML model f is a function that maps each
feature vector to a prediction f : X → Rg. The two most popular tasks of supervised ML are
regression and classification. For regression, the prediction is a single number and the codomain
is given by the real numbers R. For the classification of g classes, the prediction is usually given
by g decision scores or posterior probabilities, and the codomain is given by Rg. For binary
classification (Y = {0, 1} or Y = {−1, 1}), the prediction function is often scalar-valued (g = 1),
representing the estimated probability of the positive class.

To obtain a model, a learning algorithm or inducer I is trained on a dataset and outputs the model
or prediction function. Almost any learning algorithm can be configured by hyperparameters
that influence this training process. To formalize this, let λ ∈ Λ denote hyperparameters that
configure the inducer. For now, we simply acknowledge that hyperparameters λ influence the
inducers’ behavior. In Section 2.1, we introduce hyperparameters and their optimization in more
detail, after having covered the basics of supervised ML and performance evaluation.

The inducer maps a dataset to a model f̂ , or its parameter vector θ̂:

I : D×Λ→ H, (D, λ) 7→ f̂ (2.1)

Here, D := ⋃
n∈N(X × Y)n is the set of all datasets, Λ is the domain of hyperparameters and

H denotes the hypothesis space of prediction functions. Note that model parameters θ̂ are the
result of the training process, whereas hyperparameters λ govern this training process on a higher
level.

To quantify how close the model output is to the true label, we rely on a loss function L :
Y × Rg → R+

0 . For example, a well-known loss function for binary classification is given by the
log loss: Llog(y, f(x)) = −[y log(f(x)) + (1− y) log(1− f(x))], assuming f(x) to be the posterior
probability for the positive class. A widely used training concept is empirical risk minimization
(ERM). In general, we would like to find the model f̂ or parameter vector θ̂ that in expectation
performs best for data from the distribution (Pxy), minimizing the following risk:

R(f) := E(x,y)∼Pxy
[L (y, f(x))] (2.2)

7



2. Background

In practice, however, we can only approximate this expectation given our finite training data D
available. This turns the risk function into the empirical risk function. Still, the conceptual goal
remains the same, and we want to find the risk-optimal model f̂ or parameter vector θ̂:

Remp(f) := 1
n

n∑
i=1

L
(
y(i), f(x(i))

)
, f̂ = arg min

f∈H
Remp(f) (2.3)

HPO in contrast operates on a higher, second level and is concerned with the problem of identifying
the optimal HPC of the inducer. As we seek to optimize an unbiased expected performance of a
model produced by an inducer I, we need to evaluate the model on new, unseen test data. Again,
assuming a point-wise loss for simplicity1 L (y, f(x)), the generalization error, i.e., the expected
performance of a model produced by an inducer configured by an HPC and trained on training
data of a given size, states as:

GE(I, λ, ntrain, L) = EDtrain,(x,y)∼Pxy
[L(y, Iλ(Dtrain)(x))] (2.4)

Note that the expectation is taken both over the training dataset Dtrain and test point (x, y).
Again, this quantity cannot be computed in practice, and we usually must estimate the general-
ization error from a single given dataset D. We therefore fall back to an empirical estimate of the
generalization error based on a resampling strategy.

Resampling strategies split the available data into training and test sets. The inducer configured
by an HPC is then (potentially repeatedly) trained on a train set and the performance of the model
is evaluated on the test set. For a simple holdout resampling based on a single random split, Dtrain
and Dtest can be represented as index vectors Jtrain ∈ {1, . . . , n}ntrain and Jtest ∈ {1, . . . , n}ntest

that partition the dataset. We can proceed to define the holdout estimator for Equation (2.4)
as:

ĜEJtrain,Jtest(I, λ, ntrain, L) = 1
ntest

∑
(x,y)∈Dtest

L(y, Iλ(Dtrain)(x)) (2.5)

Formally, we can identify any resampling strategy with a vector of corresponding splits where
each split J = ((Jtrain,1, Jtest,1), . . . , (Jtrain,B, Jtest,B)) where Jtrain,i, Jtest,i again represent index
vectors and B is the number of splits or cross-validation folds. This results in an estimator for
Equation (2.4) as:

ĜE(I, λ,J , L) = agr
(
ĜEJtrain,1,Jtest,1(I, λ, |Jtrain,1|, L), . . . , ĜEJtrain,B ,Jtest,B

(I, λ, |Jtrain,B|, L)
)

(2.6)

Here, the aggregation function agr : R+
0 × . . . × R+

0 → R+
0 is often simply the mean. Note that

formally, Equation (2.4) requires as input the size of the training set, ntrain. For the general
resampling-based estimator in Equation (2.6), we do not explicitly state the training set size.
Rather the implicit assumption is that it holds that ntrain ≈ ntrain,1 ≈ · · · ≈ ntrain,B. A popular
variant is k-fold cross-validation where the available data is split into k partitions of the same size
and for each partition, the model is evaluated on the complement. For an overview of different loss

1Note that this loss or in general performance metric must not be the same as the one used for the inner ERM
problem. Moreover, for notation suitable for a more general case of a set-based performance metric such as the
area under the receiver operating characteristic curve, we refer to Bischl et al. (2023).
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2.1 Hyperparameter Optimization

functions and performance metrics, we refer to Bischl et al. (2023). For a discussion of different
resampling methods, we refer to Boulesteix et al. (2008), Hastie et al. (2009, Chapter 7), and
Bischl et al. (2012b).

2.1. Hyperparameter Optimization

Almost any ML algorithm can be configured by hyperparameters. These hyperparameters in-
fluence the training procedure and the resulting generalization performance of the learning al-
gorithm. For example, in neural networks, the learning rate determines how quickly the model
updates weights during training. Values too small can lead to slow convergence, whereas values
too large can lead to divergence (Goodfellow et al., 2016, Chapter 8). Decision trees rely on a
maximum depth hyperparameter that controls model complexity to prevent overfitting (Breiman
et al., 1984). Random forests that ensemble decision trees can for example be configured by the
number of trees and the maximum number of features considered for a split that impact bias and
variance (Breiman, 2001). Gradient boosting systems like XGBoost (Chen and Guestrin, 2016)
involve hyperparameters such as learning rate, maximum depth, and regularization strength. Sup-
port vector machines employ regularization hyperparameters and can be used with different kernel
functions, which determine the trade-off between margin maximization and error and influence
the decision boundary (Cortes and Vapnik, 1995).

Identifying optimal hyperparameters is essential for good model performance (Bergstra et al., 2011;
Feurer and Hutter, 2019; Yang and Shami, 2020; Bischl et al., 2023) and many ML algorithms
exhibit strong potential to benefit from HPO (Probst et al., 2019; van Rijn and Hutter, 2018).

The general HPO problem is defined as:

λ∗ ∈ arg min
λ∈Λ̃

c(λ) = arg min
λ∈Λ̃

ĜE(I, λ,J , L) (2.7)

Here, c(λ) is a compact notation for the estimated generalization error when the inducer I,
resampling J , and performance metric or loss function L are fixed. Expressing Equation (2.7) in
words, we optimize the estimated generalization error of a learner Iλ, with respect to an HPC
λ = (λ1, . . . , λl). Note that the objective is usually referred to as the validation error or loss -
although we introduced the resampling estimate in the previous section based on a train and test
split. This terminology originates from the fact that to obtain an unbiased performance estimate
of the inducer configured by the optimal HPC, we require nested resampling which makes use of
an outer test set (Bischl et al., 2023).

The search space Λ̃ ⊂ Λ contains all hyperparameters that are to be optimized and their respective
ranges:

Λ̃ = Λ̃1 × Λ̃2 × · · · × Λ̃l (2.8)

Here Λ̃i is a bounded subset of the domain of the i-th hyperparameter Λi. Hyperparameters can
be continuous (e.g., learning rate), discrete (e.g., number of layers), or categorical (e.g., choice
of activation function). This results in Λ̃ potentially being a so-called mixed space. Moreover,
certain hyperparameters can depend on other hyperparameters. This can result in a tree-like
hierarchical search space with dependencies that can be represented by directed acyclic graphs.
For example, consider the choice of first-order optimizer as a hyperparameter which we optimize
but also parameters of the optimizer, e.g., stochastic gradient descent (Robbins and Monro, 1951;
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2. Background

Bottou et al., 2018) and its learning rate or Adam (Kingma and Ba, 2015) and its learning rate
and β1, β2 parameters used for computing running averages of the gradient and its square. Here,
the β1, β2 hyperparameters depend on the optimizer choice Adam.

In general, c(λ) in Equation (2.7) is a black-box function: Usually, there is no closed-form math-
ematical expression and analytic gradient information is not available. Moreover, evaluating c(λ)
can take significant time due to the resampling procedure. Therefore, the minimization of c(λ)
forms an expensive black-box optimization problem. As such, this generally rules out the usage
of standard first-order or second-order optimization methods that require gradients or additional
(approximated) Hessians. At this point, we do have to note, however, that gradient-based methods
for HPO do exist. These methods rely on purely numeric search spaces and derive the hypergra-
dient based on the implicit function theorem (Pedregosa, 2016) or via iterative differentiation
making use of automatic differentiation (Maclaurin et al., 2015; Franceschi et al., 2017). Coming
back to treating the HPO problem as a black-box, due to the potentially high cost of evaluation,
sample efficiency (i.e., identifying a well-performing configuration with only a few evaluations)
is a highly desirable property that many derivative-free meta-heuristic optimization techniques
lack. Finally, as c(λ) is a resampling-based estimate of the true generalization error and due to
the non-determinism of learning algorithms in general, c(λ) can be considered a stochastic objec-
tive. Looking at the related literature, however, Bischl et al. (2023) point out that many HPO
algorithms may overlook this issue or address it by simply assuming that sufficient resampling
replications will average out the randomness. Note that to ensure an unbiased estimate of the per-
formance of the inducer configured by the optimal HPC, it is necessary to use nested resampling
(Cawley and Talbot, 2010; Bischl et al., 2023). Without nested resampling, performance esti-
mates may be overly optimistic, as the same data used to select the best HPC may inadvertently
influence the final evaluation (Bischl et al., 2023).

The remaining parts of this background chapter are structured as follows. In Section 2.1.1 an
overview of widely used algorithms for tackling single-objective HPO as formulated in Equa-
tion (2.7) is presented with an emphasis on Bayesian Optimization (BO). In Section 2.1.2, the
optimization problem of Neural Architecture Search (NAS) is introduced and formulated as a spe-
cial case of HPO. As training neural networks is costly, many works of the related literature in the
last few years have been concerned with making HPO and NAS more efficient. In Section 2.1.3 we
briefly introduce the concept of multi-fidelity optimization suited to speed up HPO and NAS and
present widely used algorithms. So far, our introduction of HPO involved a single performance
metric, i.e., minimizing the estimated generalization error. However, multiple objectives can be
of interest when deploying models in practice. While constraints can arise in the form of other
objectives to consider that affect the feasible set of HPCs, there is also the need to simultaneously
consider more than one objective which is to be minimized. For example, consider the resource
usage of a model depending on its size, or the complexity or simplicity of the prediction function of
the model which is directly tied to concepts related to model interpretability. In practice, we can
be interested in minimizing both the generalization error and complexity of a model. Since low
resource usage or low complexity often conflicts with achieving high performance, this necessitates
multi-objective HPO. We provide a brief introduction to this topic in Section 2.1.4, along with an
overview of popular optimization algorithms. As an alternative to multi-objective optimization,
we further briefly introduce the comparably novel field of quality diversity optimization. Here,
the goal is not to simultaneously optimize multiple objectives, but instead optimize a single ob-
jective while obtaining diverse solutions for other so-called behavior functions. Finally, for the
sake of completeness, we briefly discuss algorithms and methods suitable to speed up HPO via
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parallelization in Section 2.1.5. Several open-source HPO toolboxes such as SMAC (Hutter et al.,
2011; Lindauer et al., 2022), Spearmint (Snoek et al., 2012), Hyperopt (Bergstra et al., 2013), Op-
tuna (Akiba et al., 2019), Dragonfly (Kandasamy et al., 2020), BoTorch (Balandat et al., 2020) or
HEBO (Cowen-Rivers et al., 2022) provide efficient implementations of often both single-objective
and multi-objective HPO techniques, usually focusing on BO algorithms and often also support-
ing multi-fidelity evaluations. As the focus of this thesis is not software, we will not provide an
overview of these HPO toolboxes but refer to Bischl et al. (2023) and Karl et al. (2023) for an
overview. Similarly, since this thesis focuses specifically on HPO, we will not go detailed into
general AutoML systems such as Auto-WEKA (Thornton et al., 2013) or Auto-sklearn (Feurer
et al., 2015a), but instead refer to Part II of Hutter et al. (2019), which provides a comprehensive
introduction of traditional AutoML systems.

2.1.1. Single-Objective Hyperparameter Optimization

The problem of single-objective HPO is directly given by Equation (2.7). The two core challenges
are (1) c(λ) being an expensive black-box function and (2) the potential hierarchical mixed search
space Λ̃. The expensiveness of function evaluations naturally calls for so-called sample-efficient
algorithms. An algorithm is sample efficient if few function evaluations are needed to identify
well-performing configurations. Below, we introduce popular HPO algorithms for vanilla single-
objective HPO and highlight similarities and differences. In later sections, we will see that most
of the algorithms can be extended to different settings, such as multi-fidelity optimization and
multi-objective optimization.

Popular Algorithms

Most HPO algorithms are iterative and follow the same core principle: They iteratively propose
HPCs λ+ and evaluate them. Let A = ((λ(1), c(λ(1))), (λ(2), c(λ(2))), . . . ), denote the archive
we store configurations and their objective values with A[t+1] = A[t] ∪ (λ+, c(λ+)). In general,
iterative or sequential HPO algorithms therefore follow the scheme as depicted in Algorithm 1.
The core difference between algorithms is how they propose configurations. Note that Line 2 and
Line 7 and 8 can differ in practice, i.e., how to terminate HPO and what should be returned as the
final result. For introductory discussions on these topics, we refer to Bischl et al. (2023). HPO and
in general black-box optimization algorithms can be described based on their search behavior. An
important concept is given by exploration vs. exploitation (Feurer and Hutter, 2019; Bischl et al.,
2023) which can be traced back as early as foundational work on sequential decision-making such
as multi-armed bandits (Robbins, 1952). Exploration describes the behavior of an optimizer to
propose new configurations in unexplored search space areas to obtain information that reduces
uncertainty. Exploitation refers to evaluating configurations that we believe to perform well or are
in areas of configurations that perform well, which potentially allows for incremental performance
improvement.

Grid Search. A grid search (GS) simply discretizes the search space. For each hyperparameter
domain Λ̃i, a finite set of configurations is considered and the full grid is constructed by taking
the Cartesian product. For numeric domains, this can be achieved by picking values equidistant
between the lower and upper bound. For categorical domains, an exhaustive inclusion of all
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Algorithm 1 Pseudocode for Sequential HPO
1: A ← ∅
2: while not terminated do
3: λ+ ← ProposeConfiguration(Λ̃,A)
4: c(λ+)← EvaluateConfiguration(λ+)
5: A ← A∪ {(λ+, c(λ+))}
6: end while
7: (λ∗, c(λ∗))← arg min(λ,c(λ))∈A c(λ)
8: return (λ∗, c(λ∗)

potential values is possible, or the inclusion of a subset. GS can naturally handle mixed and
hierarchical search spaces. However, it is affected by the curse of dimensionality, as the grid
grows exponentially with the dimensionality of the search space when keeping the resolution per
parameter constant. This implies that grids with many configurations are needed to properly
cover search spaces resulting in poor sample efficiency.

Random Search. In its simplest variant, a random search (RS) proposes HPCs by sampling each
hyperparameter independently of the others following a given distribution, e.g., the uniform one.
RS naturally can handle mixed and also hierarchical search spaces by respecting dependencies,
e.g., in a post-hoc manner. However, similar to GS, it suffers from the curse of dimensionality,
as sample coverage of high-dimensional search spaces needs many configurations. In contrast to
GS, however, RS has the advantage that marginal per hyperparameter more unique values will
be generated (Bergstra et al., 2011). This results in slightly higher efficiency as, e.g., in the case
of some hyperparameters having no effect at all on the objective function more unique values will
have been tried for the other relevant ones.

Population Based Algorithms. As the name suggests, population-based algorithms work by
maintaining a population of configurations over generations. Examples are given by evolution-
ary algorithms (EAs) and evolution strategies such as CMA-ES (Hansen and Ostermeier, 1996;
Hansen, 2023) or MIES (Li et al., 2013) but also particle swarm optimization (Kennedy and Eber-
hart, 1995) or differential evolution (Bilal et al., 2020). Inspired by biological evolution, these
algorithms start with an initial population of configurations, from which offspring are generated.
In the case of EAs, this is done via parent selection and recombination of parents via so-called
mutation and crossover operators. In the case of evolution strategies that are based on a sampling
procedure such as CMA-ES, offspring are generated after refining a sampling distribution based
on well-performing individuals of the population. Both, EAs and evolution strategies usually also
involve elitist mechanisms to only keep top-performing individuals in the population when moving
from one generation to another. For an in-depth introduction to population-based algorithms and
their building blocks, e.g., parent selection, mutation and crossover, and survival selection, we
refer to Simon (2013). While evolution strategies often can perform well for HPO and are more
efficient than RS and GS they are not sample efficient and usually require many iterations to
identify good configurations (Bischl et al., 2023).
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2.1 Hyperparameter Optimization

Bayesian Optimization. So far, all algorithms introduced are sampling-based and model-free.
BO originates from a different idea of modeling the unknown black-box function c(λ) that is to
be optimized. As BO can be considered the de-facto state-of-the-art algorithm for vanilla HPO
and has been a strong focus of the last years of research, we will introduce its core ideas and
components in more detail. We refer to Garnett (2023) for a more in-depth introduction to BO.

Assume we want to optimize an expensive black-box function without analytical expression and
gradient information. A reasonable approach is to have a prior belief about how the function
could look like, collect data by evaluating configurations and update our prior belief in a Bayesian
manner. Formally, this implies building a probabilistic model of the function based on observed
data and iteratively proposing new points that based on our current belief of the function provide
utility for optimizing the function and refining our belief. More specifically, BO consists of two
core building blocks: (1) a so-called surrogate model that is used to model the black-box function
based on observed data, and (2) a so-called acquisition function that is defined on the surrogate
and quantifies the utility of candidate points to guide the next proposal of points.

The standard surrogate model of BO for purely numeric search spaces is given by a Gaussian
Process (GP). A GP is a flexible non-parametric regression model. In the following, we introduce it
using standard supervised learning notation established above following Williams and Rasmussen
(2006). Readers familiar with GPs may skip the following introduction.

Formally, a GP is a random process where any point x ∈ X is assigned a random variable f(x)
and the joint distribution of any finite number of these random variables is Gaussian:

p(f |X) = N (µ, K). (2.9)

Here, f = (f(x(1)), . . . , f(x(n))), µ = (m(x(1)), . . . , m(x(n))) and Kij = k(x(i), x(j)). m : X → R

is the mean function commonly set to zero and k : X × X → R is a positive definite kernel.

Given a training dataset with noise-free function observations f at inputs X, a GP prior can be
updated to a posterior p(f∗|X∗, X, f) that allows for predictions at new test inputs X∗.

As by definition of a GP the joint distribution of observed values f and predictions f∗ is again
Gaussian, one can obtain the posterior predictive distribution under the zero mean GP as

p(f∗|X∗, X, f) = N (µ∗, Σ∗), (2.10)
µ∗ = K⊤

∗ K−1f , (2.11)
Σ∗ = K∗∗ −K⊤

∗ K−1K∗, (2.12)

where K is the n × n kernel matrix on training data, K∗ is the n × n∗ kernel matrix of training
data and test inputs and K∗∗ is the n∗ × n∗ kernel matrix of test inputs.

A kernel function measures the similarity between two points. We will not go into detail with
respect to the properties of kernel functions but only provide some examples. The radial basis
function (RBF) kernel with a single lengthscale parameter ℓ is given by:

k(x, x′) = σ2
s exp

(
−||x− x′||2

2ℓ

)
,

where σ2
s is the signal variance.
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(a) RBF kernel in two dimensions k((x1, x2), (0, 0)).
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(b) Sample from a zero-mean GP prior with RBF kernel.

Figure 2.1.: Illustration of the RBF Kernel. Lighter colors indicate higher values.

For a visualization of the contour lines of RBF kernel in two dimensions with a signal variance
σ2

s = 1 and a lengthscale parameter ℓ = 1, see Figure 2.1a. We can observe a Gaussian bell
centered around the reference point x′ = (0, 0) with high kernel (similarity) values close to 1 for
points close to the reference point. Figure 2.1 visualizes a sample from a zero-mean GP prior
using said RBF kernel.

The Matérn kernel is a generalization of the RBF kernel that introduces a smoothness parameter
ν, allowing control over the function’s differentiability. A common choice is 5

2 or 3
2 :

kν(x, x′) = σ2
s

21−ν

Γ(ν)

(√
2ν||x− x′||

ℓ

)ν

Kν

(√
2ν||x− x′||

ℓ

)
, (2.13)

where Kν is the modified Bessel function of the second kind, and Γ is the gamma function.

To allow further flexibility in accounting for different variations in each input dimension, it is com-
mon to use automatic relevance determination (ARD) kernels that incorporate different lengthscale
parameters for each parameter dimension.

One central property of kernel functions is whether they only depend on the relative position of
its two inputs, and not on their absolute location. This property is referred to stationary which
has implications on the properties of the GP when modeling a function. For example, a GP
with a stationary kernel holds the assumption that the mean and smoothness of the function are
consistent throughout the space it is defined on.
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2.1 Hyperparameter Optimization

Moving on to the scenario of noisy objective function values y = f(x) + ϵ, ϵ ∼ N (0, σ2
f ) (i.e.,

i.i.d and homoscedastic noise), the posterior predictive distribution under the zero mean GP is
obtained as

p(f∗|X∗, X, y) = N (µ∗, Σ∗), (2.14)
µ∗ = K⊤

∗ (K + σ2
f In)−1y, (2.15)

Σ∗ = K∗∗ −K⊤
∗ (K + σ2

f In)−1K∗ (2.16)

Trivially, for a single test point x∗, the posterior predictive distribution is

p(f∗|x∗, X, y) = N (µ∗, σ∗), (2.17)
µ∗ = k⊤

∗ (K + σ2
f In)−1y, (2.18)

σ∗ = k(x∗, x∗)− k⊤
∗ (K + σ2

f In)−1k∗, (2.19)

where k∗ is the n dimensional vector of covariances between the test point x∗ and the training
points X.

Kernel and likelihood parameters of the GP are typically obtained via maximum likelihood or
maximum a posteriori estimates. GPs are potent surrogate models due to their flexible modeling
capabilities, strong extrapolation capability, and well-calibrated uncertainty estimates.

To keep notation standard, we introduced GPs with conventional supervised learning notation
using features x ∈ X and targets y ∈ Y. Translating into the context of HPO, we generally assume
noisy objective function evaluations, and we now model HPCs and their estimated generalization
error which we obtain in the archive A = ((λ(1), c(λ(1))), . . . , (λ(t), c(λ(t)))). Therefore, λ now
takes the role of x and c(λ) the role of y.

Based on the surrogate model as our belief of the functional relationship between hyperparameters
and their performance, BO makes use of an acquisition function defined on the posterior predictive
distribution to intelligently propose the next candidate point that is to be evaluated.

Popular acquisition functions are given the Expected Improvement (EI; Močkus 1974; Jones et al.
1998), Probability of Improvement (PI; Kushner 1964), and Lower Confidence Bound (LCB, also
better known as the UCB in the case of maximization; Srinivas et al. 2010). The EI measures
for a candidate HPC λ how much we can expect it to improve over the current best-observed
function value of the so-called incumbent, given that we only allow for improvement (notice the
max operator). Formally,

αEI(λ) := EC(λ) [max (cmin − C(λ), 0)] (2.20)

where cmin is the best observed function value so far and C(x) is the random variable associated
with the HPC λ following the posterior predictive distribution of the surrogate model. In contrast
to the original black-box function c, the EI is cheap to compute, and optimizing it gives us the
next candidate HPC for evaluation. Note that, formally, the EI as stated in Equation (2.20) is
only sensible in the context of noise-free observations. Nevertheless, it is frequently used as the
default acquisition function. For a discussion and a literature survey of how to extend EI to noisy
observations, see Garnett (2023, Chapter 7).
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Given a GP as a surrogate model (or rather any model with a normal posterior predictive distri-
bution), the EI can be computed in closed form as

αEI(λ) = (cmin − µ(λ)) Φ
(

cmin − µ(λ)
σ(λ)

)
+ σ(λ)ϕ

(
cmin − µ(λ)

σ(λ)

)
(2.21)

Here, Φ and ϕ denote the cumulative density function and the probability density function of
the standard normal distribution. µ(λ) and σ(λ) denote the mean and standard deviation of the
posterior predictive distribution under the GP.

The PI measures the probability of improvement of a candidate HPC λ over the current best-
observed function value. Formally,

αPI(λ) := P (C(λ) < cmin) (2.22)

Given a surrogate model with a normal posterior predictive distribution, the PI can be computed
in closed form as

αPI(λ) = Φ
(

cmin − µ(λ)
σ(λ)

)
(2.23)

The LCB is defined as the lower confidence bound based on the mean and standard deviation
prediction of the surrogate model. Formally,

αLCB(λ) := µ(λ)− τσ(λ), (2.24)

where τ ∈ R+ is a control parameter guiding exploration vs. exploitation.

The EI, PI, and LCB are “short-sighted” acquisition functions in the sense that they focus on
short-term improvement (i.e., policies based on EI, PI, and LCB are constructed to perform
well given that one additional candidate point can be evaluated). This is also called myopic
(Garnett, 2023, Chapter 5). Other notable non-myopic acquisition functions are based on ideas
from information gain, i.e., entropy search (Hennig and Schuler, 2012), predictive entropy search
(Hernández-Lobato et al., 2014), max value entropy search (Wang and Jegelka, 2017) and joint
entropy search (Hvarfner et al., 2022a) that try to reduce the uncertainty for the location of the
optimum, the value of the optimum, or both. Another popular non-myopic acquisition function
is given by knowledge gradient (Frazier et al., 2009) which measures the expected decrease in
the minimum posterior mean of the objective function after obtaining a new sample and thereby
quantifies the value of information gained from evaluating a given point.

So far, we mainly focused on the surrogate model and acquisition function as building blocks of
BO. Two other important building blocks are (1) the mechanism to generate the initial design
and (2) the optimization technique used for the acquisition function optimization.

The initial design obtained before making the first model-based proposal should provide the sur-
rogate with rich information about the black-box function that is to be optimized. Methods to
generate initial designs exist plenty, e.g., a random design, grid design, or pseudo-random designs
such as Sobol’ sequences (Sobol’, 1967) or Latin hypercube designs (McKay et al., 1979). We
do not discuss similarities and differences in detail but want to note that on top of the choice of
the initial design method, its size can have a bigger impact on BO performance as a small initial
design may result in a poor initial surrogate model, wasting subsequent model-based proposals,
whereas a large initial design may result in a good initial surrogate model, however, more function
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evaluations were used to construct it. A heuristic can be to set the initial sample size to a constant
times the dimensionality of the search space, e.g., between two to ten times (Jones et al., 1993;
Snoek et al., 2012; Frazier, 2018).

Regarding acquisition function optimization, the applicability of optimization techniques depends
on the search space and the surrogate model. In the case of purely numeric search spaces, global
but also local numerical optimization methods are popular. Popular zero-th order methods include
CMA-ES (Hansen, 2023) and DIRECT (Jones et al., 1998). If gradients of the acquisition function
can be computed (e.g., possible in the case of a GP as a surrogate model), local second-order
methods such as L-BFGS-B (Byrd et al., 1995; Zhu et al., 1997) are widely used, typically in
combination with a multi-start procedure and a global search procedure for identifying promising
starting points (Balandat et al., 2020). In the case of mixed spaces, popular methods include
iterated local search variants (Hutter et al., 2007, 2009) or EAs both of which naturally could also
be applied to numerical search spaces. Finally, RS with a large budget can in principle always be
used as a fallback of last resort although usually not recommended.

So far, we have introduced BO with GPs as a surrogate model as they can be considered the
de-facto gold standard for low to moderate dimensional, purely numeric search spaces. HPO,
however, can involve the optimization of mixed search spaces and potentially include hierarchical
dependencies. For GPs to work in such spaces, this requires the careful design of appropriate
kernel functions (Jenatton et al., 2017; Ru et al., 2020; Garrido-Merchán and Hernández-Lobato,
2020). Another downside of GPs is that vanilla implementations scale cubic in the number of data
points. Therefore, other types of surrogate models have gained popularity when using BO for
HPO, namely Random Forests (RFs), Tree-Structured Parzen Estimators (TPEs), and Bayesian
Neural Networks (BNNs). RFs are ensemble models consisting of multiple decision trees trained
on different subsets of data. In BO, RFs can provide an estimate of the mean and variance of
the objective function under the assumption of each node prediction in a tree following a normal
distribution, allowing for uncertainty quantification needed for acquisition functions. Tree-based
models are non-parametric, can handle mixed and hierarchical spaces, and are efficient and robust
to train (Kim and Choi, 2022). RFs are popularly used as surrogate models in BO by SMAC
(Hutter et al., 2011; Lindauer et al., 2022). TPE models the probability of good and bad HPCs
separately using kernel density estimation. Instead of optimizing an explicit acquisition function,
TPE selects promising hyperparameters based on their likelihood under the good configuration
distribution (Bergstra et al., 2011). TPEs are widely recognized as surrogate models following their
adoption in the popular Optuna (Akiba et al., 2019) toolbox for HPO. BNNs on the other hand
introduce probabilistic weights into deep neural networks, allowing for uncertainty estimation,
making them applicable to BO (Springenberg et al., 2016). They are typically trained using
Hamiltonian Monte Carlo (HMC) which can be considered the gold standard (Li et al., 2024) but
is computationally expensive (Neal, 1996, Chapter 3) or via cheaper variants such as stochastic
gradient HMC (Chen et al., 2014). A simpler approach to BNNs is given by deep ensembles
that can approximate fully Bayesian inference by averaging model predictions of standard deep
neural networks trained with different randomly initialized weights (Lakshminarayanan et al.,
2017). BNNs can act as flexible, expressive function approximators capable of handling complex
relationships in hyperparameter spaces. With appropriate preprocessing, they can further handle
mixed and hierarchical search spaces. Moreover, in contrast to vanilla GPs, they directly allow
for modeling non-stationary functions. Note that for BO with GPs with stationary kernels, the
possibility to handle non-stationary functions is further given by input warping (Snoek et al., 2014;
Cowen-Rivers et al., 2022) or deep kernel learning (Wilson et al., 2016). A comparably cheap and
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robust approach to make use of BNNs as surrogate models in BO consists of combining Bayesian
linear regression with the features learned by a deep neural network (Snoek et al., 2015).

We have seen that BO is not a single algorithm but describes a class of optimization algorithms
that use a surrogate model to propose promising candidates for evaluation. BO has building blocks
such as the surrogate model, the acquisition function, and the acquisition function optimizer and
is further configurable by the size and concrete choice of initial design or frequency of interleaving
configurations that are proposed uniformly at random. In Section 2.1.6 we will briefly introduce the
topic of Algorithm Configuration (AC) that can be used to automatically choose well-performing
components for a BO algorithm for a class of problems at hand.

We will not introduce theoretical concepts of convergence and bounds on (simple or cumulative)
regret in the context of BO in this thesis. Nevertheless, the interested reader is referred to Srinivas
et al. (2010) proving a sublinear cumulative regret bound of a global BO algorithm with a GP as
a surrogate model and LCB as an acquisition function assuming noisy function evaluations. In
the noiseless setting, Bull (2011) proves near optimal convergence rate of a global BO algorithm
with a GP as a surrogate model and EI as an acquisition function in the case of a fixed GP prior.
De Freitas et al. (2012) proved exponential convergence for global BO with a GP as a surrogate
model and LCB as an acquisition function under the assumption of the objective function being
locally quadratic in a neighborhood around the global optimum. Garnett (2023, Chapter 10)
provides a detailed introduction to the topic of theoretical analysis in BO and outlines ideas and
proofs of key literature.

Moreover, we will not discuss topics of warm-starting BO via meta-learning (Feurer et al., 2015b)
or transfer-learning for BO (Bai et al., 2023). For a general introduction to the topics of meta-
learning and transfer-learning, we refer to Vanschoren (2019).

Having introduced BO and its components, we will continue with an illustration. Assume we want
to minimize the Branin function (Branin, 1972), a popular synthetic test function for black-box
optimization algorithms. On the domain [−5, 10] × [0, 15], the Branin function has three global
minima at (−π, 12.275), (π, 2.275), (9.42578, 2.475) with a value of 0.397887. In the following, we
will minimize the Branin function on the log scale to allow for prettier visualization of its contour
lines. We perform BO with an initial design of eight points drawn uniformly at random, as shown
in Figure 2.2a. The posterior mean of a GP with a Matérn 5

2 kernel trained on the initial design
is shown in Figure 2.2b, and the posterior uncertainty is shown in Figure 2.2c. We can see that
the GP has reasonably good mean predictions and good uncertainty estimates, with uncertainty
being low in areas close to the design points used for training. In Figure 2.2d, we visualize the
EI defined on the posterior predictive distribution of the GP. The EI is high in areas where the
mean prediction is reasonably low, and the posterior distribution suggests uncertainty. We observe
that the EI landscape is multimodal, with two promising areas. In Figure 2.2e, we analogously
visualize the PI. The PI is high for candidate points close to design points with a low posterior
mean, which increases the probability of improving over the current best function value. Similarly
to the EI, the PI landscape is multimodal. Finally, in Figure 2.2f we analogously visualize the
LCB (τ = 1). Note that for the LCB, lower values are to be preferred in contrast to the EI and
PI which we maximize. Similarly to the EI and PI, the LCB landscape is multimodal, with two
promising areas.
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(a) Branin (log). Initial design of eight points in red.
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Figure 2.2.: Branin (log) function and principles of BO.
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To conclude this introductory section on methods for standard single-objective HPO, we will
briefly compare the sampling behavior of different black-box optimization methods suitable for
single-objective HPO introduced in this section. Recall that core characteristics are exploration
vs. exploitation. We will again rely on the Branin function (on the log scale) as a synthetic test
function, which we want to minimize. We compare GS, RS, vanilla CMA-ES without restarts, and
BO with a GP with a Matérn 5

2 kernel, EI as acquisition function, and an iterated local search
as acquisition function optimizer. Each method is allowed 100 function evaluations as a budget,
and BO uses the same initial design generated uniformly at random as depicted in Figure 2.2.
Each sub-figure in Figure 2.3 visualizes the sampling behavior of each method. For methods that
ignore previous function evaluations during their proposals (i.e., RS and GS) we visualize all 100
points in grey. For the sequential methods CMA-ES and BO we visualize the 100 points in a color
gradient from grey to blue, where lighter blue colors indicate later proposals during the sequential
optimization process. The histograms on the x- and y-axis depict marginal distributions of the
points proposed by the methods. For GS, histograms indicate uniform coverage but we observe
the downside of GS only evaluating a few unique points per parameter due to the construction of
the grid. GS by construction explores the search space reasonably well but falls short in exploita-
tion. For RS, we observe reasonably uniformly distributed marginal distributions, indicating good
exploration of the search space. However, RS fails to exploit well-performing regions. CMA-ES as
an iterative approach first explores the space before committing to a promising region, exploiting
information obtained during optimization, sampling plenty of points around one of the global min-
ima. However, it fails to sample around the other two global minima. This is a nice demonstration,
of why CMA-ES is usually run with a restart mechanism (Auger and Hansen, 2005) although this
comes at the cost of additional function evaluations. BO demonstrates well-balanced exploration
and exploitation, often proposing points in areas around the three global minima but also explor-
ing the search space. In this example, BO is the only method capable of proposing many points
in areas around all three global minima using only a few function evaluations.

2.1.2. Neural Architecture Search

While HPO refers to optimizing the hyperparameters of general ML algorithms, NAS specifically
focuses on optimizing hyperparameters that define the architecture of deep neural networks. These
include the number and types of layers, network depth, and connections. For a general background
on NAS, we refer to Elsken et al. (2019a); Wistuba et al. (2019); White et al. (2023).

Although NAS primarily targets neural network architectures, it can be regarded as a special
case of HPO. According to Elsken et al. (2019a), NAS consists of three key components: (1)
search space, (2) search strategy, and (3) performance estimation strategy. The definition of
the search space strongly impacts the feasibility of NAS (Wistuba et al., 2019). NAS differs from
standard HPO in two major ways: (1) the vast search space, as allowing arbitrarily large and deep
networks with flexible operations and connections leads to an immense number of possibilities,
and (2) the computational cost of performance estimation, which is prohibitively expensive for
neural architectures, necessitating more efficient estimation techniques than standard resampling
methods.

A significant breakthrough in NAS search space design was the introduction of cell-based search
spaces (Zoph et al., 2018) in the context of computer vision tasks. In search spaces such as the pop-
ular NASNet space, architectures are constructed using two types of cells. Normal cells maintain
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Figure 2.3.: Sampling behavior of different black-box optimizers on Branin (log).

spatial dimensions and reduction cells decrease spatial dimensions. These cells can be sequentially
stacked or combined into more complex structures, such as multi-branch architectures.

The key advantage of cell-based search spaces is that NAS can be used to optimize individual cells
rather than entire architectures, resulting in a more feasible optimization problem. Moreover,
cells optimized on smaller datasets (e.g., CIFAR-10) often generalize well to larger datasets (e.g.,
ImageNet). Similar to recurrent networks or residual networks, repeating well-designed building
blocks improves the efficiency and performance of architectures.

NAS search strategies largely can be grouped into EA approaches, BO approaches, reinforcement
learning approaches, differentiable NAS, and One-Shot NAS and Zero-Shot NAS (Elsken et al.,
2019a). EA approaches (Real et al., 2017; Liu et al., 2018; Real et al., 2019) evolve a population
of architectures over time, similarly as introduced in Section 2.1. Here, mutations are usually
local operations, e.g., adding or removing a layer, or altering hyperparameters of layers and their
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training hyperparameters (Elsken et al., 2019a). BO approaches (Bergstra et al., 2013; Domhan
et al., 2015; Kandasamy et al., 2018; White et al., 2021a) as usual build a surrogate model to map
architectures to performance estimates. However, two peculiarities in the context of NAS are how
to encode neural architectures and the choice of a surrogate model. For example, Kandasamy et al.
(2018) define a distance metric based on the computation at each layer, the types of operations, and
structural connections relying on principles of optimal transport, which allows the usage of a GP
as a surrogate model based on this distance metric as a kernel function. Other approaches involve
performing a path encoding of architectures (White et al., 2020, 2021a) on which, e.g., an ensemble
of neural networks can be trained as a surrogate model (White et al., 2021a,c). Reinforcement
Learning approaches frame NAS as a reinforcement learning problem in which an agent selects
actions (architecture components) and receives rewards based on generalization performance. Key
pioneer works include Baker et al. (2017); Zoph and Le (2017). Gradient-Based or Differentiable
NAS approaches make use of a continuous relaxation of the search space, which enables direct
gradient-based optimization of architectures. This idea was popularly introduced by Liu et al.
(2019) via the DARTS algorithm. DARTS formulates NAS as a continuous optimization problem,
enabling efficient search via bilevel optimization. It constructs a supernet with mixed operations,
iteratively updates network weights and architecture parameters, and selects the final architecture
by discretizing the learned weights. One-shot NAS and weight sharing similarly rely on a single
super-network (the one-shot model) which allows for efficient evaluation of different architectures
as its subgraphs. Key pioneer works include ENAS (Pham et al., 2018) and ProxylessNAS (Cai
et al., 2019). Finally, Zero-Shot NAS approaches try to predict the performance of architectures
without any training at all. They rely on proxy metrics based on weight initialization (Tanaka
et al., 2020) or graph-based structure (Mellor et al., 2021) that can be indicative of the performance
of a trained architecture (Xiang et al., 2023).

Concerning performance evaluation, a notable difference between NAS and vanilla HPO for general
ML algorithms is that training an architecture and evaluating it is much more computationally
intensive. Usually, evaluating architectures during optimization via full training is infeasible and
NAS relies on approximate performance estimation techniques: lower fidelity estimates, learning
curve extrapolation, weight inheritance and network morphisms, and one-shot NAS or weight
sharing. Among these, we introduce lower fidelity estimates in the context of multi-fidelity opti-
mization in more detail in the next section.

2.1.3. Multi-Fidelity Optimization

In HPO, we optimize an estimate of the generalization performance of a learning algorithm con-
figured by hyperparameters (Equation (2.7)). As obtaining this performance estimate can be
computationally expensive (recall that resampling methods involve repeatedly producing a model
on training data and evaluating it on test data), the HPO literature of the last years has been
actively concerned with speeding up performance evaluation.

Multi-Fidelity Optimization describes a class of algorithms that rely on lower-cost so-called lower
fidelity estimates of the objective function that is to be optimized alongside higher-cost high
fidelity evaluations to balance the efficiency and accuracy of evaluations. For example, training
a neural network for only a few epochs results in speed-up but already can be indicative of the
performance of the network trained for many more epochs. Another example of such a fidelity
parameter is given by the size of the training set.
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2.1 Hyperparameter Optimization

Formally, one can introduce a fidelity parameter r ∈ (0, 1] (after scaling the range of the fidelity
parameter) that influences the resource requirements of evaluating the estimated generalization
performance in Equation (2.6). Assuming that a high fidelity parameter (e.g., using all training
data or using the maximum number of epochs to be considered) results in better performance,
the black-box full-fidelity HPO problem as in Equation (2.7) turns into the following grey-box
multi-fidelity HPO problem:

λ∗ ∈ arg min
(λ∈Λ̃,r=1)

c(λ, r) = arg min
(λ∈Λ̃,r=1)

ĜE(I, λ, λC(r),J (r), L) (2.25)

Here J (r) denotes that the resampling strategy may be directly influenced by the fidelity pa-
rameter r (e.g., via subsampling of the training data) and λC(r) ∈ Λ̃C denotes potential hy-
perparameters that are influenced by the fidelity parameter and are not optimized over but are
given exogenously (Λ̃ \ Λ̃C = ∅). Usually, r only affects either the resampling J or exogenous
hyperparameters λC(r) and if it affects λC it often only affects a single hyperparameter.

As the relationship between the fidelity parameter and performance can be complicated and a
larger fidelity parameter must not always result in better performance, we can also optimize
jointly over the optimal fidelity parameter without restricting it to the maximum:

(λ∗, r∗) ∈ arg min
(λ∈Λ̃,r∈(0,1])

c(λ, r) = arg min
(λ∈Λ̃,r∈(0,1])

ĜE(I, λ, λC(r),J (r), L) (2.26)

Multi-fidelity algorithms for HPO can be categorized based on how they make use of the fidelity
parameter during optimization of Equation (2.25) or Equation (2.26). The following grouping of
and introduction of popular multi-fidelity algorithms follows Feurer and Hutter (2019).

Learning curves represent performance trends of a model, such as its performance on increasingly
larger dataset subsets or across iterations of an algorithm (e.g., epochs used to train a neural
network or boosting iterations of gradient boosting algorithms). Predictive termination uses
learning curve models to extrapolate observed curves and stop training if the configuration is
unlikely to outperform the best model so far. Instead of simply terminating training of likely
poor-performing configurations, training can also be frozen and continued. Key works are given
by Domhan et al. (2015); Klein et al. (2017b); Kadra et al. (2023); Rakotoarison et al. (2024).

Bandit based methods frame multi-fidelity HPO as a multi-armed bandit problem (for a gen-
eral introduction to multi-armed bandits, the reader is referred to Bubeck and Cesa-Bianchi
2012). Successive halving (SH) is a simple bandit algorithm that can both be deployed in the
stochastic (Karnin et al., 2013) and non-stochastic (Jamieson and Talwalkar, 2016) setting. The
non-stochastic setting suitable for HPO can be characterized by the following: Losses (i.e., gener-
alization performances) are real numbers chosen by an oblivious adversary. Each arm (HPC) has
a limit of its loss (i.e., generalization performance) sequence as the fidelity parameter increases.
The goal is to identify the arm with the lowest loss limit. The mechanism of how SH works is by
evaluating a given number of HPCs for a given (low) fidelity level, observing their performance es-
timates, and discarding the worst-performing half of HPCs. The top-performing half is promoted
to the next stage and evaluated on a higher fidelity level, double the old one and this process
repeats until a single HPC is left that has been evaluated on the maximum fidelity. While SH
is conceptually simple, it suffers from the “budget vs. the number of configurations” dilemma,
since a priori it is unclear whether many configurations should be evaluated on a comparably low
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Table 2.1.: Exemplary HB schedule with a halving parameter of η = 2.0.
Bracket (s) Stage (i) Fidelity (r) #Configurations (n)
3 0 0.125 8
3 1 0.250 4
3 2 0.500 2
3 3 1.000 1
2 0 0.250 6
2 1 0.500 3
2 2 1.000 1
1 0 0.500 4
1 1 1.000 2
0 0 1.000 4

0.125 0.250 0.500 1.000
r (Fidelity)

c(
λ)

λ1

λ2

λ3

λ4

λ5

λ6

λ7

λ8

Figure 2.4.: Exemplary visualization of an HB bracket starting with n = 8 configurations at lowest fidelity
r = 0.125 and using a halving parameter η = 2.0.

fidelity level or if fewer configurations should be evaluated on a comparably higher fidelity level.
Hyperband (HB; Li et al. 2018) addresses SH’s trade-off issue by dividing the total optimization
budget into multiple settings, where different numbers of configurations are tested at different
budgets. HB uses SH as a subroutine in each of its brackets, with different numbers of starting
configurations and their starting fidelity level.

In Table 2.1 we illustrate an exemplary HB schedule. Figure 2.4 exemplarily visualizes the third
bracket inspired by visualizations of Feurer and Hutter (2019) and Bischl et al. (2023). This most
explorative third bracket starts evaluating eight configurations at a fidelity level of 0.125. Each
bracket uses a total budget of four full fidelity evaluations.

Neither SH nor HB learn from previous evaluations of configurations but sample configurations
uniformly at random. BOHB (Falkner et al., 2018) improves upon HB by replacing the random
proposal mechanism with a BO proposal. At its core, BOHB’s surrogate model resembles TPE
(Bergstra et al., 2011) but uses multidimensional kernel density estimators. During optimization,
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2.1 Hyperparameter Optimization

the model is trained on the highest fidelity subset of the archive for which at least |Λ̃| + 1 eval-
uations have been performed. Therefore, BOHB over time trains its surrogate model on higher
fidelity observations but continues using lower fidelity evaluations via the SH subroutine in each
bracket. Another possibility to improve over vanilla HB is given by DEHB (Awad et al., 2021)
which combines differential evolution with the HB schedule by running multiple subpopulations at
different fidelity levels. The best-performing configurations at lower fidelity levels serve as parents
for generating new configurations to be evaluated at higher fidelity levels.

Finally, methods that rely on adaptive fidelity selection dynamically decide which fidelities to eval-
uate HPCs on based on prior observations. Key works take inspiration from multi-task BO that
uses a multi-task GP to model the performance of related tasks and to learn the correlation of
tasks during the optimization process. In the context of multi-fidelity HPO, different tasks come
from evaluating different fidelity levels. Similarly, as bandit-based or learning curve approaches,
however, this requires the a priori specification of a discrete set of fidelities on which hyperparam-
eters should be evaluated. To make use of the usually smooth dependence on the fidelity, such
as, e.g., size of the data subset used (Feurer and Hutter, 2019), approaches as described in Klein
et al. (2017a); Kandasamy et al. (2017); Wistuba et al. (2022) treat the fidelity as continuous and
learn a surrogate model using custom kernels.

2.1.4. Hyperparameter Optimization with more than one Objective

So far, we have only been concerned with optimizing a single objective in HPO, namely the
estimated generalization error. However, in practice, often more than one objective can be of
interest and objectives can go beyond performance measures only.

Below, we will briefly introduce three scenarios of HPO with more than one objective: (1) con-
strained optimization (2) multi-objective optimization, and (3) quality diversity optimization.

Constrained Optimization While good performance is often a primary objective, other objectives
of interest can arise, for example in the form of constraints. Examples of constraints are given
by memory consumption, training time, prediction time and energy usage. Formally, HPO under
constraints can be described as solving the following optimization problem:

arg min
λ∈Λ̃

c(λ) (2.27)

subject to k1(λ) = 0, . . . , kn(λ) = 0 (equality constraints),
k̃1(λ) ≥ 0, . . . , k̃ñ(λ) ≥ 0 (inequality constraints)

Here k1(λ), . . . , kn(λ) denote n functions related to equality constraints and k̃1(λ), . . . , k̃ñ(λ)
denote ñ functions related to inequality constraints. Especially in the field of Hardware-Aware
NAS (Benmeziane et al., 2021), constrained optimization problems are frequently encountered and
formulated to identify architectures that do not exceed a given number of trainable parameters
or memory when deployed on an edge device or prediction latency or energy consumption not
exceeding a given threshold.
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In HPO, constraints are often hidden or unknown. An example of a hidden constraint where we
can only make a binary observation (constraint is satisfied or not) is given by memory and time
constraints of a computing system during HPO (Feurer and Hutter, 2019). For example, when
training a deep neural network fails due to an out-of-memory error, we generally cannot observe
the amount of memory requested before the crash (Franceschi et al., 2024) but only notice that
training failed. An example of an unknown constraint is for example the prediction time of an
SVM, which can only be measured after having trained the model as it depends on the number
of support vectors (Feurer and Hutter, 2019). In this sense, the constraint itself is a black-box
function that must be evaluated (Gramacy and Lee, 2011) and can be as expensive to evaluate as
the primary objective function given by the estimated generalization error.

One way to handle constraints in HPO is to assign a penalty value to configurations not meeting
constraints (Golovin et al., 2017). Another approach especially in the context of BO is to model
the probability of a configuration violating constraints and encouraging to search for configurations
with good performance that are likely to satisfy constraints. This is usually achieved by extending
established acquisition functions such as EI, PES, or MES (Gramacy and Lee, 2011; Gardner et al.,
2014; Gelbart et al., 2014; Hernández-Lobato et al., 2015; Picheny et al., 2016; Letham et al.,
2019; Perrone et al., 2019). Moreover, BO approaches, especially information-theoretic ones, can
allow for a decoupled evaluation of the objective function and constraints (Gelbart et al., 2014;
Hernández-Lobato et al., 2015, 2016b) which is beneficial if their evaluation can take different
amounts of time.

Multi-Objective Optimization Besides constraints, one can also be interested in optimizing mul-
tiple objectives simultaneously. For example, consider the estimated generalization error as one
objective and the size in memory of a neural network when deployed on an edge device as another
objective. Instead of treating memory as a constraint, we now treat it as an additional objective.
Both objectives of good performance and low memory are generally in conflict, as well-performing
architectures usually involve more trainable parameters and therefore require more memory when
being deployed. Following Karl et al. (2023) we define the multi-objective HPO problem as

λ∗ ∈ arg min
λ∈Λ̃

c(λ) = arg min
λ∈Λ̃

(c1(λ), . . . , cm(λ)), (2.28)

where c : Λ̃→ Rm, λ 7→ (c1(λ), . . . , cm(λ)) maps an HPC to m ≥ 2 objectives.

In contrast to single-objective optimization, there usually does not exist a single optimal HPC λ∗.
Rather, multi-objective HPO relies on the concept of Pareto optimality and dominance to judge
different HPCs concerning multiple objectives. An objective vector c is said to Pareto dominate
another objective vector c′ if the objective values are equally good among all objectives and strictly
better in at least one objective. Formally:

c ≺ c′ ⇐⇒
(
ci ≤ c′

i ∀i ∈ {1, . . . , m}
)
∧
(
∃j ∈ {1, . . . , m} : cj < c′

j

)
(2.29)

Analogously, one defines an HPC λ to dominate (≺) another configuration λ′ if and only if
c(λ) ≺ c(λ′). “Optimal” HPCs are given by non-dominated configurations: A configuration λ
is called non-dominated or (Pareto) optimal if and only if there is no other λ′ that dominates
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Figure 2.5.: Exemplary Pareto set and front of a two-objective optimization problem.

λ. Pareto dominance defines only a partial order over Rm. Formally, the set of non-dominated
configurations is called the Pareto set:

P := {λ ∈ Λ̃ | ∄λ′ ∈ Λ̃ s.t. λ′ ≺ λ} (2.30)

In objective space, the Pareto set can be mapped to the so-called Pareto front F := c(P). The
general goal of multi-objective optimization is to identify a Pareto set P̂ whose Pareto front c(P̂)
sufficiently well approximates the true Pareto front.

To illustrate this, consider an exemplary Pareto set and front depicted in Figure 2.5 inspired by
visualizations of Karl et al. (2023). The search space is given by the unit ball concerning λ1 and
λ2. The Pareto set in red (left figure) represents feasible, non-dominated solutions in the search
space. The Pareto front in red (right figure) shows how these solutions translate into trade-offs
between the two objectives.

The result of multi-objective optimization is not a single optimal solution but the Pareto set of
non-dominated solutions. Therefore criteria and so-called quality indicators are needed to quantify
characteristics of an approximate Pareto set and its corresponding Pareto front. A popular quality
indicator is given by the dominated hypervolume (Zitzler and Thiele, 1998). The hypervolume of
an approximation of the Pareto front c(P̂) is defined as the combined volume of the dominated
hypercubes of all solution points concerning a reference point r ∈ Rm. Higher hypervolume
indicates that an approximation of the Pareto front covers a larger volume in objective space. For
more details, we refer to Zitzler and Thiele (1998); Karl et al. (2023). Additionally, Karl et al.
(2023) provide an overview of other criteria for comparing solution sets and quality indicators for
approximated Pareto fronts.

Following Karl et al. (2023), we provide in Figure 2.6 a categorization of popular objectives in HPO
that in combination give rise to multi-objective optimization problems. Often, one of the primary
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Figure 2.6.: Objectives in HPO.

objectives is given by predictive performance, i.e., maximizing accuracy in classification tasks or
maximizing true positive rate. Other objectives are related to computational efficiency and are
usually tied to the size of the model or the number of trainable parameters (Tan et al., 2019;
Howard et al., 2019). Computational efficiency metrics are core objectives in Hardware-aware
NAS (Benmeziane et al., 2021). Fairness (Corbett-Davies et al., 2023), interpretability (Freitas,
2019; Molnar et al., 2020), robustness (Hancox-Li, 2020), and sparseness via feature selection
(Li et al., 2022) are related to accountability and transparency in ML and are highly relevant in
many practical applications where models are deployed that must fulfill certain legal and ethical
standards.

Following Karl et al. (2023) multi-objective optimization methods can be categorized into a priori
and a posteriori methods. A posteriori methods return a set of configurations P̂ that try to
approximate the true Pareto set P well, whereas a priori methods return a single configuration
that is optimal according to preferences specified before optimization.

Scalarization as an a priori method converts a multi-objective optimization problem into a single-
objective problem using a function s : Rm × Rm → R. For example, a weighted sum approach
considers a linear combination of the objectives:

λ∗ ∈ arg min
λ∈Λ̃

m∑
i=1

αici(λ) (2.31)

However, scalarization in multi-objective optimization has two key challenges (Karl et al., 2023):
(1) Selecting appropriate scalarization weights αi. (2) A single solution usually cannot fully
capture the complexity of conflicting objectives.

A posteriori methods in multi-objective optimization build upon principles that have been well-
established in single-objective optimization (see Section 2.1.1). These methods extend optimiza-
tion strategies to handle multiple conflicting objectives and aim to approximate the Pareto set
effectively.

For example, GS or RS in principle can also naturally be used for multi-objective HPO. Since
configuration evaluations are independent, adapting these methods simply involves returning the
non-dominated solutions. Similar to single-objective HPO, both methods serve as baselines for
assessing more advanced optimization techniques.
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Population-based algorithms such as evolutionary approaches are popular for multi-objective op-
timization methods. As core building blocks of evolutionary approaches are parent selection and
recombination of parents via so-called mutation and crossover operators and the selection of mem-
bers of the population for survival, one can efficiently design algorithms suitable for multi-objective
optimization by adapting these mechanisms. Mutation and crossover operators are generally not
affected when moving from one to multiple objectives. Parent and survival selection mechanisms
however must be adapted as individuals no longer simply can be ranked according to their single-
objective value (Karl et al., 2023). According to Emmerich and Deutz (2018), multi-objective
EAs largely make use of (1) Pareto dominance for ranking, (2) scalarization involving several
single-objective sub-problems with varying parametrizations, and (3) scalar indicators, such as
the dominated hypervolume.

Among the most popular algorithms for multi-objective optimization is NSGA-II (Deb et al., 2002).
NSGA-II relies on the concept of Pareto dominance combined with a so-called crowding distance
mechanism to ensure convergence towards the Pareto front and maintain diversity among solutions.
First, an initial population of candidates is generated and evaluated on all objective functions.
Individuals are then ranked on different fronts based on Pareto dominance. The best-ranked front
corresponds to the non-dominated set and subsequent fronts contain non-dominated individuals
given the exclusion of individuals belonging to previous fronts. To preserve diversity, a crowding
distance value is assigned to each individual that is given by the sum of differences between an
individual’s left and right neighbor in each objective, where large crowding distances are preferred.
Individuals who are optimal concerning one objective get assigned an infinite crowding distance
and are ranked best. Parents for recombination are selected via binary tournaments, favoring
individuals with better ranks according to the non-dominated sorting criterion and higher crowding
distances (for tie breaking). The same criteria are used during the survival step of individuals in
the population.

BO methods for multi-objective optimization can be categorized (Horn et al., 2015) based on
whether they follow a scalarization approach of objectives or whether they rely on surrogate
models for each objective. In the latter case, they proceed to use an aggregating acquisition
function or formulate the acquisition function optimization problem itself as a multi-objective
optimization problem.

A popular BO method based on scalarization is ParEGO (Knowles, 2006). ParEGO relies on the
so-called augmented Tchebycheff function to scalarize the objectives:

cscalarized(λ) = max
i∈{1,...m}

(αici(λ)) + ρ[α · c(λ)] (2.32)

Here, ρ is a small positive constant, and α is a weight vector drawn uniformly at random from a
set of

(s+m−1
m−1

)
different weight vectors with s determining the total number of weight vectors:

{
α = (α1, . . . , αm) |

m∑
i=1

αi = 1 ∧ αi = l

s
, l ∈ {0, 1, . . . , s}

}
(2.33)

In each iteration, ParEGO therefore performs a different scalarization of objectives. A surrogate
model is trained on the scalarized objective and an acquisition function suitable for single-objective
optimization, such as the EI is used to propose the next candidate point for evaluation.
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Another BO method based on an aggregating acquisition function relying on a surrogate model for
each objective function is given by the Expected Hypervolume Improvement (EHVI; Emmerich
et al. 2006). The EHVI of a candidate point is calculated as the expectation of the hypervolume
improvement based on the posterior predictive distributions of the surrogate models. As it involves
the evaluation of an expectation, a multidimensional integral must be computed and the related
literature contains several works concerned with efficient ways to calculate the EHVI (Emmerich
et al., 2011; Yang et al., 2019; Emmerich et al., 2016). Similarly, as the EHVI extends the EI
to multiple objectives, the Probability of Hypervolume Improvement extends the PI to multiple
objectives (Keane, 2006).

For an overview of other multi-objective BO approaches, such as SMS-EGO (Ponweiser et al.,
2008), Multi-EGO (Jeong and Obayashi, 2005), and information-theoretic acquisition functions
such as PESMO (Hernández-Lobato et al., 2016a), MESMO (Belakaria et al., 2019), and JES (Tu
et al., 2022) we refer to Karl et al. (2023).

Last but not least, as in single-objective HPO, multi-objective HPO methods can be extended to
work in a multi-fidelity setting as introduced in Section 2.1.3. For example, Schmucker et al. (2020)
propose HB with random scalarizations as a multi-fidelity multi-objective method and Salinas et al.
(2021) in a similar spirit extend HB to work with a non-dominated sorting rule. Belakaria et al.
(2020) propose a BO algorithm relying on information-theoretic concepts similarly as MESMO to
obtain the next candidate point and fidelity level for evaluation.

Quality Diversity Optimization In contrast to multi-objective optimization where we want to
simultaneously optimize more than one competing objective, optimization in the presence of more
than one objective can also be framed as optimizing one primary objective but desiring diversity
of solutions with respect to other secondary objectives. This may at first feel somewhat similar
to constrained optimization. However, whereas constrained optimization returns a single optimal
solution that is feasible, quality diversity optimization seeks to return a set of optimal solutions
that are well-performing but behaviorally diverse concerning other functions.

Let c1 : Λ̃ → R denote the primary objective that we want to minimize. Behavioral diversity is
formalized via so-called niches that partition the search space based on (i ∈ {2, . . . , k}, k ≥ 2)
secondary feature functions ci : Λ̃ → R. So-called behavioral niches Nj ⊆ Λ̃ (j ∈ {1, . . . , l})
are defined on these feature functions via niche-specific boundaries bij = [lowerij , upperij). A
solution belongs to a behavioral niche Nj if and only if its feature function values fall within the
boundaries of each feature function that make up said niche:

λ ∈ Nj ⇐⇒ ∀i ∈ {2, . . . , k} : ci(λ) ∈ bij

⇐⇒ (lower2j ≤ c2(λ) < upper2j) ∧ . . . ∧ (lowerkj ≤ ck(λ) < upperkj) (2.34)

The formal goal of quality diversity optimization is then to find for each behavioral niche Nj the
optimal solution:

λ∗
j ∈ arg min

λ∈Nj

c1(λ) (2.35)

The solutions for each niche, also called the elites, are returned as a set {λ∗
1, . . . , λ∗

l }.

In Figure 2.7 we visualize an exemplary quality diversity optimization problem. The search space
is given by the unit ball with respect to λ1 and λ2. A single feature function c2 defines three
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Figure 2.7.: Exemplary quality diversity optimization problem.

niches on the search space, as depicted in Figure 2.7a. The goal is to find for each niche N1, N2,
and N3 the best point for the objective function c1 depicted in Figure 2.7b where contour lines
are colored according to niches and optimal solutions are indicated via colored points.

In quality diversity optimization, it is often assumed that niches fully partition the search space,
∪j∈{1,...,l}Nj = Λ̃ and that niches are pairwise disjoint, i.e., ∀j ∈ {1, . . . , l}, j′ ∈ {1, . . . , l}, j ̸= j′ :
Nj ∩Nj′ = ∅. Moreover, in the simplest case of feature functions c2, . . . , ck being projections to
parameters of the search space, quality diversity optimization directly allows for straightforward
diversity of solutions with respect to niches defined on the search space and can be seen as related
to multimodal optimization (for an introduction to multimodal optimization in the context of
EAs, see Preuss 2015).

Quality diversity optimization is beneficial in applications where a diverse set of solutions is re-
quired. Examples include training robotic movements, where a repertoire of behaviors must be
learned (Cully et al., 2015), air-foil design (Gaier et al., 2017), developing game-playing agents
that employ varied strategies (Perez-Liebana et al., 2021), illuminating latent spaces of generative
adversarial networks (Fontaine and Nikolaidis, 2021; Fontaine et al., 2021) and discovering rein-
forcement learning policies (Batra et al., 2024). The ideas of quality diversity optimization trace
back to concepts of Novelty Search. Novelty Search (Lehman and Stanley, 2011a) explores whether
diversity alone can yield a good set of solutions. Despite not explicitly optimizing for an objective,
Novelty Search has performed surprisingly well in some settings. This led to the development of
Novelty Search with Local Competition(Lehman and Stanley, 2011b), the first true quality diver-
sity optimization algorithm. A widely used evolutionary quality diversity optimization algorithm
is given by MAP-Elites (Mouret and Clune, 2015).

Quality diversity optimization has gained significant attention in recent years, leading to the de-
velopment of various novel methods. One such approach, BOP-Elites (Kent and Branke, 2020;
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Kent et al., 2023), integrates BO into the quality diversity optimization framework. BOP-Elites
employs surrogate models for the objective and feature functions and utilizes an acquisition func-
tion over a structured archive. This enables high sample efficiency, even when feature functions
are treated as black-boxes.

2.1.5. Parallel Optimization

As HPO is an expensive black-box optimization problem and sequential HPO algorithms are
designed to only evaluate a single HPC in each iteration, the related literature has been concerned
with designing methods that allow for the evaluation of HPCs in parallel.

Following Bischl et al. (2023) we first want to note that HPO can be parallelized at different levels.
When parallelizing iterations, batches of HPCs are proposed and evaluated in parallel. Each HPC
evaluation itself further can be parallelized across resampling iterations, while individual train-
test splits within, e.g., cross-validation can also be executed independently. Additionally, certain
models, such as random forests, allow for parallelization during model fitting itself. In the case of
performing nested resampling to obtain an unbiased performance estimate of the model induced
by the learning algorithm configured to use the best-performing HPC, parallelization additionally
can be performed on the outermost resampling level (Bischl et al., 2023).

When looking at parallelizing iterations, the choice of the HPO algorithm strongly impacts the
types of parallelization possible. RS and GS, for example, are considered to be “embarrassingly
parallel” (Bischl et al., 2023) as the evaluation of each HPC is independent of the evaluation of
all other HPCs. In contrast, iterative methods such as EAs, or BO generally can be adapted to
work in a batch parallel setting.

Especially in the context of BO the related work has been concerned with designing batch-parallel
algorithms. A straightforward approach described in Hutter et al. (2012) proposes to sample
the exploration vs. exploitation parameter of the LCB acquisition function from an exponential
distribution and optimize each LCB variant to obtain a batch of candidates. Another possibility
is given by performing multi-objective optimization of the posterior mean and uncertainty (Bischl
et al., 2014) to generate a batch of candidates from the resulting Pareto set. Ginsbourger et al.
(2010) describe the constant liar and Kriging believer approach that both fill in function values
for previous points proposed in a batch. The constant liar strategy assumes that the unknown
function values at the selected batch points are the same (for example the mean of function values)
or follow some simple heuristic. The Kriging believer strategy assumes that the surrogate modes’
prediction at the new points is correct and uses the predicted mean as the fill-in function value.
For myopic acquisition functions, one can further also define so-called q- variants, e.g., the qEI is
a truly multivariate acquisition function based on the expected improvement over q points jointly
(Ginsbourger et al., 2010; Chevalier and Ginsbourger, 2013). While these acquisition functions
can be expensive to optimize for larger batches, a reparameterization trick, and sub-modularity
property can allow for a more efficient greedy optimization (Wilson et al., 2017, 2018). Another
efficient batch-parallel acquisition function based on the LCB is proposed in Desautels et al. (2014)
making use of a confidence bound adjusted for pending observations and hallucinated feedback.
Gonzalez et al. (2016) introduce a maximization-penalization approach for batch-parallel BO
that modifies the acquisition function to discourage batch points closely together. Their approach
estimates a Lipschitz constant of the objective function from the GP and uses it to define exclusion
zones around selected batch points.
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Looking at fully asynchronous parallelization, existing work in the context of BO is given by Egelé
et al. (2023) proposing asynchronous-decentralized BO, wherein each worker runs a sequential BO
making use of the LCB acquisition function with differently sampled exploration vs. exploitation
trade-off and asynchronously communicates its results through a shared archive. In the context
of multi-fidelity optimization, Li et al. (2020) introduce asynchronous SH and Klein et al. (2020)
propose a model-based extension based on the concepts of BO. Another fundamentally different
approach to fully asynchronous training of neural networks and their hyperparameters is given
by population-based training (Jaderberg et al., 2017). Here, a population of models is evolved
asynchronously by interleaving training with evolutionary updates, dynamically adjusting hyper-
parameters through exploitation (copying successful configurations), and exploration (mutating
hyperparameters) to create an adaptive learning schedule.

2.1.6. Configuring an Optimization Algorithm

So far, we have introduced two levels of inference in the context of HPO. On the first level, the
inducer maps a dataset to a model f̂ , or its parameter vector θ̂ (as introduced in Equation (2.1)
which we restate here):

I : D×Λ→ H, (D, λ) 7→ f̂

We identify the risk-optimal model via ERM (as introduced in Equation (2.3)):

f̂ = arg min
f∈H

Remp(f)

The inducer itself is configured by hyperparameters λ ∈ Λ̃ ⊆ Λ. On the second level, an HPO
algorithm returns an (estimated) optimal HPC while internally solving the first-level ERM for
each candidate HPC. As a result of HPO, we identify the (estimated) optimal HPC (solving the
optimization problem already introduced in Equation (2.7)):

λ̂ = arg min
λ∈Λ̃

c(λ)

HPO is a bilevel inference mechanism (Bischl et al., 2023) consisting of first-level and second-level
inference (Guyon et al., 2010), sometimes also referred to as inner and outer inference (Franceschi
et al., 2018).

Acknowledging that an HPO algorithm itself can be configured by control parameters gives rise
to a third level. We now focus on identifying the best configuration of the HPO algorithm O
configured by control parameters γ ∈ Γ (these could, for example, be the choice of surrogate
model or acquisition function in the context of BO) for a class of HPO problem instances at hand.
Formally, the HPO algorithm O maps a dataset to the optimal HPC:

O : D× Γ→ Λ̃, (D, γ) 7→ λ̂

We can now use a meta-optimization algorithm on a third level to map a collection of HPO
problem instances to the optimal HPO algorithm configuration, while solving the second-level
optimization problem for each HPO problem conditional on an HPO algorithm configuration:

γ̂ = arg min
γ∈Γ

κ(γ)
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Here, κ is a function that takes in a configuration γ of the HPO algorithm O (and a collection
of HPO problem instances which we suppress here for clarity) and outputs the value of a meta-
objective over the collection of HPO problem instances. An example of such a meta-objective
is given by the average final generalization error of the best-performing HPC identified for each
HPO problem instance when running the HPO algorithm for a given optimization budget. The
difference between this Algorithm Configuration (AC) problem on the third level and HPO on the
second level is that in HPO we search for the optimal HPC for a given task. In AC, we optimize
over multiple problem instances and search for optimal control parameters that perform well in
expectation over these multiple instances.

We will not discuss the general field of AC here but instead, refer to Hoos (2012b); Eggensperger
et al. (2019); Schede et al. (2022) for additional background and a more standard introduction
of AC. An example of AC for BO in HPO is given by Lindauer et al. (2019) who investigate
the impact of optimizing BO’s own hyperparameters such as the choice of surrogate model and
its hyperparameters and transformations of the objective function prior to using a surrogate
model. AC is closely linked to the concept of programming by optimization (Hoos, 2012a), an
approach that advocates delaying design choices in software development while using ML and AC
to automatically optimize software and configurations of algorithms.

2.2. Benchmarking

ML is a field that can be approached both as a formal science and an empirical science. Theoretical
research on the one hand focuses on the mathematical foundations of learning algorithms, exploring
their limitations and proving properties under assumptions. Empirical research on the other
hand emphasizes practical relevance and largely relies on benchmarking algorithms on real-world
problems and datasets to assess their effectiveness. To bridge both perspectives, researchers often
derive hypotheses about algorithm behavior and validate them through benchmarking on problem
instances, or they simply try to demonstrate that their algorithms improve over a current state-
of-the-art algorithm.

Modern ML research therefore relies heavily on benchmarking, where standardized datasets and
evaluation metrics and protocols serve as shared resources in research communities. In general
computing, a benchmark is defined as “a problem that has been designed to evaluate the perfor-
mance of a system [which] is subjected to a known workload and the performance of the system
against this workload is measured. Typically, the purpose is to compare the measured performance
with that of other systems that have been subject to the same benchmark test.” (Butterfield et al.,
2016). Following Schlangen (2021) and Koch et al. (2021), we refer to ML benchmarks as com-
munity resources used to evaluate ML models or algorithms. Benchmarks typically consist of
a particular task through a dataset (or multiple tasks and datasets) and a quantitative metric
used for evaluation, as well as an evaluation protocol specifying, e.g., compute budget and how to
compare algorithms. Koch et al. (2021) point out that, historically, the practice of benchmarking
was partially advocated to the ML community after the “AI Winter” of the 1980s to assess the
outcome and value of grants stressing the importance of practical applicability of algorithms going
beyond theoretical insight and properties, see also Church (2018); Koch and Peterson (2024); Orr
and Kang (2024).
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In recent years, ML communities have strongly evolved to facilitate benchmarking (Koch et al.,
2021). This includes the development and collection of open-access datasets, for example MNIST
(LeCun et al., 1998), CIFAR-10 and CIFAR-100 (Krizhevsky and Hinton, 2009), ImageNet (Deng
et al., 2009), GLUE (Wang et al., 2018), OpenML CC18 (Bischl et al., 2021), competitions and
challenges (e.g., the Netflix competition, see Bennett and Lanning 2007, the ChaLearn AutoML
challenge, see Guyon et al. 2015, and Kaggle challenges in general) and benchmarking software
and platforms (Vanschoren et al., 2014; Eggensperger et al., 2021; Gijsbers et al., 2024), allowing
for benchmarking with comparably little effort.

Benchmarking is important because it allows for tracking scientific progress over time through
empirical validation. Agreed-upon datasets and tasks, evaluation metrics, and protocols facilitate
fair and standardized comparisons of algorithms and can drive innovation, i.e., by illustrating why
certain algorithms excel or fail and improving upon them. Best practices include ablation studies
of components of algorithms, i.e., changing one factor or component of an algorithm at a time,
rerunning benchmarks, and performing statistical analysis of performance differences attributed
to factors in an isolated fashion (Saltelli, 2002; Hoos, 2012a; Hutter et al., 2014; Fawcett and Hoos,
2016).

Having said that, current benchmarking practices in ML research cannot be considered without
flaws. For a general critical discussion of benchmarks in ML over the last years and its often narrow
focus on few datasets and tasks that are reused in different sub-communities and resulting risks
such as the illusion of progress towards performance improvements that generalize see Koch et al.
(2021); Raji et al. (2021), but also Recht et al. (2018, 2019). Moreover, Herrmann et al. (2024)
identify issues in past and current empirical ML research, i.e., most work lacking empirical rigor
and reproducibility, SOTA-hacking and biased benchmarks, risking distorted scientific progress,
much research being framed as confirmatory albeit operating in an exploratory setting and call
out for more neutral comparison studies, replications studies and meta-studies. For best practices
for benchmarking black-box optimization in general but also specifically HPO and NAS, we refer
to Bartz-Beielstein et al. (2020), Lindauer and Hutter (2020), and Bischl et al. (2023).

2.2.1. Categorizing Hyperparameter Optimization Benchmarks

The fields of AutoML and more specifically HPO have always been benchmarking and engineering
heavy, focusing on the construction and design of algorithms that show good performance on tasks
deemed to be practically relevant (Bergstra et al., 2011, 2013). This is sensible, as a research
field that is concerned with democratizing ML and making it accessible to anybody without
expert knowledge should, without doubt, be able to demonstrate good performance on real-world
problems.

Focusing on HPO, the first standardized HPO benchmarks were introduced through HPOLib
(Eggensperger et al., 2013). HPOLib consists of a mix of synthetic black-box functions (e.g.,
Branin and Hartmann), low-dimensional HPO problems (e.g. logistic regression), medium-
dimensional HPO problems (e.g., neural networks), and high-dimensional HPO problems (e.g.,
optimizing the AutoWEKA framework introduced in Thornton et al. 2013 which combines algo-
rithm selection and HPO in a so-called CASH problem).

Benchmarks used in HPO research can be categorized into four groups: (1) Real-world HPO
problems where actual HPO is performed by training and evaluating a learning algorithm via
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Real-World HPO Synthetic Tabular Surrogate
Objective Function Performing actual HPO Mathematically defined

functions (e.g., Branin,
Ackley, BBOB)

Computed performance
values of real HPO
stored in a lookup table

Regression model of
real HPO data map-
ping configurations to
performance

Computational Cost High Low Low (lookup) Low (prediction)

Real-World Relation Gold standard Low High Moderate to high (de-
pends on surrogate)

Noise Includes all sources of
real-world HPO noise

Usually deterministic,
unless noise is artifi-
cially added

Reflects noise in original
data

Reflects noise in original
data

Search Space Original HPO problem Often low dimensional
purely numeric but can
be extended

Matches original HPO
problem, but dis-
cretized search space

Matches original HPO
problem

Reproducibility Depends on setup, may
vary due to stochastic-
ity in training and hard-
ware

Highly reproducible
(deterministic mathe-
matical functions)

Highly reproducible
(fixed lookup table)

Highly reproducible

Usability Low (computationally
expensive, requires real
HPO)

High (fast and easy to
use)

High (simple table
lookup, no actual HPO)

High (fast queries, no
actual HPO, but qual-
ity depends on surro-
gate model)

Use Cases Realistic HPO evalu-
ation, understanding
true ML overheads

Theoretical devel-
opment, debugging,
optimizer testing

Rapid benchmarking,
standardized compar-
isons

Approximate large-
scale HPO experiments
at reduced cost

Drawbacks High cost, resource-
intensive, hard to
isolate individual fac-
tors

May not generalize to
real HPO landscapes

Limited to stored
configurations, no ex-
trapolation, discretized
search space

Strong dependence on
surrogate model quality

Table 2.2.: Comparison of real-world, synthetic, tabular, and surrogate HPO benchmarks.

a resampling method. (2) Synthetic mathematical functions, e.g. Branin, Ackley, or black-box
benchmarking suites such as BBOB functions (Hansen et al., 2009). (3) Tabular HPO problems
(e.g., Ying et al. 2019) where real-world HPO problems were evaluated with many HPCs, and the
results have been stored. Therefore, during benchmarking, instead of evaluating a configuration
via resampling, one can simply perform a lookup of the pre-collected data. (4) Surrogate HPO
Problems (e.g., Eggensperger et al. 2015) where a surrogate model, e.g., a regression model has
been trained on pre-collected tabular HPO data so that during benchmarking, instead of evaluating
a configuration via resampling, one can simply perform a prediction with the surrogate model. We
provide an overview of the similarities and differences of these types of benchmarks with respect
to different dimensions such as the objective function, computational cost, reproducibility, and
usability in Table 2.2.

2.2.2. Landscape Analysis

In black-box optimization, no explicit knowledge about the problem structure is available beyond
input-output evaluations. To address this, past works have developed techniques to extract nu-
merical features that characterize optimization landscapes. Exploratory landscape analysis (ELA)
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is a framework for characterizing the properties of an optimization problem’s landscape solely re-
lying on computationally cheap, low-level numeric features to distinguish different optimization
problems (Mersmann et al., 2011) instead of relying on manually crafted high-level features. The
core implication of the idea of ELA is that if a problem’s characteristics are well understood,
one can match it with an appropriate optimization algorithm. ELA relies on a comparably small
sample of function evaluations, such as random sampling or a Latin hypercube design. It then
applies statistical measures and ML techniques to compute low-level numerical features that de-
scribe the optimization landscape. In the original work of Mersmann et al. (2011), these features
can be grouped into meta-model features (e.g., the adjusted R2 of an estimated linear regression
model with and without interactions), convexity features (e.g., the mean deviation from linear-
ity), distribution features of the function values (e.g., skewness and kurtosis), level set features
(e.g., misclassification errors of a linear or quadratic discriminant analysis for function values split
by quantiles), local search features (e.g., the number of estimated local optima), and curvature
features (e.g., minimum and maximum and quantile values of the euclidean norm of an estimated
numerical gradient). These low-level features relate to high-level features such as global structure,
multimodality, separability, global to local optima contrast, search space homogeneity, plateaus,
variable scaling and basin2 size homogeneity. High-level features abstractly describe problem char-
acteristics, whereas ELA low-level features are numeric indicators computed directly from function
samples. Computing these ELA features for the BBOB functions allowed Mersmann et al. (2011)
to separate the BBOB problem groups solely based on ELA features with only a few low-cost
features being required. This paved the way for automated algorithm selection based on ELA
features (Bischl et al., 2012a; Kerschke and Trautmann, 2019). For example Bischl et al. (2012a)
frame algorithm selection on the BBOB problems as a cost-sensitive classification problem relying
on ELA features, where misclassification costs depend on performance differences. Over the last
years, ELA has grown to its own research field within the black-box optimization community with
recent papers proposing additional features based on concepts such as cell mapping (Kerschke
et al., 2014), information content (Muñoz et al., 2015) or nearest better clustering (Kerschke
et al., 2015). For example, the idea of cell mapping features is based on the observation that a
continuous search space can be partitioned in every dimension thus achieving a discretization of
the original search space into cells. The discretization of the original sample into cells then allows
the computation of additional features. These features help to characterize the global structure
and multimodality of an optimization problem.

2A basin or basin of attraction (Asenjo et al., 2013) is a region in the search space where an optimization algorithm,
when initialized within that region, will converge to a certain local or global optimum.
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Contributions





3. Contributions to the Foundations of
Hyperparameter Optimization

In this chapter, we present contributions to the foundations of HPO. By contributions to the
foundations of HPO, we refer to research that deepens our general understanding of the core
components of HPO, focusing on theoretical insights and empirical findings that try to explain
how the HPO problem behaves as an optimization task. Despite the importance of HPO in ML,
many aspects of its optimization landscape and the role of resampling strategies remain poorly
understood and underexplored.

A central component of HPO is the estimation of the generalization error through resampling
methods such as holdout or cross-validation. While recent works have been concerned with sta-
tistical properties of resampling methods, especially cross-validation (Nadeau and Bengio, 1999;
Bengio and Grandvalet, 2003; Borra and Di Ciaccio, 2010; Austern and Zhou, 2020; Bayle et al.,
2020; Bates et al., 2024), little work has explicitly addressed how resampling interacts with the
optimization process itself. Generally, the bias and variance trade-offs of different resamplings
(Bischl et al., 2012b) should be considered, however, in the context of HPO we do usually care
more about reducing variance when trying to identify a well-performing HPC (Cawley and Talbot,
2010) unless we are also interested in obtaining an unbiased performance estimate of the learning
algorithm configured by the best HPC. In this case, we must resort to nested resampling (Cawley
and Talbot, 2010; Bischl et al., 2023). A common assumption in HPO is that all HPCs should be
evaluated on the same resampling, i.e., the holdout split is performed once before optimization
and each HPC is evaluated via the same train and validation split. While this makes sense from
a statistical perspective of paired comparisons, one can ask the question of how choosing different
resampling splits for each HPC would affect HPO and the generalization error of the model of
the best-performing HPC. To our best knowledge, this has only been briefly touched upon in a
thesis by Lévesque (2018) demonstrating that for holdout and cross-validation, this can improve
generalization error when using BO or CMA-ES as HPO algorithms.

Beyond resampling, a deeper understanding of HPO landscapes is critical for designing better
optimization algorithms. While the black-box optimization community has developed ELA tech-
niques to analyze synthetic optimization functions, HPO has largely been treated as a generic
black-box problem without a deeper examination of its landscape properties. In the related field
of AC, Pushak and Hoos (2018) demonstrated that many numerical parameter landscapes are
often uni-modal and even convex, suggesting that simpler optimization methods might be more
effective than previously thought. In NAS, related work is given by White et al. (2021b) who
investigate the role of noise (for a general discussion of the variance and sources of variation in
ML benchmark experiments, see also Bouthillier et al. 2021) and show that reducing noise in
the training pipeline can make NAS easier by reducing the number of local minima, resulting in
simple local search algorithms to outperform more complex NAS algorithms. As understanding
the landscape of HPO problems is crucial for efficient algorithm development, gaining a better
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understanding of its landscape is highly relevant. Moreover, as black-box optimization algorithms
are often benchmarked on synthetic functions but later on still applied to HPO it is important to
compare the landscape properties of HPO to the ones of existing black-box functions.

In the first contribution article Reshuffling resampling splits can improve generalization of hyper-
parameter optimization we systematically examine the effect of reshuffling (e.g., choosing a new
train and validation split for each HPC) on HPO generalization error. We show theoretically that
reshuffling resampling splits during HPO can result in a final configuration with better overall
expected generalization error and relate these observations to the properties of the loss landscape,
namely curvature and noisiness of the estimated generalization error. In both controlled simulation
studies and a large-scale realistic HPO benchmark, we demonstrate that reshuffling resampling
splits indeed can lead to real-world improvement of HPO. Especially holdout can strongly benefit
from reshuffling and this observation holds independently of the choice of HPO algorithm, notably
also for a simple RS.

In the second contributing article HPO × ELA: Investigating hyperparameter optimization land-
scapes by means of exploratory landscape analysis we systematically investigate similarities and
differences of HPO and synthetic black-box optimization problems given by the BBOB functions.
We compare the performance of different black-box optimizers, compute ELA features for both
HPO and BBOB problems, and examine how HPO problems position themselves in ELA feature
space. Using a few features such as kurtosis we can tell HPO problems apart from BBOB prob-
lems. In a cluster analysis we demonstrate that HPO problems mostly position themselves with
BBOB problems of little multimodality.
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3.1. Reshuffling Resampling Splits can Improve Generalization of
Hyperparameter Optimization

Contributing article:

T. Nagler∗, L. Schneider∗, B. Bischl, and M. Feurer. Reshuffling resampling splits can improve gen-
eralization of hyperparameter optimization. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U.
Paquet, J. Tomczak, and C. Zhang, editors, Advances in Neural Information Processing Systems,
volume 37, pages 40486–40533, 2024. https: // proceedings. neurips. cc/ paper_ files/
paper/ 2024/ hash/ 47811ee68103bfcde7ca2223fccefb3a-Abstract-Conference. html .

Copyright information:
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Abstract

Hyperparameter optimization is crucial for obtaining peak performance of ma-
chine learning models. The standard protocol evaluates various hyperparameter
configurations using a resampling estimate of the generalization error to guide opti-
mization and select a final hyperparameter configuration. Without much evidence,
paired resampling splits, i.e., either a fixed train-validation split or a fixed cross-
validation scheme, are often recommended. We show that, surprisingly, reshuffling
the splits for every configuration often improves the final model’s generalization
performance on unseen data. Our theoretical analysis explains how reshuffling
affects the asymptotic behavior of the validation loss surface and provides a bound
on the expected regret in the limiting regime. This bound connects the potential
benefits of reshuffling to the signal and noise characteristics of the underlying
optimization problem. We confirm our theoretical results in a controlled simula-
tion study and demonstrate the practical usefulness of reshuffling in a large-scale,
realistic hyperparameter optimization experiment. While reshuffling leads to test
performances that are competitive with using fixed splits, it drastically improves
results for a single train-validation holdout protocol and can often make holdout
become competitive with standard CV while being computationally cheaper.

1 Introduction

Hyperparameters have been shown to strongly influence the performance of machine learning models
(van Rijn & Hutter, 2018; Probst et al., 2019). The primary goal of hyperparameter optimization
(HPO; also called tuning) is the identification and selection of a hyperparameter configuration
(HPC) that minimizes the estimated generalization error (Feurer & Hutter, 2019; Bischl et al., 2023).
Typically, this task is challenged by the absence of a closed-form mathematical description of the
objective function, the unavailability of an analytic gradient, and the large cost to evaluate HPCs,
categorizing HPO as a noisy, black-box optimization problem. An HPC is evaluated via resampling,
such as a holdout split or M -fold cross-validation (CV), during tuning.

These resampling splits are usually constructed in a fixed and instantiated manner, i.e., the same
training and validation splits are used for the internal evaluation of all configurations. On the one
hand, this is an intuitive approach, as it should facilitate a fair comparison between HPCs and reduce
the variance in the comparison.1 On the other hand, such a fixing of train and validation splits might
steer the optimization, especially after a substantial budget of evaluations, towards favoring HPCs

∗Equal contribution.
1This approach likely originates from the concept of paired statistical tests and the resulting variance

reduction, but in our literature search we did not find any references discussing this in the context of HPO.
For example, when comparing the performance of two classifiers on one dataset, paired tests are commonly

38th Conference on Neural Information Processing Systems (NeurIPS 2024).
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which are specifically tailored to the chosen splits. Such and related effects, where we "overoptimize"
the validation performance without effective reward in improved generalization performance have
been sometimes dubbed "overtuning" or "oversearching". For a more detailed discussion of this topic,
including related work, see Section 5 and Appendix B. The practice of reshuffling resampling splits
during HPO is generally neither discussed in the scientific literature nor HPO software tools.2 To the
best of our knowledge, only Lévesque (2018) investigated reshuffling train-validation splits for every
new HPC. For both holdout and M -fold CV using reshuffled resampling splits resulted in, on average,
slightly lower generalization error when used in combination with Bayesian optimization (BO, Garnett,
2023) or CMA-ES (Hansen & Ostermeier, 2001) as HPO algorithms. Additionally, reshuffling
was used by a solution to the NeurIPS 2006 performance prediction challenge to estimate the final
generalization performance (Guyon et al., 2006). Recently, in the context of evolutionary optimization,
reshuffling was applied after every generation (Larcher & Barbosa, 2022).

In this paper, we systematically examine the effect of reshuffling on HPO performance. Our contribu-
tions can be summarized as follows:

1. We show theoretically that reshuffling resampling splits during HPO can result in finding
a configuration with better overall generalization performance, especially when the loss
surface is rather flat and its estimate is noisy (Section 2).

2. We confirm these theoretical insights through controlled simulation studies (Section 3).

3. We demonstrate in realistic HPO benchmark experiments that reshuffling splits can lead to a
real-world improvement of HPO (Section 4). Especially in the case of reshuffled holdout,
we find that the final generalization performance is often on par with 5-fold CV under a
wide range of settings.

We discuss results, limitations, and avenues for future research in Section 5.

2 Theoretical Analysis

2.1 Problem Statement and Setup

Machine learning (ML) aims to fit a model to data, so that it generalizes well to new observations
of the same distribution. Let D = {Zi}ni=1 be the observed dataset consisting of i.i.d. random
variables from a distribution P , i.e., in the supervised setting Zi = (Xi, Yi).3,4 Formally, an
inducer g configured by an HPC λ ∈ Λ maps a dataset D to a model from our hypothesis space
h = gλ(D) ∈ H. During HPO, we want to find a HPC that minimizes the expected generalization
error, i.e., find

λ∗ = argmin
λ∈Λ

µ(λ), where µ(λ) = E[ℓ(Z, gλ(D))],

where ℓ(Z, h) is the loss of model h on a fresh observation Z. In practice, there is usually a limited
computational budget for each HPO run, so we assume that there is only a finite number of distinct
HPCs Λ = {λ1, . . . ,λJ} to be evaluated, which also simplifies the subsequent analysis. Naturally,
we cannot optimize the generalization error directly, but only an estimate of it. To do so, a resampling
is constructed. For every HPC λj , draw M random sets I1,j , . . . , IM,j ⊂ {1, . . . , n} of validation
indices with nvalid = ⌈αn⌉ instances each. The random index draws are assumed to be independent
of the observed data. The data is then split accordingly into pairs Vm,j = {Zi}i∈Im,j

, Tm,j =
{Zi}i/∈Im,j

of disjoint validation and training sets. Define the validation loss on the m-th fold

L(Vm,j , gλj
(Tm,j)) =

1

nvalid

∑

i∈Im,j

ℓ(Zi, gλj
(Tm,j)),

employed that implicitly assume that differences between the performance of classifiers on a given CV fold are
comparable (Dietterich, 1998; Nadeau & Bengio, 1999, 2003; Demšar, 2006).

2In Appendix B, we present an overview of how resampling is addressed in tutorials and examples of standard
HPO libraries and software. We conclude that usually fixed splits are used or recommended.

3Throughout, we use bold letters to indicate (fixed and random) vectors.
4We provide a notation table for symbols used in the main paper in Table 2 in the appendix.
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and the M -fold validation loss as

µ̂(λj) =
1

M

M∑

m=1

L(Vm,j , gλj (Tm,j)).

Since µ is unknown, we minimize λ̂ = argminλ∈Λ µ̂(λ), hoping that µ(λ̂) will also be small.
Typically, the same splits are used for every HPC, so Im,j = Im for all j = 1, . . . , J and m =
1, . . . ,M . In the following, we investigate how reshuffling train-validation splits (i.e., Im,j ̸= Im,j′

for j ̸= j′) affects the HPO problem.

2.2 How Reshuffling Affects the Loss Surface

We first investigate how different validation and reshuffling strategies affect the empirical loss surface
µ̂. In particular, we derive the limiting distribution of the sequence

√
n(µ̂(λj)− µ(λj))

J
j=1. This

limiting regime will not only reveal the effect of reshuffling on the loss surface, but also give us a
tractable setting to study HPO performance.
Theorem 2.1. Under regularity conditions stated in Appendix C.1, it holds

√
n (µ̂(λj)− µ(λj))

J
j=1 → N (0,Σ) in distribution,

where

Σi,j = τi,j,MK(λi,λj), τi,j,M = lim
n→∞

1

nM2α2

n∑

s=1

M∑

m=1

M∑

m′=1

Pr(s ∈ Im,i ∩ Im′,j),

and

K(λi,λj) = lim
n→∞

Cov[ℓ̄n(Z
′,λi), ℓ̄n(Z

′,λj)], ℓ̄n(z,λ) = E[ℓ(z, gλ(T ))]− E[ℓ(Z, gλ(T ))],

where the expectation is taken over a training set T of size n and two fresh samples Z,Z ′ from the
same distribution.

The regularity conditions are rather mild and discussed further in Appendix C.1. The kernel K
reflects the (co-)variability of the losses caused by validation samples. The contribution of training
samples only has a higher-order effect. The validation scheme enters the distribution through the
quantities τi,j,M . In what follows, we compute explicit expressions for some popular examples. The
following list provides formal definitions for the index sets Im,j .

(i) (holdout) Let M = 1 and I1,j = I1 for all j = 1, . . . , J , and some size-⌈αn⌉ index set I1.
(ii) (reshuffled holdout) Let M = 1 and I1,1, . . . , I1,J be independently drawn from the uniform

distribution over all size-⌈αn⌉ subsets from {1, . . . , n}.
(iii) (M -fold CV) Let α = 1/M and I1, . . . , IM be a disjoint partition of {1, . . . , n}, and Im,j =

Im for all j = 1, . . . , J .
(iv) (reshuffled M -fold CV) Let α = 1/M and (I1,j , . . . , IM,j), j = 1, . . . , J , be independently

drawn from the uniform distribution over disjoint partitions of {1, . . . , n}.
(v) (M -fold holdout) Let Im,m = 1, . . . ,M , be independently drawn from the uniform distribution

over size-⌈αn⌉ subsets of {1, . . . , n} and set Im,j = Im for all m = 1, . . . ,M, j = 1, . . . , J .
(vi) (reshuffled M -fold holdout) Let Im,j ,m = 1, . . . ,M, j = 1, . . . , J , be independently drawn

from the uniform distribution over size-⌈αn⌉ subsets of {1, . . . , n}.

The value of τi,j,M for each example is computed explicitly in Appendix E. In all these examples, we
in fact have

τi,j,M =

{
σ2, i = j

τ2σ2, i ̸= j.
, (1)

for some method-dependent parameters σ, τ shown in Table 1. The parameter σ2 captures any
increase in variance caused by omitting an observation from the validation sets. The parameter τ
quantifies a potential decrease in correlation in the loss surface due to reshuffling. More precisely,
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Table 1: Exemplary parametrizations in Equation (1) for resamplings; see Appendix E for details.

Method σ2 τ2

holdout (HO) 1/α 1
reshuffled HO 1/α α
M -fold CV 1 1
reshuffled M -fold CV 1 1
M -fold HO (subsampling / Monte Carlo CV) 1 + (1− α)/Mα 1
reshuffled M -fold HO 1 + (1− α)/Mα 1/(1 + (1− α)/Mα)

the observed losses µ̂(λi), µ̂(λj) at distinct HPCs λi ̸= λj become less correlated when τ is
small. Generally, an increase in variance leads to worse generalization performance. The effect of a
correlation decrease is less obvious and is studied in detail in the following section.

We make the following observations about the differences between methods in Table 1:

• M -fold CV incurs no increase in variance (σ2 = 1) and — because every HPC uses the same
folds — no decrease in correlation. Interestingly, the correlation does not even decrease
when reshuffling the folds. In any case, all samples are used exactly once as validation and
training instance. At least asymptotically, this leads to the same behavior, and reshuffling
should have almost no effect on M -fold CV.

• The two (1-fold) holdout methods bear the same 1/α increase in variance. This is caused by
only using a fraction α of the data as validation samples. Reshuffled holdout also decreases
the correlation parameter τ2. In fact, if HPCs λi ̸= λj are evaluated on largely distinct
samples, the validation losses µ̂(λi) and µ̂(λj) become almost independent.

• M -fold holdout also increases the variance, because some samples may still be omitted from
validation sets. This increase is much smaller for large M . Accordingly, the correlation is
also decreased by less in the reshuffled variant.

2.3 How Reshuffling Affects HPO Performance

In practice, we are mainly interested in the performance of a model trained with the optimal HPC λ̂.
To simplify the analysis, we explore this in the large-sample regime derived in the previous section.
Assume

µ̂(λj) = µ(λj) + ϵ(λj) (2)

where ϵ(λ) is a zero-mean Gaussian process with covariance kernel

Cov(ϵ(λ), ϵ(λ′)) =

{
K(λ,λ) if λ = λ′,
τ2K(λ,λ′) else.

(3)

Let Λ ⊆ {λ ∈ Rd : ∥λ∥ ≤ 1} with |Λ| = J < ∞ be the set of hyperparameters. Theorem 2.2 ahead
gives a bound on the expected regretE[µ(λ̂)−µ(λ∗)]. It depends on several quantities characterizing
the difficulty of the HPO problem. The constant

κ = sup
∥λ∥,∥λ′∥≤1

|K(λ,λ)−K(λ,λ′)|
K(λ,λ)∥λ− λ′∥2 .

can be interpreted as a measure of correlation of the process ϵ. In particular, Corr(ϵ(λ), ϵ(λ′)) ≥
1− κ∥λ− λ′∥2. The constant is small when ϵ is strongly correlated, and large otherwise. Further,
define η as the minimal number such that any η-ball contained in {∥λ∥ ≤ 1} contains at least one
element of Λ. It measures how densely the set of candidate HPCs Λ covers set of all possible HPCs. If
Λ is a deterministic uniform grid, we have about η ≈ J−1/d. Similarly, Lemma D.1 in the Appendix
shows that η ≲ J−1/2d when randomly sampling HPCs. Finally, the constant

m = sup
λ∈Λ

|µ(λ)− µ(λ∗)|
∥λ− λ∗∥2 ,
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Figure 1: Example of reshuffled empirical loss yielding a worse (left) and better (right) minimizer.

measures the local curvature at the minimum of the loss surface µ. Finding an HPC λ close to
the theoretical optimum λ∗ is easier when the minimum is more pronounced (large m). On the
other hand, the regret µ(λ)− µ(λ∗) is also punishing mistakes more quickly. Defining log(x)+ =
max{0, log(x)}, we can now state our main result.
Theorem 2.2. Let µ̂ follow the Gaussian process model (2). Suppose κ < ∞, 0 < σ2 ≤ Var[ϵ(λ)] ≤
σ2 < ∞ for all λ ∈ Λ, and m > 0. Then

E[µ(λ̂)− µ(λ∗)] ≤ σ
√
d[8 +B(τ)−A(τ)].

where

B(τ) = 48
[√

1− τ2
√
log J + τ

√
1 + log(3κ)+

]
, A(τ) =

√
1− τ2(σ/σ)

√
log

(
σ

2mη2

)

+

.

The numeric constants result from several simplifications in a worst-case analysis, which lowers their
practical relevance. A qualitative analysis of the bound is still insightful. The bound is increasing in
σ and d, indicating that the HPO problem is harder when there is a lot of noise or there are many
parameters to tune. The terms B(τ) and A(τ) have conceptual interpretations:

• The term B(τ) quantifies how likely it is to pick a bad λ̂ because of bad luck: a λ far away
from λ∗ had such a small ϵ(λ) that it outweighs the increase in µ. Such events are more
likely when the process ϵ is weakly correlated. Accordingly, B(τ) is decreasing in τ and
increasing in κ.

• The term A(τ) quantifies how likely it is to pick a good λ̂ by luck: a λ close to λ∗ had such
a small ϵ(λ) that it overshoots all the other fluctuations. Also such events are more likely
when the process ϵ is weakly correlated. Accordingly, the term A(τ) is decreasing in τ .

The B, as stated, is unbounded, but a closer inspection of the proof shows that it is upper bounded
by

√
log J . This bound is attained only in the unrealistic scenario when the validation losses are

essentially uncorrelated across all HPCs. The term A is bounded from below by zero, which is also
the worst case because the term enters our regret bound with a negative sign.

Both A and B are decreasing in the reshuffling parameter τ . There are two regimes. If σ/2mη2 ≤ e,
then A(τ) = 0 and reshuffling cannot lead to an improvement of the bound. The term σ/mη2 can be
interpreted as noise-to-signal ratio (relative to the grid density). If the signal is much stronger than
the noise, the HPO problem is so easy that reshuffling will not help. This situation is illustrated in
Figure 1a.

If on the other hand σ/mη2 > e, the terms A(τ) and B(τ) enter the bound with opposing signs.
This creates tension: reshuffling between HPCs increases B(τ), which is countered by a decrease in
A(τ). So which scenarios favor reshuffling? When the process ϵ is strongly correlated, κ is small
and reshuffling (decreasing τ ) incurs a high cost in B(τ). This is intuitive: When there is strong
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correlation, the validation loss surface µ̂ is essentially just a vertical shift of µ. Finding the optimal
λ is then almost as easy as if we would know µ, and decorrelating the surface through reshuffling
would make it unnecessarily hard. When ϵ is less correlated (κ large) however, reshuffling does not
hurt the term B(τ) as much, but we can reap all the benefits of increasing A(τ). Here, the effect of
reshuffling can be interpreted as hedging against the catastrophic case where all µ̂(λ) close to the
optimal λ∗ are simultaneously dominated by a region of bad hyperparameters. This is illustrated in
Figure 1b.

3 Simulation Study

To test our theoretical understanding of the potential benefits of reshuffling resampling splits during
HPO, we conduct a simulation study. This study helps us explore the effects of reshuffling in a
controlled setting.

3.1 Design

We construct a univariate quadratic loss surface function µ : Λ ⊂ R 7→ R, λ → m(λ − 0.5)2/2
which we want to minimize. The global minimum is given at µ(0.5) = 0. Combined with a
kernel for the noise process ϵ as in Equation (3), this allows us to simulate an objective as ob-
served during HPO by sampling µ̂(λ) = µ(λ) + ϵ(λ). We use a squared exponential kernel
K(λ, λ′) = σ2

K exp (−κ(λ− λ′)2/2) that is plugged into the covariance kernel of the noise process
ϵ in Equation (3). The parameters m and κ in our simulation setup correspond exactly to the curva-
ture and correlation constants from the previous sections. Recall that Theorem 2.2 states that the
effect of reshuffling strongly depends on the curvature m of the loss surface µ (a larger m implies a
stronger curvature) and the constant κ as a measure of correlation of the noise ϵ (a larger κ implies
weaker correlation). Combined with the possibility to vary τ in the covariance kernel of ϵ, we can
systematically investigate how curvature of the loss surface, correlation of the noise and the extent
of reshuffling affect optimization performance. In each simulation run, we simulate the observed
objective µ̂(λ), identify the minimizer λ̂ = argminλ∈Λ µ̂(λ), and calculate its true risk, µ(λ̂). We
repeat this process 10000 times for various combinations of τ , m, and κ.

3.2 Results

Figure 2 visualizes the true risk of the configuration λ̂ that minimizes the observed objective. We
observe that for a loss surface with low curvature (i.e., m ≤ 2), reshuffling is beneficial (lower values
of τ resulting in a better true risk of the configuration that optimizes the observed objective) as
long as the noise process is not too correlated (i.e., κ ≥ 1). As soon as the noise process is more
strongly correlated, even flat valleys of the true risk µ remain clearly visible in the observed risk µ̂,
and reshuffling starts to hurt the optimization performance. Moving to scenarios of high curvature,
the general relationship of m and κ remains the same, but reshuffling starts to hurt optimization
performance already with weaker correlation in the noise. In summary, the simulations show that
in cases of low curvature of the loss surface, reshuffling (reducing τ ) tends to improve the true risk
of the optimized configuration, especially when the loss surface is flat (small m) and the noise is
not strongly correlated (i.e., κ is large). This exactly confirms our theoretical predictions from the
previous section.

4 Benchmark Experiments

In this section, we present benchmark experiments of real-world HPO problems where we investigate
the effect of reshuffling resampling splits during HPO. First, we discuss the experimental setup.
Second, we present results for HPO using random search (Bergstra & Bengio, 2012). Third, we
also show the effect of reshuffling when applied in BO using HEBO (Cowen-Rivers et al., 2022)
and SMAC3 (Lindauer et al., 2022). Recall that our theoretical insight suggests that 1) reshuffling
might be beneficial during HPO and 2) holdout should be affected the most by reshuffling and other
resamplings should only be affected to a lesser extent.
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Figure 2: Mean true risk (lower is better) of the configuration minimizing the observed objective
systematically varied with respect to curvature m, correlation strength κ of the noise (a larger κ
implying weaker correlation), and extent of reshuffling τ (lower τ increasing reshuffling). A τ of 1
indicates no reshuffling. Error bars represent standard errors.

4.1 Experimental Setup

As benchmark tasks, we use a set of standard HPO problems defined on small- to medium-sized
tabular datasets for binary classification. We suspect the effect of the resampling variant used
and whether the resampling is reshuffled to be larger for smaller datasets, where the variance of
the validation loss estimator is naturally higher. Furthermore, from a practical perspective, this
also ensures computational feasibility given the large number of HPO runs in our experiments.
We systematically vary the learning algorithm, optimized performance metric, resampling method,
whether the resampling is reshuffled, and the size of the dataset used for training and validation
during HPO. Below, we outline the general experimental design and refer to Appendix F for details.

We used a subset of the datasets defined by the AutoML benchmark (Gijsbers et al., 2024), treating
these as data generating processes (DGPs; Hothorn et al., 2005). We only considered datasets
with less than 100 features to reduce the required computation time and required the number of
observations to be between 10000 and 1000000; for further details see Appendix F.1. Our aim was
to robustly measure the generalization performance when varying the size n, which, as defined in
Section 2 denotes the size of the combined data for model selection, so one training and validation set
combined. First, we sampled 5000 data points per dataset for robust assessment of the generalization
error; these points are not used during HPO in any way. Then, from the remaining points we sampled
tasks with n ∈ {500, 1000, 5000}.

We selected CatBoost (Prokhorenkova et al., 2018) and XGBoost (Chen & Guestrin, 2016) for their
state-of-the-art performance on tabular data (Grinsztajn et al., 2022; Borisov et al., 2022; McElfresh
et al., 2023; Kohli et al., 2024). Additionally, we included an Elastic Net (Zou & Hastie, 2005) to
represent a linear baseline with a smaller search space and a funnel-shaped MLP (Zimmer et al.,
2021) as a cost-effective neural network baseline. We provide details regarding training pipelines and
search spaces in Appendix F.2.

We conduct a random search with 500 HPC evaluations for every resampling strategy we described in
Table 1, for both fixed and reshuffled splits. We always use 80/20 train-validation splits for holdout
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Figure 3: Average test performance (negative ROC AUC) of the incumbent for XGBoost on dataset
albert for increasing n (train-validation sizes, columns). Shaded areas represent standard errors.

and 5-fold CVs, so that training set size (and negative estimation bias) are the same. Anytime test
performance of an HPO run is assessed by re-training the current incumbent (i.e. the best HPC until
the current HPO iteration based on validation performance) on all available train and validation data
and evaluating its performance on the outer test set. Note we do this for scientific evaluation in this
experiment; obviously, this is not possible in practice. Using random search allows us to record
various metrics and afterwards simulate optimizing for different ones, specifically, we recorded
accuracy, area under the ROC curve (ROC AUC) and logloss.

We also investigated the effect of reshuffling on two state-of-the-art BO variants (Eggensperger et al.,
2021; Turner et al., 2021), namely HEBO (Cowen-Rivers et al., 2022) and SMAC3 (Lindauer et al.,
2022). The experimental design was the same as for random search, except for the budget, which we
reduced from 500 HPCs to 250 HPCs, and only optimized ROC AUC.

4.2 Experimental Results

In the following, we focus on the results obtained using ROC AUC. We present aggregated results
over different tasks, learning algorithms and replications to get a general understanding of the effects.
Unaggregated results and results involving accuracy and logloss can be found in Appendix G.

Results of Reshuffling Different Resamplings For each resampling (holdout, 5-fold holdout,
5-fold CV, and 5x 5-fold CV), we empirically analyze the effect of reshuffling train and validation
splits during HPO.

In Figure 3 we exemplarily show how test performance develops over the course of an HPO run on a
single task for different resamplings (with and without reshuffling). Naturally, test performance does
not necessarily increase in a monotonic fashion, and especially holdout without reshuffling tends to
be unstable. Its reshuffled version results in substantially better test performance.

Next, we look at the relative improvement (compared to standard 5-fold CV, which we consider our
baseline) with respect to test ROC AUC performance of the incumbent over time in Figure 4, i.e.,
the difference in test performance of the incumbent between standard 5-fold CV and a different
resampling protocol; hence a positive difference tells us how much better in test error we are, if
we would have chosen the other protocol instead 5-fold CV. We observe that reshuffling generally
results in equal or better performance compared to the same resampling protocol without reshuffling.
For 5-fold holdout and especially 5-fold CV and 5x 5-fold CV, reshuffling has a smaller effect on
relative test performance improvement, as expected. Holdout is affected the most by reshuffling
and results in substantially better relative test performance compared to standard holdout. We also
observe that an HPO protocol based on reshuffled holdout results in similar final test performance
as standard 5-fold CV while overall being substantially cheaper due to requiring less model fits per
HPC evaluation. In Appendix G.2, we further provide an ablation study on the number of folds when
using M -fold holdout, where we observed that – in line with our theory – the more folds are used,
the less reshuffling affects M -fold holdout.
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Figure 4: Average improvement (compared to standard 5-fold CV) with respect to test performance
(ROC AUC) of the incumbent over different tasks, learning algorithms and replications separately for
increasing n (train-validation sizes, columns). Shaded areas represent standard errors.

However, this general trend can vary for certain combinations of classifier and performance metric,
see Appendix G. Especially for logloss, we observed that reshuffling rarely is beneficial; see the
discussion in Section 5. Finally, the different resamplings generally behave as expected. The more
we are willing to invest compute resources into a more intensive resampling like 5-fold CV or 5x
5-fold CV, the better the generalization performance of the final incumbent.

Results for BO and Reshuffling Figure 5 shows that, generally HEBO and SMAC3 outperform
random search with respect to generalization performance (i.e., comparing HEBO and SMAC3 to
random search under standard holdout, or comparing under reshuffled holdout). More interestingly,
HEBO, SMAC3 and random search all strongly benefit from reshuffling. Moreover, the performance
gap between HEBO and random search but also SMAC3 and random search narrows when the
resampling is reshuffled, which is an interesting finding of its own: As soon as we are concerned
with generalization performance of HPO and not only investigate validation performance during
optimization, the choice of optimizer might have less impact on final generalization performance
compared to other choices such as whether the resampling is reshuffled during HPO or not. We
present results for BO and reshuffling for different resamplings in Appendix G.
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Figure 5: Average improvement (compared to random search on standard holdout) with respect to
test performance (ROC AUC) of the incumbent over tasks, learning algorithms and replications for
different n (train-validation sizes, columns). Shaded areas represent standard errors.

5 Discussion

In the previous sections, we have shown theoretically and empirically that reshuffling can enhance
generalization performance of HPO. The main purpose of this article is to draw attention to this
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surprising fact about a technique that is simple but rarely discussed. Our work goes beyond a
preliminary experimental study on reshuffling (Lévesque, 2018), in that we also study the effect of
reshuffling on random search, multiple metrics and learning algorithms, and most importantly, for the
first time, we provide a theoretical analysis that explains why reshuffling can be beneficial.

Limitations To unveil the mechanisms underlying the reshuffling procedures, our theoretical
analysis relies on an asymptotic approximation of the empirical loss surface. This allows us to operate
on Gaussian loss surfaces, which exhibit convenient concentration and anti-concentration properties
required in our proof. The latter are lacking for general distributions, which explains our asymptotic
approach. The analysis was further facilitated by a loss stability assumption regarding the learning
algorithms that is generally rather mild; see the discussion in Bayle et al. (2020). However, it typically
fails for highly sensitive losses, which has practical consequences. In fact, Figure 9 in Appendix G
shows that reshuffling usually hurts generalization for the logloss and small sample sizes. It is still
an open question whether this problem can be fixed by less naive implementations of the technique.
Another limitation is our focus on generalization after search through a fixed, finite set of candidates.
This largely ignores the dynamic nature of many HPO algorithms, which would greatly complicate
our analysis. Finally, our experiments are limited in that we restricted ourselves to tabular data and
binary classification and we avoided extremely small or large datasets.

Relation to Overfitting The fact that generalization performance can decrease during HPO (or
computational model selection in general) is sometimes known as oversearching, overtuning, or
overfitting to the validation set (Quinlan & Cameron-Jones, 1995; Escalante et al., 2009; Koch et al.,
2010; Igel, 2012; Bischl et al., 2023), but has arguably not been studied very thoroughly. Given
recent theoretical (Feldman et al., 2019) and empirical (Purucker & Beel, 2023) findings, we expect
less overtuning on multi-class datasets, making it interesting to see how reshuffling would affect the
generalization performance.

Several works suggest strategies to counteract this effect. First, LOOCVCV proposes a conservative
choice of incumbents (Ng, 1997) at the cost of leave-one-out analysis or an additional hyperparameter.
Second, it is possible to use an extra selection set (Igel, 2012; Lévesque, 2018; Mohr et al., 2018) at
the cost of reduced training data, which was found to lead to reduced overall performance (Lévesque,
2018). Third, by using early stopping one can stop hyperparameter optimization before the generaliza-
tion performance degrades again. This was so far demonstrated to be able to save compute budget at
only marginally reduced performance, but also requires either a sensitivity hyperparameter or correct
estimation of the variance of the generalization estimate and was only developed for cross-validation
so far (Makarova et al., 2022). Reshuffling itself is orthogonal to these proposals and a combination
with the above-mentioned methods might result in further improvements.

Outlook Generally, the related literature detects overfitting to the validation set either visually (Ng,
1997) or by measuring it (Koch et al., 2010; Igel, 2012; Fabris & Freitas, 2019). Developing a unified
formal definition of the above-mentioned terms and thoroughly analyzing the effect of decreased
generalization performance after many HPO iterations and how it relates to our measurements of the
validation performance is an important direction for future work.

We further found, both theoretically and experimentally, that investing more resources when evaluating
each HPC can result in better final HPO performance. To reduce the computational burden on HPO
again, we suggest further investigating the use of adaptive CV techniques, as proposed by Auto-
WEKA (Thornton et al., 2013) or under the name Lazy Paired Hyperparameter Tuning (Zheng &
Bilenko, 2013). Designing more advanced HPO algorithms exploiting the reshuffling effect should
be a promising avenue for further research.
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A Notation

Table 2: Notation table. We discuss all symbols used in the main paper.
Xi Random vector, describing the features
Yi Random variable, describing the target

Zi = (Xi, Yi) Data point
D = {Zi}n

i=1 Dataset consisting of iid random variables
n Number of observations
g Inducer/ML algorithm
h Model, created by the inducer via h = gλ(D)
λ Hyperparameter configuration
Λ Finite set of all hyperparameter configurations
J |Λ|, i.e., the number of hyperparameter configurations

gλj
Hyperparameterized inducer

µ(λ) Expected loss of a hyperparameterized inducer on the distribution of a dataset
ℓ(Z, h) Loss of a model h on a fresh observation Z

M Number of folds in M-fold cross-validation
α Percentage of samples to be used for validation

I1,j , . . . , IM,j ⊂ {1, . . . , n} M sets of validation indices, to be used for evaluating λj

Vm,j Validation data for fold m and configuration λj

Tm,j Training data for fold m and configuration λj

L(Vm,j , gλj
(Tm,j)) Validation loss for fold m and configuration λj

µ̂(λj) M-fold validation loss
σ2 Increase in variance of validation loss caused by resampling
τ2 Decrease in correlation among validation losses caused by reshuffling

τi,j,M Resampling-related component of validation loss covariance
K(·, ·) Kernel capturing the covariance of the pointwise losses between two HPCs
ϵ(λj) Zero-mean Gaussian process, see Equation (2)

d Number of hyperparameters
κ Curvature constant of covariance kernel
η Density of hyperparameter set Λ
m Local curvature at the minimum of the loss surface µ
σ Lower bound on the noise level

B(τ) Part of the regret bound penalizing reshuffling
A(τ) Part of the regret bound rewarding reshuffling

B Extended Related Work

Due to the black box nature of the HPO problem (Feurer & Hutter, 2019; Bischl et al., 2023),
gradient free, zeroth-order optimization algorithms such as BO (Garnett, 2023), Evolutionary Strate-
gies (Loshchilov & Hutter, 2016) or a simple random search (Bergstra & Bengio, 2012) have become
standard optimization algorithms to tackle vanilla HPO problems.

In the last decade, most research on HPO has been concerned with constructing new algorithms
that excel at finding configurations with a low estimated generalization error. Examples include
BO variants such as as HEBO (Cowen-Rivers et al., 2022) or SMAC3 (Lindauer et al., 2022).
Another direction of HPO research has been concerned with speeding up the HPO process to allow
more efficient spending of compute resources. Multifidelity HPO, for example, turns the black box
optimization problem into a gray box one by making use of lower fidelity approximations to the target
function, i.e., using fewer numbers of epochs or subsets of the data for cheap low-fidelity evaluations
that approximate the costly high-fidelity evaluation. Examples include bandit-based budget allocation
algorithms such as Successive Halving (Jamieson & Talwalkar, 2016), Hyperband (Li et al., 2018)
and their extensions that use non-random search mechanisms (Falkner et al., 2018; Awad et al., 2021;
Mallik et al., 2023) or algorithms making use of multi-fidelity information in the context of BO
(Swersky et al., 2014; Klein et al., 2017; Wu et al., 2020; Kadra et al., 2023). Several works address
the problem of speeding up cross-validation techniques and use techniques that could be described as
grey box optimization techniques. Besides the ones mentioned in the main paper (Thornton et al.,
2013; Zheng & Bilenko, 2013), it is possible to employ racing techniques for model selection in
machine learning as demonstrated by Lang et al. (2015), and there has been a recent interest in
methods that adapt the cost of running full cross-validation procedures (Bergman et al., 2024; Buczak
et al., 2024).

When addressing the problem of HPO, we must acknowledge an inherent mismatch between the
explicit objective we optimize – namely, the estimated generalization performance of a model –
and the actual implicit optimization goal, which is to identify a configuration that yields the best
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generalization performance on new, unseen data. Typically, evaluations and comparisons of different
HPO algorithms focus exclusively on the final best validation performance (i.e., the objective that
is directly optimized), even though an unbiased estimate of performance on an external unseen test
set might be available. While this approach is logical for assessing the efficacy of an optimization
algorithm based on the metric it seeks to improve, relying solely on finding an optimal validation
configuration is beneficial only if there is reason to assume a strong correlation between the optimized
validation performance and true generalization ability on new, unseen test data. This discrepancy can
be found deeply within the HPO community, where the evaluation of HPO algorithms on standard
benchmark libraries is usually done solely with respect to the validation performance (Eggensperger
et al., 2021; Pineda Arango et al., 2021; Salinas et al., 2022; Pfisterer et al., 2022).5 This relationship
between validation performance (i.e., the estimated generalization error derived from resampling)
and true generalization performance (e.g., assessed through an outer holdout test set or additional
resampling) of an optimal validation configuration found during HPO remains a largely unexplored
area of research.

In general, little research has focused on the selection of resampling types, let alone the automated
selection of resampling types (Guyon et al., 2010; Feurer et al., 2022). While we usually expect that a
more intensive resampling will reduce the variance of the estimated generalization error and thereby
improve the (rank) correlation between optimized validation and unbiased outer test performance
within HPCs, this benefit is naturally offset by a higher computational expense. Overall, there is little
research on which resampling method to use in practice for model selection, and we only know of a
study for support vector machines (Wainer & Cawley, 2017), a simulation study for clinical prediction
models (Dunias et al., 2024), a study on feature selection (Molinaro et al., 2005) and a study on
fast CV (Bergman et al., 2024). In addition, ML-Plan (Mohr et al., 2018) proposed a two-stage
procedure. In a first stage (search), the tool uses planning on hierarchical task networks to find
promising machine learning pipelines on 70% of the training data. In a second step (selection), it uses
100% of the training data and retrains the most promising candidates from the search step. Finally, it
uses a combination of the internal generalization error estimation that was used during search and
the 0.75 percentile of the generalization error estimation from the selection step to make a more
unbiased selection of the final model. The paper found that this improves performance over using
only regular cross-validation for search and selection. The general consensus, that is in agreement
with our findings, is that CV or repeated CV generally leads to better generalization performance. In
addition, while there are theoretical works that compare the accuracy of estimating the generalization
error of holdout and CV (Blum et al., 1999), our goals is to correctly identify a single solution, which
generalizes well, see the excellent survey by Arlot & Celisse (2010) for a discussion on this topic.

Bouthillier et al. (2021) studied the sources of variance in machine learning experiments, and find that
the split into training and test data has the largest impact. Consequently, they suggest to reshuffle the
data prior to splitting it into the training, which is then used for HPO, and the test set. We followed
their suggestion when designing our experiments and draw a new test sample for every replication,
see Section 4.1 and Appendix F. This dependence on the exact split was further already discussed in
the context of how much the outcome of a statistical test on results of machine learning experiments
depended on the exact train-test split (Bouckaert, 2004).

Finally, the first warning against comparing too many hypothesis using cross-validation was raised by
Schaffer (1993), and in addition to the works discussed in Section 5 in the main paper, also picked up
by Rao et al. (2008); Cawley & Talbot (2010). Moreover, the problem of finding a correct "upper
objective" in a bilevel optimization problem has been noted (Guyon et al., 2010, 2015, 2019). Also,
in the related field of algorithm configuration the problem has been identified (Eggensperger et al.,
2019).

B.1 Current Treatment of Resamplings in HPO Libraries and Software

In Table 3, we provide a brief summary of how resampling is handled in popular HPO libraries and
software.6 For each library, we checked whether the core functionality, examples, or tutorials mention

5We admit that these benchmark libraries implement efficient benchmarking methods such as surro-
gate (Eggensperger et al., 2018; Pfisterer et al., 2022) or tabular benchmarks (Pineda Arango et al., 2021).
It would be possible to adapt them to return the test performance, however, changes in the HPO evaluation
protocol, such as the one we propose, would not be feasible.

6This summary is not exhaustive but reflects the general consensus observed in widely-used software.
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the possibility of reshuffling the resampling during HPO or if the resampling is considered fixed. If
reshuffling is used in an example, mentioned, or if core functionality uses it, we mark it with a ✓. If
it is unclear or inconsistent across examples and core functionality, we mark it with a ?. Otherwise,
we use a ✗. Our conclusion is that the concept of reshuffling resampling generally receives little
attention.

Table 3: Exemplary Treatment of Resamplings in HPO Libraries and Software
Software Reshuffled? Reference(s)

sklearn ✗ GridSearchCV1/ RandomizedSearchCV2

HEBO ✗ sklearn_tuner3

optuna ? Inconsistency between examples4,5,6

bayesian-optimization ✗ sklearn Example7,8

ax ✗ CNN Example9

spearmint ✗ No official HPO Examples
scikit-optimize ✗ BO for GBT Example7,10

SMAC3 ✗ SVM Example7,11

dragonfly ✗ Tree Based Ensemble Example12

aws sagemaker ✗ Blog Post13

raytune ? Inconsistency between examples14,15

hyperopt(-sklearn) ? Cost Function Logic16

✗: no reshuffling, ?: both reshuffling and no reshuffling or unclear, ✓: reshuffling
1 https://github.com/scikit-learn/scikit-learn/blob/8721245511de2f225ff5f9aa5f5fadce663cd4a3/sklearn/m

odel_selection/_search.py#L1263
2 https://github.com/scikit-learn/scikit-learn/blob/8721245511de2f225ff5f9aa5f5fadce663cd4a3/sklearn/m

odel_selection/_search.py#L1644
3 https://github.com/huawei-noah/HEBO/blob/b60f41aa862b4c5148e31ab4981890da6d41f2b1/HEBO/hebo/sklearn_t

uner.py#L73
4 https://github.com/optuna/optuna-integration/blob/15e6b0ec6d9a0d7f572ad387be8478c56257bef7/optuna_in

tegration/sklearn/sklearn.py#L223 here sklearn’s cross_validate is used which by default does not reshuffle the resampling
https://github.com/scikit-learn/scikit-learn/blob/8721245511de2f225ff5f9aa5f5fadce663cd4a3/sklearn/m
odel_selection/_validation.py#L186

5 https://github.com/optuna/optuna-examples/blob/dd56b9692e6d1f4fa839332edbcdd93fd48c16d8/pytorch/py
torch_simple.py#L79 here, data loaders for train and valid are instantiated within the objective of the trial but the data within the
loaders is fixed

6 https://github.com/optuna/optuna-examples/blob/dd56b9692e6d1f4fa839332edbcdd93fd48c16d8/xgboost/xgbo
ost_simple.py#L22 here, the train validation split is performed within the objective of the trial and no seed is set which results in
reshuffling https://github.com/scikit-learn/scikit-learn/blob/8721245511de2f225ff5f9aa5f5fadce663cd4a3/s
klearn/model_selection/_split.py#L2597

7 functionality relies on sklearn’s cross_val_score which by default does not reshuffle the resampling https://github.com/sciki
t-learn/scikit-learn/blob/8721245511de2f225ff5f9aa5f5fadce663cd4a3/sklearn/model_selection/_validati
on.py#L631

8 https://github.com/bayesian-optimization/BayesianOptimization/blob/c7e5c3926944fc6011ae7ace29f7b5ed0f
9c983b/examples/sklearn_example.py#L32

9 https://github.com/facebook/Ax/blob/ac44a6661f535dd3046954f8fd8701327f4a53e2/tutorials/tune_cnn_serv
ice.ipynb#L39 and https://github.com/facebook/Ax/blob/ac44a6661f535dd3046954f8fd8701327f4a53e2/ax/util
s/tutorials/cnn_utils.py#L154

10 https://github.com/scikit-optimize/scikit-optimize/blob/a2369ddbc332d16d8ff173b12404b03fea472492/ex
amples/hyperparameter-optimization.py#L82C21-L82C36

11 https://github.com/automl/SMAC3/blob/9aaa8e94a5b3a9657737a87b903ee96c683cc42c/examples/1_basics/2_sv
m_cv.py#L63

12 https://github.com/dragonfly/dragonfly/blob/3eef7d30bcc2e56f2221a624bd8ec7f933f81e40/examples/tree_r
eg/skltree.py#L111

13 https://aws.amazon.com/blogs/architecture/field-notes-build-a-cross-validation-machine-learning-mod
el-pipeline-at-scale-with-amazon-sagemaker/

14 https://github.com/ray-project/ray/blob/3f5aa5c4642eeb12447d9de5dce22085512312f3/doc/source/tune/exa
mples/tune-pytorch-cifar.ipynb#L120 here, data loaders for train and valid are instantiated within the objective but the data
within the loaders are fixed

15 https://github.com/ray-project/ray/blob/3f5aa5c4642eeb12447d9de5dce22085512312f3/doc/source/tune/exa
mples/tune-xgboost.ipynb#L335 here, the train validation split is performed within the objective and no seed is set which results
in reshuffling https://github.com/scikit-learn/scikit-learn/blob/8721245511de2f225ff5f9aa5f5fadce663cd4a3
/sklearn/model_selection/_split.py#L2597

16 https://github.com/hyperopt/hyperopt-sklearn/blob/4bc286479677a0bfd2178dac4546ea268b3f3b77/hpsklearn
/estimator/_cost_fn.py#L144 dependence on random seed which by default is not set and there is no discussion of reshuffling and
behavior is somewhat unclear
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C Proofs of the Main Results

C.1 Proof of Theorem 2.1

We impose stability assumptions on the learning algorithm similar to Bayle et al. (2020); Austern &
Zhou (2020). Let Z,Z1, . . . ,Zn,Z

′
1, be iid random variables. Define T = {Zi}ni=1, and T ′ as T

but with Zn replaced by the independent copy Z ′
n. Define

ℓ̃n(z,λ) = ℓ(z, gλ(T ))− E[ℓ(Z, gλ(T )) | T ],

assume that each gλ(T ) is invariant to the ordering in T , ℓ is bounded, and

max
λ∈Λ

E{[ℓ̃(Z, gλ(T ))− ℓ̃(Z, gλ(T ′))]2} = o(1/n). (4)

This loss stability assumption is rather mild, see Bayle et al. (2020) for an extensive discussion.
Further, define the risk R(g) = E[ℓ(Z, g)] and assume that for every λ ∈ Λ, there is a prediction
rule g∗λ such that

max
λ∈Λ

E [|R(gλ(T ))−R(g∗λ)|] = o(1/
√
n). (5)

This assumption requires gλ(T ) to converge to some fixed prediction rule sufficiently fast and serves
as a reasonable working condition for our purposes. It is satisfied, for example, when ℓ is the square
loss and gλ is an empirical risk minimizer over a hypothesis class Gλ with finite VC-dimension.
For further examples, see, e.g., Bousquet & Zhivotovskiy (2021), van Erven et al. (2015), and
references therein. The assumption could be relaxed, but this would lead to a more complicated
limiting distribution but with the same essential interpretation.
Theorem C.1. Under assumptions (4) and (5), it holds

√
n (µ̂(λj)− µ(λj))

J
j=1 →d N (0,Σ),

where

Σj,j′ = τi,j,M lim
n→∞

Cov[ℓ̄n(Z,λj), ℓ̄n(Z,λj′)],

τj,j′,M = lim
n→∞

1

nM2α2

n∑

i=1

M∑

m=1

M∑

m′=1

Pr(i ∈ Im,j ∩ Im′,j′).

Proof. Define

µ̃(λj) =
1

M

M∑

m=1

E[L(Vm,j , gλj
(Tm,j)) | Tm,j ].

By the triangle inequality (first and second step), Jensen’s inequality (third step), and (5) (last step),

E[|µ̃(λj)− µ(λj)|]
≤ max

1≤m≤M
E
[∣∣E[L(Vm,j , gλj

(Tm,j)) | Tm,j ]− E[L(Vm,j , gλj
(Tm,j))]

∣∣]

≤ max
1≤m≤M

E
[∣∣∣E[L(Vm,j , gλj (Tm,j)) | Tm,j ]− E[L(Vm,j , g

∗
λj
)]
∣∣∣
]

+ max
1≤m≤M

E
[∣∣∣E[L(Vm,j , gλj

(Tm,j))]− E[L(Vm,j , g
∗
λj
)]
∣∣∣
]

≤ 2 max
1≤m≤M

E
[∣∣∣E[L(Vm,j , gλj

(Tm,j)) | Tm,j ]− E[L(Vm,j , g
∗
λj
)]
∣∣∣
]

= 2 max
1≤m≤M

E
[∣∣∣R(gλj (Tm,j))−R(g∗λj

)
∣∣∣
]

= o(1/
√
n).

Next, assumption (4) together with Theorem 2 and Proposition 3 of Bayle et al. (2020) yield

√
n (µ̂(λj)− µ̃(λj))−

1

M

M∑

m=1

1

α
√
n

∑

i∈Im,j

ℓ̄n(Zi,λj) →p 0.
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Now rewrite

1

Mα
√
n

M∑

m=1

∑

i∈Im,j

ℓ̄n(Zi,λj) =
1

Mα
√
n

n∑

i=1

M∑

m=1

1(i ∈ Im,j)ℓ̄n(Zi,λj)

︸ ︷︷ ︸
:=ξ

(j)
i,n

.

The sequence (ξi,n)
n
i=1 = (ξ

(j)
i,n, . . . , ξ

(j)
i,n)

n
i=1 is a triangular array of independent, centered, and

bounded random vectors. Because 1(Zi ∈ Vm,j) and Zi are independent, it holds

Cov(ξ
(j)
i,n, ξ

(j′)
i,n ) =

M∑

m=1

M∑

m′=1

E[1(i ∈ Im,j ∩ Im′,j′)]E[ℓ̄n(Zi,λj)ℓ̄n(Zi,λj′)],

so

lim
n→∞

Cov

[
1

Mα
√
n

n∑

i=1

ξ
(j)
i,n,

1

Mα
√
n

n∑

i=1

ξ
(j′)
i,n

]
= lim

n→∞
1

nM2α2

n∑

i=1

Cov
[
ξ
(j)
i,n, ξ

(j′)
i,n

]
= Σj,j′ .

Now the result follows from Lindeberg’s central limit theorem for triangular arrays (e.g., van der
Vaart, 2000, Proposition 2.27).

C.2 Proof of Theorem 2.2

We want to bound the probability that µ(λ̂)−µ(λ∗) is large. For some δ > 0, define the set of ‘good’
hyperparameters

Λδ = {λj : µ(λj)− µ(λ∗) ≤ δ}.
Now

Pr
(
µ(λ̂)− µ(λ∗) > δ

)
= Pr

(
λ̂ /∈ Λδ

)

= Pr

(
min
λ/∈Λδ

µ̂(λ) < min
λ∈Λδ

µ̂(λ)

)

≤ Pr

(
min
λ/∈Λδ

µ̂(λ) < min
λ∈Λδ/2

µ̂(λ)

)

= Pr

(
min
λ/∈Λδ

µ(λ) + ϵ(λ) < min
λ∈Λδ/2

µ(λ) + ϵ(λ)

)

≤ Pr

(
δ + min

λ/∈Λδ

ϵ(λ) < δ/2 + min
λ∈Λδ/2

ϵ(λ)

)

= Pr

(
min
λ/∈Λδ

ϵ(λ)− min
λ∈Λδ/2

ϵ(λ) < −δ/2

)

= Pr

(
max
λ/∈Λδ

ϵ(λ)− max
λ∈Λδ/2

ϵ(λ) > δ/2

)
. (ϵ d

= −ϵ)

There is a tension between the two maxima. The more λ’s there are in Λδ/2 and the less they are
correlated, the more likely it is to find one ϵ(λ) that is large. This makes the probability small.
However, the less ϵ is correlated, the larger is maxλ/∈Λδ

ϵ(λ), making the probability large. To
formalize this, use the Gaussian concentration inequality (Talagrand, 2005, Lemma 2.1.3):

Pr

(
max
λ/∈Λδ

ϵ(λ)− max
λ∈Λδ/2

ϵ(λ) > δ/2

)

≤ Pr

(
2

∣∣∣∣max
λ∈Λ

ϵ(λ)− E
[
max
λ∈Λ

ϵ(λ)

]∣∣∣∣ > δ/2− E
[
max

λ∈Λδ/2

ϵ(λ)

]
+ E

[
max
λ/∈Λδ

ϵ(λ)

])

≤ 2 exp

{
−
(
δ/2− E

[
maxλ∈Λδ/2

ϵ(λ)
]
+ E [maxλ/∈Λδ

ϵ(λ)]
)2

8σ2

}
,

provided δ/2−E
[
maxλ∈Λδ/2

ϵ(λ)
]
+E [maxλ/∈Λδ

ϵ(λ)] ≥ 0. We bound the two maxima separately.
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Lower Bound for Maximum over the Good Set

Recall the definition of m right before Theorem 2.2 and observe

Λδ/2 = {λ : µ(λ)− µ(λ∗) ≤ δ/2} ⊃ {λ : m∥λ− λ∗∥2 ≤ δ/2} = {λ : ∥λ− λ∗∥ ≤ (δ/2m)1/2}
= B(λ∗, (δ/2m)1/2).

Pack the ball B(λ∗, (δ/2m)1/2) with smaller balls with radius η. We can always construct such
a packing with at least (δ/2mη2)d/2 elements. By assumption, each small ball contains at least
one element of Λ. Pick one element from each small ball and collect them into the set Λ′

δ/2. By
construction, |Λ′

δ/2| ≥ (δ/2mη2)d/2 and

min
λ ̸=λ′∈Λ′

δ/2
|
∥λ− λ′∥ ≥ η.

Sudakov’s minoration principle (e.g., Wainwright, 2019, Theorem 5.30) gives

E

[
max

λ∈Λδ/2

ϵ(λ)

]
≥ 1

2

√
log |Λ′

δ/2| min
{λ ̸=λ′}∩Λ′

δ/2

√
Var [ϵ(λ)− ϵ(λ′)]

≥ 1

2

√
log |Λ′

δ/2| min
∥λ−λ′∥≥η

√
Var [ϵ(λ)− ϵ(λ′)].

In general,

Var [ϵ(λ)− ϵ(λ′)]

= K(λ,λ) +K(λ′,λ′)− 2τ2K(λ,λ′)

= (1− τ2)[K(λ,λ) +K(λ′,λ′)] + τ2[K(λ,λ)−K(λ,λ′)] + τ2[K(λ′,λ′)−K(λ,λ′)]

≥ 2σ2(1− τ2).

Hence, we have

min
∥λ−λ′∥≥η

Var [ϵ(λ)− ϵ(λ′)] ≥ 2σ2(1− τ2),

which implies

E

[
max

λ∈Λδ/2

ϵ(λ)

]
≥ 1

2
σ
√
d
√
1− τ2

√
log(δ/2mη2) =: σ

√
dA(τ, δ)/2.

Upper Bound for Maximum over the Bad Set

Dudley’s entropy bound (e.g., Giné & Nickl, 2016, Theorem 2.3.6) gives

E

[
max
λ/∈Λδ

ϵ(λ)

]
≤ 12

∫ ∞

0

√
logN(s)ds,

where N(s) is the minimum number of points λ1, . . . ,λN(s) such that

sup
λ∈Λ

min
1≤k≤N(s)

√
Var [ϵ(λ)− ϵ(λk)] ≤ s.

Note that

sup
λ,λ′∈Λ

√
Var [ϵ(λ)− ϵ(λ′)] ≤ 2σ,

so N(s) = 1 for all s ≥ 2σ. For s2 ≤ 4σ2(1 − τ2), we can use the trivial bound N(s) ≤ J.
For s2 > 4σ2(1 − τ2), cover Λ with ℓ2-balls of size (s/2στκ). We can do this with less than
N(s) ≤ (6σκ/s)d ∨ 1 such balls. Let λ1, . . . ,λN be the centers of these balls. In general, it holds

Var [ϵ(λ)− ϵ(λ′)]

= K(λ,λ) +K(λ′,λ′)− 2τ2K(λ,λ′)

= (1− τ2)[K(λ,λ) +K(λ′,λ′)] + τ2[K(λ,λ)−K(λ,λ′)] + τ2[K(λ′,λ′)−K(λ,λ′)]

≤ 2(1− τ2)σ2 + 2τ2σ2κ2∥λ− λ′∥2.
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For s2 > 4σ2(1− τ2), we thus have

sup
λ∈Λ

min
1≤k≤N(s)

Var [ϵ(λ)− ϵ(λk)] ≤ sup
∥λ−λ′∥2≤(s/2τσκ)2

Var [ϵ(λ)− ϵ(λ′)]

≤ 2(1− τ2)σ2 + 2τ2σ2κ2(s/2τσκ)2

≤ s2,

as desired. Now decompose the integral

∫ ∞

0

√
logN(s)ds =

∫ 2σ
√
1−τ2

0

√
logN(s)ds+

∫ 2σ

2σ
√
1−τ2

√
logN(s)ds

≤ 2σ
√
d
√
1− τ2

√
log J +

∫ 2σ

2σ
√
1−τ2

√
logN(s)ds.

For the second term, compute
∫ 2σ

σ
√
1−τ2

√
logN(s)ds ≤

√
d

∫ 2σ

2σ
√
1−τ2

√
log(6σκ/s)+ ds

= σ
√
d

∫ 2

2
√
1−τ2

√
log(6κ/s)+ ds

≤ σ
√
d

(∫ 2

0

log(6κ/s)+ ds

)1/2 (
2(1−

√
1− τ2)

)1/2

= σ
√
d
√
2 + 2 log(3κ)+

(
2(1−

√
1− τ2)

)1/2

= 2σ
√
d
√
1 + log(3κ)+

τ

(1 +
√
1− τ2)1/2

≤ 2σ
√
dτ
√
1 + log(3κ)+.

We have shown that

E

[
max
λ/∈Λδ

ϵ(λ)

]
≤ 24σ

√
d
[√

1− τ2
√
log J + τ

√
1 + log(3κ)+

]
=: σ

√
dB(τ)/4.

Integrating Probabilities

Summarizing the two previous steps, we have

Pr
(
µ(λ̂)− µ(λ∗) > δ

)
≤ 2 exp




−

(
δ − σ

√
d[B(τ)−A(τ, δ)]

)2

36σ2





,

provided t ≥ σ
√
d[B(τ)−A(τ, δ)]. Now for any s ≥ 0 and t ≥ 2es

2

mη2, it holds

A(τ, s) ≥ (σ/σ)
√
1− τ2s =: A(τ)s.

In particular, if

t ≥ 2es
2

mη2 + σ
√
d[B(τ)−A(τ)s] =: C,

we have

Pr
(
µ(λ̂)− µ(λ∗) > δ

)
≤ 4 exp




−

(
δ − σ

√
d[B(τ)−A(τ)s]

)2

36σ2





.
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Integrating the probability gives

E[µ(λ̂)− µ(λ∗)] =
∫ ∞

0

Pr
(
µ(λ̂)− µ(λ∗) > δ

)
dδ

=

∫ C

0

Pr
(
µ(λ̂)− µ(λ∗) > δ

)
dδ +

∫ ∞

C

Pr
(
µ(λ̂)− µ(λ∗) > δ

)
dδ

≤ C +

∫ ∞

C

exp




−

(
δ − σ

√
d[B(τ)−A(τ)s]

)2

36σ2





dδ

≤ C +
√
36σ

= 2es
2

mη2 + σ
√
d[B(τ)−A(τ)s] + 6σ.

Simplifying

The bound can be optimized with respect to s, but the solution involves the Lambert W -function,
which has no analytical expression. Instead choose s for simplicity as

s =

√
log

(
σ

2mη2

)

+

.

which gives

E[µ(λ̂)− µ(λ∗)] ≤ σ
√
d

[
8 +B(τ)−A(τ)

√
log

(
σ

2mη2

)]
.

D Additional Results on the Density of Random HPC Grids

Lemma D.1. Suppose that the J elements in Λ are drawn independently from a continuous density p
with c := min∥λ∥≤1 p(λ) > 0. Then with probability at least 1− δ,

η ≲
(√

log(1/δ)/J
)1/d

,

and with probability 1,

η ≲
(√

log(J)/J
)1/d

,

for all J sufficiently large.

Proof. We want to bound the probability that there is a λ such that |B(λ, η) ∩ Λ| = 0. In what
follows λ is silently understood to have norm bounded by 1. Let λ̃1, . . . , λ̃N the centers of η/2-balls
covering {∥λ∥ ≤ 1}, for which we may assume N ≤ (6/η)d. For λ̃k the closest center to λ, it holds

∥λ′ − λ∥ ≤ ∥λ′ − λ̃k∥+ ∥λ̃k − λ∥ ≤ ∥λ′ − λ̃k∥+ η/2,

so ∥λ′ − λ̃k∥ ≤ η/2 implies ∥λ′ − λ∥ ≤ η. We thus have

Pr(∃λ : |B(λ, η) ∩ Λ| = 0) = Pr

(
inf
λ

J∑

i=1

1{∥λi − λ∥ ≤ η} ≤ 0

)

≤ Pr

(
min

1≤k≤N

J∑

i=1

1{∥λi − λ̃k∥ ≤ η/2} ≤ 0

)
.
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Further

Pr

(
min

1≤k≤N

J∑

i=1

1{∥λi − λ̃k∥ ≤ η/2} ≤ 0

)

= Pr

(
max

1≤k≤N

J∑

i=1

−1{∥λi − λ̃k∥ ≤ η/2} ≥ 0

)

≤ Pr

(
max

1≤k≤N

J∑

i=1

E
[
1{∥λi − λ̃k∥ ≤ η/2}

]
− 1{∥λi − λ̃k∥ ≤ η/2} ≥ J inf

λ
E [1{∥λi − λ∥ ≤ η/2}]

)
.

It holds

E [1{∥λi − λ∥ ≤ η/2}] = Pr (∥λi − λ∥ ≤ η/2) =

∫

∥λ′−λ∥≤η/2

p(λ′)dλ′ ≥ c vol(B(0, η/2))

= cvd(η/2)
d,

where vd = vol(B(0, 1)). Now the union bound and Hoeffding’s inequality give

Pr

(
min

1≤k≤N

J∑

i=1

1{∥λi − λ̃k∥ ≤ η/2} ≤ 0

)
≤ N exp

(
−Jc2v2d(η/2)

2d

2

)

≤ (6/η)d exp

(
−Jc2v2d(η/2)

2d

2

)
.

Choosing

η = 2

(√
2 log(3d

√
Jcvd/δ)/

√
Jcvd

)1/d

gives

Pr(∃λ : |B(λ, η) ∩ Λ| = 0) ≤ δ/

√
2 log(3d

√
Jcvd),

which is bounded by δ when
√
J ≥ e1/2/3dcvd. Further, setting η = 2(

√
6 log(J)/

√
Jcvd)

1/d

gives

Pr

(
min

1≤k≤N

J∑

i=1

1{∥λi − λ̃k∥ ≤ η/2} ≤ 0

)
≲ J−5/2,

so that

∞∑

J=1

Pr

(
min

1≤j≤J
min

1≤k≤N

j∑

i=1

1{∥λi − λ̃k∥ ≤ η/2} ≤ 0

)

≤
∞∑

J=1

J Pr

(
min

1≤k≤N

J∑

i=1

1{∥λi − λ̃k∥ ≤ η/2} ≤ 0

)

≲
∞∑

J=1

1

J3/2
< ∞.

Now the Borel-Cantelli lemma (e.g., Kallenberg, 1997, Theorem 4.18) implies that, with probability
1,

|B(λ, η) ∩ Λ| ≥ 1,

for all J sufficiently large.
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E Selected Validation Schemes

E.1 Definition of Index Sets

Recall:

(i) (holdout) Let M = 1 and I1,j = I1 for all j = 1, . . . , J , and some size-⌈αn⌉ index set I1.
(ii) (reshuffled holdout) Let M = 1 and I1,1, . . . , I1,J be independently drawn from the uniform

distribution over all size-⌈αn⌉ subsets from {1, . . . , n}.
(iii) (M -fold CV) Let α = 1/M and I1, . . . , IM be a disjoint partition of {1, . . . , n}, and Im,j =

Im for all j = 1, . . . , J .
(iv) (reshuffled M -fold CV) Let α = 1/M and (I1,j , . . . , IM,j), j = 1, . . . , J , be independently

drawn from the uniform distribution over disjoint partitions of {1, . . . , n}.
(v) (M -fold holdout) Let Im,m = 1, . . . ,M , be independently drawn from the uniform distribution

over size-⌈αn⌉ subsets of {1, . . . , n} and set Im,j = Im for all m = 1, . . . ,M, j = 1, . . . , J .
(vi) (reshuffled M -fold holdout) Let Im,j ,m = 1, . . . ,M, j = 1, . . . , J , be independently drawn

from the uniform distribution over size-⌈αn⌉ subsets of {1, . . . , n}.

E.2 Derivation of Reshuffling Parameters in Limiting Distribution

Recall

τi,j,M =
1

nM2α2

n∑

s=1

M∑

m=1

M∑

m′=1

Pr(s ∈ Im,i ∩ Im′,j).

For all schemes in the proposition, the probabilities are independent of the index s, so the average
over s = 1, . . . , n can be omitted. We now verify the constants σ, τ from Table 1.

(i) It holds

Pr(s ∈ I1,i ∩ I1,j) = Pr(s ∈ I1) = α.

Hence,
τi,j,1 = 1/α = 1/α× 1 = σ2 × τ2.

(ii) (reshuffled holdout) This is a special case of part (vi) with M = 1.
(iii) (M -fold CV) It holds

Pr(s ∈ Im,i ∩ Im′,j) = Pr(s ∈ Im ∩ Im′) =

{
1/M, m = m′,
0, m ̸= m′.

Only M probabilities in the double sum are non-zero, whence

τi,j,M =
1

M2α2
×M/M = 1/α2M2 = 1× 1 = σ2 × τ2,

where we used α = 1/M .
(iv) (reshuffled M -fold CV) It holds

Pr(s ∈ Im,i ∩ Im′,j) =





1/M, m = m′, i = j

0, m ̸= m′, i = j

1/M2, m = m′, i ̸= j

1/M2, m ̸= m′, i ̸= j.

For i = j, only M probabilities in the double sum are non-zero. Also using α = 1/M , we get

τi,j,M =
1

M2α2
×M × 1/M = 1 = σ2.

For i ̸= j,

τi,j,M =
1

M2α2
×M2 × 1/M2 = 1× 1 = σ2 × τ2.
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(v) (M -fold holdout) It holds

Pr(s ∈ Im,i ∩ Im′,j) = Pr(s ∈ Im ∩ Im′) =

{
α, m = m′,
α2, else.

This gives

τi,j,M =
1

M2α2
× [M × α+ (M − 1)M × α2] = [1/αM + (M − 1)/M ]× 1 = σ2 × τ2.

for all i, j.
(vi) (reshuffled M -fold holdout) It holds

Pr(s ∈ Im,i ∩ Im′,j) =

{
α, m = m′, i = j

α2, else.

For i = j, this gives

τi,j,M =
1

M2α2
× [M × α+ (M − 1)M × α2] = 1/αM + (M − 1)/M.

For i ̸= j,

τi,j,M =
1

M2α2
× (M2 × α2) = 1.

This implies that (1) holds with σ2 = 1/Mα+ (M − 1)/M , τ2 = 1/(1/Mα+ (M − 1)/M).
Remark E.1. Although not technically covered by Theorem 2.1, performing independent bootstraps
for each λj correspond to reshuffled n-fold holdout with α = 1/n. Accordingly, σ ≈

√
2 and

τ ≈
√
1/2.

F Details Regarding Benchmark Experiments

F.1 Datasets

We list all datasets used in the benchmark experiments in Table 4.

Table 4: List of datasets used in benchmark experiments. All information can be found on
OpenML (Vanschoren et al., 2014).

OpenML Dataset ID Dataset Name Size (n× p)

23517 numerai28.6 96320× 21
1169 airlines 539383× 7
41147 albert 425240× 78
4135 Amazon_employee_access 32769× 9
1461 bank-marketing 45211× 16
1590 adult 48842× 14
41150 MiniBooNE 130064× 50
41162 kick 72983× 32
42733 Click_prediction_small 39948× 11
42742 porto-seguro 595212× 57

Note that datasets serve as data generating processes (DGPs; Hothorn et al., 2005). As we are mostly
concerned with the actual generalization performance of the final best HPC found during HPO based
on validation performance we rely on a comparably large held out test set that is not used during
HPO. We therefore use 5000 data points sampled from a DGP as an outer test set. To further be able
to measure the generalization performance robustly for varying data sizes available during HPO, we
construct concrete tasks based on the DGPs by sampling subsets of (train_valid; n) size 500, 1000
and 5000 from the DGPs. This results in 30 tasks in total (10 DGPS × 3 train_valid sizes). For
more details and the concrete implementation of this procedure, see Appendix F.3. We also collected
another 5000 data points as an external validation set, but did not use it. Therefore, we had to tighten
the restriction to 10000 data points mentioned in the main paper to 15000 data points as the lower
bound on data points. To allow for stronger variation over different replications, we decided to use
20000 as the final lower bound.
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F.2 Learning Algorithms

Here we briefly present training pipeline details and search spaces of the learning algorithms used in
our benchmark experiments.

The funnel-shaped MLP is based on sklearn’s MLP Classifier and is constructed in the following
way: The hidden layer size for each layer is determined by num_layers and max_units. We
start with max_units and half the number of units for every subsequent layer to create a funnel.
max_batch_size is the largest power of 2 that is smaller than the number of training samples
available. We use ReLU as activation function and train the network optimizing logloss as a loss
function via SGD using a constant learning rate and Nesterov momentum for 100 epochs. Table 5
lists the search space (inspired from Zimmer et al. (2021)) used during HPO.

The Elastic Net is based on sklearn’s Logistic Regression Classifier. We train it for a maximum of
1000 iterations using the "saga" solver. Table 6 lists the search space used during HPO.

The XGBoost and CatBoost search spaces are listed in Table 7 and Table 8, both inspired from their
search spaces used in McElfresh et al. (2023).

For both the Elastic Net and Funnel MLP, missing values are imputed in the preprocessing pipeline
(mean imputation for numerical features and adding a new level for categorical features). Categorical
features are target encoded in a cross-validated manner using a 5-fold CV. Features are then scaled
to zero mean and unit variance via a standard scaler. For XGBoost, we impute missing values for
categorical features (adding a new level) and target encode them in a cross-validated manner using a
5-fold CV. For CatBoost, no preprocessing is performed.

XGBoost and CatBoost models are trained for 2000 iterations and stop early if the validation loss
(using the default internal loss function used during training, i.e., logloss) does not improve over a
horizon of 20 iterations. For retraining the best configuration on the whole train and validation data,
the number of boosting iterations is set to the number of iterations used to find the best validation
performance prior to the stopping mechanism taking action.7

F.3 Exact Implementation

In the following, we outline the exact implementation of performing one HPO run for a given learning
algorithm on a concrete task (dataset × train_valid size) and a given resampling. We release all
code to replicate benchmark results and reproduce our analyses via https://github.com/slds-l
mu/paper_2024_reshuffling. For a given replication (in total 10):

1. We sample (without replacement) train_valid size (500, 1000 or 5000 points) and test
size (always 5000) points from the DGP (i.e. a concrete dataset in Table 4). These are shared
for every learning algorithm (i.e. all learning algorithms are evaluated on the same data).

2. A given HPC is evaluated in the following way:

• The resampling operates on the train validation8 set of size train_valid.
• The learning algorithm is configured by the HPC.
• The learning algorithm is trained on training splits and evaluated on validation splits

according to the resampling strategy. In case reshuffling is turned on, the training and
validation splits are recreated for every HPO. We compute the Accuracy, ROC AUC
and logloss when using a random search and compute ROC AUC when using HEBO
or SMAC3 and average performance over all folds for resamplings involving multiple
folds.

• For each HPC we then always re-train the model on all train_valid data being
available and evaluate the model on the held-out test set to compute an outer estimate
of generalization performance for each HPC (regardless of whether it is the incumbent
for a given iteration or not).

7For CV and repeated holdout we take the average number of boosting iterations over the models trained on
the different folds.

8With train validation we refer to all data being available during HPO which is then further split by a
resampling into train and validation sets.
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Table 5: Search Space for Funnel-Shaped MLP Classifier.
Parameter Type Range Log

num_layers Int. 1 to 5 No
max_units Int. 64, 128, 256, 512 No
learning_rate Num. 1× 10−4 to 1× 10−1 Yes
batch_size Int. 16, 32, ..., max_batch_size No
momentum Num. 0.1 to 0.99 No
alpha Num. 1× 10−6 to 1× 10−1 Yes

Table 6: Search Space for Elastic Net Classifier.
Parameter Type Range Log

C Num. 1× 10−6 to 1× 104 Yes
l1_ratio Num. 0.0 to 1.0 No

Table 7: Search Space for XGBoost Classifier.
Parameter Type Range Log

max_depth Int. 2 to 12 Yes
alpha Num. 1× 10−8 to 1.0 Yes
lambda Num. 1× 10−8 to 1.0 Yes
eta Num. 0.01 to 0.3 Yes

Table 8: Search Space for CatBoost Classifier.
Parameter Type Range Log

learning_rate Num. 0.01 to 0.3 Yes
depth Int. 2 to 12 Yes
l2_leaf_reg Num. 0.5 to 30 Yes

3. We evaluate 500 HPCs when using random search and 250 HPC when using HEBO or
SMAC3 (SMAC4HPO facade).

As resamplings, we use holdout with a 80/20 train-validation split and 5 folds for CV, so that the
holdout strategy is just one fold of the CV and the fraction of data points being used for training and
respectively validation are the same across different resampling strategies. 5-fold holdout simply
repeats the holdout procedure five times and 5x 5-fold CV repeats the 5-fold CV five times. Each of
the four resamplings can be reshuffled or not (standard).

As mentioned above, the test set is only varied for each of the 10 replica (repetitions with different
seeds), but consistent for different tasks (i.e. the different learning algorithms are evaluated on the
same test set, similarly, also the different dataset subsets all share the same test set). This allows for
fair comparisons of different resamplings on a concrete problem (i.e. a given dataset, train_valid
size and learning algorithm). Additionally, for the random search, the 500 HPCs evaluated for a given
learning algorithm are also fixed over different dataset and train_valid size combinations. This
is done to allow for an isolation of the effect, the concrete resampling (and whether it is reshuffled
or not) has on generalization performance, reducing noise arising due to different HPCs. Learning
algorithms themselves are not explicitly seeded to allow for variation during model training over
different replications. Resamplings and partitioning of data are always performed in a stratified
manner with respect to the target variable.

For the random search, we only ran (standard and reshuffled) holdout and (standard and reshuffled)
5x 5-fold CV experiments (because we can simulate 5-fold CV and 5-fold holdout experiments based
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on the results obtained from the 5x 5-fold CV (by only considering the first repeat or the first fold for
each of the five repeats).9

For running HEBO or SMAC3, each resampling (standard and reshuffled for holdout, 5-fold holdout,
5-fold CV, 5x 5-fold CV) has to be actually run due to the adaptive nature of BO.

For the random search experiments, this results in 10 (DGPs) × 3 (train_valid sizes) × 4 (learning
algorithms) × 2 (holdout or 5x 5-fold CV) × 2 (standard or reshuffled) × 10 (replications) = 4800
HPO runs,10 each involving the evaluation of 500 HPCs and each evaluation of an HPC involving
either 2 (for holdout; due to retraining on train validation data) or 26 (for 5x 5-fold CV; due to
retraining on train validation data) model fits. In summary, the random search experiments involve
the evaluation of 2.4 Million HPCs with in total 33.6 Million model fits.

Similarly, for the HEBO and SMAC3 experiments, this each results in 10 (DGPs) × 3 (train_valid
sizes) × 4 (learning algorithms) × 4 (holdout, 5-fold CV, 5x 5-fold CV or 5-fold holdout) × 2
(standard or reshuffled) × 10 (replications) = 9600 HPO runs11, each involving the evaluation of
250 HPCs and each evaluation of an HPC involving either 2 (for holdout; due to retraining on train
validation data), 6 (for 5-fold CV or 5-fold holdout; due to retraining on train validation data) or 26
(for 5x 5-fold CV; due to retraining on train validation data) model fits. In summary, the HEBO and
SMAC3 experiments each involve the evaluation of 2.4 Million HPCs with in total 24 Million model
fits.

F.4 Compute Resources

We estimate our total compute time for the random search, HEBO and SMAC3 experiments to be
roughly 11.86 CPU years. Benchmark experiments were run on an internal HPC cluster equipped
with a mix of Intel Xeon E5-2670, Intel Xeon E5-2683 and Intel Xeon Gold 6330 instances. Jobs
were scheduled to use a single CPU core and were allowed to use up to 16GB RAM. Total emissions
are estimated to be an equivalent of roughly 6508.67 kg CO2.

G Additional Benchmark Results Visualizations

G.1 Main Experiments

In this section, we provide additional visualizations of the results of our benchmark experiments.

Figure 6 illustrates the trade-off between the final number of model fits required by different resam-
plings and the final average normalized test performance (AUC ROC) after running random search
for a budget of 500 hyperparameter configurations. We can see that the reshuffled holdout on average
comes close to the final test performance of the overall more expensive 5-fold CV.

Below, we give an overview of the different types of additional analyses and visualizations we provide.
Normalized metrics, i.e., normalized validation or test performance refer to the measure being scaled
to [0, 1] based on the empirical observed minimum and maximum values obtained on the raw results
level (ADTM; see Wistuba et al., 2018). More concretely, for each scenario consisting of a learning
algorithm that is run on a given task (dataset × train_valid size) given a certain performance
metric, the performance values (validation or test) for all resamplings and optimizers are normalized
on the replication level to [0, 1] by subtracting the empirical best value and dividing by the range of
performance values. Therefore a normalized performance value of 0 is best and 1 is worst. Note that
we additionally provide further aggregated results on the learning algorithm level and raw results of
validation and test performance via https://github.com/slds-lmu/paper_2024_reshuffl
ing.

• Random search
– Normalized validation performance in Figure 7.

9We even could have simulated the vanilla holdout from the 5x 5-fold CV experiments by choosing an
arbitrary fold and repeat but choose not to do so, to have some sanity checks regarding our implementation by
being able to compare the "true" holdout with a the simulated holdout.

10Note that we do not have to take the 3 different metrics into account because random search allows us to
simulate runs for different metric post hoc.

11Note that HEBO and SMAC3 were only run for ROC AUC as the performance metric.
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Figure 6: Trade-off between the final number of model fits required by different resamplings and
the final average normalized test performance (AUC ROC) after running random search for a budget
of 500 hyperparameter configurations. Averaged over different tasks, learning algorithms and
replications separately for increasing n (train-validation sizes, columns). Shaded areas represent
standard errors.

– Normalized test performance in Figure 8.
– Improvement in test performance over 5-fold CV in Figure 9.
– Rank w.r.t. test performance in Figure 10.

• HEBO and SMAC3 vs. random search holdout
– Normalized validation performance in Figure 11.
– Normalized test performance in Figure 12.
– Improvement in test performance over standard holdout in Figure 13.
– Rank w.r.t. test performance in Figure 14.

• HEBO and SMAC3 vs. random search 5-fold holdout
– Normalized validation performance in Figure 15.
– Normalized test performance in Figure 16.
– Improvement in test performance over standard 5-fold holdout in Figure 17.
– Rank w.r.t. test performance in Figure 18.

• HEBO and SMAC3 vs. random search 5-fold CV
– Normalized validation performance in Figure 19.
– Normalized test performance in Figure 20.
– Improvement in test performance over 5-fold CV in Figure 21.
– Rank w.r.t. test performance in Figure 22.

• HEBO and SMAC3 vs. random search 5x 5-fold CV
– Normalized validation performance in Figure 23.
– Normalized test performance in Figure 24.
– Improvement in test performance over 5x 5-fold CV in Figure 25.
– Rank w.r.t. test performance in Figure 26.
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Figure 7: Random search. Average normalized performance over tasks, learners and replications for
different n (train-validation sizes, columns). Shaded areas represent standard errors.
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Figure 8: Random search. Average normalized test performance over tasks, learners and replications
for different n (train-validation sizes, columns). Shaded areas represent standard errors.
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Figure 9: Random search. Average improvement (compared to standard 5-fold CV) with respect to
test performance of the incumbent over tasks, learners and replications for different n (train-validation
sizes, columns). Shaded areas represent standard errors.
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Figure 10: Random search. Average ranks (lower is better) with respect to test performance over tasks,
learners and replications for different n (train-validation sizes, columns). Shaded areas represent
standard errors.
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Figure 11: HEBO and SMAC3 vs. random search for holdout. Average normalized validation
performance (ROC AUC) over tasks, learners and replications for different n (train-validation sizes,
columns). Shaded areas represent standard errors.
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Figure 12: HEBO and SMAC3 vs. random search for holdout. Average normalized test performance
(ROC AUC) over tasks, learners and replications for different n (train-validation sizes, columns).
Shaded areas represent standard errors.
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Figure 13: HEBO and SMAC3 vs. random search for holdout. Average improvement (compared to
standard holdout) with respect to test performance (ROC AUC) of the incumbent over tasks, learners
and replications for different n (train-validation sizes, columns). Shaded areas represent standard
errors.
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Figure 14: HEBO and SMAC3 vs. random search for holdout. Average ranks (lower is better) with
respect to test performance (ROC AUC) of the incumbent over tasks, learners and replications for
different n (train-validation sizes, columns). Shaded areas represent standard errors.
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Figure 15: HEBO and SMAC3 vs. random search for 5-fold holdout. Average normalized validation
performance (ROC AUC) over tasks, learners and replications for different n (train-validation sizes,
columns). Shaded areas represent standard errors.
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Figure 16: HEBO and SMAC3 vs. random search for 5-fold holdout. Average normalized test
performance (ROC AUC) over tasks, learners and replications for different n (train-validation sizes,
columns). Shaded areas represent standard errors.
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Figure 17: HEBO and SMAC3 vs. random search for 5-fold holdout. Average improvement
(compared to standard 5-fold holdout) with respect to test performance (ROC AUC) of the incumbent
over tasks, learners and replications for different n (train-validation sizes, columns). Shaded areas
represent standard errors.
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Figure 18: HEBO and SMAC3 vs. random search for 5-fold holdout. Average ranks (lower is better)
with respect to test performance (ROC AUC) of the incumbent tasks, learners and replications for
different n (train-validation sizes, columns). Shaded areas represent standard errors.
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Figure 19: HEBO and SMAC3 vs. random search for 5-fold CV. Average normalized validation
performance (ROC AUC) over tasks, learners and replications for different n (train-validation sizes,
columns). Shaded areas represent standard errors.
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Figure 20: HEBO and SMAC3 vs. random search for 5-fold CV. Average normalized test performance
(ROC AUC) over tasks, learners and replications for different n (train-validation sizes, columns).
Shaded areas represent standard errors.
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Figure 21: HEBO and SMAC3 vs. random search for 5-fold CV. Average improvement (compared
to standard 5-fold CV) with respect to test performance (ROC AUC) of the incumbent over tasks,
learners and replications for different n (train-validation sizes, columns). Shaded areas represent
standard errors.
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Figure 22: HEBO and SMAC3 vs. random search for 5-fold CV. Average ranks (lower is better) with
respect to test performance (ROC AUC) of the incumbent over tasks, learners and replications for
different n (train-validation sizes, columns). Shaded areas represent standard errors.
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Figure 23: HEBO and SMAC3 vs. random search for 5x 5-fold CV. Average normalized validation
performance (ROC AUC) over tasks, learners and replications for different n (train-validation sizes,
columns). Shaded areas represent standard errors.
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Figure 24: HEBO and SMAC3 vs. random search for 5x 5-fold CV. Average normalized test
performance (ROC AUC) over tasks, learners and replications for different n (train-validation sizes,
columns). Shaded areas represent standard errors.
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Figure 25: HEBO and SMAC3 vs. random search for 5x 5-fold CV. Average improvement (compared
to standard 5x 5-fold CV) with respect to test performance (ROC AUC) of the incumbent over tasks,
learners and replications for different n (train-validation sizes, columns). Shaded areas represent
standard errors.
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Figure 26: HEBO and SMAC3 vs. random search for 5x 5-fold CV. Average ranks (lower is better)
with respect to test performance (ROC AUC) of the incumbent over tasks, learners and replications
for different n (train-validation sizes, columns). Shaded areas represent standard errors.
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G.2 Ablation on M-fold holdout

Based on the 5x 5-fold CV results we further simulated different M -fold holdout resamplings
(standard and reshuffled) by taking M repeats from the first fold of the 5x 5-fold CV. This allows us
to get an understanding of the effect more folds have on M -fold holdout, especially in the context of
reshuffling.

Regarding normalized validation performance we observe that more folds generally result in a less
optimistically biased validation performance (see Figure 27). Looking at normalized test performance
(Figure 28) we observe the general trend that more folds result in better test performance – which is
expected. Reshuffling generally results in better test performance compared to the standard resampling
(with the exception of logloss where especially in the case of a single holdout, reshuffling can hurt
generalization performance). This effect is smaller, the more folds are used, which is in line with our
theoretical results presented in Table 1. Looking at improvement compared to standard 5-fold holdout
with respect to test performance and ranks with respect to test performance, we observe that often
reshuffled 2-fold holdout results that are highly competitive with standard 3, 4 or 5-fold holdout.

Logloss, 500 Logloss, 1000 Logloss, 5000

ROC AUC, 500 ROC AUC, 1000 ROC AUC, 5000

Accuracy, 500 Accuracy, 1000 Accuracy, 5000

1 100 200 300 400 500 1 100 200 300 400 500 1 100 200 300 400 500

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.25

0.50

0.75

0.0

0.2

0.4

0.6

0.8

0.25

0.50

0.75

No. HPC Evaluations

M
ea

n 
N

or
m

al
iz

ed
 V

al
id

at
io

n 
P

er
fo

rm
an

ce

Holdout 1−fold 2−fold 3−fold 4−fold 5−fold Reshuffling FALSE TRUE

Figure 27: Random search. Average normalized validation performance over tasks, learners and
replications for different n (train-validation sizes, columns). Shaded areas represent standard errors.

39

82



Logloss, 500 Logloss, 1000 Logloss, 5000

ROC AUC, 500 ROC AUC, 1000 ROC AUC, 5000

Accuracy, 500 Accuracy, 1000 Accuracy, 5000

1 100 200 300 400 500 1 100 200 300 400 500 1 100 200 300 400 500

0.25

0.30

0.35

0.40

0.45

0.50

0.2

0.3

0.4

0.5

0.6

0.2

0.3

0.4

0.5

0.6

0.2

0.3

0.4

0.5

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

0.25

0.30

0.35

0.40

0.45

0.30

0.35

0.40

0.45

0.50

0.1

0.2

0.3

0.4

0.5

No. HPC Evaluations

M
ea

n 
N

or
m

al
iz

ed
 T

es
t P

er
fo

rm
an

ce

Holdout 1−fold 2−fold 3−fold 4−fold 5−fold Reshuffling FALSE TRUE

Figure 28: Random search. Average normalized test performance over tasks, learners and replications
for different n (train-validation sizes, columns). Shaded areas represent standard errors.
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Figure 29: Random search. Average improvement (compared to standard 5-fold holdout) with
respect to test performance of the incumbent over tasks, learners and replications for different n
(train-validation sizes, columns). Shaded areas represent standard errors.

40

83



Logloss, 500 Logloss, 1000 Logloss, 5000

ROC AUC, 500 ROC AUC, 1000 ROC AUC, 5000

Accuracy, 500 Accuracy, 1000 Accuracy, 5000

1 100 200 300 400 500 1 100 200 300 400 500 1 100 200 300 400 500

1 100 200 300 400 500 1 100 200 300 400 500 1 100 200 300 400 500

1 100 200 300 400 500 1 100 200 300 400 500 1 100 200 300 400 500

5.0

5.5

6.0

6.5

5.0

5.5

6.0

6.5

7.0

4.5

5.0

5.5

6.0

6.5

5.0

5.5

6.0

6.5

4.5

5.0

5.5

6.0

6.5

7.0

5

6

7

4.8

5.2

5.6

6.0

5.0

5.5

6.0

6.5

5

6

7

No. HPC Evaluations

M
ea

n 
R

an
k 

(T
es

t P
er

fo
rm

an
ce

)

Holdout 1−fold 2−fold 3−fold 4−fold 5−fold Reshuffling FALSE TRUE

Figure 30: Random search. Average ranks (lower is better) with respect to test performance of
the incumbent over tasks, learners and replications for different n (train-validation sizes, columns).
Shaded areas represent standard errors.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We outline our three main contributions in the introduction (Section 1). We do
not discuss generalization in the introduction, but rather in the discussion in Section 5.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper provides an analysis of reshuffling data in the context of estimating
the generalization error for hyperparameter optimization. Our theoretical analysis explains
why reshuffling works, and we experimentally verify the theoretical analysis. We discuss
the limitations of our work in Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Full assumptions and proofs for our main results (Theorem 2.1 and Theo-
rem 2.2) are given in Appendix C.1 and Appendix C.2, respectively. Derivations for the
parameters in Table 1 are provided in Appendix E. The additional results for the grid density
are stated and proven directly in Appendix D.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
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Abstract. Hyperparameter optimization (HPO) is a key component
of machine learning models for achieving peak predictive performance.
While numerous methods and algorithms for HPO have been proposed
over the last years, little progress has been made in illuminating and
examining the actual structure of these black-box optimization problems.
Exploratory landscape analysis (ELA) subsumes a set of techniques that
can be used to gain knowledge about properties of unknown optimiza-
tion problems. In this paper, we evaluate the performance of five different
black-box optimizers on 30 HPO problems, which consist of two-, three-
and five-dimensional continuous search spaces of the XGBoost learner
trained on 10 different data sets. This is contrasted with the perfor-
mance of the same optimizers evaluated on 360 problem instances from
the black-box optimization benchmark (BBOB). We then compute ELA
features on the HPO and BBOB problems and examine similarities and
differences. A cluster analysis of the HPO and BBOB problems in ELA
feature space allows us to identify how the HPO problems compare to
the BBOB problems on a structural meta-level. We identify a subset of
BBOB problems that are close to the HPO problems in ELA feature
space and show that optimizer performance is comparably similar on
these two sets of benchmark problems. We highlight open challenges of
ELA for HPO and discuss potential directions of future research and
applications.
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1 Introduction

In machine learning (ML), hyperparameter optimization (HPO) constitutes one
of the most frequently used tools for improving the predictive performance of
a model [3]. The goal of classical single-objective HPO is to find a hyperpa-
rameter configuration that minimizes the estimated generalization error. Gen-
erally, neither a closed-form mathematical representation nor analytic gradient
information is available, making HPO a black-box optimization problem and
evolutionary algorithms (EAs) and model-based optimizers good candidate algo-
rithms. As a consequence, no prior information about the optimization landscape
– which could allow comparisons of HPO and other black-box problems, or pro-
vide guidance regarding the choice of optimizer – is available. This also extends
to automated ML (AutoML) [14], which builds upon HPO.

In contrast, in the domain of continuous black-box optimization, a sophisti-
cated toolbox for landscape analysis and the characterization of their properties
has been developed over the years. In exploratory landscape analysis (ELA),
optimization landscape features are calculated from small samples of evaluated
points from the original black-box problem. It has been shown in numerous
studies that ELA feature sets capture relevant landscape characteristics and
that they can be used for automated algorithm selection, improving upon the
state-of-the-art selector [5,17]. Particularly well-studied are the functions from
the black-box optimization benchmark (BBOB) [12].

Empirical studies [30,31] in the closely related area of algorithm configura-
tion hint that performance landscapes often are rather benign, i.e., unimodal and
convex, although this only holds for an aggregation over larger instance sets and
their analysis does not allow further characterization of individual problem land-
scapes. There exists some work to circumvent HPO altogether, by automatically
configuring an algorithm for a given problem instance [1,28]. However, these
are limited to configuring optimization algorithms rather than ML models. In
addition, they are often restricted in the number and type of variables they are
able to configure. [26] apply fitness landscape analysis on AutoML landscapes,
computing fitness distance correlations and neutrality ratios on various AutoML
problems. They utilize these features only in an exploratory manner, characteriz-
ing the landscapes, without a link to optimizer performance, and cannot compare
the analyzed landscapes to other black-box problems in a natural way. Similar
work on fitness landscape analysis exists but focuses mostly on neural networks
[6,35]. Some preliminary work [9] on the hyperparameters of a (1 + 1)-EA on
a OneMax problem suggests that the ELA feature distribution of a HPO prob-
lem can be significantly different from other benchmark problems. Recently, [32]
developed statistical tests for the deviation of loss landscapes from uni-modality
and convexity and showed that loss landscapes of AutoML problems are highly
structured and often uni-modal.

In this work, we characterize continuous HPO problems using ELA features,
enabling comparisons between different black-box optimization problems and
optimizers. Our main contributions are as follows:
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1. We examine similarities and differences of HPO and BBOB problems by inves-
tigating the performance of different black-box optimizers.

2. We compute ELA features for all HPO and BBOB problems and demonstrate
their usefulness in distinguishing between HPO and BBOB.

3. We demonstrate how HPO problems position themselves in ELA feature space
on a meta-level by performing a cluster analysis on principle components
derived from ELA features of HPO and BBOB problems and investigate
performance differences of optimizers on HPO problems and BBOB problems
that are close to the HPO problems in ELA feature space.

4. We discuss how ELA can be used for HPO in future work and highlight open
challenges of ELA in the context of HPO.

5. We release code and data of all our benchmark experiments hoping to facil-
itate future research (which currently may be hindered due to the computa-
tionally expensive HPO black-box evaluations).

The remainder of this paper is structured as follows: Fundamentals for HPO and
ELA are introduced in Sect. 2. The experimental setup is presented in Sect. 3,
with the results regarding the algorithm performance and ELA feature space
analysis in Sect. 4 and 5, respectively. Section 6 concludes this paper and offers
future research directions.

2 Background

Hyperparameter Optimization. Hyperparameter optimization (HPO) methods
aim to identify a well-performing hyperparameter configuration λ ∈ Λ̃ for an ML
algorithm Iλ [3]. An ML learner or inducer I configured by hyperparameters

λ ∈ Λ maps a data set D ∈ D to a model f̂ , i.e., I : D× Λ → H, (D,λ) �→ f̂ . H
denotes the so-called hypothesis space, i.e., the function space to which a model
belongs [3]. The considered search space Λ̃ ⊂ Λ is typically a subspace of the
set of all possible hyperparameter configurations: Λ̃ = Λ̃1 × Λ̃2 × · · ·× Λ̃d, where
Λ̃i is a bounded subset of the domain of the i-th hyperparameter Λi. This Λ̃i

can be either real, integer, or category valued, and the search space can contain
dependent hyperparameters, leading to a possibly hierarchical search space. The
classical (single-objective) HPO problem is defined as:

λ∗ ∈ arg min
λ∈Λ̃

ĜE(λ), (1)

i.e., the goal is to minimize the estimated generalization error. This typically
involves a costly resampling procedure that can take a significant amount of
time, see [3] for further details. ĜE(λ) is a black-box function, as it generally
has no closed-form mathematical representation, and analytic gradient informa-
tion is generally not available. Therefore, the minimization of ĜE(λ) forms an

expensive black-box optimization problem. In general, ĜE(λ) is only a stochastic

estimate of the true unknown generalization error. Formally, ĜE(λ) depends on
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the concrete inducer, a resampling strategy (e.g., cross-validation) and a perfor-
mance metric, for more details see [3]. In the following, we use the logloss as
performance metric:

1

ntest

ntest∑

i=1

(
−

g∑

k=1

σk

(
y(i)

)
log

(
π̂k

(
x(i)

)))
. (2)

Here, g is the total number of classes, σk

(
y(i)

)
is 1 if y is class k, and 0 otherwise

(multi-class one-hot encoding), and π̂k

(
x(i)

)
is the estimated probability for

observation x(i) belonging to class k.

Exploratory Landscape Analysis. The optimization landscapes of black-box func-
tions, by design, carry no prior problem information, beyond the definition of
their search parameters, which can be used for their characterization. In the
continuous domain, ELA [23] addresses this problem by computing features on
a small sample of evaluated points, which can be used for better understanding
optimizer performance [24], algorithm selection [17] and even algorithm config-
uration [28].

The original ELA features consist, e.g., of meta model features (ela meta)
such as adjusted R2 values for quadratic and linear models and y-distribution
features (ela distr) such as the skewness and kurtosis of the objective values.
Over time, researchers continued to propose further feature sets, including near-
est better clustering (nbc) [16] and dispersion (disp) [22] features to measure
multi-modality, and information content (ic) features [25], which extract fea-
tures from random walks across the problem landscape. The R package flacco

[18] and Python package pflacco [27] implement a collection of the most widely
used ELA feature sets.

ELA studies often focus on the noiseless BBOB functions, as they offer
diverse, well-understood challenges (such as conditioning and multimodality)
and a wide range of algorithm performance data is readily available. BBOB
consists of 24 minimization problems, which are identified by their function ID
(FID) and scalable with respect to their dimensionality, which ranges from 2
to 40. Furthermore, different instances, identified by instance IDs (IIDs), are
defined for each function, creating slightly different optimization problems with
the same fundamental characteristics by means of randomized transformations
in the decision and objective space. All D-dimensional BBOB problems share a
decision space of [−5, 5]D, which is guaranteed to contain the (known) optimum.

3 Experimental Setup

We compare the following optimizers: CMAES (a simple CMA-ES with σ0 = 0.5
and no restarts), GENSA (a generalized simulated annealing approach as described
in [37]), Grid (a grid search performed by generating a uniform sized grid over
the search space and evaluating configurations of the grid in random order),
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Random (random search performed by sampling configurations uniformly at ran-
dom), and MBO (Bayesian optimization using a Gaussian process as surrogate
model and expected improvement as acquisition function [15], similarly config-
ured as in [20]). All optimizers were given a budget of 50D function evaluations
in total (where D is the dimensionality of the problem). All optimizer runs were
replicated 10 times. We choose these optimizers for the following reasons: (1)
they cover a wide range of optimizers that can be used for a black-box problem,
(2) Grid and especially Random are frequently used for HPO and Random often
can be considered a strong baseline [2].

As HPO problems, we tune XGBoost1 [8] on ten different OpenML [36]
data sets (classification tasks) chosen from the OpenML-CC18 benchmarking
suite [4]. The specific data sets were chosen to cover a variety of the num-
ber of classes, instances, and features (cf. Table 1). To reduce noise as much as
possible, performance (logloss) is estimated via 10-fold cross-validation with a
fixed instantiating per data set. On each data set, we create 2, 3 and 5 dimen-
sional XGBoost problems by tuning nrounds, eta (2D), lambda (3D), gamma
and alpha (5D), resulting in 30 problems in total. We selected these hyperpa-
rameters because (1) they can be incorporated in a purely continuous search
space which is generally required for the computation of ELA features, (2) they
have been shown to be influential on performance [29] and (3) have a straight-
forward interpretation, i.e., nrounds controls the number of boosting iterations
(typically increasing performance but also the tendency to overfit) while the
other hyperparameters counteract overfitting and control various aspects of reg-
ularization. The full search space is described in Table 2. Note that nrounds is
tuned on a logarithmic scale and therefore all parameters are treated as continu-
ous during optimization. Missing values of numeric features were imputed using
Histogram imputation (values are drawn uniformly at random between lower
and upper histogram breakpoints with cells being sampled according to the rel-
ative frequency of points contained in a cell). Missing values of factor variables
were imputed by adding a new factor level and factor variables were encoded
using one-hot-encoding. While XGBoost is a practically relevant learner we do
have to note that only considering a single learner is somewhat restrictive. We
discuss this limitation in Sect. 6. In the following, individual HPO problems are
abbreviated by <name> <d>, i.e., wilt 2 for the 2D wilt problem.

As BBOB problems we select FIDs 1–24 with IIDs 1–5 with a dimension-
ality of {2, 3, 5}, resulting in 360 problems in total. We abbreviate individual
BBOB problems by <fid> <iid> <dim>, i.e., 24 1 5 for FID 24 with IID 1 in
the 5D setting. Experiments have been conducted in R [33], where the individ-
ual implementation of an optimizer is referenced in the mlr3 ecosystem [19]. The
package smoof [7] provides the aforementioned BBOB problems. We release all
data and code for running the benchmarks and analyzing results via the follow-
ing GitHub repository: https://github.com/slds-lmu/hpo ela. HPO benchmarks
took around 2.2 CPU years on Intel Xeon E5-2670 instances, with optimizer
overhead ranging from 10% (MBO for 5D) to less than 1% (Random or Grid).

1 Using a gbtree booster.
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Table 1. OpenML data sets.

ID Name Number of

Cl. Inst. Feat.

40983 wilt 2 4839 5

469 analcatdata dmft 6 797 4

41156 ada 2 4147 48

6332 cylinder-bands 2 540 37

23381 dresses-sales 2 500 12

1590 adult 2 48842 14

1461 Bank-marketing 2 45211 16

40975 car 4 1728 6

41146 sylvine 2 5124 20

40685 shuttle 7 58000 9

IDs correspond to OpenML data set IDs, which

enable to query data set properties via

https://www.openml.org/d/<id>.

Table 2. XGBoost search space.

Hyper-param. Type Range Trafo

nrounds int. [3, 2000] log

eta cont. [exp(−7), exp(0)] log

lambda cont. [exp(−7), exp(7)] log

gamma cont. [exp(−10), exp(2)] log

alpha cont. [exp(−7), exp(7)] log

“log” in the Trafo column indicates that this parameter
is optimized on a (continuous) logarithmic scale, i.e.,
the range is given by [log(lower), log(upper)], and
values are re-transformed via the exponential function
prior to their evaluation. Parameters part of the full
XGBoost search space that are not shown are set to
their default.

4 Optimizer Performance

For each BBOB problem, we computed optimizer rankings based on the average
final performance (best target value of an optimizer run averaged over replica-
tions). Figures 1a to 1c visualize the differences in rankings on the BBOB prob-
lems split for the dimensionality. Friedman tests indicated overall significant
differences in rankings (2D: χ2(4) = 154.55, p < 0.001, 3D: χ2(4) = 219.16, p <
0.001, 5D: χ2(4) = 258.69, p < 0.001). We observe that MBO and CMAES perform
well throughout all three dimensionalities, whereas GENSA only is significantly
better than Grid or Random for dimensionalities 3 and 5. Moreover, Grid only
falls behind Random for the 5D problems.

Figures 1d to 1f analogously visualize differences in rankings on the HPO
problems split for the dimensionality. Friedman tests indicated overall signif-
icant differences in rankings (2D: χ2(4) = 36.32, p < 0.001, 3D: χ2(4) =
34.32, p < 0.001, 5D: χ2(4) = 34.80, p < 0.001). Again, MBO and CMAES per-
form well throughout all three dimensionalities. Notably, GENSA shows lacklus-
tre performance regardless of the dimensionality, failing to outperform Grid or
Random. Similarly as on the BBOB problems, Grid tends to fall behind Random

for the higher-dimensional problems. We do want to note that critical difference
plots for the HPO problems are somewhat underpowered when compared to
the BBOB problems due to the difference in the number of benchmark problem
which results in larger critical distances, as seen in the figures.

In Fig. 2, we visualize the anytime performance of optimizers by the mean
normalized regret averaged over replications split for the dimensionality of prob-
lems. The normalized regret is defined for an optimizer trace on a benchmark
problem as the distance of the current best solution to the overall best solution
found across all optimizers and replications, scaled by the overall range of empir-
ical solution values for this benchmark problem. We choose this metric due to
the theoretical optimal solutions being unknown for HPO problems, and apply
it to both BBOB and HPO problems to enable performance comparisons. We
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Fig. 1. Critical differences plots for mean ranks of optimizers on BBOB and HPO
problems split with respect to the dimensionality.
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Fig. 2. Anytime mean normalized regret of optimizers on BBOB and HPO problems
averaged over replications split for the dimensionality of problems. Ribbons represent
standard errors. The x-axis starts after 8% of the optimization budget has been used
(initial MBO design).

observe strong anytime performance of MBO and CMAES on both BBOB and HPO
problems regardless their dimensionality. GENSA shows good performance on the
5D BBOB problems but shows poor anytime performance on HPO problems in
general. Differences in anytime performance are less pronounced on the HPO
problems, although we do want to note that the width of the standard error
ribbons is strongly influenced by the number of benchmark problems.
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Fig. 3. Average ERT ratios (optimizers to Random) for HPO and BBOB problems.

As an additional performance evaluation, we calculated the Expected Run-
ning Time (ERT) [11]. In essence, for a given algorithm and problem, the ERT

is defined as ERT = 1
n

∑10
i=1 FEi, where n is the number of repetitions which

are able to reach a specific target, i refers to an individual repetition, and FEi

denotes the number of function evaluations used. We investigated the ERT of
optimizers with the target given as the median of the best Random solutions
(using 50D evaluations) over the ten replications per benchmark problem. We
choose this (for BBOB unusual) target due to (1) the theoretical optimum of
HPO problems being unknown and (2) Random being considered a strong baseline
in HPO [2]. To bring all ERTs on the same scale, we computed the ERT ratios
between optimizers and Random per benchmark problem which further allows us
to aggregate these ratios over benchmark problems2. We visualize these aggre-
gated ERT ratios separately for the dimensionality of benchmark problems in
Fig. 3. We observe that average ERT ratios of MBO and CMAES are comparably
similar for BBOB and HPO problems although the tendency that these optimiz-
ers become even more efficient with increasing dimensionality is less pronounced
on the HPO problems. Grid generally falls behind and GENSA shows lacklustre
performance on HPO.

5 ELA Feature Space Analysis

For each HPO and BBOB problem, we use 50D points sampled by LHS (Min-
Max) as an initial design for computing ELA features. We normalize the search
space to the unit cube and standardize objective function values per benchmark
problem ((y − μ̂)/σ̂) prior to calculating ELA features. This is done to counter
potential artefacts that could be seen in ELA features solely due to different
value ranges in decision and, in particular, in objective space. We calculate the
feature sets ela meta, ic, ela distr, nbc and disp, which were introduced in
Sect. 2, using the flacco R package [18].

To answer the question whether ELA can be used to distinguish HPO from
BBOB problems, we construct a binary classification task using ELA features
to predict the label “HPO” vs. “BBOB”. We use a decision tree and estimate

2 Following [17], optimizers that did not meet the target in any run were assigned an
ERT of the worst ERT on a benchmark problem multiplied by a factor of 10.
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Fig. 4. Decision trees for classifying benchmark problems into HPO or BBOB problems
(left) and classifying the dimensionality of BBOB problems (right).

the generalization error via 10 times repeated 10-fold cross-validation (stratified
for the target). We obtain an estimated classification error of 3.54%. Figure 4a
illustrates the decision tree obtained after training on all data. We observe
that only few ELA features are needed to correctly classify problems: HPO
problems tend to exhibit a lower ela distr.kurtosis combined with more
ela distr.number of peaks or show a higher nbc.nb fitness.cor than BBOB
problems if the first split with respect to the kurtosis has not been affirmed.
This finding is supported by visualizations of the 2D HPO problems, which we
present in our online appendix, i.e., most 2D HPO problems have large plateaus
resulting in negative kurtosis.

To answer the question whether dimensionality is a different concept for HPO
compared to BBOB problems3 we perform the following analysis: We construct
a classification task using ELA features to predict the dimensionality of the
problem but only use the BBOB subset for the training of a decision tree. We
estimate the generalization error via 10 times repeated 10-fold cross-validation
(stratified for the target) and obtain an estimated classification error of 7.39%.
We then train the decision tree on all BBOB problems (illustrated in Fig. 4b)
and determine the holdout performance on the HPO problems and obtain a
classification error of 10%. Only few ELA features of the disp and nbc group are
needed to predict the dimensionality of problems with high accuracy. Intuitively,
this is sensible, due to nbc features involving the calculation of distance metrics
(which themselves should be affected by the dimensionality) and both nbc and
disp features being sensible to the multimodality of problems [16,22] which
should also be affected by the dimensionality. Based on the reasonable good
hold-out performance of the classifier on the HPO problems, we conclude that
“dimensionality” is a similar concept for BBOB and HPO problems.

3 For HPO problems, it is a priori often unclear whether a change in a parameter value
also results in relevant objective function changes, i.e., the intrinsic dimensionality
of a HPO problem may be lower than the number of hyperparameter suggests.
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Fig. 5. Factor loadings of ELA features on the first two principle components. Blue
indicates a positive loading, whereas red indicates a negative loading.

To gain insight on a meta-level, we performed a PCA on the scaled and
centered ELA features of both the HPO and BBOB problems. To ease further
interpretation, we select a two component solution that explains roughly 60% of
the variance. Figure 5 summarizes factor loadings of ELA features on the first
two principle components. Most disp features show a medium positive loading
on PC1, whereas some nbc show medium negative loadings. ela meta features,
including R2 measures of linear and quadratic models, also exhibit medium neg-
ative loadings on PC1. We therefore summarize PC1 as a latent dimension that
mostly reflects multimodality of problems. Regarding PC2, three features stand
out with strong loadings: nbc.dist ratio.coeff var, nbc.nn nb.mean ratio

and ic.eps.s. Moreover, disp.ratio * features generally have a medium neg-
ative loading. We observe that all features used by the decision tree in Fig. 4b
also have comparably large loadings on PC2. Therefore, we summarize PC2 as
an indicator of the dimensionality of problems.

We then performed k-means clustering on the two scaled and centered prin-
cipal component scores. A silhouette analysis suggested the selection of three
clusters. In Fig. 6, we visualize the assignment of HPO and BBOB problems
to these three clusters. Labels represent IDs of BBOB and HPO problems. We
observe that the dimensionality of problems is almost perfectly reflected in the
PC2 alignment. Cluster 2 and 3 can be mostly distinguished along PC2 (cluster
3 contains low dimensional problems and cluster 2 contains higher dimensional
problems) whereas cluster 1 contains problems with large PC1 values. HPO
problems are exclusively assigned to cluster 2 or 3, exhibiting low variance with
respect to their PC1 score, with the PC1 values indicating low multimodality.

As a final analysis we determined the nearest BBOB neighbors of the HPO
problems (in ELA feature space based on the cluster analysis, i.e., minimizing
the Euclidean distance over the first two principal component scores). For a
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Fig. 6. Cluster analysis of BBOB and HPO problems on the first two principle com-
ponent scores in ELA feature space.

complete list, see our online appendix. We again computed optimizer rankings
based on the average final performance of the optimizers (over the replications),
but this time for all HPO problems (regardless their dimensionality) and the
subset of BBOB problems that are closest to the HPO problems in ELA fea-
ture space (see Fig. 7). Friedman tests indicated overall significant differences
in rankings for both HPO (χ2(4) = 104.99, p < 0.001) and nearest BBOB
(χ2(4) = 61.01, p < 0.001) problems. We observe similar optimizer rankings,
with MBO and CMAES outperforming Random or Grid, indicating that closeness
in ELA feature space somewhat translates to optimizer performance. Neverthe-
less, we do have to note that GENSA exhibits poor performance on the HPO
problems compared to the nearest BBOB problems. We hypothesize that this
may be caused by the performance of GENSA being strongly influenced by its
hyperparameter configuration itself and provide an initial investigation in our
online appendix.
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Fig. 7. Critical differences plots for mean ranks of optimizers on all HPO problems
(left) and the subset of nearest BBOB problems.
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6 Conclusion

In this paper, we characterized the landscapes of continuous hyperparameter
optimization problems using ELA. We have shown that ELA features can be
used to (1) accurately distinguish HPO from BBOB problems and (2) classify
the dimensionality of problems. By performing a cluster analysis in ELA feature
space, we have shown that our HPO problems mostly position themselves with
BBOB problems of little multimodality, mirroring the results of [30,32]. Deter-
mining the nearest BBOB neighbor of HPO problems in ELA feature space
allowed us to investigate performance differences of optimizers with respect to
HPO problems and their nearest BBOB problems and we observed comparably
similar performance. We believe that this work is an important first step in iden-
tifying BBOB problems that can be used in lieu of real HPO problems when,
for example, configuring or developing novel HPO methods.

Our work still has several limitations. A major one is that traditional ELA is
only applicable to continuous HPO problems, which constitute a minority of real-
world problems. In many practical applications, search spaces include categorical
and conditionally active hyperparameters – so-called hierarchical, mixed search
spaces [34]. In such scenarios, measures such as the number of local optima,
fitness-distance correlation or auto-correlation of fitness along a path of a random
walk [10,13] can be used to gain insight into the fitness landscape. Another
limitation is that our studied HPO problems all stem from tuning XGBoost,
with little variety of comparably low dimensional search spaces, which limits the
generalizability of our results.

In future work, we would like to extend our experiments to cover a broader
range of HPO settings, in particular different learners and search spaces, but also
data sets. We also want to reiterate that HPO is generally noisy and expensive. In
our benchmark experiments, costly 10-fold cross-validation with a fixed instanti-
ating per data set was employed to reduce noise to a minimal level. Future work
should explore the effect of the variance of the estimated generalization error
on the calculation and usage of ELA features which poses a serious challenge
for ELA applied to HPO in practice. Besides, we used logloss as a performance
metric which by definition is rather “smooth” compared to other metrics such
as the classification accuracy (but the concrete choice of performance metric
typically depends on the concrete application at hand). Moreover, ELA requires
the evaluation of an initial design, which is very costly in the context of HPO.
In general, HPO often can be performed with evaluations on multiple fidelity
levels, i.e., by reducing the size of training data, and plenty of HPO methods
make use of this resulting in significant speed-up [21]. Future work could explore
the possibility of using low fidelity evaluations for the initial design required by
ELA and how multiple fidelity levels of HPO affect ELA features.
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We consider our work as pioneer work and hope to ignite the research inter-
est in studying the landscape properties of HPO problems going beyond fitness
measures. We envision that, by improved understanding of HPO landscapes and
identifying relevant landscape properties, better optimizers may be designed,
and eventually instance-specific algorithm selection and configuration for HPO
may be enabled.
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4. Multi-Objective and Quality Diversity
Hyperparameter Optimization

In this chapter, we present contributions to HPO in the presence of more than one objective,
namely multi-objective and quality diversity HPO. Vanilla HPO focuses on optimizing a single
objective, usually the estimated generalization error. In real-world applications, however, other
objectives such as interpretability, fairness, robustness, and computational efficiency are equally
relevant. Multi-objective HPO equips us with the ability to optimize multiple, usually conflicting
objectives simultaneously.

One application area of multi-objective HPO is given by model performance versus model complex-
ity or interpretability, especially in the context of tabular data. This trade-off between simpler,
directly interpretable models such as linear models, additive models, or shallow decision trees
and often better performing yet black-box models such as gradient boosted ensembles or deep
neural networks has direct consequences regarding the choice of models of practitioners (Velikova
and Daniels, 2004; Stiglic et al., 2020; Wang and Lin, 2021). However, quantifying the “inter-
pretability” of ML models is not an easy task (Vellido et al., 2012; Bibal and Frénay, 2016).
Nevertheless, to optimize a construct, one must first operationalize it and pioneer work tying
interpretability to model complexity to then quantify it, is given by Molnar et al. (2020). Here,
the prediction function of a model is decomposed into an intercept, main effects, and a remainder
term containing interactions, similar in concept to a functional ANOVA (Hooker, 2007). Based
on this decomposition, Molnar et al. (2020) propose the number of features used by a model,
the interaction strength of features, and main effect complexity as measures of model complexity
and in a broader sense interpretability. Based on such a quantification of interpretability, one
can proceed to simultaneously optimize for predictive performance and ease of interpretability via
multi-objective optimization. Still, this is rarely done and to the best of our knowledge only briefly
explored in Molnar et al. (2020) going beyond investigations that categorize learning algorithms
into interpretable or non-interpretable and investigate their performance (Freitas, 2019).

Another highly relevant group of objectives in HPO is given by measures tied to computational
efficiency and resource usage. Especially in the field of NAS, latency or memory usage arise as
objectives, e.g., when deploying models on edge devices. This has also coined the term hardware-
aware NAS (Benmeziane et al., 2021). Often, NAS is formulated as a constrained optimization
problem in this setting (Cai et al., 2019; Tan et al., 2019). Other works have formulated NAS as
a multi-objective optimization problem with the goal of identifying the different trade-offs tied to
the conflict of good performance and low resource usage (Elsken et al., 2019b; Lu et al., 2020).
However, neither constrained NAS nor multi-objective NAS is specifically designed to simulta-
neously identify architectures that perform well while satisfying different hardware constraints.
Constrained NAS yields only a single solution that meets a single constraint, whereas multi-
objective NAS aims to approximate the entire Pareto front. Here, multi-objective optimization
can lead to unnecessary evaluations for regions of the Pareto front that are practically irrelevant.
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In the first contributing article Multi-objective optimization of performance and interpretability
of tabular supervised machine learning models we present a model-agnostic framework for jointly
optimizing predictive performance and interpretability of tabular supervised ML models via HPO.
To operationalize interpretability, we follow the general ideas of Molnar et al. (2020), however, we
propose the number of features used by a model, interaction sparsity measured by the number of
interactions in a model, and the number of non-monotone features used by a model as measures
for model interpretability. Interaction sparsity and sparsity of non-monotone features are intu-
itive measures and immediately reflect if features behave in simple, understandable ways. The
paper is not only an illustration of how multi-objective HPO can be used to identify trade-offs in
performance and interpretability but also has technical contributions. To allow for efficient opti-
mization, we augment the search space of hyperparameters with feature selection, interaction, and
monotonicity constraints. We then show that a reformulation as a grouping problem of features
allows for optimization via an EA that operates on both the search space of hyperparameters as
well as a group structure of features and their interaction and monotonicity constraints. This
allows for finding models that achieve similar or better performance than state-of-the-art models
solely optimized for performance while improving interpretability.

In the second contributing article Tackling neural architecture search with quality diversity opti-
mization we approach the problem of obtaining multiple well-performing architectures for different
hardware constraints in a single optimization run. We show that this problem can be formulated
as a quality diversity optimization problem and introduce three novel quality diversity NAS algo-
rithms building upon existing BO and bandit ideas in the field of HPO and combine them with
algorithmic ideas of the field of quality diversity optimization. Our proposed methods outper-
form multi-objective NAS in terms of solution quality and computational efficiency on a variety
of benchmarks and we further demonstrate their usefulness for the practical scenario of model
compression. This work not only demonstrates that quality diversity can be used to identify mul-
tiple well-performing yet diverse architectures in a single optimization run but also bridges a gap
between two research communities.
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ABSTRACT
We present a model-agnostic framework for jointly optimizing
the predictive performance and interpretability of supervised ma-
chine learning models for tabular data. Interpretability is quantified
via three measures: feature sparsity, interaction sparsity of fea-
tures, and sparsity of non-monotone feature effects. By treating
hyperparameter optimization of a machine learning algorithm as
a multi-objective optimization problem, our framework allows for
generating diverse models that trade off high performance and
ease of interpretability in a single optimization run. Efficient opti-
mization is achieved via augmentation of the search space of the
learning algorithm by incorporating feature selection, interaction
and monotonicity constraints into the hyperparameter search space.
We demonstrate that the optimization problem effectively trans-
lates to finding the Pareto optimal set of groups of selected features
that are allowed to interact in a model, along with finding their
optimal monotonicity constraints and optimal hyperparameters of
the learning algorithm itself. We then introduce a novel evolution-
ary algorithm that can operate efficiently on this augmented search
space. In benchmark experiments, we show that our framework is
capable of finding diverse models that are highly competitive or out-
perform state-of-the-art XGBoost or Explainable Boosting Machine
models, both with respect to performance and interpretability.
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1 INTRODUCTION
Tabular data are highly relevant for numerous application areas
such as finance, bio-informatics, andmedical diagnosis. State-of-the-
art learning algorithms for tabular data include tree-based methods,
e.g., gradient boosted trees (with larger depth) [20] such as XGBoost
[8] and LightGBM [33], or random forests [6], which often still out-
perform deep neural networks [25], although the performance gap
has recently shrunk considerably [23, 25, 31, 50]. To achieve peak
predictive performance, AutoML tools such as AutoGluon-Tabular
[15] or AutoSklearn [19] often make further use of ensembling
and stacking multiple models. Moreover, careful hyperparameter
optimization of learning algorithms is typically required to yield
well performing models [47, 52].

While good predictive performance is generally of central im-
portance, many applications desire or even require models to fulfill
additional criteria, such as interpretability or sparseness. For exam-
ple a model used for medical diagnosis that achieves high accuracy
but lacks interpretability, such as black box models like gradient
boosted trees or deep neural networks, may encounter difficul-
ties in gaining trust and adoption. In contrast, a model that can
provide insights into its reasoning, even if it has slightly lower
performance, is more likely to be trusted and used in real-world
scenarios. In the field of Interpretable Machine Learning [41], two
different approaches for achieving interpretability of models have
broadly emerged: (i) to only consider learning algorithms that in-
duce “interpretable” models due to their simple intrinsic nature
(e.g., logistic regression, decision trees, rule-based systems or gener-
alized additive models) or (ii) to use post-hoc methods – which can
either be model-agnostic, such as partial dependence plots (PDP)
[20] or accumulated local effects (ALE) [1], or model-specific – to
gain insight into the inner workings of a model.

When working with tabular data in real-world situations, finding
the “right” model can be cumbersome and involves time-consuming
manual trial and error. Often, various learning algorithms are tried
to produce different models, which are then inspected to select
a final model based on concrete user preferences at hand. While
this process may be feasible if the goal is to “simply” find a good-
performing model, it becomes inefficient if additional criteria such
as feature sparseness, few interactions of features, or monotonicity
of feature effects are also to be considered. In particular, monotonic-
ity can be highly relevant in practice, as frequently only a model
consistent with domain knowledge is acceptable to domain experts.
For example, in credit loan approval, models are often required to
be monotone with respect to the decision variables involved [53].
Our framework allows automatic generation of a set of models that
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balance performance and interpretability. Formally, this requires
two things: (i) a way to measure the interpretability of models on a
global scale, and (ii) an efficient approach for solving the arising
multi-objective optimization problem.

Our Contributions. We introduce a general, model-agnostic
framework for jointly optimizing the predictive performance and
interpretability of supervised machine learning models for tabular
data. To achieve this, we propose a quantification of the inter-
pretability of models on a global scale based on three measures:
feature sparsity, interaction sparsity of features, and sparsity of
non-monotone feature effects. We then formulate a multi-objective
optimization problem of performance and interpretability over the
hyperparameter search space of a learning algorithm, which is aug-
mented by incorporating feature selection as well as interaction and
monotonicity constraints into the hyperparameter search space.
As a solution to the optimization problem, we present a novel hy-
perparameter optimization algorithm that can operate efficiently
on this augmented search space, making use of the principles of
evolutionary computation by treating feature selection as well as
the specification of interaction and monotonicity constraints of
features as a grouping problem.

2 RELATEDWORK
When choosing a learning algorithm that induces interpretable
models – e.g., logistic regression models, Elastic-Nets [58], or gener-
alized additive models (GAMs) [28] – one typically loses predictive
performance compared to black box models obtained via, e.g., tree
based ensembles [10]. However, the downside of these black box
models is that their interpretability is hindered by potentially plenty
of interaction effects of features and non-linear or non-monotone
feature effects. The Explainable Boosting Machine (EBM) [39, 40]
positions itself between comparably poor-performing but intelligi-
ble models and well-performing but unintelligible models. EBM is
a tree-based, cyclic gradient boosting GAM using automatic inter-
action detection based on FAST [40] to include a given number of
second-order interactions in the model. EBM often yields good pre-
dictive performance [45] while being more intelligible than black
box models. Nevertheless, EBM has some drawbacks: (i) EBM is
comparably slow to train, as it relies on a large number of boosting
steps with a small learning rate to cycle through all features1, (ii)
EBM naturally cannot induce a sparse model, as all features are
included in a round robin fashion, and the contribution of each
feature to a final prediction is therefore non-zero, (iii) as a result of
the large number of boosting steps, EBM often fits highly non-linear
and non-monotone shape functions (resulting in rather complex
relationships of features and target), and, relatedly, (iv) EBM can-
not handle monotonicity constraints during training – i.e., if it is
known (or even required) that a feature should have a monotone
increasing effect on the target variable, EBM can neither make use
of this information nor guarantee such an effect.

A popular approach for constructing sparser models is given
by feature selection, which is also related to the complexity and
intelligibility of a model [2, 5, 26]. While feature selection can also
be performed in the context of unsupervised learning [27], we fo-
cus on the supervised learning context. Here, the goal of feature

1Which we also observed in our benchmark experiments.

selection is to select only a subset of relevant features while still
constructing a model with good predictive performance. There are
two model-agnostic approaches to feature selection [26]: feature
filters and feature wrappers. Feature filters use proxy measures that
are cheap to compute to rank features by their potential explanatory
power independent of the concrete learning algorithm being used.
Popular examples include measures based on information theory,
correlation, distance, or consistency [11]. In contrast to feature
filters, feature wrappers directly optimize predictive performance
over the space of feature subsets [35]. As every feature subset evalu-
ation requires one or multiple model fits, making exhaustive search
infeasible, a discrete black box optimization search strategy (such as
a greedy search or an evolutionary algorithm [55]) is necessary. On
the one hand, feature selection is often considered a single-objective
optimization problem, and the feature selection step is only used
to optimize performance [35]. On the other hand, feature selection
can also be framed as a multi-objective optimization problem, maxi-
mizing predictive performance and feature sparsity simultaneously
[2, 54]. Finally, recent work also explored the idea of identifying
sets of features without predefined grouping [29].

Looking at measures for interpretability of models on a global
scale, Molnar and colleagues [42] were among the first to explicitly
propose model-agnostic measures of model complexity. They quan-
tify model complexity by decomposing the prediction function of
any model into a sum of components with increasing dimension-
ality, based on which they derive three measures: the number of
features used by a model, the interaction strength of features, and
the main effect complexity of features.

3 THEORETICAL BACKGROUND
Consider the supervised learning problem of inferring a model
from labeled data D with 𝑛 observations where each observation
(x(𝑖 ) , 𝑦 (𝑖 ) ) consists of a 𝑝-dimensional feature vector x(𝑖 ) . We as-
sume that D has been sampled i.i.d. from an underlying, unknown
distribution, D ∼ (P𝑥𝑦)𝑛 . A learning algorithm or inducer I con-
figured by hyperparameters 𝝀 ∈ 𝚲 maps a data set D to a model 𝑓 ,
i.e.,I : D×𝚲→H , (D,𝝀) ↦→ 𝑓D,𝝀 , whereD :=

⋃
𝑛∈N (X×Y)𝑛 is

the set of all data sets, 𝚲 is the search space of hyperparameters, and
H is the hypothesis space of models. In general, one is interested in
constructing a model 𝑓D,𝝀 = I(D,𝝀) that minimizes the general-
ization error2, GE(𝑓D,𝝀) = E(x,𝑦)∼P𝑥𝑦

[
𝐿(𝑓D,𝝀 (x), 𝑦)]

]
, where 𝐿

is a loss functionmeasuring discrepancy between the prediction and
true label. However, the generalization error can only be estimated
using in-sample data, ĜE(I𝝀,D), through a resampling technique
such as cross-validation. For more details, see, e.g., [3, 18].

3.1 Multi-Objective Hyperparameter
Optimization

Let 𝑐1 : 𝚲 → R, . . . , 𝑐𝑚 : 𝚲 → R,𝑚 ∈ N denote 𝑚 evalu-
ation criteria of machine learning models. Note that evaluation
criteria usually also depend on the data set and resampling tech-
nique at hand (which we omit here for clarity). Define 𝑐 : 𝚲 →

2With a slight abuse of notation, we will write I𝝀 to denote that a certain hyperpa-
rameter configuration 𝝀 is fixed, i.e., I𝝀 (D) = I(D,𝝀) with 𝝀 fixed.
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R𝑚 to assign an 𝑚-dimensional cost vector to a hyperparame-
ter configuration 𝝀 ∈ 𝚲. The general multi-objective hyperpa-
rameter optimization problem is then defined as min𝝀∈𝚲 𝑐 (𝝀) =
min𝝀∈𝚲 (𝑐1 (𝝀), 𝑐2 (𝝀), . . . , 𝑐𝑚 (𝝀)). Generally, there is no single hy-
perparameter configuration that minimizes all criteria, as these
criteria typically compete with one another. Therefore, focus is
given to the concept of Pareto optimality and the set of Pareto
optimal configurations: A hyperparameter configuration 𝝀 ∈ 𝚲
(Pareto-)dominates another configuration 𝝀′ ∈ 𝚲, written as 𝝀 ≺ 𝝀′,
if and only if

∀𝑖 ∈ {1, . . .𝑚} : 𝑐𝑖 (𝝀) ≤ 𝑐𝑖
(
𝝀′
) ∧

∃ 𝑗 ∈ {1, . . .𝑚} : 𝑐 𝑗 (𝝀) < 𝑐 𝑗
(
𝝀′
)
.

The set of Pareto optimal solutions is therefore defined as P :={
𝝀 ∈ 𝚲 | � 𝝀′ ∈ 𝚲 s.t. 𝝀′ ≺ 𝝀

}
. The image of P under 𝑐 , 𝑐 (P), is

called the Pareto front. The goal of multi-objective optimization
is to find a set of configurations P̂ so that 𝑐 (P̂) approximates the
true Pareto front well.

A popular quality indicator of multi-objective optimization is
given by the dominated Hypervolume [57]. The Hypervolume of an
approximation of the Pareto front 𝑐 (P̂) is defined as the combined
volume of the dominated hypercubes of all solution points with
respect to a reference point 𝒓 ∈ R𝑚 . For more details on multi-
objective hyperparameter optimization in general as well as an
overview of recent applications, we refer to [32, 43].

3.2 Quantifying Interpretability
We propose a quantification of interpretability that is conceptually
similar to [42], but our measures and their operationalization differ.
As measures for the interpretability of a model on a global scale,
we propose to use feature sparsity, interaction sparsity of features,
and sparsity of non-monotone features. All our measures are based
on the prediction function 𝑓 : X→ R𝑔 of a model3.

To define whether feature 𝑗 is used by the model, we can deter-
mine whether the prediction function changes if the value of 𝑥 𝑗
changes, i.e., 𝑓 (𝑥1, . . . , 𝑥 ′𝑗 , . . . 𝑥𝑝 ) ≠ 𝑓 (𝑥1, . . . , 𝑥 𝑗 , . . . 𝑥𝑝 ) whenever
𝑥 ′𝑗 ≠ 𝑥 𝑗 . The (relative) number of features used by a model, 𝑁𝐹 ,
can then be defined as
𝑁𝐹 (𝑓 ) B |{ 𝑗 ∈ {1, . . . , 𝑝} : ∃𝑥 𝑗 , 𝑥 ′𝑗 ∈ X𝑗 , 𝑥 ′𝑗 ≠ 𝑥 𝑗 s.t.

𝑓 (𝑥1, . . . , 𝑥 ′𝑗 , . . . 𝑥𝑝 ) ≠ 𝑓 (𝑥1, . . . , 𝑥 𝑗 , . . . 𝑥𝑝 )}|/𝑝.
(1)

Similarly, wewant to definewhether two features 𝑗 and𝑘 interact.
A prediction function 𝑓 of a model exhibits an interaction between
two features 𝑗 and 𝑘 if the difference in the value of 𝑓 (x) as a result
of changing the value of 𝑥 𝑗 depends on the concrete value of 𝑥𝑘 [21].
Consequently, given no interaction of features 𝑗 and 𝑘 , 𝑓 can be
decomposed into 𝑓 (x) = 𝑓− 𝑗 (x− 𝑗 ) + 𝑓−𝑘 (x−𝑘 ) where x− 𝑗 and x−𝑘
are feature vectors excluding 𝑥 𝑗 and respectively 𝑥𝑘 . The (relative)
number of interactions in a model, 𝑁𝐼 , can then be defined as

𝑁𝐼 (𝑓 ) B |{{ 𝑗, 𝑘}, 𝑗, 𝑘 ∈ {1, . . . , 𝑝}, 𝑘 > 𝑗 : �𝑓− 𝑗 , 𝑓−𝑘 s.t.

𝑓 (x) = 𝑓− 𝑗 (x− 𝑗 ) + 𝑓−𝑘 (x−𝑘 )}|/((𝑝 (𝑝 − 1))/2) .
(2)

3For regression, 𝑔 is 1, while in classification the output usually represents the 𝑔
decision scores or posterior probabilities of the 𝑔 candidate classes. Without loss of
generalization, we will assume 𝑔 = 1 in the following.

If the hypothesis space of an inducer is restricted to only contain
models including main effects and second-order interaction effects
of features, 𝑁𝐼 is a direct measure of the violation of interaction
sparsity of a model. However, if the hypothesis space contains
models that include higher order interaction effects,𝑁𝐼 falls short in
penalizing such higher order interactions. To penalize the inclusion
of many pairwise interactions and higher order interactions, we
assume transitivity with respect to the interaction of features, i.e.,
if feature 𝑗 and 𝑘 and 𝑘 and 𝑙 interact, we also count an interaction
of feature 𝑗 and 𝑙 .

Finally, we define feature 𝑗 to have a monotone increasing effect
if it holds that whenever𝑥 𝑗 ≤ 𝑥 ′𝑗 , one has that 𝑓 (𝑥1, . . . , 𝑥 𝑗 , . . . 𝑥𝑝 ) ≤
𝑓 (𝑥1, . . . , 𝑥 ′𝑗 , . . . 𝑥𝑝 ). Analogously, we define feature 𝑗 to have a
monotone decreasing effect. The (relative) number of non-monotone
features in a model, 𝑁𝑁𝑀 , is then given by

𝑁𝑁𝑀 (𝑓 ) B |{ 𝑗 ∈ {1, . . . , 𝑝} : (∃𝑥 𝑗 , 𝑥 ′𝑗 ∈ X𝑗 , 𝑥 𝑗 ≤ 𝑥 ′𝑗 s.t.
𝑓 (𝑥1, . . . , 𝑥 𝑗 , . . . 𝑥𝑝 ) > 𝑓 (𝑥1, . . . , 𝑥 ′𝑗 , . . . 𝑥𝑝 )) ∧
(∃𝑥 𝑗 , 𝑥 ′𝑗 ∈ X𝑗 , 𝑥 𝑗 ≤ 𝑥 ′𝑗 s.t.
𝑓 (𝑥1, . . . , 𝑥 𝑗 , . . . 𝑥𝑝 ) < 𝑓 (𝑥1, . . . , 𝑥 ′𝑗 , . . . 𝑥𝑝 ))}|/𝑝.

(3)
Based on these formal definitions, 𝑁𝐹 , 𝑁𝐼 , and 𝑁𝑁𝑀 can be

operationalized in different ways. For example, 𝑁𝐹 can be estimated
via a sampling procedure, as described in [42]. Similarly, 𝑁𝐼 could
in principle be estimated based on the partial dependence function
[21] or by calculating H-statistics [21] or Greenwell’s interaction
index [24] for all pairs of features. Depending on the concrete learn-
ing algorithm at hand, 𝑁𝐹 and 𝑁𝐼 can often also be determined in
a straightforward manner by, e.g., looking at features used in splits
in a decision tree. In the following, we will exactly determine 𝑁𝐹
and 𝑁𝐼 by directly inspecting the resulting model whenever possi-
ble. Finally, looking at monotonicity, estimating 𝑁𝑁𝑀 is arguably
difficult. In principle, one could try to test whether a feature has
a monotone effect via verification-based testing [49] or adaptive
random testing [9]. However, such procedures are always at risk
of error, and as monotonicity is typically a hard4 requirement of
a model [46, 53], we opt to determine 𝑁𝑁𝑀 based on the config-
uration of the inducer. This requires the inducer to allow for the
specification of monotonicity constraints of features, which is easily
achievable for, e.g., tree-based methods or GAMs.

We want to note that a model that has low values with respect
to 𝑁𝐹 , 𝑁𝐼 and 𝑁𝑁𝑀 still can be complex and must not necessarily
result in being intrinsically interpretable. Nevertheless, we believe
that such a model is much more easier to interpret, e.g., based on a
post-hoc ALE analysis, compared to a model with high values in
𝑁𝐹 , 𝑁𝐼 , or 𝑁𝑁𝑀 . For instance, if a model uses only few features
that have monotone increasing effects and do not interact with each
other, the prediction function of the model can be easily summa-
rized. For example, increasing the value of any individual feature
would result in an increase in the predicted outcome, regardless
of the values of other features. Such a simple and consistent rela-
tionship between features and the predicted outcome makes the
model more interpretable. This direct connection between model
4In practice, a feature is typically expected to exhibit a monotone effect, or not, without
any in-between or probabilistic formulation.
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complexity and ease of interpretability is also the reason why we
deem it appropriate to speak of multi-objective optimization of
performance and interpretability.

3.3 Multi-Objective Optimization of
Performance and Interpretability

We formulate the hyperparameter optimization problem of a learn-
ing algorithm as a multi-objective optimization problem with the
goal of minimizing the estimated generalization error, 𝑁𝐹 , 𝑁𝐼 and
𝑁𝑁𝑀 . To allow for efficient optimization, we extend the search
space of the learning algorithm and include hyperparameters for
the selection of features, interaction constraints, and monotonicity
constraints of features to be part of the search space. Therefore, we
require the learning algorithm to allow for the specification of fea-
ture selection as well as interaction and monotonicity constraints
of features.

In the following, we denote by �̌� the extended search space.
A hyperparameter configuration �̌� ∈ �̌� is given by the tuple
(𝝀, 𝒔, 𝑰𝒔 ,𝒎𝑰𝒔 ). Here, 𝝀 ∈ 𝚲 is the usual hyperparameter config-
uration of a learning algorithm, 𝒔 is a binary vector of length 𝑝 ,
indicating selection of features, 𝑰𝒔 is a symmetric matrix of dimen-
sion 𝑝 × 𝑝 with (𝑰𝒔 ) 𝑗𝑘 = 1 indicating that features 𝑗 and 𝑘 are
allowed to interact in a model and 0 indicating otherwise, and 𝒎𝑰𝒔
is an integer vector of length 𝑝 indicating monotonicity constraints
of features (−1 for monotone decreasing, 1 for monotone increasing,
and 0 for unconstrained5).

In principle, we could proceed to try solving the multi-objective
optimization problem as given in Equation 4:

min
�̌�∈�̌�

(
ĜE

(
I�̌�,D

)
, 𝑁 𝐹

(
𝑓D,�̌�

)
, 𝑁 𝐼

(
𝑓D,�̌�

)
, 𝑁𝑁𝑀

(
𝑓D,�̌�

))
(4)

Although this formulation of the optimization problem is quite nat-
ural, it has several drawbacks: First, note that the extended search
space has become complex, including a binary vector, a quadratic
matrix, and an integer vector that scale linearly or quadratic in
the number of features 𝑝 . Second, note that 𝑰𝒔 depends on 𝒔, as
only features that have been selected can be allowed to interact.
Similarly, 𝒎𝑰𝒔 depends on both 𝑰 and 𝒔. For example, if feature 𝑗 is
required to have a monotone increasing effect but is also allowed to
interact with another feature 𝑘 , then the monotonicity of feature 𝑗
may not be guaranteed if feature 𝑘 does not also have a monotone
increasing effect. This is because the interaction between feature
𝑗 and 𝑘 can potentially alter the overall effect of feature 𝑗 , and
without the monotonicity constraint on feature 𝑘 , the monotonicity
of feature 𝑗 may be compromised. Therefore, in the general model-
agnostic case, it is most straightforward to require both features
𝑗 and 𝑘 to have monotone increasing effects to ensure that the
monotonicity of feature 𝑗 is maintained in the presence of their
potential interaction effect.

We will now derive a reformulation of the search space of the
optimization problem stated in Equation 4 that is much easier to
handle. To do so, recall the definition of an endorelation and the
properties reflexive, symmetric, and transitive. Note that a reflexive,
symmetric, and transitive endorelation – also called an equivalence

5Wewill later argue that it suffices to only consider {0, 1} as monotonicity constraints.

relation – imposes a group structure on a set, i.e., it partitions the
set by means of its equivalence classes.

To arrive at an easier formulation of the search space of the
optimization problem in Equation 4, we define interactions of fea-
tures as an endorelation. Let 𝐶 = {1, . . . , 𝑝} denote the index set
of features and 𝐶𝑠 ⊆ 𝐶 the index set of features selected for inclu-
sion in a model and define an endorelation 𝑅 on 𝐶𝑠 , 𝑅 ⊆ 𝐶𝑠 ×𝐶𝑠 .
We say feature 𝑗 and feature 𝑘 are allowed to interact if the model
in principle allows for the inclusion of an (interaction) effect of
the two, and write 𝑗𝑅𝑘 . It follows that 𝑅 is naturally reflexive and
symmetric – i.e., if feature 𝑗 is allowed to interact with feature 𝑘 ,
then the reverse also holds, as the interaction of features is non-
directional. However, note that the interaction of features must
in fact not be transitive – i.e., even if feature 𝑗 and 𝑘 and 𝑘 and
𝑙 interact in a model, it must not follow that feature 𝑗 and 𝑙 also
interact. Nevertheless, from a modeling perspective, it is reasonable
to allow for features 𝑗 and 𝑙 to also interact, partially also due to the
potential presence of a three-way interaction, which (in the most
general scenario) can only be included in a model if 𝑅 is closed
under transitivity (and the same argument can be made for higher-
order interactions)6. It is therefore natural to always consider the
transitive closure of 𝑅, resulting in an equivalence relation. This
implies that the equivalence classes induced by 𝑅 partition the index
set of selected features and naturally call for working with a group
structure. Regarding monotonicity constraints of features, we want
to note that monotonicity constraints must simply be defined as
attributes of the equivalence classes (for the same reason illustrated
earlier: if features are allowed to interact, they should share the
same monotonicity constraint).

We can now introduce the group structure space G. Each group
structure 𝑮 ∈ G consists of a 𝑔-tuple of sets of feature indices
with the first set, i.e., group, representing the features that were
not selected (𝐶 \𝐶𝑠 ) and all remaining sets resembling the 𝑘 equiv-
alence classes under the equivalence relation 𝑅 ⊆ 𝐶𝑠 ×𝐶𝑠 of fea-
tures being allowed to interact with each equivalence class also
being equipped with a monotonicity attribute. Any group struc-
ture can therefore be encoded as follows: 𝑮 = (𝐺1 = 𝐶 \𝐶𝑠 ,𝐺2 =
(𝐸1, 𝑀𝐸1 ), . . . ,𝐺𝑔 = (𝐸𝑘 , 𝑀𝐸𝑘 )). Here, 𝐸𝑘 ⊆ 𝐶𝑠 is an index set con-
taining the indices of features part of the 𝑘-th equivalence class
under 𝑅, and𝑀𝐸𝑘 ∈ {−1, 0, 1} is the monotonicity attribute of the
𝑘-th equivalence class. We can now reformulate Equation 4 and in-
troduce the augmented search space �̃� = 𝚲 × G by considering the
group structure 𝑮 ∈ G instead of 𝒔, 𝑰𝒔 , and 𝒎𝑰𝒔 . The reformulated
search space now consists of the Cartesian product of the search
space of the learning algorithm, 𝚲, and the group structure space
G and each configuration, �̃� of the search space is given by a tuple
(𝝀, 𝑮), which we argue is much easier to optimize. We visualize the
components involved in the optimization problem in Figure 1.

4 METHOD
For optimizing the multi-objective optimization problem, we in-
troduce an optimizer consisting of an evolutionary algorithm (EA)
for the original search space of the learning algorithm 𝚲 and a
so-called grouping genetic algorithm (GGA) [16] for the group
structure space G. We therefore dub our optimizer EAGGA.

6This is also directly related to the principle of marginality; see, e.g., [44].
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D ∈ D

I𝝀 ∈ 𝚲 𝑓D,𝝀,𝑮

Interaction
Constr.

Sel.
Features

Monotonicity
Constr.

𝑮 ∈ G

Figure 1: Overview of the components involved in the hy-
perparameter optimization problem. The inducer is required
to allow for the specification of feature selection, as well as
interaction and monotonicity constraints of features, which
are derived based on the group structure 𝑮 ∈ G.

4.1 EAGGA
The combination of using an EA and GGA allows us to jointly op-
erate on the augmented search space �̃� = 𝚲 × G. EAGGA’s main
routine is heavily inspired by NSGA-II [12]. NSGA-II is an evolu-
tionary multi-objective algorithm making use of the concepts of
non-dominated sorting and crowding distance to select individuals
for survival close to the Pareto front that also cover a wide spread
along the Pareto front. In each generation, NSGA-II iterates through
reproduction, crossover, mutation, and survival steps that generate
the population of the next generation. In EAGGA, we perform par-
ent selection via a binary tournament selection and simply apply
suitable crossover and mutation operators to hyperparameters of
the original search space (𝝀 ∈ 𝚲) and group structures (𝑮 ∈ G)
next to each other to produce offspring.

4.1.1 EA Operators. For the original hyperparameters of the learn-
ing algorithm (𝝀 ∈ 𝚲), we use the Cartesian product of operators
that operate in different ways on the different parameter types [37].
We use a global crossover probability of 𝑝 = 0.7 and a global muta-
tion probability of 𝑝 = 0.3. All hyperparameters undergo uniform
crossover (𝑝 = 0.5) for recombination. Numeric and integer hyper-
parameters undergo Gaussian mutation (𝑝 = 0.2, 𝜎 = 0.1; values
min-max scaled to [0, 1] prior to mutation and re-transformed after-
wards; values rounded to the closest integer in the case of integer
hyperparameters), while categorical hyperparameters undergo uni-
form mutation (𝑝 = 0.2). The choice of operators and probabilities
of crossover and mutation were mostly inspired by [2].

4.1.2 GGA Operators. Group structures (𝑮 ∈ G) undergo muta-
tion and crossover operators inspired by the original work of Falke-
nauer [16, 17].We again use a global crossover probability of 𝑝 = 0.7
and a global mutation probability of 𝑝 = 0.3. Recall that a group
structure is encoded as 𝑮 = (𝐺1 = 𝐶 \𝐶𝑠 ,𝐺2 = (𝐸1, 𝑀𝐸1 ), . . . ,𝐺𝑔 =
(𝐸𝑘 , 𝑀𝐸𝑘 )) where 𝐺1 = 𝐶 \ 𝐶𝑠 is an index set of features not se-
lected and each 𝐸𝑘 ⊆ 𝐶𝑠 is an index set of features part of the
𝑘-th equivalence class under the equivalence relation 𝑅 of features
being allowed to interact, and𝑀𝐸𝑘 ∈ {−1, 0, 1} is the monotonicity
attribute of the 𝑘-th equivalence class. The basic idea of a GGA is to
apply operators directly on the group structure. For crossover, we
select two crossing sites, delimiting the crossing section, in each of
the two parents (e.g., 𝐺1𝐺2 |𝐺3 |𝐺4 and 𝐻1 |𝐻2𝐻3 |𝐻4𝐻5; 𝐺 used for

the first parent and 𝐻 for the second parent). We then inject the
contents (groups together with their monotonicity attributes) of the
crossing section of the first parent at the first crossing site of the
second parent (e.g., inserting 𝐺3 into the second parent, resulting
in 𝐻1𝐺3𝐻2𝐻3𝐻4𝐻5). Finally, we remove all items (feature indices)
from the old groups now occurring twice in the second parent. For
example, assume 𝐻3 = ({1, 2, 3}, 0) and 𝐺3 = ({3}, 1), then after
inserting 𝐺3 into the second parent, 𝐻3 is given by ({1, 2}, 0). In
the case of the first group, i.e., the index set of features not selected,
being injected, we simply add these indices to the first group of
the parent. To create the second offspring, we swap the roles of
the parents. For more details on the GGA crossover, see [17]. For
mutation, we simply assign each feature index a new group mem-
bership with probability 𝑝 = 0.2 and sample a new monotonicity
attribute for each group with probability 𝑝 = 0.2. To allow for
more precise handling of the group structure, we incorporate a
feedback loop into EAGGA: After evaluating an offspring, we can
determine the actual features and interactions (closed under transi-
tivity) as included in the model7 and update the group structure 𝑮
of each offspring. In Section 5.3 and the supplementary material,
we present results of an ablation study investigating the effect of
turning off either crossover or mutation of group structures or both,
where we observed that in general both of them are needed for
good performance.

4.2 Initializing the Group Structures
As hyperparameter optimization is costly, we strive tomake EAGGA
more sample-efficient. We use three detectors (feature, interaction,
and monotonicity) to find better initial population group struc-
tures. An ablation study in Section 5.3 shows that these detectors
substantially improve EAGGA’s (anytime) performance.

4.2.1 Feature Detector. The goal of a feature detector is to quantify
the importance of features so that the probability of selecting an
important feature 𝑗 (i.e., 𝑗 ∈ 𝐶𝑠 ) can be increased. Formally, a feature
detector maps a data setD to a 𝑝-dimensional vector of real valued
scores with the 𝑗-th element corresponding to the score of the 𝑗-th
feature. In EAGGA, we use feature filters. A feature filter measures
feature importance using a fast proxy, such as the entropy-based
information gain filter [36], which calculates the difference between
the target variable’s entropy and the joint entropy conditioned on
the feature. Based on the filter score for each feature, we can then
weight the probability of selecting a feature. To determine the
number of selected features 𝑆 of a member of the initial population,
we sample a random integer between 1 and 𝑝 from a truncated
geometric distribution similarly as in [2]. The features that are
actually selected are then determined by sampling from all binary
vectors 𝒔 of length 𝑝 that sum to 𝑆 with weighted probabilities
according to the feature filter scores.

4.2.2 Interaction Detector. The idea of a (pairwise) interaction de-
tector is to quantify the importance of interactions of features so
that the probability of those features being in the same group (i.e.,
the same equivalence class under the equivalence relation 𝑅 allowed
to interact) can be increased. Formally, an interaction detector maps

7The group structure only imposes an upper constraint, meaning that the resulting
model may use all or some of the selected features, and the same applies to interactions.
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a data set D to a symmetric, real valued 𝑝 × 𝑝 matrix with the ele-
ment at the 𝑗-th row and 𝑘-th column corresponding to the score of
the 𝑗-th and 𝑘-th feature8. Recall that in EAGGA, the first group𝐺1
of a group structure 𝑮 is always given by the indices of features that
are not selected. To initialize the remaining groups, we make use of
the FAST algorithm [40]. FAST allows for efficient quantification of
the importance of all pairwise interactions of features based on the
residual sums of squares when extending a main effects model to
include an interaction effect. To determine the number of included
interactions 𝐼 of a member of the initial population, we sample
a random integer between 1 and (𝑝 (1 − 𝑝))/2 from a truncated
geometric distribution. The actual groups are then determined by
considering the 𝐼 most important pairwise interactions according
to FAST, constructing an equivalence relation 𝑅 allowed to interact,
and deriving the equivalence classes under 𝑅.

4.2.3 Monotonicity Detector. Using a monotonicity detector is help-
ful due to two reasons: First, recall that the monotonicity attribute
of a group can in principle either be -1 (monotone decreasing),
1 (monotone increasing), or 0 (unconstrained). This is somewhat
redundant, as a monotone decreasing feature effect (without loss of
generalization, we assume purely numeric features) can always be
realized by enforcing a monotone increasing effect and swapping
the sign of the feature itself. Therefore, by detecting whether a
monotone feature effect should be increasing or decreasing we can
encode monotonicity constraints more efficiently. Second, by quan-
tifying the mismatch in model fit between enforcing monotonicity
and no constraint, the monotonicity detector can bias the probabil-
ity of the monotonicity attribute being unconstrained. Formally, a
monotonicity detector maps a data setD to a 𝑝-dimensional vector
of real valued scores with the 𝑗-th element corresponding to the
score of the 𝑗-th feature where the sign of the score indicates the
direction of monotonicity and the magnitude of the score reflects
the strength of the monotone relationship between the feature and
the target variable. In EAGGA, we use the following monotonicity
detector: For each feature, we fit a decision tree on sub-sampled
data and obtain the predictions. We then calculate Spearman’s 𝜌
between the feature values and the target predictions. Finally, we
repeat this process 10 times and calculate the average Spearman’s
𝜌 , which we scale9 to [0.2, 0.8]. For each group of features of a
member of the initial population, we take the average over the
individual scores and use this average as a probability to sample
the monotonicity attribute of the group.

5 BENCHMARK EXPERIMENTS
To our best knowledge, EAGGA is the first model-agnostic approach
to perform efficient multi-objective optimization of performance
and interpretability of machine learning models by incorporat-
ing feature selection as well as interaction and monotonicity con-
straints into the hyperparameter search space. In our experiments,
we combine EAGGA with XGBoost (EAGGAXGBoost) or XGBoost
with a maximum depth fixed to 2 (EAGGAXGBoostmd2 , resulting in
second-order interactions being the most complex higher-order
interactions that can be picked up by the model). We configure
EAGGA to use a population size of 𝜇 = 100 and an offspring size
8Note that the diagonal is of no interest and can be set to, e.g., 0.
9This is done to allow for some non-determinism during sampling.

of 𝜈 = 10, with the comparably large population size being in-
spired by [2, 54]. One naïve approach to generate a benchmark
baseline is to simply use a collection of competitors that all ex-
cel at different objectives which EAGGA tries to optimize jointly
and compare EAGGAXGBoost to the union of the competitors. An-
other approach is to compare EAGGAXGBoost to standard multi-
objective optimization of XGBoost (without augmentation of the
search space). Code and supplementary material are released via
https://github.com/slds-lmu/paper_2023_eagga.

5.1 EAGGA vs. A Collection of Competitors
We construct a collection of competitors by considering an EBM,
Elastic-Net, (untuned) random forest, and XGBoost. An EBM offers
good performance with few interactions, an Elastic-Net provides
sparse, monotone solutions, while a random forest and XGBoost
usually deliver strong results using many features, interactions,
and non-monotone effects. We tune the hyperparameters of the
EBM, Elastic-Net, and XGBoost via Bayesian Optimization10 and
optimize for predictive performance. For the search spaces of the
learning algorithms, see our supplementary material. All learning
algorithms are given a budget of 8 hours of sequential runtime on
a single CPU (note that this is a disadvantage for EAGGA, as each
competitor is given the same computational budget and therefore
the union of competitors uses substantially more compute budget
than EAGGA). As a performance metric, we choose the area under
the receiver operating characteristic curve (AUC)11. Performance
estimation is conducted via nested resampling: As an outer resam-
pling, we use a holdout with a ratio of 2/3, i.e., test performance is
evaluated on 1/3 of the data. Hyperparameter optimization is then
performed using 5-fold cross-validation on the remaining 2/3 of the
data. For EAGGAXGBoost and EAGGAXGBoostmd2 , the Pareto optimal
configurations found during optimization are re-evaluated on the
test-set. For the EBM, Elastic-Net, random forest, and XGBoost,
we re-evaluate the single best-performing configuration (found
during optimization) on the test-set. For XGBoost models, 𝑁𝐹 and
𝑁𝐼 are determined by actually checking the model and all splits in
all trees, whereas 𝑁𝑁𝑀 is determined based on the monotonicity
constraints of features used in the model (only applicable when
optimized via EAGGA; for the standard XGBoost, we assume 𝑁𝑁𝑀
to be the same as 𝑁𝐹 as we consider monotonicity of features to
be a hard requirement as explained in Section 3.2). For the EBM,
𝑁𝐹 is always 1, as EBM cycles through all available features in a
round robin fashion, whereas 𝑁𝐼 is directly given by the value of
the hyperparameter interactions and we assume 𝑁𝑁𝑀 to be the
same as 𝑁𝐹 , as EBM does not allow for the specification of mono-
tonicity constraints and cannot guarantee monotone feature effects.
For the Elastic-Net, 𝑁𝐹 is determined by looking at the relative
number of non-zero coefficients, whereas 𝑁𝐼 and 𝑁𝑁𝑀 are always
0 (no interaction effects are included in the standard Elastic-Net
and feature effects are always monotone). Finally, for the random
forest, 𝑁𝐹 and 𝑁𝐼 are again determined by actually checking the
model and all splits in all trees, whereas 𝑁𝑁𝑀 is again the same as
𝑁𝐹 (for the same reason as for the standard XGBoost).
10We employ a Bayesian Optimization variant similarly configured as SMAC [38],
i.e., using a random forest as surrogate model and Expected Improvement [30] as
acquisition function.
11We minimize the negative AUC.
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All methods are compared on twenty binary classification tasks
taken from OpenML CC-18 [4] and the AutoML benchmark [22].
We perform 10 replications of each optimization run on each task
with different random seeds to allow for statistical analysis. Cri-
teria for selecting the tasks were fewer than 100000 observations,
the number of features being fewer than 1000 as well as numeric
features, i.e., we focus on small- to medium-sized tabular data sets.
We only consider binary classification tasks, as the EBM until now
does not support the inclusion of interaction effects of features in
the case of multi-class classification. More details on the data sets
can be found in our supplementary material.

As we are comparing a multi-objective optimization framework
(EAGGA) to a collection of models, we perform the following anal-
ysis: For every run on each task, we calculate the dominated Hy-
pervolume of the (test-set) Pareto front of EAGGAXGBoost and
EAGGAXGBoostmd2 with respect to the reference point 𝒓 = (0, 1, 1, 1)⊤
and compare this with the dominated Hypervolume obtained by
considering the non-dominated set of the EBM, Elastic-Net, ran-
dom forest, and XGBoost solutions (evaluated on the test-set). To
allow for a fair comparison, we always include a featureless learner
that simply predicts the majority class without relying on any fea-
tures when calculating the dominated Hypervolume12. Results are
given in Figure 2. Note that the number in parentheses after a task
name indicates the number of features of the task. Using EAGGA
results in substantially larger dominated Hypervolume (Wilcoxon
signed-ranks test [13] on the mean dominated Hypervolume over
replications: 𝑇 = 0, 𝑝 < 0.001 for EAGGAXGBoost vs. competitors
and 𝑇 = 0, 𝑝 < 0.001 for EAGGAXGBoostmd2 vs. competitors).
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Figure 2: Mean dominated Hypervolume of EAGGAXGBoost,
EAGGAXGBoostmd2 , and the union of competitors averaged
over 10 replications. Bars represent standard errors.

We further determine for each task the fraction of replications
where each competitor yields a solution that is Pareto-dominated
by the solutions of EAGGAXGBoost or EAGGAXGBoostmd2 . Table 1a
shows this fraction averaged over all tasks for EAGGAXGBoost – i.e.,
on average, roughly 46% of the EBM solutions are Pareto-dominated
12As the resulting point (−0.5, 0, 0, 0)⊤ will have a large contribution to the dominated
Hypervolume, but only EAGGA might be able to consistently find a hyperparameter
configuration resulting in such a model.

by the solutions found by EAGGAXGBoost. Table 1b shows this frac-
tion averaged over all tasks for EAGGAXGBoostmd2 . We also compute
the counterpart – i.e., what is the fraction of replications where the
whole Pareto set of EAGGAXGBoost or EAGGAXGBoostmd2 is domi-
nated by the Pareto set of the union of the competitors. This was
never the case, neither for EAGGAXGBoost nor EAGGAXGBoostmd2 .
We want to note that in some runs, evaluating the initial design dur-
ing optimization of the EBM took longer than the whole compute
budget of 8 hours. In these cases, our fallback was to only evaluate
the default configuration suggested by the EBM authors.

In our supplementary material, we also provide an illustrative
example of the usage of EAGGA relying on the ozone-level-8hr task
and analyze an exemplary Pareto front. Additionally we analyze
the best performing models from each method in terms of AUC and
interpretability. Results show that the best models found by EAGGA
perform similarly to XGBoost models optimized for performance,
but use less features, interactions, and non-monotone features,
indicating improved interpretability.

Table 1: Mean fraction of runs over tasks and replications
where competitors yield a solution that is dominated by
EAGGAXGBoost or EAGGAXGBoostmd2 .

(a) EAGGAXGBoost

Competitor Mean SE

EBM 0.46 0.04
Elastic-Net 0.30 0.03
Random Forest 0.81 0.03
XGBoost 0.40 0.03

SE = standard error.

(b) EAGGAXGBoostmd2

Competitor Mean SE

EBM 0.36 0.03
Elastic-Net 0.28 0.03
Random Forest 0.74 0.03
XGBoost 0.31 0.03

SE = standard error.

5.2 EAGGA vs. Multi-Objective XGBoost
We also compare EAGGAXGBoost to multi-objective optimization of
XGBoost (without augmentation of the search space), which we will
refer to as XGBoostMO. As an optimizer, we employ ParEGO [34],
a scalarization-based multi-objective Bayesian Optimization algo-
rithm that we configure to use a random forest as surrogate model
and Expected Improvement as acquisition function. The search
space used within ParEGO is exactly the same as the search space
used within EAGGA – with the exception that we do not augment
the search space to include feature selection, interaction, and mono-
tonicity constraints, as standard multi-objective optimizers such as
ParEGO cannot naturally operate on such a search space. The ques-
tion we want to answer is whether it is sufficient to work on the
standard search space with a standard multi-objective optimizer to
optimize XGBoost for predictive performance and interpretability.
Benchmark tasks and the evaluation protocol are exactly the same
as in Section 5.1 – i.e., for EAGGAXGBoost, EAGGAXGBoostmd2 , and
XGBoostMO, the Pareto optimal configurations found during opti-
mization are re-evaluated on the test-set. For each run on each task,
we calculate the dominated Hypervolume of the (test-set) Pareto
front of EAGGAXGBoost, EAGGAXGBoostmd2 , and XGBoostMO, which
we visualize in Figure 3. Again, using EAGGA results in usually at
least the same and often substantially larger dominated Hypervol-
ume (Wilcoxon signed-ranks test on the mean dominated Hyper-
volume over replications: 𝑇 = 40, 𝑝 = 0.0076 for EAGGAXGBoost
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vs. XGBoostMO and 𝑇 = 50, 𝑝 = 0.02 for EAGGAXGBoostmd2 vs.
XGBoostMO). Notably, the only tasks where XGBoostMO outper-
forms EAGGA are tasks with few features. In our supplementary
material, we also analyze the anytime dominated Hypervolume
during optimization (i.e., calculated on the inner resampling).
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Figure 3: Mean dominated Hypervolume of EAGGAXGBoost,
EAGGAXGBoostmd2 , and XGBoostMO averaged over 10 replica-
tions. Bars represent standard errors.

5.3 An Ablation Study of EAGGA
Weperform an ablation study of the components of EAGGAwith the
goal to answer the following questions: (i) Does EAGGA improve
over a random search on the same search space? (ii)How important
are crossover and respectively mutation of group structures? (iii)
What is the benefit of using detectors to initialize the population?

To do so, we rerun all benchmark experiments with different
flavors of EAGGA and analyze the mean dominated Hypervolume
during optimization, i.e., calculated on the inner resampling. We
consider the following modifications or “flavors” of EAGGA: (i)
Simply performing a random search on �̃� after using EAGGA’s de-
tectors to initialize the population (Random Search). (ii) Switching
off either crossover or mutation of group structures (𝑮 ∈ G) or both
(No_Crossover, No_Mutation, No_Cross_Mut). (iii) Switching off
the detectors of EAGGA and initializing the population at random
(No_Detectors).

We observe that (i) performing a random search performs com-
parably poorly, (ii) crossover and mutation of group structures are
needed for good performance and (iii) using detectors can boost
the performance although this is mainly due to using detectors
strongly affecting the early performance of EAGGA. Conducting
a Friedman test [13] on the final mean dominated Hypervolume
during optimization indicates significant differences in ranks of
optimizers (𝜒2 (6) = 52.99, 𝑝 < 0.001). Figure 4 visualizes the corre-
sponding critical difference plot based on the follow up Nemenyi
test. For completeness, we also include XGBoostMO. For detailed
results and discussion, please see our supplementary material.

1 2 3 4 5 6

CD

EAGGA_XGBoost

No_Crossover

No_Mutation

No_Detectors

No_Cross_Mut

XGBoost_MO

Random Search

Figure 4: Critical difference plot of the ranks of optimizers
based on the final mean dominated Hypervolume during
optimization. Lower rank is better.

6 CONCLUSION
We have presented a general model-agnostic framework for jointly
optimizing the predictive performance and interpretability of su-
pervised machine learning models for tabular data. EAGGA is a
multi-objective optimizer making use of the principles of evolu-
tionary computation to jointly optimize the hyperparameters of
a learning algorithm as well as the group structure of features.
EAGGA allows for obtaining a set of diverse models in a single
optimization run and can outperform state-of-the-art competitors
both with respect to performance and interpretability.

In practice, users may have prior knowledge about which fea-
tures to include, which features should interact or even a require-
ment for a certain feature to have a monotone effect. Although
we studied EAGGA in the context of no prior knowledge, it can be
extended to incorporate such information by initializing the pop-
ulation accordingly and preventing crossover and mutation from
creating offspring incongruent with the prior.

EAGGA might be especially useful when using deep neural net-
works as learning algorithms, as Kadra and colleagues [31] demon-
strated that strong regularization of neural networks can be a key
component to achieving good performance on tabular data. Using
EAGGA in combination with neural networks would require the
design of a network architecture that allows for the specification of
interaction and monotonicity constraints of features. Notable work
in this direction has been undertaken by [7, 14, 48, 51, 56].

Finally, it must be noted that EAGGA cannot guarantee that the
resulting group structure of a model is sensible, and the structure
must be verified by domain experts (with respect to the selection of
features, as well as their interaction and monotonicity constraints).
Nevertheless, we believe that EAGGA can be of significant interest
for a wide variety of users.
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Abstract Neural architecture search (NAS) has been studied extensively and has grown to become
a research field with substantial impact. While classical single-objective NAS searches
for the architecture with the best performance, multi-objective NAS considers multiple
objectives that should be optimized simultaneously, e.g., minimizing resource usage along
the validation error. Although considerable progress has been made in the field of multi-
objective NAS, we argue that there is some discrepancy between the actual optimization
problem of practical interest and the optimization problem that multi-objective NAS tries
to solve. We resolve this discrepancy by formulating the multi-objective NAS problem
as a quality diversity optimization (QDO) problem and introduce three quality diversity
NAS optimizers (two of them belonging to the group of multifidelity optimizers), which
search for high-performing yet diverse architectures that are optimal for application-specific
niches, e.g., hardware constraints. By comparing these optimizers to their multi-objective
counterparts, we demonstrate that quality diversity NAS in general outperforms multi-
objective NAS with respect to quality of solutions and efficiency. We further show how
applications and future NAS research can thrive on QDO.

1 Introduction

The goal of neural architecture search (NAS) is to automate the manual process of designing
optimal neural network architectures. Traditionally, NAS is formulated as a single-objective
optimization problem with the goal of finding an architecture that has minimal validation error
[13, 35, 45, 47, 46, 63]. Considerations for additional objectives such as efficiency have led to the
formulation of constraint NAS methods that enforce efficiency thresholds [1] as well as multi-
objective NAS methods [10, 12, 37, 53, 36] that yield a Pareto optimal set of architectures. However,
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Figure 1: Optimizing neural network architectures for a discrete set of devices. We are interested in
the best solution (green) within the constraints of the respective device (dashed vertical
lines). Multi-objective optimization, in contrast, approximates the full Pareto front (black).
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in most practical applications, we are not interested in the complete Pareto optimal set. Instead,
we would like to obtain solutions for a discrete set of scenarios (e.g., end-user devices), which we
henceforth refer to as niches in this paper. This is illustrated in Figure 1. A concrete example is
finding neural architectures for microcontrollers [32] and other edge devices [38], e.g., in 𝜇NAS
[32] architectures for “mid-tier” IoT devices are searched. To evaluate the benefits for larger devices,
the search would need to be restarted with adapted constraints, thus wasting computational
resources. Formulating the search as a multi-objective problem would also waste resources; once
an architecture satisfies the constraints of a device, we are not interested in additional trade-offs,
and we select only based on the validation error.

We therefore argue that the multi-objective NAS problem can and usually should be formu-
lated as a quality diversity optimization (QDO) problem, which directly corresponds to the actual
optimization problem of interest. The main contributions of this paper are: We (1) formulate
multi-objective NAS as a QDO problem; (2) show how to adapt black-box optimization algorithms
for the QDO setting; (3) modify existing QDO algorithms for the NAS setting; (4) propose novel
multifidelity QDO algorithms for NAS; and (5) illustrate that our approach can be used to extend a
broad range of NAS methods from conventional to Once-for-All methods.

2 Theoretical Background and Related Work

Let A denote a search space of architectures and Λ the search space of additional hyperparameters
controlling the training of an architecture𝐴. Furthermore, let 𝑓err : A×Λ→ R denote the validation
error obtained after training an architecture 𝐴 ∈ A with a set of hyperparameters 𝜆 ∈ Λ for a
given number of epochs (𝜆epoch ∈ 𝜆). Typically, we consider 𝜆 ∈ Λ to be fixed, except for 𝜆epoch in
multifidelity methods, and we therefore omit 𝜆 in the following. The goal of single-objective NAS
is to find the architecture with the lowest validation error, 𝐴∗ B argmin𝐴∈A 𝑓err(𝐴).

NAS methods can be categorized along three dimensions: search space, search strategy, and
performance estimation strategy [13]. For chain-structured neural networks (simply a connected
sequence of layers), cell-based search spaces have gained popularity [46, 45]. In cell-based search
spaces, different kinds of cells – typically, a normal cell preserving dimensionality of the input
and a reduction cell reducing spatial dimension – are stacked in a predefined arrangement to form
a final architecture. Regarding search strategy, popular methods utilize Bayesian optimization
(BO) [3, 8, 39, 24, 57], evolutionary methods [41, 34, 47, 46, 12], reinforcement learning [63, 64],
or gradient-based algorithms [35, 45]. For performance estimation, popular approaches leverage
lower fidelity estimates [31, 14, 64] or make use of learning curve extrapolation [8, 27].

Multi-Objective Neural Architecture Search Contrary to the single-objective NAS formulation,
multi-objective NAS does not solely aim for minimizing the validation error but simultaneously
optimizes multiple objectives. These objectives typically take resource consumption – such as
memory requirements, energy usage or latency – into account [10, 12, 37, 53, 36]. Denote by
𝑓1, . . . , 𝑓𝑘 the 𝑘 ≥ 2 objectives of interest, where typically 𝑓1 = 𝑓err and denote by f (𝐴) the vector
of objective function values obtained for architecture 𝐴 ∈ A, f (𝐴) = (𝑓1(𝐴), . . . , 𝑓𝑘 (𝐴)) ′. The
optimization problem of multi-objective NAS is then formulated as min𝐴∈A f (𝐴). There is no
architecture that minimizes all objectives at the same time since these are typically in competition
with each other. Rather, there are multiple Pareto optimal architectures reflecting different trade-offs
in objectives approximating the true (unknown) Pareto front. An architecture 𝐴 is said to dominate
another architecture 𝐴′ iff ∀𝑖 ∈ {1, . . . , 𝑘} : 𝑓𝑖 (𝐴) ≤ 𝑓𝑖 (𝐴′) ∧ ∃ 𝑗 ∈ {1, . . . , 𝑘} : 𝑓𝑗 (𝐴) < 𝑓𝑗 (𝐴′).

Constrained and Hardware-Aware Neural Architecture Search In contrast, Constrained NAS
[62, 15, 55] solves the problem of finding an architecture that optimizes one objective (e.g., validation
error) with constraints on secondary objectives (e.g., model size). Constraints can be naturally given
by the target hardware that a model should be deployed on. Hardware-Aware NAS in turn searches
for an architecture that trades off primary objectives [60] against secondary, hardware-specific
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metrics. In Once-for-All [5], a large supernet is trained which can be efficiently searched for subnets
that, e.g., meet latency constraints of target devices. For a recent survey, we refer to [1].

Quality Diversity Optimization The goal of a QDO algorithm is to find a set of high-performing,
yet behaviorally diverse, solutions. Similarly to multi-objective optimization, there is no single best
solution. However, whereas multi-objective optimization aims for the simultaneous minimization of
multiple objectives, QDO minimizes a single-objective function with respect to diversity defined on
one or more feature functions. A feature function measures a quality of interest and a combination
of feature values points to a niche, i.e., a region in feature space. QDO could be considered a set
of constrained optimisation problems over the same input domain where the niche boundaries
are constraints in feature space. The key difference is that constrained optimisation seeks a
single optimal configuration given some constraints, while QDO attempts to identify the optimal
configuration for each of a set of constrained regions simultaneously. In this sense, QDO could
be framed as a so-called multi-task optimization problem [43] where each task is to find the best
solution belonging to a particular niche.

QDO algorithms maintain an archive of niche-optimal observations, i.e., a best-performing
observed solution for each niche. Observations with similar feature values compete to be selected
for the archive, and the solution set gradually improves during the optimization process. Once
the optimization budget has been spent, QDO algorithms typically return this archive as their
solution. QDO is motivated by applications where a group of diverse solutions is beneficial, such as
the training of robot movement where a repertoire of behaviours must be learned [7], developing
game playing agents with diverse strategies [44], and in automatic design where QDO can be used
by human designers to search a large dimensional search space for diverse solutions before the
optimization is finished by hand. Work on automatic design tasks have been varied and include
air-foil design [18], computer game level design [16], and architectural design [9]. Recently, QDO
algorithms were used for illuminating the interpretability and resource usage of machine learning
models while minimizing their generalization error [52].

In the earliest examples, Novelty Search (NS; [29]) asks whether diversity alone can produce
a good set of solutions. Despite not actively pursuing objective performance, NS performed
surprisingly well in some settings and was followed by Novelty Search with Local Competition
[30], the first true quality diversity (QD) algorithm. MAP-Elites [42], a standard evolutionary QDO
algorithm, partitions the feature space a-priori into niches and attempts to identify the optimal
solution in each of these niches. QDO has seen much work in recent years and a variant based on
BO, BOP-Elites, was proposed recently [25]. BOP-Elites models the objective and feature functions
with surrogate models and implements an acquisition function over a structured archive to achieve
high sample efficiency even in the case of black-box features.

3 Formulating Neural Architecture Search as a Quality Diversity Optimization Problem

In the example in Figure 1, a quality diversity NAS (subsequently abbreviated as qdNAS) problem is
given by the validation error and three behavioral niches (corresponding to different devices) that
are defined via resource usage measured by a single feature function. Let 𝑓1 : A→ R, 𝐴 ↦→ 𝑓1(𝐴)
denote the objective function of interest (in our context, 𝑓err). Denote by 𝑓𝑖 : A → R, 𝐴 ↦→
𝑓𝑖 (𝐴), 𝑖 ∈ {2, . . . , 𝑘}, 𝑘 ≥ 2 the feature function(s) of interest (e.g., memory usage). Behavioral
niches 𝑁 𝑗 ⊆ A, 𝑗 ∈ {1, . . . , 𝑐}, 𝑐 ≥ 1 are sets of architectures characterized via niche-specific
boundaries b𝑖 𝑗 =

[
𝑙𝑖 𝑗 , 𝑢𝑖 𝑗

) ⊆ R on the images of the feature functions. An architecture 𝐴 belongs to
niche 𝑁 𝑗 if its values with respect to the feature functions lie between the respective boundaries,
i.e.:

𝐴 ∈ 𝑁 𝑗 ⇐⇒ ∀𝑖 ∈ {2, . . . , 𝑘} : 𝑓𝑖 (𝐴) ∈ b𝑖 𝑗 .
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The goal of a QDO algorithm is then to find for each behavioral niche 𝑁 𝑗 the architecture that
minimizes the objective function 𝑓1:

𝐴∗𝑗 B argmin
𝐴∈𝑁 𝑗

𝑓1(𝐴) .

In other words, the goal is to obtain a set of architectures S B
{
𝐴∗1, . . . , 𝐴

∗
𝑐

}
that are diverse with

respect to the feature functions and yet high-performing.
A Remark about Niches In the classical QDO literature, niches are typically constructed to be

pairwise disjoint, i.e., a configuration can only belong to a single niche (or none) [42, 25]. However,
depending on the concrete application, relaxing this constraint and allowing for overlap can be
beneficial. For example, in our context, an architecture that fits on a mid-tier device should also be
considered for deployment on a higher-tier device, i.e., in Figure 1, the boundaries indicated by
vertical dashed lines resemble the respective upper bound of a niche whereas the lower bound is
unconstrained. This results in niches being nested within each other, i.e., 𝑁1 ⊊ 𝑁2 ⊊ . . . ⊊ 𝑁𝑐 ⊆ A,
with 𝑁1 being the most restrictive niche, followed by 𝑁2. In Supplement A, we further discuss
different ways of constructing niches in the context of NAS.

3.1 Quality Diversity Optimizers for Neural Architecture Search
As themajority of NAS optimizers are iterative, we first demonstrate how any iterative optimizer can
in principle be turned into a QD optimizer. Based on this correspondence, we introduce three novel
QD optimizers for NAS: BOP-Elites*, qdHB and BOP-ElitesHB. Let 𝑓1 : A→ R, 𝐴 ↦→ 𝑓1(𝑥) denote
the objective function that should be minimized. In each iteration, an iterative optimizer proposes
a new configuration (e.g., architecture) for evaluation, evaluates this configuration, potentially
updates the incumbent (best configuration evaluated so far) if better performance has been observed,
and updates its archive. For generic pseudo code, see Supplement B.
Moving to a QDO problem, there are now feature functions 𝑓𝑖 : A → R, 𝐴 ↦→ 𝑓𝑖 (𝐴), 𝑖 ∈
{2, . . . , 𝑘}, 𝑘 ≥ 2, and niches 𝑁 𝑗 , 𝑗 ∈ {1, . . . , 𝑐}, 𝑐 ≥ 1, defined via their niche-specific bound-
aries b𝑖 𝑗 =

[
𝑙𝑖 𝑗 , 𝑢𝑖 𝑗

) ⊆ R on the images of the feature functions. Any iterative single-objective
optimizer must then keep track of the best incumbent per niche (often referred to as an elite in
the QDO literature) and essentially becomes a QD optimizer (see Algorithm 1). The challenge

Algorithm 1: Generic pseudo code for an iterative quality diversity optimizer.
Input : 𝑓1, 𝑓𝑖 , 𝑖 ∈ {2, . . . , 𝑘}, 𝑘 ≥ 2, 𝑁 𝑗 , 𝑗 ∈ {1, . . . , 𝑐}, 𝑐 ≥ 1, Ddesign, 𝑛total
Result :𝑆 = {𝐴∗1, . . . , 𝐴∗𝑐 }

1 D← Ddesign
2 for 𝑗 ← 1 to 𝑐 do
3 𝐴∗𝑗 ← argmin𝐴∈D|𝑁𝑗

𝑓1(𝐴) # initial incumbent of niche 𝑁 𝑗 based on archive
4 end
5 for 𝑛 ← 1 to 𝑛total do
6 Propose a new candidate 𝐴★ # subroutine
7 Evaluate 𝑦 ← 𝑓1(𝐴★),∀𝑖 ∈ {2, . . . , 𝑘} : 𝑧𝑖 ← 𝑓𝑖 (𝐴★)
8 if 𝐴★ ∈ 𝑁 𝑗 ∧ 𝑦 < 𝑓1(𝐴∗𝑗 ) then
9 𝐴∗𝑗 ← 𝐴★ # update incumbent of niche 𝑁 𝑗

10 end
11 D← D ∪ {(

𝐴★, 𝑦, 𝑧2, . . . , 𝑧𝑘
)}

12 end

in designing an efficient and well-performing QD optimizer now mostly lies in proposing a new
candidate for evaluation that considers improvement over all niches.

4

126



Bayesian Optimization A recently proposed model-based QD optimizer, BOP-Elites [25], ex-
tends BO [54, 17] to QDO. BOP-Elites relies on Gaussian process surrogate models for the objective
function and all feature functions. New candidates for evaluation are selected by a novel acqui-
sition function – the expected joint improvement of elites (EJIE), which measures the expected
improvement to the ensemble problem of identifying the best solution in every niche:

𝛼EJIE(𝐴) B
𝑐∑︁
𝑗=1

P (𝐴 ∈ 𝑁 𝑗 |D)E𝑦

[
I |𝑁 𝑗 (𝐴)

]
. (1)

Here, P (𝐴 ∈ 𝑁 𝑗 |D) is the posterior probability of 𝐴 belonging to niche 𝑁 𝑗 , and E𝑦

[
I |𝑁 𝑗 (𝐴)

]
is the

expected improvement (EI; [23]) with respect to niche 𝑁 𝑗 :

E𝑦

[
I |𝑁 𝑗 (𝐴)

]
= E𝑦

[
max

(
𝑓minNj − 𝑦, 0

)]
,

where 𝑓min𝑁𝑗
is the best observed objective function value in niche 𝑁 𝑗 so far, and 𝑦 is the surrogate

model prediction for 𝐴. A new candidate is then proposed by maximizing the EJIE, i.e., Line 6 in
Algorithm 1 looks like the following: 𝐴★← argmax𝐴∈A 𝛼EJIE(𝐴).

BOP-Elites* In order to adapt BOP-Elites for NAS, we introduce several modifications. First, we
employ truncated (one-hot) path encoding [56, 57]. In path encoding, architectures are transformed
into a set of binary features indicating presence for each path of the directed acyclic graph from the
input to the output. By then truncating the least-likely paths, the encoding scales linearly in the
size of the cell [57] allowing for an efficient representation of architectures. Second, we substitute
the Gaussian process surrogate models used in BOP-Elites with random forests [4] allowing us
to model non-continuous hyperparameter spaces. Random forests have been successfully used as
surrogates in BO [21, 33], often performing on a par with ensembles of neural networks [57] in the
context of NAS [51, 59]. Third, we introduce a local mutation scheme similarly to the one used
by the BANANAS algorithm [57] for optimizing the infill criterion EJIE: Since our aim is to find
high quality solutions across all niches, we maintain an archive of the incumbent architecture in
each niche and perform local mutations on each incumbent. We refer to our adjusted version as
BOP-Elites* in the remainder of the paper to emphasize the difference from the original algorithm.
For the initial design, we sample architectures based on adjacency matrix encoding [56].

Multifidelity Optimizers For NAS, performance estimation is the computationally most ex-
pensive component [13], and almost all NAS optimizers can be made more efficient by allowing
access to cheaper, lower fidelity estimates [13, 31, 14, 64]. By evaluating most architectures at lower
fidelity and only promoting promising architectures to higher fidelity, many more architectures
can be explored given the same total computational budget. The fidelity parameter is typically the
number of epochs over which an architecture is trained.

qdHB One of the most prominent multifidelity optimizers is Hyperband (HB; [31]), a multi-
armed bandit strategy that uses repeated Successive Halving (SH; [22]) as a subroutine to identify
the best configuration (e.g., architecture) among a set of randomly sampled ones. Given an initial
and maximum fidelity, a scaling parameter 𝜂, and a set of configurations of size 𝑛, SH evaluates all
configurations on the initial smallest fidelity, then sorts the configurations by performance and only
keeps the best 1/𝜂 configurations. These configurations are then trained with fidelity increased by a
factor of 𝜂. This process is repeated until the maximum fidelity for a single configuration is reached.
HB repeatedly runs SH with different sized sets of initial configurations called brackets. Only
two inputs are required: 𝑅, the maximum fidelity and 𝜂, the scaling parameter that controls the
proportion of configurations discarded in each round of SH. Based on these inputs, the number 𝑠max
and size 𝑛𝑖 of different brackets is determined. To adapt HB to the QD setting, we must track the
incumbent architecture in each niche and promote configurations based on their performancewithin
the respective niche (see Supplement B): To achieve this, we choose the top ⌊𝑛𝑖/𝜂⌋ configurations
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to be promoted uniformly over the 𝑐 niches (done in the topk_qdo function), i.e., we iteratively select
one of the niches uniformly at random and choose the best configuration observed so far that
has yet not been selected for promotion until ⌊𝑛𝑖/𝜂⌋ configurations have been selected. Note that
during this procedure, it may happen that not enough configurations belonging to a specific niche
have been observed yet. In this case, we choose any configuration uniformly at random over the
set of all configurations that have yet to be promoted. With those modifications, we propose qdHB,
as a multifidelity QD optimizer.

BOP-ElitesHB While HB typically shows strong anytime performance [31], it only samples
configurations at random and is typically outperformed by BO methods with respect to final
performance if optimizer runtime is sufficiently large [14]. BOHB [14] combines the strengths of
HB and BO in a single optimizer, resulting in strong anytime performance and fast convergence.
This approach employs a fidelity schedule similar to HB to determine how many configurations to
evaluate at which fidelity but replaces the random selection of configurations in each HB iteration
by a model-based proposal. In BOHB, a Tree Parzen Estimator [2] is used to model densities
𝑙 (𝐴) = 𝑝 (𝑦 < 𝛼 |𝐴,D) and 𝑔(𝐴) = 𝑝 (𝑦 > 𝛼 |𝐴,D), and candidates are proposed that maximize the
ratio 𝑙 (𝐴)/𝑔(𝐴), which is equivalent to maximizing EI [2]. Based on BOP-Elites* and qdHB, we
can now derive the QD Bayesian optimization Hyperband optimizer (BOP-ElitesHB): Instead of
selecting configurations at random at the beginning of each qdHB iteration, we propose candidates
that maximize the EJIE criterion. This sampling procedure is described in Supplement B.

4 Main Benchmark Experiments and Results

We are interested in answering the following research questions: (RQ1) Does qdNAS outperform
multi-objective NAS if the optimization goal is to find high-performing architectures in pre-defined
niches? (RQ2) Do multifidelity qdNAS optimizers improve over full-fidelity qdNAS optimizers? To
answer these questions, we benchmark our three qdNAS optimizers – BOP-Elites*, qdHB, and
BOP-ElitesHB– on the well-known NAS-Bench-101 [61] and NAS-Bench-201 [11] and compare
them to three multi-objective optimizers adapted for NAS: ParEGO*, moHB*, and ParEGOHB as
well as a simple Random Search1.

Experimental Setup It is important to compare optimizers using analogous implementation
details. We therefore use truncated path encoding and random forest surrogates throughout our
experiments for all model-based optimizers. Furthermore, we use local mutations as described
in [57] in order to optimize acquisition functions in BOP-Elites*, BOP-ElitesHB, ParEGO*, and
ParEGOHB. To control for differences in implementation, we re-implement all optimizers and take
great care in matching the original implementations.

We provide full details regarding implementation in Supplement B and only briefly introduce
conceptual differences: ParEGO* is a multi-objective optimizer based on ParEGO [28] and only
deviates from BOP-Elites* in that it considers a differently scalarized objective in each iteration,
which is optimized using local mutations similar to the acquisition function optimization of BOP-
Elites*. moHB* is an extension of HB to the multi-objective setting (promoting configurations based
on non-dominated sorting with hypervolume contribution for tie breaking, for similar approaches
see, e.g., [48, 49, 50, 19]). ParEGOHB is a model-based extension of moHB* that relies on the
ParEGO scalarization [28] and on the same acquisition function optimization as ParEGO*.

All optimizers were evaluated on NAS-Bench-101 (Cifar-10, validation error as the first objective
and the number of trainable parameters as the feature function/second objective) and NAS-Bench-
201 (Cifar-10, Cifar-100, ImageNet16-120, validation error as the first objective and latency as the
feature function/second objective). For multifidelity, we train architectures for 4, 12, 36, 108 epochs
on NAS-Bench-101 and for 2, 7, 22, 67, 200 epochs on NAS-Bench-201 (reflecting 𝜂 = 3 in the HB
variants). As the optimization budget, we consider 200 full architecture evaluations (resulting in

1using adjacency matrix encoding [56]
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a total budget of 21600 epochs for NAS-Bench-101 and 40000 epochs for NAS-Bench-201). For
each of these four settings, we construct three different scenarios by considering different niches
of interest with respect to the feature function, resulting in a total of 12 benchmark problems.
In the small/medium/large settings, two, five and ten niches are considered, respectively. Niches
are constructed to be overlapping, and boundaries are defined based on percentiles of the feature
function. For the small setting, the boundary is given by the 50% percentile (𝑞50%), effectively
resulting in two niches with boundaries [0, 𝑞50%) and [0,∞). For the medium and large settings,
percentiles indicating progressively larger niches were used, ranging from: 1% to 30% and 70%
respectively. More details on the niches can be found in Supplement C. All runs were replicated
100 times.

Results As an anytime performance measure, we are interested in the validation error obtained
for each niche, which we aggregate in a single performance measure as

∑𝑐
𝑗=1 𝑓err(𝐴∗𝑗 ), i.e., we

consider the sum of validation errors over the best-performing architecture per niche. If a niche
is empty, we assign a validation error of 100 as a penalty (this is common practice in QDO, i.e.,
if no solution has been found for a niche, this niche is assigned the worst possible objective
function value [25]). For the final performance, we also consider the analogous test error. Figure 2
shows the anytime performance of optimizers. We observe that model-based optimizers (BOP-
Elites* and ParEGO*) in general strongly outperform Random Search, and BO HB optimizers
(BOP-ElitesHB and ParEGOHB) generally outperform their full-fidelity counterparts, although this
effect diminishes with increasing optimization budget. In general, HB variants that do not rely
on a surrogate model (qdHB and moHB*) show poor performance compared to the model-based
optimizers. Moreover, especially in the small number of niches setting, QD strongly outperforms
multi-objective optimization. Mean ranks of optimizers with respect to final validation and test
performance are given in Table 1. For completeness, we also report critical differences plots of
these ranks in Supplement C.

We also conducted two four-way ANOVAs on the average performance after half and all of
the optimization budget is used, with the factors problem (benchmark problem), multifidelity
(whether an optimizer uses multifidelity), QDO (whether an optimizer is a QD optimizer) and
model-based (whether the optimizer relies on a surrogate model)2. For half the budget used,
results indicate significant main effects of the factors multifidelity (𝐹 (1) = 19.13, 𝑝 = 0.0001), QDO
(𝐹 (1) = 11.08, 𝑝 = 0.0017) andmodel-based (𝐹 (1) = 21.13, 𝑝 < 0.0001). For all of the budget used, the
significance of multifidelity diminishes, whereas the main effects of QDO (𝐹 (1) = 18.31, 𝑝 = 0.0001)
and model-based (𝐹 (43.44), 𝑝 < 0.0001) are still significant. We can conclude that QDO in general
outperforms competitors when the goal is to find high-performing architectures in pre-defined
niches. Multi-fidelity optimizers improve over full-fidelity optimizers but this effect diminishes
with increasing budget. Detailed results are reported in Supplement C.

Regarding efficiency, we analyzed the expected running time (ERT) of the QD optimizers given
the average performance of the respective multi-objective optimizers after half of the optimization
budget: For each benchmark problem, we computed the mean validation performance of each
multi-objective optimizer after having spent half of its optimization budget and investigated the
ERT of the analogous3 QD optimizer. For each benchmark problem, we then computed the ratio of
ERTs between multi-objective and QD optimizers and averaged them over the benchmark problems.
For BOP-ElitesHB, we observe an average ERT ratio of 2.41, i.e., in expectation, BOP-ElitesHB is a
factor of 2.41 faster than ParEGOHB in reaching the average performance of ParEGOHB (after half
the optimization budget). For qdHB and BOP-Elites*, the average ERT ratios are 1.14 and 1.44. We
conclude that all QD optimizers are more efficient than their multi-objective counterparts. More
details can be found in Supplement C.

2For this analysis, we excluded qdHB and moHB* due to their lackluster performance.
3BOP-ElitesHB for ParEGOHB, qdHB for moHB*, and BOP-Elites* for ParEGO*
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Figure 2: Anytime performance of optimizers. Ribbons represent standard errors over 100 replications.
x-axis starts after 10 full-fidelity evaluations.

Table 1: Ranks of optimizers with respect to final performance, averaged over benchmark problems.

Mean Rank (SE) BOP-ElitesHB qdHB BOP-Elites* ParEGOHB moHB* ParEGO* Random

Validation 2.08 (0.29) 5.92 (0.26) 1.83 (0.21) 4.25 (0.48) 6.42 (0.15) 2.58 (0.31) 4.92 (0.34)
Test 1.42 (0.19) 5.00 (0.17) 2.08 (0.23) 4.33 (0.50) 6.50 (0.19) 3.25 (0.35) 5.42 (0.42)

5 Additional Experiments and Applications

In this section, we illustrate how qdNAS can be used beyond the scenarios investigated so far and
present results of additional experiments ranging from a comparison of qdNAS to multi-objective
NAS on the MobileNetV3 search space to an example on how to incorporate QDO in existing
frameworks such as Once-for-All [5] or how to use qdNAS for model compression.

Benchmarks on the MobileNetV3 Search Space We further investigated how qdNAS compares
to multi-objective NAS on a search space that is frequently used in practice [20]. We consider
CNNs divided into a sequence of units with feature map size gradually being reduced and channel
numbers being increased. Each unit consists of a sequence of layers where only the first layer has
stride 2 if the feature map size decreases and all other layers in the units have stride 1. Units can use
an arbitrary number of layers (elastic depth chosen from {2, 3, 4}) and for each layer, an arbitrary
number of channels (elastic width chosen from {3, 4, 6}) and kernel sizes (elastic kernel size chosen
from {3, 5, 7}) can be used. Additionally, the input image size can be varied (elastic resolution
ranging from 128 to 224 with a stride 4). For more details on the search space, see [5]. To allow for
reasonable runtimes we use accuracy predictors (based on architectures trained and evaluated on
ImageNet as described in [5]) and resource usage look-up tables of the Once-for-All module [5, 6]
and construct a surrogate benchmark. As an objective function we select the validation error and
as a feature function/second objective the latency (in ms) when deployed on a Samsung Note 10
(batch size of 1), or the number of FLOPS (M) used by the model. So far, we have only investigated
qdNAS in the context of 𝑘 = 2, i.e., considering one objective and one feature function. Here, we
additionally consider a setting of 𝑘 = 3, by incorporating both latency and the size of the model (in
MB) as feature functions/second and third objective. We compare BOP-Elites* to ParEGO* and a

8

130



Random Search due to the accuracy predictors not supporting evaluations at multiple fidelities.
We again construct three scenarios by considering different niches of interest with respect to the
feature functions taking inspiration from latency and FLOPS constraints as used in [5] (details
are given in Table 4 in Supplement C). Optimizers are given a total budget of 100 architecture
evaluations. Figure 3 shows the anytime performance of optimizers with respect to the validation
error summed over niches (averaged over 100 replications). BOP-Elites* strongly outperforms the
competitors on all benchmark problems. More details are provided in Supplement D.
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Figure 3: MobileNetV3 search space. Anytime performance of optimizers. Ribbons represent standard
errors over 100 replications. x-axis starts after 10 evaluations.

Making Once-for-All Even More Efficient In Once-for-All [5], an already trained supernet
is searched via regularized evolution [46] for a well performing subnet that meets hardware
requirements of a target device relying on an accuracy predictor and resource usage look-up tables.
This is sensible if only a single solution is required, however, if various subnets meeting different
constraints on the same device are desired, repeated regularized evolution is not efficient. Moreover,
look-up tables do not generalize to new target devices in which case using as few as possible
architecture evaluations suddenly becomes relevant again. We notice that the search for multiple
architectures within Once-for-All can again be formulated as a QDO problem and therefore compare
MAP-Elites [42] to regularized evolution when performing a joint search for architectures meeting
different latency constraints on a Samsung Note 10. Results are given in Table 2 with MAP-Elites
consistently outperforming regularized evolution, making this novel variant of Once-for-All even
more efficient. More details are provided in Supplement E.

Table 2: MAP-Elites vs. regularized evolution within Once-for-All.

Method Best Validation Error for Different Latency Constraints
[0, 15) [0, 18) [0, 21) [0, 24) [0, 27) [0, 30) [0, 33)

Reg. Evo. 21.57 (0.01) 20.34 (0.02) 19.29 (0.01) 18.48 (0.02) 17.81 (0.02) 17.40 (0.02) 17.06 (0.02)
MAP-Elites 21.60 (0.01) 20.28 (0.01) 19.21 (0.01) 18.39 (0.01) 17.70 (0.01) 17.25 (0.01) 16.90 (0.01)

Average over 100 replications based on the accuracy predictor of Once-for-All [5, 6]. Standard errors in parentheses. Reg. Evo. = regularized evolution.

Applying qdNAS to Model Compression We are interested in deploying a MobileNetV2 across
different devices that are mainly constrained by memory. For each device, we can therefore only
consider models up to a fixed amount of parameters, similarly as depicted in Figure 1. Given that we
have a pretrained model that achieves high performance, we want to compress this model exploiting
redundancies in model parameters. In our application, we use the Stanford Dogs dataset [26] and
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rely on the neural network intelligence (NNI; [40]) toolkit for model compression. Pruning consists
of several (iterative) steps as well as re-training of the pruned architectures. Choices for the pruner
itself, pruner hyperparameters, and hyperparameters controlling retraining are available and must
be carefully selected to obtain optimal models (see Supplement F). We consider the number of
model parameters as a proxy measure for memory requirement, yielding three overlapping niches
for different devices. The pre-trained MobileNetV2 achieves a validation error of 20.25 using around
2.34 million model parameters. We define niches with boundaries corresponding to compression
rates (number of parameters after pruning) of 40% to 50%, 40% to 60%, and 40% to 70%. As the
QD optimizer, we use BOP-ElitesHB and specify the number of fine-tuning epochs a pruner can
use as a fidelity parameter, since fine-tuning after pruning is costly but also strongly influences
final performance. After evaluating only 69 configurations (a single BOP-ElitesHB run with 𝜂 = 3),
we obtain high-performing pruner configurations for each niche, resulting in the performance vs.
memory requirement (number of parameters) trade-offs shown in Table 3.

Table 3: Results of using BOP-ElitesHB for model compression of MobileNetV2 on Stanford Dogs.

Niche Validation Error # Params (in millions; rounded) % (# ParamsBaseline)

Niche 1 [0.94, 1.17) 31.20 1.13 48.10%
Niche 2 [0.94, 1.41) 29.07 1.29 54.99%
Niche 3 [0.94, 1.64) 27.76 1.62 68.97%

Baseline 20.25 2.34 100.00%

6 Conclusion

We demonstrated how multi-objective NAS can be formulated as a QDO problem that, contrary
to multi-objective NAS, directly corresponds to the actual optimization problem of interest, i.e.,
finding high-performing architectures in different niches. We have shown how any iterative black
box optimization algorithm can be adapted to the QDO setting and proposed three QDO algorithms
for NAS, with two of which making use of multifidelity evaluations. In benchmark experiments,
we have shown that qdNAS outperforms multi-objective NAS while simultaneously being more
efficient. We furthermore illustrated how qdNAS can be used for model compression and how
future NAS research can thrive on QDO. QDO is orthogonal to the NAS strategy of an algorithm
and can be similarly used to extend, e.g., one-shot NAS methods.

Limitations The framework we describe relies on pre-defined niches, e.g., memory requirements
of different devices. If niches are mis-specified or cannot be specified a priori, multi-objective
NAS may outperform qdNAS. However, an initial study (see Supplement H) how qdNAS performs
in a true multi-objective setting, which would correspond to unknown niches, shows little to no
performance degradation depending on the choice of niches. Moreover, we only investigated the
performance of qdNAS in the deterministic setting. Additionally, our multifidelity optimizers
require niche membership to be unaffected by the multifidelity parameter. Finally, we mainly
focused on model-based NAS algorithms that we have extended to the QDO setting.

Broader Impact Our work extends previous research on NAS and therefore inherits its implica-
tions on society and individuals such as potential discrimination in resulting models. Moreover,
evaluating a large number of architectures is computationally costly and can introduce serious
environmental issues. We have shown that qdNAS allows for finding better solutions, while simul-
taneously being more efficient than multi-objective NAS. As performance estimation is extremely
costly in NAS, we believe that this is an important contribution towards reducing resource usage
and the CO2 footprint of NAS.
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7 Reproducibility Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 6.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Section 6.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?

[Yes]

2. If you are including theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental
results, including all requirements (e.g., requirements.txtwith explicit version), an instruc-
tive README with installation, and execution commands (either in the supplemental material
or as a url)? [Yes] The full code for experiments, application, figures and tables can be
obtained from the following GitHub repository: https://github.com/slds-lmu/qdo_nas.

(b) Did you include the raw results of running the given instructions on the given code and
data? [Yes] Raw results are provided via the same GitHub repository.

(c) Did you include scripts and commands that can be used to generate the figures and tables
in your paper based on the raw results of the code, data, and instructions given? [Yes]
Scripts to generate figures and tables based on raw results are provided via the same GitHub
repository.

(d) Did you ensure sufficient code quality such that your code can be safely executed and the
code is properly documented? [Yes]

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed
hyperparameter settings, and how they were chosen)? [Yes] For our benchmark experiments
we used NAS-Bench-101 and NAS-Bench-201. Regarding the Additional Experiments
and Applications Section, all details are reported in Supplement D, Supplement E and
Supplement F.

(f) Did you ensure that you compared different methods (including your own) exactly on
the same benchmarks, including the same datasets, search space, code for training and
hyperparameters for that code? [Yes] As described in Section 4.

(g) Did you run ablation studies to assess the impact of different components of your approach?
[Yes] See Supplement C, Supplement G and Supplement H.

(h) Did you use the same evaluation protocol for the methods being compared? [Yes] As
described in Section 4.

(i) Did you compare performance over time? [Yes] Anytime performance was assessed with
respect to the number of epochs as described in Section 4 or the number of architecture
evaluations as described in Section 5.
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(j) Did you perform multiple runs of your experiments and report random seeds? [Yes] All
runs of main benchmark experiments were replicated 100 times. Random seeds can be
obtained via https://github.com/slds-lmu/qdo_nas.

(k) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes] All results include error bars accompanying mean estimates.

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] We used the
tabular NAS-Bench-101 and NAS-Bench-201 benchmarks.

(m) Did you include the total amount of compute and the type of resources used (e.g., type of
gpus, internal cluster, or cloud provider)? [Yes] As described in Supplement I.

(n) Did you report how you tuned hyperparameters, and what time and resources this required
(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and
also hyperparameters of your own method)? [N/A] No tuning of hyperparameters was
performed.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? [Yes] NAS-Bench-101, NAS-
Bench-201, Naszilla, the Once-for-All module, NNI, and the Stanford Dogs dataset are cited
appropriately.

(b) Did you mention the license of the assets? [Yes] Done in Supplement I.
(c) Did you include any new assets either in the supplemental material or as a url? [Yes] We

provide all our code via https://github.com/slds-lmu/qdo_nas.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] All assets used are either released under the Apache-2.0 License or
MIT License.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-
cable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(irb) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent
on participant compensation? [N/A]
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A Niches in NAS

In the classical QDO literature, niches are assumed to be pairwise disjoint. This implies that each
architecture 𝐴 ∈ A yields feature function values 𝑓𝑖 (𝐴), 𝑖 ≥ 2 that map to a single niche (or none).
In practice, this does not necessarily have to be the case though, as an architecture can belong to
multiple niches. For example, when considering memory or latency constraints, a model with lower
latency or lower memory requirements can always be used in settings that allow for accommodating
slower or larger models. This is illustrated in Figure 4. Note that we index niches in the disjoint
scenario in Figure 4 with two indices, to highlight that some niches share the same boundaries
on a given feature function (e.g., 𝑁1,1 and 𝑁2,1 share the same latency boundaries and only differ
with respect to the memory boundaries). In this paper, we mainly investigated the scenario of
nested niches. The setting for QDO in the NAS context as described in Figure 1 in the main paper
is given by the search of models for deployment on multiple different end-user devices. Similarly,
qdNAS can also be applied in the context of searching for models for deployment on a single
end-user device, meeting different constraints, e.g., as illustrated in Section 5 (Benchmarks on the
MobileNetV3 Search Space) in the main paper. Typically, relevant boundaries of feature functions
that form niches naturally arise given the target device(s) and concrete application at hand.
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Figure 4: Disjoint (left) and nested (right) niches.

B Optimizers

In this section, we provide additional information on optimizers used throughout this paper.
Algorithm 2 illustrates a generic iterative single-objective optimizer in pseudo code.

qdHB Algorithm 3 presents qdHB in pseudo code. qdHB requires only 𝑅 (maximum fidelity)
and 𝜂 (scaling parameter) as input parameters and proceeds to determine the maximum number of
brackets 𝑠max and the approximate total resources 𝐵 which each bracket is assigned. In each bracket
𝑠 , the number of configurations 𝑛 and the fidelity 𝑟 at which they should be evaluated is calculated
and these parameters are used within the SH subroutine. The central step within the SH subroutine
is the selection of the ⌊𝑛𝑖/𝜂⌋ configurations that should be promoted to the next stage. Here, the
topk_qdo function (highlighted in grey) works as follows: We iteratively select one of the niches
uniformly at random and choose the best configuration within this niche observed so far that has
yet not been selected for promotion. This procedure is repeated until ⌊𝑛𝑖/𝜂⌋ configurations have
been selected in total. If not enough configurations belonging to a specific niche have been observed
so far, we choose any configuration uniformly at random over the set of all configurations that
have yet to be promoted. Note that feature functions and thereupon derived niche membership are
assumed to be unaffected by the multifidelity parameter. Niche membership is determined by the
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Algorithm 2: Generic pseudo code for an iterative single-objective optimizer.
Input : 𝑓1, Ddesign, 𝑛total
Result :𝐴∗

1 D← Ddesign
2 𝐴∗ ← argmin𝐴∈D 𝑓1(𝐴) # initial incumbent based on archive
3 for 𝑛 ← 1 to 𝑛total do
4 Propose a new candidate 𝐴★

5 Evaluate 𝑦 ← 𝑓1(𝐴★)
6 if 𝑦 < 𝑓1(𝐴∗) then
7 𝐴∗ ← 𝐴★ # update incumbent
8 end
9 D← D ∪ {(

𝐴★, 𝑦
)}

10 end

get_niche_membership function which simply checks for each niche whether feature values of an
architecture are within the respective niche boundaries. Moreover, we assume that all evaluations
are written into an archive similarly as in Algorithm 1 in the main paper which allows us to
return the best configuration per niche as the final result. Note that in practice, evaluating all
stages of brackets with the same budget instead of iterating over brackets (like in the original HB
implementation) can be more efficient. We use this scheduling variant throughout our benchmark
experiments and application study. More details regarding our implementation can be obtained via
https://github.com/slds-lmu/qdo_nas.

Algorithm 3: Quality Diversity Hyperband (qdHB).
Input :𝑅, 𝜂 # maximum fidelity and scaling parameter
Result :Best configuration per niche

1 𝑠max = ⌊log𝜂 (𝑅)⌋, 𝐵 = (𝑠max + 1)𝑅
2 for 𝑠 ∈ {𝑠max, 𝑠max − 1, . . . , 0} do
3 𝑛 = ⌈𝐵𝑅

𝜂𝑠

(𝑠+1) ⌉, 𝑟 = 𝑅𝜂−𝑠
4 # begin SH with (𝑛, 𝑟 ) inner loop
5 A = sample_configuration(𝑛)
6 Z = {(𝑓𝑖 (𝐴), . . . , 𝑓𝑘 (𝐴)) : 𝐴 ∈ A, 𝑖 ∈ {2, . . . , 𝑘}} # evaluate feature functions
7 N = get_niche_membership(A,Z)
8 for 𝑖 ∈ {0, . . . , 𝑠} do
9 𝑛𝑖 = ⌊𝑛𝜂−𝑖⌋
10 𝑟𝑖 = 𝑟𝜂𝑖

11 Y = {𝑓1(𝐴, 𝑟𝑖) : 𝐴 ∈ A} # evaluate objective function
12 A = topk_qdo(A,Y,N, ⌊𝑛𝑖/𝜂⌋)
13 end
14 end

BOP-ElitesHB In Algorithm 4 we describe the sampling procedure (for a single configuration)
used in BOP-ElitesHB in pseudo code. In contrast to the original BOHB algorithm, we use random
forest as surrogate models, similarly as done in SMAC-HB [33]. Throughout our benchmark
experiments and application study we set 𝜌 = 0. Furthermore, we employ a variant that directly
proposes batches of size 𝑛. This can be done by simply sorting all candidate architectures obtained
via local mutation of the incumbent architectures of each niche within the acquisition function
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optimization step by their EJIE values and selecting the top 𝑛 candidate architectures. Note that
surrogate models are fitted on all available data contained in the current archive (this includes
the multifidelity parameter) and predictions are obtained with respect to the fidelity parameter
set to the current fidelity level. More details regarding our implementation can be obtained via
https://github.com/slds-lmu/qdo_nas.

Algorithm 4: Sampling procedure in BOP-ElitesHB.
Input : 𝜌 # fraction of configurations sampled at random
Result :Next configuration to evaluate

1 if rand() < 𝜌 then
2 return sample_configuration(1)
3 else
4 𝐴★← argmax𝐴∈A 𝛼EJIE(𝐴) # Equation (1)
5 return 𝐴★

6 end

ParEGO* ParEGO [28] is a multi-objective model-based optimizer that at each iteration scalar-
izes the objective functions differently using the augmented Tchebycheff function. First, the 𝑘
objectives are normalized and at each iteration a weight vector 𝜆 is drawn uniformly at random
from the following set of

(𝑠+𝑘−1
𝑘−1

)
different weight vectors4:{

𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑘 ) |
𝑘∑︁
𝑖=1

𝜆𝑖 = 1 ∧ 𝜆𝑖 =
𝑙

𝑠
, 𝑙 ∈ {0, . . . , 𝑠}

}
.

The scalarization is then obtained via 𝑓𝜆 (𝐴) = max𝑘𝑖=1 (𝜆𝑖 · 𝑓𝑖 (𝐴)) + 𝛾
∑𝑘

𝑖=1 𝜆𝑖 · 𝑓𝑖 (𝐴), where 𝛾 is a
small positive value (in our benchmark experiments we use 0.05). In ParEGO* we use the same
truncated path encoding as in BOP-Elites* as well as a random forest surrogate modeling the
scalarized objective function. For optimizing the EI, we use a local mutation scheme similarly to
the one utilized by BANANAS [57], adapted for the multi-objective setting (conceptually similar to
the one proposed by [19]): For each Pareto optimal architecture in the current archive, we obtain
candidate architectures via local mutation and out of all these candidates we select the architecture
with the largest EI for evaluation. More details regarding our implementation can be obtained via
https://github.com/slds-lmu/qdo_nas.

moHB* moHB* [28] is an extension of HB to the multi-objective setting. The optimizer follows
the basic HB routine except for the selection mechanism of configurations that should be promoted
to the next stage: Configurations are promoted based on non-dominated sorting with hypervolume
contribution for tie breaking. For similar approaches, see [48, 49, 50, 19]. In our benchmark
experiments we again use a scheduling variant that evaluates all stages of brackets with the same
budget instead of iterating over brackets. More details regarding our implementation can be
obtained via https://github.com/slds-lmu/qdo_nas.

ParEGOHB ParEGOHB combines BO with moHB* by using the same scalarization as ParEGO*.
Instead of selecting configurations at random at the beginning of each moHB* iteration, ParEGOHB
proposes candidates that maximize the EI with respect to the scalarized objective. In our benchmark
experiments we again set 𝜌 = 0 (fraction of configurations sampled uniformly at random) and
employ a variant that directly proposes batches of size 𝑛. Note that surrogate models are fitted on
all available data contained in the current archive (this includes the multifidelity parameter) and
predictions are obtained with respect to the fidelity parameter set to the current fidelity level. More
details regarding our implementation can be obtained via https://github.com/slds-lmu/qdo_nas.

4note that 𝑠 simply determines the number of different weight vectors
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Table 4: Niches and their boundaries used throughout all benchmark experiments.

Benchmark Dataset Niches Niche Boundaries
Niche 1 Niche 2 Niche 3 Niche 4 Niche 5 Niche 6 Niche 7 Niche 8 Niche 9 Niche 10

NAS-Bench-101
# Params Cifar-10

Small [0, 5356682) [0,∞) - - - - - - - -
Medium [0, 650520) [0, 1227914) [0, 1664778) [0, 3468426) [0,∞) - - - - -
Large [0, 650520) [0, 824848) [0, 1227914) [0, 1664778) [0, 2538506) [0, 3468426) [0, 3989898) [0, 5356682) [0, 8118666) [0,∞)

NAS-Bench-201
Latency

Cifar-10
Small [0, 0.015000444871408) [0,∞) - - - - - - - -
Medium [0, 0.00856115) [0, 0.01030767) [0, 0.01143533) [0, 0.01363741) [0,∞) - - - - -
Large [0, 0.00856115) [0, 0.00893427) [0, 0.01030767) [0, 0.01143533) [0, 0.01250159) [0, 0.01363741) [0, 0.01429903) [0, 0.01500044) [0, 0.01660615) [0,∞)

Cifar-100
Small [0, 0.0159673188862048) [0,∞) - - - - - - - -
Medium [0, 0.00919228) [0, 0.01138714) [0, 0.01232998) [0, 0.01475572) [0,∞) - - - - -
Large [0, 0.00919228) [0, 0.00957457) [0, 0.01138714) [0, 0.01232998) [0, 0.01327515) [0, 0.01475572) [0, 0.01534633) [0, 0.01596732) [0, 0.01768237) [0,∞)

ImageNet16-120
Small [0, 0.014301609992981) [0,∞) - - - - - - - -
Medium [0, 0.00767465) [0, 0.0094483) [0, 0.01054566) [0, 0.01271056) [0,∞) - - - - -
Large [0, 0.00767465) [0, 0.00826192) [0, 0.0094483) [0, 0.01054566) [0, 0.01173623) [0, 0.01271056) [0, 0.01352221) [0, 0.01430161) [0, 0.01595311) [0,∞)

MobileNetV3
Latency ImageNet

Small [0, 17.5) [0, 30) - - - - - - - -
Medium [0, 15) [0, 20) [0, 25) [0, 30) [0, 35) - - - - -
Large [0, 17) [0, 19) [0, 21) [0, 23) [0, 25) [0, 27) [0, 29) [0, 31) [0, 33) [0, 35)

MobileNetV3
FLOPS ImageNet

Small [0, 150) [0, 400) - - - - - - - -
Medium [0, 150) [0, 200) [0, 250) [0, 300) [0, 400) - - - - -
Large [0, 150) [0, 175) [0, 200) [0, 225) [0, 250) [0, 275) [0, 300) [0, 325) [0, 350) [0, 400)

MobileNetV3
Latency × Size ImageNet

Small [0, 20) × [0, 20) [0, 35) × [0, 20) - - - - - - - -
Medium [0, 20) × [0, 20) [0, 25) × [0, 20) [0, 30) × [0, 20) [0, 35) × [0, 20) [0, 40) × [0, 20) - - - - -
Large [0, 20) × [0, 20) [0, 23) × [0, 20) [0, 26) × [0, 20) [0, 29) × [0, 20) [0, 32) × [0, 20) [0, 35) × [0, 20) [0, 38) × [0, 20) [0, 41) × [0, 20) [0, 44) × [0, 20) [0, 47) × [0, 20)
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C Additional Benchmark Details and Results
In this section, we provide additional details and analyses with respect to our main benchmark
experiments. Table 4 summarizes all niches and their boundaries used throughout our benchmarks
(including the additional ones on the MobileNetV3 search space).

The following results extends the results reported for the main benchmark experiments. Critical
differences plots (𝛼 = 0.05) of optimizer ranks (with respect to final performance) are given
in Figure 5. Friedman tests (𝛼 = 0.05) that were conducted beforehand indicated significant
differences in ranks for both the validation (𝜒2(6) = 53.46, 𝑝 < 0.001) and test performance
(𝜒2(6) = 52.14, 𝑝 < 0.001). However, note that critical difference plots based on the Nemenyi test
are underpowered if only few optimizers are compared on few benchmark problems.

1 2 3 4 5 6 7

CD

BOP−Elites*

BOP−ElitesHB

ParEGO*

ParEGOHB

Random

qdHB

moHB*

(a) Validation error summed over niches.

1 2 3 4 5 6 7

CD

BOP−ElitesHB

BOP−Elites*

ParEGO*
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moHB*

(b) Test error summed over niches.

Figure 5: Critical differences plots of the ranks of optimizers.

Figure 6 and Figure 7 show the average best validation and test performance for each niche for
each optimizer on each benchmark problem.

Table 5 summarizes results of a four way ANOVA on the average performance (validation
error summed over niches) of BOP-ElitesHB, BOP-Elites*, ParEGOHB, ParEGO* and Random after
having used half of the total optimization budget. Prior to conducting the ANOVA, we checked the
ANOVA assumptions (normal distribution of residuals and homogeneity of variances) and found
no violation of assumptions. The factors are given as follows: Problem indicates the benchmark
problem (e.g., NAS-Bench-101 on Cifar-10 with small number of niches), multifidelity denotes if
the optimizer uses multifidelity (TRUE for BOP-ElitesHB and ParEGOHB), QDO denotes whether
the optimizer is a QD optimizer (TRUE for BOP-ElitesHB and BOP-Elites*) and model-based denotes
whether the optimizer relies on a surrogate model (TRUE for BOP-ElitesHB, BOP-Elites*, ParEGOHB
and ParEGO*). All main effects are significant at an 𝛼 level of 0.05. We also computed confidence
intervals based on Tukey’s Honest Significant Difference method for the estimated differences
between factor levels: Multifidelity −12.45[−18.19− 6.72], QDO −9.34[−15.08,−3.61], model-based
−13.55[−20.57,−6.52]. Note that the negative sign indicates a decrease in the average validation
error summed over niches.

Table 5: Results of a four way ANOVA on the average performance (validation error summed over
niches) after having used half of the total optimization budget. Type II sums of squares.

Df Sum Sq Mean Sq F value Pr(>F)

Problem 11 1810569.79 164597.25 1410.16 0.0000
Multifidelity 1 2233.44 2233.44 19.13 0.0001
QDO 1 1293.41 1293.41 11.08 0.0017
Model-Based 1 2466.45 2466.45 21.13 0.0000
Residuals 45 5252.51 116.72

We conducted a similar ANOVA on the final performance of optimizers (Table 6). Prior to
conducting the ANOVA, we checked the ANOVA assumptions (normal distribution of residuals
and homogeneity of variances) and found no violation of assumptions. While the effects of QDO
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Large NAS−Bench−101 Cifar−10 Large NAS−Bench−201 Cifar−10 Large NAS−Bench−201 Cifar−100 Large NAS−Bench−201 ImageNet16−120

Medium NAS−Bench−101 Cifar−10 Medium NAS−Bench−201 Cifar−10 Medium NAS−Bench−201 Cifar−100 Medium NAS−Bench−201 ImageNet16−120

Small NAS−Bench−101 Cifar−10 Small NAS−Bench−201 Cifar−10 Small NAS−Bench−201 Cifar−100 Small NAS−Bench−201 ImageNet16−120
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Figure 6: Best solution found in each niche with respect to validation performance. Bars represent
standard errors over 100 replications.

and model-based are still significant at an 𝛼 level of 0.05, the effect of multifidelity no longer is,
indicating that full-fidelity optimizer caught up in performance (which is the expected behavior).
We again computed confidence intervals based on Tukey’s Honest Significant Difference method
for the estimated differences between factor levels: QDO −6.85[−10.12 − 3.58], model-based
−11.08[−15.08,−7.07].

Table 6: Results of a four way ANOVA on the average final performance (validation error summed
over niches). Type II sums of squares.

Df Sum Sq Mean Sq F value Pr(>F)

Problem 11 1724557.85 156777.99 4130.33 0.0000
Multifidelity 1 97.76 97.76 2.58 0.1155
QDO 1 695.13 695.13 18.31 0.0001
Model-Based 1 1648.94 1648.94 43.44 0.0000
Residuals 45 1708.10 37.96

We analyzed the ERT of the QD optimizers given the average performance of the respective
multi-objective optimizers after half of the optimization budget. For each benchmark problem, we
computed the mean validation performance of each multi-objective optimizer after having spent
half of its optimization budget and investigated the analogous QD optimizer. We then computed
the ratio of ERTs between multi-objective and QD optimizers (see Table 7).

23

145



Large NAS−Bench−101 Cifar−10 Large NAS−Bench−201 Cifar−10 Large NAS−Bench−201 Cifar−100 Large NAS−Bench−201 ImageNet16−120

Medium NAS−Bench−101 Cifar−10 Medium NAS−Bench−201 Cifar−10 Medium NAS−Bench−201 Cifar−100 Medium NAS−Bench−201 ImageNet16−120

Small NAS−Bench−101 Cifar−10 Small NAS−Bench−201 Cifar−10 Small NAS−Bench−201 Cifar−100 Small NAS−Bench−201 ImageNet16−120
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Figure 7: Best solution found in each niche with respect to test performance. Bars represent standard
errors over 100 replications.

D Details on Benchmarks on the MobileNetV3 Search Space

In this section, we provide additional details regarding our benchmarks on the MobileNetV3 Search
Space. We use ofa_mbv3_d234_e346_k357_w1.2 as a pretrained supernet and rely on accuracy
predictors and latency/FLOPS look-up tables as provided by [6]. The search space of architectures
is the same as used in [5]. For the model-based optimizers we employ the following encoding of
architectures: Given an architecture, we encode each layer in the neural network into a one-hot
vector based on its kernel size and expand ratio and we assign zero vectors to layers that are
skipped. Besides, we have an additional one-hot vector that represents the input image size. We
concatenate these vectors into a large vector that represents the whole neural network architecture
and input image size. This is the same encoding as used by [5]. Acquisition function optimization
is performed by sampling 1000 architectures uniformly at random.

E Details on Making Once-for-All Even More Efficient

In this section, we provide additional details regarding replacing regularized evolution with MAP-
Elites within Once-for-All. We use ofa_mbv3_d234_e346_k357_w1.2 as a pretrained supernet and
rely on accuracy predictors and latency look-up tables as provided by [6]. Seven niches were defined
via the following latency constraints (in ms): [0, 15), [0, 18), [0, 21), [0, 24), [0, 27), [0, 30), [0, 33).
Regularized evolution is run with an initial population of size 100 for 71 generations 5 resulting in

5this is exactly ⌈(50100 − 7 · 100)/(7 ∗ 100)⌉ with 50100 being the budget MAP-Elites is allowed to use
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Table 7: ERT ratios of multi-objective and QD optimizers to reach the average performance (after half
of the optimization budget) of the respective multi-objective optimizer.

Benchmark Dataset Niches ERT Ratio
ParEGOHB/ moHB*/ ParEGO*/

BOP-ElitesHB qdHB BOP-Elites*

NAS-Bench-101 Cifar-10
Small 3.94 1.19 1.99
Medium 0.76 1.43 1.85
Large 1.47 1.20 1.58

NAS-Bench-201

Cifar-10
Small 4.31 1.96 1.45
Medium 0.94 0.73 1.34
Large 1.04 0.72 1.35

Cifar-100
Small 4.82 1.77 1.46
Medium 1.35 0.67 1.42
Large 1.57 0.78 0.98

ImageNet16-120
Small 4.30 1.20 1.73
Medium 2.31 0.93 1.14
Large 2.11 1.15 0.96

7200 architecture evaluations per latency constraint and 50400 architecture evaluations in total.
We use a mutation probability of 0.1, a mutation ratio of 0.5 and a parent ratio of 0.25. MAP-Elites
searches for optimal architectures jointly for the seven niches and is configured to use a population
of size 100 and is run for 500 generations, resulting in 50100 architecture evaluations in total. The
number of generations for each regularized evolution run and the MAP-Elites run were chosen in a
way so that the total number of architecture evaluations is roughly the same for both methods. We
again use a mutation probability of 0.1. Note that the basic MAP-Elites (as used by us) does not
employ any kind of crossover. We visualize the best validation error obtained for each niche in
Figure 8 (left). MAP-Elites outperforms regularized evolution in almost every niche, making this
variant of Once-for-All even more efficient. In the scenario of using Once-for-All for new devices,
look-up tables do not generalize and the need for using as few as possible architecture evaluations
is of central importance. To illustrate how MAP-Elites compares to regularized evolution in this
scenario, we reran the experiments above but this time we used a population of size 50 and 100
generations for MAP-Elites (and therefore 14 generations for each run of regularized evolution).
Results are illustrated in Figure 8 (right). Again, MAP-Elites generally outperforms regularized
evolution.

F Details on Applying qdNAS to Model Compression

In this section, we provide additional details regarding our application of qdNAS to model compres-
sion. BOP-ElitesHB was slightly modified due to the natural tabular representation of the search
space. Instead of using a truncated path encoding we simply use the tabular representation of
parameters. To optimize the EJIE during the acquisition function optimization step we employ a
simple Random Search, sampling 10000 configurations uniformly at random and proposing the
configuration with the largest EJIE. Table 8 shows the search space used for tuning NNI pruners on
MobileNetV2.

G Analyzing the Effect of the Choice of the Surrogate Model and Acquisition Function
Optimizer

In this section, we present results of a small ablation study regarding the effect of the choice of
the surrogate model and acquisition function optimizer. In the main benchmark experiments, we
observed that our qdNAS optimizers sometimes fail to find any architecture belonging to a certain
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Figure 8: Regularized evolution vs. MAP-Elites within Once-for-All. Left: Large budget of total
architecture evaluations. Right: Small budget of total architecture evaluations. Boxplots are
based on 100 replications.

Table 8: Search space for NNI pruners on MobileNetV2.

Hyperparameter Type Range Info

pruning_mode categorical {conv0, conv1, conv2, conv1andconv2, all}
pruner_name categorical {l1, l2, slim, agp, fpgm, mean_activation, apoz, taylorfo}
sparsity continuous [0.4, 0.7]
agp_pruning_alg categorical {l1, l2, slim, fpgm, mean_activation, apoz, taylorfo}
agp_n_iters integer [1, 100]
agp_n_epochs_per_iter integer [1, 10]
slim_sparsifying_epochs integer [1, 30]
speed_up boolean {TRUE, FALSE}
finetune_epochs integer [1, 27] fidelity
learning_rate continuous [1e-06, 0.01] log
weight_decay continuous [0, 0.1]
kd boolean {TRUE, FALSE}
alpha continuous [0, 1]
temp continuous [0, 100]

“agp_pruning_alg”, “agp_n_iters”, and “agp_n_epochs_per_iter” depend on “pruner_name” being “agp”. “slim_sparsifying_epochs” depends on “pruner_name”
being “slim”. “alpha” and “temp” depend on “kd” being “TRUE”. “log” in the Info column indicates that this parameter is optimized on a logarithmic scale.

niche (even after having used all available budget). This was predominantly the case for the very
small niches in the medium and large number of niches settings (i.e., Niche 1, 2 or 3). Figure 9
shows the relative frequency of niches missed by optimizers (over 100 replications). Note that for
the small number of niches settings, relative frequencies are all zero and therefore omitted. In
general, model-based multifidelity variants perform better than the full-fidelity optimizers and QD
optimizers sometimes perform worse than multi-objective optimizers.

We hypothesized that this could be caused by the choice of the surrogate model used for the
feature functions: A random forest cannot properly extrapolate values outside the training set and
therefore, if the initial design does not contain an architecture for a certain niche, the optimizer
may fail to explore relevant regions in the feature space. We therefore conducted a small ablation
study on the NAS-Bench-101 Cifar-10 medium number of niches benchmark problem. BOP-Elites*
was configured to either use a random forest (as before) or an ensemble of feed-forward neural
networks6 (as used by BANANAS [57]) as a surrogate model for the feature function. Moreover, we

6with an ensemble size of five networks
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Figure 9: Relative frequency of niches missed by optimizers over 100 replications. For the small number
of niches settings, relative frequencies are all zero and therefore omitted.

varied the acquisition function optimizer between a local mutation (as before) or a simple Random
Search (generating the same number of candidate architectures but sampling them uniformly at
random using adjacency matrix encoding). Optimizers were given a budget of 100 full architecture
evaluations and runs were replicated 30 times. Figure 10 shows the anytime performance of these
BOP-Elites* variants. We observe that switching to an ensemble of neural networks as a surrogate
model for the feature function results in a performance boost which can be explained by the fact
that this BOP-Elites* variant no longer struggles with finding solutions in the smallest niche. The
relative frequencies of a solution for Niche 1 being missing are: 26.67% for the random forest +
Random Search, 16.67% for the random forest + mutation, 3.33% for the ensemble of neural networks
+ Random Search, and 3.33% for the ensemble of neural networks + mutation. Regarding the other
niches, a solution is always found. Results also suggest that the choice of the acquisition function
optimizer may be more important in case of using a random forest as a surrogate model for the
feature function.

H Judging Quality Diversity Solutions by Means of Multi-Objective Performance Indica-
tors

In this section, we analyze the performance of our qdNAS optimizers in the context of a multi-
objective optimization setting. As an example, suppose that niches were mis-specified and the
actual solutions (best architecture found for each niche) returned by the QD optimizers are no
longer of interest. We still could ask the question of how well QDO performs in solving the multi-
objective optimization problem. To answer this question, we evaluate the final performance of
all optimizers compared in Section 4 by using multi-objective performance indicators. Figure 11
shows the average Hypervolume Indicator (the difference in hypervolume between the resulting
Pareto front approximation of an optimizer for a given run and the best Pareto front approximation
found over all optimizers and replications). For these computations, the feature function was
transformed to the logarithmic scale for the NAS-Bench-101 problems. As nadir points we used
(100, log(49979275)) ′ for the NAS-Bench-101 problems and (100, 0.0283) ′ for the NAS-Bench-201
problems obtained by taking the theoretical worst validation error of 100 and feature function
upper limits as found in the tabular benchmarks (plus some additional small numerical tolerance).
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Figure 10: Anytime performance of BOP-Elites* variants configured to either use a random forest
or an ensemble of neural networks as a surrogate model for the feature function crossed
with either using a local mutation or a Random Search as acquisition function optimizer.
NAS-Bench-101 Cifar-10 medium number of niches benchmark problem. Ribbons represent
standard errors over 30 replications. x-axis starts after 10 full-fidelity evaluations.

Note that for all optimizers which are not QD optimizers, results with respect to the different
number of niches settings (small vs. medium vs. large) are only statistical replications because
these optimizers are not aware of the niches. We observe that ParEGOHB and ParEGO* perform
well but BOP-ElitesHB also shows good performance in the medium and large number of niches
settings. This is the expected behavior, as the number and nature of the niches directly corresponds
to the ability of qdNAS optimizers to search along the whole Pareto front, i.e., in the small number
of niches settings, qdNAS optimizers have no intention to explore.

 NAS−Bench−101 Cifar−10  NAS−Bench−201 Cifar−10  NAS−Bench−201 Cifar−100  NAS−Bench−201 ImageNet16−120
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Figure 11: Average Hypervolume Indicator. Bars represent standard errors over 100 replications.

Critical differences plots (𝛼 = 0.05) of optimizer ranks (with respect to the Hypervolume
Indicator) are given in Figure 12. A Friedman test (𝛼 = 0.05) that was conducted beforehand
indicated significant differences in ranks (𝜒2(6) = 41.61, 𝑝 < 0.001). Again, note that critical
difference plots based on the Nemenyi test are underpowered if only few optimizers are compared
on few benchmark problems.
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Figure 12: Critical differences plot of the ranks of optimizers with respect to the Hypervolume Indicator.

In Figure 13 we plot the average Pareto front (over 100 replications) for BOP-Elites*, ParEGO*
and Random. The average Pareto fronts of BOP-Elites* and ParEGO* are relatively similar, except for
the small number of niches settings, where ParEGO* has a clear advantage. Summarizing, qdNAS
optimizers can also perform well in a multi-objective optimization setting, but their performance
strongly depends on the number and nature of niches.
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Figure 13: Average Pareto front (over 100 replications) for BOP-Elites*, ParEGO* and Random.

I Technical Details

Benchmark experiments were run on NAS-Bench-101 (Apache-2.0 License) [61] and NAS-Bench-
201 (MIT License) [11]. More precisely, we used the nasbench_full.tfrecord data for NAS-
Bench-101 and the NAS-Bench-201-v1_1-096897.pth data for NAS-Bench-201. Parts of our code
rely on code released in Naszilla (Apache-2.0 License) [56, 57, 58]. For our benchmarks on the
MobileNetV3 search space we used the Once-for-All module [6] released under the MIT License.
We rely on ofa_mbv3_d234_e346_k357_w1.2 as a pretrained supernet and accuracy predictors
and resource usage look-up tables as provided by [6]. NNI is released under the MIT License
[40]. Stanford Dogs is released under the MIT License [26]. Figure 1 in the main paper has been
designed using resources from Flaticon.com. Benchmark experiments were run on Intel Xeon
E5-2697 instances taking around 939 CPU hours (benchmarks and ablation studies). The model
compression application was performed on an NVIDIA DGX A100 instance taking around 3 GPU
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days. Total emissions are estimated to be an equivalent of 72.30 kg CO2. All our code is available at
https://github.com/slds-lmu/qdo_nas.
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5. Algorithmic Innovations Informed Through
Benchmarking

Benchmarking in HPO allows for tracking scientific progress over time through empirical valida-
tion. Agreed-upon datasets and tasks, evaluation metrics, and protocols enable fair and standard-
ized comparisons of algorithms and drive innovation. Ablation studies can illustrate why certain
algorithms excel or fail and indicate how we can improve them. All of this, however, requires the
existence of “good” benchmarks. At the time of writing this thesis and the contributed papers,
there was a clear lack of established benchmarks for HPO that are easy to use, reproducible and
representative1. For example, (Feurer and Hutter, 2019) point out that existing benchmarks such
as HPOlib (Eggensperger et al., 2013) had not gained similar traction as the COCO platform
(Hansen et al., 2021) containing the synthetic BBOB functions (Hansen et al., 2009) used as a
benchmarking suite for yearly challenges of the black-box optimization community and called for
the development of unified, easy to use and reproducible HPO benchmarking suites. As real-world
HPO, i.e., evaluating HPCs via a resampling, is costly, efficient HPO benchmarking naturally fo-
cuses on tabular benchmarks (which became especially popular in the field of NAS, see, e.g., Ying
et al. 2019; Dong and Yang 2020) or surrogate benchmarks (Eggensperger et al., 2015; Zela et al.,
2022). However, at the time of writing this thesis, no benchmarking suite provided unified access
to an efficient, large-scale HPO benchmark collection that is widely applicable due to diverse
search spaces and not only allows for vanilla single-objective HPO but also multi-fidelity and
multi-objective HPO. Moreover, performing automated AC (Hoos, 2012b; Lindauer et al., 2019)
of HPO algorithms or designing algorithms via programming by optimization (Hoos, 2012a) re-
quires the availability of a benchmarking suite with representative train and test splits to evaluate
automated design choices in an unbiased manner.

In the first contributing article YAHPO Gym - An efficient multi-objective multi-fidelity benchmark
for hyperparameter optimization we answer the question of how can we design efficient, scalable
and representative benchmarks for HPO. With YAHPO Gym, we introduce a surrogate-based
benchmarking suite for HPO providing over 700 potentially multi-fidelity and multi-objective
HPO benchmark problems across 14 scenarios. Scenarios are defined by a learning algorithm
and search space and instances of a scenario vary by concrete datasets and performance met-
rics. YAHPO Gym is easy to use, requires only a few dependencies and is highly efficient by
compressing surrogate models as ONNX binaries making it portable and also easily integrable
in other benchmarking suites. We demonstrate that surrogate benchmarks generally allow for
more faithful benchmarking of HPO algorithms compared to tabular benchmarks, as long as the
surrogate model quality is reasonably high. YAHPO Gym further provides two subsets of selected
benchmarking suites suitable for single-objective and multi-objective benchmarking on which we
demonstrate the effectiveness of recent algorithms.

1We want to note that HPO benchmarking suites such as HPOBench (Eggensperger et al., 2021) and HPO-B
(Pineda Arango et al., 2021) all became available around the same time as YAHPO Gym which we present as
a contribution in this thesis.
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In the second contributing article A collection of quality diversity optimization problems derived
from hyperparameter optimization of machine learning models we rely on YAHPO Gym to in-
troduce twelve quality diversity optimization benchmark problems based on HPO focusing on
interpretability vs. performance, and resource efficiency vs. performance trade-offs. In contrast
to a multi-objective optimization setting, interpretability and resource efficiency are treated as
secondary objectives with the goal of obtaining diverse solutions that all perform well. By bench-
marking established quality diversity optimization algorithms we demonstrate that HPO problems
can be formulated as interesting quality diversity optimization problems, bridging a gap between
two research communities.

In the third contributing article Automated benchmark-driven design and explanation of hyper-
parameter optimizers we make use of YAHPO Gym as a benchmarking suite to automatically
configure a new multi-fidelity HPO algorithm via BO on a meta-level. This is done by opti-
mizing over a search space of building blocks of surrogate model-assisted HB algorithms. The
search space includes, for example, parameters such as the batch size, fidelity scaling factor, and
survival rate (disentangling the halving parameter of SH and HB based algorithms), sampling
method and distribution, and the surrogate model. On a training set of instances, BO identifies a
well-performing multi-fidelity algorithm that performs competitively with or better than existing
methods and generalizes to a test set of instances. Moreover, we observe that simple configura-
tions (e.g., using an equal batch-size schedule instead of an SH schedule) often perform as well
as or better than complicated ones. In an ablation analysis, we further observe that surrogate-
based filtering of configurations is useful and again that simple approaches, such as a k-nearest
neighbor surrogate model can perform well. Overall, this contribution demonstrates how we can
systematically design better HPO algorithms through benchmarking rather than trial and error.

In the fourth contributing article Mutation is all you need we present an ablation study of BA-
NANAS (White et al., 2021a), a state-of-the-art NAS method embedded within BO. By systemat-
ically varying the choice of architecture representation, surrogate model, acquisition function, and
acquisition function optimizer we demonstrate that the strong performance of BANANAS mostly
stems from the choice of its acquisition function optimizer which performs a local mutation of
the best-performing architecture found so far. In this sense, BANANAS performs a model-guided
local search with the local search being the dominant factor for driving its state-of-the-art perfor-
mance.

In the fifth contributing article Neural networks as black-box benchmark functions optimized for
exploratory landscape features we shift the focus to general black-box benchmarking functions. For
traditional synthetic benchmarking functions such as the BBOB functions, ELA has shown to be
useful for telling functions apart as well as for algorithm configuration and selection. To answer
the question of how we can automatically generate synthetic functions that match a given ELA
feature vector, we rely on a two-step procedure. First, we generate a point cloud and minimize its
distance in ELA feature space to a given target vector via CMA-ES. Second, we train a surrogate
model, a simple feed-forward neural network, on the optimized point cloud to generate a smooth
function that retains the desired ELA features. We demonstrate that this method allows for
both interpolation within known benchmark spaces and extrapolation to generate new problems.
Moreover, algorithm performance on our regenerated set of BBOB functions closely resembles
algorithm performance on the original BBOB function instances, demonstrating the practical
usability of our method for generating functions.
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5.1. YAHPO Gym - An Efficient Multi-Objective Multi-Fidelity
Benchmark for Hyperparameter Optimization

Contributing article:

F. Pfisterer∗, L. Schneider∗, J. Moosbauer, M. Binder, and B. Bischl. YAHPO Gym - An
efficient multi-objective multi-fidelity benchmark for hyperparameter optimization. In I. Guyon,
M. Lindauer, M. van der Schaar, F. Hutter, and R. Garnett, editors, Proceedings of the First
International Conference on Automated Machine Learning, pages 3/1—39, 2022. https: //
proceedings. mlr. press/ v188/ pfisterer22a. html .

Copyright information:

This article is licensed under the Creative Commons Attribution 4.0 International License (http:
//creativecommons.org/licenses/by/4.0/).

Author contributions:

Florian Pfisterer and Lennart Schneider share the first authorship. Their overall contributions
can be described as follows. The core idea for the system (YAHPO Gym) originated from Flo-
rian Pfisterer who also developed the initial code and the first prototype of the system. Florian
Pfisterer re-implemented the underlying software with the help of Lennart Schneider. Florian
Pfisterer, Lennart Schneider, and Martin Binder collected samples from relevant benchmarks and
performance datasets. Lennart Schneider contributed several improvements to software, stability,
and functionality as well as automated tuning. Martin Binder, Julia Moosbauer, and Bernd Bis-
chl advised throughout this process. Lennart Schneider and Florian Pfisterer jointly developed
the experiments, which were executed and analyzed by Lennart Schneider who also contributed
implementations of relevant baseline algorithms. Florian Pfisterer and Lennart Schneider jointly
authored the resulting manuscript with input and improvements by Martin Binder, Julia Moos-
bauer, and Bernd Bischl.

Supplementary material available at:

• Python and R package: https://github.com/slds-lmu/yahpo_gym

• Code: https://github.com/slds-lmu/yahpo_exps

• Data: https://github.com/slds-lmu/yahpo_data

• arXiv version: https://arxiv.org/abs/2109.03670
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Abstract When developing and analyzing new hyperparameter optimization methods, it is vital to
empirically evaluate and compare them on well-curated benchmark suites. In this work, we
propose a new set of challenging and relevant benchmark problems motivated by desirable
properties and requirements for such benchmarks. Our new surrogate-based benchmark
collection consists of 14 scenarios that in total constitute over 700 multi-fidelity hyper-
parameter optimization problems, which all enable multi-objective hyperparameter opti-
mization. Furthermore, we empirically compare surrogate-based benchmarks to the more
widely-used tabular benchmarks, and demonstrate that the latter may produce unfaithful
results regarding the performance ranking of HPO methods. We examine and compare our
benchmark collection with respect to defined requirements and propose a single-objective
as well as a multi-objective benchmark suite on which we compare 7 single-objective and
7 multi-objective optimizers in a benchmark experiment. Our software is available at
[https://github.com/slds-lmu/yahpo_gym].

1 Introduction
Hyperparameter optimization (HPO) of machine learning (ML) models is a crucial step for achiev-
ing good predictive performance [43]. Over the last ten years, a large and still growing set of HPO
tuning methods based on different principles has been developed [31, 66, 38]. A particularly inter-
esting development aremulti-fidelitymethods, whichmake use of relatively cheap approximations
of a given true objective, thereby achieving good performance relatively quickly [44, 21, 35], as
well as multi-objective methods, which allow for simultaneous optimization of multiple objectives
[40]. While different HPO methods found considerable adoption in practice, it is by no means
clear which method performs best under which circumstances. In order to investigate this, it is
necessary to evaluate these methods on testbeds that are ideally 𝑖) highly efficient, 𝑖𝑖) include a
sufficient amount of representative and diverse benchmark instances and 𝑖𝑖𝑖) are easy to set up
and integrate with different optimizer APIs. Furthermore, benchmarks have found use in meta-
learning [70, 74, 59] and meta-optimization [49, 53]. In those settings, a larger number of poten-
tially relevant optimization problems is required in order to obtain results that generalize beyond
the set of (meta-)training instances. Simultaneously, those applications require a large number
of evaluations that make obtaining real evaluations prohibitively expensive, indicating a need for
benchmarks that are cheap to query.

Several benchmarks that aim to address this, each of which are collections of multiple bench-
mark instances, have been proposed [69, 15, 60, 19]. Benchmark instances can be classified into
four categories: (i) synthetic functions, (ii) benchmarks incorporating real evaluations, (iii) tab-
ular benchmarks based on pre-evaluated grid points, and (iv) surrogate benchmarks making use
of meta-models that approximate the relationship between configurations and performance met-
rics. Each category has various advantages and drawbacks. Synthetic functions can be evaluated
quickly but are often not representative for the type of problems encountered in practice; real
evaluations on the other hand are often prohibitively expensive, especially in the context of larger
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benchmarks and neural architecture search (NAS). Tabular benchmarks, while cheap to evaluate,
rely on a pre-defined grid which changes the optimization problem and can potentially lead to
biases. Surrogate benchmarks are also cheap to query but require high quality surrogates in order
to avoid introducing bias. While benchmark suites have found some use in scientific publications,
they are not used ubiquitously. This lack of permeation – and consequently the lack of a standard
test bed – can result in researchers choosing benchmark problems that favor their own method,
leading to the publication of biased results. The problem of cherry picking, also termed rigging the
lottery [14], can be ameliorated through the use of standardized testing infrastructure along with
a detailed definition of evaluation criteria that are widely adapted.

We therefore observe a clear need for benchmark libraries that provide unified interfaces to
a variety of cheap to evaluate, realistic, and practically relevant benchmarking problems that are
defined across diverse search spaces. In this work, we propose YAHPO Gym, a surrogate-based
benchmark library including a collection of over 700 benchmark instances defined across 14
scenarios. Scenarios are comprised of evaluations of one given machine learning algorithm on
different datasets (= instances) and therefore share the same search space and performance
metrics. It contains a versioned set of surrogate models that allow for multi-fidelity evaluations
of multiple objectives. Our library is licensed under the Apache 2.0 license and can be freely used
and extended by the community. Usage and available functionality is extensively documented1.

Contributions: We introduce YAHPO Gym, a surrogate-based benchmark for machine-
learning HPO. We conceptually demonstrate that tabular benchmarks may induce bias in perfor-
mance estimation and ranking of HPO methods, and that this happens to a lesser degree with
surrogate benchmarks. We argue that our surrogate benchmark YAHPO Gymmeets all desiderata
for a good benchmark, providing faithful results, fast evaluation, relevant problems and realistic
objective landscapes both on local as well as global scales. In order to demonstrate this, we conduct
an extensive evaluation of the proposed surrogates indicating that our surrogate models indeed
provide high quality approximations. We propose two benchmark suites for single-objective and
multi-objective evaluation comprised of a subset of our instances and demonstrate how they can
be used with YAHPO Gym in a multi-fidelity and a multi-objective optimization benchmark.

2 Related Work

Several efforts to provide unified testbeds for black-box optimization exist. For general pur-
pose black-box optimization, COCO [29] provides a collection of various synthetic black-box
benchmark functions, while kurobako [56] is a collection of various general black-box optimizers
and benchmark problems. Similarly, Bayesmark [69] includes several benchmarks for Bayesian
Optimization on real problems and LassoBench [64] provides a benchmark for high-dimensional
optimization problems. HPOlib [15] was one of the first to propose a common test bed for
empirically assessing the performance of HPO methods. It provides a common API to access
synthetic test functions, real-world HPO problems, tabular benchmarks as well as some surrogate
benchmarks and found use in empirical benchmark studies [6]. Its successor HPOBench [19] offers
similar capabilities, focussing on reproducible containerized benchmarks. It offers 12 benchmark
scenarios and more than 100 test instances. Recently, [60] introduced HPO-B, a large-scale
reproducible (tabular) benchmark for black-box HPO based on OpenML [71]. HPO-B2 relies on 16
search spaces that were evaluated sparsely on 101 datasets. PROFET [37] in contrast is not based
on real datasets but uses a generative meta-model to generate synthetic but realistic benchmark
instances. In the past, tabular benchmarks have been used frequently to speed up experiments
in the context of HPO [66, 23, 72, 22] and NAS (c.f. [50]). Eggensperger et al. [17] compared

1Documentation and data are available at https://github.com/slds-lmu/yahpo_gym.
2We consider the published v2 version for comparison. Surrogates are only available in the v3 version.
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Table 1: Comparison of HPO Benchmark Suites.

Suite Types #Collections #HPs MF MO TF Async H Time† Memory†

YAHPO Gym S 14 2-38 ✓ ✓ ✓ (-) ✓ 0.4∗𝑠 0.1 GB
HPOBench R/T/S 12 4-26 ✓ ✓ (-) − (-) 12.2s 0.2 GB
HPO-B (v2) T/(S) 16 2-18 − − ✓ − − 18.8s 3.7 GB
MF: Multi-fidelity; MO: Multi-objective, TF: Transfer-HPO, Async: Asynchronous evaluation; H: hierarchical search spaces.
✓: fully supported; (-): partially supported; -: not supported; R/T/S:real/tabular/surrogate.
† : Runtime and memory footprint for 300 iterations of Random Search on an SVM instance. ∗: allowing for batched evaluation, YAHPO Gym takes only 0.13𝑠 .

different instance surrogate models for 9 different HPO problems and concluded that the results
of benchmarks run on surrogate models generally closely mimic those of benchmarks using
the actual evaluations that they are derived from, if performance measures of the surrogate
models indicate that they predict the underlying objective values sufficiently well (cross-validated
Spearman’s 𝜌 between 0.9 and 1 [17]). Similar observations have been made in the context of
algorithm configuration [18] and NAS [65].

We compare YAHPO Gym with the recently published benchmarks HPOBench [19] and HPO-
B [60] in Table 1. Our library relies on high quality surrogates that allow for multi-fidelity as well
as multi-objective evaluation. While existing benchmark suites could in principle be used to con-
struct multi-objective benchmarks, they do not offer full support: HPOBench contains only few
instances that allow evaluating multiple metrics and offers no unified API to query those, while
HPO-B does not support multiple objectives at all. Furthermore, neither propose a concrete evalu-
ation protocol, opening up a multiplicity of (benchmark) design choices which can lead to incon-
clusive results (c.f. [55]). Instead of relying on containerization to allow for portability, our library
relies on neural network surrogates compressed using ONNX [3], allowing for reproducibility and
portability while simultaneously being extremely fast and efficient due to minimal overhead. This
is demonstrated in a small experiment where we measure runtime and memory consumption for
evaluating 300 random configurations on SVM search spaces also shown in Table 1, demonstrat-
ing that our software is more time and memory efficient. See details in Supplement B.2. While
YAHPOGym provides the flexibility to design and execute any subset of the provided benchmarks,
we also propose two fully specified testbeds for single- and multi-objective optimization that were
specifically selected to cover a diverse set of relevant instances while being less extensive. See
details in Supplement E.2 and Supplement E.3.

3 Background

3.1 Hyperparameter Optimization

An ML learner or inducer I configured by hyperparameters 𝝀 ∈ Λ maps a dataset D ∈ D to
a model 𝑓 , i.e., I : D × Λ → H, (D,𝝀) ↦→ 𝑓 . HPO methods for ML aim to identify a well-
performing hyperparameter configuration (HPC) 𝝀 ∈ Λ̃ for I𝝀 [10]. Typically, the considered
search space Λ̃ ⊂ Λ is a subspace of the set of all possible HPCs: Λ̃ = Λ̃1 × Λ̃2 × · · · × Λ̃𝑑 , where
Λ̃𝑖 is a bounded subset of the domain of the 𝑖-th hyperparameter Λ𝑖 . This Λ̃𝑖 can be either real,
integer, or category valued, and the search space can contain dependent hyperparameters, leading
to a possibly hierarchical search space. We formally define the (potentially multi-objective) HPO
problem as:

𝝀∗ ∈ argmin
𝝀∈Λ̃

𝑐 (𝝀), with 𝑐 : Λ̃ → R𝑚, (1)

where 𝝀∗ denotes the theoretical optimum and 𝑐 maps an arbitrary HPC to (possibly multiple)
target metrics. The classical HPO problem is defined as 𝝀∗ ∈ argmin𝝀∈Λ̃ ĜE(𝝀), i.e., the goal is
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to minimize the estimated generalization error, see [10] for further details. Instead of optimizing
only for predictive performance, other metrics such as model sparsity or computational efficiency
of prediction (e.g., MACs and FLOPs or model size and memory usage) could be included, resulting
in a multi-objective HPO problem [62, 30, 7, 57, 27]. 𝑐 (𝝀) is a black-box function, as it usually has
no closed-form mathematical representation, and analytic gradient information is generally not
available. Furthermore, the evaluation of 𝑐 (𝝀) can take a significant amount of time. Therefore,
the minimization of 𝑐 (𝝀) forms an expensive black-box optimization problem.

Many HPO problems allow for approximations of the objective to a varying fidelity, making
multi-fidelity optimization a viable option [44, 62, 35]. For example, in the context of fitting neural
networks, it is possible to stop or pause training runs early when performance does not indicate
a promising final result [67]. Another possibility is given by reducing the fraction of the dataset
Dtrain used for training [38], since the complexity of evaluating 𝑐 (𝝀) is often at least linear in
|Dtrain |. Formally, the possibility of multi-fidelity evaluation can be represented in the form of a
“budget” hyperparameter which we denote by 𝜆budget as a component of 𝝀.

3.2 Hyperparameter Optimization Benchmarks
Benchmark suites are comprised of a set of benchmark instances that each define an optimization
problem to be solved. We formally define benchmark instances adapted from [19] as:
Definition 1 (Benchmark Instance) A benchmark instance consists of a function 𝑔 : Λ → R𝑚,𝑚 ∈
N+, and a bounded hyperparameter space Λ̃ which is the Cartesian product of hyperparameters
Λ̃1, . . . , Λ̃𝑑 . Multi-fidelity benchmarks can be queried at lower fidelities by varying the budget pa-
rameter Λ̃budget ∈ Λ̃.While hyperparameters Λ̃𝑖 can be continuous, integer, ordinal or categorical, we
require at least ordinal scales for the fidelity parameter(s) Λbudget. We call a benchmark instance
multi-objective if the number of objectives𝑚 > 1 and single-objective otherwise.
We consider HPO benchmark instances estimating the generalization error 𝑔(𝝀) = ĜE(I,J , 𝜌,𝝀)
given an inducer I , resampling J , and performance metric(s) 𝜌 , along with other possibly rele-
vant metrics (computational cost, memory, ...). Real instances are based on actually performing
these evaluations during the benchmark, while tabular instances are based on a fixed set of pre-
recorded evaluations. Instances based on surrogates in turn approximate the functional relation-
ship between 𝝀 and 𝑔(𝝀). For clarity, we provide more precise definitions of synthetic, tabular and
surrogate instances in Supplement B.3. Real instances rely on live evaluations of the generalization
error and are therefore often prohibitively computationally expensive, especially when consider-
ing larger benchmarks or meta-learning scenarios across many tasks [70, 59, 24]. Practitioners
therefore often rely on tabular or surrogate benchmarks for large benchmark studies because they
are often cheaper to evaluate by orders of magnitude. For tabular benchmarks, a large collection
of pre-computed hyperparameter performance mappings is provided, which serves as a look-up
table during runs of HPO methods. This has the downside of constraining the search space to
precomputed evaluations, essentially turning the optimization problem from a continuous/mixed
space to a discrete optimization problem. Surrogate benchmarks can strike a balance between the
efficiency and faithful approximation to the real problem by learning the functional relationship
between hyperparameters and performance values yielding an approximation 𝑔(𝝀) of 𝑔(𝝀). This
allows evaluations across the full search space Λ̃ while being considerably cheaper to evaluate.
The usefulness of surrogates in turn relies on the approximation quality of the surrogate model.
We present an in-depth analysis of approximation qualities of the surrogates employed in YAHPO
Gym in Supplement E.1.

Definition 2 (Benchmark Scenario) A benchmark scenario consists of a set of𝐾 functions 𝑔𝑘 : Λ →
Y ⊆ R𝑚,𝑚 ∈ N+, 𝑘 ∈ {1, ..., 𝐾} corresponding to a set of Benchmark Instances. Each instance
within a scenario shares the same bounded hyperparameter space Λ̃ (and therefore fidelity parameters)
as well as the same co-domain Y .
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Table 2: YAHPO Gym Benchmarks.

Scenario Search Space #Instances Target Metrics Fidelity H

rbv2_super 38D: Mixed 103 9: perf(6) + rt(2) + mem fraction ✓
rbv2_svm 6D: Mixed 106 9: perf(6) + rt(2) + mem fraction ✓
rbv2_rpart 5D: Mixed 117 9: perf(6) + rt(2) + mem fraction
rbv2_aknn 6D: Mixed 118 9: perf(6) + rt(2) + mem fraction
rbv2_glmnet 3D: Mixed 115 9: perf(6) + rt(2) + mem fraction
rbv2_ranger 8D: Mixed 119 9: perf(6) + rt(2) + mem fraction ✓
rbv2_xgboost 14D: Mixed 119 9: perf(6) + rt(2) + mem fraction ✓
nb301 34D: Categorical 1 2: perf(1) + rt(1) epoch ✓
lcbench 7D: Numeric 34 6: perf(5) + rt(1) epoch
iaml_super 28D: Mixed 4 12: perf(4) + inp(3) + rt(2) + mem(3) fraction ✓
iaml_rpart 4D: Numeric 4 12: perf(4) + inp(3) + rt(2) + mem(3) fraction
iaml_glmnet 2D: Numeric 4 12: perf(4) + inp(3) + rt(2) + mem(3) fraction
iaml_ranger 8D: Mixed 4 12: perf(4) + inp(3) + rt(2) + mem(3) fraction ✓
iaml_xgboost 13D: Mixed 4 12: perf(4) + inp(3) + rt(2) + mem(3) fraction ✓
Mixed = numeric and categorical hyperparameters; perf = performance measures; rt = train/predict time; mem = memory consumption; inp = interpretability measures; H
= Hierarchical search space. We do not include the fidelity parameter in the search space dimensionality.

A scenario is therefore a collection of instances sharing the same search space and objective(s),
e.g., allowing for hyperparameter transfer learning between instances of the scenario. Benchmark
Suites in turn are sets of instances that do not need to share the same objectives, but instead can
consist of instances stemming from different scenarios.

4 YAHPO Gym

Motivated by the need for efficient and faithful benchmarks for HPO, we develop YAHPO Gym
based on a set of Criteria for HPO Benchmarks discussed in Supplement B.1. YAHPO Gym is ex-
plicitly designed to use surrogate-based benchmarks only. It consists of a collection of 14 scenarios
that can be evaluated across a total of ∼ 700 instances. Each benchmark instance consists of an
objective function that is parameterized in the form of a ConfigSpace Python object [48], making
the search space computer-readable and readily usable with a range of existing HPO implemen-
tations. The objective function generates a prediction using the instance surrogate model, which
is a compressed neural network. Table 2 provides an overview of all benchmark scenarios avail-
able in YAHPO Gym. We describe data sources as well as the full search spaces in Supplement F.
We want to highlight the rbv2_super collection, which reflects an AutoML pipeline: It is, to our
knowledge, the first available benchmark simulating a combined algorithm and hyperparameter
selection problem [68] in the form of a high dimensional hierarchical search space by introducing
the algorithm as an additional tunable hyperparameter.

In YAHPO Gym, every scenario allows for querying objective values at lower fidelities, en-
abling efficient benchmarking of multi-fidelity HPO methods. Analogously, every benchmark al-
lows for returning multiple target metrics as criteria, enabling benchmarking of multi-objective
HPO methods. Finally, almost all benchmark scenarios provide problems on a large number of
instances (mostly ranging from 34 to 119), allowing for benchmarking of transfer-learning HPO
methods. Predictions as well as sampling can be made reproducible through seeding. In order to
achieve portability while still being efficient, YAHPO Gym uses fitted neural networks compressed
via ONNX [3] as surrogate models. Our neural networks are ResNets for tabular data [26] consist-
ing of up to 8 layers with a width of up to 512 and hyperparameters individually tuned for each
scenario. We refer the reader to Supplement D for details regarding architecture and fitting proce-
dure. Surrogate models have very small memory and inference time overhead and are compatible
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BenchmarkSet(s, i)

get_opt_space()
objective_function(xs)

instances (1,...,K)
targets

ConfigSpace

{’t1’: 0.95, ..., ’t5’: 0.87}

(a) YAHPO Gym’s core functionality (s: scenario,
i: instance, xs: configuration). Evaluating
objective_function for a given configuration xs
returns a dictionary of predicted metrics for a given
scenario and instance.

from yahpo_gym import *

b = BenchmarkSet('lcbench', instance='3945')

# Sample a point from the ConfigSpace

xs = b.get_opt_space().sample_configuration(1)

# Evaluate the configuration

b.objective_function(xs)

(b) Python code for instantiating a benchmark in-
stance, sampling a new configuration and evaluat-
ing the objective function.

Figure 1: API overview.

across platforms and operating systems. In contrast to other benchmarks, evaluating 𝑐 (𝝀) requires
only 10 − 100 ms and only 100MB of memory. In fact, YAHPO Gym’s current infrastructure is so
lightweight, it can easily be integrated in any existing toolbox or benchmark suite.

4.1 Suites: YAHPO-SO & YAHPO-MO

Together with YAHPO Gym, we propose two carefully selected benchmark suites. They constitute
a proposal for surrogate-based benchmarks of HPO problems. We call those YAHPO-SO (single-
objective, 20 instances) and YAHPO-MO (multi-objective, 25 instances). Together with the set of
instances, we provide specific evaluation criteria, such as the budget available for optimization and
number of stochastic replications as well as metrics to be used and fully specified search spaces
which can be obtained from our software. Instances were selected across all scenarios taking into
account approximation quality of the underlying surrogate and diversity. We consider those bench-
marks a first draft for such a benchmark set (version v1.0) and explicitly invite the community to
jointly work on a larger, more comprehensively evaluated set of benchmark instances. Details
with respect to how instances were selected, and a full list of included instances, can be found in
Supplement C.2. We conduct a benchmark providing anytime performance for a large variety of
baselines on the proposed benchmark suites.

5 Tabular or Surrogate Benchmarks?

Consider the true objective 𝑐 (𝝀) of a real benchmark instance with 𝑐 : Λ̃ → R in the single-
objective setting. In a tabular benchmark, the domain of the objective function is implicitly dis-
cretized into a finite grid Λ̃discrete of the original domain and pre-evaluated at these points and
the benchmark objective 𝑐tabular(𝝀) is thus the original 𝑐 (𝝀) restricted to Λ̃discrete. The extent to
which discretization affects the faithfulness of tabular benchmarks depends on the nature and di-
mensionality of the search space: It disregards local structure in the response function and might
even impose fixed fidelity schedules, should evaluations not be available at all budget levels. In
order to assess the magnitude of this effect, we investigate the practical effects of discretization
in the following experiment by comparing 8 black-box optimizers on tabular, surrogate and real
versions of 5 synthethic multi-fidelity functions of varying dimensionality (Branin2D, Currin2D,
Hartmann3D/6D, and Borehole8D [35]). The tabular benchmark is constructed by drawing and
evaluating 106 points from a grid. Surrogates are then fitted using those points. We compare
Random Search (RS), several versions of Bayesian optimization (BO) and Hyperband (HB, [44])
across all settings. BO is configured with algorithm surrogate model either a Gaussian process
(BO_GP), ensemble of feed-forward neural networks (BO_NN, [73]) or random forest (BO_RF, [12])
and acquisition function optimizer either Nelder-Mead/exhaustive search3 (*_DF [54]) or Random

3for tabular benchmarks
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Figure 2: Mean normalized regret (top) and mean ranks (bottom) of different HPO methods on dif-
ferent benchmarks. Ribbons represent standard errors. The gray vertical line indicates the
cumulative budget used for the initial design of BO methods. Performance measures of the
surrogate benchmarks are stated after the benchmark function. 30 replications.

Search (*_RS). We describe additional details regarding the benchmark setup in Supplement E.1
and briefly present results: Figure 2 shows the anytime performance and mean rank of each HPO
method split for the real, surrogate, and tabular benchmark on the Hartmann6D and Borehole8D
test functions. We observe very similar performance traces of HPO methods on surrogate ver-
sions of benchmarks compared to real versions (Figure 2, top). However, in tabular benchmarks,
we notice that for some problems, the BO methods converge substantially faster to a lower mean
normalized regret (especially for BO_GP_*), which can possibly be explained by the much simpler
infill optimization problem solved in the tabular case. Moreover, Hyperband appears to consis-
tently perform better on tabular benchmarks. We further investigate average rankings over all
replications (Figure 2, bottom). Each benchmark function yields an average ranking of HPO meth-
ods (e.g., with respect to final performance). Using consensus rankings, we can arrive at a single
ranking over all benchmark functions [51] for a given benchmark type. We use the optimization
based symmetric difference (SD) [36] minimizing rank reversals to compare both the surrogate
and tabular inferred consensus rankings with the “ground truth” real function consensus ranking.
We observe that consensus rankings obtained using surrogate benchmarks (permutation order 2)
match more closely than tabular benchmarks (permutation order 5). We again provide additional
details in Supplement E.1.

6 A Benchmark of HPO Methods on YAHPO Gym
We now demonstrate how YAHPO Gym can be used in practice to benchmark different HPOmeth-
ods. We benchmark 7 single-objective HPO methods on YAHPO-SO and 7 multi-objective HPO
methods on YAHPO-MO and want to answer the following research questions: (RQ1) Do multi-
fidelity (single-objective) HPOmethods improve over full-fidelity methods? (RQ2)Do advanced multi-
objective HPO methods improve over Random Search?
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6.1 RQ1: Do multi-fidelity (single-objective) HPO methods improve over full-fidelity methods?

We compare Random Search and SMAC (SMAC4HPO facade; [47]) to the multi-fidelity methods
Hyperband [44], BOHB [21], DEHB [4], SMAC-HB (SMAC4MF facade; [47]) and optuna ([2]; TPE
sampler and median pruner following successive halving steps). More details on the experimental
setup and HPO methods is given in Supplement E.2. All optimizers are run for a total budget of
⌈20 + 40 · √search_space_dim ⌉ full-fidelity evaluations with 30 replications. Figure 3a shows the
average rank of HPO methods with respect to their anytime performance. Figure 3b and Figure 3c
show critical difference plots (𝛼 = 0.05) of mean ranks after 25% and 100% of the optimization bud-
get. The corresponding Friedman tests indicate significant differences (𝑝 < 0.001) in both cases.
We observe that all multi-fidelity optimizers outperform Random Search with respect to interme-
diate performance (25% of optimization budget) and optuna, BOHB, SMAC-HB and Hyperband
also outperform SMAC. With respect to final performance, SMAC takes the lead closely followed
by SMAC-HB with other multi-fidelity optimizers slightly falling behind. We conclude that multi-
fidelity HPO methods indeed improve over full-fidelity methods, but only with respect to interme-
diate performance. Our results are in line with what has been reported in other benchmarks [19]
with the exception that optuna seems more competitive in our benchmark, while DEHB is less
competitive. One reason for this difference might be that we include hierarchical search spaces in
contrast to previous work.
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Figure 3: Results of YAHPO-SO single-objective benchmark across 7 optimizers (20 instances).

6.2 RQ2: Do advanced multi-objective HPO methods improve over Random Search?

We compare Random Search, Random Search x4 (Random Search with quadrupled budget as
a strong baseline), ParEGO [40], SMS-EGO [61], EHVI [20], MEGO [33] and MIES [46] on
multi-objective HPO problems with 2 − 4 objectives. More details on the experimental setup
and HPO methods is given in Supplement E.3. All optimizers are run for a total budget of
⌈20 + 40 · √search_space_dim ⌉ full-fidelity evaluations for 30 replications. Figure 4a shows the
average rank of HPO methods with respect to their anytime performance (determined based on
the normalized Hypervolume Indicator). Figure 4b and Figure 4c show critical difference plots
(𝛼 = 0.05) of these ranks after 25% and 100% of the optimization budget. The corresponding
Friedman tests indicate significant differences (𝑝 < 0.001) in both cases. We observe that not all
methods significantly improve over Random Search with respect to final performance, i.e., EHVI
and SMS-EGO fail to do so. Especially with respect to intermediate performance (25% of optimiza-
tion budget), Random x4 outperforms all competitors. However, with respect to final performance,
MEGO, ParEGO and MIES yield similar performance catching up to Random x4. We conclude that,
in general, advanced multi-objective HPO methods improve over Random Search but also want
to highlight that optimizer performance strongly varies with respect to the different benchmark
instances.
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Figure 4: Results of the YAHPO-MO multi-objective benchmark across 7 optimizers (25 instances).

In total, both benchmarks described in this section took the equivalent of 139.57 CPU days
using YAHPO Gym. We estimate that the YAHPO-SO benchmark, would take 14.75 CPU years
when running real benchmarks, while our benchmark using YAHPO Gym took only 397.51 CPU
hours, essentially speeding up evaluation by a factor of ∼ 300.

7 Conclusions, Limitations and Broader Impact

We present YAHPO Gym, a multi-fidelity, multi-objective benchmark for HPO. Our benchmark
is based on surrogates, which strike a favorable trade-off between faithfulness and efficiency,
which we demonstrate in various experiments throughout our paper before conducting a large
scale benchmark of modern single- and multi-objective optimizers. An as of yet under-explored
domain are asynchronous optimization algorithms, which have recently gained popularity [45].
This has been studied in surrogate-based benchmarks by predicting runtimes and pausing the ob-
jective function for the predicted runtime, lowering computational demand for benchmarks but
leading to a large waiting time [21]. In future work we plan on introducing faster-than-real time
asynchronous benchmarking based on predicted runtimes.

Limitations. YAHPOGym is based on surrogatemodels and therefore heavily relies on the faithful-
ness of those models in order to allow for valid conclusions. We have comprehensively evaluated
surrogate models and provide a detailed report of performance metrics, hoping to demonstrate the
faithfulness of our surrogates, but can only do so to a certain degree. We are furthermore aware
that the real HPO problems modeled in our surrogates are in fact stochastic, and results can vary
depending on randomness of the fitting procedure, data splits or initialization. We therefore pro-
vide a set of noisy surrogate models that intend to model the stochasticity of the problems using
an ensemble of neural networks, but simultaneously allow for full control of the stochastic process
by using random seeds.

Broader Impact. This manuscript presents a set of surrogate-based benchmarks for HPO. As such,
our work does not have direct implications on society or individuals, but can lead to such indirectly
if new methods are developed based on it. We would like to emphasize the possible societal &
environmental benefits. First, we hope our benchmarks can improve the state of benchmarking
in hyperparameter optimization contexts, leading to better tracking of progress in the discipline.
Second, and more important, we hope that experiments based on YAHPO Gym can drastically
reduce computational cost of hyperparameter optimization experiments. This type of experiments
is usually extremely expensive, if real experiments are run for the evaluation of each HPC, which
can be sped up by large factors if cheap approximations through surrogates are available.
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8 Reproducibility Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 7.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Section 7.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?

[Yes]

2. If you are including theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimen-
tal results, including all requirements (e.g., requirements.txt with explicit version), an
instructive README with installation, and execution commands (either in the supplemental
material or as a url)? [Yes] The full code for experiments, figures and table can be obtained
from the following GitHub repositories:

i. Software: https://github.com/slds-lmu/yahpo_gym
ii. Documentation: https://slds-lmu.github.io/yahpo_gym/
iii. Surrogates & Search Spaces: https://github.com/slds-lmu/yahpo_data
iv. Code for Results: https://github.com/slds-lmu/yahpo_exps

(b) Did you include the raw results of running the given instructions on the given code
and data? [Yes] We make the full data used to train our surrogates available at https:
//syncandshare.lrz.de/getlink/fiCMkzqj1bv1LfCUyvZKmLvd/.

(c) Did you include scripts and commands that can be used to generate the figures and tables
in your paper based on the raw results of the code, data, and instructions given? [Yes] See
https://github.com/slds-lmu/yahpo_exps.

(d) Did you ensure sufficient code quality such that your code can be safely executed and the
code is properly documented? [Yes]

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed
hyperparameter settings, and how they were chosen)? [Yes] See Supplement F for search
spaces, the code repository as well as the software repository for further fixed hyperpa-
rameters.

(f) Did you ensure that you compared different methods (including your own) exactly on the
same benchmarks, including the same datasets, search space, code for training and hyper-
parameters for that code? [Yes] This is explicitly guaranteed by our software.

(g) Did you run ablation studies to assess the impact of different components of your approach?
[Yes] Partially, see sections throughout the supplementary material.

(h) Did you use the same evaluation protocol for the methods being compared? [Yes]
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(i) Did you compare performance over time? [Yes] Anytime performances are reported in all
relevant figures throughout the paper.

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes] We
perform 30 replications for each run. Random seeds can be obtained from the accompany-
ing code.

(k) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes] All figures reporting experimental results include error bars.

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] Surrogate
benchmarks.

(m) Did you include the total amount of compute and the type of resources used (e.g., type of
gpus, internal cluster, or cloud provider)? [Yes] We state the total computation as well as
CO2 equivalent in the respective section and briefly summarize here: Tuning and fitting
surrogates required a total of 45 GPU-days (116 kg CO2-equivalent on NVIDIA DGX-A100
instances) while the main experiments require 139.57 CPU days across all replications (263
kg CO2 equivalent). The tabular vs. surrogate benchmark required 22 CPU-hours (2 kg
CO2) equivalent.

(n) Did you report how you tuned hyperparameters, andwhat time and resources this required
(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and
also hyperparameters of your own method)? [Yes] We report tuning of surrogates in the
supplementary material.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? [Yes] Yes, throughout the paper
and explicitly in Supplement F for datasets we base our surrogates on.

(b) Did you mention the license of the assets? [Yes] Yes, see Supplement F.
(c) Did you include any new assets either in the supplemental material or as a url?

[Yes] Yes, trained surrogates are available at https://github.com/slds-lmu/yahpo_data.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] Data is meta-data about ML experiments and we do not consider
any personal data. All used data is available via OSS Licenses and no consent was required.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] Data is only metadata about ML experiments.

5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-
cable? [N/A] No crowd sourcing.

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(irb) approvals, if applicable? [N/A] No IRB was required.

(c) Did you include the estimated hourly wage paid to participants and the total amount spent
on participant compensation? [N/A]
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A Maintenance of YAHPO Gym

Following [19], we present a maintenance plan for YAHPO Gym.

• Who is maintaining the benchmarking library?
YAHPO Gym is developed and maintained by the Statistical Learning and Data Science Group at
LMU Munich.

• How can the maintainer of the dataset be contacted (e.g., email address)?
Questions should be submitted via an issue on the Github repository at https://github.com/
slds-lmu/yahpo_gym.

• Is there an erratum?
No.

• Will the library be updated?
We plan on adding new instances as well as continuously updating existing instances should
need occur. Changes will be communicated via Github releases as well as a CHANGELOG.

• Will older versions of the benchmarking library continue to be supported/hosted/maintained?
Old versions are available via GitHub releases in the git repositories. We aim to support old
versions on a best-effort basis with limited support for older versions.

• If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for
them to do so?
We have detailed how additional benchmarks can be added in the documentation https://
slds-lmu.github.io/yahpo_gym/extending.html. We have furthermore made available the
full code used to tune, fit and export surrogate models used in YAHPO Gym. The code is easily
extendable for future datasets.

• Which dependencies does YAHPO Gym have?
YAHPO Gym currently relies on the following dependencies
(versions used throughout experiments in brackets):

– onnxruntime (1.10.0)

– pyyaml (5.4.1)

– configspace (0.4.20)

– pandas (1.3.5)

B Benchmark Suites

B.1 Criteria for Benchmark Suites and Instances

To allow for a more systematic assessment of the quality of benchmarking instances, we define
criteria that guided the development of YAHPO Gym and which should be satisfied to make a
compelling argument for the use of any HPO benchmark.

I. Representativity & Diversity of Tasks The goal of benchmark suites is to allow for a rank-
ing of HPO methods according to their performance on future problems. Instances should
therefore cover response surfaces encountered in relevant problem domains.

II. Difficulty and Structure Benchmarks must be non-trivial, i.e., they should contain instances
of sufficient difficulty to identify rankings between optimizers. Search spaces should reflect
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search spaces that are encountered frequently in practice including mixed spaces with inter-
actions as well as hierarchical spaces and sufficient dimensionality.

III. Faithfulness Rankings based on approximations (e.g., for tabular and surrogate instances)
should reflect true rankings. The performance of surrogate models 𝑔 should be close enough
to 𝑔 based on performance metrics such as Spearman’s 𝜌 .

IV. Efficiency Benchmark experiments often require repeated evaluation of several optimizers
across several datasets leading to considerable computational (and consequentially environ-
mental cost [63]). Benchmarks should therefore strive for computational efficiency.

V. Ease of useBenchmark software needs to be accessible and portable across operating systems
and programming languages. In practice, systems which do not require complex set up or es-
tablishment of databases might lead to more widespread adoption. Meta-data such as search
spaces should be available and machine-readable. As benchmarks allow for embarrassingly
parallel execution, parallelization should be supported.

VI. Reproducibility While performance estimation in practice often includes stochastic compo-
nents, it is important that benchmark suites can be made reproducible through the use of
random seeds. Additionally, software dependencies and versions should be clearly commu-
nicated and design components should be fixed and versioned to avoid cherry picking.

VII. Stochasticity Performance estimates obtained in real instances are realizations of random
variables. In order to reflect this in practice, instances should allow for repeated evaluations.

While we consider the above requirements for good benchmarking suites, we furthermore want
to highlight other properties that might be relevant for benchmarking suites.

A. Multi-fidelity Multi-fidelity methods have been shown to considerably speed up evaluation.
Benchmark instances should therefore allow for querying performances at multiple fidelities.

B. Runtime In practice, HPO evaluations, especially for complex AutoML scenarios, can have
very heterogeneous runtimes [66], which should also be reflected in a realistic benchmark by
providing access to (estimated) runtimes which could subsequently be used to more accurate
benchmark cost-efficient optimization methods.

C. Asynchronous Evaluation Although technically non-trivial, benchmarks should ideally allow
the comparison of parallel HPO methods, allowing to compare, e.g., asynchronous HPO pro-
cedures [45, 39].

D. Multi-Objective Inmany scenarios, users are not only interested inmaximizing a single perfor-
mance metric such as accuracy, but instead multiple relevant metrics such as calibration, infer-
ence time, memory usage, and many others. We therefore consider including multi-objective
HPO problems an important characteristic of a benchmark suite.

E. Meta-Learning Last but not least, in many cases, data collections are used to test scenarios for
meta-learning [70, 59, 24] or transfer learning [75, 58]. For these scenarios, the availability of
data across a large amount of datasets is often useful.

B.2 Comparison to other Benchmark Suites

While a variety of benchmarking suites for optimization such as COCO [29], HPOlib [16], ASlib
[11] and others exist, we do not go into detail and instead refer the reader to [19] where those
libraries are discussed in more detail. We instead compare YAHPO Gym to the most similar suites:
HPOBench [19] and HPO-B [60] and discuss and justify assessments made in Table 1.
Evaluations in Table 1 follow the doctrine “the documentation is the product” and we therefore
consider only features that are explicitly documented in the accompanying manuscript and doc-
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umentation, not considering other features. We note that all three libraries could theoretically
be used or extended for additional tasks such as multi-objective evaluations but instead focus on
scenarios where the considered property is explicitly included in the documented API. We fur-
thermore note that several important aspects such as ease of use are not easily quantifiable and
assessments made are therefore subjective. We derive assessments made in this section based on
the criteria defined in Supplement B.1.

I. Representativity YAHPO Gym contains 14 across diverse search spaces for widely used ML
algorithms trained on representative datasets. Search spaces are often mixed and sometimes
include dependent hyperparameters resulting in a hierarchical search space. While theo-
retically possible, none of the instances in HPOBench currently contain hierarchical search
spaces. HPO-B only supports continuous search spaces.

II. Difficulty To the best of our knowledge, it is not yet clear how to assess the difficulty of a
benchmark instance. We therefore instead focus on showing that benchmark instances in
YAHPO Gym are not trivial, e.g., constant across the full search space.

III. Faithfulness We evaluate the quality of fitted surrogates in Supplement D.2. To the best of
our knowledge, analyses that establish the faithfulness of tabular benchmarks have not been
conducted for tabular benchmarks previously.

IV. Efficiency We consider efficiency with respect to two aspects: computational cost and mem-
ory consumption. Tabular benchmarks often keep the full data inmemory, essentially limiting
the amount of parallel optimization runs on a given hardware required, e.g., for replications
of stochastic benchmark experiments. Moreover, surrogate benchmarks are often based on
un-optimized models fitted for each single instance. As a result, the required metadata (and
memory consumption when multiple models are kept in memory) is often comparatively
large. Our surrogates in contrast are highly optimized, compressed neural networks fitted
across an entire scenario. Our surrogates are furthermore portable across platforms, alle-
viating concerns regarding software dependencies. Prediction on a surrogate requires only
10-100 ms and around 100 MB of memory allowing for a high degree of parallelization. In
a small experiment, we estimate runtime and memory overhead for 300 iterations of Ran-
dom Search on comparable SVM search spaces in Table 1 using the Python memory profiler
(https://pypi.org/project/memory-profiler/). Since memory profiling is not accurate
for HPO-Bench due to external processes, we estimate memory consumption using htop.
Differences partially stem from more expensive setup in other libraries, but we consider 300
iterations of Random Search a representative use-case for many scenarios. Benchmarks were
conducted on an AMD Ryzen 5 3600 6-Core CPU.

V. Ease of use YAHPO Gym does not require setting up containerization or any database and
has only four dependencies that are both widely used and mature. All metadata required
can be downloaded from a single, versioned metadata repository 4. The modules API is sim-
ple to use (see, e.g., Figure 1). Other benchmarking suites either require benchmark instance
specific software dependencies that can differ from benchmark instance to instance. While
HPOBench has solved this using containerization adding considerable computational over-
head, our surrogates only rely on a single fixed version of ONNX and can therefore completely
ignore the problem.

VI. Reproducibility surrogates used in the benchmarking suites proposed along with YAHPO
Gym are deterministic. Reproducibility therefore only requires ensuring seeding of any
stochastic procedures in the optimization algorithm. Furthermore, we fix several design
choices that might lead to differences between benchmarks: 𝑖) search spaces Λ̃ are fixed

4https://github.com/slds-lmu/yahpo_data
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for each scenario and should be used in benchmarks 𝑖𝑖) target metrics and exact evaluation
protocol are fixed within the benchmark suites (see Supplement C.2) to ensure comparability.

Additional properties 𝐴. − 𝐸. described in Supplement B.1 are compared in Table 1 and described
in more detail below.

A. Multi-fidelity Only surrogate based benchmarks allow doing so for the full range of available
fidelity steps. This essentially enforces evaluation at fixed fidelities in tabular benchmarks, e.g.,
disallowing evaluation of differing fidelity schedules. In contrast, surrogates in YAHPO Gym
allow for evaluation at all fidelity steps.

B. Runtime All surrogates in YAHPO Gym allow for querying the predicted runtime for training
a configuration, essentially allowing benchmarking methods that take into account runtimes.

C. Asynchronous Evaluation To our knowledge, none of the existing benchmark suites allow
for asynchronous evaluation (except for real instances in HPO-Bench). YAHPO Gym currently
allows for asynchronous evaluation, but this is considered an experimental feature. We hope
to be able to fully allow asynchronous benchmarking in future versions of our benchmark.

D. Multi-Objective YAHPO Gym explicitly includes multiple objective for each scenario and al-
lows the user to subset the returned targets explicitly. In contrast, HPO-Bench contains only
few multi-objective benchmarks and does not explicitly document how they are supposed to
be used.

E. Transfer Learning All considered suites allow for transfer learning. In contrast to HPO-Bench
and HPO-B, YAHPO Gym includes the (to our knowledge) largest collection of instances for a
given scenario for the rbv2_* scenarios consisting of up to 119 instances. Only few collections
in HPOBench contain enough instances for meta-learning.

We furthermore define a single objective as well as amulti-objective benchmark task that include a
evaluation protocol with respect to instances, search spaces, evaluation budget and target metrics.
This allows for reproduction and extension by practitioners without additional design choices and
provides a singular point of references.

B.3 A Benchmark Instance

In order to improve differentiation, we formally define four different types of benchmark instances
derived from Definition 1. We therefore only consider benchmarks based on tabular, surrogate and
real instances in our manuscript.

Definition 3 (Synthetic Benchmark Instance) A synthetic benchmark instance is a benchmark in-
stance, where 𝑔 : 𝝀 → R𝑚 is a mathematically tractable function.

Synthetic instances, such as the ones, e.g., included in COCO [29] rely on mathematically tractable
test functions (e.g., Rosenbrock-2D) as response surface. While they provide cheap evaluations,
problem structures in such functions are qualitatively distinct from test functions encountered in
HPO scenarios, and the resulting optimization problem is therefore often not representative for
optimization problems typically encountered in HPO.

Definition 4 (Tabular Benchmark Instance) A tabular benchmark instance returns function eval-
uations 𝑔(𝝀) from a table of pre-recorded performance results. Performance results are typically ob-
tained by estimating ĜE(I,J , 𝜌,𝝀) for given I , J and 𝜌 . In contrast to synthetic and surrogate
instances, the search space Λ is discretized and 𝑔 can therefore be only evaluated at discrete points
Λ̃ ∈ Λ.
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Definition 5 (Surrogate Benchmark Instance) A surrogate benchmark returns predictions 𝑔(𝝀) of
machine learning models trained to infer the functional relationship between 𝝀 and function evalua-
tions 𝑔(𝝀) based on a set of pre-recorded performance results.

For clarity, we would like to differentiate in terminology between the instance surrogate of a sur-
rogate benchmark, and the algorithm surrogate potentially used by an HPO method, e.g., the
Gaussian process as surrogate model in BO explicitly mentioning the algorithm surrogate where
required. The instance surrogate model 𝑔 or the tabular data should approximate the true relation-
ship between 𝝀 and the target metrics reasonably well. We consider a mapping 𝑔 to be faithful
if:

1. cross-validated performance metrics are sufficiently good with respect to metrics such as 𝑅2
and Spearman’s 𝜌 . We typically consider a cutoff 𝜌 > 0.7 for including a surrogate.

2. if the induced ranking of optimizers on a given 𝑔 closely resembles the true rankings on the
original underlying optimization problem (in general, the real setting relying on 𝑔).

3. learning curves of HPO methods on 𝑔 closely resemble the true performance curves.

Definition 6 (Real Benchmark Instance) A real benchmark instance returns function evaluations
𝑔(𝝀). Performance results are typically obtained by estimating ĜE(I,J , 𝜌,𝝀) for given I , J and 𝜌 .

Since the same benchmark instance can be provided as a real, tabular, or surrogate instance, we
speak of different versions of that instance where required.

C YAHPO Gym

In the following we will provide additional details on general aspects of YAHPO Gym. A detailed
description of included surrogates can be found in Supplement D and a detailed description of
used data and included search spaces can be found in Supplement F.

C.1 Usage

The yahpo_gym software can be directly installed from GitHub5 and only requires downloading
one additional GitHub repository containing metadata6 in an initial setup step.

HPO Benchmarking

To ensure interoperability with different optimizer API’s, YAHPO Gym offers only evaluation of
the objective function using the BenchmarkSet.objective_function(xs) method (where xs is a
hyperparameter configuration to be evaluated). This allows for use with many different optimizers
(see, e.g., examples provided in the accompanying notebooks). We furthermore allow for querying
the search space using BenchmarkSet.get_opt_space(xs) in order to ensure that optimizers are
ran on comparable search spaces. We provide additional details with respect to exact setups.

Transfer HPO

Different forms of Transfer HPO are available in YAHPO Gym and can be setup analogous by
querying the objective function across different instances of the scenario. We present examples in
the modules documentation.

5https://github.com/slds-lmu/yahpo_gym
6https://github.com/slds-lmu/yahpo_data
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C.2 Benchmark Suites: YAHPO-SO & YAHPO-MO

This section provides additional details with respect to the two benchmark sets proposed with
YAHPO Gym. Both suites can be obtained via get_suites(<type>, <version>) specifying the
type of the benchmark (currently supporting “single” for YAHPO-SO and “multi” for YAHPO-MO)
and the version (currently 1.0).

• Optimizers should use the search spaces included in YAHPO Gym in order to establish that
differences in performance do not depend on differing search spaces.

• Optimization should be run for ⌈20 + 40 · √search_space_dim ⌉ steps. Each step is equivalent
to a full budget evaluation, essentially allowing multi-fidelity method the same number of full
budget equivalents. We report the budgets for each scenario in Table 3 and Table 4.

• Target metrics to be used with the single-objective and multi-objective suite are reported in
Table 3 and Table 4.

• We encourage reportingmean normalized regret andmean ranks for the anytime performance of
an optimizer. Reported values are based on the target metric for YAHPO-SO and the normalized
Hypervolume Indicator for YAHPO-MO.

• In order to assess variance, we encourage reporting averages and standard errors across 30 repli-
cations with differing random seeds.

We will now go on to discuss criteria for inclusion of tasks in the respective benchmarks.

In light of the criteria defined in Supplement B.1, we strive for diversity by including instances
from all included scenarios. We consider only surrogates that are faithful (measured via Spear-
man’s 𝜌 reported for each target below). Our benchmarks are made available through a fully
documented API. Inference on a surrogate model is highly efficient taking usually only 10-100 mil-
liseconds per batch. Benchmarks are furthermore reproducible and allow for parallelization and
runtime prediction on a continuous range of fidelities. We include search spaces for all problems
in Supplement F.
We furthermore brieflywant to discuss selecting a budget that depends on the scenario at hand. We
consider the search space dimension to be a relevant input for determining the overall optimization
budget that should be used for optimization. Our formula ensures, that optimization runs for a
minimum of 77 iterations (iaml_glmnet, 2D) and a maximum of 267 (rbv2_super, 38D) iterations,
which we consider useful bounds for the respective search space dimensionality, especially given
that multi-fidelity allows for evaluations at a fraction of the full budget.

C.3 R package

While we focus on the Python module in the manuscript, YAHPO Gym offers an R interface that
is equivalent in functionality. We do not present the API in detail here since it follows the same
principles and naming conventions as the Python module. Further information is available from
the package documentation. Listing 1 contains the sample R-code used to first draw a random
configuration from the search space and then evaluate the drawn configuration.

D YAHPO Gym Surrogates

On an implementation level, YAHPO Gym consists of a (versioned) Python module / R package
yahpo_gym and a (versioned) set of required metadata (including fitted surrogate models) which we
will call yahpo_data in the following. The core contribution in YAHPO Gym is a set of surrogate
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Table 3: YAHPO-SO (v1): Collection of single-objective benchmark instances. We indicate surrogate
approximation quality using Spearman’s 𝜌 .

Scenario Instance Target 𝝆 Budget

1 lcbench 167168 val_accuracy 0.94 126
2 lcbench 189873 val_accuracy 0.97 126
3 lcbench 189906 val_accuracy 0.97 126
4 nb301 CIFAR10 val_accuracy 0.98 250
5 rbv2_glmnet 375 acc 0.80 90
6 rbv2_glmnet 458 acc 0.85 90
7 rbv2_ranger 16 acc 0.93 134
8 rbv2_ranger 42 acc 0.98 134
9 rbv2_rpart 14 acc 0.92 110
10 rbv2_rpart 40499 acc 0.97 110
11 rbv2_super 1053 acc 0.31 267
12 rbv2_super 1457 acc 0.70 267
13 rbv2_super 1063 acc 0.57 267
14 rbv2_super 1479 acc 0.36 267
15 rbv2_super 15 acc 0.75 267
16 rbv2_super 1468 acc 0.77 267
17 rbv2_xgboost 12 acc 0.93 170
18 rbv2_xgboost 1501 acc 0.89 170
19 rbv2_xgboost 16 acc 0.91 170
20 rbv2_xgboost 40499 acc 0.96 170

library("yahpogym")
library("paradox")
library("bbotk")
# Instantiate the BenchmarkSet
b = BenchmarkSet$new('lcbench', instance='3945')
# Get the objective
objective = b$get_objective('3945', check_values = FALSE)
# Sample a point from the ConfigSpace
xdt = generate_design_random(b$get_search_space(), 1)$data
xss_trafoed = transform_xdt_to_xss(xdt, b$get_search_space())
# Evaluate the configuration
objective$eval_many(xss_trafoed)

Listing 1: R-code to sample and evaluate a configuration using YAHPO Gym.

models7 based on neural networks. This section provides additional details with respect to the
fitting procedures of surrogate models as well as a rigorous evaluation of the final surrogates.

D.1 Setup and Training

Previous work [17, 18, 65] suggests that tree based regression methods such as random forests
[12] are very suited as instance surrogate models for (single-objective) benchmarks. However,
in YAHPO Gym we want to predict multiple target metrics for each instance of a benchmark
collection efficiently and compactly. As a result, we use neural network surrogates because they
1) can naturally handle multiple outputs and do not require a model for each target metric and 2)

7available at https://github.com/slds-lmu/yahpo_data
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Table 4: YAHPO-MO (v1): Collection of multi-objective benchmark instances. We indicate surrogate
approximation quality using Spearman’s 𝜌 (averaged over targets).

Scenario Instance Targets 𝝆 Budget

1 iaml_glmnet 1489 mmce,nf 0.86 77
2 iaml_glmnet 1067 mmce,nf 0.73 77
3 iaml_ranger 1489 mmce,nf,ias 0.93 134
4 iaml_ranger 1067 mmce,nf,ias 0.92 134
5 iaml_super 1489 mmce,nf,ias 0.82 232
6 iaml_super 1067 mmce,nf,ias 0.82 232
7 iaml_xgboost 40981 mmce,nf,ias 0.88 165
8 iaml_xgboost 1489 mmce,nf,ias 0.92 165
9 iaml_xgboost 40981 mmce,nf,ias,rammodel 0.89 165
10 iaml_xgboost 1489 mmce,nf,ias,rammodel 0.92 165
11 lcbench 167152 val_accuracy,val_cross_entropy 0.98 126
12 lcbench 167185 val_accuracy,val_cross_entropy 0.91 126
13 lcbench 189873 val_accuracy,val_cross_entropy 0.93 126
14 rbv2_ranger 6 acc,memory 0.90 134
15 rbv2_ranger 40979 acc,memory 0.73 134
16 rbv2_ranger 375 acc,memory 0.85 134
17 rbv2_rpart 41163 acc,memory 0.85 110
18 rbv2_rpart 1476 acc,memory 0.80 110
19 rbv2_rpart 40499 acc,memory 0.83 110
20 rbv2_super 1457 acc,memory 0.66 267
21 rbv2_super 6 acc,memory 0.68 267
22 rbv2_super 1053 acc,memory 0.45 267
23 rbv2_xgboost 28 acc,memory 0.80 170
24 rbv2_xgboost 182 acc,memory 0.79 170
25 rbv2_xgboost 12 acc,memory 0.76 170

should scale better than a random forest (fitted on each target metric) if the dimensionality of the
data (especially in the number of features) increases.
Surrogate models used in YAHPO Gym are based on ResNet architectures for tabular data [26].
Instead of relying on a fixed architecture, we tune the neural network for each Scenario using
optuna [2]. We used the Adam optimizer for a maximum of 100 epochs (early stopping with
patience of 10) with L2 loss. Surrogates were trained jointly for each benchmark scenario (for all
instances and target metrics). We use a stratified train/validation/test split of 0.6/0.2/0.2, using
the validation data to determine the surrogate model architecture and report performances on
the test set. The search space as well as the fully reproducible code for fitting can be obtained at
YAHPO Gym. Tuning and fitting of a single Scenario takes 3 GPU days on average on an NVIDIA
DGX-A100 instance, we therefore estimate a one time cost of 45 GPU days for establishing the full
benchmark.
We adapt the architecture proposed in [26] in multiple ways:
Feature- andOutput-ScalingHyperparameters as well as resulting performancemetrics (e.g learn-
ing rates of log-loss values) often vary across orders of magnitudes. We have practically observed
that transforming target metrics to the unit cube prior to training and reverse-transforming af-
terwards massively improves quality of the resulting surrogates. Available scaling techniques in-
clude Neg-Exp and Log transformation before scaling to [0, 1]. We furthermore include clamping
to ensure that predictions are in valid ranges. Non-numeric features were transformed via entity
embeddings [28].
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Ensembles In order to allow for an estimate of variance, we make noisy versions of our surrogates
available together with the standard deterministic set of surrogates. Ensembles consist of repli-
cations of the architecture determined during tuning and fitted on different permutations of the
data with differing initial weights. The prediction step is the weighted average over predictions
from ensemble members with weights 𝛼𝑖 sampled from a Dirichlet distribution.

We additionally consider scenarios that allow simulating asynchronous evaluation and therefore
predict the time of the training procedure using our surrogates. YAHPO Gym currently supports
asynchronous scheduling by estimating the runtime of training a model and then idling the system
for the estimated time. This is implemented via objective_function_timed in yahpo_gym but
currently considered in an experimental status.
In future work, we hope to propose and evaluate a surrogate-based benchmark explicitly allowing
for benchmarking of asynchronous scheduling strategies based on surrogate predictions. To enable
more realistic scheduling, we hope to furthermore include memory constraints using predicted
peak memory consumption for a training run.

D.2 Surrogate Quality

We provide an overview over surrogate quality measured on the test set using Spearman’s 𝜌 aver-
aged across all instances in Table 5. Metrics are routinely ≥ 0.9 except for few instances / target
metrics and even surpasses performances for surrogate models reported, e.g., in [65]. We further-
more depict real and predicted learning curves for four randomly drawn configurations in Figure 5.
Note that in our work, learning curves are predicted only based on hyperparameters, and not based
on initial, low-fidelity observations (as done in learning curve prediction tasks). Our surrogates
therefore solve a much harder task. Surrogates in general predict the learning curves with a high
degree of precision.

Table 5: Average surrogate performance (Spearman’s 𝜌) across all instances per scenario/target. We
abbreviate cross_entropy (ce) and balanced_accuracy(bac) for brevity.

Scenario 𝝆

iaml_glmnet mmce:0.97,f1:0.9,auc:0.92,logloss:0.97,rammodel:0.97,timetrain:0.95,mec:0.9,ias:0.91,nf:0.97
iaml_ranger mmce:0.99,f1:0.98,auc:1,logloss:0.95,rammodel:1,timetrain:0.91,mec:0.88,ias:0.98,nf:1
iaml_rpart mmce:0.99,f1:0.96,auc:0.99,logloss:0.96,rammodel:1,timetrain:0.96,mec:0.71,ias:0.96,nf:0.96
iaml_super mmce:0.93,f1:0.95,auc:0.89,logloss:0.93,rammodel:0.71,timetrain:0.61,mec:0.94,ias:0.65,nf:0.92
iaml_xgboost mmce:0.97,f1:0.98,auc:0.97,logloss:0.93,rammodel:0.86,timetrain:0.71,mec:0.95,ias:0.84,nf:0.99
lcbench time:0.94,val_accuracy:0.95,val_ce:0.97,val_bac:0.98,test_ce:0.99,test_bac:0.98
nb301 val_accuracy:0.98,runtime:0.94
rbv2_aknn acc:0.99,bac:0.99,auc:0.98,brier:1,f1:0.91,logloss:0.99,timetrain:0.64,memory:0.83
rbv2_glmnet acc:0.99,bac:0.95,auc:0.91,brier:1,f1:0.96,logloss:0.99,timetrain:0.79,memory:0.82
rbv2_ranger acc:0.99,bac:0.98,auc:0.95,brier:1,f1:0.92,logloss:1,timetrain:0.84,memory:0.66
rbv2_rpart acc:0.98,bac:0.96,auc:0.93,brier:0.99,f1:0.93,logloss:0.98,timetrain:0.72,memory:0.86
rbv2_super acc:0.82,bac:0.78,auc:0.73,brier:0.91,f1:0.91,logloss:0.89,timetrain:0.69,memory:0.71
rbv2_svm acc:0.99,bac:0.98,auc:0.94,brier:0.99,f1:0.91,logloss:0.99,timetrain:0.76,memory:0.84
rbv2_xgboost acc:0.98,bac:0.96,auc:0.94,brier:0.99,f1:0.92,logloss:0.98,timetrain:0.93,memory:0.78

Some of the targets available require further study and we therefore discourage their use in bench-
marks. Those are rampredict & ramtrain (iaml_* scenarios) as well as timepredict (rbv2_* scenarios).
Reasons for this assessment are partially poor surrogates, but we also assume that the underlying
data is at fault: Prediction times are often very small and heavily influenced by system load, while
correct estimation of required memory are relatively difficult to obtain in general.
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Figure 5: Predicted learning curves (lines) together with true learning curves (dotted) for four ran-
domly drawn configurations (differentiated by colour) out of each instance in YAHPO-SO
reporting the respective target metric.

D.3 Instance Difficulty

We quantify difficulty of instances using the empirical cumulative distribution function (ECDF),
assuming that difficult instances have only a small probability mass close to the optimum. ECDFs
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for all instances in YAHPO-SO are shown in Figure 6. Differences between real evaluations and
surrogate predictions can stem from the sampling procedure (random on surrogates vs. unknown
sampling for real evaluations), as well as biases in the surrogates. All evaluations are made at
maximal fidelity. We furthermore provide ECDF plots for all optimizers in Figure 7. This allows
for a different perspective on the quality of solutions found by the different optimizers.

E Experiments

E.1 Tabular vs. Surrogate Benchmarks

Resolution of Tabular Benchmarks. In practice, the resolution of grid points needs to be low for
high dimensional spaces to limit the resulting table to a usable size. With purely categorical search
spaces, often used in NAS, an exhaustive (i.e., Λ̃discrete = Λ̃) tabular benchmark is often possible,
as in, e.g., NAS-Bench-101 [76], which contains “only” 423k unique architectures. Multi-fidelity
evaluations essentially add an additional dimension to the optimization problemwhen considering
tabular data, since each evaluation now needs to be stored at multiple fidelity steps. If fidelity steps
are not available at all budget levels, optimization benchmarks can be restricted to fixed fidelity
progression (e.g., geometric progression as used in Hyperband).

Discrete Search Spaces. The modification of the search space from Λ̃ to Λ̃discrete can be handled
in one of two ways: One can let HPO methods operate on the original search space Λ̃ and trans-
parently “round” values to the nearest point contained in Λ̃discrete. This effectively presents the
optimization algorithm with a locally constant objective function. Alternatively, one can inform
the HPO algorithm about the discrete nature of Λ̃discrete, and possibly even modify the optimiza-
tion procedure. As an example, consider the acquisition function optimization step within the BO
framework: In the context of tabular benchmarks, the problem of optimizing the infill criterion
becomes trivial because one can perform an exhaustive search over all points not yet evaluated to
determine the next candidate(s) for evaluation. Note that we could also proceed to use a 1-Nearest-
Neighbor model to evaluate HPCs in tabular benchmarks. This essentially results in a surrogate
benchmark because we now rely on a performance model for the evaluation. In contrast to approx-
imation by discretization, in a surrogate benchmark the domain of the objective function is not
explicitly altered. Instead, predictions of an instance surrogate regression model 𝑔(·) are returned
as function evaluations, 𝑐surrogate : Λ̃ → R𝑚 , 𝝀 ↦→ 𝑔(𝝀). The drawback here is that values returned
by the surrogate model may misrepresent the local structure of the problem as well. Beyond the
resolution of the surrogate model training data, these structures are interpolated and influenced
by the inductive bias implied by the model.

Experimental Setup. As a real benchmark, we consider the original synthethic benchmark
function, while we generate a grid containing at most 106 points for the tabular version, storing
these pre-evaluated points in a look-up table together with their function value. The resolution of
the grid is the same for all functions along the budget parameter dimension, with 10 grid points
ranging from 2−9 to 1 on a 2𝑥 scale. For all other parameters of the domain, an equidistant grid
was generated by using ⌊(105) 1

𝐷 ⌋ grid points for each dimension 𝑑 = 1, . . . , 𝐷 . With the same data
we employ a similar surrogate neural network as used in YAHPO Gym. We compare the following
methods on real, surrogate, and tabular benchmarks: All HPOmethods were run for a total budget
of 100 evaluations reflecting 100 full fidelity evaluations. The synthetic test functions used in the
experiments [35] include a multi-fidelity parameter allowing for the use of multi-fidelity methods
such as Hyperband. Of the methods investigated, only HB makes use of the fidelity parameter,
while all other methods perform full budget evaluations. As a surrogate, we train a Wide & Deep
Network [13]. More details can be found in https://github.com/slds-lmu/yahpo_exps. BO
variants used Expected Improvement [34] as acquisition function and an initial design of 5 · 𝐷
points sampled uniformly at random. The Gaussian process surrogate model used a Matérn 3/2
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Figure 6: Empirical cumulative distribution function (ECDF) for surrogate predictions (blue) and real
evaluations (orange).

kernel. Nelder-Mead as acquisition function optimizer was terminated if the relative change in
the maximum fell below 1𝑒 − 4. Tabular benchmarks used an exhaustive search for optimizing
the acquisition function in the scenario of *_DF. Random Search as acquisition function optimizer
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Figure 7: Empirical cumulative distribution function (ECDF) for optimizer traces on YAHPO-SO.

was allowed 104 evaluations.

Evaluation. For evaluation, we computed the mean normalized regret for each HPO method sep-
arately on the real, surrogate and tabular benchmarks (where the normalized regret for an HPO
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Table 6: Consensus Rankings of HPO Methods for Real, Surrogate and Tabular Benchmarks.

Benchmark Consensus Ranking (CR) Permutation Order

Real BO_GP_DF ≻ BO_GP_RS ≻ BO_RF_RS ≻ BO_NN_RS ≻ BO_NN_DF ≻ HB ≻ BO_RF_DF ≻ RS -
Surrogate BO_GP_DF ≻ BO_GP_RS ≻ BO_RF_RS ≻ BO_NN_RS ≻ HB ≻ BO_NN_DF ≻ BO_RF_DF ≻ RS 2
Tabular BO_GP_DF ≻ BO_GP_RS ≻ BO_RF_DF ≻ HB ≻ BO_RF_RS ≻ BO_NN_DF ≻ BO_NN_RS ≻ RS 5

method given a cumulative budget is defined as the difference between the value of the best HPC
found by any algorithm and the value of the best HPC found by this method, scaled by the range of
objective function values as found by any method, see also [60]). Based on the normalized regret,
we also computed the mean rank of each HPO method.
Results for the Branin2D, Currin2D and Hartmann3D benchmark functions are given in Figure 8.
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Figure 8: Mean normalized regret (top) and mean ranks (bottom) of different HPO methods on dif-
ferent benchmarks. Ribbons represent standard errors. The gray vertical line indicates the
cumulative budget used for the initial design of BO methods. Performance measures of the
surrogate benchmarks are stated after the benchmark function. 30 replications.

Differences between tabular and real/surrogate benchmarks can be explained by the fact that the
inner optimization problem of BO methods is much easier to solve when only a finite set of po-
tential candidates must be evaluated (i.e., by exhaustive search). We also observe that for the BO
performance on the tabular benchmarks, there is no substantial difference in whether the acquisi-
tion function optimization is solved exactly or via a Random Search. We employ the rank-based
symmetric difference (SD) method which aims to find a consensus ranking that minimizes the
average number of rank reversals for the individual benchmark function rankings. We limit our-
selves to the scenario of considering the set of all linear orders of HPO methods as candidates for
a consensus ranking (SD/L). By comparing the consensus ranking obtained via the surrogate/tab-
ular benchmarks to the consensus ranking obtained using the real benchmarks, we determine the
faithfulness of surrogate and tabular benchmarks. We observe that the consensus ranking obtained
using the surrogate benchmarks matches the real one more closely than rankings obtained using
tabular benchmarks (Table 6).

E.2 Single-Objective Benchmark on YAHPO-SO

Instances and Evaluation Protocol. We use the set of instances and target variables defined for the
YAHPO-SO benchmark suite in Supplement C.2 and detailed in Table 3. We furthermore follow the
described evaluation protocol, using available search spaces and optimization budgets including
30 replications to assess variance in results. As an evaluation criterion, we report mean normalized
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regret (based on the target metric), see Figure 9. Table 7 provides additional info on all optimiz-
ers used in the benchmark. Random Search simply samples configurations uniformly at random.
SMAC is a model based full-fidelity optimizer using a random forest as surrogate model and Ex-
pected Improvement as acquisition function [34]. We use the SMAC4HPO facade [47]. Hyperband
randomly samples new configurations and allocates more fidelity to promising configurations by
relying on repeated successive halving (SH; [32]). BOHB combines BO with Hyperband and uses
a Tree Parzen Estimator (TPE; [5]) as surrogate model. DEHB is a model-free successor of BOHB
which relies on differential evolution instead of BO. We use the software defaults regarding the
choice of mutation and crossover. SMAC-HB also combines BOwith Hyperband but uses a random
forest as surrogate model (SMAC4MF facade; [47]). Our optuna optimizer uses a TPE as surrogate
model and a median pruner [25] that follows a fixed SH schedule. A configuration is stopped by
the pruner if its best intermediate result (at a given fidelity level determined by the SH schedule)
is worse compared to the median of the other configurations on the same fidelity level.

Table 7: Optimizers used in the single-objective benchmark.

Optimizer Software Reference Version

Random Search - - -
SMAC (SMAC4HPO) https://github.com/automl/SMAC3 [47] 1.1.1
Hyperband https://github.com/automl/HpBandSter [44] 0.7.4
BOHB https://github.com/automl/HpBandSter [21] 0.7.4
DEHB https://github.com/automl/DEHB [4] 67ac239
SMAC-HB (SMAC4MF) https://github.com/automl/SMAC3 [47] 1.1.1
optuna https://optuna.org/ [2] 2.10.0

E.3 Multi-Objective Benchmark on YAHPO-MO

Instances and Evaluation Protocol. We use the set of instances and target variables defined for
the YAHPO-MO benchmark suite in Supplement C.2 and detailed in Table 4. We furthermore
follow the described evaluation protocol, using available search spaces and optimization budgets
including 30 replications to assess variance in results. As an evaluation criterion, we report the
mean Hypervolume Indicator [80] computed on normalized targets (see Figure 10). Nadir points
and reference Pareto fronts were obtained empirically over all replications of all HPO methods
on a given benchmark instance. Table 8 provides additional info on all optimizers used in the
benchmark. Random Search simply samples configurations uniformly at random. Random Search
(x4) at each step samples four configurations uniformly at random (in parallel). We include this
variant as a strong baseline. ParEGO is a model based optimizer relying on a scalarization of the
objectives which we then model using a random forest as surrogate model. As acquisition function
we use Expected Improvement [34]. SMS-EGO is a model based optimizer that uses a surrogate
model for each objective (again, we use random forests) and proposes candidates based on the
S-metric [61]. EHVI is a model based optimizer using a surrogate model for each objective (again,
we use random forests) and proposes candidates based on their Expected Hypervolume Improve-
ment [20]. MEGO is a model based optimizer using a surrogate model for each objective (again, we
use random forests) and proposes candidates by considering the Expected Improvement for each
objective which gives rise to a multi-objective optimization problem of the acquisition functions
themselves. For the final candidate selection, we sample uniformly at random over the Pareto opti-
mal (with respect to the Expected Improvements) candidates. MIES is a mixed integer evolutionary
optimizer (plus survival scheme, 𝜇 = ⌊budget/6⌋, 𝜆 = ⌊𝜇/4⌋8). We use Gaussian mutation (𝑝 = 0.2)

8where budget is the optimization budget for a given instance, i.e., number of total evaluations
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Figure 9: Mean normalized regret of HPO methods separate for each benchmark instance. x-axis
starts after 10%.
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for numerical parameters and discrete uniform mutation (𝑝 = 0.2) for categorical parameters. For
recombination, we use uniform crossover (𝑝 = 0.2). As parent selection we perform a tournament
selection of parents using nondominated sorting. For survival, we select the best individuals based
on nondominated sorting.

Table 8: Optimizers used in the multi-objective benchmark.

Optimizer Software Reference Version

Random Search - - -
Random Search (x4) - - -
ParEGO https://github.com/mlr-org/mlr3mbo [40] 1f59e13
SMS-EGO https://github.com/mlr-org/mlr3mbo [61] 1f59e13
EHVI https://github.com/mlr-org/mlr3mbo [20] 1f59e13
MEGO https://github.com/mlr-org/mlr3mbo [33] 1f59e13
MIES https://github.com/mlr-org/miesmuschel [46] 3483f11

F Scenarios, Search Spaces and Data Sources

Random Bot V2 (rbv2_)

All scenarios prefixed with rbv2_ use data described in [9]. Data contains results from several ML
algorithms trained across up to 119 datasets evaluated for a large amount of random evaluations.
Table 9 lists all hyperparameters of the search space of the rbv2_ scenarios. Targets are given by
accuracy (acc), balanced accuracy (bac), AUC (auc), Brier Score (brier), F1 (f1), log loss (logloss),
time for training the model (timetrain), and memory usage (memory).
Surrogates are fitted on subsets of the full data available from [9], such that a minimum of 1500
and a maximum of 200000 (depending on the scenario) evaluations are available for each instance
in each scenario. All scenarios consist of a pre-processing step (missing data imputation) and a
subsequently fitted ML algorithm. Instance ID’s correspond to OpenML [71] dataset ids through
which dataset properties can be queried9. OpenML tasks corresponding to each dataset can be
obtained from [9]. We abbreviate the num.impute.selected.cpo hyperparameter with imputation
throughout the tables. We fix the repl parameter to 10 for experiments.

NAS-Bench-301 (nb301)

nb301 uses data of the NAS-Bench-301 benchmark ([78], see also [65]). Table 10 lists all hyperpa-
rameters of the search space of the nb301 scenario. Targets are given by the validation accuracy
(val_accuracy) and the training time (runtime).

LCBench (lcbench)

The lcbench collection uses data of the LCBench benchmark [77], as described in [79]. Table 11
lists all hyperparameters of the search space of the lcbench scenario. Targets are given by the
validation accuracy (val_accuracy), validation cross entropy (val_crossentropy), validation bal-
anced accuracy (val_balanced_accuracy), test cross entropy (test_crossentropy), test balanced
accuracy (test_balanced_accuracy) and the training time (time). Instance ID’s correspond to
OpenML [71] task ids through which task properties can be queried10 The task with the ID 167083
exhibited unnatural learning curves and was therefore excluded.

9https://www.openml.org/d/<dataset_id>
10https://www.openml.org/t/<task_id>
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Table 9: Search spaces of YAHPO Gym’s rbv2_ scenarios. ⊢ indicates the parent in case dependencies
between hyperparameters exist. The super scenario inherits dependencies from previous
scenarios, while additional dependencies on the learner_id are introduced, indicated by a
prefix.

rbv2_glmnet

Hyperparameter Type Range Info

alpha continuous [0, 1]
s continuous [0.001, 1097] log
trainsize continuous [0.03, 1] budget
imputation categorical impute.{mean, median, hist}

rbv2_rpart

Hyperparameter Type Range Info

cp continuous [0.001, 1] log
maxdepth integer [1, 30]
minbucket integer [1, 100]
minsplit integer [1, 100]
trainsize continuous [0.03, 1] budget
imputation categorical impute.{mean, median, hist}

rbv2_svm

Hyperparameter Type Range Info

kernel categorical {linear, polynomial, radial}
cost continuous [4.5e-05, 2.2e4] log
gamma continuous [4.5e-05, 2.2e4] log, ⊢ kernel
tolerance continuous [4.5e-05, 2] log
degree integer [2, 5] ⊢ kernel
trainsize continuous [0.03, 1] budget
imputation categorical impute.{mean, median, hist}

rbv2_aknn

Hyperparameter Type Range Info

k integer [1, 50]
distance categorical {l2, cosine, ip}
M integer [18, 50]
ef integer [7, 403] log
ef_construction integer [7, 403] log
trainsize continuous [0.03, 1] budget
imputation categorical impute.{mean, median, hist}

rbv2_ranger

Hyperparameter Type Range Info

num.trees integer [1, 2000]
sample.fraction continuous [0.1, 1]
mtry.power integer [0, 1]
respect.unordered.factors categorical {ignore, order, partition}
min.node.size integer [1, 100]
splitrule categorical {gini, extratrees}
num.random.splits integer [1, 100] ⊢ splitrule
trainsize continuous [0.03, 1] budget
imputation categorical impute.{mean, median, hist}

rbv2_xgboost

Hyperparameter Type Range Info

booster categorical {gblinear, gbtree, dart}
nrounds integer [7, 2980] log
eta continuous [0.001, 1] log, ⊢ booster
gamma continuous [4.5e-05, 7.4] log, ⊢ booster
lambda continuous [0.001, 1097] log
alpha continuous [0.001, 1097] log
subsample continuous [0.1, 1]
max_depth integer [1, 15] ⊢ booster
min_child_weight continuous [2.72, 148.4] log, ⊢ booster
colsample_bytree continuous [0.01, 1] ⊢ booster
colsample_bylevel continuous [0.01, 1] ⊢ booster
rate_drop continuous [0, 1] ⊢ booster
skip_drop continuous [0, 1] ⊢ booster
trainsize continuous [0.03, 1] budget
imputation categorical impute.{mean, median, hist}

rbv2_super

Hyperparameter Type Range Info

svm.kernel categorical {linear, polynomial, radial}
svm.cost continuous [4.5e-05, 2.2e4] log
svm.gamma continuous [4.5e-05, 2.2e4] log
svm.tolerance continuous [4.5e-05, 2] log
svm.degree integer [2, 5]
glmnet.alpha continuous [0, 1]
glmnet.s continuous [0.001, 1097] log
rpart.cp continuous [0.001, 1] log
rpart.maxdepth integer [1, 30]
rpart.minbucket integer [1, 100]
rpart.minsplit integer [1, 100]
ranger.num.trees integer [1, 2000]
ranger.sample.fraction continuous [0.1, 1]
ranger.mtry.power integer [0, 1]
ranger.respect.unordered.factors categorical {ignore, order, partition}
ranger.min.node.size integer [1, 100]
ranger.splitrule categorical {gini, extratrees}
ranger.num.random.splits integer [1, 100]
aknn.k integer [1, 50]
aknn.distance categorical {l2, cosine, ip}
aknn.M integer [18, 50]
aknn.ef integer [7, 403] log
aknn.ef_construction integer [7, 403] log
xgboost.booster categorical {gblinear, gbtree, dart}
xgboost.nrounds integer [7, 2980] log
xgboost.eta continuous [0.001, 1] log
xgboost.gamma continuous [4.5e-05, 7.4] log
xgboost.lambda continuous [0.001, 1097] log
xgboost.alpha continuous [0.001, 1097] log
xgboost.subsample continuous [0.1, 1]
xgboost.max_depth integer [1, 15]
xgboost.min_child_weight continuous [2.72, 148.41] log
xgboost.colsample_bytree continuous [0.01, 1]
xgboost.colsample_bylevel continuous [0.01, 1]
xgboost.rate_drop continuous [0, 1]
xgboost.skip_drop continuous [0, 1]
trainsize continuous [0.03, 1] budget
imputation categorical impute.{mean, median, hist}
learner_id categorical {aknn, glmnet, ranger, rpart, svm, xgboost}
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Table 10: Search space of the nb301 scenario. We summarize multiple parameters (using, e.g., {3 − 5}
if parameters with suffix 3 through 5 are present).

Hyperparameter Type Range Info

NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_normal_{0-13} categorical {max_pool_3x3, avg_pool_3x3, skip_connect,
sep_conv_3x3, sep_conv_5x5, dil_conv_3x3, dil_conv_5x5}

NetworkSelectorDatasetInfo_COLON_darts_COLON_edge_reduce_{0-13} categorical {max_pool_3x3, avg_pool_3x3, skip_connect,
sep_conv_3x3, sep_conv_5x5, dil_conv_3x3, dil_conv_5x5}

NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_normal_{3-5} categorical {0_1, 0_2, 1_2}
NetworkSelectorDatasetInfo_COLON_darts_COLON_inputs_node_reduce_{3-5} categorical {0_1, 0_2, 1_2}
epoch integer [1, 98] budget

Table 11: Search space of the lcbench scenario.

Hyperparameter Type Range Info

epoch integer [1, 52] budget
batch_size integer [16, 512] log
learning_rate continuous [1e-04, 0.1] log
momentum continuous [0.1, 0.9]
weight_decay continuous [1e-05, 0.1]
num_layers integer [1, 5]
max_units integer [64, 1024] log
max_dropout continuous [0, 1]

Interpretable AutoML (iaml_)

All scenarios prefixed with iaml_ rely on data that were newly collected by us. Different mlr3
[41] learners (“classif.glmnet”, “classif.rpart”, “classif.ranger”, “classif.xgboost”) were incorporated
into an ML pipeline with minimal preprocessing (removing constant features, fixing unseen fac-
tor levels during prediction and missing value imputation for factor variables by sampling from
non-missing training levels) via mlr3pipelines [8]. Hyperparameters of the learners were sam-
pled uniformly at random (for the search spaces, see Table 12) and the ML pipeline performance
(classification error - mmce, F1 score - f1, AUC - auc, logloss - logloss) was evaluated via 5-fold
cross-validation on the following OpenML [71] datasets (dataset id): 40981, 41146, 1489, 1067. Each
pipeline was then refitted and used for prediction on the whole data to estimate training and pre-
dict time (timetrain, timepredict) and RAM usage (during training and prediction, ramtrain and
rampredict as well as model size, rammodel). Moreover, interpretability measures as described
in [52] were computed for all models: number of features used (nf), interaction strength of fea-
tures (ias) and main effect complexity of features (mec). To our best knowledge, this is the first
publicly available benchmark that combines performance, resource usage and interpretability of
models allowing for the construction of interesting multi-objective benchmarks. Hyperparameter
configurations were evaluated at different fidelity steps (training sizes of the following fractions:
0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1) achieved via incorporating resampling in the ML pipeline. The super
learner scenario was constructed by using the data of all four base learners introducing condi-
tional hyperparameters in the form of branching. In total, 5451872 different configurations were
evaluated. Data collection was performed on the moran partition of the ARCC Teton HPC cluster
of the University of Wyoming using batchtools [42] for job scheduling and took around 9.8 CPU
years. Surrogate models were then fitted on the available data as described in Supplement D.1.
Table 12 lists all hyperparameters of the search spaces of the iaml_ scenarios. Instance ID’s corre-
spond to OpenML [71] dataset ids through which dataset properties can be queried11.

11https://www.openml.org/d/<dataset_id>
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Table 12: Search spaces of YAHPOGym’s iaml_ scenarios. ⊢ indicates the parent in case dependencies
between hyperparameters exist. The super scenario inherits dependencies from previous
scenarios, while additional dependencies on the learner are introduced, indicated by a prefix.

iaml_glmnet

Hyperparameter Type Range Info

alpha continuous [0, 1]
s continuous [1e-04, 1000] log
trainsize continuous [0.03, 1] budget

iaml_rpart

Hyperparameter Range Type Info

cp continuous [1e-04, 1] log
maxdepth integer [1, 30]
minbucket integer [1, 100]
minsplit integer [1, 100]
trainsize continuous [0.03, 1] budget

iaml_ranger

Hyperparameter Type Range Info

num.trees integer [1, 2000]
replace boolean {TRUE, FALSE}
sample.fraction continuous [0.1, 1]
mtry.ratio continuous [0, 1]
respect.unordered.factors categorical {ignore, order, partition}
min.node.size integer [1, 100]
splitrule categorical {gini, extratrees}
num.random.splits integer [1, 100] ⊢ splitrule
trainsize continuous [0.03, 1] budget

iaml_xgboost

Hyperparameter Type Range Info

booster categorical {gblinear, gbtree, dart}
nrounds integer [3, 2000] log
eta continuous [1e-04, 1] log, ⊢ booster
gamma continuous [1e-04, 7] log, ⊢ booster
lambda continuous [1e-04, 1000] log
alpha continuous [1e-04, 1000] log
subsample continuous [0.1, 1]
max_depth integer [1, 15] ⊢ booster
min_child_weight continuous [exp(1) , 150] log, ⊢ booster
colsample_bytree continuous [0.01, 1] ⊢ booster
colsample_bylevel continuous [0.01, 1] ⊢ booster
rate_drop continuous [0, 1] ⊢ booster
skip_drop continuous [0, 1] ⊢ booster
trainsize continuous [0.03, 1] budget

iaml_super

Hyperparameter Type Range Info

learner categorical {glmnet, rpart, ranger, xgboost}
glmnet.alpha continuous [0, 1]
glmnet.s continuous [1e-04, 1000] log
rpart.cp continuous [1e-04, 1] log
rpart.maxdepth integer [1, 30]
rpart.minbucket integer [1, 100]
rpart.minsplit integer [1, 100]
ranger.num.trees integer [1, 2000]
ranger.replace boolean {TRUE, FALSE}
ranger.sample.fraction continuous [0.1, 1]
ranger.mtry.ratio continuous [0, 1]
ranger.respect.unordered.factors categorical {ignore, order, partition}
ranger.min.node.size integer [1, 100]
ranger.splitrule categorical {gini, extratrees}
ranger.num.random.splits integer [1, 100]
xgboost.booster categorical {gblinear, gbtree, dart}
xgboost.nrounds integer [3, 2000] log
xgboost.eta continuous [1e-04, 1] log
xgboost.gamma continuous [1e-04, 7] log
xgboost.lambda continuous [1e-04, 1000] log
xgboost.alpha continuous [1e-04, 1000] log
xgboost.subsample continuous [0.1, 1]
xgboost.max_depth integer [1, 15]
xgboost.min_child_weight continuous [exp(1) , 150] log
xgboost.colsample_bytree continuous [0.01, 1]
xgboost.colsample_bylevel continuous [0.01, 1]
xgboost.rate_drop continuous [0, 1]
xgboost.skip_drop continuous [0, 1]
trainsize continuous [0.03, 1] budget
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ABSTRACT
The goal of Quality Diversity Optimization is to generate a collec-
tion of diverse yet high-performing solutions to a given problem
at hand. Typical benchmark problems are, for example, finding a
repertoire of robot arm configurations or a collection of game play-
ing strategies. In this paper, we propose a set of Quality Diversity
Optimization problems that tackle hyperparameter optimization
of machine learning models - a so far underexplored application
of Quality Diversity Optimization. Our benchmark problems in-
volve novel feature functions, such as interpretability or resource
usage of models. To allow for fast and efficient benchmarking, we
build upon YAHPO Gym, a recently proposed open source bench-
marking suite for hyperparameter optimization that makes use
of high performing surrogate models and returns these surrogate
model predictions instead of evaluating the true expensive black
box function. We present results of an initial experimental study
comparing different Quality Diversity optimizers on our benchmark
problems. Furthermore, we discuss future directions and challenges
of Quality Diversity Optimization in the context of hyperparameter
optimization.
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1 INTRODUCTION
Quality Diversity Optimization (QDO) aims to generate a collec-
tion of diverse, high-performing solutions. Classical algorithms are
Novelty Search with Local Competition [10] and MAP-Elites [13],
which rely on the concepts of evolutionary computation. While the
development of new QDO algorithms has seen significant progress
[6–8], the community lacks larger testbeds of benchmark problems.
In this paper, we propose a set of QDO problems derived from hy-
perparameter optimization (HPO) of machine learning (ML) models.
So far, HPO has been an underexplored area for the application of
QDO. Our benchmark problems involve feature functions of high
practical importance, such as interpretability or resource usage of
models, making the application of QDO algorithms particularly rel-
evant due to their illuminating properties. As an example, consider
a random forest [4] in a binary classification setting. Depending
on the choice of hyperparameters, a random forest can potentially
contain many deep trees. On the one hand, we expect such a ran-
dom forest to yield good performance, on the other hand, a random
forests with thousands of deep trees is not interpretable. We could
for example be interested in relating the performance of a random
forest to interpretability measures such as the number of features
the model uses or the interaction strength of features. In general,
a random forest that uses few features and has low interaction
strength is expected to perform worse than a large and deep for-
est, but this strongly depends on the concrete data set at hand. It
is therefore of high interest to illuminate the relationship of per-
formance and interpretability and QDO algorithms are very well
suited for this task.

1.1 Hyperparameter Optimization
An ML learner or inducer I configured by hyperparameters 𝝀 ∈ Λ
maps a data set D ∈ D to a model 𝑓 , i.e.,

I : D × Λ→H , (D,𝝀) ↦→ 𝑓 .

HPO methods aim to identify a high-performing hyperparame-
ter configuration (HPC) 𝝀 ∈ Λ̃ for I𝝀 [3]. The so-called search
space Λ̃ ⊂ Λ is typically a subspace of the set of all possible HPCs:
Λ̃ = Λ̃1×Λ̃2×· · ·×Λ̃𝑑 ,where Λ̃𝑖 is a bounded subset of the domain of
the 𝑖-th hyperparameterΛ𝑖 . Λ̃𝑖 can be either continuous, discrete, or
categorical. It can also dependent on other hyperparameters, mean-
ing that Λ̃𝑖 is only active when Λ̃ 𝑗 takes certain values, resulting in
a possibly hierarchical search space. The classical (single-objective)
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HPO problem is defined as:

𝝀∗ ∈ argmin
𝝀∈Λ̃

ĜE(𝝀), (1)

i.e., the goal is to minimize the estimated generalization error. This
typically involves a costly resampling procedure that can take a
significant amount of time (see [3] for further details). ĜE(𝝀) is a
black-box function, as it generally has no closed-formmathematical
representation, and analytic gradient information is generally not
available. Therefore, the minimization of ĜE(𝝀) forms an expensive
black-box optimization problem. Furthermore, it is typically multi-
modal and noisy, as ĜE(𝝀) is only a stochastic estimate of the true
unknown generalization error.

1.2 Quality Diversity Optimization
The goal of QDO is to generate a collection of diverse yet high-
performing solutions. Diversity is defined via behavioral niches
on so-called feature functions (behavior functions), whereas per-
formance is defined on an objective function (fitness function). In
the following, we assume that a single multi-objective function
𝑓 : Λ→ R𝑚,𝑚 ≥ 2 returns both the objective function as well as
the feature functions that span the behavior space. Without loss
of generality, we assume that the first dimension returned by 𝑓
is the objective function, whereas the dimensions 2, . . . ,𝑚 are the
feature functions. We denote by 𝑦𝑖 the i-th output value of 𝑓 (𝝀).
We make few assumptions regarding the nature of niches but note
that a uniform grid of 𝑘 niches is classically constructed by dividing
the behavior space into equally sized hyperrectangles [13]. In this
case, a niche 𝑁 𝑗 ⊆ R𝑚−1 is simply defined by lower (𝑙𝑖 𝑗 ) and up-
per (𝑢𝑖 𝑗 ) boundaries on each feature function 𝑖 ∈ {2, . . . ,𝑚}, with
𝑙𝑖 𝑗 = 𝑢𝑖 𝑗−1 for 𝑗 ∈ {2, . . . , 𝑘} . A point 𝝀 “belongs” to niche 𝑁 𝑗 if
∀𝑖 ∈ {2, . . . ,𝑚} : 𝑦𝑖 ∈ [𝑙𝑖 𝑗 , 𝑢𝑖 𝑗 ). The best-performing point of a
niche is typically referred to as a so-called elite. In this paper, we
propose several benchmark instances for QDO problems, which we
formally introduce below.

Definition 1 (QDO Benchmark Problem). A QDO benchmark
problem consists of a function 𝑓 : Λ→ R𝑚,𝑚 ≥ 2 returning both the
objective function and feature function values, a bounded search space
Λ̃, and a set of 𝑘 behavioral niches {𝑁1, . . . 𝑁𝑘 }. 𝑓 (𝝀) = 𝒚 returns𝑚
values 𝒚 = (𝑦1, ..., 𝑦𝑚)′, where 𝑦1 is the objective function value and
𝑦2, . . . , 𝑦𝑚 are feature function values. Based on the niches and their
properties (e.g., boundaries), solutions are assigned to these niches and
collected in an archive.

2 PROPOSED BENCHMARKS
We propose a collection of twelve QDO benchmark problems be-
longing to two different contexts: First, we are interested in illumi-
nating interpretability (measured by the number of features used in
a model and their interaction strength) and performance trade-offs
of ML models. Second, we examine performance trade-offs with
respect to model size (memory requirement) and inference time
(i.e., time required to make a prediction). As ML models, we select
random forest [4] and extreme gradient boosting (XGBoost) models
[5] in binary classification settings. As an objective function, we
choose the classification error in the case of formulating a minimiza-
tion problem or the accuracy (1 - classification error) in the case of

formulating a maximization problem. In the following, we assume
that the accuracy is to be maximized. Our benchmark problems rely
on YAHPO Gym [15], a recently proposed open source benchmark-
ing suite for HPO. YAHPO Gym provides so-called surrogate-based
benchmarks: For a given learner and a given data set, a large amount
of HPCs (typically sampled uniformly at random from the search
space) were evaluated, and surrogate models have been fitted on
these data. When optimizing a benchmark problem (instance) in
YAHPO Gym, the costly real black-box evaluation of an HPC is
skipped, and instead, the surrogate model’s prediction is returned.
This allows for efficient benchmarking of HPO problems, as YAHPO
Gym typically requires as little as one millisecond for predicting
the performance metric of an HPC and induces minimal memory
overhead [15]. In general, performance estimation of ML models is
noisy. YAHPO Gym can handle both scenarios of providing a de-
terministic or noisy HPO benchmark. In the following, we employ
YAHPO Gym in the deterministic setting and leave the construction
of noisy QDO problems to future research.

We build upon YAHPO Gym’s iaml_ranger and iaml_xgboost
benchmark scenarios. A scenario is a collection of benchmark in-
stances that share the same learner and search space but contain
multiple data sets. Both iaml_ranger and iaml_xgboost allow for
HPO on four different data sets with the following OpenML [19]
IDs: 41146, 40981, 1489, 10671.

2.1 Accuracy and Interpretability
Eight of our proposed QDO benchmark problems belong to the con-
text of performance and interpretability. We suggest benchmarking
all instances of the iaml_ranger and iaml_xgboost scenarios be-
cause previous benchmarks on YAHPO Gym have shown that these
are interesting problems with relevant search spaces. The search
spaces (genotype spaces) are given in Table 1 and Table 2. These
search spaces are specifically tailored for existing QDO algorithms
and implementations, which often do not support categorical pa-
rameters or hierarchical dependencies but only numeric parameters.
We discuss this limitation in Section 3. The objective function is
given by the accuracy that is to be maximized. The behavior space
is spanned by two feature functions: the number of features (NF)
used by a model and their interaction strength (IAS). These mea-
sures were proposed to quantify interpretability for any ML model
in a model-agnostic way [12]. A feature is regarded as being used
by a model if changing the feature changes the prediction of the
model. NF is then estimated via a sampling procedure as described
in Algorithm 1 of [12]. The IAS is based on accumulated local ef-
fects (ALE) [1] of a model and is given by the scaled approximation
error between the ALE main effect model (the sum of first-order
ALE effects) and the prediction function of the model. For more
details, see Section 3.2 of [12]. A model with low NF and IAS is
more interpretable than a model with high NF or high IAS, but
optimal performance is often reflected in either a high NF or IAS
or both. However, this strongly depends on the data set at hand;
as ML models can always overfit, resulting in bad generalization
performance, simply opting for models having a high NF and IAS
is prone to poor performance. It is therefore a priori unknown

1These IDs correspond to OpenML data set ids through which data set properties can
be queried via https://www.openml.org/d/<id>.
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whether low or high NF / IAS will result in good performance, mak-
ing the application of QDO algorithms particularly attractive due to
the illuminating aspect of QDO. In line with most QDO algorithms
and their implementations, we propose to define niches, using a
discrete uniform grid archive with ranges [0, 𝑝] for NF and [0, 1]
for IAS. Here, 𝑝 is the number of features present in a data set (e.g.,
14 for data set 40981). We propose to use a bin size of 𝑝 + 1 for NF
(i.e., models in each bin use exactly 0, 1, . . . or 𝑝 features) and 100
for IAS, resulting in 2100, 1500, 600, and 2200 niches overall for
the data sets above. We summarize all benchmark problems in Ta-
ble 3. In Figure 1, we visualize the exemplary iaml_ranger_40981
problem via a heatmap of the accuracy (color) of different elites,
which allows for visually inspecting the alignment of the feature
functions and objective function. We present similar heatmaps for
all remaining benchmark problems in Appendix A.

2.2 Accuracy and Resource Usage
Four of our proposed QDO problems belong to the context of perfor-
mance and resource usage. We suggest benchmarking all instances
of the iaml_ranger scenario. The search space is again given in
Table 1. The objective function is given by the accuracy that is
to be maximized. The behavior space is spanned by two feature
functions: the size of the model if stored on disk (in MB) and the
time required to make a prediction on the same data set the model
has been trained on (in seconds). These measures are typically of
interest in the context of deploying ML models in production envi-
ronments on different hardware with varying restrictions regarding
RAM and latency of predictions [14]. A larger random forest typi-
cally consists of plenty and deep trees, and prediction time is both
affected by the depth of the individual trees and the number of
trees in the forest. In general, a large random forest with deep trees
should result in a better performance, but this again depends on
the data set at hand. As before, we propose to define niches via a
discrete uniform grid archive (for more details, see Table 3). In Fig-
ure 1, we visualize the exemplary iaml_ranger_41146 problem via
a heatmap of the accuracy (color) of different elites, which allows
for visually inspecting the alignment of the feature functions and
objective function. We present similar heatmaps for all remaining
benchmark problems in Appendix A.

Table 1: Search space of iaml_ranger scenarios.

Hyperparameter Type Range Trafo

num.trees integer [1, 2000]
mtry.ratio continuous [0, 1]
min.node.size integer [1, 100]
sample.fraction continuous [0.1, 1]

2.3 Benchmark Experiments and Results
We benchmark a basic variant of MAP-Elites [13], a basic variant of
CMA-ME [8], and Random Search (i.e., sampling HPCs uniformly at
random). To illustrate the potential of fast prototyping of newmeth-
ods, we also include an optimizer that is a mix between MAP-Elites
and CMA-ME, where half of the evaluations of a batch are proposed
using a Gaussian emitter and the other half using an improvement

Table 2: Search space of iaml_xgboost scenarios.

Hyperparameter Type Range Trafo

alpha continuous [1e-04, 1000] log
lambda continuous [1e-04, 1000] log
nrounds integer [3, 2000] log
subsample continuous [0.1, 1]
colsample_bylevel continuous [0.01, 1]
colsample_bytree continuous [0.01, 1]
eta continuous [1e-04, 1] log
gamma continuous [1e-04, 7] log
max_depth integer [1, 15]
min_child_weight continuous [exp(1) , 150] log

"log" in the Trafo column indicates that this parameter is
optimized on a logarithmic scale, i.e., the range is given by
[log(lower), log(upper) ], and values are re-transformed via
the exponential function prior to evaluating the HPC.
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Figure 1: Heatmaps of the iaml_ranger_40981 interpretabil-
ity (left) and iaml_ranger_41146 resource usage (right) bench-
mark problems. The color gradient represents the accuracy
(objective function), with black indicating lowest accuracy
and bright yellow/white indicating highest accuracy.

emitter, which we abbreviate as “Gauss.+Imp.”. We implement all
optimizers in pyribs [18]. All optimizer use a batch size of 100 and
run for 1000 iterations, resulting in 100000 evaluations in total.
For MAP-Elites, we use 𝜎0 = 0.1 as the standard deviation of the
Gaussian distribution. For CMA-ME, we set 𝜎0 = 0.1 as the initial
step size and use “filter“ as a selection rule. All optimizers use a
single emitter. We want to note that we did not perform any tun-
ing of hyperparameters of the optimizers themselves. Therefore,
results are preliminary and better performance of an optimizer
could be obtained by more carefully chosen design choices. All
runs are replicated ten times with different random seeds. We al-
ways normalize all parameters of the search space to the unit cube
and optimize within these normalized bounds (during evaluation
of an HPC, parameters are then re-transformed to their original
scale). Note that integer-valued parameters are treated as continu-
ous. However, prior to evaluating an HPC, those parameter values
are then rounded to the nearest integer. As performance metrics,
we report the coverage (percent of niches occupied with a solution),
the QD-Score [16] (sum of best accuracies of occupied niches), and
the overall best accuracy found. Results for the interpretability
context are given in Table 4 for the iaml_ranger scenarios and in
Table 5 for the iaml_xgboost scenarios. Results for the resource
usage context are given in Table 6. We also visualize the anytime
QD-Score in Figure 2, Figure 3, and Figure 4. In general, MAP-Elites
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Table 3: Summary of our QDO benchmark problems.

Problem Learner Data set Search space Objective Features Niches

Illuminating interpretability

iaml_ranger_41146 rf 41146 Table 1 acc NF + IAS uniform on [0, 20] × [0, 1] 21, 100 bins
iaml_ranger_40981 rf 40981 Table 1 acc NF + IAS uniform on [0, 14] × [0, 1] 15, 100 bins
iaml_ranger_1489 rf 1489 Table 1 acc NF + IAS uniform on [0, 5] × [0, 1] 6, 100 bins
iaml_ranger_1067 rf 1067 Table 1 acc NF + IAS uniform on [0, 21] × [0, 1] 22, 100 bins
iaml_xgboost_41146 XGBoost 41146 Table 2 acc NF + IAS uniform on [0, 20] × [0, 1] 21, 100 bins
iaml_xgboost_40981 XGBoost 40981 Table 2 acc NF + IAS uniform on [0, 14] × [0, 1] 15, 100 bins
iaml_xgboost_1489 XGBoost 1489 Table 2 acc NF + IAS uniform on [0, 5] × [0, 1] 6, 100 bins
iaml_xgboost_1067 XGBoost 1067 Table 2 acc NF + IAS uniform on [0, 21] × [0, 1] 22, 100 bins
Illuminating resource usage

iaml_ranger_41146 rf 41146 Table 1 acc rm + tp uniform on [1, 200] × [0.19, 4.5] 33, 33 bins
iaml_ranger_40981 rf 40981 Table 1 acc rm + tp uniform on [1, 40] × [0.10, 0.65] 33, 33 bins
iaml_ranger_1489 rf 1489 Table 1 acc rm + tp uniform on [1, 200] × [0.19, 4.5] 33, 33 bins
iaml_ranger_1067 rf 1067 Table 1 acc rm + tp uniform on [1, 78] × [0.13, 1.55] 33, 33 bins
"rf" = random forest. "acc" = accuracy. "rm" = rammodel. "tp" = timepredict. Niches of the uniform grid archive are constructed by dividing each
dimension of the feature space as indicated in the Niches column into equally spaced bins, forming hyperrectangles.

shows the strongest performance but is sometimes outperformed
by the Gauss.+Imp. optimizer. The performance of CMA-ME varies
strongly between benchmark problems, whereas MAP-Elites and
Gauss.+Imp. appear to be more consistent in their performance.
Random Search performs overall poorly, indicating that structural
information of the problems can be efficiently leveraged by more
sophisticated optimizers. We release all our code for running the
benchmarks and analyzing results via the following GitHub reposi-
tory: https://github.com/slds-lmu/qdo_yahpo.
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Figure 2: Anytime QD-Score for the iaml_ranger benchmarks
(interpretability). Averaged over 10 replications. Ribbons rep-
resent standard errors.

3 OUTLOOK
The benchmark problems proposed in this paper pose novel appli-
cations for QDO methods. QDO is interesting for HPO problems
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Figure 3: Anytime QD-Score for the iaml_xgboost bench-
marks (interpretability). Averaged over 10 replications. Rib-
bons represent standard errors.

in contexts where users are interested in criteria that go beyond
traditional performance metrics. This can be highly relevant in
the context of ML models that should be interpretable to a certain
degree or ML models that must be deployed across a diverse set
of systems, ranging from FPGAs to compute clusters. We propose
several such benchmarks but hope that HPO problems for QDO
can go far beyond what is proposed in the context of this work. Fur-
thermore, we identify two properties of existing HPO algorithms
and implementation that might help to drive greater adaptation of
QDO methods.
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Table 4: Benchmark results on iaml_ranger (interpretability).

data set: 41146 data set: 40981

Algorithm Coverage % QD-Score Max Acc Coverage % QD-Score Max Acc

MAP-Elites 58.95 1124.69 0.9444 80.91 1026.84 0.8747
CMA-ME 31.43 604.66 0.9444 79.03 1007.62 0.8745
Gauss.+Imp. 64.61 1235.72 0.9444 80.63 1026.35 0.8746
Random 9.69 188.52 0.9443 29.39 378.26 0.8746

data set: 1489 data set: 1067

Algorithm Coverage % QD-Score Max Acc Coverage % QD-Score Max Acc

MAP-Elites 34.73 175.24 0.9112 58.10 1083.08 0.8706
CMA-ME 14.57 77.41 0.9109 43.87 823.86 0.8700
Gauss.+Imp. 30.83 155.62 0.9111 57.57 1080.00 0.8705
Random 17.63 92.51 0.9109 10.22 191.19 0.8705

Averaged over 10 replications. "Max Acc" = maximum accuracy. Best performance is highlighted in bold.

Table 5: Benchmark results on iaml_xgboost (interpretability).

data set: 41146 data set: 40981

Algorithm Coverage % QD-Score Max Acc Coverage % QD-Score Max Acc

MAP-Elites 47.94 847.67 0.9446 26.00 333.70 0.8870
CMA-ME 45.38 802.77 0.9444 24.61 314.66 0.8849
Gauss.+Imp. 47.03 831.91 0.9446 30.76 391.40 0.8868
Random 20.10 364.31 0.9432 14.07 179.34 0.8822

data set: 1489 data set: 1067

Algorithm Coverage % QD-Score Max Acc Coverage % QD-Score Max Acc

MAP-Elites 38.85 200.69 0.9147 42.90 810.19 0.8824
CMA-ME 37.92 194.44 0.9132 38.47 728.03 0.8814
Gauss.+Imp. 43.52 223.11 0.9147 41.55 785.12 0.8821
Random 22.55 114.04 0.9052 18.19 342.40 0.8736

Averaged over 10 replications. "Max Acc" = maximum accuracy. Best performance is highlighted in bold.

Table 6: Benchmark results on iaml_ranger (resource usage).

data set: 41146 data set: 40981

Algorithm Coverage % QD-Score Max Acc Coverage % QD-Score Max Acc

MAP-Elites 41.50 422.99 0.9444 29.44 279.65 0.8749
CMA-ME 38.82 395.85 0.9444 27.29 259.23 0.8749
Gauss.+Imp. 41.36 421.55 0.9444 29.30 278.35 0.8749
Random 31.25 318.20 0.9443 24.92 236.56 0.8746

data set: 1489 data set: 1067

Algorithm Coverage % QD-Score Max Acc Coverage % QD-Score Max Acc

MAP-Elites 44.52 435.75 0.9112 41.04 387.44 0.8709
CMA-ME 42.84 419.21 0.9112 39.53 373.20 0.8709
Gauss.+Imp. 44.34 434.06 0.9112 40.77 384.92 0.8709
Random 36.74 358.33 0.9109 38.06 358.90 0.8705

Averaged over 10 replications. "Max Acc" = maximum accuracy. Best performance is highlighted in bold.

3.1 Mixed Search Spaces
Available implementations of QDO methods, such as pyribs, con-
sider only continuous search spaces. In many practical applications,

search spaces include categorical and conditionally active hyperpa-
rameters – so-called hierarchical, mixed search spaces [17]. While
existing methods can theoretically be extended to such spaces, a
lack of available implementations might inhibit adoption of QDO
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Figure 4: Anytime QD-Score for the iaml_ranger benchmarks
(resource usage). Averaged over 10 replications. Ribbons rep-
resent standard errors.

methods. Simultaneously, this might also open up a richer set of
readily available problem instances, and our proposed benchmarks
can be trivially extended to include such search spaces 2.

3.2 Overlapping Niches
Similarly, while not formally required, niches in the QDO literature
have traditionally been defined as being disjoint, i.e., a point can
only belong to a single niche. Real-world applications in the context
of HPO provide an interesting field of study for methods that go be-
yond those assumptions. As an example, consider again the setting
where an ML model should be deployed across diverse hardware.
In this context, niches could overlap, as a smaller model (e.g., fitting
on an FPGA or microcontroller) is always also a candidate for larger
devices (e.g., fitting on a laptop or workstation).

The field of hardware-aware neural architecture search [2] seeks
to find neural network architectures that are optimal for specific
hardware. If such models are now required for a variety of different
hardware architectures, QDO could be applied to find models for
each of those niches while simultaneously exploiting similarities
between architectures. In this setting, niches cannot be defined on
simple feature functions, as a solution can fall into multiple niches
that defy definition based on simple rules.

Such applications form an interesting new playground for QDO
methods, especially when considering that HPO problems are usu-
ally considered to be expensive. This might provide a valuable new
avenue for future method development towards approaches that
require fewer function evaluations [9] or that can efficiently make
use of evaluations at multiple fidelity levels [11].

2for the full search spaces of our benchmark problems, see [15]
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Figure 7: Heatmaps of the iaml_ranger resource usage bench-
mark problems.

A HEATMAPS FOR ALL BENCHMARK
PROBLEMS

In this section, we provide heatmaps for all our benchmark prob-
lems. Three Gaussian emitters with a standard deviation of 0.1, 0.2
or 0.3 and one random emitter were run each with a batch size of
25 for 10000 iterations resulting in 1000000 evaluations in total. The
color gradient represents the accuracy (objective function), with
black indicating lowest accuracy and bright yellow/white indicating
highest accuracy. Figure 5 shows heatmaps for the iaml_ranger
interpretability benchmark problems. Figure 6 shows heatmaps for
the iaml_xgboost interpretability benchmark problems. Figure 7
shows heatmaps for the iaml_ranger resource usage benchmark
problems.
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Figure 5: Heatmaps of the iaml_ranger interpretability
benchmark problems.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
NF

0.0

0.2

0.4

0.6

0.8

1.0

IA
S

iaml_xgboost_41146

0.65

0.70

0.75

0.80

0.85

0.90

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
NF

0.0

0.2

0.4

0.6

0.8

1.0

IA
S

iaml_xgboost_40981

0.70

0.75

0.80

0.85

0 1 2 3 4 5
NF

0.0

0.2

0.4

0.6

0.8

1.0

IA
S

iaml_xgboost_1489

0.65

0.70

0.75

0.80

0.85

0.90

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
NF

0.0

0.2

0.4

0.6

0.8

1.0

IA
S

iaml_xgboost_1067

0.78

0.80

0.82

0.84

0.86

0.88

Figure 6: Heatmaps of the iaml_xgboost interpretability
benchmark problems.

B TECHNICAL DETAILS
Benchmark experiments were conducted on a single Intel Core i7-
10510UCPU and took around 7 hours in total. YAHPOGymv1.0 was
used. For more details on how the iaml_ranger and iaml_xgboost
benchmark scenarios of YAHPO Gym were constructed, please see
[15].
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Automated Benchmark-Driven Design and
Explanation of Hyperparameter Optimizers

Julia Moosbauer , Martin Binder, Lennart Schneider , Florian Pfisterer , Marc Becker,
Michel Lang, Lars Kotthoff , and Bernd Bischl

Abstract—Automated hyperparameter optimization (HPO) has
gained great popularity and is an important component of most
automated machine learning frameworks. However, the process
of designing HPO algorithms is still an unsystematic and man-
ual process: new algorithms are often built on top of prior work,
where limitations are identified and improvements are proposed.
Even though this approach is guided by expert knowledge, it is
still somewhat arbitrary. The process rarely allows for gaining
a holistic understanding of which algorithmic components drive
performance and carries the risk of overlooking good algorithmic
design choices. We present a principled approach to automated
benchmark-driven algorithm design applied to multifidelity HPO
(MF-HPO). First, we formalize a rich space of MF-HPO candi-
dates that includes, but is not limited to, common existing HPO
algorithms and then present a configurable framework covering
this space. To find the best candidate automatically and sys-
tematically, we follow a programming-by-optimization approach
and search over the space of algorithm candidates via Bayesian
optimization. We challenge whether the found design choices
are necessary or could be replaced by more naive and simpler
ones by performing an ablation analysis. We observe that using
a relatively simple configuration (in some ways, simpler than
established methods) performs very well as long as some critical
configuration parameters are set to the right value.

Index Terms—Algorithm analysis, algorithm design, auto-
mated machine learning (AutoML), hyperparameter optimization
(HPO), multifidelity.
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I. INTRODUCTION

MACHINE learning (ML) is, in many regards, an
optimization problem, and many ML methods can be

expressed as algorithms that perform loss minimization with
respect to a given objective function. The higher-level task of
selecting the ML method and its configuration is often framed
as an optimization problem as well, sometimes referred to as
a hyperparameter optimization (HPO) [1] or combined algo-
rithm selection and HPO (CASH) problem [2]. Successfully
addressing this problem can lead to large performance gains
compared to simply using defaults, and in the context of auto-
mated ML (AutoML), the use of HPO can make ML more
accessible to nonexperts. Because of their potential benefits to
ML performance and usability, it is of particular interest to
design optimization algorithms that perform particularly well
on the HPO problem.

Optimization problems arise in many fields of science and
engineering, but as the no-free-lunch theorem states, there is
no one optimization algorithm that solves all problems equally
well [3]. To design suitable optimizers, it is therefore important
to understand the characteristics of HPO.

1) Black-Box: The objective usually provides no analytical
information [4], such as a gradient. Thus, the applica-
tion of many traditional optimization methods, such as
BFGS, is rendered inappropriate or at least questionable.

2) Complex Search Space: The search space of the
optimization problem is often high-dimensional and
may contain continuous, integer-valued, and categori-
cal dimensions. Often, there are dependencies between
dimensions or even specific hyperparameter values [5].

3) Expensive: A single evaluation of the objective function
may take hours or days. Thus, the total number of pos-
sible function evaluations is often severely limited [4].

4) Low-Fidelity Approximations Possible: An approxima-
tion of the true objective value at lower expense can
often be obtained, for example, through a partial evalu-
ation [6].

5) Low Effective Dimensionality: The landscape of the
objective function can usually be approximated well by
a function of a small subset of all dimensions [7].

Recent HPO and AutoML research has focused on finding
and improving optimization algorithms that work particu-
larly well under these conditions. A common approach is to
tackle HPO by estimating a local or global structure of the
objective landscape by some form of the predictive model.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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This introduces additional overhead and complexity with the
aim of reducing the overall number of expensive objective
evaluations necessary to find an approximate optimum. Typical
representatives of this approach are Bayesian optimization
(BO) [8] algorithms and frameworks based on BO, which
are global optimization schemes based on a nonlinear regres-
sion model, e.g., a Gaussian process or random forest. They
have shown significant improvements in performance com-
pared to other methods [9] but carry a significant overhead.
Furthermore, BO is somewhat difficult to parallelize due to
its sequential nature, although many variants exist (e.g., [10],
[11], [12], and [13]).

Multifidelity HPO (MF-HPO) algorithms aim to accelerate
the optimization process by exploiting cheaper proxy func-
tions of the objective function itself (e.g., by training ML
models on a smaller subsample of the available training data,
or by running fewer training iterations). Bandit-based algo-
rithms like Hyperband (HB) [14] have become particularly
popular because of their good tradeoff between optimization
performance and simplicity.

Progress in the field of HPO often consists of iterative
improvements of established algorithms. Considerable work
exists, for example, to improve the limitations of HB: asyn-
chronous successive halving (ASHA) [15] proposes a sophis-
ticated way to make efficient use of parallel resources, BO HB
(BOHB) [16] improves performance during later parts of
a run by incorporating surrogate assistance into HB, and
asynchronous BOHB (A-BOHB) [17] unites a bandit-based
optimization scheme using model-based guidance with asyn-
chronous parallelization.

While these conceptual extensions of HPO all have their
respective merit, it is often somewhat overlooked that the
simplicity of an optimization algorithm (i.e., how difficult
modifications and extensions are, and on how many depen-
dencies a system relies [18]) heavily influences its adoption
in practice. Random search (RS), for example, still enjoys
great popularity, as it is extremely simple to implement and
parallelize, has almost no overhead, and is able to take
advantage of the aforementioned low effective dimensional-
ity [7]. Furthermore, algorithmic developments identify and
address limitations of prior research, but rarely question core
algorithmic choices that have been made in the original imple-
mentation. Many multifidelity algorithms, for example, are
extensions and further developments of HB that take the fixed
successive halving (SH) schedule [19] for granted. The pro-
cess of designing a good MF-HPO optimizer in practice—and
many other algorithmic solutions in science in general—can
therefore often feel somewhat like a “manual stochastic local
search on the meta level.” The drawback of this manual pro-
cedure is that the design space of all HPO algorithms is
not systematically searched, and parts of the design space
are excluded by prior algorithmic decisions. If “established”
algorithms are not challenged, there is a risk that algo-
rithms that work well will be overlooked, and it is often
hard to identify what algorithmic components make a dif-
ference. In particular, it is possible that overly complicated
algorithms are developed by extending “established” designs,
only some of which contribute meaningfully to performance

gains. Sometimes certain technical components of an algo-
rithm, which are neither exposed nor discussed in detail, may
also influence performance significantly.

A. Contributions

We make a principled demonstration of how HPO algorithm
design can be performed systematically and automatically with
a benchmark-driven approach following the programming-by-
optimization paradigm [20]. In particular, the contributions of
this work are as follows.

1) Formalization: We formalize the design space of MF-
HPO algorithms and demonstrate that established MF-
HPO algorithms represent instances within this space.

2) Framework: Based on this formalization, we present
a rich, configurable framework for MF-HPO algo-
rithms, whose software implementation we call surro-
gate model-assisted HB (SMASHY).

3) Configuration: Based on the formalization and frame-
work, we follow an empirical approach to design an
MF-HPO algorithm by optimization, given a large
benchmark suite. This configuration procedure does not
only consider performance but also, e.g., the simplicity
of the design.

4) Benchmark: As in general any HPO algorithm will be
applied in a diverse set of application scenarios, we
evaluate the performance of our newly designed algo-
rithm on a representative set of problems that were not
previously used for its configuration (i.e., a clean test-
set approach on the meta-level) and compare them with
established implementations of HPO methods.

5) Explanation: For the resulting MF-HPO system, we
systematically assess and explain the effect of differ-
ent design choices on overall algorithmic performance.
Furthermore, we investigate the behavior of algorithmic
design components in the context of specific problem
scenarios; i.e., we investigate which algorithmic com-
ponents lead to performance improvements for simple
HPO with numeric hyperparameters, AutoML pipeline
configuration, and neural architecture search.

II. RELATED WORK

HPO is one of the most essential components of current
AutoML methods [1], and MF-HPO has recently become
more prominent, given that cheap, low-fidelity evaluations
have proven useful to speed up optimization, especially for
expensive HPO of complex ML algorithms on larger data
sets [14]. While AutoML tools have historically relied on a
limited set of HPO methods, we argue that the optimal HPO
method depends on problem characteristics, and therefore a
systematic development of HPO methods under consideration
of problem characteristics is required. Approaches toward such
systematic development have often relied on a high-level lan-
guage or template that allows expressing solution algorithms
for a given problem class, e.g., to solve constraint satisfaction
problems [21], [22], [23], satisfiability problems [24], schedul-
ing problems [25], or general multiobjective combinatorial
problems [26], [27].
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Even if a high-level language is available, manual config-
uration of such frameworks is laborious and requires expert
knowledge. This motivates the design philosophy of “pro-
gramming by optimization” [20] (PBO), which advocates for
allowing algorithmic choices in a software system (instead
of fixing them at the time of implementation) and automatic
configuration by optimization for a given problem context.

As one approach to automatic and efficient algorithm con-
figuration, racing-based strategies have been used to design
optimization algorithms. For example, iterated F-RACE [28]
has been used for the automatic design of multiobjective ant
colony optimization algorithms [26]. Similarly, IRACE [29]
has been used for the automatic design multiobjective evo-
lutionary algorithms [27] or to meta-configure the parame-
ters IRACE itself [30]. Another commonly used framework
is SMAC [5], which extends the sequential model-based
optimization paradigm (SMBO, see also Section IV-A2) to an
algorithm configuration setting. This is achieved through the
use of an intensification procedure that governs across how
many problem instances each configuration is evaluated, trad-
ing off computational cost against confidence regarding the
superiority of a given configuration. While such intensification
mechanisms have been used in other work before [31], [32],
SMAC also uses instance features describing properties of a
problem instance are used to train the empirical performance
model predicting the performance of a configuration on a new
problem instance. Besides racing and sequential model-based
approaches, genetic algorithms have also been used to evolve
optimal solvers [33].

We argue that the design of HPO algorithms can be seen
as an instance of PBO. However, while there are many
approaches that focus on individual algorithmic choices (e.g.,
the choice of a surrogate model for BO [34]), we are not
aware of many cases where PBO is applied to designing
HPO systems themselves. One exception is [35], who use
SMACv3 [36] to automatically configure BO for HPO from
a flexible search space of components. We take a similar
approach here in that the algorithmic choices are exposed as
hyperparameters that can be tuned. However, unlike [35], we
do not configure an established HPO method (such as BO)
with a predefined structure and associated control parame-
ters (e.g., varying the surrogate model of BO). Instead, we
introduce a new configurable algorithmic framework, which
covers many different MF-HPO structures, including well-
established principles for multifidelity handling (e.g., SH)
as well as new approaches (e.g., equal batch size in all
proposals).

In addition to designing well-performing algorithms, it is
equally important to facilitate an understanding of the effects
of all considered design choices. The field of sensitivity anal-
ysis (SA) comprises a multitude of methods to assess the
importance of input factors on the output of a mathematical
model [37]. Functional ANOVA (fANOVA) methods, which
decompose the response of a (mathematical) model or func-
tion into lower-order components, are a widely studied method
in the field of SA, dating back to [38]. This class of methods
has also become popular in the field of ML to analyze the
importance of hyperparameters [39].

Popular ways of analyzing effects of algorithmic effects
in ML and algorithm configuration are ablation studies [40].
This involves measuring the performance when removing
one or more of algorithmic subcomponents to understand
the relative contribution of the ablated components to over-
all performance. There are different ways of performing an
ablation analysis; probably the most common approach is
leave-one-component-out (LOCO) ablation [41]. In the context
of algorithm configuration, Fawcett and Hoos [40] proposed
an ablation approach that links a source configuration (e.g., the
default) to a target (e.g., the optimized configuration) through
an ablation path.

Nevertheless, many existing works that propose or improve
HPO or algorithm configuration systems do not analyze the
algorithmic choices of an optimized system, and the ones
that do perform relatively straightforward analyses. For exam-
ple, Minton [21] compared the designs and their approach
finds automatically to the designs expert humans generated.
López-Ibáñez and Stützle [42] performed ANOVA and non-
parametric Friedman tests to investigate in detail the effects
that algorithmic choices, found through automatic configura-
tion [26], have on the performance of multiobjective ant colony
optimization algorithms. de Nobel et al. [43] presented a mod-
ular framework for CMA-ES variants on which they perform
optimization; in particular, they investigate how the optimized
configuration changes when the search space is enlarged by
introducing new components.

III. METHODOLOGY

A. Supervised Machine Learning

Supervised ML typically deals with a dataset (which is,
mathematically speaking, a tuple) D = ((x(i), y(i))) ∈ (X×Y)n

of n observations, assumed to be drawn i.i.d. from a data-
generating distribution Pxy. An ML model is a function
f̂ : X → Rg that assigns a prediction to a feature vector
from X .1 f̂ is itself constructed by an inducer function I, i.e.,
the model-fitting algorithm. The inducer I : (D,λ) �→ f̂ uses
training data D and a vector of hyperparameters λ ∈ � that
govern its behavior. The overall goal of supervised ML is to
derive a model f̂ from a data set D so that f̂ predicts data sam-
pled from Pxy best. The quality of a prediction is measured
as the discrepancy between predictions and ground truth. This
is operationalized by the loss function L : Y × Rg → R+0 ,
which is to be minimized during model fitting. In contrast to
the optimization problems that we will define in Sections III-B
and III-C, we term this the “first-level” optimization problem.

The expectation of the loss value of predictions made for
data samples drawn from Pxy is the generalization error

GE := E(x,y)∼Pxy

[
L
(

y, f̂ (x)
)]

(1)

which cannot be computed directly if Pxy is not known beyond
the available data D. Therefore, one often uses so-called
resampling techniques that fit models on Niter subsamples
D[Jj] and evaluate them on complements D[−Jj] of these

1where g allows handling of multioutput regression, as well as multiclass
classification with g classes by returning decision scores.
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subsets to obtain an estimate of the generalization error

ĜE(I,λ, J) = 1

Niter

Niter∑
j=1

L
(
y
[−Jj

]
, I

(
D

[
Jj

]
,λ

)(
x
[−Jj

]))
. (2)

Depending on the resampling method, the inducer I, and
the quantity of data in D, estimating the generalization
error ĜE(I,λ, J) can require large amounts of computational
resources.

B. Hyperparameter Optimization

The goal of HPO is to identify a hyperparameter configura-
tion that performs well in terms of the estimated generalization
error in (2). Often, optimization only concerns a subspace
of available hyperparameters because some hyperparameters
might be set based on prior knowledge or due to other
constraints. One would therefore split up the space of hyperpa-
rameters � into a subspace of hyperparameters �S over which
optimization takes place, and the remaining hyperparameters
�C = �/�S for which values λC are given exogenously. We
define the HPO problem as

λ∗S ∈ argmin
λS∈�S

c(λS) = argmin
λS∈�S

ĜE(I, (λS,λC), J). (3)

Here, λ∗S denotes a theoretical optimum, and c(λS) is a short-
hand for the estimated generalization error in (2). We refer to
Problem 3 as the “second-level” optimization problem.

Hyperparameters can be either continuous, discrete, or cat-
egorical, and search spaces are often a mix of the different
types. The search space may be hierarchical, i.e., some sub-
ordinate hyperparameters can only be set in a meaningful
way if another parent hyperparameter takes a certain value. In
particular, many AutoML frameworks perform optimization
over a hierarchical hyperparameter space that represents the
components of a complex ML pipeline [1].

Many HPO algorithms can be characterized by how they
handle two different tradeoffs: 1) the exploration versus
exploitation tradeoff refers to how much budget an optimizer
spends on either trying to directly exploit the currently avail-
able knowledge base by evaluating very close to the currently
best candidates (e.g., local search) or whether it explores the
search space to gather new knowledge (e.g., RS) and 2) the
inference versus search tradeoff refers to how much time and
overhead is spent to induce a model from the currently avail-
able archive data in order to exploit past evaluations as much
as possible. Other relevant aspects that HPO algorithms differ
in are: Parallelizability, i.e., how many configurations a tuner
can (reasonably) propose at the same time; global versus local
behavior of the optimizer, i.e., if updates are always quite close
to already evaluated configurations; noise handling, i.e., if the
optimizer takes into account that the estimated generalization
error is noisy; search space complexity, i.e., if and how hier-
archical search spaces can be handled; multifidelity, i.e., if the
optimizer uses cheaper evaluations to infer performance on the
full data.

Multifidelity methods make use of the fact that the resam-
pling procedure in (2) can be modified in multiple ways to
make evaluation cheaper: one can 1) reduce the training sizes

|Jj| via subsampling, as model evaluation complexity is often
at least linear in training set size or 2) change some compo-
nents in λ in a way that makes model fits cheaper. Examples
of 2) are reducing the overall number of training cycles per-
formed by a neural network fitting process or reducing the
number of base learner fits in a bagging or boosting method.
These modifications can both increase the variance of ĜE and
introduce an (often pessimistic) bias, as models trained on
smaller datasets or with values of λ that make fitting cheaper
often have worse generalization errors.

We introduce a fidelity parameter r ∈ (0, 1] that influences
the resource requirements of the evaluation of ĜE and define

c(λS; r) := ĜE(I, (λS,λC(r)), J(r)). (4)

With this definition, we make the choice that r should influence
the evaluation cost of ĜE only by modifying the resampling,
J(r) or by modifying a hyperparameter λC(r). Typically, r only
affects one of these aspects at a time, and if it affects λC, it
only affects a single hyperparameter dimension.

Note that we normally assume that a higher fidelity r
returns a better model in terms of the estimate of the gener-
alization error, and the best estimate is returned for r = 1.
Therefore, r enters the expression in a way where it can
influence performance but is not searched over. We define
c(λS) := c(λS; 1) as in [44], and the optimization problem
remains as in (3).

This assumption may be violated in some scenarios,
and model performance could worsen for a higher value
of r (e.g., a neural network, which may overfit on a
small dataset if trained for too many epochs). In this
case, we define the optimization problem as (λ∗S, r∗) ∈
argminλS∈�S,r∈(0,1] c(λS; r).

The resource requirements of evaluating c(λ; r) can have a
complicated relationship with λ and r; in practice, r is chosen
in such a way that it has an overwhelming and linear influence
on resource demand. The overall cost of optimization up to a
given point in the optimization process is therefore assumed to
be the cumulative sum of the values of r of all evaluations of
c(λ; r) up to that point. We can also interpret r as the fraction
of the budget of a single full fidelity model evaluation that
must be spent for evaluating c(λ; r).

Given the definition of the HPO problem, we present an
(MF-)HPO algorithm for a single, synchronous worker in its
most generic form in Algorithm 1. Until a predetermined bud-
get is exhausted, such an algorithm decides in every iteration
1) which configuration(s) λS to evaluate next and 2) which
fidelity r to use for evaluation; nonmultifidelity algorithms set
this to r = 1 as default. The algorithm makes use of an archive
A, a database recording previously proposed hyperparameter
configurations and, if available, their evaluation results. This
database can be shared among multiple worker processes that
optimize concurrently.

The optimization process can be accelerated by making
efficient use of parallel resources. We distinguish between
synchronous and asynchronous scheduling. The former starts
multiple evaluations synchronously at the same time and waits
until all of these have finished. To be more precise, a number
of k > 1 configurations are proposed in line 2 and evaluated
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Algorithm 1 Generic HPO Algorithm
1: while budget is not exhausted do
2: Propose

(
λ
(i)
S , r(i)

)
, i = 1, ..., k, based on archive A

3: Write proposals into a shared archive A
4: Estimate generalization error(s) c

(
λ
(i)
S ; r(i)

)

5: Write results into shared archive A
6: end while
7: Wait for workers to synchronize
8: Return best configuration in archive A

in parallel in line 4, all within the inner loop of Algorithm 1.
Given K available parallel resources, it should be ensured that
the number k of configurations scheduled in parallel is not
significantly smaller than K and that the evaluation runtimes
amongst these k configurations do not differ significantly in
order to avoid unnecessarily idling single parallel resources.
In contrast, for asynchronous scheduling, Algorithm 1 is
run individually in K separate worker processes. Given a
shared archive that is synchronized between the workers,
every worker can independently schedule new configurations
to evaluate.

C. Algorithm Design and Configuration

Our goal will be to design and configure a new HPO
algorithm based on a superset of design choices included in
previously published HPO methods. We are interested in find-
ing a configuration (or making design choices) based on a set
of training instances that works across a broad set of future
problem instances. This problem is called algorithm configu-
ration [5], [45]. It is quite similar to HPO; a major difference
is that algorithm configuration optimizes the configuration of
an arbitrary algorithm over a diverse set of often heteroge-
neous instances for optimal average performance, while HPO
performs a per-instance configuration of an ML inducer for
a single data set. We introduce the following notation for
consistency with the relevant literature: γ denotes configura-
tion parameters controlling our optimizer A, while λ denotes
hyperparameters optimized by our optimizer, controlling our
inducer I. The algorithm configuration problem can be for-
mally stated as follows. Given an algorithm A : �× � → �

parameterized by γ ∈ � and a distribution P� over problem
instances � together with a cost metric ζ , we must find
a parameter setting γ ∗ that minimizes the expected ζ(A)

over P�

γ ∗ ∈ argmin
γ∈�

Eω∼P�

[
ζ (A(ω, γ ))

]
. (5)

In our example, � corresponds to the space of possible com-
ponents of our HPO method and � corresponds to a class of
HPO problems (i.e., ML methods and datasets on which they
are evaluated) for which their configuration should be optimal.
Based on a training set of representative instances {ωi} drawn
from P�, a configuration γ ∗ that minimizes c across these
instances should be chosen through optimization. When nec-
essary, we refer to this process as the “third-level” optimization
problem to distinguish it from the optimization performed by
the HPO algorithm A, i.e., the second-level optimization.

Algorithm 2 SMASHY Algorithm
Configuration Parameters: batch size schedule μ(b), number

of fidelity stages s, survival rate ηsurv, fidelity rate ηfid, SAMPLE
method (either SAMPLETOURNAMENT or SAMPLEPROGRESSIVE),
batch_method (one of equal, SH, or HB), total budget B; fur-
ther configuration parameters of SAMPLE: Ifsurr , Pλ(A), ρ(t),(

N0
s (t), N1

s (t)
)

, ntrn.

State Variables: Expended budget fraction t ← 0, bracket
counter b ← 1 (remains 1 for batch_method ∈ {equal, SH}),
current fidelity r← 1, batch of proposed configurations C ← ∅

1: while t < 1 do

2: if r = 1 then 	 Generate new batch of configurations
3: r← (ηfid)b−s

4: C← SAMPLE
(

A, μ(b), r;Ifsur ,Pλ(A),

ρ(t),
(

N0
s (t), N1

s (t)
)
, ntrn

)
5: if batch_method = HB then
6: b← (b mod s) + 1
7: end if
8: else 	 Progress fidelity
9: r← r · ηfid

10: C← SELECT_TOP(C, |C|/ηsurv)
11: if batch_method = equal then
12: μ̃← μ(b)− |C|
13: C← C ∪ SAMPLE

(
A, μ̃, r;Ifsur ,Pλ(A),

ρ(t),
(

N0
s (t), N1

s (t)
)
, ntrn

)
14: end if
15: end if

16: Evaluate configuration(s) c(λS; r) for all λS ∈ C
17: Write results into shared archive A
18: t← t + r · |C|/B 	 Update budget spent
19: end while

IV. FORMALIZING BROAD CLASS OF

MF-HPO ALGORITHMS

We aim to find an HPO algorithm that performs particu-
larly well in the multifidelity setting. To design an algorithm
by optimization, we propose a framework and search space of
HPO algorithm candidates that cover a large class of possible
algorithms and focus on a subclass of algorithms similar to HB
because of their favorable properties. This subclass focuses on
multifidelity algorithms that use a predefined schedule of geo-
metrically increasing fidelity evaluations containing algorithms
like HB [14] and BOHB [16].

The basis of this framework is presented in Algorithm 2,
which can be configured by combining algorithmic building
blocks in novel ways. The main difference to Algorithm 1
is that the Propose part is specified more explicitly. At its
core, Algorithm 2 consists of two parts: 1) sampling new con-
figurations at low fidelities (lines 2–7) and 2) increasing the
fidelity for existing configurations (lines 8–14). In contrast to
Algorithm 1, Algorithm 2 makes use of state variables t, b,
and r to account for optimization progress. However, these
variables are only shown in Algorithm 2 for clarity and can,
in principle, be inferred from the archive A. As argued in
Section III, every single worker instance of Algorithm 1 can, in
principle, be scheduled asynchronously, but we do not consider
this in this work.
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TABLE I
RS, BO, SH, HB, AND BOHB AS INSTANCES OF ALGORITHM 2. η, ρ , AND Ns ARE CONFIGURATION PARAMETERS OF THE RESPECTIVE ALGORITHMS.

“—” DENOTES THAT THE VALUE HAS NO INFLUENCE ON THE ALGORITHM IN THIS CONFIGURATION. *: BO AND BOHB USE INDUCERS THAT

PRODUCE NONSTANDARD MODEL FUNCTIONS, WHICH DO NOT AIM TO PREDICT THE ACTUAL PERFORMANCE OF CONFIGURATIONS, AND INSTEAD

CALCULATE THE VALUE OF AN ACQUISITION FUNCTION SUCH AS EI [4] (FOR BO) OR THE RATIO OF TWO KERNEL DENSITY ESTIMATOR (KDE)
MODELS (FOR BOHB). †: IN A SMALL DEPARTURE FROM BOHB, ALGORITHM 2 USES THE KDE ESTIMATE OF GOOD POINTS FOR ALL SAMPLED

POINTS, EVEN WHEN RANDOMLY INTERLEAVED. BOHB RANDOMLY INTERLEAVES FROM A UNIFORM DISTRIBUTION

In its first iteration, Algorithm 2 uses a SAMPLE-subroutine
to initialize the initial batch C of μ solution candidates. The
fidelity of the evaluation of the proposed configurations is
refined iteratively; when all configurations in the batch have
been evaluated with given fidelity r, the top 1/ηsurv fraction of
configurations is evaluated with a fidelity that is increased by
a factor of ηfid. When the fidelity cannot be further increased
for a batch because all of its configurations were evaluated
at full fidelity r = 1, they are set aside, and a new batch of
configurations is sampled.

The SAMPLE subroutine creates new configurations to
be evaluated, possibly using information from the archive
to propose points that are likely to perform well. We allow
that any inducer Ifsur that produces a surrogate model fsur
can be used for model-assisted sampling. The subroutine
works by at first sampling a number of points from a given
generating distribution Pλ(A). The performance of these
points is then predicted using the surrogate model, and
points with unfavorable predictions are discarded in a process
we refer to as filtering. This process is repeated until the
requested number μ of nondiscarded points is obtained. Ns

and ρ have the same function as in [16] (see Section IV-A5),
with the filter factor Ns controlling the number of sampled
points needed for each of the μ points returned, and ρ

controlling the fraction of points that are not filtered. Thus,
the configuration space of sampling methods also includes
purely random sampling, as in HB, by setting ρ = 1. The
influence of the surrogate model on sampled candidates
is larger when 1) the number of sampled configurations
Ns is large or 2) the fraction ρ of candidates sampled at
random is small. We present two slightly different SAMPLE

algorithms: SAMPLETOURNAMENT (Algorithm 3) and
SAMPLEPROGRESSIVE (Algorithm 4) based on this principle
(see Appendix A in the supplementary material). Both allow
to use different Ns values for different points they sample,
parameterized by N0

s and N1
s .

While hyperparameters λS are proposed by one of the two
SAMPLE methods, the fidelity hyperparameter r follows a fixed
schedule similar to SH [19] and HB [14], with a few exten-
sions. For one, the survivor factor ηsurv can be a different value
from the fidelity scaling factor ηfid. Furthermore, the algorithm
allows three scheduling modes, controlled by batch_method:
SH does SH. The HB mode evaluates brackets, as performed by
HB. While μ(b) is, in principle, a free configuration parameter

for every value of b, we choose to set μ(b) so that total bud-
get expenditure is approximately equal between all brackets.
This follows the principle used in HB, but the dependency on
ηsurv and ηfid is more complex and determined dynamically.
Finally, equal batch_method uses equal batch sizes for every
evaluation. Individuals that perform badly at low fidelity are
removed, as in SH, but new individuals are sampled to fill up
batches to the original size. Because new individuals are added
to the batches at all fidelity steps, it is not necessary to use
brackets with different initial fidelities, and therefore, only a
single repeating bracket b = 1 is used. The equal method is
an original contribution of this work and was designed to be
similar to HB while using parallel resources more efficiently;
the two batch scheduling methods are illustrated in Fig. 1.

If the exploration–exploitation tradeoff is not balanced
properly, the optimization progress can either stagnate or func-
tion evaluations are wasted due to too much exploration of
uninteresting regions of the search space. However, the rel-
ative importance of exploration and exploitation can change
throughout the course of optimization, where exploration per-
formed later during the optimization is not as useful as during
the beginning. The given configuration space makes it pos-
sible to make the exploration–exploitation tradeoff dependent
on optimization progress by providing the option to make ρ(t)
and (N0

s (t), N1
s (t)) dependent on the proportion of exhausted

total budget at every configuration proposal step. It is likely
that large values of ρ(t)/small values of N·s(t) perform better
when t is small. Conversely, it is likely that small ρ(t)/large
N·s(t) work well for large t.

A. Common MF-HPO Algorithms Covered by Algorithm 2

The following describes a few common HPO algorithms
that can be instantiated within this framework; see Table I for
specific configuration parameter settings within Algorithm 2
that correspond to these algorithms.

1) Random Search: Configurations λS are drawn (uni-
formly) at random, and every configuration is evaluated with
full fidelity r = 1. Parallelization is straightforward, as
configurations are drawn independently.

2) Bayesian Optimization [8]: The configuration that max-
imizes an acquisition function a(λ) (e.g., expected improve-
ment, EI [4]) is proposed and evaluated with the full fidelity
r = 1. a(λ) is based on a surrogate model trained on the
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(a) (b)

(c)

(d) (e)

Fig. 1. Illustration of the different batch_methods used, corresponding to the values of ηfid = ηsurv = 2, s = 4, and μ = 8. The tables show the (a) HB method
and (b) equal method. Shown are the number |C| and fidelity value r of configurations being evaluated in the iterations i of the various brackets counted
by b. Except for i, the variables are the same as in Algorithm 2. Subfigures (c)–(e) illustrate resource utilization by the batch methods, given availability of
parallel resources. (c) Naively scheduling the configuration evaluations one batch after another can make use of available parallel resources but leaves many
of them idle. (d) Hypothetical way of scheduling configuration evaluations of different brackets at the same time so that all configurations with the same
r-value are scheduled together utilizes resources more efficiently, but the number of evaluations in each batch still varies. (e) Simpler equal batch scheduling
method always evaluates the same number of configurations within each batch and, therefore, makes optimal use of available parallel resources.

archive A. BO can be parallelized by either using methods
that can propose multiple points at the same time using a
single surrogate model or, alternatively, by fitting a surrogate
model on the anticipated outcome of configurations that were
proposed but not yet evaluated [11]. BO can be represented in
Algorithm 2 by using an inducer Ifsurr that produces a function
fsurr equal to the composition of model prediction and acqui-
sition function. In its basic form, BO is not an MF algorithm
and therefore always sets r = 1.

3) Successive Halving [19]: SH, also called sequential
halving [46], is a simple multifidelity optimization algorithm
that combines the random sampling of configurations with a
fixed schedule for r. At the beginning, a batch of μ configura-
tions is sampled randomly and evaluated with an initial fidelity
rmin < 1. This is followed by repeated “halving” steps, where
the top fraction η−1 of configurations is kept and evaluated
after r is increased by a factor of η, until the maximum fidelity
value is reached. The schedule is chosen to keep the total sum
of all evaluated r constant in each batch. Both ηsurv and ηfid
in Algorithm 2 correspond to SH’s η-parameter.

4) Hyperband [14]: Similar to SH, HB uses a fixed sched-
ule for the fidelity parameter r, but it augments SH by
using multiple brackets b of SH runs starting at different
rmin(b) and with different μ(b). The number of brackets is

set to

s = ⌊
logη(1/rmin)

⌋+ 1 (6)

which coincides with the number of fidelity steps that can
be performed on a geometric scale on the interval [rmin, 1].
In bracket b ∈ {1, 2, . . . , s}, a number of μ(b) samples are
initially sampled and evaluated with initial fidelity r = ηs−b.
μ(b) is chosen such that each bracket needs an approximately
similar amount of budget: μ(b) = �s · (ηs−b/s− b+ 1)�.

5) Bayesian Optimization Hyperband [16]: Model-based
methods outperform HB when a relatively large amount of
budget is available and many objective function evaluations
can be performed. BOHB was created to overcome this draw-
back. This method iterates through SH brackets like HB,
but, instead of sampling new configurations randomly, it uses
information from the archive to propose points that are likely
to perform well. A total number of Ns configurations are
proposed for evaluation; ρ are sampled at random, and the
rest are chosen based on a surrogate model induced on the
evaluated configurations in A. The models used by BOHB
are a pair of KDEs of the top and bottom configurations in
A, similar to the process in [47]. To implement BOHB in
Algorithm 2, one, therefore, needs to use an inducer Ifsurr that
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TABLE II
THREE BENCHMARK COLLECTIONS OF YAHPO GYM USED IN OUR BENCHMARK

produces a function that calculates the ratio of kernel densities,
an unusual kind of regression model.

B. Limitations and Further MF-HPO Algorithms

The following lists notable HPO algorithms not currently
covered by the optimization space of Algorithm 1. They were
excluded because they differ in too substantial ways from the
other algorithms considered here.

1) FABOLAS [48]: Fabolas is a continuous multifidelity
BO method, where the conditional validation error is mod-
eled as a Gaussian process using a complex kernel-capturing
covariance with the training set fraction r ∈ (0, 1] to allow for
adaptive evaluation at different resource levels.

2) Asynchronous Successive Halving [15] and
Asynchronous Hyperband: HB, as well as SH, have the
drawback that batch sizes decrease throughout the stages
of an SH run, preventing efficient utilization of parallel
resources. ASHA is an effective method to parallelize SH
by an asynchronous parallelization scheme. A shared archive
across a number of different workers is maintained. Instead
of waiting until all n configurations of a batch have been
evaluated for fidelity r, every free worker queries the shared
archive A for “promotable” configurations (i.e., configurations
that belong to the fraction of top η−1 configurations evaluated
with the same fidelity). Asynchronous HB works similarly.

3) Asynchronous BOHB [17]: A-BOHB, an asynchronous
extension of BOHB where configurations are sampled from a
joint Gaussian Process, explicitly capturing correlations across
fidelities. In contrast to ASHA and asynchronous versions of
BOHB in the original BOHB publication [16], A-BOHB does
not perform synchronization after each stage but instead uses
a stopping rule [49] to asynchronously determine whether a
configuration should continue to run or be terminated.

V. EXPERIMENTAL ANALYSIS

Given the formalization of the framework in Section IV, our
goal is to find the best representative (out of this class of algo-
rithms) by solving the third-level optimization problem in (5),
and explain the role of specific algorithmic components in a
benchmark-driven approach. We aim to answer the following
research questions.
RQ1: How does the optimal configuration of our MF-HPO

framework differ between problem scenarios, i.e., do
different problem scenarios benefit from different HPO
algorithms?

RQ2: How does our optimized MF-HPO algorithm compare
to other established HPO implementations?

RQ3: Does the successive-halving fidelity schedule have an
advantage over the simpler equal-batch-size schedule?

RQ4: What is the effect of using multifidelity methods in
general?

RQ5a: Does changing SAMPLE configuration parameters
throughout the optimization process offer an advan-
tage?

RQ5b: Does (more complicated) surrogate-assisted sampling
in SAMPLE provide an advantage over using simple
random sampling with surrogate filtering?

RQ6: What effect do different surrogate models (or using no
model at all) have on performance?

RQ7: Does the equal-batch-size schedule give an advantage
over established methods when parallel resources are
available?

We rely on benchmark scenarios of the YAHPO Gym bench-
mark suite [50], each of which provides a number of related
instances of optimization problems. The benchmark scenar-
ios we have chosen cover three important application areas
of AutoML: HPO of a neural network (lcbench), AutoML
pipeline configuration (rbv2_super), and neural architecture
search (nb301). These classes of problems do not only repre-
sent common and relevant tasks for researchers and practitioners
in the field; as presented in Table II, they are also quite differ-
ent with regards to: 1) the dimensionality of the search space;
2) hyperparameter types (categorical, integer, and continuous);
and 3) whether there are hierarchical dependencies between
hyperparameters. More details on the characteristics of the
problem classes are given in Appendix B in the supplementary
material. To avoid an optimistic bias in the analysis caused
by over-adaption to the random peculiarities of the particular
instances used during configuration, we are using meta-holdout
splits on the level of HPO problem instances (see Appendix D
in the supplementary material). This means that for analyzing
the performance of a configured candidate of Algorithm 2,
we are evaluating this candidate by running it on instances
that were not seen during configuration. Algorithm 2 is always
run with a budget limit corresponding to 30 · d full fidelity
evaluations (where d is the dimension of the problem instance).

A. Algorithm Design via Configuration

First, we describe the experiments we conducted to config-
ure Algorithm 2 via optimization.

We follow the PBO principle and configure Algorithm 2
by optimizing separately for different HPO scenarios, namely,
for lcbench and rbv2_super, resulting in two optimized con-
figurations γ ∗lcbench and γ ∗rbv2_super, respectively. The nb301
scenario is not used for configuration, but exclusively for
subsequent analysis.

For the algorithm configuration of our framework (third
level), the performance objective Eω∼P�

[ζ(A(ω, γ ))] for a
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TABLE III
SUMMARY OF EXPERIMENT. SHOWN ARE THE VARIOUS OPTIMIZER CONFIGURATIONS γ THAT WERE OBTAINED FROM OPTIMIZATIONS WITH

DIFFERENT CONSTRAINTS. “NAME”: THE NAME BY WHICH WE REFER TO THE CONFIGURATION IN THE TEXT. “RQ”: THE RESEARCH QUESTION

THAT MAINLY RELATES TO THE CONFIGURATION. “OPTIMIZE”: WHETHER THE GIVEN CONFIGURATION WAS OBTAINED BY CONDUCTING A

(POSSIBLY CONSTRAINED) OPTIMIZATION (�), OR BY SUBSTITUTING VALUES INTO THE GLOBAL OPTIMUM γ ∗

configuration γ in (5) is estimated by running Algorithm 2
(i.e., second-level optimization) configured by γ on a set of
problem instances and taking the average of observed per-
formances. For this, all problem instances included in the
respective benchmark scenario that has not been held out for
subsequent analysis are used. As a configuration for our frame-
work, we use BO with the lower confidence bound acquisition
function [51] with interleaved random configurations every
three evaluations.2 Configuration is repeated three times for
each scenario, each running for 60 h, with different random
seeds. To get the overall best configuration, the set of all
evaluated configurations γ (i.e., the third-level optimization
archive) is combined into a single data set for each scenario.
To estimate the actual best configuration, a common identi-
fication criterion [52] is used: a surrogate model is fitted on
the combined datasets and the optimum among the in-sample
predictions of this model is used (γ ∗lcbench and γ ∗rbv2_super,
respectively). We also store the (surrogate-smoothed) optima
of all three individual optimization runs and record the range
of configuration parameter values to obtain an estimate of the
uncertainty of the overall optimal configurations.

The search space used for the optimization of Algorithm 2
is shown in Table V in Appendix C in the supplemen-
tary material. While the batch size μ is constant in the
equal batch_method, it changes for every bracket when
batch_method is HB. The batch sizes μ(2), μ(3), . . . are con-
structed from μ(1) dynamically as described in Section IV.
The search space contains several surrogate learners: Random
forests [53] (RF), K-nearest-neighbors with k set to 1 (KNN1),
kernelized K-nearest-neighbors with “optimal” weighting [54]
(KKNN7), and the ratio of density predictions of good and bad
points, similar to tree parzen estimators [47] without a hierar-
chical structure as in BOHB [16] (TPE). For the prefiltering
sample distribution Pλ(A), we evaluate both uniform sampling
(uniform), and sampling from the estimated density of good
points as done in BOHB [16] (KDE). filter_mb determines
whether the surrogate model makes predictions assuming the
highest fidelity value r observed (TRUE), as opposed to assum-
ing the fidelity of the points being sampled; in the framework
of the SAMPLE Algorithms 3 and 4 in Appendix A in the
supplementary material, this influences the behavior of Ifsurr .

2Note that this optimizer used for third-level optimization is not an instance
of Algorithm 2.

Note that the maximum number of fidelity steps per batch s is
not part of the search space and instead inferred automatically
from ηfid and the lower bound for r that is given as part of
the optimization problem instance. As in HB, it is set to the
largest number of stages that is possible given ηfid and the
lower bound on r according to (6).

B. Algorithm Analysis

Our goal in this work is not only to determine configu-
rations of Algorithm 2 that perform well on the respective
benchmarking scenarios but also to determine what effect indi-
vidual components have on performance. However, performing
a complete SA would be prohibitively computationally expen-
sive, as it would require evaluation of the objective (i.e.,
running Algorithm 2) in an experimental design of differ-
ent configurations. Instead, we evaluate the performance of
the candidate configurations found in Section V-A and alter-
native configurations—which are chosen in a way to allow
for answering our research questions—on the benchmark test
instances which were held out during configuration. A sim-
ple method to answer many of these questions is to take the
optimized configuration of Algorithm 2 and swap components
of it for simpler components (or removing them completely),
thereby performing a one-factor-at-a-time analysis or an abla-
tion study. However, the optimal values of some components
may interact strongly with other components. We, therefore,
auto-configure the framework several times under certain con-
straints dictated by our particular research question at hand.
For example, to investigate the effect of varying ntrn and Ns

over t, we run the optimization of Algorithm 2 with the con-
straint n(0) to be equal to n(1) and compare the resulting
configuration to the overall optimum γ . Table III lists the dif-
ferent values of γ we generate under different constraints. For
each value of γ , we run the, respectively, configured HPO
algorithm on both the lcbench and the rbv2_super scenario,
and (unless stated otherwise) once each for batch_method set
to equal and HB. We refer to an optimized configuration that
was obtained on the lcbench scenario with batch_method set to
equal as γ ∗lcbench[equal], and to the overall optimum (i.e.,
the better of γ ∗lcbench[equal] and γ ∗lcbench[HB]) as γ ∗lcbench;
similar for rbv2_super.
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Fig. 2. Beeswarm plot of the best configurations according to the surrogate model over the meta-optimization archive of γ ∗. Shown are the top 80
configuration points (according to the surrogate-model-predicted performance) that were evaluated during optimization. Levels of discrete parameters are
shown. Most numeric parameters are on a log-scale (left axis), except for ρ(0) and ρ(1), which are on a linear scale (right axis). Instead of showing both
N0

s (t) and N1
s (t), their geometric mean Ns(t) is shown. The highlighted large points are γ ∗[HB] and γ ∗[EQUAL], which were found on both benchmark

scenarios.

Every evaluation of a framework configuration, i.e., a com-
plete HPO run on a problem instance, is repeated 30 times
(with different random seeds) to allow for statistical analysis.

The analysis of our research questions is based on the fol-
lowing tables and visualizations. Table VI in Appendix D in
the supplementary material shows the configuration parameters
that were selected for each benchmark scenario with various
search space restrictions. We perform all optimization runs con-
strained to the fidelity scheduling equal and HB, respectively,
and denote the resulting optimal configurations γ ∗[equal] and
γ ∗[HB]. Fig. 2 shows the configuration values of the top 80 eval-
uated points according to their surrogate-predicted performance.
The ranges covered by the bee swarms are again an indica-
tor of approximate ranges of configuration values that can be
expected to work well. Fig. 4 shows the final performance at
30 ·d full-budget evaluations for all optimization runs that were
performed. The standard error shown is the estimated standard
deviation of the mean of benchmark-instance-wise performance,
representing uncertainty about the “true” performance mean if
an infinite number of benchmark instances of the given class
of problems were available.

We now describe in more detail how we operational-
ize each of the research question RQ1–RQ7 and report
results.

RQ1: How does the optimal configuration differ between
problem scenarios, i.e., do different problem scenarios benefit
from different HPO algorithms?

Setup: We investigate the difference in the values that
γ ∗lcbench and γ ∗rbv2_super take, and put this difference in per-
spective by comparing it to the uncertainty of these values.

To evaluate how well γ ∗lcbench and γ ∗rbv2_super generalize to
other problem scenarios, we evaluate them on the respective
instances of scenarios that they were not configured on.

Results: As can be seen in Table VI in the supplementary
material and in Fig. 2, many of the selected components of the
γ ∗ are relatively close to each other across the two scenarios
on which they were optimized, relative to their uncertainty
ranges. Ifsurr is chosen as KNN1 on rbv2_super, but can also
use KKNN7 on lcbench, which in fact seems to be slightly
preferred. This is interesting as KNN-based models are rarely
considered in surrogate-based HPO; the typically preferred
random forest model was not selected. Pλ(A) takes any of the
two values for rbv2_super, but is chosen to be KDE in lcbench.
Finally, ρ(0) is close to 1 in the beginning on rbv2_super,
and closer to 0 (although still greater than ρ(1)) for
lcbench.

The degree to which the differences in γ ∗ influence the
outcome can be observed in Fig. 4. The optimized results gen-
eralize well to test instances from the same scenario as they
were configured on. Fig. 3 shows the optimization progress
(on unseen test instances) of configurations if configured on
the same scenario versus configurations that were configured
on a different scenario. We see, for example, a clear advantage
of the configurations that we obtained by optimizing directly
on lcbench when we evaluate them on their respective held out
test instances. We suspect that this difference in performance is
mainly due to the different choices of surrogate model classes
Ifsurr as well as the random interleave fraction ρ (cf. Fig. 2),
and that specific settings for these two algorithmic components
are needed for lcbench to reach optimal performance.
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Fig. 3. Optimization progress (mean normalized regret) of serial evaluation on each benchmark scenario as well as 32× parallel evaluation on lcbench.
Different configurations of Algorithm 2 are executed on benchmark functions that have not been used for the meta-optimization itself, and the progress of
these algorithm runs is shown. “γ ∗(lcbench bm equal)” is the configuration obtained from optimizing on lcbench with batch_method equal, other labels
are constructed similarly. Shown is the mean over 30 evaluations, averaged over all available test benchmark instances for each of the three scenarios. The
uncertainty bands show the standard error over the test instances. Note the log-scale on the x-axis. Regret is calculated as the difference between the best
evaluation performance so far and the overall best value found on each benchmark instance over all experiments; normalized such that 1 corresponds to
the median of the performance of all randomly sampled full-fidelity evaluations. We plot performance values observed by the HPO algorithm which depend
on evaluation fidelity. This is the reason for the initially “slow” convergence of algorithms that makes their first full-fidelity evaluation late. Note that μ of
γ ∗[equal] was set to 32 for the parallel evaluations, and HB and BOHB were only naïvely parallelized to simulate a synchronous “single optimizer, multiple
workers” environment. See Fig. 6 in Appendix E in the supplementary material for a larger version.

Fig. 4. Mean normalized regret of final performance on “test” benchmark instances for the configuration, shown in Table III. Shown is the mean over 30
evaluations, averaged over all available test benchmark instances for each of the three scenarios. The uncertainty bands show the standard error over instance
means. Regret is calculated as the difference between the best evaluation performance so far and the overall best value on each benchmark instance over all
experiments; normalized such that 1 corresponds to the median of the performance of all randomly sampled full-fidelity evaluations.

This is not the case for the rbv2_super scenario, where none
of the different algorithms seem to clearly exploit the problem
structure of rbv2_super better than others.

RQ2: How does the optimized algorithm compare to other
established HPO implementations?

Setup: We evaluate several well-known HPO algorithms
in their default configuration on the same benchmark
instances: for BOHB [16], we use the implementation found
in HpBandSter3 (version 0.7.4); for HB [14], we use

3https://github.com/automl/HpBandSter

mlr3hyperband4 (version 0.1.2); and for SMAC [5], we
use the SMACv3 package5 (version 1.0.1). We also con-
struct a traditional Gaussian process-based BO (GPBO) [4]
with mlrMBO6 (version 1.1.5). As GPBO works best with
numerical search spaces, we only evaluate it on lcbench. Note
that GPBO, SMAC, and RS are not multifidelity algorithms
and therefore always evaluate points with maximum
fidelity 1.

4https://cran.r-project.org/package=mlr3hyperband
5https://github.com/automl/SMAC3
6https://cran.r-project.org/package=mlrMBO
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Fig. 5. Critical difference plot [55] comparing the performance of different algorithms across all instances and scenarios. For each of the three scenarios, the
mean performance (across replications) for each of the six algorithms is computed (γ ∗[HB] is equal to γ ∗lcbench[HB] for instances of the lcbench scenario, and
to γ ∗rbv[HB] for the rbv2_super scenario; same for γ ∗[EQUAL]). The critical difference test is based on the ranks of the algorithms computed per scenario
and instance. Lower ranks are better. Horizontal bold bars indicate that there is no significant difference between algorithms (α = 1%). GPBO, which was
not evaluated on all scenarios, is not included. (a) Intermediate optimization budget of 100 full evaluations. (b) Full evaluation budget (final performance).

Results: The performance curves for the mean normalized
regret are shown in Fig. 3, and the final performance values
at 30 ·d full-fidelity evaluations are shown in Fig. 4. A critical
difference plot and test can be seen in Fig. 5(b). The behavior
of RS, HB, BOHB, and SMAC is not surprising; initially, RS
and SMAC perform the same, as SMAC evaluates an initial
random design. After this, the performance of SMAC improves
quickly. HB and BOHB initially both perform better than RS
or SMAC because of their multifidelity evaluations, but there
is little difference between them. After a while, BOHB starts
to outperform HB because of its surrogate-based sampling,
which aligns with the observations in [16]. Therefore, BOHB
performs well for most budgets, often being the best optimizer
for a budget of one as well as for 100 full-fidelity evalu-
ations. Given its multifidelity characteristics, HB is a good
choice for low budgets, while SMAC is well suited for larger
optimization budgets. Our framework is very competitive on
both lcbench and rbv2_super, but is outperformed by SMAC
on nb301. We assume that this is because Algorithm 2 was
not explicitly optimized for the nb301 scenario.

Although our framework was only optimized for
performance at 30 · d evaluations, it is also competitive
with BOHB after fewer evaluations, as seen in Fig. 5(b).

RQ3: Does the successive-halving fidelity schedule have an
advantage over the (simpler) equal-batch-size schedule?

Setup: It is likely that the type of fidelity scheduling used
interacts with other configuration parameters. Therefore, we
investigate the difference of resulting optimal configurations
γ ∗[equal] and γ ∗[HB].

Results: In both scenarios, the batch method HB is ultimately
selected for the optimum γ ∗, although Fig. 5(a) and (b) shows
that the difference to batch size equal is not statistically
significant at α = 1%. We observe that the equal fidelity
scheduling mode has several advantages: it is much simpler
than HB as it does not need to keep track of SH brackets and
does not need to adapt μ(b) to make the expended budget
at each bracket approximately equal. As another benefit, it
allows for easy parallel scheduling of evaluations (see also
Fig. 1). This is because it always schedules the same number
of function evaluations at a time, which can therefore be run
synchronously.

RQ4: What is the effect of using multifidelity methods in
general?

Setup: We evaluate the performance of a modified γ ∗ where
the number of fidelity stages s is set to 1, thus ensuring that
configurations are only evaluated with maximum fidelity 1.7

Results: Our results show the superiority of MF-HPO meth-
ods compared to HPO methods that do not make use of
lower-fidelity approximations. Fig. 5(a) suggests that multi-
fidelity methods are significantly better than their nonmultifi-
delity counterparts if optimization is stopped at an intermediate
overall budget corresponding to 100 full-fidelity evaluations.
To be more precise, we see that BOHB as well as both
optimized variants γ ∗[equal] and γ ∗[HB] (optimized for
the respective scenario, respectively) significantly outperform
SMAC under this strict budget constraint. In line with [14],
HB significantly outperforms RS for this budget. On the other
hand, Fig. 5(b) provides evidence that multifidelity methods
can achieve performance on the same level as state-of-the-art
methods that do not make use of low-fidelity approxima-
tions (e.g., SMAC) for larger budgets. We conclude that a
properly designed multifidelity mechanism provides substan-
tial improvements of anytime performance without affecting
performance for larger budgets negatively. In our opinion, the
gain in anytime performance justifies the additional algorith-
mic complexity that is introduced by multifidelity methods.

RQ5a and RQ5b: Does changing SAMPLE configuration
parameters throughout the optimization process offer an
advantage? Does (more complicated) surrogate-assisted sam-
pling in SAMPLE provide an advantage over using simple
random sampling with surrogate filtering?

Setup: To investigate RQ5a (i.e., the effect of the depen-
dence of ρ, ntrn and the Ns configuration parameters on t),
we performed an optimization where this t-dependence was
removed. As these parameters are interpolated between the
values at t = 0 and t = 1, this corresponds to restricting the
search space to where these values are equal, as shown for γ2
in Table III. In addition to this, we ran another optimization
where we further restricted N0

s and N1
s to be equal, ntrn to

be 1, and only the tournament filter_method be used for
RQ5b. The performance of the resulting configurations gives
an indication of the performance that is lost for the gain in
simplicity.

7Because s is not part of the search space � and is instead given by 6, this
is achieved by setting ηfid to ∞.
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Results: The observations made for γ2 (forbidding change
over time) and γ3 (forbidding change over time and within
each batch) are slightly contradictory. In particular, the nb301
performance of γ lcbench

2 [HB] is a visible outlier with regards
to optimization performance. There is no obvious explanation
from inspecting the configuration parameters of γ lcbench

2 [HB],
but it is possible that it is an accidental “good fit” of
configuration parameters to the specific landscape of nb301.

On lcbench and rbv2_super, the impact of restricting the
search space is smaller and within the uncertainty of the
performance of a single configuration. However, we note that
both changing configuration parameters over time and within
each batch sample introduce significant complexity to the
algorithm; thus we prefer the restricted optimization results
over γ ∗.

RQ6: What effect do different surrogate models (or using
no model at all) have on performance?

Setup: We evaluate the overall result γ ∗[equal] with Ifsur

set to each of the inducers in the original search space
(see Table V in the supplementary material). Furthermore,
γ ∗[equal] is evaluated with ρ set to 1 (i.e., all points are
sampled randomly from a distribution that may be nonuni-
form), and finally, with ρ = 1 and Pλ(A) = uniform (i.e.,
all points are sampled completely uniformly at random).

Results: Surprisingly, the simple k-nearest-neighbors algo-
rithm seems to be chosen consistently by the algorithm
configuration for both lcbench and rbv2_super (see Fig. 2),
either with a value of k = 1 or k = 7. This result is in
line with what we already speculated for RQ1. Our ablation
experiments suggest that the performance of the optimizer is
on average best when using this surrogate learner, even though
the differences do not seem to be significant. KNN1 is there-
fore a reasonable, and simpler, alternative to more complex
surrogate learners like the TPE-based method proposed for
the original BOHB algorithm.

RQ7: Does the equal-batch-size schedule give an advan-
tage over established methods when parallel resources are
available?

Setup: The optimization of ML methods that are expen-
sive to evaluate is often done in parallel; we evaluate the
performance of our method and other methods in a (simu-
lated) parallel setting. We evaluate γ ∗[equal] with μ set to
32 and with an optimization budget of 30 · 4 · d, where d is
the dimensionality of the optimization problem. We compare
it to GPBO with qLCB [10] for 32 parallel evaluations and
simulate parallel execution of RS by running 30 · 4 · d ran-
dom evaluations. Both BOHB and SMAC offer parallelized
versions, but the YAHPO Gym benchmark package does not
yet provide support for asynchronous parallel evaluations [50].
However, since HB and BOHB propose evaluations in batches,
we compared HB and BOHB by accounting for submitted
batches in increments of 32, essentially simulating a sin-
gle HB/BOHB optimizer sending evaluations to 32 parallel
workers and waiting for their completion synchronously.

Results: Fig. 3 shows that our algorithm is competitive with
GPBO—a state-of-the-art synchronously parallel optimization
algorithm—when evaluated with 32 parallel resources. This
result also shows the main advantage that the equal fidelity

schedule has over scheduling like HB, as synchronously paral-
lelizing HB or BOHB puts them at a great disadvantage over
even RS. For HB and BOHB, it is necessary to use asyn-
chronously parallelized methods [15], [17] or use an archive
shared between multiple workers [16] to obtain competitive
results. However, synchronous objective evaluations are much
easier to implement in many environments than asynchronous
communication between workers, making the advantage of the
simplicity of the equal schedule even more pronounced.

C. Reproducibility and Open Science

The implementation of the framework in Algorithm 2 and
reproducible scripts for the algorithm configuration and anal-
ysis are available in public repositories.8 All data that were
generated by our analyses are available as well.

VI. CONCLUSION

We presented a principled approach and framework to
benchmark-driven algorithm design and applied it to generic
MF-HPO. We formalized the search space of multifidelity
hyperparameter optimizers and created a rich and configurable
optimization framework. Given the search space, we used
BO for meta-optimization of our framework on two different
problem scenarios within the field of AutoML and evaluated
the result on held out test problems and an entirely held out
test scenario. We evaluated the configured optimizers and com-
pared to BOHB, HB, SMAC, and a simple RS as reference.
We performed an extensive analysis of the effect of different
algorithmic components on performance, while also consid-
ering the additional algorithmic complexity they introduce.
Our configured framework showed equal and in some cases
superior performance to widely used HPO algorithms.

The additional algorithmic complexity introduced by mul-
tifidelity evaluations provides substantial benefits. However,
based on our experiments, we argue that design choices made
by established multifidelity optimizers like BOHB can be
replaced by simpler choices: For example, the (more com-
plex) SH schedule is not significantly better than a schedule
using equal batch sizes, which allows for more efficient
parallelization.

A KDE-based sampling of points to propose, whether fil-
tered by a surrogate model or not, was consistently chosen by
our framework. This detail, which is not usually presented as
the main feature of BOHB, seems to have an unexpectedly
large impact. On the other hand, our optimization results sug-
gest that a surprisingly simple surrogate learner (knn, k = 1)

can perform even better.
Some components of our search space with large algorith-

mic complexity have not shown much benefits. Optimization
on rbv2_super did choose time-varying random interleav-
ing, and overall, more aggressive filtering late during an
optimization run (Ns(1) > Ns(0)) was slightly favored,
but the results did not consistently outperform a configu-
ration obtained from a restricted optimization that excluded
time-varying configuration parameters.

8https://github.com/mlr-org/smashy,
https://github.com/compstat-lmu/paper_2021_benchmarking_special_issue
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Our analysis of the set of best observed performances during
optimization indicates that there is a large agreement between
benchmark scenarios about what the optimal γ ∗ configuration
should be, with parameters that control (model-based) sam-
pling and the surrogate model being the notable exception.
This suggests that there may be a set of configuration param-
eters that are either generally good for many ML problems,
or have little impact on performance and can therefore be set
to the simplest value. However, some configuration param-
eters should be adapted to the properties of the particular
given optimization problem. The meta-optimization frame-
work presented in this work can be used in future work to
investigate the relationship between features of optimization
problems and related optimal configurations.

Other fruitful directions for future work include the more in-
depth evaluation of asynchronous evaluations; asynchronous
methods are important nowadays where parallel resources are
plentiful, but current widely used surrogate-based benchmarks
do not allow for easy asynchronous evaluations. Suggested
methods, such as waiting with a sleep-timer for an appropriate
amount [16], are impractical for meta-optimization.
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Abstract

Neural architecture search (NAS) promises to make deep learning accessible to non-experts
by automating architecture engineering of deep neural networks. BANANAS is one state-
of-the-art NAS method that is embedded within the Bayesian optimization framework.
Recent experimental findings have demonstrated the strong performance of BANANAS on
the NAS-Bench-101 benchmark being determined by its path encoding and not its choice
of surrogate model. We present experimental results suggesting that the performance of
BANANAS on the NAS-Bench-301 benchmark is determined by its acquisition function
optimizer, which minimally mutates the incumbent.

1. Introduction

Neural architecture search (NAS) methods can be categorized along three dimensions
(Elsken et al., 2019a): search space, search strategy, and performance estimation strat-
egy. Focusing on search strategy, popular methods are given by Bayesian optimization
(BO, e.g., Bergstra et al. 2013; Domhan et al. 2015; Mendoza et al. 2016; Kandasamy et al.
2018; White et al. 2019), evolutionary methods (e.g., Miller et al. 1989; Liu et al. 2017; Real
et al. 2017, 2019; Elsken et al. 2019b), reinforcement learning (RL, e.g., Zoph and Le 2017;
Zoph et al. 2018), and gradient-based algorithms (e.g., Liu et al. 2019; Pham et al. 2018).

Within the BO framework, BANANAS (White et al., 2019) has emerged as one state-
of-the-art algorithm (White et al., 2019; Siems et al., 2020; Guerrero-Viu et al., 2021;
White et al., 2021). The two main components of BANANAS are a (truncated) path
encoding, where architectures represented as directed acyclic graphs (DAG) are encoded
based on the possible paths through that graph, and an ensemble of feed-forward neural
networks as surrogate model. Recently, White et al. (2021) investigated the performance
of different surrogate models in the context of BO-based NAS and concluded that the
strong performance of BANANAS on the NAS-Bench-101 benchmark (Ying et al., 2019)
is determined by its path encoding and not its choice of surrogate model. Results suggest
that path encoding leads to a performance boost on smaller search spaces (such as the one
of NAS-Bench-101) but does not scale well on larger search spaces such as DARTS (Liu
et al., 2019).

We hypothesize that for larger search spaces, the strong performance of BANANAS
stems from its choice of acquisition function optimizer in the sense that local optimization of
architectures is most important and other components have less impact on performance. To
investigate this hypothesis, we vary the main BANANAS components, namely architecture
representation, surrogate model, acquisition function and acquisition function optimizer in a

©2021 Lennart Schneider, Florian Pfisterer, Martin Binder and Bernd Bischl.
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factorial manner and examine the performance difference on the NAS-Bench-301 benchmark
(Siems et al., 2020)1.

2. BANANAS

BANANAS (White et al., 2019) uses a (truncated) path encoding, combined with an en-
semble of feed-forward neural networks as surrogate model, to predict the performance of
architectures. Cell-based search spaces such as DARTS can be encoded by representing
cells as DAGs, with nodes as vertices and connections with operations between them as
edges. For every path, i.e., every possible ordering of vertices, a binary feature is generated,
indicating whether the DAG contains all directed edges along this path. If architectures are
created by sampling edges in the DAG subject to a maximum edge constraint (i.e., limiting
the number of edges), most possible paths have a low probability of occurring (White et al.,
2019; Ying et al., 2019). Therefore, BANANAS truncates the least-likely paths, resulting
in a relatively informative encoding that scales linearly with the size of the cell.

Let A denote the search space of architectures and {fm}Mm=1 denote an ensemble of
M feed-forward neural networks (NN)2, where fm : A → R. BANANAS uses independent
Thompson sampling (ITS, Thompson 1933; White et al. 2019) as acquisition function:

αITS(x) = f̃x(x), f̃x(x) ∼ N (f̂ , σ̂2), (1)

where f̂ = 1
M

∑M
m=1 fm(x) and σ̂ =

√∑M
m=1(fm(x)−f̂)2

M−1 . αITS(·) is then optimized using
the following mutation algorithm (Mut): The best performing architecture so far is selected
and mutated in 100 different ways by changing a single operation or edge randomly and
the architecture yielding the largest acquisition value is proposed as the next candidate for
evaluation.

3. Experiments

To investigate the effectiveness of different components of BANANAS on NAS-Bench-301,
we conducted a series of experiments where we replaced some of them with what we consider
more “standard” choices. A simpler configuration could use a random forest (RF, Breiman
2001; notably used successfully in SMAC, Hutter et al. 2011) as a surrogate model which
can either be fitted to path encodings (Path) or natural tabular representations (Tabular)
of the architectures as provided in NAS-Bench-301 in the form of a ConfigSpace (see the
ConfigSpace library, Lindauer et al. 2019). In the tabular encoding, architectures are
represented by enumerating all nodes and potential edges and introducing categorical hy-
perparameters for each operation along each potential edge, where the nodes serving as
input of each intermediate node are again defined as categorical hyperparameters and op-
erations on a certain edge can only be specified if this edge is actually present in the DAG

1. NAS-Bench-301 uses architectures of the DARTS search space trained and evaluated on CIFAR-10
(Krizhevsky, 2009)

2. White et al. (2019) use M = 5 sequential fully-connected networks with 10 layers of width 20 by default,
initialized with different random weights and trained using permuted training sets, the Adam optimizer
with a learning rate of 0.01, and mean absolute error (MAE) loss

2
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(Siems et al., 2020). Note that another possible architecture representation is given by ad-
jacency matrix encoding (Ying et al., 2019; White et al., 2020a), which was not considered
by us. Looking at the acquisition function, the expected improvement (EI) is a well-known
alternative:

αEI(x) = Ey[max(y − ymax, 0)], (2)

given in Jones et al. (1998), where in our context ymax is the best validation accuracy
observed so far and y is the surrogate prediction of architecture x. As a very simple
alternative, one could also only be interested in the posterior mean prediction (Const.
Mean) as acquisition function, which does not take the surrogate model uncertainty estimates
into account. Finally, looking at acquisition function optimizers, a popular choice is given by
random search (RS): Drawing a large number of architectures uniformly at random (e.g., by
sampling from the ConfigSpace) and selecting the architecture with the largest acquisition
value. Our RS method samples 1000 architectures in each BO iteration.

3.1 Different BANANAS Configurations on NAS-Bench-301

Choices for the architecture encodings, surrogate candidates, acquisition functions, and
acquisition function optimizers were crossed in a full factorial manner (where possible),
resulting in overall 18 different algorithms. BANANAS, local search (LS) and random
search (as NAS method, Random) were used as implemented in naszilla (White et al.,
2020a). In LS (White et al., 2020b), all neighbors (e.g., all architectures differing in one
operation or edge) of an incumbent are evaluated and the incumbent is replaced if a better
architecture has been found and the process is repeated until no better architecture can be
found (i.e., a local optimum is reached) or another termination criterion is met. Regarding
the reference BANANAS implementation, two configurations were used differing in the
frequency of updating their ensemble of feed-forward networks (k = 1, i.e., after every
iteration, or k = 10, see White et al. 2019). The initial design for all methods consisted
of ten architectures that were sampled uniformly at random (note that LS and Random do
not rely on an initial design and simply start from zero evaluations). All methods were run
for 100 iterations (architecture evaluations) and all runs were replicated 20 times. Results
are shown in Figure 1, where the validation accuracy is plotted against the batch number.
Note that in each facet, the reference naszilla implementations of BANANAS, LS, and
Random are provided and by design, Paths + NN + ITS + Mut is a (re-)implementation
of the BANANAS (k = 1) configuration. In general, using Mut as acquisition function
optimizer always results in a strong performance boost compared to using RS. Notably,
BANANAS’ ensemble of feed-forward neural networks, together with path encoding only
performs well if combined with Mut and is otherwise outperformed by Random. Moreover, the
very simple configuration of Tabular + RF + EI + Mut performs similarly to the reference
BANANAS implementation. Finally, neglecting all uncertainty in the predictions by opting
for the Const. Mean acquisition function results in very good performance when combined
with Tabular + RF + Mut. Performing a one-way ANOVA on the top seven algorithms
indicated no significant difference in final performance, F (6, 133) = 1.026, p = 0.411. Table 1
presents results of a four-way ANOVA on the final performance of the 18 algorithms outlined
above with respect to the factors architecture encoding, surrogate candidate, acquisition

3
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Figure 1: Different BANANAS configurations on NAS-Bench-301. Mean validation accuracy with standard
error bands, higher is better. Color: optimization method and surrogate model. Facet: acquisition function
optimizer, where applicable. Point shape: acquisition function, where applicable. The ITS acquisition
function and Mut acquisition function optimizer is used for BANANAS methods, and LS and Random do not
use an acquisition function; their accuracy is therefore shown in both facets of the graph.

function, and acquisition function optimizer. The acquisition function optimizer is by far
the most important determinant of final performance.

Sum Sq Df F value Pr(>F)
Architecture Encoding 0.41 1 19.57 0.0000
Surrogate Candidate 1.01 1 48.31 0.0000
Acquisition Function 0.56 2 13.49 0.0000
Acq. F. Optimizer 13.18 1 632.43 0.0000
Residuals 7.38 354

Table 1: Results of a four-way ANOVA on the factors architecture encoding, surrogate candidate, acqui-
sition function, and acquisition function optimizer. Type II sums of squares.

3.2 Examining the Effect of the Acquisition Function Optimizer

To investigate the performance difference with respect to the acquisition function optimiz-
ers, another experiment was conducted. Based on the Tabular + RF + EI configuration
three different acquisition function optimizers were compared: Random search with 100000
architectures drawn uniformly at random in each BO iteration (RS+), random search as de-
scribed above (RS) and Mut as described above. Ten architectures were sampled uniformly
at random and used as the initial design points for all replications. All methods were run
for 100 iterations (architecture evaluations) and all runs were replicated 20 times. Results
are given in Figure 2A. As can be seen, Mut strongly outperforms even the RS+ optimizer.

We collected additional data in the RS+ runs shown in Figure 2A. In each BO iteration of
these runs, we also performed acquisition function optimization using the other two methods
(RS and Mut) and investigated the properties of the proposed architectures. While the op-
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Figure 2: Tabular + RF + EI with different acquisition function optimizers on NAS-Bench-301. A: Vali-
dation accuracy. B: EI. C: Validation accuracy relative to the incumbent. D: Actual improvement. Ribbons
in B and C represent 2.5% and 97.5% quantiles. In D, LOESS smoothing was performed and triangles
indicate no improvement.

timization itself proceeded with the architectures proposed by RS+, the collected data gives
information about the quality of architecture proposals done by the other methods. The
data collected was the EI of each proposed architecture, according to the surrogate model
(Figure 2B), the actual validation accuracy of each proposed architecture (when evaluated),
minus the validation accuracy of the incumbent during that iteration (Figure 2C), and that
same quantity, conditional on the proposed architecture giving higher validation accuracy
than the incumbent (“actual improvement”, Figure 2D).

Mut results in both higher EI and actual improvement, i.e., Mut solves the inner optimiza-
tion problem better than the other optimizers and the actual improvement is comparably
large. Note that the difference between the validation accuracy of proposed architectures
and incumbent is mostly negative due to a fixed iteration seldom resulting in actual im-
provement. Looking at Figure 2D, we observe that following the proposals by RS+ and RS

results in many iterations with no improvement (as indicated by triangles).

In a final experiment, focus was given to the accuracy of the surrogate model when
predicting the validation accuracy of architectures depending on the edit distance to the
incumbent. Based on the Tabular + RF + EI + Mut configuration, the BO loop was run
for 50 iterations (architecture evaluations); the construction of the initial design remained
the same and all runs were replicated 100 times. For edit distances ranging from 1 to 8,
100 test architectures were constructed each by mutating a fixed number of parameters
(operations or edges) of the incumbent. For these test architectures, Kendall’s τ with re-
spect to the predicted and true validation accuracy (after evaluation) is given in Figure 3A.
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Additionally, the true validation accuracy is plotted against the edit distance (Figure 3B),
with the gray point representing the incumbent. In Figure 3C, the expected improvement
and the actual improvement is plotted. While the true validation accuracy decreases when
increasing the edit distance, Kendall’s τ increases, suggesting that the surrogate model is
not capable of precise performance prediction for high performing architectures close to the
incumbent. This finding goes in line with results of White et al. (2021) that model based
NAS methods perform bad when predicting the performance of neighbors of high perform-
ing architectures when the search space is large. Moreover, the expected improvement is
relatively unaffected by the edit distance, although the actual improvement is largest for
close architectures. This may indicate that thorough optimization of the acquisition func-
tion is not needed, instead simply considering neighboring architectures as candidates may
be sufficient.
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Figure 3: Tabular + RF + EI + Mut on NAS-Bench-301. A: Kendall’s τ of the predicted and true vali-
dation accuracy of test architectures constructed to have different edit distances to the incumbent. B: True
validation accuracy of these test architectures. Validation accuracy of the incumbent is given in gray. C:
Expected Improvement (red) and actual improvement (gray) of these test architectures. Bars in B and C
represent 2.5% and 97.5% quantiles.

4. Discussion

We have presented empirical results suggesting that the performance of BANANAS on
large cell-based search spaces such as DARTS is predominantly determined by its choice
of acquisition function optimizer that is effectively performing a randomized local search.
Other components such as the architecture encoding, surrogate model and acquisition func-
tion have a comparably small effect on the performance, and exchanging most components
of BANANAS with more “standard” choices results in a method that is not significantly
worse. Local search, which uses no surrogate model at all, does in fact perform equally well
(at least on the NAS-Bench-301 benchmark), giving more evidence that the local nature
of BANANAS’ mutation acquisition function optimization contributes mainly to its suc-
cess. Minimally mutating the incumbent allows for solving the inner acquisition function
optimization problem better than random search variants with large budget, although the
surrogate model suffers from imprecise surrogate predictions for architectures close in edit
distance to the incumbent. Future work on BO methods for NAS should therefore also
focus on algorithms for solving the inner acquisition function optimization problem.
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Appendix A. Computational Details

The BO algorithms were implemented in R (R Core Team, 2020) within the mlr3 (Lang
et al., 2019) ecosystem relying on mlr3mbo (version 0.0.0.9999; Richter et al. 2021) and
bbotk (version 0.3.0.9999; Becker et al. 2021). Random forests were used as imple-
mented in the mlr3extralearners package wrapping ranger::ranger (version 0.12.1;
Wright and Ziegler 2017) with num.trees set to 500, se.method set to "jack", and
respect.unordered.factors set to "order". Missing values were encoded with a new level
“.missing” via a preprocessing pipeline built using mlr3pipelines (version 0.3.0; Binder
et al. 2020).

Python 3.8.7 was used via the reticulate package (version 1.18; Ushey et al. 2020)
within R. For NAS-Bench-301, nasbench301 version 0.2 (Siems et al., 2020) was used relying
on the xgb v1.0 surrogate model for the validation accuracy. The feed-forward ensemble of
neural networks and path encoding as used by BANANAS was directly adopted as imple-
mented in naszilla (version 1.0; White et al. 2020a). BANANAS, local search and random
search (as NAS methods) were run using naszilla employing the same nasbench301 setup
as described above under Python 3.6.12 (due to different module requirements).

All computations were performed on 2 Intel© Xeon© E5-2650 v2 @ 2.60GHz CPUs
each with 16 threads using R 4.0.3 under Ubuntu 20.04.1 LTS. Parallelization in R was done
via the future (Bengtsson, 2020) and future.apply (Bengtsson, 2020) packages (version
1.21.0 and 1.7.0) on top of the internal parallelization of the data.table (Dowle and Srini-
vasan, 2021) package (version 1.14.0).

Appendix B. NAS Best Practices Checklist

Here, we answer to applicable questions of the NAS best practices checklist (version 1.0),
see Lindauer and Hutter (2019).

• as NAS benchmark, NAS-Bench-301 (nasbench301) version 0.2 was used relying on
the xgb v1.0 surrogate model (deterministic) for the validation accuracy

• all computations were run on the same hardware (2 Intel© Xeon© E5-2650 v2 @
2.60GHz CPUs)

• all results reported are based on ablation studies

• the same evaluation protocol was used for all methods

• performance was compared with respect to the number of architecture evaluations

• random search was included as a NAS method

• multiple runs (20 or 100) were conducted; reproducibility with respect to algorithms
implemented in R is given due to an initial random seed being set; regarding naszilla,
no seed can be explicitly set
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ABSTRACT
Arti�cial benchmark functions are commonly used in optimization
research because of their ability to rapidly evaluate potential solu-
tions, making them a preferred substitute for real-world problems.
However, these benchmark functions have faced criticism for their
limited resemblance to real-world problems. In response, recent
research has focused on automatically generating new benchmark
functions for areas where established test suites are inadequate.
These approaches have limitations, such as the di�culty of gener-
ating new benchmark functions that exhibit exploratory landscape
analysis (ELA) features beyond those of existing benchmarks.

The objective of this work is to develop a method for generating
benchmark functions for single-objective continuous optimization
with user-speci�ed structural properties. Speci�cally, we aim to
demonstrate a proof of concept for a method that uses an ELA
feature vector to specify these properties in advance. To achieve
this, we begin by generating a random sample of decision space
variables and objective values. We then adjust the objective values
using CMA-ES until the corresponding features of our new problem
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match the prede�ned ELA features within a speci�ed threshold.
By iteratively transforming the landscape in this way, we ensure
that the resulting function exhibits the desired properties. To create
the �nal function, we use the resulting point cloud as training data
for a simple neural network that produces a function exhibiting
the target ELA features. We demonstrate the e�ectiveness of this
approach by replicating the existing functions of the well-known
BBOB suite and creating new functions with ELA feature values
that are not present in BBOB.

CCS CONCEPTS
• Theory of computation → Design and analysis of algo-
rithms; Continuous optimization;

KEYWORDS
Exploratory Landscape Analysis, Benchmarking, Instance Genera-
tor, Black-Box Continuous Optimization, Neural Networks

ACM Reference Format:
Raphael Patrick Prager, Konstantin Dietrich, Lennart Schneider, Lennart
Schäpermeier, Bernd Bischl, Pascal Kerschke, Heike Trautmann, and Olaf
Mersmann. 2023. Neural Networks as Black-Box Benchmark Functions
Optimized for Exploratory Landscape Features. In Proceedings of the 17th
ACM/SIGEVO Conference on Foundations of Genetic Algorithms (FOGA ’23),
August 30-September 1, 2023, Potsdam, Germany. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3594805.3607136

1 INTRODUCTION
The development of optimization algorithms creates a natural need
for test problems to assess their search behaviour, robustness and
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overall performance. The choice of test problems is far from trivial
and will determine the course of development. Ideally, we would
like to guide this process by confronting the algorithm with chal-
lenging and representative problems that resemble problems we
encounter in real-world settings. An impeding factor is that those
real-world problems are often very expensive to evaluate and sub-
ject to companies’ proprietary information. Standardized arti�cial
benchmark suites, like the Black-Box Optimization Benchmark
(BBOB) suite [6], the annually changing CEC benchmark (e.g. [37]),
and to some degree Nevergrad [31], strive to alleviate this issue by
o�ering a wide range of di�erent problem instances. These suites
contain a set of hand-picked arti�cial problems that are chosen to
cover a range of di�erent problem properties such as a varying
degree of multi-modality, presence of global and funnel structures,
and so forth. While this approach is not without merit, it begs the
question whether these suites are su�ciently diverse and resemble
prominent real-world problems as a whole. Research endeavours
such as [21] and [34] show that this might not always be the case.
This in turn may bias the development and evaluation of algorithms
where they achieve competitive results on arti�cial benchmarks but
are e�ectively never used in practice. As algorithm selection and
con�guration become increasingly automated [17, 18, 29], there is
a rising incentive to further increase the heterogeneity of solvers
from which a model can choose from. Given these pitfalls con-
cerning arti�cial benchmarks in general, it is not surprising that
several approaches have been developed to address these issues
[3, 4, 19, 25].

One of the earliest works to build a tune-able landscape generator
was presented by Gallagher and Yuan [4]. The generator uses a
set of Gaussian functions and a small number of parameters that
can be linked to a problem’s geometric properties. This allowed
them to achieve new insights on the behavior of some estimation
of distribution algorithms, indicating the usefulness and need for a
feature driven problem generator.

Another approach has been developed by Lang and Engelbrecht
[19]. In their work, they construct a novel benchmark suite by sys-
tematically evaluating existing benchmark functions originating
from a multitude of di�erent suites. They used exploratory land-
scape analysis (ELA) [24] to test how diverse each of these functions
really is w.r.t. a subset of ELA features. Using self-organized feature
maps, they construct a space spanned by the ELA features. They
aim to maximize the coverage of this space by selecting the most
appropriate functions out of their pool of benchmark functions for
each cell map. The only drawback of their approach is that they
are not proposing a mechanism to generate entirely new functions.

Muñoz and Smith-Miles [25] presented another approach. In
a similar fashion to [19], they use ELA features to evaluate the
diversity of a single benchmark (BBOB). This allowed them to char-
acterize every function using an eight-dimensional feature vector.
By projecting the vectors into a two-dimensional instance space,
they could identify uncovered areas and thereby identify target ELA
feature vectors. New functions that exhibit the respective target
ELA vector properties are then generated making use of genetic
programming. They achieve good results in being able to interpo-
late within and even extrapolate beyond the convex hull that the
BBOB suite spans in the instance space.

Nevertheless, as recently pointed out by Dietrich and Mers-
mann [3], there are some downsides to the results of Muñoz and
Smith-Miles [25]. For one, there is a lack of knowledge about the
global optima of genetically programmed functions. But the high
computational cost of genetic programming weighs more severely.
While Dietrich and Mersmann [3] were able to get rid of both these
downsides by using a�ne recombinations of the BBOB functions
as new benchmark problems, this approach could only interpolate
within the convex hull of the ELA feature space within BBOB.

The main contribution of this paper is that we address this short-
coming by proposing a new, neural-network based, method for
generating novel problem instances with an arbitrary property
combination w.r.t. the chosen ELA features. At the same time, we
retain the auspicious aspects of [25] and [3]. In other words, our
devised approach is not only able to interpolate but also to extrapo-
late beyond the problem space and thereby can potentially generate
truly novel problem instances in less time.

This paper can be compartmentalized into two distinct sets of
experiments. The �rst experiments focus on validating and demon-
strating that our method works reasonably well in principle. We
accomplish this by trying to emulate certain benchmark functions
for which we sample and compute a so-called target ELA feature
vector. We start by creating a random sample in the decision space
and random objective values corresponding to each observation
in our sample. We optimize these objective values until they ex-
hibit the desired ELA values which are determined by the target
ELA feature vector. The resulting point cloud contains our anchor
points to generate a new benchmark problem. To construct the new
problem we then make use of a simple neural network which is
trained on this optimized point cloud. In order to show that the
resulting functions mimic the existing ones well, we compare the
behavior of optimization algorithms on both sets. This gives us the
opportunity to investigate where our devised approach excels and
where it encounters issues by comparing the emulated landscape
with the original one as well as the algorithm rankings between
these two. The second set of experiments highlights the potential
of our devised approach to create entirely novel functions which
are not represented in our selected benchmark suite.

The remainder of this paper is structured as follows. In Section 2,
we give a general overview of ELA as well as a justi�cation for the
selected features and some technical details for their calculation.
Section 3 provides a full account of our devised approach where the
construction of the aforementioned point cloud is subject of Subsec-
tion 3.1, and the surrogate models are discussed in Subsection 3.2. In
Section 4, we validate our approach by imitating functions from the
BBOB suite, discussing the results from the landscape perspective
in Subsection 4.1 and from an algorithm performance perspective
in Subsection 4.2. Our general work�ow is then evaluated by gen-
erating functions for ELA feature vectors which are not part of
the chosen benchmark suite in Subsection 4.3. Finally, we conclude
our paper in Section 5 and provide an outlook on future research
opportunities based on our �ndings.
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2 EXPLORATORY LANDSCAPE ANALYSIS
While the hardness and properties of an optimization problem,
given enough samples, may be characterized visually for up to two-
dimensional problems, visualizations of higher-dimensional prob-
lems are generally infeasible. Thus, other mechanisms are required
to identify problem properties, such as the degree of multi-modality
or the presence of global and funnel structures [16, 23, 24]. These
properties ultimately de�ne the hardness of a problem. The afore-
mentioned mechanisms manifest themselves in a set of numerical
features, which, in the single-objective continuous optimization
domain, are consolidated under the term exploratory landscape
analysis (ELA) [24].

In essence, ELA is a collection of heterogeneous methods to
extract quantitative information about a black-box optimization
problem. The majority of ELA features can be computed based on
a �xed sample of randomly generated points from the search space,
along with their respective (evaluated) objective values. Di�erent
sampling procedures have been investigated over the years [32].
The sampling size, on the other hand, often depends on the scope
of the analysis. In automated algorithm selection [14], the sampling
size must be competitive and, therefore, small, whereas theoretical
undertakings can be more lavish (e.g., [3, 11, 33]). Regardless of
the scope, the sampling size is typically scaled with the dimension-
ality 3 of the problem instance. In this work, we use a sampling
size of 250 · 3 , which balances between a su�cient coverage of the
search space together with keeping the generation of new problem
instances computationally less intensive. This size is also recom-
mended by [33] to correctly classify all BBOB problems. For our
work, we choose Latin hypercube sampling as the sampling strat-
egy. Furthermore, for any given sample we normalize the objective
values to the range of [0, 1] via their respective sample minimum
and maximum. This has two desirable e�ects. Firstly, it recently
has been shown that not all ELA features are invariant to linear
transformations of the objective space [30]. The proposed method
to deal with this issue is to normalize the objective values. Secondly,
a lower and upper bound of zero and one alleviates certain prob-
lems for our neural networks which act as surrogate models in the
consecutive section. This allows us for instance to utilize a sigmoid
activation function in the output layer which naturally maps all
values in the interval [0, 1].

Up to this point, we only discussed details pertaining to the
ELA sample. But ultimately, problem hardness is subject to the
properties of the �tness landscape making the selection of suitable
ELA features another crucial aspect of this work. We adapt a semi-
structured approach. Meaning, we utilize the �ndings of [33] and
[35] and iteratively remove and add certain hand-picked features to
improve the landscape properties of our generated functions. The
�nal chosen ELA features are listed below and computed with the
Python package pflacco∗:

ela_meta.lin_simple.adj_r2 Adjusted coe�cient of deter-
mination of the linear regression model without variable
interactions [24].

ela_meta.lin_w_interact.adj_r2 Adjusted coe�cient of de-
termination of the linear regression model with variable
interactions [24].

∗https://github.com/reiyan/p�acco

ela_meta.quad_simple.adj_r2 Adjusted coe�cient of deter-
mination of the quadratic regression model without variable
interactions [24].

ela_meta.quad_w_interact.adj_r2 Adjusted coe�cient of
determination of the quadratic regression model with vari-
able interactions [24].

ela_distr.skewness Skewness of the sample’s objective val-
ues [24].

nbc.nb_fitness.cor The correlation between the �tness val-
ues of the search points and their indegree in the nearest-
better point graph [15].

nbc.nn_nb.sd_ratio Ratio of the standard deviation of all
nearest neighbor distances to the standard deviation of all
nearest better distances [15].

fitness_distance.fitness_std Standard deviation of the
sample’s objective values [12].

3 BLACK-BOX FUNCTION GENERATION
The generation of novel problem instances consists of three steps.
Conceptually, we want to (1) identify a target vector of ELA
features, which occupies sparse regions of an existing benchmark
to enhance its diversity. Meaning, this target vector should be con-
stituted of vastly di�erent ELA feature values compared to the
values of ELA features of any given benchmark suite. Note that
the exact identi�cation of this target vector is not the focus of this
work. However, for �ve novel ELA vectors we demonstrate this
generation procedure is able to generate functions with landscape
structures arguably di�erent to BBOB. In addition, we compute
these target ELA feature vectors on the problem instances of BBOB.
This gives us the opportunity to discern how successful our devel-
oped approach in general is by comparing our generated function to
the existing BBOB instance which has served as a target. Given this
target ELA vector, we (2) generate a sample of points (i.e., a point
cloud) through an optimization process that exhibits the desired
ELA vector values. Once the similarity of the values is satisfactory,
we (3) build a surrogate model based on the found point cloud.

The entire process is depicted in Figure 1. In the following, we
will discuss the second and third components in more detail.

3.1 Optimization of Point Clouds
Given a target ELA feature vector a (which is constituted of the
aforementioned 8 features) that we want to emulate, we �rst create
a random sample - ∈ R=×3 in the decision space and generate its
objective values y ∈ R= randomly in the interval [0, 1]. We refer to
the tuple (-, y) as the point cloud. For this current iteration of the
point cloud, we then compute the corresponding ELA feature vector
b = ℎ(-, y), where ℎ is the set of functions required to calculate the
ELA features of interest based on the point cloud (-, y). Within our
optimization procedure, we then only adjust the objective values y
such that the distance between the ELA feature vectors b and a is
minimal. Hence, we can formally de�ne the function 5 : R= → R
to generate an adequate point cloud, where we strive to �nd a
y∗ ∈ arg miny 5 (y) such that the distance between the two ELA
feature vectors a and b is minimal:

5 (y) = | |ℎ(-, y) − a| |2 (1)
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1) Identify Target ELA Vector

Initialize 

Random Point 

Cloud (X, y)

2) Generation of Point Clouds

Calculate ELA 

feature vector

b = h(X, y)

Find y* by 

minimizing

||b – a||2

3) Surrogate Model Fitting

𝐚 = (𝑎1,𝑎2, … , 𝑎𝑝) Fit surrogate model on 

optimized point cloud (X, y*) 

Figure 1: High-level process description of our approach to generate arbitrary black-box problems. In 1), an ELA target vector is
identi�ed in sparse regions of an existing benchmark suite. In 2), we generate a random point cloud, calculate the respective
ELA features and minimize between the former and the latter by changing y. In 3), we use the optimized point cloud as the
basis for �tting our surrogate model.

The global optimum in such a case is known to be zero since dis-
tances between two objects w.l.o.g. are in the interval [0,∞). The
dimensionality of this problem is governed by the sample size = of
the point cloud. In our experiments, we use a sample size of 250 · 3 ,
which scales linearly with the dimensionality 3 of the problem we
want to create. Meaning if we want to create a two-dimensional
problem instance, the dimensionality of our minimization prob-
lem is 250 · 2 = 500. It is apparent that these problems can be-
come extremely high-dimensional. Here, the work of [38] provides
valuable insight into this matter. The authors show that the con-
ventional CMA-ES [7] still achieves competitive results even for
higher-dimensional problems. While our problem dimension ex-
ceeds their limit of up to 320, we argue that their �ndings are still
relevant for and can be extrapolated to our case, i.e., we use the
CMA-ES to solve the optimization problem given in Equation 1.
Each attempt to generate a point cloud is allocated a budget of 200·=,
where = is simultaneously the dimensionality of our optimization
problem of Equation 1 and by extension the size of our point cloud.
The required CPU time is dependent (1) on the time it requires
to calculate 5 (y) (i.e., ELA feature calculation) for each candidate
solution and (2) on the time necessary to update the covariance
matrix Σ ∈ R=×= . Generating a single 23 point cloud takes up to 4
CPU hours whereas a single 33 point cloud demands almost 3 CPU
days.

Until now, as hinted at in Section 2, we only normalize the objec-
tive values of any given sample by applying min-max normalization.
While ELA features value ranges become less prone to having un-
usually small or large values, it does not account for the di�erent
scales between distinct ELA features. This biases the search trajec-
tory of the CMA-ES and places more importance on certain ELA
features without justi�able reason. Therefore, we experimentally
determined the minima and maxima of each ELA feature where no
theoretical lower or upper bound can be determined (e.g, the upper
bound of any '2 value is 1) and use these values to apply min-max
normalization to our ELA features during the optimization process.

3.2 Surrogate Model Fitting
To construct a novel function based on a given optimized point
cloud (-, y∗), we use neural networks (NNs) as surrogate model
< : R=×3 → R,<(x) = ~̂ �tted on D = {x(8 ) , ~∗ (8 ) }8=1,...,= , where
x(8 ) is the 8-th row of - and ~∗ (8 ) the 8-th element of y∗. We use
a simple feed forward architecture consisting of one hidden layer
with 512 units and a tanh activation function. As a �nal output we
use a sigmoid activation function (due to objective values being
normalized via min-max normalization and wewant the predictions
of the model< to be on the same scale).

On the one hand, our choice of surrogate model is motivated
based on theoretical properties, as feed forward NNs are known to
be universal function approximators, i.e., already a feed forward
NN with a single hidden layer can approximate any continuous
function to any desired accuracy, given arbitrary width (number of
hidden units) [10]. On the other hand, NNs have desirable practical
properties:

(i) They scale well with the number of data points (which will
become relevant for higher dimensions).

(ii) They are easy to deploy and integrate in benchmarking
suites.

(iii) They induce very little latency overhead during evaluation,
i.e., a forward pass.

All in all, this makes NNs very attractive as surrogate models in
our scenario compared to other regression models such as general-
ized additive models, splines, support vector machines, tree-based
models or Gaussian Processes. Still, one has to be aware that NNs
have a strong inductive bias to learn smooth functions (see, e.g.,
[5]) – especially when using tanh and sigmoid activation functions
– which can only be in�uenced to a certain degree by architectural
design choices.

Our explicit training procedure looks like the following: As our
goal is to perfectly interpolate D, we perform gradient descent
using the mean squared error as a loss function and AdamW as
optimizer with default parameters and a learning rate of 0.001
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for 5000 epochs. The objective here is to perfectly interpolate the
training data and essentially over�t drastically. Only under these
circumstances we can guarantee that the resulting model< will
exhibit the same (or reasonably similar) target ELA feature vector
a when evaluated at the anchor points - , i.e., | |ℎ(-, ŷ) − a| |2 is
su�ciently small†. Note that we do not employ mini-batches but
use a single batch of all available data - again due to our goal to
heavily over�t the training data.We implement our NNs in PyTorch
[27]. We provide the required code to replicate our experiments on
GitHub‡.

4 RESULTS
4.1 Landscape Perspective
To validate our devised methodology, we use ELA feature vectors
generated based on the functions of the Black-Box Optimization
Benchmark (BBOB) suite [6] as targets. The BBOB suite consists
of 24 di�erent functions, conveying distinct challenges to numeric
optimization algorithms. Each function (FID) belongs to one of
�ve so-called function groups, which share the same major char-
acteristics, and is instantiated using a set of transformations such
as rotations and shifts, yielding di�erent function instances with
fundamentally the same properties. In this study, we consider only
the �rst instance of each FID in the dimensions 3 = {2, 3}, where
we denote a problem instance as ?8 := (FID, 3). This amounts to 48
distinct problem instances we endeavour to recreate. For each ?8 ,
we run the Python implementation of CMA-ES called pycma with
a budget of 200= where = is the dimensionality of the point cloud
optimization problem and not the dimension 3 of the function we
are trying to generate. We perform ten replications of which all are
able to minimize Equation 1 similarly. For every problem ?8 , we
then select the point cloud that achieved the best objective value to
provide our neural networks with the best possible point cloud to
�t. All the results presented below, therefore, refer to the �ts of the
best point clouds.

Exemplary point clouds, where the approximation of the target
ELA feature vector works su�ciently well and a counterexample,
are given in Figure 2. The left-hand side depicts the case for BBOB
function 3. Sub�gure 2(a) depicts a random sample of the original
BBOB function 3 whereas the adjacent subplot visualizes our point
cloud after optimization. We can discern that the two landscapes
are rotated, yet in essence they structurally remain the same. The
right-hand side showcases an approximation attempt which did not
terminate satisfactorily. While some aspects of the original BBOB
function (FID 14) are present in our point cloud, the general land-
scape is far too quadratic and noisy. We believe that the observed
phenomenon is attributable to a low resolution of the point cloud.

A full account for every problem instance ?8 is given in Figure 3.
As pointed out in Section 3.1, each ELA feature is normalized to
fall into the interval [0, 1]. Hence, we can determine the maximum
distance between any two ELA feature vectors ∈ R8 is √8. This
helps to contextualize the reported results because these will be in
the interval of [0,√8]. The vast majority of cells is colored white

†Here, ŷ is the vector of predictions of the surrogate model consisting of predic-
tions ~̂ =< (x)for each point x ∈ - .

‡https://github.com/Reiyan/ela_nn_function_generation

which indicates the CMA-ES was able minimize the distance be-
tween the two ELA feature vectors up to a precision of 10−7. These
results are only tarnished by the functions 6, 9, 14 and 15 for 3 = 2,
and for 3 = 3 this list is extended by functions 4, 12, 17 and 20.
However, we cannot observe any statistical association which lets
us divine the cause of these unsatisfactory instances. Yet, we have
to put these values into context, meaning despite their perceptible
coloring their values pale in comparison only and not when viewed
in isolation. We deem them still su�cient to be used as training
data for our surrogate model.

To judge the accuracy of these point clouds further, we create 100
samples for each problem instance ?8 (using Latin hypercube sam-
pling) and compute the respective ELA feature vectors. These are
aggregated into a single vector a8 via the arithmetic mean. While
we make only use of a single dedicated NN architecture for all 48
problem instances, we train a NN individually for a single problem
and each ?8 receives its own NN model. In general, the training
procedure in each individual attempt introduces a stochastic compo-
nent. Hence, we trained �ve NNs for each problem instance where
every NN is identical except their initial weights. Surprisingly, all
�ve NNs interpolate between samples provided by the point cloud
in similar fashion. Ultimately, this means that the resulting �tness
landscape of our newly generated function is not subject to the
training procedure of our NNs, i.e., the initialization of weights
and biases. Similar to creating our target ELA vectors, we generate
100 ELA feature vectors b( 9 )8 for each of the �ve NNs, therefore
9 ∈ {1, 2, . . . 500}.

We report our results using the same metric of Equation 1. Mean-
ing, the Euclidean distance between the target ELA vector a8 of ?8
and the 500 ELA feature vectors b( 9 )8 of our constructed function.
The distribution of Euclidean distances for each ?8 can be found in
Figure 4.

A cursory assessment already reveals that our devised approach
works very well for the majority of the 48 considered problem
instances. Nevertheless, the results for 3 = 2 are about an order
of magnitude better than the results for 3 = 3. The cause for this
relatively poor performance can partially be traced back to ill-suited
point clouds found by CMA-ES. This is the case for functions 4, 6, 9,
12, 14, 17, and 20. Overall, we anticipate that premature termination
of network training due to insu�cient number of epochs is another
contributing factor to this observation.

In the following, we provide a more in-depth view into the �t-
ness landscape of a few selected functions. These are functions
in which we excel but also functions which did not work out as
well. In addition, we present exemplary uni-modal and multi-modal
problem instances. These functions are visualized in Figure 5. We
contrast the contour plot of the original BBOB problem instance to
its corresponding approximation of our approach. This is accom-
panied by a parallel coordinate plot of the ELA features where the
target ELA features are given in black and the values of our �ve
surrogate models are colored.

The �rst row shows the Sphere function (FID 1), which is ar-
guably one of the easiest optimization problems there is. This is also
the case for the approximation of its landscape. The only notable
di�erence between the two is that our function is not as arti�cially
smooth as the BBOB function.
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(a) BBOB FID 3 (b) Generated Point Cloud for FID 3 (c) BBOB FID 14 (d) Generated Point Cloud for FID 14.
G1- and G2-axis have been rotated for ac-
cessibility.

Figure 2: Generated point clouds optimized by CMA-ES in contrast to a sample generated from the respective BBOB function
directly. Objective values of the respective functions have been scaled to [0, 1] via min-max normalization.
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Figure 3: Heatmap of 48 distances in terms of 5 (y) between a
target ELA feature vector and the ELA feature vector calcu-
lated on the point cloud found by CMA-ES. The theoretical
boundaries of these objective values are in the interval [0,√8].

BBOB Function 2 displays a similar case. In terms of the cap-
tured landscape properties, we are able to emulate the separability
of this problem well and also the quadratic structure as a whole. In
addition, the generated landscape is rotated but we argue that this
fundamentally no issue, since this does not change the characteris-
tics of this problem.

Another function we deem worthy to report individual results
on, is the rotated Rosenbrock function (FID 9). This function re-
quires a solver to follow a long path to the global optimum while
also accounting for changes in the search direction. Our approxi-
mation of it mimics this to a certain degree where we can observe
a convergence into the corners of the search space. Yet, we cannot
model the strength of this turn as strongly as it is present in the
BBOB function.

We also want to critically discuss the inadequacies of our de-
veloped approach. This pertains to FID 14. This problem instance
exhibits the worst performance in terms of our similarity measure
B8 and also in terms of 5 (y) when optimizing the point cloud. In
this case, we can notice that over�tting our NNs leads to a more
rugged landscape with drastically increasing and decreasing objec-
tive values of the landscape. This is, on the other hand, a property
we require to model BBOB functions which are multi-modal and ex-
hibit a mediocre to high conditioning of their respective landscape
as will be shown in the following.
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Figure 4: Boxplots of the Euclidean distances between the
target ELA vector a8 and each associated problem instance
b( 9 )8 .

Up until now, we only discussed the uni-modal functions with
varying degrees of separability and conditioning. The last subplot
of Figure 5 depicts the BBOB Function 21. This function is highly
multi-modal with no global structure. The basin sizes of attraction
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Figure 5: The left column shows contour plots of �ve selected BBOB functions. The a�liated eight dimensional target ELA
vectors are represented by the black lines in the parallel plots of the middle column. The �ve colored lines show the mean ELA
feature vector of the �ve trained neural networks. The matching colored area around the lines covers the tenth to ninetieth
percentile of ELA feature values achieved during sampling. The right column represents the contour plots of one of the trained
neural networks.
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are are aligned in random directions with di�erent convex shapes.
Our approximation is able to capture these properties in general. A
meaningful di�erence is that our basins of attraction more often run
parallel to the axes of the search space in contrast to the original
BBOB function.

4.2 Algorithm Perspective

Figure 6: Performance rankings based on the performance
of each optimizer with budget 10 000 · 3 for each dimension
separately between BBOB and our imitated versions. Ties are
identi�ed by a non-parametric Nemenyi test and indicated
by the horizontal lines. Lower rank is better.

It is imprudent to solely rely on the analysis of landscape prop-
erties to investigate the similarities between our imitated functions
and their original counterparts. A di�erent analysis avenue is pro-
vided by observing the behaviour of algorithms on each of these two
sets and whether they exhibit a similar performance on the original
as well as on the imitation. Hence, we conducted a comprehensive
benchmark on BBOB making use of the Nevergrad framework [31].
Nevergrad provides a wide range of gradient-free optimization
algorithms but what makes it most useful for our scenario is its
interface for implementing and testing custom benchmark func-
tions. As solvers we selected the following seven complementary
algorithms:

• estimation of multivariate normal algorithm (EMNA) [20],
• Nelder-Mead algorithm (ND) [26],
• di�erential evolution (DE) [36],
• particle swarm optimization (PSO) [13],
• diagonal covariance matrix adaptation evolution strategy
(dCMA-ES) [8],

• constrained optimization by linear approximation
(Cobyla) [28],

• and random search (RS) [1].
Each of these algorithms is is given a budget of 10 000 ·3 function

evaluations and is applied 10 times on every single problem in the
dimension two and three.

Figure 6 shows critical distance (CD) plots [2] for the BBOB and
NN problems. We compute rankings based on the performance of
each optimizer (median of 10 replications) on each of the BBOB
and NN problems. A non-parametric Friedman test with Nemenyi

post-hoc test is performed to identify ties in the optimizer rank-
ings, which are indicated by the horizontal lines. We rely on the
implementation in the Python package autorank [9].

In Figure 6, we observe a comparable behavior in the algorithms
examined. Speci�cally, the top three performing algorithms are
DE, PSO, and COBYLA. In the 23 scenario, there is no statistically
signi�cant di�erence between these three. However, there are slight
variations in the ranking of the remaining four algorithms. In our 23
imitations of BBOB, these variances are indistinguishable, whereas
in the original BBOB suite, other algorithms sometimes tie with
the three best performers in terms of their overall performance
indicated by the horizontal line. Overall, our imitations of BBOB
divide the seven algorithms more strongly into two groups. The 33
case provides a more convoluted case. Here, the best performing
algorithms on BBOB are DE and COBYLA (which are statistically
tied) whereas on our imitation suite this is extended by PSO. These
permutations in rankings are to be expected and we think that over-
all also from an algorithmic perspective these two sets of functions
are similar.

4.3 Generation of Novel Benchmark Functions
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Figure 7: Projection of the ELA feature vectors of BBOB and
newly generated functions (represented by a black dot) into
a Cartesian plane via PCA.

While the imitation of existing benchmark functions allows us
to dissect our approach in isolation and to identify possible short-
comings, we ultimately propose this method to create problem
instances which are not covered by an existing benchmark suite. At
�rst glance the creation of an ELA feature vector which is not repre-
sented by any problem instance of a given benchmark suite seems
simple. This, however, is not the case since interactions between
ELA features exist. For example, it is not possible to create an ELA
feature vector which has '2 of 1 for a linear model and simultane-
ously for a quadratic model (assuming non-zero model coe�cients).
Thereby, the identi�cation of feasible ELA feature vectors - which
are also di�erent to ELA feature vectors of a benchmark - poses a
separate research question which is not addressed in this work.
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Figure 8: Landscape of the 5 newly created 23 Functions where the black points represent the point cloud optimized by the
CMA-ES

Figure 9: Performance rankings based on the performance
of each optimizer with budget 10 000 · 3 for each dimension
separately between BBOB function groups 4 and 5 in contrast
to the 5 newly created functions. Ties are identi�ed by a non-
parametric Nemenyi test and indicated by the horizontal
lines.

Rather, we handpicked �ve exemplary and feasible ELA feature
vectors which have a considerable distance to the existing ELA
feature vectors of BBOB to showcase the potential of our method.
A projection of these �ve exemplary ELA feature vectors into a two
dimensional plane (using PCA) is depicted in Figure 7.

The generation of the respective point clouds as well as the
training of our NN surrogate models is identical to our previous
undertaking. The optimization process to generate the point clouds
terminates with objective values ranging from 2.374−06 to 1.264−02
and an average of 3.014 − 03 for 23 and 33 problems. We deem this
su�ciently well approximated to build our surrogate models upon.
Furthermore, we apply the same algorithm benchmark procedure
outlined in Subsection 4.2.

Landscape Perspective. The landscape of the newly generated
23 functions is depicted in Figure 8. All �ve functions are highly
multi-modal without any or very weak apparent global structure.
The conditioning of these functions is also extremely high, i.e., small

changes in the decision space generally lead to drastic changes in
the objective space. The �rst three landscapes tend to have the
majority of their local and global optima located more in the center
of the search space, whereas the latter two follow no observable
pattern and have even highly competitive local optima right at
the vertices of the box-constraints. Especially the fourth and �fth
problem share commonalities with the Katsuura function (FID 23)
of BBOB. However, our functions do not exhibit the same regular
pattern for local optima which presumably makes it more di�cult.
This irregular pattern is uncommon for BBOB in general.

Algorithm Perspective. These aforementioned landscape prop-
erties make the newly generated functionsmost similar to the BBOB
function group 4 or 5. Hence, we present the algorithm rankings in
form of CD-plots for these groups speci�cally as the CD plots for
the remaining function groups do not share any resemblance at all
with the CD plots of the newly generated functions.

When assessing Figure 9, there seems to be no conclusive evi-
dence, that our newly generated problems are substantially di�er-
ent in terms of algorithm rankings. ND performs the worst on the
new generated functions which is also the case for BBOB group 4.
The top performing algorithms are mainly PSO, DE, COBYLA and
occasionally even RS. While we would have appreciated a more
indicative �nding from the algorithm perspective, we are satis-
�ed with the structural di�erences in the constructed landscapes
compared to BBOB.

5 CONCLUSION
In this work, we propose a novel approach for creating new bench-
mark problems for single-objective continuous black-box optimiza-
tion. Our approach is mainly based on creating a so-called point
cloud which exhibits the desired ELA features and thereby the
desired �tness landscape properties. This point cloud is used to
train a neural network which acts as a surrogate model and newly
created benchmark function. Our approach solves the previously
unaddressed issues of [3] by providing the capability to not only
interpolate in the ELA feature space of benchmark functions but
also extrapolate beyond the convex hull of this region. Furthermore,
NNs are fully di�erentiable in theory (not only with respect to the
weights and biases, but also with respect to the input variables)
and we hypothesize that we can determine all optima comparably
e�ciently. This, however, needs to be fully explored. We evaluated
our approach on a set of BBOB functions where the goal was to
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recreate them as closely as possible. Our approach generates prob-
lem instances of identical nature. This is supported by a systematic
benchmark study of di�erent optimizers which exhibit an overall
similar performance ranking on the original BBOB functions and
their respective imitations.

In addition, we showcase that it is possible to create functions
based on ELA feature vectors which are not represented by any
BBOB function. The resulting functions o�er interesting irregular
structures and landscape property combinations which are not
present in the current BBOB suite.

Yet, our devised approach is only the �rst foray into relatively
uncharted territory. An inundating number of research opportuni-
ties still remains such as, e.g., improving the scalability to create
functions of higher dimensionality. This can be done by employing
more CPU-e�cient algorithms such as the LM-CMA-ES [22]. Fur-
thermore, a systematic evaluation of di�erent sampling sizes and
strategies may conclude that a smaller sample size still produces
su�cient results. This would e�ectively reduce the dimensionality
of our point cloud optimization and presumably the complexity of
this optimization task.

While we evaluated a multitude of di�erent NN architectures, we
still believe that there is potential for improvement in this area. Test-
ing di�erent architectures or investigating the viability of smaller
point clouds is only a small excerpt of possible re�nements. We
could also employ our approach to model real-world problems
where a small sample of data exist. While this amount of data may
be not su�cient enough to build a surrogate model on it alone, we
can use it to calculate ELA features. Thereafter, our procedure can
be applied to generate a surrogate function comparatively cheaply.
While solving this surrogate function does not lead to the identi-
�cation of the global optimum of the real-world problem, it can
serve as a proxy to benchmark and design algorithms more tailored
to real-world problems.
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Conclusion





6. Concluding Remarks

In this thesis, we have advanced HPO along three key dimensions: its foundations, multi-objective
HPO and quality diversity HPO, and benchmarking. We have demonstrated both theoretically
and empirically that reshuffling resampling splits during HPO can improve generalization per-
formance. Unlike the standard approach of keeping train and validation splits fixed, reshuffling
introduces variability that can be beneficial for optimization. We further analyzed the landscape
properties of HPO problems, comparing them to traditional synthetic black-box problems, and
found that HPO landscapes often exhibit low multimodality and wide plateaus. To efficiently opti-
mize both model performance and interpretability quantified through feature sparsity, interaction
sparsity, and the sparsity of non-monotone features, we developed a novel multi-objective HPO
algorithm. Furthermore, we explored how the black-box optimization field of quality diversity
optimization can be used for NAS by simultaneously optimizing model performance and resource
efficiency under multiple constraints in a single optimization run. For efficient, reproducible and
scalable HPO benchmarking, we introduced YAHPO Gym, a large-scale surrogate benchmarking
suite that sets a new standard for efficient benchmarking in HPO. To demonstrate its utility,
we used YAHPO Gym to automatically configure a multi-fidelity HPO algorithm, aligning with
the principles of programming by optimization. Through ablation studies, we found that many
simple algorithmic components often perform as well as, or even outperform more complicated al-
ternatives. Additionally, we introduced quality diversity benchmark problems derived from HPO,
bridging a gap between two research communities. Finally, we developed a systematic approach
to generating black-box functions that exhibit desired optimization landscape properties.

At the same time, it is important to take a step back and critically reflect on both our contribu-
tions and recent developments in HPO and AutoML. With respect to benchmarking, the fields
of HPO, NAS, and AutoML are in a substantially better state compared to when this thesis
was first started. The emergence of benchmarking tools such as HPOBench (Eggensperger et al.,
2021), HPO-B (Pineda Arango et al., 2021), YAHPO Gym, Syne Tune (Salinas et al., 2022),
and various NAS benchmark suites (Ying et al., 2019; Dong and Yang, 2020; Li et al., 2021;
Zela et al., 2022; Bansal et al., 2022; Mehta et al., 2022), along with the AMLB benchmark for
evaluating full AutoML pipelines (Gijsbers et al., 2024), has allowed for more accessible, repro-
ducible, and efficient benchmarking. However, despite these advancements, researchers still tend
to cherry-pick benchmarks from different suites, define their own evaluation protocols, and set
arbitrary optimization budgets. This shows that efforts to establish standardized benchmarking
suites and protocols have not been universally adopted by the research community. Interestingly,
while past concerns focused on the need for more realistic, diverse and practically relevant HPO
and NAS benchmarks, the opposite may now be emerging. The sheer number of available bench-
marking suites and benchmarks has grown so large that it is becoming impractical to exhaustively
evaluate algorithms across all of them. This raises the following question: How can we define a
representative and relevant subset of benchmarks that remain comprehensive yet small enough?
Foundational work in this direction in the context of traditional black-box benchmarking, such as
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instance hardness analysis (Smith-Miles, 2025), can provide valuable insights for the HPO commu-
nity. Ultimately, the selection of benchmark instances by the research community not only reflects
but also shapes the direction of algorithmic development. Recent trends in both HPO and NAS
have shown a growing focus on improving validation errors, often relying on tabular or surrogate
benchmarks that fail to capture the stochastic nature of generalization error estimation. While
this approach is reasonable for comparing optimization algorithms (Feurer and Hutter, 2019), it
overlooks the fundamental goal of HPO and NAS: to identify models that generalize well to unseen
data, i.e., to an outer test set. Additionally, treating the objective function as purely deterministic
can lead to misleading conclusions about algorithmic progress that may not translate to real-world
improvements in HPO. For example, in our empirical investigation of resamplings and reshuffling
resampling splits, we also demonstrated that the strongest improvements in generalization per-
formance, particularly on small to medium-sized datasets, stem from obtaining a more precise
resampling estimate of the generalization error using repeated cross-validation instead of a simple
holdout. Large-scale surrogate or tabular benchmarking suites typically do not allow for such
variations in evaluation protocols, as they primarily provide deterministic validation performance
estimates obtained via a single resampling. Future HPO benchmarks should explicitly aim to
bridge this gap, ensuring benchmarks to better reflect the complexities of real-world HPO and
NAS rather than remaining narrowly focused on validation error alone.

With respect to HPO in the context of multiple objectives, we focused on multi-objective opti-
mization of performance and interpretability, as well as quality diversity optimization for well-
performing architectures that satisfy different hardware constraints. Based on these contributions
and the current state of the related literature, we conclude that HPO and AutoML with multiple
objectives remain rather niche topics. On the one hand, numerous works emphasize the need for
AutoML solutions to be more customizable and adaptive to user-specific requirements, includ-
ing objectives such as model simplicity or interpretability (Bischl et al., 2023; Karl et al., 2023;
Baratchi et al., 2024). The contributions in this thesis can be seen as initial steps toward the
broader goal of multi-objective and more flexible AutoML. On the other hand, to the best of our
knowledge, no existing AutoML tool currently supports multi-objective optimization as an integral
part of its pipeline. Furthermore, from a usability perspective, it remains unclear whether multi-
objective HPO or AutoML would provide a clear benefit, as users may struggle with selecting
a solution from the Pareto set, especially when faced with more than two competing objectives,
where trade-offs become complex to communicate and interpret. In this aspect, exploring the
potential of preferential optimization techniques (González et al., 2017), which rely on direct user
feedback through pairwise comparisons of solutions, could be a promising direction for improving
usability and decision support in multi-objective HPO.

Looking at a deeper understanding of HPO and its optimization characteristics we note that follow-
up research emerged, which has explored the landscape properties of HPO and NAS (Huang and
Li, 2024), as well as reinforcement learning problems (Mohan et al., 2023). In line with the
findings presented in this thesis, these studies show that many HPO and NAS landscapes are
nearly unimodal, with few local optima, whereas reinforcement learning problems might be more
challenging. Interestingly, Huang and Li (2024) report that the landscape of the validation error
does not always generalize to the landscape of the test error on an outer test set. This further
supports the argument that the HPO and AutoML community should shift focus away from
merely achieving state-of-the-art validation errors on benchmarks and instead prioritize developing
robust solutions that generalize well. Additionally, we must critically reflect on the “difficulty”
of many HPO problems. Besides our investigation of the landscape properties of HPO problems,
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ECDF plots from benchmarks such as HPOBench and YAHPO Gym suggest that often many
well-performing configurations exist, and sophisticated HPO algorithms can efficiently identify
them even under tight computational budgets. In this sense, vanilla HPO may have reached its
asymptote of effectiveness, or, worded more optimistically, fulfilled its original goal. However, a
notable gap remains between scientific and algorithmic advancements in HPO and their adoption
in practice. For instance, Sun et al. (2023), based on semi-structured interviews with AutoML
users, highlight that a lack of customization remains a key limitation of current AutoML systems.
They emphasize the need for integrating domain knowledge into AutoML workflows to enhance
usability and effectiveness. In the context of HPO, the inclusion of prior knowledge and user
preferences are gaining attention, with notable contributions from Hvarfner et al. (2022b) and
Mallik et al. (2023). Related, Kannengießer et al. (2025) report that many ML practitioners
still rely on manual tuning, which they find highly effective for enhancing model understanding
while requiring minimal effort in complex settings. In combination, these insights show the need
for AutoML solutions that re-center the user in the optimization process, enabling more flexible,
domain-adaptive, and interpretable model selection. For a more detailed discussion of this topic,
we refer to Lindauer et al. (2024).

Finally, looking at the position of HPO in the broader field of ML, we have to acknowledge
that HPO might have reached the peak of its popularity and potentially also relevance. Figure 6.1
visualizes the normalized interest in the search term “hyperparameter optimization” from January
2016 to March 2025 according to Google Trends. We observe a steady rise in interest over the years,
peaking around 2022, followed by a slight decline and subsequent stabilization. This shows that,
while interest in HPO has experienced significant growth, it no longer exhibits a strong upward
trajectory. However, rather than indicating a decline, this stabilization likely shows that HPO has
matured as a field within ML. Taking into perspective recent advancements in ML and the strong
performance of large pre-trained foundation models, this might not be surprising. In the field of
natural language processing the dominant paradigm has long shifted to the usage of large retained
language models (Vaswani et al., 2017; Radford et al., 2018; Devlin et al., 2019; Brown et al., 2020;
Ding et al., 2023). Similarly, in the field of computer vision, there is a trend to develop large all-
purpose models (Kirillov et al., 2023; Oquab et al., 2024) that can be fine-tuned (Xin et al., 2024) to
a downstream task at hand. This naturally results in less relevance of the fields of HPO and NAS,
as models are no longer trained from scratch except during the extremely costly pre-training step,
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Figure 6.1.: Normalized interest in the search term “hyperparameter optimization” from January 2016 to
March 2025 according to Google Trends.
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where making use of HPO and AutoML techniques remains a challenge (Tornede et al., 2024).
A similar trend is emerging in tabular supervised learning, where pre-training strategies have
demonstrated strong performance. The introduction of TabPFN (Hollmann et al., 2023, 2025),
a transformer-based model for tabular data (Müller et al., 2022) pre-trained on vast amounts of
synthetic data, has shown exceptional results, particularly for small datasets. In such cases, HPO
and NAS are no longer strictly necessary to achieve state-of-the-art performance, at least when
good predictive performance is the primary objective.

Despite these shifts in the general ML landscape, HPO remains a relevant tool for developing
well-performing and customized models, especially in areas where large-scale pretraining is not
feasible or resource constraints call for efficient model selection or custom user metrics need to be
addressed. The methods, insights and benchmarks introduced in this thesis have contributed to a
more principled, reproducible, and efficient HPO pipeline, ensuring that future research can build
upon a solid foundation. Moreover, while HPO may have reached maturity as a field, its integra-
tion with broader AutoML, interpretability and user-centered optimization paradigms presents
exciting new directions. The growing need for customizable and domain-adaptive solutions shows
the importance of multi-objective HPO, potentially preferential optimization and human-in-the-
loop approaches, all of which remain largely underexplored. Rather than signaling an end, the
stabilization of interest in HPO suggests a transition toward practical adoption and refinement.
Ideally, the focus of HPO will shift to real-world impact. As ML continues to evolve, HPO will
likely remain a key component in optimizing new learning algorithms and architectures, guiding
efficient model deployment, and ensuring that predictive models are not only well-performing but
also interpretable, efficient and accessible. With this perspective, we conclude this thesis with
optimism, hoping that the advancements made here will serve as stepping stones for the next
generation of HPO research.
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Excluded Publications

Some works of the author have not been included as contributions in this thesis. Two major
software packages within the R system for statistical computing1 are given by mlr3pipelines2

and mlr3mbo3. The mlr3pipelines package extends mlr3 4 with a flexible dataflow programming
toolkit, enabling the composition of diverse pipelining operators into graphs for data preprocess-
ing, model fitting, and ensemble learning, which can be treated as mlr3 learners for resampling,
benchmarking, and tuning. The mlr3mbo package provides a modern and flexible framework for
BO and model-based optimization, relying on the bbotk5 package to offer both ready-to-use algo-
rithms and customizable building blocks for single- and multi-objective optimization across mixed
search spaces, seamlessly integrating with mlr3 for HPO of learners. The author of this thesis
contributed to both software packages. HPO in mlr3 and the mlr3mbo package are introduced in
more detail in Becker et al. (2024) and Schneider and Becker (2023). Other works not included in
this thesis are given by publications in which the author of this thesis contributed as a co-author
with minor contributions and responsibility. We list all publications excluded as contributions in
the following bibliography.

1https://www.R-project.org/
2https://cran.r-project.org/package=mlr3pipelines
3https://cran.r-project.org/package=mlr3mbo
4https://cran.r-project.org/package=mlr3
5https://cran.r-project.org/package=bbotk
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und umformuliert, um sie mit meinem eigenen Schreibstil in Einklang zu bringen.

München, den 17.03.2025 Lennart Paul Schneider
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